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Preface

Biologists study living things, but what do philosophers of biology study?
A cynic might say “their own navels,” but I am no cynic. A better answer
is that philosophers of biology, and philosophers of science generally,
study science. Ours is a second-order, not a first-order, subject. In this
respect, philosophy of science is similar to history and sociology of
science. A difference may be found in the fact that historians and
sociologists study science as it is, whereas philosophers of science study
science as it ought to be. Philosophy of science is a normative discipline,
its goal being to distinguish good science from bad, better scientific
practices from worse. This evaluative endeavor may sound like the height
of hubris. How dare we tell scientists what they ought to do! Science does
not need philosopher kings or philosophical police. The problem with
this dismissive comment is that it assumes that normative philosophy of
science ignores the practice of science. In fact, philosophers of science
recognize that ignoring science is a recipe for disaster. Science itself is a
normative enterprise, full of directives concerning how nature ought to be
studied. Biologists don’t just describe living things; they constantly
evaluate each other’s work. Normative philosophy of science is continu-
ous with the normative discourse that is ongoing within science itself.
Discussions of these normative issues should be judged by their quality,
not by the union cards that discussants happen to hold.
Pronouncements on “the scientific method” all too often give the

impression that this venerable object is settled and fixed – that it is an
Archimedean point from which the whole world of scientific knowledge
can be levered forward. The fact of the matter is that a thorough grasp of
scientific inference is a goal, not a given. Like our current understanding
of nature, our present grasp of the nature of scientific inference is
fragmentary and a work in progress. Scientists themselves disagree about
the methods of inference that should be used, and so do statisticians and
philosophers. For this reason, the first chapter of this book, on the
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concept of evidence, is not a report on a complacent consensus. The
position I develop on what evidence means in science is controversial. It is
an intervention in the long-standing disagreement between frequentists
and Bayesians. I wrote this chapter for neophytes, not sophisticates. No
prior understanding of probability is presupposed; I try to build from the
ground up.
The methods of inference used in science take two forms. Some are

entirely general, in the sense that they apply no matter what the subject
matter is. These are the sorts of procedures described in texts on deductive
logic and statistics. A method for estimating the average blood pressure in
a population of robins is also supposed to apply to the problem of
estimating the average weight in a pile of rocks. The different sciences also
include methods that are narrower in scope; these methods are tailor-
made to apply to a specific subject matter. For example, in evolutionary
biology, a concept of parsimony has been developed that underwrites
inferences about phylogenetic trees; this method is not general in its
subject matter, it applies only to hypotheses about genealogies of a certain
sort. The usefulness of this concept of parsimony has been controversial
in evolutionary biology. When I consider the role of parsimony
considerations in evolutionary biology in Chapters 3 and 4, I again will
be intervening in a methodological dispute that is alive within science itself.
When scientists disagree about which of several competing inference

methods they should use, it often is fairly obvious that there is a
philosophical dimension to their dispute. But philosophical questions also
can be raised when there is a thoroughgoing scientific consensus. No
competent biologist now doubts that human beings and chimps have a
common ancestor. The detailed similarities that unite these two species
are overwhelming. It takes a philosopher to see a question in the
background – why does detailed similarity provide evidence of common
ancestry? Philosophers can ask this question without doubting the good
judgment of the scientific community. They want to uncover the
assumptions that need to be true for this inference from similarity to
common ancestry to make sense. Analyzing inferences that seem to be
obviously correct has long been a favorite project for philosophers.
Two grand ideas animate the Darwinian theory of evolution, both in

the form that Darwin gave it and also in the form that modern
Darwinians endorse. These are the ideas of common ancestry and natural
selection. In each case, we can think of Darwinian ideas as competing
with alternatives. The hypothesis that the species we now observe trace
back to a common ancestor competes with the hypothesis that they
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originated separately and independently. The hypothesis that a trait in a
species – say, the long fur that polar bears now have – evolved by natural
selection competes with the hypothesis that it evolved by random genetic
drift and with other hypotheses that describe other possible causes of
character change and stasis. Most of Chapters 3 and 4 is devoted to
understanding how the Darwinian position can be tested against its
competitors. But I also spend time exploring how ideas about natural
selection and common ancestry interact with each other. Biologists use
information about common ancestry to test hypotheses about natural
selection. And inferences about ancestry often rely on information about
how various traits have evolved. The two parts of the Darwinian picture
are logically independent of each other, but they are methodologically
interdependent.
This book is aimed at philosophers of science and evolutionary

biologists. Both tend to have little patience with creationism, so I want to
explain why I devote Chapter 2 to its evaluation. I do not think that
“intelligent design” is a substantive scientific theory, but I am not satisfied
with the standard reasons that have been offered to explain why this is so.
For example, Karl Popper’s ideas on falsifiability are often used in this
context, but philosophers of science have long realized that there are
serious problems with Popper’s solution to the demarcation problem –
the problem of separating science from nonscience. In Chapter 2, I try to
develop a better account of testability that clarifies what is wrong with the
hypothesis of intelligent design. Another standard critique of creationism
begins with the fact that many of the adaptations we find in nature are
highly imperfect. It is claimed that an intelligent designer would never
have produced such arrangements. I explain in Chapter 2 why I find this
criticism of creationism problematic. Although it isn’t true that every
word of Chapter 2 matters to the material in Chapters 3 and 4, there
nonetheless is a through-line from Chapter 1 to Chapters 3 and 4 that
passes through Chapter 2. The Duhem–Quine thesis about scientific
testing is introduced in Chapter 2 and so is the concept of a fitness
function; both play important roles in what comes after.
Chapter 3 begins where Chapter 2 leaves off, by asking whether

hypotheses about natural selection are in any better shape than hypotheses
about intelligent design. It is not fair switching standards – setting the bar
impossibly high when evaluating creationism, but lowering the bar when
evolutionary hypotheses are assessed. I begin with the apparently
simple problem of explaining why polar bears now have (let us assume)
fur that is, on average, 10 centimeters long. Which is the more plausible
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explanation: that the trait evolved by natural selection or that it evolved by
drift? In the first few sections of Chapter 3, I describe what needs to be
known if one wishes to test these hypotheses against each other. The result
is a catalog of difficulties. I then argue that the situation is transformed if
we take up a different problem: Rather than trying to explain why polar
bears have an average fur length of 10 centimeters, we might try to
explain why bears in cold climates have longer fur than bears in warm
ones. This new problem is easier to solve, and the fact that bears have a
common ancestor plays a role in solving it. The rest of Chapter 3
discusses some of the methods that biologists have used to test hypotheses
about natural selection; for example, they use DNA sequence data and
they also infer the chronological order of the novelties that evolve in a
phylogenetic tree.
Chapter 4 addresses a question I mentioned before: Why, or in what

circumstances, is the similarity of two species evidence that they have a
common ancestor? After developing an answer to this question that is
based on the concept of evidence described in Chapter 1, I explore
Darwin’s idea that similarities that are useless to the organisms that have
them provide stronger evidence for common ancestry than adaptive
similarities do. Although Darwin’s suggestion is right for a large class of
adaptive similarities, it emerges that that there is a type of adaptive
similarity for which the situation is precisely the reverse. I then consider
how intermediate fossils and biogeographical distribution provide
evidence concerning common ancestry. The chapter concludes with a
discussion of two conflicting methods for inferring phylogenetic trees.
The title of this book may be a little misleading, but I hope that the

subtitle corrects a misapprehension that the title may encourage. The title
perhaps suggests that this is a book that describes the evidence for
evolution. There are many good books that do this; they are works of
biology. The book before you is not a member of that species; rather, it is a
work of philosophy. My goal in what follows is not to pile up facts that
support this or that proposition in evolutionary biology. Rather, I want to
describe the tools that ought to be used to assess the evidence that bears
on evolutionary ideas. Scientists, ever eager to draw conclusions about
nature, reach for patterns of reasoning that seem sensible, but they rarely
linger over why the procedures they use make sense. Although this book is
not a work of science, I hope that scientists will find that some of the
thoughts developed here are worth pondering. I also hope that the
philosophers who read this book will be intrigued by the evolutionary
setting of various epistemological problems.
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CHAPTER 1

Evidence

Scientists and philosophers of science often emphasize that science is a
fallible enterprise. The evidence that scientists have for their theories does
not render those theories certain. This point about evidence is often re-
presented by citing a fact about logic: The evidence we have at hand does
not deductively entail that our theories must be true. In a deductively valid
argument, the conclusion must be true if the premises are. Consider the
following old saw:

All human beings are mortal.

Socrates is a human being.

Socrates is mortal.

If the premises are true, you cannot go wrong in believing the conclusion.
The standard point about science’s fallibility is that the relationship of
evidence to theory is not like this. The correctness of this point is most
obvious when the theories in question are far more general than the
evidence we can bring to bear on them. For example, theories in physics
such as the general theory of relativity and quantum mechanics make
claims about what is true at all places and all times in the entire universe.
Our observations, however, are limited to a very small portion of that
immense totality. What happens here and now (and in the vicinity
thereof) does not deductively entail what happens in distant places and at
times remote from our own.
If the evidence that science assembles does not provide certainty about

which theories are true, what, then, does the evidence tell us? It seems
entirely natural to say that science uses the evidence at hand to say which
theories are probably true. This statement leaves room for science to be
fallible and for the scientific picture of the world to change when new
evidence rolls in. As sensible as this position sounds, it is deeply con-
troversial. The controversy I have in mind is not between science and
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nonscience; I do not mean that scientists view themselves as assessing how
probable theories are while postmodernists and religious zealots debunk
science and seek to undermine its authority. No, the controversy I have in
mind is alive within science. For the past seventy years, there has been a
dispute in the foundations of statistics between Bayesians and frequentists.
They disagree about many issues, but perhaps their most basic disagree-
ment concerns whether science is in a position to judge which theories are
probably true. Bayesians think that the answer is yes while frequentists
emphatically disagree. This controversy is not confined to a question that
statisticians and philosophers of science address; scientists use the meth-
ods that statisticians make available, and so scientists in all fields must
choose which model of scientific reasoning they will adopt.
The debate between Bayesians and frequentists has come to resemble

the trench warfare of World War I. Both sides have dug in well; they
have their standard arguments, which they lob like grenades across the no-
man’s-land that divides the two armies. The arguments have become
familiar and so have the responses. Neither side views the situation as a
stalemate, since each regards its own arguments as compelling. And yet
the warfare continues. Fortunately, the debate has not brought science to
a standstill, since scientists frequently find themselves in the convenient
situation of not having to care which of the two approaches they should
use. Often, when a Bayesian and a frequentist consider a biological theory
in the light of a body of evidence, they both give the theory high marks.
This allows biologists to walk away happy; they’ve got their answer to
the biological question of interest and don’t need to worry whether
Bayesianism or frequentism is the better statistical philosophy. Biologists
care about making discoveries about organisms; the nature of reasoning
is not their subject, and they are usually content to leave such
‘‘philosophical’’ disputes for statisticians and philosophers to ponder.
Scientists are consumers of statistical methods, and their attitude towards
methodology often resembles the attitude that most of us have towards
consumer products like cars and computers. We read Consumer Reports
and other magazines to get expert advice on what to buy, but we rarely
delve deeply into what makes cars and computers tick. Empirical scientists
often use statisticians, and the ‘‘canned’’ statistical packages they provide,
in the same way that consumers use Consumer Reports. This is why the
trench warfare just described is not something in which most biologists
feel themselves to be engulfed. They live, or try to live, in neutral Swit-
zerland; the Battle of the Marne (they hope) involves others, far
from home.

2 Evidence



This book is about the concept of evidence as it applies in evolutionary
biology; the present chapter concerns general issues about evidence that
will be relevant in subsequent chapters. I do not aim here to provide
anything like a complete treatment of the debate between Bayesianism
and frequentism, nor is my aim to end the trench warfare that has per-
sisted for so long. Rather, I hope to help the reader to understand what
the shooting has been about. I intend to start at the beginning, to not use
jargon, and to make the main points clear by way of simple examples.
There are depths that I will not attempt to plumb. Even so, my treatment
will not be neutral; in fact, it is apt to irritate both of the entrenched
armies. I will argue that Bayesianism makes excellent sense for many
scientific inferences. However, I do agree with frequentists that applying
Bayesian methods in other contexts is highly problematic. But, unlike
many frequentists, I do not want to throw out the Bayesian baby with the
bathwater. I also will argue that some standard frequentist ideas are flawed
but that others are more promising. With respect to frequentism as well, I
feel the need to pick and choose. My approach will be ‘‘eclectic’’; no
single unified account of all scientific inference will be defended here,
much as I would like there to be a grand unified theory.
One further comment before we begin: I have contrasted Bayesianism

and frequentism and will return to this dichotomy in what follows.
However, there are different varieties of Bayesianism, and the same is true
of frequentism. In addition, there is a third alternative, likelihoodism
(though frequentists often see Bayesianism and likelihoodism as two sides
of the same deplorable coin). We will separate these inferential philoso-
phies more carefully in what follows. But for now we begin with a stark
contrast: Bayesians attempt to assess how probable different scientific
theories are, or, more modestly, they try to say which theories are more
probable and which are less. Frequentists hold that this is not what the
game of science is about. But what do frequentists regard as an attainable
goal? Hold that question in mind; we will return to it.

1.1 ROYALL’S THREE QUESTIONS

The statistician Richard Royall begins his excellent book on the concept
of evidence (Royall 1997: 4) by distinguishing three questions:

(1) What does the present evidence say?
(2) What should you believe?
(3) What should you do?
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If you are rational, you form your beliefs by consulting the evidence
you have just gained, and when you decide what to do (which actions to
perform), you should take account of what you believe. But answering
question (2) requires more than an answer to (1), and answering question
(3) requires more than an answer to (2). The extra elements needed are
depicted in Figure 1.1.
Suppose you are a physician and you are talking to the patient in your

office about the result of his tuberculosis test. The report from the lab says
‘‘positive.’’ This is your present evidence. Should you conclude that the
patient has tuberculosis? You want to take the lab report into account, but
you have other information besides. For example, you previously had
conducted a physical exam. Before you looked at the test report, you had
some opinion about whether your patient has tuberculosis. The lab report
may modify how certain you are about this. You update your degree of
belief by integrating the new evidence with your prior information. This
may lead you say to him ‘‘your probability of tuberculosis is 0.999.’’
If your patient is a philosopher who enjoys perverse conversation, he

may reply, ‘‘but tell me, doctor, do I have tuberculosis, or not?’’ He
doesn’t want to know how probable it is that he has tuberculosis; he wants
to know whether he has the disease – yes or no. This raises the question of
whether a proposition’s having a probability of 0.999 suffices for one to
believe it, where belief is conceptualized as a dichotomous category: Ei-
ther you believe the proposition or you do not. It may seem that a high
degree of belief suffices for believing a proposition (even if it does not

dichotomous belief

Present evidence 

updated degree  
of belief

Prior degree 
of belief

action

utilities

Figure 1.1 Present evidence and its downstream consequences.
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suffice for being certain that the proposition is true), but there are
complications. Consider Kyburg’s (1970) lottery paradox. Suppose 1,000
lottery tickets are sold and the lottery is fair. Fair means that one ticket
will win and each has the same chance of winning. If high probability
suffices for belief, you are entitled to believe that ticket no. 1 will not win,
since the probability of ticket 1’s not winning is 999

1000. The same is true of
ticket no. 2; you should believe that it won’t win. And so on, for each of
the 1,000 tickets. But if you put these 1,000 beliefs (each of the form
ticket i will not win) together with the rest of what you believe, your
beliefs have become contradictory: You believe that some ticket will win
(since you believe the lottery is fair), and you have just accepted the
proposition that no ticket will win. Kyburg’s solution to this puzzle is to
say that acceptance does not obey a rule of conjunction; you can accept A
and accept B without having to accept the conjunction A&B.1 This may
be the best one can do for the concept of dichotomous belief, but it raises
the question of whether we really need such a concept. After all, our
everyday thought is littered with dichotomies that, upon reflection, seem
to be crudely grafted to an underlying continuum. For example, we speak
of people being bald, but we know that there is no threshold number of
hairs that marks the boundary.2 We are happy to abandon these crude
categories when we need to, but we return to them when they are
convenient and harmless.
If it makes sense to talk about rational acceptance and rational rejec-

tion, those concepts must bear the following relation to the concept of
evidence:

If learning that E is true justifies you in rejecting (i.e., disbelieving) the propo-
sition P, and you were not justified in rejecting P before you gained this in-
formation, then E must be evidence against P.

If learning that E is true justifies you in accepting (i.e., believing) the proposition
P, and you were not justified in accepting P before you gained this information,
then E must be evidence for P.

A theory of rational acceptance and rejection must provide more than
this modest principle, which may seem like a mere crumb, hardly worth

1 See Kaplan (1996) for a theory of rational acceptance that, unlike Kyburg’s, obeys the conjunction
principle.

2 I say we ‘‘know’’ this, but Williamson (1994) and Sorenson (2001) have argued that in each use of
a vague term, there is a cutoff, even if speakers are not aware of what it is. Their position is
counterintuitive, but it cannot be dismissed without attending to their arguments (which we won’t
do here).
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mentioning at all. But, in fact, it is worth stating, since later in this
chapter it will do some important philosophical work.3

Even if this modest principle linking evidence and rational acceptance
seems obvious, there is an old philosophical reason for pausing to ponder it.
In the seventeenth century, Blaise Pascal sketched an argument that came
to be called Pascal’s wager. Earlier proofs of the existence of God had tried
to demonstrate that there is evidence that God exists; Pascal endeavored to
show that one ought to believe in God even if all the evidence one has is
evidence against. The rough idea is this: If there is a God, you’ll go to
Heaven if you’re a believer and go to Hell if you’re not; on the other hand,
if there is no God, it won’t much affect your well-being whether or not you
believe. Pascal wrote when probability theory was just starting to take its
modern mathematical form, and his argument is a nice illustration of ideas
that came to be assembled in decision theory. Though there is room to
dispute the details of this argument (on which see Mougin and Sober
1994), the wager is of interest here because it appears to challenge the
‘‘modest’’ principle just enunciated. The wager purports to provide a
reason for accepting the proposition that God exists even though it does not
cite any evidence that there is a God. It is easy to think of nontheological
arguments that pose the same challenge. Suppose I promise to give you
$1,000,000 if you can get yourself to believe that the President is now
juggling candy bars. If I am trustworthy, I have given you a reason to believe
the proposition though I have not provided any evidence that it is true.
Commentators on Pascal’s wager often distinguish two types of rational

acceptance. The act of accepting a proposition can make good prudential
sense, but that does not mean that the proposition accepted is well sup-
ported by evidence. When acceptance is driven by the costs and benefits
that attach to the act of believing, I’ll call this ‘‘prudential acceptance.’’
When it is driven by the bearing of evidence on the proposition believed,
I’ll use the term ‘‘evidential acceptance.’’ The modest principle linking
evidence and ‘‘acceptance’’ really pertains to evidential acceptance. The
principle, modified in this way, is true; in fact, it may even be true by
definition. However, this does not settle whether it is ever permissible to

3 It is interesting that the concept of evidence relates pairs of propositions to each other, while the
concepts of acceptance and rejection relate propositions to persons. Smoke is evidence for fire,
regardless of whether any agent takes this fact to heart. However, rational acceptance (or rejection)
means that a person is justified in accepting (or rejecting) some proposition. The present
disciplinary divide between philosophers of science and epistemologists coincides to a considerable
degree with this distinction between questions concerning how propositions are related to each
other and questions concerning how propositions are related to persons.
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indulge in prudential acceptance. William James (1897) defends the right
to believe when the evidence is silent in his essay ‘‘The Will to Believe.’’
W. K. Clifford (1999) replies, in ‘‘The Ethics of Belief,’’ that it is always
wrong ‘‘to believe upon insufficient evidence.’’ I will not try to adjudicate
between these two positions. Suffice it to say that the modest principle
stated earlier is binding on those who commit to having evidence control
what they believe.
It may seem a long jump from Pascal’s seventeenth-century theology to

the hard edges of twentieth-century statistics, but Pascal’s concept of
prudential acceptance lives on in frequentism. The following remark by
Neyman and Pearson (1933: 291) has often been quoted:

No test based upon the theory of probability can by itself provide any valuable
evidence of the truth or falsehood of [an] hypothesis [ . . . ] But we may look at
the purpose of tests from another viewpoint. Without hoping to know whether
each separate hypothesis is true or false, we may search for rules to govern our
behavior with regard to them, in following which we insure that, in the long run
of experience, we shall not be too often wrong.

Neyman and Pearson think of acceptance and rejection as behaviors,
which should be regulated by prudential considerations, not by
‘‘evidence,’’ which, for them, is a will o’ the wisp. The prudential con-
siderations they have in mind do not involve going to Heaven or Hell, but
rather pertain to having true beliefs or false ones. There is no such thing as
allowing ‘‘evidence’’ to regulate what we believe. Rather, we must em-
brace a policy and stick to it. If we do so, we can be certain (or, at least, it
is overwhelmingly probable) that the percentage of false beliefs we
accumulate over the long run will be held below some predesignated
minimum. Not that present-day frequentists are all so dismissive of the
concept of evidence (§1.4). But frequentists, early and late, have often
embraced the idea of prudential belief.
Let us return to Figure 1.1. Suppose you, the physician, are 99.9

percent certain that your patient has tuberculosis, this degree of belief
being based on the present tuberculosis test result and on other in-
formation you had from before. The thing to notice next is that your
degree of belief does not, by itself, dictate what you should say or do.
Should you tell your patient what you think? Should you remain silent?
Should you lie? Should you hand him the pink pills you have in your
desk? A rational decision about what to do requires more than the evi-
dence you have and more than the degree of belief you have; a choice of
action requires the input of values (which economists call utilities).

Evidence 7



1.2 THE ABCs OF BAYESIANISM

Bayesianism is an answer to Royall’s question (2): What should you
believe? Bayesianism refines this question, substituting the concept of
degree of belief for the dichotomous concept of believing or not believing
a proposition. In our running example, Bayesianism addresses the ques-
tion of how certain you should be that your patient has tuberculosis, given
that his tuberculosis test came back positive.

Bayes’ theorem

Bayesianism is based on Bayes’ theorem, but the two are different. Bayes’
theorem is a result in mathematics.4 It is called a theorem because it is
derivable from the axioms of probability theory (in fact, from a standard
definition of conditional probability). As a piece of mathematics, the
theorem is not controversial. Bayesianism, on the other hand, is a phi-
losophical theory – it is an epistemology. It proposes that the mathematics
of probability theory can be put to work in a certain way to explicate
various concepts connected with issues about evidence, inference, and
rationality.
Here is the rough idea of how Bayesianism uses Bayes’ theorem: Before

you make an observation, you assign a probability to the hypothesis H;
this probability may be high, medium, or low (all probabilities by
definition must be between 0 and 1, inclusive). After you make the
observation, thereby learning that some observation statement O is true,
you update the probability you assigned to H to take account of what you
just learned. The probability that H has before the observation is called its
prior probability; it is represented by Pr(H). The word ‘‘prior’’ just means
before; it doesn’t mean that you know its value a priori (i.e., without any
empirical input at all). The probability that H has in the light of the
evidence O is called H ’s posterior probability; it is represented by the
conditional probability Pr(H jO); read this as ‘‘the probability of H,
given O.’’ Bayes’ theorem shows how the prior and the posterior prob-
ability are related.
Now for the derivation of the theorem. Forget for just a moment that H

means hypothesis and O means observation. Just regard them as any two

4 A special case of the theorem was derived by Thomas Bayes and was published posthumously in the
Proceedings of the Royal Society for 1764. Bayes’ derivation was laborious and not fully general, very
unlike the now-standard streamlined derivation I’ll describe here.
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propositions. Kolmogorov’s (1950) definition of conditional probability
is this:

PrðH jOÞ ¼ PrðH & OÞ
PrðOÞ :

The definition is intuitive. For example, what is the probability that a
card drawn at random from a standard deck is a heart, given that it is
red? According to the Kolmogorov definition, this conditional prob-
ability has the same value as the ratio Prðheart & redÞ=PrðredÞ. The
denominator has a value of 1

2. The proposition in the numerator, heart
& red, is equivalent to heart, so the value for the numerator is 1

4. Hence,

the conditional probability has a value of 1
2. By switching Hs and Os

with each other in the Kolmogorov definition, you can see that it also is
true that

PrðO jH Þ ¼ PrðO & HÞ
PrðHÞ :

This means that the probability of the conjunction H&O can be ex-
pressed in two different ways:

PrðH & OÞ ¼ PrðH jOÞ PrðOÞ ¼ PrðO jHÞPrðHÞ:

From the second equality in the previous line, we obtain

Bayes’ theorem: PrðH jOÞ ¼ PrðO jH ÞPrðHÞ
PrðOÞ :

Here is some more terminology. I’ve already mentioned the posterior
probability and the prior probability that appear in Bayes’ theorem, but
two other quantities are also mentioned. Pr(O) is the unconditional
probability of the observations. And R. A. Fisher dubbed Pr(O jH) the
likelihood of H. Because Fisher’s terminology has become standard in
statistics, I will use it here. However, this terminology is confusing, since
in ordinary English, ‘‘likely’’ and ‘‘probably’’ are synonymous. So,
beware! You need to remember that ‘‘likelihood’’ is a technical term. The
likelihood of H, Pr(O jH), and the posterior probability of H, Pr(H jO),
are different quantities and they can have different values. The likelihood
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of H is the probability that H confers on O, not the probability that O
confers on H. Suppose you hear a noise coming from the attic of your
house. You consider the hypothesis that there are gremlins up there
bowling. The likelihood of this hypothesis is very high, since if there are
gremlins bowling in the attic, there probably will be noise. But surely you
don’t think that the noise makes it very probable that there are gremlins
up there bowling. In this example, Pr(O jH) is high and Pr(H jO) is low.
The gremlin hypothesis has a high likelihood (in the technical sense) but a
low probability.
Let me add two more details that underscore the distinction between

H’s probability and its likelihood.

PrðH Þ þ PrðnotH Þ ¼ 1

and

PrðH jOÞ þ PrðnotH jOÞ ¼ 1

as well. The probability of a proposition and the probability of its ne-
gation sum to one; this is true for prior and also for posterior prob-
abilities. But likelihoods need not sum to one; Pr(O jH) þ Pr(O j notH)
can be less than 1, or more. Suppose you observe that Sue is a millionaire
and wonder whether she won her wealth in last week’s lottery. Your
observation is very improbable under the hypothesis that she bought a
ticket in the lottery and also under the hypothesis that she did not. To
summarize this point: If you know the probability of H, you thereby
know the probability of notH; but knowing the likelihood of H leaves the
likelihood of notH completely open.
Another difference between likelihoods and probabilities concerns the

difference between logically stronger and logically weaker hypotheses.
Consider the following two hypotheses about the next card you’ll be dealt
from a standard deck:

H1 ¼ It’s a heart.

H2 ¼ It’s the Ace of Hearts.

The hypothesis H2 is logically stronger than H1; this means that H2 entails
H1, but not conversely. Suppose the dealer is careless and you catch a
glimpse of the card before it is dealt; you observe O ¼ the card is red.
Notice that H1 has the higher posterior probability; Pr(H1 jO) ¼ 1

2 while
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Pr(H2 jO) ¼ 1
26. But the two hypotheses have identical likelihoods, since

Pr(O jH1) ¼ Pr(O jH2) ¼ 1. It is a theorem of probability theory that

If proposition X entails proposition Y ; then PrðX Þ � PrðY Þ; and

PrðX j dataÞ � PrðY j dataÞ no matter what the data are:

Logically stronger hypotheses can’t have higher probabilities than logically
weaker hypotheses, but they can have higher likelihoods. This point about
likelihoods is illustrated by the relationship of H1 and H2 to the ob-
servation O 0 ¼ the card is an ace.

A rule for updating

The different quantities used in Bayes’ theorem are all available before
you find out whether the statement O is true. You can know the value of
Pr(H jO) without knowing whether O is true, just as you can know that a
conditional (an if/then statement) is true without knowing whether its
antecedent (the if part) is true. All Bayes’ theorem tells you is how the
different probabilities it mentions, all assigned values at the same time,
must be related. The theorem is, so to speak, a synchronic statement. But,
as mentioned, Bayesianism provides advice about how you should change
your degree of belief as you acquire new evidence. Bayes’ theorem,
therefore, must be supplemented by a rule for updating: This rule de-
scribes how probabilities should be related diachronically.
The rule of updating by strict conditionalization says that if O is the

totality of the new information you have acquired, your new probability
for H should be equal to your old value for Pr(H jO). In other words:
Prnow(H) ¼ Prthen(H jO), if O is all the evidence you acquired between
then and now.
Before the result of the tuberculosis test is placed before you, you

know the value of Pr(S has tuberculosis j the test is positive) and Pr(S has
tuberculosis j the test is negative). These are your old posterior prob-
abilities. When you learn that the test turned out positive, your new
degree of belief for the proposition that S has tuberculosis is the one you
assigned to the first of these conditional probabilities.
When I say that this rule for updating applies to ‘‘your’’ probability,

does this mean that the Bayesian framework concerns only subjective
degrees of belief? No – it is more general than this. You can think of this
rule as giving normative advice to agents on how they should adjust the
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amount of certainty they have. But a rule for updating also provides
advice concerning what you should think the objective probability of a
proposition is. If you think that the objective prior probability of drawing
the Ace of Hearts from a normal deck is 1

52, and you think that the

objective posterior probability of the card’s being the Ace of Hearts, given
that it is red, is 1

26, and you learn (just) that the next card drawn will be
red, then your new objective probability for the card’s being the Ace of
Hearts should be 1

26. It is useful to keep Bayesianism’s epistemological
advice about how probabilities should be assigned and manipulated se-
parate from the semantic question of what probability statements mean.
Not that interesting connections can’t be drawn between the two issues.
But first things first.
Strict conditionalization involves the idealization that an act of ob-

servation has the result that you find out that an observation statement is
true or that it is false. What you learn isn’t just that O is probably true; you
learn that O is true. You then use this information to modify the degree of
belief you have for some other proposition H. Bayesianism with strict
conditionalization is a kind of hybrid philosophy, in which you accept or
reject O but you do not apply the concept of dichotomous belief to H.
Richard Jeffrey (1965) proposed a rule for updating in which you acquire
only a degree of belief in O; the concept of dichotomous belief is thor-
oughly abandoned. Jeffrey’s probability kinematics describes how your
newly acquired degree of belief in O should affect your degree of belief
in H.5 For the purposes of this book, we can ignore Jeffrey’s refinement
and think of Bayesianism in terms of the idea of strict conditionalization.
In what follows, I won’t go to the trouble of distinguishing old prob-
ability assignments from new ones. Since I’ll be focusing on the version of
Bayesianism that uses the rule of strict conditionalization, I’ll treat the
posterior probability Pr(H jO) as representing your updated degree belief
once you learn that O is true (provided that O is all you learned).
Notice that the rule for updating by strict conditionalization addresses

the case in which you now have a probability for proposition H, and you
also had a (conditional) probability for that proposition earlier. It
therefore fails to apply to cases of conceptual innovation in which H
involves concepts that you just formulated. You didn’t have a conditional

5 Although Jeffrey’s conditionalization is more realistic than strict conditionalization in terms of its
characterization of the input, it has a logical oddity that strict conditionalization avoids. The order
in which new evidence arrives can affect the final degree of belief in Jeffrey’s conditionalization, but
not in strict.
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probability for H earlier because H uses concepts you didn’t have available
back then. This is an especially important feature of some scientific in-
novations; scientists often work within the confines of a fixed stock of
concepts, but every so often they break out. Evolutionists sometimes draw
a distinction between micro- and macroevolution (§2.19); the former
describes changes that occur within an enduring species whereas the latter
describes changes that result in the appearance of new species. Kuhn’s
(1962) distinction between normal science and revolutionary science is
similar; there is science pursued within an existing ‘‘paradigm’’ and sci-
ence that results in the formation of new paradigms. Bayesian updating by
strict conditionalization makes more sense in connection with the micro-
changes that occur within normal science; it is controversial whether it
can represent the macro-changes that occur in scientific revolutions.6

Posterior probabilities, likelihoods, and priors

Let’s apply Bayes’ theorem to the running example that you are a doctor
and your patient has a positive tuberculosis test result. You want to use
this new information to figure out how certain you should be that he has
tuberculosis. Bayes’ theorem says that

ð4Þ Prðtuberculosis j þ resultÞ ¼ Prðþ result j tuberculosisÞPrðtuberculosisÞ
Prðþ resultÞ :

Bayes’ theorem also can be stated for the hypothesis that S does not have
tuberculosis:

Prðno tuberculosis j þ resultÞ

¼ Prðþ result j no tuberculosisÞPrðno tuberculosisÞ
Prðþ resultÞ :

ð5Þ

Combining (4) and (5) yields the following equality of ratios:

Prðtuberculosis j þ resultÞ
Prðno tuberculosis j þ resultÞ
¼ Prðþ result j tuberculosisÞ
Prðþ result j no tuberculosisÞ ·

PrðtuberculosisÞ
Prðno tuberculosisÞ :

ð6Þ

6 See Eells (1985) and Earman (1992) for discussion of the closely related problem of old evidence.
The problem described above is located in what Earman calls ‘‘the problem of new theories.’’
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Notice that the quantity Pr(þ result), the unconditional probability of
the observations, which is present in both (4) and (5), now has dis-
appeared. Proposition (6) says that the ratio of posterior probabilities
equals the ratio of likelihoods times the ratio of priors.
Before you observe the test result, you have your two prior prob-

abilities; these must sum to one, but their ratio may of course be greater
than unity, or less. Will your observation of the positive test result lead
you to change your degrees of belief ? They cannot if the two likelihoods
are the same. If

Prðþ result j tuberculosisÞ ¼ Prðþ result j no tuberculosisÞ;
the ratio of the posterior probabilities will be the same as the ratio of
priors. In this case, the observation is uninformative. In fact, you needn’t
even bother to check how the test came out. On the other hand, if

Prðþ result j tuberculosisÞ> Prðþ result j no tuberculosisÞ;
your observation makes a difference. A positive test result will increase
your confidence that S has tuberculosis (and reduce your confidence
that he does not). In this case, the observation has the effect of making
the ratio of posterior probabilities larger than the ratio of priors. The
likelihood ratio, the first product term on the right-hand side of (6), is
the pathway by which the test result can lead you to revise your degree
of belief in whether S has tuberculosis. For Bayesianism, there is
no other.
Another way to see this point is to delve more deeply into the instance

of Bayes’ theorem given in (4). What does ‘‘the unconditional probability
of the observation’’ mean? A positive test result can occur when S has
tuberculosis, but it also can occur when S does not (in which case the test
result is mistaken). Both these possibilities are represented in the un-
conditional probability of the observations:

ð7Þ Prðþ resultÞ ¼ Prðþ result j tuberculosisÞPrðtuberculosisÞ
þ Prðþ result j no tuberculosisÞPrðno tuberculosisÞ:

The unconditional probability of the observation is the average prob-
ability that the observation has under the two alternative hypotheses,
where the average is taken by using weighting terms supplied by the prior
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probabilities; in other words, Pr(þ result) is a weighted average of the two
likelihoods. If we use (7) to rewrite (4), we obtain:

ð8Þ Prðtuberculosis j þ resultÞ

¼ Prðþ result j tuberculosisÞPrðtuberculosisÞ
Prðþ result j tuberculosisÞPrðtuberculosisÞ þ Prðþ result j no tuberculosisÞPrðno tuberculosisÞ :

If Pr(þ result j tuberculosis) ¼ Pr(þ result j no tuberculosis), the denomin-
ator in (8) is equal to Pr(þ result j tuberculosis), in which case (8) simplifies to

Prðtuberculosis j þ resultÞ ¼ PrðtuberculosisÞ:
Without a difference in likelihoods, the posterior probability must have the
same value as the prior; the observation has not affected your degree of belief.

Confirmation

As mentioned earlier, Bayesianism is more than Bayes’ theorem. The
philosophy goes beyond the mathematics because the philosophy pro-
poses definitions of key epistemological concepts. For example,
Bayesianism defines confirmation as probability-raising and disconfirmation
as probability-lowering:

ðQualÞ O confirmsH if and only if PrðH jOÞ> PrðHÞ:
O disconfirmsH if and only if PrðH jO Þ< PrðHÞ:
O is confirmationally irrelevant to H if and only if

PrðH jOÞ ¼ PrðHÞ:
Confirmation does not mean proving true and disconfirmation does not
mean proving false; confirmation and disconfirmation mean only that an
observation should increase or reduce your confidence that H is true.
Thus, the observation that O is true can confirm H even though Pr(H jO)
is still low; the posterior probability just has to be higher than the prior.
And O can disconfirm H even though Pr(H jO) is still high; O just has to
lower H’s probability. Bayesian confirmation and disconfirmation involve
comparisons of probabilities; they say nothing about the absolute values of
any probability. Bayes’ theorem allows an equivalent definition of Bayesian
confirmation to be extracted from the one given above:

O confirmsH if and only if PrðO jHÞ> PrðO j notH Þ:
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To see whether O confirms H, don’t ask whether H, if true, would lead
you to expect that O is true. Rather, ask whether H makes O more
probable than notH does.
The definitions stated in (Qual) characterize a qualitative concept of

confirmation. They do not provide a measure of degree of confirmation;
(Qual) doesn’t say how much O confirms H. How might a quantitative
concept be defined? Here are some candidates to consider, whereDoC(H,O)
represents the degree to which O confirms H:

ðDiffÞ DoCðH ;OÞ¼ PrðH jOÞ�PrðH Þ:

ðRatioÞ DoCðH ;OÞ¼ PrðH jOÞ
PrðHÞ :

ðL-RatioÞ DoCðH ;OÞ¼ PrðO jH Þ
PrðO j notHÞ :

All three of these definitions agree that (Qual) is true. However, they
are not ordinally equivalent; they can disagree as to whether O1 confirms
H1 more than O2 confirms H2. For example, suppose that

PrðH1 jO1Þ ¼ 0:9 PrðH1Þ ¼ 0:5

PrðH2 jO2Þ¼ 0:09 PrðH2Þ ¼ 0:02:

According to (Diff), the difference measure, O1 confirms H1 more than O2

confirms H2, since 0.4 > 0.07. But, according to the ratio measure, the
reverse is true, since 9

5 <
9
2. The fact that these and other measures sometimes

disagree has given rise to a lively debate among Bayesians as to whichmeasure
is best (Fitelson 1999). Bayesians who despair of resolving this question try to
restrict their discussion of confirmation to the qualitative definition (Qual).
Do we need to measure degree of confirmation? Perhaps the qualitative

notion is enough. After all, there seems to be little reason to compare how
much the fossil record confirms the Darwinian theory of evolution with how
much Eddington’s observation of light bending during an eclipse confirms
the GTR. True, but there are other scientific contexts in which quantitative
questions about confirmation matter. For example, in Chapter 4 we’ll
consider the hypothesis that two or more species share a common ancestor,
and we’ll investigate whether the adaptive similarities that the species share
or the neutral similarities that they share provide stronger evidence in favor of
that hypothesis. Even if

Pr (X and Y have a common ancestor jX and Y share adaptive trait T1) > Pr (X
and Y have a common ancestor) and Pr (X and Y have a common ancestor jX and
Y share neutral trait T2) > Pr (X and Y have a common ancestor).
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there is another question that remains to be addressed. If it makes sense to
ask which kind of similarity provides stronger evidence for common
ancestry, (Qual) is not enough.

Reliability

What does it mean to say that a tuberculosis test is ‘‘reliable’’? Does it
mean that what the test says has a high probability of being true? That is,
does it mean that

ð9Þ Prðtuberculosis j þ resultÞ and Prðno tuberculosis j � resultÞ
are both large?

Or does it mean that when the person taking the test has tuberculosis (or
not), the procedure can be relied upon to say what is true? That is, does it
mean that

ð10Þ Prðþ result j tuberculosisÞ and Prð� result j no tuberculosisÞ
are both large?

As emphasized earlier, it is important not to confuse Pr (O jH) and
Pr (H jO). Recall the example about the gremlins. But what does the word
‘‘reliability’’ mean?
Here’s how I think the term is used in ordinary English: When a

witness is reliable, what he or she says is probably true. Witnesses who are
apt to pick up on what is true might be said to be sensitive; if the
proposition is true, they will probably notice that it is and tell you. In my
view, ordinary usage pairs ‘‘reliable’’ with (9) and ‘‘sensitive’’ with (10).
But whether or not this is how the terms are used in everyday discourse,
aficionados of probability have come to use the term ‘‘reliability’’ to in-
dicate that (10) is true, not that (9) is.7 A reliable tuberculosis test pro-
cedure has a large likelihood ratio for each possible test outcome:

ðRÞ Prðþ result j tuberculosisÞ
Prðþ result j no tuberculosisÞ � 1:0

Prð� result j no tuberculosisÞ
Prð� result j tuberculosisÞ � 1:0:

7 Actually, the terminology is more varied. For example, a ‘‘reliable’’ method for ranking options
given a set of data is sometimes defined as one that usually returns the same ranking across different
data sets; a method that ignores the data and always imposes the same ranking would be perfectly
‘‘reliable’’ in this sense.
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Given this meaning, your patient S can obtain a positive test result on
the reliable tuberculosis test you gave him and still it is highly im-
probable that he has tuberculosis. This will be true if the prior prob-
ability of S’s having tuberculosis is sufficiently low (imagine that S is
drawn at random from a population in which tuberculosis is very rare
and then is given the test). To verify that this can happen, have another
look at the relationship of the three ratios described in proposition (6).
Why is the term ‘‘reliability’’ often used by probabilists with the

meaning described in (R)? Is this sheer perversity on their part? In fact,
there is reason to focus on (R) even though people take tuberculosis
tests to find out if they (probably) have the disease. Imagine using the
same test procedure in two populations. In the first, people frequently
have tuberculosis; in the second, they rarely do. There is a useful sense
of ‘‘reliability’’ in which the test procedure is equally reliable in the two
populations. Yet, if people are sampled at random in the two popula-
tions and then take the test, Pr(tuberculosis) is higher in the first po-
pulation than in the second. If the test is equally reliable in the two
cases, Pr(tuberculosis j þ test outcome) will be higher in the first case
than in the second. Tuberculosis tests are in this respect like a great
many detectors and measurement procedures. Whether the test returns a
positive or a negative verdict is determined just by facts specific to the
person or thing taking the test; thermometers are related to ambient
temperature in the same way, and pregnancy tests are related to preg-
nancy in that way as well. Whether the person has a common or a rare
condition is irrelevant to what the test will say. To put the point
abstractly, likelihoods are often independent of priors. But posterior
probabilities depend on both likelihoods and priors. This feature that a
test procedure has, which is stable across different applications in dif-
ferent populations, is worth noting; this is why the ratios described in
(R) are important.
In saying that the posterior probability of tuberculosis ‘‘depends’’ on

priors and likelihoods, but that the likelihoods are ‘‘independent’’ of
priors and posteriors, I am describing the physical characteristics of test
procedures, not the mathematical relationships characterized by Bayes’
theorem. In Bayes’ theorem, each of the quantities mentioned is a
mathematical function of the other three; given any three values, you can
calculate the fourth. However, this symmetry with respect to mathema-
tical dependence is not present when we consider physical relationships.
Whether a tuberculosis test is apt to yield a positive result depends on

18 Evidence



whether the person taking the test has tuberculosis, not on whether tu-
berculosis is common or rare.8

Expectation and expected value

It is often said that a baby born in the USA today can expect to live about
seventy-eight years. What does this mean? The reality is that a baby not
only might have a longer life than this, or a shorter one. Each possible
lifespan has its own probability; p1 is the probability of living exactly one
year, p2 is the probability of living exactly two, and so on. The figure of
seventy-eight years is the mathematical expectation, a technical term:9

EðS’s longetivity j S is born in the USA in 2008Þ
¼ 1ðp1Þ þ 2ðp2Þ þ . . .þ nðpnÞ ¼

X
iðpiÞ ¼ 78 years:

E(x j y) represents the expected value of x given y; notice that x is a
quantity and y is a proposition. Probabilities must fall between 0 and 1,
but expected values need not. The expected value is an average; in fact, it
is a weighted average, because the different possible longevities have dif-
ferent probabilities.
If seventy-eight years is the life expectancy, does that mean that you

should expect a US newborn to live about seventy-eight years? That
depends on how different possible longevities are distributed around this
mean value. Figure 1.2 shows three hypothetical distributions. Each is
symmetrical and is centered on seventy-eight years, so 78 is the average
value according to each. It wouldn’t make much sense to expect a baby to
live about seventy-eight years if (a) were true. According to (a), a baby will
probably live only a very short life or a very long one; it will be ex-
ceedingly rare for a baby to live about seventy-eight years. In (b), all
lifespans from 0 to 156 years are equally probable, so here again it would
not make sense to use the expected value as the value you should expect.
In (c), not only is 78 the expected value, but it is highly probable that a
US newborn will live about seventy-eight years. There is less variation
around the mean value in (c) than there is in (a) and (b). In (c), it is
sensible to use the expected value as the approximate value you’d expect.

8 In §4.5, we’ll examine a kind of evolutionary process, one that involves frequency dependent
selection, in which priors and likelihoods do not exhibit this type of independence.

9 To keep the example simple, I assume that lifespans come in whole numbers of years. This permits
the expected value to be expressed as a summation over discrete quantities. If we take time to be a
continuous quantity, the expectation will be an integral.
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Induction

One of the important contributions that Bayesianism has made to un-
derstanding scientific reasoning is that it has thrown light on the tradi-
tional idea of learning by induction. Induction, as I use the term, means
making an inference about a population based on a sample drawn from it.
The inference may concern what the next object sampled will probably be
like, or what all the objects in the population are probably like. There is a
lot more to scientific reasoning than inductive sampling, but it is en-
lightening to see what induction looks like through Bayesian lenses.
Here is a seemingly plausible principle of inductive reasoning that

Reichenbach (1938) called the straight rule:

If you toss a coin n times and h of those tosses come up heads, infer that Pr (the
coin lands heads j the coin is tossed) ¼ h=n.

This rule is not the only one to consider. For example, Laplace (1820)
described a rule of succession:

If you toss a coin n times and h of those tosses come up heads, infer that Pr (the
coin lands heads j the coin is tossed) ¼ ðhþ 1Þ=ðnþ 2Þ.

The two rules disagree (though they disagree less the more you toss).
Which is the right one to use? Reichenbach’s rule looks simple and it
seems to ‘‘go by the evidence,’’ while Laplace’s seems to introduce a funny
correction to what the evidence is saying. Is this a good reason to prefer
Reichenbach to Laplace? Bayesianism provides a framework for answering
this question. But, more importantly, Bayesianism exposes a deficiency

Figure 1.2 Three possible distributions of longevities. Each has the same expected
value, seventy-eight years.
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present in both rules; there is a kind of assumption that neither rule makes
explicit but that needs to be in place if any such rule is to make sense.
Notice that both rules draw a conclusion about the value of a posterior
probability, based on the evidence at hand, but neither rule states values
for any prior probability. Bayesianism asserts that this is magical thinking.
The observations alone cannot give you a posterior probability; you need
to have a prior probability as well. A central thesis of Bayesianism is: no
probabilities out without some probabilities in.
Laplace was well aware of this point. He identified an assignment of

prior probabilities that allowed him to prove that the rule of succession is
correct. Let p be the probability of heads on each toss. We assume that
tosses are independent of each other; results on earlier tosses don’t affect
the probability of heads on later ones. Laplace’s assumptions about prior
probabilities include the postulate that p has the same chance of falling
between 0.1 and 0.2 as it has of falling between 0.8 and 0.9 and that its
chance of falling between 0.3 and 0.6 is the same as its chance of falling
between 0.4 and 0.7. Perhaps it sounds strange to assign a probability to a
probability; if so, think of p as a physical property of the coin, perhaps
one that concerns how symmetrical it is. In any event, to fully describe
how Laplace conceived of the prior probabilities associated with p, we
need to think about the fact that there are infinitely many values that
p might have. This means that Laplace can’t express his postulate about
prior probabilities by saying that all point values of p have the same
probability. If they all have a probability of zero, they sum to zero; and if
they all have a positive value, they sum to infinity. What is required is that
they sum to unity. The solution is to shift from talk of probability to talk
of probability density, an idea depicted in Figure 1.3. Densities take values
from zero to infinity. The prior density represented in the figure always
has a value of 1, so the area under this density curve has a value of unity.
Probabilities are areas under density curves. Laplace’s assumption was
that the prior density curve is flat. Each point value for p has a probability
of zero and a probability density of 1.10

According to this prior density curve, the expected value of p is 1
2.

Notice that the curve is symmetrical around p ¼ 1
2. Imagine a factory that

manufactures coins according to this prior density function. A tenth of
the coins it produces have 0 < p < 0.1, a tenth have 0.1 < p < 0.2, and

10 Laplace thought that this assumption is justified by the principle of indifference, which we’ll
examine in the next section. Here we’ll simply examine the assumption’s consequences.
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so on. So the average coin produced from this factory has a value of p ¼ 1
2.

If you draw a coin at random from this prior distribution, and if you
allow yourself to think of the expected value of p as the value you should
expect p to have (thus setting aside the previous section’s warning about
how expected values should be interpreted), you can say that Laplace’s
assumption about priors entails that you should expect the coin to be fair
before you have tossed it even once. This vindicates what the rule of

succession says when h ¼ n ¼ 0; in this case, ðhþ1Þðnþ2Þ ¼ 1
2. The next step is to

understand what happens when you start tossing the coin. Does Laplace’s
rule give correct values for the expected value of p, conditional on the
observations you have made? Surprisingly, the answer is yes.
We already know from the gremlins example that the hypothesis with

the highest likelihood need not be the one with the highest posterior
probability. The reason is that the prior probability is an ‘‘anchor’’; the
observations can lead the posterior probabilities to depart from the priors,
but the priors still influence what values those posterior probabilities will
have. If you obtain one head in four tosses, you have some evidence that
the expected value of p is lower than 1

2. But this does not permit you to
ignore the prior expected value. This is why the posterior expectation
moves away from the prior value of 1

2 in the direction of h
n ¼ 1

4 and ends

up somewhere in between, with a posterior expectation of 1
3. How much

of a shift the rule of succession tells you to make depends not just on the
frequency of heads in the observations, but on the absolute number of

Figure 1.3 A flat prior density distribution for p and the non-flat posterior density
occasioned by observing one head in four tosses. The prior expected value of p is 0.5;

given this prior, the posterior expected value of p is 0.33.
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tosses. Observing one head in four tosses occasions a smaller shift away
from 1

2 than observing 100 heads in 400 tosses. The posterior expectation

in the former case, as just noted, is 1
3, while that in the latter case is 101

402.
Laplace’s rule is correct if you start with a flat prior density and you

think that the proper target of this inductive rule is to infer the expected
value of p. Where does that leave Reichenbach? Perhaps there is another
assignment of prior probabilities that justifies the straight rule. Let’s in-
vestigate this question by initially changing the subject. Instead of
thinking about the probabilities of hypotheses, let’s think about their
likelihoods. Suppose we observe five heads in twenty tosses of the coin.
What value of p ¼ Pr(the coin lands heads j the coin is tossed) will
maximize the probability of the observations, again assuming that tosses
are independent of each other? The maximum likelihood estimate of this
parameter is p ¼ 5

20 ¼ 0.25. The likelihood of this hypothesis is depicted
in Figure 1.4, relative to the observations we actually made (five heads in
twenty tosses) and also with respect to other observations that could have
occurred but did not. The figure also represents the likelihood of
the hypothesis that p ¼ 3

4 relative to different possible data sets. Note that

the hypothesis p ¼ 1
4 says that the actual observations were more probable

than the hypothesis p ¼ 3
4 says they were. In fact, the p ¼ 1

4 hypothesis
makes the data more probable than any assignment of a point value to
p does; it provides the estimate of maximum likelihood. The maximum
likelihood estimate of p is just the sample frequency; it doesn’t matter

Pr (data | p=?)

Number of heads in twenty tosses

Figure 1.4 When the coin lands heads in five of twenty tosses, the maximum likelihood
estimate of p ¼ Pr (the coin lands heads j the coin is tossed) is p ¼ 1

4. The likelihood of the
estimate p ¼ 3

4 is lower.
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whether you observe one head in four tosses, or five in twenty, or 100 in
400 – the maximum likelihood estimate is the same.
The fact that the hypothesis p ¼ 1

4 has a higher likelihood than the
hypothesis p ¼ 3

4 does not say anything about their probabilities. If those
hypotheses are to have posterior probabilities, they must have priors. So
what priors should we assign? More specifically, is there a prior density
distribution of values for p that allows Reichenbach’s rule to always
generate the right value for the posterior expected value of p? Surprisingly,
the answer is no. Notice that the straight rule pays no attention to the
prior values; it simply goes by the maximum likelihood estimate. There is
no prior distribution that legitimizes this policy.11 The rule of succession
is typical in this regard; it moves the estimate from the prior expected
value of 12 towards the maximum likelihood estimate of h=n, but does not
go all the way there. The only case in which the rule of succession yields a
value that is identical with the maximum likelihood estimate is when h=n¼
0.5; in this case ðhþ 1Þ=ðnþ 2Þ also equals 0.5. The general point is that
every prior distribution will have a prior expected value, and this will
always exert some influence on what the posterior expected value is. The
straight rule cannot be given a Bayesian foundation.12

Trouble in Paradise

If all scientific inferences resembled the problem you face when your
patient’s tuberculosis test has a positive result, Bayesianism would be a
thoroughly adequate philosophy of scientific inference. Before describing
the fly in the ointment (in fact, there are two), let us examine some
features of this example.
In the example of tuberculosis diagnosis, the two hypotheses are ex-

clusive and exhaustive.13 This is why Pr(S has tuberculosis) þ Pr(S does
not have tuberculosis) ¼ 1.0. What is more, when you assign values to
these prior probabilities, you are not merely reporting your subjective
degree of certainty. You can point to frequency data concerning how

11 Or, more precisely, no prior distribution that obeys the axioms of probability permits this. A flat
improper prior (which goes outside the unit interval) can do so.

12 Not that Reichenbach thought that the straight rule requires a Bayesian justification. Rather, he
was impressed with the fact that the straight rule converges on the true value of p as the data set is
made large without limit. This property, which statisticians call statistical consistency, will be
discussed in §1.7 and §4.8.

13 I assume here that your patient, S, exists and that this is not up for test.
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often people have tuberculosis in the population to which S belongs.
Of course, S belongs to many populations; for example, suppose that
S lives in the USA, lives in Wisconsin, and lives in Madison, and that
the frequencies of tuberculosis in these three populations differ. Philo-
sophers often recommend considering the narrowest population on which
you have frequency data, but I don’t think that that is the only con-
sideration. It matters whether you can regard S as being drawn at random
from this or that population; if you can, the frequency data for that
population provide a defensible prior. Although there are interesting is-
sues here as to what the best assignment of value to the prior probability
is, the point I want to emphasize is that frequency data are relevant and
available.
The same virtue attaches to the values assigned to the likelihoods

Pr(þ result j tuberculosis) and Pr(þ result j no tuberculosis). These are
not numbers pulled from thin air, nor are they mere introspective reports
about your attitudes. Rather, they too can be justified by pointing to
frequency data. It is a familiar fact that scientific instruments, including
the devices employed in medical diagnosis, are used to test hypotheses.
The point of relevance here is that those devices are themselves tested.
You can see how well a tuberculosis test performs by giving the test to a
large number of people whom you know have tuberculosis and also to a
large number whom you know do not. Frequencies within large samples
provide a substantial justification for one assignment of values to the
likelihoods rather than another.
In saying this, I am not denying the main lesson of the previous

section. Frequency data do not by themselves deductively entail an as-
signment of value to a posterior probability. The fact that p ¼ h=n is the
maximum likelihood estimate for a coin’s probability of landing heads
does not entail that this is the most probable value; still less does it entail
that this is the true value. It is useful to think of the probability one is
trying to estimate as a theoretical quantity; the evidence one uses to make
this estimate is an observed frequency. The observations do not deduc-
tively entail the theory. However, with large samples, almost any prior
probability will produce the same, or nearly the same, assignment of
posterior probabilities. This is what Bayesians mean when they refer to
the swamping of priors. Two agents can begin with different prior prob-
abilities, but if they both update by using a sufficiently large data set, their
posterior probabilities will be very close; the difference in priors has
washed out. In this case, you will not go far wrong by ignoring whatever
prior probabilities you start with and just using Reichenbach’s straight
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rule. The rule is invalid, as noted, but the values it delivers will usually be
sensible for large random samples.
It is important to recognize how important it is for prior probabilities

to be grounded in evidence. We often calculate probabilities to resolve our
own uncertainty or to persuade others with whom we disagree. It is no
good assigning prior probabilities simply by asking that they reflect how
certain we feel that this or that proposition is true. Rather, we need to be
able to cite reasons for our degrees of belief. Frequency data are not the
only source of such reasons, but they are one very important source. The
other source is an empirically well-grounded theory. When a geneticist
says that Pr(the offspring has genotype Aa jmom and dad both have the
genotype Aa) ¼ 1

2, this is not just an autobiographical comment. Rather, it
is a consequence of Mendelism, and the probability assignment has
whatever authority the Mendelian theory has. That authority comes from
empirical data.
I don’t want to overstate my praise for the objectivity of the quantities

that figure in the Bayesian answer to the question of whether your patient
has tuberculosis. Skeptical questions can always be pursued back to a
point where you do not know how to answer, or you ‘‘answer’’ by
stamping your foot and insisting on the legitimacy of assumptions that
cannot be further justified. This is true for any claim about knowledge or
justification; the present context is no exception. But to insist that the
Bayesian solution to the diagnostic problem is ‘‘purely subjective’’ is to
mistake the part for the whole. The objective component is substantial
and compelling.
There is a world of difference between this quotidian case of medical

diagnosis and the use of Bayes’ theorem in testing a deep and general
scientific theory, such as Darwin’s theory of evolution or Einstein’s general
theory of relativity. The difference may be, at the end of the day, a matter
of degree, but still the difference is profound. When we assign prior
probabilities to these theories, what evidence can we appeal to in
justification? We have no frequency data as we do with respect to the
question of whether S has tuberculosis. If God chose which theories to
make true by drawing balls from an urn (each ball having a different theory
written on it), the composition of the urn would provide an objective basis
for assigning prior probabilities, if only we knew how the urn was
composed. But we do not, and, in any event, no one thinks that these
theories are made true or false by a process of this kind. As I mentioned,
frequency data are not the only convincing justification that an assignment
of prior probabilities can have. An empirical theory, like Mendelism, that
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is itself justified by observations can provide such probabilities. But
this possibility does not bear fruit in the case of Darwin’s theory or
Einstein’s; we have no empirically well-grounded theory of the processes
by which theories like Darwin’s or Einstein’s are made true. In fact, maybe
there is no such theory; perhaps Darwin’s and Einstein’s theories
simply are true (or not), with no chance process leading to the one
outcome or the other.
Although frequency data and a well-supported empirical theory can

provide a basis for assigning prior probabilities, the principle of in-
difference cannot. This idea used to be a cornerstone of Bayesianism, but
it is rare for contemporary Bayesians to have anything good to say about
it. The principle says that if you are completely ignorant about which of a
set of exclusive and exhaustive propositions is true, that you should assign
them equal probabilities that sum to one. The problem with this principle
is that there are multiple ways to slice the logical space into parts, which
means that the same proposition can receive different prior probabilities
depending on how the cake is sliced. It once was hoped that logic and
language would somehow ground the principle of indifference, but this
no longer seems even remotely plausible; logic and language do not
furnish prior probabilities, at least not if prior probabilities are to have
some authority in arguments in which people disagree. So do not fall into
the trap of reasoning thus:

Either God exists or he does not.

Therefore; PrðGod existsÞ ¼ Pr(God does not exist) ¼ 1
2

:

This is a trap because the pie can also be divided in three:

Either God exists and Christianity is true, God exists and

Christianity is false, or there is no God.

Therefore; PrðGod exists and Christianity is trueÞ ¼ Pr(God exists

and Christianity is false) ¼ Pr(God does not exist)¼ 1
3:

If the principle of indifference licenses the first inference, why does it not
license the second? And if it licenses both, it has lapsed into contradiction.
Laplace appealed to the principle of indifference to justify the prior

density distribution he used to derive the rule of succession, so the di-
lemma of embracing either arbitrariness or contradiction arises in this
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context as well. Bertrand’s paradox provides a nice illustration of how the
principle of indifference goes wrong in the continuous case. Suppose I tell
you that a cube manufactured by a certain factory has edges that are
between 1 and 2 inches in length. If this is all you know about the cube,
you might conclude that all possible lengths between 1 and 2 have the
same prior density (¼ 1). This implies that

Pr(the length of an edge is between 1 and 1.5 inches)

¼ Pr(the length of an edge is between 1.5 and 2 inches) ¼ 1

2
:

However, the information I gave you also allows you to see that each side
of the cube has an area that is somewhere between 1 and 4 square inches,
and this might suggest that all possible areas between 1 and 4 have the
same prior densities (¼ 1). This entails that

Pr(the area of a side is between 1 and 2.5 square inches)

¼ Pr(the area of a side is between 2.5 and 4 square inches) ¼ 1

2
:

The problem is that assigning equal priors to the lengths an edge
might have contradicts assigning equal priors to the areas a side
might have.
The questions just explored concerning the assignment of values to

prior probabilities also attach to likelihoods, or rather they attach to some
of them. In the case of S and whether he has tuberculosis, assignments of
values to Pr(þ test result j S has tuberculosis) and to Pr(þ test result j S
does not have tuberculosis) can be justified. The problem is that only half
of this is true in many other testing situations. For example, when Arthur
Stanley Eddington tested the general theory of relativity (GTR) by ex-
amining how much bend there was in starlight during a solar eclipse, he
was able to ascertain a value for Pr(observation jGTR). But what value
could he assign to Pr(observation j notGTR)? The negation of the GTR is
what philosophers call a catchall hypothesis. There are many specific
theories (T1, T2, . . . , Tn) that are incompatible with the GTR. The
likelihood of notGTR is the average likelihood of these specific alter-
natives, weighted by the probability they have conditional on the GTR
being false:

Prðobservation j notGTRÞ ¼
X

i
Prðobservation jTiÞPrðTi j notGTRÞ:
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Some alternatives to the GTR have not even been formulated yet, so it is
hard to see how anyone can say what their likelihoods are. And what
objective meaning could there be in saying that various alternatives have
this or that probability of being true if the GTR is false? If the likelihood
of the catchall hypothesis notGTR cannot be calculated, there is no saying
whether Eddington’s observation confirms the GTR, since

PrðGTR j observationÞ > PrðGTRÞ if and only if

Prðobservation jGTRÞ > Prðobservation j notGTRÞ:
As it happens, Eddington did not test the GTR against its negation;
rather, he tested it against Newtonian theory, which made a concrete
prediction about how much the light in the eclipse should bend. It turned
out that

Prðobservation jGTRÞ � Prðobservation jNewtonian theoryÞ:
Unlike ‘‘S has tuberculosis’’ and ‘‘S does not have tuberculosis,’’ the GTR
and Newtonian theory are not exhaustive. Of course, if we think of the
likelihoods as merely reflecting subjective degrees of confidence, someone
might assert, as an autobiographical remark, that the GTR has a higher
likelihood than its negation; but someone else, with equal auto-
biographical sincerity, could assert the opposite. And both would be right
if the probabilities involved were merely subjective. In science, we want
more than this.14

Let me comment, finally, on Pr(observation), the unconditional
probability of the evidence. In the case of the tuberculosis test, the un-
conditional probability of a positive test result can be estimated empiri-
cally. You can estimate how often people have tuberculosis and how often
not; and you can estimate how often people in each group who take the
test have positive test results. This allows you to estimate the value of Pr
(þ test result), since this quantity is defined as Pr(þ test result j
tuberculosis)Pr(tuberculosis) þ Pr(þ test result j no tuberculosis)Pr(no
tuberculosis). But what of the comparable quantity in Eddington’s test?
What is the unconditional probability that starlight bends a certain
amount during an eclipse of the type that Eddington studied? It isn’t true
that the prior probabilities on GTR and notGTR are reflected in the fact
that a given proportion of the physical systems that populate our universe

14 Earman (1992: 117) uses the Eddington example to illustrate the problem of assigning likelihoods
to catchalls.
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are relativistic while the rest are not. We can’t estimate Pr(observation) by
seeing how often starlight bends during eclipses. This reveals, incidentally,
why it can be misleading to say that Pr(observation) describes how
‘‘unsurprising’’ the observations are. Even if it is true that starlight always
bends the same amount during eclipses of the type that Eddington ob-
served, this does not mean that Pr(observations) � 1. The relevant
question is what the average probability is of this observation under each
hypothesis considered, where the average is taken by using the prior prob-
abilities of the hypotheses.

Philosophical Bayesianism, Bayesian statistics, and logic

Bayesian philosophers of science assign prior probabilities to scientific
theories like the GTR and do not hesitate to assign likelihoods to catchall
hypotheses – for example, to the GTR’s negation. They concede that
there is a subjective element in these assignments, though they hasten to
note that there are numerous subjective elements in frequentism as well
(we will examine these in due course). Bayesian philosophers think that it
is a matter of intellectual honesty to acknowledge subjective elements
when they intrude. They are inevitable. What could justify pretending
that they are not there?
Bayesian statisticians in their professional work rarely assign prior

probabilities to ‘‘big’’ theories like the GTR and they rarely assign like-
lihoods to catchalls like notGTR. But both these practices are standard in
connection with hypotheses that are more modest. For example, when
Bayesians consider the genealogical relationships that humans, chimps,
and gorillas might bear to each other (§4.8), they often assign equal priors
to the three competing hypotheses (HC)G, H(CG), and (HG)C. Given
the observed similarities and differences that those three species exhibit, it
is possible to compute the likelihoods of the three hypotheses and then to
compute their posterior probabilities. The effect of assigning equal priors
is that all the real work is done by the likelihoods; if the priors are equal,
the hypothesis of greatest likelihood must also be the hypothesis that has
the greatest posterior probability. Bayesians might just as well say that
what interests them here is the likelihoods and make no judgment at all
about priors or posteriors. A similar comment applies when Bayesian
statisticians perform sensitivity analyses; by examining various assignments
of priors, they calculate how changing the priors affects the calculated
posterior probabilities. Here again, what one is learning about are the
likelihoods of the hypotheses under study; given the likelihood ratio of
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H1 to H2, changing the ratio of priors will bring with it changes in the
ratio of posterior probabilities. Describing these changes is just a way of
describing the likelihood ratio.
Even though Bayesian statisticians often soft-pedal their assignments of

prior probabilities to hypotheses, there is a deeper commitment on the
part of Bayesians that concerns how likelihoods are sometimes computed.
If a coin is tossed twenty times and seven heads are obtained, it is perfectly
clear what the probability of that outcome is according to the hypothesis
that the coin is fair (i.e., that p ¼ 1

2). But consider the hypothesis that the
coin is not fair: i.e., that p 6¼ 1

2. What is the probability of seven heads in
twenty tosses according to this catchall? There are many ways the coin
might fail to be fair, which correspond to different values of p, and these
different values of p confer different probabilities on the observations. The
likelihood of the hypothesis that p 6¼ 1

2 is an average over the likelihoods of
all the point values that p might have if it differs from 1

2. This average
takes the form of the following summation:

Pr
�
7 heads j p 6¼ 1

2
& 20 tosses

�
¼
X

i
Prð7 heads j p ¼ i & 20 tossesÞ

· Pr
�
p ¼ i j p 6¼ 1

2
& 20 tosses

�
:

The hypothesis that p 6¼ 1
2 is, in this respect, just like the negation of the

GTR. Notice that priors on different values of p do not occur in this
expression, but something rather like them does. As we will see, fre-
quentists also consider hypotheses like p 6¼ 1

2, but they do not compute the
average likelihoods of those hypotheses. The handling of such hypotheses
(which statisticians call ‘‘composite’’) is a fundamental divide that sepa-
rates Bayesians from frequentists.
For Bayesian philosophers, rationality does not require you to deny the

subjective elements that inevitably intrude in inference; rather, the point
is to regulate that subjectivity in the right way. For them, being rational
has to do with how you change what you believe as new evidence arrives;
your starting point is not something that Bayesian philosophers feel they
need to address. Bayesian philosophers often see Bayesianism as analogous
to deductive logic in this respect (Howson 2001). Deductive logic does
not tell you what you should take your premises to be; logic is solely in
the business of giving advice on what follows from them. So, the fact that
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priors and likelihoods are sometimes subjective is just a fact of life with
which we all have to deal. Subjective Bayesians see themselves as facing
these facts squarely in the face; they think their critics are ostriches
burying their heads in the sand.
If Bayesianism is simply the logic that each of us should use to regulate

our degrees of belief, the criticisms I have described of that philosophy do
not apply. But an epistemology should do more than this. We need to
identify which of our probability assignments can be justified inter-
personally. And we also need to see if there are objective considerations
that Bayesians ignore. The first of these tasks leads to likelihoodism; the
second will lead us to consider frequentist ideas.

1.3 LIKELIHOODISM

Strength in modesty

The problems with Bayesianism just described suggest a fallback position
that preserves much of what Bayesianism has to offer while abandoning the
elements of the philosophy that are too subjective. This is likelihoodism.
When prior probabilities can be defended empirically, and the values as-
signed to a hypothesis’ likelihood and to the likelihood of its negation are
also empirically defensible, you should be a Bayesian.15 When priors and
likelihoods do not have this feature, you should change the subject. In
terms of Royall’s three questions (§1.1), you should shift from question
(2), which concerns what your degree of belief should be, to question (1),
which asks what the evidence says. The likelihoodist does not answer this
question by using the Bayesian concept of confirmation; you don’t ask if
the evidence raises, lowers, or leaves unchanged the hypothesis’ probability.
Rather, you compare only those hypotheses to each other that have de-
terminate likelihoods. For example, instead of trying to compare the GTR
to its own negation, you do what Eddington did: You compare the GTR
with a specific alternative theory, Newtonian theory, and you use the law of
likelihood (so named by Hacking 1965) to interpret the data:

Law of likelihood: The observations O favor hypothesis H1 over hypothesis H2 if
and only if Pr (O jH1) > Pr (O jH2). And the degree to which O favors H1 over
H2 is given by the likelihood ratio PrðO jH1Þ=PrðO jH2Þ.

15 Sometimes we can say what the value is of Pr (O jH) without needing empirical information. For
example, we know a priori (if we know anything a priori) that Pr (the next ball drawn will be
green j 20 percent of the balls in the urn are green and the draw will be random) ¼ 0.2.
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The concept of favoring used in the law of likelihood involves a three-
place relation that connects two hypotheses and a body of evidence. One
also might call it the relation of differential support, although this termi-
nology is apt to mislead; it may encourage the impression that the law of
likelihood says that O supports H1 to one degree, that O supports H2 to
another, and that the question is whether the first is greater than the
second. This is not what the law means. According to likelihoodism, there
is no such thing as the degree to which O supports a single hypothesis.
Support is essentially contrastive.
The law of likelihood contains two ideas: a qualitative assessment of the

bearing of the observations on the two hypotheses (expressed by an in-
equality) and a quantitative measure of how strongly or weakly the ob-
servations favor one hypothesis over the other (expressed by the likelihood
ratio). The quantitative component goes beyond what the qualitative
component says, just as the choice of a measure of degree of confirmation
goes beyond the Bayesian definition of qualitative confirmation. And a
similar question applies: even assuming that the qualitative law of like-
lihood is true, why should you use the likelihood ratio as your measure?
The likelihoodist wants a measure of favoring that does not require any
assignment of values to prior or posterior probabilities, or any assignment
of values to the likelihoods of catchalls (if those values can’t be defended
by evidence), so that precludes using the possible definitions of degree of
confirmation mentioned in §1.2. But why not define favoring in terms of
the likelihood difference, Pr(O jH1) � Pr(O jH2)? One reason is sug-
gested by a pattern that arises when there are multiple pieces of evidence
that are independent of each other, conditional on each of the two hy-
potheses considered. Suppose, for example, that

PrðOi jH1Þ ¼ 0:99; for each of the 1,000 observations O1; . . . ; O1;000:

PrðOi jH2Þ ¼ 0:3; for each of the 1,000 observations O1; . . . ; O1;000:

With conditional independence, we have

PrðO1 & . . .&O1;000 jH1Þ ¼ ð0:99Þ1;000
and PrðO1 & . . .& O1;000 jH2Þ ¼ ð0:3Þ1;000:

The likelihood of each of these hypotheses, relative to the 1,000 ob-
servations, is very close to zero, so their difference is tiny; however, the
ratio of the two likelihoods is (33)1,000, which is huge. Since each of these
1,000 observations favors H1 over H2, the 1,000 observations should do
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so more powerfully than any of them does singly. This recommends the
likelihood ratio over the likelihood difference as a measure of strength of
evidence. Can it be shown that the likelihood ratio is the best of all
possible measures? Perhaps a compelling argument for this stronger
conclusion can be given, or perhaps this part of the law of likelihood
should be regarded as a postulate to be judged by the intuitiveness and
usefulness of its applications. In any event, there is a feature of this
example that will come up later in this chapter and in subsequent chapters
as well: A probabilistic hypothesis such as H1 can do an excellent job
predicting what happens in each of 1,000 experiments, in each case as-
signing a very high probability to the outcome that in fact takes place. Yet,
the likelihood of the hypothesis goes down and down as one triumph is
laid upon another. This underscores the fact that it is the relationship
between the likelihoods of different hypotheses that matters, not the
absolute value of any single hypothesis’ likelihood.
Since likelihoodism agrees that Bayesianism makes sense in many cases,

we can consider how the Bayesian concept of confirmation is related to the
law of likelihood’s qualitative notion of favoring when both un-
controversially apply (e.g., in the example of tuberculosis diagnosis dis-
cussed in §1.2). For O to confirm H1, it must be true that Pr(O jH1) >
Pr(O j notH1). The observation provides Bayesian confirmation of H1

precisely when H1 has a higher likelihood than its negation. In contrast,
the favoring relation posited by likelihoodism need not pit H1 against its
own negation; the question is whether H1 has a higher likelihood than
H2, for some alternative hypothesis H2 that is of interest. Here’s a simple
example that illustrates how O can provide Bayesian confirmation of H1

without O’s favoring H1 over a hypothesis H2 that is incompatible with
H1:

Example 1: Let O ¼ the card is red, H1 ¼ the card is a heart, H2 ¼ the card is a
diamond. Then Pr (O jH1) ¼ 1, Pr (O j notH1) ¼ 1

3, and Pr (O jH2) ¼ 1.

And here’s an example that exhibits the opposite pattern in which O does
not provide Bayesianism confirmation of H1 though it favors H1 over a
hypothesis H2 that is incompatible with H1:

Example 2: let O ¼ the card is a 7, H1 ¼ the card is a heart, H2 ¼ the card is the
Ace of Spades. Then Pr(O jH1) ¼ 1

13 ¼ Pr(O j notH1), and Pr(O jH2) ¼ 0.

The likelihoodist concept of favoring describes what the evidence says
about the competition between any two hypotheses that both probabilify
the data at hand. The Bayesian concept of confirmation addresses a
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special case; it describes what the evidence says about the competition
between a hypothesis and its own negation. Both questions are of interest
from a Bayesian point of view. On the other hand, if Bayesianism has the
problems described in §1.2, we need the concept of favoring for those
problem cases, since Bayesian confirmation will not be able to do the
needed work.16

Three objections to likelihoodism

The law of likelihood is a proposal; it is not a mathematical theorem (like
Bayes’ theorem). The law proposes that the informal concept of favoring
(or differential support) be explicated in terms of the formal concept of
likelihood comparison. To judge this proposal, we must determine how
well it conforms to, and renders precise and systematic, our use of the
informal concept. Our goal here, familiar from other projects of philo-
sophical explication, is not to exactly mimic the everyday concept, which
may contain various ambiguities, opacities, incoherences, indeterminacies,
and even contradictions (Carnap 1947, 1950). The philosopher’s job is
not the same as the lexicographer’s.
The previous paragraph conveys a formula that philosophers often

offer that describes how the definitions they propose ought to be judged,
and there is something to it. However, something more is needed
with respect to the case at hand. Something important would be missed
if the law of likelihood were judged solely on the basis of how it
clarifies the meaning of the English word ‘‘likely.’’ As already noted,
Fisher’s use of the term ‘‘likelihood’’ is radically at variance with or-
dinary usage. However, this is not an objection to Fisher’s idea, just a
comment on the infelicity of his choice of label. What matters about the
law of likelihood is whether it isolates an epistemologically important
concept. The same is true of the likelihoodist’s use of terms like ‘‘fa-
voring’’ and ‘‘support.’’ A formal proposal that describes how an in-
formal concept should be understood is to be judged by the light it
throws on the informal concept, but it also should be judged by the light
it throws, period.17

16 There is more to likelihoodism than I have described here. For example, there is the likelihood
principle. For discussion of what this principle means and how it is related to the law of likelihood,
see Grossman (unpublished). One difference is that the law of likelihood describes the bearing of a
single data set on two hypotheses while the likelihood principle says when two data sets are
evidentially equivalent.

17 A similar point was already visible in the discussion of what ‘‘reliability’’ means in §1.2.
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The need to restrict the law of likelihood

Suppose you are Madison’s top meteorologist. You gather data on the
present weather configuration in the Midwest and (let us suppose) you
have at hand a true theory of how weather systems change. Your job is to
make a weather forecast. Based on the information you have, you infer
that the probability of snow in Madison tomorrow is 0.9. It would be
natural for you to express this by saying that your information supports the
prediction that there will be snow; and it also would be natural to say that
your information favors the hypothesis that it will snow over the hy-
pothesis that it will not. But here the support and the favoring reflect facts
about the probabilities of hypotheses not about their likelihoods. What
your data and theory tell you is that

Prðsnow tomorrow j present data & theoryÞ ¼ 0:9

> Prðno snow tomorrow j present data & theoryÞ ¼ 0:1:

You are not computing whether

Prðpresent data j snow tomorrowÞ>Prðpresent data j no snow

tomorrowÞ:
Your data and theory favor your weather prediction by making it probable,
not by giving it a likelihood higher than that of some competing hypothesis.
An even starker example is provided by the following example. Suppose

you want to predict whether the next card dealt to you will be a heart. The
dealer looks at this card and, before he turns it over and places it in front
of you, says, ‘‘This is the Ace of Hearts.’’ You know that the dealer is
truthful. What, then, is your epistemic situation? You’re interested in
ascertaining the truth value of the hypothesis H ¼ the next card is a heart.
From what the dealer says, you know that proposition O is true where
O ¼ the next card is the Ace of Hearts. Should you compute the like-
lihood of H or the probability of H? The likelihood of H is:

PrðO jHÞ ¼ 1

13
:

The probability of H is

PrðH jOÞ ¼ 1:0:

Surely you should focus on the probability. And it would not be an abuse
of language to say that the dealer’s comment strongly supports the
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hypothesis that the next card will be a heart; what the dealer says favors
that hypothesis over the hypothesis, say, that the next card will be a spade.
These examples and others like them would be good objections to

likelihoodism if likelihoodism were not a fallback position that applies
only when Bayesianism does not.18 The likelihoodist is happy to assign
probabilities to hypotheses when the assignment of values to priors and
likelihoods can be justified by appeal to empirical information. Like-
lihoodism emerges as a statistical philosophy distinct from Bayesianism
only when this is not possible. The present examples therefore provide no
objection to likelihoodism; we just need to recognize that the ordinary
words ‘‘support’’ and ‘‘favoring’’ sometimes need to be understood within
a Bayesian framework in which it is the probabilities of hypotheses that are
under discussion; but sometimes this is not so. Eddington was not able to
use his eclipse data to say how probable the GTR and Newtonian theory
each are. Rather, he was able to ascertain how probable the data are, given
each of these hypotheses. That’s where likelihoodism finds its application.

How can a preposterous hypothesis be extremely likely?

The gremlin example invites the following objection to the law of like-
lihood: The hypothesis that there are gremlins bowling in the attic has a
likelihood that is as high as a likelihood can be; it has a value of 1. So, the
law of likelihood says that the gremlin hypothesis is very well supported.
But this is silly. The noises we hear do not make it at all likely that there
are gremlins up there bowling. This is not a well-supported hypothesis at
all. Hence, the law of likelihood is false.
The complaint that the gremlin hypothesis can’t be ‘‘likely’’ or ‘‘well

supported’’ is easily explained by the fact that the speaker assigns the
gremlin hypothesis a very low prior. Imagine that the objector has in-
spected thousands of attics and has never seen a gremlin and that re-
putable authorities have assured him that gremlins are a myth. When he
arrives at your house, his prior that there are gremlins bowling in your
attic is low; once he hears the noises, his probability that there are

18 Fitelson (2007) uses this kind of problem to argue that the law of likelihood is false and should
be modified to read as follows: O favors H1 over H2 if and only if Pr (O jH1) > Pr (O jH2) and
Pr (O j notH1) < Pr (O j notH2). This principle does not follow from the Law (notice that both are
biconditionals), though if the right-hand side of Fitelson’s modified principle is true, so is the
right-hand side of the law of likelihood. Notice also that using Fitelson’s principle requires one to
have likelihoods for catchall hypotheses, which likelihoodism maintains are often unavailable.
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gremlins up there bowling remains low, though the Bayesian must con-
cede that the observation increases the hypothesis’ probability.19 This is
why the objector judges that the gremlin hypothesis is not ‘‘likely,’’ by
which he means that it is not very probable. Fair enough, but that is not
an objection to the law of likelihood. As noted, we need to recognize that
Fisher’s terminology was not well chosen. The terms ‘‘likely’’ and
‘‘probably’’ are used interchangeably in ordinary English, but that is not
an objection to the law of likelihood.
Although Bayesians sometimes make this objection to the law of like-

lihood, the fact of the matter is that Bayesianism is committed to the view
that likelihoods are the one and only vehicle by which observations can
change the probabilities we assign to hypotheses. This was the point I dis-
cussed in connection with proposition (6). Bayesians as well as likelihoodists
need a word to use in describing the epistemological significance of the fact
that Pr(E jH) > Pr(E j notH). The law of likelihood uses the word ‘‘favor-
ing,’’ and ‘‘differential support’’ might be used here as well. Of course, the
law of likelihood also applies this term in a wider context, namely when one
is comparing H with an alternative hypothesis other than its own negation.
But the point of this term is not to assess the overall plausibility of H but to
describe what a particular observation says about the competition between
H and some alternative hypothesis. The law of likelihood does not say that
the gremlin hypothesis is rendered plausible by the noise you hear.
Edwards (1972) discusses the same sort of objection in connection with

another example. You draw a card from a deck and it turns out to be the
seven of spades. Now consider the hypothesis that each of the cards in the
deck is a seven of spades; this hypothesis has a likelihood of 1.0. In
contrast, the likelihood of the hypothesis that the deck is ‘‘normal’’ is only
1
52. This leads the law of likelihood to conclude that the card you’ve

observed favors the stacked hypothesis over the normal hypothesis. But
surely, the objection concludes, the stacked hypothesis is not more
plausible or better supported. I leave it to the reader to construct and
evaluate the likelihoodist’s reply.

Likelihoodism and the definition of conditional probability

Likelihoodists think they have a philosophy that comes into its own when
no evidence is available to back up assignments of prior probabilities. But

19 To see this, consider the following consequence of Bayes’ theorem: If H entails E and 0 <
Pr(E ) < 1 and 0 < Pr (H ) < 1, then Pr (H jE ) > Pr (H ).

38 Evidence



how can this be true, given the Kolmogorov definition of conditional
probability (§1.2)? Recall that the definition says that

ðKÞ PrðO jHÞ ¼ PrðO & HÞ
PrðH Þ :

There, in the denominator on the right-hand side, a prior probability has
popped up, just what likelihoodists say they can do without when they
talk about likelihoods!
The answer to this challenge is that likelihoodists should think of the

Kolmogorov definition as correct only when various unconditional prob-
abilities are ‘‘well defined.’’ When they are not, the concept of conditional
probability can and should be taken to stand on its own; it does not need
to be defined in terms of unconditional probabilities. There are good
reasons for this approach that do not depend on any qualms one might
have about Bayesianism. For example, consider the fact that Kolmogorov’s
(K) says that the conditional probability is undefined if Pr(H) ¼ 0. But
surely there are contexts in which a conditional probability has a value even
though the conditioning proposition has a probability of zero. Suppose I
make you the following promise: If the coin I am about to toss lands heads,
I will buy you a ticket in a fair lottery in which 1,000 tickets are sold. If the
coin fails to land heads, you will have no ticket, and so you can’t win the
lottery. You know that I am trustworthy, so you conclude that Pr(you win
the lottery j the coin lands heads)¼ 1

1;000. However, I then take measures to

ensure that the coin cannot land heads. Maybe I bend the coin, or place it in
a tossing device that ensures tails every time, or maybe I just lock it in a
vault and thereby ensure that the coin can never be tossed. If you buy the
Kolmogorov definition of conditional probability, the information that the
coin can’t land heads should lead you to say that the conditional probability
just stated is not correct. The value is not 1

1;000; rather, it is not defined.

On the other hand, if conditional probability is a primitive concept, the
conditional probability can have the value given even though the con-
ditioning proposition has a probability of zero (Hajek 2003). This position
has the additional virtue of allowing Pr(the coin lands heads j the coin lands
heads) to have a value of unity instead of being not defined.
There is an epistemic point that is also worth considering. We often

know the value of Pr(O jH) even though we have no clue as to the value of
Pr(H). As mentioned in §1.2, we can estimate the value of Pr(þ test
result j tuberculosis) by giving the test to thousands of people whom we
know have tuberculosis. This procedure does not require that we know how
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common or rare tuberculosis is, and so we may be entirely in the dark as to
the value of Pr(tuberculosis). The defender of Kolmogorov’s definition is
right to reply that proposition (K) is not a claim about knowledge; it does
not say that to know the value of a conditional probability you first must
find out the values of the two unconditional probabilities cited. (K) asserts a
symmetric mathematical (or logical ) dependence, not an asymmetric
epistemic dependence. The right question to ask about Kolmogorov’s (K) is
whether there must exist unconditional probabilities for H&O and for H if
there is such a thing as the conditional probability Pr(H jO).
The answer depends on what we mean by probability and on the ex-

ample we consider. Bayesians usually adopt the idealization that rational
agents have degrees of belief for all the sentences of their language. The
Bayesian framework is one in which a complete probability function is de-
ployed over all the sentences in some language. If O1, O2, . . . On, and H1,
H2, . . . Hm are all sentences in the language, then the probability function
assigns a prior probability to each of those atomic sentences and to all
Boolean combinations definable from them (e.g., to the negations of each
and to all disjunctions and conjunctions constructed from this set). Pos-
terior probabilities are definable from the relevant priors via proposition
(K). This is not the best way to understand what likelihoodists are up to.
According to likelihoodism, the language we speak is far more wide-ranging
than the probability models we use. On a given occasion, we may specify a
value for Pr(O jH1) and for Pr(O jH2), but none for Pr(O j notH1), and
none for Pr(H1) or Pr(H2). We use this partial probability function to do
the needed work. Not only don’t we know the value of Pr(O j notH1), or of
Pr(H1), or of Pr(H2); in addition, there may be no such values to know.
The model we use does not include these even as unknown quantities.
What likelihoodists mean by probability is not simply that an agent has

some degree of belief. For one thing, the concept of probability needs to
be interpreted more normatively. Pr(O jH) is the degree of belief you
ought to have in O given that H is true. But likelihoodists also like to
think of these conditional probabilities as reflecting objective matters
of fact. If Pr(the card is the Ace of Hearts j the card is dealt from this
deck) ¼ 1

52, this is because of the physical composition of the deck and the
physical properties of the process of dealing. When likelihoodists insist
that probabilities must be ‘‘objective,’’ they mean that probabilities must
be grounded in such physical details.20 When the physical processes at

20 The word ‘‘objective’’ used by likelihoodists does not mean what so-called objective Bayesians have
meant by the term: that probabilities must be derivable from logical features of the language we speak.
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work generate frequency data, these data provide evidence we can use to
infer the values of the underlying probabilities.21

Is Kolmogorov’s (K) the right way to think about conditional prob-
ability when probability is understood in the way that likelihoodists
propose? If there exists a physical process that leads people with tu-
berculosis who are tested to have a positive test result with a certain
frequency, is there also a physical process that leads some people, but not
others, to have tuberculosis? Arguably so, in which case Pr(þ test result j
tuberculosis) and Pr(tuberculosis) will both figure in a useful model. But
now consider Eddington. There was a physical process that led the light to
bend during the eclipse; this is the process that the GTR purports to
describe. But is there, in addition, a physical process whose result was that
the GTR, or some competing theory, became true? Arguably not. If not,
likelihoodists will not include Pr(GTR) in their probability model. This is
why your interpretation of probability should influence whether you re-
gard Kolmogorov’s (K) as a proper definition or just as a postulate that is
true in favorable circumstances.
Kolmogorov’s proposition (K), like Bayes’ theorem, should be un-

derstood as having a certain rider attached. They do not assert that all the
quantities they describe make sense. Rather, each of them should be
understood in terms of the following preface: in any model that uses the
following quantities, here is how those quantities must be related. When (K)
is understood in this way, you can see that the following criticism is
misguided: ‘‘If you assign a value to a hypothesis’ likelihood, you are
committed to saying that the hypothesis has a prior, whether you know its
value or not.’’

The principle of total evidence

Bayesians and likelihoodists have their disagreements, but they agree on
the principle of total evidence. This principle says that you should take
account of everything you know. As stated, this idea is vague, but it gains
precision when it is applied to concrete problems, as we shall see. It is a
‘‘pragmatic’’ principle in the philosophical sense of that term. This
doesn’t mean that it is something that cynics rather than idealists

21 Although observed frequencies provide evidence concerning the values of probabilities, there are
lots of contexts in which probabilities can’t be defined in terms of (actual or hypothetical)
frequencies; see Sober (1994, 2008b). For this reason, I prefer a ‘‘no-theory theory of probability,’’
according to which probabilities are theoretical terms that cannot be defined in terms of
observables.
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embrace; rather, the point is that it gives advice about how probabilities
should be used to solve problems. As there are many probability problems,
the principle has many applications, and so the principle may be more
plausible in some contexts than in others. I’ll begin by describing a few
settings in which the principle seems to make excellent sense. It will
emerge in the next section that the principle of total evidence is con-
troversial; it constitutes one of the fault lines that separate some central
ideas in frequentism from both Bayesianism and likelihoodism.
Suppose two witnesses provide independent reports about what they

saw at the scene of a crime. And suppose that each is at least minimally
reliable in the sense described in §1.2, meaning that, for some relevant
range of propositions:

Pr½WiðPÞ j P� > Pr½WiðPÞ j notP�; for i ¼ 1; 2:

Here Wi(P) means that witness i asserts that proposition P is true. The
principle of total evidence says that you should take account of the tes-
timony of both witnesses if that is the total evidence you possess. How-
ever, the principle is usually interpreted as saying that more is better than
less; you should take account of both testimonies, rather than just one of
them, even if there is more information available than what the two
witnesses say.
Why are two witnesses better than one? If the witnesses agree that P is

true, and the two witnesses go about their business independently,22 the
two pieces of testimony discriminate more powerfully between P and notP
than either of them does by itself, in the sense that

Pr½W1ðPÞ & W2ðPÞ j P�
Pr½W1ðPÞ & W2ðPÞ j notP� >

Pr½WiðPÞ jP�
Pr½WiðPÞ j notP� > 1; for each i ¼ 1; 2:

This is because

Pr½W1ðPÞ & W2ðPÞ j P�
Pr½W1ðPÞ & W2ðPÞ j notP� ¼

Pr½W1ðPÞ jP�
Pr½W1ðPÞ j notP� ·

Pr½W2ðPÞ jP�
Pr½W2ðPÞ j notP�

and each of the ratios on the right is greater than one. This just reflects the
common sense fact that two independent and (at least minimally) reliable

22 There can be (and will be!) a relation of unconditional dependency between what independent
reliable witnesses say, in that Pr[W1(P) jW2(P)] > Pr[W1(P)]. The relevant notion of independent
witnesses is independence conditional on the proposition reported: Pr[W1(P) & W2(P) j P] ¼
Pr [W1(P) jP] · Pr[W2(P) jP].
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witnesses who agree that P is true provide stronger evidence in favor of P
than either witness does alone.23

This example makes it look as if the principle of total evidence is
justified by our hunger for strong evidence. But this can’t be right. For
suppose the two witnesses disagree. If you take both pieces of testimony
into account, you may have no basis at all for discriminating between P
and notP, whereas if you selectively focus on just one witness’s testimony,
you will. The principle of total evidence in this case tells you to resist the
desire for telling evidence; if the total evidence says that you have little or
no basis for discriminating between the two propositions, so be it.
When reliable witnesses reach their judgments independently of each

other (conditional on P’s being true and conditional on P ’s being false),
this induces a kind of evidential monotonicity; if there are two witnesses,
two votes for P provide stronger evidence that P is true than one vote
would provide, and one vote provides stronger evidence for P than if
neither witness had asserted that P is true. These comparisons are re-
presented by the likelihood ratios depicted in Figure 1.5. As simple and
familiar as this fact about multiple independent testimonies is, it is im-
portant to bear in mind that there is no rule written in Heaven that
separate pieces of evidence must be independent. Suppose you are a cook
in a restaurant. The waiter brings an order into the kitchen – someone in
the dining room has ordered toast and eggs for breakfast. You wonder if
this evidence discriminates between two hypotheses – that your friend
Smith placed the order or that your friend Jones did so. You know the

Witness 2 says

P             notP

P w                x

Witness 1 says

notP y                 z

Figure 1.5 When two independent and reliable witnesses each report on whether
proposition P is true, yeses provide stronger evidence for P than one, and one yes provides

stronger evidence than zero. Each cell represents the likelihood ratio
Prðtestimony j PÞ=Prðtestimony j notPÞ that goes with each of the four possible

testimonies; w > x, y > z.

23 This point about multiple witnesses bears on Hume’s analysis of the epistemology of reports about
the alleged occurrence of miracles, on which see Earman’s (2000) book and my review of it (Sober
2004d).
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eating habits of each; the probabilities of different breakfast orders,
conditional on Smith’s placing the order, and conditional on Jones’s
placing the order, are shown in Figure 1.6. These probabilities give rise to
the following curious fact: The order’s being for toast and eggs favors
Smith over Jones (since 0.4 > 0.1); but the fact that the customer asked
for toast provides no evidence on this question (since 0.5 ¼ 0.5); and the
fact that the customer asked for eggs doesn’t either (since, again, 0.5 ¼
0.5). Here the whole of the evidence is more than the sum of its parts.
Figure 1.7 depicts the opposite pattern in which a new set of in-

clinations is attributed to your two friends. If Smith and Jones are dis-
posed to behave as described, an order of toast and eggs fails to
discriminate between the two hypotheses (since 0.4 ¼ 0.4). But the fact
that the order included toast favors Smith over Jones (since 0.7 > 0.6),
and the same is true of the fact that the order included eggs (since 0.6 >
0.4). Here the whole of the evidence is less than the sum of its parts.
Although the principle of total evidence says that you must use all the

relevant evidence you have, it does not require the spilling of needless ink.

Pr ( – ⏐ Smith) Pr ( – ⏐ Jones)

Eggs Eggs

+           – +          –

+  0.4        0.1 +    0.1       0.4

Toast Toast

– 0.1        0.4 – 0.4        0.1

Figure 1.6 Smith and Jones differ in their inclinations to place different orders for
breakfast. The breakfast order of toast and eggs provides evidence about which of them
placed the order, although the fact that the order included toast does not, and neither does

the fact that the order included eggs.

Pr ( – ⏐ Smith) Pr ( – ⏐ Jones)

Eggs Eggs

+           – +          –

+  0.4        0.3 +    0.4        0.2  

Toast Toast

– 0.2        0.1 – 0         0.4

Figure 1.7 A new set of breakfast inclinations for Smith and Jones. Now the breakfast
order of toast and eggs provides no evidence about which of them placed the order,

though each part of the order favors Smith over Jones.
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It does not require you to record irrelevant information. Consider the two
hypotheses about coin tossing depicted in Figure 1.4. One of them says
that p ¼ 1

4 while the other says that p ¼ 3
4, where p is the coin’s probability

of landing heads. I earlier described the data by saying that there were five
heads in the twenty tosses of the coin. But why am I not obliged to
describe the exact sequence of heads and tails that formed the data? There
are many ways to get five heads in twenty tosses. A proposition that states
just the sample frequency is logically weaker than a description of the exact
sequence (in that the latter implies the former, but not conversely). Isn’t it
a violation of the principle of total evidence to use the sample frequency
as a description of the data?
If we represent strength of evidence by the likelihood ratio, the answer

is no. Consider each of the specific sequences in which there are five heads
in twenty tosses. The two hypotheses we are considering (p ¼ 1

4 and p ¼ 3
4)

agree that each of these exact sequences has a probability of p5(1 � p)15

though they disagree about what the true value of p is. The likelihood
ratio of p ¼ 1

4 to p ¼ 3
4, relative to a description of the exact sequence of

heads and tails we observe, has the value:

Prðexact sequence j p ¼ 1
4Þ

Prðexact sequence j p ¼ 3
4Þ
¼ ð

1
4Þ5ð34Þ15
ð34Þ5ð14Þ15

¼ 310:

If there are N exact sequences that can produce five heads in twenty tosses24

the probability of obtaining some sequence or other in which there are five
heads in twenty tosses has a value of Np5(1 � p)15. Using this logically
weaker description of the data, we obtain the following likelihood ratio:

Prð5 heads j p ¼ 1
4Þ

Prð5 heads j p ¼ 3
4Þ
¼ N ð14Þ5ð34Þ15

N ð34Þ5ð14Þ15
¼ ð

1
4Þ5ð34Þ15
ð34Þ5ð14Þ15

¼ 310:

Notice that the Ns have cancelled. There is no need to use the logically
stronger description of the data that states the exact sequence of heads and
tails, since it makes no difference to the likelihood ratio (Fisher 1922b;
Hacking 1965: 80–1). In this sense, the sample frequency is a sufficient
statistic. Notice the role played by the likelihood ratio in this argument; if
you represented weight of evidence in some other way (e.g., via the

24 N, the number of specific sequences in which there are m successes in n trials, is calculated by the

formula for
n
m

� �
, meaning from n objects choose m; N ¼ n!=m!ðn� mÞ! .
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likelihood difference), maybe N would not disappear. Notice also how
powerfully the data favor one hypothesis over the other, even though both
say that the total data set was very improbable.
Whether the sample frequency is a sufficient statistic depends on the

hypotheses being evaluated. In the example just described, the two hy-
potheses agree that tosses are independent of each other. But suppose this
is something you want to test. And suppose further that the exact se-
quence of heads and tails is observed to be

H T H T H T H T H T H T H T H T H T H T

This sequence contains 50 percent heads, but it would be a mistake to
think that this logically weakened description captures all the information
in the data that is evidentially relevant. The order of heads and tails is
evidentially relevant as well.
The logically weaker description of the data, the sample frequency, is a

disjunction. One of the disjuncts describes the exact sequence that did
occur; the other disjuncts describe exact sequences that did not. When p¼ 1

4
and p ¼ 3

4 are the two hypotheses under test, there is nothing wrong with
describing the data in this disjunctive form, saying that this sequence or that
sequence or that other sequence was the one that occurred without saying
which. The principle of total evidence is not a rule against disjunctions.
Rather, the rule says that logically weakening your description of the data is
not permitted when this changes your assessment of what the evidence
indicates. Applying the principle requires a rule for interpreting what the
evidence says about the hypotheses under test. At this point, likelihoodists
appeal to the law of likelihood and use the likelihood ratio. Bayesians can
agree with the above argument, since for them the likelihood ratio is the
vehicle by which ratios of priors are transformed into ratios of posterior
probabilities, as proposition (6) attests. Likelihoodists and Bayesians are on
the same page when it comes to the principle of total evidence.25

The limits of likelihoodism

Likelihoodism addresses the first of Royall’s three questions (§1.1) while
remaining silent on the other two; it confines itself to the task of inter-
preting what the evidence says while giving no advice on what you should

25 I will not try to address the deeper question of what the ultimate justification is of the principle of
total evidence. I. J. Good (1967) provides a decision-theoretic justification.
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believe or do. Even so, the question remains of whether likelihoodism
accomplishes the relatively modest goal it sets for itself. The problem is
that there are many scientific hypotheses of interest that are composite,
rather than simple. These are technical terms. The two hypotheses about
the coin (that p ¼ 1

4 and that p ¼ 3
4) depicted in Figure 1.4 are both simple

in the sense that each says exactly how probable each possible outcome of
the experiment is. Composite hypotheses are more ambiguous; they cir-
cumscribe a family of probabilities that an observation might have
without singling out just one. An example would be the hypothesis that
p > 1

4; this hypothesis does not say what the probability is of observing
exactly five heads in twenty tosses. There are many values that p might
have if it exceeds 1

4, and each specific value has its own likelihood relative
to a given observation; composite hypotheses are disjunctions (sometimes
infinite disjunctions) of simple hypotheses.
Hypotheses that look as if they are composite can in reality turn out to be

statistically simple, if background information of a certain sort is available.
Imagine that there are three kinds of coins that a factory manufactures – a
third have p¼ 1

4, a third have p¼ 1
2, and a third have p¼ 1.0. If you chose a

coin made at this factory at random, then if the coin before you has p > 1
4,

there are just two possibilities – that p ¼ 1
2 and p ¼ 1.0 – and these are

equiprobable. The average of these is p¼ 3
4. Likelihoodists have no problem

with assessing the hypothesis that p> 1
4 in this kind of context. True to their

antisubjectivist inclinations, they are happy to consider this hypothesis
because there is an objective answer to the question of what observations we
should expect to make if the hypothesis that p > 1

4 is true. Absent this kind
of information, they decline to assess the hypothesis at all. Rather, they
relegate p > 1

4 to the same epistemic limbo to which they consign notGTR,
the catchall hypothesis that the GTR is false.
It is arguable that science often does not need to assess how the evi-

dence bears on such catchall hypotheses. Eddington was able to compare
the GTR with Newtonian theory, and maybe that is enough. However,
other composite hypotheses seem to play a central role in the activity of
science, so the likelihoodist denial that they can be handled should raise
more eyebrows. For example, population geneticists often want to say
whether the gene-sequence data gathered from a number of species favor
the hypothesis of random genetic drift or the hypothesis of selection. The
drift hypothesis is often statistically simple: For example, with respect to
the two alleles A and a that might exist at a given genetic locus, the drift
hypothesis says that they are identical in fitness. It says that wA ¼ wa,
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which means that wA – wa ¼ 0. In contrast, the hypothesis of selection is
composite; it says that wA 6¼ wa; in other words, it says that wA – wa ¼ h,
where h is a parameter whose value is not equal to zero. Notice that there
are many different values that h might have if it isn’t equal to zero. Each
of these specific values for h entails its own probability for the data at
hand. But what does the bare hypothesis of selection itself predict? As the
previous example about the coin factory suggests, this question would be
answerable if we had an objective basis for assigning probabilities to the
different values h might take if it were nonzero. But, alas, we often lack
this type of information. For this reason, it is often impossible to compare
drift with selection within the framework of likelihoodism. Although
physicists may be content to compare the GTR with Newtonian theory
and to feel no need to ponder the catchall hypothesis that the GTR is
false, population geneticists have wanted to test drift against selection and
have even claimed to have done so. We will examine the question of
whether and how this is possible in Chapter 3. For now, the point is that
we have isolated an issue that unites Bayesians and frequentists; these two
old enemies maintain that likelihoodism is too austere. Frequentists think
they have good methods for testing composite hypotheses and Bayesians
deny that the hypotheses in question are really composite. Both rush in
where likelihoodists fear to tread.

1.4. FREQUENTISM I: S IGNIFICANCE TESTS AND PROBABIL ISTIC

MODUS TOLLENS

I began this chapter by painting with a broad brush. I said that Bayesians
hold that science is in the business of determining which theories are
probably true while frequentists hold that this is not at all what science is
about. I then complicated the story by adding likelihoodists to the cast of
characters. They often eschew the goal of assigning probabilities, but in
many respects they are more like Bayesians than frequentists, as we now
will see. The fact that there are three positions here, not two, complicates
the problem of saying what frequentism amounts to. It is not enough to
say that frequentists reject the goal of assigning probabilities to hy-
potheses, since that point, though correct, does not separate them from
likelihoodists. What can be said that is distinctive of what frequentism is
for? We will uncover some of its differences with the other two philo-
sophies in due course. But we must bear in mind that frequentism is not a
single unified theory. Rather, it is a motley of different techniques that are
often only loosely connected with each other; sometimes they are even in
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conflict. In §1.2, I mentioned that Bayesianism gives epistemological
advice about probability assignments; what probability statements mean
(which ‘‘interpretation of probability’’ is correct) is a separate, semantic,
question. A similar point applies to frequentism. Frequentism is not the
thesis that probability statements are claims about actual or hypothetical
frequencies, though this semantic thesis is something that many fre-
quentists endorse. Rather, frequentism is a thesis about epistemology.
Frequentists assess a rule of inference by examining the (expected) fre-
quencies of good and bad outcomes when the rule is applied repeatedly.
The first frequentist method that I want to consider is R. A. Fisher’s

idea of significance tests. Fisher conceived of this procedure as a corrective
to what he thought was wrong with the Neyman–Pearson theory of
hypothesis testing, which I’ll discuss in the next section. I take these two
approaches in reverse chronological order because Fisher’s theory is in
some ways easier to grasp than the Neyman–Pearson approach and be-
cause its contrast with likelihoodism is more obvious.
To get started, let’s consider a simple rule of deductive reasoning,

modus tollens. This is a form of argument familiar to philosophers and
scientists; it is the centerpiece of Karl Popper’s views on falsifiability
(which I’ll discuss in §2.8):

ðMTÞ If H ; then O
notO

notH

Modus tollens, like other rules of deductive logic, says what follows from
what. It does not, in the first instance, give advice. Still, it is natural to
interpret modus tollens as saying that if the hypothesis H entails the ob-
servation statement O, and O turns out to be false, then H should be
rejected. I use a single line to separate premises from conclusion to indicate
that modus tollens is deductively valid (meaning, recall, that if the premises
are true, the conclusion must be). Since (MT) is valid, perhaps the fol-
lowing ‘‘probabilistic extension’’ of the rule constitutes a sensible prin-
ciple of nondeductive reasoning:

ðProb-MTÞ PrðO jHÞ is very high
notO

notH

According to probabilistic modus tollens, if the hypothesis H says that O
will very probably be true, and O turns out to be false, then H should be
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rejected. Equivalently, the suggestion is that if H says that some ob-
servational outcome (notO) has a very low probability, and that outcome
nonetheless occurs, then we should regard H as false. I draw a double line
between premises and conclusion in (Prob-MT) to indicate that the ar-
gument form is not supposed to be deductively valid. But maybe it is a
sensible form of inference nonetheless.
Before addressing whether probabilistic modus tollens is correct and

how it is related to deductive modus tollens, I want to discuss a parallel
question. Consider modus ponens:

ðMPÞ If O; then H
O

H

Modus ponens is deductively valid, and this may suggest that the following
probabilistic extension of the principle is also correct:

ðProb-MPÞ PrðH jOÞ is very high
O

H

(Prob-MP) says that if O renders H very probable, and O is true, then we
should accept H. My brief comments in §1.2 on the lottery paradox
suggest that we should be wary of this rule of acceptance. But (Prob-MP)
has a close cousin, which we have already examined:

ðUpdateÞ PrthenðH jOÞ is very high
O

O is all the evidence we have gathered between then and now:

PrnowðHÞ is very high

This is nothing other than the rule of updating by strict conditionaliza-
tion. (Update) is a sensible rule, and it also has the property of being a
generalization of deductive modus ponens. By parity of reasoning, should
we conclude that probabilistic modus tollens is a good rule because it
generalizes deductive modus tollens?
Friends of (Prob-MT) need to say where the probability cutoff for

rejection is located. How low must Pr(O jH) be for O to justify rejecting
H? Richard Dawkins (1986: 144–6) addresses this question in the context
of discussing how theories of the origin of life should be evaluated. He
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says that an acceptable theory can say that the origin of life on Earth was
somewhat improbable, but it cannot go too far. If there are n planets in
the universe that are ‘‘suitable’’ locales for life to originate, then an
acceptable theory of the origin of life on Earth must say that that event
had a probability of at least 1n. Theories that say that terrestrial life was less
probable than this should be rejected. Creationists also have set cutoffs.
For example, Henry Morris (1980) says that theories that assign to an
event a probability less than 1

10110 should be rejected, and William
Dembski (2004) says that a theory that assigns to a ‘‘specified event’’
(a technical term in Dembski’s framework) a probability less than 1

10150

should be rejected.26 Morris and Dembski obtain these numbers by at-
tempting to calculate how many times elementary particles could have
changed state since the universe began.
Dawkins, Dembski, and Morris have all made the same mistake. It isn’t

that they have glommed on to the wrong cutoff. The problem is deeper:
There is no such cutoff. Probabilistic modus tollens is an incorrect form of
inference (Hacking 1965; Edwards 1972; Royall 1997). Lots of perfectly
reasonable hypotheses say that the observations are very improbable. As
noted earlier, if H confers a very high probability on each of the observa-
tions O1, O2, . . . , O1,000 (but a probability that is short of unity), it will
confer a very low probability on their conjunction, if the observations are
independent of each other, conditional on H. A probability that is very
large but less than one, when multiplied by itself a large number of times,
will yield a very small probability. Adopting probabilistic modus tollens
would have the effect of eliminating all probabilistic theories from science
once they are repeatedly tested.
It may seem that the kernel of truth in (Prob-MT) can be rescued by

modifying the argument’s conclusion. If it is too much to conclude that H
is false, perhaps we should conclude just that the observations constitute
evidence against H:

(Evidential Prob-MT) PrðO jHÞ is very high:
notO

notO is evidence against H :

This principle is also unsatisfactory, as an example from Royall (1997: 67)
nicely illustrates. Suppose I send my valet to bring me one of my urns.

26 For discussion of Dembski’s (1998) framework for inferring the existence of intelligent designers,
see Fitelson et al. (1999).
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I want to test the hypothesis (H) that the urn he returns with contains 0.2
percent white balls. I draw a ball from the urn and find that it is white. Is
this evidence against H? It may not be. Suppose I have only two urns; one
of them contains 0.2 percent white balls, while the other contains 0.01
percent white balls. In this instance, drawing a white ball is evidence in
favor of H, not evidence against it.27

The use of genetic data in forensic identity tests provides a further
illustration of Royall’s point. Suppose that two individuals match at
twenty independent loci; they are heterozygotes at each. At each locus,
each individual has one copy of a rare allele (frequency ¼ 0.001) and
one copy of the alternative, common, allele (frequency ¼ 0.999). The
probability of this twenty-fold matching, if the two individuals are
full sibs, is about [(0.001)(0.5)]20. This is a very small number, but
that hardly shows that the sib hypothesis should be rejected. In fact,
the data favor the sib hypothesis over the hypothesis that the two in-
dividuals are unrelated. If they are unrelated, the probability of the
observations is about [(0.001)(0.001)]20. The two likelihoods are both
very small, but the first is 50020 times larger than the second (Crow et al.
2000: 65–7).28

These examples reflect a central idea in the likelihoodist theory of
evidence: judgments about evidential meaning are essentially contrastive.
To decide whether an observation is evidence against H, you need to
know what the alternative hypotheses are; to test a hypothesis requires testing
it against alternatives.29 In the story about the valet, observing a white ball
is very improbable according to H, but in fact that outcome is evidence in
favor of H, not evidence against it. This is because O is even more im-
probable according to the alternative hypothesis. Probabilistic modus
tollens, in both its vanilla and evidential versions, needs to be replaced by
the law of likelihood. The relevance of this point is not confined to urn
problems and forensic DNA. It will play an important role in Chapter 4

27 A third formulation of probabilistic modus tollens is no better than the other two. Can one
conclude that H is probably false, given that H says that O is highly probable, and O fails to be
true? The answer is no; inspection of Bayes’ theorem shows that Pr (notO jH) can be low without
Pr (H j notO) being low.

28 Notice how the likelihood ratio, not the likelihood difference, figures in this argument.
29 There are two exceptions to the thesis that testing is always contrastive. If a true observation

statement entails H, there is no need to consider alternatives to H; you can conclude without
further ado that H is true; this is just modus ponens. And if H entails O and O turns out to be false,
you can conclude that H is false, again without needing to contemplate alternatives; this is just
modus tollens. It is a separate question how often these forms of argument apply to testing in
science. They rarely do. Observations almost never entail theories, and theories almost never entail
observations. More on this later.
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when we consider the question of why the similarities observed in two or
more species is evidence for those species’ having a common ancestor.
Within the framework developed there, an observed similarity O provides
stronger evidence in favor of the common ancestry (CA) hypothesis the
lower the value is of Pr(O jCA). The reason the evidence for CA is
strengthened by lowering the value of this conditional probability is that
lowering the value of Pr(O jCA) leads the value of Pr(O j SA) to plunge
even more; here SA is the hypothesis of separate ancestry.
There is a reformulation of probabilistic modus tollens that makes sense,

but it is Bayesian:

ðBayesian Prob-MTÞ PrthenðO jH Þ is very high:

PrthenðO j notH Þ is very low:

PrthenðHÞ � PrðnotH Þ
not-O

PrnowðH Þ is very low:

Although the conclusion of this argument follows deductively from the
premises (given the rule of updating by strict conditionalization and that
notO is all you learned between then and now), this is a form of argument
that frequentists will not touch with a stick. The reason is not that it is
invalid (it is not) but that it requires premises that frequentists regard as
too subjective.30

Fisher’s (1959) test of significance is a version of probabilistic modus
tollens and that is bad enough. But it has the additional defect that it
violates the principle of total evidence. In a significance test, the hy-
pothesis you are testing is called the ‘‘null’’ hypothesis, and your question
is whether the observations you have are sufficiently improbable according
to the null hypothesis. However, you don’t consider the observations in
all their detail but rather the fact that they fall in a certain region. You use
a logically weaker rather than a logically stronger description of the data.
Here’s an example (from Howson and Urbach 1993: 176) that illustrates
the point. You want to test the hypothesis that a coin is fair (i.e., the
hypothesis that the probability of heads is 0.5) by tossing the coin twenty
times. Assume that the tosses are independent of each other. Suppose you
obtain four heads. You then compute the probability of a disjunction in

30 Wagner (2004) shows that a bound on the value of Pr (notH) can be derived from the values of
Pr(O jH) and Pr (notO); he calls his result a probabilistic version of modus tollens. This is not
the probabilistic modus tollens whose nonexistence I argue for above.
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which ‘‘four heads’’ is one of the disjuncts. You need to look at all the
outcomes that the null hypothesis says are at least as improbable as the one
you actually obtained:

Prð0 or 1 or 2 or 3 or 4 or 16 or 17 or 18 or 19 or 20 heads j
the coin is fair and the coin is tossed 20 timesÞ ¼ p:

The probability of this disjunction, conditional on the null hypothesis, is
called the p-value for the test outcome.
This p-value has two interpretations, corresponding to two different

conceptions of what a significance test is supposed to accomplish.
Sometimes significance testers draw a conclusion as to whether the null
hypothesis should be rejected. To do this, they specify a value for a, the
‘‘level of significance’’; the null hypothesis is rejected if the p-value is less
than this cutoff. If a ¼ 0.05 is your level of significance, then four heads
in twenty tosses will suffice to reject the null hypothesis, since the p-value
of this outcome is 0.012; had you obtained six heads in twenty tosses, this
outcome would not suffice to reject the null, since the p-value in this
instance is 0.115. It is generally conceded that choosing a value for a is an
arbitrary matter of convention. The other interpretation of significance
tests is that they measure the strength of the evidence against the null
hypothesis; the lower the p-value of the outcome, the stronger the evi-
dence against. This comparative idea, by itself, does not say whether six
heads in twenty tosses is (in an absolute sense) evidence against the hy-
pothesis that the coin is fair, but it does say that four heads in twenty
tosses would be stronger evidence against it. If we stipulate that a p-value
of 0.05 is the cutoff between ‘‘strong evidence against the null hypothesis’’
and not, then we know how to interpret six heads in twenty tosses, and
also how to interpret four in twenty and two in twenty. The first of these
is not strong evidence against the null while the second and third are.
There is arbitrariness here as well.
Both interpretations of significance tests are vulnerable to the fact

that there are many descriptions of the data that might be used, and
changing these can lead to different conclusions about the null hy-
pothesis. I mentioned that obtaining six heads in twenty tosses does not
allow you to reject the null hypothesis (if you set a ¼ 0.05), since the
probability of obtaining between zero and six or between fourteen and
twenty heads is greater than 0.05. In this example, we thought of each
possible number of heads that might occur in twenty tosses (0, 1, 2,
. . . 18, 19, 20) as an element in the outcome space and then gathered
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together the fourteen elements there that each has a probability of
occurring under the null hypothesis that is less than or equal to the
probability of obtaining exactly six heads. But the outcome space can be
sliced up differently.31 For example, instead of having twenty-one ca-
tegories, you might decide to collapse some of these together. If you
combine five heads and ten heads into one category, and fourteen heads
and fifteen heads into another, you now have an outcome space with
nineteen categories, not twenty-one. If you then construct a disjunction
of the categories from this list that each has a probability that is less
than or equal to the probability of getting exactly six heads, you’ll
discover that the probability of the relevant disjunction under the null
hypothesis is 0.49, which will lead you to reject the null hypothesis
(Howson and Urbach 1993: 182–3). Whether you reject the null de-
pends on how you slice the cake.
It might be objected that collapsing the twenty-one categories into

these nineteen is ‘‘unnatural,’’ or that finer-grained taxonomies are pre-
ferable to ones that are coarser-grained. Defenders of significance tests
have not attempted to develop an account of naturalness, and it is unclear
how much help significance tests could extract from such an account.
However, it is abundantly clear that insisting on logically stronger de-
scriptions of the data does not help the significance tester. Instead of
having twenty-one categories in the outcome space, why not treat each
specific sequence of heads and tails as a separate element, with the result
that our outcome space now has 220 members, each with the same
probability under the null hypothesis of (12)

20 ? When we obtain a specific
sequence of heads and tails (say, one containing two heads) and then
collect the other elements in the outcome space that are no more probable
according to the null hypothesis, the result is that we construct a dis-
junction that contains all 220 elements; the probability of this disjunction,
under the null hypothesis, is unity. With this fine-grained outcome space,
we’ll never reject the null, no matter what the outcome is.
Turning now to the evidential interpretation of significance tests, it is

important to see how it conflicts with likelihoodism. According to the
law of likelihood, whether the observations are evidence against the hy-
pothesis that the coin is fair depends on which alternative hypothesis you
consider. If the alternative to the null hypothesis says that the probability
of heads is 0.8, then observing four heads in twenty tosses will be evidence

31 Compare this point with considerations about cake slicing that arise in connection with the
principle of indifference (§1.2).
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in favor of the null hypothesis, not evidence against it. If the modest
principle stated in §1.1 is correct, this point also bears on the idea that
significance testing provides a rule of rejection. If an observation justifies
you in rejecting H, and you were not justified in rejecting H before you
obtained the observation, then the observation must be evidence against
H. The fact that significance tests don’t contrast the null hypothesis with
alternatives suffices to show that they do not provide a good rule for
rejection.
Another odd property of significance tests concerns the way in which

they are sensitive to sample size. Howson and Urbach (1993: 208–9)
explain this point by describing a nice example due to Lindlay (1957).
Suppose you wish to test the hypothesis (H1) that 40 percent of the
marbles in an urn are red. If you examine ten balls and choose a ¼ 0.05,
you will reject H1 if you see seven or more red balls. If you examine 100
balls and choose the same value for a, you will reject H1 if you observed
more than forty-eight red balls. And if you examine 1,000 balls, again
with a ¼ 0.05, you will reject H1 if you observe more than 403 red balls.
As sample size increases, the observed frequency must be closer and closer
to 40 percent for you to not reject H1. With ten balls, you need to observe
less than 70 percent; with 100 you need to observe less than 48 percent;
and with 1,000, you need to observe less than 41 percent. This may not
seem strange until you add the following detail. Suppose the alternative to
H1 is the hypothesis (H2) that there are 60 percent red balls in the urn.
The law of likelihood now entails that observing fewer than 50 percent
red favors H1 over H2, that observing more than 50 percent red has the
opposite evidential significance, and that these interpretations of the ob-
servations are correct at all sample sizes. If the law of likelihood is right, and
if the modest principle stated in §1.2 correctly describes the connection
between evidence and rejection, then we have here an objection to sig-
nificance tests.
Although I have criticized the rejection and the evidential interpreta-

tions of significance tests, there is a more modest interpretation that is
beyond reproach. Fisher (1956: 39, 43) put the point like this: If H says
that O is very improbable, and O occurs, then we know that a disjunction
is true – either H is false or something very improbable has occurred.
This disjunction does follow. However, what does not follow is the first of
Fisher’s disjuncts; nor does it follow that we have obtained evidence against
H. Another modest interpretation of significance tests is also appropriate:
An observational outcome that a hypothesis says is very improbable may
prompt you to search for a different hypothesis that says that the outcome
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was less surprising. This is how I understand the following remark that
Gossett made in the 1930s:

[a significance test] doesn’t in itself necessarily prove that the sample is not drawn
randomly from the population even if the [p-value] is very small, say .00001; what
it does is to show that if there is any alternative hypothesis which will explain the
occurrence of the sample with a more reasonable probability, say 0.05 [ . . . ] you
will be very much more inclined to consider that the original hypothesis is not
true. (quoted in Hacking 1965: 83)

This gentle suggestion has good likelihoodist credentials.
If probabilistic modus tollens and significance tests have the flaws just

described, can we abandon the probabilistic and simply rely on the de-
ductive form? If H1 entails O and O turns out to be false, it follows that
H1 is false. If H2 is the only alternative to H1, it further follows that H2 is
true. This is the pattern of reasoning that Sherlock Holmes endorses in
The Sign of Four where Sir Arthur Conan Doyle has his hero say that
‘‘when you have eliminated the impossible, whatever remains, however
improbable, must be the truth.’’ The correctness of this pronouncement is
not in dispute; rather, it is the applicability of Holmes’s dictum that I
contest. In science, it is rarely the case that the hypotheses under test
deductively entail observational claims. This is obvious in the case of
hypotheses that use the concept of probability (as in my running example
of the hypothesis that a coin is fair). But the point often holds when
hypotheses make no mention of probability. For example, when Ed-
dington tested Newtonian theory against relativity theory, the competing
hypotheses did not provide point predictions about what he should ob-
serve when he measured the bend in starlight during a solar eclipse.
Because his measurements were imprecise, he could say only that the
observations would probably fall in one value range if Newtonian theory
were true and that they would probably fall in a second interval if relativity
theory were true. The pervasive pattern in science is that hypotheses
confer (nonextreme) probabilities on observations.32

It may seem not to matter much whether a hypothesis says that O
cannot occur or says only that O very probably will not occur. In fact, the
difference is profound. If you observe that O is true, the former allows
you to reject H without your needing to consider an alternative hy-
pothesis. In contrast, the latter does not license rejection, and there is no

32 The fact that scientific theories typically confer probabilities on observations only when auxiliary
information is added will be explored in the next chapter in connection with Duhem’s thesis.
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saying whether the observation is evidence against H unless an alternative
hypothesis is specified.

1.5 FREQUENTISM II : NEYMAN–PEARSON HYPOTHESIS TESTING

The theory of hypothesis testing set forth by Neyman and Pearson
(1933), and subsequently developed in detail by Neyman, gives advice
about rejection, not, in the first instance, advice about the interpretation
of evidence. As noted in §1.1, Neyman and Pearson state that they are not
interested in interpreting evidence but only in stating general rules for
guiding ‘‘behavior.’’ This claim notwithstanding, the interpretation of
evidence and the rational acceptance and rejection of hypotheses are re-
lated if the modest principle enunciated earlier is correct; if learning that
O is true justifies rejecting H, where the rejection of H was not justified
before that knowledge was gained, then O must be evidence against H.
The Neyman–Pearson theory, as we will see, violates this principle.
If you are going to decide whether to accept or reject a hypothesis in

the light of a set of observations, there are two kinds of error to which you
are vulnerable. Consider the tuberculosis test discussed earlier, but this
time let’s frame the problem in terms of the task of acceptance and
rejection, not as a question concerning the interpretation of evidence.
You, the physician, receive the report of your patient’s tuberculosis test
result. The report is either positive or negative, and the patient either has
tuberculosis or does not. You have two options: You can accept the
hypothesis that your patient has tuberculosis or you can reject it. There
are two kinds of error you might commit: You might reject the hypothesis
that he has tuberculosis when it is true, or you might accept the hy-
pothesis when it is false. These options are depicted in Figure 1.8, as are

Possible states of the world

H = S has tuberculosis S does not

reject H e1 1 – e2

Possible decisions

accept H 1 – e1 e2

Figure 1.8 S either has tuberculosis or does not, and you, the physician, must decide whether
to accept or reject the hypothesis H that S has tuberculosis. The four cells represent four

possibilities; cell entries represent probabilities of the form Pr(decision j state of the world).
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the probabilities of mistaken rejection (e1) and of mistaken acceptance
(e2). If you were to ignore the report and merely toss a coin, your two
error probabilities would then each have a value of 0.5. But you can do
better if the test procedure you use is reliable in the sense described in
§1.2; the more reliable the procedure, the smaller the error probabilities
are. However, this does not mean that you will probably get the right
answer if you use a reliable procedure. The error probabilities are of the
form Pr(you accept hypothesis H jH is false) and Pr(you reject hypothesis
H jH is true); they do not represent Pr (H is false j you accept H) and
Pr (H is true j you reject H). Neyman–Pearson hypothesis testing is
frequentist, not Bayesian.
Neyman–Pearson theory begins with the truism that it is better to have

smaller error probabilities than larger ones. If you are going to base your
decision about your patient’s condition on what a test result says, you’ll do
better by using a more reliable testing procedure than one that is less. For
example, suppose you can use a test kit that is made in Madison or one
that is made in Middleton, where the two pairs of error probabilities are:

The Madison test kit: Prð� test result j S has tuberculosisÞ ¼ 0:02:

Prðþ test result j S does not have tuberculosisÞ ¼ 0:01:

The Middleton test kit: Prð� test result j S has tuberculosisÞ ¼ 0:04:

Prðþ test result j S does not have tuberculosisÞ ¼ 0:03:

Surely you’d want to use the Madison test kit, since both its error
probabilities are lower. But how should you choose between the Madison
kit and one made in Prairie du Chien? The error probabilities of this third
test kit are:

The Prairie du Chien test kit: Prð� test result j S has tuberculosisÞ ¼ 0:01:

Prðþ test result j S does not have tuberculosisÞ ¼ 0:02:

To choose between Madison and Prairie du Chien, you must decide
which kind of error is worse to commit. Is it more important to avoid
accepting that S has tuberculosis when he does not, or to avoid rejecting
the hypothesis that S has tuberculosis when he does? One obvious way to
decide this is to think about how your actions will be influenced by what
you believe. Is it worse to treat someone for tuberculosis when he doesn’t
have the disease, or to fail to treat someone for tuberculosis when he does?
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Notice how ethical considerations figure in this question. The issue is not
strictly epistemological. In terms of Royall’s three questions (§1.1), we are
edging towards question (3) and away from questions (1) and (2).
The Neyman–Pearson theory recognizes that there are two types of

error, but it does not treat them the same. First, you choose which of the
two hypotheses under test you’ll regard as the ‘‘null hypothesis.’’ You then
decide how large an error probability you will tolerate in connection with
mistakenly rejecting the null:

Prðreject the null hypothesis j the null hypothesis is trueÞ< a:

Scientists usually choose a value of a ¼ 0.05 while recognizing that this
choice is arbitrary. The probability of rejecting the null hypothesis when it
is true is called a Type-1 error. After putting an upper limit on how much
Type-1 error you are prepared to tolerate, you then try to minimize the
probability of the other kind of error:

Prðaccept the null hypothesis j the null hypothesis is falseÞ ¼ b:

The mistake of accepting the null hypothesis when it is false is a Type-2
error. So there are three steps in the Neyman–Pearson process: Decide
which hypothesis is the null; set an upper limit on the probability of
Type-1 error; and then minimize the probability of Type-2 error.
Suppose you decide that ‘‘S has tuberculosis’’ is your null hypothesis

and you chose a value for a of 0.05; given these choices, all three test kits
are acceptable so far. But now you want to minimize b. Madison does
better on this score than either Middleton or Prairie du Chien. On the
other hand, if you decide that ‘‘S does not have tuberculosis’’ is the null
hypothesis while still hewing to the convention that a < 0.05, you’ll end
up opting for the test kit from Prairie du Chien. Different decisions about
what the null hypothesis is lead to different test procedures. Here is some
more terminology: a (the probability of Type-1 error) is called the ‘‘size’’
of your test and (1�b) is called its ‘‘power.’’ Neyman–Pearson testing
treats these asymmetrically: First get the size below some threshold, then
maximize power.
To apply this framework in a way that brings out how it is related to

likelihoodism, let’s return to the coin-tossing problem discussed earlier.
Suppose your plan is to toss the coin thirty times and that there are two
hypotheses you want to consider. The first says that the probability of
heads is 1

4 on each toss while the second says that this probability is 3
4. The

probability that each hypothesis assigns to each possible outcome of your
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experiment is depicted in Figure 1.9. Suppose you decide to regard the
hypothesis that p ¼ 1

4 as your null hypothesis and you choose 0.05 as your
value for a. You thereby require that the chance of rejecting this hy-
pothesis, if it is true, must be less than or equal to 0.05. You now must use
this stipulation to identify a ‘‘critical region.’’ That is, you need to say
what possible outcomes will suffice for rejecting the null hypothesis, given
that you want to make sure that the probability of mistakenly rejecting the
null hypothesis is no greater than 1 in 20. Many choices satisfy this
requirement. For example, if you reject the null hypothesis precisely when
there are zero heads in thirty tosses, the probability of rejecting the hy-
pothesis that p ¼ 1

4 when the hypothesis is true is only (0.75)30, which is
tiny. The same can be said of the policy of rejecting the null hypothesis
precisely when all thirty tosses land heads. With this policy, the chance of
rejecting the null when it is true is only (0.25)30, again a tiny number.
Notice that neither of these judgments depends in any way on what the
alternative to the null hypothesis happens to be. The fundamental dif-
ference between Neyman–Pearson testing and Fisher’s test of significance
is that the former is contrastive (pitting the null hypothesis against a
specified alternative), while the latter is not. We now need to see what role
the alternative to the null hypothesis plays in determining what the critical
region will be. The critical region is determined by the joint fact that we
want the chance of rejecting the hypothesis that p ¼ 1

4 if it is true to be no
greater than 0.05 and we also want the chance of accepting this hypothesis
if it is false (in which case p ¼ 3

4 is true) to be as small as possible. These

Pr (data | p=?)

Number of heads in thirty tosses

Figure 1.9 If p ¼ 1
4 is the null hypothesis and p ¼ 3

4 is the alternative to the null, and a ¼
0.05 is chosen, the Neyman–Pearson theory says that the null hypothesis should be

rejected if and only if twelve or more heads occur in thirty tosses of the coin.
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two requirements result in a unique policy. We should reject the hy-
pothesis that p ¼ 1

4 precisely when there are twelve or more heads in the
thirty tosses. This cutoff is depicted in Figure 1.9 (the example is from
Royall 1997: 16–17).
Notice that this cutoff differs from the one drawn by the law of like-

lihood, which says that a data set with fourteen or fewer heads favors the
first hypothesis while a data set with sixteen or more heads has the op-
posite evidential significance. If there are exactly fifteen heads in thirty
tosses, the two hypotheses have the same likelihood. As noted before, the
law of likelihood answers Royall’s first question (what does the evidence
say?) while the Neyman–Pearson theory provides a policy for acceptance
and rejection. However, the two come into contact (and are in-
compatible) if it is a mistake to reject a hypothesis because one has
obtained a set of observations that, in fact, are evidence for the hypothesis,
not evidence against it. This is precisely what happens if you observe
twelve, thirteen, or fourteen heads in thirty tosses. If you obtain any of
these outcomes in your experiment, the Neyman–Pearson theory says to
reject p ¼ 1

4, while the law of likelihood interprets each of these outcomes
as evidence in favor of p ¼ 1

4 (given that the alternative hypothesis is p ¼
3
4). If the law of likelihood is right, the Neyman–Pearson theory is wrong.
What procedure would the Neyman–Pearson theory recommend if you

were to decide that p ¼ 3
4 is your null hypothesis? You then would draw a

different cutoff, but it, too, would fail to coincide with the boundary
drawn by the law of likelihood. With the hypothesis that p ¼ 3

4 as your
null, you will reject this hypothesis precisely when eighteen or fewer tosses
land heads. This means that if you observe between twelve and eighteen
heads, your decision about which of the two hypotheses you’ll reject
depends on which is the null and which is the alternative. If the hy-
pothesis that p ¼ 1

4 is your null hypothesis, you reject it when any of these

outcomes occurs; but if p ¼ 1
4 is the alternative to the null, you do not.

Life is harder on a hypothesis if it is treated as the null. Notice that the law
of likelihood does not depend on how you label the various hypotheses
you wish to evaluate, and there is no need to choose a value for a, either.
This is a good thing, since both choices are arbitrary.
As noted, Neyman–Pearson theory first fixes a value for a and then

seeks to minimize the value of b. This is why the cutoff it draws differs
from the one dictated by the law of likelihood. The history of statistics
might have been different. If the two types of error had been treated as
equally serious, the goal would have been to minimize the sum (a þ b) of
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the two error probabilities. This would have provided no guidance in the
choice between Madison and Prairie du Chien, but it would have resulted
in a crossover point of fifteen heads in thirty tosses (Royall 1997: 17),
thus bringing the Neyman–Pearson philosophy into accord with the law
of likelihood. In fact, there are many policies that correspond to different
ways of handling the disutilities that attach to Type-1 and Type-2 errors.
Even if avoiding Type-1 error is more important than avoiding Type-2,
why should this mean that we need to stipulate a value for a? For ex-
ample, setting a ¼ 0.05 means that it doesn’t matter to you whether
the chance of Type-1 error is 0.04 or 0.004. If making a small matters
more than making b small, why not require that the sum (10a þ b) be
minimized? This is why the behaviorist justification of the Neyman–
Pearson philosophy does not work on its own terms. Even if ‘‘acceptance’’
and ‘‘rejection’’ are taken to be behaviors that need have no connection to
an assessment of evidence, the desire to reduce the frequencies of errors in
one’s lifetime (or in the lifetime of the enterprise of science) does not
automatically entail the policy of first choosing a value for a and then
minimizing b.
In discussing the principle of total evidence (§1.3), I described a few

examples in which logically strengthening or logically weakening one’s
description of the data affects which of two hypotheses has the higher
likelihood. This principle is also relevant to thinking about how the
Neyman–Pearson theory bears on the question of how evidence should be
assessed. We have already seen, in connection with the coin-tossing ex-
ample depicted in Figure 1.8, that observing twelve heads in thirty tosses
leads the Neyman–Pearson theory to reject the null hypothesis that p ¼ 1

4
and to accept the hypothesis that p¼ 3

4 (or to not reject it) even though the
former has the higher likelihood. But now let us logically weaken the
description of the observations. Instead of saying ‘‘we observed exactly
twelve,’’ let us say ‘‘we observed twelve or more green balls.’’ The law of
likelihood judges that this logically weakened description of the data has a
different evidential significance. Since a and b are both small, this wea-
kened description of the data favors p ¼ 3

4 over p ¼ 1
4, and the likelihood

ratio is ð1� bÞ=a, a quantity substantially greater than unity. It is more
probable that you’ll get twelve or more heads in thirty tosses if p¼ 3

4 than if p
¼ 1

4. Look at the areas under the two curves in Figure 1.8. The Neyman–
Pearson theory and the law of likelihood are in accord with respect to how
evidence should be interpreted when information in the data set is thrown
away. However, this reconciliation has a price: We have violated the
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principle of total evidence. From the point of view of likelihoodism and
Bayesianism as well, this is a serious defect in the Neyman–Pearson theory.
In addition to the difficulties already noted, which strike both likeli-

hoodists and Bayesians as fatal, there is a further fact about the Neyman–
Pearson theory that especially irks Bayesians. How can ‘‘acceptance’’ and
‘‘rejection’’ be based just on the evidence at hand? True, if your test
procedure is very reliable, a positive test result provides evidence that
strongly favors the hypothesis that S has tuberculosis over the hypothesis
that he does not. However, this is consistent with its being very improbable,
given the positive test result, that S has tuberculosis. The Neyman–Pearson
policy sometimes recommends accepting a hypothesis in the light of evi-
dence that renders the hypothesis very improbable. This is what can happen
when acceptance and rejection are controlled by likelihoods and priors are
ignored. This criticism of the Neyman–Pearson theory does not require
that prior probabilities always make sense. All that is needed is that they
sometimes do, and this is something that non-Bayesians should concede.
In order to bring out one last feature of the Neyman–Pearson ap-

proach, let us consider a fourth tuberculosis test kit; it is made in Ma-
zomanie:

The Mazomanie test kit: Prð� test result j S has tuberculosisÞ ¼ 0:902

Prðþ test result j S does not have tuberculosisÞ ¼ 0:001:

If you decide that ‘‘S has tuberculosis’’ is the null hypothesis and set
a¼ 0.05, you will decline to use this test kit. But suppose you did so
anyway, perhaps by mistake, and you obtained a positive test result. How
should you interpret this evidence? A likelihoodist will say that you have
just obtained strong evidence favoring the hypothesis that S has tu-
berculosis since the relevant likelihood ratio is large:

PrMazomanieðþ test result j S has tuberculosisÞ
PrMazomanieðþ test result j S does not have tuberculosisÞ ¼

0:098

0:001
¼ 98:

In fact, this evidence is precisely as strong as the evidence that attaches to a
positive result produced by the Madison test kit. Even though the two test
kits have different values for a and b, a positive test result produced by
using the Madison test kit also produces a likelihood ratio of 0:98=0:01 ¼
98. Yet, the Neyman–Pearson methodology instructs you not to use the
Mazomanie test kit and embraces the one from Madison. How can it do
so, if the two are evidentially equivalent when a positive test result is
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produced? The answer is that the Neyman–Pearson theory addresses the
question of how one should choose a general policy. If you, the doctor,
have to choose between using the Madison test kit on all your patients
and using the Mazomanie test kit on all of them, the plausible choice is to
opt for the one from Madison. Notice that the previous sentence answers
a question that falls under Royall’s question (3): What should you do?
That is, which test kit should you use in your medical practice? It is not an
answer to question (1): What is the evidential meaning of S ’s positive test
result? Nor does it address question (2): Should you believe that S has
tuberculosis? Hacking (1965) makes this point by distinguishing the task
of before-trial betting and after-trial evaluation. The first involves de-
signing an experiment, the second the interpretation of the results you
obtained on the experiment you actually ran. Likelihoodists and Bayesians
hold that both tasks are important but maintain that they are distinct.
The Neyman–Pearson philosophy does not distinguish these tasks; once
a general procedure has been chosen, there is no additional question
as to how the result obtained by applying the procedure on a single
occasion should be interpreted. This difference between the philosophies
becomes vivid when a less than optimal test procedure is used and one
wishes to interpret the result. This was my point in introducing the
Mazomanie test kit. If you use this procedure and obtain a positive result,
Neyman–Pearson frequentists will say that you shouldn’t have used that
test kit and will refuse to interpret the outcome; Bayesians and like-
lihoodists will say that using that test kit rather than the one from Ma-
dison turned out not to matter and will be happy to interpret the test
outcome. Philosophers will recognize that this difference between the two
statistical frameworks parallels the distinction in ethics between rule and
act utilitarianism.
I have described the rudiments of the Neyman–Pearson theory in the

context of the simple example of coin tossing, and this has allowed me
also to describe some standard criticisms of that approach. However,
frequentists may want to object that it is silly to test the hypothesis that
p ¼ 1

4 against the hypothesis that p ¼ 3
4. Instead, why not just estimate the

value of p (and draw a confidence interval around that estimate)? For
example, if there are twelve heads in the thirty tosses, you can simply say
that the maximum likelihood (ML) estimate of p is 0.4; as already noted,
this doesn’t mean that p probably has a value of 0.4 or even that the true
value is probably close to 0.4. However, in saying that this is the ML
estimate, you can sweep aside the problem of deciding which of p ¼ 1

4 and

p ¼ 3
4 is the null hypothesis and what your value for a ought to be. ML
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estimation may sound like likelihoodism or even Bayesianism, but fre-
quentists have their own special rationale for this procedure. Frequentists
do not accept the law of likelihood. Rather, they see the method of ML
estimation as justified, when it is, because it has certain virtues as a general
policy; for frequentists, there is no additional question about the evalua-
tion of an individual ML estimate. It is estimators, not estimates, that is
their focus. A central concept in the frequentist theory of estimation is
that an estimator (i.e., a procedure for making estimates) must be
admissible. A method of estimation is inadmissible if there is another
estimator that has a smaller expected error for all possible values that the
parameter being estimated might take. Whereas inadmissibility arguably
suffices to not use an estimator, admissibility is not sufficient for a method
to be used. The reason is that there can be multiple admissible estimators
that give contradictory advice. In any event, it turns out that ML esti-
mation is an admissible procedure when one or two parameters are being
estimated but not when the estimation problem involves three or more.
With more than two parameters, there is another procedure, involving
shrinkage in accordance with a formula derived by James and Stein
(1961) that has a lower expected error no matter what the true values are
of the parameters being estimated (Efron and Morris 1977). This is not
the place to pursue questions about estimation any further; suffice it to say
that frequentists can decline to use the Neyman–Pearson theory to test the
hypothesis that p ¼ 1

4 against the hypothesis that p ¼ 3
4 and insist that

maximum likelihood estimation of the value of p is the way to go.33

Although estimation may make more sense than Neyman–Pearson
hypothesis testing when the two hypotheses are statistically simple, this
option is not available to the frequentist when both the hypotheses being
tested are composite. In this case, the standard Neyman–Pearson approach
is the likelihood ratio test. Don’t let this terminology mislead you; this test
is a frequentist construct even though the likelihood ratio also appears in
the law of likelihood, which is the central concept of likelihoodism.
Here’s an example that illustrates what the likelihood ratio test involves.
You conduct the following experiment in your kitchen: You heat a
pressure cooker to a given temperature and then observe how much
pressure there is in the container. You don’t observe the temperature and
pressure directly; rather, you observe the readings that a thermometer and

33 It is worth emphasizing that this change in strategy does nothing to vindicate the Neyman–
Pearson theory as it applies to simple hypotheses. The objections have not been met; rather an
altogether different frequentist approach has been suggested.
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a pressure meter provide. You know that these devices are reliable, but not
perfectly reliable. You do this experiment multiple times, representing
each observation by a point in the coordinate system depicted in Figure 1.10.
Suppose there are two models you want to test that both attempt to

describe how temperature and pressure are related in this system. With
the variables X and Y representing temperature and pressure, respectively,
the two models are:

ðLINÞ y ¼ a þ bx þ e

ðPARÞ y ¼ a þ bx þ cx2 þ e:

LIN says that temperature and pressure are related linearly; PAR says
that they are related parabolically. In these models, x and y are variables,
while a, b, c, and e are parameters. Each model is an infinite disjunction;
LIN is a disjunction of all straight lines in the X-Y plane; and PAR is a
disjunction of all the parabolas. In other words, these models have ex-
istential quantifiers attached to their adjustable parameters; LIN, for ex-
ample, says that there exist values for a, b, and e such that y ¼ a þ bx þ e.
The ‘‘e’’ in each model represents the fact that your observations are
subject to error. Even if the true relationship between temperature and
pressure is linear, you can’t assume that the data you gather will fall
exactly on a straight line. LIN postulates an error distribution around each
of the straight lines it includes. Although a straight line is sometimes said
to provide the ‘‘predicted’’ y-value for a given x-value, this is a bit
misleading. What each straight line in LIN represents is the average (the
expected value; see §1.2) of the observed pressure-values that should be

L(LIN)

L(PAR) 

Pressure

Temperature

Figure 1.10 Each of the observations can be represented by a data point. L(LIN) is the
straight line that fits the data best; L(PAR) is the parabola that fits best. The likelihood
ratio test compares the models LIN and PAR by computing the likelihood ratio of L(LIN)

and L(PAR).
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associated with a given value of temperature. This error distribution is
depicted in Figure 1.11.
Here’s how the likelihood ratio test applies to the comparison of LIN

and PAR. First, you find the straight line that maximizes the probability
of the data. This will be the straight line that is ‘‘closest’’ to the data; that
is, the line that ‘‘fits’’ them best. Call this maximum likelihood straight line
L(LIN). Then you do the same thing with PAR. There are many parabolas,
some close to the data, others far away. You need to find the member of
PAR that maximizes the probability of the data; this is L(PAR). These two
‘‘best cases’’ of LIN and PAR are depicted in Figure 1.10. In discussing
how the Neyman–Pearson theory evaluates the two simple statistical hy-
potheses (p ¼ 1

4 and p ¼ 3
4) about coin tossing shown in Figure 1.9, I was

able to discuss what each predicts about the data. But LIN and PAR are
composite. Neither says how probable the data are that you generated in
your kitchen (i.e., how probable the y values you observed are, given the x
values you used). The Neyman–Pearson theory solves this problem by
shifting from LIN to L(LIN) and from PAR to L(PAR). We test the two
models by comparing the maximum likelihood members of each. It’s as if
LIN and PAR are two armies that compete by each sending forth its fittest
champion. The armies stand idle and are evaluated by seeing which
champion wins the mano a mano. The likelihood ratio test of LIN against
PAR focuses on the likelihood ratio

Pr½data j LðLINÞ�
Pr½data j LðPARÞ� :

L(LIN)

Pressure

Temperature

Figure 1.11 L(LIN) is the straight line that is closest to the data; the LIN model
postulates an error distribution around this line. The observed pressure value for a given
temperature need not coincide exactly with the average (‘‘predicted’’) pressure value.
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The question is whether this ratio is smaller than some arbitrarily chosen
level of significance; if it is, you should reject LIN.
One interesting feature of the likelihood ratio test is that it avoids an

arbitrariness that afflicts the Neyman–Pearson test of two simple hy-
potheses. In the coin-tossing example of testing p ¼ 1

4 against p ¼ 3
4, you

need to decide which of these hypotheses is the null. As also was true in
the example of the tuberculosis test, there is nothing inherent in these
simple hypotheses that settles which is ‘‘really’’ the null. Considerations
concerning which type of error you are more concerned to avoid are
typically brought to bear, but this is a fact about us, not about the
hypotheses themselves. Testing LIN against PAR is a different matter.
Each of these models contains adjustable parameters, but it is LIN that
says that c¼ 0 while PAR leaves open what value that parameter has. It is in
this objective sense that LIN can be said to be the null hypothesis in this
two-way competition. Frequentists sometimes describe the choice of null
by talking about which of the hypotheses we want to nullify (i.e., reject),
but there is no need for us and our desires to intrude into the story.
When I discussed the two simple hypotheses p ¼ 1

4 and p ¼ 3
4 about the

coin and the problem of deciding which of them is the null hypothesis
and what level of a to use, I considered the possibility that frequentists
might decline to apply the Neyman–Pearson theory to this problem and
instead would insist that the problem to address is how best to estimate
the value of the parameter p, where p ¼ Pr(the coin lands heads j the coin
is tossed). Estimation is an issue that arises after you have settled on a
given model of the experiment. You have already decided that each toss of
the coin has the same probability of landing heads as every other and you
have decided that the tosses are independent of each other. Given this
framework, you can estimate p. Testing the composite hypotheses LIN
and PAR is different. The problem of choosing a level of significance can’t
be set aside and an estimation problem considered in its stead. The reason
is that the competition between LIN and PAR is a competition between
models, while estimation is a task that is carried out within the confines of
a single model. True, if you assume that LIN is true, you can estimate the
values of the parameters in it; the same goes for PAR. But that hardly
suffices to test LIN against PAR. In fact, you know in advance that
L(LIN) can’t have a higher likelihood than L(PAR). This is because LIN
is nested in PAR. LIN is a special case of PAR; the equation for LIN can
be obtained from the equation for PAR by setting the parameter c ¼ 0.
Given that the ratio on which the likelihood ratio test focuses can’t have a
value that is greater than unity, the frequentist’s question is whether the
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ratio is significantly less than unity; you have to look at the data to see
whether this is so.
It is interesting to reflect on what the frequentist advice to ‘‘accept’’ or

‘‘reject’’ means in the context of these two composite models. LIN is
nested in PAR, meaning that LIN logically entails PAR. If so, what would
it mean to accept LIN and reject PAR? You can’t regard LIN as true and
PAR as false if the former entails the latter. It also makes no sense to
decline to reject LIN and to reject PAR; if PAR is false, so is LIN. It might
be replied that the frequentist can eliminate this problem by stipulating
that the models worth talking about are not nested; this can be achieved
by requiring that all the parameters in the two models have nonzero
values. Now the models are incompatible. The problem with this reply is
that the mathematics that underlies the likelihood ratio test requires that
models be nested (Burnham and Anderson 2002).
Bayesians have an additional criticism of the Neyman–Pearson treat-

ment of composite hypotheses, one that does not apply when only simple
hypotheses are considered. The Neyman–Pearson theory compares LIN
and PAR by comparing the members of each that have maximum like-
lihood, namely L(LIN) and L(PAR). But the likelihoods of LIN and PAR,
the Bayesian will observe, are not these maxima but rather are their
average likelihoods. Since LIN is a disjunction of straight lines (L1, L2,
. . . ), it has a likelihood of the following form:

Prðdata jLINÞ ¼
X

i
Prðdata jLiÞPrðLi j LINÞ:34

Frequentists don’t want to discuss these average likelihoods because it
often is impossible to empirically justify an assignment of values to the
weighting terms that have the form Pr(Li jLIN). If the temperature and
pressure in your pressure cooker are linearly related, what is the probability
of the different specific straight-line relations that might obtain (and please
answer this question without looking at the data you drew from your
pressure cooker)? This is one motive that frequentists have for shifting from
the average likelihood of the infinitely many straight lines that belong to
LIN to the unique likelihood value that attaches to just one of them, namely
to L(LIN). This is a motive for shifting, but not a justification for the
likelihood ratio test. The justification offered is that if you follow the
Neyman–Pearson procedure again and again, the expected value of your

34 This should be an integral, not a discrete summation, but I prefer to use the latter to make this
material accessible to a wider readership. Aficionados know how to correct this crudity.
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Type-1 errors will be no more than a, and the expected value of your
Type-2 errors will be b. It’s the general policy that has this property, but
the question may be asked of why this property of the general policy shows,
in the concrete situation of evaluating LIN and PAR with the data you have
from your kitchen experiment, that you should evaluate the two models by
examining the maximum likelihood special cases of each. Frequentists
regard this question as irrelevant, while Bayesians regard it as central.
Even if there is nothing arbitrary about saying that LIN is the null

hypothesis when LIN is compared with PAR in a likelihood ratio test,
there is another detail of this procedure that introduces a kind of arbi-
trariness that did not appear in the example of testing the two simple
hypotheses p ¼ 1

4 and p ¼ 3
4 about coin tossing. To see what this new

arbitrary element is, we need to consider a hierarchy of nested models, not
just two. LIN and PAR are both polynomials; each has the form:

y ¼ b0 þ b1x þ b2x
2 þ � � � þ bn�1xn�1 þ bnx

n:

LIN is a first-degree polynomial and PAR is second-degree. Let’s consider
a hierarchy of five polynomials by adding to our list three more – a third,
fourth, and fifth degree. For simplicity, let’s call these five models A, B, C,
D, and E. We need to fit each of these five models to the data from our
stovetop experiment and then figure out the likelihood ratios for adjacent
pairs of fitted models. Suppose we obtain the following left-to-right
likelihood ratios:

LðAÞ  ð0:1Þ !LðBÞ  ð0:3Þ !LðCÞ  ð0:05Þ !LðDÞ  ð0:5Þ !LðEÞ:

There are two ways to apply the likelihood ratio test to this hierarchy:
step-up and step-down. In each case, a level of significance needs to be
chosen; suppose you select a ¼ 0.15. In step-up testing, you begin with
the simplest model A and ask whether the likelihood ratio of L(A) to L
(B) is less than 0.15. If it is, you reject A and then compare B and C and
ask the same question. You continue to step-up until you can’t anymore.
The result of step-up testing on this sequence of models is to reject A in
favor of B but then to fail to reject B in favor of C. The process ter-
minates with B. In step-down testing, you begin with the most complex
model, E, and compare it with the model that is one step down, namely
D. The question is whether the likelihood ratio of L(D) to L(E) is less
than 0.15. If it is, you stay with E. If it is not, you move from E to D.
Given the numbers shown above, this step-down process terminates
with D. The choice between step-up and step-down testing is arbitrary
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and yet it can influence which models you accept and reject (Burnham
and Anderson 1998).

1.6 A TEST CASE: STOPPING RULES

There is a classic puzzle that illustrates the clash between Bayesianism and
likelihoodism on the one hand and significance tests and the Neyman–
Pearson theory on the other. It concerns the ‘‘stopping rule’’ used when
observations are gathered. This rule determines when the inquiry is over. In
the example about coin tossing that I used to explain significance tests in
§1.4, the stopping rule was to stop after the coin is tossed twenty times; it
then turned out that six heads had occurred. The same outcome can occur if
a different stopping rule is used. For example, you might decide to toss the
coin until you obtain six heads, and it then turns out that the sixth head
occurs on the twentieth toss. Here’s the question: if you obtain the sixth head
on your twentieth toss, should your interpretation of this result depend on
which of the two stopping rules you used? Likelihoodism and Bayesianism
say no, whereas the two versions of frequentism examined so far say yes.35

Let’s begin with the likelihood analysis, which the Bayesian accepts; the
issue about prior probabilities plays no role here. Although this problem is
sometimes described as if it is supposed to be obvious that Bayesianism
entails that the choice of stopping rule is irrelevant, the reason for this is
worth tracing carefully. For the sake of a simpler example, let’s shift for a
moment to comparing a fixed-length experiment that involves tossing a
coin three times with a flexible-length experiment in which you toss the
coin until it lands heads. The possible outcomes of each of these ex-
periments are depicted in Figure 1.12. If the coin is fair (p ¼ 0.5), each
specific sequence that can occur in the fixed length experiment has a
probability of 1

8; in the flexible length experiment, the probabilities of the
different outcomes (reading from left to right) are 1

2,
1
4,

1
8, and so on.

Suppose you obtain tails on the first two tosses and heads on the third but
don’t know what the value of p is. The probability of obtaining the
sequence TTH is the same regardless of which experiment was performed:

PrðTTH j there will be 3 tossesÞ ¼ PrðTTH j there will be exactly one HÞ
¼ pð1� pÞ2:

35 This example is from Howson and Urbach (1993: 210–12); it is similar to an example given by
Lindley and Phillips (1976).
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This means that if you are testing the hypothesis that p ¼ 0.5 against the
hypothesis that p ¼ 0.9, the following equality obtains

PrðTTH j p ¼ 0:5 & there will be 3 tossesÞ
PrðTTH j p ¼ 0:9 & there will be 3 tossesÞ
¼ PrðTTH j p ¼ 0:5 & there will be one headsÞ

PrðTTH j p ¼ 0:9 & there will be one headsÞ :

This equality indicates why Bayesians say that the choice of stopping rule
is not relevant to the interpretation of the observations; the weight of
evidence (as measured by the likelihood ratio) is the same, regardless of
which experiment you performed. Returning to our initial example,
I hope it is clear why it doesn’t matter to the likelihoodist whether you
obtained six heads in a fixed length experiment of twenty tosses or if it
took you twenty tosses to obtain six heads in a flexible length experiment –
the meaning of the evidence is the same.
Why does the difference between the two experimental designs matter to

the significance tester? The answer begins with the fact that significance
tests require you to consider the probability under the null hypothesis of a
logically weaker description of the data – that you obtained the test result or
ones that are at least as improbable. If the null hypothesis says that p ¼ 0.5,
the probabilities you need to think about to perform a test of significance
for the fixed and the flexible length experiments are, respectively,

ðFixedÞ Prð0�6 or 14�20 heads j p ¼ 0:5 & there will be 20 tossesÞ

(a)

HHH

HHT

HTH

THH

(b) H  TH   TTH  TTTH  TTTTH  TTTTTH … 

HTT

THT actual outcome

TTT 

Figure 1.12 If a coin lands tails on the first two tosses and heads on the third, this
outcome might be the result of two different experiments: (a) toss three times; (b)toss
until heads occurs once (from Goodman 1999: 1000). The possible outcomes of both

experiments are shown below.
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and

ðFlexibleÞ Prð20 or more tosses j p ¼ 0:5 & there will be 6 headsÞ:

The relevant regions of the two outcome spaces that the two significance
tests consider are shown in Figure 1.13. It turns out that (Fixed) has a
value of 0.115 and (Flexible) has a value of 0.0319. If you set your level of
significance at a ¼ 0.05, you should not reject the null hypothesis if you
performed the fixed experiment, but you should reject the null if you
performed the flexible. Which experiment you performed to obtain your
six heads in twenty tosses makes all the difference.36

It is not a unique feature of significance tests that the probability the
null hypothesis confers on a logically weakened description of the data
depends on which experiment was performed. Consider the simpler ex-
ample depicted in Figure 1.12. You tossed the coin three times and
obtained the exact sequence TTH. As already noted, this description of
the data has a probability of 1

8 under the null hypothesis that p¼ 0.5
regardless of which experiment was performed. However, with a logically

Pr Pr

Figure 1.13 Suppose that a fixed-length experiment in which a coin is tossed twenty times
and a flexible-length experiment in which a coin is tossed until six heads occur both

result in six heads in twenty tosses. In each case, a significance test of the null
hypothesis that the coin is fair focuses on the probability of obtaining that result

or ones that are at least as improbable.

36 The same result can arise in Neyman–Pearson hypothesis testing, for example, if the null
hypothesis is tested against the composite alternative that p 6¼ 0.5 (Howson and Urbach
1993: 211).
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weaker description of the data (in which you describe the mix of heads
and tails but omit to mention their order), this agreement dissolves:

Prð2T and 1H jNull & there will be 3 tossesÞ ¼ 3

8
:

Prð2T and 1H jNull & there will be just 1 HÞ ¼ 1

8
:

As shown in Figure 1.12, there is just one way to get two tails and one
heads in the flexible experiment, but there are three in the fixed-length
experiment. The point is that likelihoodists don’t care about the values
of these single conditional probabilities but only about the values of
various ratios, whereas significance testers think that what matters is
the value of a single conditional probability – (Fixed) or (Flexible) as the
case may be.
Given the importance that significance testers assign to the choice of

stopping rule, what should they say about experiments in which it is
unclear which stopping rule was actually used? Howson and Urbach
(1993: 212) describe the following example. Suppose two scientists col-
laborate to perform a coin-tossing experiment; they obtain six heads in
twenty tosses (with the sixth head occurring on the last toss) and then sit
down to write an article in which they report their results, thinking that
nothing is amiss. It then emerges that they had different plans in mind;
the first scientist thought the plan was to toss twenty times; the second
thought the plan was to toss until six heads occur. Of course, they should
have talked things through beforehand, but what are they now to do?
According to the logic of significance tests, they need to figure out what
they would have done if other results had emerged. If they had obtained
the sixth head on the nineteenth toss, would they have continued the
experiment? If they had obtained only five heads by the twentieth toss,
would they have persevered? Answering these questions requires in-
formation about the power relations between the two experimenters.
Perhaps you are inclined to say that it doesn’t matter what they would
have done if the results had been otherwise; what matters is the results
they in fact obtained and this result can be interpreted without psycho-
analyzing the two scientists. If so, you are thinking like a likelihoodist.
Defenders of significance tests often suggest that Bayesians are hope-

lessly uncritical of how experiments are designed but that frequentists, in
this respect, have their heads screwed on right. Suppose I decide to
continue tossing a coin until I obtain results that go against the null
hypothesis. If so, I apparently know in advance what conclusion I’ll draw.
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But if I cannot fail to reject the null hypothesis, regardless of whether that
hypothesis is true, how can the experiment be said to test that hypothesis?
And if the experiment doesn’t test the null, why bother to run it in the
first place? Frequentism explains why it is pointless to do this experiment,
but frequentists often claim that Bayesians have a blind spot here;
Bayesianism, they say, holds that there is nothing wrong with running this
type of ‘‘try-and-try-again’’ experiment (Mayo 1996). What is even more
galling to frequentists is that Bayesians have the temerity to proclaim this
a virtue of their position, rather than acknowledging it to be the em-
barrassment to Bayesianism that it truly is.
This criticism of Bayesianism is sometimes stated as a very general

claim: That Bayesianism never accords any epistemic import to the design
of experiments and can offer no rationale for declining to perform ex-
periments whose outcomes are known in advance. This criticism is vastly
overstated, as a simple example from Eddington (1939) illustrates.
You throw a net in a lake and wait until fifty fish have been caught. You pull
the net out and see that all fifty fish are more than 10 inches long. How does
this observation bear on the following two hypotheses? H1 says that all the
fish in the lake are more than 10 inches long;H2 says that 50 percent of the
fish are more than 10 inches long. Your first impulse is to think that the
observations favorH1 overH2, but then you realize that this interpretation
depends on what the net was like. If the net has 1 inch holes, the inter-
pretation makes sense, but if the holes are 10 inches across, the observation
fails to discriminate between the two hypotheses. The general point is that
the bearing of observations on hypotheses often depends on the methods
used to obtain the observations. When the outcome of an experiment is
knowable beforehand and does not depend on which hypothesis is true,
there is no point in performing this experiment; the law of likelihood
provides a perfectly straightforward explanation of why this is so.37

Setting this hyperbolic criticism of Bayesianism to one side, let us look
in more detail at fixed- and flexible-length experiments of the kind de-
scribed in Figures 1.12 and 1.13. Let’s begin by getting the facts straight
in connection with frequentism. Consider an experiment that ends precisely
when a significance test takes the data to indicate that the null hypothesis
should be rejected. It is a certainty that this experiment will end if one
uses the ‘‘nominal’’ value for the level of significance (Anscombe 1954).
Using the nominal value means that at each stage one pretends that

37 I discuss Eddington’s example of an observation selection effect in connection with the fine-tuning
version of the design argument in Sober (2004b).

76 Evidence



the data were the result of an experiment designed to have that number of
observations. Since this experiment’s outcome is known in advance and
does not depend on whether the null hypothesis is true, frequentists think
there is an excellent reason not to run it. However, they are not opposed
to ‘‘sequential trials.’’ Armitage (1975) has described a protocol for such
experiments in which one uses the ‘‘overall,’’ rather than the ‘‘nominal,’’
value for the level of significance. This new concept has the consequence
that it is no longer a certainty that the experiment will end, and so it is no
longer crazy, from a frequentist point of view, to run it. Armitage also
describes how sequential trials can be structured so that accepting the null
hypothesis as well as rejecting it is a possible outcome.
To understand what Bayesianism and likelihoodism say about this

problem, we must be careful not to saddle these frameworks with ideas
that are alien to them. Neither uses significance tests, and their experiments
don’t end with the ‘‘acceptance’’ or ‘‘rejection’’ of the null hypothesis.
Both interpret experimental results by using the law of likelihood, so we
need to be explicit about the alternative to the null hypothesis that is in
contention. To this end, let’s suppose that the null hypothesis (H0) says
that p ¼ 0.5, that the alternative hypothesis (H1) says that p ¼ 0.9, and
that the experiment you undertake will stop precisely when the frequency
of heads engenders a likelihood ratio of H0 to H1 that is less than or equal
to 1=k (where k 	 1). If H0 is true, is this experiment bound to end, thus
resulting in misleading evidence that favors H1? Robbins (1970) has
shown that the probability of this experiment’s ending when H0 is true is
less than or equal to 1=k. If you define ‘‘strong evidence against the null’’
to mean a ratio that is less than 1

8, then the probability of this misleading

result is less than 1
8. Commenting on this point, Royall (1997: 7) says that

‘‘if an unscrupulous researcher sets out deliberately to find evidence
supporting his favorite but erroneous hypothesis [ . . . ] over his rival’s
[ . . . ] which happens to be correct, by a factor of at least k, then the
chances are good that he will be eternally frustrated.’’ Notice that this
point has nothing to do with the prior or posterior probabilities of the
hypotheses; it falls strictly within the likelihood framework.38

38 Kadane et al. (1996) obtain similar results but within a fuller Bayesian framework and using the
strong assumption of countable additivity. Suppose you decide to end the experiment precisely
when the posterior probability assigned to H1 exceeds some value v. If your prior for H1 is r, the
probability that the experiment will end, if H0 is true, is no more than r (1�v) / (1 �r) v. So if H0

and H1 each have priors of 1
2, and you don’t stop the experiment until H1 has a posterior

probability of at least 0.9, the probability of the experiment’s ending is no more than 0.11. Notice
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Thus, the try-and-try-again design in which you end the experiment
only when you’ve obtained strong evidence against H0 is not bound to
end, if the criterion for its ending is formulated in terms of the likelihood
ratio. If there is something wrong with this experimental design, it is not
that you know in advance what will happen. One defect, noted by Teddy
Seidenfeld, is that if the null hypothesis is true, this experiment has a serious
chance of going on forever; if experiments cost money to run, Bayesians
with finite funds have a good reason not to use this experimental design
(Backe 1999: S360).39 Fortunately, there are other designs that are far more
sensible; for example, you could continue drawing evidence until strong
evidence favoring H0 over H1, or strong evidence favoring H1 to H0, is
obtained. The probability that this even-handed experiment will end,
sooner or later, is unity (Wald 1947: 37–40; Backe 1999: S359); of course,
it is not a foregone conclusion which result you’ll obtain.
Where do these points leave the optional stopping problem? Sig-

nificance testers abhor the try-and-try-again experimental arrangement
when carried out with ‘‘nominal’’ p-values. However, with ‘‘overall’’ p-
values, sequential experiments are not beyond the frequentist pale. And if
you organize your test along Bayesian or likelihoodist lines, it is not true
that try-and-try-again must result in the experiment’s ending (where
ending means attaining a likelihood ratio that represents strong evidence
against the null). This shows that if the experiment does end, you really do
have evidence (as defined by the likelihood ratio). Bayesians think that
both the design of experiments and the interpretation of the results ob-
tained are important topics; this is Hacking’s (1965) distinction between
before-trial betting and after-trial evaluation (§1.5). It is frequentists who
often do not see the second as a problem separate from the first.

1.7 FREQUENTISM II I : MODEL-SELECTION THEORY

The keys and the lamppost

When I raised the objection that Bayesianism often has no objective basis
for assigning values to prior probabilities or to the likelihoods of catchall
hypotheses, I did not describe a different theory for assigning such values

the relationship to the likelihood ratio in this example; given these values for r and v, the
experiment ends precisely when the likelihood ratio of H0 to H1 is

1
9 or less.

39 Compare Jeffrey’s (1983: 154) response to the St. Petersburg paradox: The bargain you are offered
must be fraudulent, since no one has an infinite amount of money.
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and then argue that this different theory is better than Bayesianism. No,
what I did was change the subject. I retreated to likelihoodism, which
addresses a different question – the question of how evidence ought to be
interpreted. This pattern of shifting questions is not unique to the
foundations of statistics nor is it unique to philosophy. Though politics is
often called ‘‘the art of the possible,’’ science deserves to be described in
this way as well. If one problem cannot be solved, there is no reason why
another should not be taken up that can. The only sin is to give the false
impression that a new theory solves the same problem that an old one was
unable to address. Science is sometimes like the man searching under the
lamppost for the keys that he misplaced. When asked why he is searching
there, he replies that that is where the light is. He does not reply that that
is where his keys probably are.
In the previous two sections, I explained the rudiments of significance

tests and of the Neyman–Pearson theory of hypothesis testing. I described
some serious (and standard) objections to each. However, as mentioned at
the start of the discussion of frequentism, this statistical philosophy is not
a unified theory; rather, it is a loose confederation of ideas. The criticisms
I’ve made of significance tests and of hypothesis testing don’t necessarily
attach to other frequentist ideas. The part of statistics called model-selection
theory may have its problems, but it avoids the problems we so far have
identified. There is no need to decide which hypothesis to call the null,
and there is no need to choose a value for a. Indeed, there is no such thing
as acceptance and rejection in model-selection theory. The name of this
part of statistics is misleading; the problem addressed is one of model
comparison, not model selection. Before we consider some of the solutions
that have been proposed to the problem of model comparison, we need
to understand what the problem is. An important element in this field has
been the articulation of a new question: How should we estimate how
accurate a theory’s predictions will be?

Model building in science: Two pervasive patterns

In many areas of scientific research, a great deal of effort goes into the
construction and evaluation of ‘‘models.’’ This term has a technical
meaning in statistics and a somewhat different nonmathematical meaning
in the sciences themselves. As noted in the discussion of LIN and PAR in
the previous section, models in the statistical sense of that term contain
adjustable parameters; the statement that X and Y are related linearly is a
model, while the statement that y¼ 3þ 4x is not. This specific straight-line
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equation has been obtained from the linear model by substituting point
values for adjustable parameters. When scientists use the term ‘‘model,’’
they often have a different idea in mind. For them, a model is a simplified
hypothesis; it purports to explain or predict a set of observations without
trying to represent all the factors that are relevant. Models are not fully
realistic; rather, they contain idealizations. Physicists work with models
that assume that planets are spherically symmetrical, that particles collide
with perfect elasticity, and that balls roll down inclined planes that are
perfectly frictionless; evolutionary biologists consider models that assume
that populations are infinitely large, that mating is perfectly random, and
that a trait has a single unchanging fitness value in each of the many
generations of the population in which the trait evolves. These models are
known to be false, but they are not dismissed out of hand. The hope is
that there may be truth in these falsehoods. If the idealizations are
harmless, their departures from the truth won’t matter much; these
idealized models will yield accurate predictions even though they are false
(McMullin 1985; Hausman 1992). If your goal is to predict how much
time a ball will take to roll down a ramp, assuming that the ramp is
perfectly frictionless may be fine if the ramp is nearly frictionless and your
measurements are somewhat imprecise.40

There are two pervasive facts about the use of models in science that are
of considerable philosophical significance. The first is that scientists often
test models that they know are false. This is especially clear for many of
the hypotheses that are labeled null models. This term is often applied to
hypotheses that say that there is no difference between two quantities. The
hypothesis that two fields of corn plants have the same mean height is a
null hypothesis in this sense; the same is true of the hypothesis that a coin
is fair (since it says that there is no difference between the chance of heads
and the chance of tails). It is interesting that we often know, with as much
certainty as we can ever have in science, that these so-called null hy-
potheses are false. Consider the coin. Do you really think that the coin is
exactly symmetrical, that the chance of heads (p) is exactly equal to the
chance of tails (1 � p) on each toss and that this precise symmetry remains
in place each and every time the coin is tossed? I, personally, do not. My
expectation is that there are modest asymmetries in the shape and balance

40 There is a third use of the term ‘‘model’’ found in the part of logic called model theory. Here a
model is a set of objects, properties, and relations that make a set of sentences true. In this usage,
models are not propositions. For historical and philosophical reflections on the use of models in
science, see Hesse (1966), Morgan and Morrison (1999), Da Costa and French (2003), and Frigg
and Hartmann (2006).
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of the coin; I am virtually certain that p 6¼ 1
2. I also feel pretty sure that the

coin changes its shape, if only slightly, during its lifetime. So why do
scientists bother to test the simple hypothesis that p ¼ 1

2 against the

composite hypothesis that p 6¼ 1
2? Or consider the two fields of corn. The

null hypothesis says that there is no difference in their average heights.
Again, I find myself as certain as I am about almost anything that this null
hypothesis is not true. The falsity of the null hypothesis, of course, is not
an a priori matter; however, I suggest that our empirical experience of the
world assures us that the two means are not exactly the same (to 1 million
decimal places and more). Yet, scientists test the null hypothesis that the
difference is zero against one or another alternative hypothesis.
Given that null hypotheses are often known to be false before any

statistical test is run, it is not surprising that statisticians sometimes argue
that these null hypotheses are not worth testing (see, for example, Yoccoz
1991 and Johnson 1995). I do not draw this conclusion. If the goal of
scientific inference were just to find out which theories are true, dismissing
such null hypotheses without testing them would make sense. But if the
goal is to discover which theories will make accurate predictions, there may
be a point in testing null hypotheses. Maybe hypotheses known to be false
will make accurate predictions. And if all the hypotheses under test are
known to be false (since all contain idealizations), it may still be worth-
while to determine which of them can be expected to make the most
accurate predictions. If idealized (and therefore false) models are proper
objects of scientific testing, we need to change our conception of what the
goal of scientific reasoning is. Bayesianism is usually understood as a theory
for deciding which hypotheses are probably true; the Neyman–Pearson
theory concerns which hypotheses we should accept as true and reject as
false; and likelihoodism tells us whether our evidence favors the hypothesis
thatH1 is true over the hypothesis thatH2 is true. Truth enters into each of
these theories of inference. This obsession needs to be overcome.
A second fact about model building in science also is pregnant with

philosophical meaning. It concerns an experience that scientists often have
when they use models that are very complex. When scientists consider a
body of data that they suspect was produced by multiple causes that
interacted in complex ways, they may be tempted to invent a complex
model as an explanation. Doesn’t a complex reality need a complex theory
to do it justice? However, when such models are fitted to the data by
finding the maximum likelihood estimates of their adjustable parameters
(as we did in the example in §1.5 about the pressure cooker), those fitted
models often do a terrible job of predicting new data drawn from the
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same system. Here’s an example that illustrates the kind of pattern I have
in mind. Suppose you made n observations of <xy> pairs during your
experiment with the pressure cooker. It is a mathematical fact that a
polynomial of degree n � 1 can be found that fits those n data points
perfectly. If you made two observations, there is a straight line (a first-
degree polynomial) that passes exactly through them; if you made three
observations, there is a parabola (a second-degree polynomial) that does
the same thing. And so on. Sadly, the mathematical assurance that a
sufficiently complex polynomial will fit the old data perfectly is no
guarantee that the fitted polynomial will do a good job predicting new
data. In fact, scientists often find that complex models do very poorly in
predicting new data when fitted to old. Simpler models often do better.
Here the complexity of a model corresponds to the number of adjustable
parameters it contains.
Given this common experience that model-builders have, it may seem

that the only lesson is the following vague rule of thumb: Don’t make
your models too complicated or too simple, either. This advice is sensible,
but it isn’t very helpful. How complicated is too complicated? What is
remarkable is that this advice can be made more precise. Work in model-
selection theory has shown that, in a variety of circumstances, it is possible
to estimate how accurately a model will predict new data when it is fitted
to old. There is much that remains to be learned about the mathematical
underpinnings of this area, but what is striking is that there are mathe-
matical structures here to be investigated. The fact that models that are
very complex are often not good at predicting new data when fitted to old
is not a brute fact. Rather, there is a body of mathematics that explains
why complex models are often poor predictors and allows scientists to
take measures to avoid using models that are too complex.

Akaike’s framework, theorem, and criterion

Model-selection theory began as a subject in statistics with Hirotugu
Akaike’s 1973 paper. Akaike identified a problem, and he proposed a
solution to it. It is important to keep separate these two parts of what he
accomplished, since the problem he singled out for study has an im-
portance that transcends the solution to the problem that he proposed.
This is because the subject he founded led to the discovery of different
solutions that are appropriate in different settings. There now are multiple
model-selection criteria on the market, and it is widely recognized that
different criteria should be used for different model-selection tasks.
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A simple version of the kind of problem that Akaike discussed is
depicted in Figure 1.14. LIN and PAR are the two models we examined
in §1.5 of how temperature and pressure are related in the pressure
cooker. You use the available data to find the maximum likelihood esti-
mates of the parameters that each model contains; that is, you use the data
to find L(LIN) and L(PAR); L(LIN) is the member of LIN that has the
highest likelihood, and L(PAR) is likewise the maximum likelihood
member of PAR. You then ask the following question: If you were to
draw new data from the pressure cooker, would L(LIN) or L(PAR) do a
better job predicting this new data? I hope the reader finds it puzzling
how this question could be answered. The only data you can consult is the
old data you already drew from the pressure cooker. Since LIN is nested
inside PAR, you know in advance that Pr[old data j L(PAR)] 	 Pr[old data
j L(LIN)], no matter what the old data are. The only way the two fitted
models can have exactly the same likelihoods is if the data fall exactly on a
straight line; otherwise L(PAR) will have the higher likelihood. As already
noted, more complex models inevitably fit the data at hand better than
simpler models. But we know from experience that more complex models
often do worse at predicting, not better. What else is there to consider
here besides the likelihoods of L(LIN) and L(PAR)?
Bayesians may feel inclined at this point to appeal to the prior prob-

abilities of LIN and PAR. But here we run into a wall. Since LIN entails
PAR, Pr(LIN) � Pr(PAR). The simpler model cannot have the higher
prior probability – a point that Popper (1959) emphasized. This problem
can be circumvented if we stipulate that the only models we are willing to

LIN   

L(LIN)

Old Data    New Data

L(PAR)

PAR   

Figure 1.14 The prediction problem that Akaike considered. From the old data and a
model you can deduce what the likeliest member of that model is. That likeliest
model then makes probabilistic predictions about new data. Which model, LIN or
PAR, will do better in predicting the new data when fitted to the old? Deductive

relations are indicated by solid arrows, probabilistic by broken.
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consider must be incompatible with each other. For example, if we re-
quire that LIN and PAR be set aside, and LIN* and PAR* considered
instead (where all the parameters in this latter pair of models have non-
zero values), the axioms of probability theory do not settle in advance
which of the two has the higher prior probability. But even though it is
logically consistent to say that Pr(LIN*) > Pr(PAR*), it is hard to see
how this can be anything more than a stipulation. Consider the parameter
c that attaches to the squared term in PAR*. The claim that Pr(LIN*) >
Pr(PAR*) is equivalent to the claim that Pr(c ¼ 0) > Pr(c 6¼ 0). What
objective reason could there be for thinking that this inequality is true?
Let us make the prediction problem more precise. After you draw the

old data and use them to identify L(LIN) and L(PAR), you want to know
how well these two curves will predict new data drawn from the same
pressure cooker. But there is no one form that the new data set must take.
Different data sets will differ from each other, though all are produced by
the same underlying mechanism. The reason for expecting variability
among data sets is that observations are subject to error. This means that
when we ask how well a given fitted model will do in predicting new data,
what we want to ascertain is how well it will do on average in this
prediction task. L(LIN) may accurately predict one new data set but do
less well in predicting another. By the predictive accuracy of a model M we
mean how well on average M will do when it is fitted to old data and the
fitted model is then used to predict new (Forster and Sober 1994).
Imagine carrying out the task described in Figure 1.14 again and again.
The expected performance of a model is what we want to know about.
There is a second refinement that needs to be added to this definition

of predictive accuracy. What does it mean to talk about how accurately
L(LIN) or L(PAR) predicts a single new observation in the pressure-
cooker experiment? This new observation takes the form of a pair of
temperature and pressure values <x, y>. When the temperature value x is
fed into L(LIN) or into L(PAR), the output is a predicted value for the
pressure y. We then can determine how close or far away the predicted value
for y is from the observed value. We might do this by taking the difference
between the two values and squaring it. Greater accuracy then means a
smaller squared distance. Or we might compute the value of Pr(observed
pressure value y j fitted model & temperature value x), with a larger like-
lihood indicating a higher degree of accuracy. These two approaches are
related, in that squared distance is inversely related to likelihood, given
some standard assumptions. The next question is how we should measure
accuracy of prediction when there is more than one data point in the new

84 Evidence



data set. We could sum the squared distances or we could compute the
likelihoods relative to all the new data. But notice that as the data set we
are trying to predict gets larger, the sum of squares increases and the
likelihood must decline as more and more terms are multiplied together.
The problem is that we want to define the notion of predictive accuracy
so that it does not turn out that a model is automatically less predictively
accurate with respect to a larger data set than it is with respect to a smaller
one. This is a general point about how we want to conceptualize mea-
surement devices. When we ask about the accuracy of a bathroom scale or
a thermometer or a tuberculosis test, the answer should not depend on
how many times the device is used. A natural solution is to think of the
predictive accuracy of a model as its average accuracy per datum (Forster
and Sober 1994; Forster 2001). This point about the concept of pre-
dictive accuracy is not in Akaike (1973); he was thinking about model
comparison where all the models are asked to predict the same new data
set, which contains the same number of observations that the old data set
contained. In this context, the difference between per datum predictive
accuracy and total accuracy over the entire data set does not matter. For
the moment, I’ll follow Akaike’s lead and omit mention of the fact that
predictive accuracy is a per datum quantity. Later on, I’ll return to the
question of how larger and larger data sets should be brought into the
picture.
After isolating the prediction problem of estimating how accurately a

model will predict new data when fitted to old, Akaike (1973) derived a
result that bears on it:

Akaike’s Theorem: An unbiased estimate of the predictive accuracy

of model M ¼ logfPr½data j LðMÞ�g � k:

We use the old data to find the likeliest member of model M and then
take the natural logarithm (¼ base e) of its likelihood. We then subtract k,
which is the number of adjustable parameters that the model contains.
Notice that Akaike’s estimate pays attention to both the model’s fit to
data and its simplicity. Akaike’s theorem led to the formulation of the
following model-selection criterion:

The Akaike information criterion (AIC): The AIC score of a model M,

AICðMÞ ¼ def logfPr½data jLðMÞ�g � k:
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The absolute value of a model’s AIC score is not what is interesting about
this criterion. What matters is how the scores of different models compare
when the models are fitted to the same data set. AIC is a proposal that
addresses the task of model comparison, not the task of model acceptance
and rejection (Sakamoto et al. 1986: 84).41

How will the AIC scores for LIN and PAR compare? PAR will have a
higher value for the first addend than LIN; L(PAR) will have the higher
likelihood, and therefore the higher log-likelihood. But PAR contains one
more adjustable parameter than LIN; in this respect, PAR is worse than
LIN. Each model has one piece of good news and one piece of bad. The
AIC scores of the two models depend on the character of the data. With
some possible data sets, LIN will score better; with others, PAR will. The
question is whether the data at hand depart sufficiently from linearity to
justify the loss in simplicity that comes from shifting from LIN to PAR.
AIC provides a principled basis for deciding how fit-to-data should be
traded off against simplicity.
Three questions need to be answered about Akaike’s theorem. What

does ‘‘unbiased’’ mean? How is Akaike’s theorem related to AIC? And
what are the assumptions from which the theorem was derived?
A bathroom scale provides an unbiased estimate of your weight if the

average of its values over many weighings is your true weight. In this
hypothetical run of tests, we assume that your true weight remains the
same. An unbiased estimator is centered on the true value; if your true
weight is x, the expected value of the scale’s readings is x. However, an
unbiased scale may on any given occasion provide an estimate that is way
too high or an estimate that is way too low. How much (squared) var-
iation there will be, on average, among different estimates is called the
variance of the estimator. A reading produced by a scale that has a high
variance may have a very small probability of being close to the true
value.42 The best bathroom scale would be unbiased and have very small
variance, but suppose you had to choose which of these virtues you prize
more. Suppose one scale is perfectly unbiased and has large variance while
a second has a small bias and a small variance. It is easy to imagine
preferring the second to the first; this scale tends to read too high or tends

41 I have presented AIC as a measure of predictive accuracy, so models with bigger scores are better
than models with smaller ones. The reader should realize that AIC is usually presented as an
expected distance from new data, in which case models are better the smaller their scores.

42 Consider Figure 1.2 and suppose that the curves shown there represent the readings that three
different unbiased scales might produce when an object that weighs 78 pounds is placed upon
them.

86 Evidence



to read too low (you don’t know which) but it rarely is off by more
than an ounce. This scale might be better than one that is centered on
your true weight but tends to swing from 10 pounds too light to 10
pounds too heavy. These considerations indicate that it would be desir-
able to show, not just that AIC is an unbiased estimator but also that it is
an estimator of minimum variance, or that it has a lower variance than
other estimators that one might use. Akaike’s theorem does not address
this question; Sakamoto et al. (1986: 76–80) describe the variance of AIC
estimates, but there is more to be learned about this subject. In any event,
recall the frequentist setting of these questions about unbiasedness and
variance. We are discussing the ‘‘operating characteristics’’ of a general
policy, that of using AIC to estimate the predictive accuracy of models.
Even if AIC is unbiased and has a low variance, that does not entail that
when LIN scores better than PAR with respect to the data drawn from
your pressure cooker, that LIN will probably be more predictively
accurate. Posterior probabilities require priors, and this is something that
frequentists disdain.
I turn next to the assumptions that Akaike used to prove his theorem.

Akaike’s proof uses the ‘‘normality assumptions’’ that are frequently
exploited in mathematical statistics. This means, roughly, that each of the
parameters in the model whose value you need to estimate will be such
that repeated estimates form a normal distribution. There is, second, the
assumption that old and new data sets are drawn from the same un-
derlying reality. When you accumulate a data set on your pressure cooker
and decide which of LIN and PAR will be more predictively accurate
with respect to a new data set you have yet to see, you need to assume
that the true but unknown law governing the pressure cooker won’t
change between your old observations and your new ones. Temperature
and pressure must be related to each other in the same way across all data
sets. There is a third assumption that goes into the proof. Your old data
were accumulated by looking at various temperature values. These were
chosen in accordance with some sampling procedure; perhaps these
temperature values were drawn at random from a range of values. The
theorem assumes that your new data will be drawn from the same dis-
tribution of temperature values. So, the relationship of X and Y is the
same across data sets and so is the distribution of X values. Together these
constitute a Humean uniformity of nature assumption (Forster and Sober
1994).
This last assumption means that Akaike’s theorem and his criterion

do not apply to inference problems in which you are trying to
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extrapolate – situations in which your sample is constrained to come from
one range of temperature values and you want to make a prediction
concerning what is true outside that range (Forster 2000b, 2001). It is
useful to think about this point in relation to the fact that AIC is
asymptotically equivalent with a different model-selection method that
is called take-one-out cross-validation (Stone 1977). The cross-validation
criterion makes no mention of simplicity. Rather, to test a model like
LIN, you set aside one of the n data points in the sample, fit LIN to the
n � 1 data points that remain, and then see how well L(LIN) predicts the
data point that was set aside. The procedure is repeated for each of
the other data points; then you compute the average performance of the
model across these n trials. That’s the cross-validation score of LIN. The
same procedure is carried out for other models and then the scores of
different models are compared. Cross-validation is a general kind of
procedure in which one gauges a model’s performance by dividing one’s
data into a training (or calibration) set and a prediction (or test) set. In the
application just described, the n data points are divided into n � 1 for
training and 1 for prediction. This is called take-one-out cross-validation.
The cross-validation framework also allows you to consider take-two-out,
take-three-out, and so on. It is possible that one model scores better
than another in terms of take-one-out, while the reverse is true for take-
ten-out.The fact that AIC is equivalent with the former rather than the
latter is telling. AIC is a solution to one prediction problem, but there
are others.
It is interesting how AIC’s comparison of LIN and PAR changes as the

size of the data set increases. Consider the fact that a model’s AIC score is
influenced by two quantities, but only one of them changes as more data
accumulate. The log-likelihoods of L(LIN) and L(PAR) both decline as
more data roll in, but the number of adjustable parameters in each model
of course stays the same. We know from the definition of AIC that
AIC(LIN) > AIC(PAR) precisely when

logfPr½data j LðLINÞ�g � logfPr½data j LðPARÞ�g>� 1:

The reason ‘‘�1’’ is on the right-hand side of this inequality is that PAR
has one more adjustable parameter than LIN. Thus, what we want to
know is whether

log
Pr½data j LðLINÞ�
Pr½data j LðPARÞ�

� �
> � 1
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and (since the logarithm is base e � 2.72) this is true precisely when

ðAÞ Pr½data j LðLINÞ�
Pr½data j LðPARÞ� >

1

2:72
� 0:37:

This inequality describes what it takes for LIN to have the higher of the
two AIC scores. It may be true for small and middling sized data sets, but,
with a sufficiently large data set, the inequality must be false; PAR must
score better.43 This is a sensible feature of AIC; the greater simplicity of
LIN over PAR can compensate for L(LIN)’s lower likelihood for some
sample sizes, but eventually it cannot. If there is a slight parabolic bend in
the data, you might want to ignore this when sample sizes are small, but if
the bend is still there when you have lots of data, you’d be foolish to
ignore it. The impact of simplicity on model evaluation should depend on
sample size. The prediction problem that AIC is meant to address in-
volves using an old data set to predict a new one of approximately the same
size. If LIN scores better than PAR, given the data you have at hand, it
does not follow that LIN would score better on a data set that is vastly
larger.
The likelihood ratio test (§1.6) also applies to models like LIN and

PAR, so it is useful to review some differences between it and AIC. First,
there is the fact that the likelihood ratio test gives advice about whether
the null hypothesis should be rejected; it therefore requires an arbitrary
decision about how small the likelihood ratio of the two fitted models
must be for one to reject the null. In contrast, AIC gives advice about
model comparison, not model acceptance and rejection, and what it
compares are estimates of predictive accuracy, not truth. Second, the
mathematical underpinnings of the likelihood ratio test sanction its use
only on nested models, but what could it mean to accept LIN and reject
PAR, given that LIN entails PAR? The mathematics behind AIC justify
its use on nested and non-nested models alike. Third, the likelihood ratio
test violates the principle of total evidence; one doesn’t look at the point

43 Recall the point in §1.2 about the two witnesses whose testimonies agree. The fact that the
testimonies are independent of each other, conditional on the proposition reported, was important
in that discussion; similarly, in the present context, each datum is independent of every other,
conditional on L(LIN) and conditional on L(PAR). When a small number of independent and
reliable witnesses all say that proposition P is true, it is an open question whether the likelihood
ratio of P to notP will exceed some threshold; but for any threshold you specify, the likelihood
ratio must exceed that threshold if there are sufficiently many unanimous witnesses. Similarly, if
the data set is large enough, the log-likelihood of L(PAR) will exceed that of L(LIN) by any
threshold you name, including the one described in proposition (A).
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values in the data but only at a logically weaker description that says
whether or not those data points fall in a given region. AIC abides by the
principle of total evidence.

Identifiability

AIC penalizes models for being complex, but there are some models that
are so complex that AIC does not even apply. It isn’t that models that
have more than 23,453,450,965 parameters are in principle beyond the
pale. Rather, the limitation I have in mind comes from the number of
data points in the observations one has at hand. A model with more
parameters than there are data points will (typically) not be identifiable.
A failure of identifiability means that there is no such thing as the maxi-
mum likelihood estimate of the parameters that the model contains. This
failure of uniqueness can occur even in simple models, provided that the
data set is sufficiently small. Consider our old friend LIN, a simple model
if ever there was one. Suppose your data set consists of a single data point.
There are infinitely many straight lines that pass exactly through this
point; each has a likelihood that cannot be bettered. What would it mean
to talk about LIN’s predictive accuracy in this case? One would have to
envision fitting the model to this single datum and then using ‘‘the’’ fitted
model to predict other data sets that contain a single new data point.
However, there is no such thing as ‘‘the’’ fitted model in this case. AIC
does not even apply.
A data set that contains a single observation may seem like a joke, but

the point about identifiability applies to the larger data sets that scientists
actually use. AIC cannot be applied to models that are not identifiable.
This means that our data limit the kinds of theories we can evaluate. In
contrast, Bayesianism does not prohibit the assignment of prior prob-
abilities and likelihoods to such models; for subjective Bayesians, such
quantities are always well defined. Wittgenstein says in the last line of the
Tractatus that whereof one cannot speak, one must remain silent. AIC em-
bodies a kind of Wittgensteinian circumspection; Bayesianism is bolder.

Is AIC statistically inconsistent?

I mentioned earlier that estimators can be assessed for their unbiasedness
and for their variance. I now want to consider a third property of esti-
mators that one might value or even demand. This is the property of
statistical consistency. Don’t confuse this with the property of logical
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consistency. An estimator is statistically consistent when it converges on
the true value of the parameter being estimated as more and more data are
added. For example, suppose you want to infer the probability a coin has
of landing heads when it is tossed. The policy of using the frequency of
heads in a sample of tosses as your estimate is statistically consistent (a
point that arose in connection with Reichenbach’s straight rule in §1.2).
This is the method of maximum likelihood estimation; by using this
procedure, the estimate will converge on the true probability of heads as
the number of tosses is increased. Does AIC converge on the true value of
a model’s predictive accuracy when the size of the data set is increased?
That is, if one model is in fact more predictively accurate than another,
can AIC be relied upon to award the first model the higher score as the
size of the data set is increased without limit?
The question of AIC’s consistency has often been misunderstood. The

question is not whether AIC converges on the true model. AIC is not a
device for assessing which model is true but provides an estimate of a
model’s predictive accuracy (Forster 2001); as already noted, it is perfectly
legitimate to use AIC to evaluate a set of models all of which are known to
contain idealizations and so all are known at the outset to be false. Also,
when models are nested, you know in advance that the most complex
model is true if any of them are. There is no need to use data or a model-
selection criterion to ascertain this fact. Sometimes the question of con-
sistency has been taken to be whether AIC converges on the true model
that has the smallest number of adjustable parameters. So, if LIN and
PAR are both true, the task assigned to AIC is to converge on LIN when
the data are made large without limit. I pointed out before that this is not
something that AIC will do. As a data set is made larger and larger,
eventually the most complex model will have the best AIC score if the
models considered are nested. This is not a defect in AIC. This most
complex model is the model of greatest predictive accuracy for data sets
that are large enough; AIC has succeeded in converging on the best model
in that sense. However, the point of AIC is not to ascertain which models
will be most predictively accurate for enormous or infinite data sets; the
problem is to cope with the finite data sets one has at hand. If you make
200 observations of pressure and temperature on your pressure cooker,
the problem is to figure out which model will do best in predicting
what you’ll observe if you draw another 200; it is a different problem to
figure out which model will do best if old and new data sets contain
2,000,000,000,000,000 observations (Burnham and Anderson 2002: 298).
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Demanding that AIC converge on the most predictively accurate of the
models considered as data sets are made larger and larger is a bit like
demanding that a bathroom scale converge on your true weight as you get
heavier and heavier. The scale will fail to converge on a single value
because the target is moving, not stationary. It makes more sense to
demand that the scale’s readings be centered on your true weight. If you
weigh a single object of fixed weight again and again, will the average of
these weighings converge on the object’s true weight as the number of
weighings increases? This is what the scale will do if it is unbiased. Re-
peatedly ‘‘weighing’’ a set of models using AIC will do the same thing,
since AIC is an unbiased estimator.

Bayesian model selection

The criticism that AIC is statistically inconsistent is often voiced in the
context of claiming that the Bayesian information criterion (BIC) derived
by Schwarz (1978) is better. BIC will converge on the smallest true
model, if the set of models you are considering includes one that is true.
However, it is questionable why consistency in this sense should be
thought a virtue if the competing models considered are not exhaustive; in
this case, there is no guarantee that any of them is true. Also, if the models
are nested, you know in advance that the largest model is true if any of
them are. Why is it important to converge on the smallest true model,
rather than on a true model? The latter task is easily achieved (if one of the
models is true) and no model-selection criterion is needed to do this; the
fact that the former task is harder does not explain why it is worthwhile.
Logically prior to this question about consistency is a more funda-

mental point of difference that separates BIC and AIC. As noted, the goal
of AIC is to compare different models for their expected predictive
accuracies. The goal of BIC, however, has nothing to do with predictive
accuracy. This model-selection criterion has a Bayesian goal: to estimate
the average likelihoods of composite models. LIN, for example, is an
infinite disjunction of different straight lines, each of which confers its
own probability on the data at hand. We saw earlier that the likelihood of
LIN must be a weighted average over the likelihoods of these different
straight lines, where the weighting terms have the form Pr(Li jLIN). Since
BIC aims to estimate Pr(data j LIN), the method must make assumptions
as to what values these weighting terms have. Those not sold on Baye-
sianism despair of grounding these weighting terms in anything objective,
and for that reason will be skeptical of BIC. Although a commitment to
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the values of these weighting terms must figure in any valid derivation of
BIC, the weighting terms do not appear in the final product, which is the
criterion that Schwarz (1978) derived for the average likelihood:

The Bayesian information criterion: The likelihood of model

M � logfPr½data j LðMÞ�g � k½logðnÞ�=2:
Here, k is the number of adjustable parameters in the model, and n is the
number of data. BIC imposes a bigger penalty for complexity than AIC
does; notice also that the second addend in BIC increases as the sample
size increases, which is not true of the second addend in AIC. Schwarz
(1978) derives BIC by assuming that the models under consideration have
the same priors. Given this assumption, the criterion not only estimates
average likelihoods; it also estimates posterior probabilities.
BIC is often applied to nested models, the idea being that BIC identifies

the model in the set of competitors that has the highest posterior prob-
ability. But, as already noted, no matter what the data say, LIN cannot be
more probable than PAR if LIN entails PAR.When models are nested, one
can tell a priori which model has the highest prior and the highest posterior
probability; there is no need to consult the data to figure this out and no
need to consult a model-selection criterion. If the data lead BIC to say that
LIN has a higher posterior probability than PAR, the Bayesian criterion has
simply made a mistake and its testimony should be set aside. This problem
can be avoided by restricting the application of BIC to non-nested models.
Although BIC was derived as a device for estimating average likelihoods

and posterior probabilities, we still may ask how well it performs as an
estimator of predictive accuracy. We know from Akaike’s theorem that AIC
is unbiased; since BIC differs from AIC by a constant, BIC must therefore
be a biased estimator of predictive accuracy. A further defect in BIC also
follows: BIC’s estimates of predictive accuracy have a larger expected squared
error than the ones generated by AIC (Forster and Sober, in preparation).
The debate over AIC and BIC needs to be understood, in the first in-

stance, as a debate over choice of goals – estimating predictive accuracy
versus estimating average likelihood. Only after a goal has been chosen can
the question be raised as to which criterion does better in achieving that goal.

The subfamily problem

A curve, since it contains no adjustable parameters, is a member of many
models. For example, ‘‘y ¼ 3 þ 4x’’ is a member of LIN, but it also is a
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member of PAR and of lots of other models besides. Given this, how is a
curve’s AIC score to be computed? Its log-likelihood is univocal, but what
penalty should we impose on it for its degree of complexity? If we view
the curve as a member of one model, we’ll apply one penalty term, but if
we view it as a member of a different model, we’ll apply another. This is
the subfamily problem (so called by Forster and Sober 1994).
One step towards solving this problem is to recognize that AIC applies

to models and that there is no need for AIC to say which model is the one
to which a curve ‘‘really’’ belongs. The predictive accuracy of a model is
its average performance as it is fitted to old data sets and then makes
predictions about new ones. There is no paradox in saying that LIN and
PAR may differ in their predictive accuracies even if L(LIN) and L(PAR)
happen to be identical curves in virtue of the (collinear) data set one has at
hand. AIC also applies to curves, but this is because curves are a limit case;
they are models that contain zero adjustable parameters. A curve’s AIC
score is just its log-likelihood (since its complexity penalty is zero). Thus,
it can turn out that ‘‘y ¼ 3 þ 4x’’ has a lower likelihood than ‘‘y ¼ 3 þ 4x
þ 0.001 x2,’’ and so the former has the lower AIC score, and yet LIN has
a higher AIC score than PAR, where the two curves happen to be the best-
fitting members of the two models, respectively. The two curves have
their own AIC scores, LIN has a third, and PAR has a fourth.
Although this point shows that AIC is not guilty of contradicting itself

(or of arbitrarily deciding which model a curve ‘‘really’’ belongs to), it
does leave another question unanswered. How should we use AIC to make
predictions? This is a pragmatic question in the sense of that term dis-
cussed earlier in connection with the principle of total evidence (§1.3).
Should we apply AIC to the two curves L(LIN) and L(PAR) and therefore
use the latter to make our predictions? Or should we apply AIC to LIN
and PAR and allow the data to help us decide which model is better?
Focusing exclusively on curves has the result that we always choose the
curve that comes from the largest model. The motivation for using AIC is
to find models that make accurate predictions; applying AIC only to fitted
models prevents the criterion from helping us to achieve that end. But
there is another reason to decline to use AIC in this way. AIC provides
unbiased estimates of predictive accuracy, regardless of whether it is ap-
plied to LIN and PAR, or to L(LIN) and L(PAR), or to all four. One
reason to score LIN and PAR, rather than L(LIN) and L(PAR), is that
AIC has greater variance when it is applied to smaller models (Escoto
2004); applying AIC to fitted models is more apt to produce inaccurate
estimates of predictive accuracy.
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There is another dimension to this pragmatic problem. The fact that
AIC is a comparative principle, not a criterion for acceptance, shows that
it would be a mistake to make a prediction by using the model that has
the best AIC score while ignoring all the other models that were con-
sidered. After all, AIC is an estimator that is subject to error. This suggests
that predictions should be made by model averaging (Burnham and
Anderson 2002). If you want to predict the pressure that will result when
you set your pressure cooker to a given temperature, you should consider
the prediction made by the model with the best AIC score, the prediction
made by the second best, and so on. You can average these different
predictions by using AIC weights – giving more weight to predictions that
come from models that have better AIC scores.

The scope of AIC

I have used the models LIN and PAR to explain what AIC amounts to,
but this should not be taken to mean that AIC is relevant only to ‘‘curve-
fitting problems.’’ Philosophers sometimes disparage curve fitting as a
kind of naı̈ve inductive inference in which the hypotheses considered seek
merely to identify patterns that hold among observational quantities.
Model-selection criteria, including AIC, are not limited to such problems.
They also apply to causal models that say that an effect term is influenced
by the values of any number of input variables. In Chapters 3 and 4, we
will see how model-selection ideas apply to problems in evolutionary
biology.
Although I have argued that the dispute over AIC versus BIC is based

on a failure to realize that they are estimators of different quantities, the
fact remains that there are different model-selection criteria that all focus
on the goal of estimating predictive accuracy. For example, there is a
version of AIC derived by Sugiura (1978) that is better to use when some
of the models under evaluation have a large number of parameters relative
to the number of observations available; it is called AICc and imposes a
larger penalty for complexity than AIC does.44 There is also a criterion
(TIC) derived by Takeuchi (1976). These criteria all compute the likelihood
of the best fitting member of a model and then impose a penalty for
complexity; they differ over what that penalty term is. I mentioned earlier

44 Burnham and Anderson (2002: 50) recommend using AICc precisely when n=k < 40, where n is
the number of observations and k is the number of parameters in the largest model under
evaluation.
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that AIC is equivalent to take-one-out cross-validation; this raises the
question of what the statistical properties are of cross-validation methods
that take more than one out, and of what use such methods are in
different inference problems (Forster 2006, 2007). And there is also the
question of what model-selection criteria are best when the goal is ex-
trapolation, not interpolation. What I find striking in this diversity of
problems and solutions is what they have in common. This is the Akaike
framework, within which all these approaches are to be understood. We
want to know how accurately a model will predict new data when it is
fitted to old. How well the model fits the old data is relevant to this
question, but so is the model’s complexity (the number of adjustable
parameters it contains). This framework helps explain why scientists
should bother to test models that they know are false. If the goal were to
decide which models are true, there would be little point in testing
idealizations. But predictive accuracy is a different story, and it has its
own epistemology. Bayesianism, likelihoodism, and the Neyman–Pearson
framework each have their different drawbacks when applied to this kind
of problem. The subject that Akaike initiated throws new light on these
issues, and there is the promise of more light to come.

Realism and instrumentalism

Virtually everyone who follows professional basketball believes that
players sometimes have ‘‘hot hands.’’ When players are hot, their chance
of scoring improves, and teammates try to feed the ball to them. Gilovich
et al. (1985) tested this widespread belief by doing a statistical analysis of
scoring patterns in the National Basketball Association. Their conclusion
was that one cannot reject the null hypothesis that each player has a con-
stant probability of scoring throughout the season; belief in hot hands,
they say, is a ‘‘cognitive illusion.’’45 Basketball mavens reacted to this
statistical pronouncement with total incredulity. Placing this dispute in
the Akaike framework allows it to make more sense. Scientists should not
feel shy about admitting that the null hypothesis is false. The idea that
each player never wavers in his probability of scoring is preposterous. But

45 See Wardrop (1999) for a skeptical assessment of Gilovich et al.’s analysis. Wardrop argues that
Gilovich et al. tested hypotheses about correlation (whether a player’s probability of scoring on a
given shot if he scored on earlier shots is greater than his probability of scoring if he missed
previously), but did not assess the issue of stationarity (maybe a player’s probability of scoring
suddenly shifts from one value to another).
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even if this silly hypothesis is false, there still may be a point to seeing how
accurately it predicts new data. Perhaps the truth about basketball players
is very complex; their scoring probabilities change as subtle responses to a
large number of interacting causes. If so, players and coaches may make
better predictions by relying on simplified models. Even if hot hands are a
reality, trying to predict when players have hot hands may be a fool’s
errand.
The problem of evaluating how accurately models predict new data

when fitted to old has a philosophically interesting property: a model
known to be false will sometimes be more predictively accurate than a
model known to be true. What is perhaps more surprising is that we can
sometimes estimate which of them we should expect to be more pre-
dictively accurate and the methods available for assessing this sometimes
favor false models over true ones. The Akaike framework thus breathes
new life into an old philosophy. Instrumentalism is the view that the goal
of scientific inference is to find theories that make accurate predictions,
not to find theories that are true.46 It stands opposed to scientific realism,
which holds that the goal is to find true theories.
The debate between realism and instrumentalism can’t be resolved by

polling scientists as to what their goals are. Some scientists say that they
want to find out what is true while others say that their object is to find
theories that make accurate predictions; all may be sincerely reporting
their personal goals, but that is not what is at issue. The philosophical
debate concerns what scientific inference is able to attain, not what scientists
yearn for. If the inference procedures used in science are able to discover
which theories are true, or which are probably true, then realism is cor-
rect. If those procedures are capable only of discovering which theories
will make the most accurate predictions, then instrumentalism is. Both
philosophies need to be tempered by the fact that scientists rarely are able
to examine a set of hypotheses that exhaust the possibilities (Stanford
2005). Scientists deal with the theories that have been developed thus far,
and no one can foresee the novel theories that future innovators may put
on the table. This sobering fact about the limitations that scientists per-
petually face means that the best that scientists can do at any time is to
render comparative judgments. Realism should be understood as the

46 Instrumentalism is sometimes also formulated as a semantic thesis – that scientific theories are
neither true nor false, but are merely instruments for making predictions. The proper response is
that there is no reason to think that theories lack truth values, and no reason to burden an
epistemological thesis with an outmoded philosophy of language (Sober 2002).
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claim that scientific modes of inference indicate which of a set of com-
peting hypotheses is the best candidate for being true; instrumentalists
think that science is in a position only to say which of the competitors can
be expected to make the most accurate predictions.
Instrumentalism and realism are usually formulated as global theses.

They are claims about all the hypotheses that scientists investigate. It
doesn’t matter whether the hypotheses in question are models or fitted
models, any more than it matters whether they are part of the subject
matter of one science or another. The Akaike framework shows that this
global formulation of the problem needs to be recast. The framework
makes room for an instrumentalist philosophy of models. The fact that
one model (M1) has a better AIC score than another (M2) is grounds to
think that the first will be more predictively accurate; it is not grounds for
thinking that M1 is true, or more probably true, or better supported as a
candidate for being true. However, this difference in the scores of the two
models has another implication concerning the truth of the fitted models –
Akaike’s theorem can also be formulated as the thesis that the AIC score
of a model M is an unbiased estimate of the closeness to the truth of the
fitted model L(M), where closeness is measured by the Kullback–Leibler
distance.47 With respect to the pressure cooker in your kitchen, there is a
true but unknown curve that describes how temperature and pressure are
related. Specific curves have different Kullback–Leibler distances to that
true curve. Models are instruments for finding curves that are close to the
truth and models are compared with each other to determine how well
they advance that goal.48 The Akaike framework therefore makes plau-
sible a mixed philosophy: instrumentalism for models, realism for fitted
models (Sober 2002b). When a false model F and a true model T are both
fitted to the data, L(F ) will sometimes be closer to the truth than L(T).
AIC and other model-selection criteria seek to provide guidance as to
when this is so.

47 Suppose t is the true distribution (p1 , p2 , . . . , pn) of a discrete random variable and c is a
candidate distribution (p1 , p2 , . . . , pn). The KL distance from the candidate c to the truth t is
Iðt ; cÞ ¼P

pi log ðpi=pjÞ. Notice that the true distribution provides the weighting on the log of
the ratio. KL is a ‘‘directed distance;’’ the distance from c to t (where t is true) doesn’t have to be
the same as the distance from t to c (where c is true). See Burnham and Anderson (1998) for
further discussion.

48 The relation of AIC to Kullback–Leibler distances provides an easy answer to the question of why
one should care about AIC estimates if one has no interest in using fitted models to predict new
data. One still might care about finding fitted models that are close to the truth when Kullback–
Leibler distance is used to measure closeness.
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One challenge to this limited form of instrumentalism begins with the
idea that instrumentalism and realism should be thought of as claims
about the ultimate goals of science. Maybe finding models that make
accurate predictions is a mere tactic that science deploys in the larger
campaign. A realist can grant that it is useful to find idealized models that
make accurate predictions if such models are worth having because they
help one get to the truth, and truth is the ultimate goal. A defense of this
response requires more than the psychological fact that scientists often
would like to find true theories. What is needed is an account of how
scientific inference makes it possible to turn assessments of the predictive
accuracy of models into claims about which theories are true. I’ve already
mentioned that fitted models may be nearer or farther away from the
truth, and that there is an intimate connection between M1’s being a
better predictor than M2 and L(M1)’s being closer to the truth than
L(M2). Perhaps the objection can then be put by saying that the real goal
of science is to discover which fitted models are true and that models
themselves are mere means to that end. Again, this may or may not be
true as a psychological claim about what interests various scientists
(though, in fact, scientists are often more interested in models than in
fitted models). But how can it be justified as a claim about scientific
inference, not about the psychology of scientists? If finding models that
are accurate predictors and fitted models that are close to the truth go
hand in hand, then it is hard to see that one is logically prior to the other.
Given this, the mixed thesis of ‘‘instrumentalism for models, realism for
fitted models’’ may be more satisfactory than either global realism or
global instrumentalism.

What is a parameter?

AIC says that the complexity of a model is relevant to estimating its
predictive accuracy; BIC says that a model’s complexity is relevant to
estimating its average likelihood. Both measure complexity by counting
parameters. This raises an important question. A model is a proposition,
distinct from the sentence in some language in which it happens to be
expressed; the proposition that temperature is linearly related to pressure
is no more a part of English than it is part of Chinese. Yet, the number of
parameters in a model seems to be a syntactic feature of how the model
happens to be described; by changing the language used, you seemingly can
change the number of parameters the model contains. If so, how could
the number of parameters be relevant to ascertaining these epistemically
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relevant properties of the model itself – its predictive accuracy or its
average likelihood?
This question can be fleshed out by way of our running example, the

comparison of LIN and PAR. I’ve said that LIN has two parameters and
PAR has three (ignoring, for the moment, the error term that each de-
ploys). Any straight line of the form y ¼ mx þ b can be represented as a
point in a two-dimensional parameter space in which one axis is its slope
(m) and the other is its y-intercept (b). A straight line in the x-y plane is
just an ordered pair of numbers <m,b> in this parameter space. In the
nineteenth century, Georg Cantor discovered that the number of points
in a plane is the same as the number of points on a line. This means that
there is a one-to-one (injective) mapping from ordered pairs to single
numbers. An example of this kind of mapping is provided by interleaving.
Consider a plane whose possible m values run from 0 to 1 and whose
b values do the same. Each point in this unit square can be expressed as
an ordered pair, each of whose members is a decimal expansion of
the form

m ¼ 0:m1m2m3 � � � b ¼ 0:b1b2b3 � � �
By interleaving we can represent this pair of numbers as a single
number

i ¼ 0:m1b1m2b2m3b3 � � �
Notice that there is a function from each <m,b> pair to a single number
i, and another function from each possible value of i back to that single
<m,b> pair. So, in what sense are there two parameters (m and b) in
LIN? Why not say, instead, that there is just one (namely i)? And if LIN
has just one parameter, so does PAR (since you can interleave triplets just
as well as pairs). The difference in complexity of the two models seems to
be an artifact of the notation we arbitrarily choose.
This question was important in nineteenth-century mathematics where

the problem was to describe what dimension means. Is there a rigorous
and linguistically invariant way to express the thought that a plane has
two dimensions while a line has just one? The problem was solved in the
twentieth century by Brouwer, who isolated a concept of dimension that
is topologically invariant (Courant and Robbins 1959: 249–51; Dauben
1994). The idea of interleaving can be used to convey the intuitive idea.
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Consider three straight lines (one of which is true); each is defined by its
coordinates in the <m,b> parameter space:

Truth ¼ <1; 1> L1 ¼ <2; 1> L2 ¼ <1; 3>:

Notice that L1 is closer to Truth than L2 is. If we interleave each of the
ordered pairs, we obtain:

IðTruthÞ ¼ 11 IðL1Þ ¼ 21 IðL2Þ ¼ 13:

Notice that I(L2) is closer to I(Truth) than I(L1) is. Although the mapping
achieved via interleaving is injective, it is not distance preserving. The
mapping does not have the property that points that are close together in
the <m,b> plane have images in the line that are always close together.
There is more to the idea of topological invariance than that of a mapping
that is distance-preserving, but the example of interleaving helps elucidate
what a parameter is in model-selection theory. If a space has n dimensions,
then there is no one-to-one, continuous, and distance-preserving mapping
from that space to another space that has m dimensions, if n 6¼ m. Di-
mensionality is in this sense an invariant quantity.
What does this imply about the dimensionality of LIN? Is it two, or

one, or some other number? By definition, it must be unique, the pos-
sibility of interleaving notwithstanding. To answer this question would
lead us too far afield. But I hope the following two comments are helpful.
First, consider the relationship of LIN to PAR. LIN is nested in PAR. This
is a fact about the two propositions and has nothing to do with the
language in which they happen to be expressed. It is a consequence of this
nesting relationship that LIN cannot have a higher dimensionality than
PAR. And since the fact about the nesting relationship is invariant, the
same holds for the fact about dimensionality (Forster 1999). The second
comment returns us to the content of Akaike’s theorem. As noted, the
theorem identifies an unbiased estimate of the predictive accuracy of a
model M, or, equivalently, an unbiased estimate of the Kullback–Leibler
distance from L(M) to the true but unknown probability distribution T.
Expressed in this second way, Akaike’s theorem states that:

E ½KL�Closeness of LðM Þ to T � ¼ ½Log-likelihood of LðMÞ� � k:

The left-hand side describes a language-independent quantity, and the
same is true of the first addend on the right. It follows that k must be
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language independent as well. Again, this does not tell you how to de-
termine what value of k a model has. But it does assure you that, whatever
it is, it is not an artifact of notation.

Is AIC frequentist?

I have classified AIC as a type of frequentism; I now want to consider
briefly whether this classification makes sense. I have emphasized that AIC
isn’t a criterion for acceptance and rejection and that it does not violate
the principle of total evidence. What is more, the AIC score of a model
does not depend on the stopping rule used. These properties of AIC
separate it from significance tests and the Neyman–Pearson theory. If AIC
is frequentist, it is a different kind of frequentism.
Akaike (1973) refers to his result as ‘‘an extension of the maximum

likelihood principle,’’ but this phrase should not lead us to conclude that
AIC is a form of likelihoodism. AIC does not say that the best model is
the one that has the highest average likelihood, nor does it say that model
M1 is better than model M2 precisely when L(M1) has a higher likelihood
than L(M2). It is even clearer that AIC is not Bayesian. In using AIC, you
are not estimating the probability that a model is true, nor are you
estimating the probability that one model will be more predictively
accurate than another. To reach conclusions about such posterior prob-
abilities, you would need prior probabilities, and these play no role in AIC.
The main reason that AIC is viewed as a frequentist construct is the

character of Akaike’s theorem, which establishes that this estimation
procedure has the long-run operating characteristic of being unbiased.
This is just the sort of property that frequentists care about. Of course,
they recognize that other operating characteristics are relevant as well. Is a
procedure statistically consistent? What is its variance? Is it admissible?
As noted in §1.5, Bayesians and likelihoodists do not object to the eva-
luation of procedures; they find nothing amiss in comparing the Madison
tuberculosis test with the one manufactured in Prairie du Chien. How-
ever, they insist that there is a further question that needs to be asked:
How should one evaluate a given estimate (never mind what method of
estimation was used to construct it)? Likelihoodists want to know how
well supported the estimate is, where support is understood in terms of
the law of likelihood. Bayesians want to know how probable it is that the
estimate is true (or close to the truth). Frequentists deny that this second
question makes any sense; they hold that estimators have long-run
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operating characteristics, but there is nothing further to be said about the
individual estimates that those estimators generate.
The fact that Akaike’s theorem addresses a kind of question that fre-

quentists think is important does not show that AIC scores are meaningless
from a Bayesian or likelihoodist point of view. Of course it is possible for
M1 to have a better AIC score than M2 even though M1 has the lower
average likelihood and even though L(M1) is less likely than L(M2). But the
law of likelihood and AIC still could join hands in friendship if AIC scores
provided evidence concerning the predictive accuracies of different models,
where evidence is understood in terms of the law of likelihood. Think of
AIC as a measurement device, like a thermometer; perhaps AIC scores are
to predictive accuracy as thermometer readings are to temperature. If a
thermometer assigns a higher number to one object than it does to another,
we take that to be evidence that the first object has a higher temperature than
the second. Perhaps the same is true of AIC scores. The relevant property of
thermometers can be described as follows. Suppose the thermometer read-
ings on objectsO1 andO2, R(O1) andR(O2), are such that R(O1)�R(O2)¼
x > 0. This observation indicates that the best point estimate of the tem-
perature difference is positive when

There exists a y>0 such that for all z<0,

Pr½RðO1Þ � RðO1Þ ¼ x jTempðO1Þ � TempðO1Þ ¼ y�
> Pr½RðO1Þ � RðO2Þ ¼ x jTempðO1Þ � TempðO2Þ¼ z�:

What would it take for the same thesis to hold for AIC scores and their
relationship to the predictive accuracies of different models? What would
be true is that, when we observe that model M1 has an AIC score that is x
units larger than the AIC score of model M2, that the best point estimate
of the difference in predictive accuracies is positive. That is,

Pr½AICðM1Þ � AICðM2Þ ¼ x j PAðM1Þ � PAðM2Þ ¼ y�
>Pr½AICðM1Þ � AICðM2Þ ¼ x jPAðM1Þ � PAðM2Þ ¼ z�:

This inequality does not follow from Akaike’s theorem. And it may not
hold for all values of x – e.g., when x is very close to zero (Forster and
Sober, in preparation) – but when it does hold, Bayesians and like-
lihoodists should have no qualms about viewing AIC scores as evidence.
AIC began life with a frequentist pedigree, with Akaike’s theorem. But

Evidence 103



AIC scores may be essentially tied to frequentism no more than thermo-
meter readings are.

1.8 A SECOND TEST CASE: REASONING ABOUT COINCIDENCES

When Evelyn Marie Adams twice won the New Jersey lottery, the New
York Times said that the odds of this happening by chance are 1 in 17
trillion; this is the probability that Adams would win both lotteries if she
had purchased a single ticket for each and the drawings had been at
random. In fact, the newspaper made a small mistake. If the goal is to
calculate the probability of Adams’ winning those two lotteries, the re-
porter should have taken into account the fact that Adams purchased
multiple tickets; the newspaper’s very low figure should therefore have
been somewhat higher. However, the typical response of statistical so-
phisticates is that this modest correction misses the point. For sophisti-
cates, the relevant event to consider is not that Adams won those two
lotteries, but the fact that someone won two state lotteries at some time or
other. Given the manymillions of people who have purchased lottery tickets,
this is ‘‘practically a sure thing’’ (Diaconis and Mosteller 1989: 859).
Was Adams’ double win a mere coincidence? Or were these two lot-

teries rigged in her favor? Diaconis and Mosteller say that the relevant
principle to use when reasoning about coincidences is the law of truly large
numbers. This says that, ‘‘with a large enough sample, any outrageous
thing is likely to happen.’’ They cite Littlewood (1953) as having the same
thought; with tongue in cheek, Littlewood defined a miracle as an event
whose probability is less than 1 in 1 million. Using as an example the US
population of 250 million people, Diaconis and Mosteller observe that if
a miracle ‘‘happens to one person in a million each day, then we expect
250 occurrences a day and close to 100,000 such occurrences a year’’
(1989: 859). If the human population of the earth is used as the reference
class, miracles can be expected to be even more plentiful.
How should the law of truly large numbers be applied to Adams’

double win? One possibility is to change our description of the ob-
servations from

(1) Evelyn Marie Adams, having bought four tickets in each of two New
Jersey lotteries, wins both.

to the logically weaker statement that

(2) Someone at sometime, having bought some number of tickets in two
or more lotteries in one or more states, wins at least two lotteries in a
single state.
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If you are using probabilistic modus tollens (§1.4) to think about this
problem, and if you believe that Adams’ double win does not warrant
rejecting the hypothesis that the lotteries were fair, then weakening the data
description from (1) to (2) may be appealing. It provides a simple strategy
for neutralizing the appeal of conspiracy theories. But even if this strategy
leads to the conclusion about Adams’ good fortune that you find intuitive,
it raises the question of when and how much a description of the data
should be weakened.Without some guidance on this issue, you run the risk
of weakening the data whenever they go against your pet theories. This
allows you to be complacent about what you already believe and skeptical
about the hobbyhorses that others have chosen to ride – a satisfying state of
mind perhaps, but one that cannot stand up to rational scrutiny.
A second approach, which abides by the principle of total evidence (§1.4),

is Bayesian. It concedes that the hypothesis that the lotteries were fair has a
much lower likelihood than the hypothesis that the two lotteries that Adams
won were rigged in her favor, but then invokes prior probabilities to show
that Adams’ double win does not make it probable that the two lotteries were
rigged. My objection to invoking priors here is not that they are subjective.
After all, we may have evidence that lotteries are usually fair, though de-
veloping this point would require us to consider the fact that people who rig
lotteries have a powerful incentive to insure that their chicanery remains
secret. Rather, my reservation about this Bayesian reply is that it concedes
that the observations favor the hypothesis that the two lotteries were rigged in
Adams’ favor. The law of likelihood, which is central to Bayesianism, obliges
Bayesians to make this concession. I suggest that it is possible to show that
the observations do not have this evidential significance. Themodel-selection
framework allows this kind of argument to be developed, although it must be
recognized that the goal has been changed; we no longer are trying to figure
out which hypothesis is probably true or which has the highest likelihood;
rather, we are aiming to discover which will be most predictively accurate.
The model-selection approach agrees with Bayesianism that data cannot

be discarded. Rather, the right approach is to add observations. Instead of
weakening the observations by discarding (1) and focusing on (2), we should
include additional observations about the people who won and lost other
lotteries and how many tickets they purchased. Once the data set is aug-
mented, we can consider multiple models. One of them says that each lottery
is fair:

(Fair) For each ticket i purchased in New Jersey lottery j,
Pr(ticket i wins j ticket i was purchased in lottery j) ¼ 1

nj
(where nj is the number of tickets purchased in lottery j).
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This model has one parameter for each lottery. It is far simpler than the
following model:

(Rigged) For any ticket i purchased in New Jersey lottery j by
person k, Pr(ticket i wins j ticket i was purchased in lottery j
by person k) ¼ pjk.

The (Rigged) model has a separate parameter for each person buying a ticket
in each lottery. If the data on lottery winners and losers favors (Fair) over
(Rigged), they do so not by showing that (Fair) is more probable than
(Rigged), nor by showing that (Fair) has the higher likelihood, but by showing
that (Fair) can be expected to be more predictively accurate than (Rigged).
(Fair) is a model that unifies the data far more than (Rigged) does.

(Fair) says that all the tickets sold in a given lottery are subject to the same
probabilistic process, whereas (Rigged) says that each person buying
tickets in a given lottery is a law unto herself. Because AIC and other
model-selection criteria value paucity of parameters, they offer an ex-
planation of why a model that applies k parameters to an entire data set
often has a leg up on a disunified model that subdivides the data into
parts, supplying a different set of k parameters to each.
It is important to realize that whether a more unified model has a better

AIC score than a less unified model depends on the data. There is no
categorical imperative that says that unified models are always better. For
example, it is not inevitable that Fair is superior to the following even
simpler model:

(One) For each ticket i purchased in any New Jersey lottery, Pr(ticket i
wins j ticket i was purchased in any New Jersey lottery) ¼ p.

The (One) model lumps together all New Jersey lotteries; tickets purchased
in different lotteries are said to have the same chance of winning. This
model is even more unified than (Fair), but that does not guarantee that its
estimated predictive accuracy will be greater.
Although the models just considered exhibit a virtue of the model-

selection framework, there is a model not yet mentioned that exhibits one
of its limitations. The conspiracy model (Rigged) gets lower marks than
the (Fair) model, but what about the following (Mixed) model?

(Mixed) For each ticket k purchased by Evelyn Marie Adams, Pr(ticket k
wins j ticket k was purchased by Evelyn Marie Adams) ¼ p. For
each other ticket i purchased in New Jersey lottery j, Pr(ticket i
wins j ticket i was purchased in lottery j) ¼ 1

nj
(where nj is the

number of tickets purchased by people other than Adams in lottery j).
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Suppose, to make things simple, that Evelyn Marie Adams bought
tickets only on the two lotteries that she ended up winning and bought
a few tickets on each. This means that L(Mixed) fits the data far better
than L(Fair). And (Mixed) has just one more parameter than (Fair). This
means that (Mixed) may have a better AIC score than (Fair). If so what’s
wrong with this mixed model? The Bayesian has an answer: It has a
lower prior probability. It is not obvious what the model selectionist can
say here.
This question aside, there is a point here on which defenders of dif-

ferent statistical frameworks can agree. The human mind often imposes
patterns where none exist. Repeatedly tossing a fair coin will inevitably
produce runs of heads; it is tempting to think that the coin has suddenly
become biased (‘‘hot’’). Part of what facilitates this kind of over-
interpretation is that we tend to focus on observations that are vivid. We
narrow the data set. We focus on the run of heads, and not on all the
tosses. It is Adams’ double win that excites our curiosity, not a boring
compilation of all the winners and losers in all New Jersey lotteries. In all
these cases, we need to embed what we find vivid in a more inclusive data
set; we then need to formulate models that apply not just to what is vivid
but to what is quotidian as well.

1.9 CONCLUDING COMMENTS

The claim that science aims to discover which theories are probably true
may sound like a truism, but there are two reasons to pause over this
formula. The first is that one must be wary of an equivocation. In or-
dinary English, to say that a theory is ‘‘probably true’’ just means that it is
plausible or reasonable, given the evidence at hand; praising a theory in
this way leaves open what relevance the mathematical theory of prob-
ability might have to such judgments. Bayesianism is a substantive epis-
temology, not a truism. The second reason for pausing is that scientists
often work with idealized models that are known to be false. How can a
model known to be false probably be true? There needs to be a place in
our epistemology for comparisons of such theories.
Royall’s three questions (§1.1) are different; questions about evidence

must be separated from questions about acceptance and from questions
about action. This threefold distinction will be important in what follows
when we consider evidential questions such as the following:


 Are the imperfect adaptations that organisms exhibit evidence that they
were not produced by an intelligent designer?
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 Is the fact that bears in cold climates have longer fur than bears in
warm climates evidence that fur length evolved by natural selection as
an adaptive response to ambient temperature?

 Are the similarities that species exhibit evidence that they stem from a
common ancestor?

Perhaps you find it obvious that the answer in all three cases is yes. If so,
what’s the point of taking on the job of figuring out why? The answer is
that the book you are reading is a work of philosophy, not biology, and so
the exploration of what seems obvious is of central importance. Even
when a proposition strikes us as obvious, it is often not so obvious why
the proposition is true. This is the occasion for philosophical exploration.
One possible result is that what seems obvious turns out not to be true
unrestrictedly, but is true only in a restricted set of circumstances. An-
other is a deeper grasp of the assumptions we tacitly make that underlie
our convictions.
The law of likelihood is common ground for Bayesians and like-

lihoodists. It will provide the starting point for several of the questions
about evidence and evolution that I will examine. Putting the law to work
in the next chapter will require us to consider a new complication. The
hypotheses we wish to test often do not have likelihoods when considered
all by themselves; they need to be supplemented by additional informa-
tion if they are to confer probabilities on the observations. An important
question will be how this ‘‘additional information’’ should be obtained.
There also will be a place in what follows for ideas about evidence that
derive from a model-selection framework. Just as the readings of an un-
biased scale can provide evidence as to which of two people is heavier, so
AIC scores can provide evidence as to which of two models is apt to be
more predictively accurate. The law of likelihood is central to under-
standing what evidence is, but it is not the only idea we will use. The law
applies to simple statistical hypotheses and produces a verdict about
whether the observations favor the hypothesis that H1 is true over the
hypothesis that H2 is true; AIC and other model-selection criteria apply to
composite statistical models and help us discern which models will be
more predictively accurate. The law of likelihood and AIC are not in
conflict, given their different goals and their different realms of applic-
ability.
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CHAPTER 2

Intelligent design

2.1  DARW  IN  A  ND  I  NTE  LL IGE  NT  DE  S IGN

The first edition of Darwin’s On the Origin of Species by Means of Natural
Selection, or the Preservation of Favoured Races in the Struggle for Life
(1859) begins with quotations from two philosophers:

But with regard to the material world, we can at least go so far as this – we can
perceive that events are brought about not by insulated interpositions of Divine
power, exerted in each particular case, but by the establishment of general
laws. (W. Whewell, Bridgewater Treatise)

To conclude, therefore, let no man out of a weak conceit of sobriety, or an
ill-spirited moderation, think or maintain, that a man can search too far or be too
well studied in the book of God’s word, or in the book of God’s works; divinity
or philosophy; but rather let men endeavour an endless progress or proficience in
both. (F. Bacon, Advancement of Learning)

William Whewell was Darwin’s contemporary and rejected his theory of
evolution, a result that Darwin probably anticipated when he wrote The
Origin of Species.1 Francis Bacon wrote more than 200 years earlier. The
two quotations are interesting because of what they reveal about Darwin’s
views on the relationship of belief in God and belief in evolution.
Bacon’s remark harks back to an old distinction between the Bible

(God’s word) and nature (God’s work). Sacred texts and natural phe-
nomena provide separate pathways for learning about God. This two-
pathway picture was important in the formation of the Royal Society in

1 The Bridgewater Treatises were a series of books that developed the argument for the existence of
God that we will consider in detail in this chapter – the argument from design. In the 1833 book
from which Darwin drew this quotation, Whewell embraced the view that the origin of species and
the origin of languages are beyond the reach of present-day science and are likely to remain so; he
argued that both require divine intervention. Darwin’s quoting from Whewell does not mean that
he expected Whewell to like how he used this passage. See Ruse (1979), Hodge (1991), Brooke
(2003), and Snyder (2006) for different views of Darwin’s relation to Whewell.
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London and to the philosophy within which the scientific revolution of
the seventeenth century developed. The founders of the Royal Society
included many clerics who saw ‘‘the new science as itself a witness to the
Deity’s handiwork and therefore to his existence’’ (Hacking 1975: 169).
Darwin quotes Bacon to make a more specific point: that there is no
conflict between theism and the theory of evolution. Darwin aimed to
describe the processes in nature that account for the features of organisms
that we observe; it is logically consistent to add to this biological claim the
theological thesis that the evolutionary process occurs because God put it
in place. This is the idea that evolution is God’s way of making organ-
isms. It now goes by the name theistic evolutionism.
The passage from Whewell expresses a different idea. Whewell is dis-

cussing the two hypotheses depicted in Figure 2.1. We make a vast number
of observations. Should we view each of these observations as the direct
result of God’s separate decree? Or should we view those observations as
knitted together, as flowing from a single cohesive set of laws that God
ordained? Whewell’s view is that the unified hypothesis is superior to the
disunified hypothesis. Darwin used this idea to draw a conclusion that
Whewell did not anticipate. The hypothesis that each kind of animal and
plant was separately created by an intelligent designer is inferior to the
hypothesis that each evolved according to a single set of laws that God
created. Darwin’s theory of evolution by natural selection was intended to
specify the laws that unify the enormous variety of observations we have
made and continue to make of the living world (Kitcher 2003).

God’s 1
st 

decision observation 1

(D)  God’s 2
nd 

decision observation 2

… …

…

God’s n
th 

decision observation n

observation n

observation 1

(U)  God’s decision general laws observation 2

Figure 2.1 Two theistic hypotheses. (D) says that each of our observations traces back to a
separate decision made by God; (U) says that God creates a single set of general laws that

produces all the details we observe. (D) is a disunified model; (U) is unified.
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Darwin went beyond the thesis that the unified hypothesis is superior
to the hypothesis of disunity; he additionally thought that the disunified
hypothesis is empty. The ‘‘theory’’ it embodies is easy to state: When-
ever you observe something, you simply declare that this is what the
designer wanted. In The Origin of Species, Darwin ([1859] 1964: 435)
puts the point with a touch of irony: ‘‘On the ordinary view of the
independent creation of each being, we can only say that so it is – that it
has so pleased the Creator to construct each animal and plant.’’ If this
simple formula were enough to explain the observations in question,
there would be no need for science. Not only would Darwin’s own
theory be unnecessary; there would be no need for theories in any other
area of science, either. This does not mean that ‘‘God did it’’ is false,
only that it is no substitute for science. Theists regard scientific theories
as describing how God brought about various observations, while
atheists and agnostics decline to interpret them in this way. Whether
this theistic gloss is added or withheld, the practice of science should be
the same.2

Darwin sometimes failed to live up to his own principles. Consider, for
example, the famous sentence that ends The Origin of Species:

There is grandeur in this view of life, with its several powers, having been
originally breathed into a few forms or into one; and that, whilst this planet has
gone cycling on according to the fixed law of gravity, from so simple a beginning
endless forms most beautiful and most wonderful have been, and are being,
evolved. (Darwin [1859] 1964: 490)

In saying that life was ‘‘breathed into a few forms or into one,’’ Darwin
seems to concede that the origin of life is to be understood as the act of a
creator. In a letter to J. D. Hooker written four years after The Origin of
Species appeared, Darwin says what he thinks of his earlier choice of
words:

I have long regretted that I truckled to public opinion, and used the Pentateuchal
term of creation, by which I really meant ‘‘appeared’’ by some wholly unknown
process. It is mere rubbish, thinking at present of the origin of life; one might as
well think of the origin of matter. (Darwin 1887: II, 202–3)

Darwin’s considered view was that the origin of life, being an event that
occurred in nature, needs to be understood in terms of natural processes,

2 If natural science seeks to answer questions about what happens in nature and has nothing to say
about supernatural beings, then ‘‘methodological naturalism’’ is an appropriate scientific research
strategy; for discussion of the history of this idea, see Numbers (2003).
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not by the facile declaration that it was God’s will (Brown 1986). Notice,
by the way, how Darwin concludes his book by putting the process of
evolution along side ‘‘the fixed law of gravity.’’ Newton was a devout
theist, but his theism was no substitute for the Principia.
It is important not to lose sight of the possibilities that Darwin saw so

clearly. Many creationists describe theism and evolutionary theory as if
they are incompatible: that the proposition that God exists entails that
evolutionary theory is untrue. Some defenders of evolutionary theory
agree with creationists on this point (Dawkins 1986; Dennett 1995,
2006; Provine 1989), only they reason from the truth of evolutionary
theory to the falsehood of theism. Both parties are invoking a false
dichotomy (Ruse 2000). Theistic evolutionism is logically consistent; it
also happens to be the viewpoint that many religious people have
embraced. My point here is not that theistic evolutionism is true or
plausible (a question to which I’ll return in §2.21), but just that it isn’t
contradictory.
Creationism isn’t simply the claim that organisms exist and have the

features we observe because of a plan that God decreed. This mischar-
acterization of creationism blurs its difference with theistic evolutionism.
The real difference between creationism and theistic evolutionism is
depicted in Figure 2.2. Creationists hold that the evolutionary process is
fundamentally incapable of producing the complex adaptations we observe;
these features require God’s direct intervention. For theistic evolutionists,
God produces complex adaptations indirectly, by way of the natural pro-
cesses he put in place. In addition to creationism and theistic evolutionism,
there are other possibilities, such as atheistic evolutionism and agnostic

Mindless evolutionary
processes

Complex 
adaptations

(C)    God /

Mindless evolutionary 
processes

Complex 
adaptations(TE)   God

Figure 2.2 Creationism (C) holds that mindless evolutionary processes are incapable of
producing the complex adaptations we observe in nature and that God directly produced
what we observe. Theistic evolutionism (TE) holds that God indirectly produced complex

adaptations in nature by setting the evolutionary process in motion.
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evolutionism.3 All these positions are internally consistent; biology does not
address the question of whether the universe was created by an intelligent
designer. The theory of evolution, which is a theory about living things,
not about the origin of the entire universe, is silent on the question of
whether there is a God.

2.2 DESIGN ARGUMENTS AND THE BIRTH

OF PROBABIL ITY THEORY

Bacon’s distinction of God’s word from God’s works means that there
are two types of theology: revealed and natural. Revealed theology bases
its claims on sacred texts; natural theology seeks to ground its claims on
natural observations. When creationism is developed within the context
of natural theology, its central organizing concept – both before and after
1859 – is the design argument for the existence of God. Creationists
after Darwin reject evolutionary theory and claim that the only plausible
explanation of the complex adaptations we observe in nature is the
hypothesis of intelligent design. Creationists before Darwin of course
could not have considered Darwin’s theory, but they too argued that
the complex adaptations we observe in nature provide compelling evi-
dence for the existence of an intelligent designer.
The design argument has evolved, so it might be better to regard it as a

family of arguments. I don’t propose to give anything like a complete
account of the history of this family; rather, in this section I want to
mention a few landmarks. My goal in this chapter is to arrive at the
strongest, most defensible, version of the argument, and then to say why
I think the argument is defective.
The design argument differs from the cosmological argument. The

latter argues that the universe as a whole is the result of a first cause
(i.e., God). In contrast, the design argument is a claim about what we find
in nature, not about the existence of nature as a whole. The argument
from design usually focuses on the complex adaptive features that
organisms possess, but other versions of the design argument have been
stated. Kepler, for example, believed that the face we see when we look at
the moon requires explanation in terms of intelligent design; Newton had
the same thought concerning the planets’ revolving around the sun in the
same direction and in the same plane. And, more recently, the fine-tuning

3 And, of course, the rejection of evolutionary theory is logically consistent with theism, atheism, and
agnosticism.
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argument maintains that the values of the fundamental physical constants
show that the universe was created by an intelligent designer (see Sober
2004b for discussion). These extrabiological examples will not concern us
in what follows; our subject will be the organismic design argument.
Here is a classic formulation of the design argument developed in the

thirteenth century by Thomas Aquinas in his Summa Theologica (Part I,
Question 2, Article 3):

We see that things which lack intelligence, such as natural bodies, act for an end,
and this is evident from their acting always, or nearly always, in the same way, so as
to obtain the best result. Hence it is plain that not fortuitously, but designedly, do
they achieve their end. Now whatever lacks intelligence cannot move towards an
end, unless it be directed by some being endowed with knowledge and intelligence;
as the arrow is shot to its mark by the archer. Therefore some intelligent
being exists by whom all natural things are directed to their end; and this being we
call God.

To which objects in nature is this argument intended to apply? Aquinas
thinks that the adaptive features of plants and animals that lack minds
must be explained in terms of intelligent design. Yet, the human mind
does not fall within this argument’s purview. If the arrow’s trajectory
requires the archer’s mind, doesn’t the archer’s mind also require an
intelligent creator? As we shall see shortly, more recent versions of the
design argument usually point to the complexity and functionality of an
organ as evidence that it was produced by an intelligent designer, thus
providing an opening for the argument to offer an explanation of the
human mind. It also is worth noting that Aquinas takes his argument
to extend beyond the realm of biology. Being an Aristotelian, Aquinas
thinks of lifeless physical objects as goal-directed systems. When we
drop an object, it falls towards the center of the earth; for Aristotelians,
this is the goal the object has, and it falls in order to achieve that end.
The mechanical philosophy that developed within the scientific revo-
lution of the seventeenth century discarded this teleological conception
of the behavior of physical objects. Falling objects, planets, and pro-
jectiles obey laws, but the idea that they have goals or purposes gradually
lapsed from scientific discourse. It might be thought that Darwin did for
biology what Newton and others did for physics two centuries earlier –
that is, that Darwin demonstrated that it is a mistake to regard organ-
isms as goal-directed systems. I do not agree. Darwin’s biology and the
evolutionary biology that he inspired seek to understand how features of
organisms contribute to their survival and reproduction. These are the
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functions those features subserve. For example, the function of the heart is
to pump blood; its function is not to make noise. Darwinism does not
reject these claims; rather, it provides a framework within which they can
be understood. The heart evolved because there was selection for pumping
blood; it did not evolve because there was selection for making noise. The
concept of function does not require that the heart be capable of conscious
striving.4

Aquinas’s formulation of the design argument concludes that there is
one intelligent designer responsible for the goal-directed behavior of
all mindless objects. However, what follows is something more modest:
that for each such object there must be an intelligent designer. It
does not follow that all such objects trace back to a single intelligent
designer.5 In addition, it is a further step in the argument, requiring
further defense, to conclude that this single designer is God. However, the
main point to which I want to draw the reader’s attention is the connection
Aquinas sees between goal-directed behavior and the existence of an
intelligent designer. Consider the following two interpretations of his
argument:


 If a mindless system exhibits goal-directed behavior, it must have been
made by an intelligent designer.

 If a mindless system exhibits goal-directed behavior, it probably was
made by an intelligent designer.

I won’t address which of these is the interpretation that Aquinas intended,
nor evenwhether hewas aware of the distinction involved here. The point of
importance is logical, not biographical: the distinction between necessity and
high probability makes a huge difference for the argument’s defensibility.
The modern mathematical theory of probability began to develop in

the seventeenth century. This theory led the design argument to evolve.
It became clear to many defenders of the argument that the first of
the two versions of the argument just described, which we might

4 See Wright (1976) for a definition of function according to which function claims are claims about
why a feature or organ is present. The present point, that Darwinism does not entail that function
talk be discarded, does not require that this definition is correct.

5 Aquinas’s argument commits the birthday fallacy (Sober 1990). In the following argument, the
premise does not entail the conclusion:

Everyone has a birthday.

There is a single day on which everyone was born.
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summarize with the slogan ‘‘no design without a designer,’’ is a mistake.
The reason is very simple: a mindless random process can produce
complex and useful devices. It is possible, as we now would say, for
monkeys pounding at random on typewriters to eventually produce the
works of Shakespeare.6 The problem is that this outcome, given some
fixed number of monkeys and typewriters and a limited amount of time,
is very improbable. What is true is that monkeys pounding at random on
typewriters probably will not produce the works of Shakespeare. For just
this reason, it is a mistake for the design argument to claim that complex
adaptations cannot arise by a mindless random process. The probabilistic
formulation of the argument is more defensible.
The birth of probability theory not only transformed the design argu-

ment into a probabilistic argument. It also led defenders of the argument
who absorbed the point about monkeys and typewriters to think con-
trastively. Instead of simply declaring that design requires a designer, they
were led to consider possible alternatives to intelligent design. Until 1859,
the main alternative they considered was Epicureanism; here I don’t mean
the philosophy of eat, drink, and be merry, but the hypothesis due to
Epicurus and his followers that physical particles whirling at random in
the void eventually combine to produce orderly, stable, and functional
arrangements. Design theorists repeatedly held this alternative up to ridi-
cule. For example, Jonathan Swift satirizes Epicureanism in Book 3 of
Gulliver’s Travels (published in 1726) by describing a distinguished pro-
fessor at the Grand Academy of Lagado who sought to ‘‘improve specu-
lative knowledge by practical and mechanical operations’’; his innovation
was to produce random arrangements of words by twiddling the handles of
a device that resembles a foosball game (illustrated in Plate 5 of Gulliver).
The probability of successfully generating a well-formed sentence of the
language – and one that is a new and useful contribution to speculative
knowledge as well – is not zero; rather, it is exceedingly tiny. It is not
impossible that Chance should produce this result, just very improbable
that it should do so.
Swift’s satire of Epicureanism may have been inspired by an argu-

ment that Richard Bentley, an important figure in the Royal Society,
made from ‘‘linguistic combinatorics.’’ In his inaugural Boyle lectures
of 1692, Bentley asks what the probability would be that a male and

6 The earliest source I have been able to find for the metaphor of monkeys and typewriters is Borel
(1913); Eddington (1928: 72) says that ‘‘if an army of monkeys were strumming on typewriters
they might write all the books in the British Museum.’’
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a female of the same species should each arise by chance. He answers
by proposing an analogy, derived from Cicero’s De natura deorum,
between the gigantic number of sequences that can be constructed from
the Latin alphabet of twenty-four letters and the still greater number of
arrangements there can be of the 1,000 or more parts that comprise the
human body (Shoesmith 1987: 136). For both the complex adaptive
features of organisms and the orderly pattern of letters in a book, it is
absurd to claim that they are due to chance. However, this is not
because a random process cannot yield the results we observe; rather, the
reason is that the probability of these results is tiny if a mindless random
process is doing the work.
One landmark in the development of probability theory during this

period was a version of the design argument published by John Arbuthnot,
who was physician to Queen Anne and inventor of the satirical character
John Bull. Arbuthnot’s ‘‘Argument for Divine Providence, Taken from the
Constant Regularity Observ’d in the Births of Both Sexes’’ appeared in the
Philosophical Transactions of the Royal Society for 1710. The paper provides
a tabulation of eighty-two years of London christening records; more boys
than girls are listed for each year. Arbuthnot takes this difference at face
value; he must have realized that not every birth was recorded, but he
nonetheless assumes that the records reflect a real difference in the fre-
quencies of male and female births. The main part of the paper is given
over to the task of calculating the probability that this pattern would obtain
if the sex ratio were due to chance. By ‘‘chance’’ Arbuthnot means that each
birth has a probability of 1

2 of being a boy and
1
2 of being a girl. According

to this hypothesis, there being more boys than girls in a given year has the
same probability as there being more girls than boys in that year; the chance
hypothesis also allows for a third possibility, namely, there being exactly as
many girls as boys:

Prðmore boys than girls born in a given year jChanceÞ
¼ Prðmore girls than boys born in a given year jChanceÞ
� Prðexactly as many boys as girls born in a given year jChanceÞ¼ e:

Although Arbuthnot goes to the trouble of explaining how e might be
calculated, the details of his calculation don’t matter to the argument; the
point is just that for each of the years surveyed, e is tiny. Arbuthnot
concludes that the probability of there being more boys than girls in a
given year, according to the chance hypothesis, is just under 1

2, and so the
probability of there being more boys than girls in each of eighty-two years
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is less than 1
2

� �
82. He further asserts that if we were to tabulate births in

other years and other cities, we would find the same male bias. So, the
probability of all these data – both the data that Arbuthnot presents and
the data that he does not have but speculates about – is ‘‘near an infinitely
small quantity, at least less than any assignable fraction.’’ The conclusion
is obvious: ‘‘it is Art, not Chance, that governs.’’
Arbuthnot also notes that males have a higher mortality rate than

females, so that the male bias at birth gradually gives way to an even sex
ratio at the age of marriage. ‘‘We must observe,’’ he says,

that the external accidents to which males are subject (who must seek their food
with danger) do make a great havock of them, and that this loss exceeds far that
of the other sex, occasioned by diseases incident to it, as experience convinces us.
To repair that loss, provident Nature, by the disposal of its wise creator, brings
forth more males than females.

At the end of the paper, Arbuthnot adds, as a scholium, that

polygamy is contrary to the law of nature and justice, and to the propagation of
the human race. For where males and females are in equal number, if one man
takes twenty wives, nineteen men must live in celibacy, which is repugnant to
the design of nature, nor is it probable that twenty women will be so well
impregnated by one man as by twenty.

In Arbuthnot’s hands, the design argument begins as an explanation of
what is, but ends as an argument concerning what ought to be.7

2.3 WILL IAM PALEY: THE STONE, THE WATCH,
AND THE EYE

William Paley published his book Natural Theology, or, Evidences of the
Existence and Attributes of the Deity, Collected from the Appearances of
Nature in 1802; it appeared after more than a century of defenses of
intelligent design and attacks on Epicureanism. Paley’s was neither the
first nor the last, but the way he puts the argument is famous:

In crossing a heath, suppose I pitched my foot against a stone and were asked
how the stone came to be there, I might possibly answer that for anything I
knew to the contrary it had lain there forever; nor would it, perhaps, be very
easy to show the absurdity of this answer. But suppose I had found a watch

7 For discussion of the eighteenth-century reaction to Arbuthnot’s argument, and of Darwinian
theorizing about sex ratio evolution, see Sober (2007b).
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upon the ground, and it should be inquired how the watch happened to be in
that place, I should hardly think of the answer which I had before given, that
for anything I knew the watch might have always been there. Yet why should
not this answer serve for the watch as well as for the stone? Why is it not as
admissible in the second case as in the first? For this reason, and for no other,
namely, that when we come to inspect the watch, we perceive – what we could
not discover in the stone – that its several parts are framed and put together for
a purpose, e.g., that they are so formed and adjusted as to produce motion, and
that motion so regulated as to point out the hour of the day; that if the different
parts had been differently shaped from what they are, of a different size from
what they are, or placed after any other manner or in any other order than that
in which they are placed, either no motion at all would have been carried on in
the machine, or none which would have answered the use that is now served by
it. To reckon up a few of the plainest of these parts and of their offices, all
tending to one result; we see a cylindrical box containing a coiled elastic spring,
which, by its endeavor to relax itself, turns round the box. We next observe a
flexible chain – artificially wrought for the sake of flexure – communicating the
action of the spring from the box to the fusee. We then find a series of wheels,
the teeth of which catch in and apply to each other, conducting the motion
from the fusee to the balance and from the balance to the pointer, and at the
same time, by the size and shape of those wheels, so regulating that motion as to
terminate in causing an index, by an equable and measured progression, to pass
over a given space in a given time. We take notice that the wheels are made of
brass, in order to keep them from rust; the springs of steel, no other metal being
so elastic; that over the face of the watch there is placed a glass, a material
employed in no other part of the work, but in the room of which, if there had
been any other than a transparent substance, the hour could not be seen
without opening the case. This mechanism being observed – it requires indeed
an examination of the instrument, and perhaps some previous knowledge of the
subject, to perceive and understand it; but being once, as we have said, observed
and understood – the inference we think is inevitable, that the watch must have
had a maker-that there must have existed, at some time and at some place or
other, an artificer or artificers who formed it for the purpose which we find it
actually to answer, who comprehended its construction and designed its
use. (Paley 1809: 1–3)

Four chapters later, Paley connects his discussion of the watch8 with a
claim about the complex adaptations that organisms have. One of his
many examples is the eye: ‘‘Every observation which was made in our first
chapter concerning the watch may be repeated with strict propriety

8 Paley did not invent the analogy with a clock. William Derham, an expert on the mechanics of time
pieces, gave the Third Boyle lectures, published as Physico-Theology in 1711, developing the analogy
between watches and watchmakers on the one hand and the universe and God on the other
(Hacking 1975: 169–70).
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concerning the eye, concerning animals, concerning plants, concerning,
indeed, all the organized parts of the works of nature’’ (Paley 1809: 11).
How did Paley understand the logic of his argument? He often writes

as if complex adaptations must be the result of intelligent design. For
example, in Chapter 2 he says that

There cannot be design without a designer; contrivance without a contriver; order
without choice; arrangement without anything capable of arranging; subserviency
and relation to a purpose without that which could intend a purpose [ . . . ]
Arrangement, disposition of parts, subserviency of means to an end, relation of
instruments to a use imply the presence of intelligence and mind. (Paley 1809:
268–9)

Paley’s repetitions make his point more than clear. Yet, in other passages,
Paley seems well aware of the relevant fact about monkeys and type-
writers. For example, in Chapter 15 he considers the fact that ‘‘the eyes
are so placed as to look in the direction in which the legs move and
the hands work’’ (an example he may have drawn from Plato’s Timaeus
44D–45B). The obvious explanation, Paley says, is intelligent design.
This is because the alternative explanation is chance; if the direction in
which our eyes point were ‘‘left to chance [ . . . ] there were at least three-
quarters of the compass out of four to have erred in’’ (Paley 1809: 269).
Paley here grants that it is possible for the adaptive arrangement to arise
by chance.

2.4 FROM PROBABIL IT IES TO LIKELIHOODS

The simple point about monkeys and typewriters shows that it is a
mistake to claim that complex adaptive features cannot be brought into
existence by a mindless random process. In response, I suggested that
Paley’s argument should be formulated as a claim about probability: That
the complex adaptive features we observe were probably put in place by an
intelligent designer. However, a question arises when we look at the
details of how this probabilistic argument should be articulated. It con-
cerns the important distinction drawn in Chapter 1 between the prob-
ability a hypothesis has in the light of evidence and the probability that
the hypothesis confers on the evidence. This is the distinction between
Pr (H jO) and Pr(O jH); the former, recall, is the posterior probability of
the hypothesis H, whereas the latter is called (unhelpfully) the likelihood
of H. When Paley talks about the fact that our eyes point in the direction
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in which we walk, he considers Pr(Observations j Chance) and says that
this has a value of 1

4. And when Arbuthnot talks about his sex ratio data,
he points out that Pr(Observations jChance) < 1

2

� �
82. These assessments

say nothing about the value of Pr(Chance jObservations). The question
we now need to address is whether a suitably probabilistic version of the
design argument should describe the probability of intelligent design, or
only its likelihood.
We know from Bayes’ theorem (§1.2) that the prior and posterior

probabilities of the two hypotheses, intelligent design (ID) and chance,
are related to their likelihoods as follows:

PrðID jOÞ
PrðChance jOÞ ¼

PrðO j IDÞ
PrðO j ChanceÞ ·

PrðIDÞ
PrðChanceÞ :

The ratio of the posterior probabilities (the ‘‘odds’’) equals the ratio of the
likelihoods times the ratio of the priors. Paley’s and Arbuthnot’s assess-
ments of intelligent design and chance involve a comparison of their
likelihoods:

PrðO j IDÞ � PrðO jChanceÞ:
However, this does not entail that

PrðID jOÞ � PrðChance jOÞ:
To reach that further conclusion, we need further assumptions about the
prior probabilities (Keynes 1921: 298; Himma 2005).
As I explained in Chapter 1, I am disinclined to appeal to prior prob-

abilities when they reflect only a subjective degree of certainty; however, I
have nothing against priors when they can be justified by sampling data or
by an empirically well-established theory. It is for this reason that an
assessment of Newton’s theory of gravitation or of Darwin’s theory of
evolution should not be formulated so as to depend on assigning them
prior probabilities. The same holds, I suggest, for intelligent design. What is
the prior probability that the vertebrate eye was the result of intelligent
design? I see no way to answer this question in a way that allows that
probability to be objective. For this reason, I don’t want to formulate the
design argument as an argument that seeks to establish that the hypothesis
of intelligent design has high probability. Better to think of the argument
from design as a likelihood argument. The law of likelihood (§1.3), applied
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to the alternatives that Paley and Arbuthnot considered, says that

Observation O favors ID over Chance if and only if

PrðO j IDÞ>PrðO jChanceÞ:
Understood in this way, the design argument does not seek to establish
that an intelligent designer must exist, nor even that such a being probably
exists. The likelihood argument is more modest than these alternatives,
and therein lies its strength. I’ll consider two nonlikelihood formulations
of the design argument in §2.18 and §2.19. But for now, let’s go with
likelihoods.

2.5 EPICUREANISM AND DARWIN’S THEORY

Arbuthnot, Paley, and the many other defenders of the design argument
who wrote before 1859 naturally did not know about the Darwinian
theory of evolution. The alternative to intelligent design that they knew
about was Epicureanism. Post-Darwinian creationists often write as if
Darwin’s theory is nothing new – that evolution by natural selection is
just like monkeys and typewriters. This is what they intend to convey
when they claim that natural selection has the same chance of producing
complex adaptations that a hurricane blowing through a junkyard has of
assembling scattered pieces of metal into a functioning airplane.9

This analogy is fundamentally misleading. In colloquial usage, a random
process is one in which all outcomes have the same (or nearly the same)
probability. Gambling devices are the paradigm. A fair coin and an
unrigged roulette wheel are randomizing devices.10 However, the essence of
the process of natural selection is that some outcomes are far more probable
than others. Traits that help an organism survive and reproduce have a
higher probability of evolving than traits that hurt. Natural selection is a
biased process, not a random process. When biologists talk about the
‘‘random’’ element in Darwinian evolution, they usually have in mind the
origination of novel variants by mutation. The idea is not that a mutation
has a probability of 1

2 of being advantageous and a probability of 1
2 of

being deleterious; the conventional wisdom is that most mutations are

9 The analogy is due to the astronomer Fred Hoyle.
10 Probabilists use ‘‘random’’ in a wider sense. They would apply the term to the sequence of heads

and tails produced by repeatedly tossing a highly biased coin (probability of heads ¼ 0.9999 on
each toss). Ordinary usage is closer to what probabilists call a ‘‘uniform’’ or ‘‘flat’’ distribution.
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deleterious. This is because a random change in a complex functioning
machine is very unlikely to improve its performance; it is mutation, not
natural selection, that resembles the hurricane blowing through the junk-
yard. The two-part process of mutation þ selection contains a random
element and a nonrandom element. Do not confuse the part for the whole.
One important difference between a purely random process and a two-

step process in which variation is randomly generated and then there is
nonrandom retention of favorable variants concerns time; the first process
will take longer than the second for advantageous features to evolve.
Dawkins (1986) provides a nice illustration of this point by using Simon’s
example (1981) of a combination lock. Suppose that the lock opens when
its nineteen windows spell out METHINKSITISAWEASEL. Each win-
dow has twenty-six alternative states, one for each letter of the alphabet. If
the nineteen tumblers are simultaneously spun at random, the chance that
this exact sequence of letters will appear on a given spin is 1

26

� �
19. Imagine

doing a very large number of experiments with this combination lock; in
each experiment, you repeatedly spin all the wheels at random until all of
them fall into place and spell the target sentence. Some experiments will
hit the target sooner and others will take much longer. But, on average, it
will take 2619 spins to hit the target; this is the expected value (§1.2). Now
consider a second kind of experiment. You spin the first wheel at random
until it hits M; after it hits its target, that letter is frozen in place and the
second wheel is spun until it hits E, and so on. Imagine doing this kind of
sequential experiment a large number of times. Some experiments will
achieve the target sentence sooner and some will take much longer. But,
on average, this sequential process will take 26 · 19 ¼ 494 spins to attain
the target sentence. The purely random all-at-once process takes much
longer on average than the sequential and partly random process; the
nonrandom element in this second process involves the selective retention
of letters that match the target. There is a third experiment that will
probably hit the target even faster. In this experiment, all the wheels are
spun simultaneously until one or more target letter is attained, after which
those wheels are frozen and the remaining wheels are spun at random. In
this third experiment you don’t postpone spinning the second wheel until
the first wheel hits the target. In all three of these experiments, the target
sentence for the combination lock is set by an intelligent being (the
designer of the lock), but that isn’t relevant to the present point. The
point is that a purely random process takes longer to evolve adaptive
configurations than the partly random partly nonrandom process of
mutation plus selection. This is why analogizing the process of natural
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selection with a hurricane blowing through a junkyard is fundamentally
misleading.11

Another difference between Epicureanism and Darwinism consists in
the fact that the evolutionary process involves branching (as lineages split)
and the sequential accumulation of different modifications (both those
that are adaptive and those that are not) in different lineages. Darwinism
includes the idea of common ancestry as well as the idea of natural
selection, and the former introduces an element that was not standard in
the Epicurean picture. According to Epicureanism, there was a time of
random mixing at the end of which all the stable configurations we now
observe had come into existence; it is not intrinsic to this picture that the
stable configurations that now exist share common ancestors. To see how
this marks an important difference between Epicureanism and Darwinism,
consider what Paley says about Epicureanism in Chapter 5 of Natural
Theology (1809: 49–51). He argues that Epicureanism makes the false
prediction that we should see unicorns and mermaids. He also says that it
mistakenly predicts that organisms should fail to form a nested taxonomic
hierarchy (e.g.,Mammalia within Vertebrata within Animalia). There is an
irony in Paley’s second objection, in that Darwin later claimed, correctly,
that his own theory predicts hierarchy.12 Nor is it surprising, on Darwin’s
theory, that some conceivable organisms do not exist. Evolution by natural
selection is path-dependent; the traits that evolve earlier in a lineage
constrain the traits that will probably evolve later. One lineage leads to fish
and another to human beings; there is no reason to expect this process to

11 Because he had long admired the philosophical writings of John Herschel, Darwin must have been
disappointed to read the following footnote in the 1867 edition of Herschel’s Physical Geography of
the Globe (quoted in Hull 2000: 59):

We can no more accept the principle of arbitrary and casual variation and natural selection as a
sufficient account, per se, of the past and present organic world, than we can receive the Laputan
method of composing books (pushed a l’outrance) as a sufficient one of Shakespeare and the
Principia. Equally, in either case, an intelligence, guided by a purpose, must be continually in
action [ . . . ] We do not believe that Mr. Darwin means to deny the necessity of such intelligent
direction. But it does not, so far as we can see, enter into the formula of his law.

12 In The Origin of Species, Darwin ([1859] 1964: 128–9) says that

it is a truly wonderful fact . . . that all animals and all plants throughout all time and space should
be related to each other in group subordinate to group [ . . . ] On the view that each species has
been independently created, I can see no explanation of this great fact in the classification of all
organic beings; but to the best of my judgment, it is explained through inheritance and the
complex action of natural selection.
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produce organisms that are half-fish and half-human. Perhaps Paley was
right about Epicureanism, but Darwinism is different.
The misleading analogy between natural selection and a hurricane

blowing through a junkyard should be junked. Darwin suggests some-
thing better in his book The Variation of Animals and Plants Under
Domestication:

Let an architect be compelled to build an edifice with uncut stones, fallen from a
precipice. The shape of each fragment may be called accidental; yet the shape of
each has been determined by the force of gravity, the nature of the rock, and the
slope of the precipice, – events and circumstances all of which depend on natural
laws; but there is no relation between these laws and the purpose for which each
fragment is used by the builder. In the same manner the variations of each
creature are determined by fixed and immutable laws; but these bear no relation
to the living structure which is slowly built up through the power of natural
selection, whether this be natural or artificial selection. (Darwin 1876: 236)

Natural selection is no more a random process than intelligent design is.
As for the ‘‘randomness’’ of variation, the point is that novel variants do
not arise because they would be useful; this does not mean that they are
uncaused.

2.6 THREE REACTIONS TO PALEY’S DES IGN ARGUMENT

There are three possible reactions one might have to the design argument,
once it is formulated as an argument about likelihoods and we acknow-
ledge that Paley was comparing intelligent design with chance and did not
consider Darwin’s theory of evolution.
One reaction, now common among biologists, is that Paley reasoned

correctly given the alternatives he was considering but that the dialectical
landscape shifted profoundly when a third hypothesis was formulated.
Translated into the language of likelihoods, this reaction consists in the
thought that Paley was right in his claim that

ðLÞPrðObservations j Intelligent designÞ �PrðObservations j ChanceÞ:
What he could not have anticipated is that

PrðObservations jDarwinian evolutionÞ
� PrðObservations j Intelligent designÞ:

The pattern here is familiar. A better theory displaces an inferior one, but
then a new theory comes along that is better still.
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The second possible reaction is that Paley’s argument is flawed and that
it doesn’t take the development of Darwin’s theory to see what is wrong
with the theory of intelligent design. I associate this reaction with David
Hume’s Dialogues Concerning Natural Religion, which appeared posthu-
mously in 1779. Hume, of course, didn’t know about Darwin any more
than Paley did. The point is that the Dialogues present a number of
serious criticisms of the design argument (some of which I’ll consider in
§2.11). If any of these criticisms are correct, they show that there are flaws
in Paley’s argument that we can recognize without knowing anything
about Darwin’s theory. And even if Hume’s criticisms miss the mark,
perhaps there are other criticisms of Paley’s reasoning that do not depend
on the theory of evolution by natural selection.
The third possible reaction to Paley’s argument is the one that post-

Darwinian creationists have. Whether or not they acknowledge that
chance and Darwinian evolution are different hypotheses, their view,
expressed in a likelihood framework, is that Paley was not only correct in
asserting the inequality (L); essentially the same argument also shows that

PrðObservations j intelligent designÞ
� PrðObservations jDarwinian evolutionÞ:

This is the thought that intelligent design is better supported by what
we observe than both the hypothesis of chance and the hypothesis of
Darwinian evolution.
So as to leave no doubt in the reader’s mind as to which of these

reactions I favor, let me say this: I stand with Hume. Although I think that
some of Hume’s criticisms of the design argument are off the mark, I do
think there is a devastating objection to Paley’s argument that does not
depend in any way on Darwin’s theory.

2.7 THE NO-DESIGNER-WORTH-HIS-SALT OBJECTION

TO THE HYPOTHESIS OF INTELLIGENT DESIGN

Paley’s analogy between the watch and the eye is seductive. Surely Paley
reasoned correctly when he considered the watch. And since his reasoning
about the eye apparently follows the same pattern, it seems irresistible to
conclude that he also reasoned well about the eye. Evolutionists who grant
Paley this much usually hasten to point out that Paley did not know about
Darwin’s theory (much less about the evolutionary biology that developed
after 1859); their point is that even though Paley demonstrated that
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intelligent design is more plausible than chance, it also is true that
Darwinian evolution is more plausible than intelligent design. This is the
first possible reaction to Paley’s argument described in the previous section.
But why think that Darwin’s theory is better supported than the

hypothesis of intelligent design? A standard way to defend this assessment
is to point to the many imperfect adaptations that are found in nature.
This style of argument has a long history. Darwin gives voice to it in
Chapter 14 of The Origin of Species when he says ‘‘on the view of each
organic being and each separate organ having been specially created, how
utterly inexplicable it is that parts [ . . . ] should so frequently bear the
plain stamp of inutility!’’ More recently, Stephen Jay Gould (1980) used
the example of the panda’s ‘‘thumb’’ to make the same point.
The name for this feature is misleading since pandas don’t have

opposable digits. Rather, they have a spur of bone that sticks out from
their wrists. The thumb and the paw together form a V through which the
panda repeatedly runs branches of bamboo, laboriously stripping the
stalks to get them ready to eat. Pandas spend a large portion of their
waking lives at this task. The thumb is extremely inefficient. Gould’s
point is that no designer worth his salt (the phrase is due to Raddick
2005) would have given the panda this device for preparing its food. A
truly intelligent designer would have done better. On the other hand,
Darwin’s theory of evolution by natural selection says that inefficient
devices of this kind are not at all surprising. Darwin thought of natural
selection as a gradual process that improves adaptedness; natural selection
does not necessarily lead to perfect adaptation, whatever that might mean.
Selection modifies the traits found in ancestors by small changes; the
result is not that the best of all conceivable adaptations evolves; rather,
natural selection causes traits to evolve that do a better job than the
alternatives that are actually present in the evolving lineage.13

I hope it is clear that Gould’s argument is a likelihood argument. He
claims that the hypothesis of intelligent design makes the panda’s thumb
very improbable, whereas the hypothesis of evolution by natural selection
makes the result much more probable. Creationists have a serious objection
to Gould’s argument. It can be expressed by a rhetorical question: How
does Gould know what God (or some unspecified designer) would have
wanted to achieve in building the panda? Gould is assuming that an

13 Darwin was inspired by Lyell’s geology, according to which huge changes in the Earth were
brought about by a long series of small alterations. See, for example, Darwin ([1859] 1964: 95)
and also Darwin’s comment about ‘‘absolute perfection’’ (1964: 202).
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intelligent designer would have wanted to supply pandas with a super-
efficient device (like a stainless-steel can opener) for preparing bamboo and
would have had the ability to achieve this objective. But why is it so clear
that God would have wanted to do this? Perhaps God realized that if
pandas had better tools, they would eat all the bamboo, which would cause
the extinction of the bamboo forest and of pandas as well. And maybe these
two extinctions would have triggered a cascade of others. Perhaps God
realized that these bad consequences would follow if pandas had better
tools, and so he decided to slow them down. Creationists don’t need to
assert that they know what God would have had in mind if he had built the
panda. All they need to say is that Gould does not know this. Gould adopts
assumptions about the designer’s goals and abilities that help him reach the
conclusion he wants – that intelligent design is implausible and Darwinian
evolution is plausible as an explanation of the panda’s thumb. But it is no
good simply inventing assumptions that help one defend one’s pet theory.
Rather, what is needed is independent evidence concerning what God (or
some other intelligent designer) would have wanted to achieve if he had
built the panda. And this is something that Gould does not have. I think
creationists are right to object in this way to Gould’s argument.14 We will
see in §2.12 that this good point comes back to haunt the theory of
intelligent design.
Paley anticipates the no-designer-worth-his-salt objection. After describ-

ing the watch found on the heath, he responds to various objections that
might be made against the hypothesis of intelligent design. Here is what he
says about one of them:

Neither [ . . . ] would it invalidate our conclusion, that the watch sometimes went
wrong, or that it seldom went exactly right. The purpose of the machinery, the
design, and the designer, might be evident, and in the case supposed would be
evident, in whatever way we accounted for the irregularity of the movement, or
whether we could account for it or not. It is not necessary that a machine be
perfect, in order to show with what design it was made: still less necessary, where
the only question is, whether it were made with any design at all.

Paley then says that what is true of imperfect adaptations is also true for
traits of unknown function. The watch manifestly has the function of
telling time and it is a complex machine. If it is imperfect and if it has
parts whose functions are unknown, that does not matter.

14 Behe (1996: 223) says that ‘‘another problem with the argument from imperfection is that it
critically depends on a psychoanalysis of the unidentified designer.’’ See also Nelson (1996).
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2.8 POPPER’S CRITERION OF FALS IF IABIL ITY

If the hypothesis of intelligent design is not refuted by the fact that
organisms have imperfect adaptations, maybe the problem with the
hypothesis is that it can’t be refuted by any observation at all. Here we
come to a second standard criticism that has been made of creationism:
that it is untestable. But what does testability mean? Scientists often
answer by using the philosopher Karl Popper’s (1959) concept of falsi-
fiability, thinking that this provides the needed clarification. Unfortunately,
there are serious problems with his account.
Popper’s idea is that a statement is falsifiable precisely when it rules out

a possible observational outcome. Popper understood ‘‘ruling out’’ in
terms of deductive logic; the hypothesis must deductively entail that some
observation statement is false. According to Popper, a hypothesis that is
logically consistent with all possible observations is unfalsifiable. Falsifi-
able statements need not be false; rather, they must have the following
property: If they are false, a finite set of observations can prove that they
are. For Popper, modus tollens (MT) (§1.4) is a good representation of the
logic of testing a hypothesis (H) by seeing if its observational implications
(O) hold true:

ðMTÞ If H then O
notO

notH

If the hypothesis’s prediction fails to be true, the hypothesis is refuted. But
what are we to say if the prediction comes true? Does this mean that the
theory has been proven true? Popper rejected this, since the fallacy of
affirming the consequent (FAC) is deductively invalid:

ðFACÞ
If H then O
O

H

Because modus tollens is deductively valid and FAC is deductively invalid,
Popper held that scientific theories can be proved false but can never be
proved true. He further suggested that falsifiability provides a demarcation
criterion, separating science from nonscience.
Popper’s criterion entails that some creationist claims are falsifiable and,

hence, are scientific. A blatant example is provided by the hypothesis that
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an omnipotent supernatural being wanted everything to be purple and had
this as his top priority. Of course, no creationist has endorsed this prop-
osition. However, it is inconsistent with what we observe, so purple ID is
falsifiable, its invocation of the supernatural notwithstanding. For Popper,
purple ID is a scientific theory. The same is true of more familiar formu-
lations of intelligent design; for example, the claim that an intelligent
designer gave vertebrates their eyes entails that vertebrates have eyes, so it too
is falsifiable.
In addition to judging that many intelligent design claims pass the test

of falsifiability, Popper’s criterion also entails that many apparently sci-
entific statements are unfalsifiable and hence are not scientific at all. This
is the situation for all the probabilistic theories that have been developed in
different scientific disciplines. Consider a simple example: the statement
that a coin has a probability of 0.5 of landing heads each time it is tossed.
This statement is logically consistent with all possible sequences of heads
and tails in any finite run of tosses. The probability statement is testable,
but it does not satisfy Popper’s criterion. Popper recognized this problem
and proposed to remedy it by expanding the concept of falsification.
Rather than saying that H is falsified only when an observation occurs that
is logically inconsistent with H, Popper suggested that we regard H as
false when an observation occurs that H says is very improbable. But how
improbable is improbable enough for rejecting H to be warranted?
Popper (1959: 191) thought that there is no objectively correct answer to
this question and suggested that we solve the problem by adopting a
convention – a ‘‘methodological decision.’’ Popper’s idea has much in
common with R. A. Fisher’s test of significance (1956) (§1.4). Modus
tollens, though deductively valid, is not a good model of how probabilistic
theories are tested, and I argued in §1.4 that probabilistic modus tollens is
not a principle of inference that we should endorse.
Although Popper’s falsifiability criterion should not be used to define

what testability is, or to criticize creationism,15 there are two lessons we
can learn from it. The first is that a testable statement makes predictions,
either by deductively entailing that an observation will occur or by con-
ferring a probability on an observational outcome. The hypothesis that
the coin is fair satisfies this requirement. The second point is that we must

15 Here is a curious bit of history: Popper (1976: 151, 170) claimed that ‘‘the theory of natural
selection is not a testable scientific theory, but a metaphysical research program,’’ though he
allowed that the theory is ‘‘invaluable’’ because ‘‘it sheds much light upon very concrete and very
practical researches’’ (1976: 171). Two years later, Popper (1978) rejected this position.
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think of testing contrastively (§1.3–1.4); to test an intelligent-design claim
is to test it against some alternative. It is true that ‘‘an intelligent designer
gave eyes to vertebrates’’ entails that vertebrates have eyes, but if this
intelligent-design hypothesis is to be tested against the Epicurean hypoth-
esis that a mindless chance process gave vertebrates their eyes, one needs to
find predictions over which the two hypotheses disagree. We will return to
the task of constructing a more adequate criterion of testability along these
lines in §2.14.

2.9 SHARPENING THE LIKELIHOOD ARGUMENT

Within a likelihood framework, there is no beating a hypothesis that
entails the observations. If we are trying to explain the observation

O ¼ human beings have eyes that have features F1; F2; : : : ; Fn

the hypothesis

ID þþ ¼ an intelligent designer gave human beings eyes that

have features F1; F2; : : : ; Fn

entails O, so

PrðO j IDþþÞ ¼ 1:0:

When we use observation O to test IDþþ against an alternative hypothesis,
it is impossible for O to favor the alternative hypothesis, no matter what
that alternative is. This may sound like a point in favor of creationism.
However, this fact about the relation of IDþþ to O does not embody a
victory for the design hypothesis; rather, the result is a stalemate, since it is
easy to construct numerous other hypotheses that also entail the observation
O. Since the point is to find the strongest representation of Paley’s argu-
ment, and Paley’s alternative to intelligent design is Epicureanism, not
Darwinism, consider the following:

Chance þþ ¼ a purely random process caused human beings to

have eyes that have features F1; F2; : : : ; Fn:

The law of likelihood says that O does not discriminate between IDþþ
and Chanceþþ. Something has gone wrong here. Surely Paley’s argument
is not undermined by this fact about the two hypotheses.
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The problem we are considering has nothing special to do with the
argument from design. Consider an example that came up briefly in the
previous chapter: Arthur Stanley Eddington’s testing the general theory
of relativity (GTR) against Newtonian theory by observing an eclipse.
Relativity theory predicted that the bend in starlight would probably fall
in one interval of values, while Newtonian theory predicted that the bend
in the light would probably fall in another. A natural way to represent
Eddington’s observation and its impact on the two theories is in terms of
a likelihood inequality:

PrðO jGTRÞ � PrðO jNewtonian theoryÞ:
The point of importance here is that the evidential significance of
Eddington’s observation will be thoroughly obscured if we build the
observational outcome into the theories we wish to test. This maneuver has
the result that the likelihoods are both equal to unity:

PrðO j a general relativistic process produced outcome OÞ
¼ PrðO j a Newtonian process produced outcome OÞ ¼ 1:0:

The defect in this equality is not that it is false (it isn’t) but that it fails to
represent the import of Eddington’s test.
It is a mistake to represent Paley’s design argument as a competition

between IDþþ andChanceþþ. These formulations of the hypotheses under
test are inflated (hencemy use of ‘‘þþ’’ to label them). Taking account of this
point leads to the following improved representation of the argument. We
stick with the previous description of the observations (O), but now we
represent the intelligent-design and chance hypotheses as follows:

(ID) An intelligent designer designed and produced human beings.
(Chance) A mindless chance process produced human beings.

This reformulation does not complete the task of obtaining a good
representation of the problem at hand, but it is a beginning. Paley’s claim
is that

PrðO j IDÞ > PrðO jChanceÞ:
He may or may not be right in asserting this inequality, but at least we
will not be distracted by the true but irrelevant point that

PrðO j IDþþÞ ¼ PrðO jChanceþþÞ:
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There is a big gap between IDþþ and ID, just as there is between
Chanceþþ and Chance. Why must the bubble be burst so completely?
What would be wrong with a more modest deflation of the two
hypotheses to the following?

(IDþ) An intelligent designer gave human beings eyes.
(Chanceþ) A purely chance process gave human beings eyes.

The problem here is that we have built the presence of eyes into both
hypotheses. Surely Paley would want to insist that the observation that
human beings have eyes favors the hypothesis of design over the hypothesis
of chance. If so, we must omit this fact from the competing hypotheses. Of
course, a similar point applies to ID and Chance; since both entail that
human beings exist, the existence of human beings does not discriminate
between them. This might suggest that we would do better to deflate the
two hypotheses even further:

(ID�) An intelligent designer gave organisms their adaptive features.
(Chance�) The adaptive features of organisms are due to purely

mindless processes.

Maybe the existence of human beings discriminates between these two
hypotheses. But even if it does, the existence of organisms that have
adaptive features does not.
Perhaps the way to solve this problem is not to fixate on a single

formulation of the hypotheses of chance and intelligent design but to
insist that the formulations be parallel. It is a pyrrhic victory for a
defender of intelligent design to compare IDþ with Chance and declare
that the fact that human beings have eyes favors the former; it is equally
pyrrhic for an Epicurean to compare ID with Chanceþ and conclude that
the fact that human beings have eyes favors the latter. Better to compare
apples with apples, oranges with oranges.
In addition to honing the competing hypotheses that the design

argument seeks to evaluate, we also should consider what the observations
are that the argument brings to bear on those hypotheses. Which
descriptions of the watch and the eye should we use? In the famous
passage I quoted in §2.3, Paley says that the watch, but not the stone, has
utility and lacks tolerance; the watch is useful to its owner because it keeps
track of time, and the watch would not be useful in this way if any of its
parts were altered in shape, size, or location. However, a few sentences
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later, Paley describes the watch’s mechanical details. Should we use these
mechanical details, or merely the fact that the watch is useful and
intolerant, as the observation that we ask the hypotheses of ID and Chance
to address? I won’t try to assess whether Paley was aware of this question.
My main goal, as I have said, is to identify the most defensible version of
the design argument; given that we are now understanding the design
argument as a likelihood inference, the important point is that it is
arbitrary to limit the observations we consider just to the fact that the
system in question is useful and lacks tolerance. Rather, we should con-
sider all the observations. Even if a system’s usefulness and intolerance is
evidence favoring intelligent design over chance, we should consider the
other features the system has as well.
In any event, it is wise not to put too much weight on the fact that a

system is useful and intolerant. Recall that Paley recognized that a watch
that fails to keep perfect time still should be explained in terms of
intelligent design. The same point holds of a broken watch; it is useless as
a timepiece, but presumably Paley would still want to argue that its
features favor intelligent design over chance. If so, usefulness is not
necessary. It might be replied that Paley’s first criterion should be put in
terms of the object’s having a function (which even a broken watch
might be said to have), not in terms of its being useful. However, this
invites the question of what it means for an object to have a function
and whether a plausible definition of function can be spelled out that the
design argument can use without begging the question.16 Similar
questions attach to Paley’s point about the object’s intolerance – that the
device would not be useful (or be able to perform its function) if any of
its parts were altered in shape, size, or location. It is interesting that
engineers often build devices that are highly redundant. Since any
component might break, machines are often engineered so that the
whole system continues to function even when some of its parts mal-
function.17 Suppose Big Ben were controlled not by a single mechanism
but by 100 separate watches, with the position of Ben’s hands dictated

16 For example, Plantinga (1993) maintains that objects have functions only if they were made by an
intelligent designer. His argument for this thesis is thin: that no one has so far managed to
satisfactorily define what ‘‘function’’ means while omitting mention of a designer. In any event, if
Plantinga is correct, the concept of function cannot be used to describe the observations that the
design argument uses to adjudicate between intelligent design and chance. This description of the
‘‘observations’’ is too theory-laden; it begs the question.

17 Organisms also exhibit redundancy and fallback mechanisms aplenty; witness the fact that people
have two kidneys, two lungs, two gonads, and that cell death usually does not cause organs to
malfunction.
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by an average over those 100 timepieces. Imagine that the average is
taken after outlying values are discarded. Surely this mechanical
arrangement cries out for explanation in terms of intelligent design at
least as much as the watch that Paley found on the heath. However, this
system is much more tolerant than a watch whose hands are controlled
by a single mechanism.18 The design argument does not need to begin
with the claim that a functional device is intolerant.
A more fundamental reason why the design argument should not

focus exclusively on the fact that the system under study is useful and
intolerant is that whether a system is intolerant depends on how it is
decomposed into parts. Consider the eye. The familiar division of the
vertebrate eye into cornea, retina, and so on, leads to the conclusion
that the eye is intolerant. But suppose we divide someone’s eye into
individual atoms and call each atom a ‘‘part’’ of the eye. The system so
described is not intolerant; change the position of a single atom and the
eye still sees. This example might suggest that the idea of intolerance
should be defined by saying that a system is intolerant if some division
of the system into parts satisfies the requirement, not that every division
must do so. The problem with this suggestion is that it entails that
many systems are intolerant when we’d intuitively judge that the
opposite is true. Consider the wine bottle. Its function, I take it, is to
hold a certain liquid. There is a fine-grained segmentation of the bottle
into parts that entails that the bottle is highly tolerant, since shaving a
very thin slice off the surface does not impair the bottle’s ability to hold
liquid. However, there is another division that leads to the opposite
conclusion. Just divide the bottle into a number of identically shaped
top-to-bottom slices; remove any of these parts and the bottle can no
longer serve as a container for liquids. A possible response to this
problem is to claim that there is a uniquely correct division of a system
into parts; however, this raises the question of how that uniquely correct
breakdown should be defined and defended. Call this the wine-bottle
problem.
One natural way to address this problem is to individuate the parts of a

system in terms of the processes by which it was assembled. According to
this approach, the customary division of the watch into parts is legitimate

18 It might be argued that each of the 100 watches has its own function and that this function would
not be performed if any its parts were changed; Big Ben might be highly tolerant even if its
components are not. Well, maybe so, but why can’t the component watches have their own
redundancy? And even if they do not, the argument from design should apply to Big Ben and not
just to its components.
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because it represents the separate objects that the watchmaker created and
manipulated; an atom in the watch does not count as one of its parts
because there was no process that treated it as a unit apart from the other
atoms in the watch. Evolutionists use a similar conception when they talk
about the definition of a trait. When they say, for example, that having
five fingers on the left hand is not a different trait from having five fingers
on the right, they mean that digits-on-the-left and digits-on-the-right did
not evolve independently. Although there is plausibility to this etiological
conception of what the parts of a system are, it is not something that the
design argument can embrace, since the argument needs to be able to
describe the parts of a system in a way that begs no questions about how
the system was brought into being.
These problems disappear if we focus, not just on the fact that a system

is useful and intolerant but on a more detailed description of its parts.
Understood in this way, Paley’s comments about usefulness and intolerance
should be understood as heuristic: they are intended to point us in the
direction of a more detailed set of observations, and it is this set that is said
to favor intelligent design over chance.

2.10 THE PRINCIPLE OF TOTAL EVIDENCE

The assessment presented in the previous section of the observations we
should consider in the design argument was guided by the principle of total
evidence (Carnap 1950), which I discussed in §1.2. This is just the idea
that we should use all the evidence we have to evaluate the hypotheses at
hand. It would be a mistake to focus exclusively on the fact that the watch
(or the eye) is useful and intolerant. But it also would be wrong to restrict
our attention to the mechanical details of how watches and eyes work and
neglect the fact that they are useful to their owners. The principle of total
evidence says that we need not choose between these two partial
descriptions: it is best to use both.
This principle has a special relevance when we consider a long-standing

criticism of the design argument. Paley’s argument about the vertebrate
eye, when formulated within a likelihood framework, consists of two
claims:

Pr (the human eye has features F1, . . . , Fn jChance) is tiny (though not zero).
Pr (the human eye has features F1, . . . , Fn j ID) is larger.
This argument has been criticized by shifting to a logically weaker
observation. Instead of considering a detailed description of the human
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eye as the fact that requires explanation, there are other, less specific,
observations we might consider instead. Here are some of them:

There are organisms in the universe that have eyes with features F1, . . . , Fn.
There are organisms in the universe that have eyes.
There are organisms in the universe that have adaptive features.
There are organisms in the universe.

The case against Epicureanism weakens as we change the problem from
explaining a fact about human beings and their eyes to a proposition
farther down the list. After all, it is not that improbable that creatures
somewhere in the universe have eyes, if organisms were produced by a
mindless random process. And it is even more probable that there should
exist organisms in the universe that have adaptive features of some sort, if
Epicureanism is true. With the observations reconfigured in this way, they
no longer seem to strongly favor intelligent design over chance. Van
Inwagen (1993: 144) presents this objection to the design argument and
explains it by way of an analogy. Suppose you toss a coin twenty times
and it lands heads every time. You should not be surprised at this out-
come if you are one of a million people who each toss a fair coin twenty
times. After all, with so many people tossing fair coins, it is all but
inevitable that someone will get twenty heads. The outcome you obtained,
therefore, was not improbable according to the chance hypothesis.
Van Inwagen’s analysis involves shifting from a logically stronger to a

logically weaker description of the observations:


 This coin landed heads on each of the twenty tosses.

 Some coin out of the million that were tossed twenty times landed
heads on each toss.

The first observation seems to favor the hypothesis that the coin is
strongly biased in favor of heads (p ¼ 0.9, say) over the hypothesis that
the coin is fair (p ¼ 0.5), since

ðIÞ Prðthis coin landed heads on each of 20 tosses j this coin is fairÞ
¼ ð0:5Þ20:

Prðthis coin landed heads on each of 20 tosses j this coin is

strongly biased in favor of headsÞ ¼ ð0:9Þ20:
The bias hypothesis has a likelihood that is (1.8)20 times bigger than the
fair hypothesis. However, if we shift to the logically weaker description of
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the observations, and also change the hypotheses we are considering, the
situation looks very different:

ðIIÞ Prðsome coin lands heads on each of 20 tosses j 1 million

fair coins are each tossed 20 timesÞ ¼ 1� ½1� ð0:5Þ20�1;000;000
Prðsome coin lands heads on each of 20 tosses j 1 million coins

strongly biased in favor of heads are each tossed 20 timesÞ
¼ 1� ½1� ð0:9Þ20� 1;000;000:

Now the two likelihoods are both very close to unity.
There is a third problem to consider. What are the likelihoods when we

consider the observations obtained from this coin relative to hypotheses
about the 1 million coins? Here are the likelihoods:

ðIIIÞ Prðthis coin lands heads on each of 20 tosses j this coin is one of

a million fair coins that each are tossed 20 timesÞ ¼ ð0:5Þ20:
Prðthis coin lands heads on each of 20 tosses j this coin
is one of a million coins strongly biased in favor of heads

that each are tossed 20 timesÞ ¼ ð0:9Þ20:
Regardless of whether the 1 million coins are all fair or all biased, their
tosses are mutually independent; what happens to this coin when it is
tossed is not affected by what the other coins are like.19

The data we have – that this coin landed heads on all twenty tosses – is
telling in two of the three discrimination problems just described. The
observations strongly favor the hypothesis that this coin is strongly biased
to land heads over the hypothesis that this coin is fair; this was problem I.
They also strongly favor the hypothesis that the 1 million coins are all
biased to land heads over the hypothesis that they all are fair; this was
problem III. In fact, the strength of evidence in these two problems is the
same. Matters change if we logically weaken our description of the
observations, as we did in problem II, but that should not distract us.
As discussed in §1.3, it is a standard feature of likelihood comparisons

that logically stronger and logically weaker descriptions of the observa-
tions may differ in their evidential significance. This was the point of

19 See Hacking’s (1987) treatment of ‘‘the inverse gambler’s fallacy.’’
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the example about the breakfast order of toast and eggs represented in
Figures 1.6 and 1.7. The principle of total evidence tells us to focus on
logically stronger descriptions of the evidence, if doing so makes a
difference in our likelihood assessments. Even if Epicureanism says that
it is highly probable that there will be some organisms that have some
adaptive features somewhere in the universe, this does not show that the
theory says that it is highly probable that human beings will have eyes
with features F1, . . . , Fn. Paley is right to focus on the logically stronger
description of the observations. He is following the principle of total
evidence. It is true but irrelevant that intelligent design and chance
confer very similar probabilities on observations that are logically
weaker.

2.11 SOME STRENGTHS OF THE LIKEL IHOOD FORMULATION

OF THE DESIGN ARGUMENT

Some of Hume’s criticisms of the design argument in his Dialogues
Concerning Natural Religion (published 1779) dissolve once we formulate
the argument as a likelihood inference. For example, Hume at one point
has the character he calls ‘‘Philo’’ say that the design argument is an
argument from analogy and that the conclusion of the argument is
supported only very weakly by its premises. His point can be formulated
by thinking of Paley’s argument as follows:

Watches are produced by intelligent design:
Organisms are similar to watches to degree p:

p½¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
Organisms were produced by intelligent design:

Notice that the letter p appears twice in this argument. It represents the
degree of similarity of organisms and watches and it represents the
probability that the premises confer on the conclusion. Think of simi-
larity as the proportion of shared characteristics. Things that are 0 percent
similar have no traits in common; things that are 100 percent similar have
all their traits in common. The analogy argument says that the more
similar watches and organisms are, the more probable it is that organisms
were produced by intelligent design.
Hume thinks this argument is undermined by the fact that watches and

organisms have relatively few characteristics in common: watches are
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made of metal and glass; organisms metabolize and reproduce, etc. Even if
Hume is right about the analogy argument, his objection does not touch
the likelihood formulation of the argument from design. With respect to
watches, the only relevant question is whether their observed features are
made more probable by the hypothesis of chance or by the hypothesis of
intelligent design; with respect to the eye, the same comparative question
is the only one that matters. Paley’s analogy between watches and
organisms is merely heuristic. The likelihood argument about organisms
stands on its own (Sober 1993b, 2004b).
Hume also has Philo construe the design argument as an inductive

argument and then complain that the inductive evidence is weak. Philo
suggests that if we are to have good reason to think that our world was
produced by an intelligent designer, we must have visited other worlds
and observed that all or most of them were produced by intelligent
design. But how many other worlds have we visited? The answer is not
even one. Apparently, the design argument is an inductive argument that
could not be weaker; its sample size is zero. This objection also dissolves
once we move from the model of inductive sampling to that of likelihood.
Observing numerous worlds and seeing how they were brought into being
is not essential if the point is just that the two hypotheses about the world
we inhabit confer different probabilities on what we observe. We will
revisit the idea of inductive sampling in §2.18, but for now it should be
clear that the likelihood argument takes the sting out of the fact that none
of us has seen an intelligent designer create an organism from nonliving
materials.
There is another objection to the likelihood version of the design

argument that many philosophers find in Hume’s Dialogues and think is
devastating. This is the point that the design argument does not
establish the attributes of the designer. The argument does not show
that the designer who gave organisms their complex adaptations is
morally perfect, or all-knowing, or all-powerful, or that there is just one
of him, or that he also created the universe. Perhaps this undercuts some
versions of the design argument, but it does not touch the likelihood
argument we are considering. Paley, perhaps responding to this Hu-
mean point, makes it clear in Chapter 5 of Natural Theology that his
argument about the watch and the eye is intended to establish only the
existence of a designer and that the question of the designer’s charac-
teristics must be addressed separately. Does this limitation of the design
argument make the argument trivial? Not at all. It is not trivial to claim
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that the adaptive features of organisms are due to intelligent design.
This supposed ‘‘triviality’’ would be big news to evolutionary biologists.
And it also would be enough to refute Epicureanism. To concede that
the design argument establishes the existence of an intelligent designer is
to concede a great deal.

2.12 THE ACHILLES HEEL OF THE LIKELIHOOD

ARGUMENT

Paley’s likelihood argument about the watch goes as follows:

The watch has features G1 : : :Gn:

Prðthe watch has features G1 : : :Gn j chanceÞ ¼ tiny:

Prðthe watch has features G1 : : :Gn j intelligent designÞ > tiny:

The law of likelihood

The watch’s having features G1 : : :Gn favors intelligent design
over chance:

His argument about the eye has the same logical form:

The eye has features F1 : : : Fn:

Prðthe eye has features F1 : : : Fn j chanceÞ ¼ tiny:

Prðthe eye has features F1 : : : Fn j intelligent designÞ > tiny:

The law of likelihood

The eye’s having features F1 : : : Fn favors intelligent design
over chance:

The arguments are both deductively valid. The first premise of each
reports the observations, the last premise invokes an epistemological
principle, and the second and third state that the observations are more
probable under the one hypothesis than they are under the other. If Paley
reasoned cogently about the watch, how can one deny that he did the
same when he discussed the eye? This denial may sound implausible, but
this is precisely what I propose to argue. There is a deep difference
between the two arguments. The argument about the watch has a missing
premise that, once acknowledged, does the argument no harm. The
argument about the eye also has a missing premise, but it turns out to be
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indefensible. The difference between the two arguments becomes visible
once we scrutinize the third premise of each.
With respect to the watch, it seems undeniable that

Prðthe watch has features G1 : : : Gn j intelligent designÞ > tiny:

But, in fact, whether this claim is true depends on what goals and abilities
the designer would have if such a being existed. For example, suppose we
assume that

Af : If an intelligent designer made the watch, he would have wanted
(above all) to give it features G1 . . . Gn and he would have had the
ability to ensure that this is so.

Given this assumption, it is true that the intelligent-design hypothesis
makes the observations highly probable; with this assumption in place,
intelligent design has a higher likelihood than the hypothesis of chance.
Af is thus an auxiliary assumption that is favorable to the design
hypothesis. However, there are other assumptions that block the con-
clusion that Paley wants to draw. For example, consider the following

Au: If an intelligent designer made the watch, he would have wanted
(above all) to prevent the watch from having features G1 . . . Gn and
he would have had the ability to insure that the watch fails to have
these features.

If we adopt this auxiliary assumption, the design hypothesis has a likeli-
hood of a zero. If Au correctly describes what the designer would
have been like if such a being had existed, then the watch has a higher
probability of exhibiting the features we observe if it is the result of
chance. Given the unfavorable assumption Au, chance has a higher like-
lihood than intelligent design.
There is an asymmetry between Af and Au. For Paley’s argument about

the watch to go through, there must be a reason to reject Au. However, it
isn’t essential, if his argument is to work, that there be a reason to accept
Af. The favorable assumption Af suffices, but it is not necessary, for
intelligent design to have a higher likelihood than chance. All Paley needs
is an assumption that ensures that

Prðthe watch has features G1 : : : Gn j IDÞ> tiny
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and this can be true even if there is considerable uncertainty as to which
goals and abilities the designer would have if there were such a being.
This is because

Prðthe watch has features G1 : : : Gn j IDÞ
¼

X
i
Prðthe watch has features G1 : : : Gn j ID & AiÞPrðAi j IDÞ:

Here A1, A2, . . . , An are different auxiliary propositions about the goal–
ability pairs that the designer of the watch might have had if there were
such a being.
Although Paley’s argument about the watch requires assumptions

about the goals and abilities the designer would have had if there were
such a being, I don’t think this leaves the argument in the lurch. Paley is
aware that there are many human designers not far from the heath on
which he is walking and that these designers know how to make watches
and have every inclination to do so. Provided that there is even a small
chance that the designer of the watch is a human being of this sort, his
argument goes through.
Parallel questions arise for Paley’s argument concerning the eye, but they

lead to a different verdict concerning whether his argument succeeds. As
before, whether intelligent design has a higher likelihood than chance
depends on what we are entitled to assume about the goals and abilities that
the designer of the eye would have had if such a being had existed. There
are favorable assumptions we might make here and unfavorable assump-
tions are available as well. I pointed out in §2.7 that Gould makes
unfavorable assumptions about the designer’s goals and abilities when
he discusses the panda’s thumb; Gould assumes that if an intelligent
designer had made the panda he would have chosen not to give the panda
the spur of bone we call a ‘‘thumb’’ and instead would have given the panda
some more efficient device. With this unfavorable assumption, the intel-
ligent-design hypothesis has a likelihood of zero, so the hypothesis of
chance and the hypothesis of evolution by natural selection both have
higher likelihoods. My criticism of Paley is that his discussion of the eye
makes the same mistake that Gould made. Paley assumes that if an intel-
ligent designer created the human eye, the designer would have wanted to
give us eyes with features F1 . . . Fn and would have had the ability to do so.
Paley is no more entitled to adopt these favorable assumptions than Gould
is entitled to embrace his unfavorable assumptions. What is required,
whether we are talking about the panda’s thumb or the vertebrate eye, is an
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independent reason for believing assumptions about goals and abilities
(Kitcher 1983; Pennock 1999; Shanks 2004; Sober 1999b).20

It is no good arguing as follows: ‘‘Look, the eye was created by an
intelligent designer and the eye has features F1 . . . Fn. Therefore, the
designer in question probably wanted the eye to have features F1 . . . Fn
and had the ability to achieve this goal.’’ This line of reasoning assumes
that the intelligent-design hypothesis is true; however, this is just what the
design argument is trying to establish, and so it can’t serve as a premise in
the argument. What is needed is information about goals and abilities
that we can know is correct without already needing to have an opinion as
to whether the intelligent design or the chance hypothesis is true.
When hypotheses are tested against each other, each is asked to say how

probable the observations are. It is here that a point that Pierre Duhem
(1914) emphasized in connection with theories in physics becomes rele-
vant: Theories rarely make predictions on their own; rather, auxiliary
assumptions need to be brought to bear. For example, the general theory
of relativity, by itself, does not make predictions about when eclipses will
occur or what features they will have. However, if auxiliary information
about various celestial bodies is taken into account, the general theory
of relativity does make predictions about these matters. Duhem’s
point holds for most of the hypotheses that the sciences consider,21 and it
also holds when we recognize that prediction rarely involves deduction.
Duhem’s idea is that the usual pattern in science is that the hypothesis
H does not entail whether the observation statement O will be true; rather
it is H&A that will have this kind of entailment, for suitably chosen
auxiliary assumptions A. The likelihood version of this Duhemian
point is that the value of Pr(O jH) is rarely well defined but that the value
of Pr(O jH&A) can be, again for suitably chosen auxiliary assumptions A.
This raises the question of which auxiliary assumptions we should use to

render a theory testable. What makes an auxiliary assumption ‘‘suitable?’’

20 As noted in §1.7, scientists often use auxiliary propositions to test theories that include harmless
idealizations. These are simplifying falsehoods that lead the theory to make the same, or nearly the
same, predictions it would make if true auxiliary propositions were used instead (McMullin 1985;
Hausman 1992). Assuming that a planet is spherically symmetrical or that a population is
infinitely large can often be justified in this fashion. In this case, the demand for independently
justified auxiliary propositions is not the demand that those propositions be shown to be true;
rather, what is required is independent evidence that the idealization is harmless. However, to
know whether an auxiliary proposition is a harmless idealization, one would have to know what
the truth is, and this is precisely what Paley and Gould do not know with respect to the auxiliary
assumptions they adopt.

21 Quine (1953) generalized Duhem’s thesis, claiming that all theories, not just physical theories,
have this character. This thesis is now often referred to as the Duhem–Quine thesis.
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The point against Paley and Gould is that, in testing H1 against H2, you
must have a reason to think that the auxiliary proposition A is true that is
independent of whatever you may already believe about H1 and H2. For
example, suppose you are on a jury. Jones is being tried for murder, but you
are considering the possibility that Smith may have done the deed instead.
Evidence is brought to bear: A size 12 shoe print was found in the mud
outside the house where the murder was committed, as was cigar ash, and
shells from a Colt .45 revolver. Do these pieces of evidence favor the
hypothesis that Smith is the murderer or the hypothesis that Jones is? It is a
big mistake to answer these questions by inventing assumptions. If you
assume that Smith wears a size 12 shoe, smokes cigars, and owns a Colt .45
and that Jones wears a size 10 shoe, does not smoke, and does not own a
gun, you can conclude that the evidence favors Smith over Jones. If you
make the opposite assumptions, you can draw the opposite conclusion.
Surely it would be wrong simply to commit to assumptions that help
convict Smith or to assumptions that help acquit him, as is your whim.
What is needed is independently attested information about Smith’s and
Jones’s shoe sizes, smoking habits, and gun ownership.
I hope it is obvious that if you want to use the observation O to test

hypothesis H1 against hypothesis H2, that the auxiliary assumptions you
make must not depend for their justification on assuming that H1 is true
or on assuming that H2 is true. What is perhaps less obvious is that the
auxiliary assumptions must be justified without assuming that O is true.
Here is why that additional constraint is needed: If O is true, so is the
disjunction ‘‘either H1 is false or O is true.’’ If you use this disjunction as
your auxiliary assumption A1, then it turns out that the conjunction
H1&A1 entails O. This allows H1 to make a prediction about O even
when H1 has nothing at all to do with O. The same ploy can be used to
obtain auxiliary assumptions A2 so that the conjunction H2&A2 also
entails O. Using propositions A1 and A2 as auxiliary assumptions leads to
the conclusion that the two hypotheses H1 and H2 both have likelihoods
of unity. The way to prevent this is to insist that the auxiliary assumptions
used to bring the hypotheses H1 and H2 into contact with the observation
O must be justified without assuming H1 or assuming H2 or assuming O.
The objection I have described to the organismic design argument

applies to a design hypothesis that postulates an otherwise unspecified
designer and also to a hypothesis that says that this designer is God
himself. If we suppose that God, if he exists, is omnipotent, omniscient,
and omni-benevolent, it still isn’t clear that Pr(the human eye has features
F1 . . . Fn j the eye was made by God) > tiny. The supposition that God
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is omnipotent of course ensures that God has the ability; he could give
human beings an eye with the features we observe if he chose to do so.
The question is whether God would have had the desire. As noted earlier,
we must be careful not to beg the question. We can’t reason that since the
eye was made by God, that God must have wanted human beings to have
eyes with the features we observe. What is needed is evidence about what
God would have wanted the human eye to be like, where the evidence
does not require a prior commitment to the assumption that there is a
God and also does not depend on looking at the eye to determine its
features. The supposition that God is omnipotent, benevolent, and
omniscience does not provide this information. There are many archi-
tectures for eyes, and they are distributed in an interesting way across
different organisms. For example, human beings and other vertebrates
have camera eyes, and so does the octopus. The octopus eye does not have
a blind spot, but ours does. Scorpions have eyes equipped with ‘‘sun-
glasses,’’ but we do not. It seems pretty clear that the mix of features that
the human eye has cannot be predicted from the supposition that God
made those eyes.
Does this problem disappear if we retreat to some logically weaker

description of the observations that need to be explained, as contemplated
in §2.9? For example, instead of trying to explain the details of the
vertebrate eye, what if we simply try to explain why it is useful and
intolerant? Now the problem of blindspots and sunglasses disappears, but
the main problem remains in place. The fact that the eye is useful is
explained by the fact that organisms with eyes live in environments of
certain kinds – roughly, in environments in which useful information
about the environment is packaged in light. The question may then be
put as to why these organisms live in such environments rather than in
darkness, and this returns us to questions about the designer’s goals and
abilities. The same puzzle arises when we turn to the task of explaining
why the eye is intolerant. Even if we waive the wine-bottle problem
(§2.9), it is puzzling why an intelligent designer would have constructed
the eye so that removing or changing any of its parts causes the organism
to stop seeing. Why did the putative designer choose to make the eye
so fragile?
The criticism I have made of the design argument is one that Descartes

endorses in The Principles of Philosophy:

when dealing with natural things we will, then, never derive any explanations
from the purpose which God or nature may have had in view when creating
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them, and we shall entirely banish from our philosophy the search for final
causes. For we should not be so arrogant as to suppose that we can share in God’s
plans. (I, 28)22

It is interesting to put this passage side by side with others in which
Descartes plainly thinks it legitimate to explain human behavior by
describing the beliefs and desires that human beings have. Apparently,
invoking human purposes to explain a set of observations is one thing,
invoking God’s purposes is another. The failure to heed this distinction is
the mistake that undermines Paley’s argument.

2.13 PALEY’S STONE

I have focused on Paley’s discussion of the watch and the eye, but it is
worth revisiting what he says about his first example: the stone found on
the heath. He introduces this example only to brush past it dismissively;
perhaps, he says, ‘‘it had lain there forever; nor would it, perhaps, be very
easy to show the absurdity of this answer.’’ The stone, unlike the watch
and the eye, does not provide a compelling argument for intelligent
design. But why not? The likelihood representation of the design argu-
ment suggests an answer. It is a consequence of the law of likelihood
(§1.3) that

PrðO j IDÞ> PrðO jChanceÞ if and only if

PrðnotO j IDÞ< PrðnotO jChanceÞ:
If an object’s being useful and intolerant favors intelligent design over
chance, then its failing to be both useful and intolerant must have the
opposite evidential significance. This may be why Paley does not offer the
stone as a compelling argument for intelligent design. The watch and
the eye fill the bill; the stone does not.
Although restricting our evidence about the eye and the watch to the

conjunction ‘‘useful and intolerant’’ and restricting our description of the
stone to the negation of that conjunction makes everything fall into place,
the situation becomes less tidy once we recognize that we know more
about all three objects. It then emerges that my objection to what Paley
says about the eye also applies to what he says about the stone. If the

22 See also Principles (III, 2) and his replies to Gassendi (Descartes 1985: II, 241–77).
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stone’s specific features do not favor intelligent design over chance, this
must mean, within the likelihood framework, that

Prðthe stone has features S1 : : : Sn j IDÞ
� Prðthe stone has features S1 : : : Sn j chanceÞ:

But why should we think that this inequality holds? If Paley gets to help
himself to assumptions about the goals and abilities of the putative
designer that are favorable to the design hypothesis in the case of the eye,
why should he abstain from doing so in the case of the stone? We can
easily describe assumptions about the putative stone-maker that render
design more likely than chance. And, of course, there are other assump-
tions that have the opposite effect. The design argument has no more
basis for claiming that design is the better supported hypothesis in the
case of the eye than it has for saying that chance is the better supported
hypothesis in the case of the stone.23

2.14 TESTABIL ITY

My criticism of the design argument might be summarized by saying that
the design hypothesis is untestable, but it is important that this summary
be understood in the right way. It involves no endorsement of Popper’s
proposal that testability should be glossed understood in terms of his
concept of falsifiability, a proposal that I criticized in §2.8. It is perfectly
clear that ‘‘an intelligent designer gave vertebrates their eyes’’ entails that
vertebrates have eyes; therefore, this intelligent-design hypothesis is
falsifiable. What is less clear is that this hypothesis can be tested against
the Epicurean hypothesis that a mindless chance process gave vertebrates
their eyes (or, for that matter, against the evolutionary hypothesis that the
process of evolution by natural selection did the work). In addition, my
analysis takes seriously the Duhemian insight that testable theories typ-
ically do not make predictions (whether deductive or probabilistic) all by
themselves but need to make use of additional auxiliary propositions. This
point should make us cautious about claiming that the design hypothesis
is, in principle, untestable. A statement may now be untestable because we
don’t at present have the independently attested auxiliary propositions
that are needed to bring it into contact with observations, but the situ-
ation may change as knowledge grows. I do not expect this to happen in

23 I am grateful to Susanna Rinard for drawing my attention to this point about the stone.
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the case of the design argument for the existence of God, but my criticism
of the design argument does not depend on making forecasts. To say that
it will never be possible to test a given hypothesis requires considerable
knowledge about what the future of inquiry may bring. The fact that we
now can’t imagine how a given hypothesis could be tested may be due to
the fact that the hypothesis is in principle untestable, but, alternatively, it
may simply reflect our limited powers of imagination.
In the course of trying to develop a theory of what makes a statement

empirically testable, the logical positivists developed a number of proposals,
but one after another turned out to be flawed (Hempel 1951, 1965a).
Many philosophers took this to show that there can be no criterion of
testability.24 For them, the lesson learned is that the problem is impossible,
not just that it is difficult. I am less pessimistic. The logical positivists
employed a limited set of tools. They tried to define testability by using the
concept of an observation statement and the resources of deductive logic.
What would happen if probability theory were added to deductive logic in
this enterprise? And what if we recognize that testability is an epistemic
concept and isn’t strictly logical at all? And how is the problem affected by
taking on board the fact that testing is typically a contrastive enterprise?
Although many philosophers of science now seem to take the past fail-

ures of the positivist project to show that nothing much can be said to
clarify what testability means, they frequently hold that testing is important
in science and that philosophers of science have the job of clarifying what it
means to test a theory. Their implicit view is that testing makes sense but
testability does not. This two-part position is peculiar. What would we
think if chemists took the view that there is lots to say about what happens
when salt dissolves in water, but that there is no hope of providing a theory
of water-solubility? Testing is to testability as dissolving is to solubility.
Philosophers should never have walked away from the concept of testability
(Sober 1999b).
Hempel developed his pessimistic assessment of the prospects for a

criterion of testability against the backdrop of the assumption that test-
ability and ‘‘cognitive meaningfulness’’ are one and the same property.25 In
retrospect, it seems clear that meaningfulness and testability are different. I
suppose that the sentence ‘‘undetectable angels exist’’ is untestable, but the

24 Justus (2007) provides a useful review of these of trials and errors and argues that one of Carnap’s
later proposals remains unrefuted.

25 More precisely, most positivists thought that a meaningful statement must either be empirically
testable or analytic (its truth value being a logical consequence of definitions). This entails that
nonanalytic statements must be empirically testable if they are meaningful.
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sentence is not meaningless gibberish. We know what it says, what logical
relations it bears to other statements, and we can discuss whether it is
knowable; none of this would be possible if the string of words literally
made no sense. However, once testability and meaningfulness are separ-
ated, the condition of adequacy that Hempel uses in his discussion of the
problem becomes highly questionable when it is applied to the concept of
testability. Hempel (1965a:102) says that if S is a meaningless string of
words, then the same is true of all statements in which S occurs as a
(truth-functional) part; if S is meaningless, so is the negation of S, and so
are all disjunctions and conjunctions in which S occurs. Hempel’s con-
dition of adequacy may be right as a claim about what it is for a string of
words to lack meaning, but it is wrong as a constraint on what it is for a
statement to be untestable. To see why, let’s begin with a natural Bayesian
understanding of this concept.
In §1.2, we examined how Bayesianism defines confirmation, discon-

firmation, and evidential irrelevance. For Bayesians, ‘‘O is evidentially
irrelevant to H’’ means that Pr(H jO) ¼ Pr(H). There is a natural gen-
eralization of this idea, one that clarifies what it means for H to be
impervious to observational test:

H cannot be observationally tested if and only if ; for all observation

statements O; PrðH jOÞ ¼ PrðHÞ:
I do not claim that this is a flawless Bayesian definition of testability,26

and, of course, I have already registered my reservations about Bayes-
ianism in Chapter 1. But notice how the Bayesian definition of evidential
irrelevance leads naturally to a concept of testability. And notice also
how it violates Hempel’s criterion of adequacy. Suppose that the state-
ment ‘‘undetectable angels exist’’ is untestable in this Bayesian sense. It
does not follow that the same must be true of conjunctions in which that
sentence occurs. For example, if you draw twenty balls at random from an
urn (with replacement) and observe that all twenty are green, this raises
the probability that all the balls in the urn are green. The same obser-
vation also raises the probability of a conjunction: ‘‘All the balls in the urn
are green and undetectable angels exists.’’ The conjunction is more
probable, given the observation, than it was before. Maybe the con-
junction H&X is meaningless if X is, but that does not entail that H&X

26 Skyrms (1984) discusses this Bayesian proposal, as does Creath (1991). See also Reichenbach’s
‘‘probability theory of meaning’’ (1938: 46–57).
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must be untestable just because X is. If Hempel’s condition of adequacy is
wrong, his article can hardly be regarded as the nail in the coffin that it is
often taken to be.
Here, then, is my suggestion for how testability should be understood. Let

us begin by considering what it means for a statement to have deductive
implications about observations once suitable auxiliary propositions are
added. The problem is to understand what ‘‘suitable’’ means. To see the kind
of problem that the positivists encountered, consider the following proposal:

Proposition P has observational implications if and only if there exists an aux-
iliary assumption A, and an observation statement O, such that P&A entails O
but A by itself does not entail O.

The trouble with this criterion is that it is too broad; it has the conse-
quence that every proposition P has observational implications. Just let A
be the statement ‘‘if P then O.’’ Can this criterion be repaired by requiring
that the auxiliary assumption A be true? The problem now is that if O is
true, so is the statement ‘‘notP or O’’ for any proposition P you care to
name. Let this disjunction be the auxiliary proposition A. Notice that A is
true, P&A entails O, and A, by itself, does not entail O. As the positivists
came to see, the problem is tricky. With some fear that I am stumbling
into the same old quagmire, I offer the following proposal:

Proposition P now has observational implications if and only if there exist true
auxiliary assumptions A, and an observation statement O, such that (i) P&A
entails O, but A by itself does not entail O, (ii) we now are justified in believing
A, and (iii) the justification we now have for believing A does not depend on
believing that P is true (or that it is false), and also does not depend on believing
that O is true (or that it is false).

The word ‘‘now’’ marks the fact that whether a proposition has
observational implications depends on the rest of what we are justified in
believing, and that can change.
This definition of what it means for a statement to have observational

implications does not, by itself, provide an account of testability. For one
thing, it ignores the fact that probability statements (like the claim that a
coin is fair) are testable though they do not deductively entail what we
will observe (§2.8). For another, it follows from the above proposal that
contradictions have observational consequences (assuming, as I do, that
classical logic is correct in saying that contradictions entail all statements),
but this is not enough to show that contradictions are empirically testable.
Bayesians often recommend that contradictions be assigned a probability
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of 0. This assignment entails that no observation can change their
probability. The reason is that probabilities of 0 and 1 are sticky;
if Pr(H) ¼ 0 (or 1) then Pr(H jE ) ¼ 0 (or 1), no matter what E is.
Bayesians who adopt this recommendation will therefore agree that
contradictions are not empirically testable, though, if they accept classical
logic, they will grant that contradictions have observational consequences.
Although the above definition does not capture what testability means,

we can use it as a model for how likelihoodism should understand the
latter idea. The key is to recognize that testing a proposition often
involves probabilistic rather than deductive relations to observations and
that the concept of testing needs to be understood contrastively:

Hypothesis H1 can now be tested against hypothesis H2 if and only if there
exist true auxiliary assumptions A and an observation statement O such that
(i) Pr (O jH1&A) 6¼ Pr (O jH2&A), (ii) we now are justified in believing A, and
(iii) the justification we now have for believing A does not depend on believing
that H1 is true or that H2 is true and also does not depend on believing that O is
true (or that it is false).

Notice that this definition makes use of the concept of justified belief and
thus requires a concept that I set to one side in §1.1. Notice also that
Hempel’s criterion of adequacy is no more plausible within a likelihood
framework than it is within Bayesianism. Likelihoodists, recall, are happy to
grant that specific scientific theories like the general theory of relativity have
well-defined likelihoods, but they deny that this is true of catchall hypotheses
like the general theory of relativity’s negation (§1.3). For a likelihoodist,
GTR can be tested against a specific alternative, but notGTR cannot be.
It remains to say something about what an observation statement is.

Like the concept of testability itself, the concept of observation has come
in for heavy criticism. A rallying cry of 1960s philosophy of science was
the slogan that ‘‘all observations are theory-laden.’’ Kuhn (1962), Hanson
(1969), and Feyerabend (1974) promoted this idea, as did many others. If
the idea of testability requires there to be an observation language that is
absolutely theory-neutral, then I concede that there are no observations,
provided that we are prepared to be fairly relaxed about what a ‘‘theory’’
is. Every statement has the following fairly trivial property: You have to
know something if you are going to (justifiably) affirm or deny that the
statement is true. For example, to assert or deny that ‘‘this is an apple,’’
you have to know what an apple is (or, at least, what counts as evidence
for and against something’s being an apple). Call this your ‘‘theory of
apples.’’ QED. Still, it would be a mistake to take this simple point to
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show that the concept of an observation should be abandoned. The above
definition of what it takes for H1 to be testable against H2 contains the
idea we need. For a statement O to count as an observation in this testing
problem, it must be possible to tell whether O is true without assuming
that H1 is true or assuming that H2 is. An observation in a testing
problem must be relatively theory neutral; it need not be absolutely theory
neutral (Sober 2008a). Scientists often use theories to formulate their
observations; for example, the outputs of measuring devices are inter-
preted by using theories, but that does not prevent these interpreted
outputs from counting as observation reports. Suppose you use a radio-
isotope dating machine to estimate the age of a dinosaur fossil. There is
nothing wrong with your saying ‘‘I see that the fossil is 80 million years
old’’ as you gaze at the machine’s output screen. You then can use this
observational report in the context of testing hypotheses about why
dinosaurs went extinct. A statement can count as an observational report
in one problem even though it is a hypothesis under test in another.27

Although I earlier expressed my doubts about our ability to tell that a
given statement is untestable in principle, this does not mean that there
should be doubts about what that concept means. By replacing the word
‘‘now’’ with an existential quantifier in the proposed criterion of test-
ability, we can define what it means for there to exist a time at which it is
possible to test H1 against H2. We then can further modalize the concept
by defining what it means for it to be possible that there exists a time at
which H1 can be tested against H2. Of course, there are a variety of
concepts of possibility to think about here – logical, nomological, and so
on. However, this should not discourage us: testability is, in this respect,
like the concept of solubility.
The fact that the above definition of testability is stated within a

likelihood framework means that it will need to be modified if the
likelihood framework is inadequate. For example, the proposal ignores
how model selection criteria (§1.7) permit models to be compared,
though it is easy enough to see how ‘‘AIC testability’’ might be defined
along the same lines.28 Despite this limitation, I believe that this

27 There is more to the concept of an observation statement than the requirement of epistemic
independence described here. For example, we know that 5 þ 7 ¼ 12 is true without needing to
have an opinion on whether relativity theory or Newtonian theory is true, but that does not mean
that the arithmetic proposition is an observational report. I won’t try to complete the analysis here;
see Sober (2008a) for further discussion.

28 The requirement that auxiliary assumptions should be epistemically independent of the
hypotheses under test also makes sense in the context of a model selection criterion like AIC.
Akaike discovered assumptions that suffice for AIC to be an unbiased estimate of a model’s
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likelihoodist conception of testability is a step forward from the failed
proposals of the logical positivists. The problem of developing a criterion
of testability is inseparable from the task of understanding the concept of
evidence. It should be addressed, not set aside as if it were a pseudo-
problem.

2.15 THE RELATIONSHIP OF THE ORGANISMIC DESIGN

ARGUMENT TO DARWINISM

To see why the design argument is defective, there is no need to have a
view as to whether Darwin’s theory of evolution is true. In spite of what
the no-designer-worth-his-salt argument suggests (§2.7), we are not in a
situation in which the design hypothesis makes one set of predictions and
evolutionary theory another. The problem with the hypothesis of intel-
ligent design is not that it makes inaccurate predictions but that it doesn’t
predict much of anything. Rather, the design hypothesis merely allows
our observations – whatever they turn out to be – to be folded inside a
simple formula. If the human eye has one set of features, we can construct
the hypothesis that an intelligent designer brought this about; but if the
eye turns out to have a different set of features, that outcome also can be
accommodated within the framework of intelligent design. From the
point of view of Duhem’s thesis, the problem with the design hypothesis
is that we have no independent knowledge of the goals and abilities that
the designer of organisms would have if such a being existed.29

2.16 THE RELATIONSHIP OF PALEY’S DES IGN ARGUMENT

TO CONTEMPORARY INTELLIGENT-DESIGN THEORY

Michael Behe’s (1996) book, Darwin’s Black Box, is one of the most
influential works of the contemporary intelligent-design movement. The
main claims of the book are these:

(1) The various biochemical adaptations that Behe describes are
‘‘irreducibly complex.’’

predictive accuracy. If this is part of what justifies our using AIC to compare LIN and PAR, then
we must have reason to think that those assumptions (or some other assumptions that suffice for
the theorem to hold) are true. This had better not depend on our already having an opinion as to
whether LIN is more predictively accurate than PAR.

29 Johnson, a leading intelligent-design theorist, agrees that God’s purposes are ‘‘inscrutable’’ (1991:
67) and ‘‘mysterious’’ (1991: 71).
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(2) Irreducibly complex adaptations cannot evolve by the gradual
Darwinian process of evolution by natural selection.

(3) If an irreducibly complex adaptation cannot evolve by the process of
Darwinian gradualism, then it is plausible to think that it was
designed and created by an intelligent being.

Behe (1996, 2005) has emphasized that his argument for the existence of
an intelligent designer is not formulated as an argument for the existence
of God. The identity of the designer – God or a team of extraterrestrials –
is left unspecified.30 Behe personally believes that God is the designer in
question, but he admits that this conviction goes beyond what he has been
able to establish scientifically, at least so far.
How is Behe’s framework related to Paley’s? Behe says that an irre-

ducibly complex system is ‘‘a single system composed of several well-
matched interacting parts that contribute to the basic function, wherein
the removal of any one of the parts causes the system to effectively cease
functioning (1996: 39).’’ Behe’s notion of irreducible complexity is very
close to the concepts of usefulness and intolerance that Paley (1802)
described. Both require that the system have a function or purpose or that
it be useful. However, there is a modest difference between Paley and
Behe that concerns how they spell out the second requirement. Behe asks
whether removing any part would result in the system’s malfunctioning,
whereas Paley asks whether changing the shape, size, or placement of any
part would do so. In spite of this small difference, the wine-bottle
problem, discussed in §2.10 in connection with the concept of intoler-
ance, applies, with devastating results, to Behe’s concept. Whether a
system that has a function counts as irreducibly complex depends on how
the system is divided into parts. Another difference between Paley and
Behe concerns the examples they discuss; Behe’s focus is on biochemical
systems such as the bacterial flagellum and the mechanisms that cause
blood to coagulate; these details were, of course, unknown to Paley. But
of greater import is the fact that Behe aims to refute evolutionary theory
whereas Paley’s target was Epicureanism. Behe’s critique of evolutionary
theory raises some new issues.
We have already seen why Epicureanism is logically compatible with

the existence of adaptive complexity. Monkeys pounding at random on
typewriters can produce the works of Shakespeare, and a hurricane

30 His position, when supplemented with independently plausible additional assumptions, entails the
existence of a supernatural intelligent designer, or so I argue in Sober (2007a).
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whirling through a junkyard can produce a functioning airplane. These
outcomes are not impossible; what is true is that they have extremely
small probabilities. We saw in §2.5 that Epicureanism and Darwinian
evolution are different; the first describes a purely random process,
whereas the second involves a two-part process that is partly random and
partly not. Even so, the same point holds: evolution can produce adaptive
features that are irreducibly complex.
Evolutionary biology describes evolution as a probabilistic process.

Evolution isn’t like the motion of Newtonian billiard balls. In Newtonian
physics, the initial conditions of a system plus the laws that govern it
uniquely determine what its future will be. This is what it means for the
theory to be deterministic. In a probabilistic theory, the initial conditions
plus the relevant laws provide a probability distribution; some futures are
more probable and others are less, but there are multiple possible futures.31

To apply this distinction between deterministic and probabilistic theories to
evolutionary biology, we need to come to grips with the fact that evolu-
tionary theory contains a number of different models of the evolutionary
process. The theory recognizes that there are different possible causes of
evolution. There are simple models that describe what will happen when
just one of these causes is in operation and more complicated models that
describe the outcome of multiple causes interacting (Sober 1984).
Although biology conceives of evolution as a probabilistic, not a

deterministic, process, it also is true that biology contains deterministic
models of the evolutionary process. This may sound like a contradiction,
but it is not. The reason it is not is that these deterministic models are
idealizations. Like models in Newtonian mechanics that assume that the
Earth is a perfect sphere or that an inclined plane is frictionless, idealized
models in evolutionary biology make false assumptions. In evolutionary
biology, deterministic models are false because they assume that the
populations being described contain infinitely many individual organ-
isms. To understand why finite versus infinite population size makes a
difference to a model’s predictions, consider the following simple
example. Suppose the organisms in a population reproduce asexually. The
organisms either have trait A or trait B, and suppose that inheritance has
perfect fidelity, with offspring always having the same traits as their
parents. Suppose further that A individuals have a higher probability of
surviving to reproductive age than B individuals have. That is, the two
types of organism differ in their fitness. Let’s suppose, to make things

31 For a more detailed analysis of what determinism involves, see Earman (1986).
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concrete, that A individuals have a probability of 0.6 of surviving and that
B individuals have a probability of surviving of 0.2. Again to keep things
simple, let’s suppose that generations do not overlap; in each generation,
the individuals who survive to reproductive age all produce a single off-
spring at the same time and then they die.
How will traits A and B evolve in this population? If a finite population

begins with a few A individuals and mostly B individuals, it is possible,
after many generations, that the less fit trait B will disappear and the
population will become 100 percent A. However, there is no necessity in
this outcome; this is because, with finite population size, there is a non-
zero probability that all the A individuals in a generation die without
reproducing and that this never happens to the B individuals. On the
other hand, if we assume that population size is infinite, then the fitter
trait (A) must go to fixation (meaning 100 percent representation).32 The
evolution of this infinitely large population is depicted in Figure 2.3. In
such deterministic models, the fitter trait must increase in frequency and
the less fit trait must decline.
Figure 2.3 represents selection acting on a dichotomous trait. To think

about the same set of questions in connection with the evolution of a
quantitative trait (like the length of a polar bear’s fur), it is useful to
consider the trait’s fitness function. Figure 2.4 depicts three examples; each
maps trait values onto fitness values. What must a quantitative trait’s
fitness function be like if the trait is to evolve from one value to another?
For example, if a polar bear population at one time has an average fur
length of 10 centimeters and the climate gets colder, will selection lead the
population to evolve to an average fur length of 20 centimeters? Darwin

0.6 A

Fitness

0.2 B

0 100%A

Figure 2.3 If A individuals have a fitness of 0.6 and B individuals have a fitness of 0.2, no
other evolutionary forces impinge, and the population is infinitely large, trait A must

evolve to 100-percent representation.

32 More precisely, the probability that A goes to fixation in this infinite population is one.
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thought of natural selection as a gradual process; his idea was that the
average trait value in the population will increase by small changes. If a fur
length of 11 centimeters is fitter than a fur length of 10 centimeters, and a
length of 12 centimeters is fitter than 11 centimeters, and so on up to 20
centimeters, the population can be transformed from 10 to 20 centimeters
by the process of Darwinian gradualism. Notice the word ‘‘can’’ in the
previous sentence. It is here that the distinction between deterministic and
probabilistic models becomes relevant. If the population is infinitely large,
fitter trait values must replace less fit trait values, and so the fitness
function depicted in (a) of Figure 2.4 entails that the population must
evolve from 10 to 20 centimeters. On the other hand, if the fitness
function is either (b) or (c) in Figure 2.4, an infinite population cannot
make this transition. However, these claims of necessity and impossibility
are both cancelled if the population is finite. What is true is that a finite
population has a higher probability of evolving from 10 to 20 centimeters
if the fitness function is the one shown in (a), but its probability of
making this transition is not zero if (b) or (c) is the fitness function in
place. In (b), the population must undergo neutral evolution; in (c), the
population must evolve against the tide of natural selection.
We can use the concept of a fitness function to say something about

how the irreducible complexity of a trait is related to how (or whether) the
trait will evolve. Consider an organ (like the eye) or a biological process
(like blood coagulation) that has many parts (p1, p2, . . . , pn). Suppose
that if all the parts are present, the organism gains an advantage. In the
case of the eye, the organism can see. Suppose further that a miss is as good

a

Fitness

b

c

10 20 30

Trait value

Figure 2.4 A trait that evolves from a value of 10 to a value of 20 by the process of
Darwinian gradualism in an infinite population must have a fitness function that
monotonically increases from 10 to 20. This is true for (a), but not for (b) or (c).
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as a mile; if an organism fails to have all the parts in place, it has the same,
lower, fitness value. This idea is summarized in the nonmonotonic fitness
function C shown in Figure 2.5. It contrasts with the monotonic fitness
functionM, in which each additional part increases the organism’s fitness.
If a finite population is to evolve from 0 to 1 to 2 . . . to all n parts in
stepwise fashion, this progression is more probable under fitness function
M than it is under C. For all n parts to evolve under the latter fitness
function, the trait must drift by neutral evolution from 0 parts to n�1;
only then does natural selection kick in, causing the population to take
the last step, from n�1 to n. On the other hand, if the population is
infinite, something stronger can be said: The stepwise evolution must
occur if M is true but it cannot do so if C is true.
Chapter 6 of The Origin of Species is called ‘‘Difficulties of Theory.’’

Darwin begins the section on ‘‘Organs of Extreme Perfection’’ with this
comment on Paley’s well-worn example:

To suppose that the eye, with all its inimitable contrivances for adjusting the
focus to different distances, for admitting different amounts of light, and for the
correction of spherical and chromatic aberration, could have been formed by
natural selection, seems, I freely confess, absurd in the highest degree. Yet reason
tells me, that if numerous gradations from a perfect and complex eye to one very
imperfect and simple, each grade being useful to its possessor, can be shown to
exist; if further, the eye does vary ever so slightly, and the variations be inherited,
which is certainly the case; and if any variation or modification in the organ be
ever useful to an animal under changing conditions of life, then the difficulty of
believing that a perfect and complex eye could be formed by natural selection,
though insuperable by our imagination, can hardly be considered real. (Darwin
[1859] 1964: 186–7)

Fitness

M

C

0
Number of parts present

all n

Figure 2.5 If there are n parts to an eye, how fit are organisms that have 0, or 1, or 2, . . . ,
or (n � 1), or all n? If natural selection in an infinite population is going to cause the eye

to evolve one part at a time, a monotonic fitness function, such as M, is required.
However, if the trait is irreducibly complex, the fitness function will resemble C.
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Biologists often follow Darwin’s lead here, arguing that the eye and
other complex adaptations have monotonic fitness functions. Creationists,
in contrast, tend to think in terms of fitness functions like C. ‘‘What good
is 1 percent of an eye?’’ they ask, thinking that the answer to this rhet-
orical question is obvious: It is no good at all. Behe, like his predecessors,
thinks this shows that the trait cannot evolve. I hope that the distinction
between finite and infinite population size makes it clear that this does not
follow.
There is a second problem with Behe’s position on irreducible com-

plexity. Although a system like the camera eye can be segmented into
parts in such a way that it counts as irreducibly complex, this does not
guarantee that the evolution of the system involved a stepwise accumu-
lation of those parts. Consider the horse and its four legs. A horse with
zero, one, or two legs cannot walk or run; suppose the same is true for a
horse with three. In contrast, a horse with four legs can walk and run, and
it thereby gains a fitness advantage. So far so good: the tetrapod
arrangement satisfies the definition of irreducible complexity. The mis-
take comes from thinking that horses (or their ancestors) had to evolve
their tetrapod morphology one leg at a time. In fact, the development of
legs isn’t controlled by four sets of genes, one for each leg; rather, there is
a single set that controls the development of appendages (Griffiths et al.
2005: Chapter 18). A division of a system into parts that entails that the
system is irreducibly complex may or may not correspond to the historical
sequence of trait configurations through which the lineage passed. This
point is obvious with respect to the horse’s four legs, but needs to be
borne in mind when other, less familiar, organic features are considered.
A third problem for Behe’s framework concerns the fact that Figures 2.5

and 2.6 have ‘‘fitness’’ on the y-axis and say nothing about the function of
the system in question. What matters to the process of evolution by
natural selection is how a trait affects an organism’s probability of sur-
viving and reproducing as compared to the effects that alternative traits
have that are also present in the population. It doesn’t matter whether the
trait always performs the same function throughout its evolution or
switches function. This point is not so obvious when we think about the
evolution of the eye, since both Darwinians and creationists tend to think
about the evolution of the eye by asking how gradual modifications of the
eye affect an organism’s ability to extract information about the envir-
onment that is present in light. We therefore need to examine a new
example to see the relevance of the idea of function switching to Behe’s
views on irreducible complexity.
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Consider the wing. A full wing allows the organism to fly. But 1
percent of a wing doesn’t permit 1 percent flying. Tiny wings do not
provide enough lift for flying or even for gliding. The wing seems to be a
more alarming problem for Darwinian gradualism than the eye is. At first
glance, it appears that the fitness function for the wing will look like C,
not M, in Figure 2.6. Kingsolver and Koehl (1985) provide an interesting
approach to this problem in connection with insect wings. There are
insects around now that have tiny wing buds; these buds aren’t big
enough to permit the insect to fly or glide. Rather, they are useful as
thermoregulators; insects turn these buds towards or away from the sun
and thereby raise or lower their body temperature. This and other details
suggest the following scenario. Insect wings began evolving because wings
were useful as thermoregulators. Once these ‘‘wings’’ had evolved to a
sufficient size, a new selection process began in which larger wings were
selected because they promoted flight. Wings started evolving for one
reason but then continued to evolve for another. Function switching is a
pervasive theme in evolution.33 Notice that Behe’s concept of irreducible
complexity ignores it. He defines irreducible complexity in terms of the
function a structure has now and whether the structure would be able to
perform that same function if one of its parts were excised. Behe thinks it is

Figure 2.6 An arch surmounted by a keystone satisfies the definition of irreducible
complexity. Yet, it can be built by a process of addition and subtraction, one stone at a

time (Cairn-Smith 1982).

33 Darwin ([1859] 1964: 190–2) discusses the importance of function-switching in evolution, citing
the example of the swimbladder in fish – ‘‘an organ originally constructed for one purpose, namely
flotation, may be converted into one for a wholly different purpose, namely respiration.’’
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a problem for evolutionary biology if wings now have the function of
promoting flight but would not be able to perform that function if even
one of their parts were removed. This is a problem only if flying was the
name of the game all along.
Cairn-Smith (1982: 93–9) describes a nonbiological example that

brings out another important feature of the concept of irreducible com-
plexity. Suppose you come upon a stone arch that frames an open
doorway and is surmounted by a keystone. The arch has been constructed
without mortar. You notice that if any of the stones in the arch were
removed, it would collapse. You naturally assume that the arch has the
function of providing a doorway through the surrounding wall and
conclude that the arch satisfies the definition of irreducible complexity.
Of course, you have no doubt that the arch is the product of human
intelligent design. But could the arch have been built one stone at a time? If
you consider just the stones in the arch you see before you, the answer
seems to be no. But consider Figure 2.6, which depicts a wall that can be
built by adding stones one by one, after which three stones can be removed
one at a time, with the result that only the arch set in the wall remains. Behe
may reply that irreducibly complex structures like the arch can, of course,
be built by intelligent designers; his point is that evolution can do no such
thing. But Cairn-Smith’s arch, built by stepwise addition and subtraction
with irreducible complexity resulting at the end, provides a nice model for a
mindless evolutionary process that does precisely the same thing.
The example may be developed further by bringing it into contact with

the idea of function-switching. Suppose the builders add stones one at a
time to make a solid wall, but that once the wall is built, a new purpose
comes to mind – they want to create a passageway through the wall, so
they remove the three stones. It may seem far-fetched that builders would
revise their plan like this, but that does not matter to the point at hand.
When the wall was on the way up, each rock was useful, but once the wall
was completed and the three stones were removed, the remaining rocks in
the arch became indispensable. This is the pattern that Orr (1996, p. 7)
sees in the evolution of lungs:

The transformation of air bladders into lungs that allowed animals to breathe
atmospheric oxygen was initially just advantageous: such beasts could explore
open niches – like dry land – that were unavailable to their lung-less peers.
But as evolution built on this adaptation (modifying limbs for walking, for
instance), we grew thoroughly terrestrial and lungs, consequently, are no
longer luxuries – they are essential. The punch-line, is, I think obvious:
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although this process is thoroughly Darwinian, we are often left with a system
that is irreducibly complex.

Behe (2001, pp. 692–693) replies to Orr by denying that lungs and swim
bladders are single systems, which means that the definition of ‘‘irredu-
cible complexity’’ does not apply. The reason Behe offers for this verdict is
that organs ‘‘contain so many active, unknown components . . . that one is
dealing with a ‘black box’ whose capacities are substantially obscure.’’
Notice that this is a point about our knowledge; it hardly follows that
lungs aren’t irreducibly complex. However, if Behe’s point is that we are
in no position to say whether lungs are irreducibly complex because there
are open questions about one or more of their components, the same will
be true of the examples that Behe thinks are clear cases of irreducible
complexity – the bacterial flagellum and the biochemical processes of
blood coagulation. In any event, whether lungs are, in fact, irreducibly
complex isn’t the main point that Orr is making. His point about lungs is
the same one that Cairn-Smith made about the arch – if a system is
irreducibly complex, this doesn’t rule out its evolving by an incremental
Darwinian process.
These points can be tied together by considering the concept of

epistasis used in population genetics. Suppose an organism’s fitness is
influenced by its genotype at two loci, as shown in Figure 2.7. The
numbers represent an individual’s probability of surviving from egg to
adult. This set of fitness values is epistatic because the fitness ordering of
the three genotypes at one locus depends on what genotype is present at
the other. Notice that in an infinite population in which the a gene
remains at fixation it will be impossible for selection to transform the

Genotypes at the B locus

bb BB

AA 0.5

0.2 0.1 0.6

0.1 0 0.7

0.40.3
Genotypes 

at the 
A locus

Aa

aa

Present state

Bb

Figure 2.7 Hypothetical example of epistatic fitness relationships. Cell entries are
fitness values (probabilities of surviving to reproductive age) that depend on the
organism’s genotype at two loci. The population can evolve from aabb to aaBB

without crossing a fitness valley.
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population from 100 percent b (i.e., everyone is a bb homozygote) to
100 percent B (i.e., everyone is BB). To do so would involve traversing
a fitness valley; if a single mutation from b to B occurs in a population
of aabb individuals, the individual affected will be aaBb and selection
will eliminate the novel allele. In a population in which everyone is aa,
the BB genotype satisfies the definition of irreducible complexity:
Remove a copy of B (or replace it with the b allele) and the organism is
dead. If we observe an aaBB population and discover that aaBb is lethal,
we might be inclined to think that some process other than selection
was responsible for B’s replacing b. But considering both loci shows that
there is a path of increasing fitness that takes the population from 100
percent b to 100 percent B without crossing a valley. If the population
starts at aabb, it will evolve to AAbb, and then to AABB, and then to
aaBB, with fitness increasing every step of the way. This analysis of how
genes at the two loci evolve does not depend on what phenotypes are
produced by what gene combinations. Nor does the word ‘‘function’’
play any role. Maybe there is function switching as the population
evolves. It is curious that the trajectory of gene frequencies in Figure 2.7
resembles the curve of the arch in Figure 2.6. Just as the arch can be
built by adding and subtracting stones, so the aaBB phenotype can be
built from aabb, first by adding AA and later by taking it away. In both
cases, the initial impression that ‘‘you can’t get there from here’’ by a
series of small steps is an illusion.

2.17 THE RELATIONSHIP OF THE DESIGN ARGUMENT TO THE

ARGUMENT FROM EVIL

The argument from evil is an argument for atheism; it asserts that the
kinds and quantities of evil that exist in our world show that there is
no God, where God is assumed to be omnipotent (all-powerful [P]),
omniscient (all-knowing [K]), and omni-benevolent (entirely good
[G]). One easy reply to this argument that is open to the theist is to
abandon the assumption that God is all-PKG. Another is to deny that
there is so much evil. This is what Paley maintains in Chapter 26 of
Natural Theology; for Paley, ‘‘it is a happy world after all. The air, the
earth, the water, teem with delighted existence’’ (1809: 98). Paley also
records that ‘‘few diseases are fatal’’ and offers as evidence a hospital
record that summarizes the outcomes for patients over a six-year period
(p. 458):
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Admitted 6,420
Cured 5,476
Dead 234

He argues that the preponderance of pleasure over pain shows that God
is benevolent.34 The problem of evil is more difficult for theists who
decline to see the world through rose-colored glasses and who wish to
retain their belief that God exists and is all-PKG.
Atheists who agree with my criticism of the design argument should

reconsider whether they think the argument from evil is convincing. If
complex adaptations cannot be said to favor intelligent design over
chance, since we have no independent knowledge of what the putative
designer’s goals and abilities would be, how can we be so sure that an all-
PKG God would not have had his reasons for allowing evils to exist in the
quantity that we observe? Perhaps these evils are necessary correlates of
greater goods, where some of these correlations are completely beyond our
ken. If we don’t know what God would have wanted to achieve if he built
a panda, perhaps we also don’t know what amount of evil there would be
if God created the entire world. The design argument and the argument
from evil reach opposite conclusions: The former is a proof of the
existence of God whereas the latter is a proof that God does not exist –
but maybe they have a common flaw.
The problem of evil is not that evil exists, but that there is so much of

it. Apparently, there is more evil in the world than is consistent with the
existence of an all-PKG being. But perhaps the appearance can be
explained away. The project of attempting to explain how an all-PKG
God could permit so much evil to exist is called theodicy. For example, it
is sometimes pointed out that some of the evils that exist are soul-
building (Hick 1978); sometimes, when we experience adversity, the
experience makes us stronger and also helps others to become better
people by witnessing our fortitude. If the benefit of having moral
fortitude exceeds the cost we pay when we gain our fortitude by
suffering through adversity, then soul-building may explain why an

34 Was Darwin ([1859] 1964: 62) replying to Paley when he wrote that ‘‘we behold the face of
nature bright with gladness, we often see superabundance of food; we do not see, or we forget, that
the birds which idly singing round us mostly live on insects or seeds, and are thus constantly
destroying life; or we forget how largely these songsters, or their eggs, or their nestlings, are
destroyed by birds and beasts of prey; we do not always bear in mind, that though food may be
now superabundant, it is not so at all seasons of each recurring year’’?
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all-PKG being would permit some evil to exist. But there is so much
more. Another familiar argument in the project of theodicy concerns
free will. It is often claimed that some evils exist because human beings
have free will and sometimes freely choose actions that are wrong. Free
will is supposed to be such a wonderful thing that a benevolent God
would have given us this great benefit even though it brought with it a
considerable cost. Like a number of other philosophers, I don’t see why
having free will rules out always freely choosing to do the right thing.35

If a sinner can have free will, why can’t a saint? But even if we grant for
the sake of argument that free will and soul-building account for some of
the evils that there are, there still appears to be vastly more evil than we
have so far explained. There are evils that don’t build souls and that
aren’t due to anyone’s exercising their free will. How can this excess be
reconciled with the existence of an all-PKG God?
I think it fair to say that no one so far has explained this. But that does

not prove that atheism is true (even granting the assumption that God, if
he exists, is all-PKG). You can’t deduce the nonexistence of an all-PKG
God from the fact that there is more evil than human beings have been
able to explain. But perhaps something more modest can be claimed.
Maybe the existence of so much evil is evidence against the existence of
such a being. When a coin is tossed 1,000 times and lands heads every
time, that does not allow one to deduce that the coin isn’t fair, but surely
these observations favor the hypothesis that the coin is biased over the
hypothesis that it is fair. For the evil we observe to favor atheism over the
hypothesis that an all-PKG God exists, the following likelihood inequality
would have to be true:

PrðE j there is no GodÞ> PrðE j an all-PKG God existsÞ:

In this inequality, E is a detailed description of the evils that exist. This
is a likelihood representation of the thought behind the evidential argu-
ment from evil (Rowe 1979).36 By using likelihoods, it is possible to
consider competing hypotheses that are exclusive but not exhaustive;

35 Compatibilism is the philosophical position that freedom and causal determinism are not in
conflict. On this view, freedom does not require the absence of determinism but only that our
actions be caused in a certain way; the compatibilist philosopher then has the job of describing
what that way is. Hume was a compatibilist and so are a number of contemporary philosophers.

36 Howard-Snyder (1996) is a useful anthology of recent work on the evidential problem of evil.
Draper (1989, 1996) represents the argument in terms of likelihoods.
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for example, I have left aside the possibility that there is a God who is not
all-PKG. And there is no need to consider the prior probabilities of the
two hypotheses, either.
Wykstra (1984: 87–9) argues against the evidential argument by saying

that it is committed to the following assumption:

If an all-PKG God had a reason for permitting horrendous evils to exist, human
beings would know what those reasons are.

Wykstra (like Plantinga 1974) denies that this proposition is true. The
likelihood formulation of the evidential argument from evil shows why
the argument does not require so strong a premise. The evidential
argument is consistent with our having considerable uncertainty about
what God’s motives would be in allowing some horrendous evils to exist.
The question is whether E ’s probability increases if there is no God.
In an earlier publication (Sober 2004b), I took the view that the

organismic design argument and the argument from evil are precisely on a
par in that both require assumptions that we are not entitled to make.
Now I am not so sure. Perhaps the design argument requires more
knowledge of the designer’s goals than the argument from evil does.
Maybe the hypothesis that an all-PKG God exists makes predictions
concerning how much evil there should be even though it does not
predict the architecture of the vertebrate eye or the panda’s paw. If so,
atheists can consistently accept my criticism of the design argument and
still think there is something to the evidential argument from evil. What
seems less plausible is the thought that the organismic design argument is
successful, while the evidential argument from evil requires assumptions
that we have no reason to believe. This is not the place to pursue these
issues further. Suffice it to say that theists who reply to the argument from
evil by saying that God’s goals are inscrutable should have little sympathy
with the organismic argument from design.

2.18 THE DESIGN ARGUMENT AS AN INDUCTIVE

SAMPLING ARGUMENT

I have argued that the design argument is unsuccessful because we have no
way to evaluate

Prðthe eye has features F1 : : : Fn j the eye was made by an

intelligent designerÞ:
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My point is not that we don’t know what the point value is of this
probability but that we can’t even judge whether it is greater or less than

Prðthe eye has features F1 : : : Fn j the eye was the result of a mindless

random processÞ:
The value of this second probability is very low, but it is not zero. As we have
seen, auxiliary propositions can be invented about the putative designer’s
goals and abilities that insure that the likelihood of the intelligent-design
hypothesis is very high, but it is equally true that auxiliary propositions
can be invented that insure that the likelihood of the intelligent-design
hypothesis is zero. What is needed is not the invention of auxiliary prop-
ositions (whether they help or hurt the design hypothesis) but the identi-
fication of auxiliary information that is independently supported. Paley did
not provide this information, and the same is true of modern defenders of
the design argument.
I now want to consider an objection to my criticism of the argument

from design. It contends that there are clear cases in which we have ample
reason to infer that an intelligent designer is responsible for what we
observe even though we have no independent information as to what
goals and abilities this putative designer would have if he existed. The
thought is that there are observations O that give Pr(ID jO) a high value,
even though we don’t know whether Pr(O j ID) is high or low. True,
when the design argument is given a likelihood formulation, information
about goals and abilities is needed. But the suggestion is that this
requirement does not apply if we formulate the design argument as a
probability argument based on inductive sampling.37 After all, there are

37 Behe (1996: 197) says that ‘‘the conclusion that something was designed can be made quite
independently of knowledge of the designer.’’ It isn’t clear to me what kind of argument Behe
(1996) thinks his version of the design argument is, though he (1996: 285–286) praises Dembski’s
(1998) framework for detecting design; see Fitelson et al. (1999) for criticisms of Dembski’s
approach. More recently, Behe (2006) has suggested that the design argument is inductive.
Commenting on his testimony at the Kitzmiller v. Dover Area School District trial, he says:

as I testified, the intelligent design argument is an induction, not an analogy. Inductions do not
depend on the degree of similarity of examples within the induction. Examples only have to share
one or a subset of relevant properties. For example, the induction that, ceteris paribus, black objects
become warm in the sunlight holds for a wide range of dissimilar objects. A black automobile and
a black rock become warm in the sunlight, even though they have many dissimilarities. The
induction holds because they share a similar relevant property, their blackness. The induction that
many fragments rushing away from each other indicates a past explosion holds for both fire-
crackers and the universe (in the Big Bang theory), even though firecrackers and the universe have
many, many dissimilarities. Cellular machines and machines in our everyday world share a
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plenty of cases in which we can estimate the value of Pr(H jO) but have
no clue as to the value of Pr(O jH). Consider, for example, the recent
discovery of two genes (BRCA1 and BRCA2); most women who have one
or the other of these genes develop breast cancer; from this frequency
data, we can infer that Pr(S will develop breast cancer j S has BRCA1 or
BRCA2) is high. But knowing the frequency with which women who have
these genes develop breast cancer leaves completely unspecified how often
women with breast cancer have these genes and, thus, no basis for esti-
mating Pr(S has BCA1 or BCA2 j S has breast cancer). As it happens,
among women who have breast cancer, fewer than 10 percent have these
genes, but that is a separate fact.
The thought that the design argument does not require information

about the goals and abilities of the putative designer can be developed
in connection with some examples that Hume discusses in his Dialogues
Concerning Natural Religion. In Book III, Cleanthes replies to Philo,
who criticized the design argument for being a weak inductive or ana-
logical inference, a criticism we considered in §2.11. ‘‘Suppose,’’ says
Cleanthes,

that an articulate voice were heard in the clouds, much louder and more
melodious than any which human art could ever reach: suppose, that this voice
were extended in the same instant over all nations, and spoke to each nation in its
own language and dialect: suppose, that the words delivered not only contain a
just sense and meaning, but convey some instruction altogether worthy of a
benevolent Being, superior to mankind: could you possibly hesitate a moment
concerning the cause of this voice? and must you not instantly ascribe it to some
design or purpose? Yet I cannot see but all the same objections (if they merit that
appellation) which lie against the system of Theism, may also be produced
against this inference.

Cleanthes’ point, applied to the criticism of the likelihood formulation of
the design argument that we are considering, is this: If we have no
independent information about the goals and abilities of the putative
designer in the case of the vertebrate eye, then we also have none in the
case of the voice from the clouds. But surely that should not stop us from
inferring an intelligent designer in the latter case. And so it should not do

relevant property – their functional complexity, born of a purposeful arrangement of parts – and
so inductive conclusions to design can be drawn on the basis of that shared property. To call an
induction into doubt one has to show that dissimilarities make a relevant difference to the
property one wishes to explain.
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so in the former. After introducing the example of the voice from the
clouds, Cleanthes adds the following:

Might you not say, that all conclusions concerning fact were founded on
experience: that when we hear an articulate voice in the dark, and thence infer a
man, it is only the resemblance of the effects which leads us to conclude that there
is a like resemblance in the cause: but that this extraordinary voice, by its loudness,
extent, and flexibility to all languages, bears so little analogy to any human voice,
that we have no reason to purpose any analogy in their causes: and consequently,
that a rational, wise, coherent speech proceeded, you know not whence, from
some accidental whistling of the winds, not from any divine reason or intelligence?
You see clearly your own objections in these cavils, and I hope too you see clearly,
that they cannot possibly have more force in the one case than in the other.

Cleanthes is here seeking to undermine Philo’s earlier suggestion, discussed
in §2.11, that the design argument requires there to be a strong analogy.
Cleanthes says that a strong analogy is present when we hear a voice in the
dark and absent when we hear the voice in the clouds, but the two argu-
ments are equally compelling. He then attempts to bolster his position by
introducing another example. Suppose we discovered books that reproduce
themselves. These books, like the voice from the clouds, would be entirely
unprecedented; Cleanthes’ point is that, even so, we are right, in both cases, to
infer the existence of an intelligent designer. I don’t see much hope for
analyzing these arguments in terms of whether the analogies they use are
strong or weak (§2.11). The voice from the clouds is similar to the terrestrial
voices we routinely hear in some ways, and, of course, it differs from them in
others. But if the argument is not an argument from analogy, what kind of
argument is it? The suggestion I wish to explore is that the design argument
aims to show that Pr(ID jO) is high without addressing whether Pr(O j ID)
is high or low. Maybe this probability argument can succeed even though the
likelihood argument fails. Let us see.
Cleanthes’ two examples about the voices have a common structure.

Each begins with the same set of mundane observations:

f1 ¼ freqðan intelligent designer produced noise X j noise X is an

English sentence & we hear noise X & we see what

produced X Þ is high:

When we hear an English sentence (I use this language as a convenient
example) and we see what caused it, we almost always see that an intel-
ligent designer (namely, a fellow human being) produced the sentence.
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The argument about the voice in the dark takes this frequency data to
show what is true when the lights are off:

p1a ¼ Prðan intelligent designer produced noise X j noise X is an

English sentence&we hear noise X & we do not see what

produced X because the lights are off Þ is high:
The argument about the voice in the clouds takes the same frequency data
to show what is probably true when the voice comes from the clouds:

p1b ¼ Prðan intelligent designer produced noise X j noise X is

an English sentence & we hear noise X & we do not see what

produced X because the voice came from the cloudsÞ is high:38

Both arguments extrapolate from the mundane cases described in f1
though they do so to different degrees; the voice in the dark is a modest
extrapolation, while the voice in the clouds is more dramatic. These
arguments do not require us to say anything concerning how probable it
is that an intelligent designer who lives in the dark or in the clouds will
produce an English sentence. With respect to the former, the probability
is apt to be low unless we’re talking about a monolingual speaker of
English. And who knows how inclined a celestial intelligence would be to
boom English sentences down to Earth?
The organismic design argument can be reformulated on this model.

We begin with frequency data:

f2 ¼ freqðan intelligent designer produced X jX is complex

and useful & we observe what produced X Þ is high:
Here I’m using the term ‘‘complex and useful’’ to refer both to the complex
features of organisms that help them survive and reproduce and to the
complex features of humanly created artifacts (like watches) that make them

38 Cleanthes adds a surprising detail to this example. It isn’t just that the voice from the clouds
produces an English sentence; rather, the single sequence of sounds that the voice produces is
simultaneously heard by each speaker around the world in his or her native language. Cleanthes
does not explain how a single sequence of sounds can simultaneously be a sentence in all these
many languages (Dye 1988), but that is a detail that does not matter to the epistemology. What we
know by observation is that each speaker hears a voice from the clouds speaking in his or her own
language, and each draws the conclusion that the sound was produced by an intelligence. We do
not observe whether there is one intelligence or many, and whether there is one sequence of sounds
or many occurring simultaneously (with each listener hearing only one of them) does not matter.
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useful to human beings. From this fact about what we observe, the design
argument draws an inference concerning a somewhat different type of case:

p2 ¼ Prðan intelligent designer produced X j X is complex

and useful & we do not observe what produced X Þ is high:
If Cleanthes is right about the voice in the dark and the voice from the clouds,
it seems that the design argument is on firm ground as well when it is for-
mulated as an inductive sampling argument. Here again, the argument does
not require that we know how inclined or how able an intelligent designer
would be to produce the complex and useful devices we see around us.
There are two differences between the fs and the ps in these arguments.

First, f is a sample frequency while p is a probability. Second, the fs and
the ps contain different conditioning propositions. To knit the premise
that f is high to the conclusion that p is high, we need to think of these
inferences as each having two steps. To this end, we need to introduce a
new probability, q, that ‘‘goes between’’ f and p in each case. Combining
Cleanthes’ two arguments about voices into one, we obtain:

(VOICES) f1 ¼ freq(an intelligent designer produced noise X j noise X is an
English sentence & we hear noise X & we see what produced
X) is high.

Therefore, q1 ¼ Pr (an intelligent designer produced noise X j noise X is an
English sentence & we hear noise X& we see what produced
X) is high.

Let p1 ¼ Pr (an intelligent designer produced noise X j noise X is an
English sentence & we hear noise X & we do not see what
produced X because the lights are off or because the voice
comes from the clouds).

q1 � p1.

Therefore, p1 is high.

The inductive sampling version of the organismic design argument also
has two steps:

(IND-ID) f2 ¼ freq(an intelligent designer produced X jX is complex and useful
& we see X & we see what produced X) is high.

Therefore, q2 ¼ Pr (an intelligent designer produced X jX is complex and
useful & we see X & we see what produced X) is high.

Let p2 ¼ Pr (an intelligent designer produced X jX is complex and useful
& we see X & we do not see what produced X).

q2 � p2.

Therefore, p2 is high.
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First we infer that q is high from the fact that f is high. This permits us
to conclude that p is high as well, provided that we add a bridge principle
that links the values of the two probabilities. The bridge principle says
that q � p. When we hear the voice in the dark or the voice in the clouds,
we can conclude that this was probably due to intelligent design even
though we do not see what produced those voices. This is justified
because, in other cases in which we do see where voices come from, we see
that they almost always come from intelligent beings. By parity of rea-
soning, when we see an object that is complex and useful and do not
observe what produced the object, we can conclude that it was probably
produced by an intelligent designer. This is justified because, in other
cases in which we do see where complex and useful objects come from, we
see that they almost always come from intelligent designers. Cleanthes is
proposing a persuasive analogy, as persuasive in its way as Paley’s analogy
between the watch and the eye. But does it work?
The structure of these arguments – (VOICES) and (IND-ID) – is

captured by the two-urn problem depicted in Figure 2.8. We sample balls
from the first urn and observe what the frequency f of green balls is in the
sample. From this we infer what value we should assign to q, the prob-
ability of a ball’s being green if it is drawn from the first urn. Given this
estimate of the value of q, we need to say what the probability p is of
drawing a green ball if we sample from the second urn. It is obvious that
the first urn provides no guidance as to the second unless a bridge
principle linking the two probabilities is correct. If we accept the bridge
principle that q � p, we can infer what the probability is of drawing a
green ball from the second urn, based on data concerning what we
observed when we drew from the first.
I have emphasized the isomorphism of these examples, just as

Cleanthes would wish. And I grant that there is nothing wrong with

Urn 1 Urn 2

f q p 

Observed 
frequency

Inferred 
probability

Inferred 
probability

Figure 2.8 If we accept the bridge principle q � p, we can estimate the value of p by
observing the frequency f.
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inferring that the voice in the dark and the voice in the clouds were both
probably produced by an intelligent being. Yet, I churlishly persist in
thinking that the inductive sampling version of the organismic design
argument is unsuccessful. Before I explain why, I need to tinker with the
first premise in IND-ID, since I think this first premise was known to be
false in the past and is known to be false today. Many of us have had the
experience of seeing organisms brought into being by the process of
biological reproduction. We see what causes a puppy to come into
existence when we see its parents copulate. And we see something further –
that the puppy has eyes because this feature was transmitted to it by its
parents. We do not see an intelligent designer fashioning the puppy and its
adaptive features. Of course, defenders of the design argument do not
maintain that each organism is the result of a separate act of intelligent
planning; their idea is that a designer created one or more organisms
initially and subsequent organisms arose because earlier organisms
reproduced. This means that the first premise of (IND-ID) needs to be
changed to something like the following:

f2* ¼ freq(an intelligent designer designed and produced X jX is complex and
useful & we see X & we see what produced X & if X is a member of a
lineage of objects that produce copies of themselves, then X is the first
member of that lineage) is high.

I take it that the only objects that satisfy the conditioning proposition in
this revised premise are humanly designed artifacts. A somewhat similar
modification is needed in the first premise of (VOICES), at least for
modern readers familiar with radios, televisions, or CD players. With
these modifications in place, the first premise in each argument is true.
Given the value of an observed frequency (f ), (VOICES) and (IN-IND)

then infer the value of a probability (q). I do not fault this inference, though
it is well to recall from Chapter 1 that Bayesians think that this inference
requires prior probabilities (§1.2), whereas frequentists understand induc-
tion in terms of maximum likelihood estimation or some other inference
procedure that is justified because of its long-term operating characteristics
(§1.5). Neither school thinks of induction as basic and irreducible. Even so,
both statistical philosophies can see their way clear in the two arguments to
infer that q is high from the fact that f is high. So far, so good.
The next step in the two arguments is where there is a parting of

the ways. The bridge principle in (VOICES) is reasonable, but that in
(IND-ID) is not. Even if we have never before heard a voice in the dark,
our experience gives us reason to think that the English sentence we now
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are hearing in the dark was produced by an intelligent being. We have
heard English sentences in lighting conditions that range from bright
sunlight to the dimmest twilight. Across this range of cases, we see that the
sounds always or almost always emanate from an intelligent being,
namely a fellow human being. Reducing the amount of illumination
apparently does not affect the frequency with which the sound of an
English sentence comes from a being who has a mind. This is an
important reason for thinking that if the lights were entirely off that the
probability of an intelligent designer would be approximately the same.
The same point holds for the voice in the clouds. Even if we have never
before heard a voice from the clouds, both we and our eighteenth-century
predecessors have had ample opportunity to observe that the frequency
with which English sentences come from intelligent beings is not affected
by how high off the ground the sound is. In the 1780s, the Montgolfier
brothers and their imitators transported people from earth to sky in hot-
air balloons. As the passengers rose, spectators on the ground could see
that the sounds coming from above that took the form of English or
French sentences were invariably produced by intelligent human beings.
And before hot-air balloons, people were accustomed to hearing speeches
delivered and songs sung from balconies, towers, and windows above the
ground floor. There was ample evidence that elevation above the surface
of the Earth does not matter – regardless of elevation, sounds that con-
stitute sentences always, or almost always, issue from the mouths of
human beings. The bridge principle in (VOICES), p1� q1, is reasonable.
What evidence do we (or our eighteenth-century predecessors) have that

the difference between living organisms and nonliving artifacts does not
matter in the case of (IND-ID)? We considered a continuum of lighting
conditions and elevations in (VOICES), so perhaps we should consider a
continuum of some other sort in the case of (IND-ID). But what con-
tinuous quantity should we contemplate? If there were a continuum
between ‘‘not being alive’’ and ‘‘being alive,’’ and we had sampled along
this continuum, it would be no great leap to conclude that what we found
in our sample also applies to unsampled objects that are a little more down
the line. Our sampling would assure us that this matter of degree difference
does not matter to the question of whether a complex and useful device is
the result of intelligent design. But the vital processes we and our eight-
eenth-century predecessors see in living things do not seem to be like this.
My point here is not that the bridge principle in (IND-ID) (that p2� q2) is
false but that there was no sampling evidence in the eighteenth century, nor
is there any now, that it is true.
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There is a second and perhaps more glaring flaw in the bridge principle
in (IND-ID). This inductive sampling argument simply ignores theories
that say that the complex and useful traits of organisms arose by mindless
processes that occurred long ago or at a rate too slow for us to observe
them do their work from start to finish. The inductive sampling version of
the design argument rejects Epicureanism and Darwinism without even
considering them; its first premise focuses exclusively on cases in which we
observe a process producing a complex and useful trait. You do this when
you watch carpenters build a barn in the space of an afternoon, but none
of us lived when Epicurean whirling in the void was supposed to have
occurred, nor do any of us live long enough to witness a Darwinian
process that takes many human lifetimes to produce a result. The way to
consider hypotheses of this second kind is to think about what they
predict, but this leads us back to the likelihood formulation of the design
argument discussed earlier. The inductive sampling version of the argu-
ment introduces a massive sampling bias into the inference.
My point about the observational evidence for the bridge principle in

(VOICES) uses a strategy of inductive reasoning that Galileo made
famous. When Galileo pointed his telescope at Jupiter and claimed to see
that it has four moons, what basis did he have for thinking that his
telescope provided reliable evidence about that distant state of affairs? On
the face of it, he had no inductive justification for this confidence, since
no one had checked claims made about celestial objects by traveling to the
heavens and directly observing whether those claims were in fact correct.
This skeptical remark resembles Philo’s comment that we have never
journeyed to distant worlds and seen intelligent designers making them.
The proper reply is that even though Galileo could not cite the testimony
of space travelers, he did have sampling evidence of another kind. Galileo
trained his telescope on distant buildings and on ships coming over the
horizon that appeared to be heading for land; he then sent his assistants to
check whether the buildings and the ships entering port really had the
features he thought he saw. In this way, Galileo accumulated evidence
that distance does not matter. Of course, objects that are very far away
may fail to produce any telescopic image at all; but when they do so, the
probability that the image is veridical does not depend on how far away
the seen object is. This was the basis for Galileo’s claim that a telescope
trained on Jupiter provides reliable information that the planet has moons
(Kitcher 1993, 2001).
It is interesting that the two urns depicted in Figure 2.8 provide a

useful model for another of Hume’s arguments, his famous argument for
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inductive skepticism. Let the first urn represent the observations you
might make of the present and past. No matter how many times you draw
from that first urn, it is impossible to use the sampling data you obtain to
say anything at all about the composition of the second urn (which
represents the observations you might make of the future) unless a bridge
principle is added. This bridge principle is not a priori true, nor is it
justified solely by the data you drew from the first urn. This was Hume’s
insight. Hume went further and claimed that all inductive inferences rest
on the same bridge principle, the principle of the uniformity of nature. This
was a mistake. The fact that each induction from past and present to
future requires a bridge principle does not entail that there is single bridge
principle on which all inductive inferences rely (Sober 1988).39

2.19 MODEL SELECTION AND INTELLIGENT DESIGN

The likelihood framework provides one good way to understand the
design argument. A second option is the one explored in the previous
section: that the design argument is an argument based on inductive
sampling. In this section, I want to consider a third approach, one that
draws on ideas concerning model selection (§1.7). To begin, let’s consider
a variant of the example about coin tossing discussed in §2.10. There we
examined the principle of total evidence in connection with the obser-
vation that a coin landed heads each of the twenty times it was tossed. At
first glance, this outcome seems to strongly favor the hypothesis that the
coin is biased towards heads over the hypothesis that the coin is fair. But
then we are invited to consider the fact that the coin is one of a million
coins that each was tossed twenty times. The point is then made that if all
these coins were fair, it would be very probable that at least one of them
would land heads on all twenty tosses. The likelihood framework, coupled
with the principle of total evidence, was then offered as a reason for not
allowing this point about the million coins to weaken our conviction that
the observation of the first coin’s twenty tosses really does favor the
hypothesis that the coin is biased. Although I hope my argument was
persuasive, I do not dismiss the suggestion that we should think about the
one coin by placing it in the wider context of thinking about the 999,999
other coins that were tossed. The discussion in §2.10 did not pursue this
idea very far. True, we considered hypotheses about other coins, but we did

39 We see here another instance of the birthday fallacy, which I discussed in §2.2 in connection with
Aquinas’ version of the design argument.

Intelligent design 177



not bring in any data about the results of tossing them. How should a
wider data set, which describes the result of tossing each of these million
coins twenty times, be used to evaluate hypotheses about all these coins?
Let us construct some candidate models. The first of the following two

models assumes that each toss of each coin has the same probability of
landing heads, but the second is more complicated:

(One) For each toss of each coin, Pr(heads j the coin is tossed) ¼ p.
(Million) For each coin i, Pr(heads j coin i is tossed) ¼ qi

(1 � i � 1,000,000).

The (Million) model views each coin as potentially different from all the
others; it says that every toss of the first coin has a probability q1 of
landing heads, while every toss of the second coin has a possibly different
probability q2 of landing heads, and so on, for each of the million coins.
The (One) model rules out this heterogeneity; it contains just one
adjustable parameter. Other models might be considered as well. For
example, there is a model that organizes the data by tosses, not by coins:

(Twenty) For the jth toss of any coin, Pr(heads j the jth toss of the
coin) ¼ rj (1 � j � 20).

The (Twenty) model says that all first tosses have a probability r1 of
landing heads, while all second tosses have a possibly different probability
r2 of landing heads, and so on, for the twenty tosses. We also could
consider models that say that the outcome of earlier tosses of a coin alters
the probabilities that attach to subsequent tosses of the same coin. (One),
(Million), and (Twenty) are just the tip of the iceberg.
Bayesianism provides a strategy for assessing these models: We assign

them prior probabilities, which we then update by taking the observations
into account. The Bayesian goal is to discover which model has the
highest probability of being true. As explained in §1.7, model selection
criteria like AIC have a different goal: predictive accuracy, not truth or
probable truth. We fit models to data by finding maximum likelihood
estimates of their adjustable parameters and then ask how accurately those
fitted models can be expected to predict new data drawn from the same
underlying reality. With respect to our coin-tossing problem, we need to
estimate the values of p, q1 . . . q1,000,000, and r1 . . . r20, from the data at
hand and then ask how well these different fitted models would do in
predicting a new experiment in which the million coins are once again
each tossed twenty times.
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With these different models in mind, let’s go back to the single coin
that lands heads twenty times. This is the first of the million coins in our
data set. Suppose that half the 20 million tosses were heads. This means
that the maximum likelihood estimate of the single parameter p in the
(One) model will be 1

2. The (Million) model, on the other hand, treats
each coin as a separate inference problem; since the first coin landed heads
all twenty times, the maximum likelihood estimate of the parameter q1 is
that it has a value of unity. The probability of the data from the first coin,
relative to the two fitted models, is, therefore:

Pr½the first coin lands heads on all 20 tosses j LðOneÞ� ¼
�
1

2

�20

:

Pr½the first coin lands heads on all 20 tosses j LðMillionÞ� ¼ ð1Þ20:

With respect to the first coin, (Million) beats the pants off (One) as far as
the likelihoods of the two fitted models are concerned. What happens
when these models address data from the other coins? For each of
these other coins, L(Million) will make the observations more probable
than L(One) will, except when the coin in question happens to produce
exactly ten heads and ten tails; in this circumstance, the two fitted models
will tie. The (Million) model has far more adjustable parameters than the
(One) model, so it is no surprise that (Million) fits the data far better than
(One) does. Relative to all the data, L(One) will therefore have a much
lower likelihood than L(Million).
What, then, is wrong with the (Million) model?When I think about these

two models with my Bayesian hat on, I am at a loss to give an answer. Since
(Million) allows the coins to have different probabilities of landing heads
without requiring that they do so, it’s clear that (One) entails (Million).
As noted in Chapter 1, this means that Pr(One) � Pr(Million) and that
Pr(One jE)� Pr(Million j E), no matter what proposition E happens to be.
The defect in the (Million) model becomes visible when we think about
making accurate predictions, not when we think about finding models that
are probably true. As noted in §1.7, there are a number of model selection
criteria now on the market; AIC is just one of them. These different criteria
view fit-to-data as one virtue of models, but not the only one. The other
virtue is simplicity. The (Million) model gets high marks for fitting the data
but low marks for simplicity; the (One) model has the opposite mix of
strengths and weaknesses. Which model has the overall better score depends
on the data; this can’t be determined a priori. Indeed, there is another model
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we might consider in this problem, one that is even more complex than
(Million). It assigns a separate parameter to each toss of each coin:

(20 Million) For each of the k tosses, Pr(heads j the kth toss) ¼ sk
(1� k � 20,000,000).

This model achieves perfect fit; if a toss lands heads, the maximum like-
lihood estimate of the probabilistic parameter that pertains just to that
toss’s coming up heads will be assigned a value of unity, and if a toss lands
tails, the estimate of that toss’s probability of landing heads will be zero.
When fitted to the data, (20 Million) has a likelihood than which none
greater can be conceived. But that does not mean that it receives high
marks when a model selection criterion is applied. Its likelihood score is
high, but the penalty it pays for complexity is huge.
How does all this help us understand the organismic design argument

within the framework of model-selection theory? To begin, we need to
think about models of intelligent design, where a model is understood as a
proposition that contains at least one adjustable parameter. We want the
data we have to allow us to obtain maximum likelihood estimates of the
parameters in those models. It also must be true that the models apply not
just to the data we happen to have, but to new data sets that might be
drawn from the same underlying reality. It is easy enough to describe
intelligent design models that can be fitted to data. Suppose we have 20
million observations concerning the different traits that different species
possess. Here is a model that can be made to fit those observations perfectly:

(ID-40 Million) Pr(an intelligent designer wanted species si to have
trait Tj) ¼ gij.
Pr(species si has trait Tj j an intelligent designer
wanted species si to have trait Tj) ¼ aij.

As noted earlier, for an intelligent-design hypothesis to have implications
about the traits that different species will probably have, the hypothesis
needs to exploit auxiliary propositions about the putative designer’s goals
and abilities. When the intelligent-design hypothesis is formulated as a
model, those goals and abilities are represented by adjustable parameters
(gij and aij, respectively) whose values need to be inferred from the obser-
vations. According to (ID-40 Million), each trait of each species is the result
of a separate intelligent decision. This model has twice as many parameters
as there are observations. For this reason, the model is not identifiable; since
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there is no unique maximum likelihood estimate of values for its parameters,
it makes no sense to talk about its predictive accuracy, which means that
AIC does not apply (§1.7). However, the number of parameters in (ID-40
Million) can be cut in half by building into the model the assumption that
the hypothesized designer is omnipotent:

(ID-20 Million) Pr(an omnipotent intelligent designer wanted species
si to have trait Tj) ¼ gij
Pr(species si has trait Tj j an omnipotent intelligent
designer wanted species si to have trait Tj) ¼ 1.0.

This model also fits the data perfectly and it is identifiable. There is a
unique likeliest member of this model, and it has a likelihood of unity.
Moving from the likelihood framework to the framework of model

selection changes the kind of problem that the design hypothesis encoun-
ters. From a likelihood point of view, the problem with the design
hypothesis is that we have no independently justified auxiliary propositions
that permit the hypothesis to make predictions about the observations
(§2.12). This objection disappears when we use a model selection frame-
work. It is easy to estimate the values of the adjustable parameters in (ID-20
Million). However, there are two problems that attach to this ID model.
The first is that it is so complex. It may seem that one virtue of the
hypothesis of intelligent design is that it is very simple. After all, it can
postulate a single intelligent designer from whom all features of different
species are said to flow. Thinking about intelligent design as a problem in
model selection shows that this judgment about its simplicity is misguided.
The (ID-20 Million) model views each trait in each species as a separate act
of creation; it is exceedingly complex, when complexity is measured by the
number of adjustable parameters a model contains. The fact that the model
postulates a single designer is besides the point.
There is a question and a problem we need to address in connection with

this intelligent-design model. The question is: What predictions does this
model make about new data when it is fitted to old? Perhaps we should
think of ourselves as sampling new organisms from the same species and
our goal is to predict the characteristics of those newly sampled organisms
based on what we observe in the ones present in the old data set. It is easy to
see that (ID-20 Million) may do a poor job in this prediction problem if
the organisms described in the old data set exist at one time and one place
while those described in the new set exist at another. I don’t claim that this
flaw must be present in all intelligent-design models but merely mention it
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to highlight the fact that we need to think about the prediction problem we
are trying to solve. Another problem is that mention of an intelligent
designer in (ID-20 Million) is idle. This model is structurally just like the
(20 Million) model about the coins. Again, I do not claim that all ID
models must be like this. Rather, the point is to realize that there is hard
work that needs to be done if we want to have intelligent-design models
that are worth considering. Creationists and intelligent-design theorists
have not taken even the first step in this direction.
Just as there are multiple possible models for our coin-tossing experi-

ment, there are many models that might be considered as versions of the
hypothesis of intelligent design. The ones that are worth thinking about
will have fewer parameters than there are observations to explain. In coin
tossing, parsimonious models collect different tosses together and view
them as reflections of the values of a single set of parameters; similarly, in
intelligent-design modeling, we need to collect different observations
together and view them as consequences of a single plan that the designer
(s) had in mind. How should this be achieved? I don’t know; this is a task
for intelligent-design theorists to address. But a few caveats can be stated
nonetheless.
In the coin-tossing example, we began by thinking of a single coin that

lands heads on all twenty tosses and then considered that coin as one of a
million coins each tossed twenty times. If we think of that single coin in
isolation, it may seem very implausible to regard it as fair. But if we think
of the entire data set within the framework of model selection, it becomes
far more plausible that the (One) model may be the best of the models
we’re considering. The (One) model unifies the 20 million observations
whereas the (20 Million) model does not. When fitted to the data, the
(One) model says that some coins produced results on their twenty tosses
that had very low probabilities; this is something that the (20 Million)
model never has to say. But what the (One) Model loses in fit-to-data, it
gains because of its simplicity. The two models – one of them unified, the
other disunified – are shown in Figure 2.9.
Creationists usually concede that evolutionary theory provides a satis-

factory explanation of micro-evolutionary processes, but they dig in their
heels when it comes to macro-evolution. Here, creationists are using the
distinction that biologists draw between evolutionary novelties that arise
within a species and the appearance of traits that mark the origin of new
species. Behe’s (1996) version of intelligent-design theory also involves a
division of cases; he concedes that evolutionary theory explains the evo-
lution of traits that are not irreducibly complex but holds that intelligent
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design is needed to explain irreducible complexity (§2.16). Behe’s par-
tition may or may not coincide with the older division of micro from
macro; they nonetheless have in common the fact that both propose a
disunified treatment of the traits that organisms possess. The difference
between their approach and that taken by evolutionary biologists is
depicted in Figure 2.10. I hope the parallel with the coin-tossing problem
is clear. Perhaps evolutionary theory says that some of the features we
observe in organisms had very low probabilities of arising; intelligent-
design theorists never have to make this concession. The framework of
model selection shows why this difference does not mean that the intel-
ligent-design approach is better.
Darwin’s most fundamental objection to the doctrine of special cre-

ation is that it is empty; it allows each observation to be described post
hoc, and that is all. What is wrong with such ‘‘theories’’ is that they do
not make predictions. The framework of model-selection theory throws
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Figure 2.9 The (One) model unifies the 20 million observations; the (20 Million) model
treats each toss of each coin as a separate problem and is therefore more disunified.
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Figure 2.10 Evolutionary biology proposes a unified model of the features that organisms
have. Intelligent-design theory proposes a disunified model.
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light on these methodological ideas. There is no categorical imperative
that says that unified theories are always superior to disunified theories
(§1.8), although it is true that models that have more parameters than
there are items in the data set are beyond the pale. Recall the example,
discussed in §1.7, of inferring whether the mean heights in two fields of
corn are the same. The model that says the two means are the same is
unified, while the model that assigns a different parameter to each field is
not. The data get to decide which model should be expected to be more
predictively accurate; no a priori principle can settle this – not that cre-
ationists have developed intelligent-design models that enter into
empirical competition with Darwinian theory. The point is that the
extreme disunification of (ID-20 Million needs to be seen for the defect
that it is. The reason it never has to say that any observation was
improbable is that it treats each observation as an isolated phenomenon in
its own right.

2.20 THE POLITICS AND LEGAL STATUS OF THE

INTELLIGENT-DESIGN HYPOTHESIS

The present legal test in the USA for whether creationist ideas can be
taught in public schools asks whether the purpose or effect of doing so
would be to promote religion. This means that it is not enough for
intelligent-design proponents to drop the G-word from their theories
and claim, merely, that an intelligent designer, whose identity remains
unspecified, gave organisms the complex adaptations we observe. The
word ‘‘God’’ does not appear in this minimalistic assertion, but that does
not show that the purpose of including this circumspect proposition in a
high-school biology course is not religious.40

Given the character of this legal test, it is no wonder that creationism and
intelligent-design theory have lost in recent court battles. The reason is that
an inquiry into the motives of the people behind these theories, and of the
school board members who find these theories attractive, usually leaves no
doubt about their ultimate goal. For example, the Discovery Institute in
Seattle is the flagship think tank for intelligent-design theorizing, and the
‘‘Wedge Strategy’’ (available at www.antievolution.org/features/wedge.
html) is its political manifesto. The document is an internal memo that was

40 For an argument that even a minimalistic version of intelligent-design theory has implications
about the existence of supernatural designers, see Sober (2007a).
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leaked on the Internet in 2001; the Institute says its goal is to ‘‘replace
materialistic explanations with the theistic understanding that nature and
human beings are created by God.’’ According to the Wedge Strategy,
‘‘design theory promises to reverse the stifling dominance of the materialist
worldview, and to replace it with a science consonant with Christian and
theistic convictions.’’41

The constitutional principle of the separation of church and state raises
many important questions about law and public policy, but these have
not been the subject of the present chapter. These policy questions have
an important psychological component: What do policy-makers intend,
and how is a policy likely to affect the minds of students and of citizens
generally? The subject of the present chapter, in contrast, has been logical,
not psychological. In examining the hypothesis of intelligent design, my
focus has been on the strength of the arguments that have been advanced
to support it, not on the motives of those who endorse those arguments.
This division of psychological from logical questions reflects a long-
standing distinction that philosophers draw; Reichenbach (1938) called it
the distinction between the context of discovery and the context of justifi-
cation. Reichenbach’s point was that scientists get their inspiration from a
wide variety of sources. Newton and the other architects of the scientific
revolution of the seventeenth century were devout Christians whose
science was religiously inspired. The nineteenth-century chemist Kekulé
is said to have discovered the structure of benzene by having a hallu-
cination in which he saw snakes whirling around and then grabbing each
other’s tails. Anything that works works. These different pathways to new
ideas – the context of discovery – are matters for psychology and soci-
ology to try to understand. Reichenbach thought that there is a separate
question that is nonpsychological in character. Once scientists formulate
their theories, are those theories supported or disconfirmed by evidence?
It is here that our sources of inspiration do not matter. Formulating a
theory is one thing; testing it is another.42 This is the context in which I
have attempted to evaluate the logical strengths and weaknesses of the
design argument.

41 Phillip Johnson, one of the principal architects of the intelligent-design movement, discusses the
wedge strategy in his 1997 book.

42 Reichenbach’s distinction does not deny that scientists are influenced in what they believe, as well
as in what theories they consider, by nonevidential considerations. Furthermore, the distinction, as
I understand it, allows for the possibility that facts about how a hypothesis was generated are
sometimes relevant evidence as to whether the hypothesis is true; see the discussion of the so-called
‘‘genetic fallacy’’ in Sober (1993b).
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2.21 DARWINISM, THEISM, AND RELIGION

‘‘[A]ny confusion between the ideas suggested by science and science itself must be
carefully avoided.’’ (Monod 1971: xiii)

Was Darwin a theist? In the Autobiography (1958: 92–3), written at the
end of his life as a personal document for his family, Darwin refers to

the extreme difficulty or rather impossibility of conceiving this immense and
wonderful universe, including man [ . . . ] as the result of blind chance or
necessity [ . . . ] I feel compelled to look to a First Cause having an intelligent
mind in some degree analogous to that of man; and I deserve to be called a theist.

But on the next page, Darwin refers to himself as an ‘‘agnostic,’’ by which he
says he means someone ‘‘who has no assured and ever present belief in the
existence of a personal God or of a future existence with retribution and
reward.’’ In his letters, Darwin several times describes himself as ‘‘in a
muddle’’; although he finds the cosmological argument for the existence of
God irresistible, he often doubts that he is thinking about the argument in the
right way (Brown 1986: 25, 29). This worry found its way into the Auto-
biography as well, where Darwin wonders whether a mind that evolved from
the ‘‘lowest animal’’ is equipped to draw ‘‘such grand conclusions’’ (1958:
93). Darwin concludes, ‘‘the mystery of the beginning of all things is insol-
uble by us; and I for one must be content to remain an Agnostic’’ (1958: 94).
In addition to finding the cosmological argument dizzying, Darwin was

deeply troubled by the problem of evil (§2.17). Darwin’s response to suf-
fering was visceral. It forced him to stop studying medicine (his father’s
profession) at the University of Edinburgh. It also led him to refuse to impale
live worms on hooks when he went fishing; instead, he euthanized them in
brine (Darwin 1958: 27); he also eventually gave up hunting (1958: 55).
When Darwin was launched as an evolutionist, examples of horrible suf-
fering in nature were constantly placed before him. One example that
particularly revolted him is a parasitic wasp that inserts her eggs in a
caterpillar she first paralyzes; the offspring hatch and eat the caterpillar
while it is still alive. In a letter to the American biologist Asa Gray, Darwin
wrote that he could not persuade himself that ‘‘a beneficient and
omnipotent God would have designedly created’’ this arrangement
(Burkhardt 1993: 224). In Hume’s Dialogues, Philo says that a theist who
looks at nature objectively cannot avoid concluding that God is indifferent
to suffering. This thought intruded on Darwin’s consciousness again and
again. Indeed, Darwin’s theory gave the problem of evil a new twist. In the
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theory of evolution by natural selection, death is not a minor detail but is
central to the process that generates the organic diversity we observe. Why
would an all-PKG God use the deaths of billions of organisms as his
method for bringing new species into existence? There is grandeur in the
product of this process, but the process itself is gruesome.43

Whether or not Darwin remained a theist, he gradually ceased to be a
Christian. After abandoning his medical studies, he went to Cambridge to
study for the clergy. Darwin read Paley with enthusiasm and lived in the
same rooms in Christs College that Paley had occupied. In the Auto-
biography, Darwin describes himself as having had, as a young man, ‘‘no
wish to dispute any dogma’’ (1958: 57). But by middle age he had left his
Christianity behind. A crucial moment in this dispiriting odyssey was the
death of his beloved nine-year-old daughter Annie. Darwin’s bitterness
about her pitiful suffering drove a wedge between him and religion
(Desmond and Morris 1991). There was no sudden crisis of faith; he says
in the Autobiography that ‘‘disbelief crept over me at a very slow rate’’
(Darwin 1958: 87). In the same passage, Darwin describes Christianity as
a ‘‘damnable doctrine’’ because it says that his brother, father, and
grandfather must suffer everlasting punishment for their lack of belief.
This sticking point, which helped drive Darwin from the religion of his
youth, did not stop his wife, Emma Wedgwood, from remaining a
Christian; Emma simply dismissed the doctrine of eternal damnation as
unchristian (Darwin 1958: 238; Brown 1986: 32). At the start of their
marriage, Emma had expressed to Charles her concern that he did not
share her faith that they would be together in Heaven forever. Darwin was
advised by his father to keep his religious doubts to himself so as not to
trouble his new wife. Darwin followed this advice and, more generally,
was careful not to attack religion in his public life.
When I argued at the start of this chapter that Darwinian theory and

theism are logically consistent, I did not say that theistic evolutionism is
plausible. This is a question with two parts. There is, first, the nature of
the evidence for evolution, which will be the subject of the rest of this
book. The second part of theistic evolutionism is theism; the question of
its plausibility leads to a wide range of issues. Evolutionary theory does
not prove that there is no God; like other scientific theories, it is neutral

43 Chapter 3 of The Origin of Species is called ‘‘The Struggle for Existence.’’ The incessant theme is
that nature is ‘‘battle within battle’’ ([1859] 1964: 79). Yet, the chapter ends with a surprising
sentence: ‘‘when we reflect on this struggle, we may console ourselves with the full belief, that the
war of nature is not incessant, that no fear is felt, that death is generally prompt, and that the
vigorous, the healthy, and the happy survive and multiply.’’
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on this question. Even if you are not impressed with the argument from
design, you still need to consider other arguments for the existence of God –
for example, the cosmological argument that Darwin sometimes found
compelling. There also is the prior question of whether you should rely
exclusively on evidence to decide what your theistic convictions ought to
be. Must all your beliefs be dictated by the evidence you have and by
nothing else? This is the question that William James and W. K. Clifford
debated – ‘‘The Will to Believe’’ versus ‘‘The Ethics of Belief ’’ (§1.1).44

Just as scientific theories are silent on the question of whether God exists,
they also have nothing to say about this question of ethics.

2.22 A PREDICTION

It was clear to Paley and to other defenders of the organismic design
argument that the intelligent designer who built organisms must have
been far more intelligent and efficacious than any human being could ever
be. This is why the organismic design argument was for them an argu-
ment for the existence of God. I predict that it will eventually become
clear that the organismic design argument should never have been
understood in this way. This is because I expect that human beings will
eventually build organisms from nonliving materials. This achievement
will not close down the question of whether the organisms that human
beings observe were created by intelligent design or by mindless natural
processes; in fact, it will give that question a practical significance, since
the organisms we will see around us will be of both kinds.45 However, it
will be abundantly clear that the fact of organismic adaptation has
nothing to do with whether God exists. When the Spanish conquistadors
arrived in the New World, several indigenous peoples thought these
intruders were gods, so powerful was the technology that the intruders
possessed. The locals were mistaken; they did not realize that these beings
with guns and horses were merely human beings. The organismic design
argument for the existence of God embodies the same mistake. If my
prediction is correct, our descendants will someday look back on Paley
and see him and Montezuma in the same light.

44 Plantinga (2000) argues that it is rational to believe propositions that are ‘‘properly basic’’ even if you
can produce no good argument that they are true. Plantinga holds that ‘‘God exists’’ is properly basic.

45 Human beings have been modifying the characteristics of animals and plants by artificial selection
for thousands of years. This means that some traits of some of the organisms around us now are
due to intelligent design while others are not (Dennett 1987a: 284–5). Even so, the organisms that
human planners have deliberately modified were not created by designers working just with
nonliving raw materials.
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CHAPTER 3

Natural selection

In the previous chapter, I explored what happens when Duhem’s point
about the need for auxiliary propositions in testing is brought into contact
with a likelihood formulation of the design argument. Pre-Darwinian
versions of the argument did not consider Darwin’s theory of evolution
but instead considered Epicureanism as the alternative to intelligent
design, arguing that

Prðthe eye has features F1 . . . Fn j an intelligent designer made the eyeÞ
> Prðthe eye has features F1 . . . Fn j the eye was produced by

mindless chanceÞ:
I granted that the probability on the right is very small (though it is not
zero) but complained that we have no basis for assigning a value to the
probability on the left. The reason is that the hypothesis that an intelli-
gent designer fashioned the vertebrate eye predicts nothing about what
features the eye should exhibit until further propositions are added
about the putative designer’s goals and abilities. It does no good inventing
these needed further propositions; rather, they need to be independently
attested.
The very same standards apply to evolutionary theory – what is sauce for

the goose is sauce for the gander. Can the theory measure up? If the only
thing that evolutionary biologists do is go around saying ‘‘that’s due to
natural selection’’ when they examine the complex and useful traits that
organisms have, they are engaged in the same sterile game that creationists
play when they declare ‘‘that’s due to intelligent design.’’ Assumptions
about natural selection of course can be invented that allow the hypothesis
of natural selection to fit what we observe. But that is not good enough;
the question is whether there is independent evidence for those auxiliary
propositions.
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An important theme from Chapters 1 and 2 was that testing is con-
trastive: To test a theory, you need to test it against alternatives.1 This
seems to entail that testing evolutionary theory means testing it against
creationism. If so, why is creationism so rarely discussed in scientific
publications? Are biologists willfully burying their heads in the sand? In
the last chapter I argued that the hypothesis that an intelligent designer
made the complex and useful traits that we observe organisms to have is
untestable. However, if intelligent design is a sorry excuse for a scientific
theory, where is evolutionary theory to find a more worthy opponent? If
testing is contrastive, there must be one. This line of questioning has a
false presupposition. Evolutionary theory describes a number of possible
causes of evolution. There is natural selection but there also is mutation,
migration, random genetic drift, recombination, linkage, inbreeding, as
well as others. The theory allows for the possibility that different traits in
different lineages might evolve for different reasons; there is no presup-
position that one size fits all. What evolutionary biologists spend their
time doing is testing one evolutionary hypothesis against another. For
example, an important project in population genetics involves using data
on the DNA sequences present in different species to test selection against
drift, an undertaking I’ll discuss in §3.9. Contrastive testing occurs within
evolutionary biology, not between evolutionary biology and something
outside. To talk about testing evolutionary theory is a bit like talking
about testing chemistry. Evolutionary biology, like chemistry, is a field or
discipline that contains many theories; evolutionary biologists test evolu-
tionary hypotheses against each other.
Does this mean that there are presuppositions internal to evolutionary

biology that never get tested? For example, when population geneticists
use sequence data to test selection against drift, they usually assume that
the species considered all derive from a common ancestor. Not only that,
they usually assume a specific phylogenetic tree, one that describes which
species are closely related to each other and which are related only more
distantly. It is true that population geneticists usually make these
phylogenetic assumptions, but it is false that those ‘‘assumptions’’ are
merely assumptions. As we will see in the next chapter, the hypothesis of
common ancestry can be tested, and the same is true of more detailed
claims about phylogenetic relationship. It is important to distinguish the

1 This isn’t true for theories that (together with independently justified auxiliary propositions) have
deductive implications about observations; however, for theories that merely confer nonextreme
probabilities on observations, the dictum is correct.
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question of whether scientists make assumptions from the question of
whether the science they work within contains undefended assumptions.
Science is a cumulative enterprise; scientists constantly build on results
obtained by others. If each scientist had to start from scratch, science
would never get anywhere. So of course scientists make assumptions. But a
proposition that serves as an assumption in one testing problem can be
one of the propositions under test in another. Hypotheses about
genealogy can be tested, and a lot of work in evolutionary biology goes
into testing them.
Historians who study Darwin’s work often say that he thought that

natural selection is analogous to an agent (see, for example, Ospovat 1981
and Young 1985). Of course, it isn’t literally true that natural selection is
‘‘trying’’ to do anything or that it ‘‘chooses’’ who shall live and who shall
die. Selection is a mindless process. But Darwin found it useful, and so
have evolutionary biologists down to the present, to think about what
natural selection will achieve by thinking about what agents would
achieve if they had certain aims and if their choices were limited to a given
set of feasible options.2 What fur length should we expect natural selec-
tion to produce in polar bears? It does no harm to think about this by
asking what an intelligent designer would do for polar bears if he had the
goal of helping them to survive and reproduce in their environment and
was limited in his choices to a certain set of options. Although creationists
often think of the designer as omnipotent, the analogy of natural selection
with a designing agent loses its heuristic value if we assume that natural
selection is unlimited in its power. As Maynard Smith (1978) remarked,
if natural selection acted without constraint, organisms would live forever
and would produce an infinite number of offspring. The reason zebras
don’t have machine guns with which to repel lion attacks is not that guns
would not be useful; rather, this option was not available to them
ancestrally (Krebs and Davies 1981). Selection selects only among those
options that are actually represented in a population. It is important to
remember that what is conceivable to an intelligent agent can differ from
what is biologically possible for a species given its history.
Just as the hypothesis of intelligent design makes predictions only when

supplemented with information about the putative designer’s goals and
abilities, so the hypothesis of natural selection makes predictions only
when it is supplemented with information about what selection’s ‘‘target’’
is and how selection is ‘‘constrained.’’ In what follows I’ll try to develop a

2 For discussion of how this ‘‘heuristic of personification’’ can lead one astray, see Sober (1998).
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concrete understanding of how ‘‘targets’’ and ‘‘constraints’’ should be
understood. I will do this by investigating two simple models of
phenotypic evolution. The result will not be a full understanding of the
nature of selection or of the nature of constraints, both of which have
been discussed at length and have many dimensions.3 Rather, my goal is
to start to fill in the picture of what we need to know if we are to construct
meaningful tests of hypotheses about natural selection.
Just as pre-Darwinian creationists pitted the hypothesis of intelligent

design against the hypothesis of chance, I want to test hypotheses that
invoke natural selection against hypotheses of drift. Creationists think it is
ludicrous to suggest that a complex adaptive device like the vertebrate eye
arose by chance, and evolutionists emphatically agree. Both may find it
tempting to explain why by saying that it would be very improbable for
such complex and useful assemblages to come into existence if a chance
process were doing the work. This is not an answer that can withstand
scrutiny. We need to take seriously the fact that there is no such thing as
probabilistic modus tollens (§1.4). The fact that a hypothesis says that a set
of observations is very improbable is not a good reason to reject the
hypothesis. Rather, to understand how a set of observations can favor
selection over drift (or have the opposite evidential significance), we need
to ascertain what each of these hypotheses predicts. The first step in that
direction is to place this problem within a likelihood framework, but
model-selection considerations will not be far behind.

3.1 SELECTION PLUS DRIFT (SPD) VERSUS PURE DRIFT (PD)

My goal here is not to discuss the testing of selection against drift in all its
complexity but to isolate a fairly simple problem and to analyze the issues
it raises. To this end, I don’t want to consider a complex adaptive feature
such as the vertebrate eye; instead, my example will be an apparently
simpler quantitative character – the fact, let us assume, that polar bears
now have fur that is, on average, 10 centimeters long. Which hypothesis –
selection or drift – confers the higher probability on the trait value we
observe polar bears to have?4

3 See Antonovics and Van Tienderen (1991) and Schlichting and Pigliucci (1998) for discussion of
how evolutionary ‘‘constraint’’ should be understood.

4 I take it that the probability of the bears’ having an average fur length of exactly 10 centimeters is
zero, on each hypothesis. Rather, we need to talk about a small region surrounding the value of
10 centimeters as the observation that each theory probabilifies. Subsequent discussion should be
understood in this way.
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I will assume that evolution in the lineage leading to present-day polar
bears takes place in a finite population. This means that there is an
element of drift in the evolutionary process, regardless of what else is
happening. The question is whether selection also played a role. Thus, our
two hypotheses are pure drift (PD) and selection plus drift (SPD). Were the
alternative traits identical in fitness or were there fitness differences among
them (and hence natural selection)? I will understand the idea of drift in a
way that is somewhat nonstandard. The usual formulation is in terms of
random genetic drift; however, the example I want to examine concerns
fur length, which is a phenotype. To decide how random genetic drift
would influence the evolution of this phenotype, we’d have to know the
developmental rules that describe how genes influence phenotypes. I am
going to bypass these genetic details by using a purely phenotypic notion
of drift. Under the PD hypothesis, a population’s probability of
increasing its average fur length by a small amount is the same as its
probability of reducing fur length by that amount. Average fur length
evolves by random walk. This is depicted in Figure 3.1; the PD
hypothesis is represented by two arrows of equal size, indicating that the
expected amount of change is the same in both directions (note that they
sum to zero). Let’s suppose that the shortest possible fur length is 0
centimeters and that the maximum possible is 100. If a population
happens to land at either of these end points, it isn’t bound to stay there;
these are not absorbing barriers. I’ll assume that mutations always

A
(PD)

0 100

A O
(SPD)

0 100
Average fur length 
in the population

Figure 3.1 The pure-drift (PD) hypothesis can be thought of as a random walk on a line.
The selection-plus-drift (SPD) hypothesis can be represented as a biased walk, influenced
by a probabilistic attractor, the optimal phenotype. Both processes begin with the lineage

in its ancestral state A.
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introduce a cloud of variation around the population’s average fur length.
This means that the population can evolve away from each of these
extremes. The SPD hypothesis should be understood in similar fashion.
The SPD hypothesis identifies some phenotypic value (O) as the optimal
phenotype and says that an organism’s fitness decreases monotonically as
it deviates from that optimum. Thus, if 12 centimeters is the optimal fur
length, then 11 centimeters is fitter than 10, 13 centimeters is fitter than
14, etc. Given this singly peaked fitness function, the SPD hypothesis says
that a population’s probability of moving a little closer to O exceeds its
probability of moving a little farther away. This is why the arrows that
depict the SPD hypothesis in Figure 3.1 are of unequal size; a population
in state A has a higher probability of moving towards the optimum than
away from it. The SPD hypothesis says that O is a probabilistic attractor in
the lineage’s evolution.5

A natural mathematical model for pure drift is Brownian motion
(Harvey and Pagel 1991), according to which the evolution of the
population’s average phenotype obeys the same rules that govern a
molecule moving at random to the right or to the left on a line with a
reflecting barrier at each end. A natural formulation of the SPD
hypothesis is provided by the Ornstein–Uhlenbeck model (Lande 1976;
Hansen 1997; Butler and King 2004). Here the appropriate analogy is
with a rubber band stretched between two pins, one above the other. If
you hold the band at its center and pull it left or right, the farther you
pull the band, the stronger the restoring force is. If the optimal fur length
is 12 centimeters, then a population with a value of 7 centimeters experi-
ences a stronger force pulling it towards 12 centimeters than a population
at 10 centimeters experiences. The force declines as the population gets
closer to its target. The Ornstein–Uhlenbeck model has a selective and a
stochastic part:

dX ðtÞ ¼ a½h� X ðtÞ�dt þ rdBðtÞ:
The equation describes how much change you should expect to occur
in a population’s trait value between time t and time t þ dt. The first
addend on the right describes the effect that selection would have if the

5 Some may prefer to define selection and drift so that they are mutually exclusive; the first involves
variation in fitness while the latter means that there is no such variation. This choice of terminology
would make the idea of SPD a contradiction. I am using a different terminological convention, but
there is no need to fuss over this here, since there is a neutral way to describe the two hypotheses I
want to consider: SPD postulates a process of selection in a finite population, and PD says that
there is no variation in fitness (and hence no process of selection) in that finite population.
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population were infinite and so there is no drift. X(t) is the population’s
trait value at time t and h is the optimum. The parameter a describes the
change that selection can be expected to effect per unit deviation from the
optimum. So, for a fixed value of a, selection can be expected to produce
a bigger change in trait value the more the optimum and the present trait
value differ. The second addend describes random fluctuations, whose
magnitude is represented by r; dB(t) is a vector of independent and
identically distributed normal random variables. To apply this equation
to a population that now is in a given state, you use the first addend to
calculate how far towards the optimum selection would move the
population if there were no drift; then you draw a bell-shaped curve
around that new value, indicating the uncertainty that is introduced by
the fact that the population is finite. The Ornstein–Uhlenbeck equation
describes the SPD process, but it includes the case of pure drift as a special
case; if there is no selection the first addend is zero and evolution is
governed just by the second.
To understand the meaning of the parameter a in the Ornstein–

Uhlenbeck model, which represents the expected response to selection per
unit deviation from the optimum, it is useful to consider an idea from
quantitative genetics called the breeder’s equation (Falconer and Mackay
1996). As the name suggests, this part of quantitative genetics was
developed as a theoretical foundation for artificial selection, but it applies
to natural selection as well. Suppose the polar bears in a given generation
differ in fitness because they have different fur lengths. Individuals in this
generation reproduce (with fitter individuals being more reproductively
successful than less fit individuals), and their offspring then grow to
adulthood. How much should we expect these two generations to differ in
their average fur length? The breeder’s equation says that

Response to selection ¼ heritability · intensity of selection:

If the heritability is zero, then selection will not produce any change.6

And for a fixed nonzero heritability, there will be a greater response to
selection the more intense the selection is.7 But what does ‘‘intensity’’ (or

6 The breeder’s equation reflects the fact that natural selection is described in evolutionary theory as a
cause and also as an effect – ‘‘intensity of selection’’ describing the former, ‘‘response to selection’’
the latter. This poses a challenge to philosophers who deny that the theory of natural selection
describes a cause of evolution; see, for example, Walsh et al. (2002) and the response of Shapiro and
Sober (2007).

7 There are two kinds of heritability described in quantitative genetics: broad and narrow. It is the
narrow sense (meaning the additive genetic variance) that is relevant to the breeder’s equation. The
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‘‘strength’’) of selection mean? This refers to how much variation in
fitness there is in the population and to the extent to which fitness dif-
ferences correlate with phenotypic differences for the character in ques-
tion.8 Consider, for example, the three fitness functions represented in
Figure 3.2. The functions agree on which fur length is the best one for a
polar bear to have (i.e., they agree that h ¼ 12). They disagree about how
much a bear’s fitness suffers if the organism deviates from that optimum
by a fixed amount. Imagine three populations p1, p2, and p3 characterized
by the fitness functions a1, a2, and a3, respectively. Suppose that the
average fur length in the three populations is the same, say 8 centimeters,
that each has the same amount of phenotypic variation around this mean,
and that the trait has the same heritability in all three populations. The
breeder’s equation says that p1 is expected to move a larger distance
towards the optimal value of 12 centimeters than p2 is, and that p2 should
experience a larger displacement towards 12 centimeters than p3 does.

9

The dynamics of SPD are illustrated in Figure 3.3, which comes from
Lande (1976). At the beginning of the process, at t0, the average phenotype
in the population has a sharp value. The state of the population at various
later times is represented by different probability distributions. Notice

a3

Fitness a2

a1

8

Fur length

12

Figure 3.2 Three fitness functions that have the same optimum (h ¼ 12).

additive genetic variance might be regarded as measuring the ‘‘evolvability’’ of a trait subject to
natural selection; see Hereford et al. (2004) for further discussion of this point and also of how
terms in the breeder’s equation should be scaled.

8 Intensity of selection refers to the covariance of fitness and phenotype.
9 There is a disconnect between the Ornstein–Uhlenbeck equation, which postulates a linear
relationship between departure from the optimum and response to selection and the curved fitness
functions shown in Figure 3.2. Harmony can be restored by using fitness functions that look like
pointed gables or by replacing the linear equation with one that is quadratic. I’ll do neither in what
follows, for the sake of simplicity. If the curvature is slight, the linear model is a good
approximation.
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that as the SPD process unfolds, the mean value of the distribution moves
in the direction of the optimum. The distribution also grows wider,
reflecting the fact that the population’s average phenotype becomes more
uncertain as more time elapses. After infinite time (at t1), the population
will be centered on the putative optimum. The speed at which the popu-
lation moves towards this final distribution depends on the trait’s herit-
ability and on the strength of selection. How wide the different
distributions at different times are depends on the effective population size
N; the larger N is, the narrower the bell curve. In summary, the SPD
hypothesis says that trait evolution involves the shifting and squashing of a
bell curve.
Figure 3.4 depicts the process of PD, which involves just the squashing

of a bell curve. Although uncertainty about the trait’s future state increases
with time, the mean value of the distribution remains unchanged. In the
limit of infinite time, the probability distribution of trait values is flat,
indicating that all average fur lengths for the population are equiprobable.
The rate at which the PD process squashes the bell curve depends on N,
the effective population size; the smaller N is, the faster the squashing.10

Average phenotype in the population
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Figure 3.3 According to the SPD hypothesis, a population that has a given trait value at
t0 can be expected to move in the direction of O, the optimal trait value. As the process
unfolds, expected values get closer to the optimum but the uncertainty surrounding those

expected values increases.

10 The case of infinite time in the PD model makes it easy to see why an explicitly genetic model can
generate predictions that substantially differ from the purely phenotypic models considered here.
Under the process of pure random genetic drift (with no mutation), each locus is homozygotic at
equilibrium. In a one-locus two-allele model in which the population begins with each allele at
50 percent, there is a 0.5 probability that the population will eventually evolve to 100 percent A
and a 0.5 probability that it will evolve to 100 percent a. In a two-locus two-allele model, again
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The SPD hypothesis as I have formulated it constitutes a relatively
simple conceptualization of natural selection in a finite population. The
hypothesis assumes that the fitness function is singly peaked and that fit-
nesses are frequency independent – whether it is better for a bear to have fur
that is 9 centimeters long or 8 centimeters does not depend on how
common or rare these traits are in the population. I also have conceptu-
alized the SPD hypothesis as specifying an optimum that remains
unchanged during the lineage’s evolution; the optimum is not a moving
target. Indeed, the hypothesis assumes that there is a fur length that is
optimal for all bears, regardless of how they differ in other respects.11 My
reason for constructing the SPD hypothesis with these features is not that I
think they are realistic. My goal is to construct a simple example that makes
it clear what information you need to have if you want to say whether SPD
or PD has the higher likelihood. Informational requirements do not decline
when models are made more complex; rather, they increase.
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Figure 3.4 According to the PD hypothesis, a population that has a given trait value at
time t0 has that initial state as its expected value at all subsequent times, though the

uncertainty surrounding that expected value increases.

with each allele at equal frequency at the start, each of the four configurations AABB, AAbb, aaBB,
and aabb has a 0.25 probability. Imagine that genotype determines phenotype (or that each
genotype has associated with it a different average phenotypic value) and it becomes obvious that a
genetic model can predict a nonuniform phenotypic distribution at equilibrium. The case of SPD
is the same in this regard; there are genetic models that will alter the picture of how the phenotype
evolves. See Turelli (1988) for further discussion.

11 I also am assuming that a lineage that shifts its average fur length does so by a change in gene
frequencies; this ignores the possibility that fur length is phenotypically plastic.

198 Natural selection



To visualize what the SPD and PD hypotheses each predict, it may
be helpful to think about what each says will happen in 1,000 replicate
populations that all begin evolving with the same initial average fur length
and all evolve for the same length of time. If the 1,000 populations each
experience SPD, we expect them to exhibit different average fur lengths;
these different average phenotypes should form a distribution that approxi-
mates the theoretical distribution depicted in Figure 3.3 that corresponds to
the amount of time that has elapsed. The same is true if the 1,000 replicate
populations all experience PD. The PD and the SPD hypotheses both
describe a single population by saying that there are different average fur
lengths that it might evolve, and that these different possibilities have the
different probabilities represented by the relevant curve.

3.2 COMPARING THE LIKEL IHOODS OF THE SPD

AND PD HYPOTHESES

We now are in a position to analyze when SPD will be more likely than
PD. Figure 3.5a depicts the relevant distributions when there has been
finite time since the lineage started evolving from its ancestral state (A).
The SPD curve has moved in the direction of what it claims is the optimal
trait value (O); the PD curve remains centered on A. During this finite
interval of time, the PD curve has become more flattened than the SPD
curve has; selection impedes spreading out. Figure 3.5b depicts the two
distributions when there has been infinite time. The SPD curve is now

Pr (obs ⏐–)

Observed average phenotype in the present population

(a) Finite time (b) Infinite time

PD

PD
SPDSPD

AA OO

Figure 3.5 The likelihoods of the SPD and the PD hypotheses. SPD has the higher
likelihood when the observed value is ‘‘close’’ to the optimum O postulated by the SPD
model. A is the ancestral state of the lineage. The phenotypic values that count as ‘‘close’’

are marked with a solid line.
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centered at the optimum it postulates while the PD curve is flat. Whether
finite or infinite time has elapsed, the fundamental fact about the likeli-
hoods is the same: The SPD hypothesis is more likely than the PD hypothesis
precisely when the population’s present value is ‘‘close’’ to the optimum spe-
cified by the SPD curve. I put the word ‘‘close’’ in quotation marks because
its meaning depends on further details; compare the range of darkened
x-values in Figure 3.5a with those in 3.5b. How close the population has
to be to the optimum postulated by the SPD hypothesis for that
hypothesis to have the higher likelihood depends on how much time has
elapsed between the lineage’s initial state and the present, on the intensity
of selection, on the trait’s heritability, and on N, the effective population
size. For example, if infinite time has elapsed (Figure 3.5b), the SPD curve
will be more tightly centered on the optimum, the larger N is. If 10
centimeters is the observed value of our polar bears, but 11 centimeters is
the optimum, SPD may be more likely than PD if the population is small,
but the reverse will be true if the population is sufficiently large.
The criterion of ‘‘closeness to the putative optimum’’ suggests that

there are just two possibilities that need to be considered in deciding
whether SPD is more likely than PD. Either the population’s present state
is ‘‘close enough’’ or it isn’t. This is correct (as long as we remember that
how close is close enough depends on further details), but, nonetheless,
it is useful to distinguish the four possibilities that are summarized in
Figure 3.6. In each, an arrow points from the population’s ancestral state
(A) to its present state (P); O is the optimum postulated by the SPD
hypothesis. The first case (a) is the most obvious; if the optimum (O)
turns out to be identical with the population’s present trait value (in our
example, fur that is 10 centimeters long), we’re done: SPD has the higher
likelihood. However, if the present trait value differs from the optimum

Ordering of A, P, and O   Which hypothesis  
     is more likely? 

(a) The present state coincides with the 
putative optimum. A    → P = O SPD
(b) The population evolves away from the 
putative optimum.     ←   P A          O ?
(c) The population overshoots 
the putative optimum. A      O      P ?
(d) The population undershoots  
the putative optimum.      →   A P          O ?

Figure 3.6 The population must evolve from its ancestral state A to its present state P.
How these two states are related to the optimum (O) postulated by the SPD hypothesis

influences whether SPD is more likely than PD.
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value, we need more information. There are three more cases to consider,
which differ in how A, P, and O are related to each other. In possibility
(b), the population evolved away from the putative optimum. In (c), the
population has overshot the putative optimum, whereas in (d) there is
undershooting. In all three of these cases, we need to know not just the
values of A, P, and O, but other biological facts as well, if we are to say
which of SPD and PD has the higher likelihood. This is perhaps not so
obvious in case (b). If a population has evolved away from the optimum,
isn’t that enough to conclude that we have evidence against SPD and for
PD? To see that this is not always true, suppose that P ¼ 10 centimeters,
A ¼ 10.1 centimeters, O ¼ 10.2 centimeters, and that the population has
been evolving for a very long time. The lineage has evolved away from O,
but it’s still close. If there is only weak selection pushing the population
towards 10.2 centimeters, it isn’t that surprising that it exhibits a trait
value of 10 centimeters. On the other hand, if the PD hypothesis is true
and the population evolves for a long time, the observed trait value of
P ¼ 10 centimeters is far less probable. Outcomes (c) and (d) are likewise
inconclusive; after all, a population may undershoot or overshoot the
putative optimum by a lot or a little. If there has been a lot of time and
strong heritability, a population’s evolving from A ¼ 2 centimeters to
P ¼ 10 centimeters may be evidence against SPD, if that hypothesis says
that the optimal trait value is O ¼ 50 centimeters and that there has been
strong selection for that trait value. However, if there has been much less
time in the lineage, weaker heritability and weaker selection, this modest
shift in the direction of the optimum may be evidence in favor of the SPD
hypothesis.

3.3 FILL ING IN THE BLANKS

Given the observed present trait value (P) of polar bears, answering the
question of whether SPD is more likely than PD depends on what the
value is of O (the trait value that would be optimal if there were natural
selection), on what the value is of A (the ancestral state of the lineage), and
on other details. How should we fill in these blanks? One possibility is to
simply invent assumptions that allow our pet hypothesis to win the
likelihood competition. For example, if you are an adaptationist and want
SPD to triumph over PD, perhaps you should assume that the observed
trait value of 10 centimeters also happens to be the optimal fur length. On
the other hand, if you are a neutralist and want PD to beat SPD, perhaps
you should assume that the lineage’s present trait value is miles away from
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the one that would be optimal if the SPD hypothesis were true. As
Bertrand Russell (1919: 71) once said in another context, the method of
postulation has all the advantages of theft over honest toil. The mere
invention of assumptions is an empty exercise – the same one we examined
in the previous chapter in connection with the problem of testing intelli-
gent design against chance. We must do better. Within a likelihood
framework, the approach we need to pursue is to find auxiliary propositions
that are independently supported. Once these are in place, we can see whether
the observed fur length of polar bears favors SPD over PD.

The optimal trait value O postulated by the SPD hypothesis

As discussed in §2.12, the requirement of ‘‘independent justification’’ says
that the auxiliary propositions used in a testing problem must be justified
and that their justification should not depend on assuming the truth of
any of the hypotheses that are under test. How does this idea apply to the
fitness function used by the SPD hypothesis? The PD hypothesis asserts
that all fur lengths have the same fitness. The SPD hypothesis asserts that
the fitness function has a single peak. For the SPD hypothesis to make a
prediction, what is needed is information about where that peak is. But
how can a proposition that says where the optimal value O is located be
justified independently of assuming that SPD is true? After all, if PD is
the right model, then there is no such optimum. The answer is to rec-
ognize that what needs independent justification is a conditional that has
the following form:

If the SPD hypothesis is true; then the optimal trait value is O ¼ :

The requirement is that we fill in the blank (with a point value, or a value
range) in a way that does not depend on assuming the truth of either SPD
or PD. You don’t have to believe that the SPD hypothesis is true to see
that a conditional proposition of this form is justified. In the 1988 movie
Midnight Run (dir. Martin Best, 1988), the actors Charles Grodin and
Robert De Niro have a memorable dialogue:

GRODIN: If I were your accountant, I’d have to strongly advise you
against –

DE NIRO: But you’re not my accountant.
GRODIN: I realize I’m not your accountant. I said that if I were your

accountant, I’d have to –
DE NIRO: But you’re not my accountant.

202 Natural selection



For future reference I will call this the De Niro fallacy. Do not confuse a
conditional with its antecedent (or with its consequent).12 What is needed
is evidence for the conditional that does not depend on deciding which of
SPD and PD is true.
There are two broad strategies that evolutionary biologists use to fill in

the blank in the above conditional. The first is more observational while
the second is more theoretical.
If, as we are assuming, there is variation in fur length in the present

population, we can observe whether bears with one fur length survive and
reproduce more successfully than bears with another. We also can run an
experiment – shaving some polar bears, fitting parkas onto others, and
leaving still others unmodified. Observing the results provides evidence
about the fitness function that characterizes contemporary polar bears in
their present environment.13 The two italicized words point towards the
next step we need to take. We are interested in identifying the fitness
function that would apply to a lineage (if that lineage experienced
selection on fur length) that began sometime in the past and extends up to
the polar-bear populations we now observe. How do observations of the
present population allow us to draw a conclusion about the selective
regime that was in place ancestrally?
There are two kinds of question to answer here. First, if ambient

temperature is relevant to determining which fur lengths are selectively
advantageous, we need information about the temperatures that the lin-
eage experienced in the past. Second, the reason one fur length is better
than another for a bear in a given physical environment is that the bear
has certain other characteristics. For example, the optimal fur length for a
bear in a given environment depends on how big the bear is. This raises
the question of whether ancestral bears were about the same size as pre-
sent-day bears. In short, we need information about the past physical
environment and also about the biology of ancestral bears if we are to
apply the fitness function we infer from data on present-day bears to the
lineage as it evolved in the past.
Climatologists can help answer the first question, which concerns the

history of weather. As for the second, one source of information about
body size in ancestral populations is provided by fossils. This is obvious

12 So that no undue aspersions will be thought to have been cast, let me state categorically that it was
the character portrayed by De Niro, not De Niro himself, who makes this mistake. De Niro plays
Jack Walsh and Grodin plays Jonathan ‘‘the Duke’’ Mardukas.

13 In this vein, Baum and Larson (1991: 12) mention painting beetles to test a hypothesis about
Batesian mimicry and trimming the toe fringes of lizards to see if this impairs their locomotion.
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when the fossils are ancestors of present-day polar bears (Figure 3.7a), but
it also can be true if the fossils are relatives, not ancestors, as shown in
Figure 3.7b. And if fossilized relatives can provide evidence about the state
of ancestors, so can living relatives (organisms in other species that are
closely related to polar bears), as shown in Figure 3.8c. The only relevant
difference separating the three cases depicted in Figure 3.7 is the amount
of time between the ancestors of polar bears and the objects we actually
observe. The more time there is, the more uncertainty there is about the
inference. The fact that (b) provides evidence as well as (a) is important,
owing to the fact that biologists usually have no way to tell whether the
fossils they observe are ancestors or just close relatives of an extant species
whose characteristics they are trying to explain (Patterson 1981). Fossils
do not have their genealogies written on their sleeves. The fact that (c)
provides evidence as well as (a) and (b) is important too, since fossils are
sometimes unavailable and even when they are, the traits in which we are
interested often do not fossilize. Body size can be inferred from fossil
traces, but maybe fur length cannot.
In addition to doing experiments on present-day polar bears to see how

changing their fur length affects their survival and reproduction, there is a
second approach to the problem of identifying the optimal fur length, one
that is less observational and more theoretical. Suppose there is an
energetic cost associated with growing fur. We know that the heat loss an
organism experiences depends on the ratio of its surface area to its vo-
lume. We also know that there is seasonal variation in temperature.
Although it is bad to be too cold in winter, it also is bad to be too warm in
summer. We also know something about the abundance of food. These
and other considerations might allow us to construct a model that
identifies what the optimal fur length is for organisms that have various

S S ER2

FR1

A1

FR2

A2

(a) (c)

 S 

(b) 

ER1

Figure 3.7 The body size of ancestors of current polar bears (S) can be (a) observed, or
inferred from (b) fossilized relatives (FR1 and FR2), or from (c) extant relatives (ER1 and ER2).
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other characteristics. Successful modeling of this type does not require the
question-begging assumption that the bear’s present trait value is optimal
or close to optimal. This methodology has been applied to other traits in
other taxa (Alexander 1996); there is no reason why it should not be
applicable in the present context.
I have not found an optimality model for insulation against ambient

temperature in the biological literature, so I’ll illustrate the kind of
approach I have in mind here by shifting to another example. Many
organisms face the question of ‘‘when to give up’’ (Alexander 1996: 71–5).
The larvae of ladybirds (a kind of beetle) feed on aphids, extracting the soft
tissues and leaving the exoskeleton behind. The more food they extract, the
less good it does them to persist in extracting more. There are diminishing
returns. At what point should a ladybird stop eating the aphid at hand and
set off to find a new one? That is, what is the optimal amount of time to
spend on a food item? Dung fly males face a similar problem, although here
the resource in question is not food that might be eaten but the eggs in a
female dung fly that the male might fertilize. A male dung fly fertilizes more
of a female’s eggs the longer he copulates with her, though there are
diminishing returns. On the other hand, the longer a male remains with
one female, the less time there is for copulating with others. What copu-
lation time is optimal for a male? Cook and Cockrell (1978) addressed the
problem about ladybird feeding, and Parker and Stuart (1976) the problem
about dung fly copulation, and they did so in the same way. They begin by
identifying, as optimality modelers must (Maynard Smith 1978), a
phenotypic correlate of fitness. For ladybirds, the optimal time to spend
eating one aphid before moving on to the next is the amount of time that
maximizes their rate of food intake; for male dung flies, the optimal
copulation time is the one that maximizes their rate of egg fertilization.
These are plausible postulates, though of course they might be wrong. The
next step is to derive the trait value that maximizes fitness, so construed.
Both studies use a simple and pleasing graphical method. Cook and

Cockrell starved ladybirds for twenty-four hours and then allowed them
to start eating an aphid (whose weight they had measured beforehand),
interrupting the ladybirds every so often to measure what was left.
Ladybirds extract less food in each successive interval of time. This is not
because their appetites wane; a starved ladybird does worse on a partially
eaten aphid than it does on one that has not been touched. The amount
of food (f ) that a ladybird obtains by continuing to consume a single
aphid is represented in the curve shown in Figure 3.8; notice that f
increases, though its rate of increase declines, as t, the amount of time
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spent eating the aphid, increases. If it takes a ladybird T units of time to
find a new aphid, what value of t maximizes the rate of food consumed,
namely the quantity f /(t þ T )? The answer is given by finding the line
that is tangent to the curve. The value of t associated with that point of
tangency is the optimal feeding time; a suboptimal value of t is also shown
in the figure. My point in describing this example is not to argue that the
analysis is beyond question but to draw the reader’s attention to the fact
that the reasoning involves no assumption that the amount of time that
ladybirds actually spend feeding on single aphids is optimal or close to
optimal. The optimum derived in the model may turn out to be close to
the current trait value, but it also may be far away. Notice also that the
model’s optimal trait value is not obtained by running an experiment in
which ladybirds spend different amounts of time eating an aphid before
they are forced to move on, the question being which ladybird gets the
most to eat at the end of the day.
The style of argument that Cook and Cockrell deploy is very different

from the one in which we shave some polar bears and give parkas to
others. Still, there is a similarity. Regardless of whether the optimal trait
value is obtained by an experiment or by a more theoretical derivation,
what one obtains, in the first instance, is an estimate of the optimum that
is based on facts about the current environment and the current biology of
the organisms under study. This is what an experiment on current polar
bears reveals, and it also is what one gets from an optimality model that
uses information about the amount of time that ladybirds currently spend
to find aphids to eat. And yet, the SPD hypothesis is a claim about history.
The optimal trait value that is relevant to this historical hypothesis is
not a timeless quantity; rather, the hypothesis claims that the lineage

f

t
–T 0 sub opt

Figure 3.8 The solid curve represents Cook and Cockrell’s (1978) estimate of how the
amount of food (f ) a ladybird obtains from eating an aphid depends on the amount of time
(t) spent feeding on it. This curve allows one to calculate the value of t that maximizes the
rate of food consumption, namely the ratio f /(Tþt), where T is the amount of time it takes
a ladybird to find a new aphid. The optimal and a suboptimal value for t are shown.
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experienced selection that pushed it towards an optimum. As such, the
relevant optimum is the trait value that would have been optimal then if
there had been selection on the character in question; this may or may not
be the trait value that is optimal now. The ideal solution to this problem
would be to have information about the past with which to work.
Information about the history of weather and about the history of polar-
bear body size might allow one to calculate the fur length that would have
been optimal ancestrally. Failing that, a reasonable fallback position is to
calculate the fur length that is optimal now and then to consider a version
of the SPD hypothesis that claims that this was the optimum that governed
the trait’s evolution. Both these strategies are big improvements over the
mere assumption that the trait value one currently observes is optimal.

The ancestral state of the lineage

Figure 3.6 indicates that if the population’s present state differs from the
optimum postulated by the SPD hypothesis, then we need further
information if we are to test SPD against PD. One element that matters is
the population’s ancestral state A. But how are we to determine what the
lineage’s initial state was?
One method that biologists often use to infer the states of ancestors in a

phylogenetic tree is known as parsimony. I discussed in §1.7 what parsi-
mony means in the context of model-selection theory: There, a model’s
complexity is measured by the number of adjustable parameters it con-
tains. In the present context, parsimony has a specifically phylogenetic
meaning. Here, the idea is that we should assign character states to
ancestors so as to minimize the total amount of evolution that must have
occurred in the phylogenetic tree. Consider, for example, the problem
depicted in Figure 3.9, in which the average fur lengths of polar bears and
two of their relatives are recorded. These extant species are the tips of a
phylogenetic tree; reading down the page means going back in time, with
interior nodes representing common ancestors. Given the fur lengths of
the tip species, the most parsimonious assignment of states to the two
common ancestors is A1 ¼ 10 and A2 ¼ 7.5.14 So as to avoid confusing
these two conceptions of parsimony, I’ll refer to them in what follows as
model-selection parsimony and phylogenetic (or cladistic) parsimony.

14 Although no assignment is more parsimonious than A1 ¼ 10 and A2 ¼ 7.5, others are equally
parsimonious, for example A1 ¼ 10 and A2 ¼ 9. This tie will be broken if we define parsimony in
terms of the net amount of squared change; more on this wrinkle below.
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Figure 3.9 shows that our question about whether the observed fur
length of polar bears favors SPD over PD is ambiguous; there are many
SPD and PD hypotheses, not just one of each. This is because present-day
polar bears have multiple ancestors, and different ancestors may well have
had different fur lengths. The problem of explaining why polar bears now
have fur that is 10 centimeters long therefore decomposes into a number
of subproblems: Why the fur length of A2 had the value it did; why the
fur length exhibited by A2 evolved to the length found in A1; and why
A1’s fur length evolved to the present value of 10 centimeters (to mention
just the two ancestors of polar bears that are depicted in the figure; there were
more, of course). SPD may be a better answer than PD for some of these
transitions while the reverse might be true for others. Similarly, suppose
we pose our question about SPD versus PD by focusing on just one of the
ancestors, asking what happened in the lineage connecting that ancestor to
the polar bears of today. The answer may be different, depending on
whether we use the ancestor A1 or the ancestor A2 as our starting point.
The question of whether SPD or PD is the more likely explanation of an
observed trait value thus needs to be relativized to a choice of ancestor.
Phylogenetic parsimony provides an estimate of the character state of

an ancestor in the lineage leading to polar bears, but is this estimate to be
trusted? Since we are trying to test SPD against PD, this question about
parsimony has a very specific meaning: Is our justification for trusting
what the principle of parsimony says about the character state of an
ancestor independent of the hypotheses under test? Unfortunately, the
answer is no. We observe that polar bears now have an average fur length
of 10 centimeters, so the most parsimonious assignment of character state

Polar bears

10 5

A1

A2

12

Figure 3.9 Given the trait values of present-day polar bears and their relatives, the principle
of parsimony provides estimates of the character states of the ancestors A1 and A2.
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to the ancestor is, of course, 10 centimeters. This most parsimonious
assignment of trait value to the ancestor (where parsimony means minim-
izing the squared amount of change) is also the assignment of maximum
likelihood if the PD hypothesis is true (Maddison 1991); see Figure 3.10.15

But parsimony and likelihood can fail to coincide if a directional
selection process is at work (Sober 2002b). For example, if 12 centimeters
is the optimal fur length towards which selection has been pushing the
lineage, the most likely assignment of trait value to the ancestor is some
value less than 10 centimeters (see Figure 3.11); how much less depends on
the amount of time separating ancestor and descendant, the intensity of
selection, and the heritability. To see why this is so, consider the fol-
lowing analogy: You observe a log floating at the bank of a river and
think that it floated there from the other side. But where on the other
side did the log begin? You could ask where the log probably began, or,
more modestly, you could ask which location on the other side is best
supported by your observation of where the log is now. The latter
question poses a problem of maximum likelihood estimation. What
location on the other side would maximize the probability of the log’s
present location? If the river always flows in the same direction, the
answer is that the most likely starting position is upstream – and the
stronger the current, the farther upstream.

A = a A = b

Pr(P = a⏐A =__ )

P = a

Character state

Figure 3.10 If P ¼ a is the present trait value and the lineage has experienced pure drift,
the maximum likelihood estimate of the trait value of the ancestor is A ¼ a. The

alternative estimate A ¼ b confers on the observation a lower probability.

15 Of course, even if A ¼ 10 is the maximum likelihood estimate of the ancestral character state, given
the observation that the descendant is in the state D ¼ 10, this does not mean that A ¼ 10 is very
probable (§1.2).
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If parsimony does not provide estimates of ancestral character states that
are independent of the SPD and PD hypotheses we wish to test, what should
we do? To make headway on this problem we need to recall the lesson from
the previous section concerning the De Niro fallacy. Although it would be
nice to know what the true value was of the ancestral state (A) of the lineage
leading to polar bears, this is not necessary as far as the likelihood com-
parison of SPD and PD is concerned. Rather, what we need to do is fill in
the blanks in the following two statements:

If the PD hypothesis is true; the ancestral condition was A ¼ :

If the SPD hypothesis is true; the ancestral condition was A ¼ :

The requirement of independent evidence is that we fill in each blank
without assuming that PD is true or assuming that SPD is true. Since
both hypotheses are probabilistic in character, we can’t enter a point value
in either blank. Rather, what we need is a probability distribution of the
different values A might have (or the expected value thereof), conditional
on each hypothesis.
Here’s a strategy for getting SPD and PD to each fill in its own blank.

The two hypotheses do not say that the processes they postulate suddenly
began after the lineage’s ‘‘initial’’ state A. Rather, we should think of each
as describing what occurred in the lineage before and after A occurs. Both
hypotheses say that the lineage moves towards an equilibrium distribution,
regardless of what the lineage’s ancestral condition was. These equilibrium

 

 O

Character state

A = b A = a

Pr(P = a⏐A = __ )

P = a

Figure 3.11 If P ¼ a is the present trait value and selection has been pushing the lineage
towards the optimal value O, the maximum likelihood estimate of the trait value of the
ancestor is not A ¼ a; note that A ¼ b confers on the descendant’s present character state a

higher probability.
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distributions are depicted in Figure 3.5b. The equilibrium distribution
for SPD is centered on the optimum O; the equilibrium distribution for
PD is flat. The proposal I want to consider is that these equilibrium
probabilities should be viewed as providing priors for the state of the
ancestor A. If this proposal is adopted, we can stop talking about the
ancestor A entirely. The reason is that once an ancestor A is characterized
by the equilibrium distribution, so are its descendants. This allows us to
pose our question about the likelihoods of SPD and PD in the form
depicted in Figure 3.5b. The question is simply whether the present state
P is ‘‘close’’ to the optimum postulated by the SPD hypothesis. It is no
longer relevant what character state the ancestor occupied. The idea that
the distribution for the ancestor A is the equilibrium distribution is
equivalent to the idea that the lineage has been evolving for an infinite
amount of time. This is clearly false, but it may be a harmless idealization.
Perhaps the lineage has been evolving long enough that the equilibrium
distribution is a good approximation.
Even though we do not need to puzzle over what the state of the

ancestor A was if we are to test SPD against PD, the same is not true for
other biological parameters. If the SPD hypothesis says that selection is
very strong and that population size is very large, the observed trait value
must be very close to the optimum trait value for SPD is to be more likely
than PD. With weaker selection and smaller population size, the demands
are less stringent. To put the point a bit paradoxically: Weaker selection
hypotheses are stronger in their competition against drift than stronger
selection hypotheses are. The SPD hypothesis needs to identify the
location of the optimal trait value O; it must say how strong the selection
was that allegedly pushed the lineage towards that optimum; and it must
provide a picture of the effective population size. Only then do we know
‘‘how close is close enough’’ – how far the present trait value can be from
the optimum specified by the SPD hypothesis if the observed trait value is
to favor SPD over PD.
This analysis has implications concerning how the fit between a well-

motivated optimality model and an observed trait value should be
interpreted. Consider, for example, the work on dung-fly copulation time
described earlier. Parker and Stuart (1976) constructed a model that
entails an optimal copulation time of 41 minutes. The observed value,
they report, is 35 minutes. Is this 6-minute difference small enough that
we can conclude that the observations favor the hypothesis that selection
has pushed the dung-fly lineage in the direction of that optimal trait
value? Or is the 6-minute difference sufficiently large that we should
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conclude that the evidence tells against the selection hypothesis? If testing
must be contrastive (§1.3), there is no answering these questions until we
formulate an alternative hypothesis. If the alternative is drift, we still
have work to do if we want to say whether 35 minutes is close enough to
41 minutes for this observation to favor SPD over PD (Sober and Orzack
2003).

3.4 WHAT IF THE FITNESS FUNCTION OF THE SPD

HYPOTHESIS CONTAINS A VALLEY?

Figure 3.6 suggests that testing the SPD against the PD hypothesis gets
complicated when the observed fur length of present day polar bears (P)
differs from the optimal fur length (O) postulated by the SPD hypothesis.
But at least there seems to be clear sailing when P ¼ O; if the present fur
length is identical with an independently identified optimal fur length,
surely that suffices for SPD to be more likely than PD! This straight-
forward conclusion does hold for the kind of fitness function we have
taken the SPD hypothesis to postulate. However, if we abandon the
assumption that fitness declines monotonically as a bear’s fur length
departs from a single optimal value, complications arise even when P ¼ O.
The vertebrate eye furnishes a nice example that illustrates this point, but
not because it is a ‘‘complex’’ trait while fur length is ‘‘simple.’’
Fur length has a fairly obvious ‘‘transformation series.’’ If a population

is to evolve from an average fur length of 4 centimeters to an average of
10 centimeters by a series of small changes, it must pass through an
average that is around 7 centimeters. But consider the evolution of the
camera eye in the vertebrate line. If we trace this lineage back far enough,
we will find an ancestor that has no eye at all. Again assuming that
changes must be small, we can ask what the intermediate stages were
through which the lineage must have passed as it evolved from no eye to a
camera eye. A more general approach would be to conceive of this
problem probabilistically; there may be more than one possible trans-
formation series, with different probabilities attaching to different pos-
sible changes in character state. The reconstruction of this transformation
series is a nontrivial evolutionary problem.
There are nine or ten basic eye designs found in animals, with many

variations on those themes. In broad strokes, this variation can be described
as follows: Vertebrates, squid, and spiders have camera eyes; most insects
have compound eyes (as do many shallow water crustacea); theNautilus has
a pinhole eye; the clam Pectem and the crustacean Gigantocypris have
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mirror eyes; and flatworms, limpets, and bivalve molluscs have cup eyes.
When biologists place these features at the tips of an independently
inferred phylogenetic tree (and use parsimony to infer the character states
of ancestors), they conclude that these and other basic designs evolved
somewhere between forty and sixty-five times in different lineages (Salvini-
Plawen and Mayr 1977; Nilsson 1989).16 For each monophyletic group
of tip species that share a given eye design (e.g., vertebrates with their
camera eyes), we can ask whether that design favors SPD over PD.
To figure out what the SPD hypothesis predicts, we need to know what

trait value that hypothesis says is optimal for the species or taxonomic
group in question. In the case of polar-bear fur length, we considered a
simple experiment that would provide information about this. Is there a
similar experiment for the case of eye design? Even if present technology
makes eye transplantation unfeasible, information is now available con-
cerning the optical properties of different eye designs. For example,
Nilsson (1989: 302) agrees with Land’s (1984) contention that ‘‘if the
Nautilus had a camera-type eye of the same size, it would be 400 times
more sensitive and have 100 times better resolution than its current
pinhole eye.’’ He has similar praise for camera eyes as compared to
compound eyes:

if the human eye was scaled down 20 times to the size of a locust eye, image
resolution would still be an order of magnitude better than that of the locust eye.
Diffraction thus makes the compound eye with its many small lenses inherently
inferior to a single-lens eye. (Nilsson 1989: 306)

If the SPD hypothesis we are considering says that the camera eye is
globally optimal, then isn’t it obvious that a lineage has a higher prob-
ability of evolving that trait if the SPD hypothesis is true than would be
the case if the PD hypothesis were true? The answer is no. Suppose that a
lineage that evolved from a compound eye to a camera eye would have to
pass through the state of having a cup eye. And suppose that the fitness
function of these three architectures is the one given in Figure 3.12.
Evolving from compound to camera involves traversing a fitness valley if
selection governs the lineage’s evolution. So which hypothesis, SPD or
PD, make it more probable that a lineage now has a camera eye? That
depends on the state of the ancestor. If the ancestor has a cup eye, SPD

16 Geneticists working in ‘‘evo-devo’’ (evolutionary developmental biology) have recently discovered
that, although camera eyes evolved independently in different lines, some of the genes that help
build those eyes are ancient and homologous; see Gehring (2002).
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makes the outcome more probable than PD does. But if the ancestor has a
compound eye, the reverse may be true.17

The fitness function depicted in Figure 3.12 is not merely hypothetical.
If the camera eye is fitter than both the pinhole and the compound eye,
why don’t all organisms with eyes have the camera eye? Spiders and squid
are as lucky as we are, but bees and the Nautilus are not. Why not? Nilsson
(1989: 306) suggests that

at an early stage of evolution, the simple eye would be just a single pigment cup
with many receptors inside [ . . . ], whereas the compound eye would start as
multiple pigment cups with only a few receptors in each [ . . . ] At this low degree
of sophistication, neither of the two designs stands out as better than the other.
It is only later, when optimized optics have been added, that the differences
will become significant. But then there is no return, and the differences remain
conserved.

The idea is that organisms with compound eyes are trapped on an
adaptive peak that is locally, but not globally, optimal (Salvini-Plaven and
Mayr 1977; Nilsson and Pelger 1994). The point of importance for our
assessment of SPD and PD is that when there is a fitness valley and a
descendant has the globally optimal phenotype, it is not inevitable that
the SPD hypothesis has the higher likelihood. More information is
needed to say whether this is so.
This problem does not disappear just by avoiding the De Niro fallacy.

When the SPD hypothesis postulates a singly peaked fitness function, the
hypothesis itself entails an equilibrium distribution that we can use as a
prior for the state of the ancestor A. But the fitness function depicted in

Fitness

Eye designs

CompoundCupCamera

Figure 3.12 A fitness function for the camera, cup, and compound eye that has a valley.

17 The probability that a population will cross an adaptive valley depends on how high and steep the
hills are, the effective population size, the amount of time there is between the initial state and the
present, the heritability, and the width of the valley (Lande 1985).
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Figure 3.12 does not indicate what state the ancestor probably occupied.
When we observe that some present species P has a camera eye, it is true that

PrðP ¼ camera j SPD & A ¼ cupÞ
> PrðP ¼ camera j SPD & A ¼ compoundÞ:

This inequality follows from the fitness function in Figure 3.12. However,
the fitness function does not entail that

PrðA ¼ cup j SPDÞ > PrðA ¼ compound j SPDÞ:
In fact, just the opposite conclusion seems to be true, since cup eyes are an
unstable equilibrium according to Figure 3.12; a lineage that begins with
a cup eye can be expected to move to either a camera or a compound eye,
given enough time.

3.5 SELECTION VERSUS DRIFT FOR A DICHOTOMOUS

CHARACTER

Our exploration of the SPD and PD hypotheses as possible explanations
for why polar bears now have an average fur length of 10 centimeters has
uncovered a number of difficulties; there are things you need to know
before you can say which hypothesis has the higher likelihood. Perhaps
these epistemological difficulties would vanish if we reconfigured the
problem. Instead of asking why polar bears now have fur that is 10
centimeters long, perhaps we should ask why they have ‘‘long’’ fur rather
than ‘‘short.’’ Isn’t it clear that polar bears are better off with long fur than
they would be with short? If so, long is the optimal value for this
dichotomous character. Doesn’t this allow us to conclude without further
ado that SPD has a higher likelihood than PD? Apparently, you don’t
need to know any further biological details to make this argument.
To make this suggestion more precise, I want to present the standard

Markov model for thinking about the evolution of a dichotomous
character (Parzen 1962: 293–5). I’ll also use this model in the next chapter.
It resembles the Ornstein–Uhlenbeck model described earlier for quan-
titative characters. At any moment in time, a lineage is in one of two states
(call them 0 and 1). Within a very small period of time (an ‘‘instant’’), the
population has a small probability (u) of changing from state 0 to 1 and a
possibly different probability (v) of changing from 1 to 0. A lineage’s
probability of ending in state j, if it begins in state i (i, j ¼ 0, 1) and there
have been t units of time in between, Prt(i ! j), is a function of these
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instantaneous probabilities and the amount of time. Here are the equa-
tions for these lineage transition probabilities:

Prtð0! 1Þ ¼ u

uþ v
� u

uþ v
ð1� u� vÞt

Prtð0! 0Þ ¼ v

uþ v
þ u

uþ v
ð1� u� vÞt

Prtð1! 0Þ ¼ v

uþ v
� v

uþ v
ð1� u� vÞt

Prtð1! 1Þ ¼ u

uþ v
þ v

uþ v
ð1� u� vÞt :

Note that the first two probabilities sum to one, as do the third and
fourth. In each of these equations, the first addend fails to mention the
amount of time t between the lineage’s start and finish. The second
addend does, and it shrinks towards zero as t increases. This means that
the first addend describes the equilibrium probability, the probability that
obtains when there is an infinite amount of time in the lineage. When
time is short, the value of these transition probabilities is mainly determined
by the lineage’s initial state; if the lineage begins in a given state, it will almost
certainly end in that same state. For example, if t ¼ 0, Pr(1 ! 1) ¼
Pr(0! 0) ¼ 1 and Pr(1! 0) ¼ Pr(0! 1) ¼ 0. As the duration of the
lineage is increased, the process plays a progressively larger role in
determining the probability of the final state and the initial condition of
the lineage is steadily forgotten. The Markov model entails that a
‘‘backwards inequality’’ holds true: regardless of the values of u, v, and t,
Prt(j ! j) > Prt(i ! j). Compare the first and fourth equations above
(and also the second and third). The Markov model says that if a des-
cendant is in a given state, the most likely hypothesis about its ancestor is
that the ancestor was in the same state. Don’t confuse this with the
‘‘forwards inequality’’ Prt(j! j) > Prt(j! i); the equations leave it open
whether stasis is more probable than change in a lineage.18

18 The backwards inequality provides a likelihood justification for preferring the most parsimonious
assignment of character state to an ancestor when the trait in question is dichotomous and one has
observed the character state of a single descendant; if P is a present species and A its ancestor, it is
both more parsimonious and more likely that A was in the same state that P occupies. This holds
regardless of whether there was selection or drift in the lineage. It is interesting that this
unconditional relationship between likelihood and parsimony holds for dichotomous characters,
but not when traits are quantitative (§3.3). We will further consider the use of parsimony to infer
the character states of ancestors in §3.11.
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How can this simple model be used to represent selection and drift
when the trait is dichotomous? Selection for state 1 (long fur length)
means that u > v; if selection favors long fur over short, the lineage has a
larger probability of evolving from short to long than from long to short.
Drift, on the other hand, can be represented by the claim that u ¼ v;
the process is unbiased, with both changes having the same probability.
The two hypotheses are represented in Figure 3.13. We now can evaluate
the likelihoods of the SPD and PD hypotheses when the trait observed in
our polar bears is dichotomous; the bears have ‘‘long’’ fur. First, we solve
the problem of estimating the lineage’s initial state by using the equilibrium
value that each hypothesized process provides. If the SPD process is
running for a long time before the ancestor A appears, then SPD says that
A was, with very high probability, in state 1; PD, on the other hand, says
the probability that A ¼ 1 is 0.5. This has the consequence that the SPD
hypothesis says that the present state P ¼ 1 had a very high probability,
while PD says that the probability of this observation is 0.5. In other words,
when we observe that polar bears now have ‘‘long’’ fur, the hypothesis that
this was due to selection favoring long fur over short will have a higher
likelihood than the hypothesis that says that fur length evolved by pure
drift. This is not surprising; there is no fitness valley when a lineage is
characterized in terms of a dichotomous trait.
It is interesting how often informal reasoning about natural selection

focuses on dichotomous characters. For example, sociobiologists often
discuss why human beings ‘‘avoid incest,’’ not why they avoid incest to
the degree they do. The selection hypothesis says that outbreeding has a
higher fitness value than inbreeding. This hypothesis renders the observed
‘‘avoidance of incest’’ more probable than does the hypothesis that trait

1                 A = 1

A = 1

Pr(P = 1⏐ —)

A = 0 A = 0

0                              Time

(SPD) (PD)

Figure 3.13 The SPD and PD hypotheses differ in the probabilities they specify for a
lineage’s ending in the state P ¼ 1. In both cases, the probability depends on the lineage’s
ancestral state A and on the amount of time between A and P. The SPD hypothesis is here

understood to say that there is strong selection for character state 1.
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evolution was governed by a pure drift process. Of course, the problem
gets more difficult if we estimate how much inbreeding there is in human
populations and then ask whether that quantitative value is more probable
under the SPD or the PD hypothesis. But why shouldn’t we simply
admit that this quantitative problem is more difficult but still maintain
that the simple likelihood argument just described solves the qualitative
problem?
Although testing SPD against PD is straightforward once we have a

dichotomous character, a problem arises in connection with under-
standing how this dichotomous character is related to the underlying
continuous reality. For the quantitative character of fur length, there is
an intermediate optimum. This means that for many of the cutoffs we
might draw to separate ‘‘long’’ fur from ‘‘short,’’ it will not be true that
any fur length longer than the cutoff is fitter than any that is shorter.
In what sense, then, is it true that ‘‘long’’ fur is fitter than ‘‘short?’’
Inbreeding involves a different situation if we suppose that the less
of it the better. If a cutoff is drawn to separate ‘‘no-inbreeding’’ from
‘‘inbreeding,’’ it will be true that any value on one side of the cutoff is
fitter than any value on the other. But where should this line be drawn?
Maybe the answer is that a population counts as ‘‘not inbreeding’’
precisely when mates are on average no more closely related to each
other than they would be if pairs formed at random. But then the fact of
the matter is that human beings do engage in a nonzero degree of
inbreeding. In terms of the dichotomous character, the population has
the suboptimal trait value. If we choose instead to draw a line that
separates ‘‘little or no inbreeding’’ from ‘‘more,’’ human populations
can, if we wish, be placed in the former and fitter category. But how
much satisfaction is there in then concluding that SPD is likelier than
PD in this instance? After all, a different cutoff would lead to the
opposite conclusion.
Even when a dichotomous character makes sense, there is a mistake we

need to avoid. The mistake is to assume that the straightforward argu-
ment concerning the dichotomous character automatically carries over to
the continuous trait. It seems natural to say ‘‘since the fact that polar bears
have long fur rather than short favors SPD over PD, the same must be
true of the fact that their fur is, on average, 10 centimeters long.’’ This
does not follow. Remember the point from §1.3 concerning the principle
of total evidence: Logically strengthening the description of the data can
affect which hypothesis has the higher likelihood. This point will surface
yet again in the next chapter.
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3.6 A BREATH OF FRESH AIR: CHANGE

THE EXPLANANDUM
19

I have gone into detail about the comparison of selection and drift for a
single character because so much discussion (especially informal discus-
sion) of natural selection focuses on a single trait in a single species or
taxon. We behold the vertebrate eye and find the conclusion irresistible
that this complex and useful trait must have been produced by natural
selection. The idea that it could have been produced by drift seems
ludicrous. These reactions, if they are to be anything more than intuitive
feelings, must be defended by an argument. I have tried to show that there
is more going on here than may first meet the eye.
I am guessing that some biologists who have read thus far are impa-

tiently tapping their feet. They are thinking that the problem I have
addressed has been misconceived from the outset. The thought is that we
should not attempt to explain the fact that a given taxon has this or that
characteristic. Rather than seeking to explain why polar bears now have an
average fur length of about 10 centimeters, we should try to account for
the fact that bears that live in colder climates tend to have longer fur than
bears that live in warmer climates. What demands explanation is a cross-
species correlation, not the fact that a single species has a single trait value.
I emphatically agree. The preceding analysis, with its catalog of difficul-
ties, was intended to describe a problem. Shifting the explanandum to a
cross-species correlation is part of the solution. This is another example of
the keys and the lamppost (§1.7).
To think about the interpretation of this sort of cross-species correl-

ation between ambient temperature and fur length, let’s consider the
hypothetical data set given in Figure 3.14. This data set seems to provide
strong evidence for the hypothesis that fur length is an adaptation for
coping with ambient temperature; natural selection seems to have moved
the different species towards their optimal trait values. This optimality
line, let us suppose, is derived from experiment or theory in the manner
sketched in §3.3. The fact that the data points show a downward trend and
are tightly clustered around the optimality line seems pretty compelling.
If fur length and ambient temperature were causally independent – e.g.,
if fur length had evolved by drift – we’d expect there to be no association
between observed fur length and ambient temperature, in which case we’d

19 The main argument of this section is drawn from Sober and Orzack (2003).
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expect the best-fitting regression line drawn through the data to have a
slope indistinguishable from zero.
As intuitively compelling as this reasoning appears to be, it nonetheless

needs to be scrutinized. Let’s begin with the question of why the selection
hypothesis predicts a downward trend in the data. It is true that selection
pushing lineages in the direction of an optimality line that has a downward
slope can result in a data set that also has a downward slope. But it is equally
true that this type of selection can generate a data set that has an upward
slope. Both possibilities are depicted in Figure 3.15. Why, then, should
selection lead us to expect the one pattern in the data, but not the other?
The hypothesis we are considering describes an optimality line and

claims that this line is a probabilistic attractor; a lineage that exists in an
environment with a given temperature is inclined to evolve towards the
trait value that is optimal for that environment, as the Ornstein–Uhlenbeck

Long

Fur 
length 

opt 
Short

Cold Hot
Temperature

Figure 3.14 The observed fur lengths for different bear species show a downward trend
and are closely clustered around an independently motivated optimality line. This seems

to be strong evidence favoring selection over drift.

Fur 
length

Temperature
(a) (b)

Figure 3.15 Two scenarios in which selection causes bear lineages to evolve in the
direction of an optimality line. Depending on the ancestral states of those lineages, the
result can be a set of extant species (represented by dots) that exhibit either (a) a downward

trend or (b) an upward trend.
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model claims. The process is probabilistic; the lineage is not bound to
evolve in that direction. Given this hypothesis, why expect the first
pattern in Figure 3.15 any more than the second? One justification for
this expectation can be extracted from the assumption that the lineages
have been evolving for an infinite amount of time. If this were the case,
the upward trend in the data in Figure 3.15b would not be observed.
This pattern in the data might exist for a while if the ancestral states of
the different lineages were arrayed just so, but it would be washed away if
the lineages were allowed to evolve longer. Given enough time, pattern
(a), rather than pattern (b), is what the selection hypothesis predicts.
Another possible justification for holding that the selection hypothesis
predicts a downward rather than an upward pattern in the data is pro-
vided by the assumption that the ancestors of the lineages all had optimal
trait values. This idea is depicted in Figure 3.16. If ancestors have
optimal fur lengths and the climate changes, with the result that their
descendants initially have suboptimal trait values and then evolve in the
direction of the optimality line, the descendants of those ancestors
should exhibit a downward trend.
There is a third possible rationale for thinking that the selection

hypothesis predicts a downward, not an upward, trend in the data. If the
lineages all trace back to a common ancestor, and if they have herit-
abilities that are approximately the same, then the pattern of data that will
probably arise is the one depicted in Figure 3.17. Here is a fact that is
obvious but highly significant: when two descendant lineages stem from a
common ancestor, they must, of necessity, begin in the same state. If both are

D1
Fur length •

A1

D2
•

A2

Temperature

Figure 3.16 Suppose the ancestors A1 and A2 both have optimal trait values and their
environments then get colder. If the lineages stemming from those ancestors evolve in the
direction of the optimality line, a line through the descendants D1 and D2 that those

ancestors produce can be expected to have a negative slope.
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attracted to an optimality line that has a negative slope, how far can each
be expected to evolve in the direction of that line? That depends on both
the strength of selection and the heritability. We know that selection is
stronger, the more distant a lineage is from its optimal value; this is a
consequence of the Ornstein–Uhlenbeck model (§3.1). And we also know
that two lineages stemming from a common ancestor begin with the same
heritabilities; their expected heritabilities are thus the same, though they
may subsequently diverge by chance. The prediction is therefore that a
line drawn through the end points (D1 and D2) of those evolving lineages
will have a negative slope, mirroring the slope of the optimality line
towards which the lineages have been attracted. Common ancestry is an
auxiliary proposition that allows the selection hypothesis to make a pre-
diction about observed trait values.
A similar analysis is available for understanding why the hypothesis of

pure drift predicts that there will be no association between fur length and
ambient temperature. If the different lineages do not share common
ancestors and evolve for an infinite amount of time, a regression line
drawn through the descendants of those lineages can be expected to have
zero slope. But what if time is finite? If there is common ancestry, the drift
hypothesis predicts that there will be no association between fur length
and temperature in the descendants, as shown in Figure 3.18.20 What if
there are more than two species? If fur length evolves on a phylogenetic

A

•
Fur length D1

•
D2

Temperature 

Figure 3.17 If two descendant lineages stem from a common ancestor A and then evolve
in the direction of an optimality line that has a negative slope, the expectation is that a line

through D1 and D2 will also have a negative slope, if the trait’s heritability is
approximately the same in the two lineages.

20 The analysis offered here concerning how common ancestry leads selection and drift to make
different predictions provides a rationale for the sign test that Burt (1988) proposed for testing
selection hypotheses.
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tree by random drift, we expect that more closely related tip species will
be more similar in their fur lengths: The predictor of fur length should be
propinquity of descent, not ambient temperature.
In the first part of this chapter, we considered the likelihood compe-

tition between SPD and PD, where each hypothesis is assessed by con-
sidering the present state of a single species (in our running example, that
polar bears now have an average fur length of 10 centimeters). We
considered how the different relationships that might obtain among the
lineage’s ancestral state (A), its present state (P), and the optimal state (O)
postulated by the SPD hypothesis affect the likelihood comparison. One
issue that emerged from that discussion was the problem of overshooting.
Suppose a lineage starts evolving with a fur length of 5 centimeters and
the optimum described by the SPD hypothesis is 12 centimeters. If the
lineage’s present state is a fur length of 25 centimeters, is this evidence
that favors drift over selection? The answer depends on the values of
several biological parameters. A similar question arises in the new setting
of the problem we are now considering in which it is the correlation
among species, not the absolute trait value of a single species, that is used
to test selection against drift. Overshooting now poses the problem
depicted in Figure 3.19.
A final tweak in our formulation of the problem of testing selection

against drift can solve this puzzle. In many biological studies, the exact
location of the optimality line that the SPD hypothesis should endorse is
unknown. Even on the assumption that bears evolve their fur length as an
adaptive response to ambient temperature, it is very difficult to say exactly
what the optimal fur length is for a given temperature regime. But
consider the hypothesis that the optimality line has a negative slope – that
the optimal fur length for bears in colder climates is greater than the

A

Fur length 

• •

D1 D2

Temperature

Figure 3.18 If two descendant lineages stem from a common ancestor A and then evolve
by drift, the expectation is that a line through D1 and D2 will have zero slope.
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optimal length for bears in warmer climates. If the selection hypothesis is
stated in these terms, with no commitment as to which fur lengths are
optimal for which temperatures, the problem of overshooting disappears.
If the selection hypothesis says that the optimality line has a negative slope
(but does not specify its exact location), then the assumption of common
ancestry has the consequence that the selection hypothesis and the drift
hypothesis make different predictions. Selection predicts that a line
through the trait values of tip species will have a negative slope while the
drift hypothesis predicts that the slope will be zero. There is no need to
estimate the character states of ancestors. Nor do we need to infer the
precise optimal trait value for polar bears or for any other species. And the
curvature of the fitness function around the optimum, the heritability,
and the effective population size do not matter, either.21

This shift to a new explanandum and to a formulation of the adaptive
hypothesis in which no optimal trait values are postulated has more to be
said for it than that the hypothesis becomes easier to test. The hypotheses
of selection and drift each purport to describe the causal processes that
produced our present observations. The point of importance is that caus-
ation is difference-making. To see whether smoking is a difference-maker in
the production of lung cancer, we need to see whether smokers get cancer
more frequently than nonsmokers who are otherwise the same.22 The

A

Fur length

•
D1

•
D2

Temperature

Figure 3.19 If two descendant lineages stem from a common ancestor A and then
overshoot the optimality line postulated by the adaptive hypothesis, does this count as

evidence favoring drift over selection?

21 The shift in explananda provides another advantage. When SPD and PD are assessed relative to
the single trait value that a single species exhibits, there is an arbitrariness that enters into setting
the upper limit the trait value can have. We assumed that polar-bear fur length must fall between 0
and 100 centimeters, but why not say 0 and 11 centimeters, or 0 and 1,000 centimeters?

22 I add the phrase ‘‘otherwise the same,’’ since we need to control for other potential causal factors;
failing to do this risks conflating causation and correlation.
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relevant data are comparative; the absolute value of the frequency of lung
cancer among smokers is not relevant. Fur length is to lung cancer as
ambient temperature is to smoking. The selection hypothesis says that
ambient temperature causally contributes to longer fur. The claim is that
lineages living in colder climates have a higher probability of evolving
longer fur (or have a higher expected fur length) than lineages living in
warmer climates that are otherwise the same. If this is what the selection
hypothesis says, it is perfectly clear why the absolute fur length of polar bears
is not relevant. What matters is whether they have longer fur than bears in
warmer climates. Selection hypotheses attempt to identify positive and
negative causal factors that influence the trait values of populations. They
don’t claim that populations are optimal or close to optimal. Nor do they
say how probable a given evolutionary outcome is.
I began this chapter by considering why polar bears have fur that is 10

centimeters long and then shifted to the question of why fur length and
ambient temperature are negatively associated in a data set covering
several bear species. In between this starting and end point, there is a
description that we did not pause to consider, one that gives the fur
lengths and environmental temperatures for the several species. This
detailed enumeration is logically stronger than the modest statement that
fur length and temperature are positively associated. Have we therefore
violated the principle of total evidence (§1.3, §2.10)? Not at all. The data
you are obliged to consider depend on the hypotheses you wish to test.
This simple point was visible in the coin-tossing example discussed in
§1.3; if you wish to test p ¼ 0.25 against p ¼ 0.75 where both hypotheses
assume that tosses are independent of each other, the order of heads and
tails in the data does not matter; all you need to consider is the frequency.
The situation is different if you want to test the hypothesis that tosses are
independent against the hypothesis that they are not. You can discard
information about the order of heads and tails in the former problem, but
not in the latter. The shift from one description of the data to another in
testing selection against drift is justified by the character of the hypotheses
we wish to test. The selection hypothesis says that the lineages stemming
from a common ancestor evolved under the influence of an optimality
line with a negative slope; the drift hypothesis says that they evolved from
their common ancestor by random walk. The association in the data is
sufficient to test the two hypotheses. If adding information about the
point values of tip species would change one’s judgment as to which of
these hypotheses is more likely, then this additional information should
be considered. But very often this is not the case.
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Thus far, the main thesis of this chapter has been that hypotheses about
natural selection should be formulated so that they predict correlations
among species, not the absolute trait value of any species.23 The argument
has been somewhat abstract. A less abstract argument for the same con-
clusion is suggested by the following catalog of examples from The Origin
of Species (Darwin 1859: 197):

If green woodpeckers alone had existed, and we did not know that there were
many black and pied kinds, I dare say that we should have thought that the green
colour was a beautiful adaptation to hide this tree-frequenting bird from its
enemies [ . . . ] A trailing bamboo in the Malay Archipelego climbs the loftiest
trees by the aid of exquisitely constructed hooks clustered around the ends of the
branches, and this contrivance, no doubt, is of the highest service to the plant;
but [ . . . ] we see nearly similar hooks on many trees which are not climbers [ . . . ]
The naked skin on the head of a vulture is generally looked at as a direct
adaptation for wallowing in putridity; and so it may be [ . . . ] but we should be
very cautious in drawing any such inferences, when we see that the skin on the
head of the clean-feeding male turkey is likewise naked. The sutures in the skulls
of young mammals have been advanced as a beautiful adaptation for aiding
parturition, and no doubt they facilitate, or may be indispensable for this act; but
[ . . . ] sutures occur in the skulls of young birds and reptiles, which have only to
escape from a broken egg.

It takes no great sophistication to recognize that the frequency of cancer
among smokers, even if it is high, does not show that smoking causes cancer.
It is even more obvious that lung cancer in a single smoker does not suffice
to justify the causal claim. Somehow these obvious points seem less so when
we think about adaptation, but they are just as true and just as vital.

3.7 MODEL SELECTION AND UNIFICATION
24

In modern industrial societies, women on average live longer than men.
One might suspect that this is a recent phenomenon, a result of improved
medical care that reduces the risk of dying in childbirth. The data
available suggest otherwise. In eighteenth-century Sweden, women lived
longer than men, and this inequality has continued right down to the
present, though there has been a steady improvement in the longevities of
both sexes. The same is true of the Ache, a hunter-gatherer group now
living in Paraguay. Indeed, in twentieth-century societies around the

23 The use of ‘‘species’’ here is unnecessarily restrictive. The point is to look at comparative data that
covers a set of objects, not at the trait value of a single object.

24 This section draws on material in Lang et al. (2002).
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world, women almost always have a higher life expectancy than men.
Is this fact about human beings to be explained in terms of some con-
stellation of causes that is unique to our species? Or is the pattern of
longevity in human beings due to factors that apply to a more inclusive
set of organisms? The choice here is between a unified model, in which
the difference between human males and females is explained as part of
a more general pattern of cross-species sexual dimorphism, and a dis-
unified model, in which each species is furnished with its own special
explanation.25

Allman et al. (1998) propose a unified model to explain the facts just
described concerning human beings. Their hypothesis concerns the evo-
lution of anthropoid primates: when one sex provides more parental care
than the other, selection favors reduced mortality in the sex that makes
the larger contribution. For example, if females provide more parental
care than males, selection on the two sexes should have the result that
females take mortality risks less readily than males, because those risks
bring with them larger costs if they don’t work out; mothers are more in
danger of having none of their offspring reach reproductive age than
fathers are if they die when their offspring are young. This difference in
the selective regimes faced by the two sexes might result in differences
between the behaviors of men and women (see §2.2 on Arbuthnot’s 1710
remark that men ‘‘seek their food with danger’’), but it also might take the
form of morphological and physiological differences as well. Allman et al.
take their hypothesis about selection in the past to predict that, among
present-day species, there should be a correlation: the more fathers help
rear their offspring, the longer they should live compared with the life
spans of mothers. The authors present the data shown in Figure 3.20. It
turns out that human beings fall in the middle of this data set, with males
and females having fairly similar life spans and males providing a mid-
dling level of parental care. The logic behind this test is contrastive. The
negative correlation of female/male survival ratio and paternal care is what
the selection hypothesis predicts. On the other hand, if parental care
and life span were causally independent, we’d expect there to be zero
correlation. Notice that the argument does not require the selection
hypothesis to describe what the optimal survival ratio is for a given
amount of male and female parental care. Nor is there any need to

25 There is, of course, a third possibility: That all species except human beings are subject to one
causal process, while human beings have evolved by other rules entirely. There are other
possibilities as well.
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estimate the character states of the common ancestors that the species in
the data set share.
The two hypotheses that Allman et al. consider are both unified.

Neither makes an exception of human beings or of any other species. But
what is wrong with disunified models? Why not view each species as
obtaining its trait values by a separate and independent deterministic
process? The answer cannot be that disunified models fail to fit the data;
quite the contrary: a disunified model can be formulated that fits the data
perfectly. If such models are defective, the epistemological framework that
describes this defect must go beyond likelihoods (since, under standard
assumptions, fit-to-data is a measure of likelihood). It is here that a model
selection framework is fruitful (§1.7 and §2.19). Instead of evaluating
hypotheses in terms of how probable they say the data are, we evaluate
them by estimating how accurately they’ll predict new data when fitted to
old. Suppose that the species in the Allman et al. data set were drawn at
random from the anthropoid primates. We fit different models to that
data set and then ask how well the fitted models can be expected to predict
the survival ratio in a new species, given the amount of parental care the

Primate Female/Male survival 
ratio 

 

Male care of offspring

Chimpanzees  1.418  Rare or negligible 

Spider monkey  1.272  Rare or negligible 

Orangutan  1.203  None 

Gibbon  1.199  Pair-living, but little direct role

Gorilla  1.125  Protects, plays with offspring

Human (Sweden 1780–1991) 1.052–1.082 Supports economically, some care

Goeldi’s monkey  0.974  Both parents carry offspring

Siamang  0.915  Carries offspring in second year

Owl monkey  0.869  Carries infant from birth

Titi monkey  0.828  Carries infant from birth

Figure 3.20 Survival ratios and male care of offspring in anthropoid primates
(from Allman et al. 1998).
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two sexes in that species provide. As already noted, model-selection
criteria do not automatically favor unified over disunified models;
whether they do so depends on the data. If Homo sapiens were an outlier
relative to the other species in the data set, it might make sense to prefer a
disunified model, one that treats nonhuman species one way and human
beings another. The data, in fact, do not support this, but the possibility
cannot be ruled out a priori.
In the Allman et al. study, each species is a data point; the project is to

characterize and explain variation among species, not within them. The
study therefore does not prejudge whether there is variation in male/
female survival ratios among human populations, and, if there is, whether
that variation is associated with variation in the amount of paternal care.
If there is population variation within our species, this opens the question
of whether that variation should be explained in the same way that cross-
species variation should be explained. This means that there are two
questions about whether the traits of human beings should be explained
by the same theories that account for the traits of nonhumans. Models
can be doubly unified, singly unified, or not unified at all, as shown in
Figure 3.21.26 Here again, the question cannot be judged a priori; the
data must be allowed to speak. The framework of model selection pro-
vides a useful vehicle for framing this problem.
The pattern of argument exemplified by Allman et al.’s study has wide

applicability. Here’s another example that can be analyzed in the same
way. As human beings age, they tend to sleep less well. Is this due to
psychological changes? Koh et al. (2006) find that fruit flies exhibit the
same pattern. This result is logically consistent with the disunified
hypothesis that postulates that human beings and fruit flies exhibit the
same phenotype for different reasons; it also is consistent with the uni-
fying hypothesis that the underlying mechanism is the same. To decide
which model is better, there is no need to make it a first principle of
scientific reasoning that ‘‘to the same natural effects we must, as far as
possible, assign the same causes.’’27 Model-selection parsimony is not an
end in itself; rather, it is a means to an end, that of finding models that
make more accurate predictions.

26 Within-species variation, like cross-species variation, could be due to genetic variation,
environmental variation, or both; all three possibilities are consistent with the selection
hypothesis (Sober 1993b). There need be no commitment to ‘‘genetic determinism.’’

27 This is Newton’s second of four ‘‘rules of reasoning in philosophy.’’ See Sober (1988: 51–5) for
discussion.
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3.8 REICHENBACH’S PRINCIPLE OF THE COMMON CAUSE

Allman et al.’s study follows an inferential pattern that is typical of many
studies in evolutionary biology. A selection hypothesis says that Y evolved
as an adaptive response to X. This hypothesis is taken to predict that X
and Y should be correlated in data drawn from a set of extant species. In
contrast, the hypothesis of causal independence is taken to predict that
there will be no correlation. A conclusion is then drawn as to whether the
data favor the selection hypothesis. True, the observed correlation does
not discriminate between ‘‘X causes Y ’’ and ‘‘Y causes X ’’; maybe dif-
ferential parental care is an adaptive response to differential mortality, not
vice versa. And the correlation does not distinguish the hypothesis that X

 
Is the human average explained by the same factor that 
helps explain variation among other species?  

 

Yes No 

 
Yes 

 
Doubly unified 

 
Partly unified; 

partly disunified 
 
 
 
 
 
 

Is variation among human 
populations explained by the 
same factor that helps explain 
variation among species?     

 
No 

 
Partly unified; 

partly disunified 
 
 
 
 
 
 
 

 
Doubly disunified 

. 
 

 

 

Figure 3.21 Possible explanations of patterns of variation, all for hypothetical data. Each
gray diamond represents the average value for a human population. Each black square
represents the average value for a nonhuman species. The line is the best-fitting regression

line for the non-human species (from Lang et al. 2002).
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causes Y from the hypothesis that X and Y are joint effects of a common
cause. Still, if the argument merely pits the hypothesis that X causes Y
against the hypothesis that X and Y are causally independent, it makes
sense, and the law of likelihood explains why.28

I now want to examine a different approach to this testing problem. It
appeals to an idea that Hans Reichenbach (1956) called the principle of the
common cause. This principle says that if the variables X and Y are cor-
related, then either X causes Y, Y causes X, or X and Y are joint effects of a
common cause.29 These three possibilities define what it means for X and
Y to be causally connected. Reichenbach’s principle has been central to the
Bayes net literature in computer science; it is closely connected with the
causal Markov condition (see Spirtes et al. 2001 and Woodward 2003).
Although Reichenbach’s principle and the likelihood approach I have
taken may seem to be getting at the same thing, I think there is a deep
difference. In fact, if the likelihood approach is right, then Reichenbach’s
principle must be too strong. The likelihood approach does not say that X
and Y must be causally connected if they are correlated; it doesn’t even say
that they probably are. The most that the law of likelihood permits one to
conclude is that the hypothesis of causal connection is better supported by
correlational data than is the hypothesis of causal independence.
To delve deeper into the principle of the common cause, let’s begin

with an example that Reichenbach used to illustrate it. Consider an acting
troupe that travels around the country presenting plays. We follow the
company for several years, recording on each day whether the leading man
and the leading lady have upset stomachs. This data allow us to see how
frequently each of them gets sick and how frequently both of them get
sick. Suppose the following inequality is true:

f ðActor 1 gets sick & Actor 2 gets sickÞ
> f ðActor 1 gets sickÞf ðActor 2 gets sickÞ:

ð1Þ

28 The complaint of Leroi et al. (1994) that the comparative method does not get at the causal basis
of selection (because it fails to pry apart selection-of from selection-for, on which see Sober 1984)
needs to be understood in this light.

29 Reichenbach additionally believed that when X and Y are correlated and neither causes the other,
not only does there exist a common cause of X and Y; in addition, if all the common causes
affecting X and Y are taken into account, they will screen off X from Y, meaning that the completely
specified common causes will render X and Y conditionally probabilistically independent of each
other. Results in quantum mechanics pertaining to the Bell inequality have led many to question
this screening-off requirement (see, for example, Van Fraassen 1982).
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Here f(e) means the frequency of days on which the event (type) e occurs.
For example, maybe each actor gets sick once every twenty days, but the
frequency of days on which both get sick is greater than 1

400. If this
inequality is big enough and we have enough data, our observations will
license the inference that the following probabilistic inequality is true:

ð2Þ For each day i; PrðActor 1 gets sick on day i &

Actor 2 gets sick on day iÞ
>PrðActor 1 gets sick on day iÞPrðActor 2 gets sick on day iÞ:

It is important to be clear on the difference between the observed association
described in (1) and the inferred correlation stated in (2); this distinction was
discussed in §2.18 in connection with the inductive sampling formulation of
the argument from design. The association is in our data. However, we do
not observe probabilities; rather, we infer them.30 Once our frequency data
permit (2) to be inferred, the principle of the common cause kicks in,
concluding that there is a causal connection between one actor’s getting sick
on a given day and the other’s getting sick then too. Perhaps the correlation
exists because the two actors eat in the same restaurants; if one of them eats
tainted food on a given day, the other probably does too. The two-step
inference just described is depicted in Figure 3.22.
How could X and Y be associated in the data without being correlated?

Perhaps the sample size is too small. If you toss a pair of coins ten times, it
is possible that heads on one will be associated with heads on the other, in

Causal
association: correlation hypothesis: 

X,Y are 

f(X&Y) > f(X)f(Y )               Pr(X&Y ) > Pr(X)Pr(Y)

connected 

ProbabilisticObserved

causally

Figure 3.22 Although the principle of the common cause is sometimes described as
saying that an ‘‘observed correlation’’ entails a causal connection, it is better to divide the

inference into two steps.

30 In this inference from sample frequencies to probabilities, Bayesians will claim that prior
probabilities are needed while frequentists will deny that this is necessary. Set that disagreement
aside.
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the sense that there is an inequality among the relevant frequencies. But
this may just be a fluke; the tosses may in fact be probabilistically inde-
pendent of each other. One way to see whether this is so is to do a larger
experiment. If the association in the ten tosses is just a fluke, you expect
the association to disappear as sample size is increased.
The principle of the common cause sounds like a sensible idea when it

is considered in connection with examples like Reichenbach’s acting
troupe. But is it always true? Quantum mechanics has alerted us to the
possibility that X and Y might be correlated without being causally
connected; maybe there are stable correlations that are just brute facts.
However, it is not necessary to consider the world of micro-physics to find
problems for Reichenbach’s principle. Yule (1926) described a class of
cases in which X and Y are causally independent though probabilistically
correlated. A hypothetical example of the kind of situation he had in
mind is provided by the positive association of sea levels in Venice and
bread prices in Britain over the past 200 years (Sober 2001). Since both
have increased monotonically, higher than average values of the one are
associated with higher than average values of the other. This association is
not due to sampling error; if yearly data were supplemented with monthly
data from the same 200 years, the pattern would persist. Nor is this
problem for Reichenbach’s principle restricted to time series data. Vari-
ables can be spatially rather than temporally associated, due to two causally
independent processes each leading a variable to monotonically increase
across some stretch of terrain. Suppose that bread prices on a certain date
in the year 2008 increase along a line that runs from southeast to
northwest Europe. And suppose that songbirds on that day are larger in
the northwest than they are in the southeast. If so, higher bread prices are
spatially associated with larger songbirds. And the association is not a
fluke, in that the pattern of association persists with larger sample size.
But still, songbird size and bread prices may well be causally independent.
Reichenbach’s principle is too strong. The probabilistic correlation

between X and Y may be due to the fact that X and Y are causally
connected. However, to evaluate this possibility, we must consider
alternatives. If the alternatives we examine have lower likelihoods, relative
to data on observed frequencies, this provides evidence in favor of the
hypothesis of causal connection. On the other hand, if we consider an
alternative hypothesis that has the same likelihood as the hypothesis of
causal connection, then the data do not favor one hypothesis over the
other, or so the law of likelihood asserts. There is no iron law of meta-
physics that says that a correlation between two variables must be due to
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their being causally connected. Whether this is true in a given case should
be evaluated by considering the data and a set of alternative hypotheses,
not by appealing to a principle.
Those who accept Reichenbach’s principle invariably think that it is

useful as well as true. They do not affirm that correlation entails causal
connection only to deny that we can ever know that a correlation exists.31

Reichenbach’s treatment of the example of the two actors is entirely
typical. The data tell you that there is a correlation, and the correlation
tells you that there is a causal connection. This readiness to use Reich-
enbach’s principle to draw causal inferences from observed associations
suggests the following argument against the principle. Take a data set that
you think amply supports the claim that variables X and Y are prob-
abilistically correlated. If you believe Reichenbach’s principle, you are
prepared to further conclude that X and Y must be causally connected.
But do you really believe that the data in front of you could not possibly
have been produced without X and Y being causally connected? For
example, take Allman et al.’s data set (§3.7). Surely it is not impossible that
each primate species (both those in the data set and those not included)
came to its values for X and Y by its own special suite of causal processes.
I do not say that this is true or even plausible, only that it is possible. This
is enough to show that Reichenbach’s principle is too strong.
Although the example I have considered to make my argument against

Reichenbach’s principle involves a data set in which two variables
monotonically increase with time, the same point holds for a data set in
which the variables each rise and fall irregularly but in seeming synchrony.
If a common cause model is plausible in this case, this is not because a
Reichenbachian principle says that it must be true. Rather, its credentials
need to be established within a contrastive inferential framework, whether
the governing principle is the law of likelihood or a model selection
criterion like AIC. For a monotonic data set, a fairly simple common-
cause model and a somewhat more complex separate-cause model each fit
the data well, in which case the former will have a slightly better AIC score
than the latter. When the data set is a lot more complex, a common-cause
model that achieves good fit will have far fewer adjustable parameters than
a separate-cause model that does the same, in which case the difference in
their AIC scores will be more substantial. It does not much strain our

31 It is tempting to argue that Venetian sea levels and British bread prices really aren’t correlated
because if enough data were drawn from times outside the 200-years period, the association would
disappear. Well, maybe it would, but so what? Why must real correlations be temporally (and
spatially) unbounded?
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credulity to imagine that the steady rise in British bread prices and
Venetian sea levels is due to separate causes acting on each; the strain may
be more daunting for two time series that have lots of synchronous and
irregular wiggles. But this difference is a matter of degree and the relevant
inferential principles are the same. Strong metaphysics needs to be
replaced by more modest epistemology.32

3.9 TESTING SELECTION AGAINST DRIFT WITH

MOLECULAR DATA

The shift from the task of explaining a single trait value in a single species
(§3.1–§3.5) to that of explaining a correlation that exists across species
(§3.6) renders the problem of testing selection against drift more tractable.
In the former case, you need to know the location of the optimal trait
value towards which selection, if it occurs, will push the lineage. In the
latter, all that is needed is information about the slope of the optimality
line. Instead of needing to know what the optimal fur length is for the
polar bear lineage, it suffices to know that, if selection acts on fur length,
bears in cold climates have a longer optimal fur length than bears in warm.
A great deal of work in population genetics attempts to get by with

even less. Geneticists often test selection against drift by comparing DNA
sequences drawn from different species; a number of statistical tests have
been constructed for doing this (see Page and Holmes 1998, Kreitman
2000, and Nielsen 2005 for reviews). Scientists carry out these tests with
little or no information about the roles that different parts of these
sequences play in the construction of an organism’s phenotype. If these
tests are sound, they require no assumptions concerning what the optimal
sequence configuration would be; in fact, they don’t even require assump-
tions concerning how the optimum in one species is related to the optimum
in another. If selection can be tested without this type of information, what
does the hypothesis of natural selection predict about what we observe?
The parallel question about what drift predicts is easier to answer. The

predictions are probabilistic, not deductive. They take the following
form: If the process is one of pure drift, then the probability of this or that
observable result is such-and-such. If the observations turn out to deviate

32 Hoover (2003) proposes a patch for Reichenbach’s principle that introduces considerations
concerning stationarity and cointegration, but his proposal is still too strong; it isn’t true that a
data set that satisfies his requirements must be due to the two variables’ being causally connected.
In addition, Hoover’s reformulation makes no recommendations concerning some data sets that in
fact do favor a common cause over a separate cause model.
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from what the drift hypothesis leads you to expect, should you reject it?
If you should, and if selection and drift are the only two alternatives,
selection has been ‘‘tested’’ by standing idly on the sidelines and wit-
nessing the refutation of its one and only rival. If probabilistic modus
tollens (§1.4) made sense, this would be fine. But it does not. For selection
and drift to be tested against each other, both must make predictions. This
is harder to achieve for selection than it is for drift, since drift is a null
hypothesis (predicting that there should be zero difference between
various quantities; see below) whereas selection is a composite hypothesis
(predicting a difference but leaving open what its magnitude should be).
A central prediction of the neutral theory of molecular evolution is that

there should be a molecular clock (Kimura 1983). In a diploid population
containing N individuals, there are 2N nucleotides at a given site. If each
of those nucleotides has a probability l of mutating in a given amount of
time (e.g., a year), and a mutated nucleotide has a probability u of evolving
from mutation frequency to fixation (i.e., 100 percent representation in
the population), then the expected rate of substitution (i.e., the origination
and fixation of new mutations) at that site in that population will be

k ¼ 2Nlu:

This covers all the mutations that might occur, regardless of whether they
are advantageous, neutral, or deleterious. Because l and u are probabil-
ities, k isn’t the de-facto rate of substitution; rather, it is a probabilistic
quantity – an expected value (§1.4). If the 2N nucleotides found at a site
at a given time are equal in fitness, the initial probability that each has of
eventually reaching fixation is

u ¼ 1

2N
:

I say that this is the ‘‘initial’’ probability since the probability of fixation
itself evolves.33 If we substitute 1/2N for u in the first equation, we obtain
one of the most fundamental propositions of the neutral theory:

ðNeutralityÞ k ¼ l:

33 This equality pertains to the 2N token nucleotides present at the start of the process; some of those
tokens may be of the same type. It follows from the above equality that the initial probability that a
type of nucleotide found at time t will eventually reach fixation is its frequency at time t. This
point applies to phenotypic drift models as well as genetic ones; see the squashing of the bell curve
depicted in Figure 3.4.
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The expected rate of substitution at a site is given by the mutation rate if
the site is evolving by drift. Notice that the population size N has can-
celled out.
What will happen if a mutation is advantageous? Its probability of

fixation (u) depends on the selection coefficient (s), on the effective
population size Ne, and on the population’s census size N:

u ¼ 2sNe

N
:
34

Substituting this value for u into the first equation displayed above, we
obtain the expected rate of evolution at a site that experiences positive
selection:

ðSelectionÞ k ¼ 4Nesl:

If the probability of mutation per unit time at each site remains constant
through time (though different sites may have different mutation prob-
abilities), the neutral theory predicts that the expected overall rate of
evolution in the lineage does not change. This is the clock hypothesis. It
doesn’t mean that the actual rate never changes; there can be fluctuations
around the mean (expected) value. The selection hypothesis is more
complicated. If each site’s value for Ne sl holds constant through time,
(Selection) also entails the clock hypothesis. But there is every reason to
expect this quantity to fluctuate. After all, Ne is a quantity that reflects the
breeding structure as well as the census size of the population (Crow and
Kimura 1970) whereas s, the selection coefficient, reflects the ecological
relationship that obtains between a nucleotide in an organism and the
environment. With both these quantities subject to fluctuation, it would
be a miracle if their product remained unchanged. This is why (Selection)
is taken to predict that there is no molecular clock.35

If we could trace a single lineage through time, taking molecular
snapshots on several occasions, it would be easy to test (Neutrality)
against (Selection). Although this procedure can be carried out on
populations of rapidly reproducing organisms, it isn’t feasible with respect
to lineages at longer time scales. It is here that the fact of common
ancestry comes to the rescue, just as it did in §3.6. We do not need a time

34 This useful approximation is strictly correct only for small s and large N.
35 The simple selection model described here does not predict a clock, but more complicated

selection models sometimes do. Discussion of these would take us too far afield.
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machine that allows us to travel into the past so that we can observe earlier
states of a lineage we now see in the present; rather, we can look at three or
more tips in a phylogenetic tree and perform a relative rates test. Figure 3.23
provides an independently justified phylogeny of human beings, Old
World monkeys, and New World monkeys. We can gather sequence
data from these three taxa and observe how many differences there are
between each pair. The neutral hypothesis predicts that (d13 � d23) ¼ 0
(or, more precisely, it entails that the expected value of this difference is
zero); here dij is the number of differences between i and j. We don’t
need to know how many changes occurred in each lineage; it suffices to
know how many changes separate one extant group from another.
Looking at the present tells you what must have occurred in the past,
given the fact of common ancestry.
Li et al. (1987) carried out this test and discovered that d13 is sig-

nificantly greater than d23; they didn’t look at whole genomes but at a
sample of synonymous sites, introns, flanking regions, and a pseudo-gene,
totaling about 9,700 base pairs. With respect to these parts of the genome,
human beings diverged more slowly than Old World monkeys from their
most recent common ancestor (see also Li 1993). This result was taken to
favor (Selection) over (Neutrality). In view of the negative comments I
made about Neyman–Pearson hypothesis testing in Chapter 1, I want to
examine the logic behind this analysis more carefully. Using relative rates
to test drift against selection resembles using two sample means to test
whether two fields of corn have the same mean height. The null

Old World 
monkey

New World
monkey

1 3

Human

2

Figure 3.23 Given the phylogeny, the neutral theory entails that the expected difference
between 1 and 3 equals the expected difference between 2 and 3 (figure from Page and

Holmes 1998: 255).
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hypothesis says that they are the same; the alternative to the null says that
they differ, but it does not say by how much. The Neyman–Pearson
theory conceives of the testing problem in terms of acceptance and
rejection and requires that one stipulate an arbitrary level for a, the
probability of a Type-1 error. I suggested in Chapter 1 that it makes more
sense to place this problem in a model-selection framework. In the
relative-rates test, the drift hypothesis has no adjustable parameters
whereas the selection hypothesis has one. The question is not which
hypothesis to reject but which can be expected to be more predictively
accurate. The AIC score of the selection hypothesis is found by deter-
mining the maximum likelihood value of a single parameter h, the
expected value of (d13 � d23), taking the log-likelihood when h is assigned
its maximum likelihood value and subtracting the penalty for complexity.
The question is whether the selection hypothesis’ better fit to data suffices
to compensate for its greater complexity.
Bayesians and likelihoodists come at the problem differently. Their

framework obliges them to compute the average likelihood of the selection
hypothesis, which, as noted, is composite. If selection acted on these
different parts of the genome, how much should we expect d13 and d23
to differ? We would need to answer this question without looking at
the data. And since different types of selection predict different values for
(d13 � d23), our answer would have to average over these different pos-
sibilities. It isn’t impossible that empirical information should one day
provide a real answer to this question. However, at present, there is no
objective basis for producing an answer. I suggest that the model-selection
approach is more defensible than both Bayesianism and Neyman–Pearson
hypothesis testing as a tool for structuring the relative rate test.
The role played by the fact of common ancestry in facilitating tests of

process hypotheses can be seen in another context. If we could look at a
large number of replicate populations that all begin in the same state, we
could see if the variation among the end states of those lineages is closer to
the predictions of neutrality or selection. But why think that each of these
lineages begins in the same state? The answer is simple: If they share a
common ancestor, they must have. The neutral theory predicts that the tips
of a tree should vary according to a Poisson distribution. A number of
mammalian proteins (e.g., Hemoglobin a and b, Cytochrome c, Myoglobin)
were found to be ‘‘over dispersed’’ (Kimura 1983; Gillespie 1986), and
this was taken to be evidence of selection. Once again, neutrality is a null
hypothesis, and selection is composite.
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Like the relative rate test, the McDonald–Kreitman test also relies on
an independently justified phylogeny, and there is no optimality line in
sight. McDonald and Kreitman (1991) examined sequences from three
species of Drosophila that all play a role in constructing the protein al-
cohol dehydrogenase (Adh). Fruit flies often eat fruit that is fermented,
and they need to break down the alcohol (human beings have the same
problem and solve it by way of a different version of the same protein). So
it seems obvious that the protein is adaptive. What is less obvious is
whether variations in the gene sequences that code for the protein are
adaptive or neutral. Perhaps different species find it useful to have dif-
ferent versions of the protein, and selection has caused these species to
diverge from each other. And different local populations that belong to
the same species may also have encountered different environments that
select for different sequences. Alternatively, the variation may be neutral.
The McDonald–Kreitman test compares the synonymous and non-

synonymous differences that are found both in different populations of
the same species and in different species. A substitution in a codon is said
to be synonymous when it does not affect the amino acid that results. For
example, the codons UUU and UUC both produce the amino acid
phenylalanine, while CUU, CUC, CUA and CUG all produce leucine. It
might seem obvious that synonymous substitutions must be caused by
neutral evolution, since they do not affect which amino acids and proteins
are constructed downstream. This would suggest that the hypothesis that
nonsynonymous substitutions evolve neutrally can be tested by seeing if
the rates of synonymous and nonsynonymous substitutions are the same.
However, it is possible that synonymous substitutions might not be
neutral, owing, for example, to differences in secondary structure, for
example, having to do with the stability of the molecules (Page and
Holmes 1998: 243). What seems safer is the inference that the ratio of the
rates of synonymous to nonsynonymous substitutions should be a con-
stant if there is neutral evolution. Both should depend just on the
mutation rate, as discussed above. This ratio should have the same value
regardless of whether the sequences compared come from two popula-
tions of the same species or from different species.
Figure 3.24 describes the four kinds of observations that McDonald

and Kreitman assembled. They counted the number of nonsynonymous
and synonymous differences that separate different populations of the
same species; these are called polymorphisms. They also counted the
number of synonymous and nonsynonymous fixed differences that separate
pairs of species; these are sites that are monomorphic within each species
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but vary between them. Here are the numbers of differences that
McDonald and Kreitman found in the four categories:

Fixed Polymorphic
Synonymous 17 42
Nonsynonymous 7 2

If these sequences evolved neutrally, the ratio of synonymous to non-
synonymous substitutions for the first column should be about the same
as the ratio for the second. But they aren’t close:

17

7
� 42

2
:

There is an excess of nonsynonymous fixed differences (or a deficiency of
polymorphic nonsynonymous substitutions). McDonald and Kreitman
took this departure from the prediction of neutrality to be evidence for
selection: Selection had reduced the within-species variation and ampli-
fied the between-species variation at nonsynonymous sites. They note that
a population bottleneck could also explain the data but argue that the
known history of Drosophila makes this alternative implausible.
The same epistemological questions arise in connection with the

McDonald–Kreitman test that I raised about the relative rates test. The
inference should not be thought of as an instance of probabilistic modus

D. Melanogaster D. simulans D. yakuba 
0/11 polymorphisms

1/2 1/0 fixed differences 

2/14

5/15

 0/17

Figure 3.24 The number of nonsynonymous and synonymous differences that exist
within and between three Drosophila species at the Adh locus. The within-species

differences are called polymorphisms; the between-species differences are called fixed.
Data from McDonald and Kreitman (1991); figure from Page and Holmes (1998: 267).
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tollens. How, then, should it be conceived? McDonald and Kreitman used
a G test, which is part of the Neyman–Pearson framework. The neutrality
hypothesis once again is a null hypothesis, asserting that two ratios (or
their expected values) are the same. One rejects the null and accepts the
alternative to the null when the difference in the observed ratios deviates
sufficiently from zero. A Bayesian treatment of this problem would need
to answer the question of how much difference one would expect in the
two ratios if selection were at work. This is the same type of unanswerable
question I discussed in connection with the relative rate test. A third
alternative is to reformulate the McDonald–Kreitman test in a model-
selection framework. The selection model contains more adjustable par-
ameters than the neutrality model; the former will, therefore, fit the data
better. The question is whether the greater fit of the selection model
suffices to compensate for its greater complexity.
Although the relative rate test is usually applied to three species or

higher taxonomic groups while the McDonald–Kreitman test is usually
applied to cases in which there is within- and between-species variation, the
relationship between the two tests can be examined by seeing how they
apply to the hypothetical example shown in Figure 3.25. Here W and X
are local populations that belong to one species, and Y and Z are popula-
tions that belong to another. The relative rate test, applied to (WX)Z or
to W(YZ), checks whether the two in-group branches exhibit the same

W                             X                            Y                 Z

1                         2                                      3                            4

5                                                  6

Figure 3.25 The relative rate test and the McDonald–Kreitman test focus on different
events in this tree. The first tests neutrality’s prediction that, in expectation,

s1þ n1¼ s2þ n2 and that s3þ n3¼ s4þ n4; the second tests the neutral prediction that
ðs1 þ s2 þ s3 þ s4Þ=ðn1 þ n2 þ n3 þ n4Þ ¼ ðs5 þ s6 Þ=ðn5 þ n6 Þ, where si and ni are,
respectively, the number of synonymous and nonsynonymous changes on branch i.
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total number of changes (the sum of synonymous and nonsynonymous
changes). The test concerns just the time slice in which there is
branching within the in-group. The McDonald–Kreitman test both
separates synonymous from nonsynonymous changes and compares two
different time slices: the polymorphisms that arose in branches 1–4 and
the fixed differences that arose in branches 5 and 6. In deriving what the
neutrality hypothesis predicts in both tests, I exploited the fact that if
each site’s mutation rate is constant through time, then the neutrality
hypothesis has certain consequences (e.g., that there will be a molecular
clock). This does not mean that the validity of the tests depends on each
site’s having a constant mutation rate. For example, if all mutation
probabilities in all lineages changed uniformly with time, the relative rate
test would still make sense. What this test requires is that the mutation
rates in the two in-group branches will be about the same if there is
neutral evolution; if there is neutral evolution but the in-group branches
have very different average mutation probabilities, the data will probably
lead to the erroneous conclusion that this is evidence against neutrality.
A similar caveat applies to the McDonald–Kreitman test.
In the tests described, the selection hypothesis is rather unspecific; it

predicts certain observational outcomes (that two distances will differ,
that the tips in a tree will be over-dispersed, or that two ratios will differ),
but it has little content beyond that. There obviously is more to the process
of natural selection than these meager hypotheses capture; this is some-
thing that geneticists recognize when they note that other processes could
in principle generate the outcomes that a test judges to be evidence
favoring selection over drift. As more substantive molecular models of
selection are developed, molecular tests of drift against selection will be
sharpened (Kreitman 2000).

3.10 SELECTION VERSUS PHYLOGENETIC INERTIA
36

I have focused so far on testing selection against drift. I now want to
explore a second competitor to natural selection that biologists have
considered. It is called phylogenetic inertia. To see what this idea involves,
consider the following remark by Roger Lewin:

Why do most land vertebrates have four legs? The seemingly obvious answer is that
this arrangement is the optimal design. This response would ignore, however, the

36 The material in this section is drawn from Orzack and Sober (2001).
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fact that the fish that were ancestral to terrestrial animals also have four limbs, or
fins. Four limbs may be very suitable for locomotion on dry land, but the real
reason that terrestrial animals have this arrangement is because their evolutionary
predecessors possessed the same pattern. (Lewin 1980: 886)

There are two thoughts that this passage suggests. The first is a simple
chronological point: Since the aquatic ancestors of land vertebrates
already had four limbs, it is false that the trait initially became common in
the lineage because of its utility for walking on dry land (Eaton 1960;
Edwards 1989). This is no more controversial than the thought that cause
must precede effect. However, once this point is granted, there is a second
and more contentious thesis with which to reckon. This is the claim that
the correct explanation for why land vertebrates are tetrapods consists
in the fact that their ancestors had four limbs; it is incorrect to maintain
that the trait remained in place because there was selection for the trait
due to the fact that it facilitated walking on dry land. Selection for the
ability to walk on dry land of course does not explain the initial evolution
of the tetrapod morphology; the question is whether we also should reject
the thesis that selection for walking was responsible for the trait’s subse-
quent maintenance. The term ‘‘phylogenetic inertia’’ (Wilson 1975;
Harvey and Pagel 1991) is sometimes used to refer to the explanation that
Lewin favors, which might better be called ancestral influence.37 The
hypothesis of phylogenetic inertia and the hypothesis of stabilizing
selection propose to explain the character state of a descendant in different
ways; the former appeals to the lineage’s ancestral state while the latter
cites processes that the lineage subsequently experienced.
Why are these two possible explanations in conflict? Can’t phylogenetic

inertia and stabilizing selection both help explain why land vertebrates
now have four limbs? This is not the position that Lewin takes in the
quoted passage. Phylogenetic inertia is said to be ‘‘the real reason;’’ not
only is selection not the whole story; it isn’t even part of the story. Lewin
seems to think that the hypothesis of phylogenetic inertia should be
regarded as innocent until proven guilty; our default assumption should
be that ancestral influence is the right explanation unless the data force us

37 The word ‘‘inertia’’ misleadingly suggests that lineages have a tendency to continue evolving in a
certain direction even after the initial ‘‘push’’ that got them started is no longer present. For example,
if selection initially favors the evolution of longer fur in polar bears and evolution is ‘‘inertial,’’ then
fur length will continue to increase even if there ceases to be selection for longer fur. At the start of
the twentieth century, the orthogenetic theory of evolution held that inertia in this sense explains
why the Irish elk had such enormous horns (Gould 1977). This view of evolution is dubious, but
inertia in this sense is not what ‘‘phylogenetic inertia’’ is now taken to mean.
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to abandon that hypothesis.38 If what we observe is consistent with the
hypothesis of phylogenetic inertia and also with the hypothesis of stabilizing
selection, we should prefer the former. Perhaps considerations of parsimony
also suggest that we should prefer the one-factor inertia explanation over a
pluralistic explanation that cites both inertia and selection.
Other evolutionary biologists have espoused other principles of default

reasoning. George C. Williams (1966), in his influential book Adaptation
and Natural Selection, asserts that adaptation is an ‘‘onerous concept’’ that
should be embraced only if the data force one to do so. Ernst Mayr (1988:
150–1) takes the opposite stance – only after all possible selection
explanations of a given trait have been explored and rejected can one
tentatively conclude that the trait is a product of drift. Default principles
also have been defended that give precedence to some types of natural
selection over others. Williams maintains that the hypothesis of group
selection is more onerous (by which he means less parsimonious) than the
hypothesis of individual selection; our default assumption should be that
when a trait evolves by natural selection, it evolves because it is advan-
tageous to the individuals who possess it, not because it helps the groups
in which it occurs.39 Williams’ principle, like Lewin’s, says that we should
accept one hypothesis rather than another even when the data fail to
discriminate between them. These principles do not say that one should
suspend judgment and remain agnostic.
The framework of model-selection theory (§1.7) throws light on these

principles. Model-selection criteria such as AIC give weight to how par-
simonious a model is (where parsimony is measured by how few
adjustable parameters the model contains). This means that a model that
postulates both individual and group selection will score worse than a
model that postulates just individual selection (or one that postulates just
group selection) if the two-factor model and the single-factor model fit
the data about equally well. Notice the if in the preceding statement:
model-selection theory does not permit one to ignore the data and to
embrace the more parsimonious model just because it is more parsimo-
nious. Notice also that model selection provides no basis for preferring a
model that postulates just individual selection over one that postulates
just group selection if the two models have the same number of adjustable
parameters. And they do: individual selection is represented formally by
the variance in fitness that exists within groups, and group selection is

38 Ridley (1983) also recommends this policy.
39 See Sober and Wilson (1998) for discussion of this and other arguments against group selection.
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represented by the between-group variance in fitness. A single parameter
does the representing in each case, so there is no difference in parsimony here.
Similar conclusions apply to the task of comparing phylogenetic inertia

and stabilizing selection as possible explanations of why land vertebrates
have four limbs. A model that postulates both phylogenetic inertia and
stabilizing selection will score worse than a model that postulates just one
of these possible causes if the two models are about equal in goodness of
fit. But how do the two single-factor explanations that Lewin considers
compare to each other? Why is a model that postulates phylogenetic
inertia better than one that postulates stabilizing selection? Does the
phylogenetic inertia model have fewer parameters? This question raises
another that is more fundamental: What are the parameters that go into
representing phylogenetic inertia? We also need to consider the fact that
statisticians decline to use AIC and other model-selection criteria to
evaluate a model unless there are considerably more items of data than
there are adjustable parameters. But Lewin mentions just two observa-
tions: land vertebrates have four limbs, and their fish ancestors did too. Is
this enough data? It might be replied that each species in these groups is a
separate observation, and so the data set is in fact very large. However,
these observations are not independent of each other, owing to the fact
that the species are phylogenetically related (Felsenstein 1985).
In §3.5 I described how a simple Markov model can be used to represent

the evolution of a dichotomous character subject to either drift or natural
selection. This model also provides a natural representation of phylogenetic
inertia. Consider a lineage that connects an ancestor A to a descendant D;
suppose we observe that the descendant D is in state 1 (D ¼ 1, for short).
According to the Markov model, this outcome would have been more
probable if the ancestor A had been in state 1 than if A had been in state 0.
The Markov model represents the idea of ancestral influence because the
backwards inequality is a consequence of this model (so long as ancestor
and descendant are separated by a finite amount of time):

PrðD ¼ 1 jA ¼ 1Þ> PrðD ¼ 1 jA ¼ 0Þ:

For any fixed pair of values for u and v (the two instantaneous prob-
abilities of change) in the Markov model, the difference between these
two probabilities is greatest when the time separating ancestor and des-
cendant is small; the difference asymptotes to zero as the temporal sep-
aration grows larger. A current species is more influenced by its recent
ancestors than it is by its ancient ancestors.
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In §3.6, I described selection hypotheses by analogy with the impact of
smoking on lung cancer. Smoking doesn’t insure that you’ll get lung
cancer; in fact, smoking can be a positive causal factor in the production
of lung cancer even if smoking doesn’t make lung cancer more probable
than not. Rather, the positive causal role played by smoking is that
smoking raises the probability of lung cancer.40 Similarly, there being
selection in a lineage for character state 1 doesn’t insure that the lineage
will exhibit that trait value; and selection for character state 1 doesn’t
necessarily make the evolution of that character state more probable than
not. Rather, selection for trait 1 raises the probability that the population
will come to exhibit that trait. This fact about how selection ought to be
understood is depicted in Figure 3.26. The same point holds with respect
to the hypothesis of phylogenetic inertia. For phylogenetic inertia to be
part of the explanation of why land vertebrates have four limbs, all that is
required is that A ¼ 1 raised the probability that D ¼ 1. It isn’t essential
that the tetrapod morphology in the fish ancestors of land vertebrates
guaranteed that land vertebrates would have four limbs; it isn’t even
required that the ancestral condition render that state of the descendant
more probable than not. In summary, the hypothesis of natural selection
entails the two horizontal inequalities shown in Figure 3.26; the hypothesis
of phylogenetic inertia entails the two vertical inequalities.
The Markov model for a dichotomous trait treats inertia and selection

a bit differently. There is nothing intrinsic to Markov modeling that
requires that there be selection for trait 1; it is possible that u > v, but it
also is possible that u ¼ v (drift) and that u < v (selection for trait 0).
However, as already noted, the Markov model entails the backwards
inequality; inertia is therefore an inevitable consequence of Markov
processes for dichotomous characters, but selection is not. This does not
mean that hypotheses of phylogenetic inertia must be true; after all, the

                Process at work in lineage 
     Selection for 1              Drift 

               A = 1                  p1                 p2 
State of the ancestor A                A = 0                  p3                 p4 

Figure 3.26 Selection for character state 1 raises the probability that the descendant D
will exhibit that character state (p1 > p2 and p3 > p4). According to the hypothesis of
phylogenetic inertia, the probability that D ¼ 1 increases if the ancestor was in character

state 1 (p1 > p3 and p2 > p4). Cell entries are all of the form Pr(D ¼ 1 | – ).

40 See below for a refinement of this idea that is needed if causation and correlation are to be distinct.
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Markov model might not be correct. The Markov model helps express what
inertia means. But inertia needs to be tested just as much as selection does.42

The analogy with smoking and cancer provides a clue as to how the test
of selection against inertia should be structured. Suppose we didn’t
already know that smoking and asbestos exposure each increase the risk of
lung cancer, and we wanted to test these two causal hypotheses by
examining the frequencies of lung cancer in different groups of people.
The hypothesis that smoking is a cause predicts that smokers should get
cancer more frequently than nonsmokers who are otherwise the same. The
italicized rider is needed to guard against the possibility of misleading
correlations. For example, it might turn out that smokers get cancer more
frequently than nonsmokers, not because cigarette smoke is carcinogenic
but because smokers tend to have some other property X far more fre-
quently than nonsmokers do, and it is X that promotes lung cancer. This
is why testing causal hypotheses by looking at frequency data requires
controlled comparisons (Harvey and Pagel 1991: 37). To test whether
smoking causes lung cancer, we must control for the presence of other
possible causes. The same point holds for testing whether asbestos
exposure causes cancer. Testing each of these causal hypotheses requires
controlling for the other. The two causal claims are depicted in Figure 3.27.

                  Smoking 
                Yes                  No 

Yes                   q1 q2 
Asbestos exposure No                   q3          q4 

Figure 3.27 If smoking causally contributes to lung cancer, smoking should raise
the probability of lung cancer for people who have the same degree of asbestos exposure
(q1> q2 and q3> q4). If asbestos exposure causes lung cancer, asbestos should raise the
probability of lung cancer for people who are alike with respect to how much they smoke

(q1> q3 and q2> q4).
41 Cell entries are all of the form Pr(lung cancer | – ).

41 If smoking raises the probability of cancer among those who are not exposed to asbestos, but
lowers it among those who are exposed, I’m inclined to say that smoking causes cancer in the one
subpopulation but prevents it in the other. Can one also say that smoking causes cancer in the
whole population (meaning that smoking is sometimes a positive causal factor in the population)? If
this is acceptable, then smoking can be both a promoter and a preventer of cancer in the same
population. I do not object to this mode of description. In any event, there is no need to take a
stand on this question about ‘‘contextual unanimity’’ to see the point of controlled comparisons.

42 Quantitative traits and traits with three or more characters need not obey a backwards inequality;
as noted in §3.3, Pr (D ¼ x | A ¼ x) > Pr (D ¼ x | A ¼ y), for all x 6¼ y, when a lineage is subject to
drift, but the inequality isn’t true when the lineage experiences directional selection that pushes it
towards an optimum other than x. Still, ancestral influence is built into the Ornstein–Uhlenbeck
process in a way that selection is not; where a lineage begins always influences where the lineage
ends, provided that the lineage has finite duration.
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To test the smoking hypothesis, we need to see whether smokers get lung
cancer more often than nonsmokers, when the two groups are alike with
respect to asbestos exposure. And to test the asbestos hypothesis, we need
to see whether people exposed to asbestos get lung cancer more often
than people who were not exposed, when the two groups are alike with
respect to whether they smoke. Thus construed, the smoking and the
asbestos hypothesis are compatible with each other; each should be
viewed as competing with a hypothesis that says that lung cancer is
causally independent of the factor in question.
The selection and inertia hypotheses both make predictions about the

frequencies of different kinds of events in different lineages. Let’s consider
this in connection with our running example about fur length in bears.
Fur can be either ‘‘long’’ or ‘‘short’’ (I here set aside the qualms about
dichotomous characters described in §3.5 for the sake of a simple
example) and climate can be either ‘‘cold’’ or ‘‘warm.’’ The selection
hypothesis says that a cold climate produces selection favoring long fur
and that a warm climate produces selection for short fur. The inertia
hypothesis says that a descendant has a higher probability of having long
fur if its ancestor had long fur than if its ancestor had short fur. Each of
these hypotheses must be tested by controlling for the other. To test the
inertia hypothesis, we must compare lineages that experience the same
selective regime. And to test the selection hypothesis, we must compare
lineages that started in the same ancestral state. These two protocols are
depicted in Figure 3.28. The inertia hypothesis predicts that descendants
should have long fur in lineages of type (1) more frequently than they

To test for inertia                                        To test for selection

D1 = long 2 = long 1 = long 2 = long

Same Cold                   Warm
temperature

A1 = long 2 = short 1 Same 2
state 

(1)                        (2)            (3)                        (4)  

A AA

D D D

  

Figure 3.28 To test for phylogenetic inertia, lineages alike in their selective regimes
must be compared. To test the selection hypothesis, lineages alike in their ancestral

state must be compared.
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have long fur in lineages of type (2); the selection hypothesis predicts that
descendants should have long fur in lineages of type (3) more frequently
than they have long fur in lineages of type (4).
I hope the analogy with smoking and asbestos exposure makes it clear

why neither the inertia hypothesis nor the selection hypothesis should be
regarded as innocent until proven guilty. Neither deserves to be treated as
a default assumption. Rather, both are causal hypotheses, and both need
to be tested. Frequency data may indicate that both inertia and selection
have influenced the trait values of descendants, that only one of them has,
or that neither of them has. Despite our a priori expectations, it may turn
out that the frequency with which ancestors with long fur have des-
cendants with long fur is no greater than the frequency with which
ancestors with short fur have descendants with long fur. And our a priori
expectation that fur length is an adaptive response to ambient temperature
may fail to be borne out when we look at the frequencies of bears with
long fur in different climates. The idea that inertia and stabilizing
selection need to be tested on a level playing field also shows what is
wrong with the following line of reasoning: ‘‘we know that inertia
influenced the traits of descendants, so parsimony tells us to conclude that
stabilizing selection did not.’’ This is no more defensible than its mirror
image: ‘‘we know that stabilizing selection influenced the traits of des-
cendants, so parsimony tells us to conclude that inertia did not.’’ Parsi-
mony does not provide a justification for ignoring the data. Imagine
oncologists reasoning this way about whether smoking and asbestos
exposure cause lung cancer.
This way of framing the relationship of inertia and selection also shows

why nothing much can be said about a data set consisting of a single
lineage in which ancestor and descendant are in the same character state.
This may be due to stabilizing selection, or to inertia, or to both, or to
neither. This n ¼ 1 data set needs to be augmented with information
about other lineages. However, the situation is not improved if the new
lineages considered are carbon copies of the first. Since causes are dif-
ference makers, causal hypotheses need to be tested by using frequency
data in which there is variation (§3.6). A principle of default reasoning is
no substitute for an impoverished data set.
Just as stasis in a lineage is no proof that inertia has played a role, so

change in a lineage is no proof that it has not (Wake et al. 1983; Hansen
1997). To see this, consider a quantitative character, like fur length, and a
set of bear lineages in which lineages that experienced the same tem-
perature show a correlation between the fur length of descendants and
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the fur length of ancestors. Data of this sort justify an inference about
expected values:

Eðfur length of D j temperature x & A ¼ mÞ
>Eðfur length of D j temperature x & A ¼ nÞ; for all m > n:

Descendants can bear the imprint of their ancestors even if descendants
manage to evolve away from ancestral trait values.
To test inertia and selection by applying the protocols depicted in

Figure 3.28, the character states of ancestors must be known, a problem
we considered in §3.3. The fact that species have common ancestors
provides a solution to this problem, just as it did earlier in this chapter
with respect to others. Figure 3.29 shows how each hypothesis can be
tested while controlling for the other without any knowledge of the
character states of ancestors. The fact of common ancestry makes this
possible. Consider the test for selection shown in Figure 3.29. Since the
descendants D1 and D2 have a common ancestor A, both lineages start
with the same character state. The fact of common ancestry thus allows
one to control for the possibility of phylogenetic inertia. If many such
pairs of lineages are examined, and lineages that experience cold climates
end up with long fur more often than sister lineages that experience warm
climates, this is evidence for the selection hypothesis.43 The same logic
applies to testing an inertia hypothesis. Here we have four species. D1 and
D3 experience the same selection pressure, but they differ in the character

To test for inertia To test for selection

D1 = long 2 = long 3 = long 4 = short 1 = long 2 =long

Cold Warm

A

D D D D D

coldcold

Figure 3.29 The fact that species have common ancestors permits phylogenetic
inertia and selection to each be tested by means of controlled comparisons without

estimating ancestral trait values.

43 This is an instance of the sign test proposed by Burt (1988), discussed in §3.6.
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states their sisters (D2 and D4, respectively) possess. If inertia influences
the character states of D1 and D3, D1 has a higher probability of
exhibiting long fur than D3 has. By looking at many such foursomes, one
can ascertain whether species with long-furred sisters have long fur more
often than species with short-furred sisters even though they experience
the same selective regime. If there is ancestral influence, siblings should
resemble each other.
Using the fact of common ancestry as a device for controlled testing of

the inertia and selection hypotheses throws light on a method developed by
Cheverud et al. (1985) in which one determines the degree to which a
species’ trait value is predicted by the trait values of its relatives. High
predictability is said to reflect a strong effect of inertia. Residual differences
are said to represent the effect of some other process, possibly natural
selection. This procedure has much in common with the reasoning implicit
in the quotation from Lewin; similarity of ancestor and descendant, or of
close relatives, is assumed to indicate inertia, not selection. The method of
controlled comparisons rejects the idea that the inertia hypothesis should
be viewed as innocent until proven guilty. If relatives have similar trait
values, it is impossible to say whether this is due to inertia until one knows
how similar the hypothesis of natural selection predicts they should be.
The method of controlled comparisons described here also has impli-

cations concerning Felsenstein’s (1985) proposal for how phylogenetic
information should be taken into account in testing a selection hypoth-
esis. Suppose you observe twenty bear species – ten live in warm climates
and have short fur while the other ten live in cold climates and have long
fur. These twenty observations might seem to provide strong evidence in
favor of the hypothesis that fur length evolved as an adaptive response to
ambient temperature. But suppose you then discover that the ten species
with short fur are all close relatives and that the ten with long fur are too.
Perhaps the first ten resemble each other because of phylogenetic inertia,
not because of selection, and maybe the same is true of the second ten.
Felsenstein’s method of independent contrasts aims to control for the
possibility of inertia and thus to provide a phylogenetically sensitive test
of selection hypotheses. It is not the purpose of his method to test for
phylogenetic inertia. Felsenstein derives his procedure under the
assumption that the traits evolve by a Brownian motion process. How-
ever, if you want to test the hypothesis that selection causes lineages to
evolve towards a stable optimum, the Brownian motion assumption is not
appropriate. The assumptions used to test a selection hypothesis against
others should be independent of which of those hypotheses is true (§2.12,
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§3.1); the assumptions should not entail that the selection hypothesis is
true, but neither should they entail that it is false.

3.11 THE CHRONOLOGICAL TEST

In the previous section, I identified a simple point only to set it to one
side: If the lineage leading to land vertebrates had four limbs before
vertebrates came up on dry land, then it is false that the trait initially
evolved because it facilitated walking on dry land. It now is time to delve
deeper. How do we know that one trait evolved in a lineage before
another? If we know such things, then we have a method for testing
selection hypotheses that does not require us to consider alternative
explanations; the hypothesis that X caused Y is refuted if X occurred after
Y. Here is a case in which it is possible to test a causal hypothesis without
contrasting it with alternatives.
To know that X evolved before Y in a lineage requires more than

knowing that X evolved before Y. By dating fossils we can see that some
tetrapod fish fossils predate the earliest known fossils of terrestrial verte-
brates. With a large enough sample and a big enough temporal gap, it is no
great inferential leap to conclude that tetrapods existed before vertebrates
appeared on dry land. The extra step comes with saying that tetrapod fish
were ancestors of land vertebrates. We can’t automatically assume that the
fossils we observe are ancestors of present-day organisms; they may just be
their close relatives (§3.3). It is more defensible to maintain that the fossils
we observe provide evidence about the common ancestors they share with
extant organisms. If fossil fish and land vertebrates have a common
ancestor, the inference is that that common ancestor was a tetrapod. The
same can be said of living fish and land vertebrates. The only difference is
that fossil fish are temporally closer to that common ancestor than extant
fish are, a point I discussed in connection with Figure 3.7.
When two descendants both have trait T, why conclude that their most

recent common ancestor also had T? The usual answer is that this
hypothesis is more parsimonious. If their most recent common ancestor
had T, no change in character state had to occur in the two lineages
leading from that ancestor to the two descendants. In contrast, if the
ancestor lacked trait T, the trait would have had to originate separately
and independently in the two lineages.44 So, the hypothesis that the most

44 This argument assumes that there is no horizontal gene transfer, an idea I’ll discuss in §4.2.

Natural selection 253



recent common ancestor had T is more parsimonious than the hypothesis
that the ancestor lacked T, where parsimony is measured by counting the
number of changes in character state that must have occurred in lineages
to produce the data we have. The inference that land vertebrates and
modern fish had a tetrapod common ancestor seems to be as compelling
and transparent as the inference that two word-for-word identical books
are copies of the same manuscript and were not written independently.
The chronological test of selection hypotheses relies on this kind of

reasoning. You begin with a phylogenetic tree that shows how extant
organisms are phylogenetically related to each other. Then you use the
principle of phylogenetic parsimony to assign character states to the com-
mon ancestors in the tree’s interior. You then look at the relevant lineage and
see which traits evolved before which others. Figure 3.30 provides an
example. A parsimonious reconstruction of the character states of ancestors
entails thatW (for walking) evolved in the lineage leading to land vertebrates
after T (tetrapod limbs) evolved. If so, T didn’t evolve because it facilitated
W.45 The chronological test is widely used.46 For example, Lauder (1996:
75) argues that the presence of fingers in the human hand cannot be linked
to ‘‘any specific function that is unique to the human hand; fingers are an

W notW notW notW notW
notT notT

W

T

TT T T
W

Figure 3.30 When the principle of parsimony is used to reconstruct the character
states of ancestors in this phylogenetic tree, the conclusion is that trait T and trait W
each evolved once, in the interior branches marked. It follows that trait T evolved

before trait W in the lineage drawn with a dotted line, which is the lineage leading to
present-day land vertebrates.

45 Understanding the chronological test requires a distinction between ontogenetic and phylogenetic
causation. In the lifetime of a land vertebrate (e.g., a human being), the organism develops four
limbs before it walks, but that does not rule out the possibility that selection caused the tetrapod
morphology to evolve because it facilitates walking. If the latter is true, there existed an ancestral
population in which the tetrapod trait became common because tetrapods walked better than
nontetrapods.

46 Sterelny and Griffiths (1999) argue that it is the key to rendering adaptationist hypotheses testable.
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ancient design feature of the vertebrate forelimb [ . . . ] and occur in many
animals [e.g., salamanders and alligators] that do not have the manipulative
abilities of the human hand.’’ Of course, human beings use their fingers to
manipulate objects. The point is that current utility can be different from
the reason the trait first evolved (a thought discussed in §2.16 in connection
with intelligent design). And not only can this be the case; a parsimonious
reconstruction of ancestral trait values provides a reason for thinking that
this was the case (see also Baum and Larson 1991).
We saw in §3.3 that the most parsimonious reconstruction of the

quantitative character state of an ancestor A, given the character state of
one of its descendants D, is the reconstruction of maximum likelihood
when the character evolved by drift but not necessarily when the trait
evolved by selection. However, if we shift from a quantitative character to
a dichotomous character, the backwards inequality guarantees that the
most parsimonious assignment of character state to A, given just the
observation of the single descendant D, is also the reconstruction of
maximum likelihood. It now is time to consider the reconstruction of
character states in a tree, not just in a single lineage. This will lead to a
reconceptualization of the question we need to pose; it isn’t about the
relationship of parsimony and likelihood but instead concerns the rela-
tionship of parsimony and probability.
In a causal chain that links a distal cause Cd to a more proximate cause

Cp and then to an effect E, it often is plausible to assume that Cp screens off
Cd from E, meaning that Pr(E | Cp) ¼ Pr(E | Cp & Cd).

47 This is a standard
assumption in the causal modeling literature; it also is standard in biological
models of how ancestor/descendant chains of inheritance should be
understood. However, if screening-off does hold in a phylogenetic tree, then
a strict likelihood approach can assign character states to ancestors that are
‘‘shallow’’; but once these are made, likelihood considerations cannot, in
addition, be used to assign states to ancestors that are ‘‘deeper.’’ Consider
Figure 3.31. Different assignments of character states to A1, A2, and A3 can
have different likelihoods, but once those ancestors are assigned character
states, the probability of the data is not further affected by assignments
made to A4 and A5. For this reason, it is a mistake to think about recon-
structing the character states of ancestors in a phylogenetic tree from a strict
likelihood point of view. However, all is not lost. Assignments to A4 and A5
affect the probability of the character states of A1, A2, and A3, and these in
turn affect the probability of the character states of tip species. What we

47 Screening off should not be expected if there is a second pathway from Cd to E that bypasses Cp.
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need to know is which assignments of character states to ancestors make the
entire process that extends from the root of the tree to its tips most
probable. We need to think of the problem from a Bayesian, and not a
strictly likelihoodist, point of view (Farris 1986; Maddison 1991).
The relationship between a parsimonious reconstruction of ancestral

character states and a probable reconstruction can be explored by con-
sidering the example depicted in Figure 3.32. Reconstruction (i) is more
parsimonious than reconstruction (ii). Under what circumstances is (i) more
probable than (ii)? Figure 3.33 describes, branch by branch, how the two
reconstructions in Figure 3.32 disagree. With respect to branches b and
d, the backwards inequality (§3.5, §3.10) guarantees that reconstruction
(i) has a higher probability than reconstruction (ii); for branch a, the
reverse is true. These comparisons hold, regardless of whether the trait
evolves by selection or drift. What about branches c and e? If a drift
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Figure 3.32 Two reconstructions of ancestral character states. The character is
dichotomous (its states are 0 and 1); letters label branches. Reconstruction (i) requires fewer
changes than reconstruction (ii); however, (i) and (ii) require different kinds of changes.
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Figure 3.31 The probability of the data (the trait values of tip species) is affected by
the character states assigned to ancestors A1, A2, and A3. Once those assignments are made,
the probability of the data is not further affected by assignments to A4, and A5, if there

is screening-off.
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process is at work, the two reconstructions have the same probability
with respect to what they say about branch c. And if branch e has been
evolving by drift for a long time, we can use the equilibrium value of 1

2 as
the probability that each reconstruction assigns to that branch. However,
the assumption of drift, by itself, provides no verdict as to which recon-
struction is more probable overall. The sticking point is the comparison of
the single change from 0 to 1 postulated by the first reconstruction and
the two changes in the opposite direction postulated by the second. This
gap can be closed by an additional assumption: If the trait evolves by
drift and all branches have the same duration, then reconstruction (i) is
more probable than reconstruction (ii) (Goldman 1990); now parsimony
and probability agree. With unequal branch durations, parsimony and
probability can disagree, even when a drift process is at work.48

How do the two reconstructions compare when selection for trait 0 or
selection for trait 1 is at work throughout the tree? Recall that the difference
in probabilities described by the backwards inequality gets smaller as
branches are given larger durations. So, if branches have very long dur-
ations, the difference in probability between what the two reconstructions
say about branches a, b, and d will be negligible. However, with respect to
branches c and e, reconstruction (ii) has the higher probability if there is
selection for character state 1, and the magnitude of this difference increases
as branches have larger durations. This means that the less parsimonious
reconstruction (ii) will have the higher probability overall if branches all

Branches Reconstruction i Probability ordering         Reconstruction ii 
a           0 → 1                 <            1 → 1 
b           0 → 0                 >                   1 → 0 
 c           0 → 0                    1 → 1 
d           0 → 0                 >                   1 → 0 
e               → 0                                    → 1 

Figure 3.33 The two reconstructions of ancestral character states depicted in Figure 3.32
assign different events to branches a–e. The backwards inequality settles which

reconstruction of branches a, b, and d has the higher probability.

48 This conclusion is consistent with Maddison’s demonstration (1991) that the most parsimonious
reconstruction of ancestral character states for a quantitative character is the reconstruction of
greatest probability when the trait evolves by drift (Brownian motion) and branches are given
‘‘equal weights.’’ He notes that parsimony and probability will not coincide when there is drift but
branches have unequal weights (Maddison 1991: 309–10). Maddison thinks of a branch’s weight
as reflecting the amount of change that has occurred on the branch in other characters; branches
that have experienced lots of changes in other characters might have a higher probability of
exhibiting a change in the character being reconstructed. My point about branch durations is
another way of conceptualizing these weighting terms.
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have large durations and there is strong selection for character state 1.49

Whether parsimony is a guide to probability in the reconstruction of
ancestral character states depends on the kind of process that governs trait
evolution and on the amount of time there is in branches.
In thinking about which reconstruction in Figure 3.32 is overall more

probable, I considered not just the changes in character state that the two
reconstructions postulate but the instances of stasis as well. Considering
only the former makes it tempting to think that reconstruction (ii) will be
more probable when there is strong selection for state 0; after all,
reconstruction (ii) requires two changes from state 1 to state 0 and none
in the opposite direction, whereas reconstruction (i) requires a change
from 0 to 1. In fact, the truth is just the reverse: It is strong selection for
character state 1, not for 0, that makes reconstruction (ii) more probable
when branches have long durations. Selection affects the probability of
stasis just as it affects the probability of change. Reconstruction (i) has
three lineages lingering in state 0, and the root of the tree begins in that
state, whereas reconstruction (ii) has two branches remaining in state 1,
which is also the state in which the tree begins.
To make clear how the above argument is Bayesian in character, consider

the consequence of Bayes’ theorem discussed in §1.3 that says that the ratio
of posterior probabilities equals the ratio of likelihoods times the ratio of
priors. Applied to the example under discussion, this means that

PrðReconstruction i j dataÞ
PrðReconstruction ii j dataÞ
¼ Prðdata jReconstruction iÞ

Prðdata jReconstruction iiÞ ·
PrðReconstruction iÞ
PrðReconstruction iiÞ :

The data in our example are the character states of tip species. This means
that the likelihoods of the two reconstructions reflect what the recon-
structions say about shallow branches (b and d) while the priors reflect
what the reconstructions say about deeper branches (a, c, and e):

PrðReconstruction i j dataÞ
PrðReconstruction ii j dataÞ
¼ Prbð0! 0ÞPrd ð0! 0Þ

Prbð1! 0ÞPrd ð1! 0Þ ·
Prað0! 1ÞPrcð0! 0ÞPreðroot ¼ 0Þ
Prað1! 1ÞPrcð1! 1ÞPreðroot ¼ 1Þ :

49 Symmetrically, reconstruction (i) is more probable if there is lots of time and there is selection for
character state 0.
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In conformity with the version of Bayesianism endorsed in Chapter 1, I
take it that the priors and likelihoods in these expressions have objectively
defensible values only given a model of character evolution.
What light does this throw on the chronological test? Is this test mistaken

in claiming that the present distribution of walking and tetrapodmorphology
in vertebrates is evidence against the hypothesis that the morphology evolved
to facilitate walking? No, it isn’t this conclusion that is mistaken; rather, the
flaw attaches to the reasoning that leads to that conclusion. The fact that
different hypotheses about process disagree about which ancestral character
state assignment is most probable is an objection to using parsimony in the
chronological test. But perhaps the chronological test can be reconceived.
Instead of using the data to construct a parsimonious assignment of character
states to ancestors and pretending that this reconstruction provides inde-
pendent testimony about the process hypotheses under test, we must let the
hypotheses under test tell us what we should expect to see in the data.
Let’s be more explicit about the hypotheses that are in contention

concerning the evolution of walking and the evolution of four limbs in
the vertebrate line. These are depicted in Figure 3.34. The hypothesis that
fails the chronological test says the following:

(W ! T) In the lineage leading to land vertebrates, first walking
evolved. After walking was in place, there was selection for
the tetrapod morphology, and the result was that four limbs
eventually evolved.

Predicted trait
combinations    W&T     W&–T    –W&–T                   W&T     –W&T      W& –T

T W

W T

–W         –T –W         –T 

(W→T) →W)(T

Figure 3.34 Two hypotheses about events in the lineage leading to land vertebrates that
make different predictions about the trait combinations that land vertebrates and their

relatives should exhibit; W ¼ walking and T ¼ the tetrapod morphology.
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A more sensible hypothesis postulates just the opposite causal ordering:

(T ! W) In the lineage leading to land vertebrates, first the tetrapod
morphology evolved. After the tetrapod morphology was in
place, there was selection for walking, and the result was
that walking eventually evolved.

Both hypotheses say that the lineage leading to land vertebrates begins
with organisms that lack both T andW and that it ends with organisms that
have both T andW. They disagree about the trait combinations that existed
in between. The (W ! T ) hypothesis says that in between there were
organisms with the combination W&�T; the (T ! W ) hypothesis says
that in between there were organisms with the combination T&�W. If we
observe organisms that stem from this lineage that areT&�W, but none that
areW&�T, this favors (T!W ) over (W! T ). And this is precisely what
we observe.50 It isn’t that the (T!W) hypothesis says that it is impossible
for a descendant of this lineage to have the combinationW&�T, nor does
the (W ! T) hypothesis say it is impossible for a descendant to have the
combination �W&T. Rather, the two hypotheses confer different prob-
abilities on each of these two possibilities:

Pr½D has traits T&�W jD is a descendant of the line leading

to land vertebrates & ðT ! W Þ�
> Pr½D has traits T&�W jD is a descendant of the line leading

to land vertebrates & ðW ! T Þ�:
Pr½D has traits �T&W jD is a descendant of the line leading

to land vertebrates & ðT ! W Þ�
< Pr½D has traits �T&W jD is a descendant of the line leading

to land vertebrates & ðW ! T Þ�:
The use of parsimony in the chronological test produces the right con-
clusion for the wrong reason. The present distribution of four limbs and
walking among present-day vertebrates and their relatives provides strong
evidence against the hypothesis that the tetrapod morphology evolved
because it facilitated walking on dry land. The distribution of characters
has this evidential meaning because it favors an alternative hypothesis.

50 Although spiders walk without having four legs, their characteristics don’t favor the (W ! T)
hypothesis. Spiders are an out-group with respect to this problem; the hypotheses in question make
predictions about the characters found in the in-group.
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One of the most important distinctions in evolutionary biology is that
between current utility and adaptation (§2.16). The idea, not surpris-
ingly, traces back to Darwin; Williams (1966), Lewontin (1978), and
Gould and Vrba (1982) have emphasized the point, and it has had a large
and deserved influence. It is now widely agreed that to say that a trait is an
adaptation for doing X in lineage L requires that the trait originally
evolved in L because it helped organisms perform task X. As Lewontin
notes, sea turtles use their front legs to dig nests in the sand, but this is not
why front legs first emerged in the lineage, and so the legs are not
adaptations for nest building. My criticism of the chronological test does
not mean that there is no way to test hypotheses about adaptation so
defined. Rather, my criticism concerns using parsimony to reconstruct the
character states of ancestors to test a selection hypothesis. This criticism
leaves it open that hypotheses about why a trait first evolved can be tested
in some other way. But, in addition, we need to recognize that ‘‘adap-
tation’’ is not the only historical concept that is worth considering. If
‘‘adaptation’’ is defined in the way just described, we need another term
for the concept of relevance here. Suppose, in a group of lineages, there
was selection for longer fur in colder climates and for shorter fur in
warmer. This is a claim about history, not about current utility, but it
does not focus exclusively on the first emergence of long fur. Selection can
cause a trait to evolve, but it also can maintain a trait in a lineage once it
has evolved. It is wrong to think that historical questions about natural
selection must focus exclusively on the former. The hypothesis that fur
length evolved as an adaptive response to ambient temperature is a causal
claim, like the hypothesis that smoking promotes lung cancer. To
investigate the causal relation of smoking and lung cancer, you don’t need
to know whether lung cancer made its first appearance before or after the
first appearance of smoking. This chronological information is not
necessary (which is not to say that it would not be nice to have). The same
holds for the question of whether fur length evolved as an adaptive
response to the selection pressures created by cold and warmth. Whether
long fur first appeared before or after the first appearance of cold climate
is an interesting question, but there is another causal question that does
not require to one ascertain what the chronological order was.

3.12 CONCLUDING COMMENTS

I began this chapter by focusing on the task of deciding whether the hypo-
thesis of selection-plus-drift (SPD) or the hypothesis of pure-drift (PD),
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each conceptualized phenotypically, is better supported, given the trait value
found in a single species. The reason I formulated the problem in this way is
that it is simple, and so it is a good place to begin, and also because many
biologists and popularizers of evolutionary biology invoke natural selection
to explain single trait values and would be loath to think of drift as an
alternative that is worth considering. If the trait is useful to the organisms that
have it, the drift hypothesis gets dismissed out of hand. And if the trait is both
useful and complex, the suggestion that drift should be consideredmay strike
one as both pedantic and obscurantist. I have described the biological
information that is needed if one wants to defend the claim that selection is
more likely than drift. Appeal to intuition is not enough. Nor can prob-
abilistic modus tollens (§1.4) be invoked as a reason for rejecting the drift
hypothesis.
After exploring what information needs to be in place if the observation

of polar bear fur length is to settle whether the SPD or the PD hypothesis
has higher likelihood, I considered how the evidential situation shifts if
the explanandum is reconfigured (§3.6). Instead of trying to explain why a
single species has a given trait value, what happens if the fact to be
explained is a correlation? Suppose we observe that bears living in colder
climates tend to have longer fur than bears living in warmer climates.
This change in explanandum is highly significant. It turns out that less
biological information is needed for the likelihood comparison to go
forward. One needn’t know which fur length is optimal in which
environment. And one needn’t know the trait values of ancestors, or the
curvature of the fitness function, the heritability of the trait, or the
effective population size. The fact of common ancestry plays a central
role in structuring the test of SPD against PD. Comparative data, and the
testing of hypotheses that make different predictions about the patterns
that should be found in such data, are the light and the way. Not that
pure drift is the only alternative to natural selection that is worth con-
sidering. Phylogenetic inertia (aka ancestral influence) is an alternative
alternative (§3.10), and there are others as well. Testing is contrastive, but
it need not invariably revert to the same old contrasts.
We also had occasion to reflect on the use of phylogenetic parsimony as

a tool for reconstructing the character states of ancestors. Biologists want
to deploy ‘‘phylogenetically sensitive’’ tests of hypotheses about natural
selection, and that is all for the good. But parsimony is not the tool it is
often thought to be. Obviously, it is not an infallible guide to the char-
acter states of ancestors. I have argued for the further point that its
authority depends on assumptions about the evolutionary process. In
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testing selection against drift, parsimony is not a neutral party; parsimony
is partisan. It would be good if hypotheses about natural selection could
be tested without relying on the use of parsimony to reconstruct ancestral
character states. And they can be.
I began this chapter by thinking about how SPD and PD should be

compared in a likelihood format, but model selection (§3.9) provides an
important alternative approach. This framework illuminates the question
of whether a pattern of variation across a number of species should be
explained by a unified or a disunified model. For example, should the
difference in longevities between human females and males be explained
by the same factors that affect differences in longevity in other primates
(§3.7)? Model-selection theory also provides a useful setting for testing
hypotheses about molecular evolution. For example, are rates of change in
a set of traits the same across lineages, or do they differ (§3.9)?
Hypotheses about natural selection describe the causal processes that

occur in lineages, but biologists usually do not have snapshots of a lineage
as it moves through time. This is the situation in which biologists find
themselves when the trait of interest does not fossilize or if the fossil
record is spotty. And even when a detailed fossil record is available, it is
important to remember that the fossils we study may not be ancestors of
present-day populations; they may merely be their relatives. In the second
half of this chapter, I explored the question of how observing the current
states of several lineages reveals what happened in those lineages in the
past. The fact that present-day species share common ancestors plays a
central role in answering this question – for example, in the various tests
that population geneticists deploy when they use sequence data drawn
from current populations to test selection against drift (§3.9). This raises
the issue of why one should think that the different species alive today
trace back to common ancestors. This issue is where the next chapter
begins.
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CHAPTER 4

Common ancestry

We saw in the last chapter that evolutionary theory places hypotheses
about the causes of trait evolution within the framework of a phylogenetic
tree. These hypotheses, whether they say that the trait of interest evolved
by natural selection or by some other process, make claims about what
happened in lineages, and different lineages stem from common ances-
tors. For example, different extant species have different kinds of eyes, and
some have no eyes at all. The fact of common ancestry places a constraint
on how the present distribution of trait values must be explained. If all
these species have a common ancestor, the lineages descending from that
common ancestor had to start with the same trait value. It follows that the
task of explaining why vertebrates have camera eyes is essentially con-
nected to the task of explaining why other groups have other kinds of eyes
while still others have none at all.
Given how central the thesis of common ancestry is to evolutionary

reasoning, one might expect there to be a vast literature in which the
evidence for that claim is amassed. In fact, the question is discussed, but
the literature on it is hardly vast. For most evolutionists, the similarities
that different species share make it obvious that they have common
ancestors, and there is no reason to puzzle further over the question. The
kind of genealogical question that attracts far more attention in evolu-
tionary biology concerns how various species are related to each other, not
whether they are. Consider, for example, the question of how human
beings, chimps, and gorillas are related. Two of the options are depicted
in Figure 4.1. The first hypothesis, (HC)G, says that there is an ancestor
shared by human beings and chimps that is not an ancestor of gorillas.
The second, the H(CG) hypothesis, asserts that it is chimps and gorillas
that are more closely related to each other than either is to human beings.
Although these rival hypotheses disagree about the branching pattern,
there is something on which they agree: Go back far enough in time and
you will find an ancestor common to all three. This common ground is the
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main subject of the present chapter. My goal is not to assemble evidence
that justifies hypotheses of common ancestry but to understand the logic
that dictates how such evidence should be interpreted. From Darwin
down to the present, biologists have presented various arguments in favor
of common ancestry. What rules should we apply to determine whether
the arguments are strong or weak? I’ll first take up the question of why, or
under what circumstances, an observed similarity between species X and Y
is evidence that they have a common ancestor. Then I’ll turn to the
question of which kinds of similarity provide stronger evidence for com-
mon ancestry and which provide only weaker evidence for that conclusion.
After that, I’ll address whether something besides the observed similarity of
two or more species can provide evidence that bears on whether they are
genealogically related; it is here that I’ll consider intermediate fossils and
biogeography. In the last section, I’ll discuss the testing of more fine-
grained genealogical hypotheses, such as (HC)G versus H(CG).

4.1 MODUS DARWIN

Similarity, ergo common ancestry. This form of argument occurs so often in
Darwin’s writings that it deserves to be called modus Darwin. The finches in
the Galapagos Islands are similar; hence, they descended from a common
ancestor. Human beings and monkeys are similar; hence, they descended
from a common ancestor. The examples are plentiful, not just in Darwin’s
thought, but in evolutionary reasoning down to the present (Sober 1999a).
If two finch species have a common ancestor, and human beings and

monkeys have a common ancestor, do those two common ancestors

(HC)G H(CG)

H C G H C G

Figure 4.1 Two competing genealogical hypotheses about the phylogeny of human
beings (H), chimpanzees (C), and gorillas (G). The hypotheses disagree about which

two are more closely related to each other than either is to the third. They agree that there
is an ancestor common to all three.
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themselves have a common ancestor? How far does this knitting together
of species proceed? In the last paragraph of The Origin of Species, Darwin
gives a cautious answer to this question. In his famous exclamation that
‘‘there is grandeur in this view of life,’’ he says that, in the beginning, life
was ‘‘breathed into a few forms or into one’’ (Darwin [1859] 1964: 490).
However, only a few pages before, Darwin takes a bolder position:

I believe that animals have descended from at most only four or five progenitors,
and plants from an equal or lesser number. Analogy would lead me one step
further, namely to the belief that all animals and plants have descended from
some one prototype. But analogy may be a deceitful guide. Nevertheless all living
things have much in common, in their chemical composition, their germinal
vesicles, their cellular structure, and their laws of growth and reproduction. We
see this even in so trifling a circumstance as that the same poison often similarly
affects plants and animals; or that the poison secreted by the gall-fly produces
monstrous growths on the wild rose or oak-tree. Therefore I should infer from
analogy that probably all organic beings which have ever lived on this earth
have descended from some one primordial form, into which life was first
breathed. (Darwin 1964: 484)

Notice that Darwin embraces the view that there is a single phylogenetic
tree on the grounds that ‘‘all living things have much in common.’’1 Perhaps
if plants and animals were less similar, Darwin would have opted for the
hypothesis that all animals are genealogically related and that all plants
are too but that there is no ancestor that animals and plants have in
common. This points to an obvious question about modus Darwin:
How much similarity is needed for common ancestry to be a good
inference? For example, human beings and chimps are about 98.5 per-
cent similar at the level of their DNA sequences. If this is enough to
justify the inference, what is the cut-off that 98.5 percent is said to exceed?
Fifty percent? Twenty-five? Does this mean that if we find two species
that are less similar than this cut-off that we should conclude that they lack
a common ancestor?
If percentage similarity is the key to inferring common ancestry, how is

it to be measured? Using percentage similarity in this way presupposes
that there is a totality of n characteristics; once we have specified that
totality, we then can contemplate how much two species must match on
those n characteristics for the inference of common ancestry to make
sense. To think about this total package of characteristics, we need to

1 The variorum edition of The Origin of Species indicates that Darwin did not change his mind on
this issue through successive editions. See Darwin (1959: 759).
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understand how traits are to be separated from each other. For example,
does having five digits on the left hand count as a different characteristic
from having five digits on the right, or is there just one character here –
that of having five digits on an appendage? Another question about using
percentage similarity as our guide is that it assumes the principle of one
match one vote; it assumes that all similarities have the same evidential
significance – you just have to count them. This is clearly a dubious
principle; surely some similarities are more telling than others.
The place to begin, I suggest, is with individual characteristics.When you

think about the evidence that bears on the question of common ancestry,
don’t just think about percentage similarity; instead, think about the evi-
dence trait by trait. If two species both have trait T, under what circum-
stances is this evidence that they share a common ancestor? Perhaps only
some similarities count as evidence for common ancestry. If so, what dis-
tinguishes the similarities that count from the ones that do not? After
considering when a similarity is evidence for common ancestry, we will
investigate when one similarity carries more evidential weight than another.
And, along the way, we will return to the question of how percentage
similarity and other summary statistics are relevant.
The likelihood framework suggests twoprinciples that bear on this inquiry,

though these principles are not unique to that framework. The first is that we
must think contrastively. If you are inclined to say that the 98.5 percent genetic
match between humans and chimps is evidence that they share a common
ancestor, ask yourself how similar you’d expect the two species to be if they
had no common ancestor. If you can’t answer this question, why do you think
that the high degree of similarity is evidence for common ancestry? The same
point is relevant when similarities are considered trait by trait; if the fact that
species X and Y both have traitT is evidence for common ancestry, this will be
because the matching favors the hypothesis that X and Y share a common
ancestor over the hypothesis that they do not. The second principle we can
glean from the likelihood approach is that we must avoid selective attention. If
some similarities provide strong evidence for common ancestry, then surely
there are some gross differences that would provide evidence against common
ancestry. Even if creationists often focus exclusively on the differences that
separate human beings from the rest of nature, evolutionists should not follow
suit by focusing only on the similarities. The principle of total evidence (§1.3)
requires that we consider all the data. If some similarities favor the common-
ancestry hypothesis while some differences favor the hypothesis of separate
ancestry, how should these similarities and differences be assembled into an
overall assessment of the two hypotheses?
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4.2 WHAT THE COMMON ANCESTRY HYPOTHESIS ASSERTS

In the passage from The Origin of Species just quoted, Darwin speculates
about the genealogy of ‘‘all living things,’’ by which he seems to mean
animals and plants. Modern biology agrees that animals and plants trace
back to a common ancestor, but this is no longer regarded as a speculative
conjecture; there now is abundant evidence that strongly supports the
common-ancestry hypothesis, evidence that Darwin did not possess.
Another large shift has occurred since Darwin: We now know that there
is far more to life than animals and plants. Plants and animals are parts
of Eukaryota (meaning organisms with cell nuclei), but this group also
includes fungi, algae, ciliates, and other groups. And besides the Eukary-
otes, there are two other major lines, Bacteria and Archaea (Woese 1998).
These last two comprise the Prokaryotes, ‘‘which embrace perhaps two-
thirds of the biota and the first two-thirds of life’s history’’ (Doolittle and
Bapteste 2007). Plants and animals together comprise a twig on a branch,
not the whole tree.
Before investigating the logic of the evidence behind claims of common

ancestry, we need to get clear on what it means to assert or deny that X and
Y have a common ancestor. X and Y could be two organisms (in the same
or different species), or they could be two species;2 in the latter case, we will
say that two species have a common ancestor precisely when all the organ-
isms in the first and all the organisms in the second have a common ancestor.
In this sense, the common ancestry of species reduces to the common
ancestry of the organisms in those species. But what kind of object is a
‘‘common ancestor?’’ If we think of an ancestor as a species, we need to say
what a species is; we need to solve the notorious ‘‘species problem.’’ One
warning sign that this is not a path down which we should choose to tread is
that the much-admired biological species concept (Mayr 2000) says that a
species is a group of organisms that interbreed among themselves but which
are reproductively isolated from other such groups. Understood in this way,
a species must be made of sexual organisms. However, evolutionists agree
that sexuality is a derived character; first there were asexual organisms. This
means that the biological species concept is not the right choice if we wish to
say that all life on Earth derives from a single species. Of course, there
are other species concepts that might provide a satisfactory alternative, but
there is a second reason why the ancestor postulated by the common

2 X and Y could also be two genes, found in the same organism or in different organisms; I’ll discuss
the idea of gene genealogies later.
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ancestry hypothesis should not be thought of as a species. How are the
organisms in this supposed ur-species related to each other? If they trace
back to a single ancestral organism, then we know that all current life
forms have a single organism, not just a single species, as their original
progenitor. Alternatively, if the organisms in this ur-species do not all
trace back to a common ancestral organism, then it is appropriate to
view this situation as a case of multiple ancestors. Whether there is a
single ur-species is therefore not what is at issue.
So the common ancestry hypothesis says that all current life forms derive

from a single organism, not a single species. But what is an organism? Well,
it must be alive. Darwin and present-day Darwinians would not be satisfied
if all life on Earth derived from the same large slab of rock whose nonliving
materials produced numerous separate start-ups of life that never melded
together but instead led separately to the several groups of organisms we
now observe. In this case, we would say that animals and plants are
‘‘genealogically unrelated.’’ They would have a common origin (the slab)
but not a common ancestor (an organism). Another feature of ancestors is
that they beget descendants. Your grandparents produced your parents, and
your parents produced you; ergo your grandparents are among your
ancestors. But what is this begetting relation? It is natural to think of
reproduction in terms of genetic transmission. You received half your
nuclear genes from your mother and half from your father, and they, in
turn, received half of their genes from each of their parents. However, it
does not follow that you received one-quarter of your genes from each of
your four grandparents. Meiosis is a lottery, and one of your grandparents
may have lost, meaning that you received 0 genes from him or her. As we
consider ancestors of yours who are more and more remote, it becomes
increasingly certain that some of them passed no genes to you. Ancestors
have a shot at contributing genes to their descendants, but there is no
guarantee that they succeed in doing so. Figure 4.2 provides a simple
example of this point. Another reason not to define the relation of ancestor
to descendant in terms of gene transmission is that the ancestors that existed
when life first got started are thought to have predated the evolution of the
genetic system; a self-replicating molecule might be an ancestor even if it
has no genes to transmit.
Figure 4.2 also illustrates the fact that the genealogies of sexual organ-

isms are reticulate; they are not strictly treelike. When a genealogy is strictly
treelike, branches split but never join. Your family ‘‘tree’’ is not like this;
you and your full sib have twomost recent common ancestors (your mother
and father), not one. Asexual organisms have treelike genealogies; each has

Common ancestry 269



one parent, not two. Still, even with reticulate genealogies, a distinction can
be drawn between two organisms’ having a common ancestor and their
failing to do so. You and your half-sib share a parent. Darwin’s thesis that
all life traces back to a single common ancestor (i.e., an organism) does not
require that the single genealogy be strictly treelike.
With these thoughts in mind, we now can clarify the Darwinian

hypothesis that all current life traces back to a single common ancestor.
Consider all the organisms that now are alive on Earth and all the fossils
that now exist as well. Trace each of them back in time – to their recent
ancestors and then to ancestors that are more ancient. As we trace lineages
backwards in time, many coalesce, with two or more descendants even-
tually converging on a common ancestor. Is there a single ancestor that all
these tracings eventually reach? The Darwinian hypothesis is yes: There
was a last universal common ancestor (LUCA) of all the living and fossil
forms that now exist. This hypothesis leaves it open that LUCA itself had
ancestors; there is no claim that LUCA was the first organism on Earth,
and no biologist thinks that it was. The hypothesis also is consistent with
there having been thousands of start-ups of life from nonliving materials if
all but one of them went extinct;3 the hypothesis does not assert that all
past and present organisms trace back to a single common ancestor. Nor
does LUCA rule out there being many start-ups that all have descendants

You: 1   8

Your parents:

Your grandparents:

5 81 3

1 2 3 4 5 6 7 8

Figure 4.2 If you are a diploid organism with one chromosome pair, two of your four
grandparents must have failed to make any genetic contribution to your genome.

3 In the fifth edition of The Origin of Species, Darwin added the following remark to the passage I
quoted at the beginning of the previous section: ‘‘No doubt it is possible, as Mr. G. H. Lewes has
urged, that at the first commencement of life many different forms were evolved; but if so, we may
conclude that only a few have left modified descendants’’ (Darwin 1959: 759).
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alive today; LUCA can accommodate this possibility if there was a
bottleneck. Here is a biologically implausible example that illustrates this
conceptual possibility: Suppose there were numerous independent and
simultaneous start-ups of sexual organisms from nonliving materials and
that each parental pair subsequently produced just one offspring for a
number of generations until the population dwindles to two individuals
(one male, one female). These two individuals then have four offspring,
and so do their descendants, thus yielding the many living things and
fossils that exist today. The two individuals in this bottleneck are each
LUCAs. Note, finally, that LUCA takes no stand on whether the start-ups
that led to present-day organisms occurred on Earth; perhaps they
occurred on another planet (exogenesis) and life arrived here on meteors.
LUCA can be placed at one end of the continuum depicted in Figure

4.3. For the moment, I’m ignoring the fact that sexual organisms have
reticulate genealogies. Figures 4.3b and 4.3c should both be interpreted
as saying that the ancestors at the roots of the genealogies they postulate do
not themselves have common ancestors. Both therefore disagree with 4.3a;
nonetheless, Figure 4.3b is ‘‘closer’’ to the LUCA idea than 4.3c is. The
differences that separate these three examples can be captured by the
following definition of a family of hypotheses, each of the form CAi (Sober
and Steel 2002):

CAi: There exists a set A consisting of i organisms, and no set with
fewer than i organisms, such that (1) no organism in A is ancestral
to any other organism in A, (2) each current organism and each
currently existing fossil (S1, S2, . . . , Sn) has at least one ancestor
in A, and (3) each organism in A is ancestral to at least one Sk.

S1 S2 … Sn S1 … Sm–1 Sm … Sn S1 S2 … Sn

LUCA A2 A1 A2 … An

(a) (c)(b)

A1

Figure 4.3 Hypothesis (a), that there was a LUCA, is denied by both (b) and (c),
which disagree as to how much relatedness there is among the n organisms and

fossils (S1 . . . Sn) that exist now.
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Figure 4.3a, the LUCA hypothesis, asserts that i ¼ 1; Figure 4.3b says
that i ¼ 2; and Figure 4.3c says that i ¼ n. Figures 4.3b and 4.3c should
make it clear that CAi does not mean that there were i universal common
ancestors.
Sexual reproduction, we have seen, shows that the following principle is

false: If A is an ancestor of D, then some of D’s genes came from A. We
now need to see that the converse of this principle is also wrong: It is false
that if some of D’s genes come from A, then A is an ancestor of D. This is
incorrect because of lateral gene transfer. Disease vectors such as insects
and bacteria can carry retroviruses from the organisms in one species to
those in another, with nuclear genes coming along for the ride. You
inherited the vast majority of your genes from your two parents, but
perhaps a small number of them trace back via lateral transfer to a
member of a different species (a worm, let us assume). This complication
does not lead us to hesitate in saying that Mom and Dad are your
ancestors, but the worm is not. Mom and Dad reproduced, and you were
the result; the worm’s acts of reproduction did not produce you. So,
Mom and Dad are in your family tree, while the worm is not. An
organism’s genealogy is one thing, the genealogy of its genes is something
else: The former traces organisms back to earlier organisms; the latter
trace genes back to earlier genes.
Even when the genes in an organism trace back exclusively to genes in

its ancestors (there being no lateral gene transfer), it needn’t be true that
the same ancestors are involved. An organism’s genome is a composite
entity whose parts can have different genealogies. Consider, for example,
the mitochondria that all human beings have and the Y sex chromosomes
that human males have. Human beings inherit their mitochondria from
their mothers; biologists infer that there was a LUCA for those
mitochondrial genes, who is sometimes called ‘‘mitochondrial Eve.’’ The
Y sex chromosomes that human males have are inherited paternally, and
biologists infer that there was a LUCA for the different present-day
copies of the human male sex chromosome, who is sometimes called
‘‘Y-chromosome Adam.’’ Not only were this Eve and this Adam different
organisms; biologists estimate that they lived many years apart – Adam
and Eve never met.
Even though CA1 is the standard view in contemporary evolutionary

biology, the field has no rock-bottom commitment to that hypothesis.
The field would not go up in flames if CA2 or CA3 turned out to be true.
For example, it is possible that life will someday be detected in extreme
environments on Earth that have always been isolated from the rest of the
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biota, and that the living things found there will differ sufficiently from the
rest of life that biologists will judge them to be the isolated descendants
of a separate start-up. The same is true if biologists someday build an
organism out of nonliving materials, an idea contemplated at the end of
Chapter 2. In fact, there is no need to consider such hypothetical scen-
arios to see that the value of i in CAi is perfectly discussable within
evolutionary biology. Consider Carl Woese’s comment:

The ancestor cannot have been a particular organism, a single organismal lineage.
It was communal, a loosely knit, diverse conglomeration of primitive cells that
evolved as a unit, and it eventually developed to a stage where it broke into several
distinct communities, which in their turn became the three primary lines of
descent. (Woese 1998: 6858)

As mentioned, Woese’s three lines – bacteria, archaea, and eukaryotes –
are now widely accepted; however, his idea that there was no LUCA is
controversial. Notice that Woese’s disagreement with CA1 depends on
the ancestors described in that hypothesis being organisms or cells; a
‘‘loosely knit diverse conglomeration of primitive cells that evolved as a
unit’’ is not a proper candidate for being an ancestor. Woese doubts CA1
because he thinks there was rampant lateral gene transfer in early life;
Doolittle (2000) is a fellow doubter. They are more inclined to think that
the version of CA3 depicted in Figure 4.4 is correct, though sometimes
they express doubts as to whether it is possible to know whether CA1 or
CA3 is right. According to the version of CA3 shown in Figure 4.4, there
were repeated start-ups of life from nonlife and then massive lateral gene

• • • • • • • • • • • • • •

• • • • • • •

    

• • • • • • •                 

(CA1)

B A E B A E

(CA3)

Figure 4.4 A CA1 and a CA3 genealogy for Bacteria (B), Archaea (A), and
Eukaryotes (E), both of which involve rampant lateral gene transfer (represented by

dotted lines) in early life.
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transfer occurred. Out of this pattern, in which genes flowed to non-
descendants as well as to descendants, there emerged the three lines of life
that we now observe. A consequence of this pattern is that there can be
universal features of present-day life that were not present in any universal
common ancestor and that also did not evolve repeatedly.
As we make the value of i in CAi larger and larger, we approach the

case in which each species alive now is said to be the result of a separate
origination event. This huge value for i would be amazing and utterly
shocking if it turned out to be correct. It flies in the face of the numerous
similarities that knit species together, thus providing evidence for their
common ancestry. The claim that no two species alive today have a
common ancestor immediately calls to mind the doctrine of special cre-
ation, though creationists usually say that they are talking about the
separate origins of the different ‘‘fundamental kinds’’ of organism, not
about species in the biological sense of that term. Denying common
ancestry and invoking intelligent design have been deeply enmeshed
historically, but that should not obscure the fact that versions of CAi that
assign big values to i do not logically entail a commitment to intelligent
design. For this reason, the question of whether two or more species have
a common ancestor should have an answer within evolutionary theory; it
can and should be considered as a question separate from the creationist
challenge to evolutionary theory.
The main subject of the next several sections is testing the common

ancestry hypothesis for a set of organisms (or species) against the separate
ancestry hypothesis. Notice that the word ‘‘ancestry’’ appears in both
hypotheses; this means that we will assume that there are ancestors and test
how they are related to the descendants we observe. In fact, when we
consider two or more species, the question will be whether (or in what
circumstances) the similarities they exhibit provide evidence that they stem
from a common cause. It will not matter in our discussion whether the
common cause of the similarities we observe, if such there be, is a common
ancestral organism. True, it matters to biologists whether two organisms
have genes in common because of inheritance from a common ancestor or
because there was lateral gene transfer from an organism that was the
ancestor of neither (or of only one); these possibilities are represented in
Figure 4.5. It also matters whether the common cause that explains the fact
that two species are similar is an ancestral organism or a slab of rock.
However, in terms of the logic of the problem (as I see it), this is not the
problem with which to begin. The first order of business is to determine
whether there was a common cause. If the answer is yes, the second question
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is whether that common cause was a common ancestor, an organism that
was not a common ancestor, or no organism at all.4 First things first.
We saw in Chapter 3 that the assumption of common ancestry plays a

central role when a hypothesis that postulates natural selection is tested
against hypotheses that postulate drift or phylogenetic inertia. These
hypotheses usually concern a circumscribed set of organisms, not the
whole of the living world. The question of why bears in cold climates have
longer fur than bears in warm climates is typical in this regard. Biologists
address this question by exploiting the fact that bears have a common
ancestor; it doesn’t really matter to that problem if all present-day
organisms are genealogically related. The question about the value of i in
CAi is important in terms of the big picture, but most biologists go about
their business without needing the big picture. Still, the big question
about all of life and the smaller question about a group of bears have the
same logic: How do the similarities and differences we observe provide
evidence as to whether the organisms of interest have a common ancestor?

4.3 A BAYES IAN DECOMPOSITION

When two speciesX andY share a traitT, it is perfectly obvious that one cannot
deduce from this that they have a common ancestor. Perhaps, then, we should
seek to determine when the similarity renders the existence of a common
ancestor probable. Bayes’ theorem (§1.2) describes how that posterior prob-
ability – the probability of the common ancestry (CA) hypothesis, conditional
on the observed similarity – decomposes into three other quantities:

X Y X Y X Y

O OO

(a) (b) (c)

Figure 4.5 Three scenarios under which organisms X and Y share a trait because it was
transmitted to them from an earlier organism O. (a) O is an ancestor of both X and Y;
(b) O is an ancestor of X but not of Y; (c) O is an ancestor of neither. Solid lines represent

ancestor/descendant relationships; dashed lines represent lateral gene transfer.

4 The distinction drawn here resembles the one between inferring a tree topology and assigning
character states to the interior nodes postulated by that tree topology. The former problem will be
discussed in §4.8; the latter was discussed in §3.3 and §3.11.
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ð1Þ PrðCA j X and Y share T Þ ¼ PrðX and Y share T j CAÞ PrðCAÞ
PrðX and Y share T Þ :

Similarly, if we apply Bayes’ theorem to the separate ancestry (SA) hypothesis,
we obtain:

ð2Þ PrðSA j X and Y share T Þ ¼ PrðX and Y share T j SAÞ PrðSAÞ
PrðX and Y share T Þ :

Equations (1) and (2) together yield the following:

ð3Þ PrðCA j X and Y share T Þ>PrðSA j X and Y share T Þ if and only if

PrðX and Y share T j CAÞ PrðCAÞ> PrðX and Y share T j SAÞPrðSAÞ:

Equation (3) tells you how to determine which hypothesis has the higher
posterior probability. This depends on the prior probabilities and on how
probable each hypothesis says the observed similarity is (i.e., on the
likelihoods of the hypotheses).
Let’s begin with the priors. Without considering the observed similarities

and differences that characterize two species, how probable is it that they
trace back to a common ancestor? Is this more probable than that they have
separate ancestry? We want our answer to this question to be objective. It is
not epistemologically relevant how strong someone’s prior prejudices are on
the subject. To find prior probabilities that have some authority, we need
an empirically well-grounded theory that addresses the following questions.
How often should we expect start-ups (the origination of living things from
nonliving materials) to have occurred? And once a start-up occurs, what is
the probability that it will have descendants among the species and fossils
that currently exist on earth? What reasons could such a theory offer for
thinking that we should expect species X and Y to have a common ancestor
even before we examine their similarities and differences? One possibility is
that the theory might show that start-ups are so vastly improbable that there
probably was just one of them in the whole time since the Earth began.
Oparin (1953) developed a second reason for expecting all present-day life
to be part of a single genealogical tree. Perhaps the first start-up was not
terribly improbable, but once it occurred, it destroyed the conditions
needed for further such events to occur. Darwin (1887: III, 18) speculates
about this possibility in one of his letters:

It is often said that all the conditions for the first production of a living organism
are now present, which could ever have been present. But if (and oh! What a big
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if !) we could conceive in some warm little pond with all sorts of ammonia and
phosphoric salts, light, heat, electricity, etc. present, that a proteine compound
was formed, ready to undergo still more complex changes, at the present day such
matter would be instantly devoured or absorbed, which would not have been the
case before living creatures were formed.

A third possibility, related to the second, is that several start-ups probably
occurred, but that it was very improbable that more than one of them
produced descendants or fossils that now exist. This might have been
because organisms in different start-ups competed so intensely that all
present-day species and fossils trace back to just one of them.
As far as I know, these possibilities are now open biological questions.

There is at present no detailed and well-confirmed biological theory that
assigns a prior probability to the hypothesis that all present-day organisms and
fossils trace back to a single common ancestor. However, if these prior
probabilities are obscure, the same will be true of the posterior probabilities.
This can be seen by inspecting proposition 3. It follows that ifmodus Darwin
licenses the conclusion that there probably is a single tree of life, it is ques-
tionable whether this form of argument really makes sense. It does not follow,
however, that scientists have no basis for the CA1 hypothesis. Rather, what we
need to consider is the possibility thatmodus Darwin is a species of likelihood
inference. Even if observed similarities do not render the common ancestry
hypothesis more probable than not, it is possible that these observations
strongly favor the one hypothesis over the other. The fact that it is hard to see
how modus Darwin is a probability inference should not send alarm bells
ringing among evolutionists. As emphasized in Chapter 1, it often happens in
science that likelihood arguments stand on their own, even when probability
arguments are not to be had. In §1.2, I briefly discussed howEddington tested
Newtonian mechanics against the general theory of relativity by observing an
eclipse. The test provided evidence that favored one theory over the other; this
does not require that the theories be assigned prior probabilities.

4.4 A SINGLE CHARACTER: SPECIES MATCHING

AND SPECIES MISMATCHING

I now turn to the question of why the observation of a similarity – that species
X and Y both have traitT – should be thought to favor the common ancestry
hypothesis over the separate ancestry hypothesis. I’ll begin by considering a
dichotomous trait, but then I’ll examine discrete n-state traits and continuous
traits. I hope that the welter of detail that I’ll present will not obscure how
simple and intuitive the argument from similarity to common ancestry is.
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When each student in a philosophy class is required to submit an essay on the
meaning of life, and the essays that Smith and Jones submit are word-for-
word identical, it is possible that they wrote their essays independently, and
it also is possible that the students plagiarized from a common source, say a
document on the Internet (Salmon 1984). Though the separate-origin and
the common-origin hypotheses are both logically consistent with the
observations, the similarity of the two essays is evidence that favors the
hypothesis of common origination. I hope it is clear how this interpretation
of the evidence can be represented in the likelihood framework. The
matching of the essays is extremely improbable if they were written inde-
pendently but would be much less surprising if they were obtained from a
common source. The same line of reasoning is at work when we reason
from the similarity of two species to their common ancestry. Our present
task is to flesh out this likelihood argument in more detail.

Modus Darwin for dichotomous characters

Reichenbach’s (1956) work on the principle of the common cause provides
a sufficient condition for the common-ancestry hypothesis to have higher
likelihood than the separate ancestry hypothesis,5 relative to the obser-
vation that species X and Y both occupy the same character state. To start
with the simplest case, I assume that the similarity in question concerns a
dichotomous variable, whose two states are 0 and 1; the observation is
that X ¼ i and Y ¼ i (where i ¼ 0 or i ¼ 1). There are nine assumptions
that need to be stated. In each case, I’ll state the idea in English and then
I’ll formalize it in terms of one or two numbered propositions that are
expressed in terms of the variables used in Figure 4.6.
The first two assumptions assert that a descendant’s probability of

having a trait depends on the trait of its ancestor not on how many other
descendants that ancestor has:

ð1Þ PrðX ¼ i j Z ¼ jÞ ¼ PrðX ¼ i j Z1 ¼ jÞ; for i; j ¼ 0; 1:

5 I criticized Reichenbach’s (1956) principle in §3.8; it says, recall, that when two event types are
correlated, either the one causes the other, the other causes the one, or the two trace back to a
common cause. Although this principle is too strong, there is something of value in Reichenbach’s
argument. He proved that a common-cause model that is set up in a certain way deductively entails
that the joint effects will be correlated. I will use this result in the present chapter to address a
problem that differs from the one that Reichenbach considered. The problem here involves a
comparative question (does the common-cause hypothesis have higher likelihood than the separate-
cause hypotheses?), and the explanandum I consider is the similarity of two event tokens, not the
correlation of two event types (Sober 1988).
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ð2Þ PrðY ¼ i j Z ¼ jÞ ¼ PrðY ¼ i j Z2 ¼ jÞ; for i; j ¼ 0; 1:

The next assumption is that an ancestor’s prior probability of being in
a given character state does not depend on how many descendants it has,
and if it has just one, its probability of being in a given state does not
depend on which descendant it has:

ð3Þ PrðZ ¼ iÞ ¼ PrðZ1 ¼ iÞ ¼ PrðZ2 ¼ iÞ; for i ¼ 0; 1:

Assumptions 4 and 5 say that descendants and their ancestors are positively
correlated.6

ð4Þ PrðX ¼ i j Z ¼ iÞ> PrðX ¼ i j Z ¼ jÞ ðfor i 6¼ jÞ:

ð5Þ PrðY ¼ i j Z ¼ iÞ> PrðY ¼ i j Z ¼ jÞ ðfor i 6¼ jÞ:
This restates the backwards inequality that is a consequence of the
Markov model presented in §3.5. Assumption 6 asserts that two lineages
stemming from a common ancestor evolve independently of each other:

ð6Þ PrðX ¼ i and Y ¼ j jZ ¼ kÞ
¼ PrðX ¼ i j Z ¼ kÞPrðY ¼ j j Z ¼ kÞ; for i; j; k ¼ 0; 1:

The seventh assumption says that the same independence relation holds
for the descendants of the two ancestors postulated by the separate-ancestry
hypothesis:

Observed species

Hypothetical ancestors Z1 Z2

(CA)

X Y

Z

X Y

(SA)

Figure 4.6 The common-ancestry and separate-ancestry hypotheses.

6 Notice that assumptions (4) and (5) do not assert that the process leading from Z to X and the
process leading from Z to Y are probabilistically equivalent. Different processes can occur in the
two lineages.
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ð7Þ PrðX ¼ i and Y ¼ jjZ1 ¼ k & Z2 ¼ lÞ
¼ PrðX ¼ ijZ1 ¼ kÞPrðY ¼ jjZ2 ¼ lÞ; for i; j; k; l ¼ 0; 1:

Assumption 8 says that the two ancestors postulated by the separate-
ancestry hypothesis have character states that are probabilistically inde-
pendent of each other:

ð8Þ PrðZ1 ¼ i & Z2 ¼ jÞ ¼ PrðZ1 ¼ iÞ PrðZ2 ¼ jÞ; for i; j ¼ 0; 1:

And the ninth assumption speaks for itself:

ð9Þ All probabilities have values strictly between 0 and 1:

This exclusion of 0s and 1s as possible probability values is a substantive
postulate; it is not a consequence of the axioms of probability.
These nine assumptions entail that the common-ancestry hypothesis

(CA) has higher likelihood than the separate ancestry hypothesis (SA),
relative to the observation that X ¼ 1 and Y ¼ 1. To see why, let

PrðX ¼ 1 j Z ¼ 1Þ ¼ x PrðX ¼ 1 j Z ¼ 0Þ ¼ a PrðZ ¼ 1Þ ¼ p

PrðY ¼ 1 j Z ¼ 1Þ ¼ y PrðY ¼ 1 j Z ¼ 0Þ ¼ b:

Assumptions 4 and 5 now can be stated as x > a and y > b. It follows
that

PrðX ¼ 1 and Y ¼ 1 j CAÞ > PrðX ¼ 1 and Y ¼ 1 jSAÞ
precisely when

pxy þ ð1� pÞab > ½px þ ð1� pÞ a�½py þ ð1� pÞ b�
which simplifies to

ð10Þ ðx � aÞðy � bÞ > 0:

The same conclusion would follow if the observations were X ¼ 0 and
Y ¼ 0. Assumptions 1–9 therefore suffice to show that an observed
matching favors the CA hypothesis over the SA hypothesis. By parity of
reasoning, a mismatch must favor SA over CA. This is because the pro-
babilities of the different possible observations, given a single hypothesis,
must sum to unity:
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PrðX ¼ 1 & Y ¼ 1 j CAÞ þ PrðX ¼ 0 & X ¼ 0 j CAÞ
þ PrðX ¼ 1 & Y ¼ 0 j CAÞ þ PrðX ¼ 0 & Y ¼ 1 j CAÞ ¼ 1

PrðX ¼ 1 & Y ¼ 1 j SAÞ þ PrðX ¼ 0 & X ¼ 0 j SAÞ
þ PrðX ¼ 1 & Y ¼ 0 j SAÞ þ PrðX ¼ 0 & Y ¼ 1 j SAÞ ¼ 1:

For dichotomous characters, matches favor CA over SA and therefore
mismatches favor SA over CA.
If one of the nine conditions just described fails to be true for two

species and a trait they share, does it follow that this similarity is not
evidence favoring CA over SA? The answer depends on the assumption in
question. For example, consider assumption 6, which says that the des-
cendants of a common ancestor evolve independently of each other.
Suppose two lineages evolve in continuing physical contact with each
other so that the characteristics present in one lineage influence which
traits evolve in the other. If so, assumption 6 is false. However, this does
not show that similarity fails to provide evidence for CA in this circum-
stance, only that the argument just given fails to apply. The situation with
respect to assumption 7, which says that ancestors have their character states
independently of each other, is a bit different.
If there is a perfect correlation between the separate ancestors postu-

lated by the separate-ancestry hypothesis, CA and SA will be evidentially
indistinguishable. A similar judgment attaches to assumption 8, which
says that none of the probabilities involved have values of 0 or 1. Suppose
we violate this assumption by stipulating that the ancestors postulated by
the common-ancestry and the separate-ancestry hypotheses were in
character state 0 (or in character state 1) with probability 1. It then
follows that the two hypotheses have identical likelihoods; the observed
similarity of X and Y does not favor CA over SA, nor does it have the
opposite evidential significance. Within the likelihood framework, it is
essential to think of the evolutionary process probabilistically if we are to
see how similarity can be evidence for CA (Sober 1988).
What about assumption 3: that an ancestor’s probability of having a

given trait is independent of whether that ancestor gives birth to two
descendants or just to one? This is plausible for many traits but not for
traits that affect the probability of speciation events. The literature on
species selection provides a number of hypothetical examples of such traits
(Sober 1984: 355–68; Coyne and Orr 2004: 442–5). For example,
Stanley (1979) describes a hypothetical clade of grasshoppers; some
species have wings while others are wingless. Wingless grasshoppers have
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higher probabilities of producing peripheral isolates and thus of giving
birth to new daughter species by allopatric speciation. Characteristics of
this sort can be such that Pr(Z ¼ wingless) 6¼ Pr(Z1 ¼ wingless), thus
violating assumption 3. But once again, the failure of this assumption in
Stanley’s example does not mean that winglessness fails to be evidence of
CA; rather, the proper conclusion is that the argument given above does
not apply.7 Assumption 3 also requires that the two ancestors postulated
by the separate-ancestry hypothesis have the same prior probability of
exhibiting a given character state; cancel that and the simple algebra that
leads to proposition 10 falls by the way.
A different situation arises in connection with assumptions 4 and 5,

which assert that each lineage is such that ancestor and descendant are
positively correlated. Notice how these premises serve to establish the
conclusion, proposition 10. The conclusion would still be true if there
were a negative correlation in both lineages (i.e., x < a and y < b). The idea
that ancestor and descendant are positively correlated is standard in
evolutionary biology; this is pretty much what Darwin meant by his
strong law of heredity: that like tends to beget like. Still, for traits in
which there is no influence of parents on offspring – in which offspring
traits are independent of the traits of parents – an observed similarity will
fail to discriminate between CA and SA. And if there were a positive
correlation in one lineage and a negative correlation in the other, the
similarity of X and Y would favor the SA hypothesis over that of CA.
The idea of competitive exclusion provides a possible scenario in which

similarity favors SA over CA. Suppose that two species that stem from a
common ancestor will probably live in the same locale and will therefore
have a high probability of diverging in their character states; if X exhibits
character state 1, Y will probably exhibit character state 0. Suppose
further that if the two species originate separately, they probably will
live in separate locales and therefore will evolve independently of each
other. In this situation, the observation that X and Y are in the same
state favors SA over CA. This scenario involves a violation of assump-
tion 6 – that descendants stemming from a common ancestor evolve
independently.
Before working through the details of premises 1–9, you may have

been inclined to think that it is obvious that similarity is evidence for

7 Here’s another possible example, this time concerning organismic, not species, genealogies: In a
crowded environment, an organism may have a higher probability of having a second offspring if
the first offspring is small.
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common ancestry. Perhaps you also were disposed to ask the following
rhetorical question – who, besides a philosopher, would bother belaboring
the obvious? This dismissive complaint contains a grain of truth – it is a
favorite pastime of philosophers to ask what justification there is behind
the obvious. I hope the examination of premises 1–9 makes it clear why
there is no intrinsic reason why similarity must count as evidence for
common ancestry.Whether this is so depends on nontrivial empirical matters
of fact. Propositions 1–9 are not consequences of the axioms of prob-
ability. Neither are they necessary conditions for common ancestry to have
a higher likelihood than separate ancestry, and, for this reason, it would
be wrong to regard them as assumptions that modus Darwin requires;
however, these propositions suffice for similarity to be evidence for
common ancestry, and they have broad applicability.

Homology

My focus has been on how a similarity (or a dissimilarity) that characterizes
a pair of species provides evidence that discriminates between the common-
ancestry and the separate-ancestry hypotheses. Isn’t this to ignore the
fundamental biological point that it is homologies that provide evidence for
common ancestry? There is a large literature on how the concept of
homology should be understood, but the question at hand in fact has a
simple answer. Homologies are usually taken to be similarities that are
present because of inheritance from a common ancestor; the wings of
sparrows and robins are homologies in this sense. A homoplasy, in contrast,
is a similarity that is not due to inheritance from a common ancestor but
instead arose because independent origination events occurred in separate
lineages; the wings of birds and bats are an example. So defined, the
concept of homology already has built into it the claim of common
ancestry. If our goal is to test the common-ancestry hypothesis against the
separate ancestry hypothesis by looking at data, then it would beg the
question to say that our data consist of ‘‘homologies’’ in this sense.8 What
counts as an observation in this problem must be knowable without one’s
already needing to have an opinion as to which of the competing
hypotheses is true (§2.14). This is why similarities are the right place to
begin.

8 Sober (1988) argues that if synapomorphies are to be evidence for one phylogenetic tree over
another, then the concept of a synapomorphy should not be defined to mean that the trait is a
homology.
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Multistate and continuous characters

Conditions 1–9 suffice for similarities to favor CA over SA and for
dissimilarities to have the opposite evidential significance, when the trait
in question is dichotomous. Does the argument extend to the case of
discrete characters that come in more than two states?
There is a logical difference between dichotomous and n-state char-

acters (where n> 2). For a dichotomous trait, if matches are evidence for
CA, it must be true that mismatches are evidence against. The situation
with respect to an n-state discrete character (where n> 2) is more
complicated. If two species are in the same character state, that still is
evidence favoring the CA hypothesis. However, if they differ in character
state, their difference may or may not be evidence against. It all depends
on the nature of the difference. In some cases, their different character
states can actually be evidence for CA. To see this possibility, consider the
number of chromosome pairs a diploid species might possess. If two
species have exactly the same number of chromosomes, this is evidence
that they have a common ancestor, by the argument of the previous
section. But suppose that one species has twenty-three pairs and the other
has twenty-four, as is the case for human beings and chimpanzees,
respectively. What is the evidential significance of this difference?
The way to think about this question is not to subtract 23 from 24 and

focus on the fact that the difference is a small number. Rather, we need to
think about this question from the point of view of the law of likelihood
(§1.3). Are the observed trait values more probable under the common-
ancestry or the separate-ancestry hypothesis? The answer depends on the
processes that govern the evolution of chromosome number. Consider,
for example, the two transformation series depicted in Figure 4.7. The
transformation series for a character gives the probabilities of different
types of change from one character state to another. Figure 4.7a describes
an n-state character in which all changes have the same probability (u); it
is no harder for a lineage to change from T2 to T10 than it is for it to change
from T9 to T10.

9 A different arrangement is depicted in Figure 4.7b; here
there is an ordering of the n states and the probability of changing from one
state to an adjacent state is u; no direct jumping to a nonadjacent state is
possible. With this transformation series, the probability of a lineage’s
changing from T2 to T6 is smaller than its probability of changing from T5

9 Figure 4.7a depicts the Jukes and Cantor (1969) model of nucleotide evolution when n ¼ 4; this
will be discussed in §4.8.
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to T6. In the transformation series shown in Figure 4.7a, every mismatch
between the species X and Y has the same evidential significance. Since
exact identity of character state is evidence favoring CA over SA, every
difference between the two species is evidence favoring SA over CA. The
transformation series depicted in Figure 4.7b is different. In this case,
two species exhibiting traits T2 and T10 differ more than two species that
exhibit traits T9 and T10. As before, an exact match in character state
favors CA over SA. A very large difference in character state between the two
species is evidence favoring SA over CA. A more modest difference might
have either evidential meaning, depending on further details.
With the distinction between these two transformation series in mind,

let’s return to the example of chromosome number. If every change in
chromosome number had the same probability as every other, then the
fact that chimps have twenty-three chromosomes and humans have
twenty-four would be evidence favoring SA over CA. However, if the
transformation series is the one shown in Figure 4.7b, the near identity of
chromosome number of chimps and humans might be evidence favoring
CA. In contrast, the fact that a subspecies of the fern Ophioglossum
reticulatum has 720 pairs (Stace 2000) whereas females in the ant
Myrmecia pilosula have a single pair while the males are haploid (Gould
1991) is evidence favoring SA over CA if we assume the kind of trans-
formation series depicted in Figure 4.7b and if this difference in chromo-
some number is the largest one possible. This does not entail that the
two species have no common ancestor, only that their chromosome
number favors that conclusion (if the assumption about the transform-
ation series is true); other traits that they share might favor CA over SA.
It is intuitive that the laws of motion given in Figure 4.7a entail that

every difference between species X and Y favors SA over CA. But what
explains the fact that large differences favor SA over CA while modest
differences can have the opposite significance when the transformation
series is the one given in Figure 4.7b? Suppose our observation is that X¼ 4

(a) u Tj

(b) u Ti+1

Ti

Ti

Figure 4.7 Two possible transformation series for a trait T that has n states (T1,T2, . . . ,Tn).
Each describes the probabilities of changes in character state. In (a), all changes have the

same probability; in (b), there is an ordering of character states and the only changes that are
possible are changes to adjacent states.
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and Y ¼ 5 where the character in question has ten states, and let’s
further suppose that the ancestors depicted in Figure 4.6 have a non-
negligible chance of producing descendants with those character states
only if the ancestors are within two units of their descendants. This is
tantamount to saying that u3 is so small that it can safely be ignored in
comparing likelihoods. If the character we are considering has ten character
states, then the ancestor postulated by the common-ancestry hypothesis
can produce these descendants if and only if it is in one of states 3–6, while
the two ancestors postulated by the separate-ancestry hypothesis can
produce these descendants precisely when the first is in states 2–6 and the
second is in states 3–7. If the ten character states an ancestor might occupy
have equal probability,10 then the probability that the common ancestor is
in the range 3–6 is 0.4, while the probability that each of the separate
ancestors is in range of its respective descendant is (0.5)(0.5) ¼ 0.25. So
CA has the higher likelihood with respect to the observation that X ¼ 4
and Y ¼ 5. But now suppose there is a wider gap between X and Y; for
example, suppose that X ¼ 4 and Y ¼ 8. Then the single ancestor postu-
lated by the common-ancestry hypothesis must be in state 6 if it is to have a
chance of producing these two very different descendants, whereas the two
ancestors postulated by the separate-ancestry hypothesis can yield these
descendants if the first is in one of the states 2–6 while the second is in one
of the states 6–10. With equal probabilities on ancestral character states,
the ancestor postulated by the common-ancestry hypothesis has a 0.1
chance of being in a state that can generate the data, while the two
ancestors postulated by the separate-ancestry hypothesis again have a (0.5)
(0.5) ¼ 0.25 chance of doing so. Now it is SA that makes the observations
more probable. I hope this informal argument makes it intuitive why a
small difference between X and Y can favor CA over SA whereas a larger
difference will have the opposite evidential significance, if the trans-
formation series is the one given in Figure 4.7b.
The two models of evolution shown in Figure 4.7 do not exhaust the

possible transformation series that might be true of an n-state character. A
more complex and realistic model might allow there to be a different
probability for every type of change. And even when larger changes usually
have smaller probabilities than more modest changes, there can be excep-
tions. Consider, for example, the process of polyploidy, wherein chromo-
some number doubles or triples or quadruples. In modeling the evidential

10 This prior probability for ancestral character states is the equilibrium distribution for the process
depicted in Figure 4.7b; it is not an additional postulate.
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significance of chromosome number, we’d have to take this process into
account as well as the process of adding or deleting a single chromosome
pair. Maybe it is easier to go from twenty to sixty chromosomes than it is to
go from twenty to fifty-nine. This means that if two species have twenty
and sixty pairs respectively, this might be evidence favoring CA over SA,
whereas the opposite conclusion might be correct if they exhibit twenty and
fifty-nine. Once again it is a mistake to focus on how much or how little
two species differ in their character state; what is fundamental is the pro-
cesses at work in the evolution of their trait values.
These complications should not obscure the essential points. Exact identity

of character state is always evidence favoring CA over SA so long as
assumptions 1–9 from the previous section hold true. And regardless of
whether the character is dichotomous or multistate, some differences in
character state must count as evidence favoring SA over CA. Whether all
differences in character state constitute evidence favoring SA over CA depends
on the transformation series; this is true of the rules represented in Figure
4.7a, but it isn’t true of others. Notice that assumptions 1–9 say nothing
about the transformation series; this means that interpreting differences in
character state for n-state characters requires additional assumptions beyond
those that suffice for interpreting differences in dichotomous traits.
The transformation series represented in Figure 4.7b has no bias;

evolving from one state to another has the same probability as evolving in
the opposite direction. This transformation series is therefore appropriate
for modeling a drift process but not for modeling how selection leads a
lineage to evolve towards a single optimum. In any event, as the number
of character states in this transformation series is increased, and u is made
small, one approaches a model of the evolution of a continuous character
subject to drift. By viewing a continuous trait as the limit of an n-state
trait (where n is made large), you can see how the conclusions stated in
the previous paragraph apply to continuous characters.
We have just seen that n-state characters differ epistemologically from

dichotomous characters. But which are better to use in testing CA against
SA? No sweeping generalization can be expected in answer, but there is a
special case of this question that the principle of total evidence addresses.
Returning to the example of human and chimp chromosome number,
let’s define a dichotomous character W (for ‘‘weak’’) by saying that a
species hasW precisely when it has twenty-four or more chromosome pairs.
Human beings lack W but chimps have W, so, by the argument of the
previous section, their difference with respect to this dichotomous character
is evidence against the hypothesis that they have a common ancestor. But
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now let’s define a logically stronger feature S that comes in n states;
S1 means that a species has one chromosome pair; S2 means it has two, and
so on. The n-state character S is logically stronger than the dichotomous
character W because the trait value a species has for S logically entails its
value for W, but not conversely. Suppose the laws governing the evolution
of chromosome number have the consequence that humans having
twenty-three and chimps having twenty-four chromosome pairs is evi-
dence in favor of their having a common ancestor. If so, the dichotomous
character stateW and the n-state character S point in opposite directions.
Which should we take more seriously? The principle of total evidence says
that we should use the strong description (S), not the weak one (W).
The reader will have noticed a dismaying arbitrariness that enters into

the definition in this example of the dichotomous trait W. I defined the
cutoff between W and notW as twenty-four, with the consequence that
humans and chimps differ with respect to W. But I could just as easily
have defined a dichotomous trait W* that applies to a species when it has
more than fifteen chromosome pairs, with the result that humans and
chimps both have W* . Differing with respect to W favors SA over CA,
but sharingW* has the opposite significance. So which dichotomous trait,
W or W* , should we use to evaluate the common-ancestry and separate-
ancestry hypotheses? This arbitrariness does not arise if we move to the
count property S. However, the price of using this more informative
description of the two species is that we face a new epistemological
problem; we need a substantive theory of how the n-state character evolves
before we can say what the evidential significance is of the observed
difference between the two species.
The paradox of the heap is a philosophical staple that traces back to

ancient Greece; there is no precise number of pebbles that separates a
heap from a nonheap, and no precise number of hairs that separates the
bald from the not bald. These familiar facts do not and should not deter
us from using those concepts, since, after all, there are plenty of clear cases
of heaps and bald people. The present problem is different; it is evidential,
not taxonomic. When a dichotomous character is imposed on an under-
lying reality of quantitative difference, the dichotomy can make intuitive
sense (as when we say that some people are bald while others are not) or it
can seem utterly arbitrary (as when I invented the character W). But
whether the dichotomy is familiar or not, other dichotomies laid on the
same underlying quantitative reality are logically possible, and so the
question arises of which we should use to describe the evidence. Shifting
from a dichotomous to a multistate or continuous character cuts this
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Gordian knot, and it has the additional advantage of being sanctioned by
the principle of total evidence.11

These points are relevant to discussion of how the ‘‘universality’’ (or
‘‘near universality’’) of the genetic code is said to bear on the question of
common ancestry. Back when it was thought that all organisms now alive
use exactly the same genetic code, evolutionary biologists argued that this
universal code is compelling evidence that all present life forms trace back
to a single common ancestor (see, for example, Crick 1968). However,
when biologists started discovering exceptions to this ‘‘universal’’ code in
the late 1970s, this did not lead them to retreat from their endorsement of
the CA1 hypothesis (Cavalcanti and Landweber 2004). Is this an example
of biologists wanting to have it both ways? If a universal code would be
evidence for CA, doesn’t it follow that nonuniversality must be evidence
against? Answering this question requires that we be careful to distinguish
logically stronger from logically weaker descriptions of the evidence, just
as we did for the case of chromosome number. If there are n possible
codes, an exact match between the codes used by two or more organisms
is evidence that they share a common ancestor, given assumptions 1–9.
And if we use a logically weak description of two organisms that use
different codes and say only that they differ (without saying how they
differ), then the conclusion must be drawn that this weak description of
the evidence favors SA over CA. However, once we describe how the two
organisms differ (rather than just saying that they differ), the different
trait values of the two organisms do not automatically lead to the con-
clusion that SA is more likely than CA. We have to look at the details.
The standard code is used in the nuclear genomes of all multicellular

plants and animals, and this is evidence that they spring from a common
ancestor. But what about the nonstandard codes (there is more than one)
found in some prokaryotes, in some fungi and algae, and in the mito-
chondria of eukaryotes? Are these differences in code evidence against
CA1? This follows no more than it follows that humans’ having twenty-
three chromosome pairs and chimps’ having twenty-four is evidence that
they lack a common ancestor. The question is whether the different codes
we observe differ ‘‘enough,’’ and this question requires a substantive
theory of code evolution to answer.12

11 The question of whether a dichotomous or a continuous character should be used to describe the
character state of a species arose in§3.6 in connectionwith the problemof testing selection against drift.

12 For a useful summary of the different codes now known to exist and a survey of ongoing work on
theories of code evolution, see Knight et al. (2001).
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Phenotypic and genetic characters

The discussion in the previous section of the relationship between a logically
weaker dichotomous character W and the logically stronger multistate
characters S bears on the relationship of phenotypic and genetic characters.
If a genetic characterG entails a phenotypic character P, but not conversely,
then the former is logically stronger, and the principle of total evidence says
that it is the genetic character, not the phenotype, that should be used in
inferences about common ancestry. Suppose species X and Y both have
phenotype P, but it then turns out that they manifest this commonality
because they use two very different gene complexes, G1 and G2. The shared
phenotype P favors CA over SA, but it may turn out that the fact that X has
G1 and Y hasG2 is evidence favoring SA over CA. According to the principle
of total evidence, the genetic difference trumps the phenotypic similarity.13

This point throws light on Zuckerkandl and Pauling’s (1965) contention
that phylogenetic trees inferred from genetic data are better than those
inferred from phenotypic data because genes are ‘‘causally prior’’ to
phenotypes. A similar pattern applies to some pairs of phenotypic traits.
Sharks and whales both have fins, but a closer examination of what is inside
those fins shows that there are morphological differences. Sharing fins is
evidence for CA, but the difference in morphology may be evidence against.
Which of these traits deserves more weight? If the detailed morphology of
each organism guarantees that it has fins, we have an answer. Logically
stronger traits take precedence over traits that are logically weaker.

Sequence data without alignment

The usual technique for using sequence data in phylogenetic inference
problems is first to align the sequences, which means sliding one sequence
along the other and stopping when the number of matching sites is
greatest. I won’t discuss here the use of this procedure in problems where
the goal is to determine which tree is best supported by the data, where all
the trees considered assert that the tip taxa trace back to a common
ancestor; this is the kind of problem depicted in Figure 4.1. In inference

13 Does considering the possibility that genotype entails phenotype involve flirting with some
discredited notion of genetic determinism? Does it contradict the truism that an organism’s
phenotype is the joint effect of its genes and its environment? No; all that is required is that the
organisms under study, in the environment they actually inhabit, obey the principle ‘‘same gene,
ergo same phenotype’’ but not the converse. This leaves it open that a change in environment
might produce a change in phenotype.
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problems of this sort, the common-ancestry hypothesis is assumed; it is not
tested. My present concern is how sequence data can be used to test CA
against SA. At first glance, alignment seems not to make sense in this
problem. Since matching at a site is evidence for CA, aligning the sequences
so as to maximize matching seems to load the dice in favor of the common-
ancestry hypothesis. But the problem is deeper. If two sequences have a
common ancestor, it makes sense to say that a site in one sequence ‘‘cor-
responds’’ to a site in the other; this correspondence means that the two
sites derive from a site in their common ancestor. But if there was no such
common ancestor, what would alignment even mean? If we want to test
the separate-ancestry hypothesis rather than just assume from the outset
that it is false, we need to rethink the question of how sequence data can
be used.
To begin, imagine that two sequences, each 2,000 sites long, are drawn

from species X and Y and that each sequence consists of 500 repetitions of
the nucleotides G–A–T–C in that order. The two sequences therefore
occupy the same state of a character that has 42,000 possible states. By the
argument given earlier, this matching counts as evidence of CA. There is
no need to align the sites to say this. The same point applies when the
sequences (each n sites long) drawn from the two species do not match
perfectly. They then will occupy different states of a single character that
has 4n possible states. Whether this difference between the two species
favors CA or SA depends on the rules of evolution that govern how this
complex character evolves. The situation is precisely the same as the one
considered earlier in connection with number of chromosome pairs. The
question is simply whether the observed mismatch has a higher prob-
ability of arising under the common-ancestry or the separate-ancestry
hypothesis. To answer this question, all that is needed is the two
unaligned sequences and a reasonable model of the process of sequence
evolution. An inference that begins with aligned sequences is valid to
the extent that it mimics the verdicts of the procedure that uses
unaligned sequences. When this is true, aligning sequences is not
loading the dice.

Two inference problems about common ancestors

There are two questions one might ask about common ancestors:


 Does the observation that two species (X and Y ) are in the same
character state favor the CA hypothesis over the SA hypothesis?
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 Does the observation that two species (X and Y ) are in the same
character state favor the hypothesis that their common ancestor
occupied the same character state?

The first question concerns testing the CA hypothesis; the second assumes
that there was a common ancestor and asks how one might test hypotheses
about that ancestor’s characteristics. Corresponding to these two questions
are two possible answers, each taking the form of a likelihood inequality:

* PrðX ¼ i and Y ¼ i j CAÞ> PrðX ¼ i and Y ¼ i j SAÞ:
* PrðX ¼ i and Y ¼ i j CA & the most recent common ancestor of

X and Y was instate iÞ > PrðX ¼ i and Y ¼ i j CA & the most
recent common ancestor of X and Y was in state jÞ; for all i 6¼ j:

Propositions 1–9 entail both these inequalities if the trait in question is
dichotomous. However, for continuous traits, those nine propositions
entail the first but not the second. For continuous characters, inferring the
existence of a common ancestor is one thing, inferring its characteristics
another. Propositions 1–9 are neutral on whether lineages experienced
drift or selection. This neutrality does not prevent those propositions
from answering the first question, but it does prevent them from
answering the second if the trait is continuous.14

These points bear on the questions explored in §4.2. There are three
ways in which a similarity observed to unite organisms X and Y might
trace back to a common cause:


 The common cause is a common ancestor.

 The common cause is an organism though not a common ancestor.

 The common cause is not an organism.

The second of these possibilities might involve lateral gene transfer; the
third would be true if X and Y originated from the same slab of rock but
lacked a common ancestor. When the human beings and chimps alive
now share a characteristic (and propositions 1–9 are true), this is evidence
that there was a common cause. But what characteristics did that common
cause have? Biologists do not doubt that it was an organism, but they go
much farther – it was an animal, a vertebrate, a mammal, and a primate.

14 Not that dichotomous characters are always a safe haven. Recall that estimating ancestral character
states in a tree depends on the process at work in lineages even when the trait is dichotomous
(§3.11).
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The same point holds when we consider organisms that are more distantly
related. Human beings and daffodils are both Eukaryotes, and biologists
take it to be very clear that their most recent common ancestor was a
Eukaryote. However, for a Prokaryote and a Eukaryote, their common-
alities point to an organismic common cause, but the possibility of
rampant lateral gene transfer may make it difficult to say whether that
organism was an ancestor of both.

Matching and mismatching summarized

The modest assumptions embodied in propositions 1–9 entail, for any
dichotomous character, that sameness of character state favors CA over
SA while a difference favors SA over CA. This result is represented by
the two horizontal inequalities in Figure 4.8: 1� e1> e2, which of course
is equivalent to 1� e2> e1. Half of this result applies to multistate
characters; exact matches favor CA, but if the two species differ, further
information is needed to say whether the different character states they
occupy favor CA or SA.
These epistemological conclusions should not obscure a point of logic.

The hypothesis that two species share a common ancestor is logically
consistent with their being as dissimilar as you please. It is perfectly
possible for natural selection to adapt each lineage to its own special
environment; given enough time and enough divergent selection pressure,
the two descendants will evolve away from the suite of characters present
in their common ancestor. And just as descendants of a common ancestor
can be dissimilar, it also is possible for two species that lack a common
ancestor to be rendered similar by powerful selection pressures. The result
is wholesale convergence. The four logical possibilities are represented in
Figure 4.7. It is important to keep this logical point separate from the
epistemological one. The CA hypothesis is logically consistent with similarity
and difference, and the same is true of the SA hypothesis. However, it

            Genealogical hypotheses  
 CA   SA 

X and Y match e2  Possible 
observations X and Y differ    e1 –e2 

1–e1 
1

Figure 4.8 When X and Y are scored for whether they match on a dichotomous
trait, there are two possible observations. Since there are two possible genealogical
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would be a mistake to conclude, by invoking a Popperian falsifiability
criterion (§2.8), that neither hypothesis is testable. Evidence can discriminate
between the two hypotheses even though the evidence cannot deductively
entail that either hypothesis is false. The law of likelihood does the needed
work; it does what the criterion of falsification cannot do. Assumptions 1–9,
coupled with the law of likelihood, allow the data to speak.
This likelihood analysis illustrates how misleading it can be to assess the

evidence for CA by asking what the hypotheses of common and SA
‘‘predict.’’ Prediction can of course be probabilistic (as when a weather
forecaster predicts rain tomorrow based on the fact that the probability of
rain is 0.98); that is not the source of the stumbling block. But suppose
you believe the following simple principle concerning what the word
‘‘predict’’ means: If a hypothesis predicts that O is true, then the hypothesis
does not predict that notO is true. If this is right, and if the hypothesis
confers a nonzero probability on both O and on notO, which of these
outcomes does it predict? Presumably, the answer is that it predicts the
outcome that it says is more probable. This means that if the CA
hypothesis predicts that species X and Y will match with respect to the
dichotomous trait T, then CA must confer on that outcome a probability
that is greater than 0.5. No such claim is entailed by the Reichenbachian
argument developed here. In terms of Figure 4.8, the main result so far is
the identification of a sufficient condition for the ‘‘horizontal inequality’’
(1 � e1) > e2, and so for (1 � e2) > e1. These horizontal relationships do
not settle the vertical questions of whether (1 � e1) > e1 or whether
(1 � e2) < e2. If you want to know what CA and SA ‘‘predict,’’ you need
to know whether e1 < 0.5 and whether e2 < 0.5. These vertical questions
are a distraction if you are using the law of likelihood to think about the
interpretation of evidence. From that point of view, the right advice is . . .
get horizontal.15

4.5 MORE THAN ONE CHARACTER

Overall similarity in a data set

We so far have considered the evidential significance of a single character.
The next step is to ascertain the evidential meaning of a data set that

15 The question of whether these vertical inequalities are true is the question of whether pairs of
species are apt to generate evidence that is misleading with respect to whether they have or lack a
common ancestor. I will address a version of this query in §4.8.
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describes both the similarities and the dissimilarities that characterize
species X and Y.
For a set of dichotomous characters, each similarity ‘‘votes’’ for CA

over SA, and each dissimilarity ‘‘votes’’ for SA over CA. Should we
therefore adopt a principle of majority rule, according to which CA is
overall more likely precisely when the similarities outnumber the dis-
similarities? This rule can be wrong if the similarities and the dissimi-
larities are governed by different evolutionary processes.16 But even if the
traits evolve independently and by the same process, the principle of
majority rule can still be wrong. Here’s an argument that helps explain
why this is so. If a dichotomous character has trait values of 0 and 1, then
there are four possible observations you can make when you score species
X and Y; call them 11, 10, 01, and 00. Let’s lump the first and fourth
possible observations together and say that X and Y ‘‘match’’ when they
are both in state 1 or both in state 0; when X and Y differ, we have a
‘‘mismatch.’’ If the likelihood ratio of CA to SA with respect to a match
has the value c/s, then the likelihood ratio of SA to CA with respect to a
mismatch will have the value (1 � s)/(1 � c). By the argument from §4.4,
both these likelihood ratios are greater than unity – matching favors CA
and mismatching favors SA. But which ratio is greater? The majority-rule
principle says that they are equal in value. To see how this can be wrong,
suppose that c ¼ 0.001 and s ¼ 0.00001; this means that the first ratio has
value of 100 while the second has a value only slightly greater than 1. If all
the traits in a data set have these values for c and s, then one similarity
speaks more strongly in favor of CA than ninety-five differences speak in
favor of SA. This is why the rule of ‘‘one trait, one vote’’ is not inevitably
true. More generally, if two traits evolve according to the same probabilistic
rules, and X and Y match with respect to one and mismatch with respect to
the other, the two characters together favor CA over SA precisely when

c
s >

ð1� sÞ
ð1� cÞ

which (given that c > s) simplifies to c þ s < 1. The match outweighs
the mismatch precisely when Pr(match jCA) þ Pr(match j SA) < 1.
The example values of c ¼ 0.001 and s ¼ 0.00001 make this inequality

16 By ‘‘wrong’’ I don’t simply mean that the rule can say that one hypothesis is better supported than
the other by a data set when, in fact, the ‘‘better’’ hypothesis is false and the ‘‘worse’’ hypothesis is
true; that can happen in any nondeductive inference. What I mean is that ‘‘majority rule’’ can err
in its evaluation of which hypothesis has the higher likelihood.
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true; according to these values, the common-ancestry hypothesis says that
a matching is improbable, but the separate-ancestry hypothesis says that
the matching is even more improbable. For characters of this sort, a
match strongly favors CA over SA while a mismatch favors SA over CA,
but only very weakly. When c ¼ 0.001 and s ¼ 0.00001, it may sound
wrong to say that either hypothesis ‘‘predicts’’ that the two species will
match, but that does not matter.
This example shows that a data set can favor CA over SA even when the

two species X and Y mismatch on most of their characters. But suppose
they match on most. Is that enough for CA to have the higher likelihood?
Again the answer is no. Everything depends on the processes at work that
produced the data. If each dichotomous trait is subject to drift and lin-
eages have been evolving for a long time, the expected percentage of
similarity under the separate-ancestry hypothesis is 50 percent. On the
other hand, if there is strong selection for state 1 of each of the many
dichotomous characters considered, so that the probability of a des-
cendant’s exhibiting state 1 for a given character is, say, 0.99, then the
expected similarity under the separate-ancestry hypothesis is (0.99)2 þ
(0.01)2 ¼ 98 percent. A data set in which species X and Y are 98 percent
similar strongly favors CA over SA if the lineages have been drifting for a
long time, but these data can fail to discriminate between CA and SA if
there is strong selection for the observed traits.
Much is made in the popular press of the fact that the DNA sequences

of chimps and humans are about 98 percent similar. Is this similarity
compelling evidence that we and chimps share a common ancestor? Since
each site in a sequence is characterized by one of four nucleotides, we have
here a set of four-state, not dichotomous, characters, but the point about
the processes generating the data is the same. The expected percentage
similarity for humans and chimps, according to the separate-ancestry
hypothesis, would be 25 percent, if each site evolved independently by the
process of random genetic drift (and the lineages had been evolving for a
long time). In this case, the observed similarity of 98 percent would
strongly favor CA over SA. However, if there was strong selection in each
lineage for the traits that one observes, the expected degree of similarity
would be about the same, regardless of whether the common-ancestry or
the separate-ancestry hypothesis is true.
Both of the following thoughts are therefore naive: ‘‘humans and

chimps must share a common ancestor because they are so similar’’ and
‘‘humans and mushrooms must have arisen independently because they
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are so different.’’ Within a probabilistic framework, there is no ‘‘must’’ in
either case. But, in addition, the transition from degree of similarity to a
claim about CA versus SA in both examples must be mediated by
information about the processes generating the traits in question.

Comparing kinds of similarity

We have seen that sameness of character state always favors the common-
ancestry (CA) hypothesis over the separate ancestry (SA) hypothesis, if the
assumptions described in §4.4 hold. This is true whether the trait is
dichotomous or multistate. In this respect, all similarities are on the same
page. But which types of similarity provide strong evidence for CA over
SA and which provide evidence that, though positive, is relatively weak?
In The Origin of Species, Darwin ([1859] 1964: 427) answers this question
in a way that makes a great deal of sense:

adaptive characters, although of the utmost importance to the welfare of the being,
are almost valueless to the systematist. For animals belonging to two most distinct
lines of descent, may readily become adapted to similar conditions, and thus
assume a close external resemblance; but such resemblances will not reveal – will
rather tend to conceal their blood-relationship to their proper lines of descent.

This is why the torpedo shape found in sharks and dolphins does not
provide strong evidence for their having a common ancestor; natural
selection favors this shape in large aquatic predators, so we’d expect it
to be present in modern sharks and dolphins regardless of whether they
have a common ancestor. In contrast, the gill slits found in human
embryos and in many fish are evidence of common ancestry precisely
because they have no adaptive utility in human embryos. The term
‘‘vestigial’’ carries the double meaning that Darwin intended; vestigial
traits are useless to the organism and they are vestiges of a bygone age.
By recognizing that they are useless, we see that they provide substantial
information about the past.
Darwin’s principle – that selectively advantageous traits are ‘‘almost

valueless’’ as evidence of CA – can be represented in terms of the law of
likelihood. As a first approximation (to be refined shortly), the claim is
that

PrðX and Y have trait T j there was selection for T & CAÞ
PrðX and Y have trait T j there was selection for T & SAÞ: � 1:
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His complementary claim – that similarities due to neutral evolution
provide substantial evidence of CA – also has a likelihood representation.
Here is a first pass at stating it:

PrðX and Y have trait T j T evolved by neutral evolution & CAÞ
PrðX and Y have trait T j T evolved by neutral evolution & SAÞ: � 1:

The task at hand is to investigate how the process governing the evolution
of a similarity affects that similarity’s evidential significance. In addition
to the adaptive and neutral similarities just mentioned, we will consider
similarities that involve disadvantageous traits and adaptive similarities
that arise when there is a certain kind of frequency-dependent selection.
The point of this exercise is to investigate in a more rigorous and sys-
tematic way the prima-facie plausible generalization that Darwin for-
mulated.

Three processes

The three types of evolutionary process I want to discuss are represented
in Figure 4.9. In Figure 4.9a, the fitnesses of the two traits A and B do
not depend on their frequencies in the population. Because A is fitter
than B at all frequencies, natural selection can be expected to lead A to
evolve to fixation.17 In Figure 4.9b, the traits A and B have identical
fitnesses, and so the evolution of these traits in a lineage will be a random
walk. In Figure 4.9c, selection is frequency dependent; the majority
trait is the one that selection favors, so a lineage can be expected to
evolve to either 100 percent A or to 100 percent B, depending on the
trait’s starting frequency.18

We know from the previous section that the observation that two species
X and Y are in the same character state favors the common-ancestry over the
separate-ancestry hypothesis, regardless of what processes are at work in

17 The models considered here are phenotypic and, as is usual for such models, I will assume that
‘‘like begets like.’’ As mentioned in Chapter 3, it is well known that there are genetic arrangements
(e.g., heterozygote superiority) in which the fitter trait cannot evolve to fixation. I will ignore these
genetic complications in what follows in order to isolate what I think are some fundamental
epistemological points.

18 A genetic example of frequency-dependent selection for the majority trait is provided by a one-
locus two-allele model in which the genotypic fitnesses are wAA ¼ waa > wAa. In this case of
heterozygote inferiority, the genotypic fitnesses are frequency independent, but the allelic fitnesses
are frequency dependent, with the majority allele being the fitter.
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lineages (as long as assumptions 1–9 are correct). The ‘‘favoring’’ there
described involves a difference in likelihoods; the assumptions entail that
Pr(X and Y have T j CA) > Pr(X and Y have T j SA). The present
question is how the magnitude of this favoring is affected by which process
is at work. In what follows, I’ll measure strength of evidence in terms of
the quantitative measure that the law of likelihood recommends: the
likelihood ratio (§1.3). Our questions will therefore be: Which of the
following three likelihood ratios is the biggest? Which is second? And
which comes in third?

ðFIS-ADVÞ PrðX and Y have T j CA & Frequency independent selection for T Þ
PrðX and Y have T j SA & Frequency independent selection for T Þ

ðDÞ PrðX and Y have T j CA & DriftÞ
PrðX and Y have T j SA & DriftÞ

ðFDSÞ

PrðX and Y have T j CA & Frequency dependent

selection for the majority traitÞ
PrðX and Y have T j SA & Frequency dependent

selection for the majority traitÞ
There is a fourth possibility. Suppose there is frequency-independent
selection, but the trait that evolves is not the one selection favors; instead,
what evolves is the trait that is selected against. The similarity exhibited by
the descendants X and Y will then involve a disadvantageous trait. How
does the evidence that this kind of similarity provides compare with the

A A

Fitness A,B

B B

%A

(a) 

100 00 100 0 100

(b) (c)

Figure 4.9 Three processes: (a) frequency independent selection for trait A; (b) drift;
(c) frequency dependent selection for the majority trait.
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evidence provided by the other three? To answer this question, we need to
consider a fourth likelihood ratio:

(FIS-DIS)

PrðX and Y have T j CA & Frequency independent

selection against T Þ
PrðX and Y have T j SA & Frequency independent

selection against T Þ

Models for a dichotomous trait

To compare the impact of the three processes described in Figure 4.9 on
the evidential significance of the observed similarity of species X and Y,
I want to shift from describing X and Y in terms of trait frequencies to
describing each in terms of a single dichotomous variable, whose two
states are 0 and 1. I discussed the usual Markov model representation of
this process in §3.5. The model begins with the thought that within a very
small period of time (an ‘‘instant’’), there is a small probability (u) of a
lineage’s changing from state 0 to 1, and a possibly different probability
(v) of changing from 1 to 0. A lineage’s probability of ending in state j, if
it begins in state i (i, j ¼ 0,1) and there have been t units of time in
between, Prt(i! j), is a function of these instantaneous probabilities and
the amount of time.
How can this simple model be used to represent the three different

processes we wish to investigate? I will deploy the same representations
that were used in Chapter 3. Drift will be represented in this Markov
format by the constraint that u ¼ v. With drift, there is no bias in a
lineage’s tendency to change; it has the same chance of going from 0 to 1
that it has of going from 1 to 0. Frequency independent selection for
character state 1 means that u� v > 0. And frequency-dependent
selection for the majority trait means that u� v> 0 when the ancestor is
in state 1 and v� u> 0 when the ancestor is in state 0. By never setting u
or v equal to zero, I am assuming that all three of these processes
experience a mutational input. Drift does not have 0 percent A and 100
percent A as absorbing states, and what frequency-independent selection
has as its expected outcome (when there is lots of time for the lineage to
evolve to its equilibrium) is not 100 percent A, but something a bit less,
say 99 percent. When t ¼1, Prt(i! j) ¼ Prt(j! j) if the process is one
of drift or frequency independent selection. However, this equality fails to
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hold if there is frequency-dependent selection for the majority trait. In
that case, Prt(i! j) � 0 and Prt(j! j) � 1 when t ¼ 1; this is because,
with frequency dependence, a lineage beginning in state 1 will experience
strong selection for state 1, while a lineage beginning in state 0 will
experience strong selection for state 0. In cases (a) and (b) depicted in
Figure 4.9, the process that occurs in a lineage is independent of the
lineage’s initial state; this is not true in (c).
In general, the likelihood ratio of CA to SA, where the data are that

X ¼ 1 and Y ¼ 1, will have the form:

ðGÞ PrðX ¼ 1 & Y ¼ 1 jCAÞ
PrðX ¼ 1 & Y ¼ 1 j SAÞ ¼

ð1� pÞPrtð0! 1Þ2 þ ðpÞPrtð1! 1Þ2
½ð1� pÞPrtð0! 1Þ þ ðpÞPrtð1! 1Þ�2 :

Here p is the probability that the relevant ancestor has character state 1. I
will assume in what follows that the processes we are considering
don’t suddenly start in the lineages leading from the ancestors (Z, Z1, Z2)
to the descendants X and Y but are present in all the lineages depicted in
Figure 4.3. This means that ancestors in the drift process have a prob-
ability of about 1

2 of being in state 0, while the ancestors in the frequency-
independent selection process have a probability of about 0.99 of being in
state 1. These priors for ancestors are the equilibrium values for the
processes considered. For the case of frequency dependence, the process
itself does not provide a prior for the ancestral condition, and I will not
introduce a postulate that fixes its value.
The generic formula (G) for the likelihood ratio will take different

specific forms, depending on the kind of process at work in lineages. For
drift, the formula becomes:

ðDÞ
1
2

� �
a2 þ 1

2

� �ð1� aÞ2
1
2

� �
a þ 1

2

� �ð1� aÞ� 	2 :

In a drift process, p ¼ 1
2 and a ¼ Prt(0! 1) ¼ Prt(1! 0); a ¼ 0 if t ¼ 0,

and a ¼ 1
2 if t ¼ 1. At t0, the drift ratio D has a value of 2; at t1, D ¼ 1.

When the two species X and Ymatch with respect to a neutral dichotomous
character, the matching always favors CA over SA, but how much evidence
this matching provides declines as the amount of time in the lineages
increases.
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When there is frequency-independent selection favoring character state 1,
and the species we observe both exhibit that advantageous trait, the generic
formula for the likelihood ratio takes the following form:

(FIS-ADV)
ð0:01Þb2 þ ð0:99Þð1Þ
½ð0:01Þb þ ð0:99Þð1Þ�2 :

Here b represents Prt(0 ! 1) when there is frequency-independent
selection for trait 1; b ¼ 0 when t ¼ 0 and b � 1 when t ¼ 1. The
quantity Prt(1! 1) is here assigned a value of unity; if there is (strong)
selection for trait 1, a lineage that begins in that state cannot escape it.
This is a slight simplification; strictly speaking, Prt(1! 1) ¼ 1 at t ¼ 0
and monotonically declines in value until Prt(1 ! 1) ¼ 0.9999 when
t ¼1. When two species match with respect to an advantageous
dichotomous character, the FIS-ADV ratio has a value of 1.01 at t0; at
t1, the ratio has a value of unity. Here again, the amount of evidence
that a matching provides declines as the amount of time in the lineage
increases.
These values for the FIS-ADV ratio provide a vindication (within this

simple model) of Darwin’s statement that adaptive similarities are
‘‘almost valueless’’ in terms of their ability to indicate genealogical rela-
tionships. It is interesting that Darwin said ‘‘almost’’ valueless, rather than
‘‘completely.’’ Royall (1997: 89) suggests defining the idea that there is
‘‘strong’’ evidence favoring one hypothesis over another as a likelihood
ratio of at least 8. This convention entails that an adaptive similarity (with
respect to a dichotomous trait) that evolves by frequency-independent
selection never represents ‘‘strong’’ evidence for CA. It is worth remem-
bering, however, that this claim concerns the evidential significance of
a single similarity. Two or more similarities, if they are independent of
each other (conditional on each of the phylogenetic hypotheses con-
sidered) will have an evidential significance characterized by the product of
the likelihood ratios for each. Even if each of several characters fails to
provide strong evidence, they collectively may provide very strong evidence
indeed.19

19 Just as increasing the number of similarities can strengthen the evidence favoring CA over SA, so
increasing the number of similar species can have the same effect. The problem explored here, of
two species and one similarity, is thus the weakest case, in each of two dimensions.
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The third process we need to consider is frequency-dependent selection
for the majority trait; here the relevant likelihood ratio is:

ðFDSÞ ð1� pÞc2 þ ðpÞð1� cÞ2
½ð1� pÞc þ ðpÞð1� cÞ�2 :

Here c ¼ Prt(0! 1) when there is selection for trait 0 and Prt(1! 1) ¼
(1 � c) when there is a selection for state 1. The parameter c has a very
small value if the frequency-dependent selection process is very strong,
regardless of how much time there is in lineages, so the frequency-
dependent selection ratio has a value that is approximately equal to 1

p,
regardless of how much time there is in lineages.
The last process in our menagerie involves a disadvantageous trait that

evolves in spite of the fact that there is frequency-independent selection
against it. As before, our observation is that X ¼ 1 and Y ¼ 1, but we now
suppose that selection favored state 0 over state 1. The equilibrium value
for this process, which provides a valid prior for the states of the ancestors,
is Pr(Z ¼ 0) ¼ 0.99. Using the generic formula for the likelihood ratio of
the common-ancestry and separate-ancestry hypotheses, we obtain the
following likelihood ratio for the observation of a disadvantageous
similarity:

(FIS-DIS)
ð0:99Þð0Þ þ ð0:01Þd2

½ð0:99Þð0Þ þ ð0:01Þd �2 :

Here d ¼ Prt(1 ! 1) when there is selection for state 0; d ¼ 1 at t0 and
d � 0 at t1. I’m here assuming that a lineage has no chance of evolving
from 0 to 1 if there is selection for state 0. The FIS-DIS ratio is
approximately 100 regardless of the duration of lineages.
The results of this four-way competition are summarized in Figure 4.10.

Notice first that all four likelihood ratios are greater than unity as long as
time is finite; in all four cases, similarity provides evidence favoring CA
over SA. Among these four ratios, why does FIS-ADV come in last? The
key is that the process of frequency-independent selection for trait 1
makes it very probable that X and Y will both be in state 1 regardless of
whether CA or SA is true. The contrast with FIS-DIS is telling; here we
observe that X and Y are in state 1 even though there was frequency-
independent selection for state 0. With this process at work, it is highly
probable that ancestors were in state 0 and highly improbable that
ancestors in state 0 would give rise to descendants that are in state 1. So
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when we observe that X and Y are in state 1, we have to decide whether
one very improbable event occurred, or two. The same reasoning illu-
minates why similarities generated by drift provide more substantial
evidence for common ancestry than adaptive similarities do. Under the
drift hypothesis, the probability that an ancestor is in state 1 is only 1

2.
The fact that the ordering of the three ratios is FIS-DIS > D > FIS-ADV
is explained by the fact that Pr(Z ¼ 1 j FIS-DIS) < Pr(Z ¼ 1 jDrift) <
Pr(Z ¼ 1 j FIS-ADV). The fourth process also conforms to this pattern.
Even though frequency-dependent selection differs structurally from the
other three processes examined here,20 it remains true that the weight of
evidence provided by frequency-dependent selection goes up as p declines,
where p ¼ Pr(Z ¼ 1 j FDS). Here is the general pattern: The more
improbable it is that an ancestor has trait T, the stronger the evidence that X
and Y’s having T provides for their common ancestry.
The ratio FIS-DIS always exceeds the D and FIS-ADV ratios; dis-

advantageous similarities always provide stronger evidence for common
ancestry than do neutral or advantageous similarities (when all these
characters are dichotomous – see the next section). The gill slits that
human fetuses possess are useless, as is the lanugo, which is a covering of

100 FIS-DIS

Likelihood 
ratios

2 FDS

1.1 D

FIS-ADV  1

∞0 Time

Figure 4.10 Four likelihood ratios, two of which depend on the amount of time
between ancestor and descendants. For illustrative purpose, I assume that Pr(Z ¼

1 j FDS) ¼ 1
2.

20 Frequency-dependent selection for the majority trait violates a rule obeyed by frequency-
independent selection (whether the similarity of X and Y is advantageous or disadvantageous) and
drift, namely that Prt(0 ! 1) and Prt(1 ! 1) approach each other as t increases; for this reason,
the frequency-dependent selection process does not provide an equilibrium value for the
probability of the state of ancestors, as already noted.
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hair grown five months after conception that is usually shed right before
birth. The appendix is different; it is worse than useless. Gill slits and
the lanugo provide evidence for common ancestry, but the appendix pro-
vides better evidence still. The only other similarity in our menagerie that
can touch disadvantageous similarities is a similarity due to frequency-
dependent selection; whether it does so depends on p, the probability that
each ancestor in that frequency-dependent process had of being in state 1.21

The four processes described here have something else in common.
Increasing the duration of the lineages connecting ancestors to descend-
ants cannot increase the amount of information that descendant states
provide on the question of common versus separate ancestry. In the case
of drift and the evolution of advantageous traits under frequency inde-
pendent selection, the information declines with time; in the case of
frequency-dependent selection for the majority trait and the case of dis-
advantageous similarities, the information content stays about the same.
This nonincrease in information is just what one would expect in a
Markov process. A causal chain extending from E at t1 to F at t2 to G at t3
is Markovian precisely when the intermediate stage of the process screens
off earlier and later stages from each other: Pr(G at t3 j F at t2) ¼ Pr(G at
t3 j F at t2 & E at t1). The information processing inequality assures us that
the I(G at t3, F at t2) 	 I(G at t3, E at t1), where I(a, b) is the mutual
information between a and b; as a lineage’s duration is increased, the
mutual information between its end state and its beginning state cannot
increase (Sober and Steel 2002).

N-state characters

How would the likelihood ratio for the common-ancestry and separate-
ancestry hypotheses generated by the observation that species X and Y are
in the same character state be affected if the trait considered had more
than two states? As noted in §4.4, switching from a dichotomous to a
multistate character does not change the fact that X and Y ’s matching
counts as evidence favoring CA; the likelihood ratio of CA to SA is still
greater than unity. However, a change in the number of character states
affects the value of the likelihood ratio for one of the processes considered
but not for the others.

21 The approach taken here can be used to investigate the question of when a complex adaptive
similarity provides stronger evidence for CA than a simple adaptive similarity does. I leave this as
an exercise for the reader.
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Suppose that the trait in question has n states and that the transform-
ation series shown in Figure 4.4a is correct. This transformation series
represents a drift process in which all changes have the same probability.
If X ¼ 1 and Y ¼ 1 and the character in question has n states, the
likelihood ratio takes the form:

ðDnÞ
½ðn�1Þn �a2 þ ½1n�½1� ðn� 1Þa�2
f½ðn�1Þn �a þ ½1n�½1� ðn� 1Þa�g2

:

Here a ¼ Prt(i! j), for each i 6¼ j. Notice that Dn has a value of n at t ¼ 0
and a value of unity at t ¼ 1. For all finite times, Dn > D when n > 2.
When two descendants are in the same state of an n-state character, and the
character evolved by drift, their matching provides stronger evidence for
common ancestry the larger n is. Once again, the similarities that provide
the strongest evidence for common ancestry are the ones generated by
processes in which it is highly improbable that the ancestors in question
have the trait observed in their descendants.
The likelihood ratios for similarities generated by the other processes

I have discussed are not affected by shifting from dichotomous to multi-
state characters. Consider the ratio for the frequency-dependent process.
This has a value of 1

p, where, recall, p ¼ Pr (Z is in state 1). Subdividing
Z’s being in the alternative state 0 into several alternatives does not affect
the value one should assign to p, illicit invocations of the principle of
indifference notwithstanding. Similar remarks apply to the adaptive
similarities generated by frequency-independent selection (FIS-ADV). If
character state 1 is optimal, it does not matter whether there is one
alternative state or many; the equilibrium value for the probability an
ancestor has of being in state 1 will still be close to unity. Similar remarks
apply to disadvantageous similarities (FIS-DIS).

Correlation in a data set

Propositions 1–9 (§4.4) entail a qualitative result for each dichotomous
character – that a match favors CA over SA and a mismatch favors SA
over CA. Those propositions do not answer the quantitative question of
how much a match favors CA or a mismatch favors SA. Nor do they say
which hypothesis is more likely, relative to all the data, if the data set
includes both matches and mismatches. To answer these further ques-
tions, I ventured beyond propositions 1–9 and considered in more detail
the evolutionary processes that can generate different characters.
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Biologists may well wonder if there is a way to sidestep the requirement
that we have information about the evolutionary process beyond what
propositions 1–9 provide. Do we really need to know which characters
evolve by drift and which by selection? Do we really need to have a
ballpark estimate, for each character, of the probability that an ancestor
occupied this or that character state? The concept of correlation holds out
the promise that the comparison of CA and SA can get by with less
(Forster 1986).
To see why, let’s go back to Reichenbach’s example of the acting troupe

(§3.8). As before, we keep track of the sick days for two actors (X and Y)
over several years, but suppose now that each gets sick on half the days
and that the two get sick together one day in four. These observations
entail that there is no association in the data between X’s getting sick and
Y’s getting sick, in the sense that

f (X and Y get sick) ¼ f (X gets sick)f (Y gets sick).

Using propositions 1–9, we can construct a model that says that there is a
common cause of the two actor’s sick days and another model that says
that the two actors’ sick days are causally independent. The second of these
confers a higher probability on this fact about frequencies than the first. The
same sort of reasoning can be applied to the data shown in Figure 4.11a.
Species X and Y are each scored for their character states (0 or 1) on a set
of dichotomous characters with the result that each species has character
state 1 for half of the characters considered while the frequency of
characters on which they both occupy state 1 is 0.25. There is no asso-
ciation in the data between X ’s being in state 1 and Y ’s being in state 1:

f (X¼ 1 and Y ¼ 1)¼ f (X¼ 1)f (Y¼ 1).

We then can construct a common-ancestry model and an separate-
ancestry model with the result that this fact about frequencies is more
probable according to the second model than it is according to the first. I
will call this analysis of the data the correlational approach.
In the correlational analysis of the actors’ sick days, we don’t consider

sick days one by one, puzzling over the causes of sickness and wellness one
day at a time. Rather, we lump the sick days together for each actor and
compute the frequency with which each actor gets sick and the frequency
with which they get sick together. This suggests that in testing CA against
SA, we don’t need to consider traits one by one, puzzling over the
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evolutionary processes that give rise to each. Rather, we can lump traits
together and compute the frequencies with which each species has char-
acter state 1 and the frequency with which they match on this character
state. The trait-by-trait likelihood analysis requires assumptions add-
itional to propositions 1–9 if we wish to assess the evidential meaning of a
data set like that given in Figure 4.11a that includes both matches and
mismatches. But if all we need to explain is the fact that the traits of the
two species are not associated in the data, propositions 1–9 seem to
suffice.
Although propositions 1–9 do not settle whether CA or SA has the

higher likelihood for data sets that contain both matches and mismatches,
they do suffice when the characters all exhibit the same pattern. In such
cases, the trait-by-trait likelihood analysis can conflict with the correl-
ational approach. For example, suppose that species X is in state 1 for all
the characters scored and that the same is true of species Y. There is no
association in the data between the two species (since 100 percent ¼ 100
percent · 100 percent) and so the correlational approach concludes that
SA is better supported than CA. However, if propositions 1–9 are true,
each character favors CA over SA, and so the entire data set must do so as
well. The principle of total evidence (§1.3) cuts through this disagree-
ment. It says that we should use the logically stronger description of the
data rather than a description that is logically weaker. Describing the
characteristics of each species trait by trait is logically stronger than simply
saying how much association there is in the data. The situation here is
reminiscent of the example about toast and eggs discussed in connection
with Figures 1.6 and 1.7. 22

(a) X

Y

(b) X

Y
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Figure 4.11 Two character distribution for the two species X and Y. In (a), there is
zero association; in (b), there is a positive association. In both, the overall similarity

of X and Y is 50 percent.

22 The other way in which all the traits in a data set can exhibit the same pattern is for X and Y to
always be in the opposite character state. With 100 percent mismatches, propositions 1–9 entail
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In Reichenbach’s example, an actor’s being sick on one day is viewed as
the same type of event as his or her being sick on another. The similar
events that occur on different days are assembled to give rise to a quantity
we call ‘‘the actor’s frequency of sick days.’’ This seems entirely straight-
forward. However, the parallel conceptualization in the context of our
question about common ancestry reveals a nontrivial issue. Figure 4.11a
describes the frequencies with which a set of characters exhibits the four
possible character distributions. There is no association in this data set,
since 0.25 ¼ 0.5 · 0.5. But suppose we recode some of the characters that
are represented in Figure 4.11a as X ¼ 1 and Y ¼ 0 and describe them
instead as X ¼ 0 and Y ¼ 1, thus obtaining the distribution described in
4.11b. Now there is a positive association in the data, since 0.25> 0.375
· 0.625. We need to choose between these two ways of describing the
data if we wish to use the correlational approach. Is there an association in
the data, or not? To answer this question, we need to decide whether a 1
on character Ti is ‘‘the same type of event’’ as a 1 on character Tj, or if a 1
on Ti is the same type of event as a 0 on Tj.
This problem finds a solution in the fact that we want to use the

frequencies found in the data to estimate the values of probabilities, perhaps
by using the method of maximum likelihood estimation (§1.2, §1.5).
When we look at the frequencies of days on which the two actors are sick,
both singly and together, and infer from this whether the sick days are
correlated, we are using a probability model according to which each actor
has a constant but unknown probability of getting sick on each day. This is
why an actor’s being sick on one day counts as ‘‘the same type of event’’ as
his or her being sick on another: Both events provide evidence for esti-
mating the value of a single probabilistic parameter. Symmetrically, if we
are prepared to use a model in which each species has a constant but
unknown probability of evolving state 1 on each character, this settles
which of the two codings of the data shown in Figure 4.11 we should take
to be correct. It follows that implementing the correlational approach to
testing CA against SA requires assumptions beyond propositions 1–9, just
as is true of the trait-by-trait likelihood approach. The additional
assumptions describe how characters in the data are related to each other,

that separate ancestry is better supported than CA. In contrast, the correlational approach regards
both positive and negative associations as evidence for a common cause. Despite appearances, I do
not think this example illustrates a fundamental conflict between the two approaches, since a
natural reaction on the part of friends of trait-by-trait analysis is to consider a different model of
the CA hypothesis – one that rejects proposition 6, which says that descendants of a common
ancestor evolve independently.

Common ancestry 309



whereas propositions 1–9 describe what is true of each character taken on
its own.
This problem does not disappear, nor is its solution any different, if we

consider sequence data. It may seem arbitrary to say that a ‘‘1’’ on the wing/
no-wing morphological character is ‘‘the same’’ as a ‘‘1’’ on the carnivore/
herbivore character, but not at all arbitrary to say that a G at one site in a
sequence is ‘‘the same’’ as a G at another. However, the meaning of the two
judgments is the same: You are saying that the probability of wings is the
same as the probability of carnivory and you are saying that a G at the one
site has the same probability as a G at the other. Linking distinct token
events together as instances of the same type of event makes sense in the
interpretation of evidence only when they are evidence for the value of the
same probabilistic quantity.
Although I have taken pains to highlight an assumption made by the

correlational approach, this does not mean that the approach is always
wrong. The correlational approach and a trait-by-trait likelihood
analysis each have their place, depending on the biological information
we have available. If we know that the traits described in the data all
evolve by the same process but don’t know what that process is, we can
use the correlational approach. However, if we think that the traits
evolve by different rules and have views about which processes governed
the evolution of which traits, we should perform a trait-by-trait likeli-
hood analysis. Both approaches use the law of likelihood (§1.3); they
differ over which description of the data they use to evaluate competing
hypotheses. Lurking in the background is a third approach which is not
likelihoodist at all. This is to think about the common-ancestry and
the separate-ancestry hypotheses each in conjunction with different
possible process models (where each process model contains adjustable
parameters) and then to determine (perhaps using AIC) how varying the
process model affects model selection scores. We will consider this
strategy in §4.7.

4.6 CONCLUDING COMMENTS ON THE EVIDENTIAL

S IGNIF ICANCE OF SIMILARITY

Modus Darwin, the inference of common ancestry from observed simi-
larity, is instantly appealing. A moment’s reflection elicits the thought
that it has the structure of a likelihood inference. Our confidence that two
organisms or two species share parents has the same kind of justification
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as our confidence that two languages or two texts have a common ancestor.
The observed similarity would constitute a great coincidence if the two
objects arose independently whereas the similarity would be less surprising
if there were a common cause. The first part of this chapter spells out a
framework for justifying the likelihood inequality that is at the heart of this
argument. To understand why modus Darwin makes sense it is essential to
understand when it does not. Similarities sometimes fail to discriminate
between the common-ancestry and separate-ancestry hypotheses. There are
even cases in which similarities are evidence against CA, not for it.
If assumptions 1–9 are true of a trait’s evolution, then the resulting

similarity favors CA over SA even when the similarity is adaptive, the result
of frequency-independent selection. If drift or frequency-independent
selection are the processes at work, then assumptions 4 and 5, which say
that the traits of ancestors and descendants are positively correlated,
demand that the time between descendants and ancestors be finite;
however, if the process is one of frequency-dependent selection for the
majority trait, those assumptions can hold true even when time is infinite.
It may seem absurdly counterfactual to ask what is true when time is
infinite, but there is a point to this question. If information asymptotes to
zero, it will be extremely attenuated for finite lengths of time that are ‘‘big
enough,’’ and this suggests that questions about CA may be unanswerable
when they concern deep time. This fear – that some temps may be temps
perdu – is justified when evolution is governed by some processes but not
when it is governed by others. Notice that the likelihood ratios repre-
sented in Figure 4.11 approach unity as time increases for only two of the
four processes considered.
In §4.5, I turned to a second question that presupposes an answer to

the first. If two similarities both provide evidence in favor of CA, how are
we to determine which provides the stronger evidence? And if a similarity
provides evidence pro and a dissimilarity provides evidence con, when does
the pro outweigh the con? These questions led us to consider different
processes that can produce similarities. Besides similarities produced by
drift (D) and by frequency-dependent selection (FDS) for the majority
trait, I considered two kinds of similarity that can evolve in the process of
frequency-independent selection. In the first (FIS-ADV), the resulting
similarity is advantageous and it evolves because of selection; in the second
(FIS-DIS), the similarity is disadvantageous and it evolves in spite of the
fact that there is selection against it. With finite time between ancestors and
descendants, and when selection is understood as a frequency-independent
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process, the kinds of similarity that descendants might exhibit can be ordered
according to how strongly they favor CA over SA:

Deleterious similarties > neutral similarties > adaptive similarties.

The fourth type of process considered, frequency-dependent selection for
the majority trait, can be placed in this chain of inequalities once one says
how probable it is that an ancestor exhibit state 1 if the trait evolves by
this process. If this is sufficiently improbable, this type of similarity can
provide stronger evidence than all the rest.
This result concerning frequency-dependent selection may seem a mere

curiosity, but it is arguable that selection for the majority trait is a pervasive
phenomenon. Consider the example of chromosome number discussed in
§4.4. Even if changing chromosome number does not reduce the survival
probabilities of an organism, it may well reduce its reproductive prospects.
For example, a cross between a diploid and a tetraploid will yield a triploid
offspring, which is often sterile. When this is so, a mating individual gains
a reproductive advantage by having the same chromosome number that
the majority of the population exhibits. Another example is the visual cues
that flowers provide their pollinators. If bees specialize in flowers based on
visual cues, any trait that affects how a flower looks is likely to be subject
to frequency-dependent selection. It is better to look like your con-
specifics if you want bees to visit.
Although the frequency-dependent selection model was formulated to

describe frequency-dependent selection for the majority trait, its actual
content applies to any situation in which there are multiple stable con-
figurations each maintained by selection once it is achieved. This can be
true even when all trait combinations have frequency independent fitness
values. For example, consider two dichotomous traits, A and B, where the
four trait combinations have constant fitnesses that are related as follows:
wA&B ¼ w�A&�B > wA&�B ¼ w�A&B. This has the consequence that A is
fitter than �A when B is universal, whereas the reverse is true when �B is
universal. The fitness of A does not depend on its own frequency, but on
the frequency of B. The same is true of the fitness of B: It depends on the
frequency of A. The trait combination A&B will be maintained by sta-
bilizing selection, and the same is true of the combination �A&�B. This
further widens the scope of application for the frequency-dependent
selection model.
Consider a pair of organisms that use the same genetic code. As noted

earlier, what is now called the ‘‘standard’’ code is not universal. From the
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fact that several codes are in place, we can see that all of them are
functional, but this does not mean that codes evolved by drift. Rather,
once a code evolves, stabilizing selection tends to keep it in place. There is
first a frequency-dependent effect. An organism in a sexual species is apt
to be less reproductively successful if its code differs from that used by the
organisms with which it mates. And there is a powerful frequency-
independent effect as well. Consider an asexual organism that has a
functioning genetic code, but whose offspring has a code that differs in
even one detail from that of its parent; it is highly probable that the
offspring will be nonviable. This is because changing the meaning of a
codon entails that the codon produces the ‘‘wrong’’ amino acid every time
it is used. Changing the code has the same upshot as a massive number of
point mutations. Functioning codes, once in place, constitute adaptive
peaks. This point does not depend on all peaks having the same height;
the argument is consistent with the hypothesis that the current code is
optimal, as Freeland et al. (2000) have argued.
The fact that similarities that evolve by frequency-dependent selection can

provide strong evidence for common ancestry shows that an important
qualification is needed inDarwin’s claim that adaptive similarities are ‘‘nearly
valueless’’ in the evidence they provide about genealogy. He was right for
cases in which there is a single adaptive equilibrium but wrong when there is
more than one. When there are multiple peaks, traits that evolve by natural
selection can be more informative than traits that evolve by drift.
I have concentrated so far on comparing the common-ancestry and the

separate-ancestry hypotheses when each is formulated as a claim about
just two species. The arguments generalize when there are more than two.
If the fact that species X and Y use the same code favors CA over SA, then
the fact that X, Y, and Z share the same code favors CA over SA even
more. Matching favors CA over SA more strongly, the more matching
objects there are. If the two actors in Reichenbach’s theater company get
sick on a given day, this provides some evidence for a common cause, but
when the whole troupe falls ill, that is stronger evidence still. And if
n independent and reliable witnesses all report that proposition p is true,
their unanimity carries more weight the larger n is (§1.3).
The two questions explored here – why similarity rather than dis-

similarity favors CA over SA, and which kinds of similarity provide the
strongest evidence for CA – have different answers. Assumptions 1–9
suffice for an observed similarity to favor CA over SA; it does not matter
how probable or improbable it was that the ancestors postulated by the
two hypotheses came to occupy the character state we see in their
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descendants, so long as those probabilities are strictly between 0 and 1.
However, the key to answering the second question is that the observation
that X ¼ 1 and Y ¼ 1 produces stronger evidence favoring CA over SA
the lower the probability is that the ancestors postulated by the two
hypotheses were in state 1.
This last result provides a reminder of how important the contrastive

framework is for evaluating evidence. It seems to offend against common
sense to say that E is stronger evidence for the common-ancestry
hypothesis the lower the value is of Pr(E jCA). This seems tantamount to
saying that the evidence better supports a hypothesis the more miraculous
the evidence would be if the hypothesis were true. Have we entered a
Lewis Carroll world in which down is up? No, the point is that, in the
models we have examined, the ratio Pr(E jCA)/Pr(E j SA) goes up as
Pr (E jCA) goes down. An easy way to see this point is to imagine that
Pr (1! 1) ¼ 1, Pr(0! 1) ¼ 0, and let Pr(Z ¼ 1) ¼ p, where Z, recall, is
an ancestor of the observed species X and Y. Then the likelihood of CA is
p and the likelihood of SA is p2, so the likelihood ratio of CA to SA is 1

p.
Now it is obvious how the evidence for CA gets stronger as p gets smaller.
When the likelihoods of the two hypotheses are linked in this way, it is a
point in favor of the common-ancestry hypothesis that it says that the
evidence is very improbable.

4.7 EVIDENCE OTHER THAN SIMILARITY

What else, besides the similarities and differences of species X and Y,
could be evidence that bears on the question of whether they have a
common ancestor? In what follows, I examine three lines of argument.
The first holds that when different data sets agree on which phylogenetic
tree is best supported, that this consensus is evidence that the taxa share a
common ancestor. The second appeals to the existence of fossils that are
intermediate in character between X and Y. The third concerns how X and
Y figure in a larger biogeographical distribution.

Using a tree-construction method to test the common-ancestry hypothesis23

Penny et al. (1982) propose a method for testing the common ancestry
hypothesis that differs substantially from the approach described so far.
They look at different sets of data for the same taxa and then use

23 Here I draw material from Sober and Steel (2002).
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phylogenetic parsimony to determine which phylogenetic tree is best
supported by each data set. It turns out that the trees singled out as best
for the different data sets are very similar. Penny et al. take this to be
evidence in favor of the common-ancestry hypothesis. Although the
authors use phylogenetic parsimony as their method of tree construction,
the logic of their argument could be applied to other tree-construction
methods – for example, to a method based on maximum likelihood.
I pointed out at the start of the present chapter in discussing Figure 4.1

that methods of tree construction, parsimony included, assume that the
species under study all share a common ancestor. At the risk of intro-
ducing a bit of redundancy into our notation, we can think of parsimony
and these other methods as attempting to discriminate among the fol-
lowing alternatives: CA&T1, CA&T2, . . . , CA&Tn, where the Tis are
the different trees under consideration. This is equivalent to the more
familiar representation of the alternatives as T1, T2, . . . , Tn, since each
tree entails the CA hypothesis. We can begin considering the logic of
Penny et al.’s test by seeing how it applies to the special case in which the
different data sets are in complete agreement as to which tree is best: If
each of the m data sets favors CA&T1 over CA&T2, . . . , CA&Tn, does
this unanimity favor CA over SA?
Before addressing this question, I want to comment on one that is

slightly different. If each data set favors CA&T1 over CA&T2, . . . ,
CA&Tn, do the data also favor CA over SA? This is a slightly different
question, since now we’re asking whether the data favor CA over SA, not
whether the fact that different data sets agree as to which tree is best has that
evidential significance. In any event, there is a general feature of likelihood
comparisons that is relevant here: It is possible for data to discriminate
among a set of hypotheses without saying anything about a proposition that is
common to all the alternatives considered. A simple example from cards
illustrates this point. I am the (trustworthy) dealer in a card game and tell
you that the card I am about to turn up is red. This information favors
the hypothesis that the next card will be the Jack of Hearts over the
hypothesis that it will be the Jack of Spades, but it does not favor the
hypothesis that it will be a Jack rather than some other rank. The same
pattern occurs when the competing models all use the same idealization.
Suppose you are testing various evolutionary hypotheses against each
other that all assume random mating or infinite population size. A
number of data sets may all agree that one of those models is better than
the rest, but this says nothing as to whether the data sets favor random
mating over some alternative, or favor infinite population size over the
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hypothesis that the population is finite (Orzack and Sober 1993).24 These
examples suggest a general point about the method that Penny et al.
propose: The fact that different data sets agree as to which tree is best
supported leaves open whether the data provide evidence for a proposi-
tion on which all the trees agree – that the species considered have a
common ancestor. This point is a close cousin to an idea that will be
familiar to philosophers who have thought about confirmation theory;
Hempel’s (1965b) special consequence condition is wrong. If E confirms H
and H entails X, it does not follow that E confirms X.
Now let’s look at the specifics. Penny et al. find the best tree for each of

the m data sets and then compute how similar those m best trees are. They
also compute how similar m randomly constructed trees would be, on
average. Penny et al. reason that if the actual degree of similarity for the m
best trees constructed for the different data sets greatly exceeds the average
similarity of m randomly constructed trees, that this is evidence for CA.
How should this problem be organized within a likelihood framework?
The observation on which Penny et al. focus, I take it, is the degree of
similarity of the best trees constructed for the m data sets. The question is
whether this observation is rendered more probable by the CA hypothesis
or by the SA hypothesis:

Prðs is the degree of similarity of the best trees for the different

data sets jCAÞ> Prðs is the degree of similarity of the best trees

for the different data sets j SAÞ:
Penny et al. do not calculate either of the quantities mentioned in this
inequality. The probabilistic quantity that they do calculate has nothing
to do with the data; it just describes the expected degree of similarity for
several trees drawn at random from the set of possible trees.
It may seem that the first likelihood in the above inequality must have a

high value, but, in fact, whether this is so depends on what rules of
evolution are followed by the traits in the different data sets. For example,
if the different data sets evolve on the same tree but follow different rules,
those rules can make it highly probable that the data sets will disagree as to
which tree is best. On the other hand, if all traits evolve by the same
process, then one expects them to agree as to which tree is best.

24 Yet another example is provided by the discussion of the McDonald–Kreitman (1991) test in
§3.9; the fact that their observations favor selection over drift does not entail that they also favor
the Drosophila phylogeny they assumed over some alternative.
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Penny et al. offer no reason to think that the different data sets all follow
the same rules of evolution. Another possibility is that different traits evolve
on the same tree by different processes and the characters grouped in a data
set are obtained by random sampling from the total set of characters. Here,
again, one expects the different data sets to agree as to which tree is best.
However, Penny et al. did not construct their data sets by randomly sampling
from the set of characters.
Does the second likelihood in the above inequality have a low value? To

answer, we first need to distinguish two ways in which the separate-ancestry
hypothesis could be true. These are shown in Figure 4.12. The separate-
ancestry hypothesis might say that different data sets have different trees,25

or it might say that all data sets evolved on the same nontreelike genealogy.
The former seems to be what Penny et al. have in mind, given that they
construct m trees at random. However, the question is then what the
different data sets produced by the different trees in Figure 4.12a will look
like and how similar the trees constructed from those data sets will be.
It doesn’t matter how similar trees will be if one ignores the data and
constructs them by sampling from the space of all possible trees. With
respect to the second interpretation of what the separate-ancestry
hypothesis might say – namely, the one depicted in Figure 4.12b – the
point is that it is not inevitable that different data generated by this non-
treelike genealogy will lead parsimony to construct trees that are very
different from each other. Again, that depends on the processes at work in
branches. For example, suppose that all dichotomous characters evolve on
the branches in Figure 4.12b according to the same rules, which make it
highly probable, for each character, thatW¼ 1, X¼ 1, Y¼ 0, and Z¼ 0. If

(a) (b)

W WX XY YZ Z

Figure 4.12 Two alternatives to the hypotheses that all the traits of the taxa W, X, Y, and
Z stem from a single common ancestor. In (a) different traits have different trees. In (b),

all traits have the same non-tree.

25 The discussion in §4.2 of gene genealogies is relevant here.
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you draw several data sets, it is very probable that they will agree that (XX)
(YZ) is the best unrooted tree. For a second example, suppose that a trait
evolves by the same process on each branch but that different traits evolve
by different processes; in this case, different data sets will tend to agree on
which tree is best as long as the data sets are assembled at random.
Penny et al. take agreement among data sets as to which tree is best to

be evidence favoring CA over SA. This is very different from claiming that
the data taken as a whole favor CA over SA. It may well be true that

Prðall n data sets jCAÞ> Prðall n data sets j SAÞ:
If each data set favors CA over SA, and the data sets are independent of each
other, conditional on CA and conditional on SA, then the total evidence
provides stronger evidence than any one data set does on its own (§1.3). It
is agreement among data sets on the fact that CA is more likely than SA
that would be significant, not agreement as to which tree is most likely.
This is a conclusion sanctioned by the principle of total evidence, which
instructs us to use a logically stronger, rather than a logically weaker,
description of the data if the hypotheses considered make predictions about
both (§1.3).

Intermediate fossils

The sufficient condition identified in §4.4 for sameness of character state
to be evidence for common ancestry does not depend on whether X and
Y are both extant organisms, or both are fossils, or they are one of each.
In this sense, fossils introduce no novelty into the problem of inferring
common ancestry. However, there is another way in which fossils do
introduce a new dimension. Suppose we observe that there is a fossil
whose trait value is intermediate between those of X and Y. How does the
discovery of a fossil intermediate affect the question of whether X and Y
have a common ancestor?
Creationists frequently claim that the absence of intermediate fossil

forms is evidence against evolutionary theory. Evolutionists reply by
pointing to the numerous intermediate fossils that have been discovered;
these link dinosaurs with birds, land tetrapods with fish, reptiles with
mammals, and land mammals with whales. Of course, if you discover an I
that is intermediate between species X and Y, the question can still be
raised as to where the forms are that fall between X and I and between I
and Y. There always will be ‘‘gaps’’; they just get narrower. Biologists do
not interpret these gaps, whether they are narrow or wide, as evidence
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against CA. Gaps are simply chalked up to ‘‘the imperfection of the fossil
record’’ – fossils often don’t get formed, and even when they do, it is easy
enough for them to be destroyed or for biologists to fail to find them. Is
this reaction on the part of evolutionists an instance of their wanting to
have their cake and eat it too? If finding intermediate forms is evidence for
CA, isn’t failing to find them evidence against?
Figure 4.13 depicts what the common-ancestry and the separate-

ancestry hypotheses say about the existence of intermediate forms. We
observe the character states of the extant species X and Y. If evolutionary
change proceeds gradually, there must be intermediate forms if X and Y
have a common ancestor (Z). Slide Z along the scale that represents its
possible trait values; no matter what character state Z occupies, the lineage
leading from Z to X or the lineage leading from Z to Y must contain
organisms whose trait values fall between the values a and b that attach to
X and Y, respectively. This is not true for the separate-ancestry hypothesis.
If the lineage passing through Z1 on its way to X never has a trait value
that is greater than a and the lineage passing through Z2 on its way to Y
never has a trait value that is less than b, then there will be no ancestors in
the lineages leading to X and Y that have trait values that fall between a
and b. Historically, the SA hypothesis has been associated with the claim
of evolutionary stasis – the thesis that ancestors were, in the main, just like
their descendants. However, the separate-ancestry hypothesis is not logically
committed to stasis. We can and should separate the separate-ancestry
hypothesis from the assumption that lineages do not change trait values.

(CA)

Zα β

X                Y

(SA)

Z1 Z2

X Y

Figure 4.13 If the evolutionary process is gradual, the CA hypothesis predicts
the existence of ancestors that had intermediate forms, regardless of the character state
of the common ancestor Z. What the SA hypothesis predicts depends on the states of the

postulated ancestors Z1 and Z2.
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The upshot is that CA and SA provide different answers to the question of
whether intermediate forms once existed; given the assumption of grad-
ualism, CA answers that they must have existed, while SA’s reply is that they
may have. It is only a short step to the following likelihood inequality:

Prðan organism intermediate between X and Y existed jCAÞ
> Prðan organism intermediate between X and Y existed j SAÞ:

Given gradualism, the first of these likelihoods has a value of unity. If the
separate-ancestry hypothesis allows that there is some chance that the
lineages leading to X and Y never strayed into the ‘‘intermediate zone’’
between a and b, then the second likelihood has a value less than unity. If
we add to the SA hypothesis the stronger assumption of evolutionary
stasis, the second likelihood has a value of zero. These points are sum-
marized in Figure 4.14. Notice that entries in each column must sum to
unity. If we use the likelihood ratio to represent how strong the evidence
is that favors one hypothesis over the other, we obtain an asymmetry. If
there is an intermediate form, this favors CA over SA, and the strength of
the favoring is represented by the ratio 1

q. This is greater than unity if q< 1.
On the other hand, if there is no intermediate, this infinitely favors SA
over CA, since (1 � q)/0 ¼ 1 (assuming that q < 1). The nonexistence
of an intermediate form would have a more profound evidential impact
than the existence of an intermediate.
Although the assumption of gradualism plays a role in these likelihood

comparisons, it is important to remember that gradualism is not plausible
for some traits. Consider the example discussed in §4.4 of chromosome
number. There is no iron law of evolution that says that a lineage that
evolves from twenty-four pairs of chromosomes to forty-eight must evolve
from twenty-four to twenty-five to twenty-six to . . . forty-seven to forty-
eight. Polyploidy (the doubling or tripling of chromosome number) is a
known process.26 Still, gradualism is usually assumed when the evolution

CA  SA 
There existed an intermediate.   1    q   
There did not.   0 (1–q) 

Figure 4.14 Either X and Y have a common ancestor (CA) or they do not (SA). Cells
represent probabilities of the form Pr(�intermediate j �CA). Gradualism is assumed.

26 Developmental genetics provides numerous examples (e.g. hox genes) in which small genetic
changes induce discontinuous phenotypic changes; see Carroll (2005) for an introduction.
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of a continuous character is under discussion. And discussion of ‘‘inter-
mediate’’ forms usually involves continuous characters.
We now can turn to the accusation that evolutionists play a game of

‘‘heads I win, tails you lose’’ when they appeal to the imperfection of the
fossil record to excuse the fact that no fossil that is intermediate between X
and Y has yet been observed. The key is to not confuse the existence of
intermediates with our observing such intermediates. As we have seen, the
CA hypothesis is committed to the first of these so long as gradualism is
correct. But the CA hypothesis does not guarantee that we will have
observed those intermediate forms. That depends on how often they fos-
silize, on how long those fossils last, and on how much fossil hunting there
has been. The probability of our having observed an intermediate form, and
of our having failed to do so, conditional on each of the two hypotheses, is
represented in Figure 4.15. As before, q ¼ Pr(there exists a fossil inter-
mediate j SA). But now let us introduce a new quantity:

a ¼ Prðwe observe a fossil intermediate j CA & there exists a fossil

intermediateÞ
¼ Prðwe observe a fossil intermediate j SA & there exists a fossil

intermediateÞ:
I’m assuming here that the probability of observing an intermediate, if
one exists, is the same, regardless of whether CA or SA is true. Notice that
the likelihood ratio of CA to SA, given that we have observed an inter-
mediate fossil, is 1

q; in this respect Figures 4.14 and 4.15 agree. However,
when we have not observed a fossil intermediate, the likelihood ratio of
SA to CA takes on the value

Prðwe have not observed a fossil intermediate j SAÞ
Prðwe have not observed a fossil intermediate j CAÞ ¼

1� qa

1� a
:

This ratio is greater than unity if a > 0 and q < 1. As long as there is some
chance that we’ll observe a fossil intermediate if one exists, and there is

 CA SA 
We have observed an intermediate.      a      qa 
We have not.    1–a    1–qa 

Figure 4.15 Either X and Y have a common ancestor (CA) or they do not (SA). Cells
represent the probability that we have observed an intermediate, or that we have not,

conditional on CA and conditional on SA.
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some chance that intermediate fossils will not exist if the separate-ancestry
hypothesis is true, the failure to observe an intermediate favors SA over CA.
So far we have a symmetry: Observing an intermediate fossil favors CA

over SA, and failing to observe one has the opposite significance (provided
that a and q are constrained as just described). However, there may yet be
an asymmetry – the fact that each of the two likelihood ratios is greater than
unity does not settle which of them is bigger, or by how much. We can
address this additional question by noting that observing an intermediate
fossil favors CA over SA more strongly than failing to do so favors SA over
CA precisely when the two likelihood ratios are related as follows:

1

q
>

1� qa

1� a

Rearranging a little yields

1

1þ q
> a

This criterion says that each possible value of q puts a constraint on how
large a is allowed to be, as shown in Figure 4.16. If q is fairly small,
practically any value for a will satisfy this inequality; if a < 1

2, the
inequality is true no matter what value q has. And if q and a are both
small, the first likelihood ratio will greatly exceed the second. If there is a
small probability of our having observed a fossil intermediate when it
exists, and if fossil intermediates have a small probability of existing when

1

Obs < –Obs

a 0.5

Obs > –Obs

0
0 1

q
0.5

Figure 4.16 Observing an intermediate fossil favors CA over SA, and failing to so observe
favors SA over CA, if a > 0 and q < 1. Here a ¼ Pr(we have observed an intermediate
fossiljan intermediate fossil exists) and q ¼ Pr(an intermediate fossil exists j SA). Observing
an intermediate favors CA more strongly than failing to so observe favors SA precisely

when 1=ð1þ qÞ > a. This condition divides parameter space into two regions.
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the separate-ancestry hypothesis is true, then observing an intermediate
favors CA over SA far more profoundly than failing to so observe favors
SA over CA.
There is an old motto that scientists often repeat: Absence of evidence is

not evidence of absence. What is true in the present context is that if you
don’t even look for fossil intermediates, you will certainly fail to find
them, and this will be true whether the common-ancestry or the separate-
ancestry hypothesis is correct. Failing to find an intermediate in this
circumstance provides zero evidence concerning the competition between
the common-ancestry and separate-ancestry hypotheses. But this special
case aside, the motto embodies an exaggeration. Suppose you look for
intermediate fossils and fail to find them. This outcome isn’t equally
probable under the two hypotheses if 0 < q, a < 1. Entries in each
column must sum to unity in Figure 4.15 just as they must in Figure
4.14. What is true, without exaggeration, is that for many values of the
relevant parameters, not observing a fossil intermediate provides negligible
evidence favoring SA over CA – absence of evidence is almost valueless.27

If discovering a fossil intermediate provides evidence that favors the
hypothesis that X and Y have a common ancestor, then discovering an
intermediate fossil series provides even stronger evidence for the same
conclusion. Figure 4.17 depicts an example; not only are there a number
of intermediates, but the dating of these fossils has the consequence that as
one moves back in time, the fossils get closer together in terms of their
score on the quantitative character T. What more stunning evidence could
there be that the extant species X and Y stem from a common ancestor?

now Y

Time

T

X

Figure 4.17 These dated fossils form an intermediate series between the extant species X
and Y. Horizontal location indicates a taxon’s score on the quantitative character T.

27 Notice the echo of Darwin’s carefully qualified comment that adaptive similarities are almost
valueless as evidence of CA (§4.5).
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The human eye finds it irresistible to connect the dots. Suppose you visit
a beach and see two people standing at the water’s edge; you also see
footprints that lead back from each of them and converge at the parking lot.
The thought comes to mind that the people and the footprints are con-
nected. Perhaps the people got where they are by walking from the parking
lot; they now stand at different places on the beach, but they trace back to
the same location. Similar reasoning is at work in the inference of common
ancestry from an intermediate fossil series. I noted in §3.3 that we can’t
assume that the fossils we observe are ancestors of present-day organisms;
they might just be relatives. This point also applies to Figure 4.17; when we
observe an intermediate fossil series, we should not assume that earlier
fossils are the ancestors of later ones. The same is true of the footprints on
the beach. In a line of footprints that lead from the parking lot to the
water’s edge, it is false that earlier footprints cause later ones; rather, they
are effects of a common cause, a person walking. A path of footprints leads
us to infer that there was a person moving through space who left traces;
an intermediate fossil series leads us to infer that there was a lineage moving
through time that also left traces. In neither case is it necessary or par-
ticularly plausible to conclude that earlier traces caused later ones.28

Biogeography

Darwin cites three types of evidence in The Origin of Species to support
the hypothesis that species alive today share common ancestors. The first
is that they possess telling similarities; for example, they share vestigial
organs that are useless or worse than useless. The second is the existence
of intermediate fossils. The third involves facts about biogeographical
distribution.
On the face of it, the spatial proximity of two species and their

phenotypic similarity seem to be facts of different type. When biologists
think that a phenotypic similarity is evidence for CA, they usually assume
that the trait is influenced by genes; this assumption seems to be

28 Reichenbach (1956) introduced the term ‘‘pseudo-process’’ to describe situations of this sort.
Salmon (1984) gives the example of a circle of light that moves across the ceiling of the
Astrodome. Earlier circles do not cause later ones; rather, they are effects of a common cause, the
rotating searchlight that sits on the floor of the Astrodome. The Weismannian conception of
heredity provides another example; it says that the phenotypic resemblance of parents and
offspring is the result of a common cause. Parental genes cause the parents’ phenotype as well as
the offspring’s genotype; the cause of an offspring’s having blue eyes is not that its parents had blue
eyes. For other examples and for discussion of the epistemology of pseudo-processes, see Shapiro
and Sober (2007).
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important because genes are passed from ancestors to descendants.
However, there apparently are no genes for geographical location;
organisms change location by moving, not by mutating. This thought
makes it puzzling why geographical proximity should provide evidence
for CA. The puzzle can be solved by considering the discussion in §4.4 of
why phenotypic similarity is evidence for CA. Any trait T that satisfies
conditions 1–9 will have the following property: if species X and Y both
have T (or if both lack T), this observation favors CA over SA, in the sense
that the first hypothesis will have the higher likelihood. Conditions 1–9
do not mention genes. All that is required with respect to the issue of
‘‘heritability’’ is that ancestor and descendant be positively correlated:

PrðDescendant has T jAncestor has T Þ
> PrðDescendant has T jAncestor lacks T Þ:

This inequality may be true because of genetic transmission, but that is
just one mechanism for securing the correlation. Geographical locale in
many cases satisfies this inequality. If a descendant is in the geographical
region R, which hypothesis makes that outcome more probable – that its
ancestor was there already, or that its ancestor was somewhere else? If the
former (and if the other eight conditions listed are satisfied), then the fact
that species X and Y both live in region R provides evidence favoring CA
over SA by the same logic that allows a phenotypic similarity to do so.
Once we assimilate spatial proximity to phenotypic similarity, it is no

surprise that a problem that surfaced in our discussion of the latter also
pops up in connection with the former. Are a bird species in the
Galapagos Islands and a bird species on the west coast of South America
in ‘‘the same’’ geographical region? Well, if we draw a circle that
encompasses them both, the answer is yes, and we then can conclude that
their occupying the same locale is evidence in favor of CA. But we could
draw a smaller circle instead, one that circumscribes the Galapagos and
leaves South America outside, and now the verdict is that the two species
do not inhabit ‘‘the same’’ region. Since they fail to occupy the same
locale, we conclude that this difference favors SA over CA. As before, it is
arbitrary to impose a dichotomous character on an underlying quantitative
reality. The solution is to leave dichotomous characters behind and deal
explicitly with the fact that spatial proximity is a matter of degree. But now
we face a new question: Are the two species close enough spatially for this
fact to favor CA over SA, or are they sufficiently separated that the opposite
is true? How close is close enough?
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Let’s explore this question by using a random walk model of dispersal
in the context of the representation in Figure 4.6 of the common-ancestry
and the separate-ancestry hypotheses. For a simple example, consider a
line on which there are ten equally spaced points, numbered 1 through
10. These points might be thought of as islands in an archipelago. The
organisms in question disperse from one island to an adjacent island with
a fixed probability l per unit time; for them to go to an island that is not
adjacent, they must pass through the islands in between. Organisms have
no chance of going beyond either of the two endpoints. This is the spatial
analog of the transformation series depicted in Figure 4.7b. The equi-
librium values for this process of random dispersal provide priors for
the states of the ancestors postulated by the common-ancestry and the
separate-ancestry hypotheses; each ancestor has a 1 in 10 chance of being
at any given spatial location. We can calculate the expected spatial
separation between the separate ancestors Z1 and Z2 postulated by the
separate-ancestry hypothesis. With ten locations, the expectation under
the separate-ancestry hypothesis is that X and Y will be a bit more than
three islands away from each other. If X and Y are more spatially
proximate than this, then CA has the higher likelihood; if not, not.
Neutral evolution within an ordered n-state character is formally just like
random dispersal across an n-island archipelago.
In the previous section on fossils, I pointed out that fossils introduce a

new kind of evidence when they constitute third terms. When a phenotypic
similarity that unites X and Y favors CA over SA, it doesn’t matter whether
the two species are extant or fossilized. However, the discovery of a fossil
intermediate between X and Y provides a new kind of information about X
and Y. The same is true for spatial proximity. That X and Y are spatially
proximate is just a kind of similarity that they share. But suppose there
exists a third species that is spatially intermediate between X and Y and that
it has an intermediate phenotype. This is a new kind of datum. Spatial
proximity and phenotypic similarity are now correlated. Biogeography
describes the spatial distributions of species that exist at the same time
(now); paleobiology describes the temporal distribution of extant and
fossilized species that exist in the same broad geographical locale. An
intermediate fossil series is evidence that X and Y have a common ancestor,
and if X and Y are on islands in an archipelago, with intermediate forms
occupying the intervening islands, this too is evidence that X and Y have a
common ancestor. Fossils are to time what biogeography is to space.
This connection between biogeographical data and fossils is something

that Darwin contemplated. In The Origin of Species ([1859]1964: 409),
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he says that ‘‘there is a striking parallelism in the laws of life throughout
time and space: the laws governing the succession of forms in past times
being nearly the same with those governing at the present time the dif-
ferences in different areas.’’ Darwin then enumerates several similarities
that unite the way a lineage will change through time if it stays in the
same place and the way a group of related species at the same time will
vary spatially. He ends with a thesis about the spatial and temporal
consequences of propinquity of descent: ‘‘the more nearly any two forms
are related in blood, the nearer they will generally stand to each other in
time and space’’ ([1859]1964: 410). Darwin’s idea might be put like this:

(ST) If X, Y, and Z, are extant organisms or fossils and the true
genealogical grouping is (XY)Z, then it is probable that X and Y
will be geographically more proximate to each other, and tem-
porally closer to each other as well, than either is to Z.

I’ll call this Darwin’s space–time principle. I use the term ‘‘probable’’ to
make precise what I think Darwin intended by the qualifier ‘‘generally.’’
And although Darwin talks about ‘‘two forms,’’ I have put his point in
terms of three.
The temporal part of the ST principle is on firm ground. Consider the

branching diagram of humans, chimps, and gorillas in Figure 4.18. The
three groups depicted are not just present-day populations; they are lin-
eages that persist through time. Since the human and chimp lineages split
off from each other more recently than the human–chimp clade split from
the gorilla line, a human and a chimp fossil can be expected to have dates
that are closer together than the dates of a human and a gorilla fossil.
Notice that there is a part of the tree in Figure 4.18 that is a broken line;

Now

H C 

G

Time

Figure 4.18 H, C and G are each temporally extended lineages; time slices drawn at
random from H and from C can be expected to be temporally more proximate to each
other that time slices drawn at random from H and from G (or from C and from G).
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this does not indicate any doubts about the existence of this lineage but
just that it calls for special comment. How should the organisms in this
line be described? Were they gorillas? If not, what should we call them?
I won’t address this question; let’s just call them ‘‘X.’’ Darwin’s (ST)
principle says that two fossils drawn at random from H and C will
probably have dates that are closer together than two that are drawn at
random from H þ C þ X on the one hand and G on the other. The
temporal part of the ST principle is correct.
The spatial part of the ST principle is less secure; it is true in some

circumstances, but not in others. Consider Figure 4.19, which depicts
three species (X, Y, and Z) that exist now. Their true genealogical
grouping is (XY)Z. What does this genealogy predict about which of them
will be spatially closer together and which more distant? In scenario (a),
geographical location mirrors propinquity of descent, but in (b) it does
not. When Darwin says that closeness of blood relationship is ‘‘generally’’
associated with spatial proximity, he is saying that (a) is the common
pattern and (b) the rare one. This would be correct if the dispersal of
organisms were usually an unbiased process, like random drift. Under this
process, the expected spatial separation between two species is greater the
more time there has been since their most recent common ancestor. X and
Y in Figure 4.19a are spatially more proximate than either is to Z because
the lines leading to X and to Y split relatively recently, whereas the
lineages leading to X and Y on the one hand and to Z on the other split
longer ago. The aberrant pattern in Figure 4.19b arises when dispersal is
nonrandom, causing the lineages leading to Y and Z to remain spatially
proximate, with the lineage leading to X moving away from both. Thus,
the isomorphism between space and time is not perfect. The spatial part

Spatial location

(a) (b)

X XY YZ Z

Figure 4.19 The genealogy of X, Y, and Z is (XY)Z. In (a), spatially more proximate
species are more closely related; in (b), this is not true.
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of the ST principle is true under a model of random dispersal but can fail to
be true when dispersal is nonrandom. The temporal part of the principle
requires no such qualification. The concept of propinquity of descent has
a closer conceptual connection with time than it has with space.
The ST principle stated above describes what is probable – meaning, I

take it, what is more probable than not. It would be better to formulate
the idea in terms of a likelihood inequality. The claim would then be that

Pr½X and Y are closer together spatially ðtemporallyÞ
than either is to Z j ðXY ÞZ �
> Pr½X and Y are closer together spatially ðtemporallyÞ

than either is to Z jX ðYZÞ�:
There is no requirement that the first probability in this inequality has a
value greater than 0.5. The spatial inequality is true if dispersal is random;
the temporal inequality is true without this qualification.
Darwin’s biogeographical inferences sometimes go beyond the con-

clusion that spatial proximity is an indicator of propinquity of descent.
Consider the following argument:

[W]hy should the species which are supposed to have been created in the
Galapagos Archipelago, and nowhere else, bear so plainly the stamp of affinity to
those created in America? There is nothing in the conditions of life, in the
geological nature of the islands, in their heights or climate, or in the proportions
in which the several classes are associated together, which resembles closely the
conditions of the South American coast: in fact there is considerable dissimilarity
in all these respects. On the other hand, there is a considerable degree of
resemblance in the volcanic nature of the soil, in climate, height, and size of the
islands between the Galapagos and Cape de Verde Archipelagos: but what an
entire and absolute difference in their inhabitants! The inhabitants of the Cape de
Verde Islands are related to those of Africa, like those of the Galapagos to
America. I believe this grand fact can receive no sort of explanation on the
ordinary view of independent creation; whereas on the view here maintained, it is
obvious that the Galapagos Islands would be likely to receive colonists, whether
by occasional means of transport or by formerly continuous land, from America;
and the Cape de Verde Islands from Africa; – the principle of inheritance still
betraying their original birthplace. (Darwin [1859]1964: 398–9)

To analyze this line of reasoning, we need to sort out the hypotheses
that are in contention. Darwin contrasts CA with independent ‘‘cre-
ation,’’ but as noted earlier in this chapter, the hypothesis of separate
origination has nothing logically to do with the idea of intelligent design.
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In addition, Darwin in this passage associates the hypothesis of separate
origination with the conjecture that the organisms in a locale have the
features they do because these features ‘‘fit’’ them to their environment.29

This hypothesis (which is consistent both with intelligent design and with
natural selection) leads to the erroneous prediction that the organisms on
the Galapagos should resemble those on Cape Verde more than the
Galapagos organisms resemble those on the west coast of South America.
Since the hypothesis of organism–environment fit is at variance with the
observations, Darwin concludes that this counts against the hypothesis of
independent origination. But just as the separate-ancestry hypothesis is
distinct from the idea of intelligent design, so too does it differ from the
hypothesis of organism–environment fit.
In the passage quoted, Darwin is not arguing that Galapagos tortoises

and iguanas have a common ancestor based on the fact that they happen
to live side by side. Not that he denied that they share a common
ancestor, but this is not what he is here concluding. Still less is Darwin
arguing for the false proposition that the organisms on the Galapagos are
more closely related to each other than any of them is to an organism that
lives on the west coast of South America. Rather, Darwin is considering
the two biotas; the fact that there are similarities binding members of the
first to members of the second and the fact that the two geographical areas
are spatially proximate together provide strong evidence in favor of CA.
The first step in Darwin’s argument is this:

There are n pairs of species – X1 and Y1, X2 and Y2, . . . , and Xn and Yn. The
species in each X–Y pair are similar; in addition, the Xs live in one locale, the Ys
live in another, and the first locale is geographically close to the second. This
complex of facts provides evidence that each of the X–Y pairs traces back to a
common ancestor.

We have already examined how spatial proximity and phenotypic similarity
can both be evidence for common ancestry. These two types of similarity
support the claim that for each Xi – Yi pair, there is a common ancestor Zi.
But there is more to Darwin’s argument than the conclusion that there are

29 Darwin is here reacting against the biogeographical theory of Buffon – that ‘‘the earth [the
conditions that exist in a locale] makes the plants [there], and the earth and the plants make
the animals’’ and also against the theory of his teacher Lyell, who denied common ancestry and
held that the characteristics that species in the same genus or family share with each other are
determined providentially so that species fit the ecological conditions that obtained at their place
of origin (Hodge 1987: 240).
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n such common ancestors. There is a stronger conclusion: that there was a
single geographical locale (an ‘‘original birthplace’’) from which the two
present-day biotas arose.30 Here is an analogy: Consider two villages – one
in Argentina, the other in Italy. We find that individuals now in the first
village have different names, many of them rare; and individuals now in the
second village have a very similar array of last names. Sharing a rare last
name is evidence of CA,31 but there is something more that can be said
here. The pair-wise matching is evidence that the n common ancestors lived
in the same place. Why?
The relevant point concerns the nonindependence of dispersal events.

If one bird is blown from South America to the Galapagos by a storm,
this raises the probability that another bird on the continent ends up on
the islands as well. And if a log floating from the west coast of South
America carries one insect, this raises the probability that other insects
come along for the ride. The ‘‘agents’’ (or ‘‘vectors’’) of dispersal – the
physical processes that transport organisms – are common causes, often
impinging on multiple organisms in the same locale and taking them to
the same destination. Dispersal can be random, and still this failure of
independence obtains. In terms of our model of the ten points on a line,
the randomness of dispersal means that

PrðZi ends at location 4 j Zi start at location 5Þ
¼ PrðZi ends at location 6 j Zi start at location 5Þ:

Nonindependence means that

PrðZ1 and Z2 end at 4 j Z1 and Z2 start at 5Þ
> PrðZ1 ends at 4 j Z1 starts at 5ÞPrðZ2 ends at 4 j Z2 starts at 5Þ:

Let us add to this the assumption of independence when organisms start
in different places:

PrðZ1 and Z2 end at 4 j Z1 starts at 3 and Z2 start at 5Þ
¼ PrðZ1 ends at 4 j Z1 starts at 3ÞPrðZ2 ends at 4 j Z2 starts at 5Þ:

30 If each XiYi pair has a most recent common ancestor Zi , that ancestor must have had some spatial
location or other; this does not deductively entail that there was a single place where all these Zi

ancestors resided. To think otherwise is to commit the birthday fallacy (§2.2). The inference of a
center of origin is a further, nondeductive, step.

31 That sharing a rare name is stronger evidence for CA than sharing a common one is obvious;
Sober (1988) proves the point about strength of evidence within the context of a simple
mathematical model; it is the Smith–Quackdoodle theorem.
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And we have already touched on the analog of ‘‘heritability’’ with respect
to spatial location:

PrðZ1 and Z2 end in the same place j Z1 and Z2 start in the same placeÞ
>PrðZ1 and Z2 end in the same place j Z1 and Z2 start in different placesÞ:

Given such assumptions about dispersal, there is a likelihood argument
concerning centers of origin that builds on the inference about CA. If
each Xi – Yi pair exhibits phenotypic similarity and geographical proxi-
mity, this is evidence for the existence of a common ancestor Zi, one for
each pair. If the different Xis live in one place and the Yis in another, this
biogeographical distribution is more probable if the n common ancestors
all lived in the same place than it would be if they had distinct locations.
Biogeographical data describe spatial variation; fossil data provide a

temporal dimension. Some data sets provide both. The acheulean stone
tools used by premodern humans are found in Africa, Asia, and Europe.
The oldest such tools are found in Africa, and areas that are spatially
closer to Africa tend to have older tools than sites that are farther away. It
is possible that acheulean tools arose independently in different locations,
but the spatiotemporal correlation just described throws doubt on this
hypothesis. Far more likely is the hypothesis that tool users spread from
Africa, bringing their innovations with them. Or perhaps the ideas were
transmitted from one more-or-less sedentary group to another. The CA
hypothesis makes it unsurprising that distance from Africa and recency of
finds are associated. As this example shows, inferring common ancestry
makes sense in the context of cultural evolution mediated by teaching and
learning just as it does in the arena of evolution mediated by genetic
transmission.

4.8 PHYLOGENETIC INFERENCE: THE CONTEST BETWEEN

LIKELIHOOD AND CLADISTIC PARSIMONY
32

This chapter has focused, so far, on the question of how observations can
provide evidence for (or against) the hypothesis that two or more species
have a common ancestor, not on the question of how evidence can be
used to discriminate between more fine-grained hypotheses about
propinquity of descent. In terms of Figure 4.1, the question of interest has
been how evidence bears on whether humans, chimps, and gorillas all

32 This section draws on material from Sober (2004a).
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trace back to a common ancestor, not whether the data favor (HC)G over
H(CG). It now is time to take up this second type of question.
In the kind of ‘‘classic’’ phylogenetic inference problem I want to

discuss, the observed taxa are assumed to be the tips of a bifurcating tree,
and the goal is to infer just the ‘‘topology’’ of the tree, not the amount of
time between branching events or the amount of evolution that has taken
place on branches, or the character states of interior vertices.33 Two of the
main methods that biologists now use to solve such problems are maxi-
mum likelihood (ML) and maximum parsimony (MP); distance methods
constitute a third approach, which I won’t examine (not that they aren’t
interesting). ML seeks to find the tree topology that confers the highest
probability on the observed characteristics of tip species. MP seeks to find
the tree topology that requires the fewest changes in character state to
produce the characteristics of those tip species. Besides saying what the
‘‘best’’ tree is for a given data set, both methods also provide an ordering
of trees, from best to worst. The two methods sometimes disagree about
this ordering – most vividly, when they disagree about which tree is best
supported by the evidence. For this reason, biologists have had to think
about the methodological conflict between ML and MP; they can’t set it
aside as a merely philosophical dispute of dubious relevance to scientists
in the trenches.
The main criticism that has been lodged against ML is that it requires

the adoption of a model of the evolutionary process that one has scant
reason to think is true. ML requires a process model because hypotheses
that specify a tree topology (and nothing more) do not, by themselves,
confer probabilities on the observations. Here we face yet another instance
of the Duhem–Quine thesis, which was a leitmotif in Chapters 2 and 3.
This thesis asserts that theories in science typically do not make predic-
tions about observables all by themselves but need to be supplemented by
auxiliary propositions if they are to do so. As before, we need to give this
thesis a probabilistic twist. From a likelihood point of view, it isn’t
essential that hypotheses about the topology of a phylogenetic tree
deductively entail observational claims about the characteristics of spe-
cies.34 What is required is that they confer probabilities on those obser-
vations. The problem is that, all by themselves, they do not. In the

33 The task of reconstructing the character states of the ancestors in a tree that is presumed to be true
was discussed in §3.3 and §3.11 in connection with testing selection hypotheses.

34 In Sober (1988: Chapter 4), I discuss and criticize some attempts to justify phylogenetic
parsimony in terms of Popperian ideas about falsification (§2.8).
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language of statistics, these genealogical hypotheses are composite, not
simple.
The main objection that has been made against MP is that parsimony

implicitly assumes this or that dubious proposition about the evolutionary
process. The force of this objection is somewhat unclear, since it is
controversial which propositions the method in fact assumes. Does MP
assume that evolution proceeds parsimoniously? That is, if a lineage starts
with one character state and ends with another, is one obliged to assume
that the lineage got there via a trajectory that involved the smallest pos-
sible number of evolutionary changes? This allegation has been strenu-
ously denied by proponents of parsimony (e.g., Farris 1983), some of
whom maintain that parsimony assumes only that there has been descent
with modification.35

Which is better – using a method that explicitly makes unrealistic
assumptions or a method whose assumptions are unclear? I will argue that
this unhappy dilemma misrepresents the dialectical situation twice over.
Although ML has usually been implemented in the way described, where
the analysis is carried out by stating a single process model and assuming
that it is true, there is every reason to shift to a model-selection framework
(§1.7) in which multiple process models can be taken into account. This
means that a statistical approach to phylogenetic inference is not stopped
dead by the objection against ML that I just described. With respect to
the criticism of MP, something substantive is known about what parsi-
mony assumes, though the issue of parsimony’s presuppositions has often
been misunderstood.
The debate about ML and MP may seem to be settled by the type of

data one wishes to analyze, the thought being that aligned sequences
require ML and phenotypes require MP. To be sure, ML is often applied
to sequences and rarely to phenotypes (see Lewis 2001 for an exception)
while MP is often applied to morphological data and with increasing
reluctance to sequences. However, this is a sociological fact, not a logical
inevitability. In what follows I’ll try to show that the questions that need
to be answered when ML is applied to sequence data also are central to
the task of applying ML to phenotypes. Symmetrically, MP can be
applied to sequence data just as it can be applied to morphology. In
addition, ML and MP are sometimes equivalent (more on this below), so
it is hard to see how MP can be tied essentially to one type of data and
ML to another.

35 For discussion of Farris’s argument, see Sober 1988.
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Although ML methods are most familiar in the context of analyzing
sequence data, I want to start discussing that methodology in the context of
models of phenotypic evolution. To get a feeling for the different process
models that might be used, consider two dichotomous traits that evolve on
the two branches of the phylogenetic tree depicted in Figure 4.20. If we
assign a separate parameter to characterize the probability of each change
that might occur in each trait on each branch, there will be eight param-
eters. We can reduce the number of parameters by introducing constraints;
these constraints require various parameters to have the same value. Here
are three examples:


 A constraint on changes within traits within branches: p1¼ p2, p3¼ p4,
p5 ¼ p6, p7 ¼ p8.

 A constraint on changes across traits within branches: p1 ¼ p3, p2 ¼ p4,
p5 ¼ p7, p6 ¼ p8.

 A constraint on changes within traits across branches: p1 ¼ p5, p2 ¼ p6,
p3 ¼ p7, p4 ¼ p8.

A very simple model can be constructed by imposing all three of these
constraints; I’ll call this the yes–yes–yes model. This model contains a
single parameter; it rules out biased processes such as natural selection,
since it says that a change from A to �A has the same probability as a
change from �A to A. At the opposite extreme is the ?–?–? model; this is
the eight-parameter model just mentioned. It does not deny the equalities
expressed in the constraints just described; rather, this model simply
declines to assert that they are true (this is why I use three question marks

1 5
A –A –A

2 6

3
B B– –B

4 8

A

B
7

Figure 4.20 Each of the dichotomous traits A and B can experience two changes and each
change can occur on each of the two branches. There are eight parameters (p1, . . . , p8) –

one per change, per trait, per branch.
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rather than three ‘‘no’’s to represent this model). This model is com-
patible with drift or selection, and with homogeneity and heterogeneity
between branches and between different traits on the same branch. In
between the one parameter yes–yes–yes and the eight-parameter ?–?–?,
there are six intermediate models. For example, the yes–yes–? model rules
out natural selection, but it allows that the two branches might experience
different rates of neutral evolution. And the ?–?–yes model allows that
selection is possible, but requires that a given character experience the
same process across branches (be it biased or unbiased). These different
models are related to each other by the relation of logical implication, as
shown in Figure 4.21. The most constrained model is a special case of all
the less constrained models. Removing constraints produces a logically
weaker model.36 Notice that the two intermediate models described in the
figure, yes–yes–? and ?–?–yes, are not related to each other by the entail-
ment relation; neither is a special case of the other.
Although this taxonomy of process models applies to dichotomous

phenotypic traits, it easily generalizes to sequence data. Each site in a
sequence has one of four possible states (G, A, T, and C). Consider two
aligned sequences drawn from different branches of a phylogenetic tree, as
shown in Figure 4.22. The models usually used in phylogenetic inference

Simpler and 
more idealized

yes–yes–yes

yes–yes–?

More complex 
and more realistic

?–?–?

?–?–yes

Figure 4.21 Models are more complex the larger the number of adjustable parameters
they contain. Arrows represent deductive implication; ‘‘M1!M2’’ means that if M1 is

true, M2 must be true.

36 Even with just two characters on two branches, further complications might be introduced. For
example, the eight models described all assume that traits on the same branch evolve independently;
models that allow for correlated changes within branches would introduce additional adjustable
parameters.
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for molecular characters are a small subset of the possibilities. Virtually all
are time reversible; it is assumed that a change from one state to another in
a site on a branch has the same probability as a change in the opposite
direction (Swofford et al. 1996: 433). This excludes selection. And a
change at one site on a branch is assumed to have the same probability as
the same change at a different site on the same branch. However, branches
are allowed to differ; even if a model says that all changes have the same
probability per unit time, it will usually allow that branches have different
durations. Recall from §3.5 that Markov models allow one to compute
the probability that a branch ends in one state, given that it begins in
another; the values of these branch transition probabilities are functions of
the duration of the branch and the instantaneous probabilities of different
changes. A given change will be more probable on a branch that lasts a
long time than it is on a branch that has only a short duration.
If most of the models of molecular evolution used in phylogenetic

inference ignore selection and assume that a given change on a branch has
the same probability, regardless of which site one considers, how do these
models differ? The Jukes–Cantor (1969) model contains a single
adjustable parameter that represents the (instantaneous) probability of all
change at all sites on all branches. The Kimura (1980) model has two
parameters; it allows transversions and transitions to have different
probabilities.37 These models assume that the four nucleotides have the
same expected frequencies throughout the tree. The Felsenstein (1981)
model says that all substitutions on all branches have the same probability
but allows that base frequencies may be unequal. All three of these models
are special cases of the general time-reversible (GTR) model (Lanave et al.
1984; Taveré 1986; Rodriguez et al. 1990). As shown in Figure 4.23, the
relation of logical implication links some of these models to others, just as
was true in Figure 4.21. As before, the two intermediate models, Kimura

Site 1 Site 2

Branch 1

Branch 2

Figure 4.22 Two sites in two aligned sequences that come from different branches of a
phylogenetic tree.

37 Changes between A and G and between C and T are transitions; all other changes are transversions.
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(1981) and Felsenstein (1981) are not related in this way; neither is a
special case of the other.
How are these different process models put to work in a likelihood

assessment of phylogenetic hypotheses? Let’s continue to use the example
of humans, chimps, and gorillas. Assuming that the tree must be strictly
bifurcating (i.e., that it contains no reticulations or polytomies), there are
three possible rooted trees: (HC)G, H(CG), and (HG)C. As noted earlier,
none of these, by itself, confers a probability on the characteristics we
observe. However, the same is true if we conjoin one of these genealogical
hypotheses with one or another of the process models just described. The
reason is that each process model contains at least one adjustable par-
ameter. Until values for adjustable parameters are specified, we cannot
talk about the probability of the data under different hypotheses. In short,
the propositions that have well-defined likelihoods take the form of a
conjunction that contains three conjuncts:

Tree topology & process model & specified values for the parameters in
the model.

The parameters that describe the probabilities of different changes are
examples of what statisticians call nuisance parameters. The reason for this
name is not that biologists never take an interest in the values of these
parameters; rather, the point is that when we are interested in comparing
the likelihoods of different tree topologies, we are forced to deal with
questions about the evolutionary process even though these are not the
focus of our inquiry. Naturally, what is a nuisance parameter in one
problem may be the subject of interest in another. Our present concern is

Simpler and 
more idealized

Kimura (1981)

More complex 
and more realistic

GTR

Jukes–Cantor (1969)

Felsenstein (1981)

Figure 4.23 Four models of molecular evolution and their logical relationships (figure
adapted from Swofford et al. 1996: 434).
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testing tree topologies against each other; in Chapter 3, we considered
different process models (for example, selection versus drift). In that
setting, the tree topology might be thought of as a nuisance parameter.
To assess the likelihood of a three-conjunct conjunction that has the

form just described, we first need to recall the very different approaches
that Bayesianism and the Neyman–Pearson theory take to the problem of
handling nuisance parameters (§1.3, §1.5). For a Bayesian, the likelihood
of a tree topology is an average. There are many different process models
that might be true and many different values that the parameters in a
given model might have. The likelihood of (HC)G reflects all of these:

Pr½data j ðHCÞG�
¼
X

i;j
Pr½data j ðHCÞG & Model i and Parameter vaules j�

· Pr½Model i & parameter vaules j j ðHCÞG�:
If a given model M were known to be true (or if this is an assumption

whose consequences one wishes to explore), this summation would sim-
plify to

Pr½data j ðHCÞG� ¼
X

j
PrM ½data j ðHCÞG & parameter vaules j�

· PrM ½parameter vaules j j ðHCÞG�:
The subscript M on the probability function means that the probabilities
are all assigned on the assumption that model M is true. The same sort of
averaging would have to be undertaken for the other topologies under
consideration, and then the average likelihoods of the different topologies
could be compared.
Given a process model M that one is prepared to regard as true, the

Neyman–Pearson method of handling nuisance parameters is very dif-
ferent. One isn’t interested in averaging over all possible values; rather,
one looks at the single setting of those parameters that makes the data
most probable. For the topology (HC)G, the quantity of interest is

Prfdata j L½ðHCÞG & model M �g:

Here ‘‘L[(HC)G & model M]’’ denotes the likeliest member of [(HC)G &
modelM]. The values of the parameters in M that maximize the likelihood
of (HC)G need not be the same as the ones that maximize the likelihood of
other topologies.
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Most statistical work in phylogenetic inference has been carried out
within a frequentist, not a Bayesian, framework. The usual practice has
been to adopt a single model of the evolutionary process and then
compare topologies with the parameters in the model set at their maxi-
mum likelihood values. This amounts to making ‘‘horizontal’’ com-
parisons within a single row in Figure 4.24. When the trees are ‘‘specified
in advance,’’ biologists frequently seek to determine which of the three
conjunctions has the highest likelihood, thus bypassing questions about
which hypothesis is the null and what value of a should be chosen.
However, other procedures (e.g., the SOWH test; see Felsenstein 2004:
371–2 for discussion) are sometimes used when the ML tree is compared
with one that is less likely; here, the ML tree is regarded as the null
hypothesis, and the question is whether an alternative tree is significantly
less likely than it. We see here a pattern that often arises in frequentist
practice; the statistical procedure is not determined by logical and
mathematical relationships among data, hypotheses, and background
assumptions but involves facts about what goes on in the mind of the
investigator (recall the discussion of stopping rules in §1.6). Your treat-
ment of (HC)G, H(CG), and (HG)C depends on whether you design your
test before gathering data or design the test already knowing that (HC)G
is the most likely tree. Bayesians and likelihoodists find it hard to
understand why this difference should make a difference.
Frequentists also make vertical comparisons in Figure 4.23; here, you

are not testing a topology; rather, you are testing different process models
against each other, given the assumption that some topology is true. The
typical procedure is to use the likelihood ratio test. The question is not
which conjunction has the higher likelihood; we know in advance that
models with a larger number of adjustable parameters will fit the data
better, so likelihoods must increase as one moves from the Jukes–Cantor
model to Kimura (1980) and then to GTR. Rather, the question is

(HC)G H(CG) (HG)C 

Jukes–Cantor  L[(HC)G & Jukes–Cantor] L[H(CG) & Jukes–Cantor] L[(HG)C & Jukes–Cantor] 

Felsenstein 1981 L[(HC)G & F] L[H(CG) & F] L[(HG)C & F] 

Kimura 1980 L[(HC)G & K] L[H(CG) & K] L[(HG)C & K] 

GTR L[(HC)G & GTR] L[H(CG) & GTR] L[(HG)C & GTR] 

Figure 4.24 Conjunctions of the form ‘‘tree topology & process model’’ containing
adjustable parameters; these are nuisance parameters in the context of making inferences
about topologies. Frequentists set these at their maximum likelihood values, denoted by

‘‘L(process model & tree topology).’’
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whether the likelihood of a more complex model is sufficiently greater than
the likelihood of a simpler model to justify rejecting the simpler model.
As noted in §1.5, this methodology has a frequentist justification only for
nested models. It is possible to compare each of [(HC)G & Felsenstein]
and [(HC)G & Kimura] with [(HC)G & Jukes–Cantor], but one can’t
compare the first two with each other. Another property of the likelihood
ratio test is that it can yield different answers depending on whether one
starts with the simplest model and works up or starts with the most
complex model and works down (§1.5).
These limitations of the Neyman–Pearson theory suggest that it may

make sense to place phylogenetic inference within a model-selection
framework.38 In using AIC, or some other model-selection criterion, one
obtains an ordered list, from best to worse, of conjunctive hypotheses,
each of which has the form ‘‘genealogical hypothesis & process model.’’
The Duhemian point continues to apply: In the first instance, what one
is testing are the different conjunctions, not the genealogical hypotheses
taken on their own. Still, one can reach inside these conjunctions and
examine the conjuncts of interest in the following way. Suppose (HC)G
is the genealogical hypothesis that figures in the first five, or the first ten,
or the first fifteen conjunctions at the top of the list. The larger this
group of conjunctions is, the more we are entitled to conclude that the
data favor (HC)G. In this case, (HC)G is robust across variation in
process model, and the more robust the better. But suppose that (HC)G
appears in the first, but not the second, of the conjunctions on this list
and then appears in the third through twentieth entries. Since AIC
provides a quantitative score for each conjunction, and not just an
ordering of conjunctions, one can ask what the average effect is of shifting
from one tree topology to another, within each of several process models.
For example, perhaps AIC scores are on average improved by moving
from H(CG) to (HC)G.
What resources does Bayesianism have for testing tree topologies

against each other across a range of possible process models? Just like
frequentist work on phylogenetic inference, most Bayesian analyses have
opted for a single process model and then compare topologies within the
context of that one model; what makes the work distinctly Bayesian is that
a prior distribution is employed for the values that the nuisance param-
eters in the model might have. But Bayesians also have started to consider

38 Kishino and Hasegawa (1990) applied AIC to choice between tree topologies; see Posada and
Crandall (2001) and Posada and Buckley (2004) for further discussion.
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multiple process models within a model-selection framework (see, for
example, Huelsenbeck et al. 2004). If one topology has a higher average
likelihood than another for each of the process models one has con-
sidered, this shows that the result is robust; it does not depend on which of
these process models one chooses. And if unanimity across models fails,
the fact that BIC provides quantitative values for the average likelihoods
of different conjunctions, and not just an ordering, becomes important.
BIC can be used to evaluate the average likelihoods of conjunctions of the
form (tree topology & process model M), and one can see what the
average effect is of shifting from one tree topology to another across each
of several process models.
Model-selection theory, whether it is Akaikean or Bayesian, provides

the resources for statistically testing tree topologies against each other
without requiring one to decide in advance which process model is true.
Choosing between the two approaches requires one to consider the dif-
ferent goals that AIC and BIC have and involves the questions surveyed in
Chapter 1 concerning whether various assumptions that go into the two
procedures are reasonable. I won’t repeat those points here, but I want to
recall one theme. If the process models one is considering all contain
idealizations, all are false, so there won’t be much point to asking which of
them has the highest probability of being true. A better paradigm is the
goal of estimating predictive accuracy, of finding fitted models that are
close to the truth.

What does cladistic parsimony assume about the evolutionary process?

What does the word ‘‘assume’’ mean in the question that is the title of this
section? An example from outside science provides some guidance.
Consider the two sentences

(P) Jones is poor but honest

and

(A) There is a conflict between being poor and being honest.

I hope it is clear that P assumes that A is true, but that A does not assume
that P is true. Notice that P entails A – that is, if P is true, then A must
also be true. However, A does not entail P; if there is a conflict between
poverty and honesty, this says nothing about Jones and the characteristics
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he happens to have. This example points to a general fact about what it
means to talk about the assumptions of a proposition:

If P assumes A, then P entails A.

To find out what a proposition assumes, you must look for conditions
that are necessary for the proposition to be true, not for conditions that
suffice for the proposition’s truth.

When are likelihood and parsimony ordinally equivalent?

Given this clarification of what an assumption is, we can turn to the
question of what it means to talk about the assumptions that are involved
in using cladistic parsimony to infer tree topologies. What parsimony
assumes about the evolutionary process are the propositions that must be
true if parsimony is to be a legitimate method of phylogenetic inference.
But what does ‘‘legitimate’’ mean? There are a number of choices to
consider. For example, one might demand that a legitimate phylogenetic
method be statistically consistent – that it converge on the true phylogeny
as the number of observations is made large without limit. We will
consider this idea in the next section. Another interpretation – the one I
want to explore now – maintains that parsimony is a legitimate method
precisely when it is ordinally equivalent with likelihood. This idea is easy
to understand by considering the Fahrenheit and Centigrade scales of
temperature. These are ordinally equivalent, meaning that for any two
objects, the first has a higher temperature in Fahrenheit than the second,
precisely when the first has a higher temperature in Centigrade than
the second. The two scales induce the same ordering of objects. For
parsimony and likelihood to be ordinally equivalent, the requirement
is that

(OE) For any phylogenetic hypotheses H1 and H2, and for any data set
D, H1 provides a more parsimonious explanation of D than H2

does precisely when PrM(D j H1) > PrM(D j H2).

The subscript M in the likelihood terms is a reminder of the Duhemian
point that phylogenetic hypotheses do not confer probabilities on data,
save in the context of a process model. In fact, it is misleading to talk of
parsimony and ‘‘likelihood’’ being, or failing to be, ordinally equivalent.
Rather, the question is whether likelihood when implemented by an
assumed process model M is or is not ordinally equivalent with parsimony.
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This may be true for some process models and false for others. I am
interested in (OE) as a device for exploring the legitimacy of parsimony
because I think that likelihood is a good measure of the degree to which
evidence favors one hypothesis over another. However, (OE) could be
employed in the opposite direction – by someone who believes that
cladistic parsimony is legitimate and wants to see whether likelihood (when
implemented by using some process model M) can be justified in terms of
parsimony.
Viewed from the vantage point of likelihoodism, our question con-

cerning the assumptions that parsimony makes about the evolutionary
process comes to this: Which propositions about evolution must be true
if (OE) is correct? More specifically, which model or models of the
evolutionary process must be true if parsimony and likelihood are to
coincide in their evaluation of how data bear on competing tree
topologies? One mathematical result that needs to be understood in
this context is Felsenstein’s (1973, 1979) demonstration that likelihood
and parsimony are ordinally equivalent when all probabilities of
change in character state are very small. Many biologists have taken this
result to show that parsimony ‘‘assumes’’ that evolutionary change is
very improbable, but the result shows nothing of the kind. Felsenstein’s
result provides a sufficient condition for ordinal equivalence, not
a necessary condition. The logical relationships involved here are as
follows:

(E) Felsenstein’s model
! ordinal equivalence ! assumptions of parsimony

Felsenstein did not demonstrate the following very different relationship:

Ordinal equivalence ! low probability of change

The first link in the chain of entailments shown in (E) is Felsenstein’s
result, and it does throw light on what parsimony assumes – or rather, on
what parsimony does not assume. We can see from (E) that any
assumptions that parsimony makes must be entailed by Felsenstein’s
model. This provides the following partial test for whether parsimony
assumes that this or that proposition is true (Sober 2005):


 If a proposition is entailed by the Felsenstein’s model, it may or may not
be an assumption that parsimony makes.

 If a proposition is not entailed by Felsenstein’s model, it is not an
assumption that parsimony makes.
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This test has some interesting consequences. For example, Felsenstein’s
model does not require neutral evolution. Though change in character
state must be improbable, there is no demand that a change in one
direction must have the same probability as a change in the opposite
direction. Parsimony, therefore, does not assume neutrality. Nor does
Felsenstein’s model include the requirement that a change from one state
to another has the same probability on all branches of the tree. Parsimony,
therefore, does not assume that branches are homogeneous.
Tuffley and Steel (1997) report a result that throws further light on the

question of what parsimony assumes. The model they describe involves no
common mechanism. There is no requirement that change is improbable
and none that different traits on the same branch evolve according to
the same rules or that the same trait on different branches must have the
same probability of changing. However, all traits evolve by neutral
evolution. Their result can be represented in the same way that (E) represents
Felsenstein’s:

Tuffley and Steel’s model of no-common-mechanism ! ordinal
equivalence ! assumptions of parsimony

The two bullet points above that describe the partial test for parsimony’s
assumptions can be applied to the Tuffley–Steel result; if a proposition is
not entailed by their model, then it is not an assumption of parsimony.
One consequence is that parsimony does not assume that change is
improbable. This goes contrary to what many biologists have claimed.
The partial test described here has an obvious limitation; it can dem-

onstrate that this or that proposition is not an assumption required by
cladistic parsimony, but it cannot demonstrate that a given proposition is
one of parsimony’s presuppositions. However, the criterion of ordinal
equivalence suggests a second procedure that goes beyond the partial test.
If a model of the evolutionary process entails that parsimony and likeli-
hood are not ordinally equivalent, then parsimony assumes that that
model is false. This approach to the problem is both simpler and more
powerful than the partial test. Felsenstein and Tuffley and Steel each
produced general results; notice that the criterion of ordinal equivalence
describes any two topologies and any data set. The idea now on the table
simply requires an example – one in which parsimony and likelihood
disagree when likelihood is implemented by a given model.
We considered an example of this sort in §3.3 in connection with the

problem of reconstructing the character states of ancestors. In a single
branch in which a descendant D is observed to have quantitative character
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state D ¼ x, the most likely assignment of character state to its ancestor
(A) is A ¼ x if drift is the process at work, but this will not be the most
likely estimate if there is directional selection pushing the lineage towards
an optimal trait value O where O 6¼ x. Using the ordinal equivalence
criterion as our guide, we may conclude that parsimony assumes that the
process at work in the lineage is not directional selection of the kind just
described. For other examples in which this line of reasoning is pursued,
see Sober (2002c).
The quest to discover parsimony’s presuppositions could be set to one

side if a model of the evolutionary process could be presented that
everyone grants is plausible and that suffices to induce ordinal equiva-
lence. The demonstration of sufficiency would not, of course, show that
parsimony assumes that this model is true. However, people prepared to
grant that the model is true will thereby have reason to conclude that
parsimony is legitimate (when judged by the criterion of ordinal
equivalence). They assume the model is true, even if parsimony does not,
and that will suffice to justify parsimony in their eyes. Unfortunately, no
such solution will be available for those who think that tractable models
of the evolutionary process inevitably contain idealizations and so are false.
One reason it is difficult to keep a clear head when the assumptions

of parsimony are discussed is that the word ‘‘assumptions’’ gets used in
different ways. We talk about the assumptions that people make, the
assumptions that go into mathematical proofs and the assumptions that a
proposition requires. People who use this or that method of inference may
make different assumptions or none at all, but that is a matter of psych-
ology, not logic. Biologists sometimes assert that they make no assumptions
about the evolutionary process when using parsimony to infer phylogenetic
relationships, and this remark may be correct as an item of autobiography.
But for those interested in the logic of phylogenetic inference, the bio-
graphical remark is beside the point. The assumptions that go into a
mathematical proof are the stated propositions from which various the-
orems are shown to follow. The proof of Felstenstein’s mentioned earlier
assumes that changes in character state have low probabilities of occurring;
this assumption is part of an assumption that suffices for parsimony to have
a likelihood rationale. I hope it is clear that the correctness of the proof
does not show that parsimony assumes that evolutionary change is
improbable. The assumptions in a proof suffice to guarantee that a theorem
is true; they may or may not be necessary (and usually they are not). To put
the point somewhat paradoxically: The assumptions made in a proof may
or may not be assumptions of the proposition proved.
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Much remains to be learned about parsimony’s presuppositions.
Felsenstein (1973, 1979) and Tuffley and Steel (1997) use the frequentist
procedure for handling nuisance parameters. What connection can be
established between parsimony and likelihood when nuisance parameters
are handled in a Bayesian fashion? And what if AIC, or some other
model-selection criterion, is used to rank tree topologies across multiple-
process models?

Statistical consistency

Although the criterion of ordinal equivalence describes one gold standard
that has been used to judge the legitimacy of parsimony, there has been a
great deal of discussion of another requirement that a method of
phylogenetic inference might be asked to satisfy. This is the demand that
a method must be statistically consistent, meaning that as the number of
data increases, it becomes more and more certain that the method will
reconstruct the true tree. Felsenstein (1978) initiated this approach,
describing a circumstance in which MP is statistically inconsistent and
claiming that some types of ML inference are statistically consistent.
Many biologists extracted from Felsenstein’s paper the lesson that ML is
the better procedure – it passes a test that MP fails.
Felsenstein’s argument is based on the simple example shown in

Figure 4.25. Characters are assumed to be dichotomous, and all evolve
according to the same rules. Changes from 0 to 1 have probability p on
the two branches shown and probability q on the two others; changes
from 1 to 0 are impossible. The root of the tree is in state 0 for each

p
p

q

X Y Z

q

Figure 4.25 The example described in Felsenstein (1978) in which parsimony can
converge on the incorrect tree as more and more data are consulted. The probability of a
character’s changing from state 0 to state 1 is p on the two branches shown and q on the
two others. The root is assumed to be in state 0. Changes from 1 to 0 are impossible.

Parsimony will be statistically inconsistent precisely when p� q.
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character. With respect to any character, the probability of this tree’s
evolving X ¼ 1, Y ¼ 1, and Z ¼ 0 (the 110 pattern, for short) is

½q þ ð1� qÞpq� ð1� pÞ
while the probability of its evolving the 101 pattern is

½ð1� qÞp ð1� qÞ�p:
Parsimony interprets a character exhibiting the 110 pattern as evidence
favoring (XY)Z over (XZ)Y; it interprets a character with the 101 pattern
as evidence with the opposite significance. Parsimony also judges the 111,
000, 001, 010, and 100 character distributions to be uninformative
because the three rooted trees are equally parsimonious explanations
of each.
If (XY)Z is the true tree and the model of trait evolution is the one just

described, when is it more probable that parsimony will choose (XY)Z
rather than (XZ)Y based on the data that the true tree generates? This is
probable precisely when

½q þ ð1� qÞpq�ð1� pÞ< ½ð1� qÞp ð1� qÞ�p;
which simplifies to

p2> qð1� pqÞ=ð1� qÞ:
For each value of q, there are values of p that satisfy this inequality and
values that violate it. These are shown in Figure 4.26. If p� q, the law of

Inconsistent

p

Consistent

q 

Figure 4.26 The tree in Figure 4.25 is in the ‘‘Felsenstein zone’’ when p� q. In this case,
parsimony will converge on a false tree as more and more data are drawn.
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large numbers guarantees that the probability approaches unity that the
101 pattern will occur more frequently than the 110 pattern as more and
more data are gathered. In this unhappy circumstance, the more data you
consult, the more certain you can be that parsimony will say that the false
tree (XZ)Y is better supported than the true tree, (XY)Z. Figure 4.26
indicates that the absolute values of p and q aren’t relevant; parsimony can
be inconsistent even when p and q are both small; a low probability of
change on each branch does not suffice for parsimony to converge on
the truth.
Farris (1983) responded to Felsenstein’s argument by pointing out that

the model of evolution used in the example is unrealistic. The failure of
consistency in this case does not show that parsimony will often or ever be
inconsistent when real data sets are analyzed. Felsenstein did not reply to
this criticism by insisting that a method should be statistically consistent
no matter what the underlying evolutionary process is like. Rather, he said
that one can’t simply assume that parsimony will be consistent when a
more realistic model is used to generate the data; one must demonstrate
that this is so. For Felsenstein, a method of inference must be consistent
when applied to real data, so using parsimony on real data requires the
assumption that the process model he constructed in his example is false.
His point is that parsimony makes substantive assumptions about the
evolutionary process.
Biologists were probably not surprised by the performance of parsi-

mony in Felsenstein’s (1978) example; if homoplasies are more probable
than homologies, it is to be expected that parsimony will be misleading.
What might have been more striking was Felsenstein’s claim that ‘‘it can
be shown quite generally that the maximum likelihood estimation pro-
cedure has the property of consistency’’ (1978: 408); in support Felsen-
stein cites his 1973 paper. However, Felsenstein then notes that when the
number of parameters increases indefinitely as more characters are added,
‘‘maximum likelihood methods are particularly prone to lack of con-
sistency’’ (1978: 409). Felsenstein’s remark prefigures Tuffley and Steel’s
(1997) result. In their no-common-mechanism model, each new char-
acter has its own suite of transition probabilities, one parameter for each
change that can take place on each branch. Within this model, the
number of parameters does not hold steady as the size of the data set
increases. Likelihood and parsimony are ordinally equivalent within this
model, and both will fail to be consistent if the process generating the data
obeys the no-common-mechanism model (for some settings of the par-
ameters in that model). This means that an investigator using ML in
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conjunction with the no-common-mechanism model (but not knowing
what the true values of the parameters are in the model) can be system-
atically misled.
A sufficient condition for the statistical consistency of ML was dem-

onstrated by Chang (1996); he considers a model in which all sites follow
the same rules of evolution, so increasing the size of the data set does not
involve introducing new parameters that need to be estimated. However,
this demonstration shows that the statistical consistency of ML is not the
trump card it might first have appeared to be. This is because demon-
strating that likelihood is statistically consistent involves examining what
is true when the model generating the data is the same as the model used
to implement the maximum-likelihood inference. As noted before, ‘‘ML’’
is not a single method. Rather, there is a family of methods that might be
called ‘‘ML using model X,’’ where the members of the family differ as to
which process model gets used. Demonstrating that ML using model X is
statistically consistent means showing that

For any vector v of values that the parameters in model X might have, Pr (ML
using model X chooses tree topology T j T is true & X(v) is true & X(v) generates
n items of data) approaches unity as n approaches infinity.

Here X(v) denotes the result of setting the adjustable parameters in model
X at the values given by v and ML using model X means using the model
but not knowing what the true values are of the parameters in the model.
So what does it mean for ML using model X to be statistically consistent?
It just means that if nature obeys model X and you use model X to
compare tree topologies, you can be increasingly certain of finding the
true topology as ever-larger data sets are considered. The point to notice is
that there can be no general guarantee that ML using model X will
reconstruct the true tree if the evolutionary process is governed by a
different process model (Steel and Penny 2000: 840). That an ML method
can fail to converge on the true topology is not just an abstract possibility;
for example, Gaut and Lewis (1995) showed that ML can be inconsistent
if the modeler assumes that rates are the same across sites while the
underlying reality is that they are not.
So the fact that ML using model X can be shown to be statistically

consistent does not guarantee that you’ll converge on the true tree if you
use this method of inference on the ever-larger data sets that nature
provides. Once again, the fact that tractable models of the evolutionary
process contain idealizations comes into play. If the underlying process is
more complex than any model that a statistician will be willing to touch
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with a stick, the guarantee of statistical consistency for tractable models
boils down to a very hypothetical assertion: If this idealized model were
true (which it is not), then using that model in the context of ML
inference would converge on the true phylogeny. Perhaps De Niro had a
point when he replied to Charles Grodin’s counterfactual by saying ‘‘but
you’re not my accountant’’ (§3.3).

Concluding comments on phylogenetic inference

Since the early 1970s, a dispute has raged between defenders of ML and
defenders of MP. The former group has mainly embraced a frequentist
statistical philosophy, with Bayesian methods entering the arena only
more recently (see, for example, Rannala and Yang 1996 and Huelsenbeck
et al. 2001).
The main criticism that has been leveled against the statistical approach

to phylogenetic inference is that it requires one to accept at the outset a
single model of the evolutionary process. This is a troubling requirement,
since biologists who don’t know what the true tree topology is for a set of
taxa usually also fail to know which processes governed the evolution of
the traits that those taxa exhibit. Although this criticism has had some
merit in the past, there is nothing intrinsic to the statistical approach that
forces a single model to be used. Rather, a model-selection framework,
whether it is Bayesian or Akaikean, permits tree topologies to be com-
pared across a range of possible process models.
The main criticism that has been leveled against cladistic parsimony is

that it makes implausible assumptions about the evolutionary process. It
may seem ‘‘obvious’’ that parsimony assumes that evolution proceeds
parsimoniously – that it generates few homoplasies and that a lineage that
begins in one state and ends in another gets from start to finish by way of
the smallest possible number of changes. These allegations are frequently
expressed, but they are nothing more than bald assertions until an
argument is supplied that shows that they are true. The first step in
assessing them is to separate necessity from sufficiency. Felsenstein (1973,
1979) and Tuffley and Steel (1997) constructed models of the evolu-
tionary process that each suffice to ensure that the most parsimonious tree
will be the tree with the highest likelihood. These two models force
parsimony and likelihood to agree. However, Felsenstein’s model is
incompatible with the no-common-mechanism model of Tuffley and
Steel. If parsimony assumes that both are true, it has lapsed into contra-
diction. In fact, parsimony does not assume that either model is true. It
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does not assume that changes in character state are very improbable, and it
does not assume that neutral evolution is true. To discover what parsi-
mony does assume about the evolutionary process, one needs to find
process models in which parsimony and likelihood disagree. Friends of
likelihood will see such cases as casting doubt on parsimony, but friends
of parsimony will conclude that these are cases in which the process model
is mistaken. Either way, cladistic parsimony turns out to involve
assumptions about the evolutionary process.
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Conclusion

I won’t try to summarize the preceding four chapters, but I do want to
describe some of their main themes.

NO PROBABIL ISTIC MODUS TOLLENS

The lazy way to test a hypothesis H is to focus on one of its possible
competitors H0, claim that the data refute H0, and then declare that H is
the only hypothesis left standing. This is an attractive strategy if you are
fond of the hypothesis H but are unable to say what testable predictions H
makes. I have nothing against laziness per se. If H0 really is the only
alternative to H, and if H0 really does deductively entail some observation
statement O that turns out to be false, then it really does follow that H0 is
false and H is true. The examples discussed in this book do not exhibit
this tidy pattern.
It is false that the only alternative to intelligent design is gradual

evolution by natural selection in an infinite population (§2.16), though it
is true that this particular hypothesis does entail that fitness valleys cannot
be crossed. Suppose we consider, instead, an evolutionary model that says
that valleys can be crossed. If we want to test this evolutionary hypothesis
against the hypothesis of intelligent design, the question we need to
consider is contrastive: Does the evolutionary hypothesis or the intelligent-
design hypothesis make the observations more probable? Intelligent-design
proponents can’t leave their ‘‘theory’’ in the background in the hope that
evolutionary theory will shoot itself in the foot. Rather, they need to
describe what intelligent-design theory asserts beyond the one-sentence
slogan that an intelligent designer made this or that feature; in particular,
they need to say what their ‘‘theory’’ predicts.
Precisely the same considerations apply to testing selection against

drift. It is no good dismissing drift on the grounds that it says that
the complex and useful trait we are studying is very improbable. Even if
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Pr(observations j drift) is low, that is not enough. The value of
Pr(observations j natural selection) also needs to be assessed. The hypothesis
of natural selection can take many concrete forms, and what will in fact
be tested are specific formulations of that idea, not the generic idea
unalloyed. This point holds regardless of whether the observations
consist of phenotypic data or molecular data (§3.9). Fortunately, there is
a lot more to the theory of natural selection than a one-sentence slogan.
Although examples like Royall’s valet (§1.4) are enough to discredit

probabilistic modus tollens, there are two additional arguments against that
dubious inference principle. The first derives from the fact that repeatedly
testing a probabilistic theory will drive its likelihood lower and lower
(§1.3). A theory T may successfully predict each of 1,000 observations
(O1, O2, . . . , O1,000) – for example, by saying of each of these observa-
tions that Pr(Oi jT) ¼ 0.99 – and still the value of Pr(O1 & O2 & . . . &
O1,000 jT) is tiny. Probabilistic modus tollens is a recipe for interpreting
success as failure. The second point about probabilistic modus tollens
derives from the discussion of common ancestry (CA) and separate
ancestry (SA) in Chapter 4. If species X and Y are observed to share trait T
and the trait obeys the Markov model described in §3.5 and §4.4, then

PrðX& Y have trait T j CAÞ
PrðX& Y have trait T j SAÞ

gets larger as its numerator gets smaller. The reason this happens is that as
the value of the numerator shrinks, the value of the denominator shrinks
even more. This is an interesting illustration of why the support for a
hypothesis should not be measured by seeing how much it probabilifies
the observations.

WHAT ARE THE ALTERNATIVE HYPOTHESES WITH WHICH

A GIVEN HYPOTHESIS COMPETES ?

Probabilisticmodus tollens (and significance tests) aside, the three statistical
philosophies discussed in Chapter 1 all understand evidence contras-
tively: For an observation O to be evidence for the hypothesis H, it must
be evidence against some alternative to H. The philosophies differ over
what that contrasting alternative must be like.
Bayesian philosophers of science see each hypothesis as competing with

its own negation. The Bayesian criterion is that O confirms H if and only
if Pr(O jH)> Pr(O j notH). Sometimes this framework is unproblematic, as
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in the case of testing the hypothesis that your patient has tuberculosis against
the hypothesis that he does not (§1.2). But if H is a scientific theory like the
general theory of relativity, then notH will be the catchall hypothesis that
covers all possible alternatives to that theory, even ones that have not yet been
formulated. Likelihoodists and frequentists both think that testing such
catchalls is impossible. The likelihoodist solution to this problem is to restrict
testing to the evaluation of statistically simple hypotheses. Frequentists think
that likelihoodism is too austere. Even though the frequentists’ likelihood
ratio test (§1.5) and model-selection criteria such as AIC (§1.7) are very
different, each tries to show how evidence can be brought to bear on (some)
statistically composite hypotheses.

TESTABIL ITY

In §2.14, I tried to formulate a criterion of testability that avoids the
problems that attach to earlier proposals, including Popper’s concept of
falsifiability. A first step in this project is to separate the epistemic concept
of testability from the semantic concept of meaningfulness. Perhaps a
sentence is meaningful only if its negation is as well (Hempel 1965), but
it is far from clear that a sentence is empirically testable only if its neg-
ation is. Bayesians think the testability of H and the testability of notH
go hand in hand, since Pr(H jO) > Pr(H) if and only if Pr(notH jO) <
Pr(notH). Likelihoodists and frequentists are committed to the view that
some hypotheses are testable even though their negations are not.
The hypothesis that an intelligent designer produced the vertebrate eye

can always be fleshed out so that the resulting proposition logically entails
exactly the features of the organ that you observe. If you observe that the
eye has features F, you can easily construct the hypothesis that an intel-
ligent designer produced the vertebrate eye and endowed it with features
F (§2.9). The very same point applies to the hypothesis that natural
selection produced the vertebrate eye. Indeed, the point is very general:
The claim that gravity, or the casting of hexes, is responsible for the ver-
tebrate eye also can be fleshed out in a way that precisely captures the
details of the eye that you observe. A Bayesian might point out that these
beefed-up hypotheses have lower prior and posterior probabilities than
the more modest claims that inspire them. But it also is true that these
logically stronger claims have likelihoods of unity. The evidence therefore
cannot provide Bayesian disconfirmation of these stronger hypotheses,
and, given a few modest assumptions, the Bayesian is forced to concede
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that all these hypotheses are confirmed by the observation that the eye
has features F (§1.2).
This is obviously an unsatisfactory situation, but that does not mean

that the Bayesian claims just mentioned are false. Rather, the point is that
there must be more to the epistemology of testing hypotheses about
intelligent design, natural selection, gravity, and hexes than this. The
remedy I have suggested was developed within a likelihood framework and
eschews epistemological holism (Sober 2004c). Rather than testing the
conjunction ‘‘an intelligent designer created the vertebrate eye and wanted
the eye to have features F ’’ as a whole by looking just at the observation that
the eye has features F, we instead might try to test the first conjunct – that
an intelligent designer created the eye – by using the observation that the
eye has features F. To do this, we need to determine whether there are
independently justified auxiliary propositions that can be added to this
modest hypothesis that allow it to confer some probability on what we
observe. This strategy is widely used in the sciences. Eddington didn’t
invent assumptions about the earth, sun, and other celestial bodies that
would allow the general theory of relativity to fit the eclipse data he
obtained; rather, he obtained independently justified information about
those objects that permitted the theory to make a prediction about the
eclipse. The inability of intelligent-design ‘‘theory’’ to follow this
protocol is central to my argument that the theory is untestable (§2.12).
The legitimacy and importance of the demand for independently

justified auxiliary propositions is not unique to likelihoodism and Baye-
sianism. When a frequentist uses a model-selection criterion like AIC,
various assumptions must be true for the criterion to have the operating
characteristics that give it a claim on our attention. Akaike’s (1973) proof
that AIC is an unbiased estimator of predictive accuracy relies on various
normality and uniformity of nature assumptions (§1.7). If we use AIC to
score a number of competing models in part because we think that AIC is
unbiased, we need some assurance that these assumptions (or others that
entail the same result) are true of the problem at hand. It had better be
possible to decide this matter prior to forming an opinion as to which
models are more predictively accurate and which are less.

PLURALISM ABOUT THE CONCEPT OF EVIDENCE?

I am prepared to be a Bayesian on Monday, Wednesday, and Friday, a
likelihoodist on Tuesday, Thursday, and Saturday, and amodel selectionist
on Sunday. When values for likelihoods and priors can be defended,
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Bayesianism is fine. When likelihoods are defensible, but priors are not,
likelihoodism makes sense. This shift reflects a change in subject (§1.1).
Bayesianism is an answer to Royall’s (1997) second question (What should
I believe?) whereas likelihoodism is an answer to his first (What does the
evidence say?). The fact that different questions have different answers is
hardly surprising; this does not deserve to be called ‘‘evidential pluralism.’’
In fact, Bayesianism and likelihoodism use the same concept of evidence,
whose central principle is the law of likelihood.
The shift from Bayesianism and likelihoodism to a model-selection

criterion like AIC is more profound. This change also reflects a change in
the question asked, but it is not on Royall’s list. Rather than asking
whether H1 has a higher probability of being true than H2, or whether the
evidence favors the hypothesis that H1 is true over the hypothesis that H2

is true, the Akaike framework asks whether model M1 will be more
predictively accurate than model M2, or, equivalently, whether the fitted
model L(M1) is closer to the truth (as measured by Kullback–Leibler
distance) than is the fitted model L(M2). If all the models being con-
sidered contain idealizations, then none of them is true, but this does not
mean that scientists are wrong to take an interest in them.
The move from truth to predictive accuracy as an inferential goal is

important, but it does not mean that a new concept of evidence has been
put on the table. In §1.7, I briefly contemplated the possibility that AIC
scores (or the scores produced by some other model-selection criterion)
might count as evidence that bears on hypotheses about the predictive
accuracies of different models. Perhaps AIC scores are to predictive
accuracy as thermometer readings are to temperature. When this is true,
Bayesians and likelihoodists have no reason to dismiss AIC as a frequentist
construct, nor is a new concept of evidence needed to interpret AIC
scores. The law of likelihood suffices. The question remains, of course, of
how generally AIC and the law of likelihood fit together in this way.
There is another way to narrow the gap between Bayesianism and AIC.

I have contrasted the Bayesian goal of ascertaining the probability that a
model is true with the Akaikean goal of discovering the model’s expected
degree of predictive accuracy. But the formalism of Bayes’ theorem allows
any H you please to be considered. H can be the statement that tem-
perature and pressure are linearly related in a pressure cooker, but it also
can be the proposition that LIN is a predictively accurate model of the
relationship of those two quantities. This means that there is no formal
reason why Bayesians can’t consider predictive accuracy as a goal; they can
do so by addressing the question of which theories have the highest
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probability of being predictively accurate, or which have the highest
expected degree of predictive accuracy. Does that mean that there is no
substantive difference between Bayesianism and the Akaike framework? A
difference that remains is the Bayesian point that computing posterior
probabilities requires information about prior probabilities. In contrast,
when frequentists attempt to estimate a model’s expected degree of pre-
dictive accuracy, given the data at hand, they think they can do this
without needing to have a prior expectation on which to build.
A different question about evidential pluralism arises when we consider

rules of inference that are applicable only to a delimited scientific subject
matter. The main example considered in this book is cladistic parsimony.
Although cladists have sometimes resisted the suggestion that the justi-
fication of this inference principle depends on the correctness of a
probabilistic model of the evolutionary process, they generally have
sought to justify the use of cladistic parsimony in terms of wider con-
siderations. Some have appealed to Popperian concepts of parsimony and
corroboration (Eldredge and Cracraft 1980; Wiley 1981), others to the
concept of explanatory power (Farris 1994). But there is another take on
the question of what justifies cladistic parsimony. This is the view that
cladistic parsimony is sui generis: It stands on its own and does not need to
be justified in terms of anything else. This position engenders a form of
evidential pluralism according to which cladistic parsimony is the right
way to interpret evidence when phylogenetic hypotheses are evaluated,
but other concepts of evidence are needed for hypotheses on other subject
matters. Few have thought of cladistic parsimony in this way; I have not.

TWO KINDS OF PARSIMONY

In his book Experience and Prediction, Reichenbach (1938) distinguished
two concepts of simplicity, which he terms ‘‘inductive’’ and ‘‘descriptive.’’
The first was so called because it is epistemically relevant; inductively
simpler hypotheses, Reichenbach thought, are apt to make more accurate
predictions. The second is merely aesthetic and of no epistemic relevance.
Two logically equivalent sentences express the same proposition; they
can’t differ in their evidential support or predictive accuracy because they
say the same thing. However, one of those sentences may be long and
cumbersome and the other short and elegant; if so, they have the same
inductive simplicity though they may differ in their descriptive simplicity.
I too have discussed two concepts of simplicity (or parsimony), but

both fall in Reichenbach’s first category. The literature in statistics on
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model selection equates the complexity of a model with the number of
adjustable parameters it contains. This is not a syntactic feature of the
string of symbols that is used in some language to express the model
(§1.7). Parsimony in this sense is relevant to estimating how predictively
accurate a model will be, or, equivalently, how close to the truth a fitted
model is, though model-selection criteria disagree as to exactly what
weight parsimony should be assigned. The second concept of parsimony
is specifically biological; I have called it cladistic or phylogenetic parsimony.
The cladistic parsimony of a phylogenetic tree depends on the data; this is
one respect in which it differs from model-selection parsimony. A tree is
parsimonious in this sense if it requires few changes in character state to
generate the data attaching to the tree’s tips. This is not a syntactic feature
of the sentence expressing a proposition but is a property of the propos-
ition itself, no matter how it is expressed. Philosophers have often com-
plained that it isn’t clear what makes one theory more parsimonious than
another. It is gratifying that scientists have isolated two kinds of parsi-
mony whose meanings are clear.
The question of their justification is another matter. I have looked at

cladistic parsimony through the lens of models of the evolutionary process,
asking under what circumstances the more parsimonious of two hypotheses
has the higher likelihood (§3.3, §4.7) or the higher probability (§3.11). I
have been interested in determining how cladistic parsimony on the one
hand and likelihood and probability on the other fit together; one can explore
this question without needing to decide which is more fundamental. When
parsimony and a probability model of the evolutionary process agree on
the ordering of hypotheses, probabilists may conclude that the model jus-
tifies parsimony, but cladists will think that parsimony justifies the model.
Since they agree about which hypotheses are better and which are worse,
there is no practical urgency to deciding in which direction the justification
flows. Only when parsimony and a probability model disagree about the
ordering of hypotheses does the difference in these approaches take on a
practical importance. If you believe the probability model, you have reason
to doubt the authority of parsimony. On the other hand, if you think that
parsimony is authoritative, you must reject the probability model. Cladists
will embrace the latter option, but in doing so they must abandon the claim
that parsimony makes no assumptions about the evolutionary process
beyond the idea of common ancestry. In this sense, cladistic parsimony has
an empirical justification if it has a justification at all.
Perhaps the simplest problem that cladistic parsimony addresses is the

inference of a single ancestor’s character state from the observed character
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state of one or more of its descendants. Consider a star phylogeny in
which all tip species have the same character state. What could be more
intuitive than the conclusion that the character state exhibited by these
descendants is evidence that their most recent common ancestor was in
the same state? If the character in question is dichotomous, the Markov
model described in §3.5 entails a backwards inequality; if D is a des-
cendant of A, Pr(D ¼ 1 jA ¼ 1) > Pr(D ¼ 1 jA ¼ 0), regardless of
whether drift or selection is the process at work and regardless of what the
lineage’s (finite) duration is. The more parsimonious reconstruction of
the ancestor’s character state is also the one with the higher likelihood,
and the likelihood ratio of A ¼ 1 to A ¼ 0 is larger the larger the number
of descendants that all are in state 1. The situation is different for a
continuous trait; here the backwards inequality – that Pr(D ¼ i jA ¼ i) >
Pr(D ¼ i jA ¼ j) for all i 6¼ j – holds when drift is the process at work,
but not when selection is pushing the lineage towards an optimum dif-
ferent from i. Parsimony clearly has biological presuppositions in this
case. In fact, the same is true for dichotomous traits, but seeing this point
requires one to move from the simple example of a star phylogeny to the
more complicated case of a bifurcating tree (§3.11). The use of parsimony
to reconstruct the character states of ancestors depends on empirical
assumptions even when traits are dichotomous.
The idea that the epistemic authority of cladistic parsimony rests on

empirical assumptions also is true of model-selection parsimony, not-
withstanding the body of mathematics that has been developed in con-
nection with AIC and other model selection criteria. Akaike proved that
AIC is an unbiased estimator of predictive accuracy, but, as noted above,
the assumptions that Akaike used to derive his theorem are empirical in
character (Forster and Sober 1994).

UNIF ICATION

Unification is related to parsimony. In fact, the double meaning of the
latter is reflected in two meanings that attach to the former. When we ask
whether the wings of present-day birds derive from a single common
ancestor or independently evolved thousands of times, we face a choice
between two possible explanations that differ in their cladistic parsimony.
The hypothesis that bird wings are a homology unifies the observations and
the hypothesis of homoplasy disunifies them. With respect to model-
selection parsimony, a model that explains multiple data sets by invoking
the same set of n parameters is more unified than a model that assigns to
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each data set its own set of n parameters (§3.7). The law of likelihood
cannot explain how the unified model could be better; the Akaike
framework can.
Darwin thought that an important virtue of the theory of evolution by

natural selection is its ability to unify diverse phenomena. Does the
hypothesis of intelligent design do the same? What could unify nature
more than the hypothesis that all natural phenomena (not just the
complex adaptations of organisms) flow from the hand of God? Darwin
disparaged this explanation, not by arguing that it is false but by sug-
gesting that it is scientifically empty. What does ‘‘empty’’ mean in this
context? It does not mean that the statement asserts nothing; atheists and
theists are disagreeing about something, the testability theory of meaning
(§2.14) notwithstanding. A better interpretation is that the intelligent-
design hypothesis is empty because it makes no predictions. What, then,
becomes of the virtue of unification that Darwin claimed for his theory? If
the competing theory is empty, what’s the point of praising Darwin’s
theory for being unified? The answer comes not from pitting Darwin’s
theory against intelligent design but from seeing Darwin’s theory as one
of several biological alternatives. Common ancestry should be tested
against the hypothesis of separate origination. And natural selection
should be tested against drift, phylogenetic inertia, and other evolutionary
alternatives. This is what biologists routinely do.
Darwin embraced the most unifying of all phylogenetic hypotheses

about the genealogy of present life forms when he opted for CA1 – the
claim that all present-day living things and all the fossils that now exist
trace back to a single common ancestor (§4.2). With respect to his view of
the evolutionary process, Darwin was something of a pluralist. He says in
The Origin of Species that ‘‘natural selection has been the main but not
exclusive means of modification’’ ([1859] 1964: 6), a remark that Gould
and Lewontin (1978) embraced in their attack on adaptationism. Darwin
invokes ancestral influence (aka phylogenetic inertia) as well as natural
selection (§4.8) and, within the category of natural selection, he usually
understands selection to mean individual selection, though he occasion-
ally thinks that group selection has been important, as when he discusses
human morality or the barbed stinger of the honeybee (Sober and Wilson
1998). Less pluralistic views of evolution are certainly possible – for
example, a maximal adaptationism that assigns zero importance to
ancestral influence and to group selection. And more pluralistic views are
now on the table as well, thanks, for example, to the development of the
neutral theory (Kimura 1983).
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Philosophers have often viewed unification as a tie breaker: If different
theories can each explain the data, the one that is most unifying is the one
that is ‘‘best’’ (i.e., most probably true). One imperfection in this formula
is that it sweeps past the issue of fit to data, asking only whether or not a
theory ‘‘can’’ explain the observations. The problem is that fit to data is a
quantitative, not a dichotomous, concept, and a quantitative assessment
of goodness of fit is indispensable when evolutionary models are com-
pared. But goodness of fit is not the only virtue of models, at least if the
Akaike framework is any guide. The contest between monistic and
pluralistic conceptions of the evolutionary process needs to be understood
as a problem in model selection.

‘ ‘TESTING EVOLUTIONARY THEORY’ ’

Creationists often talk of ‘‘testing evolutionary theory,’’ and biologists
sometimes talk this way as well. The context of their remarks sometimes
reveals which specific proposition the authors have in mind, but often this
is not the case. It is important to recognize that the phrase ‘‘evolutionary
theory’’ is too vague when the subject of testing is broached. There are a
number of propositions that evolutionary biologists take seriously. The
first step should be to specify which of these is to be the focus.
Physicists standardly draw a distinction between laws on the one hand

and initial (and boundary) conditions on the other. The general theory of
relativity, by itself, makes no predictions about when eclipses will
occur and what features they will have. However, if auxiliary propositions
about the features of various celestial bodies are added, the laws plus
these auxiliaries do generate testable predictions. The distinction
between laws and initial conditions also is important in evolutionary
biology. The ‘‘laws of motion of populations’’ are general statements that
are conditional in form. They say that if a population has a given set of
properties at time t1 and is subject to this or that evolutionary process
then it has various probabilities of exhibiting different properties at
time t2. These laws make no predictions until initial conditions are
specified. Duhem’s thesis (§2.12) applies to evolutionary biology no less
than it applies to physics, though it, of course, needs to be understood
probabilistically.
This point reveals a yawning incompleteness in questions such as

‘‘What is the probability that organisms with the intelligence of human
beings would exist now, according to evolutionary theory? Which initial
conditions should we consider?’’ Different choices yield different answers.
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We might conditionalize on the start of the universe 17 billion years ago,
or on the start of the Earth about 4.5 billion years ago, or on the splitting
of the lineages leading to humans and chimps some 6 million years ago or
on the evolution of anatomically modern humans, about 200,000 years
ago, or on the exodus from Africa around 50,000 years ago. There are
other choices as well. We could even consider the probability that there is
human intelligence now, conditional on the fact that there was human
intelligence yesterday. When asked what the probability is of an event, you
should reply, ‘‘Conditional on which initial conditions?’’ But even when a
starting point is identified, one can’t assume that evolutionary biology has
in its pocket an estimate of the probability of any current fact that
happens to strike ones fancy. I would say that the values of the conditional
probabilities just contemplated, except perhaps the last one, are unknown.
Consider a chain of events that contains 1,000 links – E1, E2, . . . ,

E1,000 – and suppose that a later event occurs only if all the events
before it did. Even if Pr(Eiþ1 j Ei) ¼ 0.99 (for each i), it still will be
true that Pr(E1,000 j E1) is tiny. In this case, the farther back you start,
the lower the probability of the end point you now observe. This
relationship between time and probability holds because E1,000 can be
achieved via just one path. Suppose, instead, that there are many
pathways from E1 to E1,000 and that each has a very small probability of
occurring. Now it is possible that Pr(E1,000 j E1) is large. There is less
path dependence in this case. Gould’s (1989) thesis that evolutionary
outcomes are radically contingent endorses the first probability model;
Conway Morris’s (2003) antithesis – that the level of contingency is
much lower – endorses the second. The fact that the evolutionary
process is probabilistic does not settle which of these is the right way to
think about the existence of humanlike intelligence or of any other trait.
In fact, we should not assume that one of these two patterns is always
right and the other is always wrong. Maybe some outcomes involve a
high degree of sensitivity to initial conditions while others are more
robust (Sober 2003a).

KNOWABIL ITY AND DEEP TIME

Time is often the enemy of knowability. In a singly connected causal chain
extending from E1 to E2 to . . . to E1,000, the information-processing
inequality holds true. The present state of the system provides more
evidence about the recent past than it does about the distant past (Sober
and Steel 2002). Think of a lineage in which a dichotomous trait is
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subject to drift. If you observe that the lineage is now in the state D ¼ 1,
what evidence does this provide about the state of the lineage when it
began? If the lineage had a brief duration, you have strong evidence that
the ancestor was in the state A ¼ 1. But if the lineage had a longer
duration, the evidence for this conclusion weakens. With infinite time,
you have no information at all. An optimist will see good news in this
fact: With finite time, the state of the descendant always provides some
evidence concerning the state of the ancestor. A pessimist will see bad
news here: We have only very weak evidence about deep time. As with
glasses half full and glasses half empty, both are right.
Is there any process that can stand in the way of the information-

destroying march of time? Consider a process that tends to keep a lineage in
the state in which it began. If it begins in state 1, it has a high probability of
remaining in state 1, and if it begins in state 0, that is where it probably will
remain. Drift does not do this, and neither does unconditional selection for
state 1 or unconditional selection for state 0. What does the trick is
selection for the majority trait, or, more generally, selection in which there
are two adaptive peaks. In this instance, D ¼ 1 is evidence for A ¼ 1, even
when time is infinite. In §4.5, I explored Darwin’s claim that adaptive
similarities provide scant evidence about common ancestry, but useless
similarities provide more. Darwin was right when there is one adaptive
peak but wrong when there are several. The fact that all Eukaryotes use the
same genetic code in their nuclear genes is evidence for their common
ancestry, even if that code turns out to be optimal.

POPULATION THINKING AND TREE THINKING

Ernst Mayr (1976) suggests that Darwin’s greatest conceptual achieve-
ment was to push aside essentialist (or ‘‘typological’’) assumptions and
replace them with population thinking. Mayr distinguishes these two
frameworks in terms of how they view the variation in traits that is found
in a population. For the populationist, variability is ‘‘real’’; it is the engine
that drives evolutionary processes. For the essentialist, variability is a
superficial distraction that must be ‘‘seen through’’ in order to perceive a
deeper underlying uniformity. The essentialist grants that human beings
vary but holds that the important thing to grasp is human nature, which
is a set of properties that all human beings share. According to Mayr,
populationists see variability as a cause whereas essentialists see variability
only as an effect – as something that needs to be explained but that is not
itself explanatory.
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Mayr’s population thinker views populations as objects, subject to their
own laws of motion (Sober 1980). The rich system of models found in
population biology attests to the fertility of this mode of thought. A
modest example was described at the start of Chapter 3 in the context of
considering why polar bears have fur that averages 10 centimeters in
length. I represented the population as a point on a line with probabilistic
forces impinging on it that might move it to the left or to the right. Drift
is a random walk on the line; a small step to the left has the same
probability as a small step to the right. Selection is a biased walk under the
influence of a probabilistic attractor (Figure 3.1). In models such as these,
one doesn’t worry about the individual organisms that make up the
population any more than one worries about the individual molecules in a
gas when one uses the kinetic theory of gases. This feature of evolutionary
modeling is something that the founder of American pragmatism, Charles
Sanders Peirce, noticed in Darwin’s theory shortly after the publication of
The Origin of Species:

Mr. Darwin proposed to apply the statistical method to biology. The same thing
has been done in a widely different branch of science, the theory of gases.
Though unable to say what the movements of any particular molecule of gas
would be on a certain hypothesis regarding the constitution of this class of
bodies, Clausius and Maxwell were yet able, eight years before the publication of
Darwin’s immortal work, by the application of the doctrine of probabilities, to
predict that in the long run such and such a proportion of the molecules would,
under given circumstances, acquire such and such velocities [ . . . ] and from these
propositions were able to deduce certain properties of gases, especially in regard
to their heat-relations. In like manner, Darwin, while unable to say what the
operation of variation and natural selection in any individual case will be, de-
monstrates that in the long run they will, or [would], adapt animals to their
circumstances. (Peirce 1934: 226)

The same analogy was a repeated motif in R. A. Fisher’s thinking about
natural selection. Here is what he says in his paper on dominance:

The investigation of natural selection may be compared to the analytic treatment
of the Theory of Gases, in which it is possible to make the most varied as-
sumptions as to the accidental circumstances, and even the essential nature of the
individual molecules, and yet to develop the general laws as to the behavior of
gases, leaving but a few fundamental constants to be determined by experiment.
(Fisher 1922a: 321–2)

Eight years later, he returns to this point in discussing his fundamental
theorem of natural selection:
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It will be noticed that the fundamental theorem [ . . . ] bears some remarkable
resemblances to the second law of thermodynamics. Both are properties of po-
pulations, or aggregates, true irrespective of the nature of the units which
compose them; both are statistical laws; each requires the constant increase of a
measurable quantity, in the one case the entropy of a physical system and in the
other the fitness [ . . . ] of a biological population. (Fisher 1957: 39)

Fisher’s remarks highlight the fact that population thinking does not
require one to deny that organisms or molecules have ‘‘essential natures’’;
the point is that there are higher-level population laws that hold regardless
of whether they do.
Robert O’Hara (1988, 1998) sees a second pervasive pattern in evo-

lutionary biology. In addition to population thinking, there is tree
thinking. Besides viewing populations as objects buffeted by forces, evo-
lutionary biologists understand current populations as descendants tracing
back to common ancestors. This is not an idle detail but a fact that plays a
central role in testing theories about the evolutionary process. Phylo-
genetic trees are constantly used to test selection against drift (§3.2, §3.9)
and can also be used to test selection against inertia (§3.10). If assump-
tions about phylogenetic trees are used to test hypotheses about the causes
of character evolution, and assumptions about character evolution are
used in inferring phylogenetic trees, is this interpenetration of pattern and
process cause for alarm? There is no vicious circularity here, in part
because one set of traits can be used to infer a phylogeny, which then is
used to test process theories about other traits that evolve on that tree. In
addition, models that combine phylogenies and process hypotheses can be
tested as conjunctions, with different conjunctions being compared with
each other, as described in §4.7.
O’Hara ends his 1998 paper with an interesting historical detail.

Whewell’s 1847 book, The Philosophy of the Inductive Sciences, places
biological systematics with mineralogy among the ‘‘classificatory sci-
ences,’’ not in the category that Whewell called ‘‘the palaeontological
sciences,’’ which is where he located geology and comparative philology.
The paleontological sciences aim at historical reconstruction; Whewell’s
attention to them was prompted in part by Lyell’s revolutionary ideas
about geology. Darwin, who took Lyell’s geology as a model for the kind
of theory he wanted to develop, ‘‘in effect took systematic biology out of the
classificatory sciences and placed it squarely among the palaeontological
sciences’’ (O’Hara 1998: 327). For Whewell, explaining why gold is
yellow is the same type of task as explaining why tigers have stripes. In
what sense did Darwin drive these projects apart? After all, every object
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has its history – a lump of gold no less than an organism – so what is
especially historical about ‘‘the historical sciences?’’ One difference is that
tigers are genealogically related to each other, whereas lumps of gold
(mostly) are not. If the processes governing the evolutionary process were
sufficiently powerful, it would not matter what the character state was in
which the tiger lineage began. But tigers don’t just have a history; their
present features show the imprint of that history. The tree of life is not a
neutral backdrop on which evolutionary portraits are painted. Rather,
the branches of the tree are the pathways along which the traits of
ancestors influence the traits of their descendants.
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