
Biosignal and
Biomedical Image
Processing
MATLA B-Based Applications

JOHN L. SEMMLOW
Robert Wood Johnson Medical School
New Brunswick, New Jersey, U.S.A.

Rutgers University
Piscataway, New Jersey, U.S.A.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Although great care has been taken to provide accurate and current information, neither
the author(s) nor the publisher, nor anyone else associated with this publication, shall be
liable for any loss, damage, or liability directly or indirectly caused or alleged to be
caused by this book. The material contained herein is not intended to provide specific
advice or recommendations for any specific situation.

Trademark notice: Product or corporate names may be trademarks or registered trade-
marks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress.

ISBN: 0–8247-4803–4

This book is printed on acid-free paper.

Headquarters
Marcel Dekker, Inc., 270 Madison Avenue, New York, NY 10016, U.S.A.
tel: 212-696-9000; fax: 212-685-4540

Distribution and Customer Service
Marcel Dekker, Inc., Cimarron Road, Monticello, New York 12701, U.S.A.
tel: 800-228-1160; fax: 845-796-1772

Eastern Hemisphere Distribution
Marcel Dekker AG, Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland
tel: 41-61-260-6300; fax: 41-61-260-6333

World Wide Web
http://www.dekker.com

The publisher offers discounts on this book when ordered in bulk quantities. For more
information, write to Special Sales/Professional Marketing at the headquarters address
above.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, microfilming, and recording,
or by any information storage and retrieval system, without permission in writing from
the publisher.

Current printing (last digit):

10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

http:/ /www.dekker.com

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

To Lawrence Stark, M.D., who has shown me the many possibilities . . .

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Series Introduction

Over the past 50 years, digital signal processing has evolved as a major engi-
neering discipline. The fields of signal processing have grown from the origin
of fast Fourier transform and digital filter design to statistical spectral analysis
and array processing, image, audio, and multimedia processing, and shaped de-
velopments in high-performance VLSI signal processor design. Indeed, there
are few fields that enjoy so many applications—signal processing is everywhere
in our lives.

When one uses a cellular phone, the voice is compressed, coded, and
modulated using signal processing techniques. As a cruise missile winds along
hillsides searching for the target, the signal processor is busy processing the
images taken along the way. When we are watching a movie in HDTV, millions
of audio and video data are being sent to our homes and received with unbeliev-
able fidelity. When scientists compare DNA samples, fast pattern recognition
techniques are being used. On and on, one can see the impact of signal process-
ing in almost every engineering and scientific discipline.

Because of the immense importance of signal processing and the fast-
growing demands of business and industry, this series on signal processing
serves to report up-to-date developments and advances in the field. The topics
of interest include but are not limited to the following:

• Signal theory and analysis
• Statistical signal processing
• Speech and audio processing

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

• Image and video processing
• Multimedia signal processing and technology
• Signal processing for communications
• Signal processing architectures and VLSI design

We hope this series will provide the interested audience with high-quality,
state-of-the-art signal processing literature through research monographs, edited
books, and rigorously written textbooks by experts in their fields.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Preface

Signal processing can be broadly defined as the application of analog or digital
techniques to improve the utility of a data stream. In biomedical engineering
applications, improved utility usually means the data provide better diagnostic
information. Analog techniques are applied to a data stream embodied as a time-
varying electrical signal while in the digital domain the data are represented as
an array of numbers. This array could be the digital representation of a time-
varying signal, or an image. This text deals exclusively with signal processing
of digital data, although Chapter 1 briefly describes analog processes commonly
found in medical devices.

This text should be of interest to a broad spectrum of engineers, but it
is written specifically for biomedical engineers (also known as bioengineers).
Although the applications are different, the signal processing methodology used
by biomedical engineers is identical to that used by other engineers such electri-
cal and communications engineers. The major difference for biomedical engi-
neers is in the level of understanding required for appropriate use of this technol-
ogy. An electrical engineer may be required to expand or modify signal
processing tools, while for biomedical engineers, signal processing techniques
are tools to be used. For the biomedical engineer, a detailed understanding of
the underlying theory, while always of value, may not be essential. Moreover,
considering the broad range of knowledge required to be effective in this field,
encompassing both medical and engineering domains, an in-depth understanding
of all of the useful technology is not realistic. It is important is to know what

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

tools are available, have a good understanding of what they do (if not how they
do it), be aware of the most likely pitfalls and misapplications, and know how
to implement these tools given available software packages. The basic concept
of this text is that, just as the cardiologist can benefit from an oscilloscope-type
display of the ECG without a deep understanding of electronics, so a biomedical
engineer can benefit from advanced signal processing tools without always un-
derstanding the details of the underlying mathematics.

As a reflection of this philosophy, most of the concepts covered in this
text are presented in two sections. The first part provides a broad, general under-
standing of the approach sufficient to allow intelligent application of the con-
cepts. The second part describes how these tools can be implemented and relies
primarily on the MATLAB software package and several of its toolboxes.

This text is written for a single-semester course combining signal and
image processing. Classroom experience using notes from this text indicates
that this ambitious objective is possible for most graduate formats, although
eliminating a few topics may be desirable. For example, some of the introduc-
tory or basic material covered in Chapters 1 and 2 could be skipped or treated
lightly for students with the appropriate prerequisites. In addition, topics such
as advanced spectral methods (Chapter 5), time-frequency analysis (Chapter 6),
wavelets (Chapter 7), advanced filters (Chapter 8), and multivariate analysis
(Chapter 9) are pedagogically independent and can be covered as desired with-
out affecting the other material.

Although much of the material covered here will be new to most students,
the book is not intended as an “introductory” text since the goal is to provide a
working knowledge of the topics presented without the need for additional
course work. The challenge of covering a broad range of topics at a useful,
working depth is motivated by current trends in biomedical engineering educa-
tion, particularly at the graduate level where a comprehensive education must
be attained with a minimum number of courses. This has led to the development
of “core” courses to be taken by all students. This text was written for just such
a core course in the Graduate Program of Biomedical Engineering at Rutgers
University. It is also quite suitable for an upper-level undergraduate course and
would be of value for students in other disciplines who would benefit from a
working knowledge of signal and image processing.

It would not be possible to cover such a broad spectrum of material to a
depth that enables productive application without heavy reliance on MATLAB-
based examples and problems. In this regard, the text assumes the student
has some knowledge of MATLAB programming and has available the basic
MATLAB software package including the Signal Processing and Image Process-
ing Toolboxes. (MATLAB also produces a Wavelet Toolbox, but the section on
wavelets is written so as not to require this toolbox, primarily to keep the num-
ber of required toolboxes to a minimum.) The problems are an essential part of

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

this text and often provide a discovery-like experience regarding the associated
topic. A few peripheral topics are introduced only though the problems. The
code used for all examples is provided in the CD accompanying this text. Since
many of the problems are extensions or modifications of examples given in the
chapter, some of the coding time can be reduced by starting with the code of a
related example. The CD also includes support routines and data files used in
the examples and problems. Finally, the CD contains the code used to generate
many of the figures. For instructors, there is a CD available that contains the
problem solutions and Powerpoint presentations from each of the chapters.
These presentations include figures, equations, and text slides related to chapter.
Presentations can be modified by the instructor as desired.

In addition to heavy reliance on MATLAB problems and examples, this
text makes extensive use of simulated data. Except for the section on image
processing, examples involving biological signals are rarely used. In my view,
examples using biological signals provide motivation, but they are not generally
very instructive. Given the wide range of material to be presented at a working
depth, emphasis is placed on learning the tools of signal processing; motivation
is left to the reader (or the instructor).

Organization of the text is straightforward. Chapters 1 through 4 are fairly
basic. Chapter 1 covers topics related to analog signal processing and data acqui-
sition while Chapter 2 includes topics that are basic to all aspects of signal and
image processing. Chapters 3 and 4 cover classical spectral analysis and basic
digital filtering, topics fundamental to any signal processing course. Advanced
spectral methods, covered in Chapter 5, are important due to their widespread
use in biomedical engineering. Chapter 6 and the first part of Chapter 7 cover
topics related to spectral analysis when the signal’s spectrum is varying in time,
a condition often found in biological signals. Chapter 7 also covers both contin-
uous and discrete wavelets, another popular technique used in the analysis of
biomedical signals. Chapters 8 and 9 feature advanced topics. In Chapter 8,
optimal and adaptive filters are covered, the latter’s inclusion is also motivated
by the time-varying nature of many biological signals. Chapter 9 introduces
multivariate techniques, specifically principal component analysis and indepen-
dent component analysis, two analysis approaches that are experiencing rapid
growth with regard to biomedical applications. The last four chapters cover
image processing, with the first of these, Chapter 10, covering the conventions
used by MATLAB’s Imaging Processing Toolbox. Image processing is a vast
area and the material covered here is limited primarily to areas associated with
medical imaging: image acquisition (Chapter 13); image filtering, enhancement,
and transformation (Chapter 11); and segmentation, and registration (Chapter 12).

Many of the chapters cover topics that can be adequately covered only in
a book dedicated solely to these topics. In this sense, every chapter represents
a serious compromise with respect to comprehensive coverage of the associated

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

topics. My only excuse for any omissions is that classroom experience with this
approach seems to work: students end up with a working knowledge of a vast
array of signal and image processing tools. A few of the classic or major books
on these topics are cited in an Annotated bibliography at the end of the book.
No effort has been made to construct an extensive bibliography or reference list
since more current lists would be readily available on the Web.

TEXTBOOK PROTOCOLS

In most early examples that feature MATLAB code, the code is presented in
full, while in the later examples some of the routine code (such as for plotting,
display, and labeling operation) is omitted. Nevertheless, I recommend that stu-
dents carefully label (and scale when appropriate) all graphs done in the prob-
lems. Some effort has been made to use consistent notation as described in
Table 1. In general, lower-case letters n and k are used as data subscripts, and
capital letters, N and K are used to indicate the length (or maximum subscript
value) of a data set. In two-dimensional data sets, lower-case letters m and n
are used to indicate the row and column subscripts of an array, while capital
letters M and N are used to indicate vertical and horizontal dimensions, respec-
tively. The letter m is also used as the index of a variable produced by a transfor-
mation, or as an index indicating a particular member of a family of related
functions.* While it is common to use brackets to enclose subscripts of discrete
variables (i.e., x[n]), ordinary parentheses are used here. Brackets are reserved
to indicate vectors (i.e., [x1, x2, x3 , . . .]) following MATLAB convention.
Other notation follows standard conventions.

Italics (“) are used to introduce important new terms that should be incor-
porated into the reader’s vocabulary. If the meaning of these terms is not obvi-
ous from their use, they are explained where they are introduced. All MATLAB
commands, routines, variables, and code are shown in the Courier typeface.
Single quotes are used to highlight MATLAB filenames or string variables.
Textbook protocols are summarized in Table 1.

I wish to thank Susanne Oldham who managed to edit this book, and
provided strong, continuing encouragement and support. I would also like to
acknowledge the patience and support of Peggy Christ and Lynn Hutchings.
Professor Shankar Muthu Krishnan of Singapore provided a very thoughtful
critique of the manuscript which led to significant improvements. Finally, I
thank my students who provided suggestions and whose enthusiasm for the
material provided much needed motivation.

*For example, m would be used to indicate the harmonic number of a family of harmonically related
sine functions; i.e., fm(t) = sin (2 π m t).

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

TABLE 1 Textbook Conventions

Symbol Description/General usage

x(t), y(t) General functions of time, usually a waveform or signal
k, n Data indices, particularly for digitized time data
K, N Maximum index or size of a data set
x(n), y(n) Waveform variable, usually digitized time variables (i.e., a dis-

creet variable)
m Index of variable produced by transformation, or the index of

specifying the member number of a family of functions (i.e.,
fm(t))

X(f), Y(f) Frequency representation (complex) of a time function
X(m), Y(m) Frequency representation (complex) of a discreet variable
h(t) Impulse response of a linear system
h(n) Discrete impulse response of a linear system
b(n) Digital filter coefficients representing the numerator of the dis-

creet Transfer Function; hence the same as the impulse re-
sponse

a(n) Digital filter coefficients representing the denominator of the dis-
creet Transfer Function

Courier font MATLAB command, variable, routine, or program.
Courier font MATLAB filename or string variable

John L. Semmlow

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Contents

Preface

1 Introduction

Typical Measurement Systems
Transducers

Further Study: The Transducer
Analog Signal Processing
Sources of Variability: Noise

Electronic Noise
Signal-to-Noise Ratio

Analog Filters: Filter Basics
Filter Types
Filter Bandwidth
Filter Order
Filter Initial Sharpness

Analog-to-Digital Conversion: Basic Concepts
Analog-to-Digital Conversion Techniques

Quantization Error
Further Study: Successive Approximation

Time Sampling: Basics
Further Study: Buffering and Real-Time Data Processing

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Data Banks
Problems

2 Basic Concepts

Noise
Ensemble Averaging
MATLAB Implementation

Data Functions and Transforms
Convolution, Correlation, and Covariance

Convolution and the Impulse Response
Covariance and Correlation
MATLAB Implementation

Sampling Theory and Finite Data Considerations
Edge Effects

Problems

3 Spectral Analysis: Classical Methods

Introduction
The Fourier Transform: Fourier Series Analysis

Periodic Functions
Symmetry

Discrete Time Fourier Analysis
Aperiodic Functions

Frequency Resolution
Truncated Fourier Analysis: Data Windowing
Power Spectrum

MATLAB Implementation
Direct FFT and Windowing
The Welch Method for Power Spectral Density Determination
Widow Functions

Problems

4 Digital Filters

The Z-Transform
Digital Transfer Function
MATLAB Implementation

Finite Impulse Response (FIR) Filters
FIR Filter Design

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Derivative Operation: The Two-Point Central Difference
Algorithm

MATLAB Implementation
Infinite Impulse Response (IIR) Filters
Filter Design and Application Using the MATLAB Signal

Processing Toolbox
FIR Filters

Two-Stage FIR Filter Design
Three-Stage Filter Design

IIR Filters
Two-Stage IIR Filter Design
Three-Stage IIR Filter Design: Analog Style Filters

Problems

5 Spectral Analysis: Modern Techniques

Parametric Model-Based Methods
MATLAB Implementation

Non-Parametric Eigenanalysis Frequency Estimation
MATLAB Implementation

Problems

6 Time–Frequency Methods

Basic Approaches
Short-Term Fourier Transform: The Spectrogram
Wigner-Ville Distribution: A Special Case of Cohen’s Class
Choi-Williams and Other Distributions

Analytic Signal
MATLAB Implementation

The Short-Term Fourier Transform
Wigner-Ville Distribution
Choi-Williams and Other Distributions

Problems

7 The Wavelet Transform

Introduction
The Continuous Wavelet Transform

Wavelet Time—Frequency Characteristics
MATLAB Implementation

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The Discrete Wavelet Transform
Filter Banks

The Relationship Between Analytical Expressions and
Filter Banks

MATLAB Implementation
Denoising
Discontinuity Detection
Feature Detection: Wavelet Packets

Problems

8 Advanced Signal Processing Techniques:
Optimal and Adaptive Filters

Optimal Signal Processing: Wiener Filters
MATLAB Implementation

Adaptive Signal Processing
Adaptive Noise Cancellation
MATLAB Implementation

Phase Sensitive Detection
AM Modulation
Phase Sensitive Detectors
MATLAB Implementation

Problems

9 Multivariate Analyses: Principal Component Analysis
and Independent Component Analysis

Introduction
Principal Component Analysis

Order Selection
MATLAB Implementation

Data Rotation
Principal Component Analysis Evaluation

Independent Component Analysis
MATLAB Implementation

Problems

10 Fundamentals of Image Processing: MATLAB Image
Processing Toolbox

Image Processing Basics: MATLAB Image Formats
General Image Formats: Image Array Indexing

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Data Classes: Intensity Coding Schemes
Data Formats
Data Conversions
Image Display
Image Storage and Retrieval
Basic Arithmetic Operations

Advanced Protocols: Block Processing
Sliding Neighborhood Operations
Distinct Block Operations

Problems

11 Image Processing: Filters, Transformations,
and Registration

Spectral Analysis: The Fourier Transform
MATLAB Implementation

Linear Filtering
MATLAB Implementation

Filter Design
Spatial Transformations

MATLAB Implementation
Affine Transformations
General Affine Transformations
Projective Transformations

Image Registration
Unaided Image Registration
Interactive Image Registration

Problems

12 Image Segmentation

Pixel-Based Methods
Threshold Level Adjustment
MATLAB Implementation

Continuity-Based Methods
MATLAB Implementation

Multi-Thresholding
Morphological Operations

MATLAB Implementation
Edge-Based Segmentation

MATLAB Implementation
Problems

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

13 Image Reconstruction

CT, PET, and SPECT
Fan Beam Geometry
MATLAB Implementation

Radon Transform
Inverse Radon Transform: Parallel Beam Geometry
Radon and Inverse Radon Transform: Fan Beam Geometry

Magnetic Resonance Imaging
Basic Principles
Data Acquisition: Pulse Sequences
Functional MRI
MATLAB Implementation
Principal Component and Independent Component Analysis

Problems

Annotated Bibliography

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Annotated Bibliography

The following is a very selective list of books or articles that will be of value of in
providing greater depth and mathematical rigor to the material presented in this text.
Comments regarding the particular strengths of the reference are included.

Akansu, A. N. and Haddad, R. A., Multiresolution Signal Decomposition: Transforms,
subbands, wavelets. Academic Press, San Diego CA, 1992. A modern classic that
presents, among other things, some of the underlying theoretical aspects of wavelet
analysis.

Aldroubi A and Unser, M. (eds) Wavelets in Medicine and Biology, CRC Press, Boca
Raton, FL, 1996. Presents a variety of applications of wavelet analysis to biomedical
engineering.

Boashash, B. Time-Frequency Signal Analysis, Longman Cheshire Pty Ltd., 1992. Early
chapters provide a very useful introduction to time–frequency analysis followed by a
number of medical applications.

Boashash, B. and Black, P.J. An efficient real-time implementation of the Wigner-Ville
Distribution, IEEE Trans. Acoust. Speech Sig. Proc. ASSP-35:1611–1618, 1987.
Practical information on calculating the Wigner-Ville distribution.

Boudreaux-Bartels, G. F. and Murry, R. Time-frequency signal representations for bio-
medical signals. In: The Biomedical Engineering Handbook. J. Bronzino (ed.) CRC
Press, Boca Raton, Florida and IEEE Press, Piscataway, N.J., 1995. This article pres-
ents an exhaustive, or very nearly so, compilation of Cohen’s class of time-frequency
distributions.

Bruce, E. N. Biomedical Signal Processing and Signal Modeling, John Wiley and Sons,

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

New York, 2001. Rigorous treatment with more of an emphasis on linear systems
than signal processing. Introduces nonlinear concepts such as chaos.

Cichicki, A and Amari S. Adaptive Bilnd Signal and Image Processing: Learning Algo-
rithms and Applications, John Wiley and Sons, Inc. New York, 2002. Rigorous,
somewhat dense, treatment of a wide range of principal component and independent
component approaches. Includes disk.

Cohen, L. Time-frequency distributions—A review. Proc. IEEE 77:941–981, 1989.
Classic review article on the various time-frequency methods in Cohen’s class of
time–frequency distributions.

Ferrara, E. and Widrow, B. Fetal Electrocardiogram enhancement by time-sequenced
adaptive filtering. IEEE Trans. Biomed. Engr. BME-29:458–459, 1982. Early appli-
cation of adaptive noise cancellation to a biomedical engineering problem by one of
the founders of the field. See also Widrow below.

Friston, K. Statistical Parametric Mapping On-line at: http://www.fil.ion.ucl.ac.uk/spm/
course/note02/ Through discussion of practical aspects of fMRI analysis including
pre-processing, statistical methods, and experimental design. Based around SPM anal-
ysis software capabilities.

Haykin, S. Adaptive Filter Theory (2nd ed.), Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1991. The definitive text on adaptive filters including Weiner filters and gradient-
based algorithms.

Hyvärinen, A. Karhunen, J. and Oja, E. Independent Component Analysis, John Wiley
and Sons, Inc. New York, 2001. Fundamental, comprehensive, yet readable book on
independent component analysis. Also provides a good review of principal compo-
nent analysis.

Hubbard B.B. The World According to Wavelets (2nd ed.) A.K. Peters, Ltd. Natick, MA,
1998. Very readable introductory book on wavelengths including an excellent section
on the foyer transformed. Can be read by a non-signal processing friend.

Ingle, V.K. and Proakis, J. G. Digital Signal Processing with MATLAB, Brooks/Cole,
Inc. Pacific Grove, CA, 2000. Excellent treatment of classical signal processing meth-
ods including the Fourier transform and both FIR and IIR digital filters. Brief, but
informative section on adaptive filtering.

Jackson, J. E. A User’s Guide to Principal Components, John Wiley and Sons, New
York, 1991. Classic book providing everything you ever want to know about principal
component analysis. Also covers linear modeling and introduces factor analysis.

Johnson, D.D. Applied Multivariate Methods for Data Analysis, Brooks/Cole, Pacific
Grove, CA, 1988. Careful, detailed coverage of multivariate methods including prin-
cipal components analysis. Good coverage of discriminant analysis techniques.

Kak, A.C and Slaney M. Principles of Computerized Tomographic Imaging. IEEE Press,
New York, 1988. Thorough, understandable treatment of algorithms for reconstruc-
tion of tomographic images including both parallel and fan-beam geometry. Also
includes techniques used in reflection tomography as occurs in ultrasound imaging.

Marple, S.L. Digital Spectral Analysis with Applications, Prentice-Hall, Englewood
Cliffs, NJ, 1987. Classic text on modern spectral analysis methods. In-depth, rigorous
treatment of Fourier transform, parametric modeling methods (including AR and
ARMA), and eigenanalysis-based techniques.

Rao, R.M. and Bopardikar, A.S. Wavelet Transforms: Introduction to Theory and Appli-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

cations, Addison-Wesley, Inc., Reading, MA, 1998. Good development of wavelet
analysis including both the continuous and discreet wavelet transforms.

Shiavi, R Introduction to Applied Statistical Signal Analysis, (2nd ed), Academic Press,
San Diego, CA, 1999. Emphasizes spectral analysis of signals buried in noise. Excel-
lent coverage of Fourier analysis, and autoregressive methods. Good introduction to
statistical signal processing concepts.

Sonka, M., Hlavac V., and Boyle R. Image processing, analysis, and machine vision.
Chapman and Hall Computing, London, 1993. A good description of edge-based and
other segmentation methods.

Strang, G and Nguyen, T. Wavelets and Filter Banks, Wellesley-Cambridge Press,
Wellesley, MA, 1997. Thorough coverage of wavelet filter banks including extensive
mathematical background.

Stearns, S.D. and David, R.A Signal Processing Algorithms in MATLAB, Prentice Hall,
Upper Saddle River, NJ, 1996. Good treatment of the classical Fourier transform and
digital filters. Also covers the LMS adaptive filter algorithm. Disk enclosed.

Wickerhauser, M.V. Adapted Wavelet Analysis from Theory to Software, A.K. Peters,
Ltd. and IEEE Press, Wellesley, MA, 1994. Rigorous, extensive treatment of wavelet
analysis.

Widrow, B. Adaptive noise cancelling: Principles and applications. Proc IEEE 63:1692–
1716, 1975. Classic original article on adaptive noise cancellation.

Wright S. Nuclear Magnetic Resonance and Magnetic Resonance Imaging. In: Introduc-
tion to Biomedical Engineering (Enderle, Blanchard and Bronzino, Eds.) Academic
Press, San Diego, CA, 2000. Good mathematical development of the physics of MRI
using classical concepts.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

1

Introduction

TYPICAL MEASUREMENT SYSTEMS

A schematic representation of a typical biomedical measurement system is
shown in Figure 1.1. Here we use the term measurement in the most general
sense to include image acquisition or the acquisition of other forms of diagnostic
information. The physiological process of interest is converted into an electric

FIGURE 1.1 Schematic representation of typical bioengineering measurement
system.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

signal via the transducer (Figure 1.1). Some analog signal processing is usually
required, often including amplification and lowpass (or bandpass) filtering.
Since most signal processing is easier to implement using digital methods, the
analog signal is converted to digital format using an analog-to-digital converter.
Once converted, the signal is often stored, or buffered, in memory to facilitate
subsequent signal processing. Alternatively, in some real-time* applications, the
incoming data must be processed as quickly as possible with minimal buffering,
and may not need to be permanently stored. Digital signal processing algorithms
can then be applied to the digitized signal. These signal processing techniques
can take a wide variety of forms and various levels of sophistication, and they
make up the major topic area of this book. Some sort of output is necessary in
any useful system. This usually takes the form of a display, as in imaging sys-
tems, but may be some type of an effector mechanism such as in an automated
drug delivery system.

With the exception of this chapter, this book is limited to digital signal
and image processing concerns. To the extent possible, each topic is introduced
with the minimum amount of information required to use and understand the
approach, and enough information to apply the methodology in an intelligent
manner. Understanding of strengths and weaknesses of the various methods is
also covered, particularly through discovery in the problems at the end of the
chapter. Hence, the problems at the end of each chapter, most of which utilize
the MATLABTM software package (Waltham, MA), constitute an integral part
of the book: a few topics are introduced only in the problems.

A fundamental assumption of this text is that an in-depth mathematical
treatment of signal processing methodology is not essential for effective and
appropriate application of these tools. Thus, this text is designed to develop
skills in the application of signal and image processing technology, but may not
provide the skills necessary to develop new techniques and algorithms. Refer-
ences are provided for those who need to move beyond application of signal
and image processing tools to the design and development of new methodology.
In subsequent chapters, each major section is followed by a section on imple-
mentation using the MATLAB software package. Fluency with the MATLAB
language is assumed and is essential for the use of this text. Where appropriate,
a topic area may also include a more in-depth treatment including some of the
underlying mathematics.

*Learning the vocabulary is an important part of mastering a discipline. In this text we highlight,
using italics, terms commonly used in signal and image processing. Sometimes the highlighted term
is described when it is introduced, but occasionally determination of its definition is left to responsi-
bility of the reader. Real-time processing and buffering are described in the section on analog-to-
digital conversion.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

TRANSDUCERS

A transducer is a device that converts energy from one form to another. By this
definition, a light bulb or a motor is a transducer. In signal processing applica-
tions, the purpose of energy conversion is to transfer information, not to trans-
form energy as with a light bulb or a motor. In measurement systems, all trans-
ducers are so-called input transducers, they convert non-electrical energy into
an electronic signal. An exception to this is the electrode, a transducer that
converts electrical energy from ionic to electronic form. Usually, the output of
a biomedical transducer is a voltage (or current) whose amplitude is proportional
to the measured energy.

The energy that is converted by the input transducer may be generated by
the physiological process itself, indirectly related to the physiological process,
or produced by an external source. In the last case, the externally generated
energy interacts with, and is modified by, the physiological process, and it is
this alteration that produces the measurement. For example, when externally
produced x-rays are transmitted through the body, they are absorbed by the
intervening tissue, and a measurement of this absorption is used to construct an
image. Many diagnostically useful imaging systems are based on this external
energy approach.

In addition to passing external energy through the body, some images are
generated using the energy of radioactive emissions of radioisotopes injected
into the body. These techniques make use of the fact that selected, or tagged,
molecules will collect in specific tissue. The areas where these radioisotopes
collect can be mapped using a gamma camera, or with certain short-lived iso-
topes, better localized using positron emission tomography (PET).

Many physiological processes produce energy that can be detected di-
rectly. For example, cardiac internal pressures are usually measured using a
pressure transducer placed on the tip of catheter introduced into the appropriate
chamber of the heart. The measurement of electrical activity in the heart, mus-
cles, or brain provides other examples of the direct measurement of physiologi-
cal energy. For these measurements, the energy is already electrical and only
needs to be converted from ionic to electronic current using an electrode. These
sources are usually given the term ExG, where the ‘x’ represents the physiologi-
cal process that produces the electrical energy: ECG–electrocardiogram, EEG–
electroencephalogram; EMG–electromyogram; EOG–electrooculargram, ERG–
electroretiniogram; and EGG–electrogastrogram. An exception to this terminology
is the electrical activity generated by this skin which is termed the galvanic skin
response, GSR. Typical physiological energies and the applications that use
these energy forms are shown in Table 1.1

The biotransducer is often the most critical element in the system since it
constitutes the interface between the subject or life process and the rest of the

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

TABLE 1.1 Energy Forms and Related Direct Measurements

Energy Measurement

Mechanical
length, position, and velocity muscle movement, cardiovascular pressures,

muscle contractility
force and pressure valve and other cardiac sounds

Heat body temperature, thermography
Electrical EEG, ECG, EMG, EOG, ERG, EGG, GSR
Chemical ion concentrations

system. The transducer establishes the risk, or noninvasiveness, of the overall
system. For example, an imaging system based on differential absorption of
x-rays, such as a CT (computed tomography) scanner is considered more inva-
sive than an imagining system based on ultrasonic reflection since CT uses
ionizing radiation that may have an associated risk. (The actual risk of ionizing
radiation is still an open question and imaging systems based on x-ray absorp-
tion are considered minimally invasive.) Both ultrasound and x-ray imaging
would be considered less invasive than, for example, monitoring internal cardiac
pressures through cardiac catherization in which a small catheter is treaded into
the heart chambers. Indeed many of the outstanding problems in biomedical
measurement, such as noninvasive measurement of internal cardiac pressures,
or the noninvasive measurement of intracranial pressure, await an appropriate
(and undoubtedly clever) transducer mechanism.

Further Study: The Transducer

The transducer often establishes the major performance criterion of the system.
In a later section, we list and define a number of criteria that apply to measure-
ment systems; however, in practice, measurement resolution, and to a lesser
extent bandwidth, are generally the two most important and troublesome mea-
surement criteria. In fact, it is usually possible to trade-off between these two
criteria. Both of these criteria are usually established by the transducer. Hence,
although it is not the topic of this text, good system design usually calls for care
in the choice or design of the transducer element(s). An efficient, low-noise
transducer design can often reduce the need for extensive subsequent signal
processing and still produce a better measurement.

Input transducers use one of two different fundamental approaches: the
input energy causes the transducer element to generate a voltage or current, or
the input energy creates a change in the electrical properties (i.e., the resistance,
inductance, or capacitance) of the transducer element. Most optical transducers

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

use the first approach. Photons strike a photo sensitive material producing free
electrons (or holes) that can then be detected as an external current flow. Piezo-
electric devices used in ultrasound also generate a charge when under mechani-
cal stress. Many examples can be found of the use of the second category, a
change in some electrical property. For example, metals (and semiconductors)
undergo a consistent change in resistance with changes in temperature, and most
temperature transducers utilize this feature. Other examples include the strain
gage, which measures mechanical deformation using the small change in resis-
tance that occurs when the sensing material is stretched.

Many critical problems in medical diagnosis await the development of
new approaches and new transducers. For example, coronary artery disease is a
major cause of death in developed countries, and its treatment would greatly
benefit from early detection. To facilitate early detection, a biomedical instru-
mentation system is required that is inexpensive and easy to operate so that it
could be used for general screening. In coronary artery disease, blood flow to
the arteries of the heart (i.e., coronaries) is reduced due to partial or complete
blockage (i.e., stenoses). One conceptually simple and inexpensive approach is
to detect the sounds generated by turbulent blood flow through partially in-
cluded coronary arteries (called bruits when detected in other arteries such as
the carotids). This approach requires a highly sensitive transducer(s), in this case
a cardiac microphone, as well as advanced signal processing methods. Results of
efforts based on this approach are ongoing, and the problem of noninvasive
detection of coronary artery disease is not yet fully solved.

Other holy grails of diagnostic cardiology include noninvasive measure-
ment of cardiac output (i.e., volume of blood flow pumped by the heart per unit
time) and noninvasive measurement of internal cardiac pressures. The former
has been approached using Doppler ultrasound, but this technique has not yet
been accepted as reliable. Financial gain and modest fame awaits the biomedical
engineer who develops instrumentation that adequately addresses any of these
three outstanding measurement problems.

ANALOG SIGNAL PROCESSING

While the most extensive signal processing is usually performed on digitized
data using algorithms implemented in software, some analog signal processing
is usually necessary. The first analog stage depends on the basic transducer
operation. If the transducer is based on a variation in electrical property, the
first stage must convert that variation in electrical property into a variation in
voltage. If the transducer element is single ended, i.e., only one element changes,
then a constant current source can be used and the detector equation follows
ohm’s law:

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Vout = I(Z + ∆Z) where ∆Z = f(input energy). (1)

Figure 1.2 shows an example of a single transducer element used in opera-
tional amplifier circuit that provides constant current operation. The transducer
element in this case is a thermistor, an element that changes its resistance with
temperature. Using circuit analysis, it is easy to show that the thermistor is
driven by a constant current of VS /R amps. The output, Vout, is [(RT + ∆RT)/R]VS.
Alternatively, an approximate constant current source can be generated using a
voltage source and a large series resistor, RS, where RS >> ∆R.

If the transducer can be configured differentially so that one element in-
creases with increasing input energy while the other element decreases, the
bridge circuit is commonly used as a detector. Figure 1.3 shows a device made
to measure intestinal motility using strain gages. A bridge circuit detector is
used in conjunction with a pair of differentially configured strain gages: when
the intestine contracts, the end of the cantilever beam moves downward and the
upper strain gage (visible) is stretched and increases in resistance while the
lower strain gage (not visible) compresses and decreases in resistance. The out-
put of the bridge circuit can be found from simple circuit analysis to be: Vout =
VS∆R/2, where VS is the value of the source voltage. If the transducer operates
based on a change in inductance or capacitance, the above techniques are still
useful except a sinusoidal voltage source must be used.

If the transducer element is a voltage generator, the first stage is usually
an amplifier. If the transducer produces a current output, as is the case in many
electromagnetic detectors, then a current-to-voltage amplifier (also termed a
transconductance amplifier) is used to produce a voltage output.

FIGURE 1.2 A thermistor (a semiconductor that changes resistance as a function
of temperature) used in a constant current configuration.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 1.3 A strain gage probe used to measure motility of the intestine. The
bridge circuit is used to convert differential change in resistance from a pair of
strain gages into a change in voltage.

Figure 1.4 shows a photodiode transducer used with a transconductance
amplifier. The output voltage is proportional to the current through the photodi-
ode: Vout = RfIdiode. Bandwidth can be increased at the expense of added noise by
reverse biasing the photodiode with a small voltage.* More sophisticated detec-
tion systems such as phase sensitive detectors (PSD) can be employed in some
cases to improve noise rejection. A software implementation of PSD is de-
scribed in Chapter 8. In a few circumstances, additional amplification beyond
the first stage may be required.

SOURCES OF VARIABILITY: NOISE

In this text, noise is a very general and somewhat relative term: noise is what
you do not want and signal is what you do want. Noise is inherent in most
measurement systems and often the limiting factor in the performance of a medi-
cal instrument. Indeed, many signal processing techniques are motivated by the

*A bias voltage improves movement of charge through the diode decreasing the response time.
From −10 to −50 volts are used, except in the case of avalanche photodiodes where a higher voltage
is required.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 1.4 Photodiode used in a transconductance amplifier.

desire to minimize the variability in the measurement. In biomedical measure-
ments, variability has four different origins: (1) physiological variability; (2) en-
vironmental noise or interference; (3) transducer artifact; and (4) electronic noise.
Physiological variability is due to the fact that the information you desire is based
on a measurement subject to biological influences other than those of interest.
For example, assessment of respiratory function based on the measurement of
blood pO2 could be confounded by other physiological mechanisms that alter
blood pO2. Physiological variability can be a very difficult problem to solve,
sometimes requiring a totally different approach.

Environmental noise can come from sources external or internal to the
body. A classic example is the measurement of fetal ECG where the desired
signal is corrupted by the mother’s ECG. Since it is not possible to describe the
specific characteristics of environmental noise, typical noise reduction tech-
niques such as filtering are not usually successful. Sometimes environmental
noise can be reduced using adaptive techniques such as those described in Chap-
ter 8 since these techniques do not require prior knowledge of noise characteris-
tics. Indeed, one of the approaches described in Chapter 8, adaptive noise can-
cellation, was initially developed to reduce the interference from the mother in
the measurement of fetal ECG.

Transducer artifact is produced when the transducer responds to energy
modalities other than that desired. For example, recordings of electrical poten-
tials using electrodes placed on the skin are sensitive to motion artifact, where
the electrodes respond to mechanical movement as well as the desired electrical
signal. Transducer artifacts can sometimes be successfully addressed by modifi-
cations in transducer design. Aerospace research has led to the development of
electrodes that are quite insensitive to motion artifact.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Unlike the other sources of variability, electronic noise has well-known
sources and characteristics. Electronic noise falls into two broad classes: thermal
or Johnson noise, and shot noise. The former is produced primarily in resistor
or resistance materials while the latter is related to voltage barriers associated
with semiconductors. Both sources produce noise with a broad range of frequen-
cies often extending from DC to 1012–1013 Hz. Such a broad spectrum noise is
referred to as white noise since it contains energy at all frequencies (or at least
all the frequencies of interest to biomedical engineers). Figure 1.5 shows a plot
of power density versus frequency for white noise calculated from a noise wave-
form (actually an array of random numbers) using the spectra analysis methods
described in Chapter 3. Note that its energy is fairly constant across the spectral
range.

The various sources of noise or variability along with their causes and
possible remedies are presented in Table 1.2 below. Note that in three out of
four instances, appropriate transducer design was useful in the reduction of the

FIGURE 1.5 Power density (power spectrum) of digitizied white noise showing a
fairly constant value over frequency.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

TABLE 1.2 Sources of Variability

Source Cause Potential Remedy

Physiological Measurement only indi- Modify overall approach
variability rectly related to variable

of interest
Environmental Other sources of similar Noise cancellation
(internal or external) energy form Transducer design

Artifact Transducer responds to Transducer design
other energy sources

Electronic Thermal or shot noise Transducer or electronic
design

variability or noise. This demonstrates the important role of the transducer in
the overall performance of the instrumentation system.

Electronic Noise

Johnson or thermal noise is produced by resistance sources, and the amount of
noise generated is related to the resistance and to the temperature:

VJ = √4kT R B volts (2)

where R is the resistance in ohms, T the temperature in degrees Kelvin, and k
is Boltzman’s constant (k = 1.38 × 10−23 J/°K).* B is the bandwidth, or range of
frequencies, that is allowed to pass through the measurement system. The sys-
tem bandwidth is determined by the filter characteristics in the system, usually
the analog filtering in the system (see the next section).

If noise current is of interest, the equation for Johnson noise current can
be obtained from Eq. (2) in conjunction with Ohm’s law:

IJ = √4kT B/R amps (3)

Since Johnson noise is spread evenly over all frequencies (at least in the-
ory), it is not possible to calculate a noise voltage or current without specifying
B, the frequency range. Since the bandwidth is not always known in advance, it
is common to describe a relative noise; specifically, the noise that would occur
if the bandwidth were 1.0 Hz. Such relative noise specification can be identified
by the unusual units required: volts/√Hz or amps/√Hz.

*A temperature of 310 °K is often used as room temperature, in which case 4kT = 1.7 × 10−20 J.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Shot noise is defined as a current noise and is proportional to the baseline
current through a semiconductor junction:

Is = √2q Id B amps (4)

where q is the charge on an electron (1.662 × 10−19 coulomb), and Id is the
baseline semiconductor current. In photodetectors, the baseline current that gen-
erates shot noise is termed the dark current, hence, the symbol Id in Eq. (4).
Again, since the noise is spread across all frequencies, the bandwidth, BW, must
be specified to obtain a specific value, or a relative noise can be specified in
amps/√Hz.

When multiple noise sources are present, as is often the case, their voltage
or current contributions to the total noise add as the square root of the sum of
the squares, assuming that the individual noise sources are independent. For
voltages:

VT = (V 2
1 + V 2

2 + V 2
3 + � � � + V 2

N)1/2 (5)

A similar equation applies to current. Noise properties are discussed fur-
ther in Chapter 2.

Signal-to-Noise Ratio

Most waveforms consist of signal plus noise mixed together. As noted pre-
viously, signal and noise are relative terms, relative to the task at hand: the
signal is that portion of the waveform of interest while the noise is everything
else. Often the goal of signal processing is to separate out signal from noise, to
identify the presence of a signal buried in noise, or to detect features of a signal
buried in noise.

The relative amount of signal and noise present in a waveform is usually
quantified by the signal-to-noise ratio, SNR. As the name implies, this is simply
the ratio of signal to noise, both measured in RMS (root-mean-squared) ampli-
tude. The SNR is often expressed in "db" (short for decibels) where:

SNR = 20 log �Signal
Noise � (6)

To convert from db scale to a linear scale:

SNRlinear = 10db/20 (7)

For example, a ratio of 20 db means that the RMS value of the signal was
10 times the RMS value of the noise (1020/20 = 10), +3 db indicates a ratio of
1.414 (103/20 = 1.414), 0 db means the signal and noise are equal in RMS value,

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

−3 db means that the ratio is 1/1.414, and −20 db means the signal is 1/10 of
the noise in RMS units. Figure 1.6 shows a sinusoidal signal with various
amounts of white noise. Note that is it is difficult to detect presence of the signal
visually when the SNR is −3 db, and impossible when the SNR is −10 db. The
ability to detect signals with low SNR is the goal and motivation for many of
the signal processing tools described in this text.

ANALOG FILTERS: FILTER BASICS

The analog signal processing circuitry shown in Figure 1.1 will usually contain
some filtering, both to remove noise and appropriately condition the signal for

FIGURE 1.6 A 30 Hz sine wave with varying amounts of added noise. The sine
wave is barely discernable when the SNR is −3db and not visible when the SNR
is −10 db.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

analog-to-digital conversion (ADC). It is this filtering that usually establishes
the bandwidth of the system for noise calculations [the bandwidth used in Eqs.
(2)–(4)]. As shown later, accurate conversion of the analog signal to digital
format requires that the signal contain frequencies no greater than 1⁄2 the sam-
pling frequency. This rule applies to the analog waveform as a whole, not just
the signal of interest. Since all transducers and electronics produce some noise
and since this noise contains a wide range of frequencies, analog lowpass filter-
ing is usually essential to limit the bandwidth of the waveform to be converted.
Waveform bandwidth and its impact on ADC will be discussed further in Chap-
ter 2. Filters are defined by several properties: filter type, bandwidth, and attenu-
ation characteristics. The last can be divided into initial and final characteristics.
Each of these properties is described and discussed in the next section.

Filter Types

Analog filters are electronic devices that remove selected frequencies. Filters
are usually termed according to the range of frequencies they do not suppress.
Thus, lowpass filters allow low frequencies to pass with minimum attenuation
while higher frequencies are attenuated. Conversely, highpass filters pass high
frequencies, but attenuate low frequencies. Bandpass filters reject frequencies
above and below a passband region. An exception to this terminology is the
bandstop filter, which passes frequencies on either side of a range of attenuated
frequencies.

Within each class, filters are also defined by the frequency ranges that
they pass, termed the filter bandwidth, and the sharpness with which they in-
crease (or decrease) attenuation as frequency varies. Spectral sharpness is speci-
fied in two ways: as an initial sharpness in the region where attenuation first
begins and as a slope further along the attenuation curve. These various filter
properties are best described graphically in the form of a frequency plot (some-
times referred to as a Bode plot), a plot of filter gain against frequency. Filter
gain is simply the ratio of the output voltage divided by the input voltage, Vout/
Vin, often taken in db. Technically this ratio should be defined for all frequencies
for which it is nonzero, but practically it is usually stated only for the frequency
range of interest. To simplify the shape of the resultant curves, frequency plots
sometimes plot gain in db against the log of frequency.* When the output/input
ratio is given analytically as a function of frequency, it is termed the transfer
function. Hence, the frequency plot of a filter’s output/input relationship can be

*When gain is plotted in db, it is in logarithmic form, since the db operation involves taking the
log [Eq. (6)]. Plotting gain in db against log frequency puts the two variables in similar metrics and
results in straighter line plots.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

viewed as a graphical representation of the transfer function. Frequency plots
for several different filter types are shown in Figure 1.7.

Filter Bandwidth

The bandwidth of a filter is defined by the range of frequencies that are not
attenuated. These unattenuated frequencies are also referred to as passband fre-
quencies. Figure 1.7A shows that the frequency plot of an ideal filter, a filter
that has a perfectly flat passband region and an infinite attenuation slope. Real
filters may indeed be quite flat in the passband region, but will attenuate with a

FIGURE 1.7 Frequency plots of ideal and realistic filters. The frequency plots
shown here have a linear vertical axis, but often the vertical axis is plotted in db.
The horizontal axis is in log frequency. (A) Ideal lowpass filter. (B) Realistic low-
pass filter with a gentle attenuation characteristic. (C) Realistic lowpass filter with
a sharp attenuation characteristic. (D) Bandpass filter.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

more gentle slope, as shown in Figure 1.7B. In the case of the ideal filter, Figure
1.7A, the bandwidth or region of unattenuated frequencies is easy to determine;
specifically, it is between 0.0 and the sharp attenuation at fc Hz. When the
attenuation begins gradually, as in Figure 1.7B, defining the passband region is
problematic. To specify the bandwidth in this filter we must identify a frequency
that defines the boundary between the attenuated and non-attenuated portion of
the frequency characteristic. This boundary has been somewhat arbitrarily de-
fined as the frequency when the attenuation is 3 db.* In Figure 1.7B, the filter
would have a bandwidth of 0.0 to fc Hz, or simply fc Hz. The filter in Figure
1.7C has a sharper attenuation characteristic, but still has the same bandwidth
(fc Hz). The bandpass filter of Figure 1.7D has a bandwidth of fh − fl Hz.

Filter Order

The slope of a filter’s attenuation curve is related to the complexity of the filter:
more complex filters have a steeper slope better approaching the ideal. In analog
filters, complexity is proportional to the number of energy storage elements in
the circuit (which could be either inductors or capacitors, but are generally ca-
pacitors for practical reasons). Using standard circuit analysis, it can be shown
that each energy storage device leads to an additional order in the polynomial
of the denominator of the transfer function that describes the filter. (The denom-
inator of the transfer function is also referred to as the characteristic equation.)
As with any polynomial equation, the number of roots of this equation will
depend on the order of the equation; hence, filter complexity (i.e., the number
of energy storage devices) is equivalent to the number of roots in the denomina-
tor of the Transfer Function. In electrical engineering, it has long been common
to call the roots of the denominator equation poles. Thus, the complexity of the
filter is also equivalent to the number of poles in the transfer function. For
example, a second-order or two-pole filter has a transfer function with a second-
order polynomial in the denominator and would contain two independent energy
storage elements (very likely two capacitors).

Applying asymptote analysis to the transfer function, is not difficult to
show that the slope of a second-order lowpass filter (the slope for frequencies
much greater than the cutoff frequency, fc) is 40 db/decade specified in log-log
terms. (The unusual units, db/decade are a result of the log-log nature of the
typical frequency plot.) That is, the attenuation of this filter increases linearly
on a log-log scale by 40 db (a factor of 100 on a linear scale) for every order
of magnitude increase in frequency. Generalizing, for each filter pole (or order)

*This defining point is not entirely arbitrary because when the signal is attenuated 3 db, its ampli-
tude is 0.707 (10−3/20) of what it was in the passband region and it has half the power of the unattenu-
ated signal (since 0.7072 = 1/2). Accordingly this point is also known as the half-power point.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

the downward slope (sometimes referred to as the rolloff) is increased by 20
db/decade. Figure 1.8 shows the frequency plot of a second-order (two-pole
with a slope of 40 db/decade) and a 12th-order lowpass filter, both having the
same cutoff frequency, fc, and hence, the same bandwidth. The steeper slope or
rolloff of the 12-pole filter is apparent. In principle, a 12-pole lowpass filter
would have a slope of 240 db/decade (12 × 20 db/decade). In fact, this fre-
quency characteristic is theoretical because in real analog filters parasitic com-
ponents and inaccuracies in the circuit elements limit the actual attenuation that
can be obtained. The same rationale applies to highpass filters except that the
frequency plot decreases with decreasing frequency at a rate of 20 db/decade
for each highpass filter pole.

Filter Initial Sharpness

As shown in Figure 1.8, both the slope and the initial sharpness increase with
filter order (number of poles), but increasing filter order also increases the com-

FIGURE 1.8 Frequency plot of a second-order (2-pole) and a 12th-order lowpass
filter with the same cutoff frequency. The higher order filter more closely ap-
proaches the sharpness of an ideal filter.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

plexity, hence the cost, of the filter. It is possible to increase the initial sharpness
of the filter’s attenuation characteristics without increasing the order of the filter,
if you are willing to except some unevenness, or ripple, in the passband. Figure
1.9 shows two lowpass, 4th-order filters, differing in the initial sharpness of the
attenuation. The one marked Butterworth has a smooth passband, but the initial
attenuation is not as sharp as the one marked Chebychev; which has a passband
that contains ripples. This property of analog filters is also seen in digital filters
and will be discussed in detail in Chapter 4.

FIGURE 1.9 Two filters having the same order (4-pole) and cutoff frequency, but
differing in the sharpness of the initial slope. The filter marked Chebychev has a
steeper initial slope or rolloff, but contains ripples in the passband.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ANALOG-TO-DIGITAL CONVERSION: BASIC CONCEPTS

The last analog element in a typical measurement system is the analog-to-digital
converter (ADC), Figure 1.1. As the name implies, this electronic component
converts an analog voltage to an equivalent digital number. In the process of
analog-to-digital conversion an analog or continuous waveform, x(t), is con-
verted into a discrete waveform, x(n), a function of real numbers that are defined
only at discrete integers, n. To convert a continuous waveform to digital format
requires slicing the signal in two ways: slicing in time and slicing in amplitude
(Figure 1.10).

Slicing the signal into discrete points in time is termed time sampling or
simply sampling. Time slicing samples the continuous waveform, x(t), at dis-
crete prints in time, nTs, where Ts is the sample interval. The consequences of
time slicing are discussed in the next chapter. The same concept can be applied
to images wherein a continuous image such as a photograph that has intensities
that vary continuously across spatial distance is sampled at distances of S mm.
In this case, the digital representation of the image is a two-dimensional array.
The consequences of spatial sampling are discussed in Chapter 11.

Since the binary output of the ADC is a discrete integer while the analog
signal has a continuous range of values, analog-to-digital conversion also re-
quires the analog signal to be sliced into discrete levels, a process termed quanti-
zation, Figure 1.10. The equivalent number can only approximate the level of

FIGURE 1.10 Converting a continuous signal (solid line) to discrete format re-
quires slicing the signal in time and amplitude. The result is a series of discrete
points (X’s) that approximate the original signal.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

the analog signal, and the degree of approximation will depend on the range of
binary numbers and the amplitude of the analog signal. For example, if the
output of the ADC is an 8-bit binary number capable of 28 or 256 discrete states,
and the input amplitude range is 0.0–5.0 volts, then the quantization interval
will be 5/256 or 0.0195 volts. If, as is usually the case, the analog signal is time
varying in a continuous manner, it must be approximated by a series of binary
numbers representing the approximate analog signal level at discrete points in
time (Figure 1.10). The errors associated with amplitude slicing, or quantization,
are described in the next section, and the potential error due to sampling is
covered in Chapter 2. The remainder of this section briefly describes the hard-
ware used to achieve this approximate conversion.

Analog-to-Digital Conversion Techniques

Various conversion rules have been used, but the most common is to convert
the voltage into a proportional binary number. Different approaches can be used
to implement the conversion electronically; the most common is the successive
approximation technique described at the end of this section. ADC’s differ in
conversion range, speed of conversion, and resolution. The range of analog volt-
ages that can be converted is frequently software selectable, and may, or may
not, include negative voltages. Typical ranges are from 0.0–10.0 volts or less,
or if negative values are possible ± 5.0 volts or less. The speed of conversion
is specified in terms of samples per second, or conversion time. For example,
an ADC with a conversion time of 10 µsec should, logically, be able to operate
at up to 100,000 samples per second (or simply 100 kHz). Typical conversion
rates run up to 500 kHz for moderate cost converters, but off-the-shelf converters
can be obtained with rates up to 10–20 MHz. Except for image processing
systems, lower conversion rates are usually acceptable for biological signals.
Even image processing systems may use downsampling techniques to reduce
the required ADC conversion rate and, hence, the cost.

A typical ADC system involves several components in addition to the
actual ADC element, as shown in Figure 1.11. The first element is an N-to-1
analog switch that allows multiple input channels to be converted. Typical ADC
systems provide up to 8 to 16 channels, and the switching is usually software-
selectable. Since a single ADC is doing the conversion for all channels, the
conversion rate for any given channel is reduced in proportion to the number of
channels being converted. Hence, an ADC system with converter element that
had a conversion rate of 50 kHz would be able to sample each of eight channels
at a theoretical maximum rate of 50/8 = 6.25 kHz.

The Sample and Hold is a high-speed switch that momentarily records the
input signal, and retains that signal value at its output. The time the switch is
closed is termed the aperture time. Typical values range around 150 ns, and,
except for very fast signals, can be considered basically instantaneous. This

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 1.11 Block diagram of a typical analog-to-digital conversion system.

instantaneously sampled voltage value is held (as a charge on a capacitor) while
the ADC element determines the equivalent binary number. Again, it is the
ADC element that determines the overall speed of the conversion process.

Quantization Error

Resolution is given in terms of the number of bits in the binary output with the
assumption that the least significant bit (LSB) in the output is accurate (which
may not always be true). Typical converters feature 8-, 12-, and 16-bit output
with 12 bits presenting a good compromise between conversion resolution and
cost. In fact, most signals do not have a sufficient signal-to-noise ratio to justify
a higher resolution; you are simply obtaining a more accurate conversion of the
noise. For example, assuming that converter resolution is equivalent to the LSB,
then the minimum voltage that can be resolved is the same as the quantization
voltage described above: the voltage range divided by 2N, where N is the number
of bits in the binary output. The resolution of a 5-volt, 12-bit ADC is 5.0/212 =
5/4096 = 0.0012 volts. The dynamic range of a 12-bit ADC, the range from the
smallest to the largest voltage it can convert, is from 0.0012 to 5 volts: in db
this is 20 * log*1012* = 167 db. Since typical signals, especially those of biologi-
cal origin, have dynamic ranges rarely exceeding 60 to 80 db, a 12-bit converter
with the dynamic range of 167 db may appear to be overkill. However, having
this extra resolution means that not all of the range need be used, and since 12-
bit ADC’s are only marginally more expensive than 8-bit ADC’s they are often
used even when an 8-bit ADC (with dynamic range of over 100 DB, would be
adequate). A 12-bit output does require two bytes to store and will double the
memory requirements over an 8-bit ADC.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The number of bits used for conversion sets a lower limit on the resolu-
tion, and also determines the quantization error (Figure 1.12). This error can be
thought of as a noise process added to the signal. If a sufficient number of
quantization levels exist (say N > 64), the distortion produced by quantization
error may be modeled as additive independent white noise with zero mean with
the variance determined by the quantization step size, δ = VMAX/2N. Assuming
that the error is uniformly distributed between −δ/2 +δ/2, the variance, σ, is:

σ = ∫
δ/2

−δ/2 η
2/δ dη = V 2

Max (2−2N)/12 (8)

Assuming a uniform distribution, the RMS value of the noise would be
just twice the standard deviation, σ.

Further Study: Successive Approximation

The most popular analog-to-digital converters use a rather roundabout strategy
to find the binary number most equivalent to the input analog voltage—a digi-
tal-to-analog converter (DAC) is placed in a feedback loop. As shown Figure
1.13, an initial binary number stored in the buffer is fed to a DAC to produce a

FIGURE 1.12 Quantization (amplitude slicing) of a continuous waveform. The
lower trace shows the error between the quantized signal and the input.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 1.13 Block diagram of an analog-to-digital converter. The input analog
voltage is compared with the output of a digital-to-analog converter. When the
two voltages match, the number held in the binary buffer is equivalent to the input
voltage with the resolution of the converter. Different strategies can be used to
adjust the contents of the binary buffer to attain a match.

proportional voltage, VDAC. This DAC voltage, VDAC, is then compared to the
input voltage, and the binary number in the buffer is adjusted until the desired
level of match between VDAC and Vin is obtained. This approach begs the question
“How are DAC’s constructed?” In fact, DAC’s are relatively easy to construct
using a simple ladder network and the principal of current superposition.

The controller adjusts the binary number based on whether or not the
comparator finds the voltage out of the DAC, VDAC, to be greater or less than
the input voltage, Vin. One simple adjustment strategy is to increase the binary
number by one each cycle if VDAC < Vin, or decrease it otherwise. This so-called
tracking ADC is very fast when Vin changes slowly, but can take many cycles
when Vin changes abruptly (Figure 1.14). Not only can the conversion time be
quite long, but it is variable since it depends on the dynamics of the input signal.
This strategy would not easily allow for sampling an analog signal at a fixed
rate due to the variability in conversion time.

An alternative strategy termed successive approximation allows the con-
version to be done at a fixed rate and is well-suited to digital technology. The
successive approximation strategy always takes the same number of cycles irre-
spective of the input voltage. In the first cycle, the controller sets the most
significant bit (MSB) of the buffer to 1; all others are cleared. This binary
number is half the maximum possible value (which occurs when all the bits are

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 1.14 Voltage waveform of an ADC that uses a tracking strategy. The
ADC voltage (solid line) follows the input voltage (dashed line) fairly closely when
the input voltage varies slowly, but takes many cycles to “catch up” to an abrupt
change in input voltage.

1), so the DAC should output a voltage that is half its maximum voltage—that
is, a voltage in the middle of its range. If the comparator tells the controller that
Vin > VDAC, then the input voltage, Vin, must be greater than half the maximum
range, and the MSB is left set. If Vin < VDAC, then that the input voltage is in the
lower half of the range and the MSB is cleared (Figure 1.15). In the next cycle,
the next most significant bit is set, and the same comparison is made and the
same bit adjustment takes place based on the results of the comparison (Figure
1.15).

After N cycles, where N is the number of bits in the digital output, the
voltage from the DAC, VDAC, converges to the best possible fit to the input
voltage, Vin. Since Vin � VDAC, the number in the buffer, which is proportional
to VDAC, is the best representation of the analog input voltage within the resolu-
tion of the converter. To signal the end of the conversion process, the ADC puts

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 1.15 Vin and VDAC in a 6-bit ADC using the successive approximation
strategy. In the first cycle, the MSB is set (solid line) since Vin > VDAC . In the next
two cycles, the bit being tested is cleared because Vin < VDAC when this bit was
set. For the fourth and fifth cycles the bit being tested remained set and for the
last cycle it was cleared. At the end of the sixth cycle a conversion complete flag
is set to signify the end of the conversion process.

out a digital signal or flag indicating that the conversion is complete (Figure
1.15).

TIME SAMPLING: BASICS

Time sampling transforms a continuous analog signal into a discrete time signal,
a sequence of numbers denoted as x(n) = [x1, x2, x3, . . . xN],* Figure 1.16 (lower
trace). Such a representation can be thought of as an array in computer memory.
(It can also be viewed as a vector as shown in the next chapter.) Note that the
array position indicates a relative position in time, but to relate this number
sequence back to an absolute time both the sampling interval and sampling onset
time must be known. However, if only the time relative to conversion onset is
important, as is frequently the case, then only the sampling interval needs to be

*In many textbooks brackets, [], are used to denote digitized variables; i.e., x[n]. Throughout this
text we reserve brackets to indicate a series of numbers, or vector, following the MATLAB format.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 1.16 A continuous signal (upper trace) is sampled at discrete points in
time and stored in memory as an array of proportional numbers (lower trace).

known. Converting back to relative time is then achieved by multiplying the
sequence number, n, by the sampling interval, Ts: x(t) = x(nTs).

Sampling theory is discussed in the next chapter and states that a sinusoid
can be uniquely reconstructed providing it has been sampled by at least two
equally spaced points over a cycle. Since Fourier series analysis implies that
any signal can be represented is a series of sin waves (see Chapter 3), then by
extension, a signal can be uniquely reconstructed providing the sampling fre-
quency is twice that of the highest frequency in the signal. Note that this highest
frequency component may come from a noise source and could be well above
the frequencies of interest. The inverse of this rule is that any signal that con-
tains frequency components greater than twice the sampling frequency cannot
be reconstructed, and, hence, its digital representation is in error. Since this error
is introduced by undersampling, it is inherent in the digital representation and
no amount of digital signal processing can correct this error. The specific nature
of this under-sampling error is termed aliasing and is described in a discussion
of the consequences of sampling in Chapter 2.

From a practical standpoint, aliasing must be avoided either by the use of
very high sampling rates—rates that are well above the bandwidth of the analog
system—or by filtering the analog signal before analog-to-digital conversion.
Since extensive sampling rates have an associated cost, both in terms of the

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ADC required and memory costs, the latter approach is generally preferable.
Also note that the sampling frequency must be twice the highest frequency
present in the input signal, not to be confused with the bandwidth of the analog
signal. All frequencies in the sampled waveform greater than one half the sam-
pling frequency (one-half the sampling frequency is sometimes referred to as
the Nyquist frequency) must be essentially zero, not merely attenuated. Recall
that the bandwidth is defined as the frequency for which the amplitude is re-
duced by only 3 db from the nominal value of the signal, while the sampling
criterion requires that the value be reduced to zero. Practically, it is sufficient
to reduce the signal to be less than quantization noise level or other acceptable
noise level. The relationship between the sampling frequency, the order of the
anti-aliasing filter, and the system bandwidth is explored in a problem at the
end of this chapter.

Example 1.1. An ECG signal of 1 volt peak-to-peak has a bandwidth of
0.01 to 100 Hz. (Note this frequency range has been established by an official
standard and is meant to be conservative.) Assume that broadband noise may
be present in the signal at about 0.1 volts (i.e., −20 db below the nominal signal
level). This signal is filtered using a four-pole lowpass filter. What sampling
frequency is required to insure that the error due to aliasing is less than −60 db
(0.001 volts)?

Solution. The noise at the sampling frequency must be reduced another
40 db (20 * log (0.1/0.001)) by the four-pole filter. A four-pole filter with a
cutoff of 100 Hz (required to meet the fidelity requirements of the ECG signal)
would attenuate the waveform at a rate of 80 db per decade. For a four-pole
filter the asymptotic attenuation is given as:

Attenuation = 80 log(f2/fc) db

To achieve the required additional 40 db of attenuation required by the
problem from a four-pole filter:

80 log(f2/fc) = 40 log(f2/fc) = 40/80 = 0.5

f2/fc = 10.5 =; f2 = 3.16 × 100 = 316 Hz

Thus to meet the sampling criterion, the sampling frequency must be at
least 632 Hz, twice the frequency at which the noise is adequately attenuated.
The solution is approximate and ignores the fact that the initial attenuation of
the filter will be gradual. Figure 1.17 shows the frequency response characteris-
tics of an actual 4-pole analog filter with a cutoff frequency of 100 Hz. This
figure shows that the attenuation is 40 db at approximately 320 Hz. Note the
high sampling frequency that is required for what is basically a relatively low
frequency signal (the ECG). In practice, a filter with a sharper cutoff, perhaps

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 1.17 Detailed frequency plot (on a log-log scale) of a 4-pole and 8-pole
filter, both having a cutoff frequency of 100 Hz.

an 8-pole filter, would be a better choice in this situation. Figure 1.17 shows
that the frequency response of an 8-pole filter with the same 100 Hz frequency
provides the necessary attenuation at less than 200 Hz. Using this filter, the
sampling frequency could be lowered to under 400 Hz.

FURTHER STUDY: BUFFERING
AND REAL-TIME DATA PROCESSING

Real-time data processing simply means that the data is processed and results
obtained in sufficient time to influence some ongoing process. This influence
may come directly from the computer or through human intervention. The pro-
cessing time constraints naturally depend on the dynamics of the process of
interest. Several minutes might be acceptable for an automated drug delivery
system, while information on the electrical activity the heart needs to be imme-
diately available.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The term buffer, when applied digital technology, usually describes a set
of memory locations used to temporarily store incoming data until enough data
is acquired for efficient processing. When data is being acquired continuously,
a technique called double buffering can be used. Incoming data is alternatively
sent to one of two memory arrays, and the one that is not being filled is pro-
cessed (which may involve simply transfer to disk storage). Most ADC software
packages provide a means for determining which element in an array has most
recently been filled to facilitate buffering, and frequently the ability to determine
which of two arrays (or which half of a single array) is being filled to facilitate
double buffering.

DATA BANKS

With the advent of the World Wide Web it is not always necessary to go through
the analog-to-digital conversion process to obtain digitized data of physiological
signals. A number of data banks exist that provide physiological signals such as
ECG, EEG, gait, and other common biosignals in digital form. Given the volatil-
ity and growth of the Web and the ease with which searches can be made, no
attempt will be made to provide a comprehensive list of appropriate Websites.
However, a good source of several common biosignals, particularly the ECG, is
the Physio Net Data Bank maintained by MIT—http://www.physionet.org. Some
data banks are specific to a given set of biosignals or a given signal processing
approach. An example of the latter is the ICALAB Data Bank in Japan—http://
www.bsp.brain.riken.go.jp/ICALAB/—which includes data that can be used to
evaluate independent component analysis (see Chapter 9) algorithms.

Numerous other data banks containing biosignals and/or images can be
found through a quick search of the Web, and many more are likely to come
online in the coming years. This is also true for some of the signal processing
algorithms as will be described in more detail later. For example, the ICALAB
Website mentioned above also has algorithms for independent component analy-
sis in MATLAB m-file format. A quick Web search can provide both signal
processing algorithms and data that can be used to evaluate a signal processing
system under development. The Web is becoming an evermore useful tool in
signal and image processing, and a brief search of the Web can save consider-
able time in the development process, particularly if the signal processing sys-
tem involves advanced approaches.

PROBLEMS

1. A single sinusoidal signal is contained in noise. The RMS value of the noise
is 0.5 volts and the SNR is 10 db. What is the peak-to-peak amplitude of the
sinusoid?

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

http://www.physionet.org
www.bsp.brain.riken.go.jp/ICALAB/

2. A resistor produces 10 µV noise when the room temperature is 310°K and
the bandwidth is 1 kHz. What current noise would be produced by this resistor?

3. The noise voltage out of a 1 MΩ resistor was measured using a digital volt
meter as 1.5 µV at a room temperature of 310 °K. What is the effective band-
width of the voltmeter?

4. The photodetector shown in Figure 1.4 has a sensitivity of 0.3µA/µW (at a
wavelength of 700 nm). In this circuit, there are three sources of noise. The
photodetector has a dark current of 0.3 nA, the resistor is 10 MΩ, and the
amplifier has an input current noise of 0.01 pA/√Hz. Assume a bandwidth of
10 kHz. (a) Find the total noise current input to the amplifier. (b) Find the
minimum light flux signal that can be detected with an SNR = 5.

5. A lowpass filter is desired with the cutoff frequency of 10 Hz. This filter
should attenuate a 100 Hz signal by a factor of 85. What should be the order of
this filter?

6. You are given a box that is said to contain a highpass filter. You input a
series of sine waves into the box and record the following output:

Frequency (Hz): 2 10 20 60 100 125 150 200 300 400
Vout volts rms: .15×10−7 0.1×10−3 0.002 0.2 1.5 3.28 4.47 4.97 4.99 5.0

What is the cutoff frequency and order of this filter?

7. An 8-bit ADC converter that has an input range of ± 5 volts is used to
convert a signal that varies between ± 2 volts. What is the SNR of the input if
the input noise equals the quantization noise of the converter?

8. As elaborated in Chapter 2, time sampling requires that the maximum fre-
quency present in the input be less than fs/2 for proper representation in digital
format. Assume that the signal must be attenuated by a factor of 1000 to be
considered “not present.” If the sampling frequency is 10 kHz and a 4th-order
lowpass anti-aliasing filter is used prior to analog-to-digital conversion, what
should be the bandwidth of the sampled signal? That is, what must the cutoff
frequency be of the anti-aliasing lowpass filter?

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

10

Fundamentals of Image Processing:
MATLAB Image Processing Toolbox

IMAGE PROCESSING BASICS: MATLAB IMAGE FORMATS

Images can be treated as two-dimensional data, and many of the signal process-
ing approaches presented in the previous chapters are equally applicable to im-
ages: some can be directly applied to image data while others require some
modification to account for the two (or more) data dimensions. For example,
both PCA and ICA have been applied to image data treating the two-dimen-
sional image as a single extended waveform. Other signal processing methods
including Fourier transformation, convolution, and digital filtering are applied to
images using two-dimensional extensions. Two-dimensional images are usually
represented by two-dimensional data arrays, and MATLAB follows this tradi-
tion;* however, MATLAB offers a variety of data formats in addition to the
standard format used by most MATLAB operations. Three-dimensional images
can be constructed using multiple two-dimensional representations, but these
multiple arrays are sometimes treated as a single volume image.

General Image Formats: Image Array Indexing

Irrespective of the image format or encoding scheme, an image is always repre-
sented in one, or more, two dimensional arrays, I(m,n). Each element of the

*Actually, MATLAB considers image data arrays to be three-dimensional, as described later in this
chapter.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

variable, I, represents a single picture element, or pixel. (If the image is being
treated as a volume, then the element, which now represents an elemental vol-
ume, is termed a voxel.) The most convenient indexing protocol follows the
traditional matrix notation, with the horizontal pixel locations indexed left to
right by the second integer, n, and the vertical locations indexed top to bottom
by the first integer m (Figure 10.1). This indexing protocol is termed pixel coor-
dinates by MATLAB. A possible source of confusion with this protocol is that
the vertical axis positions increase from top to bottom and also that the second
integer references the horizontal axis, the opposite of conventional graphs.

MATLAB also offers another indexing protocol that accepts non-integer
indexes. In this protocol, termed spatial coordinates, the pixel is considered to
be a square patch, the center of which has an integer value. In the default coordi-
nate system, the center of the upper left-hand pixel still has a reference of (1,1),
but the upper left-hand corner of this pixel has coordinates of (0.5,0.5) (see
Figure 10.2). In this spatial coordinate system, the locations of image coordi-
nates are positions on a (discrete) plane and are described by general variables
x and y. The are two sources of potential confusion with this system. As with
the pixel coordinate system, the vertical axis increases downward. In addition,
the positions of the vertical and horizontal indexes (now better though of as
coordinates) are switched: the horizontal index is first, followed by the vertical
coordinate, as with conventional x,y coordinate references. In the default spatial
coordinate system, integer coordinates correspond with their pixel coordinates,
remembering the position swap, so that I(5,4) in pixel coordinates references
the same pixel as I(4.0,5.0) in spatial coordinates. Most routines expect a
specific pixel coordinate system and produce outputs in that system. Examples
of spatial coordinates are found primarily in the spatial transformation routines
described in the next chapter.

It is possible to change the baseline reference in the spatial coordinate

FIGURE 10.1 Indexing format for MATLAB images using the pixel coordinate sys-
tem. This indexing protocol follows the standard matrix notation.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 10.2 Indexing in the spatial coordinate system.

system as certain commands allow you to redefine the coordinates of the refer-
ence corner. This option is described in context with related commands.

Data Classes: Intensity Coding Schemes

There are four different data classes, or encoding schemes, used by MATLAB
for image representation. Moreover, each of these data classes can store the data
in a number of different formats. This variety reflects the variety in image types
(color, grayscale, and black and white), and the desire to represent images as
efficiently as possible in terms of memory storage. The efficient use of memory
storage is motivated by the fact that images often require a large numbers of
array locations: an image of 400 by 600 pixels will require 240,000 data points,
each of which will need one or more bytes depending of the data format.

The four different image classes or encoding schemes are: indexed images,
RGB images, intensity images, and binary images. The first two classes are used
to store color images. In indexed images, the pixel values are, themselves, in-
dexes to a table that maps the index value to a color value. While this is an
efficient way to store color images, the data sets do not lend themselves to
arithmetic operations (and, hence, most image processing operations) since the
results do not always produce meaningful images. Indexed images also need an
associated matrix variable that contains the colormap, and this map variable
needs to accompany the image variable in many operations. Colormaps are N
by 3 matrices that function as lookup tables. The indexed data variable points
to a particular row in the map and the three columns associated with that row

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

contain the intensity of the colors red, green, and blue. The values of the three
columns range between 0 and 1 where 0 is the absence of the related color and
1 is the strongest intensity of that color. MATLAB convention suggests that
indexed arrays use variable names beginning in x.. (or simply x) and the sug-
gested name for the colormap is map. While indexed variables are not very
useful in image processing operations, they provide a compact method of storing
color images, and can produce effective displays. They also provide a conve-
nient and flexible method for colorizing grayscale data to produce a pseudocolor
image.

The MATLAB Image Processing Toolbox provides a number of useful
prepackaged colormaps. These colormaps can implemented with any number of
rows, but the default is 64 rows. Hence, if any of these standard colormaps are
used with the default value, the indexed data should be scaled to range between
0 and 64 to prevent saturation. An example of the application of a MATLAB
colormap is given in Example 10.3. An extension of that example demonstrates
methods for colorizing grayscale data using a colormap.

The other method for coding color image is the RGB coding scheme in
which three different, but associated arrays are used to indicate the intensity of
the three color components of the image: red, green, or blue. This coding
scheme produces what is know as a truecolor image. As with the encoding used
in indexed data, the larger the pixel value, the brighter the respective color. In
this coding scheme, each of the color components can be operated on separately.
Obviously, this color coding scheme will use more memory than indexed im-
ages, but this may be unavoidable if extensive processing is to be done on a
color image. By MATLAB convention the variable name RGB, or something
similar, is used for variables of this data class. Note that these variables are
actually three-dimensional arrays having dimensions N by M by 3. While we
have not used such three dimensional arrays thus far, they are fully supported
by MATLAB. These arrays are indexed as RGB(n,m,i) where i = 1,2,3. In fact,
all image variables are conceptualized in MATLAB as three-dimensional arrays,
except that for non-RGB images the third dimension is simply 1.

Grayscale images are stored as intensity class images where the pixel
value represents the brightness or grayscale value of the image at that point.
MATLAB convention suggests variable names beginning with I for variables
in class intensity. If an image is only black or white (not intermediate grays),
then the binary coding scheme can be used where the representative array is a
logical array containing either 0’s or 1’s. MATLAB convention is to use BW for
variable names in the binary class. A common problem working with binary
images is the failure to define the array as logical which would cause the image
variable to be misinterpreted by the display routine. Binary class variables can
be specified as logical (set the logical flag associated with the array) using the
command BW = logical(A), assuming A consists of only zeros and ones. A
logical array can be converted to a standard array using the unary plus operator:

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

A = �BW. Since all binary images are of the form “logical,” it is possible to
check if a variable is logical using the routine: isa(I, ’logical’); which will
return a1 if true and zero otherwise.

Data Formats

In an effort to further reduce image storage requirements, MATLAB provides
three different data formats for most of the classes mentioned above. The uint8
and uint16 data formats provide 1 or 2 bytes, respectively, for each array ele-
ment. Binary images do not support the uint16 format. The third data format,
the double format, is the same as used in standard MATLAB operations and,
hence, is the easiest to use. Image arrays that use the double format can be treated
as regular MATLAB matrix variables subject to all the power of MATLAB and
its many functions. The problem is that this format uses 8 bytes for each array
element (i.e., pixel) which can lead to very large data storage requirements.

In all three data formats, a zero corresponds to the lowest intensity value,
i.e., black. For the uint8 and uint16 formats, the brightest intensity value (i.e.,
white, or the brightest color) is taken as the largest possible number for that
coding scheme: for uint8, 28-1, or 255; and for uint16, 216, or 65,535. For the
double format, the brightest value corresponds to 1.0.

The isa routine can also be used to test the format of an image. The
routine, isa(I,’type’) will return a 1 if I is encoded in the format type, and
a zero otherwise. The variable type can be: unit8, unit16, or double. There
are a number of other assessments that can be made with the isa routine that
are described in the associated help file.

Multiple images can be grouped together as one variable by adding an-
other dimension to the variable array. Since image arrays are already considered
three-dimensional, the additional images are added to the fourth dimension.
Multi-image variables are termed multiframe variables and each two-dimen-
sional (or three-dimensional) image of a multiframe variable is termed a frame.
Multiframe variables can be generated within MATLAB by incrementing along
the fourth index as shown in Example 10.2, or by concatenating several images
together using the cat function:

IMF = cat(4, I1, I2, I3,...);

The first argument, 4, indicates that the images are to concatenated along
the fourth dimension, and the other arguments are the variable names of the
images. All images in the list must be the same type and size.

Data Conversions

The variety of coding schemes and data formats complicates even the simplest
of operations, but is necessary for efficient memory use. Certain operations

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

require a given data format and/or class. For example, standard MATLAB oper-
ations require the data be in double format, and will not work correctly with
Indexed images. Many MATLAB image processing functions also expect a spe-
cific format and/or coding scheme, and generate an output usually, but not al-
ways, in the same format as the input. Since there are so many combinations of
coding and data type, there are a number of routines for converting between
different types. For converting format types, the most straightforward procedure
is to use the im2xxx routines given below:

I_uint8 = im2uint8(I); % Convert to uint8 format
I_uint16 = im2uint16(I); % Convert to uint16 format
I_double = im2double(I); % Convert to double format

These routines accept any data class as input; however if the class is
indexed, the input argument, I, must be followed by the term indexed. These
routines also handle the necessary rescaling except for indexed images. When
converting indexed images, variable range can be a concern: for example, to
convert an indexed variable to uint8, the variable range must be between 0 and
255.

Converting between different image encoding schemes can sometimes be
done by scaling. To convert a grayscale image in uint8, or uint16 format to an
indexed image, select an appropriate grayscale colormap from the MATLAB’s
established colormaps, then scale the image variable so the values lie within the
range of the colormap; i.e., the data range should lie between 0 and N, where N
is the depth of the colormap (MATLAB’s colormaps have a default depth of
64, but this can be modified). This approach is demonstrated in Example 10.3.
However, an easier solution is simply to use MATLAB’s gray2ind function
listed below. This function, as with all the conversion functions, will scale the
input data appropriately, and in the case of gray2ind will also supply an appro-
priate grayscale colormap (although alternate colormaps of the same depth can
be substituted). The routines that convert to indexed data are:

[x, map] = gray2ind(I, N); % Convert from grayscale to
% indexed

% Convert from truecolor to indexed
[x, map] = rgb2ind(RGB, N or map);

Both these routines accept data in any format, including logical, and pro-
duce an output of type uint8 if the associated map length is less than or equal
to 64, or uint16 if greater that 64. N specifies the colormap depth and must be
less than 65,536. For gray2ind the colormap is gray with a depth of N, or the
default value of 64 if N is omitted. For RGB conversion using rgb2ind, a
colormap of N levels is generated to best match the RGB data. Alternatively, a

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

colormap can be provided as the second argument, in which case rgb2ind will
generate an output array, x, with values that best match the colors given in map.
The rgb2ind function has a number of options that affect the image conversion,
options that allow trade-offs between color accuracy and image resolution. (See
the associated help file).

An alternative method for converting a grayscale image to indexed values
is the routine grayslice which converts using thresholding:

x = grayslice(I, N or V); % Convert grayscale to indexed using
% thresholding

where any input format is acceptable. This function slices the image into N

levels using a equal step thresholding process. Each slice is then assigned a
specific level on whatever colormap is selected. This process allows some inter-
esting color representations of grayscale images, as described in Example 10.4.
If the second argument is a vector, V, then it contains the threshold levels (which
can now be unequal) and the number of slices corresponds to the length of this
vector. The output format is either uint8 or uint16 depending on the number
of slices, similar to the two conversion routines above.

Two conversion routines convert from indexed images to other encoding
schemes:

I = ind2gray(x, map); % Convert to grayscale intensity
% encoding

RGB = ind2rgb(x, map); % Convert to RGB (“truecolor”)
% encoding

Both functions accept any format and, in the case of ind2gray produces
outputs in the same format. Function ind2rgb produces outputs formatted as
double. Function ind2gray removes the hue and saturation information while
retaining the luminance, while function ind2rgb produces a truecolor RGB
variable.

To convert an image to binary coding use:

BW = im2bw(I, Level); % Convert to binary logical encoding

where Level specifies the threshold that will be used to determine if a pixel is
white (1) or black (0). The input image, I, can be either intensity, RGB, or
indexed,* and in any format (uint8, uint16, or double). While most functions
output binary images in uint8 format, im2bw outputs the image in logical format.

*As with all conversion routines, and many other routines, when the input image is in indexed
format it must be followed by the colormap variable.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

In this format, the image values are either 0 or 1, but each element is the same
size as the double format (8 bytes). This format can be used in standard MAT-
LAB operations, but does use a great deal of memory. One of the applications
of the dither function can also be used to generate binary images as described
in the associated help file.

A final conversion routine does not really change the data class, but does
scale the data and can be very useful. This routine converts general class double
data to intensity data, scaled between 0 and 1:

I = mat2gray(A, [Anin Amax]); % Scale matrix to intensity
% encoding, double format.

where A is a matrix and the optional second term specifies the values of A to be
scaled to zero, or black (Amin), or 1, or white (Amin). Since a matrix is already
in double format, this routine provides only scaling. If the second argument is
missing, the matrix is scaled so that its highest value is 1 and its lowest value
is zero. Using the default scaling can be a problem if the image contains a few
irrelevant pixels having large values. This can occur after certain image process-
ing operations due to border (or edge) effects. In such cases, other scaling must
be imposed, usually determined empirically, to achieve a suitable range of im-
age intensities.

The various data classes, their conversion routines, and the data formats
they support are summarized in Table 1 below. The output format of the various
conversion routines is indicated by the superscript: (1) uint8 or unit 16 depend-
ing on the number of levels requested (N); (2) Double; (3) No format change
(output format equals input format); and (4) Logical (size double).

Image Display

There are several options for displaying an image, but the most useful and easi-
est to use is the imshow function. The basic calling format of this routine is:

TABLE 10.1 Summary of Image Classes, Data Formats,
and Conversion Routines

Class Formats supported Conversion routines

Indexed All gray2ind1, grayslice1, rgb2ind1

Intensity All ind2gray2, mat2gray2,3, rgb2gray3

RGB All ind2rgb2

Binary uint8, double im2bw4, dither1

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

imshow(I,arg)

where I is the image array and arg is an argument, usually optional, that de-
pends on the data format. For indexed data, the variable name must be followed
by the colormap, map. This holds for all display functions when indexed data
are involved. For intensity class image variables, arg can be a scalar, in which
case it specifies the number of levels to use in rendering the image, or, if arg
is a vector, [low high], arg specifies the values to be taken to readjust the
range limits of a specific data format.* If the empty matrix, [], is given as arg,
or it is simply missing, the maximum and minimum values in array I are taken
as the low and high values. The imshow function has a number of other options
that make it quite powerful. These options can be found with the help command.
When I is an indexed variable, it should be followed by the map variable.

There are two functions designed to display multiframe variables. The
function montage (MFW) displays the various images in a gird-like pattern as
shown in Example 10.2. Alternatively, multiframe variables can be displayed as
a movie using the immovie and movie commands:

mov = imovie(MFW); % Generate movie variable
movie(mov); % Display movie

Unfortunately the movie function cannot be displayed in a textbook, but
is presented in one of the problems at the end of the chapter, and several amus-
ing examples are presented in the problems at the end of the next chapter. The
immovie function requires multiframe data to be in either Indexed or RGB
format. Again, if MFW is an indexed variable, it must be followed by a colormap
variable.

The basics features of the MATLAB Imaging Processing Toolbox are
illustrated in the examples below.

Example 10.1 Generate an image of a sinewave grating having a spatial
frequency of 2 cycles/inch. A sinewave grating is a pattern that is constant in
the vertical direction, but varies sinusoidally in the horizontal direction. It is
used as a visual stimulus in experiments dealing with visual perception. Assume
the figure will be 4 inches square; hence, the overall pattern should contain 4
cycles. Assume the image will be placed in a 400-by-400 pixel array (i.e., 100
pixels per inch) using a uint16 format.

Solution Sinewave gratings usually consist of sines in the horizontal di-
rection and constant intensity in the vertical direction. Since this will be a gray-

*Recall the default minimum and maximum values for the three non-indexed classes were: [0, 256]
for uint8; [0, 65535] for uint16; and [0, 1] for double arrays.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

scale image, we will use the intensity coding scheme. As most reproductions
have limited grayscale resolution, a uint8 data format will be used. However,
the sinewave will be generated in the double format, as this is MATLAB’s
standard format. To save memory requirement, we first generate a 400-by-1
image line in double format, then convert it to uint8 format using the conversion
routine im2uint8. The uint8 image can then be extended vertically to 400 pixels.

% Example 10.1 and Figure 1.3
% Generate a sinewave grating 400 by 400 pixels
% The grating should vary horizontally with a spatial frequency
% of 4 cycles per inch.
% Assume the horizontal and vertical dimensions are 4 inches
%
clear all; close all;
N = 400; % Vertical and horizontal size
Nu_cyc = 4; % Produce 4 cycle grating
x = (1:N)*Ny_cyc/N; % Spatial (time equivalent) vector
%

FIGURE 10.3 A sinewave grating generated by Example 10.1. Such images are
often used as stimuli in experiments on vision.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Generate a single horizontal line of the image in a vector of
% 400 points
%
% Generate sin; scale between 0&1
I_sin(1,:) = .5 * sin(2*pi*x) � .5;
I_8 = im2uint8(I_sin); % Convert to a uint8 vector
%
for i = 1:N % Extend to N (400) vertical lines
I(i,:) = I_8;

end
%
imshow(I); % Display image
title(’Sinewave Grating’);

The output of this example is shown as Figure 10.3. As with all images
shown in this text, there is a loss in both detail (resolution) and grayscale varia-
tion due to losses in reproduction. To get the best images, these figures, and all
figures in this section can be reconstructed on screen using the code from the
examples provided in the CD.

Example 10.2 Generate a multiframe variable consisting of a series of
sinewave gratings having different phases. Display these images as a montage.
Border the images with black for separation on the montage plot. Generate 12
frames, but reduce the image to 100 by 100 to save memory.

% Example 10.2 and Figure 10.4
% Generate a multiframe array consisting of sinewave gratings
% that vary in phase from 0 to 2 * pi across 12 images
%
% The gratings should be the same as in Example 10.1 except with
% fewer pixels (100 by 100) to conserve memory.
%
clear all; close all;
N = 100; % Vertical and horizontal points
Nu_cyc = 2; % Produce 4 cycle grating
M = 12; % Produce 12 images
x = (1:N)*Nu_cyc/N; % Generate spatial vector
%
for j = 1:M % Generate M (12) images
phase = 2*pi*(j-1)/M; % Shift phase through 360 (2*pi)

% degrees
% Generate sine; scale to be 0 & 1

I_sin = .5 * sin(2*pi*x � phase) � .5’*;
% Add black at left and right borders

I_sin = [zeros(1,10) I_sin(1,:) zeros(1,10)];

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 10.4 Montage of sinewave gratings created by Example 10.2.

I_8 = im2uint8(I_sin); % Convert to a uint8 vector
%
for i = 1:N % Extend to N (100) vertical lines
if i < 10 * I > 90 % Insert black space at top and

% bottom
I(i,:,1:j) = 0;

else

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

I(i,:,1,j) = I_8;
end

end
end
montage(I); % Display image as montage

title(’Sinewave Grating’);

The montage created by this example is shown in Figure 10.4 on the next
page. The multiframe data set was constructed one frame at a time and the
frame was placed in I using the frame index, the fourth index of I.* Zeros are
inserted at the beginning and end of the sinewave and, in the image construction
loop, for the first and last 9 points. This is to provide a dark band between the
images. Finally the sinewave was phase shifted through 360 degrees over the
12 frames.

Example 10.3 Construct a multiframe variable with 12 sinewave grating
images. Display these data as a movie. Since the immovie function requires the
multiframe image variable to be in either RGB or indexed format, convert the
uint16 data to indexed format. This can be done by the gray2ind(I,N) func-
tion. This function simply scales the data to be between 0 and N, where N is the
depth of the colormap. If N is unspecified, gray2ind defaults to 64 levels.
MATLAB colormaps can also be specified to be of any depth, but as with
gray2ind the default level is 64.

% Example 10.3
% Generate a movie of a multiframe array consisting of sinewave
% gratings that vary in phase from 0 to pi across 10 images
% Since function ’immovie’ requires either RGB or indexed data
% formats scale the data for use as Indexed with 64 gray levels.
% Use a standard MATLAB grayscale (’gray’);
%
% The gratings should be the same as in Example 10.2.
%
clear all;
close all;
% Assign parameters
N = 100; % Vertical and horizontal points
Nu_cyc = 2; % Produce 2 cycle grating
M = 12; % Produce 12 images
%
x = (1:N)*Nu_cyc/N; % Generate spatial vector

*Recall, the third index is reserved for referencing the color plane. For non-RGB variables, this
index will always be 1. For images in RGB format the third index would vary between 1 and 3.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

for j = 1:M % Generate M (100) images
% Generate sine; scale between 0 and 1
phase = 10*pi*j/M; % Shift phase 180 (pi) over 12 images
I_sin(1,:) = .5 * sin(2*pi*x � phase) � .5’;
for i = 1:N % Extend to N (100) vertical lines
for i = 1:N % Extend to 100 vertical lines to

Mf(i,:,1,j) = x1; % create 1 frame of the multiframe
% image

end
end

%
%
[Mf, map] = gray2ind(Mf); % Convert to indexed image
mov = immovie(Mf,map); % Make movie, use default colormap
movie(mov,10); % and show 10 times

To fully appreciate this example, the reader will need to run this program
under MATLAB. The 12 frames are created as in Example 10.3, except the
code that adds border was removed and the data scaling was added. The second
argument in immovie, is the colormap matrix and this example uses the map
generated by gray2ind. This map has the default level of 64, the same as all
of the other MATLAB supplied colormaps. Other standard maps that are appro-
priate for grayscale images are ‘bone’ which has a slightly bluish tint, ‘pink’
which has a decidedly pinkish tint, and ‘copper’ which has a strong rust tint.
Of course any colormap can be used, often producing interesting pseudocolor
effects from grayscale data. For an interesting color alternative, try running
Example 10.3 using the prepackaged colormap jet as the second argument of
immovie. Finally, note that the size of the multiframe array, Mf, is
(100,100,1,12) or 1.2 × 105 × 2 bytes. The variable mov generated by immovie

is even larger!

Image Storage and Retrieval

Images may be stored on disk using the imwrite command:

imwrite(I, filename.ext, arg1, arg2, ...);

where I is the array to be written into file filename. There are a large variety of
file formats for storing image data and MATLAB supports the most popular for-
mats. The file format is indicated by the filename’s extension, ext, which may be:
.bmp (Microsoft bitmap), .gif (graphic interchange format), .jpeg (Joint photo-
graphic experts group), .pcs (Paintbrush), .png (portable network graphics), and
.tif (tagged image file format). The arguments are optional and may be used to
specify image compression or resolution, or other format dependent information.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The specifics can be found in the imwrite help file. The imwrite routine can be
used to store any of the data formats or data classes mentioned above; however, if
the data array, I, is an indexed array, then it must be followed by the colormap
variable, map. Most image formats actually store uint8 formatted data, but the nec-
essary conversions are done by the imwrite.

The imread function is used to retrieve images from disk. It has the call-
ing structure:

[I map] = imread(‘filename.ext’,fmt or frame);

where filename is the name of the image file and .ext is any of the extensions
listed above. The optional second argument, fmt, only needs to be specified if
the file format is not evident from the filename. The alternative optional argu-
ment frame is used to specify which frame of a multiframe image is to be read
in I. An example that reads multiframe data is found in Example 10.4. As most
file formats store images in uint8 format, I will often be in that format. File
formats .tif and .png support uint16 format, so imread may generate data
arrays in uint16 format for these file types. The output class depends on the
manner in which the data is stored in the file. If the file contains a grayscale
image data, then the output is encoded as an intensity image, if truecolor, then
as RGB. For both these cases the variable map will be empty, which can be
checked with the isempty(map) command (see Example 10.4). If the file con-
tains indexed data, then both output, I and map will contain data.

The type of data format used by a file can also be obtained by querying a
graphics file using the function infinfo.

information = infinfo(‘filename.ext’)

where information will contain text providing the essential information about
the file including the ColorType, FileSize, and BitDepth. Alternatively, the im-
age data and map can be loaded using imread and the format image data deter-
mined from the MATLAB whos command. The whos command will also give
the structure of the data variable (uint8, uint16, or double).

Basic Arithmetic Operations

If the image data are stored in the double format, then all MATLAB standard
mathematical and operational procedures can be applied directly to the image
variables. However, the double format requires 4 times as much memory as the
uint16 format and 8 times as much memory as the uint8 format. To reduce the
reliance on the double format, MATLAB has supplied functions to carry out
some basic mathematics on uint8- and uint16-format arrays. These routines will
work on either format; they actually carry out the operations in double precision

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

on an element by element basis then convert back to the input format. This
reduces roundoff and overflow errors. The basic arithmetic commands are:

I_diff = imabssdiff(I, J); % Subtracts J from I on a pixel
% by pixel basis and returns
% the absolute difference

I_comp = imcomplement(I) % Compliments image I
I_add = imadd(I, J); % Adds image Iand J (images and/

% or constants) to form image
% I_add

I_sub = imsubtract(I, J); % Subtracts J from image I
I_divide = imdivide(I, J) % Divides image I by J
I_multiply = immultiply(I, J) % Multiply image I by J

For the last four routines, J can be either another image variable, or a
constant. Several arithmetical operations can be combined using the imlincomb

function. The function essentially calculates a weighted sum of images. For
example to add 0.5 of image I1 to 0.3 of image I2, to 0.75 of Image I3, use:

% Linear combination of images
I_combined = imlincomb (.5, I1, .3, I2, .75, I3);

The arithmetic operations of multiplication and addition by constants are
easy methods for increasing the contrast or brightness or an image. Some of
these arithmetic operations are illustrated in Example 10.4.

Example 10.4 This example uses a number of the functions described
previously. The program first loads a set of MRI (magnetic resonance imaging)
images of the brain from the MATLAB Image Processing Toolbox’s set of stock
images. This image is actually a multiframe image consisting of 27 frames as
can be determined from the command imifinfo. One of these frames is se-
lected by the operator and this image is then manipulated in several ways: the
contrast is increased; it is inverted; it is sliced into 5 levels (N_slice); it is
modified horizontally and vertically by a Hanning window function, and it is
thresholded and converted to a binary image.

% Example 10.4 and Figures 10.5 and 10.6
% Demonstration of various image functions.
% Load all frames of the MRI image in mri.tif from the the MATLAB
% Image Processing Toolbox (in subdirectory imdemos).
% Select one frame based on a user input.
% Process that frame by: contrast enhancement of the image,
% inverting the image, slicing the image, windowing, and
% thresholding the image

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 10.5 Montage display of 27 frames of magnetic resonance images of
the brain plotted in Example 10.4. These multiframe images were obtained from
MATLAB’s mri.tif file in the images section of the Image Processing Toolbox.
Used with permission from MATLAB, Inc. Copyright 1993–2003, The Math
Works, Inc. Reprinted with permission.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 10.6 Figure showing various signal processing operations on frame 17
of the MRI images shown in Figure 10.5. Original from the MATLAB Image Pro-
cessing Toolbox. Copyright 1993–2003, The Math Works, Inc. Reprinted with per-
mission.

% Display original and all modifications on the same figure
%
clear all; close all;
N_slice = 5; % Number of sliced for

% sliced image
Level = .75; % Threshold for binary

% image
%
% Initialize an array to hold 27 frames of mri.tif
% Since this image is stored in tif format, it could be in either
% unit8 or uint16.
% In fact, the specific input format will not matter, since it
% will be converted to double format in this program.
mri = uint8(zeros(128,128,1,27)); % Initialize the image

% array for 27 frames
for frame = 1:27 % Read all frames into

% variable mri

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

[mri(:,:,:,frame), map] = imread(’mri.tif’, frame);
end
montage(mri, map); % Display images as a

% montage
% Include map in case
% Indexed

%
frame_select = input(’Select frame for processing: ’);
I = mri(:,:,:,frame_select); % Select frame for

% processing
%
% Now check to see if image is Indexed (in fact ’whos’ shows it
% is).
if isempty(map) == 0 % Check to see if

% indexed data
I = ind2gray(I,map); % If so, convert to

% intensity image
end
I1 = im2double(I); % Convert to double

% format
%
I_bright = immultiply(I1,1.2); % Increase the contrast
I_invert = imcomplement(I1); % Compliment image
x_slice = grayslice(I1,N_slice); % Slice image in 5 equal

% levels
%
[r c] = size(I1); % Multiple
for i = 1:r % horizontally by a

% Hamming window
I_window(i,:) = I1(i,:) .* hamming(c)’;

end
for i = 1:c % Multiply vertically

% by same window
I_window(:,i) = I_window(:,i) .* hamming(r);

end
I_window = mat2gray(I_window); % Scale windowed image
BW = im2bw(I1,Level); % Convert to binary
%
figure;
subplot(3,2,1); % Display all images in

% a single plot
imshow(I1); title(’Original’);

subplot(3,2,2);
imshow(I_bright), title(’Brightened’);

subplot(3,2,3);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

imshow(I_invert); title(’Inverted’);
subplot(3,2,4);
I_slice = ind2rgb(x_slice, jet % Convert to RGB (see
(N_slice)); % text)
imshow(I_slice); title(’Sliced’); % Display color slices

subplot(3,2,5);
imshow(I_window); title(’Windowed’);

subplot(3,2,6);
imshow(BW); title(’Thresholded’);

Since the image file might be indexed (in fact it is), the imread function
includes map as an output. If the image is not indexed, then map will be empty.
Note that imread reads only one frame at a time, the frame specified as the
second argument of imread. To read in all 27 frames, it is necessary to use a
loop. All frames are then displayed in one figure (Figure 10.5) using the mon-

tage function. The user is asked to select one frame for further processing.
Since montage can display any input class and format, it is not necessary to
determine these data characteristics at this time.

After a particular frame is selected, the program checks if the map variable
is empty (function isempty). If it is not (as is the case for these data), then the
image data is converted to grayscale using function ind2gray which produces
an intensity image in double format. If the image is not Indexed, the image
variable is converted to double format. The program then performs the various
signal processing operations. Brightening is done by multiplying the image by
a constant greater that 1.0, in this case 1.2, Figure 10.6. Inversion is done using
imcomplement, and the image is sliced into N_slice (5) levels using gray-

slice. Since grayslice produces an indexed image, it also generates a map
variable. However, this grayscale map is not used, rather an alternative map
is substituted to produce a color image, with the color being used to enhance
certain features of the image.* The Hanning window is applied to the image in
both the horizontal and vertical direction Figure 10.6. Since the image, I1, is in
double format, the multiplication can be carried out directly on the image array;
however, the resultant array, I_window, has to be rescaled using mat2gray to
insure it has the correct range for imshow. Recall that if called without any
arguments; mat2gray scales the array to take up the full intensity range (i.e., 0
to 1). To place all the images in the same figure, subplot is used just as with
other graphs, Figure 10.6. One potential problem with this approach is that
Indexed data may plot incorrectly due to limited display memory allocated to

*More accurately, the image should be termed a pseudocolor image since the original data was
grayscale. Unfortunately the image printed in this text is in grayscale; however the example can be
rerun by the reader to obtain the actual color image.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

the map variables. (This problem actually occurred in this example when the
sliced array was displayed as an Indexed variable.) The easiest solution to this
potential problem is to convert the image to RGB before calling imshow as was
done in this example.

Many images that are grayscale can benefit from some form of color cod-
ing. With the RGB format, it is easy to highlight specific features of a grayscale
image by placing them in a specific color plane. The next example illustrates
the use of color planes to enhance features of a grayscale image.

Example 10.5 In this example, brightness levels of a grayscale image
that are 50% or less are coded into shades of blue, and those above are coded
into shades of red. The grayscale image is first put in double format so that the
maximum range is 0 to 1. Then each pixel is tested to be greater than 0.5. Pixel
values less that 0.5 are placed into the blue image plane of an RGB image (i.e.,
the third plane). These pixel values are multiplied by two so they take up the
full range of the blue plane. Pixel values above 0.5 are placed in the red plane
(plane 1) after scaling to take up the full range of the red plane. This image is
displayed in the usual way. While it is not reproduced in color here, a homework
problem based on these same concepts will demonstrate pseudocolor.

% Example 10.5 and Figure 10.7 Example of the use of pseudocolor
% Load frame 17 of the MRI image (mri.tif)
% from the Image Processing Toolbox in subdirectory ‘imdemos’.

FIGURE 10.7 Frame 17 of the MRI image given in Figure 10.5 plotted directly and
in pseudocolor using the code in Example 10.5. (Original image from MATLAB).
Copyright 1993–2003, The Math Works, Inc. Reprinted with permission.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Display a pseudocolor image in which all values less that 50%
% maximum are in shades of blue and values above are in shades
% of red.
%
clear all; close all;
frame = 17;
[I(:,:,1,1), map] = imread(’mri.tif’, frame);
% Now check to see if image is Indexed (in fact ’whos’ shows it is).
if isempty(map) == 0 % Check to see if Indexed data
I = ind2gray(I,map); % If so, convert to Intensity image

end
I = im2double(I); % Convert to double

[M N] = size(I);
RGB = zeros(M,N,3); % Initialize RGB array
for i = 1:M
for j = 1:N % Fill RGB planes
if I(i,j) > .5
RGB(i,j,1) = (I(i,j)-.5)*2;

else
RGB(i,j,3) = I(i,j)*2;

end
end

end
%
subplot(1,2,1); % Display images in a single plot
imshow(I); title(’Original’);

subplot(1,2,2);
imshow(RGB) title(’Pseudocolor’);

The pseudocolor image produced by this code is shown in Figure 10.7.
Again, it will be necessary to run the example to obtain the actual color image.

ADVANCED PROTOCOLS: BLOCK PROCESSING

Many of the signal processing techniques presented in previous chapters oper-
ated on small, localized groups of data. For example, both FIR and adaptive
filters used data samples within the same general neighborhood. Many image
processing techniques also operate on neighboring data elements, except the
neighborhood now extends in two dimensions, both horizontally and vertically.
Given this extension into two dimensions, many operations in image processing
are quite similar to those in signal processing. In the next chapter, we examine
both two-dimensional filtering using two-dimensional convolution and the two-
dimensional Fourier transform. While many image processing operations are
conceptually the same as those used on signal processing, the implementation

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

is somewhat more involved due to the additional bookkeeping required to oper-
ate on data in two dimensions. The MATLAB Image Processing Toolbox sim-
plifies much of the tedium of working in two dimensions by introducing func-
tions that facilitate two-dimensional block, or neighborhood operations. These
block processing operations fall into two categories: sliding neighborhood oper-
ations and distinct block operation. In sliding neighborhood operations, the
block slides across the image as in convolution; however, the block must slide
in both horizontal and vertical directions. Indeed, two-dimensional convolution
described in the next chapter is an example of one very useful sliding neighbor-
hood operation. In distinct block operations, the image area is divided into a
number of fixed groups of pixels, although these groups may overlap. This is
analogous to the overlapping segments used in the Welch approach to the Fou-
rier transform described in Chapter 3. Both of these approaches to dealing with
blocks of localized data in two dimensions are supported by MATLAB routines.

Sliding Neighborhood Operations

The sliding neighborhood operation alters one pixel at a time based on some
operation performed on the surrounding pixels; specifically those pixels that lie
within the neighborhood defined by the block. The block is placed as symmetri-
cally as possible around the pixel being altered, termed the center pixel (Figure
10.8). The center pixel will only be in the center if the block is odd in both

FIGURE 10.8 A 3-by-2 pixel sliding neighborhood block. The block (gray area),
is shown in three different positions. Note that the block sometimes falls off the
picture and padding (usually zero padding) is required. In actual use, the block
slides, one element at a time, over the entire image. The dot indicates the center
pixel.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

dimensions, otherwise the center pixel position favors the left and upper sides
of the block (Figure 10.8).* Just as in signal processing, there is a problem that
occurs at the edge of the image when a portion of the block will extend beyond
the image (Figure 10.8, upper left block). In this case, most MATLAB sliding
block functions automatically perform zero padding for these pixels. (An excep-
tion, is the imfilter routine described in the next capter.)

The MATLAB routines conv2 and filter2 are both siding neighborhood
operators that are directly analogous to the one dimensional convolution routine,
conv, and filter routine, filter. These functions will be discussed in the next
chapter on image filtering. Other two-dimensional functions that are directly anal-
ogous to their one-dimensional counterparts include: mean2, std2, corr2, and
fft2. Here we describe a general sliding neighborhood routine that can be used
to implement a wide variety of image processing operations. Since these opera-
tions can be—but are not necessarily—nonlinear, the function has the name
nlfilter, presumably standing for nonlinear filter. The calling structure is:

I1 = nlfilter(I, [M N], func, P1, P2, ...);

where I is the input image array, M and N are the dimensions of the neighbor-
hood block (horizontal and vertical), and func specifies the function that will
operate over the block. The optional parameters P1, P2, . . . , will be passed to
the function if it requires input parameters. The function should take an M by
N input and must produce a single, scalar output that will be used for the value
of the center pixel. The input can be of any class or data format supported by
the function, and the output image array, I1, will depend on the format provided
by the routine’s output.

The function may be specified in one of three ways: as a string containing
the desired operation, as a function handle to an M-file, or as a function estab-
lished by the routine inline. The first approach is straightforward: simply em-
bed the function operation, which could be any appropriate MATLAB stat-
ment(s), within single quotes. For example:

I1 = nlfilter(I, [3 3], ‘mean2’);

This command will slide a 3 by 3 moving average across the image pro-
ducing a lowpass filtered version of the original image (analogous to an FIR
filter of [1/3 1/3 1/3]). Note that this could be more effectively implemented
using the filter routines described in the next chapter, but more complicated,
perhaps nonlinear, operations could be included within the quotes.

*In MATLAB notation, the center pixel of an M by N block is located at: floor(([M N] �
1)/2).

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The use of a function handle is shown in the code:

I1 = nlfilter(I, [3 3], @my_function);

where my_function is the name of an M-file function. The function handle
@my_function contains all the information required by MATLAB to execute
the function. Again, this file should produce a single, scalar output from an M
by N input, and it has the possibility of containing input arguments in addition
to the block matrix.

The inline routine has the ability to take string text and convert it into
a function for use in nlfilter as in this example string:

F = inline(‘2*x(2,2) -sum(x(1:3,1))/3- sum(x(1:3,3))/3

- x(1,2)—x(3,2)’);

I1 = nlfilter(I, [3 3], F);

Function inline assumes that the input variable is x, but it also can find
other variables based on the context and it allows for additional arguments, P1,
P2, . . . (see associated help file). The particular function shown above would
take the difference between the center point and its 8 surrounding neighbors,
performing a differentiator-like operation. There are better ways to perform spa-
tial differentiation described in the next chapter, but this form will be demon-
strated as one of the operations in Example 10.6 below.

Example 10.6 Load the image of blood cells in blood.tiff in
MATLAB’s image files. Convert the image to class intensity and double format.
Perform the following sliding neighborhood operations: averaging over a 5 by
5 sliding block, differencing (spatial differentiation) using the function, F,
above; and vertical boundary detection using a 2 by 3 vertical differencer. This
differencer operator subtracts a vertical set of three left hand pixels from the
three adjacent right hand pixels. The result will be a brightening of vertical
boundaries that go from dark to light and a darkening of vertical boundaries
that go from light to dark. Display all the images in the same figure including
the original. Also include binary images of the vertical boundary image thresh-
olded at two different levels to emphasize the left and right boundaries.

% Example 10.6 and Figure 10.9
% Demonstration of sliding neighborhood operations
% Load image of blood cells, blood.tiff from the Image Processing
% Toolbox in subdirectory imdemos.
% Use a sliding 3 by 3 element block to perform several sliding
% neighborhoodoperations includingtakingtheaverage overthe
% block, implementing the function ’F’ in the example

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 10.9 A variety of sliding neighborhood operations carried out on an im-
age of blood cells. (Original reprinted with permission from The Image Processing
Handbook, 2nd ed. Copyright CRC Press, Boca Raton, Florida.)

% above, and implementing a function that enhances vertical
% boundaries.
% Display the original and all modification on the same plot
%
clear all; close all;
[I map] = imread(’blood1.tif’);% Input image
% Since image is stored in tif format, it could be in either uint8
% or uint16 format (although the ’whos’ command shows it is in
% uint8).

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% The specific data format will not matter since the format will
% be converted to double either by ’ind2gray,’ if it is an In-
% dexed image or by ‘im2gray’ if it is not.
%
if isempty(map) == 0 % Check to see if indexed data
I = ind2gray(I,map); % If so, convert to intensity

% image
end
I = im2double(I); % Convert to double and scale

% If not already
%
% Perform the various sliding neighborhood operations.
% Averaging
I_avg = nlfilter(I,[5 5], ’mean2’);
%
% Differencing
F = inline(’x(2,2)—sum(x(1:3,1))/3- sum(x(1:3,3))/3 - ...
x(1,2)—x(3,2)’);

I_diff = nlfilter(I, [3 3], F);
%
% Vertical boundary detection
F1 = inline (’sum(x(1:3,2))—sum(x(1:3,1))’);
I_vertical = nlfilter(I,[3 2], F1);
%
% Rescale all arrays
I_avg = mat2gray(I_avg);
I_diff = mat2gray(I_diff);
I_vertical = mat2gray(I_vertical);
%
subplot(3,2,1); % Display all images in a single

% plot
imshow(I);
title(’Original’);

subplot(3,2,2);
imshow(I_avg);
title(’Averaged’);

subplot(3,2,3);
imshow(I_diff);
title(’Differentiated’);

subplot(3,2,4);
imshow(I_vertical);
title(’Vertical boundaries’);

subplot(3,2,5);
bw = im2bw(I_vertical,.6); %Thresholddata,lowthreshold
imshow(bw);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

title(’Left boundaries’);
subplot(3,2,6);
bw1 = im2bw(I_vertical,.8); % Threshold data, high

% threshold
imshow(bw1);
title(’Right boundaries’);

The code in Example 10.6 produces the images in Figure 10.9. These
operations are quite time consuming: Example 10.6 took about 4 minutes to run
on a 500 MHz PC. Techniques for increasing the speed of Sliding Operations
can be found in the help file for colfilt. The vertical boundaries produced by
the 3 by 2 sliding block are not very apparent in the intensity image, but become
quite evident in the thresholded binary images. The averaging has improved
contrast, but the resolution is reduced so that edges are no longer distinct.

Distinct Block Operations

All of the sliding neighborhood options can also be implemented using configu-
rations of fixed blocks (Figure 10.10). Since these blocks do not slide, but are

FIGURE 10.10 A 7-by-3 pixel distinct block. As with the sliding neighborhood
block, these fixed blocks can fall off the picture and require padding (usually zero
padding). The dot indicates the center pixel although this point usually has little
significance in this approach.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

fixed with respect to the image (although they may overlap), they will produce
very different results. The MATLAB function for implementing distinct block
operations is similar in format to the sliding neighborhood function:

I1 = blkproc(I, [M N], [Vo Ho], func);

where M and N specify the vertical and horizontal size of the block, Vo and Ho

are optional arguments that specify the vertical and horizontal overlap of the
block, func is the function that operates on the block, I is the input array, and
I1 is the output array. As with nlfilter the data format of the output will
depend on the output of the function. The function is specified in the same
manner as described for nlfilter; however the function output will be dif-
ferent.

Function outputs for sliding neighborhood operations had to be single sca-
lars that then became the value of the center pixel. In distinct block operations,
the block does not move, so the function output will normally produce values
for every pixel in the block. If the block produces a single output, then only the
center pixel of each block will contain a meaningful value. If the function is an
operation that normally produces a single value, the output of this routine can
be expanded by multiplying it by an array of ones that is the same size as the
block This will place that single output in every pixel in the block:

I1 = blkproc(I [4 5], ‘std2 * ones(4,5)’);

In this example the output of the MATLAB function std2 is placed into
a 4 by 5 array and this becomes the output of the function, an array the same
size as the block. It is also possible to use the inline function to describe the
function:

F = inline(‘std2(x) * ones(size(x))’);

I1 = blkproc(I, [4 5], F);

Of course, it is possible that certain operations could produce a different
output for each pixel in the block. An example of block processing is given in
Example 10.7.

Example 10.7 Load the blood cell image used in Example 10.6 and
perform the following distinct block processing operations: 1) Display the aver-
age for a block size of 8 by 8; 2) For a 3 by 3 block, perform the differentiator
operation used in Example 10.6; and 3) Apply the vertical boundary detector
form Example 10.6 to a 3 by 3 block. Display all the images including the
original in a single figure.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Example 10.7 and Figure 10.11
% Demonstration of distinct block operations
% Load image of blood cells used in Example 10.6
% Use a 8 by 8 distinct block to get averages for the entire block
% Apply the 3 by 3 differentiator from Example 10.6 as a distinct
% block operation.
% Apply a 3 by 3 vertical edge detector as a block operation
% Display the original and all modification on the same plot
%
..... Image load, same as in Example 10.6.......
%

FIGURE 10.11 The blood cell image of Example 10.6 processed using three Dis-
tinct block operations: block averaging, block differentiation, and block vertical
edge detection. (Original image reprinted from The Image Processing Handbook,
2nd edition. Copyright CRC Press, Boca Raton, Florida.)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Perform the various distinct block operations.
% Average of the image
I_avg = blkproc(I,[10 10], ’mean2 * ones(10,10)’);
%
% Deferentiator—place result in all blocks
F = inline(’(x(2,2)—sum(x(1:3,1))/3- sum(x(1:3,3))/3 ...

- x(1,2)—x(3,2)) * ones(size(x))’);
I_diff = blkproc(I, [3 3], F);
%
% Vertical edge detector-place results in all blocks
F1 = inline(’(sum(x(1:3,2))—sum(x(1:3,1))) ...

* ones(size(x))’);
I_vertical = blkproc(I, [3,2], F1);
.........Rescale and plotting as in Example 10.6.......

Figure 10.11 shows the images produced by Example 10.7. The “differen-
tiator” and edge detection operators look similar to those produced the Sliding
Neighborhood operation because they operate on fairly small block sizes. The
averaging operator shows images that appear to have large pixels since the
neighborhood average is placed in block of 8 by 8 pixels.

The topics covered in this chapter provide a basic introduction to image
processing and basic MATLAB formats and operations. In subsequent chapters
we use this foundation to develop some useful image processing techniques
such as filtering, Fourier and other transformations, and registration (alignment)
of multiple images.

PROBLEMS

1. (A) Following the approach used in Example 10.1, generate an image that
is a sinusoidal grating in both horizontal and vertical directions (it will look
somewhat like a checkerboard). (Hint: This can be done with very few addi-
tional instructions.) (B) Combine this image with its inverse as a multiframe
image and show it as a movie. Use multiple repetitions. The movie should look
like a flickering checkerboard. Submit the two images.

2. Load the x-ray image of the spine (spine.tif) from the MATLAB Image
Processing Toolbox. Slice the image into 4 different levels then plot in pseudo-
color using yellow, red, green, and blue for each slice. The 0 level slice should
be blue and the highest level slice should be yellow. Use grayslice and con-
struct you own colormap. Plot original and sliced image in the same figure. (If
the “original” image also displays in pseudocolor, it is because the computer
display is using the same 3-level colormap for both images. In this case, you
should convert the sliced image to RGB before displaying.)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

3. Load frame 20 from the MRI image (mri.tif) and code it in pseudocolor
by coding the image into green and the inverse of the image into blue. Then
take a threshold and plot pixels over 80% maximum as red.

4. Load the image of a cancer cell (from rat prostate, courtesy of Alan W.
Partin, M.D., Johns Hopkins University School of Medicine) cell.tif and
apply a correction to the intensity values of the image (a gamma correction
described in later chapters). Specifically, modify each pixel in the image by a
function that is a quarter wave sine wave. That is, the corrected pixels are the
output of the sine function of the input pixels: Out(m,n) = f(In(m,n)) (see plot
below).

FIGURE PROB. 10.4 Correction function to be used in Problem 4. The input pixel
values are on the horizontal axis, and the output pixels values are on the vertical
axis.

5. Load the blood cell image in blood1.tif. Write a sliding neighborhood
function to enhance horizontal boundaries that go from dark to light. Write a
second function that enhances boundaries that go from light to dark. Threshold
both images so as to enhance the boundaries. Use a 3 by 2 sliding block. (Hint:
This program may require several minutes to run. You do not need to rerun the
program each time to adjust the threshold for the two binary images.)

6. Load the blood cells in blood.tif. Apply a distinct block function that
replaces all of the values within a block by the maximum value in that block.
Use a 4 by 4 block size. Repeat the operation using a function that replaces all
the values by the minimum value in the block.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

11

Image Processing:
Filters, Transformations,
and Registration

SPECTRAL ANALYSIS: THE FOURIER TRANSFORM

The Fourier transform and the efficient algorithm for computing it, the fast
Fourier transform, extend in a straightforward manner to two (or more) dimen-
sions. The two-dimensional version of the Fourier transform can be applied to
images providing a spectral analysis of the image content. Of course, the result-
ing spectrum will be in two dimensions, and usually it is more difficult to inter-
pret than a one-dimensional spectrum. Nonetheless, it can be a very useful anal-
ysis tool, both for describing the contents of an image and as an aid in the
construction of imaging filters as described in the next section. When applied
to images, the spatial directions are equivalent to the time variable in the one-
dimensional Fourier transform, and this analogous spatial frequency is given in
terms of cycles/unit length (i.e., cycles/cm or cycles/inch) or normalized to cy-
cles per sample. Many of the concerns raised with sampled time data apply to
sampled spatial data. For example, undersampling an image will lead to aliasing.
In such cases, the spatial frequency content of the original image is greater than
fS/2, where fS now is 1/(pixel size). Figure 11.1 shows an example of aliasing in
the frequency domain. The upper left-hand upper image contains a chirp signal
increasing in spatial frequency from left to right. The high frequency elements
on the right side of this image are adequately sampled in the left-hand image.
The same pattern is shown in the upper right-hand image except that the sam-
pling frequency has been reduced by a factor of 6. The right side of this image
also contains sinusoidally varying intensities, but at additional frequencies as

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.1 The influence of aliasing due to undersampling on two images with
high spatial frequency. The aliased images show addition sinusoidal frequencies
in the upper right image and jagged diagonals in the lower right image. (Lower
original image from file ‘testpostl.png’ from the MATLAB Image Processing Tool-
box. Copyright 1993–2003, The Math Works, Inc. Reprinted with permission.)

the aliasing folds other sinusoids on top of those in the original pattern. The
lower figures show the influence of aliasing on a diagonal pattern. The jagged
diagonals are characteristic of aliasing as are moire patterns seen in other im-
ages. The problem of determining an appropriate sampling size is even more
acute in image acquisition since oversampling can quickly lead to excessive
memory storage requirements.

The two-dimensional Fourier transform in continuous form is a direct ex-
tension of the equation given in Chapter 3:

F(ω1,ω2) = ∫
∞

m=−∞

∫
∞

n=−∞

f(m,n)e−jω1m
e
−jω2n
dm dn (1)

The variables ω1 and ω2 are still frequency variables, although they define
spatial frequencies and their units are in radians per sample. As with the time

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

domain spectrum, F(ω1,ω2) is a complex-valued function that is periodic in both
ω1 and ω2. Usually only a single period of the spectral function is displayed, as
was the case with the time domain analog.

The inverse two-dimensional Fourier transform is defined as:

f(m,n) = 1

4π 2 ∫
π

ω1=−π

∫
π

ω2=−π

F(ω1,ω2)e
−jω1m
e
−jω2n
dω1 dω 2 (2)

As with the time domain equivalent, this statement is a reflection of the
fact that any two-dimensional function can be represented by a series (possibly
infinite) of sinusoids, but now the sinusoids extend over the two dimensions.

The discrete form of Eqs. (1) and (2) is again similar to their time domain
analogs. For an image size of M by N, the discrete Fourier transform becomes:

F(p,q) = ∑
M−1

m=0

∑
N−1

n=0

f(m,n)e−j(2π/M)p m
e
−j(2π/N)q n (3)

p = 0,1 . . . , M − 1; q = 0,1 . . . , N − 1

The values F(p,q) are the Fourier Transform coefficients of f(m,n). The
discrete form of the inverse Fourier Transform becomes:

f(m,n) = 1
MN
∑
M−1

p=0

∑
N−1

q=0

F(p,q)e−j(2π/M)p m
e
−j(2π/N)q n (4)

m = 0,1 . . . , M − 1; n = 0,1 . . . , N − 1

MATLAB Implementation

Both the Fourier transform and inverse Fourier transform are supported in two
(or more) dimensions by MATLAB functions. The two-dimensional Fourier
transform is evoked as:

F = fft2(x,M,N);

where F is the output matrix and x is the input matrix. M and N are optional
arguments that specify padding for the vertical and horizontal dimensions, re-
spectively. In the time domain, the frequency spectrum of simple waveforms
can usually be anticipated and the spectra of even relatively complicated wave-
forms can be readily understood. With two dimensions, it becomes more diffi-
cult to visualize the expected Fourier transform even of fairly simple images. In
Example 11.1 a simple thin rectangular bar is constructed, and the Fourier trans-
form of the object is constructed. The resultant spatial frequency function is
plotted both as a three-dimensional function and as an intensity image.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Example 11.1 Determine and display the two-dimensional Fourier trans-
form of a thin rectangular object. The object should be 2 by 10 pixels in size
and solid white against a black background. Display the Fourier transform as
both a function (i.e., as a mesh plot) and as an image plot.

% Example 11.1 Two-dimensional Fourier transform of a simple
% object.
% Construct a simple 2 by 10 pixel rectangular object, or bar.
% Take the Fourier transform padded to 256 by 256 and plot the
% result as a 3-dimensional function (using mesh) and as an
% intensity image.
%
% Construct object
close all; clear all;
% Construct the rectangular object
f = zeros(22,30); % Original figure can be small since it
f(10:12,10:20) = 1; % will be padded
%

F = fft2(f,128,128); % Take FT; pad to 128 by 128
F = abs(fftshift(F));, % Shift center; get magnitude
%
imshow(f,’notruesize’); % Plot object
.....labels..........

figure;
mesh(F); % Plot Fourier transform as function
.......labels..........

figure;
F = log(F); % Take log function

FIGURE 11.2A The rectangular object (2 pixels by 10 pixels used in Example
11.1. The Fourier transform of this image is shown in Figure 11.2B and C.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.2B Fourier transform of the rectangular object in Figure 11.2A plotted
as a function. More energy is seen, particularly at the higher frequencies, along
the vertical axis because the object’s vertical cross sections appear as a narrow
pulse. The border horizontal cross sections produce frequency characteristics
that fall off rapidly at higher frequencies.

I = mat2gray(F); % Scale as intensity image
imshow(I); % Plot Fourier transform as image

Note that in the above program the image size was kept small (22 by 30)
since the image will be padded (with zeros, i.e., black) by ‘fft2.’ The fft2

routine places the DC component in the upper-left corner. The fftshift routine
is used to shift this component to the center of the image for plotting purposes.
The log of the function was taken before plotting as an image to improve the
grayscale quality in the figure.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.2C The Fourier transform of the rectangular object in Figure 11.2A
plotted as an image. The log of the function was taken before plotting to improve
the details. As in the function plot, more high frequency energy is seen in the
vertical direction as indicated by the dark vertical band.

The horizontal chirp signal plotted in Figure 11.1 also produces a easily
interpretable Fourier transform as shown in Figure 11.3. The fact that this image
changes in only one direction, the horizontal direction, is reflected in the Fourier
transform. The linear increase in spatial frequency in the horizontal direction
produces an approximately constant spectral curve in that direction.

The two-dimensional Fourier transform is also useful in the construction
and evaluation of linear filters as described in the following section.

LINEAR FILTERING

The techniques of linear filtering described in Chapter 4 can be directly ex-
tended to two dimensions and applied to images. In image processing, FIR fil-
ters are usually used because of their linear phase characteristics. Filtering an
image is a local, or neighborhood, operation just as it was in signal filtering,
although in this case the neighborhood extends in two directions around a given
pixel. In image filtering, the value of a filtered pixel is determined from a linear
combination of surrounding pixels. For the FIR filters described in Chapter 4,

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.3 Fourier transform of the horizontal chirp signal shown in Figure
11.1. The spatial frequency characteristics of this image are zero in the vertical
direction since the image is constant in this direction. The linear increase in spa-
tial frequency in the horizontal direction is reflected in the more or less constant
amplitude of the Fourier transform in this direction.

the linear combination for a given FIR filter was specified by the impulse re-
sponse function, the filter coefficients, b(n). In image filtering, the filter function
exists in two dimensions, h(m,n). These two-dimensional filter weights are ap-
plied to the image using convolution in an approach analogous to one-dimen-
sional filtering.

The equation for two-dimensional convolution is a straightforward exten-
sion of the one-dimensional form (Eq. (15), Chapter 2):

y(m,n) = ∑
∞

k1=−∞
∑
∞

k2=−∞

x(k1,k2)b(m − k1,n − k2) (5)

While this equation would not be difficult to implement using MATLAB
statements, MATLAB has a function that implements two-dimensional convolu-
tion directly.

Using convolution to perform image filtering parallels its use in signal
imaging: the image array is convolved with a set of filter coefficients. However,

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

in image analysis, the filter coefficients are defined in two dimensions, h(m,n).
A classic example of a digital image filter is the Sobel filter, a set of coefficients
that perform a horizontal spatial derivative operation for enhancement of hori-
zontal edges (or vertical edges if the coefficients are rotated using transposition):

h(m,n)Sobel = � 1 2 1
0 0 0
−1 −2 −1 � �

These two-dimensional filter coefficients are sometimes referred to as the
convolution kernel. An example of the application of a Sobel filter to an image
is provided in Example 11.2.

When convolution is used to apply a series of weights to either image or
signal data, the weights represent a two-dimensional impulse response, and, as
with a one-dimensional impulse response, the weights are applied to the data in
reverse order as indicated by the negative sign in the one- and two-dimensional
convolution equations (Eq. (15) from Chapter 2 and Eq. (5).* This can become
a source of confusion in two-dimensional applications. Image filtering is easier
to conceptualize if the weights are applied directly to the image data in the same
orientation. This is possible if digital filtering is implemented using correlation
rather that convolution. Image filtering using correlation is a sliding neighbor-
hood operation, where the value of the center pixel is just the weighted sum of
neighboring pixels with the weighting given by the filter coefficients. When
correlation is used, the set of weighting coefficients is termed the correlation
kernel to distinguish it from the standard filter coefficients. In fact, the opera-
tions of correlation and convolution both involve weighted sums of neighboring
pixels, and the only difference between correlation kernels and convolution ker-
nels is a 180-degree rotation of the coefficient matrix. MATLAB filter routines
use correlation kernels because their application is easier to conceptualize.

MATLAB Implementation

Two dimensional-convolution is implemented using the routine ‘conv2’:

I2 = conv2(I1, h, shape)

where I1 and h are image and filter coefficients (or two images, or simply two
matrices) to be convolved and shape is an optional argument that controls the
size of the output image. If shape is ‘full’, the default, then the size of the
output matrix follows the same rules as in one-dimensional convolution: each

*In one dimension, this is equivalent to applying the weights in reverse order. In two dimensions,
this is equivalent to rotating the filter matrix by 180 degrees before multiplying corresponding pixels
and coefficients.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

dimension of the output is the sum of the two matrix lengths along that dimen-
sion minus one. Hence, if the two matrices have sizes I1(M1, N1) and h(M2,

N2), the output size is: I2(M1 � M2 − 1, N2 � N2 − 1). If shape is ‘valid’,
then any pixel evaluation that requires image padding is ignored and the size of
the output image is: Ic(M1- M2 � 1, N1- N2 � 1). Finally, if shape is ‘same’
the size of the output matrix is the same size as I1; that is: I2(M1, N1). These
options allow a great deal in flexibility and can simplify the use of two-dimen-
sional convolution; for example, the ‘same’ option can eliminate the need for
dealing with the additional points generated by convolution.

Two-dimensional correlation is implemented with the routine ‘imfilter’

that provides even greater flexibility and convenience in dealing with size and
boundary effects. The calling structure of this routine is given in the next page.

I2 = imfilter(I1, h, options);

where again I1 and h are the input matrices and options can include up to
three separate control options. One option controls the size of the output array
using the same terms as in ‘conv2’ above: ‘same’ and ‘full’ (‘valid’ is
not valid in this routine!). With ‘imfilter’ the default output size is ‘same’

(not ‘full’), since this is the more likely option in image analysis. The second
possible option controls how the edges are treated. If a constant is given, then
the edges are padded with the value of that constant. The default is to use a
constant of zero (i.e., standard zero padding). The boundary option ‘symmet-

ric’ uses a mirror reflection of the end points as shown in Figure 2.10. Simi-
larly the option ‘circular’ uses periodic extension also shown in Figure 2.10.
The last boundary control option is ‘replicate’, which pads using the nearest
edge pixel. When the image is large, the influence of the various border control
options is subtle, as shown in Example 11.4. A final option specifies the use of
convolution instead of correlation. If this option is activated by including the
argument conv, imfilter is redundant with ‘conv2’ except for the options
and defaults. The imfilter routine will accept all of the data format and types
defined in the previous chapter and produces an output in the same format;
however, filtering is not usually appropriate for indexed images. In the case of
RGB images, imfilter operates on all three image planes.

Filter Design

The MATLAB Image Processing Toolbox provides considerable support for
generating the filter coefficients.* A number of filters can be generated using
MATLAB’s fspecial routine:

*Since MATLAB’s preferred implementation of image filters is through correlation, not convolu-
tion, MATLAB’s filter design routines generate correlation kernels. We use the term “filter coeffi-
cient” for either kernel format.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

h = fspecial(type, parameters);

where type specifies a specific filter and the optional parameters are related to
the filter selected. Filter type options include: ‘gaussian’, ‘disk’, ‘sobel’,
‘prewitt’, ‘laplacian’, ‘log’, ‘average’, and ‘unsharp’. The ‘gauss-

ian’ option produces a Gaussian lowpass filter. The equation for a Gaussian
filter is similar to the equation for the gaussian distribution:

h(m,n) = e−(d/σ)/2 where d = √(m2 + n2)

This filter has particularly desirable properties when applied to an image:
it provides an optimal compromise between smoothness and filter sharpness.
The MATLAB routine for this filter accepts two parameters: the first specifies
the filter size (the default is 3) and the second the value of sigma. The value of
sigma will influence the cutoff frequency while the size of the filter determines
the number of pixels over which the filter operates. In general, the size should
be 3–5 times the value of sigma.

Both the ‘sobel’ and ‘prewitt’ options produce a 3 by 3 filter that
enhances horizontal edges (or vertical if transposed). The ‘unsharp’ filter pro-
duces a contrast enhancement filter. This filter is also termed unsharp masking
because it actually suppresses low spatial frequencies where the low frequencies
are presumed to be the unsharp frequencies. In fact, it is a special highpass
filter. This filter has a parameter that specifies the shape of the highpass charac-
teristic. The ‘average’ filter simply produces a constant set of weights each of
which equals 1/N, where N = the number of elements in the filter (the default
size of this filter is 3 by 3, in which case the weights are all 1/9 = 0.1111). The
filter coefficients for a 3 by 3 Gaussian lowpass filter (sigma = 0.5) and the
unsharpe filter (alpha = 0.2) are shown below:

hunsharp = �−0.1667 −0.6667 −0.1667
−0.6667 4.3333 −0.6667
−0.1667 −0.6667 −0.1667

�; hgaussian = �0.0113 0.0838 0.0113
0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

�
The Laplacian filter is used to take the second derivative of an image:

∂2 /∂x. The log filter is actually the log of Gaussian filter and is used to take the
first derivative, ∂ /∂x, of an image.

MATLAB also provides a routine to transform one-dimensional FIR fil-
ters, such as those described in Chapter 4, into two-dimensional filters. This
approach is termed the frequency transform method and preserves most of the
characteristics of the one-dimensional filter including the transition band-
width and ripple features. The frequency transformation method is implemented
using:

h = ftrans2(b);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

where h are the output filter coefficients (given in correlation kernel format),
and b are the filter coefficients of a one-dimensional filter. The latter could be
produced by any of the FIR routines described in Chapter 4 (i.e., fir1, fir2,

or remez). The function ftrans2 can take an optional second argument that
specifies the transformation matrix, the matrix that converts the one-dimensional
coefficients to two dimensions. The default transformation is the McClellan
transformation that produces a nearly circular pattern of filter coefficients. This
approach brings a great deal of power and flexibility to image filter design since
it couples all of the FIR filter design approaches described in Chapter 4 to image
filtering.

The two-dimensional Fourier transform described above can be used to
evaluate the frequency characteristics of a given filter. In addition, MATLAB
supplies a two-dimensional version of freqz, termed freqz2, that is slightly
more convenient to use since it also handles the plotting. The basic
call is:

[H fx fy] = freqz2(h, Ny, Nx);.

where h contains the two-dimensional filter coefficients and Nx and Ny specify
the size of the desired frequency plot. The output argument, H, contains the two-
dimensional frequency spectra and fx and fy are plotting vectors; however, if
freqz2 is called with no output arguments then it generates the frequen-
cy plot directly. The examples presented below do not take advantage of this
function, but simply use the two-dimensional Fourier transform for filter evalua-
tion.

Example 11.2 This is an example of linear filtering using two of the
filters in fspecial. Load one frame of the MRI image set (mri.tif) and apply
the sharpening filter, hunsharp, described above. Apply a horizontal Sobel filter,
hSobel, (also shown above), to detect horizontal edges. Then apply the Sobel filter
to detect the vertical edges and combine the two edge detectors. Plot both the
horizontal and combined edge detectors.

Solution To generate the vertical Sobel edge detector, simply transpose
the horizontal Sobel filter. While the two Sobel images could be added together
using imadd, the program below first converts both images to binary then com-
bines them using a logical or. This produces a more dramatic black and white
image of the boundaries.

% Example 11.2 and Figure 11.4A and B
% Example of linear filtering using selected filters from the
% MATLAB ’fspecial’ function.
% Load one frame of the MRI image and apply the 3 by 3 “unshape”
% contrast enhancement filter shown in the text. Also apply two

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.4A MRI image of the brain before and after application of two filters
from MATLAB’s fspecial routine. Upper right: Image sharpening using the filter
unsharp. Lower images: Edge detection using the sobel filter for horizontal
edges (left) and for both horizontal and vertical edges (right). (Original image
from MATLAB. Image Processing Toolbox. Copyright 1993–2003, The Math
Works, Inc. Reprinted with permission.)

% 3 by 3 Sobel edge detector filters to enhance horizontal and
% vertical edges.
% Combine the two edge detected images
%
clear all; close all;
%
frame = 17; % Load MRI frame 17
[I(:,:,:,1), map] = imread(’mri.tif’, frame);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.4B Frequency characteristics of the unsharp and Sobel filters used
in Example 11.2.

if isempty(map) == 0 % Usual check and
I = ind2gray(I,map); % conversion if

% necessary.
else
I = im2double(I);

end
%
h_unsharp = fspecial(’unsharp’,.5); % Generate ‘unsharp’
I_unsharp = imfilter(I,h_unsharp); % filter coef. and

% apply
%
h_s = fspecial(’Sobel’); % Generate basic Sobel

% filter.
I_sobel_horin = imfilter(I,h_s); % Apply to enhance
I_sobel_vertical = imfilter(I,h_s’); % horizontal and

% vertical edges
%
% Combine by converting to binary and or-ing together
I_sobel_combined = im2bw(I_sobel_horin) * ...
im2bw(I_sobel_vertical);

%
subplot(2,2,1); imshow(I); % Plot the images
title(’Original’);

subplot(2,2,2); imshow(I_unsharp);
title(’Unsharp’);

subplot(2,2,3); imshow(I_sobel_horin);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

title(’Horizontal Sobel’);
subplot(2,2,4); imshow(I_sobel_combined);
title(’Combined Image’); figure;

%
% Now plot the unsharp and Sobel filter frequency
% characteristics
F= fftshift(abs(fft2(h_unsharp,32,32)));
subplot(1,2,1); mesh(1:32,1:32,F);
title(’Unsharp Filter’); view([-37,15]);

%
F = fftshift(abs(fft2(h_s,32,32)));
subplot(1,2,2); mesh(1:32,1:32,F);
title(’Sobel Filter’); view([-37,15]);

The images produced by this example program are shown below along
with the frequency characteristics associated with the ‘unsharp’ and ‘sobel’

filter. Note that the ‘unsharp’ filter has the general frequency characteristics
of a highpass filter, that is, a positive slope with increasing spatial frequencies
(Figure 11.4B). The double peaks of the Sobel filter that produce edge enhance-
ment are evident in Figure 11.4B. Since this is a magnitude plot, both peaks
appear as positive.

In Example 11.3, routine ftrans2 is used to construct two-dimensional
filters from one-dimensional FIR filters. Lowpass and highpass filters are con-
structed using the filter design routine fir1 from Chapter 4. This routine gener-
ates filter coefficients based on the ideal rectangular window approach described
in that chapter. Example 11.3 also illustrates the use of an alternate padding
technique to reduce the edge effects caused by zero padding. Specifically, the
‘replicate’ option of imfilter is used to pad by repetition of the last (i.e.,
image boundary) pixel value. This eliminates the dark border produced by zero
padding, but the effect is subtle.

Example 11.3 Example of the application of standard one-dimensional
FIR filters extended to two dimensions. The blood cell images (blood1.tif)
are loaded and filtered using a 32 by 32 lowpass and highpass filter. The one-
dimensional filter is based on the rectangular window filter (Eq. (10), Chapter
4), and is generated by fir. It is then extended to two dimensions using
ftrans2.

% Example 11.3 and Figure 11.5A and B
% Linear filtering. Load the blood cell image
% Apply a 32nd order lowpass filter having a bandwidth of .125
% fs/2, and a highpass filter having the same order and band-
% width. Implement the lowpass filter using ‘imfilter’ with the

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.5A Image of blood cells before and after lowpass and highpass filter-
ing. The upper lowpass image (upper right) was filtered using zero padding,
which produces a slight black border around the image. Padding by extending
the edge pixel eliminates this problem (lower left). (Original Image reprinted with
permission from The Image Processing Handbook, 2nd edition. Copyright CRC
Press, Boca Raton, Florida.)

% zero padding (the default) and with replicated padding
% (extending the final pixels).
% Plot the filter characteristics of the high and low pass filters
%
% Load the image and transform if necessary
clear all; close all;
N = 32; % Filter order
w_lp = .125; % Lowpass cutoff frequency

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.5B Frequency characteristics of the lowpass (left) and highpass (right)
filters used in Figure 11.5A.

w_hp = .125; % Highpass cutoff frequency
.......load image blood1.tif and convert as in Example
11.2

%
b = fir1(N,w_lp); % Generate the lowpass filter
h_lp = ftrans2(b); % Convert to 2-dimensions
I_lowpass = imfilter(I,h_lp); % and apply with,
% and without replication
I_lowpass_rep = imfilter (I,h_lp,’replicate’);
b = fir1(N,w_hp,’high’); % Repeat for highpass
h_hp = ftrans2(b);
I_highpass = imfilter(I, h_hp);
I_highpass = mat2gray(I_highpass);
%
........plot the images and filter characteristics as in
Example 11.2.......

The figures produced by this program are shown below (Figure 11.5A and
B). Note that there is little difference between the image filtered using zero
padding and the one that uses extended (‘replicate’) padding. The highpass
filtered image shows a slight derivative-like characteristic that enhances edges.
In the plots of frequency characteristics, Figure 11.5B, the lowpass and highpass
filters appear to be circular, symmetrical, and near opposites.

The problem of aliasing due to downsampling was discussed above and

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

demonstrated in Figure 11.1. Such problems could occur whenever an image is
displayed in a smaller size that will require fewer pixels, for example when the
size of an image is reduced during reshaping of a computer window. Lowpass
filtering can be, and is, used to prevent aliasing when an image is downsized.
In fact, MATLAB automatically performs lowpass filtering when downsizing
an image. Example 11.4 demonstrates the ability of lowpass filtering to reduce
aliasing when downsampling is performed.

Example 11.4 Use lowpass filtering to reduce aliasing due to downsam-
pling. Load the radial pattern (‘testpat1.png’) and downsample by a factor
of six as was done in Figure 11.1. In addition, downsample that image by the
same amount, but after it has been lowpass filtered. Plot the two downsampled
images side-by-side. Use a 32 by 32 FIR rectangular window lowpass filter. Set
the cutoff frequency to be as high as possible and still eliminate most of the
aliasing.

% Example 11.4 and Figure 11.6
% Example of the ability of lowpass filtering to reduce aliasing.
% Downsample the radial pattern with and without prior lowpass
% filtering.
% Use a cutoff frequency sufficient to reduce aliasing.
%
clear all; close all;
N = 32; % Filter order
w = .5; % Cutoff frequency (see text)

FIGURE 11.6 Two images of the radial pattern shown in Figure 11.1 after down-
sampling by a factor of 6. The right-hand image was filtered by a lowpass filter
before downsampling.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

dwn = 6; % Downsampling coefficient
b = fir1(N,w); % Generate the lowpass filter
h = ftrans2(b); % Convert to 2-dimensions
%
[Imap] = imread(’testpat1.png’); % Load image
I_lowpass = imfilter(I,h); % Lowpass filter image
[M,N] = size(I);
%
I = I(1:dwn:M,1:dwn:N); % Downsample unfiltered image
subplot (1,2,1); imshow(I); % and display
title(’No Filtering’);

% Downsample filtered image and display
I_lowass = I_lowpass(1:dwn: M,1:dwn:N);
subplot(1,2,2); imshow(I_lowpass);
title (’Lowpass Filtered’);

The lowpass cutoff frequency used in Example 11.5 was determined em-
pirically. Although the cutoff frequency was fairly high (fS/4), this filter still
produced substantial reduction in aliasing in the downsampled image.

SPATIAL TRANSFORMATIONS

Several useful transformations take place entirely in the spatial domain. Such
transformations include image resizing, rotation, cropping, stretching, shearing,
and image projections. Spatial transformations perform a remapping of pixels
and often require some form of interpolation in addition to possible anti-aliasing.
The primary approach to anti-aliasing is lowpass filtering, as demonstrated
above. For interpolation, there are three methods popularly used in image pro-
cessing, and MATLAB supports all three. All three interpolation strategies use
the same basic approach: the interpolated pixel in the output image is the
weighted sum of pixels in the vicinity of the original pixel after transformation.
The methods differ primarily in how many neighbors are considered.

As mentioned above, spatial transforms involve a remapping of one set of
pixels (i.e., image) to another. In this regard, the original image can be consid-
ered as the input to the remapping process and the transformed image is the
output of this process. If images were continuous, then remapping would not
require interpolation, but the discrete nature of pixels usually necessitates re-
mapping.* The simplest interpolation method is the nearest neighbor method in
which the output pixel is assigned the value of the closest pixel in the trans-
formed image, Figure 11.7. If the transformed image is larger than the original
and involves more pixels, then a remapped input pixel may fall into two or

*A few transformations may not require interpolation such as rotation by 90 or 180 degrees.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.7 A rotation transform using the nearest neighbor interpolation
method. Pixel values in the output image (solid grid) are assigned values from
the nearest pixel in the transformed input image (dashed grid).

more output pixels. In the bilinear interpolation method, the output pixel is the
weighted average of transformed pixels in the nearest 2 by 2 neighborhood, and
in bicubic interpolation the weighted average is taken over a 4 by 4 neighbor-
hood.

Computational complexity and accuracy increase with the number of pix-
els that are considered in the interpolation, so there is a trade-off between quality
and computational time. In MATLAB, the functions that require interpolation
have an optional argument that specifies the method. For most functions, the
default method is nearest neighbor. This method produces acceptable results on
all image classes and is the only method appropriate for indexed images. The
method is also the most appropriate for binary images. For RGB and intensity
image classes, the bilinear or bicubic interpolation method is recommended
since they lead to better results.

MATLAB provides several routines that can be used to generate a variety
of complex spatial transformations such as image projections or specialized dis-
tortions. These transformations can be particularly useful when trying to overlay
(register) images of the same structure taken at different times or with different
modalities (e.g., PET scans and MRI images). While MATLAB’s spatial trans-
formations routines allow for any imaginable transformation, only two types
of transformation will be discussed here: affine transformations and projective
transformations. Affine transformations are defined as transformations in which
straight lines remain straight and parallel lines remain parallel, but rectangles
may become parallelograms. These transformations include rotation, scaling,
stretching, and shearing. In projective translations, straight lines still remain
straight, but parallel lines often converge toward vanishing points. These trans-
formations are discussed in the following MATLAB implementation section.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

MATLAB Implementation

Affine Transformations

MATLAB provides a procedure described below for implementing any affine
transformation; however, some of these transformations are so popular they are
supported by separate routines. These include image resizing, cropping, and
rotation. Image resizing and cropping are both techniques to change the dimen-
sions of an image: the latter is interactive using the mouse and display while
the former is under program control. To change the size of an image, MATLAB
provides the ‘imresize’ command given below.

I_resize = imresize(I, arg or [M N], method);

where I is the original image and I_resize is the resized image. If the second
argument is a scalar arg, then it gives a magnification factor, and if it is a vector,
[M N], it indicates the desired new dimensions in vertical and horizontal pixels,
M, N. If arg > 1, then the image is increased (magnified) in size proportionally
and if arg < 1, it is reduced in size (minified). This will change image size
proportionally. If the vector [M N] is used to specify the output size, image
proportions can be modified: the image can be stretched or compressed along a
given dimension. The argument method specifies the type of interpolation to be
used and can be either ‘nearest’, ‘bilinear’, or ‘bicubic’, referring to the
three interpolation methods described above. The nearest neighbor (nearest) is
the default. If image size is reduced, then imresize automatically applies an
anti- aliasing, lowpass filter unless the interpolation method is nearest; i.e., the
default. The logic of this is that the nearest neighbor interpolation method would
usually only be used with indexed images, and lowpass filtering is not really
appropriate for these images.

Image cropping is an interactive command:

I_resize = imcrop;

The imcrop routine waits for the operator to draw an on-screen cropping
rectangle using the mouse. The current image is resized to include only the
image within the rectangle.

Image rotation is straightforward using the imrotate command:

I_rotate = imrotate(I, deg, method, bbox);

where I is the input image, I_rotate is the rotated image, deg is the degrees
of rotation (counterclockwise if positive, and clockwise if negative), and method

describes the interpolation method as in imresize. Again, the nearest neighbor

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

method is the default even though the other methods are preferred except for
indexed images. After rotation, the image will not, in general, fit into the same
rectangular boundary as the original image. In this situation, the rotated image
can be cropped to fit within the original boundaries or the image size can be
increased to fit the rotated image. Specifying the bbox argument as ‘crop’ will
produce a cropped image having the dimensions of the original image, while
setting bbox to ‘loose’ will produce a larger image that contains the entire
original, unrotated, image. The loose option is the default. In either case, addi-
tional pixels will be required to fit the rotated image into a rectangular space
(except for orthogonal rotations), and imrotate pads these with zeros produc-
ing a black background to the rotated image (see Figure 11.8).

Application of the imresize and imrotate routines is shown in Example
11.5 below. Application of imcrop is presented in one of the problems at the
end of this chapter.

FIGURE 11.8 Two spatial transformations (horizontal stretching and rotation) ap-
plied to an image of bone marrow. The rotated images are cropped either to
include the full image (lower left), or to have the same dimensions are the original
image (lower right). Stained image courtesy of Alan W. Partin, M.D., Ph.D., Johns
Hopkins University School of Medicine.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Example 11.5 Demonstrate resizing and rotation spatial transformations.
Load the image of stained tissue (hestain.png) and transform it so that the
horizontal dimension is 25% longer than in the original, keeping the vertical di-
mension unchanged. Rotate the original image 45 degrees clockwise, with and
without cropping. Display the original and transformed images in a single figure.

% Example 11.5 and Figure 11.8
% Example of various Spatial Transformations
% Input the image of bone marrow (bonemarr.tif) and perform
% two spatial transformations:
% 1) Stretch the object by 25% in the horizontal direction;
% 2) Rotate the image clockwise by 30 deg. with and without
% cropping.
% Display the original and transformed images.
%
.......read image and convert if necessary
%
% Rotate image with and without cropping
I_rotate = imrotate(I,-45, ’bilinear’);
I_rotate_crop = imrotate (I, -45, ’bilinear’, ’crop’);
%
[M N] = size(I);
% Stretch by 25% horin.
I_stretch = imresize (I,[M N*1.25], ’bilinear’);
%
.......display the images

The images produced by this code are shown in Figure 11.8.

General Affine Transformations

In the MATLAB Image Processing Toolbox, both affine and projective spatial
transformations are defined by a Tform structure which is constructed using one
of two routines: the routine maketform uses parameters supplied by the user to
construct the transformation while cp2tform uses control points, or landmarks,
placed on different images to generate the transformation. Both routines are
very flexible and powerful, but that also means they are quite involved. This
section describes aspects of the maketform routine, while the cp2tfrom routine
will be presented in context with image registration.

Irrespective of the way in which the desired transformation is specified, it
is implemented using the routine imtransform. This routine is only slightly
less complicated than the transformation specification routines, and only some
of its features will be discussed here. (The associated help file should be con-
sulted for more detail.) The basic calling structure used to implement the spatial
transformation is:

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

B = imtransform(A, Tform, ‘Param1’, value1, ‘Param2’,

value2,....);

where A and B are the input and output arrays, respectively, and Tform provides
the transformation specifications as generated by maketform or cp2tform. The
additional arguments are optional. The optional parameters are specified as pairs
of arguments: a string containing the name of the optional parameter (i.e.,
‘Param1’) followed by the value.* These parameters can (1) specify the pixels
to be used from the input image (the default is the entire image), (2) permit a
change in pixel size, (3) specify how to fill any extra background pixels gener-
ated by the transformation, and (4) specify the size and range of the output
array. Only the parameters that specify output range will be discussed here, as
they can be used to override the automatic rescaling of image size performed
by imtransform. To specify output image range and size, parameters ‘XData’

and ‘YData’ are followed by a two-variable vector that gives the x or y coordi-
nates of the first and last elements of the output array, B. To keep the size and
range in the output image the same as the input image, simply specify the hori-
zontal and vertical size of the input array, i.e.:

[M N] = size(A);

...

B = imtransform(A, Tform, ‘Xdata’, [1 N], ‘Ydata’, [1 M]);

As with the transform specification routines, imtransform uses the spa-
tial coordinate system described at the beginning of the Chapter 10. In this
system, the first dimension is the x coordinate while the second is the y, the
reverse of the matrix subscripting convention used by MATLAB. (However the
y coordinate still increases in the downward direction.) In addition, non-integer
values for x and y indexes are allowed.

The routine maketform can be used to generate the spatial transformation
descriptor, Tform. There are two alternative approaches to specifying the trans-
formation, but the most straightforward uses simple geometrical objects to de-
fine the transformation. The calling structure under this approach is:

Tform = maketform(‘type’, U, X);

where ‘type’ defines the type of transformation and U and X are vectors that
define the specific transformation by defining the input (U) and output (X) geom-
etries. While maketform supports a variety of transformation types, including

*This is a common approach used in many MATLAB routines when a large number of arguments
are possible, especially when many of these arguments are optional. It allows the arguments to be
specified in any order.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

custom, user-defined types, only the affine and projective transformations will
be discussed here. These are specified by the type parameters ‘affine’ and
‘projective’.

Only three points are required to define an affine transformation, so, for
this transformation type, U and X define corresponding vertices of input and
output triangles. Specifically, U and X are 3 by 2 matrices where each 2-column
row defines a corresponding vertex that maps input to output geometry. For
example, to stretch an image vertically, define an output triangle that is taller
than the input triangle. Assuming an input image of size M by N, to increase
the vertical dimension by 50% define input (U) and output (X) triangles as:

U = [1, 1; 1, M; N, M]’ X = [1, 1-.5M; 1, M; N, M];

In this example, the input triangle, U, is simply the upper left, lower left,
and lower right corners of the image. The output triangle, X, has its top, left
vertex increased by 50%. (Recall the coordinate pairs are given as x,y and y
increases negatively. Note that negative coordinates are acceptable). To increase
the vertical dimension symmetrically, change X to:

X = [1, 1-.25M; 1, 1.25*M; N, 1.25*M];

In this case, the upper vertex is increased by only 25%, and the two lower
vertexes are lowered in the y direction by increasing the y coordinate value by
25%. This transformation could be done with imresize, but this would also
change the dimension of the output image. When this transform is implemented
with imtransform, it is possible to control output size as described below.
Hence this approach, although more complicated, allows greater control of the
transformation. Of course, if output image size is kept the same, the contents of
the original image, when stretched, may exceed the boundaries of the image and
will be lost. An example of the use of this approach to change image proportions
is given in Problem 6.

The maketform routine can be used to implement other affine transforma-
tions such as shearing. For example, to shear an image to the left, define an
output triangle that is skewed by the desired amount with respect to the input
triangle, Figure 11.9. In Figure 11.9, the input triangle is specified as: U = [N/

2 1; 1 M; N M], (solid line) and the output triangle as X = [1 1; 1 M; N M] (solid
line). This shearing transform is implemented in Example 11.6.

Projective Transformations

In projective transformations, straight lines remain straight but parallel lines
may converge. Projective transformations can be used to give objects perspec-
tive. Projective transformations require four points for definition; hence, the

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.9 An affine transformation can be defined by three points. The trans-
formation shown here is defined by an input (left) and output (right) triangle and
produces a sheared image. M,N are indicated in this figure as row, column, but
are actually specified in the algorithm in reverse order, as x,y. (Original image
from the MATLAB Image Processing Toolbox. Copyright 1993–2003, The Math
Work, Inc. Reprinted with permission.)

defining geometrical objects are quadrilaterals. Figure 11.10 shows a projective
transformation in which the original image would appear to be tilted back. In
this transformation, vertical lines in the original image would converge in the
transformed image. In addition to adding perspective, these transformations are
of value in correcting for relative tilts between image planes during image regis-
tration. In fact, most of these spatial transformations will be revisited in the
section on image registration. Example 11.6 illustrates the use of these general
image transformations for affine and projective transformations.

Example 11.6 General spatial transformations. Apply the affine and pro-
jective spatial transformation to one frame of the MRI image in mri.tif. The
affine transformation should skew the top of the image to the left, just as shown
in Figure 11.9. The projective transformation should tilt the image back as
shown in Figure 11.10. This example will also use projective transformation to
tilt the image forward, or opposite to that shown in Figure 11.10.

After the image is loaded, the affine input triangle is defined as an equilat-
eral triangle inscribed within the full image. The output triangle is defined by
shifting the top point to the left side, so the output triangle is now a right triangle
(see Figure 11.9). In the projective transformation, the input quadrilateral is a

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.10 Specification of a projective transformation by defining two quadri-
laterals. The solid lines define the input quadrilateral and the dashed line defines
the desired output quadrilateral.

rectangle the same size as the input image. The output quadrilateral is generated
by moving the upper points inward and down by an equal amount while the lower
points are moved outward and up, also by a fixed amount. The second projective
transformation is achieved by reversing the operations performed on the corners.

% Example 11.6 General Spatial Transformations
% Load a frame of the MRI image (mri.tif)
% and perform two spatial transformations
% 1) An affine transformation that shears the image to the left
% 2) A projective transformation that tilts the image backward
% 3) A projective transformation that tilts the image forward
clear all; close all;
%
%load frame 18
%
% Define affine transformation
U1 = [N/2 1; 1 M; N M]; % Input triangle
X1 = [1 1; 1 M; N M]; % Output triangle
% Generate transform
Tform1 = maketform(’affine’, U1, X1);
% Apply transform
I_affine = imtransform(I, Tform1,’Size’, [M N]);
%
% Define projective transformation vectors
offset = .25*N;
U = [1 1; 1 M; N M; N 1]; % Input quadrilateral

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

X = [1-offset 1�offset; 1�offset M-offset; ...
N-offset M-offset; N�offset 1�offset];

%
% Define transformation based on vectors U and X
Tform2 = maketform(’projective’, U, X);
I_proj1 = imtransform(I,Tform2,’Xdata’,[1 N],’Ydata’, ...
[1 M]);

%
% Second transformation. Define new output quadrilateral
X = [1�offset 1�offset; 1-offset M-offset; ...
N�offset M-offset; N-offset 1�offset];

% Generate transform
Tform3 = maketform(’projective’, U, X);
% Apply transform
I_proj2 = imtransform(I,Tform3, ’Xdata’,[1 N],
’Ydata’,[1 M]);

%
.......display images

The images produced by this code are shown in Figure 11.11.
Of course, a great many other transforms can be constructed by redefining

the output (or input) triangles or quadrilaterals. Some of these alternative trans-
formations are explored in the problems.

All of these transforms can be applied to produce a series of images hav-
ing slightly different projections. When these multiple images are shown as a
movie, they will give an object the appearance of moving through space, per-
haps in three dimensions. The last three problems at the end of this chapter
explore these features. The following example demonstrates the construction of
such a movie.

Example 11.7 Construct a series of projective transformations, that
when shown as a movie, give the appearance of the image tilting backward in
space. Use one of the frames of the MRI image.

Solution The code below uses the projective transformation to generate
a series of images that appear to tilt back because of the geometry used. The
approach is based on the second projective transformation in Example 11.7, but
adjusts the transformation to produce a slightly larger apparent tilt in each
frame. The program fills 24 frames in such a way that the first 12 have increas-
ing angles of tilt and the last 12 frames have decreasing tilt. When shown as a
movie, the image will appear to rock backward and forward. This same ap-
proach will also be used in Problem 7. Note that as the images are being gener-
ated by imtransform, they are converted to indexed images using gray2ind

since this is the format required by immovie. The grayscale map generated by
gray2ind is used (at the default level of 64), but any other map could be
substituted in immovie to produce a pseudocolor image.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.11 Original MR image and three spatial transformations. Upper right:
An affine transformation that shears the image to the left. Lower left: A projective
transform in which the image is made to appear tilted forward. Lower right: A
projective transformation in which the image is made to appear tilted backward.
(Original image from the MATLAB Image Processing Toolbox, Copyright 1993–
2003, The Math Works, Inc. Reprinted with permission.)

% Example 11.7 Spatial Transformation movie
% Load a frame of the MRI image (mri.tif). Use the projective
% transformation to make a movie of the image as it tilts
% horizontally.
%
clear all; close all;
Nu_frame = 12; % Number of frames in each direction
Max_tilt = .5; % Maximum tilt achieved
........load MRI frame 12 as in previous examples

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

%
U = [1 1; 1 M; N M; N 1]; % Input quadrilateral
for i = 1:Nu_frame % ConstructNu_frame *2 movieframes
% Define projective transformation Vary offset up to Max_tilt
offset = Max_tilt*N*i/Nu_frame;
X = [1�offset 1�offset; 1-offset M-offset; N�offset ...
M-offset; N-offset...1�offset];

Tform2 = maketform(’projective’, U, X);
[I_proj(:,:,1,i), map] = gray2ind(imtransform(I,Tform2,...
’Xdata’,[1 N],’Ydata’,[1 M]));

% Make image tilt back and forth
I_proj(:,:,1,2*Nu_frame�1-i) = I_proj(:,:,1,i);

end
%
% Display first 12 images as a montage
montage(I_proj(:,:,:,1:12),map);
mov = immovie(I_proj,map); % Display as movie
movie(mov,5);

While it is not possible to show the movie that is produced by this code,
the various frames are shown as a montage in Figure 11.12. The last three
problems in the problem set explore the use of spatial transformations used in
combination to make movies.

IMAGE REGISTRATION

Image registration is the alignment of two or more images so they best superim-
pose. This task has become increasingly important in medical imaging as it is
used for merging images acquired using different modalities (for example, MRI
and PET). Registration is also useful for comparing images taken of the same
structure at different points in time. In functional magnetic resonance imaging
(fMRI), image alignment is needed for images taken sequentially in time as
well as between images that have different resolutions. To achieve the best
alignment, it may be necessary to transform the images using any or all of the
transformations described previously. Image registration can be quite challenging
even when the images are identical or very similar (as will be the case in the
examples and problems given here). Frequently the images to be aligned are not
that similar, perhaps because they have been acquired using different modalities.
The difficulty in accurately aligning images that are only moderately similar pres-
ents a significant challenge to image registration algorithms, so the task is often
aided by a human intervention or the use of embedded markers for reference.

Approaches to image registration can be divided into two broad catego-
ries: unassisted image registration where the algorithm generates the alignment
without human intervention, and interactive registration where a human operator

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.12 Montage display of the movie produced by the code in Example
11.7. The various projections give the appearance of the brain slice tilting and
moving back in space. Only half the 24 frames are shown here as the rest are
the same, just presented in reverse order to give the appearance of the brain
rocking back and forth. (Original image from the MATLAB Image Processing
Toolbox. Copyright 1993–2003, The Math Works, Inc. Reprinted with permis-
sion.)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

guides or aids the registration process. The former approach usually relies on
some optimization technique to maximize the correlation between the images.
In the latter approach, a human operator may aid the alignment process by
selecting corresponding reference points in the images to be aligned: corre-
sponding features are identified by the operator and tagged using some interac-
tive graphics procedure. This approach is well supported in MATLAB’s Image
Processing Toolbox. Both of these approaches are demonstrated in the examples
and problems.

Unaided Image Registration

Unaided image registration usually involves the application of an optimization
algorithm to maximize the correlation, or other measure of similarity, between
the images. In this strategy, the appropriate transformation is applied to one of
the images, the input image, and a comparison is made between this transformed
image and the reference image (also termed the base image). The optimization
routine seeks to vary the transformation in some manner until the comparison
is best possible. The problem with this approach is the same as with all optimi-
zation techniques: the optimization process may converge on a sub-optimal solu-
tion (a so-called local maximum), not the optimal solution (the global maxi-
mum). Often the solution achieved depends on the starting values of the
transformation variables. An example of convergence to a sub-optimal solution
and dependency on initial variables is found in Problem 8.

Example 11.8 below uses the optimization routine that is part of the basic
MATLAB package, fminsearch (formerly fmins). This routine is based on the
simplex (direct search) method, and will adjust any number of parameters to
minimize a function specified though a user routine. To maximize the correspon-
dence between the reference image and the input image, the negative of the
correlation between the two images is minimized. The routine fminsearch will
automatically adjust the transformation variables to achieve this minimum (re-
member that this may not be the absolute minimum).

To implement an optimization search, a routine is required that applies
the transformation variables supplied by fminsearch, performs an appropriate
trial transformation on the input image, then compares the trial image with the
reference image. Following convergence, the optimization routine returns the
values of the transformation variables that produce the best comparison. These
can then be applied to produce the final aligned image. Note that the program-
mer must specify the actual structure of the transformation since the optimiza-
tion routine works blindly and simply seeks a set of variables that produces a
minimum output. The transformation selected should be based on the possible
mechanisms for misalignment: translations, size changes, rotations, skewness,
projective misalignment, or other more complex distortions. For efficiency, the
transformation should be one that requires the least number of defining vari-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ables. Reducing the number of variables increases the likelihood of optimal
convergence and substantially reduces computation time. To minimize the num-
ber of transformation variables, the simplest transformation that will compensate
for the possible mechanisms of distortions should be used.*

Example 11.8 This is an example of unaided image registration requir-
ing an affine transformation. The input image, the image to be aligned, is a
distorted version of the reference image. Specifically, it has been stretched hori-
zontally, compressed vertically, and tilted, all using a single affine transforma-
tion. The problem is to find a transformation that will realign this image with
the reference image.

Solution MATLAB’s optimization routine fminsearch will be used to
determine an optimized transformation that will make the two images as similar
as possible. MATLAB’s fminsearch routine calls the user routine rescale to
perform the transformation and make the comparison between the two images.
The rescale routine assumes that an affine transformation is required and that
only the horizontal, vertical, and tilt dimensions need to be adjusted. (It does
not, for example, take into account possible translations between the two images,
although this would not be too difficult to incorporate.) The fminsearch routine
requires as input arguments, the name of the routine whose output is to be mini-
mized (in this example, rescale), and the initial values of the transformation
variables (in this example, all 1’s). The routine uses the size of the initial value
vector to determine how many variables it needs to adjust (in this case, three
variables). Any additional input arguments following an optional vector specify-
ing operational features are passed to rescale immediately following the trans-
formation variables. The optimization routine will continue to call rescale au-
tomatically until it has found an acceptable minimum for the error (or until
some maximum number of iterations is reached, see the associated help file).

% Example 11.8 and Figure 11.13
% Image registration after spatial transformation
% Load a frame of the MRI image (mri.tif). Transform the original
% imagebyincreasingithorizontally,decreasingitvertically,
% and tilting it to the right. Also decrease image contrast
% slightly
% Use MATLAB’s basic optimization routine, ’fminsearch’ to find
% the transformation that restores the original image shape.
%

*The number of defining variables depends on the transformation. For example rotation alone only
requires one variable, linear transformations require two variables, affine transformations require 3
variables while projective transformations require 4 variables. Two additional variables are required
for translations.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.13 Unaided image registration requiring several affine transforma-
tions. The left image is the original (reference) image and the distorted center
image is to be aligned with that image. After a transformation determined by opti-
mization, the right image is quite similar to the reference image. (Original image
from the same as fig 11.12.)

clear all; close all;
H_scale = .25; % Define distorting parameters
V_scale = .2; % Horizontal, vertical, and tilt
tilt = .2; % in percent

.......load mri.tif, frame 18.......

[M N]= size(I);
H_scale = H_scale * N/2;% Convert percent scale to pixels
V_scale = V_scale * M;
tilt = tilt * N
%
% Construct distorted image.
U = [1 1; 1 M; N M]; % Input triangle
X = [1-H_scale�tilt 1�V_scale; 1-H_scale M; N�H_scale M];
Tform = maketform(’affine’, U, X);
I_transform = (imtransform(I,Tform,’Xdata’,[1 N], ...
’Ydata’, [1 M]))*.8;

%
% Now find transformation to realign image
initial_scale = [1 1 1]; % Set initial values
[scale,Fval] = fminsearch(’rescale’,initial_scale,[], ...

I, I_transform);
disp(Fval) % Display final correlation
%
% Realign image using optimized transform

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

X = [1�scale(1)�scale(3) 1 � scale(2); 1�scale(1) M; ...
N-scale(1) M];

Tform = maketform(’affine’, U, X);
I_aligned = imtransform(I_transform,Tform,’Xdata’,[1 N],
’Ydata’,[1 M]);

%
subplot(1,3,1); imshow(I); %Display the images
title(’Original Image’);

subplot(1,3,2); imshow(I_transform);
title(’Transformed Image’);

subplot(1,3,3); imshow(I_aligned);
title(’Aligned Image’);

The rescale routine is used by fminsearch. This routine takes in the
transformation variables supplied by fminsearch, performs a trial transforma-
tion, and compares the trial image with the reference image. The routine then
returns the error to be minimized calculated as the negative of the correlation
between the two images.

function err = rescale(scale, I, I_transform);
% Function used by ’fminsearch’ to rescale an image
% horizontally, vertically, and with tilt.
% Performs transformation and computes correlation between
% original and newly transformed image.
% Inputs:
% scale Current scale factor (from ’fminsearch’)
% I original image
% I_transform image to be realigned
% Outputs:
% Negative correlation between original and transformed image.
%
[M N]= size(I);
U = [1 1; 1 M; N M]; % Input triangle
%
% Perform trial transformation
X = [1�scale(1)�scale(3) 1 � scale(2); 1�scale(1) M; ...
N-scale(1) M];

Tform = maketform(’affine’, U, X);
I_aligned = imtransform(I_transform,Tform,’Xdata’, ...
[1 N], ’Ydata’,[1 M]);

%
% Calculate negative correlation
err = -abs(corr2(I_aligned,I));

The results achieved by this registration routine are shown in Figure
11.13. The original reference image is shown on the left, and the input image

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

is in the center. As noted above, this image is the same as the reference except
that it has been distorted by several affine transformations (horizontal scratch-
ing, vertical compression, and a tilt). The aligned image achieved by the optimi-
zation is shown on the right. This image is very similar to the reference image.
This optimization was fairly robust: it converged to a correlation of 0.99 from
both positive and negative initial values. However, in many cases, convergence
can depend on the initial values as demonstrated in Problem 8. This program
took about 1 minute to run on a 1 GHz PC.

Interactive Image Registration

Several strategies may be used to guide the registration process. In the example
used here, registration will depend on reference marks provided by a human
operator. Interactive image registration is well supported by the MATLAB Im-
age Processing Toolbox and includes a graphically based program, cpselect,
that automates the process of establishing corresponding reference marks. Under
this procedure, the user interactively identifies a number of corresponding fea-
tures in the reference and input image, and a transform is constructed from these
pairs of reference points. The program must specify the type of transformation
to be performed (linear, affine, projective, etc.), and the minimum number of
reference pairs required will depend on the type of transformation. The number
of reference pairs required is the same as the number of variables needed to
define a transformation: an affine transformation will require a minimum of
three reference points while a projective transformation requires four variables.
Linear transformations require only two pairs, while other more complex trans-
formations may require six or more point pairs. In most cases, the alignment is
improved if more than the minimal number of point pairs is given.

In Example 11.9, an alignment requiring a projective transformation is pre-
sented. This Example uses the routine cp2tform to produce a transformation in
Tform format, based on point pairs obtained interactively. The cp2tform routine
has a large number of options, but the basic calling structure is:

Tform = cp2tform(input_points, base_points, ‘type’);

where input_points is a m by 2 matrix consisting of x,y coordinates of the
reference points in the input image; base_points is a matrix containing the
same information for the reference image. This routine assumes that the points
are entered in the same order, i.e., that corresponding rows in the two vectors
describe corresponding points. The type variable is the same as in maketform

and specifies the type of transform (‘affine’, ‘projective’, etc.). The use
of this routine is demonstrated in Example 11.9.

Example 11.9 An example of interactive image registration. In this ex-
ample, an input image is generated by transforming the reference image with a

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

projective transformation including vertical and horizontal translations. The pro-
gram then opens two windows displaying the reference and input image, and takes
in eight reference points for each image from the operator using the MATLAB
ginput routine. As each point is taken it, it is displayed as an ‘*’ overlaid on
the image. Once all 16 points have been acquired (eight from each image), a
transformation is constructed using cp2tform. This transformation is then ap-
plied to the input image using imtransform. The reference, input, and realigned
images are displayed.

% Example 11.9 Interactive Image Registration
% Load a frame of the MRI image (mri.tif) and perform a spatial
% transformation that tilts the image backward and displaces
% it horizontally and vertically.
% Uses interactive registration and the MATLAB function
% ‘cp2tform’ to realign the image
%
clear all; close all;
nu_points = 8; % Number of reference points

.......Load mri.tif, frame 18

[M N]= size(I);
%
% Construct input image. Perform projective transformation
U = [1 1; 1 M; N M; N 1];
offset = .15*N; % Projection offset
H = .2 * N; % Horizontal translation
V = .15 * M; % Vertical translation
X = [1-offset�H 1�offset-V; 1�offset�H M-offset-V; ...
N-offset�H M-offset-V;...N�offset�H 1�offset-V];

Tform1 = maketform(’projective’, U, X);
I_transform = imtransform(I,Tform1,’Xdata’,[1 N], ...
’Ydata’, [1 M]);

%
% Acquire reference points
% First open two display windows
fig(1) = figure;
imshow(I);

fig(2) = figure;
imshow(I_transform);

%
%
for i = 1:2 % Get reference points: both

% images
figure(fig(i)); % Open window i
hold on;

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

title(’Enter four reference points’);
for j = 1:nu_points
[x(j,i), y(j,i)] = ginput(1); % Get reference point
plot(x(j,i), y(j,i),’*’); % Mark reference point

% with *
end

end
%
% Construct transformation with cp2tform and implement with
% imtransform
%
[Tform2, inpts, base_pts] = cp2tform([x(:,2) y(:,2)], ...
[x(:,1) y(:,1)],’projective’);

I_aligned = imtransform(I_transform,Tform2,’Xdata’, ...
[1 N],’Ydata’,[1 M]);

%
figure;
subplot(1,3,1); imshow(I); % Display the images
title(’Original’);

subplot(1,3,2); imshow(I_transform);
title(’Transformation’);

subplot(1,3,3); imshow(I_aligned);
title(’Realigned’);

The reference and input windows are shown along with the reference
points selected in Figure 11.14A and B. Eight points were used rather than the
minimal four, because this was found to produce a better result. The influence
of the number of reference point used is explored in Problem 9. The result
of the transformation is presented in Figure 11.15. This figure shows that the
realignment was less that perfect, and, in fact, the correlation after alignment
was only 0.78. Nonetheless, the primary advantage of this method is that it
couples into the extraordinary abilities of human visual identification and,
hence, can be applied to images that are only vaguely similar when correlation-
based methods would surely fail.

PROBLEMS

1. Load the MATLAB test pattern image testpat1.png used in Example
11.5. Generate and plot the Fourier transform of this image. First plot only the
25 points on either side of the center of this transform, then plot the entire
function, but first take the log for better display.

2. Load the horizontal chirp pattern shown in Figure 11.1 (found on the disk
as imchirp.tif) and take the Fourier transform as in the above problem. Then
multiply the Fourier transform (in complex form) in the horizontal direction by

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.14A A reference image used in Example 11.9 showing the reference
points as black. (Original image from the MATLAB Image Processing Toolbox.
Copyright 1993–2003, The Math Works, Inc. Reprinted with permission.)

FIGURE 11.14B Input image showing reference points corresponding to those
shown in Figure 11.14A.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 11.15 Image registration using a transformation developed interactively.
The original (reference) image is seen on the left, and the input image in the
center. The image after transformation is similar, but not identical to the reference
image. The correlation between the two is 0.79. (Original image from the
MATLAB Image Processing Toolbox. Copyright 1993–2003, The Math Works,
Inc. Reprinted with permission.)

a half-wave sine function of same length. Now take the inverse Fourier trans-
form of this windowed function and plot alongside the original image. Also
apply the window in the vertical direction, take the inverse Fourier transform,
and plot the resulting image. Do not apply fftshift to the Fourier transform
as the inverse Fourier transform routine, ifft2 expects the DC component to
be in the upper left corner as fft2 presents it. Also you should take the absolute
value at the inverse Fourier transform before display, to eliminate any imaginary
components. (The chirp image is square, so you do not have to recompute the
half-wave sine function; however, you may want to plot the sine wave to verify
that you have a correct half-wave sine function). You should be able to explain
the resulting images. (Hint: Recall the frequency characteristics of the two-point
central difference algorithm used for taking the derivative.)

3. Load the blood cell image (blood1.tif). Design and implement your own
3 by 3 filter that enhances vertical edges that go from dark to light. Repeat for
a filter that enhances horizontal edges that go from light to dark. Plot the two
images along with the original. Convert the first image (vertical edge enhance-
ment) to a binary image and adjust the threshold to emphasize the edges. Plot
this image with the others in the same figure. Plot the three-dimensional fre-
quency representations of the two filters together in another figure.

4. Load the chirp image (imchirp.tif) used in Problem 2. Design a one-
dimensional 64th-order narrowband bandpass filter with cutoff frequencies of
0.1 and 0.125 Hz and apply it the chirp image. Plot the modified image with
the original. Repeat for a 128th-order filter and plot the result with the others.
(This may take a while to run.) In another figure, plot the three-dimensional
frequency representation of a 64th-order filter.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

5. Produce a movie of the rotating brain. Load frame 16 of the MRI image
(mri.tif). Make a multiframe image of the basic image by rotating that image
through 360 degrees. Use 36 frames (10 degrees per rotation) to cover the com-
plete 360 degrees. (If your resources permit, you could use 64 frames with 5
degrees per rotation.) Submit a montage plot of those frames that cover the first
90 degrees of rotation; i.e., the first eight images (or 16, if you use 64 frames).

6. Back in the 1960’s, people were into “expanding their minds” through med-
itation, drugs, rock and roll, or other “mind-expanding” experiences. In this
problem, you will expand the brain in a movie using an affine transformation.
(Note: imresize will not work because it changes the number of pixels in the
image and immovie requires that all images have the same dimensions.) Load
frame 18 of the MRI image (mri.tif). Make a movie where the brain stretches
in and out horizontally from 75% to 150% of normal size. The image will
probably exceed the frame size during its larger excursions, but this is accept-
able. The image should grow symmetrically about the center (i.e., in both direc-
tions.) Use around 24 frames with the latter half of the frames being the reverse
of the first as in Example 11.7, so the brain appears to grow then shrink. Submit
a montage of the first 12 frames. Note: use some care in getting the range of
image sizes to be between 75% and 150%. (Hint: to simplify the computation
of the output triangle, it is best to define the input triangle at three of the image
corners. Note that all three triangle vertices will have to be modified to stretch
the image in both directions, symmetrically about the center.)

7. Produce a spatial transformation movie using a projective transformation.
Load a frame of the MRI image (mri.tif, your choice of frame). Use the projec-
tive transformation to make a movie of the image as it tilts vertically. Use 24
frames as in Example 11.7: the first 12 will tilt the image back while the rest tilt
the image back to its original position. You can use any reasonable transformation
that gives a vertical tilt or rotation. Submit a montage of the first 12 images.

8. Load frame 12 of mri.tif and use imrotate to rotate the image by 15
degrees clockwise. Also reduce image contrast of the rotated image by 25%. Use
MATLAB’s basic optimization program fminsearch to align the image that has
been rotated. (You will need to write a function similar to rescale in Example
11.8 that rotates the image based on the first input parameter, then computes the
negative correlation between the rotated image and the original image.)

9. Load a frame of the MRI image (mri.tif) and perform a spatial transfor-
mation that first expands the image horizontally by 20% then rotates the image
by 20 degrees. Use interactive registration and the MATLAB function cp2t-

form to transform the image. Use (A) the minimum number of points and (B)
twice the minimum number of points. Compare the correlation between the
original and the realigned image using the two different number of reference
points.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

12

Image Segmentation

Image segmentation is the identification and isolation of an image into regions
that—one hopes—correspond to structural units. It is an especially important
operation in biomedical image processing since it is used to isolate physiological
and biological structures of interest. The problems associated with segmentation
have been well studied and a large number of approaches have been developed,
many specific to a particular image. General approaches to segmentation can be
grouped into three classes: pixel-based methods, regional methods, and edge-
based methods. Pixel-based methods are the easiest to understand and to imple-
ment, but are also the least powerful and, since they operate on one element
at time, are particularly susceptible to noise. Continuity-based and edge-based
methods approach the segmentation problem from opposing sides: edge-based
methods search for differences while continuity-based methods search for simi-
larities.

PIXEL-BASED METHODS

The most straightforward and common of the pixel-based methods is threshold-
ing in which all pixels having intensity values above, or below, some level are
classified as part of the segment. Thresholding is an integral part of converting
an intensity image to a binary image as described in Chapter 10. Thresholding
is usually quite fast and can be done in real time allowing for interactive setting
of the threshold. The basic concept of thresholding can be extended to include

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

both upper and lower boundaries, an operation termed slicing since it isolates a
specific range of pixels. Slicing can be generalized to include a number of dif-
ferent upper and lower boundaries, each encoded into a different number. An
example of multiple slicing was presented in Chapter 10 using the MATLAB
gray2slice routine. Finally, when RGB color or pseudocolor images are in-
volved, thresholding can be applied to each color plane separately. The resulting
image could be either a thresholded RGB image, or a single image composed
of a logical combination (AND or OR) of the three image planes after threshold-
ing. An example of this approach is seen in the problems.

A technique that can aid in all image analysis, but is particularly useful in
pixel-based methods, is intensity remapping. In this global procedure, the pixel
values are rescaled so as to extend over different maximum and minimum val-
ues. Usually the rescaling is linear, so each point is adjusted proportionally
with a possible offset. MATLAB supports rescaling with the routine imadjust

described below, which also provides a few common nonlinear rescaling op-
tions. Of course, any rescaling operation is possible using MATLAB code if the
intensity images are of class double, or the image arithmetic routines described
in Chapter 10 are used.

Threshold Level Adjustment

A major concern in these pixel-based methods is setting the threshold or slicing
level(s) appropriately. Usually these levels are set by the program, although in
some situations they can be set interactively by the user.

Finding an appropriate threshold level can be aided by a plot of pixel
intensity distribution over the whole image, regardless of whether you adjust
the pixel level interactively or automatically. Such a plot is termed the intensity
histogram and is supported by the MATLAB routine imhist detailed below.
Figure 12.1 shows an x-ray image of the spine image with its associated density
histogram. Figure 12.1 also shows the binary image obtained by applying a
threshold at a specific point on the histogram. When RGB color images are
being analyzed, intensity histograms can be obtained from all three color planes
and different thresholds established for each color plane with the aid of the
corresponding histogram.

Intensity histograms can be very helpful in selecting threshold levels, not
only for the original image, but for images produced by various segmentation
algorithms described later. Intensity histograms can also be useful in evaluating
the efficacy of different processing schemes: as the separation between struc-
tures improves, histogram peaks should become more distinctive. This relation-
ship between separation and histogram shape is demonstrated in Figures 12.2
and, more dramatically, in Figures 12.3 and 12.4.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.1 An image of bone marrow, upper left, and its associated intensity
histogram, lower plot. The upper right image is obtained by thresholding the origi-
nal image at a value corresponding to the vertical line on the histogram plot.
(Original image from the MATLAB Image Processing Toolbox. Copyright 1993–
2003, The Math Works, Inc. Reprinted with permission.)

Intensity histograms contain no information on position, yet it is spatial
information that is of prime importance in problems of segmentation, so some
strategies have been developed for determining threshold(s) from the histogram
(Sonka et al. 1993). If the intensity histogram is, or can be assumed as, bimodal
(or multi-modal), a common strategy is to search for low points, or minima, in
the histogram. This is the strategy used in Figure 12.1, where the threshold was
set at 0.34, the intensity value at which the histogram shows an approximate
minimum. Such points represent the fewest number of pixels and should pro-
duce minimal classification errors; however, the histogram minima are often
difficult to determine due to variability.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.2 Image of bloods cells with (upper) and without (lower) intermediate
boundaries removed. The associated histograms (right side) show improved sep-
arability when the boundaries are eliminated. The code that generated these im-
ages is given in Example 12.1. (Original image reprinted with permission from
the Image Processing Handbook 2nd edition. Copyright CRC Press, Boca Raton,
Florida.)

An approach to improve the determination of histogram minima is based
on the observation that many boundary points carry values intermediate to the
values on either side of the boundary. These intermediate values will be associ-
ated with the region between the actual boundary values and may mask the
optimal threshold value. However, these intermediate points also have the high-
est gradient, and it should be possible to identify them using a gradient-sensitive
filter, such as the Sobel or Canny filter. After these boundary points are identi-
fied, they can be eliminated from the image, and a new histogram is computed
with a distribution that is possibly more definitive. This strategy is used in

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.3 Thresholded blood cell images. Optimal thresholds were applied to
the blood cell images in Figure 12.2 with (left) and without (right) boundaries pixel
masked. Fewer inappropriate pixels are seen in the right image.

Example 12.1, and Figure 12.2 shows images and associated histograms before
and after removal of boundary points as identified using Canny filtering. The
reduction in the number of intermediate points can be seen in the middle of the
histogram (around 0.45). As shown in Figure 12.3, this leads to slightly better
segmentation of the blood cells.

Another histogram-based strategy that can be used if the distribution is
bimodal is to assume that each mode is the result of a unimodal, Gaussian
distribution. An estimate is then made of the underlying distributions, and the
point at which the two estimated distributions intersect should provide the opti-
mal threshold. The principal problem with this approach is that the distributions
are unlikely to be truly Gaussian.

A threshold strategy that does not use the histogram is based on the con-
cept of minimizing the variance between presumed foreground and background
elements. Although the method assumes two different gray levels, it works well
even when the distribution is not bimodal (Sonka et al., 1993). The approach
uses an iterative process to find a threshold that minimizes the variance between
the intensity values on either side of the threshold level (Outso’s method). This
approach is implemented using the MATLAB routine grayslice (see Example
12.1).

A pixel-based technique that provides a segment boundary directly is con-
tour mapping. Contours are lines of equal intensity, and in a continuous image
they are necessarily continuous: they cannot end within the image, although

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.4 Contour maps drawn from the blood cell image of Figures 12.2 and
12.3. The right image was pre-filtered with a Gaussian lowpass filter (alpha = 3)
before the contour lines were drawn. The contour values were set manually to
provide good images.

they can branch or loop back on themselves. In digital images, these same prop-
erties exist but the value of any given contour line will not generally equal the
values of the pixels it traverses. Rather, it usually reflects values intermediate
between adjacent pixels. To use contour mapping to identify image structures
requires accurate setting of the contour levels, and this carries the same burdens
as thresholding. Nonetheless, contour maps do provide boundaries directly, and,
if subpixel interpolation is used in establishing the contour position, they may
be spatially more accurate. Contour maps are easy to implement in MATLAB,
as shown in the next section on MATLAB Implementation. Figure 12.4 shows
contours maps for the blood cell images shown in Figure 12.2. The right image
was pre-filtered with a Gaussian lowpass filter which reduces noise slightly and
improves the resultant contour image.

Pixel-based approaches can lead to serious errors, even when the average
intensities of the various segments are clearly different, due to noise-induced
intensity variation within the structure. Such variation could be acquired during
image acquisition, but could also be inherent in the structure itself. Figure 12.5
shows two regions with quite different average intensities. Even with optimal
threshold selection, many inappropriate pixels are found in both segments due
to intensity variations within the segments Fig 12.3 (right). Techniques for im-
proving separation in such images are explored in the sections on continuity-
based approaches.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.5 An image with two regions having different average gray levels.
The two regions are clearly distinguishable; however, using thresholding alone, it
is not possible to completely separate the two regions because of noise.

MATLAB Implementation

Some of the routines for implementing pixel-based operations such as im2bw

and grayslice have been described in preceding chapters. The image intensity
histogram routine is produced by imhist without the output arguments:

[counts, x] = imhist(I, N);

where counts is the histogram value at a given x, I is the image, and N is an
optional argument specifying the number of histogram bins (the default is 255).
As mentioned above, imhist is usually invoked without the output arguments,
count and x, to produce a plot directly.

The rescale routine is:

I_rescale = imscale(I, [low high], [bottom top], gamma);

where I_rescale is the rescaled output image, I is the input image. The range
between low and high in the input image is rescaled to be between bottom and
top in the output image.

Several pixel-based techniques are presented in Example 12.1.

Example 12.1 An example of segmentation using pixel-based methods.
Load the image of blood cells, and display along with the intensity histogram.
Remove the edge pixels from the image and display the histogram of this modi-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.6A Histogram of the image shown in Figure 12.3 before (upper) and
after (lower) lowpass filtering. Before filtering the two regions overlap to such an
extend that they cannot be identified. After lowpass filtering, the two regions are
evident, and the boundary found by minimum variance is shown. The application
of this boundary to the filtered image results in perfect separation as shown in
Figure 12.4B.

fied image. Determine thresholds using the minimal variance iterative technique
described above, and apply this approach to threshold both images. Display the
resultant thresholded images.

Solution To remove the edge boundaries, first identify these boundaries
using an edge detection scheme. While any of the edge detection filters de-
scribed previously can be used, this application will use the Canny filter as it is
most robust to noise. This filter is implemented as an option of MATLAB’s
edge routine, which produces a binary image of the boundaries. This binary
image will be converted to a boundary mask by inverting the image using
imcomplement. After inversion, the edge pixels will be zero while all other
pixels will be one. Multiplying the original image by the boundary mask will
produce an image in which the boundary points are removed (i.e., set to zero,
or black). All the images involved in this process, including the original image,
will then be plotted.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.6B Left side: The same image shown in Figure 12.5 after lowpass
filtering. Right side: This filtered image can now be perfectly separated by thresh-
olding.

% Example 12.1 and Figure 12.2 and Figure 12.3
% Lowpass filter blood cell image, then display histograms
% before and after edge point removal.
% Applies “optimal” threshold routine to both original and
% “masked” images and display the results
%
........input image and convert to double.......

h = fspecial(‘gaussian’,12,2); % Construct gaussian
% filter

I_f = imfilter(I,h,‘replicate’); % Filter image
%
I_edge = edge(I_f,‘canny’,.3); % To remove edge
I_rem = I_f .* imcomplement(I_edge); % points, find edge,

% complement and use
% as mask

%
subplot(2,2,1); imshow(I_f); % Display images and

% histograms
title(‘Original Figure’);

subplot(2,2,2); imhist(I_f); axis([0 1 0 1000]);
title(‘Filtered histogram’);

subplot(2,2,3); imshow(I_rem);
title(‘Edge Removed’);

subplot(2,2,4); imhist(I_rem); axis([0 1 0 1000]);
title(‘Edge Removed histogram’);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

%
figure; % Threshold and

% display images
t1 = graythresh(I); % Use minimum variance

% thresholds
t2 = graythresh(I_f);
subplot(1,2,1); imshow(im2bw(I,t1));
title(‘Threshold Original Image’);

subplot(1,2,2); imshow(im2bw(I_f,t2));
title(‘Threshold Masked Image’);

The results have been shown previously in Figures 12.2 and 12.3, and the
improvement in the histogram and threshold separation has been mentioned.
While the change in the histogram is fairly small (Figure 12.2), it does lead to
a reduction in artifacts in the thresholded image, as shown in Figure 12.3. This
small improvement could be quite significant in some applications. Methods
for removing the small remaining artifacts will be described in the section on
morphological operations.

CONTINUITY-BASED METHODS

These approaches look for similarities or consistency in the search for structural
units. As demonstrated in the examples below, these approaches can be very
effective in segmentation tasks, but they all suffer from a lack of edge definition.
This is because they are based on neighborhood operations and these tend to
blur edge regions, as edge pixels are combined with structural segment pixels.
The larger the neighborhood used, the more poorly edges will be defined. Unfor-
tunately, increasing neighborhood size usually improves the power of any given
continuity-based operation, setting up a compromise between identification abil-
ity and edge definition. One easy technique that is based on continuity is low-
pass filtering. Since a lowpass filter is a sliding neighborhood operation that
takes a weighted average over a region, it enhances consistent characteristics.
Figure 12.6A shows histograms of the image in Figure 12.5 before and after
filtering with a Gaussian lowpass filter (alpha = 1.5). Note the substantial im-
provement in separability suggested by the associated histograms. Applying a
threshold to the filtered image results in perfectly isolated segments as shown
in Figure 12.6B. The thresholded images in both Figures 12.5 and 12.4B used
the same minimum variance technique to set the threshold, yet the improvement
brought about by simple lowpass filtering is remarkable.

Image features related to texture can be particularly useful in segmenta-
tion. Figure 12.7 shows three regions that have approximately the same average
intensity values, but are readily distinguished visually because of differences in
texture. Several neighborhood-based operations can be used to distinguish tex-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

tures: the small segment Fourier transform, local variance (or standard devia-
tion), the Laplacian operator, the range operator (the difference between maxi-
mum and minimum pixel values in the neighborhood), the Hurst operator
(maximum difference as a function of pixel separation), and the Haralick opera-
tor (a measure of distance moment). Many of these approaches are either di-
rectly supported in MATLAB, or can be implement using the nlfilter routine
described in Chapter 10.

MATLAB Implementation

Example 12.2 attempts to separate the three regions shown in Figure 12.7 by
applying one of these operators to convert the texture pattern to a difference in
intensity that can then be separated using thresholding.

Example 12.2 Separate out the three segments in Figure 12.7 that differ
only in texture. Use one of the texture operators described above and demon-
strate the improvement in separability through histogram plots. Determine ap-
propriate threshold levels for the three segments from the histogram plot.

FIGURE 12.7 An image containing three regions having approximately the same
intensity, but different textures. While these areas can be distinguished visually,
separation based on intensity or edges will surely fail. (Note the single peak in
the intensity histogram in Figure 12.9–upper plot.)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Solution Use the nonlinear range filter to convert the textural patterns
into differences in intensity. The range operator is a sliding neighborhood proce-
dure that takes the difference between the maximum and minimum pixel value
with a neighborhood. Implement this operation using MATLAB’s nlfilter

routine with a 7-by-7 neighborhood.

% Example 12.2 Figures 12.8, 12.9, and 12.10
% Load image ‘texture3.tif’ which contains three regions having
% thesame averageintensities, butdifferent textural patterns.
% Apply the “range” nonlinear operator using ‘nlfilter’
% Plot original and range histograms and filtered image
%
clear all; close all;
[I] = imread(‘texture3.tif’); % Load image and
I = im2double(I); % Convert to double
%
range = inline(‘max(max(x))— % Define Range function
min (min(x))’);

I_f = nlfilter(I,[7 7], range); % Compute local range
I_f = mat2gray(I_f); % Rescale intensities

FIGURE 12.8 The texture pattern shown in Figure 12.7 after application of the
nonlinear range operation. This operator converts the textural properties in the
original figure into a difference in intensities. The three regions are now clearly
visible as intensity differences and can be isolated using thresholding.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.9 Histogram of original texture pattern before (upper) and after non-
linear filtering using the range operator (lower). After filtering, the three intensity
regions are clearly seen. The thresholds used to isolate the three segments are
indicated.

%
imshow(I_f); % Display results
title(‘“Range” Image’);

figure;
subplot(2,1,1); imhist(I); % Display both histograms
title(‘Original Histogram’)

subplot(2,1,2); imhist(I_f);
title(‘“Range” Histogram’);

figure;
subplot(1,3,1); imshow(im2bw % Display three segments
(I_f,.22));

subplot(1,3,2); imshow(islice % Uses ’islice’ (see below)
(I_f,.22,.54));

subplot(1,3,3); imshow(im2bw(I_f,.54));

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The image produced by the range filter is shown in Figure 12.8, and a
clear distinction in intensity level can now be seen between the three regions.
This is also demonstrated in the histogram plots of Figure 12.9. The histogram
of the original figure (upper plot) shows a single Gaussian-like distribution with
no evidence of the three patterns.* After filtering, the three patterns emerge as
three distinct distributions. Using this distribution, two thresholds were chosen
at minima between the distributions (at 0.22 and 0.54: the solid vertical lines in
Figure 12.9) and the three segments isolated based on these thresholds. The two
end patterns could be isolated using im2bw, but the center pattern used a special
routine, islice. This routine sets pixels to one whose values fall between an
upper and lower boundary; if the pixel has values above or below these bound-
aries, it is set to zero. (This routine is on the disk.) The three fairly well sepa-
rated regions are shown in Figure 12.10. A few artifacts remain in the isolated
images, and subsequent methods can be used to eliminate or reduce these erro-
neous pixels.

Occasionally, segments will have similar intensities and textural proper-
ties, except that the texture differs in orientation. Such patterns can be distin-
guished using a variety of filters that have orientation-specific properties. The
local Fourier transform can also be used to distinguish orientation. Figure 12.11
shows a pattern with texture regions that are different only in terms of their
orientation. In this figure, also given in Example 12.3, orientation was identified

FIGURE 12.10 Isolated regions of the texture pattern in Figure 12.7. Although
there are some artifact, the segmentation is quite good considering the original
image. Methods for reducing the small artifacts will be given in the section on
edge detection.

*In fact, the distribution is Gaussian since the image patterns were generated by filtering an array
filled with Gaussianly distributed numbers generated by randn.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.11 Textural pattern used in Example 12.3. The horizontal and vertical
patterns have the same textural characteristics except for their orientation. As in
Figure 12.7, the three patterns have the same average intensity.

by application of a direction operator that operates only in the horizontal direc-
tion. This is followed by a lowpass filter to improve separability. The intensity
histograms in Figure 12.12 shown at the end of the example demonstrate the
intensity separations achieved by the directional range operator and the improve-
ment provided by the lowpass filter. The different regions are then isolated using
threshold techniques.

Example 12.3 Isolate segments from a texture pattern that includes two
patterns with the same textural characteristics except for orientation. Note that
the approach used in Example 12.2 will fail: the similarity in the statistical
properties of the vertical and horizontal patterns will give rise to similar intensi-
ties following a range operation.

Solution Apply a filter that has directional sensitivity. A Sobel or Prewitt
filter could be used, followed by the range or similar operator, or the operations
could be done in a single step by using a directional range operator. The choice
made in this example is to use a horizontal range operator implemented with
nlfilter. This is followed by a lowpass filter (Gaussian, alpha = 4) to improve
separation by removing intensity variation. Two segments are then isolated us-
ing standard thresholding. In this example, the third segment was constructed

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.12 Images produced by application of a direction range operator ap-
plied to the image in Figure 12.11 before (upper) and after (lower) lowpass filter-
ing. The histograms demonstrate the improved separability of the filter image
showing deeper minima in the filtered histogram.

by applying a logical operation to the other two segments. Alternatively, the
islice routine could have been used as in Example 12.2.

% Example 12.3 and Figures 12.11, 12.12, and 12.13
% Analysis of texture pattern having similar textural
% characteristics but with different orientations. Use a
% direction-specific filter.
%
clear all; close all;
I = imread(‘texture4.tif’); % Load “orientation” texture
I = im2double(I); % Convert to double

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.13 Isolated segments produced by thresholding the lowpass filtered
image in Figure 12.12. The rightmost segment was found by applying logical op-
erations to the other two images.

%
% Define filters and functions: I-D range function
range = inline(‘max(x)—min(x)’);
h_lp = fspecial (‘gaussian’, 20, 4);
%
% Directional nonlinear filter
I_nl = nlfilter(I, [9 1], range);
I_h = imfilter(I_nl*2, h_lp); % Average (lowpass filter)
%
subplot(2,2,1); imshow % Display image and histogram
(I_nl*2); % before lowpass filtering
title(‘Modified Image’); % and after lowpass filtering

subplot(2,2,2); imhist(I_nl);
title(‘Histogram’);

subplot(2,2,3); imshow(I_h*2); % Display modified image
title(‘Modified Image’);

subplot(2,2,4); imhist(I_h);
title(‘Histogram’);

%
figure;
BW1 = im2bw(I_h,.08); %Thresholdtoisolatesegments
BW2 = 	im2bw(I_h,.29);
BW3 = 	(BW1 & BW2); % Find third image from other

% two
subplot(1,3,1); imshow(BW1); % Display segments
subplot(1,3,2); imshow(BW2);
subplot(1,3,3); imshow(BW3);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The image produced by the horizontal range operator with, and without,
lowpass filtering is shown in Figure 12.12. Note the improvement in separation
produced by the lowpass filtering as indicated by a better defined histogram.
The thresholded images are shown in Figure 12.13. As in Example 12.2, the
separation is not perfect, but is quite good considering the challenges posed by
the original image.

Multi-Thresholding

The results of several different segmentation approaches can be combined either
by adding the images together or, more commonly, by first thresholding the
images into separate binary images and then combining them using logical oper-
ations. Either the AND or OR operator would be used depending on the charac-
teristics of each segmentation procedure. If each procedure identified all of the
segments, but also included non-desired areas, the AND operator could be used
to reduce artifacts. An example of the use of the AND operation was found
in Example 12.3 where one segment was found using the inverse of a logical
AND of the other two segments. Alternatively, if each procedure identified
some portion of the segment(s), then the OR operator could be used to com-
bine the various portions. This approach is illustrated in Example 12.4 where
first two, then three, thresholded images are combined to improve segment iden-
tification. The structure of interest is a cell which is shown on a gray back-
ground. Threshold levels above and below the gray background are combined
(after one is inverted) to provide improved isolation. Including a third binary
image obtained by thresholding a texture image further improves the identifica-
tion.

Example 12.4 Isolate the cell structures from the image of a cell shown
in Figure 12.14.

Solution Since the cell is projected against a gray background it is possi-
ble to isolate some portions of the cell by thresholding above and below the
background level. After inversion of the lower threshold image (the one that is
below the background level), the images are combined using a logical OR. Since
the cell also shows some textural features, a texture image is constructed by
taking the regional standard deviation (Figure 12.14). After thresholding, this
texture-based image is also combined with the other two images.

% Example 12.4 and Figures 12.14 and 12.15
% Analysis of the image of a cell using texture and intensity
% information then combining the resultant binary images
% with a logical OR operation.
clear all; close all;
I = imread(‘cell.tif’); %Load“orientation”texture

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.14 Image of cells (left) on a gray background. The textural image
(right) was created based on local variance (standard deviation) and shows
somewhat more definition. (Cancer cell from rat prostate, courtesy of Alan W.
Partin, M.D., Ph.D., Johns Hopkins University School of Medicine.)

I = im2double(I); % Convert to double
%
h = fspecial(‘gaussian’, 20, 2); % Gaussian lowpass filter
%
subplot(1,2,1); imshow(I); % Display original image
title(‘Original Image’);

I_std = (nlfilter(I,[3 3], % Texture operation
’std2’))*6;

I_lp = imfilter(I_std, h); % Average (lowpass filter)
%
subplot(1,2,2); imshow(I_lp*2); % Display texture image
title(‘Filtered image’);

%
figure;
BW_th = im2bw(I,.5); % Threshold image
BW_thc = 	im2bw(I,.42); % and its complement
BW_std = im2bw(I_std,.2); % Threshold texture image
BW1 = BW_th * BW_thc; % Combine two thresholded

% images
BW2 = BW_std * BW_th * BW_thc; % Combine all three images
subplot(2,2,1); imshow(BW_th); % Display thresholded and
subplot(2,2,2); imshow(BW_thc); % combined images
subplot(2,2,3); imshow(BW1);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.15 Isolated portions of the cells shown in Figure 12.14. The upper
images were created by thresholding the intensity. The lower left image is a com-
bination (logical OR) of the upper images and the lower right image adds a
thresholded texture-based image.

The original and texture images are shown in Figure 12.14. Note that the
texture image has been scaled up, first by a factor of six, then by an additional
factor of two, to bring it within a nominal image range. The intensity thresh-
olded images are shown in Figure 12.15 (upper images; the upper right image
has been inverted). These images are combined in the lower left image. The
lower right image shows the combination of both intensity-based images with
the thresholded texture image. This method of combining images can be ex-
tended to any number of different segmentation approaches.

MORPHOLOGICAL OPERATIONS

Morphological operations have to do with processing shapes. In this sense they
are continuity-based techniques, but in some applications they also operate on

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

edges, making them useful in edge-based approaches as well. In fact, morpho-
logical operations have many image processing applications in addition to seg-
mentation, and they are well represented and supported in the MATLAB Image
Processing Toolbox.

The two most common morphological operations are dilation and erosion.
In dilation the rich get richer and in erosion the poor get poorer. Specifically,
in dilation, the center or active pixel is set to the maximum of its neighbors,
and in erosion it is set to the minimum of its neighbors. Since these operations
are often performed on binary images, dilation tends to expand edges, borders,
or regions, while erosion tends to decrease or even eliminate small regions.
Obviously, the size and shape of the neighborhood used will have a very strong
influence on the effect produced by either operation.

The two processes can be done in tandem, over the same area. Since both
erosion and dilation are nonlinear operations, they are not invertible transforma-
tions; that is, one followed by the other will not generally result in the original
image. If erosion is followed by dilation, the operation is termed opening. If the
image is binary, this combined operation will tend to remove small objects
without changing the shape and size of larger objects. Basically, the initial ero-
sion tends to reduce all objects, but some of the smaller objects will disappear
altogether. The subsequent dilation will restore those objects that were not elimi-
nated by erosion. If the order is reversed and dilation is performed first followed
by erosion, the combined process is called closing. Closing connects objects
that are close to each other, tends to fill up small holes, and smooths an object’s
outline by filling small gaps. As with the more fundamental operations of dila-
tion and erosion, the size of objects removed by opening or filled by closing
depends on the size and shape of the neighborhood that is selected.

An example of the opening operation is shown in Figure 12.16 including
the erosion and dilation steps. This is applied to the blood cell image after
thresholding, the same image shown in Figure 12.3 (left side). Since we wish
to eliminate black artifacts in the background, we first invert the image as shown
in Figure 12.16. As can be seen in the final, opened image, there is a reduction
in the number of artifacts seen in the background, but there is also now a gap
created in one of the cell walls. The opening operation would be more effective
on the image in which intermediate values were masked out (Figure 12.3, right
side), and this is given as a problem at the end of the chapter.

Figure 12.17 shows an example of closing applied to the same blood cell
image. Again the operation was performed on the inverted image. This operation
tends to fill the gaps in the center of the cells; but it also has filled in gaps
between the cells. A much more effective approach to filling holes is to use the
imfill routine described in the section on MATLAB implementation.

Other MATLAB morphological routines provide local maxima and min-
ima, and allows for manipulating the image’s maxima and minima, which im-
plement various fill-in effects.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.16 Example of the opening operation to remove small artifacts. Note
that the final image has fewer background spots, but now one of the cells has a
gap in the wall.

MATLAB Implementation

The erosion and dilation could be implemented using the nonlinear filter routine
nlfilter, although this routine limits the shape of the neighborhood to a rect-
angle. The MATLAB routines imdilate and imerode provide for a variety of
neighborhood shapes and are much faster than nlfilter. As mentioned above,
opening consists of erosion followed by dilation and closing is the reverse.
MATLAB also provide routines for implementing these two operations in one
statement.

To specify the neighborhood used by all of these routines, MATLAB uses
a structuring element.* A structuring element can be defined by a binary array,
where the ones represent the neighborhood and the zeros are irrelevant. This
allows for easy specification of neighborhoods that are nonrectangular, indeed
that can have any arbitrary shape. In addition, MATLAB makes a number of
popular shapes directly available, just as the fspecial routine makes a number

*Not to be confused with a similar term, structural unit, used in the beginning of this chapter. A
structural unit is the object of interest in the image.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.17 Example of closing to fill gaps. In the closed image, some of the
cells are now filled, but some of the gaps between cells have been erroneously
filled in.

of popular two-dimensional filter functions available. The routine to specify the
structuring element is strel and is called as:

structure = strel(shape, NH, arg);

where shape is the type of shape desired, NH usually specifies the size of the
neighborhood, and arg and an argument, frequently optional, that depends on
shape. If shape is ‘arbitrary’, or simply omitted, then NH is an array that
specifies the neighborhood in terms of ones as described above. Prepackaged
shapes include:

‘disk’ a circle of radius NH (in pixels)
‘line’ a line of length NH and angle arg in degrees
‘rectangle’ a rectangle where NH is a two element vector specifying rows and col-

umns
‘diamond’ a diamond where NH is the distance from the center to each corner
‘square’ a square with linear dimensions NH

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

For many of these shapes, the routine strel produces a decomposed
structure that runs significantly faster.

Based on the structure, the statements for dilation, erosion, opening, and
closing are:

I1 = imdilate(I, structure);

I1 = imerode(I, structure);

I1 = imopen(I, structuure);

I1 = imclose(I, structure);

where I1 is the output image, I is the input image and structure is the neigh-
borhood specification given by strel, as described above. In all cases, struc-
ture can be replaced by an array specifying the neighborhood as ones, bypass-
ing the strel routine. In addition, imdilate and imerode have optional
arguments that provide packing and unpacking of the binary input or output
images.

Example 12.5 Apply opening and closing to the thresholded blood cell
images of Figure 12–3 in an effort to remove small background artifacts and to
fill holes. Use a circular structure with a diameter of four pixels.

% Example 12.5 and Figures 12.16 and 12.17
% Demonstration of morphological opening to eliminate small
% artifacts and of morphological closing to fill gaps
% These operations will be applied to the thresholded blood cell
% images of Figure 12.3 (left image).
% Uses a circular or disk shaped structure 4 pixels in diameter
%
clear all; close all;
I = imread(‘blood1.tif’); % Get image and threshold
I = im2double(I);
BW = 	im2bw(I,thresh(I));
%
SE = strel(‘disk’,4); % Define structure: disk of radius

% 4 pixels
BW1= imerode(BW,SE); % Opening operation: erode
BW2 = imdilate(BW1,SE); % image first, then dilate
%
.......display images.....

%
BW3= imdilate(BW,SE); % Closing operation, dilate image
BW4 = imerode(BW3,SE); % first then erode
%
.......display images.....

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

This example produced the images in Figures 12.15 and 12.16.

Example 12.6 Apply an opening operation to remove the dark patches
seen in the thresholded cell image of Figure 12.15.

% Figures 12.6 and 12.18
% Use opening to remove the dark patches in the thresholded cell
% image of Figure 12.15
%
close all; clear all;
%
SE = strel(‘square’,5); % Define closing structure:

% square 5 pixels on a side
load fig12_15; % Get data of Figure 12.15 (BW2)
BW1= 	imopen(BW2,SE); % Opening operation
.......Display images.....

The result of this operation is shown in Figure 12.18. In this case, the
closing operation is able to remove completely the dark patches in the center of
the cell image. A 5-by-5 pixel square structural element was used. The size (and
shape) of the structural element controlled the size of artifact removed, and no
attempt was made to optimize its shape. The size was set here as the minimum
that would still remove all of the dark patches. The opening operation in this
example used the single statement imopen. Again, the opening operation oper-
ates on activated (i.e., white pixels), so to remove dark artifacts it is necessary
to invert the image (using the logical NOT operator,) before performing the
opening operation. The opened image is then inverted again before display.

FIGURE 12.18 Application of the open operation to remove the dark patches in
the binary cell image in Figure 12.15 (lower right). Using a 5 by 5 square struc-
tural element resulted in eliminating all of the dark patches.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

MATLAB morphology routines also allow for manipulation of maxima
and minima in an image. This is useful for identifying objects, and for filling.
Of the many other morphological operations supported by MATLAB, only the
imfill operation will be described here. This operation begins at a designated
pixel and changes connected background pixels (0’s) to foreground pixels (1’s),
stopping only when a boundary is reached. For grayscale images, imfill brings
the intensity levels of the dark areas that are surrounded by lighter areas up to
the same intensity level as surrounding pixels. (In effect, imfill removes re-
gional minima that are not connected to the image border.) The initial pixel can
be supplied to the routine or obtained interactively. Connectivity can be defined
as either four connected or eight connected. In four connectivity, only the four
pixels bordering the four edges of the pixel are considered, while in eight con-
nectivity all pixel that touch, including those that touch only at the corners, are
considered connected.

The basic imfill statement is:

I_out = imfill(I, [r c], con);

where I is the input image, I_out is the output image, [r c] is a two-element
vector specifying the beginning point, and con is an optional argument that is
set to 8 for eight connectivity (four connectivity is the default). (See the help
file to use imfill interactively.) A special option of imfill is available specifi-
cally for filling holes. If the image is binary, a hole is a set of background pixels
that cannot be reached by filling in the background from the edge of the image.
If the image is an intensity image, a hole is an area of dark pixels surrounded
by lighter pixels. To invoke this option, the argument following the input image
should be holes. Figure 12.19 shows the operation performed on the blood cell
image by the statement:

I_out = imfill(I, ‘holes’);

EDGE-BASED SEGMENTATION

Historically, edge-based methods were the first set of tools developed for seg-
mentation. To move from edges to segments, it is necessary to group edges into
chains that correspond to the sides of structural units, i.e., the structural bound-
aries. Approaches vary in how much prior information they use, that is, how
much is used of what is known about the possible shape. False edges and missed
edges are two of the more obvious, and more common, problems associated
with this approach.

The first step in edge-based methods is to identify edges which then be-
come candidates for boundaries. Some of the filters presented in Chapter 11

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.19 Hole filling operation produced by imfill. Note that neither the
edge cell (at the upper image boundary) or the overlapped cell in the center are
filled since they are not actually holes. (Original image reprinted with permission
from the Image Processing Handbook 2nd edition. Copyright CRC Press, Boca
Raton, Florida.)

perform edge enhancement, including the Sobel, Prewitt, and Log filters. In
addition, the Laplacian, which takes the spatial second derivative, can be used
to find edge candidates. The Canny filter is the most advanced edge detector
supported by MATLAB, but it necessarily produces a binary output while many
of the secondary operations require a graded edge image.

Edge relaxation is one approach used to build chains from individual edge
candidate pixels. This approach takes into account the local neighborhood: weak
edges positioned between strong edges are probably part of the edge, while
strong edges in isolation are likely spurious. The Canny filter incorporates a
type of edge relaxation. Various formal schemes have been devised under this
category. A useful method is described in Sonka (1995) that establishes edges
between pixels (so-called crack edges) based on the pixels located at the end
points of the edge.

Another method for extending edges into chains is termed graph search-
ing. In this approach, the endpoints (which could both be the same point in a
closed boundary) are specified, and the edge is determined based on minimizing
some cost function. Possible pathways between the endpoints are selected from
candidate pixels, those that exceed some threshold. The actual path is selected
based on a minimization of the cost function. The cost function could include
features such as the strength of an edge pixel and total length, curvature, and
proximity of the edge to other candidate borders. This approach allows for a

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

great deal of flexibility. Finally, dynamic programming can be used which is
also based on minimizing a cost function.

The methods briefly described above use local information to build up the
boundaries of the structural elements. Details of these methods can be found in
Sonka et al. (1995). Model-based edge detection methods can be used to exploit
prior knowledge of the structural unit. For example, if the shape and size of the
image is known, then a simple matching approach based on correlation can be
used (matched filtering). When the general shape is known, but not the size, the
Hough transform can be used. This approach was originally designed for identi-
fying straight lines and curves, but can be expanded to other shapes provided
the shape can be described analytically.

The basic idea behind the Hough transform is to transform the image into
a parameter space that is constructed specifically to describe the desired shape
analytically. Maxima in this parameter space then correspond to the presence of
the desired image in image space. For example, if the desired object is a straight
line (the original application of the Hough transform), one analytic representa-
tion for this shape is y = mx + b,* and such shapes can be completely defined
by a two-dimensional parameter space of m and b parameters. All straight lines
in image space map to points in parameter space (also known as the accumula-
tor array for reasons that will become obvious). Operating on a binary image
of edge pixels, all possible lines through a given pixel are transformed into m,b
combinations, which then increment the accumulator array. Hence, the accumu-
lator array accumulates the number of potential lines that could exist in the
image. Any active pixel will give rise to a large number of possible line slopes,
m, but only a limited number of m,b combinations. If the image actually contains
a line, then the accumulator element that corresponds to that particular line’s
m,b parameters will have accumulated a large number. The accumulator array
is searched for maxima, or supra threshold locations, and these locations identify
a line or lines in the image.

This concept can be generalized to any shape that can be described analyt-
ically, although the parameter space (i.e., the accumulator) may have to include
several dimensions. For example, to search for circles note that a circle can be
defined in terms of three parameters, a, s, and r for the equation given below.

(y = a)2 + (x − b)2 = r 2 (1)

where a and b define the center point of the circle and r is the radius. Hence
the accumulator space must be three-dimensional to represent a, b, and r.

*This representation of a line will not be able to represent vertical lines since m→ ∞ for a vertical
line. However, lines can also be represented in two dimensions using cylindrical coordinates, r and
θ: y = r cos θ + r sin θ.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

MATLAB Implementation

Of the techniques described above, only the Hough transform is supported by
MATLAB image processing routines, and then only for straight lines. It is sup-
ported as the Radon transform which computes projections of the image along
a straight line, but this projection can be done at any angle.* This results in a
projection matrix that is the same as the accumulator array for a straight line
Hough transform when expressed in cylindrical coordinates.

The Radon transform is implemented by the statement:

[R, xp] = radon(BW, theta);

where BW is a binary input image and theta is the projection angle in degrees,
usually a vector of angles. If not specified, theta defaults to (1:179). R is the
projection array where each column is the projection at a specific angle. (R is a
column vector if theta is a constant). Hence, maxima in R correspond to the
positions (encoded as an angle and distance) in the image. An example of the
use of radon to perform the Hough transformation is given in Example 12.7.

Example 12.7 Find the strongest line in the image of Saturn in image
file ‘saturn.tif’. Plot that line superimposed on the image.

Solution First convert the image to an edge array using MATLAB’s
edge routine. Use the Hough transform (implemented for straight lines using
radon) to build an accumulator array. Find the maximum point in that array
(using max) which will give theta, the angle perpendicular to the line, and the
distance along that perpendicular line of the intersection. Convert that line to
rectangular coordinates, then plot the line superimposed on the image.

% Example 12.7 Example of the Hough transform
% (implemented using ‘radon’) to identify lines in an image.
% Use the image of Saturn in ‘saturn.tif’
%
clear all; close all;
radians = 2*pi/360; % Convert from degrees to radians
I = imread(’saturn.tif’); % Get image of Saturn
theta = 0:179; % Define projection angles
BW = edge(I,.02); % Threshold image, threshold set
[R,xp] = radon(BW,theta); % Hough (Radon) transform
% Convert to indexed image
[X, map] = gray2ind (mat2gray(R));

*The Radon transform is an important concept in computed tomography (CT) as described in a
following section.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

%
subplot(1,2,1); imshow(BW) % Display results
title(‘Saturn 	 Thresholded’);

subplot(1,2,2); imshow(X, hot);
% The hot colormap gives better
% reproduction

%
[M, c] = max(max(R)); % Find maximum element
[M, r] = max(R(:,c));
% Convert to rectangular coordinates
[ri ci] = size(BW); % Size of image array
[ra ca] = size(R); % Size of accumulator array
m = tan((c-90)*radians); % Slope from theta
b = -r/cos((c-90)*radians); % Intercept from basic

% trigonometry
x = (0:ci);
y = m*x � b; % Construct line
subplot(1,2,1); hold on;
plot(x,-y,’r’); % Plot line on graph

subplot(1,2,1); hold on;
plot(c, ra-r,’*k’); % Plot maximum point in

% accumulator

This example produces the images shown in Figure 12.20. The broad
white line superimposed is the line found as the most dominant using the Hough
transform. The location of this in the accumulator or parameter space array is
shown in the right-hand image. Other points nearly as strong (i.e., bright) can
be seen in the parameter array which represent other lines in the image. Of
course, it is possible to identify these lines as well by searching for maxima
other than the global maximum. This is done in a problem below.

PROBLEMS

1. Load the blood cell image (blood1.tif) Filter the image with two lowpass
filters, one having a weak cutoff (for example, Gaussian with an alpha of 0.5)
and the other having a strong cutoff (alpha > 4). Threshold the two filtered
images using the maximum variance routine (graythresh). Display the original
and filtered images along with their histograms. Also display the thresholded
images.

2. The Laplacian filter which calculates the second derivative can also be used
to find edges. In this case edges will be located where the second derivative is
near zero. Load the image of the spine (‘spine.tif’) and filter using the
Laplacian filter (use the default constant). Then threshold this image using

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 12.20 Thresholded image of Saturn (from MATLAB’s saturn.tif) with
the dominant line found by the Hough transform. The right image is the accumula-
tor array with the maximum point indicated by an ‘*’. (Original image is a public
domain image courtesy of NASA, Voyger 2 image, 1981-08-24.)

islice. The threshold values should be on either side of zero and should be
quite small (< 0.02) since you are interested in values quite close to zero.

3. Load image ‘texture3.tif’ which contains three regions having the same
average intensities but different textural patterns. Before applying the nonlinear
range operator used in Example 12.2, preprocess with a Laplacian filter (alpha =
0.5). Apply the range operator as in Example 12.2 using nlfilter. Plot original
and range images along with their histograms. Threshold the range image to
isolate the segments and compare with the figures in the book. (Hint: You may
have to adjust the thresholds slightly, but you do not have to rerun the time-
consuming range operator to adjust these thresholds.) You should observe a
modest improvement: one of the segments can now be perfectly separated.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

4. Load the texture orientation image texture4.tif. Separate the segments
as well as possible by using a Sobel operator followed by a standard deviation
operator implemented using nlfilter. (Note you will have to multiply the
standard deviation image by around 4 to get it into an appropriate range.) Plot
the histogram and use it to determine the best boundaries for separating the
three segments. Display the three segments as white objects.

5. Load the thresholded image of Figure 12.5 (found as Fig12_5.tif on the
disk) and use opening to eliminate as many points as possible in the upper field
without affecting the lower field. Then use closing to try to blacken as many
points as possible in the lower field without affecting the upper field. (You
should be able to blacken the lower field completely except for edge effects.)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

13

Image Reconstruction

Medical imaging utilizes several different physical principals or imaging modal-
ities. Common modalities used clinically include x-ray, computed tomography
(CT), positron emission tomography (PET), single photon emission computed
tomography (SPECT), and ultrasound. Other approaches under development in-
clude optical imaging* and impedence tomography. Except for simple x-ray
images which provide a shadow of intervening structures, some form of image
processing is required to produce a useful image. The algorithms used for image
reconstruction depend on the modality. In magnetic resonance imaging (MRI),
reconstruction techniques are fairly straightforward, requiring only a two-dimen-
sional inverse Fourier transform (described later in this chapter). Positron emis-
sion tomography (PET) and computed tomography use projections from colli-
mated beams and the reconstruction algorithm is critical. The quality of the
image is strongly dependent on the image reconstruction algorithm.†

*Of course, optical imaging is used in microscopy, but because of scattering it presents serious
problems when deep tissues are imaged. A number of advanced image processing methods are under
development to overcome problems due to scattering and provide useful images using either coher-
ent or noncoherent light.

†CT may be the first instance where the analysis software is an essential component of medical
diagnosis and comes between the physician and patient: the physician has no recourse but to trust
the software.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

CT, PET, AND SPECT

Reconstructed images from PET, SPECT, and CT all use collimated beams
directed through the target, but they vary in the mechanism used to produce
these collimated beams. CT is based on x-ray beams produced by an external
source that are collimated by the detector: the detector includes a collimator,
usually a long tube that absorbs diagonal or off-axis photons. A similar approach
is used for SPECT, but here the photons are produced by the decay of a radioac-
tive isotope within the patient. Because of the nature of the source, the beams
are not as well collimated in SPECT, and this leads to an unavoidable reduction
in image resolution. Although PET is also based on photons emitted from a
radioactive isotope, the underlying physics provide an opportunity to improve
beam collimation through so-called electronic collimation. In PET, the radioac-
tive isotope emits a positron. Positrons are short lived, and after traveling only
a short distance, they interact with an electron. During this interaction, their
masses are annihilated and two photons are generated traveling in opposite di-
rections, 180 deg. from one another. If two separate detectors are activated at
essentially the same time, then it is likely a positron annihilation occurred some-
where along a line connecting these two detectors. This coincident detection
provides an electronic mechanism for establishing a collimated path that tra-
verses the original positron emission. Note that since the positron does not decay
immediately, but may travel several cm in any direction before annihilation,
there is an inherent limitation on resolution.

In all three modalities, the basic data consists of measurements of the
absorption of x-rays (CT) or concentrations of radioactive material (PET and
SPECT), along a known beam path. From this basic information, the reconstruc-
tion algorithm must generate an image of either the tissue absorption character-
istics or isotope concentrations. The mathematics are fairly similar for both
absorption and emission processes and will be described here in terms of absorp-
tion processes; i.e., CT. (See Kak and Slaney (1988) for a mathematical descrip-
tion of emission processes.)

In CT, the intensity of an x-ray beam is dependent on the intensity of the
source, Io, the absorption coefficient, µ, and length, R, of the intervening tissue:

I(x,y) = Ioe
−µR (1)

where I(x,y) is the beam intensity (proportional to number of photons) at posi-
tion x,y. If the beam passes through tissue components having different absorp-
tion coefficients then, assuming the tissue is divided into equal sections ∆R, Eq.
(1) becomes:

I(x,y) = Ioexp�−∑
i

µ(x,y)∆R� (2)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The projection p(x,y), is the log of the intensity ratio, and is obtained by
dividing out Io and taking the natural log:

p(x,y) = ln� Io

I(x,y)� = ∑i µi(x,y)∆R (3)

Eq. (3) is also expressed as a continuous equation where it becomes the
line integral of the attenuation coefficients from the source to the detector:

p(x,y) = ∫
Detector

Source

µ(x,y)dR (4)

Figure 13.1A shows a series of collimated parallel beams traveling
through tissue.* All of these beams are at the same angle, θ, with respect to the
reference axis. The output of each beam is just the projection of absorption
characteristics of the intervening tissue as defined in Eq. (4). The projections of
all the individual parallel beams constitute a projection profile of the intervening

FIGURE 13.1 (A) A series of parallel beam paths at a given angle, θ, is projected
through biological tissue. The net absorption of each beam can be plotted as a
projection profile. (B) A large number of such parallel paths, each at a different
angle, is required to obtain enough information to reconstruct the image.

*In modern CT scanners, the beams are not parallel, but dispersed in a spreading pattern from a
single source to an array of detectors, a so-called fan beam pattern. To simplify the analysis pre-
sented here, we will assume a parallel beam geometry. Kak and Slaney (1988) also cover the
derivation of reconstruction algorithms for fan beam geometry.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

tissue absorption coefficients. With only one projection profile, it is not possible
to determine how the tissue absorptions are distributed along the paths. How-
ever, if a large number of projections are taken at different angles through the
tissue, Figure 13.1B, it ought to be possible, at least in principle, to estimate the
distribution of absorption coefficients from some combined analysis applied to
all of the projections. This analysis is the challenge given to the CT reconstruc-
tion algorithm.

If the problem were reversed, that is, if the distribution of tissue absorption
coefficients was known, determining the projection profile produced by a set of
parallel beams would be straightforward. As stated in Eq. (13-4), the output of
each beam is the line integral over the beam path through the tissue. If the beam
is at an angle, θ (Figure 13-2), then the equation for a line passing through the
origin at angle θ is:

x cos θ + y sin θ = 0 (5)

and the projection for that single line at a fixed angle, pθ, becomes:

pθ = ∫
∞

−∞ ∫
∞

−∞ I(x,y)(x cosθ + y sinθ) dxdy (6)

where I(x,y) is the distribution of absorption coefficients as Eq. (2). If the beam
is displaced a distance, r, from the axis in a direction perpendicular to θ, Figure
13.2, the equation for that path is:

FIGURE 13.2 A single beam path is defined mathematically by the equation given
in Eq. (5).

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

x cos θ + y sin θ − r = 0 (7)

The whole family of parallel paths can be mathematically defined using
Eqs. (6) and (7) combined with the Dirac delta distribution, δ, to represent the
discrete parallel beams. The equation describing the entire projection profile,
pθ(r), becomes:

pθ(r) = ∫
∞

−∞ ∫
∞

−∞ I(x,y) δ(x cosθ + y sinθ − r) dxdy (8)

This equation is known as the Radon transform, �. It is the same as the
Hough transform (Chapter 12) for the case of straight lines. The expression for
pθ(r) can also be written succinctly as:

pθ(r) = �[I(x,y)] (9)

The forward Radon transform can be used to generate raw CT data from
image data, useful in problems, examples, and simulations. This is the approach
that is used in some of the examples given in the MATLAB Implementation
section, and also to generate the CT data used in the problems.

The Radon transform is helpful in understanding the problem, but does
not help in the actual reconstruction. Reconstructing the image from the projec-
tion profiles is a classic inverse problem. You know what comes out—the pro-
jection profiles—but want to know the image (or, in the more general case, the
system), that produced that output. From the definition of the Radon transform
in Eq. (9), the image should result from the application of an inverse Radon
transform �−1, to the projection profiles, pθ(r):

I(x,y) = �−1[pθ(r)] (10)

While the Radon transform (Eqs. (8) and (9)) and inverse Radon trans-
form (Eq. (10)) are expressed in terms of continuous variables, in imaging sys-
tems the absorption coefficients are given in terms of discrete pixels, I(n,m),
and the integrals in the above equations become summations. In the discrete
situation, the absorption of each pixel is an unknown, and each beam path pro-
vides a single projection ratio that is the solution to a multi-variable equation.
If the image contains N by M pixels, and there are N × M different projections
(beam paths) available, then the system is adequately determined, and the recon-
struction problem is simply a matter of solving a large number of simultaneous
equations. Unfortunately, the number of simultaneous equations that must be
solved is generally so large that a direct solution becomes unworkable. The early
attempts at CT reconstruction used an iterative approach called the algebraic
reconstruction algorithm or ART. In this algorithm, each pixel was updated
based on errors between projections that would be obtained from the current
pixel values and the actual projections. When many pixels are involved, conver-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

gence was slow and the algorithm was computationally intensive and time-
consuming. Current approaches can be classified as either transform methods or
series expansion methods. The filtered back-projection method described below
falls into the first category and is one of the most popular of CT reconstruction
approaches.

Filtered back-projection can be described in either the spatial or spatial
frequency domain. While often implemented in the latter, the former is more
intuitive. In back-projection, each pixel absorption coefficient is set to the sum
(or average) of the values of all projections that traverse the pixel. In other
words, each projection that traverses a pixel contributes its full value to the
pixel, and the contributions from all of the beam paths that traverse that pixel
are simply added or averaged. Figure 13.3 shows a simple 3-by-3 pixel grid
with a highly absorbing center pixel (absorption coefficient of 8) against a back-
ground of lessor absorbing pixels. Three projection profiles are shown traversing
the grid horizontally, vertically, and diagonally. The lower grid shows the image
that would be reconstructed using back-projection alone. Each grid contains the
average of the projections though that pixel. This reconstructed image resembles
the original with a large central value surrounded by smaller values, but the
background is no longer constant. This background variation is the result of
blurring or smearing the central image over the background.

To correct the blurring or smoothing associated with the back-projection
method, a spatial filter can be used. Since the distortion is in the form of a
blurring or smoothing, spatial differentiation is appropriate. The most common
filter is a pure derivative up to some maximum spatial frequency. In the fre-
quency domain, this filter, termed the Ram-Lak filter, is a ramp up to some
maximum cutoff frequency. As with all derivative filters, high-frequency noise
will be increased, so this filter is often modified by the addition of a lowpass
filter. Lowpass filters that can be used include the Hamming window, the Han-
ning window, a cosine window, or a sinc function window (the Shepp-Logan
filter). (The frequency characteristics of these filters are shown in Figure 13.4).
Figure 13.5 shows a simple image of a light square on a dark background. The
projection profiles produced by the image are also shown (calculated using the
Radon transform).

The back-projection reconstruction of this image shows a blurred version
of the basic square form with indistinct borders. Application of a highpass filter
sharpens the image (Figure 13.4). The MATLAB implementation of the inverse
Radon transform, iradon described in the next section, uses the filtered back-
projection method and also provides for all of the filter options.

Filtered back-projection is easiest to implement in the frequency domain.
The Fourier slice theorem states that the one-dimensional Fourier transform of
a projection profile forms a single, radial line in the two-dimensional Fourier
transform of the image. This radial line will have the same angle in the spatial

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.3 Example of back-projection on a simple 3-by-3 pixel grid. The up-
per grid represents the original image which contains a dark (absorption 8) center
pixel surrounded by lighter (absorption 2) pixels. The projections are taken as the
linear addition of all intervening pixels. In the lower reconstructed image, each
pixel is set to the average of all beams that cross that pixel. (Normally the sum
would be taken over a much larger set of pixels.) The center pixel is still higher
in absorption, but the background is no longer the same. This represents a
smearing of the original image.

frequency domain as the projection angle (Figure 13.6). Once the two-dimen-
sional Fourier transform space is filled from the individual one-dimensional
Fourier transforms of the projection profiles, the image can be constructed by
applying the inverse two-dimensional Fourier transform to this space. Before
the inverse transform is done, the appropriate filter can be applied directly in
the frequency domain using multiplication.

As with other images, reconstructed CT images can suffer from alaising
if they are undersampled. Undersampling can be the result of an insufficient

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.4 Magnitude frequency characteristics of four common filters used in
filtered back-projection. They all show highpass characteristics at lower frequen-
cies. The cosine filter has the same frequency characteristics as the two-point
central difference algorithm.

number of parallel beams in the projection profile or too few rotation angles.
The former is explored in Figure 13.7 which shows the square pattern of Figure
13.5 sampled with one-half (left-hand image) and one-quarter (right-hand im-
age) the number of parallel beams used in Figure 13.5. The images have been
multiplied by a factor of 10 to enhance the faint aliasing artifacts. One of the
problems at the end of this chapter explores the influence of undersampling by
reducing the number of angular rotations an well as reducing the number of
parallel beams.

Fan Beam Geometry

For practical reasons, modern CT scanners use fan beam geometry. This geome-
try usually involves a single source and a ring of detectors. The source rotates
around the patient while those detectors in the beam path acquire the data. This
allows very high speed image acquisition, as short as half a second. The source
fan beam is shaped so that the beam hits a number of detections simultaneously,
Figure 13.8. MATLAB provides several routines that provide the Radon and
inverse Radon transform for fan beam geometry.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.5 Image reconstruction of a simple white square against a black
background. Back-projection alone produces a smeared image which can be cor-
rected with a spatial derivative filter. These images were generated using the
code given in Example 13.1.

MATLAB Implementation

Radon Transform

The MATLAB Image Processing Toolbox contains routines that perform both
the Radon and inverse Radon transforms. The Radon transform routine has al-
ready been introduced as an implementation of the Hough transform for straight
line objects. The procedure here is essentially the same, except that an intensity
image is used as the input instead of the binary image used in the Hough trans-
form.

[p, xp] = radon(I, theta);

where I is the image of interest and theta is the production angle in degs.s,
usually a vector of angles. If not specified, theta defaults to (1:179). The output
parameter p is the projection array, where each column is the projection profile
at a specific angle. The optional output parameter, xp gives the radial coordi-
nates for each row of p and can be used in displaying the projection data.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.6 Schematic representation of the steps in filtered back-projection
using frequency domain techniques. The steps shown are for a single projection
profile and would be repeated for each projection angle.

FIGURE 13.7 Image reconstructions of the same simple pattern shown in Figure
13.4, but undersampled by a factor of two (left image) or four (right image). The
contrast has been increased by a factor of ten to enhance the relatively low-
intensity aliasing patterns.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.8 A series of beams is projected from a single source in a fan-like
pattern. The beams fall upon a number of detectors arranged in a ring around
the patient. Fan beams typically range between 30 to 60 deg. In the most recent
CT scanners (so-called fourth-generation machines) the detectors completely en-
circle the patient, and the source can rotate continuously.

Inverse Radon Transform: Parallel Beam Geometry

MATLAB’s inverse Radon transform is based on filtered back-projection and
uses the frequency domain approach illustrated in Figure 13.6. A variety of
filtering options are available and are implemented directly in the frequency
domain.

The calling structure of the inverse Radon transform is:

[I,f] = iradon(p,theta,interp,filter,d,n);

where p is the only required input argument and is a matrix where each column
contains one projection profile. The angle of the projection profiles is specified
by theta in one of two ways: if theta is a scalar, it specifies the angular
spacing (in degs.s) between projection profiles (with an assumed range of zero
to number of columns − 1); if theta is a vector, it specifies the angles them-
selves, which must be evenly spaced. The default theta is 180 deg. divided by
the number of columns. During reconstruction, iradon assumes that the center
of rotation is half the number of rows (i.e., the midpoint of the projection pro-
file: ceil(size (p,1)/2)).

The optional argument interp is a string specifying the back-projection
interpolation method: ‘nearest’, ‘linear’ (the default), and ‘spline’. The

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

filter option is also specified as a string. The ‘Ram-Lak’ option is the default
and consists of a ramp in frequency (i.e., an ideal derivative) up to some maxi-
mum frequency (Figure 13.4 (on p. 382)). Since this filter is prone to high-
frequency noise, other options multiply the ramp function by a lowpass function.
These lowpass functions are the same as described above: Hamming window
(‘Hamming’), Hanning window (‘Hann’), cosine (‘cosine’), and sinc
(‘Shepp-Logan’) function. Frequency plots of several of these filters are shown
in Figure 13.4. The filter’s frequency characteristics can be modified by the
optional parameter, d, which scales the frequency axis: if d is less than one (the
default value is one) then filter transfer function values above d, in normalized
frequency, are set to 0. Hence, decreasing d increases the lowpass filter effect.
The optional input argument, n, can be reused to rescale the image. These filter
options are explored in several of the problems.

The image is contained in the output matrix I (class double), and the
optional output vector, h, contains the filter’s frequency response. (This output
vector was used to generate the filter frequency curves of Figure 13.4.) An
application of the inverse Radon transform is given in Example 13.1.

Example 13.1 Example of the use of back-projection and filtered back-
projection. After a simple image of a white square against a dark background is
generated, the CT projections are constructed using the forward Radon trans-
form. The original image is reconstructed from these projections using both
the filtered and unfiltered back-projection algorithm. The original image, the
projections, and the two reconstructed images are displayed in Figure 13.5 on
page 385.

% Example 13.1 and Figure 13.4.
% Image Reconstruction using back-projection and filtered
% back-projection.
% Uses MATLAB’s ‘iradon’ for filtered back-projection and
% ‘i_back’ for unfiltered back-projection.
% (This routine is a version of ‘iradon’ modified to eliminate
% the filter.)
% Construct a simple image consisting of a white square against
% a black background. Then apply back-projection without
% filtering and with the derivative (Ram-Lak) filters.
% Display the original and reconstructed images along with the
% projections.
%
clear all; close all;
%
I = zeros(128,128); % Construct image: black
I(44:84,44:84) = 1; % background with a central

% white square

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

%

% Generate the projections using ‘radon’
theta = (1:180); % Angle between projections

% is 1 deg.
[p,xp] = radon(I, theta);
%
% Now reconstruct the image
I_back = i_back(p,delta_theta); % Back-projection alone
I_back = mat2gray(I_back); % Convert to grayscale
I_filter_back = iradon % Filtered back-projection
(p,delta_theta);

%
.......Display images.......

The display generated by this code is given in Figure 13.4. Example 13.2
explores the effect of filtering on the reconstructed images.

Example 13.2 The inverse Radon transform filters. Generate CT data by
applying the Radon transform to an MRI image of the brain (an unusual exam-
ple of mixed modalities!). Reconstruct the image using the inverse Radon trans-
form with the Ram-Lak (derivative) filter and the cosine filter with a maximum
relative frequency of 0.4. Display the original and reconstructed images.

% Example 13.2 and Figure 13.9 Image Reconstruction using
% filtered back-projection
% Uses MATLAB’s ‘iradon’ for filtered backprojection
% Load a frame of the MRI image (mri.tif) and construct the CT
% projections using ‘radon’. Then apply backprojection with
% two different filters: Ram-Lak and cosine (with 0.4 as
% highest frequency
%
clear all; close all;
frame = 18; % Use MR image slice 18
[I(:,:,:,1), map] = imread(‘mri.tif’,frame);
if isempty(map) == 0 % Check to see if Indexed data

I = ind2gray(I,map); % If so, convert to Intensity
% image

end
I = im2double(I); % Convert to double and scale
%
% Construct projections of MR image
delta_theta = (1:180);

[p,xp] = radon(I,delta_theta); % Angle between projections
% is 1 deg.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

%
% Reconstruct image using Ram-Lak filter
I_RamLak = iradon(p,delta_theta,‘Ram-Lak’);
%
.......Display images.......

Radon and Inverse Radon Transform: Fan Beam Geometry

The MATLAB routines for performing the Radon and inverse Radon transform
using fan beam geometry are termed fanbeam and ifanbeam, respectively, and
have the form:

fan = fanbeam(I,D)

where I is the input image and D is a scalar that specifies the distance between
the beam vertex and the center of rotation of the beams. The output, fan, is a
matrix containing the fan bean projection profiles, where each column contains
the sensor samples at one rotation angle. It is assumed that the sensors have a
one-deg. spacing and the rotation angles are spaced equally over 0 to 359 deg.
A number of optional input variables specify different geometries, sensor spac-
ing, and rotation increments.

The inverse Radon transform for fan beam projections is specified as:

I = ifanbeam(fan,D)

FIGURE 13.9 Original MR image and reconstructed images using the inverse
Radon transform with the Ram-Lak derivative and the cosine filter. The cosine
filter’s lowpass cutoff has been modified by setting its maximum relative fre-
quency to 0.4. The Ram-Lak reconstruction is not as sharp as the original image
and sharpness is reduced further by the cosine filter with its lowered bandwidth.
(Original image from the MATLAB Image Processing Toolbox. Copyright 1993–
2003, The Math Works, Inc. Reprinted with permission.)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

where fan is the matrix of projections and D is the distance between beam
vertex and the center of rotation. The output, I, is the reconstructed image.
Again there are a number of optional input arguments specifying the same type
of information as in fanbeam. This routine first converts the fan beam geometry
into a parallel geometry, then applies filtered back-projection as in iradon.
During the filtered back-projection stage, it is possible to specify filter options
as in iradon. To specify, the string ‘Filter’ should precede the filter name
(‘Hamming’, ‘Hann’, ‘cosine’, etc.).

Example 13.3 Fan beam geometry. Apply the fan beam and parallel
beam Radon transform to the simple square shown in Figure 13.4. Reconstruct
the image using the inverse Radon transform for both geometries.

% Example 13.3 and Figure 13.10
% Example of reconstruction using the Fan Beam Geometry
% Reconstructs a pattern of 4 square of different intensities
% using parallel beam and fan beam approaches.
%
clear all; close all;
D = 150; % Distance between fan beam vertex

% and center of rotation
theta = (1:180); % Angle between parallel

% projections is 1 deg.
%
I = zeros(128,128); % Generate image
I(22:54,22:52) = .25; % Four squares of different shades
I(76;106,22:52) = .5; % against a black background
I(22:52,76:106) = .75;
I(76:106,76:106) = 1;
%
% Construct projections: Fan and parallel beam
[F,Floc,Fangles] = fanbeam (I,D,‘FanSensorSpacing’,.5);
[R,xp] = radon(I,theta);
%
% Reconstruct images. Use Shepp-Logan filter
I_rfb = ifanbeam(F,D,‘FanSensorSpacing’,.5,‘Filter’, ...
‘Shepp-Logan’);

I_filter_back = iradon(R,theta,‘Shepp-Logan’);
%
% Display images
subplot(1,2,1);
imshow(I_rfb); title(‘Fan Beam’)

subplot(1,2,2);
imshow(I_filter_back); title(‘Parallel Beam’)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The images generated by this example are shown in Figure 13.10. There
are small artifacts due to the distance between the beam source and the center
of rotation. The affect of this distance is explored in one of the problems.

MAGNETIC RESONANCE IMAGING

Basic Principles

MRI images can be acquired in a number of ways using different image acquisi-
tion protocols. One of the more common protocols, the spin echo pulse sequence,
will be described with the understanding that a fair number of alternatives are
commonly used. In this sequence, the image is constructed on a slice-by-slice
basis, although the data are obtained on a line-by-line basis. For each slice, the
raw MRI data encode the image as a variation in signal frequency in one dimen-
sion, and in signal phase in the other. To reconstruct the image only requires
the application of a two-dimensional inverse Fourier transform to this fre-
quency/phase encoded data. If desired, spatial filtering can be implemented in
the frequency domain before applying the inverse Fourier transform.

The physics underlying MRI is involved and requires quantum mechanics
for a complete description. However, most descriptions are approximations that
use classical mechanics. The description provided here will be even more abbre-
viated than most. (For a detailed classical description of the MRI physics see
Wright’s chapter in Enderle et al., 2000.). Nuclear magnetism occurs in nuclei
with an odd number of nucleons (protons and/or neutrons). In the presence of a
magnetic field such nuclei possess a magnetic dipole due to a quantum mechani-

FIGURE 13.10 Reconstruction of an image of four squares at different intensities
using parallel beam and fan beam geometry. Some artifact is seen in the fan
beam geometry due to the distance between the beam source and object (see
Problem 3).

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

cal property known as spin.* In MRI lingo, the nucleus and/or the associated
magnetic dipole is termed a spin. For clinical imaging, the hydrogen proton is
used because it occurs in large numbers in biological tissue. Although there are
a large number of hydrogen protons, or spins, in biological tissue (1 mm3 of
water contains 6.7 × 1019 protons), the net magnetic moment that can be pro-
duced, even if they were all aligned, is small due to the near balance between
spin-up (1⁄2) and spin-down (−1⁄2) states. When they are placed in a magnetic
field, the magnetic dipoles are not static, but rotate around the axis of the applied
magnetic field like spinning tops, Figure 13.11A (hence, the spins themselves
spin). A group of these spins produces a net moment in the direction of the
magnetic field, z, but since they are not in phase, any horizontal moment in the
x and y direction tends to cancel (Figure 13.11B).

While the various spins do not have the same relative phase, they do all
rotate at the same frequency, a frequency given by the Larmor equation:

ωo = γH (11)

FIGURE 13.11 (A) A single proton has a magnetic moment which rotates in the
presence of an applied magnet field, Bz. This dipole moment could be up or down
with a slight favoritism towards up, as shown. (B) A group of upward dipoles
create a net moment in the same direction as the magnetic field, but any horizon-
tal moments (x or y) tend to cancel. Note that all of these dipole vectors should
be rotating, but for obvious reasons they are shown as stationary with the as-
sumption that they rotate, or more rigorously, that the coordinate system is ro-
tating.

*Nuclear spin is not really a spin, but another one of those mysterious quantum mechanical proper-
ties. Nuclear spin can take on values of ±1/2, with +1/2 slightly favored in a magnetic field.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

where ωo is the frequency in radians, H is the magnitude of the magnitude field,
and γ is a constant termed the gyromagnetic constant. Although γ is primarily a
function of the type of nucleus it also depends slightly on the local chemical
environment. As shown below, this equation contains the key to spatial localiza-
tion in MRI: variations in local magnetic field will encode as variations in rota-
tional frequency of the protons.

If these rotating spins are exposed to electromagnetic energy at the rota-
tional or Larmor frequency specified in Eq. (11), they will absorb this energy
and rotate further and further from their equilibrium position near the z axis:
they are tipped away from the z axis (Figure 13.12A). They will also be syn-
chronized by this energy, so that they now have a net horizontal moment. For
protons, the Larmor frequency is in the radio frequency (rf) range, so an rf
pulse of the appropriate frequency in the xy-plane will tip the spins away from
the z-axis an amount that depends on the length of the pulse:

θ = γHTp (12)

where θ is the tip angle and Tp pulse time. Usually Tp is adjusted to tip the angle
either 90 or 180 deg. As described subsequently, a 90 deg. tip is used to generate
the strongest possible signal and an 180 deg tip, which changes the sign of the

FIGURE 13.12 (A) After an rf pulse that tips the spins 90 deg., the net magnetic
moment looks like a vector, Mxy, rotating in the xy-plane. The net vector in the z
direction is zero. (B) After the rf energy is removed, all of the spins begin to relax
back to their equilibrium position, increasing the z component, Mz, and decreas-
ing the xy component, Mxy. The xy component also decreases as the spins de-
synchronize.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

moment, is used to generate an echo signal. Note that a given 90 or 180 deg. Tp

will only flip those spins that are exposed to the appropriate local magnetic
field, H.

When all of the spins in a region are tipped 90 deg. and synchronized,
there will be a net magnetic moment rotating in the xy-plane, but the component
of the moment in the z direction will be zero (Figure 13.12A). When the rf
pulse ends, the rotating magnetic field will generate its own rf signal, also at
the Larmor frequency. This signal is known as the free induction decay (FID)
signal. It is this signal that induces a small voltage in the receiver coil, and it is
this signal that is used to construct the MR image. Immediately after the pulse
ends, the signal generated is given by:

S(t) = ρ sin (θ) cos(ωot) (13)

where ωo is the Larmor frequency, θ is the tip angle, and ρ is the density of
spins. Note that a tip angle of 90 deg. produces the strongest signal.

Over time the spins will tend to relax towards the equilibrium position
(Figure 13.12B). This relaxation is known as the longitudinal or spin-lattice
relaxation time and is approximately exponential with a time constant denoted
as “T1.” As seen in Figure 13.12B, it has the effect of increasing the horizontal
moment, Mz, and decreasing the xy moment, Mxy. The xy moment is decreased
even further, and much faster, by a loss of synchronization of the collective
spins, since they are all exposed to a slightly different magnetic environment
from neighboring atoms (Figure 13.12B). This so-called transverse or spin-spin
relaxation time is also exponential and decays with a time constant termed “T2.”
The spin-spin relaxation time is always less than the spin lattice relaxation time,
so that by the time the net moment returns to equilibrium position along the z
axis the individual spins are completely de-phased. Local inhomogeneities in
the applied magnetic field cause an even faster de-phasing of the spins. When
the de-phasing time constant is modified to include this effect, it is termed T*2
(pronounced tee two star). This time constant also includes the T2 influences.
When these relaxation processes are included, the equation for the FID signals
becomes:

S(t) = ρ cos(ωot) e
−t/T*

2 e
−t/T1 (14)

While frequency dependence (i.e., the Larmor equation) is used to achieve
localization, the various relation times as well as proton density are used to
achieve image contrast. Proton density, ρ, for any given collection of spins is a
relatively straightforward measurement: it is proportional to FID signal ampli-
tude as shown in Eq. (14). Measuring the local T1 and T2 (or T*2) relaxation
times is more complicated and is done through clever manipulations of the rf
pulse and local magnetic field gradients, as briefly described in the next section.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Data Acquisition: Pulse Sequences

A combination of rf pulses, magnetic gradient pulses, delays, and data acquisi-
tion periods is termed a pulse sequence. One of the clever manipulations used
in many pulse sequences is the spin echo technique, a trick for eliminating the
de-phasing caused by local magnetic field inhomogeneities and related artifacts
(the T*2 decay). One possibility might be to sample immediately after the rf
pulse ends, but this is not practical. The alternative is to sample a realigned
echo. After the spins have begun to spread out, if their direction is suddenly
reversed they will come together again after a known delay. The classic example
is that of a group of runners who are told to reverse direction at the same time,
say one minute after the start. In principal, they all should get back to the start
line at the same time (one minute after reversing) since the fastest runners will
have the farthest to go at the time of reversal. In MRI, the reversal is accom-
plished by a phase-reversing 180 rf pulse. The realignment will occur with the
same time constant, T*2 , as the misalignment. This echo approach will only
cancel the de-phasing due to magnetic inhomogeneities, not the variations due
to the sample itself: i.e., those that produce the T2 relaxation. That is actually
desirable because the sample variations that cause T2 relaxation are often of
interest.

As mentioned above, the Larmor equation (Eq. (11)) is the key to localiza-
tion. If each position in the sample is subjected to a different magnetic field
strength, then the locations are tagged by their resonant frequencies. Two ap-
proaches could be used to identify the signal from a particular region. Use an rf
pulse with only one frequency component, and if each location has a unique
magnetic field strength then only the spins in one region will be excited, those
whose magnetic field correlates with the rf frequency (by the Larmor equation).
Alternatively excite a broader region, then vary the magnetic field strength so
that different regions are given different resonant frequencies. In clinical MRI,
both approaches are used.

Magnetic field strength is varied by the application of gradient fields ap-
plied by electromagnets, so-called gradient coils, in the three dimensions. The
gradient fields provide a linear change in magnetic field strength over a limited
area within the MR imager. The gradient field in the z direction, Gz, can be used
to isolate a specific xy slice in the object, a process known as slice selection.*
In the absence of any other gradients, the application of a linear gradient in the
z direction will mean that only the spins in one xy-plane will have a resonant
frequency that matches a specific rf pulse frequency. Hence, by adjusting the

*Selected slices can be in any plane, x, y, z, or any combination, by appropriate activation of the
gradients during the rf pulse. For simplicity, this discussion assumes the slice is selected by the z-
gradient so spins in an xy-plane are excited.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

gradient, different xy-slices will be associated with (by the Larmor equation),
and excited by, a specific rf frequency. Since the rf pulse is of finite duration it
cannot consist of a single frequency, but rather has a range of frequencies, i.e.,
a finite bandwidth. The thickness of the slice, that is, the region in the z-direc-
tion over which the spins are excited, will depend on the steepness of the gradi-
ent field and the bandwidth of the rf pulse:

∆z � γGzz(∆ω) (15)

Very thin slices, ∆z, would require a very narrowband pulse, ∆ω, in com-
bination with a steep gradient field, Gz.

If all three gradients, Gx, Gy, and Gz, were activated prior to the rf pulse
then only the spins in one unique volume would be excited. However, only one
data point would be acquired for each pulse repetition, and to acquire a large
volume would be quite time-consuming. Other strategies allow the acquisition
of entire lines, planes, or even volumes with one pulse excitation. One popular
pulse sequence, the spin-echo pulse sequence, acquires one line of data in the
spatial frequency domain. The sequence begins with a shaped rf pulse in con-
junction with a Gz pulse that provides slice selection (Figure 13.13). The Gz

includes a reversal at the end to cancel a z-dependent phase shift. Next, a y-
gradient pulse of a given amplitude is used to phase encode the data. This is
followed by a second rf/Gz combination to produce the echo. As the echo re-
groups the spins, an x-gradient pulse frequency encodes the signal. The re-
formed signal constitutes one line in the ferquency domain (termed k-space in
MRI), and is sampled over this period. Since the echo signal duration is several
hundred microseconds, high-speed data acquisition is necessary to sample up to
256 points during this signal period.

As with slice thickness, the ultimate pixel size will depend on the strength
of the magnetic gradients. Pixel size is directly related to the number of pixels
in the reconstructed image and the actual size of the imaged area, the so-called
field-of-view (FOV). Most modern imagers are capable of a 2 cm FOV with
samples up to 256 by 256 pixels, giving a pixel size of 0.078 mm. In practice,
image resolution is usually limited by signal-to-noise considerations since, as
pixel area decreases, the number of spins available to generate a signal dimin-
ishes proportionately. In some circumstances special receiver coils can be used
to increase the signal-to-noise ratio and improve image quality and/or resolu-
tion. Figure 13.14A shows an image of the Shepp-Logan phantom and the same
image acquired with different levels of detector noise.* As with other forms of
signal processing, MR image noise can be improved by averaging. Figure

*The Shepp-Logan phantom was developed to demonstrate the difficulty of identifying a tumor in
a medical image.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.13 The spin-echo pulse sequence. Events are timed with respect to
the initial rf pulse. See text for explanation.

13.14D shows the noise reduction resulting from averaging four of the images
taken under the same noise conditions as Figure 13.14C. Unfortunately, this
strategy increases scan time in direct proportion to the number of images aver-
aged.

Functional Magnetic Resonance Imaging

Image processing for MR images is generally the same as that used on other
images. In fact, MR images have been used in a number of examples and prob-
lems in previous chapters. One application of MRI does have some unique im-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.14 (A) MRI reconstruction of a Shepp-Logan phantom. (B) and (C)
Reconstruction of the phantom with detector noise added to the frequency do-
main signal. (D) Frequency domain average of four images taken with noise simi-
lar to C. Improvement in the image is apparent. (Original image from the MATLAB
Image Processing Toolbox. Copyright 1993–2003, The Math Works, Inc. Re-
printed with permission.)

age processing requirements: the area of functional magnetic resonance imaging
(fMRI). In this approach, neural areas that are active in specific tasks are identi-
fied by increases in local blood flow. MRI can detect cerebral blood changes
using an approach known as BOLD: blood oxygenation level dependent. Special
pulse sequences have been developed that can acquire images very quickly, and
these images are sensitive to the BOLD phenomenon. However, the effect is
very small: changes in signal level are only a few percent.

During a typical fMRI experiment, the subject is given a task which is
either physical (such a finger tapping), purely sensory (such as a flashing visual
stimulus), purely mental (such as performing mathematical calculations), or in-
volves sensorimotor activity (such as pushing a button whenever a given image
appears). In single-task protocols, the task alternates with non-task or baseline
activity period. Task periods are usually 20–30 seconds long, but can be shorter
and can even be single events under certain protocols. Multiple task protocols
are possible and increasingly popular. During each task a number of MR images

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

are acquired. The primary role of the analysis software is to identify pixels that
have some relationship to the task/non-task activity.

There are a number of software packages available that perform fMRI
analysis, some written in MATLAB such as SPM, (statistical parametric map-
ping), others in c-language such as AFNI (analysis of neural images). Some
packages can be obtained at no charge off the Web. In addition to identifying
the active pixels, these packages perform various preprocessing functions such
as aligning the sequential images and reshaping the images to conform to stan-
dard models of the brain.

Following preprocessing, there are a number of different approaches to
identifying regions where local blood flow correlates with the task/non-task
timing. One approach is simply to use correlation, that is correlate the change
in signal level, on a pixel-by-pixel basis, with a task-related function. This func-
tion could represent the task by a one and the non-task by a zero, producing a
square wave-like function. More complicated task functions account for the dy-
namics of the BOLD process which has a 4 to 6 second time constant. Finally,
some new approaches based on independent component analysis (ICA, Chapter
9) can be used to extract the task function from the data itself. The use of
correlation and ICA analysis is explored in the MATLAB Implementation sec-
tion and in the problems. Other univariate statistical techniques are common
such as t-tests and f-tests, particularly in the multi-task protocols (Friston, 2002).

MATLAB Implementation

Techniques for fMRI analysis can be implemented using standard MATLAB
routines. The identification of active pixels using correlation with a task protocol
function will be presented in Example 13.4. Several files have been created on
the disk that simulate regions of activity in the brain. The variations in pixel
intensity are small, and noise and other artifacts have been added to the image
data, as would be the case with real data. The analysis presented here is done
on each pixel independently. In most fMRI analyses, the identification proce-
dure might require activity in a number of adjoining pixels for identification.
Lowpass filtering can also be used to smooth the image.

Example 13.4 Use correlation to identify potentially active areas from
MRI images of the brain. In this experiment, 24 frames were taken (typical
fMRI experiments would contain at least twice that number): the first 6 frames
were acquired during baseline activity and the next 6 during the task. This off-
on cycle was then repeated for the next 12 frames. Load the image in MATLAB
file fmril, which contains all 24 frames. Generate a function that represents the
off-on task protocol and correlate this function with each pixel’s variation over
the 24 frames. Identify pixels that have correlation above a given threshold and
mark the image where these pixels occur. (Usually this would be done in color
with higher correlations given brighter color.) Finally display the time sequence

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

of one of the active pixels. (Most fMRI analysis packages can display the time
variation of pixels or regions, usually selected interactively.)

% Example 13.4 Example of identification of active area
% using correlation.
% Load the 24 frames of the image stored in fmri1.mat.
% Construct a stimulus profile.
% In this fMRI experiment the first 6 frames were taken during
% no-task conditions, the next six frames during the task
% condition, and this cycle was repeated.
% Correlate each pixel’s variation over the 24 frames with the
% task profile. Pixels that correlate above a certain threshold
% (use 0.5) should be identified in the image by a pixel
% whose intensity is the same as the correlation values
%
clear all; close all
thresh = .5; % Correlation threshold
load fmri1; % Get data
i_stim2 = ones(24,1); % Construct task profile
i_stim2(1:6) = 0; % First 6 frames are no-task
i_stim2(13:18) = 0; % Frames 13 through 18

% are also no-task
%
% Do correlation: pixel by pixel over the 24 frames
I_fmri_marked = I_fmri;
active = [0 0];
for i = 1:128
for j = 1:128
for k = 1:24
temp(k) = I_fmri(i,j,1,k);

end
cor_temp = corrcoef([temp’i_stim2]);
corr(i,j) = cor_temp(2,1); % Get correlation value
if corr(i,j) > thresh
I_fmri_marked(i,j,:,1) = I_fmri(i,j,:,1) � corr(i,j);
active = [active; i,j]; % Save supra-threshold

% locations
end

end
end
%
% Display marked image
imshow(I_fmri_marked(:,:,:,1)); title(‘fMRI Image’);
figure;
% Display one of the active areas
for i = 1:24 % Plot one of the active areas

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

active_neuron(i) = I_fmri(active(2,1),active(2,2),:,i);
end
plot(active_neuron); title(‘Active neuron’);

The marked image produced by this program is shown in Figure 13.15.
The actual active area is the rectangular area on the right side of the image
slightly above the centerline. However, a number of other error pixels are pres-
ent due to noise that happens to have a sufficiently high correlation with the
task profile (a correlation of 0.5 in this case). In Figure 13.16, the correlation
threshold has been increased to 0.7 and most of the error pixels have been

FIGURE 13.15 White pixels were identified as active based on correlation with
the task profile. The actual active area is the rectangle on the right side slightly
above the center line. Due to inherent noise, false pixels are also identified, some
even outside of the brain. The correlation threshold was set a 0.5 for this image.
(Original image from the MATLAB Image Processing Toolbox. Copyright 1993–
2003, The Math Works, Inc. Reprinted with permission.)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.16 The same image as in Figure 13.15 with a higher correlation
threshold (0.7). Fewer errors are seen, but the active area is only partially identi-
fied.

eliminated, but now the active region is only partially identified. An intermedi-
ate threshold might result in a better compromise, and this is explored in one of
the problems.

Functional MRI software packages allow isolation of specific regions of
interest (ROI), usually though interactive graphics. Pixel values in these regions
of interest can be plotted over time and subsequent processing can be done on
the isolated region. Figure 13.17 shows the variation over time (actually, over
the number of frames) of one of the active pixels. Note the very approximate
correlation with the square wave-like task profile also shown. The poor correla-
tion is due to noise and other artifacts, and is fairly typical of fMRI data. Identi-
fying the very small signal within the background noise is the one of the major
challenges for fMRI image processing algorithms.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.17 Variation in intensity of a single pixel within the active area of
Figures 13.15 and 13.16. A correlation with the task profile is seen, but consider-
able noise is also present.

Principal Component and Independent Component Analysis

In the above analysis, active pixels were identified by correlation with the task
profile. However, the neuronal response would not be expected to follow the
task temporal pattern exactly because of the dynamics of the blood flow re-
sponse (i.e., blood hemodynamics) which requires around 4 to 6 seconds to
reach its peak. In addition, there may be other processes at work that systemati-
cally affect either neural activity or pixel intensity. For example, respiration can
alter pixel intensity in a consistent manner. Identifying the actual dynamics of
the fMRI process and any consistent artifacts might be possible by a direct
analysis of the data. One approach would be to search for components related
to blood flow dynamics or artifacts using either principal component analysis
(PCA) or independent component analysis (ICA).

Regions of interest are first identified using either standard correlation or
other statistical methods so that the new tools need not be applied to the entire
image. Then the isolated data from each frame is re-formatted so that it is one-
dimensional by stringing the image rows, or columns, together. The data from
each frame are now arranged as a single vector. ICA or PCA is applied to the
transposed ensemble of frame vectors so that each pixel is treated as a different
source and each frame is an observation of that source. If there are pixels whose
intensity varies in a non-random manner, this should produce one or more com-
ponents in the analyses. The component that is most like the task profile can
then be used as a more accurate estimate of blood flow hemodynamics in the
correlation analysis: the isolated component is used for the comparison instead
of the task profile. An example of this approach is given in Example 13.5.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Example 13.5 Select a region of interest from the data of Figure 13.16,
specifically an area that surrounds and includes the potentially active pixels.
Normally this area would be selected interactively by an operator. Reformat the
images so that each frame is a single row vector and constitutes one row of an
ensemble composed of the different frames. Perform both an ICA and PCA
analysis and plot the resulting components.

% Example 13.5 and Figure 13.18 and 13.19
% Example of the use of PCA and ICA to identify signal
% and artifact components in a region of interest
% containing some active neurons.
% Load the region of interest then re-format to a images so that
% each of the 24 frames is a row then transpose this ensemble
% so that the rows are pixels and the columns are frames.
% Apply PCA and ICA analysis. Plot the first four principal
% components and the first two independent components.
%
close all; clear all;
nu_comp = 2;
% Number of independent components
load roi2; % Get ROI data
% Find number of frames %
[r c dummy frames] = size(ROI);
% Convert each image frame to a column and construct an
% ensemble were each column is a different frame
%
for i = 1:frames
for j = 1:r
row = ROI(j,:,:,i); % Convert frame to a row
if j == 1
temp = row;

else
temp = [temp row];

end
end
if i == 1
data = temp; % Concatenate rows

else
data = [data;temp];

end
end
%
% Now apply PCA analysis
[U,S,pc]= svd(data’,0); % Use singular value decomposition
eigen = diag(S).v2;
for i = 1:length(eigen)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.18 First four components from a principal component analysis ap-
plied to a region of interest in Figure 13.15 that includes the active area. A func-
tion similar to the task is seen in the second component. The third component
also has a possible repetitive structure that could be related to respiration.

pc(:,i) = pc(:,i) * sqrt(eigen(i));
end
%
% Determine the independent components
w = jadeR(data’,nu_comp);
ica = (w* data’);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.19 Two components found by independent component analysis. The
task-related function and the respiration artifact are now clearly identified.

%
.......Display components.......

The principal components produced by this analysis are shown in Figure
13.18. A waveform similar to the task profile is seen in the second plot down.
Since this waveform derived from the data, it should more closely represent the
actual blood flow hemodynamics. The third waveform shows a regular pattern,
possibly due to respiration artifact. The other two components may also contain
some of that artifact, but do not show any other obvious pattern.

The two patterns in the data are better separated by ICA. Figure 13.19
shows the first two independent components and both the blood flow hemody-
namics and the artifact are clearly shown. The former can be used instead of
the task profile in the correlation analysis. The results of using the profile ob-
tained through ICA are shown in Figure 13.20A and B. Both activity maps were
obtained from the same data using the same correlation threshold. In Figure
13.20A, the task profile function was used, while in Figure 13.20B the hemody-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 13.20A Activity map obtained by correlating pixels with the square-wave
task function. The correlation threshold was 0.55. (Original image from the
MATLAB Image Processing Toolbox. Copyright 1993–2003, The Math Works,
Inc. Reprinted with permission.)

FIGURE 13.20B Activity map obtained by correlating pixels with the estimated
hemodynamic profile obtained from ICA. The correlation threshold was 0.55.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

namic profile (the function in the lower plot of Figure 13.19) was used in the
correlation. The improvement in identification is apparent. When the task func-
tion is used, very few of the areas actually active are identified and a number
of error pixels are identified. Figure 13.20B contains about the same number of
errors, but all of the active areas are identified. Of course, the number of active
areas identified using the task profile could be improved by lowering the thresh-
old of correlation, but this would also increase the errors.

PROBLEMS

1. Load slice 13 of the MR image used in Example 13.3 (mri.tif). Construct
parallel beam projections of this image using the Radon transform with two
different angular spacings between rotations: 5 deg. and 10 deg. In addition,
reduce spacing of the 5 deg. data by a factor of two. Reconstruct the three
images (5 deg. unreduced, 5 deg. reduced, and 10 deg.) and display along with
the original image. Multiply the images by a factor of 10 to enhance any varia-
tions in the background.

2. The data file data_prob_13_2 contains projections of the test pattern im-
age, testpat1.png with noise added. Reconstruct the image using the inverse
Radon transform with two filter options: the Ram-Lak filter (the default), and
the Hamming filter with a maximum frequency of 0.5.

3. Load the image squares.tif. Use fanbeam to construct fan beam projec-
tions and ifanbeam to produce the reconstructed image. Repeat for two different
beam distances: 100 and 300 (pixels). Plot the reconstructed images. Use a
FanSensorSpacing of 1.

4. The rf-pulse used in MRI is a shaped pulse consisting of a sinusoid at the
base frequency that is amplitude modulated by some pulse shaping waveform.
The sinc waveform (sin(x)/x) is commonly used. Construct a shaped pulse con-
sisting of cos(ω2) modulated by sinc(ω2). Pulse duration should be such that ω2

ranges between ±π: −2π ≤ ω2 ≤ 2π. The sinusoidal frequency, ω1, should be 10
ω2. Use the inverse Fourier transform to plot the magnitude frequency spectrum
of this slice selection pulse. (Note: the MATLAB sinc function is normalized
to π, so the range of the vector input to this function should be ±2. In this case,
the cos function will need to multiplied by 2π, as well as by 10.)

5. Load the 24 frames of image fmri3.mat. This contains the 4-D variable,
I_fmri, which has 24 frames. Construct a stimulus profile. Assume the same
task profile as in Example 13.4: the first 6 frames were taken during no-task
conditions, the next six frames during the task condition, then the cycle was
repeated. Rearrange Example 13.4 so that the correlations coefficients are com-
puted first, then the thresholds are applied (so each new threshold value does not

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

require another calculation of correlation coefficients). Search for the optimal
threshold. Note these images contain more noise than those used in Example
13.4, so even the best thresholded will contain error pixels.

6. Example of identification of active area using correlation. Repeat Problem
6 except filter the matrix containing the pixel correlations before applying the
threshold. Use a 4 by 4 averaging filter. (fspecial can be helpful here.)

7. Example of using principal component analysis and independent component
analysis to identify signal and artifact. Load the region of interest file roi4.mat

which contains variable ROI. This variable contains 24 frames of a small region
around the active area of fmri3.mat. Reformat to a matrix as in Example 13.5
and apply PCA and ICA analysis. Plot the first four principal components and
the first two independent components. Note the very slow time constant of the
blood flow hemodynamics.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

2

Basic Concepts

NOISE

In Chapter 1 we observed that noise is an inherent component of most measure-
ments. In addition to physiological and environmental noise, electronic noise
arises from the transducer and associated electronics and is intermixed with the
signal being measured. Noise is usually represented as a random variable, x(n).
Since the variable is random, describing it as a function of time is not very
useful. It is more common to discuss other properties of noise such as its proba-
bility distribution, range of variability, or frequency characteristics. While noise
can take on a variety of different probability distributions, the Central Limit
Theorem implies that most noise will have a Gaussian or normal distribution*.
The Central Limit Theorem states that when noise is generated by a large num-
ber of independent sources it will have a Gaussian probability distribution re-
gardless of the probability distribution characteristics of the individual sources.
Figure 2.1A shows the distribution of 20,000 uniformly distributed random
numbers between −1 and +1. The distribution is approximately flat between the
limits of ±1 as expected. When the data set consists of 20,000 numbers, each
of which is the average of two uniformly distributed random numbers, the distri-
bution is much closer to Gaussian (Figure 2.1B, upper right). The distribution

*Both terms are used and reader should be familiar with both. We favor the term “Gaussian” to
avoid the value judgement implied by the word “normal.”

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 2.1 (A) The distribution of 20,000 uniformly distributed random numbers.
(B) The distribution of 20,000 numbers, each of which is the average of two uni-
formly distributed random numbers. (C) and (D) The distribution obtained when
3 and 8 random numbers, still uniformly distributed, are averaged together. Al-
though the underlying distribution is uniform, the averages of these uniformly dis-
tributed numbers tend toward a Gaussian distribution (dotted line). This is an
example of the Central Limit Theorem at work.

constructed from 20,000 numbers that are averages of only 8 random numbers
appears close to Gaussian, Figure 2.1D, even though the numbers being aver-
aged have a uniform distribution.

The probability of a Gaussianly distributed variable, x, is specified in the
well-known normal or Gaussian distribution equation:

p(x) = 1

σ√2π
e
−x2/2σ2

(1)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Two important properties of a random variable are its mean, or average
value, and its variance, the term σ2 in Eq. (1). The arithmetic quantities of
mean and variance are frequently used in signal processing algorithms, and their
computation is well-suited to discrete data.

The mean value of a discrete array of N samples is evaluated as:

x̄ = 1
N
∑
N

k=1

xk (2)

Note that the summation in Eq. (2) is made between 1 and N as opposed
to 0 and N − 1. This protocol will commonly be used throughout the text to be
compatible with MATLAB notation where the first element in an array has an
index of 1, not 0.

Frequently, the mean will be subtracted from the data sample to provide
data with zero mean value. This operation is particularly easy in MATLAB as
described in the next section. The sample variance, σ2, is calculated as shown in
Eq. (3) below, and the standard deviation, σ, is just the square root of the variance.

σ 2 = 1
N − 1 ∑

N

k=1

(xk − x̄)2 (3)

Normalizing the standard deviation or variance by 1/N − 1 as in Eq. (3)
produces the best estimate of the variance, if x is a sample from a Gaussian
distribution. Alternatively, normalizing the variance by 1/N produces the second
moment of the data around x. Note that this is the equivalent of the RMS value
of the data if the data have zero as the mean.

When multiple measurements are made, multiple random variables can be
generated. If these variables are combined or added together, the means add so
that the resultant random variable is simply the mean, or average, of the individ-
ual means. The same is true for the variance—the variances add and the average
variance is the mean of the individual variances:

σ 2 = 1
N
∑
N

k=1

σ 2
k (4)

However, the standard deviation is the square root of the variance and the
standard deviations add as the √N times the average standard deviation [Eq.
(5)]. Accordingly, the mean standard deviation is the average of the individual
standard deviations divided by √N [Eq. (6)].

From Eq. (4):

∑
N

k=1

σ 2
k, hence: ∑

N

k=1

σk = √Nσ 2 = √N σ (5)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Mean Standard Deviation = 1
N
∑
N

k=1

σk =
1
N
√N σ = σ

√N
(6)

In other words, averaging noise from different sensors, or multiple obser-
vations from the same source, will reduce the standard deviation of the noise
by the square root of the number of averages.

In addition to a mean and standard deviation, noise also has a spectral
characteristic—that is, its energy distribution may vary with frequency. As shown
below, the frequency characteristics of the noise are related to how well one
instantaneous value of noise correlates with the adjacent instantaneous values:
for digitized data how much one data point is correlated with its neighbors. If
the noise has so much randomness that each point is independent of its neigh-
bors, then it has a flat spectral characteristic and vice versa. Such noise is called
white noise since it, like white light, contains equal energy at all frequencies
(see Figure 1.5). The section on Noise Sources in Chapter 1 mentioned that
most electronic sources produce noise that is essentially white up to many mega-
hertz. When white noise is filtered, it becomes bandlimited and is referred to as
colored noise since, like colored light, it only contains energy at certain frequen-
cies. Colored noise shows some correlation between adjacent points, and this
correlation becomes stronger as the bandwidth decreases and the noise becomes
more monochromatic. The relationship between bandwidth and correlation of adja-
cent points is explored in the section on autocorrelation.

ENSEMBLE AVERAGING

Eq. (6) indicates that averaging can be a simple, yet powerful signal processing
technique for reducing noise when multiple observations of the signal are possi-
ble. Such multiple observations could come from multiple sensors, but in many
biomedical applications, the multiple observations come from repeated responses
to the same stimulus. In ensemble averaging, a group, or ensemble, of time re-
sponses are averaged together on a point-by-point basis; that is, an average
signal is constructed by taking the average, for each point in time, over all
signals in the ensemble (Figure 2.2). A classic biomedical engineering example
of the application of ensemble averaging is the visual evoked response (VER)
in which a visual stimulus produces a small neural signal embedded in the EEG.
Usually this signal cannot be detected in the EEG signal, but by averaging
hundreds of observations of the EEG, time-locked to the visual stimulus, the
visually evoked signal emerges.

There are two essential requirements for the application of ensemble aver-
aging for noise reduction: the ability to obtain multiple observations, and a
reference signal closely time-linked to the response. The reference signal shows
how the multiple observations are to be aligned for averaging. Usually a time

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 2.2 Upper traces: An ensemble of individual (vergence) eye movement
responses to a step change in stimulus. Lower trace: The ensemble average, dis-
placed downward for clarity. The ensemble average is constructed by averaging the
individual responses at each point in time. Hence, the value of the average re-
sponse at time T1 (vertical line) is the average of the individual responses at that
time.

signal linked to the stimulus is used. An example of ensemble averaging is
shown in Figure 2.2, and the code used to produce this figure is presented in
the following MATLAB implementation section.

MATLAB IMPLEMENTATION

In MATLAB the mean, variance, and standard deviations are implemented as
shown in the three code lines below.

xm = mean(x); % Evaluate mean of x
xvar = var(x) % Evaluate the variance of x normalizing by

% N-1

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

xnorm = var(x,1); % Evaluate the variance of x
xstd = std(x); % Evaluate the standard deviation of x,

If x is an array (also termed a vector for reasons given later) the output
of these function calls is a scalar representing the mean, variance, or standard
deviation. If x is a matrix then the output is a row vector resulting from applying
the appropriate calculation (mean, variance, or standard deviation) to each col-
umn of the matrix.

Example 2.1 below shows the implementation of ensemble averaging that
produced the data in Figure 2.2. The program first loads the eye movement data
(load verg1), then plots the ensemble. The ensemble average is determined
using the MATLAB mean routine. Note that the data matrix, data_out, must
be in the correct orientation (the responses must be in rows) for routine mean.
If that were not the case (as in Problem 1 at the end of this chapter), the matrix
transposition operation should be performed*. The ensemble average, avg, is
then plotted displaced by 3 degrees to provide a clear view. Otherwise it would
overlay the data.

Example 2.1 Compute and display the Ensemble average of an ensemble
of vergence eye movement responses to a step change in stimulus. These re-
sponses are stored in MATLAB file verg1.mat.

% Example 2.1 and Figure 2.2 Load eye movement data, plot
% the data then generate and plot the ensemble average.
%
close all; clear all;
load verg1; % Get eye movement data;
Ts = .005; % Sample interval = 5 msec
[nu,N] = size(data_out); % Get data length (N)
t = (1:N)*Ts; % Generate time vector
%
% Plot ensemble data superimposed
plot(t,data_out,‘k’);
hold on;
%
% Construct and plot the ensemble average
avg = mean(data_out); % Calculate ensemble average
plot(t,avg-3,‘k’); % and plot, separated from

% the other data
xlabel(‘Time (sec)’); % Label axes
ylabel(‘Eye Position’);

*In MATLAB, matrix or vector transposition is indicated by an apostrophe following the variable.
For example if x is a row vector, x′ is a column vector and visa versa. If X is a matrix, X′ is that
matrix with rows and columns switched.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

plot([.43 .43],[0 5],’-k’); % Plot horizontal line
text(1,1.2,‘Averaged Data’); % Label data average

DATA FUNCTIONS AND TRANSFORMS

To mathematicians, the term function can take on a wide range of meanings. In
signal processing, most functions fall into two categories: waveforms, images,
or other data; and entities that operate on waveforms, images, or other data
(Hubbard, 1998). The latter group can be further divided into functions that
modify the data, and functions used to analyze or probe the data. For example,
the basic filters described in Chapter 4 use functions (the filter coefficients) that
modify the spectral content of a waveform while the Fourier Transform detailed
in Chapter 3 uses functions (harmonically related sinusoids) to analyze the spec-
tral content of a waveform. Functions that modify data are also termed opera-
tions or transformations.

Since most signal processing operations are implemented using digital
electronics, functions are represented in discrete form as a sequence of numbers:

x(n) = [x(1),x(2),x(3), . . . ,x(N)] (5)

Discrete data functions (waveforms or images) are usually obtained through
analog-to-digital conversion or other data input, while analysis or modifying
functions are generated within the computer or are part of the computer pro-
gram. (The consequences of converting a continuous time function into a dis-
crete representation are described in the section below on sampling theory.)

In some applications, it is advantageous to think of a function (of whatever
type) not just as a sequence, or array, of numbers, but as a vector. In this conceptu-
alization, x(n) is a single vector defined by a single point, the endpoint of the
vector, in N-dimensional space, Figure 2.3. This somewhat curious and highly
mathematical concept has the advantage of unifying some signal processing
operations and fits well with matrix methods. It is difficult for most people to
imagine higher-dimensional spaces and even harder to present them graphically,
so operations and functions in higher-dimensional space are usually described
in 2 or 3 dimensions, and the extension to higher dimensional space is left to
the imagination of the reader. (This task can sometimes be difficult for non-
mathematicians: try and imagine a data sequence of even a 32-point array repre-
sented as a single vector in 32-dimensional space!)

A transform can be thought of as a re-mapping of the original data into a
function that provides more information than the original.* The Fourier Trans-
form described in Chapter 3 is a classic example as it converts the original time

*Some definitions would be more restrictive and require that a transform be bilateral; that is, it
must be possible to recover the original signal from the transformed data. We will use the looser
definition and reserve the term bilateral transform to describe reversible transformations.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 2.3 The data sequence x(n) = [1.5,2.5,2] represented as a vector in
three-dimensional space.

data into frequency information which often provides greater insight into the
nature and/or origin of the signal. Many of the transforms described in this text
are achieved by comparing the signal of interest with some sort of probing
function. This comparison takes the form of a correlation (produced by multipli-
cation) that is averaged (or integrated) over the duration of the waveform, or
some portion of the waveform:

X(m) = ∫
∞

−∞ x(t) fm(t) dt (7)

where x(t) is the waveform being analyzed, fm(t) is the probing function and m
is some variable of the probing function, often specifying a particular member
in a family of similar functions. For example, in the Fourier Transform fm(t) is
a family of harmonically related sinusoids and m specifies the frequency of an

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

individual sinusoid in that family (e.g., sin(mft)). A family of probing functions
is also termed a basis. For discrete functions, a probing function consists of a
sequence of values, or vector, and the integral becomes summation over a finite
range:

X(m) = ∑
N

n=1

x(n)fm(n) (8)

where x(n) is the discrete waveform and fm(n) is a discrete version of the family
of probing functions. This equation assumes the probe and waveform functions
are the same length. Other possibilities are explored below.

When either x(t) or fm(t) are of infinite length, they must be truncated in
some fashion to fit within the confines of limited memory storage. In addition,
if the length of the probing function, fm(n), is shorter than the waveform, x(n),
then x(n) must be shortened in some way. The length of either function can be
shortened by simple truncation or by multiplying the function by yet another
function that has zero value beyond the desired length. A function used to
shorten another function is termed a window function, and its action is shown
in Figure 2.4. Note that simple truncation can be viewed as multiplying the
function by a rectangular window, a function whose value is one for the portion
of the function that is retained, and zero elsewhere. The consequences of this
artificial shortening will depend on the specific window function used. Conse-
quences of data windowing are discussed in Chapter 3 under the heading Win-
dow Functions. If a window function is used, Eq. (8) becomes:

X(m) = ∑
N

n=1

x(n) fm(n) W(n) (9)

where W(n) is the window function. In the Fourier Transform, the length of
W(n) is usually set to be the same as the available length of the waveform, x(n),
but in other applications it can be shorter than the waveform. If W(n) is a rectan-
gular function, then W(n) =1 over the length of the summation (1 ≤ n ≤ N), and
it is usually omitted from the equation. The rectangular window is implemented
implicitly by the summation limits.

If the probing function is of finite length (in mathematical terms such a
function is said to have finite support) and this length is shorter than the wave-
form, then it might be appropriate to translate or slide it over the signal and
perform the comparison (correlation, or multiplication) at various relative posi-
tions between the waveform and probing function. In the example shown in
Figure 2.5, a single probing function is shown (representing a single family
member), and a single output function is produced. In general, the output would
be a family of functions, or a two-variable function, where one variable corre-
sponds to the relative position between the two functions and the other to the

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 2.4 A waveform (upper plot) is multiplied by a window function (middle
plot) to create a truncated version (lower plot) of the original waveform. The win-
dow function is shown in the middle plot. This particular window function is called
the Kaiser Window, one of many popular window functions.

specific family member. This sliding comparison is similar to convolution de-
scribed in the next section, and is given in discrete form by the equation:

X(m,k) = ∑
N

n=1

x(n) fm(n − k) (10)

where the variable k indicates the relative position between the two functions
and m is the family member as in the above equations. This approach will be
used in the filters described in Chapter 4 and in the Continuous Wavelet Trans-
form described in Chapter 7. A variation of this approach can be used for
long—or even infinite—probing functions, provided the probing function itself
is shortened by windowing to a length that is less than the waveform. Then the
shortened probing function can be translated across the waveform in the same
manner as a probing function that is naturally short. The equation for this condi-
tion becomes:

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 2.5 The probing function slides over the waveform of interest (upper
panel) and at each position generates the summed, or averaged, product of the
two functions (lower panel), as in Eq. (10). In this example, the probing function
is one member of the “Mexican Hat” family (see Chapter 7) and the waveform is
a sinusoid that increases its frequency linearly over time (known as a chirp.) The
summed product (lower panel), also known as the scalar product, shows the rela-
tive correlation between the waveform and the probing function as it slides across
the waveform. Note that this relative correlation varies sinusoidally as the phase
between the two functions varies, but reaches a maximum around 2.5 sec, the
time when the waveform is most like the probing function.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

X(m,k) = ∑
N

n=1

x(n) [W(n − k) fm(n)] (11)

where fm(n) is a longer function that is shortened by the sliding window function,
(W(n − k), and the variables m and k have the same meaning as in Eq. (10).
This is the approach taken in the Short-Term Fourier Transform described in
Chapter 6.

All of the discrete equations above, Eqs. (7) to (11), have one thing in
common: they all feature the multiplication of two (or sometimes three) func-
tions and the summation of the product over some finite interval. Returning to
the vector conceptualization for data sequences mentioned above (see Figure
2.3), this multiplication and summation is the same as scalar product of the two
vectors.*

The scalar product is defined as:

Scalar product of a & b ≡ 〈a,b〉 = �a1

a2

�
an

� �b1

b2

�
bn

�
= a1b1 + a2b2 + . . . + anbn (12)

Note that the scalar product results in a single number (i.e., a scalar), not
a vector. The scalar product can also be defined in terms of the magnitude of
the two vectors and the angle between them:

Scalar product of a and b ≡ 〈a,b〉 = *a* *b* cos θ (13)

where θ is the angle between the two vectors. If the two vectors are perpendicu-
lar to one another, i.e., they are orthogonal, then θ = 90°, and their salar product
will be zero. Eq. (13) demonstrates that the scalar product between waveform
and probe function is mathematically the same as a projection of the waveform
vector onto the probing function vector (after normalizing by probe vector
length). When the probing function consists of a family of functions, then the
scalar product operations in Eqs. (7)–(11) can be thought of as projecting the
waveform vector onto vectors representing the various family members. In this
vector-based conceptualization, the probing function family, or basis, can be
thought of as the axes of a coordinate system. This is the motivation behind the
development of probing functions that have family members that are orthogonal,

*The scalar product is also termed the inner product, the standard inner product, or the dot
product.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

or orthonormal:† the scalar product computations (or projections) can be done
on each axes (i.e., on each family member) independently of the others.

CONVOLUTION, CORRELATION, AND COVARIANCE

Convolution, correlation, and covariance are similar-sounding terms and are
similar in the way they are calculated. This similarity is somewhat misleading—at
least in the case of convolution—since the areas of application and underlying
concepts are not the same.

Convolution and the Impulse Response

Convolution is an important concept in linear systems theory, solving the need
for a time domain operation equivalent to the Transfer Function. Recall that the
Transfer Function is a frequency domain concept that is used to calculate the
output of a linear system to any input. Convolution can be used to define a
general input–output relationship in the time domain analogous to the Transfer
Function in the frequency domain. Figure 2.6 demonstrates this application of
convolution. The input, x(t), the output, y(t), and the function linking the two
through convolution, h(t), are all functions of time; hence, convolution is a time
domain operation. (Ironically, convolution algorithms are often implemented in
the frequency domain to improve the speed of the calculation.)

The basic concept behind convolution is superposition. The first step is to
determine a time function, h(t), that tells how the system responds to an infi-
nitely short segment of the input waveform. If superposition holds, then the
output can be determined by summing (integrating) all the response contribu-
tions calculated from the short segments. The way in which a linear system
responds to an infinitely short segment of data can be determined simply by
noting the system’s response to an infinitely short input, an infinitely short
pulse. An infinitely short pulse (or one that is at least short compared to the
dynamics of the system) is termed an impulse or delta function (commonly
denoted δ(t)), and the response it produces is termed the impulse response, h(t).

FIGURE 2.6 Convolution as a linear process.

†Orthonormal vectors are orthogonal, but also have unit length.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Given that the impulse response describes the response of the system to an
infinitely short segment of data, and any input can be viewed as an infinite
string of such infinitesimal segments, the impulse response can be used to deter-
mine the output of the system to any input. The response produced by an infi-
nitely small data segment is simply this impulse response scaled by the magni-
tude of that data segment. The contribution of each infinitely small segment can
be summed, or integrated, to find the response created by all the segments.

The convolution process is shown schematically in Figure 2.7. The left
graph shows the input, x(n) (dashed curve), to a linear system having an impulse
response of h(n) (solid line). The right graph of Figure 2.7 shows three partial
responses (solid curves) produced by three different infinitely small data segments
at N1, N2, and N3. Each partial response is an impulse response scaled by the
associated input segment and shifted to the position of that segment. The output
of the linear process (right graph, dashed line) is the summation of the individual

FIGURE 2.7 (A) The input, x(n), to a linear system (dashed line) and the impulse
response of that system, h(n) (solid line). Three points on the input data se-
quence are shown: N1, N2, and N3. (B) The partial contributions from the three
input data points to the output are impulse responses scaled by the value of the
associated input data point (solid line). The overall response of the system, y(n)
(dashed line, scaled to fit on the graph), is obtained by summing the contributions
from all the input points.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

impulse responses produced by each of the input data segments. (The output is
scaled down to produce a readable plot).

Stated mathematically, the output y(t), to any input, x(t) is given by:

y(t) = ∫
+∞

−∞
h(τ) x(t − τ) dτ = ∫

+∞

−∞
h(t − τ) x(τ) dτ (14)

To determine the impulse of each infinitely small data segment, the im-
pulse response is shifted a time τ with respect to the input, then scaled (i.e.,
multiplied) by the magnitude of the input at that point in time. It does not matter
which function, the input or the impulse response, is shifted.* Shifting and mul-
tiplication is sometimes referred to as the lag product. For most systems, h(τ)
is finite, so the limit of integration is finite. Moreover, a real system can only
respond to past inputs, so h(τ) must be 0 for τ < 0 (negative τ implies future times
in Eq. (14), although for computer-based operations, where future data may be
available in memory, τ can be negative.

For discrete signals, the integration becomes a summation and the convo-
lution equation becomes:

y(n) = ∑
N

k=1

h(n − k) x(k) or....

y(n) = ∑
N

k=1

h(n) x(k − n) ≡ h(n) * x(n) (15)

Again either h(n) or x(n) can be shifted. Also for discrete data, both h(n)
and x(n) must be finite (since they are stored in finite memory), so the summa-
tion is also finite (where N is the length of the shorter function, usually h(n)).

In signal processing, convolution can be used to implement some of the
basic filters described in Chapter 4. Like their analog counterparts, digital filters
are just linear processes that modify the input spectra in some desired way (such
as reducing noise). As with all linear processes, the filter’s impulse response,
h(n), completely describes the filter. The process of sampling used in analog-
to-digital conversion can also be viewed in terms of convolution: the sampled
output x(n) is just the convolution of the analog signal, x(t), with a very short
pulse (i.e., an impulse function) that is periodic with the sampling frequency.
Convolution has signal processing implications that extend beyond the determi-
nation of input-output relationships. We will show later that convolution in the
time domain is equivalent to multiplication in the frequency domain, and vice
versa. The former has particular significance to sampling theory as described
latter in this chapter.

*Of course, shifting both would be redundant.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Covariance and Correlation

The word correlation connotes similarity: how one thing is like another. Mathe-
matically, correlations are obtained by multiplying and normalizing. Both covar-
iance and correlation use multiplication to compare the linear relationship be-
tween two variables, but in correlation the coefficients are normalized to fall
between zero and one. This makes the correlation coefficients insensitive to
variations in the gain of the data acquisition process or the scaling of the vari-
ables. However, in many signal processing applications, the variable scales are
similar, and covariance is appropriate. The operations of correlation and covari-
ance can be applied to two or more waveforms, to multiple observations of the
same source, or to multiple segments of the same waveform. These comparisons
between data sequences can also result in a correlation or covariance matrix as
described below.

Correlation/covariance operations can not only be used to compare differ-
ent waveforms at specific points in time, they can also make comparisons over
a range of times by shifting one signal with respect the other. The crosscorrela-
tion function is an example of this process. The correlation function is the lagged
product of two waveforms, and the defining equation, given here in both contin-
uous and discrete form, is quite similar to the convolution equation above (Eqs.
(14) and (15):

rxx(t) = ∫
T

0
y(t) x(t + τ)dτ (16a)

rxx(n) = ∑
M

k=1

y(k + n) x(k) (16b)

Eqs. (16a) and (16b) show that the only difference in the computation of
the crosscorrelation versus convolution is the direction of the shift. In convolu-
tion the waveforms are shifted in opposite directions. This produces a causal
output: the output function is the creation of past values of the input function
(the output is caused by the input). This form of shifting is reflected in the
negative sign in Eq. (15). Crosscorrelation shows the similarity between two
waveforms at all possible relative positions of one waveform with respect to
the other, and it is useful in identifying segments of similarity. The output of
Eq. (16) is sometimes termed the raw correlation since there is no normaliza-
tion involved. Various scalings can be used (such as dividing by N, the number
of in the sum), and these are described in the section on MATLAB implementa-
tion.

A special case of the correlation function occurs when the comparison is
between two waveforms that are one in the same; that is, a function is correlated
with different shifts of itself. This is termed the autocorrelation function and it

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

provides a description of how similar a waveform is to itself at various time
shifts, or time lags. The autocorrelation function will naturally be maximum for
zero lag (n = 0) because at zero lag the comparison is between identical wave-
forms. Usually the autocorrelation is scaled so that the correlation at zero lag is
1. The function must be symmetric about n = 0, since shifting one version of
the same waveform in the negative direction is the same as shifting the other
version in the positive direction.

The autocorrelation function is related to the bandwidth of the waveform.
The sharper the peak of the autocorrelation function the broader the bandwidth.
For example, in white noise, which has infinite bandwidth, adjacent points are
uncorrelated, and the autocorrelation function will be nonzero only for zero lag
(see Problem 2). Figure 2.8 shows the autocorrelation functions of noise that
has been filtered to have two different bandwidths. In statistics, the crosscorrela-
tion and autocorrelation sequences are derived from the expectation operation
applied to infinite data. In signal processing, data lengths are finite, so the expec-

FIGURE 2.8 Autocorrelation functions of a random time series with a narrow
bandwidth (left) and broader bandwidth (right). Note the inverse relationship be-
tween the autocorrelation function and the spectrum: the broader the bandwidth
the narrower the first peak. These figures were generated using the code in Ex-
ample 2.2 below.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

tation operation becomes summation (with or without normalization), and the
crosscorrelation and autocorrelation functions are necessarily estimations.

The crosscovariance function is the same as crosscorrelation function ex-
cept that the means have been removed from the data before calculation. Ac-
cordingly, the equation is a slight modification of Eq. (16b), as shown below:

Cov(n) = ∑
M

k=1

[y(k + n) − y] [x(k) − x] (17)

The terms correlation and covariance, when used alone (i.e., without the
term function), imply operations similar to those described in Eqs. (16) and
(17), but without the lag operation. The result will be a single number. For
example, the covariance between two functions is given by:

Cov = σx,y = ∑
M

k=1

[y(k) − y] [x(k) − x] (18)

Of particular interest is the covariance and correlation matrices. These
analysis tools can be applied to multivariate data where multiple responses, or
observations, are obtained from a single process. A representative example in
biosignals is the EEG where the signal consists of a number of related wave-
forms taken from different positions on the head. The covariance and correla-
tion matrices assume that the multivariate data are arranged in a matrix where
the columns are different variables and the rows are different observations of
those variables. In signal processing, the rows are the waveform time samples,
and the columns are the different signal channels or observations of the signal.
The covariance matrix gives the variance of the columns of the data ma-
trix in the diagonals while the covariance between columns is given by the
off-diagonals:

S = �σ1,1 σ1,2 ��� σ1,N

σ2,1 σ2,2 ��� σ2,N

� � O �
σN,1 σN,2 ��� σN,N

� (19)

An example of the use of the covariance matrix to compare signals is
given in the section on MATLAB implementation.

In its usual signal processing definition, the correlation matrix is a normal-
ized version of the covariance matrix. Specifically, the correlation matrix is
related to the covariance matrix by the equation:

C(i,j) = C(i,j)

√C(i,i) C(j,j)
(20)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The correlation matrix is a set of correlation coefficients between wave-
form observations or channels and has a similar positional relationship as in the
covariance matrix:

Rxx = �rxx(0) rxx(1) ��� rxx(L)
rxx(1) rxx(0) ��� rxx(L − 1)
� � O �

rxx(L) rxx(L − 1) ��� rxx(0)
� (21)

Since the diagonals in the correlation matrix give the correlation of a
given variable or waveform with itself, they will all equal 1 (rxx(0) = 1), and the
off-diagonals will vary between ± 1.

MATLAB Implementation

MATLAB has specific functions for performing convolution, crosscorrelation/
autocorrelation, crossvariance/autocovariance, and construction of the correla-
tion and covariance matrices. To implement convolution in MATLAB, the code
is straightforward using the conv function:

y = conv(x,h)

where x and h are vectors containing the waveforms to be convolved and y is
the output waveform. The length of the output waveform is equal to the length
of x plus the length of h minus 1. This will produce additional data points, and
methods for dealing with these extra points are presented at the end of this
chapter, along with other problems associated with finite data. Frequently, the
additional data points can simply be discarded. An example of the use of this
routine is given in Example 2.2. Although the algorithm performs the process
defined in equation in Eq. (15), it actually operates in the frequency domain to
improve the speed of the operation.

The crosscorrelation and autocorrelation operations are both performed
with the same MATLAB routine, with autocorrelation being treated as a special
case:

[c,lags] = xcorr(x,y,maxlags,‘options’)

Only the first input argument, x, is required. If no y variable is specified,
autocorrelation is performed. The optional argument maxlags specifies the shift-
ing range. The shifted waveform is shifted between ± maxlags, or the default
value which is −N + 1 to N − 1 where N is length of the input vector, x. If a y

vector is specified then crosscorrelation is performed, and the same shifting
range applies. If one of the waveforms the shorter than the other (as is usually

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

the case), it is zero padded (defined and described at the end of this chapter) to
be the same length as the longer segment; hence, N would be the length of
longer waveform. A number of scaling operations can be specified by the argu-
ment options. If options equals biased, the output is divided by 1/N which
gives a biased estimate of the crosscorrelation/autocorrelation function. If op-

tions equals unbiased, the output is scaled by 1/*N − M* where M is the
length of the data output as defined below. Setting options to coeff is used
in autocorrelation and scales the autocorrelation function so that the zero lag
autocorrelation has a value equal to one. Finally options equals none indicates
no scaling, which is the default.

The xcorr function produces an output argument, c, that is a vector of
length 2 maxlags + 1 if maxlags is specified or 2N − 1 if the default range is
used. The optional output argument, lags, is simply a vector containing the lag
values (i.e., a vector of integers ranging between ±maxlags and is useful in
plotting.

Autocovariance or crosscovariance is obtained using the xcov function:

[c,lags] = xcov(x,y,maxlags,‘options’)

The arguments are identical to those described above for the xcorr func-
tion.

Correlation or covariance matrices are calculated using the corrcoef or
cov functions respectively. Again, the calls are similar for both functions:

Rxx = corrcoef(x)
S = cov(x), or S = cov(x,1);

Without the additional 1 in the calling argument, cov normalizes by N −
1, which provides the best unbiased estimate of the covariance matrix if the
observations are from a Gaussian distribution. When the second argument is
present, cov normalizes by N which produces the second moment of the obser-
vations about their mean.

Example 2.2 shows the use of both the convolution and autocorrelation
functions. The program produces autocorrelation functions of noise bandlimited
at two different frequencies. To generate the bandlimited (i.e., colored) noise
used for the autocorrelation, an impulse response function is generated in the
form of sin(x)/x (i.e., the sinc function). We will see in Chapter 4 that this is
the impulse response of one type of lowpass filter. Convolution of this impulse
response with a white noise sequence is used to generate bandlimited noise. A
vector containing Gaussian white noise is produced using the randn routine and
the lowpass filter is implemented by convolving the noise with the filter’s im-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

pulse response. The result is noise bandlimited by the cutoff frequency of the
filter. The output of the filter is then processed by the autocorrelation routine to
produce the autocorrelation curves shown in Figure 2.8 above. The two figures
were obtained for bandlimited noise having bandwidths of π/20 rad/sec and π/8
rad/sec. The variable wc specifies the cutoff frequency of the lowpass filter in
the code below. The theory and implementation of a lowpass filter such as used
below are presented in Chapter 4.

Example 2.2 Generate bandlimited noise and compute and plot the auto-
correlation function for two different bandwidths.

% Example 2.2 and Figure 2.8
% Generate colored noise having two different bandwidths
% and evaluate using autocorrelation.
%
close all; clear all;
N = 1024; % Size of arrays
L = 100; % FIR filter length
w = pi/20; % Lowpass filter cutoff frequency
noise = randn(N,1); % Generate noise
%
% Compute the impulse response of a lowpass filter
% This type of filter is covered in Chapter 4
%
wn = pi*[1/20 1/8]; % Use cutoff frequencies of �/20 and

% �/8
for k = 1:2 % Repeat for two different cutoff

% frequencies
wc = wn(k); % Assigning filter cutoff frequency
for i = 1:L�1 % Generate sin(x)/x function
n = i-L/2; % and make symmetrical
if n = = 0
hn(i) = wc/pi;

else
hn(i) = (sin(wc*(n)))/(pi*n); % Filter impulse response

end
end
out = conv(hn,noise); % Filter
[cor, lags] = xcorr(out,‘coeff); % Calculate autocorrela-

% tion, normalized
% Plot the autocorrelation functions
subplot (1,2,k);
plot(lags(1,:),cor(:,1),‘k’); % Plot using ‘lags’ vector
axis([-50 50 -.5 1.1]); % Define axes scale

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ylabel(‘Rxx’); % Labels
xlabel(‘Lags(n)’);
title([‘Bandwidth =
‘num2str(wc)]);

end

Example 2.3 evaluates the covariance and correlation of sinusoids that are,
and are not, orthogonal. Specifically, this example demonstrates the lack of
correlation and covariance between sinusoids that are orthogonal such as a sine
and cosine at the same frequency and harmonically related sinusoids (i.e., those
having multiple frequencies of one another). It also shows correlation and covar-
iance for sinusoids that are not orthogonal such as sines that are not at harmoni-
cally related frequencies.

Example 2.3 Generate a data matrix where the columns consist of or-
thogonal and non-orthogonal sinusoids. Specifically, the data matrix should con-
sist of a 1 Hz sine and a cosine, a 2 Hz sine and cosine, and a 1.5 Hz sine and
cosine. The six sinusoids should all be at different amplitudes. The first four
sinusoids are orthogonal and should show negligible correlation while the two
1.5 Hz sinusoids should show some correlation with the other sinusoids.

% Example 2.3
% Application of the correlation and covariance matrices to
% sinusoids that are orthogonal and non-orthogonal
%
clear all; close all;
N = 256; % Number of data points in

% each waveform
fs = 256; % Sample frequency
n = (1:N)/fs; % Generate 1 sec of data
%
% Generate the sinusoids as columns of the matrix
x(:,1) = sin(2*pi*n)’; % Generate a 1 Hz sin
x(:,2) = 2*cos(2*pi*n); % Generate a 1 Hx cos
x(:,3) = 1.5*sin(4*pi*n)’; % Generate a 2 Hz sin
x(:,4) = 3*cos(4*pi*n)’; % Generate a 2 Hx cos
x(:,5) = 2.5*sin(3*pi*n)’; % Generate a 1.5 Hx sin
x(:,6) = 1.75*cos(3*pi*n)’; % Generate a 1.5 Hz cos
%
S = cov(x) % Print covariance matrix
C = corrcoef(x) % and correlation matrix

The output from this program is a covariance and correlation matrix. The
covariance matrix is:

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

S =
0.5020 0.0000 0.0000 0.0000 0.0000 -0.4474
0.0000 2.0078 -0.0000 -0.0000 1.9172 -0.0137
0.0000 -0.0000 1.1294 0.0000 -0.0000 0.9586
0.0000 -0.0000 0.0000 4.5176 -2.0545 -0.0206
0.0000 1.9172 -0.0000 -2.0545 2.8548 0.0036
-0.4474 -0.0137 0.9586 -0.0206 0.0036 1.5372

In the covariance matrix, the diagonals which give the variance of the six
signals vary since the amplitudes of the signals are different. The covariance
between the first four signals is zero, demonstrating the orthogonality of these
signals. The correlation between the 5th and 6th signals and the other sinusoids
can be best observed from the correlation matrix:

Rxx =
1.0000 0.0000 0.0000 0.0000 0.0000 -0.5093
0.0000 1.0000 -0.0000 -0.0000 0.8008 -0.0078
0.0000 -0.0000 1.0000 0.0000 -0.0000 0.7275
0.0000 -0.0000 0.0000 1.0000 -0.5721 -0.0078
0.0000 0.8008 -0.0000 -0.5721 1.0000 0.0017

-0.5093 -0.0078 0.7275 -0.0078 0.0017 1.0000

In the correlation matrix, the correlation of each signal with itself is, of
course, 1.0. The 1.5 Hz sine (the 5th column of the data matrix) shows good
correlation with the 1.0 and 2.0 Hz cosine (2nd and 4th rows) but not the other
sinewaves, while the 1.5 Hz cosine (the 6th column) shows the opposite. Hence,
sinusoids that are not harmonically related are not orthogonal and do show some
correlation.

SAMPLING THEORY AND FINITE DATA CONSIDERATIONS

To convert an analog waveform into a digitized version residing in memory
requires two operations: sampling the waveform at discrete points in time,* and,
if the waveform is longer than the computer memory, isolating a segment of the
analog waveform for the conversion. The waveform segmentation operation is
windowing as mentioned previously, and the consequences of this operation are
discussed in the next chapter. If the purpose of sampling is to produce a digi-
tized copy of the original waveform, then the critical issue is how well does this
copy represent the original? Stated another way, can the original be recon-
structed from the digitized copy? If so, then the copy is clearly adequate. The

*As described in Chapter 1, this operation involves both time slicing, termed sampling, and ampli-
tude slicing, termed quantization.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

answer to this question depends on the frequency at which the analog waveform
is sampled relative to the frequencies that it contains.

The question of what sampling frequency should be used can be best
addressed assuming a simple waveform, a single sinusoid.* All finite, continu-
ous waveforms can be represented by a series of sinusoids (possibly an infinite
series), so if we can determine the appropriate sampling frequency for a single
sinusoid, we have also solved the more general problem. The “Shannon Sam-
pling Theorem” states that any sinusoidal waveform can be uniquely recon-
structed provided it is sampled at least twice in one period. (Equally spaced
samples are assumed). That is, the sampling frequency, fs, must be ≥ 2fsinusoid. In
other words, only two equally spaced samples are required to uniquely specify
a sinusoid, and these can be taken anywhere over the cycle. Extending this to a
general analog waveform, Shannon’s Sampling Theorem states that a continuous
waveform can be reconstructed without loss of information provided the sam-
pling frequency is greater than twice the highest frequency in the analog wave-
form:

fs > 2fmax (22)

As mentioned in Chapter 1, in practical situations, fmax is usually taken as
the highest frequency in the analog waveform for which less than a negligible
amount of energy exists.

The sampling process is equivalent to multiplying the analog waveform
by a repeating series of short pulses. This repeating series of short pulses is
sometimes referred to as the sampling function. Recall that the ideal short pulse
is called the impulse function, δ(t). In theory, the impulse function is infinitely
short, but is also infinitely tall, so that its total area equals 1. (This must be
justified using limits, but any pulse that is very short compared to the dynamics
of the sampled waveform will due. Recall the sampling pulse produced in most
modern analog-to-digital converters, termed the aperture time, is typically less
than 100 nsec.) The sampling function can be stated mathematically using the
impulse response.

Samp(n) = ∑
∞

k=−∞
δ (n − kTs) (23)

where Ts is the sample interval and equals 1/fs.
For an analog waveform, x(t), the sampled version, x(n), is given by multi-

plying x(t) by the sampling function in Eq. (22):

*A sinusoid has a straightforward frequency domain representation: only a single complex point at
the frequency of the sinusoid. Classical methods of frequency analysis described in the next chapter
make use of this fact.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

x(n) = ∑
∞

k=−∞
x(nTs) δ (n − kTs) (24)

The frequency spectrum of the sampling process represented by Eq. (23)
can be determined by taking advantage of fact that multiplication in the time
domain is equivalent to convolution in frequency domain (and vice versa).
Hence, the frequency characteristic of a sampled waveform is just the convolu-
tion of the analog waveform spectrum with the sampling function spectrum.
Figure 2.9A shows the spectrum of a sampling function having a repetition rate
of Ts, and Figure 2.9B shows the spectrum of a hypothetical signal that has a
well-defined maximum frequency, fmax. Figure 2.9C shows the spectrum of the
sampled waveform assuming fs = 1/Ts ≥ 2fmax. Note that the frequency character-
istic of the sampled waveform is the same as the original for the lower frequen-
cies, but the sampled spectrum now has a repetition of the original spectrum
reflected on either side of fs and at multiples of fs. Nonetheless, it would be
possible to recover the original spectrum simply by filtering the sampled data
by an ideal lowpass filter with a bandwidth > fmax as shown in Figure 2.9E.
Figure 2.9D shows the spectrum that results if the digitized data were sampled
at fs < 2fmax, in this case fs = 1.5fmax. Note that the reflected portion of the spec-
trum has become intermixed with the original spectrum, and no filter can un-
mix them.* When fs < 2fmax, the sampled data suffers from spectral overlap,
better known as aliasing. The sampled data no longer provides a unique repre-
sentation of the analog waveform, and recovery is not possible.

When correctly sampled, the original spectrum can by recovered by apply-
ing an ideal lowpass filter (digital filter) to the digitized data. In Chapter 4, we
show that an ideal lowpass filter has an impulse response given by:

h(n) = sin(2πfcTsn)
πn

(25)

where Ts is the sample interval and fc is the filter’s cutoff frequency.
Unfortunately, in order for this impulse function to produce an ideal filter,

it must be infinitely long. As demonstrated in Chapter 4, truncating h(n) results
in a filter that is less than ideal. However if fs >> fmax, as is often the case, then
any reasonable lowpass filter would suffice to recover the original waveform,
Figure 2.9F. In fact, using sampling frequencies much greater than required is
the norm, and often the lowpass filter is provided only by the response charac-
teristics of the output, or display device which is sufficient to reconstruct an
adequate looking signal.

*You might argue that you could recover the original spectrum if you knew exactly the spectrum
of the original analog waveform, but with this much information, why bother to sample the wave-
form in the first place!

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 2.9 Consequences of sampling expressed in the frequency domain. (A)
Frequency spectrum of a repetitive impulse function sampling at 6 Hz. (B) Fre-
quency spectrum of a hypothetical time signal that has a maximum frequency,
fmax, around 2 Hz. (Note negative frequencies occur with complex representation).
(C) Frequency spectrum of sampled waveform when the sampling frequency was
greater that twice the highest frequency component in the sampled waveform.
(D) Frequency spectrum of sampled waveform when the sampling frequency was
less that twice the highest frequency component in the sampled waveform. Note the
overlap. (E) Recovery of correctly sampled waveform using an ideal lowpass filter
(dotted line). (F) Recovery of a waveform when the sampling frequency is much
much greater that twice the highest frequency in the sampled waveform (fs = 10fmax).
In this case, the lowpass filter (dotted line) need not have as sharp a cutoff.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Edge Effects

An advantage of dealing with infinite data is that one need not be concerned
with the end points since there are no end points. However, finite data consist
of numerical sequences having a fixed length with fixed end points at the begin-
ning and end of the sequence. Some operations, such as convolution, may pro-
duce additional data points while some operations will require additional data
points to complete their operation on the data set. The question then becomes
how to add or eliminate data points, and there are a number of popular strategies
for dealing with these edge effects.

There are three common strategies for extending a data set when addi-
tional points are needed: extending with zeros (or a constant), termed zero pad-
ding; extending using periodicity or wraparound; and extending by reflection,
also known as symmetric extension. These options are illustrated in Figure 2.10.
In the zero padding approach, zeros are added to the end or beginning of the
data sequence (Figure 2.10A). This approach is frequently used in spectral anal-
ysis and is justified by the implicit assumption that the waveform is zero outside
of the sample period anyway. A variant of zero padding is constant padding,
where the data sequence is extended using a constant value, often the last (or
first) value in the sequence. If the waveform can be reasonably thought of as
one cycle of a periodic function, then the wraparound approach is clearly justi-
fied (Figure 2.10B). Here the data are extended by tacking on the initial data
sequence to the end of the data set and visa versa. This is quite easy to imple-
ment numerically: simply make all operations involving the data sequence index
modulo N, where N is the initial length of the data set. These two approaches
will, in general, produce a discontinuity at the beginning or end of the data set,
which can lead to artifact in certain situations. The symmetric reflection approach
eliminates this discontinuity by tacking on the end points in reverse order (or
beginning points if extending the beginning of the data sequence) (Figure 2.10C).*

To reduce the number of points in cases where an operation has generated
additional data, two strategies are common: simply eliminate the additional
points at the end of the data set, or eliminate data from both ends of the data
set, usually symmetrically. The latter is used when the data are considered peri-
odic and it is desired to retain the same period or when other similar concerns are
involved. An example of this is circular or periodic convolution. In this case,
the original data set is extended using the wraparound strategy, convolution is
performed on the extended data set, then the additional points are removed

*When using this extension, there is a question as to whether or not to repeat the last point in the
extension; either strategy will produce a smooth extension. The answer to this question will depend
on the type of operation being performed and the number of data points involved, and determining
the best approach may require empirical evaluation.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 2.10 Three strategies for extending the length of a finite data set. (A)
Zero padding: Zeros are added at the ends of the data set. (B) Periodic or wrap-
around: The waveform is assumed periodic so the end points are added at the
beginning, and beginning points are added at the end. (C) Symmetric: Points are
added to the ends in reverse order. Using this strategy the edge points may be
repeated as was done at the beginning of the data set, or not repeated as at the
end of the set.

symmetrically. The goal is to preserve the relative phase between waveforms
pre- and post-convolution. Periodic convolution is often used in wavelet analysis
where a data set may be operated on sequentially a number of times, and exam-
ples are found in Chapter 7.

PROBLEMS

1. Load the data in ensemble_data.mat found in the CD. This file contains
a data matrix labeled data. The data matrix contains 100 responses of a second-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

order system buried in noise. In this matrix each row is a separate response.
Plot several randomly selected samples of these responses. Is it possible to eval-
uate the second-order response from any single record? Construct and plot the
ensemble average for this data. Also construct and plot the ensemble standard
deviation.

2. Use the MATLAB autocorrelation and random number routine to plot the
autocorrelation sequence of white noise. Use arrays of 2048 and 256 points to
show the affect of data length on this operation. Repeat for both uniform and
Gaussian (normal) noise. (Use the MATLAB routines rand and randn, respec-
tively.)

3. Construct a 512-point noise arrray then filter by averaging the points three
at a time. That is, construct a new array in which every point is the average of
the preceding three points in the noise array: y(n) = 1/3 x(n) + 1/3 x(n − 1) + 1/3
x(n − 2). Note that the new array will be two points shorter than the original
noise array. Construct and plot the autocorrelation of this filtered array. You
may want to save the output, or the code that generates it, for use in a spectral
analysis problem at the end of Chapter 3. (See Problem 2, Chapter 3.)

4. Repeat the operation of Problem 3 to find the autocorrelation, but use con-
volution to implement the filter. That is, construct a filter function consisting of 3
equal coefficients of 1/3: (h(n) = [1/3 1/3 1/3]). Then convolve this weighting
function with the random array using conv.

5. Repeat the process in Problem 4 using a 10-weight averaging filter. (Note
that it is much easier to implement such a running average filter with this many
weights using convolution.)

6. Construct an array containing the impulse response of a first-order process.
The impulse of a first-order process is given by the equation: y(t) = e−t/τ (scaled
for unit amplitude). Assume a sampling frequency of 200 Hz and a time con-
stant, τ, of 1 sec. Make sure the array is at least 5 time constants long. Plot this
impulse response to verify its exponential shape. Convolve this impulse re-
sponse with a 512-point noise array and construct and plot the autocorrelation
function of this array. Repeat this analysis for an impulse response with a time
constant of 0.2 sec. Save the outputs for use in a spectral analysis problem at
the end of Chapter 3. (See Problems 4 and 5, Chapter 3.)

7. Repeat Problem 5 above using the impulse response of a second-order un-
derdamped process. The impulse response of a second-order underdamped sys-
tem is given by:

y(t) = δ
δ − 1

e
−δ2πfnt sin(2πfn√1 − δ2

t)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Use a sampling rate of 500 Hz and set the damping factor, δ, to 0.1 and the
frequency, fn (termed the undamped natural frequency), to 10 Hz. The array
should be the equivalent of at least 2.0 seconds of data. Plot the impulse re-
sponse to check its shape. Again, convolve this impulse response with a 512-
point noise array and construct and plot the autocorrelation function of this
array. Save the outputs for use in a spectral analysis problem at the end of
Chapter 3. (See Problem 6, Chapter 3.)

8. Construct 4 damped sinusoids similar to the signal, y(t), in Problem 7. Use
a damping factor of 0.04 and generate two seconds of data assuming a sampling
frequency of 500 Hz. Two of the 4 signals should have an fn of 10 Hz and the
other two an fn of 20 Hz. The two signals at the same frequency should be 90
degrees out of phase (replace the sin with a cos). Are any of these four signals
orthogonal?

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

3

Spectral Analysis: Classical Methods

INTRODUCTION

Sometimes the frequency content of the waveform provides more useful infor-
mation than the time domain representation. Many biological signals demon-
strate interesting or diagnostically useful properties when viewed in the so-
called frequency domain. Examples of such signals include heart rate, EMG,
EEG, ECG, eye movements and other motor responses, acoustic heart sounds,
and stomach and intestinal sounds. In fact, just about all biosignals have, at one
time or another, been examined in the frequency domain. Figure 3.1 shows the
time response of an EEG signal and an estimate of spectral content using the
classical Fourier transform method described later. Several peaks in the fre-
quency plot can be seen indicating significant energy in the EEG at these
frequencies.

Determining the frequency content of a waveform is termed spectral anal-
ysis, and the development of useful approaches for this frequency decomposition
has a long and rich history (Marple, 1987). Spectral analysis can be thought of
as a mathematical prism (Hubbard, 1998), decomposing a waveform into its
constituent frequencies just as a prism decomposes light into its constituent
colors (i.e., specific frequencies of the electromagnetic spectrum).

A great variety of techniques exist to perform spectral analysis, each hav-
ing different strengths and weaknesses. Basically, the methods can be divided
into two broad categories: classical methods based on the Fourier transform and
modern methods such as those based on the estimation of model parameters.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 3.1 Upper plot: Segment of an EEG signal from the PhysioNet data bank
(Golberger et al.), and the resultant power spectrum (lower plot).

The accurate determination of the waveform’s spectrum requires that the signal
be periodic, or of finite length, and noise-free. The problem is that in many
biological applications the waveform of interest is either infinite or of sufficient
length that only a portion of it is available for analysis. Moreover, biosignals
are often corrupted by substantial amounts of noise or artifact. If only a portion
of the actual signal can be analyzed, and/or if the waveform contains noise
along with the signal, then all spectral analysis techniques must necessarily be
approximate; they are estimates of the true spectrum. The various spectral analy-
sis approaches attempt to improve the estimation accuracy of specific spectral
features.

Intelligent application of spectral analysis techniques requires an under-
standing of what spectral features are likely to be of interest and which methods

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

provide the most accurate determination of those features. Two spectral features
of potential interest are the overall shape of the spectrum, termed the spectral
estimate, and/or local features of the spectrum sometimes referred to as paramet-
ric estimates. For example, signal detection, finding a narrowband signal in
broadband noise, would require a good estimate of local features. Unfortunately,
techniques that provide good spectral estimation are poor local estimators and
vice versa. Figure 3.2A shows the spectral estimate obtained by applying the
traditional Fourier transform to a waveform consisting of a 100 Hz sine wave
buried in white noise. The SNR is minus 14 db; that is, the signal amplitude is
1/5 of the noise. Note that the 100 Hz sin wave is readily identified as a peak
in the spectrum at that frequency. Figure 3.2B shows the spectral estimate ob-
tained by a smoothing process applied to the same signal (the Welch method,
described later in this chapter). In this case, the waveform was divided into 32

FIGURE 3.2 Spectra obtained from a waveform consisting of a 100 Hz sine wave
and white noise using two different methods. The Fourier transform method was
used to produce the left-hand spectrum and the spike at 100 Hz is clearly seen.
An averaging technique was used to create the spectrum on the right side, and
the 100 Hz component is no longer visible. Note, however, that the averaging
technique produces a better estimate of the white noise spectrum. (The spectrum
of white noise should be flat.)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

segments, the Fourier transform was applied to each segment, then the 32 spec-
tra were averaged. The resulting spectrum provides a more accurate representa-
tion of the overall spectral features (predominantly those of the white noise),
but the 100 Hz signal is lost. Figure 3.2 shows that the smoothing approach is
a good spectral estimator in the sense that it provides a better estimate of the
dominant noise component, but it is not a good signal detector.

The classical procedures for spectral estimation are described in this chap-
ter with particular regard to their strengths and weaknesses. These methods can
be easily implemented in MATLAB as described in the following section. Mod-
ern methods for spectral estimation are covered in Chapter 5.

THE FOURIER TRANSFORM: FOURIER SERIES ANALYSIS

Periodic Functions

Of the many techniques currently in vogue for spectral estimation, the classical
Fourier transform (FT) method is the most straightforward. The Fourier trans-
form approach takes advantage of the fact that sinusoids contain energy at only
one frequency. If a waveform can be broken down into a series of sines or co-
sines of different frequencies, the amplitude of these sinusoids must be propor-
tional to the frequency component contained in the waveform at those frequencies.

From Fourier series analysis, we know that any periodic waveform can be
represented by a series of sinusoids that are at the same frequency as, or multi-
ples of, the waveform frequency. This family of sinusoids can be expressed
either as sines and cosines, each of appropriate amplitude, or as a single sine
wave of appropriate amplitude and phase angle. Consider the case where sines
and cosines are used to represent the frequency components: to find the appro-
priate amplitude of these components it is only necessary to correlate (i.e., mul-
tiply) the waveform with the sine and cosine family, and average (i.e., integrate)
over the complete waveform (or one period if the waveform is periodic). Ex-
pressed as an equation, this procedure becomes:

a(m) = 1
T
∫

T

0
x(t) cos(2πmfT t) dt (1)

b(m) = 1
T
∫

T

0
x(t) sin(2πmfT t) dt (2)

where T is the period or time length of the waveform, fT = 1/T, and m is set of
integers, possibly infinite: m = 1, 2, 3, . . . , defining the family member. This
gives rise to a family of sines and cosines having harmonically related frequen-
cies, mfT.

In terms of the general transform discussed in Chapter 2, the Fourier series
analysis uses a probing function in which the family consists of harmonically

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

related sinusoids. The sines and cosines in this family have valid frequencies
only at values of m/T, which is either the same frequency as the waveform
(when m = 1) or higher multiples (when m > 1) that are termed harmonics.
Since this approach represents waveforms by harmonically related sinusoids,
the approach is sometimes referred to as harmonic decomposition. For periodic
functions, the Fourier transform and Fourier series constitute a bilateral trans-
form: the Fourier transform can be applied to a waveform to get the sinusoidal
components and the Fourier series sine and cosine components can be summed
to reconstruct the original waveform:

x(t) = a(0)/2 + ∑
∞

m=0

a(k) cos(2πmfT t) + ∑
∞

m=0

b(k) sin (2πmfT t) (3)

Note that for most real waveforms, the number of sine and cosine compo-
nents that have significant amplitudes is limited, so that a finite, sometimes
fairly short, summation can be quite accurate. Figure 3.3 shows the construction

FIGURE 3.3 Two periodic functions and their approximations constructed from a
limited series of sinusoids. Upper graphs: A square wave is approximated by a
series of 3 and 6 sine waves. Lower graphs: A triangle wave is approximated by
a series of 3 and 6 cosine waves.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

of a square wave (upper graphs) and a triangle wave (lower graphs) using Eq.
(3) and a series consisting of only 3 (left side) or 6 (right side) sine waves. The
reconstructions are fairly accurate even when using only 3 sine waves, particu-
larly for the triangular wave.

Spectral information is usually presented as a frequency plot, a plot of
sine and cosine amplitude vs. component number, or the equivalent frequency.
To convert from component number, m, to frequency, f, note that f = m/T, where
T is the period of the fundamental. (In digitized signals, the sampling frequency
can also be used to determine the spectral frequency). Rather than plot sine and
cosine amplitudes, it is more intuitive to plot the amplitude and phase angle of
a sinusoidal wave using the rectangular-to-polar transformation:

a cos(x) + b sin(x) = C sin(x + Θ) (4)

where C = (a2 + b2)1/2 and Θ = tan−1(b/a).
Figure 3.4 shows a periodic triangle wave (sometimes referred to as a

sawtooth), and the resultant frequency plot of the magnitude of the first 10
components. Note that the magnitude of the sinusoidal component becomes
quite small after the first 2 components. This explains why the triangle function
can be so accurately represented by only 3 sine waves, as shown in Figure 3.3.

FIGURE 3.4 A triangle or sawtooth wave (left) and the first 10 terms of its Fourier
series (right). Note that the terms become quite small after the second term.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Symmetry

Some waveforms are symmetrical or anti-symmetrical about t = 0, so that one
or the other of the components, a(k) or b(k) in Eq. (3), will be zero. Specifically,
if the waveform has mirror symmetry about t = 0, that is, x(t) = x(−t), than mul-
tiplications by a sine functions will be zero irrespective of the frequency, and
this will cause all b(k) terms to be zeros. Such mirror symmetry functions are
termed even functions. Similarly, if the function has anti-symmetry, x(t) = −x(t),
a so-called odd function, then all multiplications with cosines of any frequency
will be zero, causing all a(k) coefficients to be zero. Finally, functions that have
half-wave symmetry will have no even coefficients, and both a(k) and b(k) will
be zero for even m. These are functions where the second half of the period
looks like the first half flipped left to right; i.e., x(t) = x(T − t). Functions having
half-wave symmetry can also be either odd or even functions. These symmetries
are useful for reducing the complexity of solving for the coefficients when such
computations are done manually. Even when the Fourier transform is done on
a computer (which is usually the case), these properties can be used to check
the correctness of a program’s output. Table 3.1 summarizes these properties.

Discrete Time Fourier Analysis

The discrete-time Fourier series analysis is an extension of the continuous analy-
sis procedure described above, but modified by two operations: sampling and
windowing. The influence of sampling on the frequency spectra has been cov-
ered in Chapter 2. Briefly, the sampling process makes the spectra repetitive at
frequencies mfT (m = 1,2,3, . . .), and symmetrically reflected about these fre-
quencies (see Figure 2.9). Hence the discrete Fourier series of any waveform is
theoretically infinite, but since it is periodic and symmetric about fs /2, all of the
information is contained in the frequency range of 0 to fs /2 (fs /2 is the Nyquist
frequency). This follows from the sampling theorem and the fact that the origi-
nal analog waveform must be bandlimited so that its highest frequency, fMAX,
is <fs /2 if the digitized data is to be an accurate representation of the analog
waveform.

TABLE 3.1 Function Symmetries

Function Name Symmetry Coefficient Values

Even x(t) = x(−t) b(k) = 0
Odd x(t) = −x(−t) a(k) = 0
Half-wave x(t) = x(T−t) a(k) = b(k) = 0; for m even

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The digitized waveform must necessarily be truncated at least to the length
of the memory storage array, a process described as windowing. The windowing
process can be thought of as multiplying the data by some window shape (see
Figure 2.4). If the waveform is simply truncated and no further shaping is per-
formed on the resultant digitized waveform (as is often the case), then the win-
dow shape is rectangular by default. Other shapes can be imposed on the data
by multiplying the digitized waveform by the desired shape. The influence of
such windowing processes is described in a separate section below.

The equations for computing Fourier series analysis of digitized data are
the same as for continuous data except the integration is replaced by summation.
Usually these equations are presented using complex variables notation so that
both the sine and cosine terms can be represented by a single exponential term
using Euler’s identity:

e
jx = cos x + j sin x (5)

(Note mathematicians use i to represent √−1 while engineers use j; i is reserved
for current.) Using complex notation, the equation for the discrete Fourier trans-
form becomes:

X(m) = ∑
N−1

n=0

x(n)e(−j2πmn/N) (6)

where N is the total number of points and m indicates the family member, i.e.,
the harmonic number. This number must now be allowed to be both positive
and negative when used in complex notation: m = −N /2, . . . , N /2–1. Note the
similarity of Eq. (6) with Eq. (8) of Chapter 2, the general transform in discrete
form. In Eq. (6), fm(n) is replaced by e−j2πmn/N. The inverse Fourier transform can
be calculated as:

x(n) =
1

N
∑
N−1

n=0

X(m) e−j2πnfmTs (7)

Applying the rectangular-to-polar transformation described in Eq. (4), it
is also apparent *X(m)* gives the magnitude for the sinusoidal representation of
the Fourier series while the angle of X(m) gives the phase angle for this repre-
sentation, since X(m) can also be written as:

X(m) = ∑
N−1

n=0

x(n) cos(2πmn/N) − j ∑
N−1

n=0

x(n) sin(2πmn/N) (8)

As mentioned above, for computational reasons, X(m) must be allowed to
have both positive and negative values for m; negative values imply negative
frequencies, but these are only a computational necessity and have no physical
meaning. In some versions of the Fourier series equations shown above, Eq. (6)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

is multiplied by Ts (the sampling time) while Eq. (7) is divided by Ts so that the
sampling interval is incorporated explicitly into the Fourier series coefficients.
Other methods of scaling these equations can be found in the literature.

The discrete Fourier transform produces a function of m. To convert this
to frequency note that:

fm = mf1 = m/TP = m/NTs = mfs /N (9)

where f1 ≡ fT is the fundamental frequency, Ts is the sample interval; fs is the
sample frequency; N is the number of points in the waveform; and TP = NTs is
the period of the waveform. Substituting m = fmTs into Eq. (6), the equation for
the discrete Fourier transform (Eq. (6)) can also be written as:

X(f) = ∑
N−1

n=0

x(n) e(−j2πnfmTs) (10)

which may be more useful in manual calculations.
If the waveform of interest is truly periodic, then the approach described

above produces an accurate spectrum of the waveform. In this case, such analy-
sis should properly be termed Fourier series analysis, but is usually termed
Fourier transform analysis. This latter term more appropriately applies to aperi-
odic or truncated waveforms. The algorithms used in all cases are the same, so
the term Fourier transform is commonly applied to all spectral analyses based
on decomposing a waveform into sinusoids.

Originally, the Fourier transform or Fourier series analysis was imple-
mented by direct application of the above equations, usually using the complex
formulation. Currently, the Fourier transform is implemented by a more compu-
tationally efficient algorithm, the fast Fourier transform (FFT), that cuts the
number of computations from N 2 to 2 log N, where N is the length of the digital
data.

Aperiodic Functions

If the function is not periodic, it can still be accurately decomposed into sinu-
soids if it is aperiodic; that is, it exists only for a well-defined period of time,
and that time period is fully represented by the digitized waveform. The only
difference is that, theoretically, the sinusoidal components can exist at all fre-
quencies, not just multiple frequencies or harmonics. The analysis procedure is
the same as for a periodic function, except that the frequencies obtained are
really only samples along a continuous frequency spectrum. Figure 3.5 shows
the frequency spectrum of a periodic triangle wave for three different periods.
Note that as the period gets longer, approaching an aperiodic function, the spec-
tral shape does not change, but the points get closer together. This is reasonable

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 3.5 A periodic waveform having three different periods: 2, 2.5, and 8
sec. As the period gets longer, the shape of the frequency spectrum stays the
same but the points get closer together.

since the space between the points is inversely related to the period (m/T).* In
the limit, as the period becomes infinite and the function becomes truly aperi-
odic, the points become infinitely close and the curve becomes continuous. The
analysis of waveforms that are not periodic and that cannot be completely repre-
sented by the digitized data is described below.

*The trick of adding zeros to a waveform to make it appear to a have a longer period (and, therefore,
more points in the frequency spectrum) is another example of zero padding.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Frequency Resolution

From the discrete Fourier series equation above (Eq. (6)), the number of points
produced by the operation is N, the number of points in the data set. However,
since the spectrum produced is symmetrical about the midpoint, N/2 (or fs /2 in
frequency), only half the points contain unique information.* If the sampling
time is Ts, then each point in the spectra represents a frequency increment of
1/(NTs). As a rough approximation, the frequency resolution of the spectra will
be the same as the frequency spacing, 1/(NTs). In the next section we show that
frequency resolution is also influenced by the type of windowing that is applied
to the data.

As shown in Figure 3.5, frequency spacing of the spectrum produced by
the Fourier transform can be decreased by increasing the length of the data, N.
Increasing the sample interval, Ts, should also improve the frequency resolution,
but since that means a decrease in fs, the maximum frequency in the spectra,
fs /2 is reduced limiting the spectral range. One simple way of increasing N even
after the waveform has been sampled is to use zero padding, as was done in
Figure 3.5. Zero padding is legitimate because the undigitized portion of the
waveform is always assumed to be zero (whether true or not). Under this as-
sumption, zero padding simply adds more of the unsampled waveform. The
zero-padded waveform appears to have improved resolution because the fre-
quency interval is smaller. In fact, zero padding does not enhance the underlying
resolution of the transform since the number of points that actually provide
information remains the same; however, zero padding does provide an interpo-
lated transform with a smoother appearance. In addition, it may remove ambigu-
ities encountered in practice when a narrowband signal has a center frequency
that lies between the 1/NTs frequency evaluation points (compare the upper two
spectra in Figure 3.5). Finally, zero padding, by providing interpolation, can
make it easier to estimate the frequency of peaks in the spectra.

Truncated Fourier Analysis: Data Windowing

More often, a waveform is neither periodic or aperiodic, but a segment of a
much longer—possibly infinite—time series. Biomedical engineering examples
are found in EEG and ECG analysis where the waveforms being analyzed con-
tinue over the lifetime of the subject. Obviously, only a portion of such wave-
forms can be represented in the finite memory of the computer, and some atten-
tion must be paid to how the waveform is truncated. Often a segment is simply

*Recall that the Fourier transform contains magnitude and phase information. There are N/2 unique
magnitude data points and N/2 unique phase data points, so the same number of actual data points
is required to fully represent the data. Both magnitude and phase data are required to reconstruct
the original time function, but we are often only interested in magnitude data for analysis.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

cut out from the overall waveform; that is, a portion of the waveform is trun-
cated and stored, without modification, in the computer. This is equivalent to the
application of a rectangular window to the overall waveform, and the analysis is
restricted to the windowed portion of the waveform. The window function for a
rectangular window is simply 1.0 over the length of the window, and 0.0 else-
where, (Figure 3.6, left side). Windowing has some similarities to the sampling
process described previously and has well-defined consequences on the resultant
frequency spectrum. Window shapes other than rectangular are possible simply
by multiplying the waveform by the desired shape (sometimes these shapes are
referred to as tapering functions). Again, points outside the window are assumed
to be zero even if it is not true.

When a data set is windowed, which is essential if the data set is larger
than the memory storage, then the frequency characteristics of the window be-
come part of the spectral result. In this regard, all windows produce artifact. An
idea of the artifact produced by a given window can be obtained by taking the
Fourier transform of the window itself. Figure 3.6 shows a rectangular window
on the left side and its spectrum on the right. Again, the absence of a window
function is, by default, a rectangular window. The rectangular window, and in
fact all windows, produces two types of artifact. The actual spectrum is widened
by an artifact termed the mainlobe, and additional peaks are generated termed

FIGURE 3.6 The time function of a rectangular window (left) and its frequency
characteristics (right).

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

the sidelobes. Most alternatives to the rectangular window reduce the sidelobes
(they decay away more quickly than those of Figure 3.6), but at the cost of wider
mainlobes. Figures 3.7 and 3.8 show the shape and frequency spectra produced
by two popular windows: the triangular window and the raised cosine or Ham-
ming window. The algorithms for these windows are straightforward:

Triangular window:
for odd n:

w(k) = �2k/(n − 1)
2(n − k − 1)/(n + 1)

1 ≤ k ≤ (n + 1)/2
(n + 1)/2 ≤ k ≤ n

(11)

for even n:

w(k) = �(2k − 1)/n
2(n − k + 1)/n

1 ≤ k ≤ n/2
(n/2) + 1 ≤ k ≤ n

(12)

Hamming window:

w(k + 1) = 0.54 − 0.46(2πk/(n − 1))k = 0, 1, . . . , n − 1 (13)

FIGURE 3.7 The triangular window in the time domain (left) and its spectral char-
acteristic (right). The sidelobes diminish faster than those of the rectangular win-
dow (Figure 3.6), but the mainlobe is wider.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 3.8 The Hamming window in the time domain (left) and its spectral char-
acteristic (right).

These and several others are easily implemented in MATLAB, especially
with the Signal Processing Toolbox as described in the next section. A MATLAB
routine is also described to plot the spectral characteristics of these and other
windows. Selecting the appropriate window, like so many other aspects of signal
analysis, depends on what spectral features are of interest. If the task is to
resolve two narrowband signals closely spaced in frequency, then a window
with the narrowest mainlobe (the rectangular window) is preferred. If there is a
strong and a weak signal spaced a moderate distance apart, then a window with
rapidly decaying sidelobes is preferred to prevent the sidelobes of the strong
signal from overpowering the weak signal. If there are two moderate strength
signals, one close and the other more distant from a weak signal, then a compro-
mise window with a moderately narrow mainlobe and a moderate decay in side-
lobes could be the best choice. Often the most appropriate window is selected
by trial and error.

Power Spectrum

The power spectrum is commonly defined as the Fourier transform of the auto-
correlation function. In continuous and discrete notation, the power spectrum
equation becomes:

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

PS(f) = ∫
T

0

rxx(τ) e−2πf Tτ dτ

PS(f) = ∑
N−1

n=0

rxx(n) e−j2πnf TTs (14)

where rxx(n) is the autocorrelation function described in Chapter 2. Since the
autocorrelation function has odd symmetry, the sine terms, b(k) will all be zero
(see Table 3.1) and Eq. (14) can be simplified to include only real cosine terms.

PS(f) = ∫
T

0

rxx(τ) cos(2πmfT t) dτ

PS(f) = ∑
N−1

n=0

rxx(n) cos(2πnfTTs) (15)

These equations in continuous and discrete form are sometimes referred
to as the cosine transform. This approach to evaluating the power spectrum has
lost favor to the so-called direct approach, given by Eq. (18) below, primarily
because of the efficiency of the fast Fourier transform. However, a variation of
this approach is used in certain time–frequency methods described in Chapter
6. One of the problems compares the power spectrum obtained using the direct
approach of Eq. (18) with the traditional method represented by Eq. (14).

The direct approach is motivated by the fact that the energy contained in
an analog signal, x(t), is related to the magnitude of the signal squared, inte-
grated over time:

E = ∫
∞

−∞

*x(t)*2 dt (16)

By an extension of Parseval’s theorem it is easy to show that:

∫
∞

−∞ *x(t)*2 dt = ∫
∞

−∞ *X(f)*2 df (17)

Hence *X(f)*2 equals the energy density function over frequency, also re-
ferred to as the energy spectral density, the power spectral density, or simply
the power spectrum. In the direct approach, the power spectrum is calculated as
the magnitude squared of the Fourier transform of the waveform of interest:

PS(f) = *X(f)*2 (18)

Power spectral analysis is commonly applied to truncated data, particu-
larly when the data contains some noise, since phase information is less useful
in such situations.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

While the power spectrum can be evaluated by applying the FFT to the
entire waveform, averaging is often used, particularly when the available wave-
form is only a sample of a longer signal. In such very common situations, power
spectrum evaluation is necessarily an estimation process, and averaging im-
proves the statistical properties of the result. When the power spectrum is based
on a direct application of the Fourier transform followed by averaging, it is com-
monly referred to as an average periodogram. As with the Fourier transform,
evaluation of power spectra involves necessary trade-offs to produce statistically
reliable spectral estimates that also have high resolution. These trade-offs are
implemented through the selection of the data window and the averaging strat-
egy. In practice, the selection of data window and averaging strategy is usually
based on experimentation with the actual data.

Considerations regarding data windowing have already been described and
apply similarly to power spectral analysis. Averaging is usually achieved by
dividing the waveform into a number of segments, possibly overlapping, and
evaluating the Fourier transform on each of these segments (Figure 3.9). The
final spectrum is taken from an average of the Fourier transforms obtained from
the various segments. Segmentation necessarily reduces the number of data sam-

FIGURE 3.9 A waveform is divided into three segments with a 50% overlap be-
tween each segment. In the Welch method of spectral analysis, the Fourier trans-
form of each segment would be computed separately, and an average of the
three transforms would provide the output.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ples evaluated by the Fourier transform in each segment. As mentioned above,
frequency resolution of a spectrum is approximately equal to 1/NTs, where N is
now the number samples per segment. Choosing a short segment length (a small
N) will provide more segments for averaging and improve the reliability of the
spectral estimate, but it will also decrease frequency resolution. Figure 3.2
shows spectra obtained from a 1024-point data array consisting of a 100 Hz
sinusoid and white noise. In Figure 3.2A, the periodogram is taken from the
entire waveform, while in Figure 3.2B the waveform is divided into 32 non-
overlapping segments; a Fourier transform is calculated from each segment, then
averaged. The periodogram produced from the segmented and averaged data is
much smoother, but the loss in frequency resolution is apparent as the 100 Hz
sine wave is no longer visible.

One of the most popular procedures to evaluate the average periodogram
is attributed to Welch and is a modification of the segmentation scheme origi-
nally developed by Bartlett. In this approach, overlapping segments are used,
and a window is applied to each segment. By overlapping segments, more seg-
ments can be averaged for a given segment and data length. Averaged periodo-
grams obtained from noisy data traditionally average spectra from half-overlap-
ping segments; that is, segments that overlap by 50%. Higher amounts of overlap
have been recommended in other applications, and, when computing time is
not factor, maximum overlap has been recommended. Maximum overlap means
shifting over by just a single sample to get the new segment. Examples of this
approach are provided in the next section on implementation.

The use of data windowing for sidelobe control is not as important when
the spectra are expected to be relatively flat. In fact, some studies claim that
data windows give some data samples more importance than others and serve
only to decrease frequency resolution without a significant reduction in estima-
tion error. While these claims may be true for periodograms produced using all
the data (i.e., no averaging), they are not true for the Welch periodograms be-
cause overlapping segments serves to equalize data treatment and the increased
number of segments decreases estimation errors. In addition, windows should
be applied whenever the spectra are expected have large amplitude differences.

MATLAB IMPLEMENTATION

Direct FFT and Windowing

MATLAB provides a variety of methods for calculating spectra, particularly if
the Signal Processing Toolbox is available. The basic Fourier transform routine
is implemented as:

X = fft(x,n)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

where X is the input waveform and x is a complex vector providing the sinusoi-
dal coefficients. The argument n is optional and is used to modify the length of
data analyzed: if n < length(x), then the analysis is performed over the first
n points; or, if n > length(x), x is padded with trailing zeros to equal n. The
fft routine implements Eq. (6) above and employs a high-speed algorithm.
Calculation time is highly dependent on data length and is fastest if the data
length is a power of two, or if the length has many prime factors. For example,
on one machine a 4096-point FFT takes 2.1 seconds, but requires 7 seconds if
the sequence is 4095 points long, and 58 seconds if the sequence is for 4097
points. If at all possible, it is best to stick with data lengths that are powers of
two.

The magnitude of the frequency spectra can be easily obtained by apply-
ing the absolute value function, abs, to the complex output X:

Magnitude = abs(X)

This MATLAB function simply takes the square root of the sum of the real part
of X squared and the imaginary part of X squared. The phase angle of the spectra
can be obtained by application of the MATLAB angle function:

Phase = angle(X)

The angle function takes the arctangent of the imaginary part divided by
the real part of Y. The magnitude and phase of the spectrum can then be plotted
using standard MATLAB plotting routines. An example applying the MATLAB
fft to a array containing sinusoids and white noise is provided below and the
resultant spectra is given in Figure 3.10. Other applications are explored in the
problem set at the end of this chapter. This example uses a special routine,
sig_noise, found on the disk. The routine generates data consisting of sinu-
soids and noise that are useful in evaluating spectral analysis algorithms. The
calling structure for sig_noise is:

[x,t] = sig_noise([f],[SNR],N);

where f specifies the frequency of the sinusoid(s) in Hz, SNR specifies the de-
sired noise associated with the sinusoid(s) in db, and N is the number of points.
The routine assumes a sample frequency of 1 kHz. If f and SNR are vectors,
multiple sinusoids are generated. The output waveform is in x and t is a time
vector useful in plotting.

Example 3.1 Plot the power spectrum of a waveform consisting of a
single sine wave and white noise with an SNR of −7 db.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 3.10 Plot produced by the MATLAB program above. The peak at 250
Hz is apparent. The sampling frequency of this data is 1 kHz, hence the spectrum
is symmetric about the Nyquist frequency, fs/2 (500 Hz). Normally only the first
half of this spectrum would be plotted (SNR = −7 db; N = 1024).

% Example 3.1 and Figure 3.10 Determine the power spectrum
% of a noisy waveform
% First generates a waveform consisting of a single sine in
% noise, then calculates the power spectrum from the FFT
% and plots
clear all; close all;
N = 1024; % Number of data points
% Generate data using sig_noise
% 250 Hz sin plus white noise; N data points ; SNR = -7 db
[x,t] = sig_noise (250,-7,N);
fs = 1000; % The sample frequency of data

% is 1 kHz.
Y = fft(x); % Calculate FFT
PS = abs(Y).v2; % Calculate PS as magnitude

% squared

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

freq = (1:N)/fs; % Frequency vector for plot-
ting

plot(freq,20*log10(PS),’k’); % Plot PS in log scale
title(’Power Spectrum (note symmetric about fs/2)’);
xlabel(’Frequency (Hz)’);
ylabel(’Power Spectrum (db)’);

The Welch Method for Power Spectral
Density Determination

As described above, the Welch method for evaluating the power spectrum di-
vides the data in several segments, possibly overlapping, performs an FFT on
each segment, computes the magnitude squared (i.e., power spectrum), then
averages these spectra. Coding these in MATLAB is straightforward, but this is
unnecessary as the Signal Processing Toolbox features a function that performs
these operations. In its more general form, the pwelch* function is called as:

[PS,f] = pwelch(x,window,noverlap,nfft,fs)

Only the first input argument, the name of the data vector, is required as
the other arguments have default values. By default, x is divided into eight
sections with 50% overlap, each section is windowed with a Hamming window
and eight periodograms are computed and averaged. If window is an integer, it
specifies the segment length, and a Hamming window of that length is applied
to each segment. If window is a vector, then it is assumed to contain the window
function (easily implemented using the window routines described below). In
this situation, the window size will be equal to the length of the vector, usually
set to be the same as nfft. If the window length is specified to be less than
nfft (greater is not allowed), then the window is zero padded to have a length
equal to nfft. The argument noverlap specifies the overlap in samples. The
sampling frequency is specified by the optional argument fs and is used to fill
the frequency vector, f, in the output with appropriate values. This output vari-
able can be used in plotting to obtain a correctly scaled frequency axis (see
Example 3.2). As is always the case in MATLAB, any variable can be omitted,
and the default selected by entering an empty vector, [].

If pwelch is called with no output arguments, the default is to plot the
power spectral estimate in dB per unit frequency in the current figure window.
If PS is specified, then it contains the power spectra. PS is only half the length
of the data vector, x, specifically, either (nfft/2)�1 if nfft is even, or
(nfft�1)/2 for nfft odd, since the additional points would be redundant. (An

*The calling structure for this function is different in MATLAB versions less than 6.1. Use the
‘Help’ command to determine the calling structure if you are using an older version of MATLAB.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

exception is made if x is complex data in which case the length of PS is equal
to nfft.) Other options are available and can be found in the help file for pwelch.

Example 3.2 Apply Welch’s method to the sine plus noise data used in
Example 3.1. Use 124-point data segments and a 50% overlap.

% Example 3.2 and Figure 3.11
% Apply Welch’s method to sin plus noise data of Figure 3.10
clear all; close all;
N = 1024; % Number of data points
fs = 1000; % Sampling frequency (1 kHz)

FIGURE 3.11 The application of the Welch power spectral method to data con-
taining a single sine wave plus noise, the same as the one used to produce
the spectrum of Figure 3.10. The segment length was 128 points and segments
overlapped by 50%. A triangular window was applied. The improvement in the
background spectra is obvious, although the 250 Hz peak is now broader.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Generate data (250 Hz sin plus noise)
[x,t,] = sig_noise(250,-7,N);
%
% Estimate the Welch spectrum using 128 point segments,
% a the triangular filter, and a 50% overlap.
%
[PS,f] = (x, triang(128),[],128,fs);
plot(f,PS,’k’); % Plot power spectrum
title(’Power Spectrum (Welch Method)’);
xlabel(’Frequency (Hz)’);
ylabel(’Power Spectrum’);

Comparing the spectra in Figure 3.11 with that of Figure 3.10 shows that
the background noise is considerably smoother and reduced. The sine wave at
250 Hz is clearly seen, but the peak is now slightly broader indicating a loss in
frequency resolution.

Window Functions

MATLAB has a number of data windows available including those de-
scribed in Eqs. (11–13). The relevant MATLAB routine generates an n-point
vector array containing the appropriate window shape. All have the same
form:

w = window_name(N); % Generate vector w of length N
% containing the window function
% of the associated name

where N is the number of points in the output vector and window_name is the
name, or an abbreviation of the name, of the desired window. At this writing,
thirteen different windows are available in addition to rectangular (rectwin)

which is included for completeness. Using help window will provide a list of
window names. A few of the more popular windows are: bartlett, blackman,
gausswin, hamming (a common MATLAB default window), hann, kaiser, and
triang. A few of the routines have additional optional arguments. In particu-
lar, chebwin (Chebyshev window), which features a nondecaying, constant
level of sidelobes, has a second argument to specify the sidelobe amplitude. Of
course, the smaller this level is set, the wider the mainlobe, and the poorer the
frequency resolution. Details for any given window can be found through the
help command. In addition to the individual functions, all of the window func-
tions can be constructed with one call:

w = window(@name,N,opt) % Get N-point window ‘name.’

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

where name is the name of the specific window function (preceded by @), N the
number of points desired, and opt possible optional argument(s) required by
some specific windows.

To apply a window to the Fourier series analysis such as in Example
2.1, simply point-by-point multiply the digitized waveform by the output of the
MATLAB window_name routine before calling the FFT routine. For example:

w = triang (N); % Get N-point triangular window curve
x = x .* w’; % Multiply (point-by-point) data by window
X = fft(x); % Calculate FFT

Note that in the example above it was necessary to transpose the window
function W so that it was in the same format as the data. The window function
produces a row vector.

Figure 3.12 shows two spectra obtained from a data set consisting of two
sine waves closely spaced in frequency (235 Hz and 250 Hz) with added white
noise in a 256 point array sampled at 1 kHz. Both spectra used the Welch
method with the same parameters except for the windowing. (The window func-

FIGURE 3.12 Two spectra computed for a waveform consisting of two closely
spaced sine waves (235 and 250 Hz) in noise (SNR = −10 db). Welch’s method
was used for both methods with the same parameters (nfft = 128, overlap = 64)
except for the window functions.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

tion can be embedded in the pwelch calling structure.) The upper spectrum was
obtained using a Hamming window (hamming) which has large sidelobes, but a
fairly narrow mainlobe while the lower spectrum used a Chebyshev window
(chebwin) which has small sidelobes but a larger mainlobe.

A small difference is seen in the ability to resolve the two peaks. The
Hamming window with a smaller main lobe gives rise to a spectrum that shows
two peaks while the presence of two peaks might be missed in the Chebyshev
windowed spectrum.

PROBLEMS

1. (A) Construct two arrays of white noise: one 128 points in length and the
other 1024 points in length. Take the FT of both. Does increasing the length
improve the spectral estimate of white noise?

(B) Apply the Welch methods to the longer noise array using a Hanning window
with an nfft of 128 with no overlap. Does this approach improve the spectral
estimate? Now change the overlap to 64 and note any changes in the spectrum.
Submit all frequency plots appropriately labeled.

2. Find the power spectrum of the filtered noise data from Problem 3 in Chap-
ter 2 using the standard FFT. Show frequency plots appropriately labeled. Scale,
or rescale, the frequency axis to adequately show the frequency response of this
filter.

3. Find the power spectrum of the filtered noise data in Problem 2 above using
the FFT, but zero pad the data so that N = 2048. Note the visual improvement
in resolution.

4. Repeat Problem 2 above using the data from Problem 6 in Chapter 2.
Applying the Hamming widow to the data before calculating the FFT.

5. Repeat problem 4 above using the Welch method with 256 and 65 segment
lengths and the window of your choice.

6. Repeat Problem 4 above using the data from Problem 7, Chapter 2.

7. Use routine sig_noise noise to generate a 256-point array that contains
two closely spaced sinusoids at 140 and 180 Hz both with an SNR of -10 db.
(Calling structure: data = sig_noise([140 180], [-10 -10], 256);)

Sig_noise assumes a sampling rate of 1 kHz. Use the Welch method. Find the
spectrum of the waveform for segment lengths of 256 (no overlap) and 64 points
with 0%, 50% and 99% overlap.

8. Use sig_noise to generate a 512-point array that contains a single sinusoid
at 200 Hz with an SNR of -12 db. Find the power spectrum first by taking the

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FFT of the autocorrelation function. Compare this power spectrum with the one
obtained using the direct method. Plot the two spectra side-by-side.

9. Using the data of Problem 7 above, find the power spectrum applying the
Welch method with 64-point segments, and no overlap. Using the Chebyshev
(chebwin), Kaiser (kaiser), and Gauss (gausswin) windows, find the best
window in terms of frequency separation. Submit frequency plots obtained using
the best and worse windows (in terms of separation). For the Chebyshev win-
dow use a ripple of 40 db, and for the Kaiser window use a beta of 0 (minimum
mainlobe option).

10. Use routine sig_noise to generate a 512-point array containing one sinus-
oid at 150 Hz and white noise; SNR = −15db. Generate the power spectrum as
the square of the magnitude obtained using the Fourier transform. Put the signal
generator commands and spectral analysis commands in a loop and calculate
the spectrum five times plotting the five spectra superimposed. Repeat using the
Welch method and data segment length of 128 and a 90% overlap.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

4

Digital Filters

Filters are closely related to spectral analysis since the goal of filtering is to
reshape the spectrum to one’s advantage. Most noise is broadband (the broadest-
band noise being white noise with a flat spectrum) and most signals are narrow-
band; hence, filters that appropriately reshape a waveform’s spectrum will al-
most always provide some improvement in SNR. As a general concept, a basic
filter can be viewed as a linear process in which the input signal’s spectrum is
reshaped in some well-defined (and, one hopes, beneficial) manner. Filters differ
in the way they achieve this spectral reshaping, and can be classified into two
groups based on their approach. These two groups are termed finite impulse
response (FIR) filters and infinite impulse response (IIR) filters, although this
terminology is based on characteristics which are secondary to the actual meth-
odology. We will describe these two approaches separately, clarifying the major
differences between them. As in preceding chapters, these descriptions will be
followed by a presentation of the MATLAB implementation.

THE Z-TRANSFORM

The frequency-based analysis introduced in the last chapter is a most useful tool
for analyzing systems or responses in which the waveforms are periodic or
aperiodic, but cannot be applied to transient responses of infinite length, such as
step functions, or systems with nonzero initial conditions. These shortcomings
motivated the development of the Laplace transform in the analog domain. La-
place analysis uses the complex variable s (s = σ + jω) as a representation of

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

complex frequency in place of jω in the Fourier transform. The Z-transform is
a digital operation analogous to the Laplace transform in the analog domain,
and it is used in a similar manner. The Z-transform is based around the complex
variable, z, where z is an arbitrary complex number, *z* e jω. This variable is also
termed the complex frequency, and as with its time domain counterpart, the
Laplace variable s, it is possible to substitute e jω for z to perform a strictly
sinusoidal analysis.*

The Z-transform follows the format of the general transform equation (Eq.
(7)) and is also similar to the Fourier transform equation (Eq. (6)):

X(z) �= Z[x(n)] = ∑
∞

n=−∞

x(n) Z−n (1)

where z = an arbitrary complex variable. Note that the probing function for this
transform is simply z−n. In any real application, the limit of the summation will
be finite, usually the length of x(n).

When identified with a data sequence, such as x(n) above, z−n represents
an interval shift of n samples, or an associated time shift of nTs seconds. Note
that Eq. (1) indicates that every data sample in the sequence x(n) is associated
with a unique power of z, and this power of z defines a sample’s position in the
sequence. This time shifting property of z−n can be formally stated as:

Z(x(n − k))] = z−k Z(x(n)) (2)

For example, the time shifting characteristic of the Z-transform can be
used to define a unit delay process, z−1. For such a process, the output is the
same as the input, but shifted (or delayed) by one data sample (Figure 4.1).

Digital Transfer Function

As in Laplace transform analysis, one of the most useful applications of the Z-
transform lies in its ability to define the digital equivalent of a transfer function.

FIGURE 4.1 A unit delay process shifts the input by one data sample. Other
powers of z could be used to provide larger shifts.

*If *z* is set to 1, then z = ejω. This is called evaluating z on the unit circle. See Bruce (2001) for
a thorough discussion of the properties of z and the Z-transform.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

By analogy to linear system analysis, the digital transfer function is defined as:

H(z) = Y(z)
X(z)

(3)

For the simple example of Figure 4.1, the digital transfer function would
be: H(z) = z−1. Of course, most transfer functions will be more complicated,
including polynomials of z in both the numerator and denominator, just as ana-
log transfer functions contain polynomials of s:

H(z) = b0 + b1z
−1 + b2z

−2 + ��� + bNz−N

1 + a1z
−1 + a2z

−2 + ��� + bDz−D
(4)

While H(z) has a structure similar to the Laplace domain transfer function H(s),
there is no simple relationship between them. For example, unlike analog sys-
tems, the order of the numerator, N, need not be less than, or equal to, the order
of the denominator, D, for stability. In fact, systems that have a denominator
order of 1 are more stable that those having higher order denominators.

From the digital transfer function, H(z), it is possible to determine the
output given any input. In the Z-transform domain this relationship is simply:

Y(z) = H(z) X(z) = X(z)
∑
N−1

k=0

b(k) z−n

∑
D−1

R=0

a(R) z−n
(5)

The input–output or difference equation analogous to the time domain
equation can be obtained from Eq. (5) by applying the time shift interpretation
to the term z−n :

y(n) = ∑
K

k=0

b(k) x(n − k) − ∑
L

R=0

a(R) y(n − R) (6)

This equation assumes that a(0) = 1 as specified in Eq. (4). We will find
that Eq. (6) is similar to the equation representing other linear processes such
as the ARMA model in Chapter 5 (Eq. (3), Chapter 5). This is appropriate as
the ARMA model is a linear digital process containing both denominator terms
and numerator terms.*

All basic digital filters can be interpreted as linear digital processes, and,
in fact, the term digital filter is often used interchangeably with digital systems
(Stearns and David, 1996). Filter design, then, is simply the determination of

*Borrowing from analog terminology, the terms poles is sometimes uses for denominator coeffi-
cients and zeros for numerator coefficients.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

the appropriate filter coefficients, a(n) and b(n), that provide the desired spectral
shaping. This design process can be aided by MATLAB routines that can gener-
ate the a(n) and b(n) coefficients of Eq. (6) given a desired frequency response.

If the frequency spectrum of H(z) is desired, it can be obtained from a
modification of Eq. (5) substituting z = e jω:

H(m) = Y(m)
X(m)

=
∑
N−1

n=0

b(n) e(−j2πmn/N)

∑
D−1

n=0

a(n) e(−j2πmn/N)
= fft(bn)

fft(an)
(7)

where fft indicates the Fourier transform. As with all Fourier transforms, fre-
quency can be obtained from the variable m by multiplying by fs/N or 1/(NTs).

MATLAB Implementation

Many MATLAB functions used in filter design and application can also be used
in digital transfer function analysis. The MATLAB routine filter described
below uses Eq. (6) to implement a digital filter, but can be used to implement
a linear process given the Z-transform transfer function (see Example 4.1). With
regard to implementation, note that if the a(R) coefficients in Eq. (6) are zero
(with the exception of a(0) = 1), Eq. (6) reduces to convolution (see Eq. (15)
in Chapter 2).

The function filter determines the output, y(n), to an input, x(n), for a
linear system with a digital transfer function as specified by the a and b coeffi-
cients. Essentially this function implements Eq. (6). The calling structure is:

y = filter(b,a,x)

where x is the input, y the output, and b and a are the coefficients of the transfer
function in Eq. (4).

Example 4.1 Find and plot the frequency spectrum and the impulse re-
sponse of a digital linear process having the digital transfer function:

H(z) = 0.2 + 0.5z−1

1 − 0.2z−1 + 0.8z−2

Solution: Find H(z) using MATLAB’s fft. Then construct an impulse func-
tion and determine the output using the MATLAB filter routine.

% Example 4.1 and Figures 4.2 and 4.3
% Plot the frequency characteristics and impulse response

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.2 Plot of frequency characteristic (magnitude and phase) of the digital
transfer function given above.

% of a linear digital system with the given digital
% transfer function
% Assume a sampling frequency of 1 kHz
%
close all; clear all;
fs = 1000; % Sampling frequency
N = 512; % Number of points
% Define a and b coefficients based on H(z)
a = [1−.2 .8]; % Denominator of transfer

% function
b = [.2 .5]; % Numerator of transfer function
%
% Plot the Frequency characteristic of H(z) using the fft
H = fft(b,N)./fft(a,N); % Compute H(f)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.3 Impulse response of the digital transfer function described above.
Both Figure 4.2 and Figure 4.3 were generated using the MATLAB code given in
Example 1.

Hm = 20*log10(abs(H)); % Get magnitude in db
Theta = (angle(H)) *2*pi; % and phase in deg.
f = (1:N/2) *fs/N; % Frequency vector for plotting
%
subplot(2,1,1);
plot(f,Hm(1:N/2),’k’); % Plot and label mag H(f)
xlabel (’Frequency (Hz)’); ylabel(’*H(z)* (db)’);
grid on; % Plot using grid lines

subplot(2,1,2);
plot(f,Theta(1:N/2),’k’); % Plot the phase

xlabel (’Frequency (Hz)’); ylabel(’Phase (deg)’);
grid on;
%
%
% Compute the Impulse Response
x = [1, zeros(1,N-1)]; % Generate an impulse function
y = filter(b,a,x); % Apply b and a to impulse using

% Eq. (6)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

figure; % New figure
t = (1:N)/fs;
plot(t(1:60),y(1:60),’k’); % Plot only the first 60 points

% for clarity
xlabel(’Time (sec)’); ylabel (’Impulse Response’);

The digital filters described in the rest of this chapter use a straightforward
application of these linear system concepts. The design and implementation of
digital filters is merely a question of determining the a(n) and b(n) coefficients
that produce linear processes with the desired frequency characteristics.

FINITE IMPULSE RESPONSE (FIR) FILTERS

FIR filters have transfer functions that have only numerator coefficients, i.e.,
H(z) = B(z). This leads to an impulse response that is finite, hence the name.
They have the advantage of always being stable and having linear phase shifts.
In addition, they have initial transients that are of finite durations and their
extension to 2-dimensional applications is straightforward. The downside of FIR
filters is that they are less efficient in terms of computer time and memory than
IIR filters. FIR filters are also referred to as nonrecursive because only the input
(not the output) is used in the filter algorithm (i.e., only the first term of Eq. (6)
is used).

A simple FIR filter was developed in the context of Problem 3 in Chapter
2. This filter was achieved taking three consecutive points in the input array and
averaging them together. The filter output was constructed by moving this three-
point average along the input waveform. For this reason, FIR filtering has also
been referred to as a moving average process. (This term is used for any process
that uses a moving set of multiplier weights, even if the operation does not
really produce an average.) In Problem 4 of Chapter 2, this filter was imple-
mented using a three weight filter, [1/3 1/3 1/3], which was convolved with the
input waveform to produce the filtered output. These three numbers are simply
the b(n) coefficients of a third-order, or three-weight, FIR filter. All FIR filters
are similar to this filter; the only difference between them is the number and
value of the coefficients.

The general equation for an FIR filter is a simplification of Eq. (6) and,
after changing the limits to conform with MATLAB notation, becomes:

y(k) = ∑
L

n=1

b(n) x(k − n) (8)

where b(n) is the coefficient function (also referred to as the weighting function)
of length L, x(n) is the input, and y(n) is the output. This is identical to the
convolution equation in Chapter 2 (Eq. (15)) with the impulse response, h(n),

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

replaced by the filter coefficients, b(n). Hence, FIR filters can be implemented
using either convolution or MATLAB’s filter routine. Eq. (8) indicates that
the filter coefficients (or weights) of an FIR filter are the same as the impulse
response of the filter. Since the frequency response of a process having an im-
pulse response h(n) is simply the Fourier transform of h(n), the frequency re-
sponse of an FIR filter having coefficients b(n) is just the Fourier transform of
b(n):

X(m) = ∑
N−1

n=0

b(n) e(−j2π mn/N) (9)

Eq. (9) is a special case of Eq. (5) when the denominator equals one. If
b(n) generally consists of a small number of elements, this equation can some-
times be determined manually as well as by computer.

The inverse operation, going from a desired frequency response to the
coefficient function, b(n), is known as filter design. Since the frequency re-
sponse is the Fourier transform of the filter coefficients, the coefficients can be
found from the inverse Fourier transform of the desired frequency response.
This design strategy is illustrated below in the design of a FIR lowpass filter
based on the spectrum of an ideal filter. This filter is referred to as a rectangular
window filter* since its spectrum is ideally a rectangular window.

FIR Filter Design

The ideal lowpass filter was first introduced in Chapter 1 as a rectangular win-
dow in the frequency domain (Figure 1.7). The inverse Fourier transform of a
rectangular window function is given in Eq. (25) in Chapter 2 and repeated here
with a minor variable change:

b(n) = sin[2πfcTs(n − L/2)]
π(n − L/2)

(10)

where fc is the cutoff frequency; Ts is the sample interval in seconds; and L is
the length of the filter. The argument, n − L/2, is used to make the coefficient
function symmetrical giving the filter linear phase characteristics. Linear phase
characteristics are a desirable feature not easily attainable with IIR filters. The
coefficient function, b(n), produced by Eq. (10), is shown for two values of fc

in Figure 4.4. Again, this function is the same as the impulse response. Unfortu-

*This filter is sometimes called a window filter, but the term rectangular window filter will be used
in this text so as not to confuse the filter with a window function as described in the last chapter.
This can be particularly confusing since, as we show later, rectangular window filters also use
window functions!

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.4 Symmetrical weighting function of a rectangular filter (Eq. (10) trun-
cated at 64 coefficients. The cutoff frequencies are given relative to the sampling
frequency, fs, as is often done in discussing digital filter frequencies. Left: Low-
pass filter with a cutoff frequency of 0.1fs /2 Hz. Right: Lowpass cutoff frequency
of 0.4fs /2 Hz.

nately this coefficient function must be infinitely long to produce the filter char-
acteristics of an ideal filter; truncating it will result in a lowpass filter that is
less than ideal. Figure 4.5 shows the frequency response, obtained by taking the
Fourier transform of the coefficients for two different lengths. This filter also
shows a couple of artifacts associated with finite length: an oscillation in the
frequency curve which increases in frequency when the coefficient function is
longer, and a peak in the passband which becomes narrower and higher when
the coefficient function is lengthened.

Since the artifacts seen in Figure 4.5 are due to truncation of an (ideally)
infinite function, we might expect that some of the window functions described
in Chapter 3 would help. In discussing window frequency characteristics in
Chapter 3, we noted that it is desirable to have a narrow mainlobe and rapidly
diminishing sidelobes, and that the various window functions were designed to
make different compromises between these two features. When applied to an
FIR weight function, the width of the mainlobe will influence the sharpness of
the transition band, and the sidelobe energy will influence the oscillations seen

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.5 Freuquency characteristics of an FIR filter based in a weighting func-
tion derived from Eq. (10). The weighting functions were abruptly truncated at 17
and 65 coefficients. The artifacts associated with this truncation are clearly seen.
The lowpass cutoff frequency is 100 Hz.

in Figure 4.5. Figure 4.6 shows the frequency characteristics that are produced
by the same coefficient function used in Figure 4.4 except that a Hamming
window has been applied to the filter weights. The artifacts are considerably
diminished by the Hamming window: the overshoot in the passband has disap-
peared and the oscillations are barely visible in the plot. As with the unwin-
dowed filter, there is a significant improvement in the sharpness of the transition
band for the filter when more coefficients are used.

The FIR filter coefficients for highpass, bandpass, and bandstop filters can
be derived in the same manner from equations generated by applying an inverse
FT to rectangular structures having the appropriate associated shape. These
equations have the same general form as Eq. (10) except they include additional
terms:

b(n) = sin[π(n − L/2)]
π(n − L/2)

− sin[2πfcTs(n − L/2)]
π(n − L/2)

Highpass (11)

b(n) = sin[2πfHT(n − L/2)]
π(n − L/2)

− sin[2πfLTs(n − L/2)]
π(n − L/2)

Bandpass (12)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.6 Frequency characteristics produced by an FIR filter identical to the
one used in Figure 4.5 except a Hamming function has been applied to the filter
coefficients. (See Example 1 for the MATLAB code.)

b(n) = sin[2πfLT(n − L/2)]
π(n − L/2)

+ sin[π(n − L/2)]
π(n − L/2)

− sin[2πfHTs(n − L/2)]
π(n − L/2)

Bandstop (13)

An FIR bandpass filter designed using Eq. (12) is shown in Figure 4.7 for
two different truncation lengths. Implementation of other FIR filter types is a
part of the problem set at the end of this chapter. A variety of FIR filters exist
that use strategies other than the rectangular window to construct the filter coef-
ficients, and some of these are explored in the section on MATLAB implemen-
tation. One FIR filter of particular interest is the filter used to construct the
derivative of a waveform since the derivative is often of interest in the analysis
of biosignals. The next section explores a popular filter for this operation.

Derivative Operation: The Two-Point Central
Difference Algorithm

The derivative is a common operation in signal processing and is particularly
useful in analyzing certain physiological signals. Digital differentiation is de-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.7 Frequency characteristics of an FIR Bandpass filter with a coefficient
function described by Eq. (12) in conjuction with the Blackman window function.
The low and high cutoff frequencies were 50 and 150 Hz. The filter function was
truncated at 33 and 129 coefficients. These figures were generated with code
similar to that in Example 4.2 below, except modified according to Eq. (12)

fined as ∆x/∆t and can be implemented by taking the difference between two
adjacent points, scaling by 1/Ts, and repeating this operation along the entire
waveform. In the context of the FIR filters described above, this is equiva-
lent to a two coefficient filter, [−1, +1]/Ts, and this is the approach taken by
MATLAB’s derv routine. The frequency characteristic of the derivative opera-
tion is a linear increase with frequency, Figure 4.8 (dashed line) so there is
considerable gain at the higher frequencies. Since the higher frequencies fre-
quently contain a greater percentage of noise, this operation tends to produce a
noisy derivative curve. Figure 4.9A shows a noisy physiological motor response
(vergence eye movements) and the derivative obtained using the derv function.
Figure 4.9B shows the same response and derivative when the derivative was
calculated using the two-point central difference algorithm. This algorithm acts

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.8 The frequency response of the two-point central difference algorithm
using two different values for the skip factor: (A) L = 1; (B) L = 4. The sample
time was 1 msec.

as a differentiator for the lower frequencies and as an integrator (or lowpass
filter) for higher frequencies.

The two-point central difference algorithm uses two coefficients of equal
but opposite value spaced L points apart, as defined by the input–output equa-
tion:

y(n) = x(n + L) − x(n − L)
2LTs

(14)

where L is the skip factor that influences the effective bandwidth as described
below, and Ts is the sample interval. The filter coefficients for the two-point
central difference algorithm would be:

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.9 A physiological motor response to a step input is shown in the upper
trace and its derivative is shown in the lower trace. (A) The derivative was calcu-
lated by taking the difference in adjacent points and scaling by the sample fre-
quency. (B) The derivative was computed using the two-point central difference
algorithm with a skip factor of 4. Derivative functions were scaled by 1/2 and re-
sponses were offset to improve viewing.

h(n) = �−0.5/L n = −L
0.5/L n = +L

0 n ≠ L
(15)

The frequency response of this filter algorithm can be determined by tak-
ing the Fourier transform of the filter coefficient function. Since this function
contains only two coefficients, the Fourier transform can be done either analyti-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

cally or using MATLAB’s fft routine. Both methods are presented in the exam-
ple below.

Example 4.2 Determine the frequency response of the two-point central
difference algorithm.
Analytical: Since the coefficient function is nonzero only for n = ± L, the Fou-
rier transform, after adjusting the summation limits for a symmetrical coefficient
function with positive and negative n, becomes:

X(k) = ∑
L

n=−L
b(n)e(−j2π kn/N) = 1

2Lts
e

(−j2π kL/N) − 1
2LTs

e
(−j2πk(−L)/N)

X(k) = e
(−j2πkL/N) − e(j2πkL/N)

2LTs
= jsin(2πkL/N)

LTs
(16)

where L is the skip factor and N is the number of samples in the waveform.
To put Eq. (16) in terms of frequency, note that f = m/(NTs); hence, m = fNTs.
Substituting:

X(f) = jsin(2πfLTs)
LTs = sin(2πfLTs)

LTs
(17)

Eq. (17) shows that *X(k)* is a sine function that goes to zero at f =
1/(LTs) or fs/L. Figure 4.8 shows the frequency characteristics of the two-point
central difference algorithm for two different skip factors, and the MATLAB
code used to calculate and plot the frequency plot is shown in Example 4.2. A
true derivative would have a linear change with frequency (specifically, a line
with a slope of 2πf) as shown by the dashed lines in Figure 4.8. The two-point
central difference curves approximate a true derivative for the lower frequencies,
but has the characteristic of a lowpass filter for higher frequencies. Increasing
the skip factor, L, has the effect of lowering the frequency range over which the
filter acts like a derivative operator as well as the lowpass filter range. Note that
for skip factors >1, the response curve repeats above f = 1/(LTs). Usually the
assumption is made that the signal does not contain frequencies in this range. If
this is not true, then these higher frequencies could be altered by the frequency
characteristics of this filter above 1/(LTs).

MATLAB Implementation

Since the FIR coefficient function is the same as the impulse response of the
filter process, design and application of these filters can be achieved using only
FFT and convolution. However, the MATLAB Signal Processing Toolbox has
a number of useful FIR filter design routines that greatly facilitate the design of
FIR filters, particularly if the desired frequency response is complicated. The

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

following two examples show the application use of FIR filters using only con-
volution and the FFT, followed by a discussion and examples of FIR filter
design using MATLAB’s Signal Processing Toolbox.

Example 4.2 Generate the coefficient function for the two-point central
difference derivative algorithm and plot the frequency response. This program
was used to generate the plots in Figure 4.8.

% Example 4.2 and Figure 4.8
% Program to determine the frequency response
% of the two point central difference algorithm for
% differentiation
%
clear all, close all;
Ts = .001 % Assume a Ts of 1 msec.
N = 1000; % Assume 1 sec of data; N =

% 1000
Ln = [1 3]; % Define two different skip

% factors
for i = 1:2 % Repeat for each skip factor
L = Ln(i);
bn = zeros((2*L)�1,1); %Set up b(n). Initialize to

% zero
bn(1,1) = -1/(2*L*Ts); % Put negative coefficient at

% b(1)
bn((2*L)�1,1) = 1/(2*L*Ts); % Put positive coefficient at

% b(2L�1)
H = abs(fft(bn,N)); % Cal. frequency response

% using FFT
subplot(1,2,i); % Plot the result
hold on;
plot(H(1:500),’k’); %Plot to fs/2
axis([0 500 0 max(H)�.2*max(H)]);
text(100,max(H),[’Skip Factor = ’,Num2str(L)]);
xlabel(’Frequency (Hz)’); ylabel(’H(f)’);

y = (1:500) * 2 * pi;
plot(y,’--k’); % Plot ideal derivative

% function
end

Note that the second to fourth lines of the for loop are used to build the
filter coefficients, b(n), for the given skip factor, L. The next line takes the
absolute value of the Fourier transform of this function. The coefficient function
is zero-padded out to 1000 points, both to improve the appearance of the result-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ing frequency response curve and to simulate the application of the filter to a
1000 point data array sampled at 1 kHz.

Example 4.3 Develop and apply an FIR bandpass filter to physiological
data. This example presents the construction and application of a narrowband
filter such as shown in Figure 4.10 (right side) using convolution. The data
are from a segment of an EEG signal in the PhysioNet data bank (http://www.
physionet.org). A spectrum analysis is first performed on both the data and the
filter to show the range of the filter’s operation with respect to the frequency
spectrum of the data. The standard FFT is used to analyze the data without
windowing or averaging. As shown in Figure 4.10, the bandpass filter transmits
most of the signal’s energy, attenuating only a portion of the low frequency and

FIGURE 4.10 Frequency spectrum of EEG data shown in Figure 4.11 obtained
using the FFT. Also shown is the frequency response of an FIR bandpass filter
constructed using Eq. (12). The MATLAB code that generated this figure is pre-
sented in Example 4.3.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

http://www.physionet.org
http://www.physionet.org

high frequency components. The result of applying this filter to the EEG signal
is shown in Figure 4.11.

% Example 4.3 and Figures 4.10 and 4.11
% Application of an FIR bandpass filter based
% on a rectangular window design as shown in Figure 4.7
%
close all; clear all;
N = 1000; % Number of data points
fs = 100; % Sample frequency
load sig_2; % Get data

FIGURE 4.11 A segment of unfiltered EEG data (upper trace) and the bandpass
filtered version (lower trace). A frequency response of the FIR bandpass filter is
given in Figure 4.10.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

wh = .3 * pi; % Set bandpass cutoff
% frequencies

wl = .1*pi;
L = 128; % Number of coeffients

% equals 128
for i = 1:L�1 % Generate bandpass

% coefficient function
n = i-L/2 ; % and make symmetrical
if n == 0
bn(i) = wh/pi-wl/pi;

else
bn(i) = (sin(wh*n))/(pi*n)-(sin(wl*n))/(pi*n) ;

% Filter impulse response
end

end
bn = bn .* blackman(L�1)’; % Apply Blackman window

% to filter coeffs.
H_data = abs(fft(data)); % Plot data spectrum for

% comparison
freq = (1:N/2)*fs/N; % Frequency vector for

% plotting
plot(freq,H_data(1:N/2),’k’); % Plot data FFT only to

% fs/2
hold on;
%
H = abs(fft(bn,N)); % Find the filter

% frequency response
H = H*1.2 * (max(H_data)/max(H)); % Scale filter H(z) for

% comparison
plot(freq,H(1:N/2),’--k’); % Plot the filter

% frequency response
xlabel(’Frequency (Hz)’); ylabel(’H(f)’);

y = conv(data,bn); % Filter the data using
% convolution

figure;
t = (1:N)/fs; % Time vector for

% plotting
subplot(2,1,1);
plot(t(1:N/2),data(1:N/2),’k’) % Plot only 1/2 of the

% data set for clarity
xlabel(’Time (sec)’) ;ylabel(’EEG’);

subplot(2,1,2); % Plot the bandpass
% filtered data

plot (t(1:N/2), y(1:N/2),’k’);
ylabel(’Time’); ylabel(’Filtered EEG’);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

In this example, the initial loop constructs the filter weights based on Eq.
(12). The filter has high and low cutoff frequencies of 0.1π and 0.3 π radians/
sample, or 0.1fs/2 and 0.3fs/2 Hz. Assuming a sampling frequency of 100 Hz
this would correspond to cutoff frequencies of 5 to 15 Hz. The FFT is also used
to evaluate the filter’s frequency response. In this case the coefficient function
is zero-padded to 1000 points both to improve the appearance of the frequency
response curve and to match the data length. A frequency vector is constructed
to plot the correct frequency range based on a sampling frequency of 100 Hz.
The bandpass filter is applied to the data using convolution. Two adjustments
must be made when using convolution to implement an FIR filter. If the filter
weighting function is asymmetrical, as with the two-point central difference
algorithm, then the filter order should be reversed to compensate for the way
in which convolution applies the weights. In all applications, the MATLAB
convolution routine generates additional points (N = length(data) + length(b(n) −
1) so the output must be shortened to N points. Here the initial N points are
taken, but other strategies are mentioned in Chapter 2. In this example, only the
first half of the data set is plotted in Figure 4.11 to improve clarity.

Comparing the unfiltered and filtered data in Figure 4.11, note the sub-
stantial differences in appearance despite the fact that only a small potion of the
signal’s spectrum is attenuated. Particularly apparent is the enhancement of the
oscillatory component due to the suppression of the lower frequencies. This
figure shows that even a moderate amount of filtering can significantly alter the
appearance of the data. Also note the 50 msec initial transient and subsequent
phase shift in the filtered data. This could be corrected by shifting the filtered
data the appropriate number of sample points to the left.

INFINITE IMPULSE RESPONSE (IIR) FILTERS

The primary advantage of IIR filters over FIR filters is that they can usually
meet a specific frequency criterion, such as a cutoff sharpness or slope, with a
much lower filter order (i.e., a lower number of filter coefficients). The transfer
function of IIR filters includes both numerator and denominator terms (Eq. (4))
unlike FIR filters which have only a numerator. The basic equation for the IIR
filter is the same as that for any general linear process shown in Eq. (6) and
repeated here with modified limits:

y(k) = ∑
LN

n=1

b(n) x(k − n) − ∑
LD

n=1

a(n) y(k − n) (18)

where b(n) is the numerator coefficients also found in FIR filters, a(n) is the
denominator coefficients, x(n) is the input, and y(n) the output. While the b(n)
coefficients operate only on values of the input, x(n), the a(n) coefficients oper-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ate on passed values of the output, y(n) and are, therefore, sometimes referred
to as recursive coefficients.

The major disadvantage of IIR filters is that they have nonlinear phase
characteristics. However if the filtering is done on a data sequence that totally
resides in computer memory, as is often the case, than so-called noncausal
techniques can be used to produce zero phase filters. Noncausal techniques use
both future as well as past data samples to eliminate phase shift irregularities.
(Since these techniques use future data samples the entire waveform must be
available in memory.) The two-point central difference algorithm with a positive
skip factor is a noncausal filter. The Signal Processing Toolbox routine filt-

filt described in the next section utilizes these noncausal methods to imple-
ment IIR (or FIR) filters with no phase distortion.

The design of IIR filters is not as straightforward as FIR filters; however,
the MATLAB Signal Processing Toolbox provides a number of advanced rou-
tines to assist in this process. Since IIR filters have transfer functions that are
the same as a general linear process having both poles and zeros, many of the
concepts of analog filter design can be used with these filters. One of the most
basic of these is the relationship between the number of poles and the slope, or
rolloff of the filter beyond the cutoff frequency. As mentioned in Chapter 1, the
asymptotic downward slope of a filter increases by 20 db/decade for each filter
pole, or filter order. Determining the number of poles required in an IIR filter
given the desired attenuation characteristic is a straightforward process.

Another similarity between analog and IIR digital filters is that all of the
well-known analog filter types can be duplicated as IIR filters. Specifically the
Butterworth, Chebyshev Type I and II, and elliptic (or Cauer) designs can be
implemented as IIR digital filters and are supported in the MATLAB Signal
Processing Toolbox. As noted in Chapter 1, Butterworth filters provide a fre-
quency response that is maximally flat in the passband and monotonic overall.
To achieve this characteristic, Butterworth filters sacrifice rolloff steepness;
hence, the Butterworth filter will have a less sharp initial attenuation characteris-
tic than other filters. The Chebyshev Type I filters feature faster rolloff than
Butterworth filters, but have ripple in the passband. Chebyshev Type II filters
have ripple only in the stopband and a monotonic passband, but they do not
rolloff as sharply as Type I. The ripple produced by Chebyshev filters is termed
equi-ripple since it is of constant amplitude across all frequencies. Finally, ellip-
tic filters have steeper rolloff than any of the above, but have equi-ripple in both
the passband and stopband. In general, elliptic filters meet a given performance
specification with the lowest required filter order.

Implementation of IIR filters can be achieved using the filter function
described above. Design of IIR filters is greatly facilitated by the Signal Process-
ing Toolbox as described below. This Toolbox can also be used to design FIR
filters, but is not essential in implementing these filters. However, when filter

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

requirements call for complex spectral characteristics, the use of the Signal Pro-
cessing Toolbox is of considerable value, irrespective of the filter type. The
design of FIR filters using this Toolbox will be covered first, followed by IIR
filter design.

FILTER DESIGN AND APPLICATION USING THE MATLAB
SIGNAL PROCESSING TOOLBOX

FIR Filters

The MATLAB Signal Processing Toolbox includes routines that can be used to
apply both FIR and IIR filters. While they are not necessary for either the design
or application of FIR filters, they do ease the design of both filter types, particu-
larly for filters with complex frequency characteristics or demanding attenuation
requirements. Within the MATLAB environment, filter design and application
occur in either two or three stages, each stage executed by separate, but related
routines. In the three-stage protocol, the user supplies information regarding the
filter type and desired attenuation characteristics, but not the filter order. The
first-stage routines determine the appropriate order as well as other parameters
required by the second-stage routines. The second stage routines generate the
filter coefficients, b(n), based the arguments produced by the first-stage routines
including the filter order. A two-stage design process would start with this stage,
in which case the user would supply the necessary input arguments including
the filter order. Alternatively, more recent versions of MATLAB’s Signal Pro-
cessing Toolbox provide an interactive filter design package called FDATool
(for filter design and analysis tool) which performs the same operations de-
scribed below, but utilizing a user-friendly graphical user interface (GUI). An-
other Signal Processing Toolbox package, the SPTool (signal processing tool)
is useful for analyzing filters and generating spectra of both signals and filters.
New MATLAB releases contain detailed information of the use of these two
packages.

The final stage is the same for all filters including IIR filters: a routine
that takes the filter coefficients generated by the previous stage and applies them
to the data. In FIR filters, the final stage could be implemented using convolu-
tion as was done in previous examples, or the MATLAB filter routine de-
scribed earlier, or alternatively the MATLAB Signal Processing Toolbox routine
filtfilt can be used for improved phase properties.

One useful Signal Processing Toolbox routine determines the frequency
response of a filter given the coefficients. Of course, this can be done using the
FFT as shown in Examples 4.2 and 4.3, and this is the approach used by the
MATLAB routine. However the MATLAB routine freqz, also includes fre-
quency scaling and plotting, making it quite convenient. The freqz routine

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

plots, or produces, both the magnitude and the phase characteristics of a filter’s
frequency response:

[h,w] = freqz (b,a,n,fs);

where again b and a are the filter coefficients and n is the number of points in
the desired frequency spectra. Setting n as a power of 2 is recommended to
speed computation (the default is 512). The input argument, fs, is optional and
specifies the sampling frequency. Both output arguments are also optional: if
freqz is called without the output arguments, the magnitude and phase plots
are produced. If specified, the output vector h is the n-point complex frequency
response of the filter. The magnitude would be equal to abs(h) while the phase
would be equal to angle(h). The second output argument, w, is a vector the
same length as h containing the frequencies of h and is useful in plotting. If fs
is given, w is in Hz and ranges between 0 and fs/2; otherwise w is in rad/sample
and ranges between 0 and π.

Two-Stage FIR Filter Design

Two-stage filter design requires that the designer known the filter order, i.e.,
the number of coefficients in b(n), but otherwise the design procedure is
straightforward. The MATLAB Signal Processing Toolbox has two filter design
routines based on the rectangular filters described above, i.e., Eqs. (10)–(13).
Although implementation of these equations using standard MATLAB code is
straightforward (as demonstrated in previous examples), the FIR design routines
replace many lines of MATLAB code with a single routine and are seductively
appealing. While both routines are based on the same approach, one allows
greater flexibility in the specification of the desired frequency curve. The basic
rectangular filter is implemented with the routine fir1 as:

b = fir1(n,wn,’ftype’ window);

where n is the filter order, wn the cutoff frequency, ftype the filter type, and
window specifies the window function (i.e., Blackman, Hamming, triangular,
etc.). The output, b, is a vector containing the filter coefficients. The last two
input arguments are optional. The input argument ftype can be either ‘high’
for a highpass filter, or ‘stop’ for a stopband filter. If not specified, a lowpass
or bandpass filter is assumed depending on the length of wn. The argument,
window, is used as it is in the pwelch routine: the function name includes argu-
ments specifying window length (see Example 4.3 below) or other arguments.
The window length should equal n�1. For bandpass and bandstop filters, n must
be even and is incremented if not, in which case the window length should be
suitably adjusted. Note that MATLAB’s popular default window, the Hamming

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

window, is used if this argument is not specified. The cutoff frequency is either
a scalar specifying the lowpass or highpass cutoff frequency, or a two-element
vector that specifies the cutoff frequencies of a bandpass or bandstop filter. The
cutoff frequency(s) ranges between 0 and 1 normalized to fs/2 (e.g., if, wn = 0.5,
then fc = 0.5 * fs/2). Other options are described in the MATLAB Help file on
this routine.

A related filter design algorithm, fir2, is used to design rectangular filters
when a more general, or arbitrary frequency response curve is desired. The
command structure for fir2 is;

b = fir2(n,f,A,window)

where n is the filter order, f is a vector of normalized frequencies in ascending
order, and A is the desired gain of the filter at the corresponding frequency in
vector f. (In other words, plot(f,A) would show the desired magnitude fre-
quency curve.) Clearly f and A must be the same length, but duplicate frequency
points are allowed, corresponding to step changes in the frequency response.
Again, frequency ranges between 0 and 1, normalized to fs/2. The argument
window is the same as in fir1, and the output, b, is the coefficient function.
Again, other optional input arguments are mentioned in the MATLAB Help file
on this routine.

Several other more specialized FIR filters are available that have a two-
stage design protocol. In addition, there is a three-stage FIR filter described in
the next section.

Example 4.4 Design a window-based FIR bandpass filter having the fre-
quency characteristics of the filter developed in Example 4.3 and shown in
Figure 4.12.

% Example 4.4 and Figure 4.12 Design a window-based bandpass
% filter with cutoff frequencies of 5 and 15 Hz.
% Assume a sampling frequency of 100 Hz.
% Filter order = 128
%
clear all; close all;
fs = 100; % Sampling frequency
order = 128; % Filter order
wn = [5*fs/2 15*fs/2]; % Specify cutoff

% frequencies
b = fir1(order,wn); % On line filter design,

% Hamming window
[h,freq] = freqz(b,1,512,100); % Get frequency response
plot(freq,abs(h),’k’); % Plot frequency response
xlabel(’Frequency (Hz)’); ylabel(’H(f)’);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.12 The frequency response of an FIR filter based in the rectangular
filter design described in Eq. (10). The cutoff frequencies are 5 and 15 Hz. The
frequency response of this filter is identical to that of the filter developed in Exam-
ple 4.5 and presented in Figure 4.10. However, the development of this filter
required only one line of code.

Three-Stage FIR Filter Design

The first stage in the three-stage design protocol is used to determine the filter
order and cutoff frequencies to best approximate a desired frequency response
curve. Inputs to these routines specify an ideal frequency response, usually as a
piecewise approximation and a maximum deviation from this ideal response.
The design routine generates an output that includes the number of stages re-
quired, cutoff frequencies, and other information required by the second stage.
In the three-stage design process, the first- and second-stage routines work to-
gether so that the output of the first stage can be directly passed to the input of
the second-stage routine. The second-stage routine generates the filter coeffi-
cient function based on the input arguments which include the filter order, the
cutoff frequencies, the filter type (generally optional), and possibly other argu-
ments. In cases where the filter order and cutoff frequencies are known, the

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

first stage can be bypassed and arguments assigned directly to the second-stage
routines. This design process will be illustrated using the routines that imple-
ment Parks–McClellan optimal FIR filter.

The first design stage, the determination of filter order and cutoff frequen-
cies uses the MATLAB routine remezord. (First-stage routines end in the letters
ord which presumably stands for filter order). The calling structure is

[n, fo, ao, w] = remezord (f,a,dev,Fs);

The input arguments, f, a and dev specify the desired frequency response
curve in a somewhat roundabout manner. Fs is the sampling frequency and is
optional (the default is 2 Hz so that fs/2 = 1 Hz). Vector f specifies frequency
ranges between 0 and fs/2 as a pair of frequencies while a specifies the desired
gains within each of these ranges. Accordingly, f has a length of 2n—2, where
n is the length of a. The dev vector specifies the maximum allowable deviation,
or ripple, within each of these ranges and is the same length as a. For example,
assume you desire a bandstop filter that has a passband between 0 and 100 with
a ripple of 0.01, a stopband between 300 and 400 Hz with a gain of 0.1, and an
upper passband between 500 and 1000 Hz (assuming fs/2 = 1000) with the same
ripple as the lower passband. The f, a, and dev vectors would be: f = [100

300 400 500]; a = [1 0 1]; and dev = [.01 .1 .01]. Note that the ideal
stopband gain is given as zero by vector a while the actual gain is specified by
the allowable deviation given in vector dev. Vector dev requires the deviation
or ripple to be specified in linear units not in db. The application of this design
routine is shown in Example 4.5 below.

The output arguments include the required filter order, n, the normalized
frequency ranges, fo, the frequency amplitudes for those ranges, a0, and a set
of weights, w, that tell the second stage how to assess the accuracy of the fit in
each of the frequency ranges. These four outputs become the input to the second
stage filter design routine remez. The calling structure to the routine is:

b = remez (n, f, a, w,’ftype’);

where the first four arguments are supplied by remezord although the input
argument w is optional. The fifth argument, also optional, specifies either a
hilbert linear-phase filter (most common, and the default) or a differentia-

tor which weights the lower frequencies more heavily so they will be the most
accurately constructed. The output is the FIR coefficients, b.

If the desired filter order is known, it is possible to bypass remezord and
input the arguments n, f, and a directly. The input argument, n, is simply the
filter order. Input vectors f and a specify the desired frequency response curve
in a somewhat different manner than described above. The frequency vector still
contains monotonically increasing frequencies normalized to fs/2; i.e., ranging

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

between 0 and 1 where 1 corresponds to fs/2. The a vector represents desired
filter gain at each end of a frequency pair, and the gain between pairs is an
unspecified transition region. To take the example above: a bandstop filter that
has a passband (gain = 1) between 0 and 100, a stopband between 300 and 400
Hz with a gain of 0.1, and an upper passband between 500 and 700 Hz; assum-
ing fs/2 = 1 kHz, the f and a vector would be: f = [0 .1 .3 .4 .5 .7]; a =
[1 1 .1 .1 1 1]. Note that the desired frequency curve is unspecified between
0.1 and 0.3 and also between 0.4 and 0.5.

As another example, assume you wanted a filter that would differentiate
a signal up to 0.2fs/2 Hz, then lowpass filter the signal above 0.3fs/2 Hz. The f

and a vector would be: f = [0 .1 .3 1]; a = [0 1 0 0].
Another filter that uses the same input structure as remezord is the least

square linear-phase filter design routine firls. The use of this filter in for
calculation the derivative is found in the Problems.

The following example shows the design of a bandstop filter using the
Parks–McClellan filter in a three-stage process. This example is followed by
the design of a differentiator Parks–McClellan filter, but a two-stage design
protocol is used.

Example 4.5 Design a bandstop filter having the following characteris-
tics: a passband gain of 1 (0 db) between 0 and 100, a stopband gain of −40 db
between 300 and 400 Hz, and an upper passband gain of 1 between 500 and
1000 Hz. Maximum ripple for the passband should be ±1.5 db. Assume fs = 2
kHz. Use the three-stage design process. In this example, specifying the dev

argument is a little more complicated because the requested deviations are given
in db while remezord expects linear values.

% Example 4.5 and Figure 4.13
% Bandstop filter with a passband gain of 1 between 0 and 100,
% a stopband gain of -40 db between 300 and 400 Hz,
% and an upper passband gain of 1 between 500 and fs/2 Hz (1000
% Hz).
% Maximum ripple for the passband should be ±1.5 db
%
rp_pass = 3; % Specify ripple

% tolerance in passband
rp_stop = 40; % Specify error

% tolerance in passband
fs = 2000; % Sample frequency: 2

% kHz
f = [100 300 400 500]; % Define frequency

% ranges
a= [1 0 1]; % Specify gain in

% those regions
%

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.13 The magnitude and phase frequency response of a Parks–McClel-
lan bandstop filter produced in Example 4.5. The number of filter coefficients as
determined by remezord was 24.

% Now specify the deviation converting from db to linear
dev = [(10v(rp_pass/20)-1)/(10v(rp_pass/20)�1) 10v

(-rp_stop/20)....(10v(rp_pass/20)-1)/(10v(rp_pass/
20)�1)];

%
% Design filter - determine filter order
[n, fo, ao, w] = remezord(f,a,dev,fs) % Determine filter

% order, Stage 1
b = remez(n, fo, ao, w); % Determine filter

% weights, Stage 2
freq.(b,1,[],fs); % Plot filter fre-

% quency response

In Example 4.5 the vector assignment for the a vector is straightforward:
the desired gain is given as 1 in the passband and 0 in the stopband. The actual
stopband attenuation is given by the vector that specifies the maximum desirable

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

error, the dev vector. The specification of this vector, is complicated by the fact
that it must be given in linear units while the ripple and stopband gain are
specified in db. The db to linear conversion is included in the dev assignment.
Note the complicated way in which the passband gain must be assigned.

Figure 4.13 shows the plot produced by freqz with no output arguments,
a = 1, n = 512 (the default), and b was the FIR coefficient function produced in
Example 4.6 above. The phase plot demonstrates the linear phase characteristics
of this FIR filter in the passband. This will be compared with the phase charac-
teristics of IIR filter in the next section.

The frequency response curves for Figure 4.13 were generated using the
MATLAB routine freqz, which applies the FFT to the filter coefficients follow-
ing Eq. (7). It is also possible to generate these curves by passing white noise
through the filter and computing the spectral characteristics of the output. A
comparison of this technique with the direct method used above is found in
Problem 1.

Example 4.6 Design a differentiator using the MATLAB FIR filter re-
mez. Use a two-stage design process (i.e., select a 28-order filter and bypass the
first stage design routine remezord). Compare the derivative produced by this
signal with that produced by the two-point central difference algorithm. Plot the
results in Figure 4.14.

The FIR derivative operator will be designed by requesting a linearly in-
creasing frequency characteristic (slope = 1) up to some fc Hz, then a sharp drop
off within the next 0.1fs/2 Hz. Note that to make the initial magnitude slope
equal to 1, the magnitude value at fc should be: fc * fs * π.

% Example 4.6 and Figure 4.14
% Design a FIR derivative filter and compare it to the
% Two point central difference algorithm
%
close all; clear all;
load sig1; % Get data
Ts = 1/200; % Assume a Ts of 5 msec.
fs = 1/Ts; % Sampling frequency
order = 28; % FIR Filter order
L = 4; % Use skip factor of 4
fc = .05 % Derivative cutoff

% frequency
t = (1:length(data))*Ts;
%
% Design filter
f = [0 fc fc�.1 .9]; % Construct desired freq.

% characteristic

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.14 Derivative produced by an FIR filter (left) and the two-point central
difference differentiator (right). Note that the FIR filter does produce a cleaner
derivative without reducing the value of the peak velocity. The FIR filter order
(n = 28) and deriviative cutoff frequency (fc = .05 fs/2) were chosen empirically to
produce a clean derivative with a maximal velocity peak. As in Figure 4.5 the
velocity (i.e., derivative) was scaled by 1/2 to be more compatible with response
amplitude.

a = [0 (fc*fs*pi) 0 0]; % Upward slope until .05 fs

% then lowpass
b = remez(order,f,a, % Design filter coeffi-
’differentiator’); % cients and

d_dt1 = filter(b,1,data); % apply FIR Differentiator
figure;
subplot(1,2,1);
hold on;
plot(t,data(1:400)�12,’k’); % Plot FIR filter deriva-

% tive (data offset)
plot(t,d_dt1(1:400)/2,’k’); % Scale velocity by 1/2
ylabel(’Time(sec)’);
ylabel(’x(t) & v(t)/2’);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

%
%
% Now apply two-point central difference algorithm
hn = zeros((2*L)�1,1); % Set up h(n)
hn(1,1) = 1/(2*L* Ts);
hn((2*L)�1,1) = -1/(2*L*Ts); % Note filter weight

% reversed if
d_dt2 = conv(data,hn); % using convolution
%
subplot(1,2,2);
hold on;
plot(data(1:400)�12,’k’); % Plot the two-point cen-

% tral difference
plot(d_dt2(1:400)/2,’k’); % algorithm derivative
ylabel(’Time(sec)’);
ylabel(’x(t) & v(t)/2’);

IIR Filters

IIR filter design under MATLAB follows the same procedures as FIR filter
design; only the names of the routines are different. In the MATLAB Signal
Processing Toolbox, the three-stage design process is supported for most of the
IIR filter types; however, as with FIR design, the first stage can be bypassed if
the desired filter order is known.

The third stage, the application of the filter to the data, can be imple-
mented using the standard filter routine as was done with FIR filters. A Signal
Processing Toolbox routine can also be used to implement IIR filters given the
filter coefficients:

y = filtfilt(b,a,x)

The arguments for filtfilt are identical to those in filter. The only
difference is that filtfilt improves the phase performance of IIR filters by
running the algorithm in both forward and reverse directions. The result is a
filtered sequence that has zero-phase distortion and a filter order that is doubled.
The downsides of this approach are that initial transients may be larger and the
approach is inappropriate for many FIR filters that depend on phase response
for proper operations. A comparison between the filter and filtfilt algo-
rithms is made in the example below.

As with our discussion of FIR filters, the two-stage filter processes will
be introduced first, followed by three-stage filters. Again, all filters can be im-
plemented using a two-stage process if the filter order is known. This chapter
concludes with examples of IIR filter application.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Two-Stage IIR Filter Design

The Yule–Walker recursive filter is the only IIR filter that is not supported by
an order-selection routine (i.e., a three-stage design process). The design routine
yulewalk allows for the specification of a general desired frequency response
curve, and the calling structure is given on the next page.

[b,a] = yulewalk(n,f,m)

where n is the filter order, and m and f specify the desired frequency characteris-
tic in a fairly straightforward way. Specifically, m is a vector of the desired filter
gains at the frequencies specified in f. The frequencies in f are relative to fs/2:
the first point in f must be zero and the last point 1. Duplicate frequency points
are allowed and correspond to steps in the frequency response. Note that this is
the same strategy for specifying the desired frequency response that was used
by the FIR routines fir2 and firls (see Help file).

Example 4.7 Design an 12th-order Yule–Walker bandpass filter with
cutoff frequencies of 0.25 and 0.5. Plot the frequency response of this filter and
compare with that produced by the FIR filter fir2 of the same order.

% Example 4.7 and Figure 4.15
% Design a 12th-order Yulewalk filter and compare
% its frequency response with a window filter of the same
% order
%
close all; clear all;
n = 12; % Filter order
f = [0 .25 .25 .6 .6 1]; % Specify desired frequency re-

% sponse
m = [0 0 1 1 0 0];
[b,a] = yulewalk(n,f,m); % Construct Yule–Walker IIR Filter
h = freqz(b,a,256);
b1 = fir2(n,f,m); % Construct FIR rectangular window

% filter
h1 = freqz(b1,1,256);
plot(f,m,’k’); % Plot the ideal “window” freq.

% response
hold on
w = (1:256)/256;
plot(w,abs(h),’--k’); % Plot the Yule-Walker filter
plot(w,abs(h1),’:k’); % Plot the FIR filter
xlabel(’Relative Frequency’);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.15 Comparison of the frequency response of 12th-order FIR and IIR
filters. Solid line shows frequency characteristics of an ideal bandpass filter.

Three-Stage IIR Filter Design: Analog Style Filters

All of the analog filter types—Butterworth, Chebyshev, and elliptic—are sup-
ported by order selection routines (i.e., first-stage routines). The first-stage rou-
tines follow the nomenclature as FIR first-stage routines, they all end in ord.
Moreover, they all follow the same strategy for specifying the desired frequency
response, as illustrated using the Butterworth first-stage routine buttord:

[n,wn] = buttord(wp, ws, rp, rs); Butterworth filter

where wp is the passband frequency relative to fs/2, ws is the stopband frequency
in the same units, rp is the passband ripple in db, and rs is the stopband ripple
also in db. Since the Butterworth filter does not have ripple in either the pass-
band or stopband, rp is the maximum attenuation in the passband and rs is
the minimum attenuation in the stopband. This routine returns the output argu-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ments n, the required filter order and wn, the actual −3 db cutoff frequency. For
example, if the maximum allowable attenuation in the passband is set to 3 db, then
ws should be a little larger than wp since the gain must be less that 3 db at wp.

As with the other analog-based filters described below, lowpass, highpass,
bandpass, and bandstop filters can be specified. For a highpass filter wp is
greater than ws. For bandpass and bandstop filters, wp and ws are two-element
vectors that specify the corner frequencies at both edges of the filter, the lower
frequency edge first. For bandpass and bandstop filters, buttord returns wn as
a two-element vector for input to the second-stage design routine, butter.

The other first-stage IIR design routines are:

[n,wn] = cheb1ord(wp, ws, rp, rs); % Chebyshev Type I
% filter

[n,wn] = cheb2ord(wp, ws, rp, rs); % Chebyshev Type II
% filter

[n,wn] = ellipord(wp, ws, rp, rs); % Elliptic filter

The second-stage routines follow a similar calling structure, although the
Butterworth does not have arguments for ripple. The calling structure for the
Butterworth filter is:

[b,a] = butter(n,wn,’ftype’)

where n and wn are the order and cutoff frequencies respectively. The argument
ftype should be ‘high’ if a highpass filter is desired and ‘stop’ for a bands-
top filter. In the latter case wn should be a two-element vector, wn = [w1 w2],
where w1 is the low cutoff frequency and w2 the high cutoff frequency. To
specify a bandpass filter, use a two-element vector without the ftype argument.
The output of butter is the b and a coefficients that are used in the third or
application stage by routines filter or filtfilt, or by freqz for plotting the
frequency response.

The other second-stage design routines contain additional input arguments
to specify the maximum passband or stopband ripple if appropriate:

[b,a] = cheb1(n,rp,wn,’ftype’) % Chebyshev Type I filter

where the arguments are the same as in butter except for the additional argu-
ment, rp, which specifies the maximum desired passband ripple in db.

The Type II Chebyshev filter is:

[b,a] = cheb2(n,rs, wn,’ftype’) % Chebyshev Type II filter

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

where again the arguments are the same, except rs specifies the stopband ripple.
As we have seen in FIR filters, the stopband ripple is given with respect to
passband gain. For example a value of 40 db means that the ripple will not
exceed 40 db below the passband gain. In effect, this value specifies the mini-
mum attenuation in the stopband.

The elliptic filter includes both stopband and passband ripple values:

[b,a] = ellip(n,rp,rs,wn,’ftype’) % Elliptic filter

where the arguments presented are in the same manner as described above, with
rp specifying the passband gain in db and rs specifying the stopband ripple
relative to the passband gain.

The example below uses the second-stage routines directly to compare the
frequency response of the four IIR filters discussed above.

Example 4.8 Plot the frequency response curves (in db) obtained from
an 8th-order lowpass filter using the Butterworth, Chebyshev Type I and II, and
elliptic filters. Use a cutoff frequency of 200 Hz and assume a sampling fre-
quency of 2 kHz. For all filters, the passband ripple should be less than 3 db
and the minimum stopband attenuation should be 60 db.

% Example 4.8 and Figure 4.16
% Frequency response of four 8th-order lowpass filters
%
N = 256; % Spectrum number of points
fs = 2000; % Sampling filter
n = 8; % Filter order
wn = 200/fs/2; % Filter cutoff frequency
rp = 3; % Maximum passband ripple in db
rs = 60; % Stopband attenuation in db
%
%
%Butterworth
[b,a] = butter(n,wn); % Determine filter coefficients
[h,f] = freqz(b,a,N,fs); % Determine filter spectrum
subplot(2,2,1);
h = 20*log10(abs(h)); % Convert to db
semilogx(f,h,’k’); % Plot on semilog scale
axis([100 1000 -80 10]); % Adjust axis for better visi-

% bility
xlabel(’Frequency (Hz)’); ylabel(’X(f)(db)’);
title(’Butterworth’);

%

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 4.16 Four different 8th-order IIR lowpass filters with a cutoff frequency
of 200 Hz. Sampling frequency was 2 kHz.

%
%Chebyshev Type I
[b,a] = cheby1(n,rp,wn); % Determine filter coefficients
[h,f] = freqz(b,a,N,fs); % Determine filter spectrum
subplot(2,2,2);
h = 20*log10(abs(h)); % Convert to db
semilogx(f,h,’k’); % Plot on semilog scale
axis([100 1000-80 10]); % Adjust axis for better visi-

bility
xlabel(’Frequency (Hz)’); ylabel(’X(f)(db)’);
title(’Chebyshev I’);

%
%

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Chebyshev Type II
[b,a] = cheby2(n,rs,wn); % Determine filter coefficients
[h,f] = freqz(b,a,N,fs); % Determine filter spectrum
subplot(2,2,3);
h = 20*log10(abs(h)); % Convert to db
semilogx(f,h,’k’); % Plot on semilog scale
axis([100 1000-80 10]); % Adjust axis for better visi-

% bility
xlabel(’Frequency (Hz)’); ylabel(’X(f)(db)’);
title(’Chebyshev II’);

% Elliptic
[b,a] = ellip(n,rp,rs,wn); % Determine filter coefficients
[h,f] = freqz(b,a,N,fs); % Determine filter spectrum
subplot(2,2,4);
h = 20*log10(abs(h)); % Convert to db
semilogx(f,h,’k’); % Plot on semilog scale
axis([100 1000-80 10]); % Adjust axis for better visi-

% bility
xlabel(’Frequency (Hz)’); ylabel(’X(f)(db)’);
title(’Elliptic’);

PROBLEMS

1. Find the frequency response of a FIR filter with a weighting function of
bn = [.2 .2 .2 .2 .2] in three ways: apply the FFT to the weighting function,
use freqz, and pass white noise through the filter and plot the magnitude spec-
tra of the output. In the third method, use a 1024-point array; i.e., y = filter

(bn,1,randn(1024,1)). Note that you will have to scale the frequency axis
differently to match the relative frequencies assumed by each method.

2. Use sig_noise to construct a 512-point array consisting of two closely
spaced sinusoids of 200 and 230 Hz with SNR of −8 db and −12 db respectively.
Plot the magnitude spectrum using the FFT. Now apply an 24 coefficient FIR
bandpass window type filter to the data using either the approach in Example
4.2 or the fir1 MATLAB routine. Replot the bandpass filter data.

3. Use sig_noise to construct a 512-point array consisting of a single sinus-
oid of 200 Hz at an SNR of −20 db. Narrowband filter the data with an FIR
rectangular window type filter, and plot the FFT spectra before and after filter-
ing. Repeat using the Welch method to obtain the power spectrum before and
after filtering.

4. Construct a 512-point array consisting of a step function. Filter the step by
four different FIR lowpass filters and plot the first 150 points of the resultant

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

step response: a 15th order Parks–McClellan; a 15th-order rectangular window;
a 30th-order rectangular window; and a 15th-order least squares firls. Use a
bandwidth of 0.15 fs/2.

5. Repeat Problem 4 for four different IIR 12th-order lowpass filters: Butter-
worth, Chebyshev Type I, Chebyshev Type II, and an elliptic. Use a passband
ripple of 0.5 db and a stopband ripple of 80 db where appropriate. Use the same
bandwidth as in Problem 4.

6. Load the data file ensemble_data used in Problem 1 in Chapter 2. Calcu-
late the ensemble average of the ensemble data, then filter the average with a
12th-order Butterworth filter. Select a cutoff frequency that removes most of
the noise, but does not unduly distort the response dynamics. Implement the
Butterworth filter using filter and plot the data before and after filtering.
Implement the same filter using filtfilt and plot the resultant filter data. How
do the two implementations of the Butterworth compare? Display the cutoff
frequency on the one of the plots containing the filtered data.

7. Determine the spectrum of the Butterworth filter used in the above problem.
Then use the three-stage design process to design and equivalent Parks–McClel-
lan FIR filter. Plot the spectrum to confirm that they are similar and apply to
the data of Problem 4 comparing the output of the FIR filter with the IIR Butter-
worth filter in Problem 4. Display the order of both filters on their respective
data plots.

8. Differentiate the ensemble average data of Problems 6 and 7 using the two-
point central difference operator with a skip factor of 10. Construct a differentia-
tor using a 16th-order least square linear phase firls FIR with a constant up-
ward slope until some frequency fc, then rapid attenuation to zero. Adjust fc to
minimize noise and still maintain derivative peaks. Plots should show data and
derivative for each method, scaled for reasonable viewing. Also plot the filter’s
spectral characteristic for the best value of fc.

9. Use the first stage IIR design routines, buttord, cheby1ord, cheby2ord,
and elliptord to find the filter order required for a lowpass filter that attenu-
ates 40 db/octave. (An octave is a doubling in frequency: a slope of 6 db/octave =
a slope of 20 db/decade). Assume a cutoff frequency of 200 Hz and a sampling
frequency of 2 kHz.

10. Use sig_noise to construct a 512-point array consisting of two widely
separated sinusoids: 150 and 350 Hz, both with SNR of -14 db. Use a 16-order
Yule–Walker filter to generate a double bandpass filter with peaks at the two
sinusoidal frequencies. Plot the filter’s frequency response as well as the FFT
spectrum before and after filtering.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

5

Spectral Analysis: Modern Techniques

PARAMETRIC MODEL-BASED METHODS

The techniques for determining the power spectra described in Chapter 3 are all
based on the Fourier transform and are referred to as classical methods. These
methods are the most robust of the spectral estimators. They require little in the
way of assumptions regarding the origin or nature of the data, although some
knowledge of the data could be useful for window selection and averaging strat-
egies. In these classical approaches, the waveform outside the data window is
implicitly assumed to be zero. Since this is rarely true, such an assumption can
lead to distortion in the estimate (Marple, 1987). In addition, there are distor-
tions due to the various data windows (including the rectangular window) as
described in Chapter 3.

Modern approaches to spectral analysis are designed to overcome some
of the distortions produced by the classical approach and are particularly effec-
tive if the data segments are short. Modern techniques fall into two broad
classes: parametric, model-based* or eigen decomposition, and nonparametric.
These techniques attempt to overcome the limitations of traditional methods by
taking advantage of something that is known, or can be assumed, about the
source signal. For example, if something is known about the process that gener-

*In some semantic contexts, all spectral analysis approaches can be considered model-based. For
example, classic Fourier transform spectral analysis could be viewed as using a model consisting of
harmonically related sinusoids. Here the term parametric is used to avoid possible confusion.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 5.1 Schematic representation of model-based methods of spectral esti-
mation.

ated the waveform of interest, then model-based, or parametric, methods can
make assumptions about the waveform outside the data window. This eliminates
the need for windowing and can improve spectral resolution and fidelity, partic-
ularly when the waveform contains a large amount of noise. Any improvement
in resolution and fidelity will depend strongly on the appropriateness of the
model selected (Marple, 1987). Accordingly, modern approaches, particularly
parametric spectral methods, require somewhat more judgement in their applica-
tion than classical methods. Moreover, these methods provide only magnitude
information in the form of the power spectrum.

Parametric methods make use of a linear process, commonly referred to
as a model* to estimate the power spectrum. The basic strategy of this approach
is shown in Figure 5.1. The linear process or model is assumed to be driven by
white noise. (Recall that white noise contains equal energy at all frequencies;
its power spectrum is a constant over all frequencies.) The output of this model
is compared with the input waveform and the model parameters adjusted for the
best match between model output and the waveform of interest. When the best
match is obtained, the model’s frequency characteristics provide the best esti-
mate of the waveform’s spectrum, given the constraints of the model. This is
because the input to the model is spectrally flat so that the spectrum at the
output is a direct reflection of the model’s magnitude transfer function which,
in turn, reflects the input spectrum. This method may seem roundabout, but it
permits well-defined constraints, such as model type and order, to be placed on
the type of spectrum that can be found.

*To clarify the terminology, a linear process is referred to as a model in parametric spectral analysis,
just as it is termed a filter when it is used to shape a signal’s spectral characteristics. Despite the
different terms, linear models, filters, or processes are all described by the basic equations given at
the beginning of Chapter 4.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

A number of different model types are used in this approach, differentiated
by the nature of their transfer functions. Three models types are the most popu-
lar: autoregressive (AR), moving average (MA), and autoregressive moving
average (ARMA). Selection of the most appropriate model selection requires
some knowledge of the probable shape of the spectrum. The AR model is partic-
ularly useful for estimating spectra that have sharp peaks but no deep valleys.
The AR model has a transfer function with only a constant in the numerator
and a polynomial in the denominator; hence, this model is sometimes referred
to as an all-pole model. This gives rise to a time domain equation similar to Eq.
(6) in Chapter 4, but with only a single numerator coefficient, b(0), which is
assumed to be 1:

y(n) = −∑
p

k=1

a(k) y(n − k) + u(n) (1)

where u(n) is the input or noise function and p is the model order. Note that in
Eq. (1), the output is obtained by convolving the model weight function, a(k),
with past versions of the output (i.e., y(n-k)). This is similar to an IIR filter with
a constant numerator.

The moving average model is useful for evaluating spectra with the val-
leys, but no sharp peaks. The transfer function for this model has only a numera-
tor polynomial and is sometimes referred to as an all-zero model. The equation
for an MA model is the same as for an FIR filter, and is also given by Eq. (6)
in Chapter 4 with the single denominator coefficient a(0) set to 1:

y(n) = −∑
q

k=1

b(k) u(n − k) (2)

where again x(n) is the input function and q is the model order*.
If the spectrum is likely to contain bold sharp peaks and the valleys, then

a model that combines both the AR and MA characteristics can be used. As
might be expected, the transfer function of an ARMA model contains both nu-
merator and denominator polynomials, so it is sometimes referred to as a pole–
zero model. The ARMA model equation is the same as Chapter 4’s Eq. (6)
which describes a general linear process:

y(n) = −∑
p

k=1

a(k) y(n − k) +∑
q

k=1

b(k) u(n − k) (3)

In addition to selecting the type of model to be used, it is also necessary
to select the model order, p and/or q. Some knowledge of the process generating

*Note p and q are commonly used symbols for the order of AR and MA models, respectively.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

the data would be helpful in this task. A few schemes have been developed to
assist in selecting model order and are described briefly below. The general
approach is based around the concept that model order should be sufficient to
allow the model spectrum to fit the signal spectrum, but not so large that it
begins fitting the noise as well. In many practical situations, model order is
derived on a trial-and-error basis. The implications of model order are discussed
below.

While many techniques exist for evaluating the parameters of an AR
model, algorithms for MA and ARMA are less plentiful. In general, these algo-
rithms involve significant computation and are not guaranteed to converge, or
may converge to the wrong solution. Most ARMA methods estimate the AR
and MA parameters separately, rather than jointly, as required for optimal solu-
tion. The MA approach cannot model narrowband spectra well: it is not a high-
resolution spectral estimator. This shortcoming limits its usefulness in power
spectral estimation of biosignals. Since only the AR model is implemented in
the MATLAB Signal Processing Toolbox, the rest of this description of model-
based power spectral analysis will be restricted to autoregressive spectral esti-
mation. For a more comprehensive implementation of these and other models,
the MATLAB Signal Identification Toolbox includes both MA and ARMA
models along with a number of other algorithms for AR model estimation, in
addition to other more advanced model-based approaches.

AR spectral estimation techniques can be divided into two categories: al-
gorithms that process block data and algorithms that process data sequentially.
The former are appropriate when the entire waveform is available in memory,
while the latter are effective when incoming data must be evaluated rapidly for
real-time considerations. Here we will consider only block-processing algo-
rithms as they find the largest application in biomedical engineering and are the
only algorithms implemented in the MATLAB Signal Processing Toolbox.

As with the concept of power spectral density introduced in the last chap-
ter, the AR spectral approach is usually defined with regard to estimation based
on the autocorrelation sequence. Nevertheless, better results are obtained, partic-
ularly for short data segments, by algorithms that operate directly on the wave-
form without estimating the autocorrelation sequence.

There are a number of different approaches for estimating the AR model
coefficients and related power spectrum directly from the waveform. The four
approaches that have received the most attention are: the Yule-Walker, the Burg,
the covariance, and the modified covariance methods. All of these approaches
to spectral estimation are implemented in the MATLAB Signal Processing
Toolbox.

The most appropriate method will depend somewhat on the expected (or
desired) shape of the spectrum, since the different methods theoretically enhance

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

different spectral characteristics. For example, the Yule-Walker method is
thought to produce spectra with the least resolution among the four, but provides
the most smoothing, while the modified covariance method should produce the
sharpest peaks, useful for identifying sinusoidal components in the data (Marple,
1987). The Burg and covariance methods are known to produce similar spectra.
In reality, the MATLAB implementations of the four methods all produce simi-
lar spectra, as show below.

Figure 5.2 illustrates some of the advantages and disadvantages of using
AR as a spectral analysis tool. A test waveform is constructed consisting of a
low frequency broader-band signal, four sinusoids at 100, 240, 280, and 400
Hz, and white noise. A classically derived spectrum (Welch) is shown without
the added noise in Figure 5.2A and with noise in Figure 5.2B. The remaining
plots show the spectra obtained with an AR model of differing model orders.
Figures 5.2C–E show the importance of model order on the resultant spectrum.
Using the Yule-Walker method and a relatively low-order model (p = 17) pro-
duces a smooth spectrum, particularly in the low frequency range, but the spec-
trum combines the two closely spaced sinusoids (240 and 280 Hz) and does not
show the 100 Hz component (Figure 5.2C). The two higher order models (p =
25 and 35) identify all of the sinusoidal components with the highest order
model showing sharper peaks and a better defined peak at 100 Hz (Figure 5.2D
and E). However, the highest order model (p = 35) also produces a less accurate
estimate of the low frequency spectral feature, showing a number of low fre-
quency peaks that are not present in the data. Such artifacts are termed spurious
peaks and occur most often when high model orders are used. In Figure 5.2F,
the spectrum produced by the covariance method is shown to be nearly identical
to the one produced by the Yule-Walker method with the same model order.

The influence of model order is explored further in Figure 5.3. Four
spectra are obtained from a waveform consisting of 3 sinusoids at 100, 200, and
300 Hz, buried in a fair amount of noise (SNR = -8 db). Using the traditional
Welch method, the three sinusoidal peaks are well-identified, but other lesser
peaks are seen due to the noise (Figure 5.3A). A low-order AR model, Figure
5.3B, smooths the noise very effectively, but identifies only the two outermost
peaks at 100 and 300 Hz. Using a higher order model results in a spectrum
where the three peaks are clearly identified, although the frequency resolution
is moderate as the peaks are not very sharp. A still higher order model im-
proves the frequency resolution (the peaks are sharper), but now a number of
spurious peaks can be seen. In summary, the AR along with other model-based
methods can be useful spectral estimators if the nature of the signal is known,
but considerable care must be taken in selecting model order and model type.
Several problems at the end of this chapter further explore the influence of
model order.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 5.2 Comparison of AR and classical spectral analysis on a complex
spectrum. (A) Spectrum obtained using classical methods (Welch) of a waveform
consisting of four sinusoids (100, 240, 280, and 400 Hz) and a low frequency
region generated from lowpass filtered noise. (B) Spectrum obtained using the
Welch method applied to the same waveform after white noise has been added
(SNR = -8 db). (C, D and E) Spectra obtained using AR models (Yule-Walker)
having three different model orders. The lower order model (p = 17) cannot distin-
guish the two closely spaced sinusoids (240 and 280 Hz). The highest order model
(p = 35) better identifies the 100 Hz signal and shows sharper peaks, but shows
spurious peaks in the low frequency range. (F) AR spectral analysis using the
covariance method produces results nearly identical to the Yule-Walker method.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 5.3 Spectra obtained from a waveform consisting of equal amplitude
sinusoids at 100, 200, and 300 Hz with white noise (N = 1024; SNR = -12 db).
(A) The traditional Welch method shows the 3 sinusoids, but also lesser peaks
due solely to the noise. (B) The AR method with low model order (p = 7) shows
the two outside peaks with a hint of the center peak. (C) A higher order AR model
(p = 13) shows the three peaks clearly. (D) An even higher order model (p = 21)
shows the three peaks with better frequency resolution, but also shows a number
of spurious peaks.

MATLAB Implementation

The four AR-based spectral analysis approaches described above are available
in the MATLAB Signal Processing Toolbox. The AR routines are implemented
though statements very similar in format to that used for the Welsh power spec-
tral analysis described in Chapter 3. For example, to implement the Yule-Walker
AR method the MATLAB statement would be:

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

[PS, freq] = pyulear(x,p,nfft,Fs);

Only the first two input arguments, x and p, are required as the other two
have default values. The input argument, x, is a vector containing the input
waveform, and p is the order of the AR model to be used. The input argument
nfft specifies the length of the data segment to be analyzed, and if nfft is less
than the length of x, averages will be taken as in pwelch. The default value for
nfft is 256*. As in pwelch, Fs is the sampling frequency and if specified is
used to appropriately fill the frequency vector, freq, in the output. This output
variable can be used in plotting to obtain a correctly scaled frequency axis (see
Example 5.1). In the AR spectral approach, Fs is also needed to scale the hori-
zontal axis of the output spectrum correctly. If Fs is not specified, the output
vector freq varies in the range of 0 to π.

As in routine pwelch, only the first output argument, PS, is required, and
it contains the resultant power spectrum. Similarly, the length of PS is either
(nfft/2)� 1 if nfft is even, or (nfft�1)/2 if nfft is odd since additional
points would be redundant. An exception is made if x is complex, in which case
the length of PS is equal to nfft. Other optional arguments are available and
are described in the MATLAB help file.

The other AR methods are implemented using similar MATLAB state-
ments, differing only in the function name.

[Pxx, freq] = pburg(x,p,nfft,Fs);

[Pxx, freq] = pcov(x,p,nfft,Fs);

[Pxx, freq] = pmcov(x,p,nfft,Fs);

The routine pburg, uses the Burg method, pcov the covariance method
and pmcov the modified covariance method. As we will see below, this general
format is followed in other MATLAB spectral methods.

Example 5.1 Generate a signal combining lowpass filtered noise, four
sinusoids, two of which are closely spaced, and white noise (SNR = -3 db). This
example is used to generate the plots in Figure 5.2.

% Example 5.1 and Figure 5.2
% Program to evaluate different modern spectral methods
% Generate a spectra of lowpass filtered noise, sinusoids, and
% noise that applies classical and AR sprectral analysis methods
%

*Note the use of the term nfft is somewhat misleading since it implies an FFT is taken, and this is
not the case in AR spectral analysis. We use it here to be consistent with MATLAB’s terminology.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

N = 1024; % Size of arrays
fs = 1000; % Sampling frequency
n1 = 8; % Filter order
w = pi/20; % Filter cutoff frequency

% (25 Hz)
%
% Generate the low frequency broadband process
% Compute the impulse response of a Butterworth lowpass filter
noise = randn(N,1); % Generate noise
[b,a] = butter(n1,w); % Filter noise with Butter-

% worth filter
out = 5 * filter(b,a,noise);
%
% Generate the sinusoidal data and add to broadband signal
[x,f,sig] = sig_noise([100 240 280 400],-8,N);
data = data � out(1:1024,1)’; % Construct data set with added

% noise
sig = sig � out(1:1024,1)’; % Construct data set without

% noise
%
% Estimate the Welch spectrum using all points, no window, and no
% overlap
% Plot noiseless signal
[PS,f] = pwelch(sig,N,[],[],fs);
subplot(3,2,1);

plot(f,PS,’k’); % Plot PS
.......labels, text, and axis
%
% Apply Welch method to noisy data set
[PS,f] = pwelch(x, N,[],[],fs);
subplot(3,2,2);

plot(f,PS,’k’);labels, text, and axis
.......

%
% Apply AR to noisy data set at three different weights
[PS,f] = pyulear(x,17,N,fs); % Yule-Walker; p = 17
subplot(3,2,3);

plot(f,PS,’k’);labels, text, and axis
.......

%
[PS,f] = pyulear(x,25,N,fs); % Yule-Walker; p = 25
subplot(3,2,4);

plot(f,PS,’k’);labels, text, and axis
.......

%
[PS,f] = pyulear(x,35,N,fs); % Yule-Walker; p = 35

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

subplot(3,2,5);
plot(f,PS,’k’);labels, text, and axis

.......
%
% Apply Covariance method to data set
[PS,f] = pmcov(x,25,N,fs); % Covariance; p = 25
subplot(3,2,6);

plot(f,PS,’k’);labels, text, and axis
.......

In this example, the waveform is constructed by combining filtered low-
pass noise with sinusoids in white noise. The filtered lowpass noise is con-
structed by applying an FIR filter to white noise. A similar approach to generat-
ing colored noise was used in Example 2 in Chapter 2. The routine sig_noise

was then used to construct a waveform containing four sinusoids at 100, 240,
280, and 400 Hz with added white noise (SNR = -8 db). This waveform was
then added to the colored noise after the latter was scaled by 5.0. The resultant
waveform was then analyzed using different power spectral methods: the Welch
FFT-based method for reference (applied to the signal with and without added
noise); the Yule-Walker method with a model orders of 17, 25, and 35; and the
modified covariance method with a model order of 25. The sampling frequen-
cy was 1000 Hz, the frequency assumed by the waveform generator routine,
sig_noise.

Example 5.2 Explore the influence of noise on the AR spectrum specifi-
cally with regard to the ability to detect two closely related sinusoids.

Solution The program defines a vector, noise, that specifies four different
levels of SNR (0, -4, -9, and -15 db). A loop is used to run through waveform
generation and power spectrum estimation for the four noise levels. The values
in noise are used with routine sig_noise to generate white noise of different
levels along with two closely spaced sin waves at 240 and 280 Hz. The Yule-
Walker AR method is used to determine the power spectrum, which is then
plotted. A 15th-order model is used.

% Example 5.2 and Figure 5.4
% Program to evaluate different modern spectral methods
% with regard to detecting a narrowband signal in various
% amounts of noise
clear all; close all;
N = 1024; % Size of arrays
fs = 1000; % Sample frequency
order = 15; % Model order
noise = [0 -4 -9 -15]; % Define SNR levels in db
for i = 1:4

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 5.4 Power spectra obtained using the AR Yule-Walker method with a
15th-order model. The waveform consisted of two sinusoids at 240 and 280 Hz
with various levels of noise. At the lowest noise levels, the two sinusoids are
clearly distinguished, but appear to merge into one at the higher noise levels.

% Generate two closely space sine waves in white noise
x = sig_noise([240 280],noise(i),N);
[PS,f] = pyulear(data,order,N,fs);
subplot(2,2,i); % Select subplot
plot(f,PS,’k’); % Plot power spectrum and label
text(200,max(PS),[’SNR: ’,num2str(noise(i)), ‘db’]);
xlabel(’Frequency (Hz)’); ylabel(’PS ’);

end

The output of this Example is presented in Figure 5.4. Note that the sinu-
soids are clearly identified at the two lower noise levels, but appear to merge

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

together for the higher noise levels. At the highest noise level, only a single,
broad peak can be observed at a frequency that is approximately the average of
the two sine wave frequencies. The number of points used will also strongly
influence the resolution of all spectral methods. This behavior is explored in the
problems at the end of this chapter.

NON-PARAMETRIC EIGENANALYSIS
FREQUENCY ESTIMATION

Eigenanalysis spectral methods are promoted as having better resolution and
better frequency estimation characteristics, especially at high noise levels.* They
are particularly effective in identifying sinusoidal, exponential, or other narrow-
band processes in white noise as these methods can eliminate much of the noise
contribution. However, if the noise is not white, but contains some spectral
features (i.e., colored noise), performance can be degraded. The key feature of
eigenvector approaches is to divide the information contained in the data wave-
form (or autocorrelation function) into two subspaces: a signal subspace and a
noise subspace. The eigen-decomposition produces eigenvalues of decreasing
order, and, most importantly, eigenvectors that are orthonormal. Since all the
eigenvectors are orthonormal, if those eigenvectors that are deemed part of the
noise subspace are eliminated, the influence of that noise is effectively elimi-
nated. Functions can be computed based on either signal or noise subspace and
can be plotted in the frequency domain. Such plots generally show sharp peaks
where sinusoids or narrowband processes exist. Unlike parametric methods dis-
cussed above, these techniques are not considered true power spectral estima-
tors, since they do not preserve signal power, nor can the autocorrelation se-
quence be reconstructed by applying the Fourier transform to these estimators.
Better termed frequency estimators, they provide spectra in relative units.

The most problematic aspect of applying eigenvector spectral analysis is
selecting the appropriate dimension of the signal (or noise) subspace. If the
number of narrowband processes is known, then the signal subspace can be
dimensioned on this basis; since each real sinusoid is the sum of two complex
exponentials, the signal subspace dimension should be twice the number of sinu-
soids, or narrowband processes present. In some applications the signal subspace
can be determined by the size of the eigenvalues; however, this method does
not often work in practice, particularly with short data segments† [Marple,

*Another application of eigen-decomposition, principal component analysis, will be presented in
Chapter 9.

†A similar use of eigenvalues is the determination of dimension in multivariate data as shown in
Chapter 9. The Scree plot, a plot of eigenvalue against eigenvalue numbers is sometime used to
estimate signal subspace dimension (see Figure 9.7). This plot is also found in Example 5.3.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

1987]. As with the determination of the order of an AR model, the determination
of the signal subspace often relies the on trial-and-error approach.

Figure 5.5 shows the importance of subspace dimension and illustrates
both the strength and weaknesses of eigenvector spectral analysis. All four spec-
tra were obtained from the same small data set (N = 32) consisting of two
closely spaced sinusoids (320 and 380 Hz) in white noise (SNR = -7 db). Figure
5.5A shows the spectrum obtained using the classical, FFT-based Welch
method. The other three plots show spectra obtained using eigenvector analysis,
but with different partitions between the signal and noise subspaces. In Figure
5.5B, the spectrum was obtained using a signal subspace dimension of three. In
this case, the size of the signal subspace is not large enough to differentiate

FIGURE 5.5 Spectra produced from a short data sequence (N = 32) containing
two closely spaced sinusoids (320 and 380 Hz) in white noise (SNR = 7 db). The
upper-left plot was obtained using the classical Welch method while the other
three use eigenvector analysis with different partitions between the signal and
noise subspace.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

between the two closely spaced sinusoids, and, indeed, only a single peak is
shown. When the signal subspace dimension is increased to 6 (Figure 5.5C) the
two sinusoidal peaks are clearly distinguished and show better separation than
with the classical method. However, when the signal subspace is enlarged fur-
ther to a dimension of 11 (Figure 5.5D), the resulting spectrum contains small
spurious peaks, and the two closely spaced sinusoids can no longer be distin-
guished. Hence, a signal subspace that is too large can be even more detrimental
than one that is too small.

MATLAB Implementation

Two popular versions of frequency estimation based on eigenanalysis are the
Pisarenko harmonic decomposition (PHP) and the MUltiple SIgnal Classifica-
tions (MUSIC) algorithms. These two eigenvector spectral analysis methods are
available in the MATLAB Signal Processing Toolbox. Both methods have the
same calling structure, a structure similar to that used by the AR routines. The
command to evoke MUSIC algorithm is:

[PS, f,v,e] = pmusic(x, [p thresh], nfft, Fs, window, noverlap);

The last four input arguments are optional and have the same meaning as
in pwelch, except that if window is a scalar or omitted, a rectangular window
is used (as opposed to a Hamming window). The second argument is used to
control the dimension of the signal (or noise) subspace. Since this parameter is
critical to the successful application of the eigenvector approach, extra flexibil-
ity is provided. This argument can be either a scalar or vector. If only a single
number is used, it will be taken as p, the dimension of the signal subspace. If
the optional thresh is included, then eigenvalues below thresh times the mini-
mum eigenvalue (i.e., thresh × λmin) will be assigned to the noise subspace;
however, p still specifies the maximum signal subspace. Thus, thresh can be
used to reduce the signal subspace dimension below that specified by p. To be
meaningful, thresh must be > 1, otherwise the noise threshold would be < λmin

and its subspace dimension would be 0 (hence, if thresh < 1 it is ignored).
Similarly p must be < n, the dimension of the eigenvectors. The dimension of
the eigenvectors, n, is either nfft, or if not specified, the default value of 256.
Alternatively, n is the size of the data matrix if the corr option is used, and the
input is the correlation matrix as described below.

As suggested above, the data argument, x, is also more flexible. If x is a
vector, then it is taken as one observation of the signal as in previous AR and
Welch routines. However, x can also be a matrix in which case the routine
assumes that each row of x is a separate observation of the signal. For example,
each row could be the output of an array of sensors or a single response in a

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

response ensemble. Such data are termed multivariate and are discussed in
Chapter 9. Finally, the input argument x could be the correlation matrix. In this
case, x must be a square matrix and the argument ‘corr’ should be added to
the input sequence anywhere after the argument p. If the input is the correlation
matrix, then the arguments window and noverlap have no meaning and are
ignored.

The only required output argument is PS, which contains the power spec-
trum (more appropriately termed the pseudospectrum due to the limitation de-
scribed previously). The second output argument, f, is the familiar frequency
vector useful in plotting. The output argument, v, following f, is a matrix of
eigenvectors spanning the noise subspace (one per column) and the final output
argument, e, is either a vector of singular values (squared) or a vector of eigen-
values of the correlation matrix when the input argument ‘corr’ is used. An
example of the use of the pmusic routine is given in the example below. An
alternative eigenvector method can be implemented using the call peig. This
routine has a calling structure identical to that of pmusic.

Example 5.3 This example compares classical, autoregressive and
eigenanalysis spectral analysis methods, plots the singular values, generates Fig-
ure 5.6, and uses an optimum value for AR model order and eigenanalysis
subspace dimension.

% Example 5.3 and Figure 5.6
% Compares FFT-based, AR, and eigenanalysis spectral methods
%
close all; clear all;
N = 1024; % Size of arrays
fs = 1000; % Sampling frequency
%
% Generate a spectra of sinusoids and noise
[data,t] = sig_noise([50 80 240 400],-10,N);
%
% Estimate the Welch spectrum for comparison, no window and
% no overlap
[PS,f] = pwelch(x,N,[],[],fs);
subplot(2,2,1); % Plot spectrum and label
plot(f,PS,’k’);
.......axis, labels, title.......

% Calculate the modified covariance spectrum for comparison
subplot(2,2,2); % Plot spectrum and label
[PS,f] = pmcov(x,15,N,fs);
plot(f,PS,’k’);
.......labels, title.......

% Generate the eigenvector spectrum using the MUSIC method

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 5.6 Spectrum obtained using 3 different methods applied to a waveform
containing 4 equal amplitude sinusoids at frequencies of 50, 80, 240, and 400 Hz
and white noise (SNR = -10 db; N = 1024). The eigenvector method (C) most
clearly identifies the four components. The singular values determined from the
eigenvalues (D) show a possible break or change in slope around n = 4 and an-
other at n = 9, the latter being close to the actual signal subspace of 8.

% no window and no overlap
subplot(2,2,3);
[PS,f] = pmusic(x,11,N,fs);
plot(f,PS,’k’); % Plot spectrum and label
.......labels, title.......

%
% Get the singular values from the eigenvector routine
% and plot. Use high subspace dimension to get many singular
% values
subplot(2,2,4);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

[PS,f,evects,svals] = % Get eigenvalues (svals)
pmusic(x,30,N, fs);

plot(svals,’k’); % Plot singular values
.......labels, title.......

The plots produced by Example 5.3 are shown in Figure 5.6, and the
strength of the eigenvector method for this task is apparent. In this example,
the data length was quite long (N = 1024), but the SNR was low (-10 db). The
signal consists of four equal amplitude sinusoids, two of which are closely
spaced (50 and 80 Hz). While the spectrum produced by the classical Welch
method does detect the four peaks, it also shows a number of other peaks in
response to the noise. It would be difficult to determine, definitively and
uniquely, the signal peaks from this spectrum. The AR method also detects the
four peaks and greatly smooths the noise, but like the Welch method it shows
spurious peaks related to the noise, and the rounded spectral shapes make it
difficult to accurately determine the frequencies of the peaks. The eigenvector
method not only resolves the four peaks, but provides excellent frequency reso-
lution.

Figure 5.6 also shows a plot of the singular values as determined by
pmusic. This plot can be used to estimate the dimensionality of multivariate
data as detailed in Chapter 9. Briefly, the curve is examined for a break point
between a steep and gentle slope, and this break point is taken as the dimension-
ality of the signal subspace. The idea is that a rapid decrease in the singular
values is associated with the signal while a slower decrease indicates that the
singular values are associated with the noise. Indeed, a slight break is seen around
9, approximately the correct value of the signal subspace. Unfortunately, well-
defined break points are not always found when real data are involved.

The eigenvector method also performs well with short data sets. The be-
havior of the eigenvector method with short data sets and other conditions is
explored in the problems.

Most of the examples provided evaluate the ability of the various spectral
methods to identify sinusoids or narrowband processes in the presence of noise,
but what of a more complex spectrum? Example 5.4 explores the ability of
the classical (FFT), model-based, and eigenvalue methods in estimating a more
complicated spectrum. In this example, we use a linear process (one of the
filters described in Chapter 4) driven by white noise to create a complicated
broadband spectrum. Since the filter is driven by white noise, the spectrum of
its output waveform should be approximately the same as the transfer function
of the filter itself. The various spectral analysis techniques are applied to this
waveform and their ability to estimate the actual filter Transfer Function is
evaluated. The derivative FIR filter of Example 4.6 will be used, and its transfer
function will be evaluated directly from the filter coefficients using the FFT.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Example 5.4 This example is designed to compare the ability of several
spectral analysis approaches, classical, model-based, and eigenvalue, to estimate
a complex, broadband spectrum. The filter is the same as that used in Example
4.6 except that the derivative cutoff frequency has been increased to 0.25 fs/2.

% Example 5.4 and Figure 5.7
% Construct a spectrum for white noise passed through
% a FIR derivative filter. Use the filter in Example 4.6.
% Compare classical, model-based, and eigenvector methods

FIGURE 5.7 Estimation of a complex, broader-band spectrum using classical,
model-based, and eigenvalue methods. (A) Transfer function of filter used to gen-
erate the data plotted a magnitude squared. (B) Estimation of the data spectrum
using the Welch (FFT) method with 2 averages and maximum overlap. (C) Esti-
mation of data spectrum using AR model, p = 17. (D) Estimation of data spectrum
using an eigenvalue method with a subspace dimension of 13.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

%
close all; clear all;
Ts = 1/200; % Assume a Ts of 5 msec
fs = 1/Ts; % Sampling frequency
fc = .25 % Derivative cutoff frequency
N = 256; % Data length
%
% The initial code is the same as Example 4.6
x = randn(N,1); % Generate white noise
%
% Design filter and plot magnitude characteristics
f1 = [0 fc fc�.1 .9]; % Specify desired frequency curve
a = [0 (fc*fs*pi) 0 0]; % Upward slope until 0.25 fs then

% lowpass
b = remez(28,f1,a,’differentiator’);
x = filter(b,1,x); % Apply FIR filter
%
% Calculate and plot filter transfer function
PS = (abs(fft(b,N))).v2; % Calculate filter’s transfer

% function
subplot(2,2,1); %
f = (1:N/2)*N/(2*fs); % Generate freq. vector for

% plotting
plot(f,PS(1:N/2),’k’); % Plot filter frequency response
.......labels and text.......

%
[PS,f] = pwelch(x,N/4, % Use 99% overlap
(N/4)-1,[],fs);

subplot(2,2,2); % Classical method (Welch)
plot(f,PS,’k’);
.......labels and text.......

%
[PS,f] = pmcov(x,17,N,fs);
subplot(2,2,3); % Model-based (AR—Mod.

% Covariance)
plot(f,PS,’k’);
.......labels and text.......

%
[PS,f] = music(x,13,N,fs);
subplot(2,2,4); % Eigenvector method (Music)
plot(f,PS,’k’);
.......labels and text.......

The plots produced by this program are shown in Figure 5.7. In Figure
5.7A, the filter’s transfer function is plotted as the magnitude squared so that it
can be directly compared with the various spectral techniques that estimate the

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

power spectrum of the filter’s output waveform. The parameters associated
with the various approaches have been adjusted to produce as close a match
to the filter transfer function as possible. The influence of some of these
parameters is explored in the problems. The power spectrum produced by
the classical approach is shown in Figure 5.7B and roughly approximates
the spectral characteristics of the filter. The classical approach used the
Welch method and averaged four segments with a maximum overlap. The
model-based approach used the modified covariance method and a model
order of 17, and produced a spectrum similar to that produced by the Welch
method. The eigenvalue approach used a subspace of 13 and could only
approximate the actual spectrum as a series of narrowband processes. This
demonstrates that eigenvalue methods, while well-suited to identifying sinu-
soids in noise, are not good at estimating spectra that contain broader-band
features.

PROBLEMS

1. Use sig_noise to generate a 254-point data segment containing two
closely spaced sinusoids at 200 and 220 Hz both with SNR of -5 db. Find the
best model order to distinguish these two peaks with a minimum of spurious
peaks. Use the Burg method. Repeat with an SNR of -10 db.

2. Repeat Problem 1 above, but using a shorter data segment (N = 64), and a
higher SNR: -1 db. Now lower the SNR to -5 db as in Problem 1 and note the
severe degradation in performance.

3. Use sig_noise to generate a moderately long (N = 128) data segment con-
sisting of a moderate (SNR = -5 db) sinusoid at 200 Hz and weak (SNR = -9
db) sinusoid at 230 Hz. Compare the spectrum generated by Welch, AR, and
eigenvector methods.

4. Use the data in Problem 1 (SNR = −10db) to compare the operation of the
pmusic and peig MATLAB algorithms. Use a signal space of 7 and 13 for
each case. Plot power spectrum in db.

5. Use sig_noise to generate a short data segment (N = 64) containing two
closely spaced sinusoids in white noise (300 and 330 Hz). Both have SNR’s of
−3 db. Compare the spectra obtained with the Welch, AR–Burg, and eigenvalue
methods. For the AR model and eigenvector method chose a model or subspace
order ranging between 5 to 19. Show the best case frequency plots.

6. Construct a broadband spectrum by passing white noise through a filter as
in Example 5.4. Use the IIR bandpass filter of Example 4.7 (and Figure 4.16).
Generate the filter’s transfer function directly from the coefficients, as in Exam-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ple 5.4. (Note you will have to take the FFT of both numerator and denominator
coefficients and divide, or use freqz.) Next compare the spectrum produced by
the three methods, as in Example 5.4. Adjust the parameters for the best rela-
tionship between the filter’s actual spectrum and that produced by the various
methods.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

6

Time–Frequency Analysis

BASIC APPROACHES

The spectral analysis techniques developed thus far represent powerful signal
processing tools if one is not especially concerned with signal timing. Classical
or modern spectral methods provide a complete and appropriate solution for
waveforms that are stationary; that is, waveforms that do not change in their
basic properties over the length of the analysis (strictly speaking, that do not
change in their statistical properties). Yet many waveforms—particularly those
of biological origin–are not stationary, and change substantially in their proper-
ties over time. For example, the EEG signal changes considerably depending on
various internal states of the subject: i.e., meditation, sleep, eyes closed. More-
over, it is these changes with time that are often of primary interest. Fourier
analysis provides a good description of the frequencies in a waveform, but not
their timing. The Fourier transform “of a musical passage tells us what notes
are played, but it is extremely different to figure out when they are played”
(Hubbard, 1998). Such information must be embedded in the frequency spec-
trum since the Fourier transform is bilateral, and the musical passage can be
uniquely reconstructed using the inverse Fourier transform. However, timing is
encoded in the phase portion of the transform, and this encoding is difficult to
interpret and recover. In the Fourier transform, specific events in time are dis-
tributed across all of the phase components. In essence, a local feature in time
has been transformed into a global feature in phase.

Timing information is often of primary interest in many biomedical sig-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

nals, and this is also true for medical images where the analogous information is
localized in space. A wide range of approaches have been developed to try to
extract both time and frequency information from a waveform. Basically they can
be divided into two groups: time–frequency methods and time–scale methods.
The latter are better known as Wavelet analyses, a popular new approach described
in the next chapter. This chapter is dedicated to time–frequency methods.

Short-Term Fourier Transform: The Spectrogram

The first time–frequency methods were based on the straightforward approach
of slicing the waveform of interest into a number of short segments and perform-
ing the analysis on each of these segments, usually using the standard Fourier
transform. A window function similar to those described in Chapter 3 is applied
to a segment of data, effectively isolating that segment from the overall wave-
form, and the Fourier transform is applied to that segment. This is termed the
spectrogram or “short-term Fourier transform” (STFT)* since the Fourier
Transform is applied to a segment of data that is shorter, often much shorter,
than the overall waveform. Since abbreviated data segments are used, selecting
the most appropriate window length can be critical. This method has been suc-
cessfully applied in a number of biomedical applications.

The basic equation for the spectrogram in the continuous domain is:

X(t,f) = ∫
∞

−∞
x(τ)w(t − τ)e−jπ fτ

dτ (1)

where w(t-τ) is the window function and τ is the variable that slides the window
across the waveform, x(t).

The discrete version of Eq. (1) is the same as was given in Chapter 2 for
a general probing function (Eq. (11), Chapter 2) where the probing function is
replaced by a family of sinusoids represented in complex format (i.e., e- jnm/N):

X(m,k) = ∑
N

n=1

x(n) [W(n − k)e−jnm/N] (2)

There are two main problems with the spectrogram: (1) selecting an opti-
mal window length for data segments that contain several different features may
not be possible, and (2) the time–frequency tradeoff: shortening the data length,
N, to improve time resolution will reduce frequency resolution which is approxi-
mately 1/(NTs). Shortening the data segment could also result in the loss of low
frequencies that are no longer fully included in the data segment. Hence, if the

*The terms STFT and spectrogram are used interchangeably and we will follow the same, slightly
confusing convention here. Essentially the reader should be familiar with both terms.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

window is made smaller to improve the time resolution, then the frequency
resolution is degraded and visa versa. This time–frequency tradeoff has been
equated to an uncertainty principle where the product of frequency resolution
(expressed as bandwidth, B) and time, T, must be greater than some minimum.
Specifically:

BT ≥ 1
4π

(3)

The trade-off between time and frequency resolution inherent in the STFT,
or spectrogram, has motivated a number of other time–frequency methods as
well as the time–scale approaches discussed in the next chapter. Despite these
limitations, the STFT has been used successfully in a wide variety of problems,
particularly those where only high frequency components are of interest and
frequency resolution is not critical. The area of speech processing has benefitted
considerably from the application of the STFT. Where appropriate, the STFT is
a simple solution that rests on a well understood classical theory (i.e., the Fou-
rier transform) and is easy to interpret. The strengths and weaknesses of the
STFT are explored in the examples in the section on MATLAB Implementation
below and in the problems at the end of the chapter.

Wigner-Ville Distribution: A Special Case of Cohen’s Class

A number of approaches have been developed to overcome some of the short-
comings of the spectrogram. The first of these was the Wigner-Ville distribu-
tion* which is also one of the most studied and best understood of the many
time–frequency methods. The approach was actually developed by Wigner for
use in physics, but later applied to signal processing by Ville, hence the dual
name. We will see below that the Wigner-Ville distribution is a special case of
a wide variety of similar transformations known under the heading of Cohen’s
class of distributions. For an extensive summary of these distributions see Bou-
dreaux-Bartels and Murry (1995).

The Wigner-Ville distribution, and others of Cohen’s class, use an approach
that harkens back to the early use of the autocorrelation function for calculating
the power spectrum. As noted in Chapter 3, the classic method for determining
the power spectrum was to take the Fourier transform of the autocorrelation
function (Eq. (14), Chapter 3). To construct the autocorrelation function, the
waveform is compared with itself for all possible relative shifts, or lags (Eq.
(16), Chapter 2). The equation is repeated here in both continuous and discreet
form:

*The term distribution in this usage should more properly be density since that is the equivalent
statistical term (Cohen, 1990).

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

rxx(τ) = ∫
∞

−∞
x(t) x(t + τ) dt (4)

and

rxx(n) = ∑
M

k=1

x(k) x(k + n) (5)

where τ and n are the shift of the waveform with respect to itself.
In the standard autocorrelation function, time is integrated (or summed)

out of the result, and this result, rxx(τ), is only a function of the lag, or shift, τ.
The Wigner-Ville, and in fact all of Cohen’s class of distributions, use a varia-
tion of the autocorrelation function where time remains in the result. This is
achieved by comparing the waveform with itself for all possible lags, but instead
of integrating over time, the comparison is done for all possible values of time.
This comparison gives rise to the defining equation of the so-called instanta-
neous autocorrelation function:

Rxx(t,τ) = x(t + τ/2)x*(t − τ/2) (6)

Rxx(n,k) = x(k + n)x*(k − n) (7)

where τ and n are the time lags as in autocorrelation, and * represents the
complex conjugate of the signal, x. Most actual signals are real, in which case
Eq. (4) can be applied to either the (real) signal itself, or a complex version of
the signal known as the analytic signal. A discussion of the advantages of using
the analytic signal along with methods for calculating the analytic signal from
the actual (i.e., real) signal is presented below.

The instantaneous autocorrelation function retains both lags and time, and
is, accordingly, a two-dimensional function. The output of this function to a
very simple sinusoidal input is shown in Figure 6.1 as both a three-dimensional
and a contour plot. The standard autocorrelation function of a sinusoid would
be a sinusoid of the same frequency. The instantaneous autocorrelation func-
tion output shown in Figure 6.1 shows a sinusoid along both the time and τ
axis as expected, but also along the diagonals as well. These cross products
are particularly apparent in Figure 6.1B and result from the multiplication in
the instantaneous autocorrelation equation, Eq. (7). These cross products are
a source of problems for all of the methods based on the instantaneous autocor-
relation function.

As mentioned above, the classic method of computing the power spectrum
was to take the Fourier transform of the standard autocorrelation function. The
Wigner-Ville distribution echoes this approach by taking the Fourier transform

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 6.1A The instantaneous autocorrelation function of a two-cycle cosine
wave plotted as a three-dimensional plot.

FIGURE 6.1B The instantaneous autocorrelation function of a two-cycle cosine
wave plotted as a contour plot. The sinusoidal peaks are apparent along both
axes as well as along the diagonals.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

of the instantaneous autocorrelation function, but only along the τ (i.e., lag)
dimension. The result is a function of both frequency and time. When the one-
dimensional power spectrum was computed using the autocorrelation function,
it was common to filter the autocorrelation function before taking the Fourier
transform to improve features of the resulting power spectrum. While no such
filtering is done in constructing the Wigner-Ville distribution, all of the other
approaches apply a filter (in this case a two-dimensional filter) to the instanta-
neous autocorrelation function before taking the Fourier transform. In fact, the
primary difference between many of the distributions in Cohen’s class is simply
the type of filter that is used.

The formal equation for determining a time–frequency distribution from
Cohen’s class of distributions is rather formidable, but can be simplified in
practice. Specifically, the general equation is:

ρ(t,f) = ∫∫∫g(v,τ)e j2πv(u − τ)
x(u + 1

2τ)x*(u − 1
2τ)e−j2πfr

dv du dτ (8)

where g(v,τ) provides the two-dimensional filtering of the instantaneous auto-
correlation and is also know as a kernel. It is this filter-like function that differ-
entiates between the various distributions in Cohen’s class. Note that the rest
of the integrand is the Fourier transform of the instantaneous autocorrelation
function.

There are several ways to simplify Eq. (8) for a specific kernel. For the
Wigner-Ville distribution, there is no filtering, and the kernel is simply 1 (i.e.,
g(v,τ) = 1) and the general equation of Eq. (8), after integration by dv, reduces
to Eq. (9), presented in both continuous and discrete form.

W(t,f) = ∫
∞

−∞
e
−j2π fτ

x(t − τ
2)x(t − τ

2)dτ (9a)

W(n,m) = 2∑
∞

k=−∞

e
−2πnm/N

x(n + k)x*(n − k) (9b)

W(n,m) = ∑
∞

m=−∞

e
−2πnm/N

Rx(n,k) = FFTk[Rx(n,k)] (9c)

Note that t = nTs, and f = m/(NTs)

The Wigner-Ville has several advantages over the STFT, but also has a
number of shortcomings. It greatest strength is that produces “a remarkably
good picture of the time-frequency structure” (Cohen, 1992). It also has favor-
able marginals and conditional moments. The marginals relate the summation
over time or frequency to the signal energy at that time or frequency. For exam-
ple, if we sum the Wigner-Ville distribution over frequency at a fixed time, we
get a value equal to the energy at that point in time. Alternatively, if we fix

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

frequency and sum over time, the value is equal to the energy at that frequency.
The conditional moment of the Wigner-Ville distribution also has significance:

finst =
1
p(t)

∫
∞

−∞
fρ(f,t)df (10)

where p(t) is the marginal in time.
This conditional moment is equal to the so-called instantaneous fre-

quency. The instantaneous frequency is usually interpreted as the average of the
frequencies at a given point in time. In other words, treating the Wigner-Ville
distribution as an actual probability density (it is not) and calculating the mean
of frequency provides a term that is logically interpreted as the mean of the
frequencies present at any given time.

The Wigner-Ville distribution has a number of other properties that may
be of value in certain applications. It is possible to recover the original signal,
except for a constant, from the distribution, and the transformation is invariant
to shifts in time and frequency. For example, shifting the signal in time by a
delay of T seconds would produce the same distribution except shifted by T on
the time axis. The same could be said of a frequency shift (although biological
processes that produce shifts in frequency are not as common as those that
produce time shifts). These characteristics are also true of the STFT and some
of the other distributions described below. A property of the Wigner-Ville distri-
bution not shared by the STFT is finite support in time and frequency. Finite
support in time means that the distribution is zero before the signal starts and
after it ends, while finite support in frequency means the distribution does not
contain frequencies beyond the range of the input signal. The Wigner-Ville does
contain nonexistent energies due to the cross products as mentioned above and
observed in Figure 6.1, but these are contained within the time and frequency
boundaries of the original signal. Due to these cross products, the Wigner-Ville
distribution is not necessarily zero whenever the signal is zero, a property Cohen
called strong finite support. Obviously, since the STFT does not have finite sup-
port it does not have strong finite support. A few of the other distributions do
have strong finite support. Examples of the desirable attributes of the Wigner-Ville
will be explored in the MATLAB Implementation section, and in the problems.

The Wigner-Ville distribution has a number of shortcomings. Most serious
of these is the production of cross products: the demonstration of energies at
time–frequency values where they do not exist. These phantom energies have
been the prime motivator for the development of other distributions that apply
various filters to the instantaneous autocorrelation function to mitigate the dam-
age done by the cross products. In addition, the Wigner-Ville distribution can
have negative regions that have no meaning. The Wigner-Ville distribution also
has poor noise properties. Essentially the noise is distributed across all time and

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

frequency including cross products of the noise, although in some cases, the
cross products and noise influences can be reduced by using a window. In
such cases, the desired window function is applied to the lag dimension of the
instantaneous autocorrelation function (Eq. (7)) similar to the way it was applied
to the time function in Chapter 3. As in Fourier transform analysis, windowing
will reduce frequency resolution, and, in practice, a compromise is sought be-
tween a reduction of cross products and loss of frequency resolution. Noise
properties and the other weaknesses of the Wigner-Ville distribution along with
the influences of windowing are explored in the implementation and problem
sections.

The Choi-Williams and Other Distributions

The existence of cross products in the Wigner-Ville transformation has motived
the development of other distributions. These other distributions are also defined
by Eq. (8); however, now the kernel, g(v,τ), is no longer 1. The general equation
(Eq. (8)) can be simplified two different ways: for any given kernel, the integra-
tion with respect to the variable v can be performed in advance since the rest of
the transform (i.e., the signal portion) is not a function of v; or use can be made
of an intermediate function, called the ambiguity function.

In the first approach, the kernel is multiplied by the exponential in Eq. (9)
to give a new function, G(u,τ):

G(u,τ) = ∫
∞

−∞
g(v,τ)e jπvu

dv (11)

where the new function, G(u,τ) is referred to as the determining function
(Boashash and Reilly, 1992). Then Eq. (9) reduces to:

ρ(t,f) = ∫∫G(u − t,τ)x(u + 1
2τ)x*(u − 1

2τ)e−2π fτ
dudτ (12)

Note that the second set of terms under the double integral is just the
instantaneous autocorrelation function given in Eq. (7). In terms of the determin-
ing function and the instantaneous autocorrelation function, the discrete form of
Eq. (12) becomes:

ρ(t,f) = ∑
M

τ=0

Rx(t,τ)G(t,τ)e−j2π fτ (13)

where t = u/fs. This is the approach that is used in the section on MATLAB
implementation below. Alternatively, one can define a new function as the in-
verse Fourier transform of the instantaneous autocorrelation function:

Ax(θ,τ) ∆= IFTt[x(t + τ/2)x*(t − τ/2)] = IFTt[Rx(t,τ)] (14)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

where the new function, Ax(θ,τ), is termed the ambiguity function. In this case,
the convolution operation in Eq. (13) becomes multiplication, and the desired
distribution is just the double Fourier transform of the product of the ambiguity
function times the instantaneous autocorrelation function:

ρ(t,f) = FFTt{FFTf[Ax(θ,τ)Rx(t,τ)]} (15)

One popular distribution is the Choi-Williams, which is also referred to as
an exponential distribution (ED) since it has an exponential-type kernel. Specifi-
cally, the kernel and determining function of the Choi-Williams distribution
are:

g(v,τ) = e−v2τ2/σ (16)

After integrating the equation above as in Eq. (11), G(t,τ) becomes:

G(t,τ) = √σ/π
2τ

e
−σ t2/4τ2

(17)

The Choi-Williams distribution can also be used in a modified form that
incorporates a window function and in this form is considered one of a class of
reduced interference distributions (RID) (Williams, 1992). In addition to having
reduced cross products, the Choi-Williams distribution also has better noise
characteristics than the Wigner-Ville. These two distributions will be compared
with other popular distributions in the section on implementation.

Analytic Signal

All of the transformations in Cohen’s class of distributions produce better results
when applied to a modified version of the waveform termed the Analytic signal,
a complex version of the real signal. While the real signal can be used, the
analytic signal has several advantages. The most important advantage is due to
the fact that the analytic signal does not contain negative frequencies, so its use
will reduce the number of cross products. If the real signal is used, then both
the positive and negative spectral terms produce cross products. Another benefit
is that if the analytic signal is used the sampling rate can be reduced. This is
because the instantaneous autocorrelation function is calculated using evenly
spaced values, so it is, in fact, undersampled by a factor of 2 (compare the
discrete and continuous versions of Eq. (9)). Thus, if the analytic function is
not used, the data must be sampled at twice the normal minimum; i.e., twice
the Nyquist frequency or four times fMAX.* Finally, if the instantaneous frequency

*If the waveform has already been sampled, the number of data points should be doubled with
intervening points added using interpolation.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

is desired, it can be determined from the first moment (i.e., mean) of the distri-
bution only if the analytic signal is used.

Several approaches can be used to construct the analytic signal. Essen-
tially one takes the real signal and adds an imaginary component. One method
for establishing the imaginary component is to argue that the negative frequen-
cies that are generated from the Fourier transform are not physical and, hence,
should be eliminated. (Negative frequencies are equivalent to the redundant fre-
quencies above fs/2. Following this logic, the Fourier transform of the real signal
is taken, the negative frequencies are set to zero, or equivalently, the redundant
frequencies above fs/2, and the (now complex) signal is reconstructed using the
inverse Fourier transform. This approach also multiplies the positive frequen-
cies, those below fs/2, by 2 to keep the overall energy the same. This results in
a new signal that has a real part identical to the real signal and an imaginary
part that is the Hilbert Transform of the real signal (Cohen, 1989). This is the
approach used by the MATLAB routine hilbert and the routine hilber on
the disk, and the approach used in the examples below.

Another method is to perform the Hilbert transform directly using the
Hilbert transform filter to produce the complex component:

z(n) = x(n) + j H[x(n)] (18)

where H denotes the Hilbert transform, which can be implemented as an FIR
filter (Chapter 4) with coefficients of:

h(n) = �2 sin2(πn/2)
πn

for n ≠ 0

0 for n = 0
(19)

Although the Hilbert transform filter should have an infinite impulse re-
sponse length (i.e., an infinite number of coefficients), in practice an FIR filter
length of approximately 79 samples has been shown to provide an adequate
approximation (Bobashash and Black, 1987).

MATLAB IMPLEMENTATION

The Short-Term Fourier Transform

The implementation of the time–frequency algorithms described above is straight-
forward and is illustrated in the examples below. The spectrogram can be gener-
ated using the standard fft function described in Chapter 3, or using a special
function of the Signal Processing Toolbox, specgram. The arguments for spec-
gram (given on the next page) are similar to those use for pwelch described in
Chapter 3, although the order is different.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

[B,f,t] = specgram(x,nfft,fs,window,noverlap)

where the output, B, is a complex matrix containing the magnitude and phase of
the STFT time–frequency spectrum with the rows encoding the time axis and
the columns representing the frequency axis. The optional output arguments, f
and t, are time and frequency vectors that can be helpful in plotting. The input
arguments include the data vector, x, and the size of the Fourier transform win-
dow, nfft. Three optional input arguments include the sampling frequency, fs,
used to calculate the plotting vectors, the window function desired, and the
number of overlapping points between the windows. The window function is
specified as in pwelch: if a scalar is given, then a Hanning window of that
length is used.

The output of all MATLAB-based time–frequency methods is a function
of two variables, time and frequency, and requires either a three-dimensional
plot or a two-dimensional contour plot. Both plotting approaches are available
through MATLAB standard graphics and are illustrated in the example below.

Example 6.1 Construct a time series consisting of two sequential sinu-
soids of 10 and 40 Hz, each active for 0.5 sec (see Figure 6.2). The sinusoids
should be preceded and followed by 0.5 sec of no signal (i.e., zeros). Determine
the magnitude of the STFT and plot as both a three-dimensional grid plot and
as a contour plot. Do not use the Signal Processing Toolbox routine, but develop
code for the STFT. Use a Hanning window to isolate data segments.

Example 6.1 uses a function similar to MATLAB’s specgram, except that
the window is fixed (Hanning) and all of the input arguments must be specified.
This function, spectog, has arguments similar to those in specgram. The code
for this routine is given below the main program.

FIGURE 6.2 Waveform used in Example 6.1 consisting of two sequential sinu-
soids of 10 and 40 Hz. Only a portion of the 0.5 sec endpoints are shown.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Example 6.1 and Figures 6.2, 6.3, and 6.4
% Example of the use of the spectrogram
% Uses function spectog given below
%
clear all; close all;
% Set up constants
fs = 500; % Sample frequency in Hz
N = 1024; % Signal length
f1 = 10; % First frequency in Hz
f2 = 40; % Second frequency in Hz
nfft = 64; % Window size
noverlap = 32; % Number of overlapping points (50%)
%
% Construct a step change in frequency
tn = (1:N/4)/fs; % Time vector used to create sinusoids
x = [zeros(N/4,1); sin(2*pi*f1*tn)’; sin(2*pi*f2*tn)’...
zeros(N/4,1)];

t = (1:N)/fs; % Time vector used to plot
plot(t,x,’k’);
....labels....

%CouldusetheroutinespecgramfromtheMATLABSignalProcessing
% Toolbox: [B,f,t] = specgram(x,nfft,fs,window,noverlap),
% but in this example, use the “spectog” function shown below.

FIGURE 6.3 Contour plot of the STFT of two sequential sinusoids. Note the broad
time and frequency range produced by this time–frequency approach. The ap-
pearance of energy at times and frequencies where no energy exists in the origi-
nal signal is evident.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 6.4 Time–frequency magnitude plot of the waveform in Figure 6.3 using
the three-dimensional grid technique.

%
[B,f,t] = spectog(x,nfft,fs,noverlap);
B = abs(B); % Get spectrum magnitude
figure;
mesh(t,f,B); % Plot Spectrogram as 3-D mesh
view(160,40); % Change 3-D plot view
axis([0 2 0 100 0 20]); % Example of axis and
xlabel(’Time (sec)’); % labels for 3-D plots
ylabel(’Frequency (Hz)’);

figure
contour(t,f,B); % Plot spectrogram as contour plot
....labels and axis....

The function spectog is coded as:

function [sp,f,t] = spectog(x,nfft,fs,noverlap);
% Function to calculate spectrogram

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Output arguments
% sp spectrogram
% t time vector for plotting
% f frequency vector for plotting
% Input arguments
% x data
% nfft window size
% fs sample frequency
% noverlap number of overlapping points in adjacent segments
% Uses Hanning window
%
[N xcol] = size(x);
if N < xcol
x = x’; % Insure that the input is a row
N = xcol; % vector (if not already)

end
incr = nfft—noverlap; % Calculate window increment
hwin = fix(nfft/2); % Half window size
f = (1:hwin)*(fs/nfft); % Calculate frequency vector
% Zero pad data array to handle edge effects
x_mod = [zeros(hwin,1); x; zeros(hwin,1)];
%
j = 1; % Used to index time vector
% Calculate spectra for each window position
% Apply Hanning window
for i = 1:incr:N
data = x_mod(i:i�nfft-1) .* hanning(nfft);
ft = abs(fft(data)); % Magnitude data
sp(:,j) = ft(1:hwin); % Limit spectrum to meaningful

% points
t(j) = i/fs; % Calculate time vector
j = j � 1; % Increment index

end

Figures 6.3 and 6.4 show that the STFT produces a time–frequency plot
with the step change in frequency at approximately the correct time, although
neither the step change nor the frequencies are very precisely defined. The lack
of finite support in either time or frequency is evidenced by the appearance of
energy slightly before 0.5 sec and slightly after 1.5 sec, and energies at frequen-
cies other than 10 and 40 Hz. In this example, the time resolution is better than
the frequency resolution. By changing the time window, the compromise be-
tween time and frequency resolution could be altered. Exploration of this trade-
off is given as a problem at the end of this chapter.

A popular signal used to explore the behavior of time–frequency methods
is a sinusoid that increases in frequency over time. This signal is called a chirp

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

signal because of the sound it makes if treated as an audio signal. A sample of
such a signal is shown in Figure 6.5. This signal can be generated by multiplying
the argument of a sine function by a linearly increasing term, as shown in Exam-
ple 6.2 below. Alternatively, the Signal Processing Toolbox contains a special
function to generate a chip that provides some extra features such as logarithmic
or quadratic changes in frequency. The MATLAB chirp routine is used in a
latter example. The output of the STFT to a chirp signal is demonstrated in
Figure 6.6.

Example 6.2 Generate a linearly increasing sine wave that varies be-
tween 10 and 200 Hz over a 1sec period. Analyze this chirp signal using the
STFT program used in Example 6.1. Plot the resulting spectrogram as both a 3-
D grid and as a contour plot. Assume a sample frequency of 500 Hz.

% Example 6.2 and Figure 6.6
% Example to generate a sine wave with a linear change in frequency
% Evaluate the time–frequency characteristic using the STFT
% Sine wave should vary between 10 and 200 Hz over a 1.0 sec period
% Assume a sample rate of 500 Hz
%
clear all; close all;
% Constants
N = 512; % Number of points

FIGURE 6.5 Segment of a chirp signal, a signal that contains a single sinusoid
that changes frequency over time. In this case, signal frequency increases linearly
with time.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 6.6 The STFT of a chirp signal, a signal linearly increasing in frequency
from 10 to 200 Hz, shown as both a 3-D grid and a contour plot.

fs = 500; % Sample freq;
f1 = 10; % Minimum frequency
f2 = 200; % Maximum frequency
nfft = 32; % Window size
t = (1:N)/fs; % Generate a time

% vector for chirp
% Generate chirp signal (use a linear change in freq)
fc = ((1:N)*((f2-f1)/N)) � f1;
x = sin(pi*t.*fc);
%
% Compute spectrogram using the Hanning window and 50% overlap
[B,f,t] = spectog(x,nfft,fs,nfft/2); % Code shown above
%
subplot(1,2,1); % Plot 3-D and contour

% side-by-side
mesh(t,f,abs(B)); % 3-D plot
....labels, axis, and title....

subplot(1,2,2);
contour(t,f,abs(B)); % Contour plot
....labels, axis, and title....

The Wigner-Ville Distribution

The Wigner-Ville distribution will provide a much more definitive picture of
the time–frequency characteristics, but will also produce cross products: time–

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

frequency energy that is not in the original signal, although it does fall within
the time and frequency boundaries of the signal. Example 6.3 demonstrates these
properties on a signal that changes frequency abruptly, the same signal used in
Example 6.1with the STFT. This will allow a direct comparison of the two
methods.

Example 6.3 Apply the Wigner-Ville distribution to the signal of Exam-
ple 6.1. Use the analytic signal and provide plots similar to those of Example 6.1.

% Example 6.3 and Figures 6.7 and 6.8
% Example of the use of the Wigner-Ville distribution
% Applies the Wigner-Ville to data similar to that of Example
% 6.1, except that the data has been shortened from 1024 to 512
% to improve run time.
%
clear all; close all;
% Set up constants (same as Example 6–1)
fs = 500; % Sample frequency
N = 512; % Signal length
f1 = 10; % First frequency in Hz
f2 = 40; % Second frequency in Hz

FIGURE 6.7 Wigner-Ville distribution for the two sequential sinusoids shown in
Figure 6.3. Note that while both the frequency ranges are better defined than
in Figure 6.2 produced by the STFT, there are large cross products generated in
the region between the two actual signals (central peak). In addition, the distribu-
tions are sloped inward along the time axis so that onset time is not as precisely
defined as the frequency range.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 6.8 Contour plot of the Wigner-Ville distribution of two sequential sinu-
soids. The large cross products are clearly seen in the region between the actual
signal energy. Again, the slope of the distributions in the time domain make it
difficult to identify onset times.

%
% Construct a step change in frequency as in Ex. 6–1
tn = (1:N/4)/fs;
x = [zeros(N/4,1); sin(2*pi*f1*tn)’; sin(2*pi*f2*tn)’;
zeros(N/4,1)];

%
% Wigner-Ville analysis
x = hilbert(x); % Construct analytic function
[WD,f,t] = wvd(x,fs); % Wigner-Ville transformation
WD = abs(WD); % Take magnitude
mesh(t,f,WD); % Plot distribution
view(100,40); % Use different view
....Labels and axis....
figure
contour(t,f,WD); % Plot as contour plot
....Labels and axis....

The function wwd computes the Wigner-Ville distribution.

function [WD,f,t] = wvd(x,fs)
% Function to compute Wigner-Ville time–frequency distribution
% Outputs
% WD Wigner-Ville distribution
% f Frequency vector for plotting
% t Time vector for plotting

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Inputs
% x Complex signal
% fs Sample frequency
%
[N, xcol] = size(x);
if N < xcol % Make signal a column vector if necessary
x = x!; % Standard (non-complex) transpose
N = xcol;

end
WD = zeros(N,N); % Initialize output
t = (1:N)/fs; % Calculate time and frequency vectors
f = (1:N)*fs/(2*N);
%
%
%Compute instantaneous autocorrelation: Eq. (7)
for ti = 1:N % Increment over time
taumax = min([ti-1,N-ti,round(N/2)-1]);
tau = -taumax:taumax;
% Autocorrelation: tau is in columns and time is in rows
WD(tau-tau(1)�1,ti) = x(ti�tau) .* conj(x(ti-tau));

end
%
WD = fft(WD);

The last section of code is used to compute the instantaneous autocorrela-
tion function and its Fourier transform as in Eq. (9c). The for loop is used to
construct an array, WD, containing the instantaneous autocorrelation where each
column contains the correlations at various lags for a given time, ti. Each
column is computed over a range of lags, ± taumax. The first statement in the
loop restricts the range of taumax to be within signal array: it uses all the data
that is symmetrically available on either side of the time variable, ti. Note that
the phase of the lag signal placed in array WD varies by column (i.e., time).
Normally this will not matter since the Fourier transform will be taken over
each set of lags (i.e., each column) and only the magnitude will be used. How-
ever, the phase was properly adjusted before plotting the instantaneous autocor-
relation in Figure 6.1. After the instantaneous autocorrelation is constructed, the
Fourier transform is taken over each set of lags. Note that if an array is presented
to the MATLAB fft routine, it calculates the Fourier transform for each col-
umn; hence, the Fourier transform is computed for each value in time producing
a two-dimensional function of time and frequency.

The Wigner-Ville is particularly effective at detecting single sinusoids that
change in frequency with time, such as the chirp signal shown in Figure 6.5 and
used in Example 6.2. For such signals, the Wigner-Ville distribution produces
very few cross products, as shown in Example 6.4.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Example 6.4 Apply the Wigner-Ville distribution to a chirp signal the
ranges linearly between 20 and 200 Hz over a 1 second time period. In this
example, use the MATLAB chirp routine.

% Example 6.4 and Figure 6.9
% Example of the use of the Wigner-Ville distribution applied to
% a chirp
% Generates the chirp signal using the MATLAB chirp routine
%
clear all; close all;
% Set up constants % Same as Example 6.2
fs = 500; % Sample frequency
N = 512; % Signal length
f1 = 20; % Starting frequency in Hz
f2 = 200; % Frequency after 1 second (end)

% in Hz
%
% Construct “chirp” signal
tn = (1:N)/fs;

FIGURE 6.9 Wigner-Ville of a chirp signal in which a single sine wave increases
linearly with time. While both the time and frequency of the signal are well-
defined, the amplitude, which should be constant, varies considerably.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

x = chirp(tn,f1,1,f2)’; % MATLAB routine
%
% Wigner-Ville analysis
x = hilbert(x); % Get analytic function
[WD,f,t] = wvd(x,fs); % Wigner-Ville—see code above
WD = abs(WD); % Take magnitude
mesh(t,f,WD); % Plot in 3-D

.......3D labels, axis, view.......

If the analytic signal is not used, then the Wigner-Ville generates consider-
ably more cross products. A demonstration of the advantages of using the ana-
lytic signal is given in Problem 2 at the end of the chapter.

Choi-Williams and Other Distributions

To implement other distributions in Cohen’s class, we will use the approach
defined by Eq. (13). Following Eq. (13), the desired distribution can be obtained
by convolving the related determining function (Eq. (17)) with the instantaneous
autocorrelation function (Rx(t,τ); Eq. (7)) then taking the Fourier transform with
respect to τ. As mentioned, this is simply a two-dimensional filtering of the
instantaneous autocorrelation function by the appropriate filter (i.e., the deter-
mining function), in this case an exponential filter. Calculation of the instanta-
neous autocorrelation function has already been done as part of the Wigner-Ville
calculation. To facilitate evaluation of the other distributions, we first extract the
code for the instantaneous autocorrelation from the Wigner-Ville function, wvd
in Example 6.3, and make it a separate function that can be used to determine
the various distributions. This function has been termed int_autocorr, and
takes the data as input and produces the instantaneous autocorrelation function
as the output. These routines are available on the CD.

function Rx = int_autocorr(x)
% Function to compute the instantenous autocorrelation
% Output
% Rx instantaneous autocorrelation
% Input
% x signal
%
[N, xcol] = size(x);
Rx = zeros(N,N); % Initialize output
%
% Compute instantaneous autocorrelation
for ti = 1:N % Increment over time
taumax = min([ti-1,N-ti,round(N/2)-1]);
tau = -taumax:taumax;

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Rx(tau-tau(1)�1,ti) = x(ti�tau) .* conj(x(ti-tau));
end

The various members of Cohen’s class of distributions can now be imple-
mented by a general routine that starts with the instantaneous autocorrelation
function, evaluates the appropriate determining function, filters the instantaneous
autocorrelation function by the determining function using convolution, then
takes the Fourier transform of the result. The routine described below, cohen,
takes the data, sample interval, and an argument that specifies the type of distri-
bution desired and produces the distribution as an output along with time and
frequency vectors useful for plotting. The routine is set up to evaluate four
different distributions: Choi-Williams, Born-Jorden-Cohen, Rihaczek-Marge-
nau, with the Wigner-Ville distribution as the default. The function also plots
the selected determining function.

function [CD,f,t] = cohen(x,fs,type)
%FunctiontocomputeseveralofCohen’sclassoftime–frequencey
% distributions
%
% Outputs
% CD Desired distribution
% f Frequency vector for plotting
% t Time vector for plotting
%Inputs
% x Complex signal
% fs Sample frequency
% type of distribution. Valid arguements are:
% ’choi’ (Choi-Williams), ’BJC’ (Born-Jorden-Cohen);
% and ’R_M’ (Rihaczek-Margenau) Default is Wigner-Ville
%
% Assign constants and check input
sigma = 1; % Choi-Williams constant
L = 30; % Size of determining function
%
[N, xcol] = size(x);
if N < xcol % Make signal a column vector if
x = x’; % necessary
N = xcol;

end
t = (1:N)/fs; % Calculate time and frequency
f = (1:N) *(fs/(2*N)); % vectors for plotting
%
% Compute instantaneous autocorrelation: Eq. (7)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

CD = int_autocorr(x);
if type(1) == ’c’ % Get appropriate determining

% function
G = choi(sigma,L); % Choi-Williams

elseif type(1) == ’B’
G = BJC(L); % Born-Jorden-Cohen

elseif type(1) == ’R’
G = R_M(L); % Rihaczek-Margenau

else
G = zeros(N,N); % Default Wigner-Ville
G(N/2,N/2) = 1;

end
%
figure
mesh(1:L-1,1:L-1,G); % Plot determining function
xlabel(’N’); ylabel(’N’); % and label axis
zlabel(’G(,N,N)’);

%
% Convolve determining function with instantaneous
% autocorrelation
CD = conv2(CD,G); % 2-D convolution
CD = CD(1:N,1:N); % Truncate extra points produced

% by convolution
%
% Take FFT again, FFT taken with respect to columns
CD = flipud(fft(CD)); % Output distribution

The code to produce the Choi-Williams determining function is a straight-
forward implementation of G(t,τ) in Eq. (17) as shown below. The function is
generated for only the first quadrant, then duplicated in the other quadrants. The
function itself is plotted in Figure 6.10. The code for other determining functions
follows the same general structure and can be found in the software accompany-
ing this text.

function G = choi(sigma,N)
% Function to calculate the Choi-Williams distribution function
% (Eq. (17)
G(1,1) = 1; % Computeone quadrantthen expand
for j = 2:N/2
wt = 0;
for i = 1:N/2
G(i,j) = exp(-(sigma*(i-1)v2)/(4*(j-1)v2));
wt = wt � 2*G(i,j);

end

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 6.10 The Choi-Williams determining function generated by the code below.

wt = wt—G(1,j); % Normalize array so that
% G(n,j) = 1

for i = 1:N/2
G(i,j) = G(i,j)/wt;

end
end
%
% Expand to 4 quadrants
G = [fliplr(G(:,2:end)) G]; % Add 2nd quadrant
G = [flipud(G(2:end,:)); G]; % Add 3rd and 4th quadrants

To complete the package, Example 6.5 provides code that generates the
data (either two sequential sinusoids or a chirp signal), asks for the desired
distributions, evaluates the distribution using the function cohen, then plots the
result. Note that the code for implementing Cohen’s class of distributions is
written for educational purposes only. It is not very efficient, since many of the
operations involve multiplication by zero (for example, see Figure 6.10 and
Figure 6.11), and these operations should be eliminated in more efficient code.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 6.11 The determining function of the Rihaczek-Margenau distribution.

Example 6.5 Compare the Choi-Williams and Rihaczek-Margenau dis-
tributions for both a double sinusoid and chirp stimulus. Plot the Rihaczek-
Margenau determining function* and the results using 3-D type plots.

% Example 6.5 and various figures
% Example of the use of Cohen’s class distributions applied to
% both sequential sinusoids and a chirp signal
%
clear all; close all;
global G;
% Set up constants. (Same as in previous examples)
fs = 500; % Sample frequency
N = 256; % Signal length
f1 = 20; % First frequency in Hz
f2 = 100; % Second frequency in Hz
%
% Construct a step change in frequency
signal_type = input (’Signal type (1 = sines; 2 = chirp):’);
if signal_type == 1
tn = (1:N/4)/fs;
x = [zeros(N/4,1); sin(2*pi*f1*tn)’; sin(2*pi*f2*tn)’;

*Note the code for the Rihaczek-Margenau determining function and several other determining
functions can be found on disk with the software associated with this chapter.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

zeros(N/4,1)];
else
tn = (1:N)/fs;
x = chirp(tn,f1,.5,f2)’;

end
%
%
% Get desired distribution
type = input(’Enter type (choi,BJC,R_M,WV):’,’s’);
%
x = hilbert(x); % Get analytic function
[CD,f,t] = cohen(x,fs,type); % Cohen’s class of

% transformations
CD = abs(CD); % Take magnitude
% % Plot distribution in
figure; % 3-D
mesh(t,f,CD);
view([85,40]); % Change view for better

% display
.......3D labels and scaling.......
heading = [type ’ Distribution’]; % Construct appropriate
eval([’title(’,’heading’, ’);’]); % title and add to plot

%
%
figure;
contour(t,f,CD); % Plot distribution as a

contour plot
xlabel(’Time (sec)’);
ylabel(’Frequency (Hz)’);
eval([’title(’,’heading’, ’);’]);

This program was used to generate Figures 6.11–6.15.
In this chapter we have explored only a few of the many possible time–

frequency distributions, and, necessarily, covered only the very basics of this
extensive subject. Two of the more important topics that were not covered here
are the estimation of instantaneous frequency from the time–frequency distribu-
tion, and the effect of noise on these distributions. The latter is covered briefly
in the problem set below.

PROBLEMS

1. Construct a chirp signal similar to that used in Example 6.2. Evaluate the
analysis characteristics of the STFT using different window filters and sizes.
Specifically, use window sizes of 128, 64, and 32 points. Repeat this analysis

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 6.12 Choi-Williams distribution for the two sequential sinusoids shown
in Figure 6.3. Comparing this distribution with the Wigner-Ville distribution of the
same stimulus, Figure 6.7, note the decreased cross product terms.

FIGURE 6.13 The Rihaczek-Margenau distribution for the sequential sinusoid
signal. Note the very low value of cross products.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 6.14 The Choi-Williams distribution from the chirp signal. Compared to
the Wigner-Ville distribution (Figure 6.9), this distribution has a flatter ridge, but
neither the Choi-Williams nor the the Wigner-Ville distributions show significant
cross products to this type of signal.

using a Chebyshev window. (Modify spectog to apply the Chebyshev window,
or else use MATLAB’s specgram.) Assume a sample frequency of 500 Hz and
a total time of one second.

2. Rerun the two examples that involve the Wigner-Ville distribution (Exam-
ples 6.3 and 6.4), but use the real signal instead of the analytic signal. Plot the
results as both 3-D mesh plots and contour plots.

3. Construct a signal consisting of two components: a continuous sine wave
of 20 Hz and a chirp signal that varies from 20 Hz to 100 Hz over a 0.5 sec
time period. Analyze this signal using two different distributions: Wigner-Ville
and Choi-Williams. Assume a sample frequency of 500 Hz, and use analytical
signal.

4. Repeat Problem 3 above using the Born-Jordan-Cohen and Rihaczek-
Margenau distributions.

5. Construct a signal consisting of two sine waves of 20 and 100 Hz. Add to
this signal Gaussian random noise having a variance equal to 1/4 the amplitude
of the sinusoids. Analyze this signal using the Wigner-Ville and Choi-Williams

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 6.15 The Rihaczek-Margenau distribution to a chirp signal. Note that
this distribution shows the most constant amplitude throughout the time-fre-
quency plot, but does show some small cross products that diagonal away from
the side. In addition, the frequency peak is not as well-defined as in the other
distributions.

distributions. Assume a sample frequency of 300 Hz and a 2 sec time period.
Use analytical signal.

6. Repeat Problem 5 above using a chirp signal that varies between 20 and
100 Hz, with the same amplitude of added noise.

7. Repeat Problem 6 with twice the amount of added noise.

8. Repeat Problems 6 and 7 using the Rihaczek-Margenau distribution.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

7

Wavelet Analysis

INTRODUCTION

Before introducing the wavelet transform we review some of the concepts re-
garding transforms presented in Chapter 2. A transform can be thought of as a
remapping of a signal that provides more information than the original. The
Fourier transform fits this definition quite well because the frequency informa-
tion it provides often leads to new insights about the original signal. However,
the inability of the Fourier transform to describe both time and frequency char-
acteristics of the waveform led to a number of different approaches described
in the last chapter. None of these approaches was able to completely solve the
time–frequency problem. The wavelet transform can be used as yet another way
to describe the properties of a waveform that changes over time, but in this case
the waveform is divided not into sections of time, but segments of scale.

In the Fourier transform, the waveform was compared to a sine func-
tion—in fact, a whole family of sine functions at harmonically related frequen-
cies. This comparison was carried out by multiplying the waveform with the
sinusoidal functions, then averaging (using either integration in the continuous
domain, or summation in the discrete domain):

X(ωm) = ∫
∞

−∞
x(t)e−jωmt

dt (1)

Eq. (1) is the continuous form of Eq. (6) in Chapter 3 used to define the
discrete Fourier transform. As discussed in Chapter 2, almost any family of func-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

tions could be used to probe the characteristics of a waveform, but sinusoidal func-
tions are particularly popular because of their unique frequency characteristics: they
contain energy at only one specific frequency. Naturally, this feature makes them
ideal for probing the frequency makeup of a waveform, i.e., its frequency spectrum.

Other probing functions can be used, functions chosen to evaluate some
particular behavior or characteristic of the waveform. If the probing function is
of finite duration, it would be appropriate to translate, or slide, the function over
the waveform, x(t), as is done in convolution and the short-term Fourier trans-
form (STFT), Chapter 6’s Eq. (1), repeated here:

STFT(t,f) = ∫
∞

−∞
x(τ)(w(t − τ)e−2 jπ fτ)dτ (2)

where f, the frequency, also serves as an indication of family member, and
w(t − τ) is some sliding window function where t acts to translate the window
over x. More generally, a translated probing function can be written as:

X(t,m) = ∫
∞

−∞
x(τ)f(t − τ)mdτ (3)

where f(t)m is some family of functions, with m specifying the family number.
This equation was presented in discrete form in Eq. (10), Chapter 2.

If the family of functions, f(t)m, is sufficiently large, then it should be able
to represent all aspects the waveform x(t). This would then allow x(t) to be
reconstructed from X(t,m) making this transform bilateral as defined in Chapter
2. Often the family of basis functions is so large that X(t,m) forms a redundant
set of descriptions, more than sufficient to recover x(t). This redundancy can
sometimes be useful, serving to reduce noise or acting as a control, but may be
simply unnecessary. Note that while the Fourier transform is not redundant,
most transforms represented by Eq. (3) (including the STFT and all the distribu-
tions in Chapter 6) would be, since they map a variable of one dimension (t)
into a variable of two dimensions (t,m).

THE CONTINUOUS WAVELET TRANSFORM

The wavelet transform introduces an intriguing twist to the basic concept de-
fined by Eq. (3). In wavelet analysis, a variety of different probing functions
may be used, but the family always consists of enlarged or compressed versions
of the basic function, as well as translations. This concept leads to the defining
equation for the continuous wavelet transform (CWT):

W(a,b) = ∫
∞

−∞
x(t)

1

√*a*
ψ*�t − ba �dt (4)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 7.1 A mother wavelet (a = 1) with two dilations (a = 2 and 4) and one
contraction (a = 0.5).

where b acts to translate the function across x(t) just as t does in the equations
above, and the variable a acts to vary the time scale of the probing function, ψ.
If a is greater than one, the wavelet function, ψ, is stretched along the time axis,
and if it is less than one (but still positive) it contacts the function. Negative
values of a simply flip the probing function on the time axis. While the probing
function ψ could be any of a number of different functions, it always takes on
an oscillatory form, hence the term “wavelet.” The * indicates the operation of
complex conjugation, and the normalizing factor l/√a ensures that the energy is
the same for all values of a (all values of b as well, since translations do not
alter wavelet energy). If b = 0, and a = 1, then the wavelet is in its natural form,
which is termed the mother wavelet;* that is, ψ1,o(t) ≡ ψ(t). A mother wavelet
is shown in Figure 7.1 along with some of its family members produced by
dilation and contraction. The wavelet shown is the popular Morlet wavelet,
named after a pioneer of wavelet analysis, and is defined by the equation:

ψ(t) = e−t
2

cos(π√ 2
ln 2 t) (5)

*Individual members of the wavelet family are specified by the subscripts a and b; i.e., ψa,b. The
mother wavelet, ψ1,0, should not to be confused with the mother of all Wavelets which has yet to
be discovered.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The wavelet coefficients, W(a,b), describe the correlation between the
waveform and the wavelet at various translations and scales: the similarity be-
tween the waveform and the wavelet at a given combination of scale and posi-
tion, a,b. Stated another way, the coefficients provide the amplitudes of a series
of wavelets, over a range of scales and translations, that would need to be added
together to reconstruct the original signal. From this perspective, wavelet analy-
sis can be thought of as a search over the waveform of interest for activity that
most clearly approximates the shape of the wavelet. This search is carried out
over a range of wavelet sizes: the time span of the wavelet varies although its
shape remains the same. Since the net area of a wavelet is always zero by
design, a waveform that is constant over the length of the wavelet would give
rise to zero coefficients. Wavelet coefficients respond to changes in the wave-
form, more strongly to changes on the same scale as the wavelet, and most
strongly, to changes that resemble the wavelet. Although a redundant transfor-
mation, it is often easier to analyze or recognize patterns using the CWT. An
example of the application of the CWT to analyze a waveform is given in the
section on MATLAB implementation.

If the wavelet function, ψ(t), is appropriately chosen, then it is possible
to reconstruct the original waveform from the wavelet coefficients just as in the
Fourier transform. Since the CWT decomposes the waveform into coefficients
of two variables, a and b, a double summation (or integration) is required to
recover the original signal from the coefficients:

x(t) = 1
C
∫
∞

a=−∞
∫
∞

b=−∞
W(a,b)ψa,b(t) da db (6)

where:

C = ∫
∞

−∞

*Ψ(ω)*2

ω
dω

and 0 < C < ∞ (the so-called admissibility condition) for recovery using Eq.
(6).

In fact, reconstruction of the original waveform is rarely performed using
the CWT coefficients because of the redundancy in the transform. When recov-
ery of the original waveform is desired, the more parsimonious discrete wavelet
transform is used, as described later in this chapter.

Wavelet Time–Frequency Characteristics

Wavelets such as that shown in Figure 7.1 do not exist at a specific time or a
specific frequency. In fact, wavelets provide a compromise in the battle between
time and frequency localization: they are well localized in both time and fre-

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

quency, but not precisely localized in either. A measure of the time range of a
specific wavelet, ∆tψ, can be specified by the square root of the second moment
of a given wavelet about its time center (i.e., its first moment) (Akansu &
Haddad, 1992):

∆ tψ =� ∫
∞

−∞
(t − t0)2*ψ(t/a)*2

dt

∫
∞

−∞
*ψ(t/a)*2

dt

(7)

where t0 is the center time, or first moment of the wavelet, and is given by:

t0 =
∫
∞

−∞
t*ψ(t/a)*2

dt

∫
∞

−∞
*ψ(t/a)*2

dt

(8)

Similarly the frequency range, ∆ωψ, is given by:

∆ω tψ =� ∫
∞

−∞
(ω − ω0)

2*Ψ(ω)*2
dω

∫
∞

−∞
*Ψ(ω)*2

dω

(9)

where Ψ(ω) is the frequency domain representation (i.e., Fourier transform) of
ψ(t/a), and ω0 is the center frequency of Ψ(ω). The center frequency is given
by an equation similar to Eq. (8):

ω0 =
∫
∞

−∞
ω*Ψ(ω)*2

dω

∫
∞

−∞
*Ψ(ω)*2

dω

(10)

The time and frequency ranges of a given family can be obtained from
the mother wavelet using Eqs. (7) and (9). Dilation by the variable a changes
the time range simply by multiplying ∆tψ by a. Accordingly, the time range of
ψa,0 is defined as ∆tψ(a) = *a*∆tψ. The inverse relationship between time and
frequency is shown in Figure 7.2, which was obtained by applying Eqs. (7–10)
to the Mexican hat wavelet. (The code for this is given in Example 7.2.) The
Mexican hat wavelet is given by the equation:

ψ(t) = (1 − 2t2)e−t2 (11)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 7.2 Time–frequency boundaries of the Mexican hat wavelet for various
values of a. The area of each of these boxes is constant (Eq. (12)). The code
that generates this figure is based on Eqs. (7–10) and is given in Example 7.2.

The frequency range, or bandwidth, would be the range of the mother
Wavelet divided by a: ∆ωψ(a) = ∆ωψ /*a*. If we multiply the frequency range
by the time range, the a’s cancel and we are left with a constant that is the
product of the constants produced by Eq. (7) and (9):

∆ωψ(a)∆tψ(a) = ∆ωψ∆tψ = constantψ (12)

Eq. (12) shows that the product of the ranges is invariant to dilation* and
that the ranges are inversely related; increasing the frequency range, ∆ωψ(a),
decreases the time range, ∆tψ(a). These ranges correlate to the time and fre-
quency resolution of the CWT. Just as in the short-term Fourier transform, there
is a time–frequency trade-off (recall Eq. (3) in Chapter 6): decreasing the wave-
let time range (by decreasing a) provides a more accurate assessment of time
characteristics (i.e., the ability to separate out close events in time) at the ex-
pense of frequency resolution, and vice versa.

*Translations (changes in the variable b), do alter either the time or frequency resolution; hence,
both time and frequency resolution, as well as their product, are independent of the value of b.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Since the time and frequency resolutions are inversely related, the CWT
will provide better frequency resolution when a is large and the length of the
wavelet (and its effective time window) is long. Conversely, when a is small,
the wavelet is short and the time resolution is maximum, but the wavelet only
responds to high frequency components. Since a is variable, there is a built-in
trade-off between time and frequency resolution, which is key to the CWT and
makes it well suited to analyzing signals with rapidly varying high frequency
components superimposed on slowly varying low frequency components.

MATLAB Implementation

A number of software packages exist in MATLAB for computing the continu-
ous wavelet transform, including MATLAB’s Wavelet Toolbox and Wavelab
which is available free over the Internet: (www.stat.stanford.edu/	wavelab/).
However, it is not difficult to implement Eq. (4) directly, as illustrated in the
example below.

Example 7.1 Write a program to construct the CWT of a signal consist-
ing of two sequential sine waves of 10 and 40 Hz. (i.e. the signal shown in
Figure 6.1). Plot the wavelet coefficients as a function of a and b. Use the
Morlet wavelet.

The signal waveform is constructed as in Example 6.1. A time vector, ti,
is generated that will be used to produce the positive half of the wavelet. This
vector is initially scaled so that the mother wavelet (a = 1) will be ± 10 sec
long. With each iteration, the value of a is adjusted (128 different values are
used in this program) and the wavelet time vector is it then scaled to produce
the appropriate wavelet family member. During each iteration, the positive half
of the Morlet wavelet is constructed using the defining equation (Eq. (5)), and
the negative half is generated from the positive half by concatenating a time
reversed (flipped) version with the positive side. The wavelet coefficients at a
given value of a are obtained by convolution of the scaled wavelet with the
signal. Since convolution in MATLAB produces extra points, these are removed
symmetrically (see Chapter 2), and the coefficients are plotted three-dimension-
ally against the values of a and b. The resulting plot, Figure 7.3, reflects the
time–frequency characteristics of the signal which are quantitatively similar to
those produced by the STFT and shown in Figure 6.2.

% Example 7.1 and Figure 7.3
% Generate 2 sinusoids that change frequency in a step-like
% manner
% Apply the continuous wavelet transform and plot results
%
clear all; close all;
% Set up constants

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

www.stat.stanford.edu/wavelab

FIGURE 7.3 Wavelet coefficients obtained by applying the CWT to a waveform
consisting of two sequential sine waves of 10 and 40 Hz, as shown in Figure 6.1.
The Morlet wavelet was used.

fs = 500 % Sample frequency
N = 1024; % Signal length
N1 = 512; % Wavelet number of points
f1 = 10; % First frequency in Hz
f2 = 40; % Second frequency in Hz
resol_level = 128; % Number of values of a
decr_a = .5; % Decrement for a
a_init = 4; % Initial a
wo = pi * sqrt(2/log2(2)); % Wavelet frequency scale

% factor
%
% Generate the two sine waves. Same as in Example 6.1
tn = (1:N/4)/fs; % Time vector to create

% sinusoids
b = (1:N)/fs; % Time vector for plotting
x = [zeros(N/4,1); sin(2*pi*f1*tn)’; sin(2*pi*f2*tn)’;
zeros(N/4,1)];

ti = ((1:N1/2)/fs)*10; % Time vector to construct
% ± 10 sec. of wavelet

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Calculate continuous Wavelet transform
% Morlet wavelet, Eq. (5)
for i = 1:resol_level
a(i) = a_init/(1�i*decr_a); % Set scale
t = abs(ti/a(i)); % Scale vector for wavelet
mor = (exp(-t.v2).* cos(wo*t))/ sqrt(a(i));
Wavelet = [fliplr(mor) mor]; % Make symmetrical about

% zero
ip = conv(x,Wavelet); % Convolve wavelet and

% signal
ex = fix((length(ip)-N)/2); % Calculate extra points /2
CW_Trans(:,i) =ip(ex�1:N�ex,1); % Remove extra points

% symmetrically
end
%
% Plot in 3 dimensions
d = fliplr(CW_Trans);
mesh(a,b,CW_Trans);
***** labels and view angle *****

In this example, a was modified by division with a linearly increasing
value. Often, wavelet scale is modified based on octaves or fractions of octaves.

A determination of the time–frequency boundaries of a wavelet though
MATLAB implementation of Eqs. (7–10) is provided in the next example.

Example 7.2 Find the time–frequency boundaries of the Mexican hat
wavelet.

For each of 4 values of a, the scaled wavelet is constructed using an
approach similar to that found in Example 7.1. The magnitude squared of the
frequency response is calculated using the FFT. The center time, t0, and center
frequency, w0, are constructed by direct application of Eqs. (8) and (10). Note
that since the wavelet is constructed symmetrically about t = 0, the center time,
t0, will always be zero, and an appropriate offset time, t1, is added during plot-
ting. The time and frequency boundaries are calculated using Eqs. (7) and (9),
and the resulting boundaries as are plotted as a rectangle about the appropriate
time and frequency centers.

% Example 7.2 and Figure 7.2
% Plot of wavelet boundaries for various values of ’a’
% Determines the time and scale range of the Mexican wavelet.
% Uses the equations for center time and frequency and for time
% and frequency spread given in Eqs. (7–10)
%

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

clear all; close all;
N = 1000; % Data length
fs = 1000; % Assumed sample frequency
wo1 = pi * sqrt(2/log2(2)); % Const. for wavelet time

% scale
a = [.5 1.0 2.0 3.0]; % Values of a
xi = ((1:N/2)/fs)*10; % Show ± 10 sec of the wavelet
t = (1:N)/fs; % Time scale
omaga = (1:N/2) * fs/N; % Frequency scale
%
for i = 1:length(a)
t1 = xi./a(i); % Make time vector for

% wavelet
mex = exp(-t1.v2).* (1–2*t1.v2);% Generate Mexican hat

% wavelet
w = [fliplr(mex) mex]; % Make symmetricalabout zero
wsq = abs(w).v2 % Square wavelet;
W = fft(w); % Get frequency representa-
Wsq = abs(W(1:N/2)).v2; % tion and square. Use only

% fs/2 range
t0 = sum(t.* wsq)/sum(wsq); % Calculate center time
d_t = sqrt(sum((t—to).v2 .*wsq)/sum(wsq));

% Calculate time spread
w0 = sum(omaga.*Wsq)/sum(Wsq); % Calculate center frequency
d_w0 = sqrt(sum((omaga—w0).v2 .* Wsq)/sum(Wsq));
t1 = t0*a(i); % Adjust time position to

% compensate for symmetri-
% cal waveform

hold on;
% Plot boundaries
plot([t1-d_t t1-d_t],[w0-d_w0 w0�d_w0],’k’);
plot([t1�d_t t1�d_t],[w0-d_w0 w0�d_w0],’k’);
plot([t1-d_t t1�d_t],[w0-d_w0 w0-d_w0],’k’);
plot([t1-d_t t1�d_t],[w0�d_w0 w0�d_w0],’k’);

end
% ***** lables*****

THE DISCRETE WAVELET TRANSFORM

The CWT has one serious problem: it is highly redundant.* The CWT provides
an oversampling of the original waveform: many more coefficients are gener-
ated than are actually needed to uniquely specify the signal. This redundancy is

*In its continuous form, it is actually infinitely redundant!

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

usually not a problem in analysis applications such as described above, but will
be costly if the application calls for recovery of the original signal. For recovery,
all of the coefficients will be required and the computational effort could be
excessive. In applications that require bilateral transformations, we would prefer
a transform that produces the minimum number of coefficients required to re-
cover accurately the original signal. The discrete wavelet transform (DWT)
achieves this parsimony by restricting the variation in translation and scale,
usually to powers of 2. When the scale is changed in powers of 2, the discrete
wavelet transform is sometimes termed the dyadic wavelet transform which,
unfortunately, carries the same abbreviation (DWT). The DWT may still require
redundancy to produce a bilateral transform unless the wavelet is carefully cho-
sen such that it leads to an orthogonal family (i.e., a orthogonal basis). In this
case, the DWT will produce a nonredundant, bilateral transform.

The basic analytical expressions for the DWT will be presented here; how-
ever, the transform is easier to understand, and easier to implement using filter
banks, as described in the next section. The theoretical link between filter banks
and the equations will be presented just before the MATLAB Implementation
section. The DWT is often introduced in terms of its recovery transform:

x(t) = ∑
∞

k=−∞
∑
∞

R=−∞

d(k,R)2−k/2ψ(2−k
t − R) (13)

Here k is related to a as: a = 2k; b is related to R as b = 2k R; and d(k,R) is
a sampling of W(a,b) at discrete points k and R.

In the DWT, a new concept is introduced termed the scaling function, a
function that facilitates computation of the DWT. To implement the DWT effi-
ciently, the finest resolution is computed first. The computation then proceeds
to coarser resolutions, but rather than start over on the original waveform, the
computation uses a smoothed version of the fine resolution waveform. This
smoothed version is obtained with the help of the scaling function. In fact, the
scaling function is sometimes referred to as the smoothing function. The defini-
tion of the scaling function uses a dilation or a two-scale difference equation:

φ(t) = ∑
∞

n=−∞
√2c(n)φ(2t − n) (14)

where c(n) is a series of scalars that defines the specific scaling function. This
equation involves two time scales (t and 2t) and can be quite difficult to solve.

In the DWT, the wavelet itself can be defined from the scaling function:

ψ(t) = ∑
∞

n=−∞
√2d(n)φ(2t − n) (15)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

where d(n) is a series of scalars that are related to the waveform x(t) (Eq. (13))
and that define the discrete wavelet in terms of the scaling function. While the
DWT can be implemented using the above equations, it is usually implemented
using filter bank techniques.

Filter Banks

For most signal and image processing applications, DWT-based analysis is best
described in terms of filter banks. The use of a group of filters to divide up a
signal into various spectral components is termed subband coding. The most
basic implementation of the DWT uses only two filters as in the filter bank
shown in Figure 7.4.

The waveform under analysis is divided into two components, ylp(n) and
yhp(n), by the digital filters H0(ω) and H1(ω). The spectral characteristics of the
two filters must be carefully chosen with H0(ω) having a lowpass spectral char-
acteristic and H1(ω) a highpass spectral characteristic. The highpass filter is
analogous to the application of the wavelet to the original signal, while the
lowpass filter is analogous to the application of the scaling or smoothing func-
tion. If the filters are invertible filters, then it is possible, at least in theory, to
construct complementary filters (filters that have a spectrum the inverse of H0(ω)
or H1(ω)) that will recover the original waveform from either of the subband
signals, ylp(n) or yhp(n). The original signal can often be recovered even if the
filters are not invertible, but both subband signals will need to be used. Signal
recovery is illustrated in Figure 7.5 where a second pair of filters, G0(ω) and
G1(ω), operate on the high and lowpass subband signals and their sum is used

FIGURE 7.4 Simple filter bank consisting of only two filters applied to the same
waveform. The filters have lowpass and highpass spectral characteristics. Filter
outputs consist of a lowpass subband, ylp(n), and a highpass subband, yhp(n).

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 7.5 A typical wavelet application using filter banks containing only two
filters. The input waveform is first decomposed into subbands using the analysis
filter bank. Some process is applied to the filtered signals before reconstruction.
Reconstruction is performed by the synthesis filter bank.

to reconstruct a close approximation of the original signal, x’(t). The Filter Bank
that decomposes the original signal is usually termed the analysis filters while
the filter bank that reconstructs the signal is termed the syntheses filters. FIR
filters are used throughout because they are inherently stable and easier to im-
plement.

Filtering the original signal, x(n), only to recover it with inverse filters
would be a pointless operation, although this process may have some instructive
value as shown in Example 7.3. In some analysis applications only the subband
signals are of interest and reconstruction is not needed, but in many wavelet
applications, some operation is performed on the subband signals, ylp(n) and
yhp(n), before reconstruction of the output signal (see Figure 7.5). In such cases,
the output will no longer be exactly the same as the input. If the output is
essentially the same, as occurs in some data compression applications, the pro-
cess is termed lossless, otherwise it is a lossy operation.

There is one major concern with the general approach schematized in
Figure 7.5: it requires the generation of, and operation on, twice as many points
as are in the original waveform x(n). This problem will only get worse if more
filters are added to the filter bank. Clearly there must be redundant information
contained in signals ylp(n) and yhp(n), since they are both required to represent
x(n), but with twice the number of points. If the analysis filters are correctly
chosen, then it is possible to reduce the length of ylp(n) and yhp(n) by one half
and still be able to recover the original waveform. To reduce the signal samples
by one half and still represent the same overall time period, we need to eliminate
every other point, say every odd point. This operation is known as downsam-
pling and is illustrated schematically by the symbol ↓ 2. The downsampled ver-
sion of y(n) would then include only the samples with even indices [y(2), y(4),
y(6), . . .] of the filtered signal.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

If downsampling is used, then there must be some method for recovering
the missing data samples (those with odd indices) in order to reconstruct the
original signal. An operation termed upsampling (indicated by the symbol ↑ 2)
accomplishes this operation by replacing the missing points with zeros. The
recovered signal (x’(n) in Figure 7.5) will not contain zeros for these data sam-
ples as the synthesis filters, G0(ω) or G1(ω), ‘fill in the blanks.’ Figure 7.6
shows a wavelet application that uses three filter banks and includes the down-
sampling and upsampling operations. Downsampled amplitudes are sometimes
scaled by √2, a normalization that can simplify the filter calculations when
matrix methods are used.

Designing the filters in a wavelet filter bank can be quite challenging
because the filters must meet a number of criteria. A prime concern is the ability
to recover the original signal after passing through the analysis and synthesis
filter banks. Accurate recovery is complicated by the downsampling process.
Note that downsampling, removing every other point, is equivalent to sampling
the original signal at half the sampling frequency. For some signals, this would
lead to aliasing, since the highest frequency component in the signal may no

FIGURE 7.6 A typical wavelet application using three filters. The downsampling
(↓ 2) and upsampling (↑ 2) processes are shown. As in Figure 7.5, some pro-
cess would be applied to the filtered signals, ylp(n) and yhp(n), before reconstruc-
tion.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

longer be twice the now reduced sampling frequency. Appropriately chosen fil-
ter banks can essentially cancel potential aliasing. If the filter bank contains
only two filter types (highpass and lowpass filters) as in Figure 7.5, the criterion
for aliasing cancellation is (Strang and Nguyen, 1997):

G0(z)H0(−z) + G1(z)H1(−z) = 0 (16)

where H0(z) is the transfer function of the analysis lowpass filter, H1(z) is the
transfer function of the analysis highpass filter, G0(z) is the transfer function of
the synthesis lowpass filter, and G1(z) is the transfer function of the synthesis
highpass filter.

The requirement to be able to recover the original waveform from the
subband waveforms places another important requirement on the filters which
is satisfied when:

G0(z)H0(z) + G1(z)H1(z) = 2z−N (17)

where the transfer functions are the same as those in Eq. (16). N is the number
of filter coefficients (i.e., the filter order); hence z-N is just the delay of the filter.

In many analyses, it is desirable to have subband signals that are orthogo-
nal, placing added constraints on the filters. Fortunately, a number of filters
have been developed that have most of the desirable properties.* The examples
below use filters developed by Daubechies, and named after her. This is a family
of popular wavelet filters having 4 or more coefficients. The coefficients of the
lowpass filter, h0(n), for the 4-coefficient Daubechies filter are given as:

h(n) =
[(1 + √3), (3 + √3), (3 − √3), (1 − √3)]

8
(18)

Other, higher order filters in this family are given in the MATLAB routine
daub found in the routines associated with this chapter. It can be shown that
orthogonal filters with more than two coefficients must have asymmetrical coef-
ficients.† Unfortunately this precludes these filters from having linear phase
characteristics; however, this is a compromise that is usually acceptable. More
complicated biorthogonal filters (Strang and Nguyen, 1997) are required to pro-
duce minimum phase and orthogonality.

In order for the highpass filter output to be orthogonal to that of the low-
pass output, the highpass filter frequency characteristics must have a specific
relationship to those of the lowpass filter:

*Although no filter yet exists that has all of the desirable properties.

†The two-coefficient, orthogonal filter is: h(n) = [1⁄2; 1⁄2], and is known as the Haar filter. Essentially
a two-point moving average, this filter does not have very strong filter characteristics. See Problem 3.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

H1(z) = −z−NH0(−z−1) (19)

The criterion represented by Eq. (19) can be implemented by applying the
alternating flip algorithm to the coefficients of h0(n):

h1(n) = [h0(N), −h0(N − 1), h0(N − 2), −h0(N − 3), . . .] (20)

where N is the number of coefficients in h0(n). Implementation of this alternat-
ing flip algorithm is found in the analyze program of Example 7.3.

Once the analyze filters have been chosen, the synthesis filters used for
reconstruction are fairly constrained by Eqs. (14) and (15). The conditions of
Eq. (17) can be met by making G0(z) = H1(- z) and G1(z) = -H0(-z). Hence the
synthesis filter transfer functions are related to the analysis transfer functions
by the Eqs. (21) and (22):

G0(z) = H1(z) = z−NH0(z
−1) (21)

G1(z) = −H0(−z) = z−NH1(z
−1) (22)

where the second equality comes from the relationship expressed in Eq. (19).
The operations of Eqs. (21) and (22) can be implemented several different ways,
but the easiest way in MATLAB is to use the second equalities in Eqs. (21) and
(22), which can be implemented using the order flip algorithm:

g0(n) = [h0(N), h0(N − 1), h0(N − 2), . . .] (23)

g1(n) = [h1(N), h1(N − 1), h1(N − 2), . . .] (24)

where, again, N is the number of filter coefficients. (It is assumed that all filters
have the same order; i.e., they have the same number of coefficients.)

An example of constructing the syntheses filter coefficients from only the
analysis filter lowpass filter coefficients, h0(n), is shown in Example 7.3. First
the alternating flip algorithm is used to get the highpass analysis filter coeffi-
cients, h1(n), then the order flip algorithm is applied as in Eqs. (23) and (24) to
produce both the synthesis filter coefficients, g0(n) and g1(n).

Note that if the filters shown in Figure 7.6 are causal, each would produce
a delay that is dependent on the number of filter coefficients. Such delays are
expected and natural, and may have to be taken into account in the reconstruction
process. However, when the data are stored in the computer it is possible to
implement FIR filters without a delay. An example of the use of periodic convolu-
tion to eliminate the delay is shown in Example 7.4 (see also Chapter 2).

The Relationship Between Analytical Expressions
and Filter Banks

The filter bank approach and the discrete wavelet transform represented by Eqs.
(14) and (15) were actually developed separately, but have become linked both

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

theoretically and practically. It is possible, at least in theory, to go between
the two approaches to develop the wavelet and scaling function from the filter
coefficients and vice versa. In fact, the coefficients c(n) and d(n) in Eqs. (14)
and (15) are simply scaled versions of the filter coefficients:

c(n) = √2 h0(n); d(n) = √2 h1(n) (25)

With the substitution of c(n) in Eq. (14), the equation for the scaling
function (the dilation equation) becomes:

φ(t) = ∑
∞

n=−∞

2 h0(n)φ(2t − n) (26)

Since this is an equation with two time scales (t and 2t), it is not easy to
solve, but a number of approximation approaches have been worked out (Strang
and Nguyen, 1997, pp. 186–204). A number of techniques exist for solving for
φ(t) in Eq. (26) given the filter coefficients, h1(n). Perhaps the most straightfor-
ward method of solving for φ in Eq. (26) is to use the frequency domain repre-
sentation. Taking the Fourier transform of both sides of Eq. (26) gives:

Φ(ω) = H0�ω2�Φ�ω2� (27)

Note that 2t goes to ω/2 in the frequency domain. The second term in Eq.
(27) can be broken down into H0(ω/4) Φ(ω/4), so it is possible to rewrite the
equation as shown below.

Φ(ω) = H0�ω2��H0�ω4�Φ�ω4�� (28)

= H0�ω2�H0�ω4�H0�ω8� . . . H0�ω2N�Φ�ω2N� (29)

In the limit as N→ ∞ , Eq. (29) becomes:

Φ(ω) =J
∞

j=1

H0�ω2 j� (30)

The relationship between φ(t) and the lowpass filter coefficients can now
be obtained by taking the inverse Fourier transform of Eq. (30). Once the scaling
function is determined, the wavelet function can be obtained directly from Eq.
(16) with 2h1(n) substituted for d(n):

ψ(t) = ∑
∞

n=−∞

2 h1(n)φ(2t − n) (31)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Eq. (30) also demonstrates another constraint on the lowpass filter coeffi-
cients, h0(n), not mentioned above. In order for the infinite product to converge
(or any infinite product for that matter), H0(ω/2j) must approach 1 as j→ ∞ .
This implies that H0(0) = 1, a criterion that is easy to meet with a lowpass filter.
While Eq. (31) provides an explicit formula for determining the scaling function
from the filter coefficients, an analytical solution is challenging except for very
simple filters such as the two-coefficient Haar filter. Solving this equation nu-
merically also has problems due to the short data length (H0(ω) would be only
4 points for a 4-element filter). Nonetheless, the equation provides a theoretical
link between the filter bank and DWT methodologies.

These issues described above, along with some applications of wavelet
analysis, are presented in the next section on implementation.

MATLAB Implementation

The construction of a filter bank in MATLAB can be achieved using either
routines from the Signal Processing Toolbox, filter or filtfilt, or simply
convolution. All examples below use convolution. Convolution does not con-
serve the length of the original waveform: the MATLAB conv produces an
output with a length equal to the data length plus the filter length minus one.
Thus with a 4-element filter the output of the convolution process would be 3
samples longer than the input. In this example, the extra points are removed by
simple truncation. In Example 7.4, circular or periodic convolution is used to
eliminate phase shift. Removal of the extraneous points is followed by down-
sampling, although these two operations could be done in a single step, as shown
in Example 7.4.

The main program shown below makes use of 3 important subfunctions.
The routine daub is available on the disk and supplies the coefficients of a
Daubechies filter using a simple list of coefficients. In this example, a 6-element
filter is used, but the routine can also generate coefficients of 4-, 8-, and 10-
element Daubechies filters.

The waveform is made up of 4 sine waves of different frequencies with
added noise. This waveform is decomposed into 4 subbands using the routine
analysis. The subband signals are plotted and then used to reconstruct the
original signal in the routine synthesize. Since no operation is performed on
the subband signals, the reconstructed signal should match the original except
for a phase shift.

Example 7.3 Construct an analysis filter bank containing L decomposi-
tions; that is, a lowpass filter and L highpass filters. Decompose a signal consist-
ing of 4 sinusoids in noise and the recover this signal using an L-level syntheses
filter bank.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Example 7.3 and Figures 7.7 and 7.8
% Dyadic wavelet transform example
% Construct a waveform of 4 sinusoids plus noise
% Decompose the waveform in 4 levels, plot each level, then
% reconstruct
% Use a Daubechies 6-element filter
%
clear all; close all;
%
fs = 1000; % Sample frequency
N = 1024; % Number of points in

% waveform
freqsin = [.63 1.1 2.7 5.6]; % Sinusoid frequencies

% for mix
ampl = [1.2 1 1.2 .75]; % Amplitude of sinusoid
h0 = daub(6); % Get filter coeffi-

% cients: Daubechies 6

FIGURE 7.7 Input (middle) waveform to the four-level analysis and synthesis filter
banks used in Example 7.3. The lower waveform is the reconstructed output from
the synthesis filters. Note the phase shift due to the causal filters. The upper
waveform is the original signal before the noise was added.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 7.8 Signals generated by the analysis filter bank used in Example 7.3
with the top-most plot showing the outputs of the first set of filters with the finest
resolution, the next from the top showing the outputs of the second set of set of
filters, etc. Only the lowest (i.e., smoothest) lowpass subband signal is included
in the output of the filter bank; the rest are used only in the determination of
highpass subbands. The lowest plots show the frequency characteristics of the
high- and lowpass filters.

%
[x t] = signal(freqsin,ampl,N); % Construct signal
x1 = x � (.25 * randn(1,N)); % Add noise
an = analyze(x1,h0,4); % Decompose signal,

% analytic filter bank
sy = synthesize(an,h0,4); % Reconstruct original

% signal
figure(fig1);
plot(t,x,’k’,t,x1–4,’k’,t,sy-8,’k’);% Plot signals separated

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

This program uses the function signal to generate the mixtures of sinu-
soids. This routine is similar to sig_noise except that it generates only mix-
tures of sine waves without the noise. The first argument specifies the frequency
of the sines and the third argument specifies the number of points in the wave-
form just as in sig_noise. The second argument specifies the amplitudes of
the sinusoids, not the SNR as in sig_noise.

The analysis function shown below implements the analysis filter bank.
This routine first generates the highpass filter coefficients, h1, from the lowpass
filter coefficients, h, using the alternating flip algorithm of Eq. (20). These FIR
filters are then applied using standard convolution. All of the various subband
signals required for reconstruction are placed in a single output array, an. The
length of an is the same as the length of the input, N = 1024 in this example.
The only lowpass signal needed for reconstruction is the smoothest lowpass
subband (i.e., final lowpass signal in the lowpass chain), and this signal is placed
in the first data segment of an taking up the first N/16 data points. This signal
is followed by the last stage highpass subband which is of equal length. The
next N/8 data points contain the second to last highpass subband followed, in
turn, by the other subband signals up to the final, highest resolution highpass
subband which takes up all of the second half of an. The remainder of the
analyze routine calculates and plots the high- and lowpass filter frequency
characteristics.

% Function to calculate analyze filter bank
% an = analyze(x,h,L)
% where
% x = input waveform in column form which must be longer than
% 2vL � L and power of two.
% h0 = filter coefficients (lowpass)
% L = decomposition level (number of highpass filter in bank)
%
function an = analyze(x,h0,L)

lf = length(h0); % Filter length
lx = length(x); % Data length
an = x; % Initialize output
% Calculate High pass coefficients from low pass coefficients
for i = 0:(lf-1)
h1(i�1) = (-1)vi * h0(lf-i); % Alternating flip, Eq. (20)

end
%
% Calculate filter outputs for all levels
for i = 1:L
a_ext = an;

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

lpf = conv(a_ext,h0); % Lowpass FIR filter
hpf = conv(a_ext,h1); % Highpass FIR filter
lpf = lpf(1:lx); % Remove extra points
hpf = hpf(1:lx);
lpfd = lpf(1:2:end); % Downsample
hpfd = hpf(1:2:end);
an(1:lx) = [lpfd hpfd]; % Low pass output at beginning

% of array, but now occupies
% only half the data
% points as last pass

lx = lx/2;
subplot(L�1,2,2*i-1); % Plot both filter outputs
plot(an(1:lx)); % Lowpass output
if i == 1
title(’Low Pass Outputs’); % Titles

end
subplot(L�1,2,2*i);
plot(an(lx�1:2*lx)); % Highpass output
if i == 1
title(’High Pass Outputs’)

end
end
%
HPF = abs(fft(h1,256)); % Calculate and plot filter
LPF = abs(fft(h0,256)); % transfer fun of high- and

% lowpass filters
freq = (1:128)* 1000/256; % Assume fs = 1000 Hz
subplot(L�1,2,2*i�1);
plot(freq, LPF(1:128)); % Plot from 0 to fs/2 Hz
text(1,1.7,’Low Pass Filter’);
xlabel(’Frequency (Hz.)’)’

subplot(L�1,2,2*i�2);
plot(freq, HPF(1:128));
text(1,1.7,’High Pass Filter’);
xlabel(’Frequency (Hz.)’)’

The original data are reconstructed from the analyze filter bank signals in
the program synthesize. This program first constructs the synthesis lowpass
filter, g0, using order flip applied to the analysis lowpass filter coefficients
(Eq. (23)). The analysis highpass filter is constructed using the alternating flip
algorithm (Eq. (20)). These coefficients are then used to construct the synthesis
highpass filter coefficients through order flip (Eq. (24)). The synthesis filter
loop begins with the course signals first, those in the initial data segments of a
with the shortest segment lengths. The lowpass and highpass signals are upsam-
pled, then filtered using convolution, the additional points removed, and the
signals added together. This loop is structured so that on the next pass the

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

recently combined segment is itself combined with the next higher resolution
highpass signal. This iterative process continues until all of the highpass signals
are included in the sum.

% Function to calculate synthesize filter bank
% y = synthesize(a,h0,L)
% where
% a = analyze filter bank outputs (produced by analyze)
% h = filter coefficients (lowpass)
% L = decomposition level (number of highpass filters in bank)
%
function y = synthesize(a,h0,L)
lf = length(h0); % Filter length
lx = length(a); % Data length
lseg = lx/(2vL); % Length of first low- and

% highpass segments
y = a; % Initialize output
g0 = h0(lf:-1:1); %Lowpasscoefficientsusing

% order flip, Eq. (23)
% Calculate High pass coefficients, h1(n), from lowpass
% coefficients use Alternating flip Eq. (20)
for i = 0:(lf-1)
h1(i�1) = (-1)vi * h0(lf-i);

end
g1 = h1(lf:-1:1); % Highpass filter coeffi-

% cients using order
% flip, Eq. (24)

% Calculate filter outputs for all levels
for i = 1:L
lpx = y(1:lseg); % Get lowpass segment
hpx = y(lseg�1:2*lseg); % Get highpass outputs
up_lpx = zeros(1,2*lseg); % Initialize for upsampling
up_lpx(1:2:2*lseg) = lpx; % Upsample lowpass (every

% odd point)
up_hpx = zeros(1,2*lseg); % Repeat for highpass
up_hpx(1:2:2*lseg) = hpx;
syn = conv(up_lpx,g0) � conv(up_hpx,g1); % Filter and

% combine
y(1:2*lseg) = syn(1:(2*lseg)); % Remove extra points from

% end
lseg = lseg * 2; % Double segment lengths for

% next pass
end

The subband signals are shown in Figure 7.8. Also shown are the fre-
quency characteristics of the Daubechies high- and lowpass filters. The input

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

and reconstructed output waveforms are shown in Figure 7.7. The original signal
before the noise was added is included. Note that the reconstructed waveform
closely matches the input except for the phase lag introduced by the filters. As
shown in the next example, this phase lag can be eliminated by using circular
or periodic convolution, but this will also introduce some artifact.

Denoising

Example 7.3 was not particularly practical since the reconstructed signal was
the same as the original, except for the phase shift. A more useful application
of wavelets is shown in Example 7.4, where some processing is done on the
subband signals before reconstruction—in this example, nonlinear filtering. The
basic assumption in this application is that the noise is coded into small fluctua-
tions in the higher resolution (i.e., more detailed) highpass subbands. This noise
can be selectively reduced by eliminating the smaller sample values in the higher
resolution highpass subbands. In this example, the two highest resolution highpass
subbands are examined and data points below some threshold are zeroed out. The
threshold is set to be equal to the variance of the highpass subbands.

Example 7.4 Decompose the signal in Example 7.3 using a 4-level filter
bank. In this example, use periodic convolution in the analysis and synthesis
filters and a 4-element Daubechies filter. Examine the two highest resolution
highpass subbands. These subbands will reside in the last N/4 to N samples. Set
all values in these segments that are below a given threshold value to zero. Use
the net variance of the subbands as the threshold.

% Example 7.4 and Figure 7.9
% Application of DWT to nonlinear filtering
% Construct the waveform in Example 7.3.
% Decompose the waveform in 4 levels, plot each level, then
% reconstruct.
% Use Daubechies 4-element filter and periodic convolution.
% Evaluate the two highest resolution highpass subbands and
% zero out those samples below some threshold value.
%
close all; clear all;
fs = 1000; % Sample frequency
N = 1024; % Number of points in

% waveform
%
freqsin = [.63 1.1 2.7 5.6]; % Sinusoid frequencies
ampl = [1.2 1 1.2 .75]; % Amplitude of sinusoids
[x t] = signal(freqsin,ampl,N); % Construct signal
x = x � (.25 * randn(1,N)); % and add noise
h0 = daub(4);
figure(fig1);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 7.9 Application of the dyadic wavelet transform to nonlinear filtering.
After subband decomposition using an analysis filter bank, a threshold process is
applied to the two highest resolution highpass subbands before reconstruction
using a synthesis filter bank. Periodic convolution was used so that there is no
phase shift between the input and output signals.

an = analyze1(x,h0,4); %Decomposesignal,analytic
% filter bank of level 4

% Set the threshold times to equal the variance of the two higher
% resolution highpass subbands.
threshold = var(an(N/4:N));
for i = (N/4:N) % Examine the two highest

% resolution highpass
% subbands

if an(i) < threshold
an(i) = 0;

end
end
sy = synthesize1(an,h0,4); % Reconstruct original

% signal
figure(fig2);

plot(t,x,’k’,t,sy-5,’k’); % Plot signals
axis([-.2 1.2-8 4]); xlabel(’Time(sec)’)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

The routines for the analysis and synthesis filter banks differ slightly from
those used in Example 7.3 in that they use circular convolution. In the analysis
filter bank routine (analysis1), the data are first extended using the periodic
or wraparound approach: the initial points are added to the end of the original
data sequence (see Figure 2.10B). This extension is the same length as the
filter. After convolution, these added points and the extra points generated by
convolution are removed in a symmetrical fashion: a number of points equal to
the filter length are removed from the initial portion of the output and the re-
maining extra points are taken off the end. Only the code that is different from
that shown in Example 7.3 is shown below. In this code, symmetric elimination
of the additional points and downsampling are done in the same instruction.

function an = analyze1(x,h0,L)..........
...........

for i = 1:L
a_ext = [an an(1:lf)]; % Extend data for “periodic

% convolution”
lpf = conv(a_ext,h0); % Lowpass FIR filter
hpf = conv(a_ext,h1); % Highpass FIR filter
lpfd = lpf(lf:2:lf�lx-1); % Remove extra points. Shift to
hpfd = hpf(lf:2:lf�lx-1); % obtain circular segment; then

% downsample
an(1:lx) = [lpfd hpfd]; % Lowpass output at beginning of

% array, but now occupies only
% half the data points as last
% pass

lx = lx/2;

The synthesis filter bank routine is modified in a similar fashion except
that the initial portion of the data is extended, also in wraparound fashion (by
adding the end points to the beginning). The extended segments are then upsam-
pled, convolved with the filters, and added together. The extra points are then
removed in the same manner used in the analysis routine. Again, only the modi-
fied code is shown below.

function y = synthesize1(an,h0,L)
.............

for i = 1:L
lpx = y(1:lseg); % Get lowpass segment
hpx = y(lseg�1:2*lseg); % Get highpass outputs
lpx = [lpx(lseg-lf/2�1:lseg) lpx]; % Circular extension:

% lowpass comp.
hpx = [hpx(lseg-lf/2�1:lseg) hpx]; % and highpass component
l_ext = length(lpx);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

up_lpx = zeros(1,2*l_ext); % Initialize vector for
% upsampling

up_lpx(1:2:2*l_ext) = lpx; %Upsamplelowpass (every
% odd point)

up_hpx = zeros(1,2*l_ext); % Repeat for highpass
up_hpx(1:2:2*l_ext) = hpx;
syn = conv(up_lpx,g0) � conv(up_hpx,g1); % Filter and

% combine
y(1:2*lseg) = syn(lf�1:(2*lseg)�lf); % Remove extra

% points
lseg = lseg * 2; % Double segment lengths

% for next pass
end
.........................

The original and reconstructed waveforms are shown in Figure 7.9. The
filtering produced by thresholding the highpass subbands is evident. Also there
is no phase shift between the original and reconstructed signal due to the use of
periodic convolution, although a small artifact is seen at the beginning and end
of the data set. This is because the data set was not really periodic.

Discontinuity Detection

Wavelet analysis based on filter bank decomposition is particularly useful for
detecting small discontinuities in a waveform. This feature is also useful in
image processing. Example 7.5 shows the sensitivity of this method for detect-
ing small changes, even when they are in the higher derivatives.

Example 7.5 Construct a waveform consisting of 2 sinusoids, then add
a small (approximately 1% of the amplitude) offset to this waveform. Create a
new waveform by double integrating the waveform so that the offset is in the
second derivative of this new signal. Apply a three-level analysis filter bank.
Examine the high frequency subband for evidence of the discontinuity.

% Example 7.5 and Figures 7.10 and 7.11. Discontinuity detection
% Construct a waveform of 2 sinusoids with a discontinuity
% in the second derivative
% Decompose the waveform into 3 levels to detect the
% discontinuity.
% Use Daubechies 4-element filter
%
close all; clear all;
fig1 = figure(’Units’,’inches’,’Position’,[0 2.5 3 3.5]);
fig2 = figure(’Units’, ’inches’,’Position’,[3 2.5 5 5]);
fs = 1000; % Sample frequency

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 7.10 Waveform composed of two sine waves with an offset discontinuity
in its second derivative at 0.5 sec. Note that the discontinuity is not apparent in
the waveform.

N = 1024; % Number of points in
% waveform

freqsin = [.23 .8 1.8]; % Sinusoidal frequencies
ampl = [1.2 1 .7]; % Amplitude of sinusoid
incr = .01; % Size of second derivative

% discontinuity
offset = [zeros(1,N/2) ones(1,N/2)];
h0 = daub(4) % Daubechies 4
%
[x1 t] = signal(freqsin,ampl,N); % Construct signal
x1 = x1 � offset*incr; % Add discontinuity at

% midpoint
x = integrate(integrate(x1)); % Double integrate
figure(fig1);
plot(t,x,’k’,t,offset-2.2,’k’); % Plot new signal
axis([0 1-2.5 2.5]);
xlabel(’Time (sec)’);

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 7.11 Analysis filter bank output of the signal shown in Figure 7.10. Al-
though the discontinuity is not visible in the original signal, its presence and loca-
tion are clearly identified as a spike in the highpass subbands.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

figure(fig2);
a = analyze(x,h0,3); %Decomposesignal,analytic

% filter bank of level 3

Figure 7.10 shows the waveform with a discontinuity in its second deriva-
tive at 0.5 sec. The lower trace indicates the position of the discontinuity. Note
that the discontinuity is not visible in the waveform.

The output of the three-level analysis filter bank using the Daubechies 4-
element filter is shown in Figure 7.11. The position of the discontinuity is
clearly visible as a spike in the highpass subbands.

Feature Detection: Wavelet Packets

The DWT can also be used to construct useful descriptors of a waveform. Since
the DWT is a bilateral transform, all of the information in the original waveform
must be contained in the subband signals. These subband signals, or some aspect
of the subband signals such as their energy over a given time period, could
provide a succinct description of some important aspect of the original signal.

In the decompositions described above, only the lowpass filter subband
signals were sent on for further decomposition, giving rise to the filter bank
structure shown in the upper half of Figure 7.12. This decomposition structure
is also known as a logarithmic tree. However, other decomposition structures
are valid, including the complete or balanced tree structure shown in the lower
half of Figure 7.12. In this decomposition scheme, both highpass and lowpass
subbands are further decomposed into highpass and lowpass subbands up till
the terminal signals. Other, more general, tree structures are possible where a
decision on further decomposition (whether or not to split a subband signal)
depends on the activity of a given subband. The scaling functions and wavelets
associated with such general tree structures are known as wavelet packets.

Example 7.6 Apply balanced tree decomposition to the waveform con-
sisting of a mixture of three equal amplitude sinusoids of 1 10 and 100 Hz. The
main routine in this example is similar to that used in Examples 7.3 and 7.4
except that it calls the balanced tree decomposition routine, w_packet, and plots
out the terminal waveforms. The w_packet routine is shown below and is used
in this example to implement a 3-level decomposition, as illustrated in the lower
half of Figure 7.12. This will lead to 8 output segments that are stored sequen-
tially in the output vector, a.

% Example 7.5 and Figure 7.13
% Example of “Balanced Tree Decomposition”
% Construct a waveform of 4 sinusoids plus noise
% Decompose the waveform in 3 levels, plot outputs at the terminal
% level

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 7.12 Structure of the analysis filter bank (wavelet tree) used in the DWT
in which only the lowpass subbands are further decomposed and a more general
structure in which all nonterminal signals are decomposed into highpass and low-
pass subbands.

% Use a Daubechies 10 element filter
%
clear all; close all;
fig1 = figure(’Units’,’inches’,’Position’,[0 2.5 3 3.5]);
fig2 = figure(’Units’, ’inches’,’Position’,[3 2.5 5 4]);
fs = 1000; % Sample frequency
N = 1024; % Number of points in

% waveform
levels = 3 % Number of decomposition

% levels
nu_seg = 2vlevels; % Number of decomposed

% segments
freqsin = [1 10 100]; % Sinusoid frequencies

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 7.13 Balanced tree decomposition of the waveform shown in Figure 7.8.
The signal from the upper left plot has been lowpass filtered 3 times and repre-
sents the lowest terminal signal in Figure 7.11. The upper right has been lowpass
filtered twice then highpass filtered, and represents the second from the lowest
terminal signal in Figure 7.11. The rest of the plots follow sequentially.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ampl = [1 1 1]; % Amplitude of sinusoid
h0 = daub(10); % Get filter coefficients:

% Daubechies 10
%
[x t] = signal(freqsin,ampl,N); % Construct signal
a = w_packet(x,h0,levels); %Decomposesignal,Balanced

% Tree
for i = 1:nu_seg
i_s = 1 � (N/nu_seg) * (i-1); % Location for this segment
a_p = a(i_s:i_s�(N/nu_seg)-1);
subplot(nu_seg/2,2,i); % Plot decompositions
plot((1:N/nu_seg),a_p,’k’);
xlabel(’Time (sec)’);

end

The balanced tree decomposition routine, w_packet, operates similarly to
the DWT analysis filter banks, except for the filter structure. At each level,
signals from the previous level are isolated, filtered (using standard convolu-
tion), downsampled, and both the high- and lowpass signals overwrite the single
signal from the previous level. At the first level, the input waveform is replaced
by the filtered, downsampled high- and lowpass signals. At the second level,
the two high- and lowpass signals are each replaced by filtered, downsampled
high- and lowpass signals. After the second level there are now four sequential
signals in the original data array, and after the third level there be will be eight.

% Function to generate a “balanced tree” filter bank
% All arguments are the same as in routine ‘analyze’
% an = w_packet(x,h,L)
% where
% x = input waveform (must be longer than 2vL � L and power of
% two)
% h0 = filter coefficients (low pass)
% L = decomposition level (number of High pass filter in bank)
%
function an = w_packet(x,h0,L)

lf = length(h0); % Filter length
lx = length(x); % Data length
an = x; % Initialize output
% Calculate High pass coefficients from low pass coefficients
for i = 0:(lf-1)
h1(i�1) = (-1)vi * h0(lf-i); % Uses Eq. (18)

end
% Calculate filter outputs for all levels
for i = 1:L

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

nu_low = 2v(i-1); % Number of lowpass filters
% at this level

l_seg = lx/2v(i-1); % Length of each data seg. at
% this level

for j = 1:nu_low;
i_start = 1 � l_seg * (j-1); % Location for current

% segment
a_seg = an(i_start:i_start�l_seg-1);
lpf = conv(a_seg,h0); % Lowpass filter
hpf = conv(a_seg,h1); % Highpass filter
lpf = lpf(1:2:l_seg); % Downsample
hpf = hpf(1:2:l_seg);
an(i_start:i_start�l_seg-1) = [lpf hpf];

end
end

The output produced by this decomposition is shown in Figure 7.13. The
filter bank outputs emphasize various components of the three-sine mixture.
Another example is given in Problem 7 using a chirp signal.

One of the most popular applications of the dyadic wavelet transform is
in data compression, particularly of images. However, since this application is
not so often used in biomedical engineering (although there are some applica-
tions regrading the transmission of radiographic images), it will not be covered
here.

PROBLEMS

1. (A) Plot the frequency characteristics (magnitude and phase) of the Mexi-
can hat and Morlet wavelets.

(B) The plot of the phase characteristics will be incorrect due to phase wrapping.
Phase wrapping is due to the fact that the arctan function can never be greater
that ± 2π; hence, once the phase shift exceeds ± 2π (usually minus), it warps
around and appears as positive. Replot the phase after correcting for this wrap-
around effect. (Hint: Check for discontinuities above a certain amount, and
when that amount is exceeded, subtract 2π from the rest of the data array. This
is a simple algorithm that is generally satisfactory in linear systems analysis.)

2. Apply the continuous wavelet analysis used in Example 7.1 to analyze a
chirp signal running between 2 and 30 Hz over a 2 sec period. Assume a sample
rate of 500 Hz as in Example 7.1. Use the Mexican hat wavelet. Show both
contour and 3-D plot.

3. Plot the frequency characteristics (magnitude and phase) of the Haar and
Daubechies 4-and 10-element filters. Assume a sample frequency of 100 Hz.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

4. Generate a Daubechies 10-element filter and plot the magnitude spectrum
as in Problem 3. Construct the highpass filter using the alternating flip algorithm
(Eq. (20)) and plot its magnitude spectrum. Generate the lowpass and highpass
synthesis filter coefficients using the order flip algorithm (Eqs. (23) and (24))
and plot their respective frequency characteristics. Assume a sampling fre-
quency of 100 Hz.

5. Construct a waveform of a chirp signal as in Problem 2 plus noise. Make
the variance of the noise equal to the variance of the chirp. Decompose the
waveform in 5 levels, operate on the lowest level (i.e., the high resolution high-
pass signal), then reconstruct. The operation should zero all elements below a
given threshold. Find the best threshold. Plot the signal before and after recon-
struction. Use Daubechies 6-element filter.

6. Discontinuity detection. Load the waveform x in file Prob7_6_data which
consists of a waveform of 2 sinusoids the same as in Figure 7.9, but with a
series of diminishing discontinuities in the second derivative. The discontinuities
in the second derivative begin at approximately 0.5% of the sinusoidal ampli-
tude and decrease by a factor of 2 for each pair of discontinuities. (The offset
array can be obtained in the variable offset.) Decompose the waveform into
three levels and examine and plot only the highest resolution highpass filter
output to detect the discontinuity. Hint: The highest resolution output will be
located in N/2 to N of the analysis output array. Use a Harr and a Daubechies
10-element filter and compare the difference in detectability. (Note that the Haar
is a very weak filter so that some of the low frequency components will still be
found in its output.)

7. Apply the balanced tree decomposition to a chirp signal similar to that used
in Problem 5 except that the chirp frequency should range between 2 and 100
Hz. Decompose the waveform into 3 levels and plot the outputs at the terminal
level as in Example 7.5. Use a Daubechies 4-element filter. Note that each
output filter responds to different portions of the chirp signal.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

8

Advanced Signal Processing
Techniques: Optimal
and Adaptive Filters

OPTIMAL SIGNAL PROCESSING: WIENER FILTERS

The FIR and IIR filters described in Chapter 4 provide considerable flexibility
in altering the frequency content of a signal. Coupled with MATLAB filter
design tools, these filters can provide almost any desired frequency characteris-
tic to nearly any degree of accuracy. The actual frequency characteristics at-
tained by the various design routines can be verified through Fourier transform
analysis. However, these design routines do not tell the user what frequency
characteristics are best; i.e., what type of filtering will most effectively separate
out signal from noise. That decision is often made based on the user’s knowl-
edge of signal or source properties, or by trial and error. Optimal filter theory
was developed to provide structure to the process of selecting the most appro-
priate frequency characteristics.

A wide range of different approaches can be used to develop an optimal
filter, depending on the nature of the problem: specifically, what, and how
much, is known about signal and noise features. If a representation of the de-
sired signal is available, then a well-developed and popular class of filters
known as Wiener filters can be applied. The basic concept behind Wiener filter
theory is to minimize the difference between the filtered output and some de-
sired output. This minimization is based on the least mean square approach,
which adjusts the filter coefficients to reduce the square of the difference be-
tween the desired and actual waveform after filtering. This approach requires

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 8.1 Basic arrangement of signals and processes in a Wiener filter.

an estimate of the desired signal which must somehow be constructed, and this
estimation is usually the most challenging aspect of the problem.*

The Wiener filter approach is outlined in Figure 8.1. The input waveform
containing both signal and noise is operated on by a linear process, H(z). In
practice, the process could be either an FIR or IIR filter; however, FIR filters
are more popular as they are inherently stable,† and our discussion will be
limited to the use of FIR filters. FIR filters have only numerator terms in the
transfer function (i.e., only zeros) and can be implemented using convolution
first presented in Chapter 2 (Eq. (15)), and later used with FIR filters in Chapter
4 (Eq. (8)). Again, the convolution equation is:

y(n) = ∑
L

k=1

b(k) x(n − k) (1)

where h(k) is the impulse response of the linear filter. The output of the filter,
y(n), can be thought of as an estimate of the desired signal, d(n). The difference
between the estimate and desired signal, e(n), can be determined by simple
subtraction: e(n) = d(n) − y(n).

As mentioned above, the least mean square algorithm is used to minimize
the error signal: e(n) = d(n) − y(n). Note that y(n) is the output of the linear
filter, H(z). Since we are limiting our analysis to FIR filters, h(k) ≡ b(k), and
e(n) can be written as:

e(n) = d(n) − y(n) = d(n) − ∑
L−1

k=0

h(k) x(n − k) (2)

where L is the length of the FIR filter. In fact, it is the sum of e(n)2 which is
minimized, specifically:

*As shown below, only the crosscorrelation between the unfiltered and the desired output is neces-
sary for the application of these filters.

†IIR filters contain internal feedback paths and can oscillate with certain parameter combinations.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ε = ∑
N

n=1

e
2(n) = ∑

N

n=1
�d(n) − ∑

L

k=1

b(k) x(n − k)�2 (3)

After squaring the term in brackets, the sum of error squared becomes a
quadratic function of the FIR filter coefficients, b(k), in which two of the terms
can be identified as the autocorrelation and cross correlation:

ε = ∑
N

n=1

d(n) − 2 ∑
L

k=1

b(k)rdx(k) + ∑
L

k=1

∑
L

R=1

b(k) b(R)rxx(k − R) (4)

where, from the original definition of cross- and autocorrelation (Eq. (3), Chap-
ter 2):

rdx(k) = ∑
L

R=1

d(R) x(R + k)

rxx(k) = ∑
L

R=1

x(R) x(R + k)

Since we desire to minimize the error function with respect to the FIR
filter coefficients, we take derivatives with respect to b(k) and set them to zero:

∂ε
∂b(k)

= 0; which leads to:

∑
L

k=1

b(k) rxx(k − m) = rdx(m), for 1 ≤ m ≤ L (5)

Equation (5) shows that the optimal filter can be derived knowing only
the autocorrelation function of the input and the crosscorrelation function be-
tween the input and desired waveform. In principle, the actual functions are
not necessary, only the auto- and crosscorrelations; however, in most practical
situations the auto- and crosscorrelations are derived from the actual signals, in
which case some representation of the desired signal is required.

To solve for the FIR coefficients in Eq. (5), we note that this equation
actually represents a series of L equations that must be solved simultaneously.
The matrix expression for these simultaneous equations is:

�rxx(0) rxx(1) . . . rxx(L)
rxx(1) rxx(0) . . . rxx(L − 1)
� � O �

rxx(L) rxx(L − 1) . . . rxx(0)
� �b(0)

b(1)
�
b(L)
� = �rdx(0)

rdx(1)
�

rdx(L)
� (6)

Equation (6) is commonly known as the Wiener-Hopf equation and is a
basic component of Wiener filter theory. Note that the matrix in the equation is

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 8.2 Configuration for using optimal filter theory for systems identification.

the correlation matrix mentioned in Chapter 2 (Eq. (21)) and has a symmetrical
structure termed a Toeplitz structure.* The equation can be written more suc-
cinctly using standard matrix notation, and the FIR coefficients can be obtained
by solving the equation through matrix inversion:

RB = rdx and the solution is: b = R−1rdx (7)

The application and solution of this equation are given for two different
examples in the following section on MATLAB implementation.

The Wiener-Hopf approach has a number of other applications in addition
to standard filtering including systems identification, interference canceling, and
inverse modeling or deconvolution. For system identification, the filter is placed
in parallel with the unknown system as shown in Figure 8.2. In this application,
the desired output is the output of the unknown system, and the filter coeffi-
cients are adjusted so that the filter’s output best matches that of the unknown
system. An example of this application is given in a subsequent section on
adaptive signal processing where the least mean squared (LMS) algorithm is
used to implement the optimal filter. Problem 2 also demonstrates this approach.
In interference canceling, the desired signal contains both signal and noise while
the filter input is a reference signal that contains only noise or a signal correlated
with the noise. This application is also explored under the section on adaptive
signal processing since it is more commonly implemented in this context.

MATLAB Implementation

The Wiener-Hopf equation (Eqs. (5) and (6), can be solved using MATLAB’s
matrix inversion operator (‘\’) as shown in the examples below. Alternatively,

*Due to this matrix’s symmetry, it can be uniquely defined by only a single row or column.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

since the matrix has the Toeplitz structure, matrix inversion can also be done
using a faster algorithm known as the Levinson-Durbin recursion.

The MATLAB toeplitz function is useful in setting up the correlation
matrix. The function call is:

Rxx = toeplitz(rxx);

where rxx is the input row vector. This constructs a symmetrical matrix from a
single row vector and can be used to generate the correlation matrix in Eq. (6)
from the autocorrelation function rxx. (The function can also create an asymmet-
rical Toeplitz matrix if two input arguments are given.)

In order for the matrix to be inverted, it must be nonsingular; that is, the
rows and columns must be independent. Because of the structure of the correla-
tion matrix in Eq. (6) (termed positive- definite), it cannot be singular. However,
it can be near singular: some rows or columns may be only slightly independent.
Such an ill-conditioned matrix will lead to large errors when it is inverted. The
MATLAB ‘\’ matrix inversion operator provides an error message if the matrix
is not well-conditioned, but this can be more effectively evaluated using the
MATLAB cond function:

c = cond(X)

where X is the matrix under test and c is the ratio of the largest to smallest
singular values. A very well-conditioned matrix would have singular values in
the same general range, so the output variable, c, would be close to one. Very
large values of c indicate an ill-conditioned matrix. Values greater than 104 have
been suggested by Sterns and David (1996) as too large to produce reliable
results in the Wiener-Hopf equation. When this occurs, the condition of the matrix
can usually be improved by reducing its dimension, that is, reducing the range,
L, of the autocorrelation function in Eq (6). This will also reduce the number
of filter coefficients in the solution.

Example 8.1 Given a sinusoidal signal in noise (SNR = -8 db), design
an optimal filter using the Wiener-Hopf equation. Assume that you have a copy
of the actual signal available, in other words, a version of the signal without the
added noise. In general, this would not be the case: if you had the desired signal,
you would not need the filter! In practical situations you would have to estimate
the desired signal or the crosscorrelation between the estimated and desired
signals.

Solution The program below uses the routine wiener_hopf (also shown
below) to determine the optimal filter coefficients. These are then applied to the
noisy waveform using the filter routine introduced in Chapter 4 although
correlation could also have been used.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Example 8.1 and Figure 8.3 Wiener Filter Theory
% Use an adaptive filter to eliminate broadband noise from a
% narrowband signal
% Implemented using Wiener-Hopf equations
%
close all; clear all;
fs = 1000; % Sampling frequency

FIGURE 8.3 Application of the Wiener-Hopf equation to produce an optimal FIR
filter to filter broadband noise (SNR = -8 db) from a single sinusoid (10 Hz.) The
frequency characteristics (bottom plot) show that the filter coefficients were adjusted
to approximate a bandpass filter with a small bandwidth and a peak at 10 Hz.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

N = 1024; % Number of points
L = 256; % Optimal filter order
%
% Generate signal and noise data: 10 Hz sin in 8 db noise (SNR =
% -8 db)
[xn, t, x] = sig_noise(10,-8,N); % xn is signal � noise and

% x is noise free (i.e.,
% desired) signal

subplot(3,1,1); plot(t, xn,’k’); % Plot unfiltered data
..........labels, table, axis.........

%
% Determine the optimal FIR filter coefficients and apply
b = wiener_hopf(xn,x,L); % Apply Wiener-Hopf

% equations
y = filter(b,1,xn); % Filter data using optimum

% filter weights
%
% Plot filtered data and filter spectrum
subplot(3,1,2); plot(t,y,’k’); % Plot filtered data
..........labels, table, axis.........

%
subplot(3,1,3);
f = (1:N) * fs/N; % Construct freq. vector for plotting
h = abs(fft(b,256)).v2 % Calculate filter power
plot(f,h,’k’); % spectrum and plot
..........labels, table, axis.........

The function Wiener_hopf solves the Wiener-Hopf equations:

function b = wiener_hopf(x,y,maxlags)
% Function to compute LMS algol using Wiener-Hopf equations
% Inputs: x = input
% y = desired signal
% Maxlags = filter length
% Outputs: b = FIR filter coefficients
%
rxx = xcorr(x,maxlags,’coeff’); % Compute the autocorrela-

% tion vector
rxx = rxx(maxlags�1:end)’; % Use only positive half of

% symm. vector
rxy = xcorr(x,y,maxlags); % Compute the crosscorrela-

% tion vector
rxy = rxy(maxlags�1:end)’; % Use only positive half
%
rxx_matrix = toeplitz(rxx); % Construct correlation

% matrix

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

b = rxx_matrix(rxy; %CalculateFIRcoefficients
% using matrix inversion,
% Levinson could be used
% here

Example 8.1 generates Figure 8.3 above. Note that the optimal filter ap-
proach, when applied to a single sinusoid buried in noise, produces a bandpass
filter with a peak at the sinusoidal frequency. An equivalent—or even more
effective—filter could have been designed using the tools presented in Chapter
4. Indeed, such a statement could also be made about any of the adaptive filters
described below. However, this requires precise a priori knowledge of the signal
and noise frequency characteristics, which may not be available. Moreover, a
fixed filter will not be able to optimally filter signal and noise that changes over
time.

Example 8.2 Apply the LMS algorithm to a systems identification task.
The “unknown” system will be an all-zero linear process with a digital transfer
function of:

H(z) = 0.5 + 0.75z−1 + 1.2z−2

Confirm the match by plotting the magnitude of the transfer function for
both the unknown and matching systems. Since this approach uses an FIR filter
as the matching system, which is also an all-zero process, the match should be
quite good. In Problem 2, this approach is repeated, but for an unknown system
that has both poles and zeros. In this case, the FIR (all-zero) filter will need
many more coefficients than the unknown pole-zero process to produce a rea-
sonable match.

Solution The program below inputs random noise into the unknown pro-
cess using convolution and into the matching filter. Since the FIR matching
filter cannot easily accommodate for a pure time delay, care must be taken to
compensate for possible time shift due to the convolution operation. The match-
ing filter coefficients are adjusted using the Wiener-Hopf equation described
previously. Frequency characteristics of both unknown and matching system are
determined by applying the FFT to the coefficients of both processes and the
resultant spectra are plotted.

% Example 8.2 and Figure 8.4 Adaptive Filters System
% Identification
%
% Uses optimal filtering implemented with the Wiener-Hopf
% algorithm to identify an unknown system
%
% Initialize parameters

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 8.4 Frequency characteristics of an “unknown” process having coeffi-
cients of 0.5, 0.75, and 1.2 (an all-zero process). The matching process uses
system identification implemented with the Wiener-Hopf adaptive filtering ap-
proach. This matching process generates a linear system with a similar spectrum
to the unknown process. Since the unknown process is also an all-zero system,
the transfer function coefficients also match.

close all; clear all;
fs = 500; % Sampling frequency
N = 1024; % Number of points
L = 8; % Optimal filter order
%
% Generate unknown system and noise input
b_unknown = [.5 .75 1.2]; % Define unknown process
xn = randn(1,N);
xd = conv(b_unknown,xn); % Generate unknown system output
xd = xd(3:N�2); % Truncate extra points.
% Ensure proper phase
% Apply Weiner filter
b = wiener_hopf(xn,xd,L); % Compute matching filter

% coefficients
b = b/N; % Scale filter coefficients
%
% Calculate frequency characteristics using the FFT
ps_match = (abs(fft(b,N))).v2;
ps_unknown = (abs(fft(b_unknown,N))).v2;

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

%
% Plot frequency characteristics of unknown and identified
% process
f = (1:N) * fs/N; % Construct freq. vector for

% plotting
subplot(1,2,1); % Plot unknown system freq. char.
plot(f(1:N/2),ps_unknown(1:N/2),’k’);
..........labels, table, axis.........

subplot(1,2,2);
% Plotmatching systemfreq. char.

plot(f(1:N/2),ps_match(1:N/2),’k’);
..........labels, table, axis.........

The output plots from this example are shown in Figure 8.4. Note the
close match in spectral characteristics between the “unknown” process and the
matching output produced by the Wiener-Hopf algorithm. The transfer functions
also closely match as seen by the similarity in impulse response coefficients:

h(n)unknown = [0.5 0.75 1.2]; h(n)match = [0.503 0.757 1.216].

ADAPTIVE SIGNAL PROCESSING

The area of adaptive signal processing is relatively new yet already has a rich
history. As with optimal filtering, only a brief example of the usefulness and
broad applicability of adaptive filtering can be covered here. The FIR and IIR
filters described in Chapter 4 were based on an a priori design criteria and were
fixed throughout their application. Although the Wiener filter described above
does not require prior knowledge of the input signal (only the desired outcome),
it too is fixed for a given application. As with classical spectral analysis meth-
ods, these filters cannot respond to changes that might occur during the course
of the signal. Adaptive filters have the capability of modifying their properties
based on selected features of signal being analyzed.

A typical adaptive filter paradigm is shown in Figure 8.5. In this case, the
filter coefficients are modified by a feedback process designed to make the filter’s
output, y(n), as close to some desired response, d(n), as possible, by reducing the
error, e(n), to a minimum. As with optimal filtering, the nature of the desired
response will depend on the specific problem involved and its formulation may
be the most difficult part of the adaptive system specification (Stearns and David,
1996).

The inherent stability of FIR filters makes them attractive in adaptive appli-
cations as well as in optimal filtering (Ingle and Proakis, 2000). Accordingly, the
adaptive filter, H(z), can again be represented by a set of FIR filter coefficients,

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 8.5 Elements of a typical adaptive filter.

b(k). The FIR filter equation (i.e., convolution) is repeated here, but the filter
coefficients are indicated as bn(k) to indicate that they vary with time (i.e., n).

y(n) = ∑
L

k=1

bn(k) x(n − k) (8)

The adaptive filter operates by modifying the filter coefficients, bn(k),
based on some signal property. The general adaptive filter problem has similari-
ties to the Wiener filter theory problem discussed above in that an error is
minimized, usually between the input and some desired response. As with opti-
mal filtering, it is the squared error that is minimized, and, again, it is necessary
to somehow construct a desired signal. In the Wiener approach, the analysis is
applied to the entire waveform and the resultant optimal filter coefficients were
similarly applied to the entire waveform (a so-called block approach). In adap-
tive filtering, the filter coefficients are adjusted and applied in an ongoing basis.

While the Wiener-Hopf equations (Eqs. (6) and (7)) can be, and have been,
adapted for use in an adaptive environment, a simpler and more popular ap-
proach is based on gradient optimization. This approach is usually called the
LMS recursive algorithm. As in Wiener filter theory, this algorithm also deter-
mines the optimal filter coefficients, and it is also based on minimizing the
squared error, but it does not require computation of the correlation functions,
rxx and rxy. Instead the LMS algorithm uses a recursive gradient method known
as the steepest-descent method for finding the filter coefficients that produce
the minimum sum of squared error.

Examination of Eq. (3) shows that the sum of squared errors is a quadratic
function of the FIR filter coefficients, b(k); hence, this function will have a
single minimum. The goal of the LMS algorithm is to adjust the coefficients so
that the sum of squared error moves toward this minimum. The technique used
by the LMS algorithm is to adjust the filter coefficients based on the method of
steepest descent. In this approach, the filter coefficients are modified based on

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

an estimate of the negative gradient of the error function with respect to a given
b(k). This estimate is given by the partial derivative of the squared error, ε, with
respect to the coefficients, bn(k):

�n =
∂εn

2

∂bn(k)
= 2e(n)

∂(d(n) − y(n))
∂bn(k)

(9)

Since d(n) is independent of the coefficients, bn(k), its partial derivative
with respect to bn(k) is zero. As y(n) is a function of the input times bn(k) (Eq.
(8)), then its partial derivative with respect to bn(k) is just x(n-k), and Eq. (9)
can be rewritten in terms of the instantaneous product of error and the input:

�n = 2e(n) x(n − k) (10)

Initially, the filter coefficients are set arbitrarily to some b0(k), usually
zero. With each new input sample a new error signal, e(n), can be computed
(Figure 8.5). Based on this new error signal, the new gradient is determined
(Eq. (10)), and the filter coefficients are updated:

bn(k) = bn−1(k) + ∆e(n) x(n − k) (11)

where ∆ is a constant that controls the descent and, hence, the rate of conver-
gence. This parameter must be chosen with some care. A large value of ∆ will
lead to large modifications of the filter coefficients which will hasten conver-
gence, but can also lead to instability and oscillations. Conversely, a small value
will result in slow convergence of the filter coefficients to their optimal values.
A common rule is to select the convergence parameter, ∆, such that it lies in
the range:

0 < ∆ < 1
10LPx

(12)

where L is the length of the FIR filter and Px is the power in the input signal.
PX can be approximated by:

Px �
1

N − 1
∑

N

n=1

x
2(n) (13)

Note that for a waveform of zero mean, Px equals the variance of x. The
LMS algorithm given in Eq. (11) can easily be implemented in MATLAB, as
shown in the next section.

Adaptive filtering has a number of applications in biosignal processing. It
can be used to suppress a narrowband noise source such as 60 Hz that is corrupt-
ing a broadband signal. It can also be used in the reverse situation, removing
broadband noise from a narrowband signal, a process known as adaptive line

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 8.6 Configuration for Adaptive Line Enhancement (ALE) or Adaptive In-
terference Suppression. The Delay, D, decorrelates the narrowband component
allowing the adaptive filter to use only this component. In ALE the narrowband
component is the signal while in Interference suppression it is the noise.

enhancement (ALE).* It can also be used for some of the same applications
as the Wiener filter such as system identification, inverse modeling, and, espe-
cially important in biosignal processing, adaptive noise cancellation. This last
application requires a suitable reference source that is correlated with the noise,
but not the signal. Many of these applications are explored in the next section
on MATLAB implementation and/or in the problems.

The configuration for ALE and adaptive interference suppression is shown
in Figure 8.6. When this configuration is used in adaptive interference suppres-
sion, the input consists of a broadband signal, Bb(n), in narrowband noise,
Nb(n), such as 60 Hz. Since the noise is narrowband compared to the relatively
broadband signal, the noise portion of sequential samples will remain correlated
while the broadband signal components will be decorrelated after a few sam-
ples.† If the combined signal and noise is delayed by D samples, the broadband
(signal) component of the delayed waveform will no longer be correlated with
the broadband component in the original waveform. Hence, when the filter’s
output is subtracted from the input waveform, only the narrowband component

*The adaptive line enhancer is so termed because the objective of this filter is to enhance a narrow-
band signal, one with a spectrum composed of a single “line.”

†Recall that the width of the autocorrelation function is a measure of the range of samples for which
the samples are correlated, and this width is inversely related to the signal bandwidth. Hence, broad-
band signals remain correlated for only a few samples and vice versa.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

can have an influence on the result. The adaptive filter will try to adjust its
output to minimize this result, but since its output component, Nb*(n), only
correlates with the narrowband component of the waveform, Nb(n), it is only
the narrowband component that is minimized. In adaptive interference suppres-
sion, the narrowband component is the noise and this is the component that is
minimized in the subtracted signal. The subtracted signal, now containing less
noise, constitutes the output in adaptive interference suppression (upper output,
Figure 8.6).

In adaptive line enhancement, the configuration is the same except the
roles of signal and noise are reversed: the narrowband component is the signal
and the broadband component is the noise. In this case, the output is taken from
the filter output (Figure 8.6, lower output). Recall that this filter output is opti-
mized for the narrowband component of the waveform.

As with the Wiener filter approach, a filter of equal or better performance
could be constructed with the same number of filter coefficients using the tradi-
tional methods described in Chapter 4. However, the exact frequency or frequen-
cies of the signal would have to be known in advance and these spectral features
would have to be fixed throughout the signal, a situation that is often violated
in biological signals. The ALE can be regarded as a self-tuning narrowband
filter which will track changes in signal frequency. An application of ALE is
provided in Example 8.3 and an example of adaptive interference suppression
is given in the problems.

Adaptive Noise Cancellation

Adaptive noise cancellation can be thought of as an outgrowth of the interfer-
ence suppression described above, except that a separate channel is used to
supply the estimated noise or interference signal. One of the earliest applications
of adaptive noise cancellation was to eliminate 60 Hz noise from an ECG signal
(Widrow, 1964). It has also been used to improve measurements of the fetal
ECG by reducing interference from the mother’s EEG. In this approach, a refer-
ence channel carries a signal that is correlated with the interference, but not
with the signal of interest. The adaptive noise canceller consists of an adaptive
filter that operates on the reference signal, N’(n), to produce an estimate of the
interference, N(n) (Figure 8.7). This estimated noise is then subtracted from the
signal channel to produce the output. As with ALE and interference cancella-
tion, the difference signal is used to adjust the filter coefficients. Again, the
strategy is to minimize the difference signal, which in this case is also the
output, since minimum output signal power corresponds to minimum interfer-
ence, or noise. This is because the only way the filter can reduce the output
power is to reduce the noise component since this is the only signal component
available to the filter.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 8.7 Configuration for adaptive noise cancellation. The reference channel
carries a signal, N ’(n), that is correlated with the noise, N(n), but not with the
signal of interest, x(n). The adaptive filter produces an estimate of the noise,
N*(n), that is in the signal. In some applications, multiple reference channels are
used to provide a more accurate representation of the background noise.

MATLAB Implementation

The implementation of the LMS recursive algorithm (Eq. (11)) in MATLAB is
straightforward and is given below. Its application is illustrated through several
examples below.

The LMS algorithm is implemented in the function lms.

function [b,y,e] = lms(x,d,delta,L)
%
% Inputs: x = input
% d = desired signal
% delta = the convergence gain
% L is the length (order) of the FIR filter
% Outputs: b = FIR filter coefficients
% y = ALE output
% e = residual error
% Simple function to adjust filter coefficients using the LSM
% algorithm
% Adjusts filter coefficients, b, to provide the best match
% between the input, x(n), and a desired waveform, d(n),
% Both waveforms must be the same length
% Uses a standard FIR filter
%
M = length(x);
b = zeros(1,L); y = zeros(1,M); % Initialize outputs
for n = L:M

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

x1 = x(n:-1:n-L�1); % Select input for convolu-
% tion

y(n) = b * x1’; % Convolve (multiply)
% weights with input

e(n) = d(n)—y(n); % Calculate error
b = b � delta*e(n)*x1; % Adjust weights

end

Note that this function operates on the data as block, but could easily be
modified to operate on-line, that is, as the data are being acquired. The routine
begins by applying the filter with the current coefficients to the first L points (L
is the filter length), calculates the error between the filter output and the desired
output, then adjusts the filter coefficients accordingly. This process is repeated
for another data segment L-points long, beginning with the second point, and
continues through the input waveform.

Example 8.3 Optimal filtering using the LMS algorithm. Given the
same sinusoidal signal in noise as used in Example 8.1, design an adaptive filter
to remove the noise. Just as in Example 8.1, assume that you have a copy of
the desired signal.

Solution The program below sets up the problem as in Example 8.1, but
uses the LMS algorithm in the routine lms instead of the Wiener-Hopf equation.

% Example 8.3 and Figure 8.8 Adaptive Filters
% Use an adaptive filter to eliminate broadband noise from a
% narrowband signal
% Use LSM algorithm applied to the same data as Example 8.1
%
close all; clear all;
fs = 1000;*IH26* % Sampling frequency
N = 1024; % Number of points
L = 256; % Optimal filter order
a = .25; % Convergence gain
%
% Same initial lines as in Example 8.1
%% Calculate convergence parameter
PX = (1/(N�1))* sum(xn.v2); % Calculate approx. power in xn
delta = a * (1/(10*L*PX)); % Calculate �
b = lms(xn,x,delta,L); % Apply LMS algorithm (see below)
%
% Plotting identical to Example 8.1. ...

Example 8.3 produces the data in Figure 8.8. As with the Wiener filter,
the adaptive process adjusts the FIR filter coefficients to produce a narrowband
filter centered about the sinusoidal frequency. The convergence factor, a, was

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 8.8 Application of an adaptive filter using the LSM recursive algorithm
to data containing a single sinusoid (10 Hz) in noise (SNR = -8 db). Note that the
filter requires the first 0.4 to 0.5 sec to adapt (400–500 points), and that the fre-
quency characteristics of the coefficients produced after adaptation are those of
a bandpass filter with a single peak at 10 Hz. Comparing this figure with Figure
8.3 suggests that the adaptive approach is somewhat more effective than the
Wiener filter for the same number of filter weights.

empirically set to give rapid, yet stable convergence. (In fact, close inspection of
Figure 8.8 shows a small oscillation in the output amplitude suggesting marginal
stability.)

Example 8.4 The application of the LMS algorithm to a stationary sig-
nal was given in Example 8.3. Example 8.4 explores the adaptive characteristics
of algorithm in the context of an adaptive line enhancement problem. Specifi-
cally, a single sinusoid that is buried in noise (SNR = -6 db) abruptly changes
frequency. The ALE-type filter must readjust its coefficients to adapt to the new
frequency.

The signal consists of two sequential sinusoids of 10 and 20 Hz, each
lasting 0.6 sec. An FIR filter with 256 coefficients will be used. Delay and
convergence gain will be set for best results. (As in many problems some adjust-
ments must be made on a trial and error basis.)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Solution Use the LSM recursive algorithm to implement the ALE filter.

% Example 8.4 and Figure 8.9 Adaptive Line Enhancement (ALE)
% Uses adaptive filter to eliminate broadband noise from a
% narrowband signal
%
% Generate signal and noise
close all; clear all;
fs = 1000; % Sampling frequency

FIGURE 8.9 Adaptive line enhancer applied to a signal consisting of two sequen-
tial sinusoids having different frequencies (10 and 20 Hz). The delay of 5 samples
and the convergence gain of 0.075 were determined by trial and error to give the
best results with the specified FIR filter length.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

L = 256; % Filter order
N = 2000; % Number of points
delay = 5; % Decorrelation delay
a = .075; % Convergence gain
t = (1:N)/fs; % Time vector for plotting
%
% Generate data: two sequential sinusoids, 10 & 20 Hz in noise
% (SNR = -6)
x = [sig_noise(10,-6,N/2) sig_noise(20,-6,N/2)];
%
subplot(2,1,1); % Plot unfiltered data
plot(t, x,’k’);
........axis, title.............

PX = (1/(N�1))* sum(x.v2); % Calculate waveform
% power for delta

delta = (1/(10*L*PX)) * a; % Use 10% of the max.
% range of delta

xd = [x(delay:N) zeros(1,delay-1)]; % Delay signal to decor-
% relate broadband noise

[b,y] = lms(xd,x,delta,L); % Apply LMS algorithm
subplot(2,1,2); % Plot filtered data
plot(t,y,’k’);
........axis, title..............

The results of this code are shown in Figure 8.9. Several values of delay
were evaluated and the delay chosen, 5 samples, showed marginally better re-
sults than other delays. The convergence gain of 0.075 (7.5% maximum) was
also determined empirically. The influence of delay on ALE performance is
explored in Problem 4 at the end of this chapter.

Example 8.5 The application of the LMS algorithm to adaptive noise
cancellation is given in this example. Here a single sinusoid is considered as
noise and the approach reduces the noise produced the sinusoidal interference
signal. We assume that we have a scaled, but otherwise identical, copy of the
interference signal. In practice, the reference signal would be correlated with,
but not necessarily identical to, the interference signal. An example of this more
practical situation is given in Problem 5.

% Example 8.5 and Figure 8.10 Adaptive Noise Cancellation
% Use an adaptive filter to eliminate sinusoidal noise from a
% narrowband signal
%
% Generate signal and noise
close all; clear all;

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 8.10 Example of adaptive noise cancellation. In this example the refer-
ence signal was simply a scaled copy of the sinusoidal interference, while in a
more practical situation the reference signal would be correlated with, but not
identical to, the interference. Note the near perfect cancellation of the interfer-
ence.

fs = 500; % Sampling frequency
L = 256; % Filter order
N = 2000; % Number of points
t = (1:N)/fs; % Time vector for plotting
a = 0.5; % Convergence gain (50%

% maximum)
%
% Generate triangle (i.e., sawtooth) waveform and plot
w = (1:N) * 4 * pi/fs; % Data frequency vector
x = sawtooth(w,.5); % Signal is a triangle
% (sawtooth)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

subplot(3,1,1); plot(t,x,’k’); % Plot signal without noise
........axis, title..............

% Add interference signal: a sinusoid
intefer = sin(w*2.33); % Interfer freq. = 2.33

% times signal freq.
x = x � intefer; % Construct signal plus

% interference
ref = .45 * intefer; % Reference is simply a

% scaled copy of the
% interference signal

%
subplot(3,1,2); plot(t, x,’k’); % Plot unfiltered data

........axis, title..............
%
% Apply adaptive filter and plot
Px = (1/(N�1))* sum(x.v2); % Calculate waveform power

% for delta
delta = (1/(10*L*Px)) * a; % Convergence factor
[b,y,out] = lms(ref,x,delta,L); % Apply LMS algorithm
subplot(3,1,3); plot(t,out,’k’); % Plot filtered data
........axis, title..............

Results in Figure 8.10 show very good cancellation of the sinusoidal inter-
ference signal. Note that the adaptation requires approximately 2.0 sec or 1000
samples.

PHASE SENSITIVE DETECTION

Phase sensitive detection, also known as synchronous detection, is a technique
for demodulating amplitude modulated (AM) signals that is also very effective
in reducing noise. From a frequency domain point of view, the effect of ampli-
tude modulation is to shift the signal frequencies to another portion of the spec-
trum; specifically, to a range on either side of the modulating, or “carrier,”
frequency. Amplitude modulation can be very effective in reducing noise be-
cause it can shift signal frequencies to spectral regions where noise is minimal.
The application of a narrowband filter centered about the new frequency range
(i.e., the carrier frequency) can then be used to remove the noise outside the
bandwidth of the effective bandpass filter, including noise that may have been
present in the original frequency range.*

Phase sensitive detection is most commonly implemented using analog

*Many biological signals contain frequencies around 60 Hz, a major noise frequency.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

hardware. Prepackaged phase sensitive detectors that incorporate a wide variety
of optional features are commercially available, and are sold under the term
lock-in amplifiers. While lock-in amplifiers tend to be costly, less sophisticated
analog phase sensitive detectors can be constructed quite inexpensively. The
reason phase sensitive detection is commonly carried out in the analog domain
has to do with the limitations on digital storage and analog-to-digital conversion.
AM signals consist of a carrier signal (usually a sinusoid) which has an ampli-
tude that is varied by the signal of interest. For this to work without loss of
information, the frequency of the carrier signal must be much higher than the
highest frequency in the signal of interest. (As with sampling, the greater the
spread between the highest signal frequency and the carrier frequency, the easier
it is to separate the two after demodulation.) Since sampling theory dictates that
the sampling frequency be at least twice the highest frequency in the input
signal, the sampling frequency of an AM signal must be more than twice the
carrier frequency. Thus, the sampling frequency will need to be much higher
than the highest frequency of interest, much higher than if the AM signal were
demodulated before sampling. Hence, digitizing an AM signal before demodula-
tion places a higher burden on memory storage requirements and analog-to-
digital conversion rates. However, with the reduction in cost of both memory
and highspeed ADC’s, it is becoming more and more practical to decode AM
signals using the software equivalent of phase sensitive detection. The following
analysis applies to both hardware and software PSD’s.

AM Modulation

In an AM signal, the amplitude of a sinusoidal carrier signal varies in proportion
to changes in the signal of interest. AM signals commonly arise in bioinstrumen-
tation systems when transducer based on variation in electrical properties is
excited by a sinusoidal voltage (i.e., the current through the transducer is sinus-
oidal). The strain gage is an example of this type of transducer where resistance
varies in proportion to small changes in length. Assume that two strain gages
are differential configured and connected in a bridge circuit, as shown in Figure
1.3. One arm of the bridge circuit contains the transducers, R + ∆R and R − ∆R,
while the other arm contains resistors having a fixed value of R, the nominal
resistance value of the strain gages. In this example, ∆R will be a function of
time, specifically a sinusoidal function of time, although in the general case it
would be a time varying signal containing a range of sinusoid frequencies. If
the bridge is balanced, and ∆R << R, then it is easy to show using basic circuit
analysis that the bridge output is:

Vin = ∆RV/2R (14)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

where V is source voltage of the bridge. If this voltage is sinusoidal, V = Vs cos
(ωct), then Vin(t) becomes:

Vin(t) = (Vs∆R/2R) cos (ωc t) (15)

If the input to the strain gages is sinusoidal, then ∆R = k cos(ωst); where
ωs is the signal frequency and is assumed to be << ωc and k is the strain gage
sensitivity. Still assuming ∆R << R, the equation for Vin(t) becomes:

Vin(t) = Vsk/2R [cos(ωs t) cos(ωc t)] (16)

Now applying the trigonometric identity for the product of two cosines:

cos(x) cos(y) = 1
2

cos(x + y) + 1
2

cos(x − y) (17)

the equation for Vin(t) becomes:

Vin(t) = Vsk/4R [cos(ωc + ωs)t + cos(ωc − ωs)t] (18)

This signal would have the magnitude spectrum given in Figure 8.11. This
signal is termed a double side band suppressed-carrier modulation since the
carrier frequency, ωc, is missing as seen in Figure 8.11.

FIGURE 8.11 Frequency spectrum of the signal created by sinusoidally exciting
a variable resistance transducer with a carrier frequency ωc. This type of modula-
tion is termed double sideband suppressed-carrier modulation since the carrier
frequency is absent.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Note that using the identity:

cos(x) + cos(y) = 2 cos�x + y2 � cos�x − y2 � (19)

then Vin(t) can be written as:

Vin(t) = Vsk/2R (cos(ωc t) cos(ωs t)) = A(t) cos(ωc t) (20)

where

A(t) = Vsk/2R (cos(ωcs t)) (21)

Phase Sensitive Detectors

The basic configuration of a phase sensitive detector is shown in Figure 8.12
below. The first step in phase sensitive detection is multiplication by a phase
shifted carrier.

Using the identity given in Eq. (18) the output of the multiplier, V ′(t), in
Figure 8.12 becomes:

V ′(t) = Vin(t) cos(ωc t + θ) = A(t) cos(ωc t) cos(ωc t + θ)

= A(t)/2 [cos(2ωc t + θ) + cos θ] (22)

To get the full spectrum, before filtering, substitute Eq. (21) for A(t) into
Eq. (22):

V ′(t) = Vsk/4R [cos(2ωc t + θ) cos(ωs t) + cos(ωs t) cos θ)] (23)

again applying the identity in Eq. (17):

FIGURE 8.12 Basic elements and configuration of a phase sensitive detector
used to demodulate AM signals.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

V ′(t) = Vsk/4R [cos(2ωc t + θ + ωs t) + cos(2ωc t + θ − ωs t)

+ cos(ωs t + θ) + cos(ωs t − θ)] (24)

The spectrum of V ′(t) is shown in Figure 8.13. Note that the phase angle,
θ, would have an influence on the magnitude of the signal, but not its frequency.

After lowpass digital filtering the higher frequency terms, ωct ± ωs will be
reduced to near zero, so the output, Vout(t), becomes:

Vout(t) = A(t) cosθ = (Vsk/2R) cos θ (25)

Since cos θ is a constant, the output of the phase sensitive detector is the
demodulated signal, A(t), multiplied by this constant. The term phase sensitive
is derived from the fact that the constant is a function of the phase difference,
θ, between Vc(t) and Vin(t). Note that while θ is generally constant, any shift in
phase between the two signals will induce a change in the output signal level,
so this approach could also be used to detect phase changes between signals of
constant amplitude.

The multiplier operation is similar to the sampling process in that it gener-
ates additional frequency components. This will reduce the influence of low
frequency noise since it will be shifted up to near the carrier frequency. For
example, consider the effect of the multiplier on 60 Hz noise (or almost any
noise that is not near to the carrier frequency). Using the principle of superposit-
ion, only the noise component needs to be considered. For a noise component
at frequency, ωn (Vin(t)NOISE = Vn cos (ωnt)). After multiplication the contribution
at V ′(t) will be:

FIGURE 8.13 Frequency spectrum of the signal created by multiplying the Vin(t)
by the carrier frequency. After lowpass filtering, only the original low frequency
signal at ωs will remain.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Vin(t)NOISE = Vn [cos(ωc t + ωn t) + cos(ωc t + ωs t)] (26)

and the new, complete spectrum for V ′(t) is shown in Figure 8.14.
The only frequencies that will not be attenuated in the input signal, Vin(t),

are those around the carrier frequency that also fall within the bandwidth of the
lowpass filter. Another way to analyze the noise attenuation characteristics of
phase sensitive detection is to view the effect of the multiplier as shifting the
lowpass filter’s spectrum to be symmetrical about the carrier frequency, giving
it the form of a narrow bandpass filter (Figure 8.15). Not only can extremely
narrowband bandpass filters be created this way (simply by having a low cutoff
frequency in the lowpass filter), but more importantly the center frequency of
the effective bandpass filter tracks any changes in the carrier frequency. It is
these two features, narrowband filtering and tracking, that give phase sensitive
detection its signal processing power.

MATLAB Implementation

Phase sensitive detection is implemented in MATLAB using simple multiplica-
tion and filtering. The application of a phase sensitive detector is given in Exam-

FIGURE 8.14 Frequency spectrum of the signal created by multiplying Vin(t) in-
cluding low frequency noise by the carrier frequency. The low frequency noise is
shifted up to ± the carrier frequency. After lowpass filtering, both the noise and
higher frequency signal are greatly attenuated, again leaving only the original low
frequency signal at ωs remaining.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 8.15 Frequency characteristics of a phase sensitive detector. The fre-
quency response of the lowpass filter (solid line) is effectively “reflected” about
the carrier frequency, fc, producing the effect of a narrowband bandpass filter
(dashed line). In a phase sensitive detector the center frequency of this virtual
bandpass filter tracks the carrier frequency.

ple 8.6 below. A carrier sinusoid of 250 Hz is modulated with a sawtooth wave
with a frequency of 5 Hz. The AM signal is buried in noise that is 3.16 times
the signal (i.e., SNR = -10 db).

Example 8.6 Phase Sensitive Detector. This example uses a phase sensi-
tive detection to demodulate the AM signal and recover the signal from noise.
The filter is chosen as a second-order Butterworth lowpass filter with a cutoff
frequency set for best noise rejection while still providing reasonable fidelity to
the sawtooth waveform. The example uses a sampling frequency of 2 kHz.

% Example 8.6 and Figure 8.16 Phase Sensitive Detection
%
% Set constants
close all; clear all;
fs = 2000; % Sampling frequency
f = 5; % Signal frequency
fc = 250; % Carrier frequency
N = 2000; % Use 1 sec of data
t = (1:N)/fs; % Time axis for plotting
wn = .02; % PSD lowpass filter cut-

% off frequency
[b,a] = butter(2,wn); % Design lowpass filter
%

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 8.16 Application of phase sensitive detection to an amplitude-modulated
signal. The AM signal consisted of a 250 Hz carrier modulated by a 5 Hz sawtooth
(upper graph). The AM signal is mixed with white noise (SNR = −10db, middle
graph). The recovered signal shows a reduction in the noise (lower graph).

% Generate AM signal
w = (1:N)* 2*pi*fc/fs; % Carrier frequency =

% 250 Hz
w1 = (1:N)*2*pi*f/fs; % Signal frequency = 5 Hz
vc = sin(w); % Define carrier
vsig = sawtooth(w1,.5); % Define signal
vm = (1 � .5 * vsig) .* vc; % Create modulated signal

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% with a Modulation
% constant = 0.5

subplot(3,1,1);
plot(t,vm,’k’); % Plot AM Signal
.......axis, label,title.......

%
% Add noise with 3.16 times power (10 db) of signal for SNR of
% -10 db
noise = randn(1,N);
scale = (var(vsig)/var(noise)) * 3.16;
vm = vm � noise * scale; % Add noise to modulated

% signal
subplot(3,1,2);
plot(t,vm,’k’); % Plot AM signal
.......axis, label,title.......

% Phase sensitive detection
ishift = fix(.125 * fs/fc); % Shift carrier by 1/4
vc = [vc(ishift:N) vc(1:ishift-1)]; % period (45 deg) using

% periodic shift
v1 = vc .* vm; % Multiplier
vout = filter(b,a,v1); % Apply lowpass filter
subplot(3,1,3);
plot(t,vout,’k’); % Plot AM Signal
.......axis, label,title.......

The lowpass filter was set to a cutoff frequency of 20 Hz (0.02 * fs/2) as
a compromise between good noise reduction and fidelity. (The fidelity can be
roughly assessed by the sharpness of the peaks of the recovered sawtooth wave.)
A major limitation in this process were the characteristics of the lowpass filter:
digital filters do not perform well at low frequencies. The results are shown in
Figure 8.16 and show reasonable recovery of the demodulated signal from the
noise.

Even better performance can be obtained if the interference signal is nar-
rowband such as 60 Hz interference. An example of using phase sensitive detec-
tion in the presence of a strong 60 Hz signal is given in Problem 6 below.

PROBLEMS

1. Apply the Wiener-Hopf approach to a signal plus noise waveform similar
to that used in Example 8.1, except use two sinusoids at 10 and 20 Hz in 8 db
noise. Recall, the function sig_noise provides the noiseless signal as the third
output to be used as the desired signal. Apply this optimal filter for filter lengths
of 256 and 512.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

2. Use the LMS adaptive filter approach to determine the FIR equivalent to
the linear process described by the digital transfer function:

H(z) = 0.2 + 0.5z−1

1 − 0.2z−1 + 0.8z−2

As with Example 8.2, plot the magnitude digital transfer function of the
“unknown” system, H(z), and of the FIR “matching” system. Find the transfer
function of the IIR process by taking the square of the magnitude of
fft(b,n)./fft(a,n) (or use freqz). Use the MATLAB function filtfilt

to produce the output of the IIR process. This routine produces no time delay
between the input and filtered output. Determine the approximate minimum
number of filter coefficients required to accurately represent the function above
by limiting the coefficients to different lengths.

3. Generate a 20 Hz interference signal in noise with and SNR + 8 db; that is,
the interference signal is 8 db stronger that the noise. (Use sig_noise with an
SNR of +8.) In this problem the noise will be considered as the desired signal.
Design an adaptive interference filter to remove the 20 Hz “noise.” Use an FIR
filter with 128 coefficients.

4. Apply the ALE filter described in Example 8.3 to a signal consisting of two
sinusoids of 10 and 20 Hz that are present simultaneously, rather that sequen-
tially as in Example 8.3. Use a FIR filter lengths of 128 and 256 points. Evaluate
the influence of modifying the delay between 4 and 18 samples.

5. Modify the code in Example 8.5 so that the reference signal is correlat-
ed with, but not the same as, the interference data. This should be done by con-
volving the reference signal with a lowpass filter consisting of 3 equal weights;
i.e:

b = [0.333 0.333 0.333].
For this more realistic scenario, note the degradation in performance as

compared to Example 8.5 where the reference signal was identical to the noise.

6. Redo the phase sensitive detector in Example 8.6, but replace the white
noise with a 60 Hz interference signal. The 60 Hz interference signal should
have an amplitude that is 10 times that of the AM signal.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

9

Multivariate Analyses:
Principal Component Analysis
and Independent Component Analysis

INTRODUCTION

Principal component analysis and independent component analysis fall within a
branch of statistics known as multivariate analysis. As the name implies, multi-
variate analysis is concerned with the analysis of multiple variables (or measure-
ments), but treats them as a single entity (for example, variables from multiple
measurements made on the same process or system). In multivariate analysis,
these multiple variables are often represented as a single vector variable that
includes the different variables:

x = [x1(t), x2(t) xm(t)]T For 1 ≤ m ≤ M (1)

The ‘T’ stands for transposed and represents the matrix operation of
switching rows and columns.* In this case, x is composed of M variables, each
containing N (t = 1, . . . ,N) observations. In signal processing, the observations
are time samples, while in image processing they are pixels. Multivariate data,
as represented by x above can also be considered to reside in M-dimensional
space, where each spatial dimension contains one signal (or image).

In general, multivariate analysis seeks to produce results that take into

*Normally, all vectors including these multivariate variables are taken as column vectors, but to
save space in this text, they are often written as row vectors with the transpose symbol to indicate
that they are actually column vectors.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

account the relationship between the multiple variables as well as within the
variables, and uses tools that operate on all of the data. For example, the covari-
ance matrix described in Chapter 2 (Eq. (19), Chapter 2, and repeated in Eq.
(4) below) is an example of a multivariate analysis technique as it includes
information about the relationship between variables (their covariance) and in-
formation about the individual variables (their variance). Because the covariance
matrix contains information on both the variance within the variables and the
covariance between the variables, it is occasionally referred to as the variance–
covariance matrix.

A major concern of multivariate analysis is to find transformations of the
multivariate data that make the data set smaller or easier to understand. For
example, is it possible that the relevant information contained in a multidimen-
sional variable could be expressed using fewer dimensions (i.e., variables) and
might the reduced set of variables be more meaningful than the original data
set? If the latter were true, we would say that the more meaningful variables
were hidden, or latent, in the original data; perhaps the new variables better
represent the underlying processes that produced the original data set. A bio-
medical example is found in EEG analysis where a large number of signals are
acquired above the region of the cortex, yet these multiple signals are the result
of a smaller number of neural sources. It is the signals generated by the neural
sources—not the EEG signals per se—that are of interest.

In transformations that reduce the dimensionality of a multi-variable data
set, the idea is to transform one set of variables into a new set where some of
the new variables have values that are quite small compared to the others. Since
the values of these variables are relatively small, they must not contribute very
much information to the overall data set and, hence, can be eliminated.* With
the appropriate transformation, it is sometimes possible to eliminate a large
number of variables that contribute only marginally to the total information.

The data transformation used to produce the new set of variables is often
a linear function since linear transformations are easier to compute and their
results are easier to interpret. A linear transformation can be represent mathe-
matically as:

yi(t) = ∑
M

j=1

wijxj(t) i = 1, . . . N (2)

where wij is a constant coefficient that defines the transformation.

*Evaluating the significant of a variable by the range of its values assumes that all the original
variables have approximately the same range. If not, some form of normalization should be applied
to the original data set.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Since this transformation is a series of equations, it can be equivalently
expressed using the notation of linear algebra:

�y1(t)
y2(t)
�
yM(t)
� = W�x1(t)

x2(t)
�
xM(t)
� (3)

As a linear transformation, this operation can be interpreted as a rotation
and possibly scaling of the original data set in M-dimensional space. An exam-
ple of how a rotation of a data set can produce a new data set with fewer major
variables is shown in Figure 9.1 for a simple two-dimensional (i.e., two vari-
able) data set. The original data set is shown as a plot of one variable against
the other, a so-called scatter plot, in Figure 9.1A. The variance of variable x1 is
0.34 and the variance of x2 is 0.20. After rotation the two new variables, y1 and
y2 have variances of 0.53 and 0.005, respectively. This suggests that one vari-
able, y1, contains most of the information in the original two-variable set. The

FIGURE 9.1 A data set consisting of two variables before (left graph) and after
(right graph) linear rotation. The rotated data set still has two variables, but the
variance on one of the variables is quite small compared to the other.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

goal of this approach to data reduction is to find a matrix W that will produce
such a transformation.

The two multivariate techniques discussed below, principal component
analysis and independent component analysis, differ in their goals and in the
criteria applied to the transformation. In principal component analysis, the object
is to transform the data set so as to produce a new set of variables (termed
principal components) that are uncorrelated. The goal is to reduce the dimen-
sionality of the data, not necessarily to produce more meaningful variables. We
will see that this can be done simply by rotating the data in M-dimensional
space. In independent component analysis, the goal is a bit more ambitious:
to find new variables (components) that are both statistically independent and
nongaussian.

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is often referred to as a technique for re-
ducing the number of variables in a data set without loss of information, and as
a possible process for identifying new variables with greater meaning. Unfortu-
nately, while PCA can be, and is, used to transform one set of variables into
another smaller set, the newly created variables are not usually easy to interpret.
PCA has been most successful in applications such as image compression where
data reduction—and not interpretation—is of primary importance. In many ap-
plications, PCA is used only to provide information on the true dimensionality
of a data set. That is, if a data set includes M variables, do we really need all
M variables to represent the information, or can the variables be recombined
into a smaller number that still contain most of the essential information (John-
son, 1983)? If so, what is the most appropriate dimension of the new data set?

PCA operates by transforming a set of correlated variables into a new set
of uncorrelated variables that are called the principal components. Note that if
the variables in a data set are already uncorrelated, PCA is of no value. In
addition to being uncorrelated, the principal components are orthogonal and are
ordered in terms of the variability they represent. That is, the first principle
component represents, for a single dimension (i.e., variable), the greatest amount
of variability in the original data set. Each succeeding orthogonal component
accounts for as much of the remaining variability as possible.

The operation performed by PCA can be described in a number of ways,
but a geometrical interpretation is the most straightforward. While PCA is appli-
cable to data sets containing any number of variables, it is easier to describe
using only two variables since this leads to readily visualized graphs. Figure
9.2A shows two waveforms: a two-variable data set where each variable is a
different mixture of the same two sinusoids added with different scaling factors.
A small amount of noise was also added to each waveform (see Example 9.1).

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.2 (A) Two waveforms made by mixing two sinusoids having different
frequencies and amplitudes, then adding noise to the two mixtures. The resultant
waveforms can be considered related variables since they both contain informa-
tion from the same two sources. (B) The scatter plot of the two variables (or
waveforms) was obtained by plotting one variable against the other for each point
in time (i.e., each data sample). The correlation between the two samples (r =
0.77) can be seen in the diagonal clustering of points.

Since the data set was created using two separate sinusoidal sources, it should
require two spatial dimensions. However, since each variable is composed of
mixtures of the two sources, the variables have a considerable amount of covari-
ance, or correlation.* Figure 9.2B is a scatter plot of the two variables, a plot
of x1 against x2 for each point in time, and shows the correlation between the
variables as a diagonal spread of the data points. (The correlation between the two
variables is 0.77.) Thus, knowledge of the x value gives information on the

*Recall that covariance and correlation differ only in scaling. Definitions of these terms are given
in Chapter 2 and are repeated for covariance below.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

range of possible y values and vice versa. Note that the x value does not
uniquely determine the y value as the correlation between the two variables is
less than one. If the data were uncorrelated, the x value would provide no infor-
mation on possible y values and vice versa. A scatter plot produced for such
uncorrelated data would be roughly symmetrical with respect to both the hori-
zontal and vertical axes.

For PCA to decorrelate the two variables, it simply needs to rotate the
two-variable data set until the data points are distributed symmetrically about
the mean. Figure 9.3B shows the results of such a rotation, while Figure 9.3A
plots the time response of the transformed (i.e., rotated) variables. In the decor-
related condition, the variance is maximally distributed along the two orthogonal
axes. In general, it may be also necessary to center the data by removing the
means before rotation. The original variables plotted in Figure 9.2 had zero
means so this step was not necessary.

While it is common in everyday language to take the word uncorrelated
as meaning unrelated (and hence independent), this is not the case in statistical
analysis, particularly if the variables are nonlinear. In the statistical sense, if two

FIGURE 9.3 (A) Principal components of the two variables shown in Figure 9.2.
These were produced by an orthogonal rotation of the two variables. (B) The
scatter plot of the rotated principal components. The symmetrical shape of the
data indicates that the two new components are uncorrelated.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

(or more) variables are independent they will also be uncorrelated, but the re-
verse is not generally true. For example, the two variables plotted as a scatter
plot in Figure 9.4 are uncorrelated, but they are highly related and not indepen-
dent. They are both generated by a single equation, the equation for a circle with
noise added. Many other nonlinear relationships (such as the quadratic function)
can generate related (i.e., not independent) variables that are uncorrelated. Con-
versely, if the variables have a Gaussian distribution (as in the case of most
noise), then when they are uncorrelated they are also independent. Note that
most signals do not have a Gaussian distribution and therefore are not likely to
be independent after they have been decorrelated using PCA. This is one of the
reasons why the principal components are not usually meaningful variables:
they are still mixtures of the underlying sources. This inability to make two
signals independent through decorrelation provides the motivation for the meth-
odology known as independent component analysis described later in this chapter.

If only two variables are involved, the rotation performed between Figure
9.2 and Figure 9.3 could be done by trial and error: simply rotate the data until

FIGURE 9.4 Time and scatter plots of two variables that are uncorrelated, but not
independent. In fact, the two variables were generated by a single equation for a
circle with added noise.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

the covariance (or correlation) goes to zero. An example of this approach is
given as an exercise in the problems. A better way to achieve zero correlation
is to use a technique from linear algebra that generates a rotation matrix that
reduces the covariance to zero. A well-known technique exists to reduce a ma-
trix that is positive-definite (as is the covariance matrix) into a diagonal matrix
by pre- and post-multiplication with an orthonormal matrix (Jackson, 1991):

U′SU = D (4)

where S is the m-by-m covariance matrix, D is a diagonal matrix, and U is an
orthonormal matrix that does the transformation. Recall that a diagonal matrix
has zeros for the off-diagonal elements, and it is the off-diagonal elements that
correspond to covariance in the covariance matrix (Eq. (19) in Chapter 2 and
repeated as Eq. (5) below). The covariance matrix is defined by:

S = �σ1,1 σ1,2
. . . σ1,N

σ2,1 σ2,2
. . . σ2,N

� � O �
σN,1 σN,2

. . . σN,N

� (5)

Hence, the rotation implied by U will produce a new covariance matrix,
D, that has zero covariance. The diagonal elements of D are the variances of
the new data, more generally known as the characteristic roots, or eigenvalues,
of S: λ1, λ2, . . . λn. The columns of U are the characteristic vectors, or eigenvec-
tors u1, u2, . . . un. Again, the eigenvalues of the new covariance matrix, D, cor-
respond to the variances of the rotated variables (now called the principle com-
ponents). Accordingly, these eigenvalues (variances) can be used to determine
what percentage of the total variance (which is equal to the sum of all eigenval-
ues) a given principal component represents. As shown below, this is a measure
of the associated principal component’s importance, at least with regard to how
much of the total information it represents.

The eigenvalues or roots can be solved by the following determinant equa-
tion:

det*S − λI* = 0 (6)

where I is the identity matrix. After solving for λ, the eigenvectors can be
solved using the equation:

det*S − λI*bi = 0 (7)

where the eigenvectors are obtained from bi by the equation

ui = bi'√b′ibi (8)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

This approach can be carried out by hand for two or three variables, but
is very tedious for more variables or long data sets. It is much easier to use
singular value composition which has the advantage of working directly from
the data matrix and can be done in one step. Moreover, singular value decompo-
sition can be easily implemented with a single function call in MATLAB. Sin-
gular value decomposition solves an equation similar to Eq. (4), specifically:

X = U * D1/2U′ (9)

In the case of PCA, X is the data matrix that is decomposed into (1) D,
the diagonal matrix that contains, in this case, the square root of the eigenvalues;
and (2) U, the principle components matrix. An example of this approach is
given in the next section on MATLAB Implementation.

Order Selection

The eigenvalues describe how much of the variance is accounted for by the
associated principal component, and when singular value decomposition is used,
these eigenvalues are ordered by size; that is: λ1 > λ2 > λ3 . . . > λM. They can
be very helpful in determining how many of the components are really signifi-
cant and how much the data set can be reduced. Specifically, if several eigenval-
ues are zero or close to zero, then the associated principal components contribute
little to the data and can be eliminated. Of course, if the eigenvalues are identi-
cally zero, then the associated principal component should clearly be eliminated,
but where do you make the cut when the eigenvalues are small, but nonzero?
There are two popular methods for determining eigenvalue thresholds. (1) Take
the sum of all eigenvectors (which must account for all the variance), then delete
those eigenvalues that fall below some percentage of that sum. For example, if
you want the remaining variables to account for 90% of the variance, then chose
a cutoff eigenvalue where the sum of all lower eigenvalues is less than 10% of
the total eigenvalue sum. (2) Plot the eigenvalues against the order number, and
look for breakpoints in the slope of this curve. Eigenvalues representing noise
should not change much in value and, hence, will plot as a flatter slope when
plotted against eigenvalue number (recall the eigenvalues are in order of large
to small). Such a curve was introduced in Chapter 5 and is known as the scree
plot (see Figure 5.6 D) These approaches are explored in the first example of
the following section on MATLAB Implementation.

MATLAB Implementation

Data Rotation

Many multivariate techniques rotate the data set as part of their operation. Im-
aging also uses data rotation to change the orientation of an object or image.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

From basic trigonometry, it is easy to show that, in two dimensions, rotation of
a data point (x1, y1) can be achieved by multiplying the data points by the sines
and cosines of the rotation angle:

y2 = y1 cos(θ) + x1 sin(θ) (10)

x2 = y1 (−sin(θ)) + x1 cos(θ) (11)

where θ is the angle through which the data set is rotated in radians. Using
matrix notation, this operation can be done by multiplying the data matrix by a
rotation matrix:

R = � cos(θ)
−sin(θ)

sin(θ)
cos(θ)� (12)

This is the strategy used by the routine rotation given in Example 9.1
below. The generalization of this approach to three or more dimensions is
straightforward. In PCA, the rotation is done by the algorithm as described
below so explicit rotation is not required. (Nonetheless, it is required for one of
the problems at the end of this chapter, and later in image processing.) An
example of the application of rotation in two dimensions is given in the
example.

Example 9.1 This example generate two cycles of a sine wave and rotate
the wave by 45 deg.

Solution: The routine below uses the function rotation to perform the
rotation. This function operates only on two-dimensional data. In addition to
multiplying the data set by the matrix in Eq. (12), the function rotation checks
the input matrix and ensures that it is in the right orientation for rotation with
the variables as columns of the data matrix. (It assumes two-dimensional data,
so the number of columns, i.e., number of variables, should be less than the
number of rows.)

% Example 9.1 and Figure 9.5
% Example of data rotation
% Create a two variable data set of y = sin (x)
% then rotate the data set by an angle of 45 deg
%
clear all; close all;
N = 100; % Variable length
x(1,:) = (1:N)/10; % Create a two variable data
x(2,:) = sin(x(1,:)*4*pi/10); % set: x1 linear; x2 =

% sin(x1)—two periods
plot(x(1,:),x(2,:),’*k’); % Plot data set
xlabel(’x1’); ylabel(’x2’);

phi = 45*(2*pi/360); % Rotation angle equals 45 deg

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.5 A two-cycle sine wave is rotated 45 deg. using the function rota-
tion that implements Eq. (12).

y = rotation(x,phi); % Rotate
hold on;
plot(y(1,:),y(2,:),’xk’); % Plot rotated data

The rotation is performed by the function rotation following Eq. (12).

% Function rotation
% Rotates the first argument by an angle phi given in the second
% argument function out = rotate(input,phi)
% Input variables
% input A matrix of the data to be rotated

phi The rotation angle in radians
% Output variables
% out The rotated data
%
[r c] = size(input);
if r < c % Check input format and

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

input = input’; % transpose if necessary
transpose_flag = ’y’;

end
% Set up rotation matrix
R = [cos(phi) sin(phi); -sin(phi) cos(phi)];
out = input * R; % Rotate input
if transpose_flag == ’y’ % Restore original input format
out = out’;

end

Principal Component Analysis Evaluation

PCA can be implemented using singular value decomposition. In addition, the
MATLAB Statistics Toolbox has a special program, princomp, but this just
implements the singular value decomposition algorithm. Singular value decom-
position of a data array, X, uses:

[V,D,U] = svd(X);

where D is a diagonal matrix containing the eigenvalues and V contains the
principal components in columns. The eigenvalues can be obtained from D using
the diag command:

eigen = diag(D);

Referring to Eq. (9), these values will actually be the square root of the
eigenvalues, λi. If the eigenvalues are used to measure the variance in the rotated
principal components, they also need to be scaled by the number of points.

It is common to normalize the principal components by the eigenvalues
so that different components can be compared. While a number of different
normalizing schemes exist, in the examples here, we multiply the eigenvector
by the square root of the associated eigenvalue since this gives rise to principal
components that have the same value as a rotated data array (See Problem 1).

Example 9.2 Generate a data set with five variables, but from only two
sources and noise. Compute the principal components and associated eigenval-
ues using singular value decomposition. Compute the eigenvalue ratios and gen-
erate the scree plot. Plot the significant principal components.

% Example 9.2 and Figures 9.6, 9.7, and 9.8
% Example of PCA
% Create five variable waveforms from only two signals and noise
% Use this in PCA Analysis
%
% Assign constants

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.6 Plot of eigenvalue against component number, the scree plot. Since
the eigenvalue represents the variance of a given component, it can be used as
a measure of the amount of information the associated component represents. A
break is seen at 2, suggesting that only the first two principal components are
necessary to describe most of the information in the data.

clear all; close all;
N = 1000; % Number points (4 sec of

% data)
fs = 500; % Sample frequency
w = (1:N) * 2*pi/fs; % Normalized frequency

% vector
t = (1:N);*IH26* % Time vector for plotting
%
% Generate data
x = .75 *sin(w*5); % One component a sine
y = sawtooth(w*7,.5); % One component a sawtooth
%
% Combine data in different proportions
D(1,:) = .5*y � .5*x � .1*rand(1,N);
D(2,:) = .2*y � .7*x � .1*rand(1,N);
D(3,:) = .7*y � .2*x � .1*rand(1,N);
D(4,:) = -.6*y � -.24*x � .2*rand(1,N);
D(5,:) = .6* rand(1,N); % Noise only
%
% Center data subtract mean
for i = 1:5
D(i,:) = D(i,:)—mean(D(i,:)); % There is a more efficient

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.7 Plot of the five variables used in Example 9.2. They were all pro-
duced from only two sources (see Figure 9.8B) and/or noise. (Note: one of the
variables is pure noise.)

% way to do this
end
%
% Find Principal Components
[U,S,pc]= svd(D,0); % Singular value decompo-

% sition

eigen = diag(S).v2; % Calculate eigenvalues

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.8 Plot of the first two principal components and the original two
sources. Note that the components are not the same as the original sources.
Even thought they are uncorrelated (see covariance matrix on the next page),
they cannot be independent since they are still mixtures of the two sources.

pc = pc(:,1:5); % Reduce size of principal
% comp. matrix

for i = 1:5 %Scaleprincipalcomponents
pc(:,i) = pc(:,i) * sqrt(eigen(i));

end
eigen = eigen/N % Eigenvalues now equal

% variances
plot(eigen); % Plot scree plot
.......labels and title....................
%
% Calculate Eigenvalue ratio
total_eigen = sum(eigen);
for i = 1:5
pct(i) = sum(eigen(i:5))/total_eigen;

end
disp(pct*100) % Display eigenvalue ratios

% in percent
%
% Print Scaled Eigenvalues and Covariance Matrix of Principal

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

% Components
S = cov(pc)
%
% Plot Principal Components and Original Data
figure;
subplot(1,2,1); % Plot first two principal components
plot(t,pc(:,1)-2,t,pc(:,2)�2); % Displaced for clarity

......labels and title.....................

subplot(1,2,2); % Plot Original components
plot(t,x-2,’k’,t,y�2,’k’); % Displaced for clarity

......labels and title.....................

The five variables are plotted below in Figure 9.7. Note that the strong
dependence between the variables (they are the product of only two differ-
ent sources plus noise) is not entirely obvious from the time plots. The new
covariance matrix taken from the principal components shows that all five com-
ponents are uncorrelated, and also gives the variance of the five principal com-
ponents

0.5708 −0.0000 0.0000 −0.0000 0.0000
−0.0000 0.0438 0.0000 −0.0000 0.0000
0.0000 0.0000 0.0297 −0.0000 0.0000
−0.0000 −0.0000 −0.0000 0.0008 0.0000
0.0000 0.0000 0.0000 0.0000 0.0008

The percentage of variance accounted by the sums of the various eigenval-
ues is given by the program as:

CP 1-5 CP 2-5 CP 3-5 CP 4-5 CP 5
100% 11.63% 4.84% 0.25% 0.12%

Note that the last three components account for only 4.84% of the variance
of the data. This suggests that the actual dimension of the data is closer to two
than to five. The scree plot, the plot of eigenvalue versus component number,
provides another method for checking data dimensionality. As shown in Figure
9.6, there is a break in the slope at 2, again suggesting that the actual dimension
of the data set is two (which we already know since it was created using only
two independent sources).

The first two principal components are shown in Figure 9.8, along with
the waveforms of the original sources. While the principal components are un-
correlated, as shown by the covariance matrix above, they do not reflect the two

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

independent data sources. Since they are still mixtures of the two sources they
can not be independent even though they are uncorrelated. This occurs because
the variables do not have a gaussian distribution, so that decorrelation does not
imply independence. Another technique described in the next section can be
used to make the variables independent, in which case the original sources can
be recovered.

INDEPENDENT COMPONENT ANALYSIS

The application of principal component analysis described in Example 9.1 shows
that decorrelating the data is not sufficient to produce independence between
the variables, at least when the variables have nongaussian distributions. Inde-
pendent component analysis seeks to transform the original data set into number
of independent variables. The motivation for this transformation is primarily to
uncover more meaningful variables, not to reduce the dimensions of the data
set. When data set reduction is also desired it is usually accomplished by prepro-
cessing the data set using PCA.

One of the more dramatic applications of independent component analysis
(ICA) is found in the cocktail party problem. In this situation, multiple people
are speaking simultaneously within the same room. Assume that their voices are
recorded from a number of microphones placed around the room, where the
number of microphones is greater than, or equal to, the number of speakers.
Figure 9.9 shows this situation for two microphones and two speakers. Each
microphone will pick up some mixture of all of the speakers in the room. Since
presumably the speakers are generating signals that are independent (as would
be the case in a real cocktail party), the successful application of independent
component analysis to a data set consisting of microphone signals should re-
cover the signals produced by the different speakers. Indeed, ICA has been quite
successful in this problem. In this case, the goal is not to reduce the number of
signals, but to produce signals that are more meaningful; specifically, the speech
of the individual speakers. This problem is similar to the analysis of EEG signals
where many signals are recorded from electrodes placed around the head, and
these signals represent combinations of underlying neural sources.

The most significant computational difference between ICA and PCA is
that PCA uses only second-order statistics (such as the variance which is a
function of the data squared) while ICA uses higher-order statistics (such as
functions of the data raised to the fourth power). Variables with a Gaussian
distribution have zero statistical moments above second-order, but most signals
do not have a Gaussian distribution and do have higher-order moments. These
higher-order statistical properties are put to good use in ICA.

The basis of most ICA approaches is a generative model; that is, a model
that describes how the measured signals are produced. The model assumes that

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.9 A schematic of the cocktail party problem where two speakers are
talking simultaneously and their voices are recorded by two microphones. Each
microphone detects the output of both speakers. The problem is to unscramble,
or unmix, the two signals from the combinations in the microphone signals. No
information is known about the content of the speeches nor the placement of the
microphones and speakers.

the measured signals are the product of instantaneous linear combinations of the
independent sources. Such a model can be stated mathematically as:

xi(t) = a i1 s1(t) + a i2 s2(t) + . . . + a iN sN(t) for i = 1, . . . , N (13)

Note that this is a series of equations for the N different signal variables,
xi(t). In discussions of the ICA model equation, it is common to drop the time
function. Indeed, most ICA approaches do not take into account the ordering of
variable elements; hence, the fact that s and x are time functions is irrelevant.

In matrix form, Eq. (13) becomes similar to Eq. (3):

�x1(t)
x2(t)
�
xn(t)
� = A�s1(t)

s2(t)
�
sn(t)
� (14)

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

which can be written succinctly as:

x = As (15)

where s is a vector composed of all the source signals,* A is the mixing matrix
composed of the constant elements ai,j, and x is a vector of the measured signals.
The model described by Eqs. (13) and (14) is also known as a latent variables
model since the source variables, s, cannot be observed directly: they are hidden,
or latent, in x. Of course the principle components in PCA are also latent vari-
ables; however, since they are not independent they are usually difficult to inter-
pret. Note that noise is not explicitly stated in the model, although ICA methods
will usually work in the presence of moderate noise (see Example 9.3). ICA
techniques are used to solve for the mixing matrix, A, from which the indepen-
dent components, s, can be obtained through simple matrix inversion:

s = A−1x (16)

If the mixing matrix is known or can be determined, then the underlying
sources can be found simply by solving Eq. (16). However, ICA is used in the
more general situation where the mixing matrix is not known. The basic idea is
that if the measured signals, x, are related to the underlying source signals, s,
by a linear transformation (i.e., a rotation and scaling operation) as indicated by
Eqs. (14) and (15), then some inverse transformation (rotation/scaling) can be
found that recovers the original signals. To estimate the mixing matrix, ICA
needs to make only two assumptions: that the source variables, s, are truly
independent;† and that they are non-Gaussian. Both conditions are usually met
when the sources are real signals. A third restriction is that the mixing matrix
must be square; in other words, the number of sources should equal the number
of measured signals. This is not really a restriction since PCA can be always be
applied to reduce the dimension of the data set, x, to equal that of the source
data set, s.

The requirement that the underlying signals be non-Gaussian stems from
the fact that ICA relies on higher-order statistics to separate the variables.
Higher-order statistics (i.e., moments and related measures) of Gaussian signals
are zero. ICA does not require that the distribution of the source variables be
known, only that they not be Gaussian. Note that if the measured variables are
already independent, ICA has nothing to contribute, just as PCA is of no use if
the variables are already uncorrelated.

The only information ICA has available is the measured variables; it has
no information on either the mixing matrix, A, or the underlying source vari-

*Note that the source signals themselves are also vectors. In this notation, the individual signals are
considered as components of the single source vector, s.

†In fact, the requirement for strict independence can be relaxed somewhat in many situations.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

ables, s. Hence, there are some limits to what ICA can do: there are some
unresolvable ambiguities in the components estimated by ICA. Specifically,
ICA cannot determine the variances, hence the energies or amplitudes, of the
actual sources. This is understandable if one considers the cocktail party prob-
lem. The sounds from a loudmouth at the party could be offset by the positions
and gains of the various microphones, making it impossible to identify defini-
tively his excessive volume. Similarly a soft-spoken party-goer could be closer
to a number of the microphones and appear unduly loud in the recorded signals.
Unless something is known about the mixing matrix (in this case the position
and gains of the microphones with respect to the various speakers), this ambigu-
ity cannot be resolved. Since the amplitude of the signals cannot be resolved, it
is usual to fix the amplitudes so that a signal’s variance is one. It is also impossi-
ble, for the same reasons, to determine the sign of the source signal, although
this is not usually of much concern in most applications.

A second restriction is that, unlike PCA, the order of the components
cannot be established. This follows from the arguments above: to establish the
order of a given signal would require some information about the mixing matrix
which, by definition, is unknown. Again, in most applications this is not a seri-
ous shortcoming.

The determination of the independent components begins by removing the
mean values of the variables, also termed centering the data, as in PCA. The
next step is to whiten the data, also know as sphering the data. Data that have
been whitened are uncorrelated (as are the principal components), but, in addi-
tion, all of the variables have variances of one. PCA can be used for both these
operations since it decorrelates the data and provides information on the vari-
ance of the decorrelated data in the form of the eigenvectors. Figure 9.10 shows
the scatter plot of the data used in Figure 9.1 before and after whitening using
PCA to decorrelate the data then scaling the components to have unit variances.

The independent components are determined by applying a linear transfor-
mation to the whitened data. Since the observations are a linear transformation
of the underlying signals, s, (Eq. (15)) one should be able to be reconstruct
them from a (inverse) linear transformation to the observed signals, x. That is,
a given component could be obtained by the transformation:

ici = bi
Tx (17)

where ic, the independent component, is an estimate of the original signal, and
b is the appropriate vector to reconstruct that independent component. There are
quite a number of different approaches for estimating b, but they all make use
of an objective function that relates to variable independence. This function is
maximized (or minimized) by an optimization algorithm. The various approaches
differ in the specific objective function that is optimized and the optimization
method that is used.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.10 Two-variable multivariate data before (left) and after (right) whiten-
ing. Whitened data has been decorrelated and the resultant variables scaled so
that their variance is one. Note that the whitened data has a generally circular
shape. A whitened three-variable data set would have a spherical shape, hence
the term sphering the data.

One of the most intuitive approaches uses an objective function that is
related to the non-gaussianity of the data set. This approach takes advantage of
the fact that mixtures tend to be more gaussian than the distribution of indepen-
dent sources. This is a direct result of the central limit theorem which states that
the sum of k independent, identically distributed random variables converges to
a Gaussian distribution as k becomes large, regardless of the distribution of the
individual variables. Hence, mixtures of non-Gaussian sources will be more
Gaussian than the unmixed sources. This was demonstrated in Figure 2.1 using
averages of uniformly distributed random data. Here we demonstrate the action
of the central limit theorem using a deterministic function. In Figure 9.11A, a
Gaussian distribution is estimated using the histogram of a 10,000-point se-
quence of Gaussian noise as produced by the MATLAB function randn. A
distribution that is closely alined with an actual gaussian distribution (dotted
line) is seen. A similarly estimated distribution of a single sine wave is shown
in Figure 9.11B along with the Gaussian distribution. The sine wave distribution
(solid line) is quite different from Gaussian (dashed line). However, a mixture
of only two independent sinusoids (having different frequencies) is seen to be

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.11 Approximate distributions for four variables determined from histo-
grams of 10,0000-point waveforms. (A) Gaussian noise (from the MATLAB randn
function). (B) Single sinusoid at 100 Hz. (C) Two sinusoids mixed together (100
and 30 Hz). (D) Four sinusoids mixed together (100, 70, 30, and 25 Hz). Note that
larger mixtures produce distributions that look more like Gaussian distributions.

much closer to the Gaussian distribution (Figure 9.11C). The similarity im-
proves as more independent sinusoids are mixed together, as seen in Figure
9.11D which shows the distribution obtained when four sinusoids (not harmoni-
cally related) are added together.

To take advantage of the relationship between non-gaussianity and com-
ponent independence requires a method to measure gaussianity (or lack thereof).
With such a measure, it would be possible to find b in Eq. (14) by adjusting b
until the measured non-gaussianity of the transformed data set, ici, is maximum.
One approach to quantifying non-gaussianity is to use kurtosis, the fourth-order
cumulant of a variable, that is zero for Gaussian data and nonzero otherwise.
Other approaches use an information-theoretic measure termed negentropy. Yet
another set of approaches uses mutual information as the objective function to
be minimized. An excellent treatment of the various approaches, their strengths

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

and weaknesses, can be found in Hyvärinen et al. (2001), as well as Cichicki et
al. (2002).

MATLAB Implementation

Development of an ICA algorithm is not a trivial task; however, a number
of excellent algorithms can be downloaded from the Internet in the form of
MATLAB m-files. Two particularly useful algorithms are the FastICA algo-
rithm developed by the ICA Group at Helsinki University:

http://www.cis.hut.fi/projects/ica/fastica/fp.html

and the Jade algorithm for real-valued signals developed by J.-F. Cardoso:

http://sig.enst.fr/	cardoso/stuff.html.

The Jade algorithm is used in the example below, although the FastICA
algorithm allows greater flexibility, including an interactive mode.

Example 9.3 Construct a data set consisting of five observed signals
that are linear combinations of three different waveforms. Apply PCA and plot
the scree plot to determine the actual dimension of the data set. Apply the Jade
ICA algorithm given the proper dimensions to recover the individual compo-
nents.

% Example 9.3 and Figure 9.12, 9.13, 9.14, and 9.15
% Example of ICA
% Create a mixture using three different signals mixed five ways
% plus noise
% Use this in PCA and ICA analysis
%
clear all; close all;
% Assign constants
N = 1000; % Number points (4 sec of data)
fs = 500; % Sample frequency
w = (1:N) * 2*pi/fs; % Normalized frequency vector
t = (1:N);
%
% Generate the three signals plus noise
s1 = .75 *sin(w*12) � .1*randn(1,N); %Doublesin,asawtooth
s2 = sawtooth(w*5,.5)� .1*randn(1,N); % and a periodic

% function
s3 = pulstran((0:999),(0:5)’*180,kaiser(100,3)) �

.07*randn(1,N);
%
% Plot original signals displaced for viewing

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

http://www.cis.hut.fi

FIGURE 9.12 The three original source signals used to create the mixture seen
in Figure 9.14 and used in Example 9.3.

plot(t,s1–2,’k’,t,s2,’k’,t,s3�2,’k’);
xlabel(’Time (sec)’); ylabel(’s(t)’);
title(’Original Components (Before mixing)’);

%
% Combine the 3 source signals 5 different ways. Define the mix-
% ing matrix
A = [.5 .5 .5; .2 .7 .7; .7 .4 .2; -.5 % Mixing matrix
.2-.6; .7-.5-.4];

s = [s1; s2; s3]; % Signal matrix
X = A * s; % Generate mixed signal output
figure; % Figure for mixed signals
%
% Center data and plot mixed signals
for i = 1:5
X(i,:) = X(i,:)—mean(X(i,:));
plot(t,X(i,:)�2*(i-1),’k’);
hold on;

end
......labels and title..........

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.13 Scree plot of eigenvalues from the data set of Figure 9.12. Note the
shape break at N = 3, indicating that there are only three independent variables in
the data set of five waveforms. Hence, the ICA algorithm will be requested to
search for only three components.

%
% Do PCA and plot Eigenvalues
figure;
[U,S,pc]= svd(X,0); % Use single value decomposition
eigen = diag(S).v2; % Get the eigenvalues
plot(eigen,’k’); % Scree plot
......labels and title..........
%
nu_ICA = input(’Enter the number of independent components’);
% Compute ICA
W = jadeR(X,nu_ICA); % Determine the mixing matrix
ic = (W * X)’; % Determine the IC’s from the

% mixing matrix
figure; % Plot independent components
plot(t,ic(:,1)-4,’k’,t,ic(:,2),’k’,t,ic(:,3)�4,’k’);
......labels and title..........

The original source signals are shown in Figure 9.12. These are mixed
together in different proportions to produce the five signals shown in Figure
9.14. The Scree plot of the eigenvalues obtained from the five-variable data set
does show a marked break at 3 suggesting that there, in fact, only three separate
components, Figure 9.13. Applying ICA to the five-variable mixture in Figure

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.14 Five signals created by mixing three different waveforms and noise.
ICA was applied to this data set to recover the original signals. The results of
applying ICA to this data set are seen in Figure 9.15.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

FIGURE 9.15 The three independent components found by ICA in Example 9.3.
Note that these are nearly identical to the original, unmixed components. The
presence of a small amount of noise does not appear to hinder the algorithm.

9.14 recovers the original source signals as shown in Figure 9.15. This figure
dramatically demonstrates the ability of this approach to recover the original
signals even in the presence of modest noise. ICA has been applied to biosignals
to estimate the underlying sources in an multi-lead EEG signal, to improve the
detection of active neural areas in functional magnetic resonance imaging, and
to uncover the underlying neural control components in an eye movement motor
control system. Given the power of the approach, many other applications are
sure to follow.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

PROBLEMS

1. Load the two-variable data set, X, contained in file p1_data. Assume for
plotting that the sample frequency is 500 Hz. While you are not given the di-
mensions or orientation of the data set, you can assume the number of time
samples is much greater than the number of measured signals.

(A) Rotate these data by an angle entered through the keyboard and output the
covariance (from the covariance matrix) after each rotation. Use the function
rotate to do the rotation. See comments in the function for details. Continue
to rotate the data set manually until the covariances are very small (less than
10-4). Plot the rotated and unrotated variables as a scatter plot and output their
variances (also from covariance matrix). The variances will be the eigenvalues
found by PCA and the rotated data the principal components.

(B) Now apply PCA using the approach given in Example 9.1 and compare the
scatter plots with the manually rotated data. Compare the variances of the princi-
pal components from PCA (which can be obtained from the eigenvalues) with
the variances obtained by manual rotation in (A) above.

2. Load the multi-variable data set, X, contained in file p2_data. Make the
same assumptions with regard to sampling frequency and data set size as in
Problem 1 above.

(A) Determine the actual dimension of the data using PCA and the scree plot.

(B) Perform an ICA analysis using either the Jade or FastICA algorithm limiting
the number of components determined from the scree plot. Plot independent
components.

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

	dke53_fm
	BIOSIGNAL AND BIOMEDICAL IMAGE PROCESSING
	SERIES INTRODUCTION
	PREFACE
	CONTENTS
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: BASIC CONCEPTS
	CHAPTER 3: SPECTRAL ANALYSIS: CLASSICAL METHODS
	CHAPTER 4: DIGITAL FILTERS
	CHAPTER 5: SPECTRAL ANALYSIS: MODERN TECHNIQUES
	CHAPTER 6: TIME–FREQUENCY METHODS
	CHAPTER 7: THE WAVELET TRANSFORM
	CHAPTER 8: ADVANCED SIGNAL PROCESSING TECHNIQUES: OPTIMAL AND ADAPTIVE FILTERS
	CHAPTER 9: MULTIVARIATE ANALYSES: PRINCIPAL COMPONENT ANALYSIS AND INDEPENDENT COMPONENT ANALYSIS
	CHAPTER 10: FUNDAMENTALS OF IMAGE PROCESSING: MATLAB IMAGE PROCESSING TOOLBOX
	CHAPTER 11: IMAGE PROCESSING: FILTERS, TRANSFORMATIONS, AND REGISTRATION
	CHAPTER 12: IMAGE SEGMENTATION
	CHAPTER 13: IMAGE RECONSTRUCTION
	ANNOTATED BIBLIOGRAPHY

	DKE53_bib
	CONTENTS
	ANNOTATED BIBLIOGRAPHY

	DKE53_ch1
	CONTENTS
	CHAPTER 1: INTRODUCTION
	TYPICAL MEASUREMENT SYSTEMS
	TRANSDUCERS
	FURTHER STUDY: THE TRANSDUCER

	ANALOG SIGNAL PROCESSING
	SOURCES OF VARIABILITY: NOISE
	ELECTRONIC NOISE
	SIGNAL-TO-NOISE RATIO

	ANALOG FILTERS: FILTER BASICS
	FILTER TYPES
	FILTER BANDWIDTH
	FILTER ORDER
	FILTER INITIAL SHARPNESS

	ANALOG-TO-DIGITAL CONVERSION: BASIC CONCEPTS
	ANALOG-TO-DIGITAL CONVERSION TECHNIQUES
	QUANTIZATION ERROR

	FURTHER STUDY: SUCCESSIVE APPROXIMATION

	TIME SAMPLING: BASICS
	FURTHER STUDY: BUFFERING AND REAL-TIME DATA PROCESSING
	DATA BANKS
	PROBLEMS

	DKE53_ch10
	CONTENTS
	CHAPTER 10: FUNDAMENTALS OF IMAGE PROCESSING: MATLAB IMAGE PROCESSING TOOLBOX
	IMAGE PROCESSING BASICS: MATLAB IMAGE FORMATS
	GENERAL IMAGE FORMATS: IMAGE ARRAY INDEXING
	DATA CLASSES: INTENSITY CODING SCHEMES
	DATA FORMATS
	DATA CONVERSIONS
	IMAGE DISPLAY
	IMAGE STORAGE AND RETRIEVAL
	BASIC ARITHMETIC OPERATIONS

	ADVANCED PROTOCOLS: BLOCK PROCESSING
	SLIDING NEIGHBORHOOD OPERATIONS
	DISTINCT BLOCK OPERATIONS

	PROBLEMS

	DKE53_ch11
	CONTENTS
	CHAPTER 11: IMAGE PROCESSING: FILTERS, TRANSFORMATIONS, AND REGISTRATION
	SPECTRAL ANALYSIS: THE FOURIER TRANSFORM
	MATLAB IMPLEMENTATION

	LINEAR FILTERING
	MATLAB IMPLEMENTATION
	FILTER DESIGN

	SPATIAL TRANSFORMATIONS
	MATLAB IMPLEMENTATION
	AFFINE TRANSFORMATIONS
	GENERAL AFFINE TRANSFORMATIONS
	PROJECTIVE TRANSFORMATIONS

	IMAGE REGISTRATION
	UNAIDED IMAGE REGISTRATION
	INTERACTIVE IMAGE REGISTRATION

	PROBLEMS

	DKE53_ch12
	CONTENTS
	CHAPTER 12: IMAGE SEGMENTATION
	PIXEL-BASED METHODS
	THRESHOLD LEVEL ADJUSTMENT
	MATLAB IMPLEMENTATION

	CONTINUITY-BASED METHODS
	MATLAB IMPLEMENTATION
	MULTI-THRESHOLDING

	MORPHOLOGICAL OPERATIONS
	MATLAB IMPLEMENTATION

	EDGE-BASED SEGMENTATION
	MATLAB IMPLEMENTATION

	PROBLEMS

	DKE53_ch13
	CONTENTS
	CHAPTER 13: IMAGE RECONSTRUCTION
	CT, PET, AND SPECT
	FAN BEAM GEOMETRY
	MATLAB IMPLEMENTATION
	RADON TRANSFORM
	INVERSE RADON TRANSFORM: PARALLEL BEAM GEOMETRY
	RADON AND INVERSE RADON TRANSFORM: FAN BEAM GEOMETRY

	MAGNETIC RESONANCE IMAGING
	BASIC PRINCIPLES
	DATA ACQUISITION: PULSE SEQUENCES
	FUNCTIONAL MAGNETIC RESONANCE IMAGING
	MATLAB IMPLEMENTATION
	PRINCIPAL COMPONENT AND INDEPENDENT COMPONENT ANALYSIS

	PROBLEMS

	DKE53_ch2
	CONTENTS
	CHAPTER 2: BASIC CONCEPTS
	NOISE
	ENSEMBLE AVERAGING
	MATLAB IMPLEMENTATION

	DATA FUNCTIONS AND TRANSFORMS
	CONVOLUTION, CORRELATION, AND COVARIANCE
	CONVOLUTION AND THE IMPULSE RESPONSE
	COVARIANCE AND CORRELATION
	MATLAB IMPLEMENTATION

	SAMPLING THEORY AND FINITE DATA CONSIDERATIONS
	EDGE EFFECTS

	PROBLEMS

	DKE53_ch3
	CONTENTS
	CHAPTER 3: SPECTRAL ANALYSIS: CLASSICAL METHODS
	INTRODUCTION
	THE FOURIER TRANSFORM: FOURIER SERIES ANALYSIS
	PERIODIC FUNCTIONS
	SYMMETRY

	DISCRETE TIME FOURIER ANALYSIS
	APERIODIC FUNCTIONS
	FREQUENCY RESOLUTION

	TRUNCATED FOURIER ANALYSIS: DATA WINDOWING
	POWER SPECTRUM

	MATLAB IMPLEMENTATION
	DIRECT FFT AND WINDOWING
	THE WELCH METHOD FOR POWER SPECTRAL DENSITY DETERMINATION
	WINDOW FUNCTIONS

	PROBLEMS

	DKE53_ch4
	CONTENTS
	CHAPTER 4: DIGITAL FILTERS
	THE Z-TRANSFORM
	DIGITAL TRANSFER FUNCTION
	MATLAB IMPLEMENTATION

	FINITE IMPULSE RESPONSE (FIR) FILTERS
	FIR FILTER DESIGN
	DERIVATIVE OPERATION: THE TWO-POINT CENTRAL DIFFERENCE ALGORITHM
	MATLAB IMPLEMENTATION

	INFINITE IMPULSE RESPONSE (IIR) FILTERS
	FILTER DESIGN AND APPLICATION USING THE MATLAB SIGNAL PROCESSING TOOLBOX
	FIR FILTERS
	TWO-STAGE FIR FILTER DESIGN
	THREE-STAGE FIR FILTER DESIGN

	IIR FILTERS
	TWO-STAGE IIR FILTER DESIGN
	THREE-STAGE IIR FILTER DESIGN: ANALOG STYLE FILTERS

	PROBLEMS

	DKE53_ch5
	CONTENTS
	CHAPTER 5: SPECTRAL ANALYSIS: MODERN TECHNIQUES
	PARAMETRIC MODEL-BASED METHODS
	MATLAB IMPLEMENTATION

	NON-PARAMETRIC EIGENANALYSIS FREQUENCY ESTIMATION
	MATLAB IMPLEMENTATION

	PROBLEMS

	DKE53_ch6
	CONTENTS
	CHAPTER 6: TIME-FREQUENCY METHODS
	BASIC APPROACHES
	SHORT-TERM FOURIER TRANSFORM: THE SPECTROGRAM
	WIGNER-VILLE DISTRIBUTION: A SPECIAL CASE OF COHEN’S CLASS
	THE CHOI-WILLIAMS AND OTHER DISTRIBUTIONS
	ANALYTIC SIGNAL

	MATLAB IMPLEMENTATION
	THE SHORT-TERM FOURIER TRANSFORM
	THE WIGNER-VILLE DISTRIBUTION
	CHOI-WILLIAMS AND OTHER DISTRIBUTIONS

	PROBLEMS

	DKE53_ch7
	CONTENTS
	CHAPTER 7: THE WAVELET TRANSFORM
	INTRODUCTION
	THE CONTINUOUS WAVELET TRANSFORM
	WAVELET TIME – FREQUENCY CHARACTERISTICS
	MATLAB IMPLEMENTATION

	THE DISCRETE WAVELET TRANSFORM
	FILTER BANKS
	THE RELATIONSHIP BETWEEN ANALYTICAL EXPRESSIONS AND FILTER BANKS

	MATLAB IMPLEMENTATION
	DENOISING
	DISCONTINUITY DETECTION
	FEATURE DETECTION: WAVELET PACKETS

	PROBLEMS

	DKE53_ch8
	CONTENTS
	CHAPTER 8: ADVANCED SIGNAL PROCESSING TECHNIQUES: OPTIMAL AND ADAPTIVE FILTERS
	OPTIMAL SIGNAL PROCESSING: WIENER FILTERS
	MATLAB IMPLEMENTATION

	ADAPTIVE SIGNAL PROCESSING
	ADAPTIVE NOISE CANCELLATION
	ADAPTIVE NOISE CANCELLATION

	MATLAB IMPLEMENTATION

	PHASE SENSITIVE DETECTION
	AM MODULATION
	PHASE SENSITIVE DETECTORS
	MATLAB IMPLEMENTATION

	PROBLEMS

	DKE53_ch9
	CONTENTS
	CHAPTER 9: MULTIVARIATE ANALYSES: PRINCIPAL COMPONENT ANALYSIS AND INDEPENDENT COMPONENT ANALYSIS
	INTRODUCTION
	PRINCIPAL COMPONENT ANALYSIS
	ORDER SELECTION
	MATLAB IMPLEMENTATION
	DATA ROTATION
	PRINCIPAL COMPONENT ANALYSIS EVALUATION

	INDEPENDENT COMPONENT ANALYSIS
	MATLAB IMPLEMENTATION

	PROBLEMS

