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ABSTRACT
There are many books wr�tten about stat�st�cs, some br�ef, some deta�led, some humorous, some 
colorful, and some qu�te dry. Each of these texts �s des�gned for a spec�fic aud�ence. Too often, texts 
about stat�st�cs have been rather theoret�cal and �nt�m�dat�ng for those not pract�c�ng stat�st�cal 
analys�s on a rout�ne bas�s. Thus, many eng�neers and sc�ent�sts, who need to use stat�st�cs much 
more frequently than calculus or d�fferent�al equat�ons, lack suffic�ent knowledge of the use of 
stat�st�cs. The aud�ence that �s addressed �n th�s text �s the un�vers�ty-level b�omed�cal eng�neer�ng 
student who needs a bare-bones coverage of the most bas�c stat�st�cal analys�s frequently used �n 
b�omed�cal eng�neer�ng pract�ce. The text �ntroduces students to the essent�al vocabulary and bas�c 
concepts of probab�l�ty and stat�st�cs that are requ�red to perform the numer�cal summary and sta-
t�st�cal analys�s used �n the b�omed�cal field. Th�s text �s cons�dered a start�ng po�nt for �mportant 
�ssues to cons�der when des�gn�ng exper�ments, summar�z�ng data, assum�ng a probab�l�ty model for 
the data, test�ng hypotheses, and draw�ng conclus�ons from sampled data.

A student who has completed th�s text should have suffic�ent vocabulary to read more ad-
vanced texts on stat�st�cs and further the�r knowledge about add�t�onal numer�cal analyses that are 
used �n the b�omed�cal eng�neer�ng field but are beyond the scope of th�s text. Th�s book �s des�gned 
to supplement an undergraduate-level course �n appl�ed stat�st�cs, spec�fically �n b�omed�cal eng�-
neer�ng. Pract�c�ng eng�neers who have not had formal �nstruct�on �n stat�st�cs may also use th�s text  
as a s�mple, br�ef �ntroduct�on to stat�st�cs used �n b�omed�cal eng�neer�ng. The emphas�s �s on the 
appl�cat�on of stat�st�cs, the assumpt�ons made �n apply�ng the stat�st�cal tests, the l�m�tat�ons of 
these elementary stat�st�cal methods, and the errors often comm�tted �n us�ng stat�st�cal analys�s. 
A number of examples from b�omed�cal eng�neer�ng research and �ndustry pract�ce are prov�ded to 
ass�st the reader �n understand�ng concepts and appl�cat�on. It �s benefic�al for the reader to have 
some background �n the l�fe sc�ences and phys�ology and to be fam�l�ar w�th bas�c b�omed�cal �n-
strumentat�on used �n the cl�n�cal env�ronment.

KEywoRdS
probab�l�ty model, hypothes�s test�ng, phys�ology, ANOVA, normal d�str�but�on, 
confidence �nterval, power test
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C H A P T E R  1

B�omed�cal eng�neers typ�cally collect all sorts of data, from pat�ents, an�mals, cell counters, m�cro-
assays, �mag�ng systems, pressure transducers, beds�de mon�tors, manufactur�ng processes, mater�al 
test�ng systems, and other measurement systems that support a broad spectrum of research, des�gn, 
and manufactur�ng env�ronments. Ult�mately, the reason for collect�ng data �s to make a dec�s�on. 
That dec�s�on may concern d�fferent�at�ng b�olog�cal character�st�cs among d�fferent populat�ons 
of people, determ�n�ng whether a pharmacolog�cal treatment �s effect�ve, determ�n�ng whether �t �s 
cost-effect�ve to �nvest �n mult�m�ll�on-dollar med�cal �mag�ng technology, determ�n�ng whether a 
manufactur�ng process �s under control, or select�ng the best rehab�l�tat�ve therapy for an �nd�v�dual 
pat�ent.

The challenge �n mak�ng such dec�s�ons often l�es �n the fact that all real-world data conta�ns 
some element of uncerta�nty because of random processes that underl�e most phys�cal phenomenon. 
These random elements prevent us from pred�ct�ng the exact value of any phys�cal quant�ty at any 
moment of t�me. In other words, when we collect a sample or data po�nt, we usually cannot pred�ct 
the exact value of that sample or exper�mental outcome. For example, although the average rest�ng 
heart rate of normal adults �s about 70 beats per m�nute, we cannot pred�ct the exact arr�val t�me 
of our next heartbeat. However, we can approx�mate the l�kel�hood that the arr�val t�me of the next 
heartbeat w�ll fall �n a spec�fic t�me �nterval �f we have a good probab�l�ty model to descr�be the 
random phenomenon contr�but�ng to the t�me �nterval between heartbeats. The t�m�ng of heart-
beats �s �nfluenced by a number of phys�olog�cal var�ables [1], �nclud�ng the refractory per�od of 
the �nd�v�dual cells that make up the heart muscle, the leak�ness of the cell membranes �n the s�nus 
node (the heart’s natural pacemaker), and the act�v�ty of the autonom�c nervous system, wh�ch may 
speed up or slow down the heart rate �n response to the body’s need for �ncreased blood flow, oxygen, 
and nutr�ents. The sum of these b�olog�cal processes produces a pattern of heartbeats that we may 
measure by count�ng the pulse rate from our wr�st or carot�d artery or by search�ng for spec�fic QRS 
waveforms �n the ECG [2]. Although th�s sum of events makes �t d�fficult for us to pred�ct exactly 
when the new heartbeat w�ll arr�ve, we can guess, w�th a certa�nty amount of confidence when the 
next beat w�ll arr�ve. In other words, we can ass�gn a probab�l�ty to the l�kel�hood that the next 
heartbeat w�ll arr�ve �n a spec�fied t�me �nterval. If we were to cons�der all poss�ble arr�val t�mes and 
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ass�gned a probab�l�ty to those arr�val t�mes, we would have a probab�l�ty model for the heartbeat 
�ntervals. If we can find a probab�l�ty model to descr�be the l�kel�hood of occurrence of a certa�n 
event or exper�mental outcome, we can use stat�st�cal methods to make dec�s�ons. The probab�l�ty 
models descr�be character�st�cs of the populat�on or phenomenon be�ng stud�ed. Stat�st�cal analys�s 
then makes use of these models to help us make dec�s�ons about the populat�on(s) or processes.

The conclus�ons that one may draw from us�ng stat�st�cal analys�s are only as good as the 
underly�ng model that �s used to descr�be the real-world phenomenon, such as the t�me �nterval 
between heartbeats. For example, a normally funct�on�ng heart exh�b�ts cons�derable var�ab�l�ty �n 
beat-to-beat �ntervals (F�gure 1.1). Th�s var�ab�l�ty reflects the body’s cont�nual effort to ma�nta�n 
homeostas�s so that the body may cont�nue to perform �ts most essent�al funct�ons and supply the 
body w�th the oxygen and nutr�ents requ�red to funct�on normally. It has been demonstrated through 
b�omed�cal research that there �s a loss of heart rate var�ab�l�ty assoc�ated w�th some d�seases, such 
as d�abetes and �schem�c heart d�sease. Researchers seek to determ�ne �f th�s d�fference �n var�ab�l�ty 
between normal subjects and subjects w�th heart d�sease �s s�gn�ficant (mean�ng, �t �s due to some 
underly�ng change �n b�ology and not s�mply a result of chance) and whether �t m�ght be used to 
pred�ct the progress�on of the d�sease [1]. One w�ll note that the probab�l�ty model changes as a 
consequence of changes �n the underly�ng b�olog�cal funct�on or process. In the case of manufactur-
�ng, the probab�l�ty model used to descr�be the output of the manufactur�ng process may change as 

FIguRE 1.1: Example of an ECG record�ng, where R-R �nterval �s defined as the t�me �nterval be-
tween success�ve R waves of the QRS complex, the most prom�nent waveform of the ECG.
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a funct�on of mach�ne operat�on or changes �n the surround�ng manufactur�ng env�ronment, such as 
temperature, hum�d�ty, or human operator.

Bes�des help�ng us to descr�be the probab�l�ty model assoc�ated w�th real-world phenomenon, 
stat�st�cs help us to make dec�s�ons by g�v�ng us quant�tat�ve tools for test�ng hypotheses. We call 
th�s inferential statistics, whereby the outcome of a stat�st�cal test allows us to draw conclus�ons or 
make �nferences about one or more populat�ons from wh�ch samples are drawn. Most often, sc�en-
t�sts and eng�neers are �nterested �n compar�ng data from two or more d�fferent populat�ons or from 
two or more d�fferent processes. Typ�cally, the default hypothes�s �s that there �s no d�fference �n the 
d�str�but�ons of two or more populat�ons or processes, and we use stat�st�cal analys�s to determ�ne 
whether there are true d�fferences �n the d�str�but�ons of the underly�ng populat�ons to warrant d�f-
ferent probab�l�ty models be ass�gned to the �nd�v�dual processes.

In summary, b�omed�cal eng�neers typ�cally collect data or samples from var�ous phenomena, 
wh�ch conta�n some element of randomness or unpred�ctable var�ab�l�ty, for the purposes of mak�ng 
dec�s�ons. To make sound dec�s�ons �n the context of the uncerta�nty w�th some level of confidence, 
we need to assume some probab�l�ty model for the populat�ons from wh�ch the samples have been 
collected. Once we have assumed an underly�ng model, we can select the appropr�ate stat�st�cal 
tests for compar�ng two or more populat�ons and then use these tests to draw conclus�ons about 

FIguRE 1.2: Steps �n stat�st�cal analys�s.



MC: Ropella Ch01_Page 4 - 09/26/2007, 04:23PM Achorn Internat�onal

our hypotheses for wh�ch we collected the data �n the first place. F�gure 1.2 outl�nes the steps for 
perform�ng stat�st�cal analys�s of data.

In the follow�ng chapters, we w�ll descr�be methods for graph�cally and numer�cally sum-
mar�z�ng collected data. We w�ll then talk about fitt�ng a probab�l�ty model to the collected data by 
br�efly descr�b�ng a number of well-known probab�l�ty models that are used to descr�be b�olog�cal 
phenomenon. F�nally, once we have assumed a model for the populat�ons from wh�ch we have col-
lected our sample data, we w�ll d�scuss the types of stat�st�cal tests that may be used to compare data 
from mult�ple populat�ons and allow us to test hypotheses about the underly�ng populat�ons.

•  •  •  •

4 INTRoduCTIoN To STATISTICS FoR BIoMEdICAL ENgINEERS
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C H A P T E R  2

Before we d�scuss any type of data summary and stat�st�cal analys�s, �t �s �mportant to recogn�ze that 
the value of any stat�st�cal analys�s �s only as good as the data collected. Because we are us�ng data 
or samples to draw conclus�ons about ent�re populat�ons or processes, �t �s cr�t�cal that the data col-
lected (or samples collected) are representat�ve of the larger, underly�ng populat�on. In other words, 
�f we are try�ng to determ�ne whether men between the ages of 20 and 50 years respond pos�t�vely 
to a drug that reduces cholesterol level, we need to carefully select the populat�on of subjects for 
whom we adm�n�ster the drug and take measurements. In other words, we have to have enough 
samples to represent the var�ab�l�ty of the underly�ng populat�on. There �s a great deal of var�ety �n 
the we�ght, he�ght, genet�c makeup, d�et, exerc�se hab�ts, and drug use �n all men ages 20 to 50 years 
who may also have h�gh cholesterol. If we are to test the effect�veness of a new drug �n lower�ng 
cholesterol, we must collect enough data or samples to capture the var�ab�l�ty of b�olog�cal makeup 
and env�ronment of the populat�on that we are �nterested �n treat�ng w�th the new drug. Captur�ng 
th�s var�ab�l�ty �s often the greatest challenge that b�omed�cal eng�neers face �n collect�ng data and 
us�ng stat�st�cs to draw mean�ngful conclus�ons. The exper�mental�st must ask quest�ons such as the 
follow�ng:

What type of person, object, or phenomenon do I sample?
What var�ables that �mpact the measure or data can I control?
How many samples do I requ�re to capture the populat�on var�ab�l�ty to apply the appro-
pr�ate stat�st�cs and draw mean�ngful conclus�ons?
How do I avo�d b�as�ng the data w�th the exper�mental des�gn?

Exper�mental des�gn, although not the pr�mary focus of th�s book, �s the most cr�t�cal step to sup-
port the stat�st�cal analys�s that w�ll lead to mean�ngful conclus�ons and hence sound dec�s�ons.

One of the most fundamental quest�ons asked by b�omed�cal researchers �s, “What s�ze sam-
ple do I need?” or “How many subjects w�ll I need to make dec�s�ons w�th any level of confidence?” 

•
•
•

•

Collecting data and 
Experimental design
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We w�ll address these �mportant quest�ons at the end of th�s book when concepts such as var�ab�l�ty, 
probab�l�ty models, and hypothes�s test�ng have already been covered. For example, power tests w�ll 
be descr�bed as a means for pred�ct�ng the sample s�ze requ�red to detect s�gn�ficant d�fferences �n 
two populat�on means us�ng a t test.

Two elements of exper�mental des�gn that are cr�t�cal to prevent b�as�ng the data or select�ng 
samples that do not fa�rly represent the underly�ng populat�on are random�zat�on and block�ng.

Random�zat�on refers to the process by wh�ch we randomly select samples or exper�mental 
un�ts from the larger underly�ng populat�on such that we max�m�ze our chance of captur�ng the 
var�ab�l�ty �n the underly�ng populat�on. In other words, we do not l�m�t our samples such that 
only a fract�on of the character�st�cs or behav�ors of the underly�ng populat�on are captured �n the 
samples. More �mportantly, we do not b�as the results by art�fic�ally l�m�t�ng the var�ab�l�ty �n the 
samples such that we alter the probab�l�ty model of the sample populat�on w�th respect to the prob-
ab�l�ty model of the underly�ng populat�on.

In add�t�on to random�z�ng our select�on of exper�mental un�ts from wh�ch to take samples, we 
m�ght also random�ze our ass�gnment of treatments to our exper�mental un�ts. Or, we may random-
�ze the order �n wh�ch we take data from the exper�mental un�ts. For example, �f we are test�ng the 
effect�veness of two d�fferent med�cal �mag�ng methods �n detect�ng bra�n tumor, we w�ll randomly 
ass�gn all subjects suspect of hav�ng bra�n tumor to one of the two �mag�ng methods. Thus, �f we have 
a m�x of sex, age, and type of bra�n tumor part�c�pat�ng �n the study, we reduce the chance of hav�ng 
all one sex or one age group ass�gned to one �mag�ng method and a very d�fferent type of populat�on 
ass�gned to the second �mag�ng method. If a d�fference �s noted �n the outcome of the two �mag�ng 
methods, we w�ll not art�fic�ally �ntroduce sex or age as a factor �nfluenc�ng the �mag�ng results.

As another example, �f one are test�ng the strength of three d�fferent mater�als for use �n 
h�p �mplants us�ng several strength measures from a mater�als test�ng mach�ne, one m�ght random-
�ze the order �n wh�ch samples of the three d�fferent test mater�als are subm�tted to the mach�ne. 
Mach�ne performance can vary w�th t�me because of wear, temperature, hum�d�ty, deformat�on, 
stress, and user character�st�cs. If the b�omed�cal eng�neer were asked to find the strongest mater�al 
for an art�fic�al h�p us�ng spec�fic strength cr�ter�a, he or she may conduct an exper�ment. Let us 
assume that the eng�neer �s g�ven three boxes, w�th each box conta�n�ng five art�fic�al h�p �mplants 
made from one of three mater�als: t�tan�um, steel, and plast�c. For any one box, all five �mplant 
samples are made from the same mater�al. To test the 15 d�fferent �mplants for mater�al strength, 
the eng�neer m�ght random�ze the order �n wh�ch each of the 15 �mplants �s tested �n the mater�-
als test�ng mach�ne so that t�me-dependent changes �n mach�ne performance or mach�ne-mater�al 
�nteract�ons or t�me-vary�ng env�ronmental cond�t�on do not b�as the results for one or more of the 
mater�als. Thus, to fully random�ze the �mplant test�ng, an eng�neer may l�terally place the numbers 
1–15 �n a hat and also ass�gn the numbers 1–15 to each of the �mplants to be tested. The eng�neer 
w�ll then bl�ndly draw one of the 15 numbers from a hat and test the �mplant that corresponds to 

6 INTRoduCTIoN To STATISTICS FoR BIoMEdICAL ENgINEERS
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that number. Th�s way the eng�neer �s not test�ng all of one mater�al �n any part�cular order, and we 
avo�d �ntroduc�ng order effects �nto the data.

The second aspect of exper�mental des�gn �s block�ng. In many exper�ments, we are �nterested 
�n one or two spec�fic factors or var�ables that may �mpact our measure or sample. However, there 
may be other factors that also �nfluence our measure and confound our stat�st�cs. In good exper�-
mental des�gn, we try to collect samples such that d�fferent treatments w�th�n the factor of �nterest 
are not b�ased by the d�ffer�ng values of the confound�ng factors. In other words, we should be cer-
ta�n that every treatment w�th�n our factor of �nterest �s tested w�th�n each value of the confound�ng 
factor. We refer to th�s des�gn as block�ng by the confound�ng factor. For example, we may want to 
study we�ght loss as a funct�on of three d�fferent d�et p�lls. One confound�ng factor may be a person’s 
start�ng we�ght. Thus, �n test�ng the effect�veness of the three p�lls �n reduc�ng we�ght, we may want 
to block the subjects by start�ng we�ght. Thus, we may first group the subjects by the�r start�ng 
we�ght and then test each of the d�et p�lls w�th�n each group of start�ng we�ghts.

In b�omed�cal research, we often block by exper�mental un�t. When th�s type of block�ng �s 
part of the exper�mental des�gn, the exper�mental�st collects mult�ple samples of data, w�th each 
sample represent�ng d�fferent exper�mental cond�t�ons, from each of the exper�mental un�ts. F�g-
ure 2.1 prov�des a d�agram of an exper�ment �n wh�ch data are collected before and after pat�ents 
rece�ves therapy, and the exper�mental des�gn uses block�ng (left) or no block�ng (r�ght) by exper�-
mental un�t. In the case of block�ng, data are collected before and after therapy from the same set of 
human subjects. Thus, w�th�n an �nd�v�dual, the same b�olog�cal factors that �nfluence the b�olog�cal 
response to the therapy are present before and after therapy. Each subject serves as h�s or her own 
control for factors that may randomly vary from subject to subject both before and after therapy. 
In essence, w�th block�ng, we are el�m�nat�ng b�ases �n the d�fferences between the two populat�ons 

Block (Repeated Measures) No Block (No repeated measures) 
Subject Measure 

before 
treatment 

Measure 
after 
treatment

Subject Measure 
before 
treatment

Subject Measure 
after 
treatment

1 M11 12 1 M1 K+1 M(K+1) 
2 M21 M22 2 M2 K+2 M(K+2) 
3 M31 M32 3 M3 K+3 M(K+3) 
.   .  .  
.   .  .  
K MK1 MK2 

 

K MK K+K M(K+K) 

FIguRE 2.1: Samples are drawn from two populat�ons (before and after treatment), and the exper�-
mental des�gn uses block (left) or no block (r�ght). In th�s case, the block �s the exper�mental un�t (sub-
ject) from wh�ch the measures are made.
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(before and after) that may result because we are us�ng two d�fferent sets of exper�mental un�ts. For 
example, �f we used one set of subjects before therapy and then an ent�rely d�fferent set of subjects 
after therapy (F�gure 2.1, r�ght), there �s a chance that the two sets of subjects may vary enough �n 
sex, age, we�ght, race, or genet�c makeup, wh�ch would lead to a d�fference �n response to the therapy 
that has l�ttle to do w�th the underly�ng therapy. In other words, there may be confound�ng factors 
that contr�bute to the d�fference �n the exper�mental outcome before and after therapy that are not 
only a factor of the therapy but really an art�fact of d�fferences �n the d�str�but�ons of the two d�ffer-
ent groups of subjects from wh�ch the two samples sets were chosen. Block�ng w�ll help to el�m�nate 
the effect of �ntersubject var�ab�l�ty.

However, block�ng �s not always poss�ble, g�ven the nature of some b�omed�cal research stud-
�es. For example, �f one wanted to study the effect�veness of two d�fferent chemotherapy drugs �n 
reduc�ng tumor s�ze, �t �s �mpract�cal to test both drugs on the same tumor mass. Thus, the two 
drugs are tested on d�fferent groups of �nd�v�duals. The same type of des�gn would be necessary for 
test�ng the effect�veness of we�ght-loss reg�mens.

Thus, some �mportant concepts and defin�t�ons to keep �n m�nd when des�gn�ng exper�ments 
�nclude the follow�ng:

experimental unit: the �tem, object, or subject to wh�ch we apply the treatment and from 
wh�ch we take sample measurements;
randomization: allocate the treatments randomly to the exper�mental un�ts;
blocking: ass�gn�ng all treatments w�th�n a factor to every level of the block�ng factor. 
Often, the block�ng factor �s the exper�mental un�t. Note that �n us�ng block�ng, we st�ll 
random�ze the order �n wh�ch treatments are appl�ed to each exper�mental un�t to avo�d 
order�ng b�as.

F�nally, the exper�mental�st must always th�nk about how representat�ve the sample populat�on �s 
w�th respect to the greater underly�ng populat�on. Because �t �s v�rtually �mposs�ble to test every 
member of a populat�on or every product roll�ng down an assembly l�ne, espec�ally when destruc-
t�ve test�ng methods are used, the b�omed�cal eng�neer must often collect data from a much smaller 
sample drawn from the larger populat�on. It �s �mportant, �f the stat�st�cs are go�ng to lead to useful 
conclus�ons, that the sample populat�on captures the var�ab�l�ty of the underly�ng populat�on. What 
�s even more challeng�ng �s that we often do not have a good grasp of the var�ab�l�ty of the underly-
�ng populat�on, and because of expense and respect for l�fe, we are typ�cally l�m�ted �n the number of 
samples we may collect �n b�omed�cal research and manufactur�ng. These l�m�tat�ons are not easy to 
address and requ�re that the eng�neer always cons�der how fa�r the sample and data analys�s �s and 
how well �t represents the underly�ng populat�on(s) from wh�ch the samples are drawn.

•  •  •  •

•

•
•
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C H A P T E R  3

We assume now that we have collected our data through the use of good exper�mental des�gn. We 
now have a collect�on of numbers, observat�ons, or descr�pt�ons to descr�be our data, and we would 
l�ke to summar�ze the data to make dec�s�ons, test a hypothes�s, or draw a conclus�on.

3.1 wHy do wE CoLLECT dATA?
The world �s full of uncerta�nty, �n the sense that there are random or unpred�ctable factors that 
�nfluence every exper�mental measure we make. The unpred�ctable aspects of the exper�mental out-
comes also ar�se from the var�ab�l�ty �n b�olog�cal systems (due to genet�c and env�ronmental fac-
tors) and manufactur�ng processes, human error �n mak�ng measurements, and other underly�ng 
processes that �nfluence the measures be�ng made.

Desp�te the uncerta�nty regard�ng the exact outcome of an exper�ment or occurrence of a fu-
ture event, we collect data to try to better understand the processes or populat�ons that �nfluence an 
exper�mental outcome so that we can make some pred�ct�ons. Data prov�de �nformat�on to reduce 
uncerta�nty and allow for dec�s�on mak�ng. When properly collected and analyzed, data help us 
solve problems. It cannot be stressed enough that the data must be properly collected and analyzed 
�f the data analys�s and subsequent conclus�ons are to have any value.

3.2 wHy do wE NEEd STATISTICS?
We have three major reasons for us�ng stat�st�cal data summary and analys�s:

The real world �s full of random events that cannot be descr�bed by exact mathemat�cal 
express�ons.
Var�ab�l�ty �s a natural and normal character�st�c of the natural world.
We l�ke to make dec�s�ons w�th some confidence. Th�s means that we need to find trends 
w�th�n the var�ab�l�ty.

1.

2.
3.

data Summary and 
descripti�e Statistics
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3.3 wHAT QuESTIoNS do wE HoPE To AddRESS wITH 
ouR STATISTICAL ANALySIS?

There are several bas�c quest�ons we hope to address when us�ng numer�cal and graph�cal summary 
of data:

Can we d�fferent�ate between groups or populat�ons?
Are there correlat�ons between var�ables or populat�ons?
Are processes under control?

F�nd�ng phys�olog�cal d�fferences between populat�ons �s probably the most frequent a�m 
of b�omed�cal research. For example, researchers may want to know �f there �s a d�fference �n l�fe 
expectancy between overwe�ght and underwe�ght people. Or, a pharmaceut�cal company may want 
to determ�ne �f one type of ant�b�ot�c �s more effect�ve �n combat�ng bacter�a than another. Or, a 
phys�c�an wonders �f d�astol�c blood pressure �s reduced �n a group of hypertens�ve subjects after 
the consumpt�on of a pressure-reduc�ng drug. Most often, b�omed�cal researchers are compar�ng 
populat�ons of people or an�mals that have been exposed to two or more d�fferent treatments or d�-
agnost�c tests, and they want to know �f there �s d�fference between the responses of the populat�ons 
that have rece�ved d�fferent treatments or tests. Somet�mes, we are draw�ng mult�ple samples from 
the same group of subjects or exper�mental un�ts. A common example �s when the phys�olog�cal data 
are taken before and after some treatment, such as drug �ntake or electron�c therapy, from one group 
of pat�ents. We call th�s type of data collect�on blocking �n the exper�mental des�gn. Th�s concept of 
block�ng �s d�scussed more fully �n Chapter 2.

Another quest�on that �s frequently the target of b�omed�cal research �s whether there �s a cor-
relat�on between two phys�olog�cal var�ables. For example, �s there a correlat�on between body bu�ld 
and mortal�ty? Or, �s there a correlat�on between fat �ntake and the occurrence of cancerous tumors. 
Or, �s there a correlat�on between the s�ze of the ventr�cular muscle of the heart and the frequency of 
abnormal heart rhythms? These type of quest�ons �nvolve collect�ng two set of data and perform�ng 
a correlat�on analys�s to determ�ne how well one set of data may be pred�cted from another. When 
we speak of correlat�on analys�s, we are referr�ng to the l�near relat�on between two var�ables and the 
ab�l�ty to pred�ct one set of data by model�ng the data as a l�near funct�on of the second set of data. 
Because correlat�on analys�s only quant�fies the l�near relat�on between two processes or data sets, 
nonl�near relat�ons between the two processes may not be ev�dent. A more deta�led descr�pt�on of 
correlat�on analys�s may be found �n Chapter 7.

F�nally, a b�omed�cal eng�neer, part�cularly the eng�neer �nvolved �n manufactur�ng, may be 
�nterested �n know�ng whether a manufactur�ng process �s under control. Such a quest�on may ar�se 
�f there are t�ght controls on the manufactur�ng spec�ficat�ons for a med�cal dev�ce. For example, 

1.
2.
3.
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�f the eng�neer �s try�ng to ensure qual�ty �n produc�ng �ntravascular catheters that must have d�-
ameters between 1 and 2 cm, the eng�neer may randomly collect samples of catheters from the 
assembly l�ne at random �ntervals dur�ng the day, measure the�r d�ameters, determ�ne how many of 
the catheters meet spec�ficat�ons, and determ�ne whether there �s a sudden change �n the number 
of catheters that fa�l to meet spec�ficat�ons. If there �s such a change, the eng�neers may look for 
elements of the manufactur�ng process that change over t�me, changes �n env�ronmental factors, or 
user errors. The eng�neer can use control charts to assess whether the processes are under control. 
These methods of stat�st�cal analys�s are not covered �n th�s text, but may be found �n a number of 
references, �nclud�ng [3].

3.4 How do wE gRAPHICALLy SuMMARIZE dATA?
We can summar�ze data �n graph�cal or numer�cal form. The numer�cal form �s what we refer to as 
stat�st�cs. Before bl�ndly apply�ng the stat�st�cal analys�s, �t �s always good to look at the raw data, 
usually �n a graph�cal form, and then use graph�cal methods to summar�ze the data �n an easy to 
�nterpret format.

The types of graph�cal d�splays that are most frequently used by b�omed�cal eng�neers �nclude 
the follow�ng: scatterplots, t�me ser�es, box-and-wh�sker plots, and h�stograms.

Deta�ls for creat�ng these graph�cal summar�es are descr�bed �n [3–6], but we w�ll br�efly 
descr�be them here.

3.4.1 Scatterplots
The scatterplot s�mply graphs the occurrence of one var�able w�th respect to another. In most cases, 
one of the var�ables may be cons�dered the �ndependent var�able (such as t�me or subject number), 
and the second var�able �s cons�dered the dependent var�able. F�gure 3.1 �llustrates an example of a 
scatterplot for two sets of data. In general, we are �nterested �n whether there �s a pred�ctable rela-
t�onsh�p that maps our �ndependent var�able (such as resp�ratory rate) �nto our dependent var�able 
(such a heart rate). If there �s a l�near relat�onsh�p between the two var�ables, the data po�nts should 
fall close to a stra�ght l�ne.

3.4.2 Time Series
A t�me ser�es �s used to plot the changes �n a var�able as a funct�on of t�me. The var�able �s usually 
a phys�olog�cal measure, such as electr�cal act�vat�on �n the bra�n or hormone concentrat�on �n the 
blood stream, that changes w�th t�me. F�gure 3.2 �llustrates an example of a t�me ser�es plot. In th�s 
figure, we are look�ng at a s�mple s�nuso�d funct�on as �t changes w�th t�me.
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3.4.3 Box-and-whisker Plots
These plots �llustrate the first, second, and th�rd quart�les as well as the m�n�mum and max�mum 
values of the data collected. The second quart�le (Q2) �s also known as the med�an of the data. Th�s 
quant�ty, as defined later �n th�s text, �s the m�ddle data po�nt or sample value when the samples 
are l�sted �n descend�ng order. The first quart�le (Q1) can be thought of as the med�an value of the 
samples that fall below the second quart�le. S�m�larly, the th�rd quart�le (Q3) can be thought of as 
the med�an value of the samples that fall above the second quart�le. Box-and-wh�sker plots are use-
ful �n that they h�ghl�ght whether there �s skew to the data or any unusual outl�ers �n the samples 
(F�gure 3.3).
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FIguRE 3.2: Example of a t�me ser�es plot. The ampl�tude of the samples �s plotted as a funct�on of 
t�me.
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FIguRE 3.1: Example of a scatterplot.
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FIguRE 3.3: Illustrat�on of a box-and-wh�sker plot for the data set l�sted. The first (Q1), second (Q2), 
and th�rd (Q3) quart�les are shown. In add�t�on, the wh�skers extend to the m�n�mum and max�mum 
values of the sample set.

3.4.4 Histogram
The h�stogram �s defined as a frequency d�str�but�on. G�ven N samples or measurements, xi, wh�ch 
range from Xm�n to Xmax, the samples are grouped �nto nonoverlapp�ng �ntervals (b�ns), usually of 
equal w�dth (F�gure 3.4). Typ�cally, the number of b�ns �s on the order of 7–14, depend�ng on the 
nature of the data. In add�t�on, we typ�cally expect to have at least three samples per b�n [7]. Stur-
gess’ rule [6] may also be used to est�mate the number of b�ns and �s g�ven by

k = 1 + 3.3 log(n).

where k �s the number of b�ns and n �s the number of samples.
Each b�n of the h�stogram has a lower boundary, upper boundary, and m�dpo�nt. The h�sto-

gram �s constructed by plott�ng the number of samples �n each b�n. F�gure 3.5 �llustrates a h�stogram 
for 1000 samples drawn from a normal d�str�but�on w�th mean (µ) = 0 and standard dev�at�on (σ) = 
1.0. On the hor�zontal ax�s, we have the sample value, and on the vert�cal ax�s, we have the number 
of occurrences of samples that fall w�th�n a b�n.

Two measures that we find useful �n descr�b�ng a h�stogram are the absolute frequency and 
relat�ve frequency �n one or more b�ns. These quant�t�es are defined as

fi = absolute frequency �n ith b�n;
fi  /n = relat�ve frequency �n �th b�n, where n �s the total number of samples be�ng summar�zed 
�n the h�stogram.

a)
b)
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A number of algor�thms used by b�omed�cal �nstruments for d�agnos�ng or detect�ng ab-
normal�t�es �n b�olog�cal funct�on make use of the h�stogram of collected data and the assoc�ated 
relat�ve frequenc�es of selected b�ns [8]. Often t�mes, normal and abnormal phys�olog�cal funct�ons 
(breath sounds, heart rate var�ab�l�ty, frequency content of electrophys�olog�cal s�gnals) may be d�f-
ferent�ated by compar�ng the relat�ve frequenc�es �n targeted b�ns of the h�stograms of data repre-
sent�ng these b�olog�cal processes.

Lower Bound Upper Bound 
Midpoint

FIguRE 3.4: One b�n of a h�stogram plot. The b�n �s defined by a lower bound, a m�dpo�nt, and an 
upper bound.
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FIguRE 3.5: Example of a h�stogram plot. The value of the measure or sample �s plotted on the hor�-
zontal ax�s, whereas the frequency of occurrence of that measure or sample �s plotted along the vert�cal 
ax�s.
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The h�stogram can exh�b�t several shapes. The shapes, �llustrated �n F�gure 3.6, are referred 
to as symmetr�c, skewed, or b�modal.

A skewed h�stogram may be attr�buted to the follow�ng [9]:

mechan�sms of �nterest that generate the data (e.g., the phys�olog�cal mechan�sms that 
determ�ne the beat-to-beat �ntervals �n the heart);
an art�fact of the measurement process or a sh�ft �n the underly�ng mechan�sm over t�me 
(e.g., there may be t�me-vary�ng changes �n a manufactur�ng process that lead to a change 
�n the stat�st�cs of the manufactur�ng process over t�me);
a m�x�ng of populat�ons from wh�ch samples are drawn (th�s �s typ�cally the source of a 
b�modal h�stogram).

The h�stogram �s �mportant because �t serves as a rough est�mate of the true probab�l�ty den-
s�ty funct�on or probab�l�ty d�str�but�on of the underly�ng random process from wh�ch the samples 
are be�ng collected.

The probab�l�ty dens�ty funct�on or probab�l�ty d�str�but�on �s a funct�on that quant�fies the 
probab�l�ty of a random event, x, occurr�ng. When the underly�ng random event �s d�screte �n nature, 
we refer to the probab�l�ty dens�ty funct�on as the probab�l�ty mass funct�on [10]. In e�ther case, the 
funct�on descr�bes the probab�l�st�c nature of the underly�ng random var�able or event and allows us 
to pred�ct the probab�l�ty of observ�ng a spec�fic outcome, x (represented by the random var�able), 
of an exper�ment. The cumulat�ve d�str�but�on funct�on �s s�mply the sum of the probab�l�t�es for a 
group of outcomes, where the outcome �s less than or equal to some value, x.

Let us cons�der a random var�able for wh�ch the probab�l�ty dens�ty funct�on �s well defined 
(for most real-world phenomenon, such a probab�l�ty model �s not known.) The random var�able �s 
the outcome of a s�ngle toss of a d�ce. G�ven a s�ngle fa�r d�ce w�th s�x s�des, the probab�l�ty of roll�ng 
a s�x on the throw of a d�ce �s 1 of 6. In fact, the probab�l�ty of throw�ng a one �s also 1 of 6. If we 
cons�der all poss�ble outcomes of the toss of a d�ce and plot the probab�l�ty of observ�ng any one of 
those s�x outcomes �n a s�ngle toss, we would have a plot such as that shown �n F�gure 3.7.

Th�s plot shows the probab�l�ty dens�ty or probab�l�ty mass funct�on for the toss of a d�ce. 
Th�s type of probab�l�ty model �s known as a un�form d�str�but�on because each outcome has the 
exact same probab�l�ty of occurr�ng (1/6 �n th�s case).

For the toss of a d�ce, we know the true probab�l�ty d�str�but�on. However, for most real-
world random processes, espec�ally b�olog�cal processes, we do not know what the true probab�l�ty 
dens�ty or mass funct�on looks l�ke. As a consequence, we have to use the h�stogram, created from a 
small sample, to try to est�mate the best probab�l�ty d�str�but�on or probab�l�ty model to descr�be the 
real-world phenomenon. If we return to the example of the toss of a d�ce, we can actually toss the 
d�ce a number of t�mes and see how close the h�stogram, obta�ned from exper�mental data, matches 

1.

2.

3.
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FIguRE 3.6: Examples of a symmetr�c (top), skewed (m�ddle), and b�modal (bottom) h�stogram. In 
each case, 2000 sampled were drawn from the underly�ng populat�ons.
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the true probab�l�ty mass funct�on for the �deal s�x-s�ded d�ce. F�gure 3.8 �llustrates the h�stograms 
for the outcomes of 50 and 1000 tosses of a s�ngle d�ce. Note that even w�th 50 tosses or samples, �t 
�s d�fficult to determ�ne what the true probab�l�ty d�str�but�on m�ght look l�ke. However, as we ap-
proach 1000 samples, the h�stogram �s approach�ng the true probab�l�ty mass funct�on (the un�form 
d�str�but�on) for the toss of a d�ce. But, there �s st�ll some var�ab�l�ty from b�n to b�n that does not 
look as un�form as the �deal probab�l�ty d�str�but�on �llustrated �n F�gure 3.7. The message to take 
away from th�s �llustrat�on �s that most b�omed�cal research reports the outcomes of a small number 
of samples. It �s clear from the d�ce example that the stat�st�cs of the underly�ng random process 
are very d�fficult to d�scern from a small sample, yet most b�omed�cal research rel�es on data from 
small samples.

3.5 gENERAL APPRoACH To STATISTICAL ANALySIS
We have now collected our data and looked at some graph�cal summar�es of the data. Now we w�ll 
use numer�cal summary, also known as stat�st�cs, to try to descr�be the nature of the underly�ng 
populat�on or process from wh�ch we have taken our samples. From these descr�pt�ve stat�st�cs, we 
assume a probab�l�ty model or probab�l�ty d�str�but�on for the underly�ng populat�on or process and 
then select the appropr�ate stat�st�cal tests to test hypotheses or make dec�s�ons. It �s �mportant to 
note that the conclus�ons one may draw from a stat�st�cal test depends on how well the assumed 
probab�l�ty model fits the underly�ng populat�on or process.
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FIguRE 3.7: The probab�l�ty dens�ty funct�on for a d�screte random var�able (probab�l�ty mass func-
t�on). In th�s case, the random var�able �s the value of a toss of a s�ngle d�ce. Note that each of the s�x pos-
s�ble outcomes has a probab�l�ty of occurrence of 1 of 6. Th�s probab�l�ty dens�ty funct�on �s also known 
as a un�form probab�l�ty d�str�but�on.
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FIguRE 3.8: H�stograms represent�ng the outcomes of exper�ments �n wh�ch a s�ngle d�ce �s tossed 
50 (top) and 2000 t�mes (lower), respect�vely. Note that as the sample s�ze �ncreases, the h�stogram ap-
proaches the true probab�l�ty d�str�but�on �llustrated �n F�gure 3.7.

As stated �n the Introduct�on, b�omed�cal eng�neers are try�ng to make dec�s�ons about popu-
lat�ons or processes to wh�ch they have l�m�ted access. Thus, they des�gn exper�ments and collect 
samples that they th�nk w�ll fa�rly represent the underly�ng populat�on or process. Regardless of 
what type of stat�st�cal analys�s w�ll result from the �nvest�gat�on or study, all stat�st�cal analys�s 
should follow the same general approach:
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Measure a l�m�ted number of representat�ve samples from a larger populat�on.
Est�mate the true stat�st�cs of larger populat�on from the sample stat�st�cs.

Some �mportant concepts need to be addressed here. The first concept �s somewhat obv�ous. It �s 
often �mposs�ble or �mpract�cal to take measurements or observat�ons from an ent�re populat�on. 
Thus, the b�omed�cal eng�neer w�ll typ�cally select a smaller, more pract�cal sample that represents 
the underly�ng populat�on and the extent of var�ab�l�ty �n the larger populat�on. For example, we 
cannot poss�bly measure the rest�ng body temperature of every person on earth to get an est�mate of 
normal body temperature and normal range. We are �nterested �n know�ng what the normal body 
temperature �s, on average, of a healthy human be�ng and the normal range of rest�ng temperatures 
as well as the l�kel�hood or probab�l�ty of measur�ng a spec�fic body temperature under healthy, rest-
�ng cond�t�ons. In try�ng to determ�ne the character�st�cs or underly�ng probab�l�ty model for body 
temperature for healthy, rest�ng �nd�v�duals, the researcher w�ll select, at random, a sample of healthy, 
rest�ng �nd�v�duals and measure the�r �nd�v�dual rest�ng body temperatures w�th a thermometer. The 
researchers w�ll have to cons�der the compos�t�on and s�ze of the sample populat�on to adequately 
represent the var�ab�l�ty �n the overall populat�on. The researcher w�ll have to define what character-
�zes a normal, healthy �nd�v�dual, such as age, s�ze, race, sex, and other tra�ts. If a researcher were to 
collect body temperature data from such a sample of 3000 �nd�v�duals, he or she may plot a h�sto-
gram of temperatures measured from the 3000 subjects and end up w�th the follow�ng h�stogram 
(F�gure 3.9).The researcher may also calculate some bas�c descr�pt�ve stat�st�cs for the 3000 samples, 
such as sample average (mean), med�an, and standard dev�at�on.
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FIguRE 3.9: H�stogram for 2000 �nternal body temperatures collected from a normally d�str�buted 
populat�on.
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Once the researcher has est�mated the sample stat�st�cs from the sample populat�on, he or she 
w�ll try to draw conclus�ons about the larger (true) populat�on. The most �mportant quest�on to ask 
when rev�ew�ng the stat�st�cs and conclus�ons drawn from the sample populat�on �s how well the 
sample populat�on represents the larger, underly�ng populat�on.

Once the data have been collected, we use some bas�c descr�pt�ve stat�st�cs to summar�ze the 
data. These bas�c descr�pt�ve stat�st�cs �nclude the follow�ng general measures: central tendency, 
var�ab�l�ty, and correlat�on.

3.6 dESCRIPTIvE STATISTICS
There are a number of descr�pt�ve stat�st�cs that help us to p�cture the d�str�but�on of the underly�ng 
populat�on. In other words, our ult�mate goal �s to assume an underly�ng probab�l�ty model for the 
populat�on and then select the stat�st�cal analyses that are appropr�ate for that probab�l�ty model.

When we try to draw conclus�ons about the larger underly�ng populat�on or process from our 
smaller sample of data, we assume that the underly�ng model for any sample, “event,” or measure 
(the outcome of the exper�ment) �s as follows:

X = µ ± �nd�v�dual d�fferences ± s�tuat�onal factors ± unknown var�ables,

where X �s our measure or sample value and �s �nfluenced by µ, wh�ch �s the true populat�on mean; 
�nd�v�dual d�fferences such as genet�cs, tra�n�ng, mot�vat�on, and phys�cal cond�t�on; s�tuat�on factors, 
such as env�ronmental factors; and unknown var�ables such as un�dent�fied/nonquant�fied factors 
that behave �n an unpred�ctable fash�on from moment to moment.

In other words, when we make a measurement or observat�on, the measured value represents 
or �s �nfluenced by not only the stat�st�cs of the underly�ng populat�on, such as the populat�on 
mean, but factors such as b�olog�cal var�ab�l�ty from �nd�v�dual to �nd�v�dual, env�ronmental factors 
(t�me, temperature, hum�d�ty, l�ght�ng, drugs, etc.), and random factors that cannot be pred�cted 
exactly from moment to moment. All of these factors w�ll g�ve r�se to a h�stogram for the sample 
data, wh�ch may or may not reflect the true probab�l�ty dens�ty funct�on of the underly�ng popula-
t�on. If we have done a good job w�th our exper�mental des�gn and collected a suffic�ent number of 
samples, the h�stogram and descr�pt�ve stat�st�cs for the sample populat�on should closely reflect the 
true probab�l�ty dens�ty funct�on and descr�pt�ve stat�st�cs for the true or underly�ng populat�on. If 
th�s �s the case, then we can make conclus�ons about the larger populat�on from the smaller sample 
populat�on. If the sample populat�on does not reflect var�ab�l�ty of the true populat�on, then the 
conclus�ons we draw from stat�st�cal analys�s of the sample data may be of l�ttle value.
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There are a number of probab�l�ty models that are useful for descr�b�ng b�olog�cal and manu-
factur�ng processes. These �nclude the normal, Po�sson, exponent�al, and gamma d�str�but�ons [10]. 
In th�s book, we w�ll focus on populat�ons that follow a normal d�str�but�on because th�s �s the most 
frequently encountered probab�l�ty d�str�but�on used �n descr�b�ng populat�ons. Moreover, the most 
frequently used methods of stat�st�cal analys�s assume that the data are well modeled by a normal 
(“bell-curve”) d�str�but�on. It �s �mportant to note that many b�olog�cal processes are not well mod-
eled by a normal d�str�but�on (such as heart rate var�ab�l�ty), and the stat�st�cs assoc�ated w�th the 
normal d�str�but�on are not appropr�ate for such processes. In such cases, nonparametr�c stat�st�cs, 
wh�ch do not assume a spec�fic type of d�str�but�on for the data, may serve the researcher better �n 
understand�ng processes and mak�ng dec�s�ons. However, us�ng the normal d�str�but�on and �ts asso-
c�ated stat�st�cs are often adequate g�ven the central l�m�t theorem, wh�ch s�mply states that the sum 
of random processes w�th arb�trary d�str�but�ons w�ll result �n a random var�able w�th a normal d�s-
tr�but�on. One can assume that most b�olog�cal phenomena result from a sum of random processes.

3.6.1 Measures of Central Tendency
There are several measures that reflect the central tendency or concentrat�on of a sample populat�on: 
sample mean (ar�thmet�c average), sample med�an, and sample mode.

The sample mean may be est�mated from a group of samples, xi, where i �s sample number, 
us�ng the formula below.

G�ven n data po�nts, x1, x2,…, xn:

x
n

xi
i

n

=
=
∑1

1

.

In pract�ce, we typ�cally do not know the true mean, µ, of the underly�ng populat�on, �nstead we 
try to est�mate true mean, µ, of the larger populat�on. As the sample s�ze becomes large, the sample 
mean, x, should approach the true mean, µ, assum�ng that the stat�st�cs of the underly�ng populat�on 
or process do not change over t�me or space.

One of the problems w�th us�ng the sample mean to represent the central tendency of a 
populat�on �s that the sample mean �s suscept�ble to outl�ers. Th�s can be problemat�c and often 
dece�v�ng when report�ng the average of a populat�on that �s heav�ly skewed. For example, when 
report�ng �ncome for a group of new college graduates for wh�ch one �s an NBA player who has just 
s�gned a mult�m�ll�on-dollar contract, the est�mated mean �ncome w�ll be much greater than what 
most graduates earns. The same m�srepresentat�on �s often ev�dent when report�ng mean value for 
homes �n a spec�fic geograph�c reg�on where a few homes valued on the order of a m�ll�on can h�de 
the fact that several hundred other homes are valued at less than $200,000.



22 INTRoduCTIoN To STATISTICS FoR BIoMEdICAL ENgINEERS

MC: Ropella Ch03_Page 22 - 09/26/2007, 04:59AM Achorn Internat�onal

Another useful measure for summar�z�ng the central tendency of a populat�on �s the sample 
med�an. The med�an value of a group of observat�ons or samples, xi, �s the m�ddle observat�on when 
samples, xi, are l�sted �n descend�ng order.

For example, �f we have the follow�ng values for t�dal volume of the lung:

2, 1.5, 1.3, 1.8, 2.2, 2.5, 1.4, 1.3,

we can find the med�an value by first order�ng the data �n descend�ng order:

2.5, 2.2, 2.0, 1.8, 1.5, 1.4, 1.3, 1.3,

and then we cross of values on each end unt�l we reach a m�ddle value:

2.5, 2.2, 2.0, 1.8, 1.5, 1.4, 1.3, 1.3.

In th�s case, there are two m�ddle values; thus, the med�an �s the average of those two values, wh�ch 
�s 1.65.

Note that �f the number of samples, n, �s odd, the med�an w�ll be the m�ddle observat�on. If 
the sample s�ze, n, �s even, then the med�an equals the average of two m�ddle observat�ons. Com-
pared w�th the sample mean, the sample med�an �s less suscept�ble to outl�ers. It �gnores the skew �n 
a group of samples or �n the probab�l�ty dens�ty funct�on of the underly�ng populat�on. In general, 
to fa�rly represent the central tendency of a collect�on of samples or the underly�ng populat�on, we 
use the follow�ng rule of thumb:

If the sample h�stogram or probab�l�ty dens�ty funct�on of the underly�ng populat�on �s 
symmetr�c, use mean as a central measure. For such populat�ons, the mean and med�an 
are about equal, and the mean est�mate makes use of all the data.
If the sample h�stogram or probab�l�ty dens�ty funct�on of the underly�ng populat�on �s 
skewed, med�an �s a more fa�r measure of center of d�str�but�on.

Another measure of central tendency �s mode, wh�ch �s s�mply the most frequent observat�on �n 
a collect�on of samples. In the t�dal volume example g�ven above, 1.3 �s the most frequently occurr�ng 
sample value. Mode �s not used as frequently as mean or med�an �n represent�ng central tendency.

3.6.2 Measures of variability
Measures of central tendency alone are �nsuffic�ent for represent�ng the stat�st�cs of a populat�on or 
process. In fact, �t �s usually the var�ab�l�ty �n the populat�on that makes th�ngs �nterest�ng and leads 

1.

2.
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to uncerta�nty �n dec�s�on mak�ng. The var�ab�l�ty from subject to subject, espec�ally �n phys�olog�cal 
funct�on, �s what makes find�ng fool-proof d�agnos�s and treatment often so d�fficult. What works 
for one person often fa�ls for another, and, �t �s not the mean or med�an that p�cks up on those 
subject-to-subject d�fferences, but rather the var�ab�l�ty, wh�ch �s reflected �n d�fferences �n the prob-
ab�l�ty models underly�ng those d�fferent populat�ons.

When summar�z�ng the var�ab�l�ty of a populat�on or process, we typ�cally ask, “How far from 
the center (sample mean) do the samples (data) l�e?” To answer th�s quest�on, we typ�cally use the 
follow�ng est�mates that represent the spread of the sample data: �nterquart�le ranges, sample var�-
ance, and sample standard dev�at�on.

The �nterquart�le range �s the d�fference between the first and th�rd quart�les of the sample 
data. For sampled data, the med�an �s also known as the second quart�le, Q2. G�ven Q2, we can find 
the first quart�le, Q1, by s�mply tak�ng the med�an value of those samples that l�e below the second 
quart�le. We can find the th�rd quart�le, Q3, by tak�ng the med�an value of those samples that l�e 
above the second quart�le. As an �llustrat�on, we have the follow�ng samples:

1, 3, 3, 2, 5, 1, 1, 4, 3, 2.

If we l�st these samples �n descend�ng order,

5, 4, 3, 3, 3, 2, 2, 1, 1, 1,

the med�an value and second quart�le for these samples �s 2.5. The first quart�le, Q1, can be found 
by tak�ng the med�an of the follow�ng samples,

2.5, 2, 2, 1, 1, 1,

wh�ch �s 1.5. In add�t�on, the th�rd quart�le, Q3, may be found by tak�ng the med�an value of the 
follow�ng samples:

5, 4, 3, 3, 3, 2.5,

wh�ch �s 3. Thus, the �nterquart�le range, Q3 − Q1 = 3 − 1.5 = 2.
Sample var�ance, s2, �s defined as the “average d�stance of data from the mean” and the formula 

for est�mat�ng s2 from a collect�on of samples, xi, �s

s
n

x xi
i

n
2 2

1

1
1

=
−

−
−
∑ ( ) .
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Sample standard dev�at�on, s, wh�ch �s more commonly referred to �n descr�b�ng the var�ab�l�ty of 
the data �s

= 2s s  (same un�ts as or�g�nal samples).

It �s �mportant to note that for normal d�str�but�ons (symmetr�cal h�stograms), sample mean 
and sample dev�at�on are the only parameters needed to descr�be the stat�st�cs of the underly�ng 
phenomenon. Thus, �f one were to compare two or more normally d�str�buted populat�ons, one only 
need to test the equ�valence of the means and var�ances of those populat�ons.

•  •  •  •
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Now that we have collected the data, graphed the h�stogram, est�mated measures of central ten-
dency and var�ab�l�ty, such as mean, med�an, and standard dev�at�on, we are ready to assume a 
probab�l�ty model for the underly�ng populat�on or process from wh�ch we have obta�ned samples. 
At th�s po�nt, we w�ll make a rough assumpt�on us�ng s�mple measures of mean, med�an, standard 
dev�at�on and the h�stogram. But �t �s �mportant to note that there are more r�gorous tests, such as 
the c2 test for normal�ty [7] to determ�ne whether a part�cular probab�l�ty model �s appropr�ate to 
assume from a collect�on of sample data.

Once we have assumed an appropr�ate probab�l�ty model, we may select the appropr�ate 
stat�st�cal tests that w�ll allow us to test hypotheses and draw conclus�ons w�th some level of con-
fidence. The probab�l�ty model w�ll d�ctate what level of confidence we have when accept�ng or 
reject�ng a hypothes�s.

There are two fundamental quest�ons that we are try�ng to address when assum�ng a prob-
ab�l�ty model for our underly�ng populat�on:

How confident are we that the sample stat�st�cs are representat�ve of the ent�re 
populat�on?
Are the d�fferences �n the stat�st�cs between two populat�ons s�gn�ficant, result�ng from 
factors other than chance alone?

To declare any level of “confidence” �n mak�ng stat�st�cal �nference, we need a mathemat�cal model 
that descr�bes the probab�l�ty that any data value m�ght occur. These models are called probab�l�ty 
d�str�but�ons.

There are a number of probab�l�ty models that are frequently assumed to descr�be b�olog�cal 
processes. For example, when descr�b�ng heart rate var�ab�l�ty, the probab�l�ty of observ�ng a spec�fic 
t�me �nterval between consecut�ve heartbeats m�ght be descr�bed by an exponent�al d�str�but�on [1, 8]. 
F�gure 3.6 �n Chapter 3 �llustrates a h�stogram for samples drawn from an exponent�al d�str�but�on. 

1.

2.

Assuming a Probability Model 
From the Sample data

C H A P T E R  4
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Note that th�s d�str�but�on �s h�ghly skewed to the r�ght. For R-R �ntervals, such a probab�l�ty func-
t�on makes sense phys�olog�cally because the �nd�v�dual heart cells have a refractory per�od that pre-
vents them from contract�ng �n less that a m�n�mum t�me �nterval. Yet, a very prolonged t�me �nterval 
may occur between beats, g�v�ng r�se to some long t�me �ntervals that occur �nfrequently.

The most frequently assumed probab�l�ty model for most sc�ent�fic and eng�neer�ng appl�ca-
t�ons �s the normal or Gauss�an d�str�but�on. Th�s d�str�but�on �s �llustrated by the sol�d black l�ne �n 
F�gure 4.1 and often referred to as the bell curve because �t looks l�ke a mus�cal bell.

The equat�on that g�ves the probab�l�ty, f (x), of observ�ng a spec�fic value of x from the un-
derly�ng normal populat�on �s

	 	 	 	
f x
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σ π
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∞ < x < ∞

where µ �s the true mean of the underly�ng populat�on or process and σ �s the standard dev�at�on 
of the same populat�on or process. A graph of th�s equat�on �s g�ven �llustrated by the sol�d, smooth 
curve �n F�gure 4.1. The area under the curve equals one.

Note that the normal d�str�but�on �s

a symmetr�c, bell-shaped curve completely descr�bed by �ts mean, µ, and standard dev�a-
t�on, σ.
by chang�ng µ and σ, we stretch and sl�de the d�str�but�on.
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FIguRE 4.1: A h�stogram of 1000 samples drawn from a normal d�str�but�on �s �llustrated. Super-
�mposed on the h�stogram �s the �deal normal curve represent�ng the normal probab�l�ty d�str�but�on 
funct�on.
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F�gure 4.1 also �llustrates a h�stogram that �s obta�ned when we randomly select 1000 samples 
from a populat�on that �s normally d�str�buted and has a mean of 0 and a var�ance of 1. It �s �mpor-
tant to recogn�ze that as we �ncrease the sample s�ze n, the h�stogram approaches the �deal normal 
d�str�but�on shown w�th the sol�d, smooth l�ne. But, at small sample s�zes, the h�stogram may look 
very d�fferent from the normal curve. Thus, from small sample s�zes, �t may be d�fficult to determ�ne 
�f the assumed model �s appropr�ate for the underly�ng populat�on or process, and any stat�st�cal 
tests that we perform may not allow us to test hypotheses and draw conclus�ons w�th any real level 
of confidence.

We can perform l�near operat�ons on our normally d�str�buted random var�able, x, to produce 
another normally d�str�buted random var�able, y. These operat�ons �nclude mult�pl�cat�on of x by a 
constant and add�t�on of a constant (offset) to x. F�gure 4.2 �llustrates h�stograms for samples drawn 
from each of populat�ons x and y. We note that the d�str�but�on for y �s sh�fted (the mean �s now 
equal to 5) and the var�ance has �ncreased w�th respect to x.

One test that we may use to determ�ne how well a normal probab�l�ty model fits our data 
�s to count how many samples fall w�th�n ±1 and ±2 standard dev�at�ons of the mean. If the data 
and underly�ng populat�on or process �s well modeled by a normal d�str�but�on, 68% of the samples 
should l�e w�th�n ±1 standard dev�at�on from the mean and 95% of the samples should l�e w�th�n 
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FIguRE 4.2: H�stograms are shown for samples drawn from populat�ons x and y, where y �s s�mply a l�n-
ear funct�on of x. Note that the mean and var�ance of y d�ffer from x, yet both are normal d�str�but�ons.
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±2 standard dev�at�ons from the mean. These percentages are �llustrated �n F�gure 4.3. It �s �mpor-
tant to remember these few numbers, because we w�ll frequently use th�s 95% �nterval when draw-
�ng conclus�ons from our stat�st�cal analys�s.

Another means for determ�n�ng how well our sampled data, x, represent a normal d�str�bu-
t�on �s the est�mate Pearson’s coeffic�ent of skew (PCS) [5]. The coeffic�ent of skew �s g�ven by

PCS
median

=
−3 x x

s .

If the PCS > 0.5, we assume that our samples were not drawn from a normally d�str�buted populat�on.
When we collect data, the data are typ�cally collected �n many d�fferent types of phys�cal un�ts 

(volts, cels�us, newtons, cent�meters, grams, etc.). For us to use tables that have been developed for 
probab�l�ty models, we need to normal�ze the data so that the normal�zed data w�ll have a mean of 
0 and a standard dev�at�on of 1. Such a normal d�str�but�on �s called a standard normal d�str�but�on 
and �s �llustrated �n F�gure 4.1.
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FIguRE 4.3: H�stogram for samples drawn from a normally d�str�buted populat�on. For a normal d�s-
tr�but�on, 68% of the samples should l�e w�th�n ±1 standard dev�at�on from the mean (0 �n th�s case) and 
95% of the samples should l�e w�th�n ±2 standard dev�at�ons (1.96 to be prec�se) of the mean.
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The standard normal d�str�but�on has a bell-shaped, symmetr�c d�str�but�on w�th µ = 0 and 
σ = 1.

To convert normally d�str�buted data to the standard normal value, we use the follow�ng 
formulas,

z = (x − µ)/σ or z = (x − x−  )/s,
depend�ng on �f we know the true mean, µ, and standard dev�at�on, a, or we only have the sample 
est�mates, x−  or s.

For any �nd�v�dual sample or data po�nt, xi , from a sample w�th mean, x− , and standard dev�a-
t�on, s, we can determ�ne �ts z score from the follow�ng formula:

     
z

x x
si

i=
−

.

For an �nd�v�dual sample, the z score �s a “normal�zed” or “standard�zed” value. We can use th�s value 
w�th our equat�ons for probab�l�ty dens�ty funct�on or our standard�zed probab�l�ty tables [3] to de-
term�ne the probab�l�ty of observ�ng such a sample value from the underly�ng populat�on.

The z score can also be thought of as a measure of the d�stance of the �nd�v�dual sample, xi, 
from the sample average, x−  , �n un�ts of standard dev�at�on. For example, �f a sample po�nt, xi has a z 
score of zi = 2, �t means that the data po�nt, xi, �s 2 standard dev�at�ons from the sample mean.

We use normal�zed z scores �nstead of the or�g�nal data when perform�ng stat�st�cal analys�s 
because the tables for the normal�zed data are already worked out and ava�lable �n most stat�st�cs 
texts or stat�st�cal software packages. In add�t�on, by us�ng normal�zed values, we need not worry 
about the absolute ampl�tude of the data or the un�ts used to measure the data.

4.1 THE STANdARd NoRMAL dISTRIBuTIoN
The standard normal d�str�but�on �s �llustrated �n Table 4.1.

The z table assoc�ated w�th th�s figure prov�des table entr�es that g�ve the probab�l�ty that z ≤ 
a, wh�ch equals the area under the normal curve to the left of z = a. If our data come from a normal 
d�str�but�on, the table tells us the probab�l�ty or “chance” of our sample value or exper�mental out-
comes hav�ng a value less than or equal to a.

Thus, we can take any sample and compute �ts z score as descr�bed above and then use the 
z table to find the probab�l�ty of observ�ng a z value that �s less than or equal to some normal�zed 
value, a. For example, the probab�l�ty of observ�ng a z value that �s less than or equal to 1.96 �s 
97.5%. Thus, the probab�l�ty of observ�ng a z value greater than 1.96 �s 2.5%. In add�t�on, because of 
symmetry �n the d�str�but�on, we know that the probab�l�ty of observ�ng a z value greater than −1.96 
�s also 97.5%, and the probab�l�ty of observ�ng a z value less than or equal to −1.96 �s 2.5%. F�nally, 
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Area to left of za equals the Pr(z < za) = 1 − a; thus, the area �n the ta�l to the r�ght of za 

equals a.

TABLE 4.1: Standard z d�str�but�on funct�on: areas under standard�zed normal dens�ty funct�on

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.l5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

…

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

…

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

…

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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the probab�l�ty of observ�ng a z value between −1.96 and 1.96 �s 95%. The reader should study the 
z table and assoc�ated graph of the z d�str�but�on to ver�fy that the probab�l�t�es (or areas under the 
probab�l�ty dens�ty funct�on) descr�bed above are correct.

Often, we need to determ�ne the probab�l�ty that an exper�mental outcome falls between two 
values or that the outcome �s greater than some value a or less or greater than some value b. To find 
these areas, we can use the follow�ng �mportant formulas, where Pr �s the probab�l�ty:

Pr(a ≤ z ≤ b) = Pr(z ≤ b) – Pr(z ≤ a)
= area between z = a and z = b.

Pr(z ≤ a) = 1 – Pr(z < a)

= area to r�ght of z = a
= area �n the r�ght “ta�l”.

Thus, for any observat�on or measurement, x, from any normal d�str�but�on:

					
Pr( ) Pr ,a x b

a
z

b
≤ ≤ =

−
≤ ≤

−µ
σ

µ
σ







where µ �s the mean of normal d�str�but�on and σ �s the standard dev�at�on of normal d�str�but�on.
In other words, we need to normal�ze or find the z values for each of our parameters, a and b, 

to find the area under the standard normal curve (z d�str�but�on) that represents the express�on on 
the left s�de of the above equat�on.

Example 4.1 The mean �ntake of fat for males 6 to 9 years old �s 28 g, w�th a standard dev�at�on 
of 13.2 g. Assume that the �ntake �s normally d�str�buted. Steve’s �ntake �s 42 g and Ben’s �ntake �s 
25 g.

AREA IN RIgHT TAIL, a Za

0.10 1.282

0.05 1.645

0.025 1.96

0.010 2.326

0.005 2.576

Commonly used z values:
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What �s the proport�on of area between Steve’s da�ly �ntake and Ben’s da�ly �ntake?
If we were to randomly select a male between the ages of 6 and 9 years, what �s the prob-
ab�l�ty that h�s fat �ntake would be 50 g or more?

Solution: x = fat �ntake
The problem may be stated as: what �s Pr(25 ≤ x ≤ 42)?

 Assum�ng a normal d�str�but�on, we convert to z scores:
 What �s Pr(((25 – 28)/13.2) < z < ((42 – 28)/13.2)))?
  = Pr (–0.227 ≤ z ≤ 1.06) = Pr (z ≤ 1.06) – Pr (z ≤ –0.227) (us�ng formula for 
Pr (a ≤ z ≤ b))
 ` = Pr (z ≤ 1.06) – [1 – Pr(z ≤ 0.227)] = 0.8554 – [1 – 0.5910] = 0.4464 or 44.6% of 
area under the z curve.

2. The problem may be stated as, “What �s Pr (x > 50)?”
 Normal�z�ng to z score, what �s Pr (z > (50 – 28)/13.2)?
    = Pr (z > 1.67)
    = 1 – Pr (z ≤ 1.67) = 1 – 0.9525 = 0.0475, or 4.75% of the area 
under the z curve.

Example 4.2 Suppose that the spec�ficat�ons on the range of d�splacement for a l�mb �ndentor are 
0.5 ± 0.001 mm. If these d�splacements are normally d�str�buted, w�th mean = 0.47 and standard 
dev�at�on = 0.002, what percentage of �ndentors are w�th�n spec�ficat�ons?
Solution: x = d�splacement.
 The problem may be stated as, “What �s Pr(0.499 ≤ x ≤ 0.501)?”
 Us�ng z scores, Pr(0.499 ≤ x ≤ 0.501) = Pr((0.499 – 0.47)/0.002 ≤ z ≤ (0.501 – 0.47/ 
0.002))
  = Pr (14.5 ≤ z ≤ 15.5) = Pr (z ≤ 15.5) – Pr (z ≤ 14.5) = 1 – 1 = 0

It �s useful to note that �f the d�str�but�on of the underly�ng populat�on and the assoc�ated sample 
data are not normal (�.e. skewed), transformat�ons may often be used to make the data normal, 
and the stat�st�cs covered �n th�s text may then be used to perform stat�st�cal analys�s on the trans-
formed data. These transformat�ons on the raw data �nclude logs, square root, and rec�procal.

4.2 THE NoRMAL dISTRIBuTIoN ANd SAMPLE MEAN
All stat�st�cal analys�s follows the same general procedure:

Assume an underly�ng d�str�but�on for the data and assoc�ated parameters (e.g., the 
sample mean).

1.
2.

1.

1.
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Scale the data or parameter to a “standard” d�str�but�on.
Est�mate confidence �ntervals us�ng a standard table for the assumed d�str�but�on. (The 
quest�on we ask �s, “What �s the probab�l�ty of observ�ng the exper�mental outcome by 
chance alone?”)
Perform hypothes�s test (e.g., Student’s t test).

We are beg�nn�ng w�th and focus�ng most of th�s text on the normal d�str�but�on or probab�l�ty 
model because of �ts prevalence �n the b�omed�cal field and someth�ng called the central l�m�t 
theorem. One of the most bas�c stat�st�cal tests we perform �s a compar�son of the means from 
two or more populat�ons. The sample mean �s �t �tself an est�mate made from a fin�te number 
of samples. Thus, the sample mean, x− , �s �tself a random var�able that �s modeled w�th a normal 
d�str�but�on [4].

Is th�s model for x−   leg�t�mate? The answer �s yes, for large samples, because of the central 
l�m�t theorem, wh�ch states [4, 10]:

If the individual data points or samples (each sample is a random variable), x�, come from any arbitrary 
probability distribution, the sum (and hence, average) of those data points is normally distributed as the 
sample size, n, becomes large.

Thus, even �f each sample, such as the toss of a d�ce, comes from a nonnormal d�str�but�on 
(e.g., a un�form d�str�but�on, such as the toss of a d�ce), the sum of those �nd�v�dual samples (such 
as the sum we use to est�mate the sample mean, x−  ) w�ll have a normal d�str�but�on. One can eas-
�ly assume that many of the b�olog�cal or phys�olog�cal processes that we measure are the sum of a 
number of random processes w�th var�ous probab�l�ty d�str�but�ons; thus, the assumpt�on that our 
samples come from a normal d�str�but�on �s not unreasonable.

4.3 CoNFIdENCE INTERvAL FoR THE SAMPLE MEAN
Every sample stat�st�c �s �n �tself a random var�able w�th some sort of probab�l�ty d�str�but�on. Thus, 
when we use samples to est�mate the true stat�st�cs of a populat�on (wh�ch �n pract�ce are usually not 
known and not obta�nable), we want to have some level of confidence that our sample est�mates are 
close to the true populat�on stat�st�cs or are representat�ve of the underly�ng populat�on or process.

In est�mat�ng a confidence �nterval for the sample mean, we are ask�ng the quest�on: “How 
close �s our sample mean (est�mated from a fin�te number of samples) to the true mean of the 
populat�on?”

To ass�gn a level of confidence to our stat�st�cal est�mates or stat�st�cal conclus�ons, we need 
to first assume a probab�l�ty d�str�but�on or model for our samples and underly�ng populat�on and 
then we need to est�mate a confidence �nterval us�ng the assumed d�str�but�on.

2.
3.

4.
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The s�mplest confidence �nterval that we can beg�n w�th regard�ng our descr�pt�ve stat�st�cs �s 
a confidence �nterval for the sample mean, x− . Our quest�on �s how close �s the sample mean to the 
true populat�on or process mean, µ?

Before we can answer th�s, we need to assume an underly�ng probab�l�ty model for the sample 
mean, x− , and true mean, µ. As stated earl�er, �t may be shown that for a large samples s�ze, the sample 
mean, x− , �s well modeled by a normal d�str�but�on or probab�l�ty model. Thus, we w�ll use th�s model 
when est�mat�ng a confidence �nterval for our sample mean, x− .

Thus, x−  �s est�mated from the sample. We then ask, how close �s x−  (sample mean) to the true 
populat�on mean, µ?

It may be shown that �f we took many groups of n samples and est�mated x−  for each group,

the average or sample mean of x−  = µ, and
the standard dev�at�on of x−  = s n.

Thus, as our sample s�ze, n, gets large, the d�str�but�on for x−  approaches a normal d�str�but�on.
For large n, x−  follows a normal d�str�but�on, and the z score for x−  may be used to est�mate the 

follow�ng:

	 							
Pr( ) Pr

/ /
.a x b

a
n

z
b

n
≤ ≤ =

−
≤ ≤

−µ
σ

µ
σ







Th�s express�on assumes a large n and that we know σ.
Now we look at the case where we m�ght have a large n, but we do not know σ. In such cases, 

we replace σ w�th s to get the follow�ng express�on:

	 								
Pr( ) Pr

/ /
,a x b

a
s n

z
b
s n

≤ ≤ =
−

≤ ≤
−


µ µ




where s n �s called the sample standard error and represents the standard dev�at�on for x− .
Let us assume now for large n, we want to est�mate the 95% confidence �nterval for x− . We 

first scale the sample mean, x− , to a z value (because the central l�m�t theorem says that x−  �s normally 
d�str�buted)

z
x
s n

= − µ
/

.

1.
2.
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We recall that 95% of z values fall between ±1.96 (approx�mately 2σ) of the mean, and for the z 
d�str�but�on,

   Pr(−1.96 ≤ z	≤	1.96) = 0.95.

Subst�tut�ng for z,

z
x
s n

= − µ
/

.

we get

				
0 95 1 96 1 96. Pr .

/
. .= − ≤

−
≤ x

s n
µ






If we use the follow�ng notat�on �n terms of the sample standard error:

SE( ) .x
s
n

=

Rearrang�ng terms for the express�on above, we note that the probab�l�ty that µ l�es between ±1.96 
(or 2) standard dev�at�ons of x−  �s 95%:

0 95 1 96 1 96. Pr . SE( ) . SE( ).= +( )x x x xµ ≤≤−

Note that 1.96 �s referred to as za/2. Th�s z value �s the value of z for wh�ch the area �n the r�ght 
ta�l of the normal d�str�but�on �s a/2. If we were to est�mate the 99% confidence �nterval, we would 
subst�tute z0.01/2, wh�ch �s 2.576, �nto the 1.96 pos�t�on above.

Thus, For large n and any confidence level, 1 − a, the 1 − a confidence �nterval for the true 
populat�on mean, µ, �s g�ven by:

µ α= ±x z SE x/ ( ).2

Th�s means that there �s a (1 − a)percent probab�l�ty that the true mean l�es w�th�n the above �nter-
val centered about x− .

Example 4.3 Est�mate of confidence �ntervals
Problem: G�ven a collect�on of data w�th, x−  = 505 and s = 100. If the number of samples was 1000, 
what �s the 95% confidence �nterval for the populat�on mean, µ?
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Solution: If we assume a large sample s�ze, we may use the z d�str�but�on to est�mate the confidence 
�nterval for the sample mean us�ng the follow�ng equat�on:

	 	 	 								µ α= ±x z x/ SE( ).2

We plug �n the follow�ng values:

x− 	=	505;
SE( ) / / .x s n= = 100 1000

For 95% confidence �nterval, a = 0.05.
Us�ng a z table to locate z(0.05/2), we find that the value of z that g�ves an area of 0.025 �n 

the r�ght ta�l �s 1.96
Plugg�ng �n x− , SE(x−  ), and z(a/2) �nto the est�mate for the confidence �nterval above, we find 

that the 95% confidence �nterval for µ = [498.80, 511.20].
Note that �f we wanted to est�mate the 99% confidence �nterval, we would s�mply use a d�f-

ferent z value, z (0.01/2) �n the same equat�on. The z value assoc�ated w�th an area of 0.005 �n the 
r�ght ta�l �s 2.576. If we use th�s z value, we est�mate a confidence �nterval for µ of [496.86, 515.14]. 
We note that the confidence �nterval has w�dened as we �ncreased our confidence level.

4.4  THE t dISTRIBuTIoN
For small samples, x−  �s no longer normally d�str�buted. Therefore, we use Student’s t d�str�but�on to 
est�mate the true stat�st�cs of the populat�on. The t d�str�but�on, as �llustrated �n Table 4.2 looks l�ke 
a z d�str�but�on but w�th slower taper at the ta�ls and flatter central reg�on.

	 	 Measure
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α

α

Curve changes with df
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Table entry = t(a; df ), where a �s the area �n the ta�l to the r�ght of t(a; df ) and df  �s degrees 
of freedom.
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TABLE 4.2: Percentage po�nts for Student’s t d�str�but�on

df a = area to r�ght of t(a; df )

0.10 0.05 0.025 0.01 0.005

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

…

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

…

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

∞ 1.282 1.645 1.960 2.326 2.576

za(large sample) 1.282 1.645 1.960 2.326 2.576
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We use t d�str�but�on, w�th slower tapered ta�ls, because w�th so few samples, we have less 
certa�nty about our underly�ng d�str�but�on (probab�l�ty model).

Now our normal�zed value for x−  �s g�ven by

s n
− µ

/
,x

wh�ch �s known to have a t d�str�but�on rather than the z d�str�but�on that we have d�scussed thus 
far. The t d�str�but�on was first �nvented by W.S. Gosset [4, 11], a chem�st who worked for a brew-
ery. Gosset dec�ded to publ�sh h�s t d�str�but�on under the al�as of Student. Hence, we often refer to 
th�s d�str�but�on as Student’s t d�str�but�on.

The t d�str�but�on �s symmetr�c l�ke the z d�str�but�on and generally has a bell shape. But the 
amount of spread of the d�str�but�on to the ta�ls, or the w�dth of the bell, depends on the sample 
s�ze, n. Unl�ke the z d�str�but�on, wh�ch assumes an �nfin�te sample s�ze, the t d�str�but�on changes 
shape w�th sample s�ze. The result �s that the confidence �ntervals est�mated w�th t values are more 
“spread out” than for z d�str�but�on, espec�ally for small sample s�zes, because w�th such samples 
s�zes, we are penal�zed for not hav�ng suffic�ent samples to represent the extent of var�ab�l�ty of 
the underly�ng populat�on or process. Thus, when we are est�mat�ng confidence �ntervals for the 
sample mean, x− , we do not have as much confidence �n our est�mate. Thus, the �nterval w�dens to 
reflect th�s decreased certa�nty w�th smaller sample s�zes. In the next sect�on, we est�mate the con-
fidence �nterval for the same example g�ven prev�ously, but us�ng the t d�str�but�on �nstead of the z 
d�str�but�on.

4.5  CoNFIdENCE INTERvAL uSINg t  dISTRIBuTIoN
L�ke the z tables, there are t tables where the values of t that are assoc�ated w�th d�fferent areas 
under the probab�l�ty curve are already calculated and may be used for stat�st�cal analys�s w�thout 
the need to recalculate the t values. The d�fference between the z table and t table �s that now the 
t values are a funct�on of the samples s�ze or degrees of freedom. Table 4.2 g�ves a few l�nes of the 
t table from [3].

To use the table, one s�mply looks for the �ntersect�on of degrees of freedom, df, (related to 
sample s�ze) and a value that one des�res �n the r�ght-hand ta�l. The �ntersect�on prov�des the t value 
for wh�ch the area under the t curve �n the r�ght ta�l �s a. In other words, the probab�l�ty that t w�ll 
be less than or equal to a spec�fic entry �n the table �s 1 – a. For a spec�fic sample s�ze, n, the degrees 
of freedom, df = n – 1.

Now we s�mply subst�tute t for z to find our confidence �ntervals. So, the confidence �nterval 
for the sample mean, x− , us�ng the t d�str�but�on now becomes
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µ α= −1 SE( )




±x t −2

n;− x−

where µ �s the true mean of the underly�ng populat�on or process from wh�ch we are draw�ng sam-
ples, SE(x−  ) �s the standard error of the underly�ng populat�on or process, t �s the t value for wh�ch 
there �s an area of a/2 �n the r�ght ta�l, and n �s the sample s�ze.

Example 4.4 Confidence �nterval us�ng t d�str�but�on
Problem: We cons�der the same example used prev�ously for est�mat�ng confidence �ntervals us�ng 
z values. In th�s case, the sample s�ze �s small (n = 20), so we now use a t d�str�but�on.

Solution: Now, our est�mate for confidence �nterval for µ α= −1 SE( )




±x t −2

n;− x− .

Aga�n, we plug �n the follow�ng values:

x− 	=	505;
SE( ) / / .x s n= = 100 20

For 95% confidence �nterval, a = 0.05.
Us�ng a t table to locate t(0.05/2, 20 − 1), we find that for 19 df, the value of t that g�ves an 

area of 0.025 �n the r�ght ta�l �s 2.093.
Plugg�ng �n x− , SE(x−  ), and t(a, n − 1) �nto the est�mate for the confidence �nterval above, we 

find that the 95% confidence �nterval for µ = [458.20, 551.80] We note that th�s confidence �nterval 
�s w�dened compared w�th that prev�ously est�mated us�ng the z values. Th�s �s expected because the 
t d�str�but�on �s w�der than the z d�str�but�on at small sample s�zes, reflect�ng the fact that we have 
less confidence �n our est�mate of x−  and, hence, µ when the sample s�ze �s small.

Confidence �ntervals may be est�mated for most descr�pt�ve stat�st�cs, such as the sample 
mean, sample var�ance, and even the l�ne of best fit determ�ned through l�near regress�on [3]. As 
noted above, the confidence �nterval reflects the var�ab�l�ty �n the parameter est�mate and �s �n-
fluenced by the sample s�ze, the var�ab�l�ty of the populat�on, and the level on confidence that we 
des�re. The greater the des�red confidence, the w�der the �nterval. L�kew�se the greater the var�ab�l�ty 
�n the samples, the w�der the confidence �nterval.

Example 4.5 Rev�ew of probab�l�ty concepts
Problem: Assembly t�mes were measured for a sample of 15 glucose �nfus�on pumps. The mean t�me 
to assemble a glucose �nfus�on pump was 15.8 m�nutes, w�th a standard dev�at�on of 2.4 m�nutes. 
Assum�ng a relat�vely symmetr�c d�str�but�on for assembly t�mes,

What percentage of �nfus�on pumps requ�re more than 17 seconds to assemble?
What �s the 99% confidence �nterval for the true mean assembly t�me (µ)?
What �s the 99% confidence �nterval for mean assembly t�me �f the sample s�ze �s 2500?

1.
2.
3.
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Solution:
 1. x = assembly t�me
 What �s the Pr (x > 17)?
 Pr (x > 17) = Pr (z > (17 − 15.8)/2.4) = Pr (z > 0.5) = 1 − Pr (z ≤ 0.5) = 1 − 0.6915) = 0.3085, 

or 38.05% of the �nfus�on pumps.
 2. = x−  ± t(a/2, n − 1)SE(x)
 = 15.8 ± t((0.01)/2; 15 − 1) ( 152.4√

—)
 = 15.8 ± t(0.005, 14) (0.6196)
 = 15.8 ± 2.977 (0.6196)
 = [13.96, 17.64]
 Because the samples s�ze of 2500 �s now large, we use a z value for est�mat�ng the confi-

dence �nterval, the µ = x−  ± z (a/2)SE(x)
 3. = x−  ± z (a/2)SE(x)
 = 15.8 ± z (0.01/2) (2.4√

——
2500)

 = 15.8 ± 2.576 (0.048)
 = [15.68, 15.92]

•  •  •  •
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C H A P T E R  5

Now that we have collected our data, est�mated some bas�c descr�pt�ve stat�st�cs and assumed a 
probab�l�ty model for the underly�ng populat�on or process, we are prepared to perform some stat�s-
t�cal analys�s that w�ll allow us to compare populat�ons and test hypotheses. For th�s text, we are only 
go�ng to d�scuss stat�st�cal analys�s for wh�ch the normal d�str�but�on �s a good probab�l�ty model 
for the underly�ng populat�on(s). If the data or samples suggest that the underly�ng populat�on or 
process �s not well modeled by a normal d�str�but�on, then we w�ll need to resort to other types of 
stat�st�cal analys�s, such a nonparametr�c techn�ques [6], wh�ch do not assume an underly�ng prob-
ab�l�ty model. Some of these tests �nclude the W�lcoxon rank sum test, Mann–Wh�tney U test, 
Kruskal–Wall�s test, and the runs test [6, 12]. More advanced texts prov�de deta�ls for adm�n�ster�ng 
these nonparametr�c tests. Keep �n m�nd that �f the stat�st�cal analys�s presented �n th�s text �s used 
for populat�ons or processes that are not normally d�str�buted, the results may be of l�ttle value, and 
the �nvest�gator may m�ss �mportant find�ngs from the data.

Assum�ng our data represents a normally d�str�buted populat�on or process, we are now pre-
pared to perform a var�ety of stat�st�cal tests that allow us to test hypotheses about the equal�ty of 
means and var�ances across two or more populat�ons. Remember that for normal d�str�but�ons, only 
the mean and standard dev�at�on are requ�red to completely character�ze the probab�l�st�c nature of 
the populat�on or process. Thus, �f we are to compare two normally d�str�buted populat�ons, we need 
only compare the means and var�ances of the populat�ons. If the populat�ons or processes are not 
normally d�str�buted, there may be other parameters, such as skew and kurtos�s, wh�ch d�fferent�ate 
two or more populat�ons or processes.

5.1 CoMPARISoN oF PoPuLATIoN MEANS
One of the most fundamental quest�ons asked by sc�ent�sts or eng�neers perform�ng exper�ments �s 
whether two populat�ons, methods, or treatments are really d�fferent �n central tendency. More spe-
c�fically, are the two populat�on means, reflected �n the sample means collected under two d�fferent 
exper�mental cond�t�ons, s�gn�ficantly d�fferent? Or, �s the observed d�fference between two means 
s�mply because of chance alone?

Statistical Inference
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Some examples or quest�ons asked by b�omed�cal eng�neers that requ�re compar�ng two pop-
ulat�on means �nclude the follow�ng:

Is one chemotherapy drug more effect�ve than a second chemotherapy drug �n reduc�ng the 
s�ze of a cancerous tumor?
Is there a d�fference �n postural stab�l�ty between young and elderly populat�ons?
Is there a d�fference �n bone dens�ty for women who are premenopausal versus those who 
are postmenopausal?
Is t�tan�um a stronger mater�al for bone �mplants than steel?
For MRI, does one type of pulse sequence perform better than another �n detect�ng wh�te 
matter tracts �n the bra�n?
Do drug-elut�ng �ntravascular stents prevent restenos�s more effect�vely than noncoated stents?

In answer�ng these type of quest�ons, b�omed�cal eng�neers often collect samples from two 
d�fferent groups of subjects or from one group of subjects but under two d�fferent cond�t�ons. For a 
spec�fic measure that represents the samples, a sample mean �s typ�cally est�mated for each group or 
under each of two cond�t�ons. Compar�ng the means from two populat�ons reflected �n two sets of 
data �s probably the most reported stat�st�cal analys�s �n the sc�ent�fic and eng�neer�ng l�terature and 
may be accompl�shed us�ng someth�ng known as a t test.

5.1.1 The t  Test
When perform�ng the t test, we are ask�ng the quest�on, “Are the means of two populat�ons really 
d�fferent?” or “Would we see the observed d�fferences s�mply because of random chance?” The two 
populat�ons are reflected �n data that have been collected under two d�fferent cond�t�ons. These 
cond�t�ons may �nclude two d�fferent treatments or processes.

To address th�s quest�on, we use one of the follow�ng two tests, depend�ng on whether the 
two data sets are �ndependent or dependent on one another:

Unpa�red t test for two sets of �ndependent data
Pa�red t test for two sets of dependent data

Before we descr�be each type of t test, we need to d�scuss the not�on of hypothes�s test�ng.

5.1.1.1 Hypothesis Testing
Whenever we perform stat�st�cal analys�s, we are test�ng some hypothes�s. In fact, before we even 
collect our data, we formulate a hypothes�s and then carefully des�gn our exper�ment and collect 

1.

2.
3.

4.
5.

6.

1.
2.
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and analyze the data to test the hypothes�s. The outcome of the stat�st�cal test w�ll allow us, �f the 
assumed probab�l�ty model �s val�d, to accept or reject the hypothes�s and do so w�th some level of 
confidence.

There are bas�cally two forms of hypotheses that we test when perform�ng stat�st�cal analys�s. 
There �s the null hypothes�s and the alternat�ve hypothes�s.

The null hypothes�s, denoted as H0, �s expressed as follows for the t test compar�ng two 
populat�on means, µ1 and µ2:

 H0: µ1 = µ2. 

The alternat�ve hypothes�s, denoted as H1, �s expressed as one of the follow�ng for the t test 
compar�ng two populat�on means, µ1 and µ2:

 H1: µ1 ≠ µ2 (two-ta�led t test),

 H1: µ1 < µ2 (one ta�led t test),

or

 H1: µ1 > µ2 (one-ta�led t test).

If the H1 �s of the first form, where we do not know �n advance of the data collect�on wh�ch 
mean w�ll be greater than the other, we w�ll perform a two-ta�led test, wh�ch s�mply means that the 
level of s�gn�ficance for wh�ch we accept or reject the null hypothes�s w�ll be double that of the case 
�n wh�ch we pred�ct �n advance of the exper�ment that one mean w�ll be lower than the second based 
on the phys�ology or the eng�neer�ng process or other cond�t�ons affect�ng exper�mental outcome. 
Another way to express th�s �s that w�th a one-ta�led test, we w�ll have greater confidence �n reject�ng 
or accept�ng the null hypothes�s than w�th the two-ta�led cond�t�on.

5.1.1.2 Applying the t Test
Now that we have stated our hypotheses, we are prepared to perform the t test. G�ven two populat�ons 
w�th n1 and n2 samples, we may compare the two populat�on means us�ng a t test. It �s �mportant to 
remember the underly�ng assumpt�ons made �n us�ng the t test to compare two populat�on means:

The underly�ng d�str�but�ons for both populat�ons are normal.
The var�ances of the two populat�ons are approx�mately equal: s1

2 = s2
2.

These are b�g assumpt�ons we make when n1 and n2 are small. If these assumpt�ons are poor 
for the data be�ng analyzed, we need to find d�fferent stat�st�cs to compare the two populat�ons.

1.
2.
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G�ven two sets of sampled data, xi and yi, the means for the two populat�ons or processes 
reflected �n the sampled data can be compared us�ng the follow�ng t stat�st�c:

5.1.1.3 unpaired t Test
The unpa�red t stat�st�c may be est�mated us�ng:
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where n1 �s the number of xi observat�ons, n2 �s the number of yi observat�ons, Sx
2 �s the sample 

var�ance of xi , Sy
2 = sample var�ance of yi, x

– �s the sample average for xi , and y– �s the sample average 
for yi .

Once the T stat�st�c has been computed, we can compare our est�mated T value to t values 
g�ven �n a table for the t d�str�but�on. More spec�fically, �f we want to reject the null hypothes�s w�th 
1 − a level of confidence, then we need to determ�ne whether our est�mated T value �s greater than 
the t value entry �n the t table assoc�ated w�th a s�gn�ficance level of a (one-s�ded t test) or a/2 (two-
s�ded t test). In other words, we need to know the t value from the t d�str�but�on for wh�ch the area 
under the t curve to the r�ght of t �s a. Our est�mated T must be greater than th�s t to reject the null 
hypothes�s w�th 1 − a level of confidence.

Thus, we compare our T value to the t d�str�but�on table entry for

 t(a, n1 + n2 − 2) (one-s�ded)

or

 t(a/2, n1 + n2 − 2) (two-s�ded),

where a �s the level of s�gn�ficance (equal to 1 – level of confidence), and n1 and n2 are the number 
of samples from each of the two populat�ons be�ng compared.

Note that a �s the level of s�gn�ficance at wh�ch we want to accept or reject our hypothes�s. 
For most research, we reject the null hypothes�s when a ≤ 0.05. Th�s corresponds to a confidence 
level of 95%.

For example, �f we want to reject our null hypothes�s w�th a confidence level of 95%, then 
for a one-s�ded t test, our est�mated T must be greater than t (0.05, n1 + n2 – 2) to reject H0 and 
accept H1 w�th 95% confidence or a s�gn�ficance level of 0.05 or less. Remember that our confi-
dence = (1– 0.05) × 100%. Th�s test was for H1: µ1 < µ2 or µ1 > µ2 (one-s�ded). If our H1 was H1: 
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µ1 ≠ µ2, then our measured T must be greater than t (0.05/2, n1 + n2 – 2) to reject the null hypothes�s 
w�th the same 95% confidence.

Thus, to test the follow�ng alternat�ve hypotheses:

For H1: µ1 ≠ µ2: Use two-ta�l t test. For (a < 0.05), the est�mated T > t (0.025, n1 + n2 − 2) 
to reject H0 w�th 95% confidence.
For H1: µ1 < µ2 or H1: µ1 < µ2: Use one-ta�l t test. For (a < 0.05), est�mated T > t (0.05, n1 + 
n2 − 2) to reject H0 w�th 95% confidence.

a �s also referred to as the type I error. For the t test, a �s the probab�l�ty of observ�ng a measured T 
value greater than the table entry, t (a; df  ) �f the true means of two underly�ng populat�ons, x and y, 
were actually equal. In other words, there �s no s�gn�ficant (a < 0.05) d�fference �n the two populat�on 
means, but the sampled data analys�s led us to conclude that there �s a d�fference and thus reject the 
null hypothes�s. Th�s �s referred to as a type I error.

Example 5.1 An example of a b�omed�cal eng�neer�ng challenge where we m�ght use the t test to 
�mprove the funct�on of med�cal dev�ces �s �n the development of �mplantable defibr�llators for the 
detect�on and treatment of abnormal heart rhythms [13]. Implantable defibr�llators are small elec-
tron�c dev�ces that are placed �n the chest and have th�n w�res that are placed �n the chambers of the 
heart. These w�res have electrodes that detect the small electr�cal current travers�ng the heart muscle. 
Under normal cond�t�ons, these currents follow a very orderly pattern of conduct�on through the heart 
muscle. An example of an electrogram, or record of electr�cal act�v�ty that �s sensed by an electrode, un-
der normal cond�t�ons �s g�ven �n F�gure 5.1. When the heart does not funct�on normally and enters a 
state of fibr�llat�on (F�gure 5.1), whereby the heart no longer contracts normally or pumps blood to the 
rest of the body, the dev�ce should shock the heart w�th a large electr�cal current from the dev�ce �n an 
attempt to convert the heart rhythm back to normal. For a number of reasons, �t �s �mportant that the 
dev�ce accurately detect the onset of l�fe-threaten�ng arrhythm�as, such as fibr�llat�on, and adm�n�ster 
an appropr�ate shock. To adm�n�ster a shock, the dev�ce must use some sort of s�gnal process�ng algo-
r�thms to automat�cally determ�ne that the electrogram �s abnormal and character�st�c of fibr�llat�on.

One algor�thm that �s used �n most dev�ces for d�fferent�at�ng normal heart rhythms from 
fibr�llat�on �s a rate algor�thm. Th�s algor�thm �s bas�cally an ampl�tude threshold cross�ng algor�thm 
whereby the dev�ce determ�nes how often the electrogram exceeds an ampl�tude threshold �n a spec�-
fied per�od of t�me and then est�mates a rate from the detected threshold cross�ngs. F�gure 5.2 �l-
lustrates how th�s algor�thm works.

Before such an algor�thm was put �nto �mplantable defibr�llators, researchers and developers 
had to demonstrate whether the rate est�mated by such a dev�ce truly d�ffered between normal and 

1.

2.
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fibr�llatory rhythms. It was �mportant to have l�ttle overlap between the normal and fibr�llatory 
rhythms so that a rate threshold could be establ�shed, whereby rates that exceeded the threshold 
would lead to the dev�ce adm�n�ster�ng a shock. For th�s algor�thm to work, there must be a s�g-
n�ficant d�fference �n rates between normal and fibr�llatory rhythms and l�ttle overlap that would 
lead to shocks be�ng adm�n�stered �nappropr�ately and caus�ng great pa�n or r�sk the �nduct�on 
of fibr�llat�on. Overlap �n rates between normal and fibr�llatory rhythms could also result �n the 
dev�ce m�ss�ng detect�on of fibr�llat�on because of low rates.

To determ�ne �f rate �s a good algor�thm for detect�ng fibr�llatory rhythms, �nvest�gators 
m�ght actually record electrogram s�gnals from actual pat�ents who have demonstrated normal 
or fibr�llatory rhythms and use the rate algor�thm to est�mate a rate and then compare the mean 
rates for normal rhythms aga�nst mean rates for fibr�llatory rhythms. For example, let us assume 
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FIguRE 5.1: Electrogram record�ngs measured from electrodes placed �ns�de the left atr�um of the 
heart. For each rhythm, there are two electrogram record�ngs taken from two d�fferent locat�ons �n the 
atr�um: atr�al flutter (AFLUT) and atr�al fibr�llat�on (AF).
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�nvest�gators collected 15-second electrogram record�ngs for examples of fibr�llatory (n1 = 10) and 
nonfibr�llatory rhythms (n2 = 11) �n 21 pat�ents. We note that the fibr�llatory data were collected 
from d�fferent subjects than the normal data. Thus, we do not have block�ng �n th�s exper�mental 
des�gn.

A rate was est�mated, us�ng the dev�ce algor�thm, for each �nd�v�dual 15-second record�ng. 
F�gure 5.3 shows a box-and-wh�sker plot for each of the two data sets.

The descr�pt�ve stat�st�cs for the two data sets are g�ven by the follow�ng table:

NoNFIBRILLAToRy 
ELECTRogRAMS 

(N1 = 11)

FIBRILLAToRy 
ELECTRogRAMS 

(N2 = 10)

Mean 96.82 239.0

Standard dev�at�on 22.25 55.3

There are several th�ngs to note from the plots and descr�pt�ve stat�st�cs. F�rst, the sample s�ze 
�s small; thus, �t �s l�kely that the var�ab�l�ty of electrogram record�ngs from normal and fibr�llatory 
rhythms �s not adequately represented. Moreover, the data are skewed and do not appear to be well 
modeled by a normal d�str�but�on. F�nally, the var�ab�l�ty �n rates appears to be much greater for 
fibr�llatory rhythms than for normal rhythms. Thus, some of the assumpt�ons we make regard�ng 

FIguRE 5.2: A heart rate �s est�mated from an electrogram us�ng an ampl�tude threshold algor�thm. 
Whenever the ampl�tude of the electrogram s�gnal (sol�d waveform) exceeds an ampl�tude threshold 
(sol�d gray hor�zontal l�ne) w�th�n a spec�fic t�me �nterval (shaded vert�cal bars), an “event” �s detected. A 
rate �s calculated by count�ng the number of events �n a certa�n t�me per�od.
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the normal�ty of the populat�ons and the equal�ty of var�ances are probably v�olated �n apply�ng the t 
test. However for the purpose of �llustrat�on, we w�ll perform a t test us�ng the unpa�red t stat�st�c.

To find an est�mated T stat�st�c from our sample data, we plug �n the means, var�ances, and 
sample s�zes �nto the equat�on for the unpa�red T stat�st�c. We turn the crank and find that for th�s 
example, the est�mated t value �s 7.59. If we look at our t tables for [11 + 10 − 2] degrees of freedom, 
we can reject H0 at a < 0.005 because our est�mated T value exceeds the t table entr�es for a = 0.05 
(t = 1.729), a = 0.01 (t = 2.539), and a = 0.005 (t = 2.861).

Thus, we reject the null hypothes�s w�th (1 − 0.005) × 100% confidence and state that mean 
heart rate for fibr�llatory rhythms �s greater than mean heart rate for normal rhythms. Thus, the rate 
algor�thm should perform fa�rly well �n d�fferent�at�ng normal from fibr�llatory rhythms. However, 
we have only tested the populat�on means. As one may see �n F�gure 5.3, there �s some overlap �n 
�nd�v�dual samples between normal and fibr�llatory rhythms. Thus, we m�ght expect the dev�ce to 
make errors �n adm�n�ster�ng shock �nappropr�ately when the heart �s �n normal but accelerated 
rhythms (as �n exerc�se), or the dev�ce may fa�l to shock when the heart �s fibr�llat�ng but at a slow 
rate or w�th low ampl�tude.

In apply�ng the t test, �t �s �mportant to note that you can never prove that two means are 
equal. The stat�st�cs can only show that a spec�fic test cannot find a d�fference �n the populat�on 
means, and, not find�ng a d�fference �s not the same as prov�ng equal�ty. The null or default hypoth-
es�s �s that there �s no d�fference �n the means, regardless of what the true d�fference �s between the 
two means. Not find�ng a d�fference w�th the collected data and appropr�ate stat�st�cal test does not 
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FIguRE 5.3: Box-and-wh�sker plot for rate data est�mated from samples of nonfibr�llatory and fibr�l-
latory heart rhythms.
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mean that the means are proved equal. Thus, we do not accept the null hypothes�s w�th a level of 
s�gn�ficance. We s�mply accept the null hypothes�s and do not accept w�th a confidence or s�gn�fi-
cance level. We only ass�gn a level of confidence when we reject the null hypothes�s.

5.1.1.4 Paired t Test
In the prev�ous example, we used an unpa�red t test because the two data sets came from two d�ffer-
ent, unrelated, groups of pat�ents. The problem w�th such an exper�mental des�gn �s that d�fferences 
�n the two pat�ent populat�ons may lead to d�fferences �n mean heart rate that have noth�ng to do 
w�th the actual heart rhythm but rather d�fferences �n the s�ze or age of the hearts between the two 
groups of pat�ents or some other d�fference between pat�ent groups. A better way to conduct the 
prev�ous study �s to collect our normal and fibr�llatory heart data from one group of pat�ents. A 
s�ngle defibr�llator w�ll only need to d�fferent�ate normal and fibr�llatory rhythms w�th�n a s�ngle 
pat�ent. By block�ng on subjects we can el�m�nate the �ntersubject var�ab�l�ty �n electrogram charac-
ter�st�cs that may plague the rate algor�thm from separat�ng populat�ons. It may be more reasonable 
to assume that rates for normal and fibr�llatory rhythms d�ffer more w�th�n a pat�ent than across 
pat�ents. In other words, for each pat�ent, we collect an electrogram dur�ng normal heart funct�on 
and fibr�llat�on. In such exper�mental des�gn, we would compare the means of the two data sets us-
�ng a pa�red t test.

We use the pa�red t test when there �s a natural pa�r�ng between each observat�on �n data set, 
X, w�th each observat�on �n data set, Y. For example, we m�ght have the follow�ng scenar�os that 
warrant a pa�red t test:

Collect blood pressure measurements from 8 pat�ents before and after exerc�se.
Collect both MR and CT data from the same 20 pat�ents to compare qual�ty of blood ves-
sel �mages.
Collect comput�ng t�me for an �mage process�ng algor�thm before and after a change �s 
made �n the software.

In such cases, the X and Y data sets are no longer �ndependent. In the first example above, because 
we are collect�ng the before and after data from the same exper�mental un�ts, the phys�ology and 
b�olog�cal env�ronment that �mpacts blood pressure before exerc�se �n each pat�ents also affects 
blood pressure after exerc�se. Thus, there are a number of var�ables that �mpact blood pressure that 
we cannot d�rectly control but whose effects on blood pressure (bes�de the exerc�se effect) can be 
controlled by us�ng the same exper�mental un�ts (human subjects �n th�s case) for each data set. In 
such cases, the exper�mental un�ts serve as the�r own control. Th�s �s typ�cally the preferred exper�-
mental des�gn for compar�ng means.

1.
2.

3.
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For the pa�red t test, we aga�n have a null hypothes�s and an alternat�ve hypothes�s as stated 
above for the unpa�red t test. However, �n a pa�red t test, we use a t test on the d�fference, Wi = Xi − 
Yi, between the pa�red data po�nts from each of the two populat�ons.

We now calculate the pa�red T stat�st�c: (n = number of pa�rs)

 
,

/ nS
WT

w
=

 

where W
—

 �s the average d�fference of the d�fferences, Wi, and Sw �s the standard dev�at�on of the 
d�fferences, Wi.

As for the unpa�red t test, we now have an est�mated T value that we can compare w�th the 
t values �n the table for the t d�str�but�on to determ�ne �f the est�mated T value l�es �n the extreme 
values (greater than 95%) of the t d�str�but�on.

To reject the null hypothes�s at a s�gn�ficance level of a (confidence level of 1 – a), our est�-
mated T value must be greater than t (a, n − 1), where n �s the number of pa�rs of data.

If the est�mated T value exceeds t (a, n − 1), we reject H0 and accept H1 at a s�gn�ficance level 
of a or a confidence level of 1 − a.

Once aga�n, �f H1: µ1 < µ2 or H1: µ1 < µ2, we perform a one-s�ded test where our T stat�st�c 
must be greater than t (a, n − 1) to reject the null hypothes�s at a level of a. If the null hypothes�s that 
we beg�n w�th before the exper�ment �s H1: (µ1 ≠ µ2), then we perform a two-s�ded test, and the T 
stat�st�c must be greater than t (a/2, n − 1) to reject the null hypothes�s at a s�gn�ficance level of a.

5.1.1.5 Example of a Biomedical Engineering Challenge
In relat�on to abnormal heart rhythms d�scussed prev�ously, ant�arrhythm�c drugs may be used to 
slow or term�nate an abnormal rhythm, such as fibr�llat�on. For example, a drug such as proca�n-
am�de may be used to term�nate atr�al fibr�llat�on. The exact mechan�sm whereby the drug leads to 
term�nat�on of the rhythm �s not exactly known, but �t �s thought that the drug changes the refrac-
tory per�od and conduct�on veloc�ty of the heart cells [8]. B�omed�cal eng�neers often use s�gnal 
process�ng on the electr�cal s�gnals generated by the heart as an �nd�rect means for study�ng the 
underly�ng phys�ology. More spec�fically, eng�neers may use spectral analys�s or Four�er analys�s to 
look at changes �n the spectral content of the electr�cal s�gnal, such as the electrogram, over t�me. 
Such changes may tell us someth�ng about the underly�ng electrophys�ology.

For example, spectral analys�s has been used to look at changes �n the frequency spectrum 
of atr�al fibr�llat�on w�th drug adm�n�strat�on. In one such study [8], b�omed�cal eng�neers were 
�nterested �n look�ng at changes �n med�an frequency of atr�al electrograms after drug adm�n�stra-
t�on. F�gure 5.4 shows an example of the frequency spectrum for atr�al fibr�llat�on and the locat�on 
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of the med�an frequency, wh�ch �s the frequency that d�v�des the power of the spectrum (area under 
the spectral curve between 4 and 9 Hz) �n half. One quest�on posed by the �nvest�gators �s whether 
med�an frequency decreases after adm�n�strat�on of a drug such proca�nam�de, wh�ch �s thought to 
slow the electr�cal act�v�ty of the heart cells.

Thus, an exper�ment was conducted to determ�ne whether there was a s�gn�ficant d�fference 
�n mean med�an frequency between fibr�llat�on before drug adm�n�strat�on and fibr�llat�on after 
drug adm�n�strat�on. Electrograms were collected �n the r�ght atr�um �n 11 pat�ents before and after 
the drug was adm�n�stered. F�fteen-second record�ngs were evaluated for the frequency spectrum, 
and the med�an frequency �n the 4- to 9-Hz frequency band was est�mated before and after drug 
adm�n�strat�on.

F�gure 5.5 �llustrates the summary stat�st�cs for med�an frequency before and after drug ad-
m�n�strat�on. The quest�on �s whether there was a s�gn�ficant decrease �n med�an frequency after 
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FIguRE 5.4: Frequency spectrum for an example of atr�al fibr�llat�on. Med�an frequency �s defined as 
that frequency that d�v�des the area under the power curve �n the 4- to 9-Hz band �n half.
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FIguRE 5.5: Box-and-wh�sker plot for med�an frequency est�mated from samples of atr�al fibr�llat�on 
recorded before, and after a drug was adm�n�stered.

BEFoRE dRug AFTER dRug wI

4.30 2.90 1.4

4.15 2.97 1.18

3.80 3.20 0.60

5.10 3.30 1.80

4.30 3.75 0.55

7.20 5.35 1.85

6.40 5.10 1.30

6.20 4.90 1.30

6.10 4.80 1.30

5.00 3.70 1.30

5.80 4.50 1.30

adm�n�strat�on of proca�nam�de. In th�s case, the null hypothes�s �s that there �s no change �n mean 
med�an frequency after drug adm�n�strat�on. The alternat�ve hypothes�s �s that mean med�an fre-
quency decreases after drug adm�n�strat�on. Thus, we are compar�ng two means, and the two data 
sets have been collected from one set of pat�ents. We w�ll requ�re a pa�red t test to reject or accept 
the null hypothes�s.
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To perform a pa�red t test, we create another column, Wi, as noted �n the table above. We 
find the follow�ng for Wi: W

—
 = 1.262 and Sw = 0.402. If we use these est�mates for W

—
 and Sw �n our 

equat�on for the pa�red T stat�st�c, we find that T = 10.42 for n = 11 pa�rs of data. If we compare 
our est�mated T value to the t d�str�but�on, we find that our T value �s greater than the table entry 
for t (0.005, 11 – 1);therefore, we may reject H0 at a s�gn�ficance less than 0.005. In other words, we 
reject the null hypothes�s at the [1 – 0.005] × 100% confidence level.

Errors in drawing Conclusions From Statistical Tests
When we perform stat�st�cal analys�s, such as the t test, there �s a chance that we are m�staken �n 
reject�ng or accept�ng the null hypothes�s. When we draw conclus�ons from a stat�st�cal analys�s, we 
typ�cally ass�gn a confidence level to our conclus�on. Th�s means that there �s always some chance 
that our conclus�ons are �ncorrect.

There are two types of errors that may occur when we draw conclus�ons from a stat�st�cal 
analys�s. These errors are referred to as types I and II.

Type I errors:

also referred to as a false-pos�t�ve error;
occurs when we accept H1 when H0 �s true;
may result �n a false d�agnos�s of d�sease.

Type II errors:

also referred to as a false-negat�ve error;
occurs when we accept H0 when H1 �s true;
may result �n a m�ssed d�agnos�s (often more ser�ous than a type I error).

If we th�nk about the med�cal env�ronment, a type I error m�ght occur when a person �s g�ven a 
d�agnost�c test to detect streptococcus bacter�a, and the test �nd�cates that the person has the strep-
tococcus bacter�a when �n fact, the person does not have the bacter�a. The result of such an error 
means that the person spends money for an ant�b�ot�c that �s serv�ng no purpose.

A type II error would occur when the same person actually has the streptococcus bacter�a, but 
the d�agnost�c test results �n a negat�ve outcome, and we conclude that the person does not have the 
streptococcus bacter�a. In th�s example, th�s type of error �s more ser�ous than the type I error because 
the streptococcus bacter�a left untreated can lead to a number of ser�ous compl�cat�ons for the body.

The a value that we refer to as the level of s�gn�ficance �s also the probab�l�ty of a type I error. 
Thus, the smaller the level of s�gn�ficance at wh�ch we may reject the null hypothes�s, the smaller 
the type I error and the lower the probab�l�ty of mak�ng a type I error.

1.
2.
3.

1.
2.
3.
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We typ�cally use β to denote the type II error. We w�ll d�scuss th�s error further at the end of 
chapter seven when we d�scuss power tests.

5.2 CoMPARISoN oF Two vARIANCES
We used the t test to compare the means for two populat�ons or processes. Two populat�ons may 
also be compared for d�fferences �n var�ance. As d�scussed earl�er, populat�ons that are normally 
d�str�buted are completely character�zed by the�r mean and var�ance. Thus, �f we want to test for 
d�fferences between two normal populat�ons, we need only compare the�r two means and the�r two 
var�ances.

F�gure 5.6 �llustrates the probab�l�ty dens�ty funct�ons for two normal populat�ons (black and 
red traces). The four d�agrams �llustrate how two d�fferent normally d�str�buted populat�ons may 
compare w�th each other. The r�ght two panels d�ffer from the left two panels �n the means of the 
populat�ons. The top two panels d�ffer from the bottom two panels �n var�ance of the populat�ons. 

Means Same Means Different 

Variance
Same

Variances
Different

t - test 

F - Test 

FIguRE 5.6: Two normal populat�ons may d�ffer �n the�r means (top row), the�r var�ances (left half ), or 
both (bottom r�ght corner). t and F tests may be used to test for s�gn�ficant d�fferences �n the populat�on 
means and populat�on var�ances, respect�vely.
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As �nd�cated across the top of the trac�ngs, a t test �s used to test for d�fferences �n mean between 
the two populat�ons. As �nd�cated along the vert�cal d�rect�on, an F test �s used to test for s�gn�ficant 
d�fferences �n the var�ances of the populat�ons. Note that two normal populat�ons may d�ffer s�gn�fi-
cantly �n both mean and var�ance.

To compare the var�ances of two populat�ons, we use what �s referred to as an F test. As for 
the t test, the F test assumes that the data cons�st of �ndependent random samples from each of two 
normal populat�ons. If the two populat�ons are not normally d�str�buted, the results of the F test 
may be mean�ngless.
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FIguRE 5.7: H�stograms of samples drawn from two d�fferent F d�str�but�ons. In the top panel, the 
two degrees of freedom are 10 and 8. In the lower panel, the two degrees of freedom are 40 and 30.
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TABLE 5.1: Values from the F d�str�but�on for areas of a �n the ta�l to the r�ght of 
F (dn, dd, a)

dn

dd 1 2 3 4 5 … 10 11

1 161, 
4052

200, 
4999

216, 
5403

225, 
5625

230, 
5764

242, 
6056

243, 
6082

2 18.51, 
98.49

19.00, 
99.01

19.16, 
99.17

19.25, 
99.25

19.30, 
99.30

19.39, 
99.40

19.40, 
99.41

3 10.13, 
34.12

9.55, 
30.81

9.28, 
29.46

9.12, 
28.71

9.01, 
28.24

8.78, 
27.23

8.76, 
27.13

4 7.71, 
21.20

6.94, 
18.00

6.59, 
16.69

6.39, 
15.98

6.26, 
15.52

5.96, 
14.54

5.93, 
14.45

5 6.61, 
16.26

5.79, 
13.27

5.41, 
12.06

5.19, 
11.39

5.05, 
10.97

4.74, 
10.05

4.70, 
9.96

…

10 4.96, 
10.04

4.10, 
7.56

3.71, 
6.55

3.48, 
5.99

3.33, 
5.64

2.97, 
4.85

2.94, 
4.78

12 4.75, 
9.33

3.88, 
6.93

3.49, 
5.95

3.26, 
5.41

3.11, 
5.06

2.76, 
4.30

2.72, 
4.22

15 4.54, 
8.68

3.68, 
6.36

3.29, 
5.42

3.06, 
4.89

2.90, 
4.56

2.55, 
3.80

2.51, 
3.73

…

20 4.35, 
8.10

3.49, 
5.85

3.10, 
4.94

2.87, 
4.43

2.71, 
4.10

2.35, 
3.37

2.31, 
3.30

50 4.03, 
7.17

3.18, 
5.06

2.79, 
4.20

2.56, 
3.72

2.40, 
3.41

2.02, 
2.70

1.98, 
2.62

100 3.94, 
6.90

3.09, 
4.82

2.70, 
3.98

2.46, 
3.51

2.30, 
3.20

1.92, 
2.51

1.88, 
2.43

200 3.89, 
6.76

3.04, 
4.71

2.65, 
3.38

2.41, 
3.41

2.26, 
3.11

1.87, 
2.41

1.83, 
2.34

∞ 3.84, 
6.64

2.99, 
4.60

2.60, 
3.78

2.37, 
3.32

2.21, 
3.02

1.83, 
2.32

1.79, 
2.24

dn = degrees of freedom for numerator; dd = degrees of freedom for denom�nator; a = the area �n 
d�str�but�on ta�l to r�ght of F (dn, dd, a) = 0.05 or 0.01.
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dn

12 14 … 20 30 40 50 100 200 ∞

244, 
6106

245, 
6142

248, 
6208

250, 
6258

251, 
6286

252, 
6302

253, 
6334

254, 
6352

254, 
6366

19.41, 
99.42

19.42, 
99.43

19.44, 
99.45

19.46, 
99.47

19.47, 
99.48

19.47, 
99.48

19.49, 
99.49

19.49, 
99.49

19.50, 
99.50

8.74, 
27.05

8.71, 
26.92

8.66, 
26.69

8.62, 
26.50

8.60, 
26.41

8.58, 
26.30

8.56, 
26.23

8.54, 
26.18

8.53, 
26.12

5.91, 
14.37

5.87, 
14.24

5.80, 
14.02

5.74, 
13.83

5.71, 
13.74

5.70, 
13.69

5.66, 
13.57

5.65, 
13.52

5.63, 
13.46

4.68, 
9.89

4.64, 
9.77

4.56, 
9.55

4.50, 
9.38

4.46, 
9.29

4.44, 
9.24

4.40, 
9.13

4.38, 
9.07

4.36, 
9.02

2.91, 
4.71

2.86, 
4.60

2.77, 
4.41

2.70, 
4.25

2.67, 
4.17

2.64, 
4.12

2.59, 
4.01

2.56, 
3.96

2.54, 
3.91

2.69, 
4.16

2.64, 
4.05

2.54, 
3.86

2.46, 
3.70

2.42, 
3.61

2.40, 
3.56

2.35, 
3.46

2.32, 
3.41

2.30, 
3.36

2.48, 
3.67

2.43, 
3.56

2.33, 
3.36

2.25, 
3.20

2.21, 
3.12

2.18, 
3.07

2.12, 
2.97

2.10, 
2.92

2.07, 
2.87

2.28, 
3.23

2.23, 
3.13

2.12, 
2.94

2.04, 
2.77

1.99, 
2.69

1.96, 
2.63

1.90, 
2.53

1.87, 
2.47

1.84, 
2.42

1.95, 
2.56

1.90, 
2.46

1.78, 
2.26

1.69, 
2.10

1.63, 
2.00

1.60, 
1.94

1.52, 
1.82

1.48, 
1.76

1.44, 
1.68

1.85, 
2.36

1.79, 
2.26

1.68, 
2.06

1.57, 
1.89

1.51, 
1.79

1.48, 
1.73

1.39, 
1.59

1.34, 
1.51

1.28, 
1.43

1.80, 
2.28

1.74, 
1.17

1.62, 
1.97

1.52, 
1.79

1.45, 
1.69

1.42, 
1.62

1.32, 
1.48

1.26, 
1.39

1.19, 
1.28

1.75, 
2.18

1.69, 
2.07

1.57, 
1.87

1.46, 
1.69

1.40, 
1.59

1.35, 
1.52

1.24, 
1.36

1.17, 
1.25

1.00, 
1.00
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As w�th the t test, the F test �s used to test the follow�ng hypotheses:

null hypothes�s: H0: σ1
2 = σ2

2 and
alternat�ve hypothes�s: H1: σ1

2 > σ2
2,

where σ1
2 and σ2

2 are the var�ances of the two populat�ons.
To reject or accept the null hypothes�s, we compute the follow�ng F stat�st�c:

 

,2
2

2
1

s
sF =

 

where s1
2 and s2

2 are the sample var�ance est�mates of the two populat�ons. The rat�o of two var�-
ances from two normal populat�ons �s also a random var�able that follows an F d�str�but�on. The 
F d�str�but�on �s �llustrated �n F�gure 5.7. As w�th the t d�str�but�on, the F d�str�but�on var�es w�th 
two parameters, such as the samples s�zes of the two populat�ons. Table 5.1 shows a fract�on of an 
F table, where two degrees of freedom, dn and dd, are requ�red to locate an F value �n the F table. 
In th�s figure, the table entr�es are g�ven for s�gn�ficance levels (a values) of 0.05 and 0.01. The F 
values assoc�ated w�th 0.05 and 0.01 s�gn�ficance levels are g�ven �n regular type and boldface-�tal�cs, 
respect�vely. Thus, for any two degrees of freedom, there are two F values prov�ded, one for the 95% 
confidence level and one for the 99% confidence level.

To make use of the F table w�th the F test, we est�mate an F stat�st�c us�ng the sample var�-
ance est�mates from each of the two populat�ons we are try�ng to compare. Note that for the use of 
th�s F table, the larger of the two var�ances should be put �n the numerator of the equat�on above.

We now compare our est�mated F stat�st�c to the entr�es �n the F table assoc�ated w�th dn 
and dd degrees of freedom and appropr�ate confidence level (only the 95% and 99% F values are 
prov�ded �n the table prov�ded). dn = n1 and dd = n2 are the number of samples �n each populat�on, 
w�th n1 be�ng the number of samples �n the populat�on w�th var�ance placed �n the numerator.

If we are to reject the null hypothes�s outl�ned above, our calculated F stat�st�c must be > F (a, 
dn, dd ) �n table to reject H0 w�th confidence (1 – a) × 100%. The degrees of freedom, dn = n1, �s 
the value used to locate the table entry �n the hor�zontal d�rect�on (numerator), and dd = n2 �s the 
degrees of freedom used to locate the table entry �n the vert�cal d�rect�on (denom�nator).

Example 5.2 F test

PoPuLATIoN A (N1 = 9) PoPuLATIoN B (N2 = 9)

Mean 0.026 0.027

Var�ance 2.0E − 5 7.4E − 5

1.
2.
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G�ven the data l�sted �n table above, where we have collected 9 samples from each of two popula-
t�ons, A and B, we can est�mate our F stat�st�c to be

 F = (7.4E – 5)/(2.0E – 5) = 3.7. 

Us�ng an F table that has table entr�es for both the 95% and 99% confidence levels, we find that the 
table entry for a equal to 0.05 and 9 df  for both populat�ons �s

 F(0.05, 9, 9) = 3.18. 

Our est�mated value of 3.7 exceeds the table entry of 3.18; thus, we may reject H0 w�th 95% confi-
dence and accept that populat�on B has s�gn�ficantly greater var�ance than populat�on A. However, 
we note that the table entry for F (0.01, 9, 9) equals 5.35 and �s greater than our est�mated value. 
Thus, we cannot reject the null hypothes�s w�th 99% confidence.

5.3 CoMPARISoN oF THREE oR MoRE PoPuLATIoN MEANS
Thus far, we have d�scussed stat�st�cal analys�s for compar�ng the means and var�ances (or stan-
dard dev�at�ons) for two populat�ons based on collect�ng two sets of data. These two sets of data 
may be �ndependent of each other or they may be dependent on each other, wh�ch we refer to 
as pa�red or blocked data. Another way to th�nk of th�s pa�r�ng �s to call �t block�ng on the ex-
per�mental un�t, mean�ng that both sets of data were collected from the same exper�mental un�ts 
but under d�fferent cond�t�ons. For example, the exper�mental un�ts may be human subjects, 
an�mals, med�cal �nstruments, manufactur�ng l�nes, cell cultures, electron�c c�rcu�ts, and more. If, 
for example, the exper�mental un�t �s human be�ngs, the two sets of data may be der�ved before 
and after a drug has been adm�n�stered or before and after the subjects have engaged �n exerc�se. 
In another example, we may measure two d�fferent types of data, such as heart rate and blood 
pressure, each from the same group of subjects. Th�s �s referred to as repeated measures because 
we are tak�ng mult�ple sets of measures from the same exper�mental un�ts. In repeated measures, 
someth�ng �n the exper�mental cond�t�ons, exper�mental un�t, or measure be�ng collected has 
changed from one set of measures to the next, but the sampl�ng �s blocked by exper�mental 
un�t.

In many b�omed�cal eng�neer�ng appl�cat�ons, we need to compare the means from three or 
more populat�ons, processes, or cond�t�ons. In such cases, we use a method of stat�st�cal analys�s 
called analys�s of var�ance, or ANOVA. Although the name �mpl�es that one �s analyz�ng var�ances, 
the conclus�ons that stem from such analys�s are �n regard to s�gn�ficant d�fference �n the means of 
three or more populat�ons or processes.
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5.3.1 one-Factor Experiments
We beg�n our d�scuss�ons of ANOVA by d�scuss�ng the des�gn and analys�s of one-factor exper�-
ments. In such exper�ments, we are draw�ng samples from three or more populat�ons for wh�ch one 
factor has been var�ed from one populat�on to the next.

As stated �n Chapter 2, exper�mental des�gn should �nclude random�zat�on and block�ng. 
Random�zat�on ensures that we do not �ntroduce b�as �nto the data because of order�ng effects �n 
collect�ng our data. Moreover, block�ng helps us to reduce the effect of �ntersubject var�ab�l�ty on 
the d�fferences between populat�ons.

Some b�omed�cal eng�neer�ng challenges that may requ�re the use of ANOVA �nclude the 
follow�ng:

Compare wear t�me between h�p �mplants of var�ous mater�als: In th�s example, the treat-
ment = �mplant mater�al (e.g., t�tan�um, steel, polymer res�ns).
Compare MR pulse sequences �n the ab�l�ty to �mage t�ssue damage after stroke: In th�s 
example, the treatment = MR pulse sequence.
Compare ab�l�ty of var�ous drugs to reduce h�gh blood pressure: In th�s example, the treat-
ment = drug.

5.3.1.1 Example of Biomedical Engineering Challenge
An example of a b�omed�cal eng�neer�ng problem that m�ght use ANOVA to test a hypothes�s �s �n 
the study of reflex mechan�sms �n sp�nal cord �njured pat�ents [14]. One of the �nterests of �nves-
t�gators �s how h�p flex�on (torque) �s dependent on ankle movement �n pat�ents w�th sp�nal chord 
�njury. In th�s example, there are actually two exper�mental factors that may affect h�p flex�on:

Range of ankle mot�on: �n th�s case, the treatment = range of ankle extens�on.
Speed of ankle flex�on: �n th�s case, the treatment = speed of ankle extens�on.

We m�ght evaluate one factor at a t�me us�ng a one-factor or one-way ANOVA. Or, we m�ght evalu-
ate the �mpact of both factors on mean h�p flex�on us�ng two-factor or two-way ANOVA. In e�ther 
case, we have a null hypothes�s and alternat�ve hypotheses for the effect of each factor, such as range 
of ankle mot�on, on the populat�on mean, such as h�p flex�on. Our null hypothes�s �s that there �s no 
s�gn�ficant d�fference �n mean h�p flex�on across ankle mot�on,

H0: µ1 = µ2 = µ3 = …. = µn.

The alternat�ve hypothes�s, H1, states that at least two of the populat�on means, such as h�p 
flex�on for two d�fferent ankle mot�ons, d�ffer s�gn�ficantly from each other.

1.

2.

3.

1.
2.
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The bas�c des�gn of the one-factor exper�ment �s g�ven �n Table 5.2. In th�s case, there are k 
treatments �n one factor. k �s the number of treatments, yij �s the �nd�v�dual j sample or data po�nt 
for the ith treatment, y–i �s the sample mean for the ith treatment, and σyi

2    �s the sample var�ance for 
the ith treatment (adapted from [3]).

For example, we m�ght be �nterested �n compar�ng we�ght loss for three d�fferent types of d�et 
p�lls. In th�s case, k = 3. Under the we�ght-loss column, one w�ll find the we�ght loss of �nd�v�dual 
subjects who used one of the three d�et p�lls. Note that �n th�s example, the number of samples var�es 
w�th each drug type. In a balanced exper�ment, there should be an equal number of samples for each 
type of treatment. In the th�rd and fourth columns, we have the sample mean and standard dev�at�on 
for we�ght loss for each of the d�et p�lls. The quest�on we are try�ng to answer �s whether there �s a 
s�gn�ficant d�fference �n mean we�ght loss as a funct�on of d�et p�ll type.

dIET PILL wEIgHT LoSS MEAN STANdARd dEvIATIoN

Placebo 10, 12, 5, 8, 5, 20 10.0 5.62

Drug B 30, 5, 12, 20 16.75 10.75

Drug C 2, 10, 5, 5, 10, 20, 25, 40 14.63 12.92

We make a number of assumpt�ons when us�ng ANOVA to compare d�fferences �n means 
between three or more populat�ons or processes:

TABLE 5.2: One-factor exper�ment

TREATMENT oBSERvATIoNS SAMPLE MEAN SAMPLE vARIANCE

1 y11, y22,…, y1n y–1 σ 2y1

2 y21, y22,…, y2m y–2 σ 2y2

…
.

i yi1, yi2,…, yp
y–k σ 2yi

…
.

k yk1, yk2,…ykq y–k σ 2yk
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Subjects are randomly ass�gned to a spec�fic treatment (�n th�s case d�et p�ll).
The populat�ons or processes (such as we�ght loss) are approx�mately normally d�str�buted.
Var�ance �s approx�mately equal across treatment groups.

In th�s spec�fic we�ght-loss example, no block�ng �s used. In other words, �n no case d�d the 
same subject rece�ve more than one treatment or d�et p�ll. Th�s may end up be�ng problemat�c and 
lead to erroneous conclus�ons because we are not account�ng for �ntersubject var�ab�l�ty �n response 
to the d�et drug. For example, we m�ght assume that the amount of we�ght loss �s related to start�ng 
we�ght. It �s poss�ble that the subjects ass�gned to drug A all had start�ng we�ghts less than the subjects 
g�ven drug B. Thus, d�fferences �n the we�ght loss may be s�gn�ficant but may have l�ttle to do w�th 
the actual d�et p�ll. The d�fference �n we�ght loss may be because of the d�fferences �n start�ng we�ght 
rather than the d�et p�ll. Because the above exper�ment does not use block�ng, �ntersubject var�ab�l�ty 
that �s not accounted for may confound our conclus�ons regard�ng the effect�veness of d�et p�ll.

The quest�on we are attempt�ng to address �n us�ng ANOVA �s, “Are the means of the k treat-
ments equal, or have our samples been drawn from treatments (populat�ons) w�th d�fferent means?”

W�th�n each treatment, i (or populat�on, i), we assume that the var�ab�l�ty across observed 
samples, Yij          , �s �nfluenced by the populat�on (treatment) mean, µi, and �ndependent random var�-
ables, eij , that are normally d�str�buted, w�th a mean of zero and var�ance σ 2. In other words, the 
samples, Yij , collected for each tr�al, j, w�th�n each treatment, i, can be expressed as

Yij = µi + eij .

W�th our model, we are try�ng to determ�ne how much of the var�ab�l�ty �n Y �s because of 
the factor or treatment (populat�on w�th mean, µi), and how much �s because of random effects, eij , 
wh�ch we cannot control for or have not captured �n the model prov�ded above.

When we perform an ANOVA for a one-factor exper�ment, we can organ�ze the analys�s and 
results �n the follow�ng table (Table 5.3):

1.
2.
3.

TABLE 5.3: One-factor ANOVA w�th k treatments (no block�ng)

SouRCE df SS MS F

Treatment k – 1 MStreat/MSerror

Error N – k

N = total number of samples across all treatments; k = number of treatments w�th�n the one 
factor; F = the stat�st�c that we w�ll compare w�th our F tables (F d�str�but�on) to e�ther reject 
or accept the null hypothes�s; SStreatment = between-treatment sum of squares, a measure of the 
var�ab�l�ty among treatment means; SSerror = w�th�n-treatment sum of squares, a measure of the 
sum of var�ances across all k treatments; MStreatment = SStreatment/k – 1; MSerror = SSerror/N – k.
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For k treatments, the spec�fic equat�ons for the SS elements are the follow�ng:

SS ( )treatment grand= −
=

n y yi i
i

k
2

1
Σ

and

SS ( ) .error = − =
== =

Y Yij i

j

n

i

k

yi
i

ki
2

11

2

1

σΣΣ Σ

grandY  �s the sample mean for all samples across all treatments comb�ned.
F�nally, the F stat�st�c that we are most �nterested �n est�mat�ng to reject or accept our null 

hypothes�s �s

F = MStreatment/MSerror.

To test our hypothes�s at a s�gn�ficance level of a, we now compare our est�mated F sta-
t�st�c to the F d�str�but�on prov�ded �n the F tables for the table entry, F (a; k – 1, N – k). If our 
est�mated F value �s greater than the table entry, we may reject the null hypothes�s w�th (1 – a) × 
100% confidence.

Example 5.3 A heart valve manufacturer has three d�fferent processes for produc�ng a leaf 
valve. Random samples of 50 valves were selected five t�mes from each type of manufactur�ng 
process. Each valve was tested for defect�ve open�ng mechan�sms. The number of defect�ve valves �n 
each sample of 50 valves �s summar�zed �n the follow�ng table:

PRoCESS A PRoCESS B PRoCESS C

1 5 3

4 8 1

3 6 1

7 9 4

5 10 0

Us�ng an a = 0.05, we want to determ�ne whether the mean number of defects d�ffers between 
processes (treatment). (Our null hypothes�s, H0, �s that mean number of defects �s the same across 
processes.)
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To answer the quest�on, we need to complete the follow�ng ANOVA table.

One-way ANOVA: processes A, B, and C

SouRCE df SS MS f

Factor 2

Error 12

Total 14

We first find SSfactor (= SStreatment).
We know that

 
SStreatment grand= −

=

n y yi i
i

k

( ) .2

1
Σ

 

From the data g�ven, we know that there are three treatments, A, B, and C; thus, k = 3. We 
w�ll ass�gn A = 1, B = 2, and C = 3. We also know that n1 = n2 = n3 = 5. We can est�mate the sample 
mean for each treatment or process to obta�n, y–1

 = 4, y–2
 = 7.6, y–3

 = 1.8. We can also use all 15 samples 
to find y–grand

 = 4.47.

Now, we can use these est�mates �n the equat�on for SStreatment:

 SStreatment = 5(4 − 4.47)2 + 5(7.6 − 4.47)2 + 5(1.8 − 4.47)2 = 85.70. 

Now we solve for SSerror:
G�ven that

 
SS ( ) ,error = −

==

Y Yij i

j

n

i

k i
2

11
ΣΣ

 

we need to est�mate the �nner summat�on for each treatment, i, noted by the outer summat�on. 
Thus, for i = 1,

SS1 = (1 − 4)2 + (4 − 4)2 + (3 − 4)2 + (7 − 4)2 + (5 − 4)2 = 20; 

                     for i = 2, SS2 = (5 − 7.6)2 + (8 − 7.6)2 + (6 − 7.6)2 + (9 − 7.6)2 + (10 − 7.6)2 = 17.2; 

                     for i = 3, SS3 = (3 − 1.8)2 + (1 − 1.8)2 + (1 − 1.8)2 + (4 − 1.8)2 + (0 − 1.8)2 = 10.8. 
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Now, summ�ng over all k treatments, where k = 3, we find

 SSerror = SS1 + SS2 + SS3 = 48.0. 

Now, we can find the mean squared errors:

 MStreatment = SStreatment/DFtreatment = 87.5/2 = 43.7. 

 MSerror = SSerror/DFerror = 48.0/12.0 = 4. 

F�nally, our F stat�st�c �s g�ven by

 F = MStreatment/MSerror = 43.7/4 = 10.92. 

We now complete our ANOVA table.

One-way ANOVA: processes A, B, and C

SouRCE df SS MS f

Factor 2 87.5 43.7 10.92

Error 12 48.0 4.0

Now, we want to determ�ne �f the mean number of defects d�ffer among processes A, B, and 
C. Our null hypothes�s �s that the mean number of defects does not d�ffer among processes. To re-
ject th�s hypothes�s at the 95% confidence level (a = 0.05), our est�mated F stat�st�c must be greater 
than F(0.05, 2, 12) = 3.88, found �n the F d�str�but�on tables. Our F stat�st�c = 10.92 > 3.88; thus, 
we can reject the null hypothes�s w�th 95% confidence and conclude that the number of defects does 
vary w�th manufactur�ng process and that our samples for treatments A, B, and C were drawn from 
populat�ons w�th d�fferent means. In fact, the F d�str�but�on table l�st a value for F(0.01, 2, 12) = 
6.93. Thus, we can reject the null hypothes�s at the 99% confidence level as well.

Example 5.4 Four types of MR scanners are be�ng evaluated for speed of �mage acqu�s�t�on. The 
follow�ng table summar�zes the speeds measured (�n m�nutes) for three samples of each scanner 
type.
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SCANNER A SCANNER B SCANNER C SCANNER d

2.0 4.0 3.0 6.0

1.8 4.5 2.5 5.5

2.7 5.5 2.0 3.5

Does the mean speed of �mage acqu�s�t�on d�ffer amongst the four scanner types? (Use a = 0.01.)
To answer th�s quest�on, we may work through the calculat�ons that we performed �n Exam-

ple 5.3. However, as one d�scovered �n the prev�ous example, as the sample s�ze grows, the number 
of calculat�ons qu�ckly grows. Thus, most �nvest�gators w�ll use a stat�st�cal software package to per-
form the ANOVA calculat�ons. For th�s example, we used the M�n�tab software package (M�n�tab 
Stat�st�cal Software, Release 13.32, M�n�tab, 2000) to perform the ANOVA. ANOVA produces the 
follow�ng table:

ANOVA for speed

SouRCE df SS MS f a

Factor 3 19.083 6.361 9.07 0.006

Error 8 5.613 0.702

Total 11 24.697

The F stat�st�c of 9.07 results �n an area w�th a = 0.006 �n the r�ght ta�l of the F d�str�but�on. 
Because a < 0.01, the value of a at wh�ch we were test�ng our hypothes�s, we can reject the null 
hypothes�s and accept that alternat�ve hypothes�s that at least one of the scanners d�ffers from the 
rema�n�ng scanners �n the mean speed of acqu�s�t�on.

In the examples g�ven prev�ously, we d�d not use block�ng �n the exper�mental des�gn. In other 
words, the populat�ons from wh�ch we collected samples d�ffered from treatment to treatment. In 
some exper�ments, such as test�ng we�ght loss for d�et p�lls, �t �s not pract�cal or poss�ble to test more 
than one type of treatment on the same exper�mental un�t.

However, when block�ng may be used, �t should be used to compare treatments to reduce 
�ntersubject var�ab�l�ty or d�fferences (that cannot be controlled for) �n the exper�mental outcome. 
Table 5.4 outl�nes the exper�mental des�gn for a one-factor exper�ment that makes use of block�ng. 
In th�s exper�mental des�gn, all exper�mental un�ts are subject to the every treatment. The result �s 
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that we now have treatment means and block means. Thus, when we perform the ANOVA analys�s, 
we may test two d�fferent sets of hypotheses. The first null hypothes�s �s that there �s not s�gn�ficance 
d�fference �n treatment means. The second null hypothes�s �s that there �s no s�gn�ficant d�fference 
�n means across subjects or exper�mental un�ts (�ntersubject var�ab�l�ty �s not s�gn�ficant).

In th�s example, treatment could be ankle speed, and the block would be the pat�ent, such 
that each ankle speed �s tested on each and every pat�ent subject. In such a des�gn, �t �s �mportant to 
random�ze the order �n wh�ch d�fferent ankle speeds are tested so that there �s no b�as �n h�p flex�on 
due to order�ng effects of ankle speed or mach�ne wear.

Note that the example above �s also a balanced exper�mental des�gn because there are same 
numbers of data po�nts �n every cell of the table.

W�th�n each treatment, i (or populat�on, i), we now assume that the var�ab�l�ty across ob-
served samples, Yij , �s �nfluenced by the populat�on (treatment) mean, µi , the block effects, βj , and 
�ndependent random var�ables, eij , wh�ch are normally d�str�buted w�th a mean of zero and var�ance 
σ 2. In other words, the samples, Yij , collected for each tr�al, j, w�th�n each treatment, i, can be ex-
pressed as

 Yij = µi + βj + eij . 

In other words, we are try�ng to determ�ne how much of the var�ab�l�ty �n Y �s because of 
the factor or treatment (populat�on w�th mean, µi) and how much �s due to block effects, βj , and 
random effects, eij , that we cannot control for or have not captured �n the model prov�ded above. In 
such a model, we assume that treatment effects and block effects are add�t�ve. Th�s �s not a good as-
sumpt�on when there are �nteract�on effects between treatment and block. Interact�on effects mean 

TABLE 5.4: One factor w�th k treatment and block�ng

TREATMENT
(ANKLE SPEEd)

SuBJECT NuMBER TREATMENT 
MEAN

1 2 3 4

10 5 2 5 6

20 10 2 8 4

30 15 8 15 10

Block mean
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that the effect of a spec�fic treatment may depend on a spec�fic block. When we address two-factor 
exper�ments �n the next sect�on, we w�ll d�scuss further these �nteract�on effects.

We can summar�ze the ANOVA for one factor w�th block w�th the follow�ng ANOVA table 
(assum�ng no �nteract�on effects) (Table 5.5; adapted from [3]).

Note that we now have two est�mated F values to cons�der. Ftreatment �s compared w�th the 
table entry for F (a; k − 1, (b − 1)(k − 1)), and the null hypothes�s stat�ng that there �s no d�fference 
�n mean h�p flex�on across treatments �s rejected �f the est�mated F value �s greater than the table 
entry.

Fblock �s compared w�th the table entry for F(a; b − 1, (b − 1)(k − 1)), and the null hypothes�s 
stat�ng that there �s no d�fference �n mean h�p flex�on across subjects �s rejected �f the est�mated F 
stat�st�c �s greater than the table entry.

Example 5.5 One-factor exper�ment w�th block
HeartSync manufactures four types of defibr�llators that d�ffer �n the strength of the electr�cal shock 
g�ven for an ep�sode of fibr�llat�on. A total of 280,000 pat�ents were d�v�ded �nto four groups of 
70,000 pat�ents each. Each group was ass�gned to one of the four defibr�llators, and the number 
of shocks that fa�led to defibr�llate was recorded for four consecut�ve years. The results were as 
follows:

yEAR AFTER 
IMPLANT

dEvICE A dEvICE B dEvICE C dEvICE d

1 6 1 9 2

2 8 1 10 2

3 5 3 8 0

4 10 2 11 5

TABLE 5.5: One-factor ANOVA w�th block

SouRCE df SS MS F

Treatment k − 1 MStreat/MSerror

Block b − 1 MSblock/MSerror

Error (b − 1)(k − 1)
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There are two quest�ons we w�sh to address w�th these data:

Us�ng a = 0.01, does the mean number of fa�lures d�ffer s�gn�ficantly as a funct�on of dev�ce 
type?
Us�ng a = 0.01, does the mean number of fa�lures d�ffer s�gn�ficantly as a funct�on of year 
after �mplant? In other words, �s year after �mplant a major source of var�ab�l�ty between 
populat�ons?

Aga�n, rather than est�mate the calculat�ons by hand, we may use stat�st�cal software, such as 
M�n�tab, to obta�n the follow�ng results us�ng ANOVA w�th block:

ANOVA for number of fa�lures

SouRCE df SS MS F

Dev�ce 3 173.188 57.729 35.67

Year 3 20.688 6.896 4.26

Error 9 14.563 1.618

Total 15 208.438

The F stat�st�c for dev�ce, F = 35.67, �s greater than the cr�t�cal F value, F(0.01, 3, 9) = 6.99, g�ven 
�n the F table. Thus, we can reject the null hypothes�s and accept that alternat�ve hypothes�s that at 
least one of the dev�ces d�ffers from the rema�n�ng dev�ces �n the mean number of fa�lure. The sec-
ond part of the quest�ons tests the hypothes�s that the mean number of fa�lures d�ffers s�gn�ficantly 
as a funct�on of year after �mplant (the block�ng factor). The F stat�st�c for year, F = 4.26, �s less than 
the cr�t�cal F value, F(0.01, 3, 9) = 6.99, g�ven �n the F table; thus, we accept our null hypothes�s, 
wh�ch means fa�lure rate does not d�ffer between years after �mplant.

5.3.2 Two-Factor Experiments
In the or�g�nal b�omed�cal eng�neer�ng challenge descr�b�ng h�p flex�on reflexes, we d�scussed two 
factors that �nfluence h�p flex�on: ankle speed and range of ankle extens�on.

In a two-factor exper�ment lead�ng to a two-way ANOVA, there are two factors be�ng var�ed, 
A and B, where A has a treatments and B has b treatments, and there are n samples at every com-
b�nat�on of A and B.

The two-factor exper�ment �s sa�d to be completely crossed �f there are samples collected for 
every comb�nat�on of factors A and B. In add�t�on, the exper�ment �s sa�d to be balanced �f we have 
same number of samples for every comb�nat�on of factors A and B.

1.

2.
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Table 5.6 below �llustrates a two-factor exper�ment that �s completely balanced and crossed. 
Each of the two treatments w�th�n factor A �s crossed w�th each of the three treatments w�th�n fac-
tor B. Also note that for each comb�nat�on of A and B, we have three samples.

The quest�on that we are try�ng to address w�th a two-factor ANOVA �s whether there are 
d�fferences �n treatment means for each of the two factors. In add�t�on, we w�sh to know �f there 
are �nteract�on effects such that there are s�gn�ficant d�fferences �n means as a funct�on of the cross-
�nteract�on between factors. In other words, there are s�gn�ficant d�fferences �n sample means, and 
hence, the means of the underly�ng populat�ons, when spec�fic comb�nat�ons of factors A and B 
occur together.

Once the data have been collected, as �llustrated �n Table 5.6 above, we may perform a two-
factor ANOVA to test the follow�ng three null hypotheses:

 H0: µA1 = µA2 = µA3 = …. = µAa; 

 H0: µB1 = µB2 = µB3 = …. = µBb; 

 H0: µA1B1 = µA1B2 = µA1B3 = µA2B1 = µA2B2 = … = µAaBb. 

For each of the three null hypotheses, the assoc�ated alternat�ve hypothes�s �s that there �s a 
s�gn�ficant d�fference �n at least two of the populat�on means for a g�ven factor or comb�nat�on of 
factors.

The analys�s and results of a two-factor ANOVA may be organ�zed as �n Table 5.7 [3].
The equat�ons for the SS and MS for each of the factors and �nteract�on factors are beyond 

the scope of th�s text but may be found �n [3]. In pract�ce, the �nvest�gator w�ll use a popular stat�st�-
cal software package such as M�n�tab, SPSS, or SAS to est�mate these SS and MS values (because of 
computat�onal burden) and s�mply refer to the F stat�st�cs to reject or accept the null hypotheses.

TABLE 5.6: Two-factor exper�ment

FACToR B

Factor A 1 2 3

1 1.2, 1.4, 2.1 2.3, 2.2, 2.6 6.4, 5.8, 3.2

2 3.2, 4.1, 3.6 4.1, 4.3, 4.0 8.2, 7.8, 8.3
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We note that there are three F stat�st�cs to test each of the three null hypotheses descr�bed 
earl�er. In each case, we compare our est�mated F stat�st�c w�th the F values �n our F table represent-
�ng the F d�str�but�on. More spec�fically, we compare our est�mates F values to the follow�ng table 
entr�es:

 To test H0: µA1 = µA2 = µA3 = …. = µAa, compare FA w�th F (a; a − 1, ab(n − 1)); 

 To test H0: µB1 = µB2 = µB3 = …. = µBb, compare FB w�th F (a; b − 1, ab(n − 1)); 

 To test H0: µA1B1 = µA1B2 = µA1B3 = µA2B1 = µA2B2 = …= µAaBb, 

 compare FAB w�th F (a; (a − 1)(b − 1), ab(n − 1)). 

In each of the three tests, �f the est�mated F stat�st�c �s greater than the table entr�es for the F 
d�str�but�on, one may reject the null hypothes�s and accept the alternat�ve hypothes�s w�th (1 − a) × 
100% confidence.

Example 5.6 An example of a two-factor exper�ment that w�ll be evaluated us�ng two-factor 
ANOVA occurs when b�omed�cal eng�neers are look�ng at the effect�veness of rehab�l�tat�ve therapy 
and pharmacolog�cal therapy on the recovery of movement �n a l�mb after stroke. Deta�ls of the 
exper�mental des�gn �nclude the follow�ng:

Factor T: therapy used (there are three types of therap�es, T1, T2 and T3);
Factor D: drug used (there are three types of Drugs, D1, D2 and D3);
36 pat�ents are randomly ass�gned to each comb�nat�on of T and D;
measure: number of days to meet recovery cr�ter�a.

1.
2.
3.
4.

TABLE 5.7: Two-factor ANOVA table (each w�th mult�ple treatments)

SouRCE df SS MS F

A a − 1 MSA/MSerror

B b − 1 MSB/MSerror

AB (a − 1)(b − 1) MSAB/MSerror

Error ab(n − 1)
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Exper�mental des�gn for two factors

T1 T2 T3

D1 D2 D3 D1 D2 D3 D1 D2 D3

20 25 13 22 8 16 9 15 7

15 16 12 16 10 19 12 10 10

18 10 22 17 9 11 8 9 9

24 20 10 12 11 21 8 10 9

The quest�ons we are try�ng to address �s whether there �s a s�gn�ficant d�fference �n mean 
days of recovery for the three types of rehab�l�tat�ve therapy, the mean days of recovery for the three 
types of drug therapy, and d�fferences �n mean days of recovery for the n�ne comb�nat�ons of reha-
b�l�tat�ve therapy and drug therapy (�nteract�on effects).

ANOVA analys�s performed us�ng stat�st�cal software, known as M�n�tab, produces the fol-
low�ng table summar�z�ng the ANOVA analys�s. Note that there are three est�mated F stat�st�cs. We 
can use the three F values to test our hypotheses:

 H0: µT1 = µT2 = µT3; 

 H0: µD1 = µD2 = µD3; 

 H0: µT1D1 = µT1D2 = µT1D3 = µT2B1 = µT2B2 = … = µT3D3. 

Two-way ANOVA for days of recovery versus T and D

SouRCE df SS MS F α

T 2 337.4 168.7 11.44 0.000

D 2 36.2 18.1 1.23 0.309

Interact�on 4 167.8 41.9 2.84 0.043

Error 27 398.3 14.8
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Note that the est�mated F stat�st�c for rehab�l�tat�ve therapy, F = 11.44, does exceed the cr�t�cal 
value for a < 0.05 (actually, a �s <0.0001); thus, we conclude that the samples for the three d�fferent 
rehab�l�tat�ve therap�es represent populat�ons w�th d�fferent means. In other words, the d�fferent 
rehab�l�tat�ve therap�es produce d�fferent days of recovery. However, the est�mated F stat�st�c for the 
drug therapy does not exceed the cr�t�cal table F value for a = 0.05; thus, we accept the null hypoth-
es�s that drug therapy does not s�gn�ficantly affect the days of recovery and that the samples are not 
drawn from populat�ons w�th d�fferent means. Moreover, the th�rd F stat�st�c, F = 2.84, �s greater 
than the table F value for a < 0.05, wh�ch suggests that there may be a s�gn�ficant d�fference �n days 
of recovery due to an �nteract�on between rehab�l�tat�ve therapy and drug therapy.

5.3.3 Tukey’s Multiple Comparison Procedure
Once we have establ�shed that there �s a s�gn�ficant d�fference �n means across treatments w�th�n 
a factor, we may use post hoc tests, such as the Tukey’s HSD mult�compar�son pa�rw�se test [3, 9]. 
ANOVA s�mply shows that there �s at least one treatment mean that d�ffers from the others. However, 
ANOVA does not prov�de �nformat�on on spec�fically wh�ch treatment mean(s) d�ffers from wh�ch 
treatment mean(s). The Tukey’s HSD test allows us to compare the stat�st�cal d�fferences �n means 
between all pa�rs of treatments. For a one-factor exper�ment w�th k treatments, there are k(k − 1) /2 
pa�rw�se compar�sons to test. The �mportant po�nt to note �s that �f a �s the probab�l�ty of a type I 
error for one compar�son, the probab�l�ty of mak�ng at least a type I error for mult�ple compar�sons �s 
much greater. So, �f we want (1 − a) × 100% confidence for all poss�ble pa�rw�se compar�sons, we must 
start w�th a much smaller a. Tukey’s mult�ple compar�son procedure allows for such an adjustment �n 
s�gn�ficance when perform�ng pa�rw�se compar�sons.

•  •  •  •
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Oftent�mes, �n b�omed�cal eng�neer�ng research or des�gn, we are �nterested �n whether there �s a 
correlat�on between two var�ables, populat�ons, or processes. These correlat�ons may g�ve us �nfor-
mat�on about the underly�ng b�olog�cal processes �n normal and patholog�c states and ult�mately 
help us to model the processes, allow�ng us to pred�ct the behav�or of one process g�ven the state of 
another correlated process.

G�ven two sets of samples, X and Y, we ask the quest�on, “Are two var�ables or random pro-
cesses, X and Y, correlated?” In other words, can y be modeled as a l�near funct�on of x such that

ŷ = mx + b.

Look at the follow�ng graph of exper�mental data (F�gure 6.1), where we have plotted the 
data set, yi, aga�nst the data set, xi:

We note that the data tend to fall on a stra�ght l�ne. There tends to be a trend such that y �n-
creases �n proport�on to �ncreases �n x. Our goal �s to determ�ne the l�ne (the l�near model) that best 
fits these data and how close the measured data po�nts l�e w�th respect to the fitted l�ne (generated 
by the model). In other words, �f the modeled l�ne �s a good fit to the data, we are demonstrat�ng 
that y may be accurately modeled as a l�near funct�on of x, and thus, we may pred�ct y g�ven x us�ng 
the l�near model.

The key to fitt�ng a l�ne that best pred�cts process y from process x, �s to find the parameters 
m and b, wh�ch m�n�m�ze the error between model and actual data �n a least-squares sense:

m�n [(y − ŷ)2].

In other words, as �llustrated �n F�gure 6.2, for each measured value of the �ndependent var�-
able, x, there w�ll be the measured value of the dependent var�able, y, as well as the pred�cted or 

C H A P T E R  6

Linear Regression and  
Correlation Analysis
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FIguRE 6.2: L�near regress�on can be used to est�mate a stra�ght l�ne that best “fits” the measured data 
po�nts (filled c�rcles). In th�s �llustrat�on, x� and y� represent the measured �ndependent and dependent 
var�ables, respect�vely. L�near regress�on �s used to model the dependent var�able, y, as a l�near funct�on of 
the �ndependent var�able, x.  The stra�ght l�ne pass�ng through the measured data po�nts �s the result of 
l�near regress�on whereby the error, e�, between the pred�cted value (open c�rcles) of the dependent var�-
able, ŷ�, and the measured value of the dependent var�able, y�, �s m�n�m�zed over all data po�nts.
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FIguRE 6.1: Results of l�near regress�on appl�ed to the samples �llustrated �n the scatterplot (black 
dots). The sol�d black l�ne �llustrates the l�ne of best fit (model parameters l�sted above the graph) as 
determ�ned by l�near regress�on. The red dotted curves �llustrate the confidence �nterval for the slope. 
F�nally, the r value �s the correlat�on coeffic�ent.
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modeled value of y, denoted as ŷ, that one would obta�n �f the equat�on ŷ = mx + b �s used to pred�ct 
y. The equat�on ei = yi − ŷi denotes the errors that occur at each pa�r of (xi,yi) when the modeled value 
does not exactly al�gn w�th the pred�cted value because of factors not accounted for �n the model 
(no�se, random effects, and nonl�near�t�es).

In try�ng to fit a l�ne to the exper�mental data, our goal �s to m�n�m�ze these ei between the 
measured and pred�cted values of the dependent var�able, y. The method used �n l�near regress�on 
and many other b�omed�cal model�ng techn�ques �s to find model parameters, such as m and b, that 
m�n�m�ze the sum of squared errors, ei

2.
For l�near regress�on, we seek a least-squares est�mate of m and us�ng the follow�ng  

approach:
Suppose we have N samples each of processes x and y. We try to pred�ct y from measured x 

us�ng the follow�ng model:

ŷ = mx + b.

The error �n pred�ct�on at each data po�nt, xi, �s

errori = yi − ŷi.

In the least-squares method, we choose m and b to m�n�m�ze the sum of squared errors:

   
 (yi − ŷi)

2 for i = 1 to N.

To find a closed form solut�on for m and b, we can wr�te an express�on for the sum of squared 
errors:
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2.

We then replace ŷi w�th (mxi + b), our model, and carry out the squar�ng operat�ons [3, 5].
We can then take der�vat�ves of the above express�on w�th respect to m and then aga�n w�th re-

spect to b. If we set the der�vat�ve express�ons to zero to find the m�n�mums, we w�ll have two equa-
t�ons �n two unknowns, m and b, and we can s�mply use algebra to solve for the unknown parameters, 
m and b. We w�ll get the follow�ng express�ons for m and b �n terms of the measured xi and yi:
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and

b y mx= − ,

where

Σ Σx– = 1—N i=0

N-1

xi and y
iy– 1—N

=
i=0

N-1

.

Hence, once we have our measured data, we can s�mply use our equat�ons for m and b to find 
the l�ne, or l�near model, of best fit.

The Correlation Coefficient
It �s �mportant to real�ze that l�near regress�on w�ll fit a l�ne to any two sets of data regardless of how 
well the data are modeled by a l�near model. Even �f the data, when plotted as a scatterplot, look 
noth�ng l�ke a l�ne, l�near regress�on w�ll fit a l�ne to the data. As b�omed�cal eng�neers, we have to 
ask, “How well does the measured data “fit” the l�ne est�mated through l�near regress�on?”

One measure of how well the exper�mental data fit the l�near model �s the correlat�on coef-
fic�ent. The correlat�on coeffic�ent, r, has a value between −1 and 1 and �nd�cates how well the l�near 
model fits to the data.

The correlat�on coeffic�ent, r, may be est�mated from the exper�mental data, xi and yi, us�ng 
the follow�ng equat�on:

r
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Σ Σx– = 1—N i=0
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.

It �s �mportant to note that an r = 0 does not mean that the two processes, x and y, are �nde-
pendent. It s�mply �nd�cates that any dependency between x and y �s not well descr�bed or modeled 
by a l�near relat�on. There could be a nonl�near relat�on between x and y. An r = 0 s�mply means 
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that x and y are uncorrelated �n a l�near sense. That �s, one may not pred�ct y from x us�ng a l�near 
model, y = mx + b.

A measure related to the correlat�on coeffic�ent, r, �s the coeffic�ent of determ�nat�on, R2, 
wh�ch �s a summary stat�st�c that tells us how well our regress�on model fits our data. R2 can be used 
as measure of goodness of fit for any regress�on model, not just l�near regress�on. For l�near regres-
s�on, R2 �s the square of the correlat�on coeffic�ent and has a value between 0 and 1. The coeffic�ent 
of determ�nat�on tells us how much of the var�ab�l�ty �n the data may be expla�ned by the model 
parameters as a fract�on of total var�ab�l�ty �n the data.

It �s �mportant to real�ze that the est�mated slope of best fit and the correlat�on coeffic�ent 
are stat�st�cs that may or may not be s�gn�ficant. Thus, t tests may be performed to test �f the slope 
est�mated through l�near �s s�gn�ficantly d�fferent from zero [3]. L�kew�se, t tests may be performed 
to test �f the correlat�on coeffic�ent �s s�gn�ficantly d�fferent from zero. F�nally, we may also compute 
confidence �ntervals for the est�mated slope [3].

•  •  •  •
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Up to th�s po�nt, we have d�scussed �mportant aspects of exper�mental des�gn, data summary, and 
stat�st�cal analys�s that w�ll allow us to test hypotheses and draw conclus�ons w�th some level of 
confidence.

However, we have not yet addressed a very �mportant quest�on. The quest�on we ask now �s, 
“how large should my sample be to capture the var�ab�l�ty �n my underly�ng populat�on so that my 
types I and II error rates w�ll be small?” In other words, how large of a sample �s requ�red such that 
the probab�l�ty of mak�ng a type I or II error �n reject�ng or accept�ng a null hypothes�s w�ll be ac-
ceptable under the c�rcumstances. D�fferent s�tuat�ons call for d�fferent error rates. An error such as 
d�agnos�ng streptococcal throat �nfect�on when streptococcus bacter�a are not present �s l�kely not as 
ser�ous as m�ss�ng the d�agnos�s of cancer. Another way of phras�ng the quest�on �s, “How powerful 
�s my stat�st�cal analys�s �n accept�ng or reject�ng the null hypothes�s?”

If the sample s�ze �s too small, the consequence may be that we m�ss an effect (type II error) 
because we do not have enough power �n the test to demonstrate, w�th confidence, an effect.

However, when choos�ng a sample s�ze, �t �s too easy to s�mply say that the sample s�ze should 
be as large as poss�ble. Even �f an �nvest�gator had access to as many samples as he or she des�red, 
there are pract�cal cons�derat�ons and constra�nts that l�m�t the sample s�ze. If the sample s�ze �s too 
large, there are econom�c and eth�cal problems to cons�der. F�rst, there are expenses assoc�ated w�th 
runn�ng an exper�ment, such as a cl�n�cal tr�al. There are costs assoc�ated w�th the personnel who 
run the exper�ments, the exper�mental un�ts (an�mals, cell cultures, compensat�on for human t�me), 
perhaps drugs and other med�cal procedures that are adm�n�stered, and others. Thus, the greater the 
number of samples, the greater the expense. Cl�n�cal tr�als are typ�cally very expens�ve to run.

The second cons�derat�on for l�m�t�ng sample s�ze �s an eth�cal concern. Many b�omed�cal-
related exper�ments or tr�als �nvolve human or an�mal subjects. These subjects may be exposed to 
exper�mental drugs or therap�es that �nvolve some r�sk, and �n the case of an�mal stud�es, the an�mal 
may be sacr�ficed at the end of an exper�ment. Bottom l�ne, we do not w�sh to use human or an�mal 
subjects for no good reason, espec�ally �f we ga�n noth�ng �n terms of the power of our stat�st�cal 
analys�s by �ncreas�ng the sample s�ze.

C H A P T E R  7

Power Analysis and Sample Size
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We recall aga�n that there are two types of errors assoc�ated w�th perform�ng a stat�st�cal 
analys�s:

Type I: reject�ng H0 when H0 �s true (probab�l�ty of type I error = a);
Type II: accept�ng H0 when H0 �s false; m�ss�ng an effect (probab�l�ty of type II error = β).

7.1 PowER oF A TEST
When we refer to the power of a g�ven stat�st�cal analys�s or test, we are quant�fy�ng the l�kel�hood, 
for a g�ven a value (e.g., 0.05), that a stat�st�cal test (t test, correlat�on coeffic�ent, ANOVA, etc.) w�ll 
detect a real effect. For example, �f there truly �s a d�fference between the means of two populat�ons, 
what �s the l�kel�hood that we w�ll detect that d�fference w�th our t test? If the chance of a type II 
error �s β, then the l�kel�hood of detect�ng a true d�fference �s s�mply 1 − β, wh�ch we refer to as the 
power of the test. Some pract�cal po�nts about the power of a stat�st�cal test are the follow�ng:

power of test = 1 − β;
0 < power < 1
In general, we des�re power ≥0.8 for pract�cal appl�cat�ons.

When try�ng to establ�sh a sample s�ze for an exper�ment, we have to dec�de �n advance how 
much power we want for our stat�st�cal analys�s, wh�ch, �n turn, �s determ�ned by the amount of 
types I and II errors we are w�ll�ng to r�sk. For some b�omed�cal eng�neer�ng appl�cat�ons, we can 
r�sk greater error than others. M�ss�ng a d�agnos�s may not be problemat�c �n one case or may result 
�n a l�fe-threaten�ng s�tuat�on. If an �mplantable defibr�llator fa�ls to detect and electr�cally shock 
a heart rhythm, such as ventr�cular fibr�llat�on, �t could mean the loss of l�fe. On the other hand, 
shock�ng the heart when there �s no fibr�llat�on present, wh�ch may happen when the dev�ce senses 
electr�cal act�v�ty generated by nearby skeletal muscle, can result �n pa�n and may even �n�t�ate a 
dangerous heart rhythm.

It �s often d�fficult to m�n�m�ze both a and β at the same t�me. One �s usually m�n�m�zed at 
the expense of another. For example, we would rather error on the s�de of an �mplantable defibr�lla-
tor overdetect�ng fibr�llat�on so as not to m�ss an occurrence of fibr�llat�on. In the case of detect�ng 
breast cancer us�ng mammography, overdetect�on or underdetect�on can both be problemat�c. Un-
derdetect�on can mean �ncreased chance of death. However, false-pos�t�ves can lead to unnecessary 
removal of healthy t�ssue. One of the b�ggest challenges for researchers �n the b�omed�cal field �s to 
try to find real d�fferences between populat�ons that w�ll �mprove d�agnos�s and detect�on of d�sease 
or the performance of med�cal �nstruments.

1.
2.

1.
2.
3.



PowER ANALySIS ANd SAMPLE SIZE 83

MC: Ropella Ch07_Page 83 - 09/26/2007, 2:02PM Achorn Internat�onal

7.2 PowER TESTS To dETERMINE SAMPLE SIZE
Power tests are used to determ�ne sample s�ze and take �nto account the effect that we w�sh to detect 
w�th our stat�st�cal analys�s, the types I and II error rates we w�ll tolerate, and the var�ab�l�ty of the 
populat�ons be�ng sampled �n our exper�ments.

To perform a power test, we can use equat�ons that express power �n terms of the factors 
stated above, or we can make use of power curve and power tables that have already est�mated the 
sample s�zes for us. Power curves and tables show the relat�onsh�p between power (1 − β) and the 
effect we are try�ng to detect. These effects can be d�fference �n two means, d�fference �n two var�-
ances, a correlat�on coeffic�ent, d�fference �n treatment means, and other populat�on d�fferences that 
we are try�ng to detect through exper�ment and data analys�s.

It �s �mportant to note that there are d�fferent equat�ons and, thus, d�fferent power curves for 
d�fferent effects, wh�ch �n turn are detected through d�fferent stat�st�cal tests. A d�fference �n two 
means (the effect) �s detected w�th a t test, whereas the d�fference �n two var�ances (the effect) �s 
detected us�ng an F test. The power curves for the t test are d�fferent from the power curves for the 
F test.

Power curves most frequently used �n est�mat�ng a sample s�ze for a b�omed�cal exper�ment 
�n �nclude the follow�ng:

unpa�red or pa�red t test (d�fference �n one or two populat�on means);
Pearson’s correlat�on coeffic�ent (correlat�on between two populat�ons);
ANOVA (d�fference �n three or more populat�on means).

To perform a power test us�ng the power curves, we need the follow�ng:

the s�ze of effect we want to detect (�.e. d�fference �n two means);
an est�mate of populat�on parameters (�.e. standard dev�at�on for the populat�on(s) based 
on p�lot data);
a level (probab�l�ty of type I error);
power level = (1 − β) (probab�l�ty of type II error).

The a and β levels are selected by the �nvest�gator before des�gn�ng the exper�ment. The s�ze 
of effect to detect �s also chosen by the �nvest�gator. The �nvest�gator needs to determ�ne �n advance 
how large the effect has to be to be s�gn�ficant for draw�ng conclus�ons. In other words, how d�ffer-
ent do two populat�ons means need to be to s�gnal someth�ng d�fferent �n the underly�ng phys�ology, 
drug effects, or a change �n the manufactur�ng process. Or, how strong does the correlat�on have to 
be to mean someth�ng to the �nvest�gator, �n terms of underly�ng b�ology or processes? In general, 

1.
2.
3.

1.
2.

3.
4.
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the smaller the d�fference to be detected w�th a t test or the greater the correlat�on value to be de-
tected, the greater the sample s�ze.

One m�ght argue that the most d�fficult p�ece of �nformat�on to obta�n �s an est�mate of the 
standard dev�at�on, or var�ance, of the underly�ng populat�ons. It �s the assumed var�ance of the 
underly�ng populat�on that plays a large role �n determ�n�ng sample s�ze. In general, the larger 
the var�ance �n the populat�on, the greater the sample s�ze needed to capture the stat�st�cs of the 
populat�on or process and, consequently, the greater the sample s�ze needed to g�ve power to a 
stat�st�cal analys�s.

Table 7.1 shows an example of a power table for the unpa�red t test. Th�s table was est�mated 
for a = 0.05. But s�m�lar tables ex�st for other a levels. These curves and tables allow us to est�mate  
a sample s�ze �f we first select a normal�zed d�fference �n the two means that we w�sh to detect 
and we select a power at wh�ch to perform the t test. The normal�zed d�fference �s obta�ned when 
we take the absolute d�fference that we w�sh to detect and d�v�de that d�fference by the est�mated 
standard dev�at�on of the underly�ng populat�on. Aga�n, we have a guess for the standard dev�at�on 
based on p�lot data. By normal�z�ng the d�fference to detect, we need not worry about un�ts of mea-
sure and can make used of standard�zed tables.

TABLE 7.1: Table for power for Student’s unpa�red (one-ta�l) t test (a = 0.05)

n

difference in means (expressed as z score)

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 1.0 1.2

10 0.08 0.11 0.16 0.22 0.29 0.36 0.45 0.53 0.70 0.83

13 0.08 0.13 0.18 0.26 0.34 0.44 0.54 0.63 0.80 0.91

20 0.09 0.15 0.24 0.34 0.46 0.59 0.70 0.80 0.93 0.98

30 0.10 0.19 0.31 0.46 0.61 0.74 0.85 0.92 0.99

40 0.11 0.22 0.38 0.55 0.72 0.84 0.93 0.97

60 0.13 0.29 0.50 0.70 0.86 0.95 0.98

80 0.15 0.35 0.60 0.81 0.93 0.98

100 0.17 0.41 0.68 0.88 0.97

200 0.26 0.64 0.91 0.99
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The best way to �llustrate the use of power tests �s to work through an example. We w�ll use 
Table 7.1 to find the sample s�ze for the follow�ng example:

Aim: To determ�ne �f there �s there a d�fference �n mean he�ght for college-age men 
and women l�v�ng �n the c�ty of make-bel�eve?

Experiment: Measure the he�ghts �n random samples of college-age men and women 
�n the c�ty of make-bel�eve.

Question: How many samples do we need to reject our null hypothes�s that there �s 
no d�fference �n mean he�ght between college-age men and women �n the c�ty of 
make-bel�eve �f �ndeed there �s a true d�fference �n the two populat�ons?

We need to perform a power test to determ�ne how many samples we need to collect from the 
college-age men and women �f we are to detect a true d�fference �n the underly�ng populat�ons. We 
are assum�ng that the two underly�ng populat�ons are normally d�str�buted. The effect that we are 
try�ng to detect �s whether there �s a s�gn�ficant d�fference �n mean he�ghts; thus, we w�ll be us�ng 
an unpa�red t test to analyze the data once they are collected.

Before perform�ng the power test, we need to dec�de on the magn�tude of effect we w�sh to 
detect as be�ng s�gn�ficant when we perform our t test. For th�s example, we are go�ng to choose a 
3-�n. d�fference �n mean he�ghts as be�ng s�gn�ficant. For argument sake, we w�ll cla�m that a 3-�n. 
d�fference �n populat�on means �s of b�olog�cal s�gn�ficance.

In th�s example, the effect be�ng tested (µ1 − µ2) �s 3 �n. To use the standard�zed curves, we 
need to normal�ze th�s d�fference by an est�mate of the standard dev�at�on, σ, of the underly�ng 
populat�ons. Th�s �s bas�cally a z score for the d�fference �n the two means. Note that we assume the 
two populat�ons to have roughly equal var�ance �f we are to use a t test. To obta�n an est�mate of σ, 
let us assume we have collected some p�lot data and est�mated the sample standard dev�at�on, s = 5 
�n. Now, the normal�zed d�fference we w�sh to detect when we apply our t test �s 3/5.

We next choose a = 0.05 and power = 0.8. Aga�n, these error rates are our cho�ce.
Now, us�ng the magn�tude of our effect (3/5), power value (0.8), and a value (0.05), we used 

the tables or curves �n Table 7.1 to look up the number of requ�red samples from the power tables. 
For th�s example, we find the sample s�ze to be approx�mately 35 samples.

Some general observat�ons may be made about the �mpact of populat�on var�ance, types I and 
II error rates, and the magn�tude of the effect on the sample s�ze:

For a g�ven power and var�ance, the smaller the effect to detect, the greater the sample 
s�ze.
The greater the power, the greater the sample s�ze.
The greater the populat�on var�ance, the greater the sample s�ze.

1.

2.
3.
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If we use the same example above and the M�n�tab software to calculate sample s�ze for an 
unpa�red t test as we vary several of the �nputs to the power test, we find the follow�ng sample s�zes 
(Table 7.2):

TABLE 7.2: Relat�ons among sample s�ze, stat�st�cal power, standard dev�at�on, and magn�tude of 
effect to detect (a = 0.05)

Size of difference in 
means (in.)

Standard de�iation 
(in) Power of test Size of sample

1 5 0.8 394

2 5 0.8 100

3 5 0.8 45

4 5 0.8 26

3 1 0.8 4

3 2 0.8 9

3 10 0.8 176

3 5 0.9 60

Thus, we can est�mate, �n advance of perform�ng an exper�ment, a m�n�mal sample s�ze that 
would allow us to draw conclus�ons from our data w�th a certa�n level of confidence and power.

•  •  •  •
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Compared w�th most textbooks about stat�st�cs, the prev�ous seven chapters have prov�ded a br�ef 
“elevator p�tch” about the fundamentals of stat�st�cs and the�r use �n b�omed�cal appl�cat�ons. The 
reader should be fam�l�ar w�th the bas�c not�on of probab�l�ty models, the use of such models to de-
scr�be real-world data, and the use of stat�st�cs to compare populat�ons. The reader should be aware 
of the �mpact of random�zat�on and block�ng on the outcome of stat�st�cal analys�s. In add�t�on, 
the reader should have an apprec�at�on for the �mportance of the normal d�str�but�on �n descr�b�ng 
populat�ons, the use of standard�zed tables, and the not�on that stat�st�cal analys�s �s a�med at test-
�ng a hypothes�s w�th some level of confidence. F�nally, the reader should know that we can find 
confidence �ntervals for any est�mated stat�st�c.

In th�s text, we only covered those stat�st�cal analyses that are val�d for populat�ons or pro-
cesses that are well modeled by a normal d�str�but�on. Of course, there are many b�olog�cal processes 
that are not well modeled by a normal d�str�but�on. For other types of d�str�but�ons, one should 
read more advanced texts to learn more about nonparametr�c stat�st�cs and stat�st�cs for nonnormal 
d�str�but�ons or populat�ons. These nonparametr�c tests do not assume an underly�ng d�str�but�on 
for the data and are often useful for small s�ze samples.

How do we determ�ne whether our data, and hence underly�ng populat�on, �s well modeled 
by a normal d�str�but�on? We can beg�n by s�mply look�ng at the h�stogram of the sampled data 
for symmetry and the proport�on of samples that l�e w�th�n one, two, and three standard dev�at�ons 
of the mean. We can also compare the sample mean to the sample med�an. A more formal means 
of quant�fy�ng the normal�ty of a sample �s to use a χ2 test [7]. The χ2 test �nvolves compar�ng the 
actual sample d�str�but�on to the d�str�but�on that would be expected �f the sample were drawn from 
a normal d�str�but�on. The d�fferences between the expected frequenc�es of sample occurrence and 
the true frequenc�es of sample occurrence are used to est�mate a χ2 test stat�st�c. Th�s test stat�st�c �s 
then compared w�th the cr�t�cal values of the χ2 d�str�but�on to determ�ne the level of s�gn�ficance 
or confidence �n reject�ng the null hypothes�s. In th�s case, the null hypothes�s �s that the frequency 
d�str�but�on (or probab�l�ty model) for the underly�ng d�str�but�on �s no d�fferent from a normal 
d�str�but�on. The χ2 test �s also referred to as the goodness-of-fit test. We note that the χ2 test can 
also be used to compare a sample d�str�but�on w�th other probab�l�ty models bes�des the normal 
d�str�but�on.

Just the Beginning…

C H A P T E R  8
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We have covered one-and two-factor ANOVA. But one w�ll also encounter mult�var�ate 
ANOVA, �n wh�ch there �s more that one dependent var�able (more than one outcome or mea-
sure be�ng sampled.) Such analys�s �s referred to as MANOVA and �s used �n a more general�zed 
mult�ple regress�on analys�s �n wh�ch there may be more than one �ndependent var�able and more 
than one dependent var�able. The dependent var�ables are mult�ple measures (or repeated measures) 
drawn from the same exper�mental un�ts be�ng subjected to one or more factors (the �ndependent 
var�ables). In l�near regress�on, we sought to determ�ne how well we could pred�ct the behav�or of 
one var�able g�ven the behav�or of a second var�able. In other words, we had one �ndependent var�-
able and one dependent var�able. In the case of mult�ple regress�on analys�s, we may assume more 
than one dependent var�able and more than one �ndependent var�able to expla�n the var�ance �n 
the dependent var�able(s). For example, we may have one dependent var�able, such as body we�ght, 
wh�ch we model as a l�near funct�on of three �ndependent var�ables: calor�e �ntake, exerc�se, and age. 
In perform�ng a mult�ple regress�on analys�s, we are try�ng to pred�ct how much of the var�ab�l�ty 
�n body we�ght �s because of each of the three �ndependent var�ables. Oftent�mes, one �ndependent 
var�able �s not enough to pred�ct the outcome of the dependent var�able. However, we need to keep 
�n m�nd that one should only add add�t�onal pred�ctors (�ndependent var�ables) that contr�bute to 
the dependent var�able �n a manner that the first pred�ctor does not. In other words, the two or 
more pred�ctors (�ndependent var�ables) together must pred�ct the outcome, or dependent var�able, 
better than e�ther �ndependent var�able can pred�ct alone. Note that a full, general�zed l�near model 
allows for mult�ple dependent and �ndependent var�ables. In essence, the mult�ple regress�on model 
�s look�ng for s�mple correlat�ons between several �nput and output var�ables.

Although we have focused on l�near regress�on, the reader should also be aware that there 
are models for nonl�near regress�on that may be qu�te powerful �n descr�b�ng b�olog�cal phenomena. 
Also, there �s a whole l�terature on the analys�s of errors that result when a model, used to pred�ct 
the data, �s compared w�th the actual measured data [3]. One can actually look at the res�dual er-
rors between the modeled or pred�cted data and the actually measured data. S�gn�ficant pattern or 
trends �n the magn�tude and order�ng of res�duals typ�cally �nd�cate a poor fit of the model to the 
data. Such patterns suggest that not all of the pred�ctable var�ab�l�ty �n the measured data has been 
accounted for by the model.

Other mult�var�ate analyses �nclude cluster, d�scr�m�nant, and factor analyses. These top�cs 
are covered �n numerous stat�st�cal texts. These analyses allow one to group a populat�on �nto sub-
populat�ons and expla�n complex data of seem�ngly many d�mens�ons of factors �nto a smaller set of 
s�gn�ficant factors.

In th�s text, we have also not covered rece�ver operator character�st�c curves. These are sta-
t�st�cal analyses used frequently �n the des�gn and assessment of the med�cal dev�ces or d�agnost�c 
tests used to detect d�sease or abnormal�t�es. These curves, often summar�z�ng terms such as sen-
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sitivity, specificity, and accuracy, prov�de a means for determ�n�ng how accurately a d�agnost�c tool, 
test, or algor�thm �s �n detect�ng the d�sease or abnormal phys�olog�cal funct�on. We have prev�ously 
d�scussed types I and II errors, wh�ch can also be used to est�mate the sens�t�v�ty, spec�fic�ty, and ac-
curacy of a d�agnost�c test. There �s often a trade-off between sens�t�v�ty and spec�fic�ty, wh�ch can 
ra�se frustrat�on for the b�omed�cal eng�neer try�ng to develop safe, accurate, pract�cal, and �nexpen-
s�ve d�agnost�c tests. The rece�ver operator character�st�c curve �s a graph that plots the sens�t�v�ty 
of the test (probab�l�ty of a true pos�t�ve result) aga�nst the probab�l�ty of a false-pos�t�ve test. The 
operator usually chooses to operate at the po�nt on the rece�ver operator character�st�c curve where 
sens�t�v�ty and spec�fic�ty are both max�m�zed. In some cases, reduc�ng spec�fic�ty at the expense of 
sens�t�v�ty may be preferred. For example, when adm�n�ster�ng a test to detect streptococcal throat 
�nfect�on, we may prefer to max�m�ze sens�t�v�ty �n order not to m�ss a d�agnos�s of strep throat. 
The trade-off �s that we may reduce spec�fic�ty, and a person w�thout streptococcal �nfect�on may 
be m�sd�agnosed as hav�ng the streptococcus bacter�a. The result �s that the person ends up pay�ng 
for and consum�ng ant�b�ot�cs that are serv�ng no purpose. In other cl�n�cal s�tuat�ons, the trade-off 
between sens�t�v�ty and spec�fic�ty may be much more complex. For example, we often w�sh to use 
a non�nvas�ve �mag�ng tool to detect cancerous breast les�ons. H�gh sens�t�v�ty �s des�red so that the 
test does not m�ss an occurrence of a cancerous les�on. However, the spec�fic�ty must also be h�gh so 
that a pat�ent w�ll not have unnecessary surgery to remove healthy or noncancerous t�ssue.

F�nally, there �s a vast area of stat�st�cal analys�s related to t�me ser�es, that �s, data collected 
over t�me. T�me �s the �ndependent var�able be�ng used to pred�ct the dependent var�able, wh�ch 
�n b�omed�cal appl�cat�ons, �s often a b�olog�cal measure. Stat�st�cal t�me ser�es analys�s �s n�cely 
�ntroduced �n Bendat and P�ersol [7] and plays an �mportant role �n most b�omed�cal research. Such 
analys�s �s often used to develop automated detect�on algor�thms for pat�ent mon�tor�ng systems, 
�mplantable dev�ce, and med�cal �mag�ng systems.

Th�s text alludes to, but does not expl�c�tly cover, the use of stat�st�cal software packages for 
the analys�s of data. There are a number of stat�st�cal software programs that are commerc�ally ava�l-
able for the eng�neer who needs to perform stat�st�cal analys�s. Some of the software packages are 
freely ava�lable, whereas others can be qu�te expens�ve. Many of the software packages offer some 
tutor�al ass�stance �n the use and �nterpretat�on of stat�st�cal and graph�cal analys�s. Some have user-
fr�endly �nterfaces that allow the user to qu�ckly load the data and analyze the data w�thout much 
�nstruct�on. Other packages requ�re cons�derable tra�n�ng and pract�ce. Some of the more popular 
software packages for stat�st�cal analys�s used �n the b�omed�cal field �nclude SPSS, M�n�tab, Excel, 
StatV�ew, and Matlab.

F�nally, an �mportant takeaway message for the reader �s that stat�st�cs �s ne�ther cookbook 
nor cut-and-dry. Even the most exper�enced b�ostat�st�c�ans may debate over the best analyses 
to use for b�omed�cal data that are collected under complex cl�n�cal cond�t�ons. Useful stat�st�cal 
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analys�s requ�res that the user first frame a testable hypothes�s, that the data be collected from a 
representat�ve sample, and that the exper�mental des�gn controls for confound�ng factors as much 
as �s pract�cal. Once the data are collected, the user needs to be as fa�r as poss�ble �n summar�z�ng 
and analyz�ng the data. Th�s requ�res that the user have a good apprec�at�on for the assumpt�ons 
made about the underly�ng populat�ons when us�ng a stat�st�cal test as well as the l�m�tat�ons of the 
stat�st�cal test �n draw�ng spec�fic conclus�ons. When used properly, stat�st�cs certa�nly help us to 
make good dec�s�ons and useful pred�ct�ons, even �n the context of uncerta�nty and random factors 
over wh�ch we have no control. B�omed�cal eng�neers need to embrace stat�st�cs and learn to be as 
comfortable w�th the appl�cat�on of stat�st�cs as they are w�th the appl�cat�on of algebra, calculus, 
and d�fferent�al equat�ons.

•  •  •  •
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