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Preface

Chapter 1 presents IVUS. Intravascular ultrasound images represent a unique
tool to guide interventional coronary procedures; this technique allows to
supervise the cross-sectional locations of the vessel morphology and to pro-
vide quantitative and qualitative information about the causes and severity of
coronary diseases. At the moment, the automatic extraction of this kind of in-
formation is performed without taking into account the basic signal principles
that guide the process of image generation. In this handbook, we overview the
main physical principles and factors that affect the IVUS generation; we pro-
pose a simple physics-based approach for IVUS image simulation that is defined
as a discrete representation of the tissue by individual scatterers elements with
given spatial distribution and backscattering differential cross sections. In order
to generate the physical model that allows to construct synthetic IVUS images,
we analyze the process of pulse emission, transmission, and reception of the
ultrasound signal as well as its interaction with the different tissues scatterers
of the simulated artery. In order to obtain the 3D synthetic image sequences,
we involve the dynamic behavior of the heart/arteries and the catheter move-
ment in the image generation model. Having an image formation model allows
to study the physics parameters that participate during the image generation
and to achieve a better understanding and robust interpretation of IVUS image
structures. Moreover, this model allows to comprehend, simulate, and solve sev-
eral limitations of IVUS sequences, to extract important image parameters to be
taken into account when developing robust image processing algorithms as well
as to construct wide synthetic image sequence databases in order to validate
different image processing techniques.

Chapter 2 presents research in PET. The last few decades of the
twentieth century have witnessed significant advances in multidimensional
medical imaging, which enabled us to view noninvasively the anatomic struc-
ture of internal organs with unprecedented precision and to recognize any
gross pathology of organs and diseases without the need to “open” the body.
This marked a new era of medical diagnostics with many invasive and po-
tentially morbid procedures being substituted by noninvasive cross-sectional

xi
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imaging. Continuing advances in instrumentation and computer technologies
also accelerated the development of various multidimensional imaging modal-
ities that possess a great potential for providing, in addition to structural
information, dynamic and functional information on biochemical and patho-
physiologic processes or organs of the human body. There is no doubt that sub-
stantial progress has been achieved in delivering health care more efficiently
and in improving disease management, and that diagnostic imaging techniques
have played a decisive role in routine clinical practice in almost all disciplines of
contemporary medicine. With further development of functional imaging tech-
niques, in conjunction with continuing progress in molecular biology and func-
tional genomics, it is anticipated that we will be able to visualize and determine
the actual molecular errors in a specific disease very soon, and be able to
incorporate this biological information into clinical management of that
particular group of patients. This is definitely not achievable with the use of
structural imaging techniques. In this chapter, we will take a quick tour of
a functional imaging technique called positron emission tomography (PET),
which is a primer biologic imaging tool able to provide in vivo quantitative
functional information in most organ systems of the body. An overview of this
imaging technique including the basic principles and instrumentation, meth-
ods of image reconstruction from projections, some specific correction factors
necessary to achieve quantitative images are presented. Basic assumptions and
special requirements for quantitation are briefly discussed. Quantitative analy-
sis techniques based on the framework of tracer kinetic modeling for absolute
quantification of physiological parameters of interest are also introduced in this
chapter.

Chapter 3 presents MRI. With time and experience, flow characteristics in
human body have become ideal modality for the evaluation of vascular disease.
With this aim, in this chapter, the topic of magnetic resonance angiography
(MRA) is discussed with emphasis of physical principles of MRA techniques in
current practice for acquisition and display of vascular anatomy as well as flow
measurement. The main techniques are described, 1 TOF (time of flight) MRA; 2.
phase contrast (PC) MRA. Each technique can be performed using 2D Fourier
transform (2DFT) or 3D FT(3DFT). Each of these techniques lends itself to a
different type of clinical application. TOF MRA is based on 2D or 3D gradient
echo (CRE) technique. For 2D TOF MRA, use of presaturation pulse and slice
selection above or below each slice are discussed to eliminate the signal from
vessels flowing in the opposite direction. Usually, FC (flow compensation) is
used perpendicular to the vessel lumen. Considerations on selection of scan
parameters TR and TE are discussed. The performance is highlighted in faster
scanning and capability of increased FRE because each slice is an entry slice. 3D
TOF MRA pulse sequence for 3D TOF MRA is described as capable of obtaining a
slab of up to 60 slices. Basic physics principles are highlighted for inflow effects
(TOF), TR effect, imaging volume effect, flow phase effects (volume imaging),
gradient motion rephasing by velocity rephasing, high order rephasing, inflow
rephasing, and turbulant flow effect. Various acquisition methods are discussed
in current practice such as inflow (TOF), flow adjusted gradient (FLAG), rapid
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sequential excitation (RSE), and black blood MRA. Flow imaging is highlighted
to get better magnitude contrast, phase contrast, inflow 3D (volume imaging),
and 2D(TOF), TR. Other advancements are discussed in the field of MRA such as
flow suppression, inflow and maximum intensity projection (MIP) processing,
quantification of flow in tissue by real time acquisition and evaluation (RACE),
phase mapping, and bolus tracking. Physical principles of inflow analysis in ves-
sels are current interest in MRA methods. In summary, new MRA approaches are
on the horizon which promise earlier diagnosis of tissue ischemia by tissue-free
water and perfusion besides vascular anatomy and pathology. Time and expe-
rience will demonstrate the possibility of combining parenchymal and vascular
anatomy with end-organ perfusion into a single imaging examination. Recent
state-of-the-art on the physical basis of MRA methods is introduced to inter-
ested readers.

Chapter 4 presents work in level sets. In this chapter, we will begin with
a concise description of the basic level set method, its origins, and why it has
become so popular in a wide range of applications. We will then discuss many
of the modifications and enhancements to the level set method which have
made it a robust tool for propagating fronts. These modifications will include
the use of the fast marching method and the more general ordered upwind
methods, narrow-banding, velocity extensions, and particle level set methods.
The chapter will conclude with techniques used for coupling the leve set method
to different physical problems, including coupling to elliptic solvers such as the
ghost-fluid method, immersed interface method, and the extended finite element
method. Implementation details will be provided throughout the text so that the
methods can be quickly implemented, as well as specific examples of results
obtained with these methods.

Chapter 5 presents work in shaping in shading. In many applications, for in-
stance, visual inspection in robot vision, autonomous land vehicle navigation to
name a few, a procedure of recovering three-dimensional surfaces of unknown
objects is of considerable practical interest. In this chapter, we consider one
of the reconstruction methods: shape from shading (SFS). The chapter is orga-
nized as follows: the first section serves as a brief review of the SFS models,
their history, and recent developments. Section 2 provides certain mathematical
background related to SFS. It discusses some selected numerical methods for
solving discretized SFS problems. The emphasis is given to the well developed
method: finite difference method (FDM). Section 3 is devoted to the illustration
of numerical techniques for solving SFS problems. It concerns related algo-
rithms and their implementations. The section ends with a discussion about the
advantages and disadvantages of the algorithms introduced in this section. The
last section attempts to introduce the recently developed wavelet-based meth-
ods by using an example. A part of the section, however, is distributed to a brief
introduction of the basic facts of wavelet theory. In the hope of readers being
able to extrapolate the elements presented here to initiate the understanding of
the subject on his/her own, the chapter concludes with some remarks on other
advanced methods. Finally, we include an intensive set of references to make up
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whatever important spirits for which the authors have indeed hardly to touch in
this short chapter.

Chapter 6 presents work in the area of wavelet transforms. Wavelet trans-
forms and other multiscale analysis functions have been used for compact signal
and image representations in denoising, compression, and feature detection pro-
cessing problems for about 20 years. Numerous research works have proven that
space-frequency and space-scale expansions with this family of analysis func-
tions provided a very efficient framework for signal or image data. The wavelet
transform itself offers great design flexibility. Basis selection, spatial-frequency
tiling, and various wavelet threshold strategies can be optimized for best adap-
tation to a processing application, data characteristics, and feature of inter-
est. Fast implementation of wavelet transforms using a filter-bank framework
enables real time processing capability. Instead of trying to replace standard
image processing techniques, wavelet transforms offer an efficient representa-
tion of the signal, finely tuned to its intrinsic properties. By combining such
representations with simple processing techniques in the transform domain,
multiscale analysis can accomplish remarkable performance and efficiency for
many image processing problems. Multiscale analysis has been found particu-
larly successful for image denoising and enhancement problems given that a
suitable separation of signal and noise can be achieved in the transform domain
(i.e. after projection of an observation signal) based on their distinct localiza-
tion and distribution in the spatial-frequency domain. With better correlation
of significant features, wavelets were also proven to be very useful for detec-
tion and matching applications. One of the most important features of wavelet
transforms is their multiresolution representation. Physiological analogies have
suggested that wavelet transforms are similar to low level visual perception.
From texture recognition and segmentation to image registration, such mul-
tiresolution analysis gives the possibility of investigating a particular problem
at various spatial-frequency (scales). In many cases, a “coarse to fine” procedure
can be implemented to improve the computational efficiency and robustness to
data variations and noise.

Without trying to cover all the issues and research aspects of wavelet in
medical imaging, we focus our discussion in this chapter on three topics: im-
age denoising/enhancement, image segmentation, and image registration using
wavelet transforms. We will introduce the wavelet multiscale analysis frame
work and summarize related research work in this area and describe recent
state-of-the-art techniques.

Chapter 7 presents work in deformable models. Traditional deformable mod-
els cannot deal with topological changes and suffer from the strong sensitivity to
the initial contour position. Besides, when using deformable surfaces, memory
limitations can lower the performance of segmentation applications for large 3D
images, or even make it undoable. In this chapter we describe some techniques
to address these limitations. The problem of topological changes is addressed
by the T-surfaces model by embedding a deformable model in the framework
of a simplicial decomposition of the domain. The sensitivity to initialization has
been addressed through automatic techniques for obtaining an initial contour
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closer to the desired boundary. Efficient memory utilization can be obtained
through out-of-core techniques. Also, diffusion schemes can be explored in or-
der to improve the convergence of the model toward the desired boundaries.
We demonstrate the discussed techniques for segmentation of both gray level
and color medical images. Finally, we present perspectives and challenges in
the area of deformable models.

Chapter 8 presents work in the area of application. This chapter describes
level set techniques for extracting surface models from a broad variety of bio-
logical volume datasets. These techniques have been incorporated into a more
general framework that includes other volume processing algorithms. The vol-
ume datasets are produced from standard 3D imaging devices such as MR, CT,
ultrasound and are all noisy samplings of complex biological structures with
boundaries that have low and often varying contrasts. The level set segmenta-
tion method, which is well documented in the literature, creates a new volume
from the input data by solving an initial value partial differential equation (PDE)
with user-defined feature-extracting terms. Given the local/global nature of these
terms, proper initialization of the level set algorithm is extremely important.
Thus, level set deformations alone are not sufficient, they must be combined
with powerful preprocessing and data analysis techniques in order to produce
successful segmentations. In this chapter the authors describe the preprocessing
and data analysis techniques that have been developed for a number of segmen-
tation applications, as well as the general structure of our framework. Several
standard volume processing algorithms have been incorporated into the frame-
work in order to segment datasets generated from MRI, CT and TEM scans.
A technique based on moving least-squares has been developed for segmenting
multiple nonuniform scans of a single object. New scalar measures have been de-
fined for extracting structures from diffusion tensor MRI scans. Finally, a direct
approach to the segmentation of incomplete tomographic data using density pa-

rameter estimation is presented. These techniques, combined with level set sur-
face deformations, allow us to segment many different types of biological volume
datasets.

Chapter 9 presents work in the area of segmentation using the tools of level
sets and statistics. The book also demonstrates a chapter in the area of mathe-
matical foundations of the statistical-based approaches that have been known to
provide robust performance on medical imaging. Other approaches-based level
sets will also be covered. We will introduce 2D and 3D phantoms to validate the
theory. Applications will include CT, MRI, and MRA volume segmentation of the
human brain, and CT segmentation of the lungs.

Chapter 10 presents work in the area of level sets with classifier embedded
for snakes. The standard geometric or geodesic active contour is a powerful
segmentation method, whose performance however is commonly affected by
the presence of weak edges and noise. Since image modalities of all types in
medical imaging are prone to such outcomes, it is important for geometric snakes
to develop some level of immunity toward them. In this chapter, a region-aided
geometric snake, enhanced for more tolerance toward weak edges and noise,
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is introduced. It is based on the principle of the conjunction of the traditional
gradient flow forces with new region constraints. We refer to this as the region-
aided geometric snake or RAGS. The RAGS formulation is easily extended to deal
with color images. Quantitative comparisons with other well-known geometric
snakes in synthetic noisy images are presented. We also show the evaluation
of RAGS with application to the localization of the optic disk in color retinal
images. Many other images are also used to demonstrate the proposed method.

Finally, Chapter 11 presents work in the area of level set applications for
missing boundaries. The authors present application of the semi-implicit com-
plementary volume numerical scheme to solving level set formulation of Rie-
mannian mean curvature flow in image segmentation, edge detection, missing
boundary completion, and subjective contour extraction. Our computational
method is robust, efficient, and stable without any restriction on a time step.
The computational results related to medical image segmentation with partly
missing boundaries and subjective contour extraction are presented.



Contents

1. A Basic Model for IVUS Image Simulation . . . . . . . . . . . . . . . . . . . . . . . 1
Misael Rosales and Petia Radeva

2. Quantitative Functional Imaging with Positron Emission
Tomography: Principles and Instrumentation . . . . . . . . . . . . . . . . . . 57

Koon-Pong Wong

3. Advances in Magnetic Resonance Angiography and Physical
Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Rakesh Sharma, and Avdhesh Sharma

4. Recent Advances in the Level Set Method . . . . . . . . . . . . . . . . . . . . . . . 201
David Chopp

5. Shape From Shading Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Xiaoping Shen and Lin Yang

6. Wavelets in Medical Image Processing: Denoising, Segmentation,
and Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Yinpeng Jin, Elsa Angelini, and Andrew Laine

7. Improving the Initialization, Convergence, and Memory Utilization
for Deformable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Gilson A. Giraldi, Paulo S. Rodrigues, Leandro S. Marturelli, and
Rodrigo L. S. Silva

8. Level Set Segmentation of Biological Volume Datasets . . . . . . . . . . . . 415
David Breen, Ross Whitaker, Ken Museth, and Leonid Zhukov

9. Advanced Segmentation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Aly A. Farag, Mohamed N. Ahmed, Ayman El-Baz, and

Hossam Hassan

10. A Region-Aided Color Geometric Snake . . . . . . . . . . . . . . . . . . . . . . . . . 535
Xianghua Xie and Majid Mirmehdi

xvii



xviii Preface

11. Co-Volume Level Set Method in Subjective Surface
Based Medical Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 583

Karol Mikula, Alessandro Sarti, and Fiorella Sgallari

The Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633



Chapter 1

A Basic Model for IVUS Image

Simulation

Misael Rosales1 and Petia Radeva2

Introduction

Arteriosclerotic cardiovascular diseases [1], which increase their incidence in

vertiginous form, were the principal cause of mortality in the industrialized coun-

tries in the latter half of the 1950s, and cause more deaths today than deaths due

to cancer and accidents. In effect, arteriosclerotic diseases in general (infarct

to miocardio, angina of chest, cerebrovascular accidents, and arterial diseases

of the legs and arms) have caused, and continue causing, more deaths and in-

creased consultations in emergency rooms and doctors’ offices than any other

disease in this century, including AIDS. Coronary arterial diseases develop due

to a narrowing (stenosis) of the walls of the coronary arteries, caused by the

accumulation of fibrotic material and calcium crystals [2]. In humans, the de-

velopment of this type of plaque normally takes between 15 and 20 years. There

exist complicated injuries, which generate the formation of thrombus; the rup-

ture of the plaque can be considered an important mechanism of acute coronary

syndromes. An imminent problem if the arteries narrow too much due to steno-

sis is that the blood flow diminishes significantly. A total occlusion can take

1 Laboratorio de Fı́sica Aplicada, Facultad de Ciencias, Departamento de Fı́sica de la
Universidad de los Andes Mérida, Venezuela

2 Centre de Visió per Computador, Universidad Autónoma de Barcelona, Edifici O, Campus
UAB, 08193 Bellaterra, Barcelona, Spain

1



2 Rosales and Radeva

Figure 1.1: Typical 2D IVUS image indicating the location of the principal mor-

phological arterial structures and artifacts.

place if the increase in stenosis persists and can become serious due to a throm-

bosis. The result can be an infarct. The introduction of intravascular ultrasound

(IVUS) [3,4] in the field of medical image as an exploratory technique has made

a significant change to the understanding of thearterial diseases and individual

patterns of diseases in coronary arteries. Although coronary angiography [5, 6]

provides with 2D information about the coronary anatomy, serving as a guide

in operations, it has limitations when not allowed to access the mechanism of

the disease, its composition, and its extent. On the contrary, the IVUS tech-

nique shows the cross-section (Fig. 1.1) of the artery, allowing an evaluation

of the plaque as well as of the different layers in the arterial wall. The IVUS

image [2, 5, 6] provides qualitative (Fig. 1.2) information about the causes and

severity of the narrowing of the arterial lumen, distinguishes the thrombus of

the arteriosclerotic plaque, shows calcium deposits in the arterial wall, eval-

uates the changes and complications in the coronary arteries that occur after

an intervention such as angioplasty, evaluates and diagnoses coronary arterial

aneurysms, and diagnoses fissures of arterial coronary plaques: determination

and location, dimensions, type (eccentric and concentric), and composition of

the arteriosclerotic plaque.
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Figure 1.2: Geometric parameters of an artery that make it possible to measure

by means of intravascular ultrasound.

1.1 Technical Aspects of the IVUS

The images of ultrasound [7] are based on the reception and transmission of high-

frequency sound waves. The transmitted wave propagates through the material

until it strikes the reflecting object. The reflected wave returns and is received by

a transducer. The time interval between the transmission and the reception of the

wave is directly related to the distance between the source and the reflector. The

advantage of ultrasound is that it can travel through water smooth tissue. Addi-

tionally, ultrasound is not harmful at the levels of energy used for the generation

of the image. A standard configuration of IVUS acquisition images consists of

three components. Figure 1.3 shows a scheme of a catheter with a miniaturized

piezoelectric transducer, the pull-back unit, and the console for reconstructing

the images. IVUS catheter has a rank of measures that oscillates between 2.9

and 3.5 F (0.96–1.17 mm) in diameter. The quality of the image depends on the

operation frequency, which is of the order of 20–50 MHz; the lateral resolution

is approximately of the order of 113 µm and the axial resolution is of the order

of 80 µm [8]. The IVUS images acquisition process is initiated when the catheter

is manually (guided by the angiography) inserted within the artery (Fig. 1.3(a)).

The catheter pull-back is made at linear constant velocity (usually 0.5 mm/sec)
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Figure 1.3: The IVUS catheter is manually positioned within the artery (a)

and extracted by a pull-back unit at a constant linear velocity and rotated at

a constant angular velocity. The information is transformed by the IVUS console

as a unique cross-section artery gray-levels image (d) or a longitudinal image

sequence (e).

and constant angular velocity of 1800 rev/min. The pivoting transducer sends a

radially focused beam of ultrasound and receives its corresponding echoes. The

radial lines obtained for different transducer angular positions are adequately

processed, giving, as a result, a 2D cross-section artery image (Fig. 1.3(d)). The

sequence can be shown as a longitudinal sequence, which gives a longitudinal

artery cut (Fig. 1.3(e)). The resolution of an ultrasound image is directly related

to the ultrasound signal frequency: high frequencies allow one to obtain better

resolution. Nevertheless, when the frequency is increased, the attenuation of

the waves of ultrasound increases while penetrating the biological tissue. The

typical frequencies in the IVUS technique are in the rank of 20–50 MHz, with

inferior resolutions of 50 µm.
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1.2 Present Limitations of the IVUS Technique

and the Need for a Generation Model of

IVUS Data

The main function of the IVUS technique is to serve as a guide in the interven-

tional procedures, allowing us to measure the cross section of the artery. The

precision in the measurements of distance is subject to the following potential

sources of error [9]:

(a) Incorrect identification of the surface and the sections to be measured.

Although the vessel and the interface defining the wall vessel have suffi-

ciently good acoustics in most of the cases, in several cases the identifi-

cation of the surface and differentiating tissues can be difficult. Improv-

ing the radial resolution could improve the detection of contours, which

would reduce the errors. These errors can in some cases be systematic

and lead to an overestimation of the dimensions. This could get consid-

erably worse if the irregularities of the vessels are very pronounced.

(b) Assumption that the sound speed is constant in the arterial structure.

The second kind of problem related to the assumption of constant speed

of the sound of 1540 m/sec is systematic and small (of the order of 1–2%),

which brings as a consequence the propagation of the error in the location

of each one of the structures under study.

(c) Artifacts caused by inhomogeneities in the rotation of the catheter and

pronounced reverberations generated by very acute irregularities of

the vessel. The appearance of some artifacts such as the inhomogeneities

in the rotation of the catheter influences the quality of the image. The

absence of beams, when the catheter stops momentarily, brings as a

consequence a propagation of errors in the tangential direction of the

image.

(d) Presence of zones of acoustic shade, which prevents access to certain

regions of interest (ROIs). The presence of zones of acoustic shade is inti-

mately related to the presence of calcification or regions of high acoustic

impedance. The shades prevent some structures from being evaluated

from the distribution of the gray levels.
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(e) The presence of the catheter, the reticule, and the guide proves disad-

vantageous to the processing of the images and to the evaluation of the

data by some procedure of images processing.

(f) Impossibility of spatially locating the catheter. The impossibility of lo-

cating the catheter with respect to a specific axis of coordinates makes

it impossible to make any attempt for three-dimensional representation

of the vessel only with the IVUS technique. For example, spatial location

of the effective section of the lumen and location of plaque and the re-

construction in the lengthwise direction of the vessel are still an open

problem of investigation [9].

(g) Impossibility of evaluating dynamic parameters, different from the

single static characterization using the gray levels. First achievements

are related to IVUS elastography [7] the purpose of which is to propose a

technique for tissue characterization.

The mentioned shortcomings are difficult to quantify and depend on the expe-

rience of the operator, that is he should have been trained in handling a large

number of patient cases. Some of the limitations of the IVUS technique can be

attenuated through algorithms of image processing; the limitations due to a sub-

optimal location of the borders of the arterial structure can be overcome with

new algorithms of segmentation. The question is how to develop robust algo-

rithms that can solve these problems, analyzing the artifacts with their multiple

appearances in IVUS images. Having a complete set of patient data to present all

variance of artifacts appearance in images would mean to dispose of a huge num-

ber of patient cases. A more efficient solution is to develop a simulation model

for IVUS data construction so that synthetic data is available in order to “train”

image processing techniques. In this way, different appearances of artifacts can

be designed to assure robust performance of image processing techniques.

Differences in IVUS data are caused not only by different morphological

structures of vessels but also by different parameters that influence the forma-

tion of IVUS images. The images depend on the IVUS apparatus calibration as

well as on interventional devices; small differences in parameters can lead to

a different gray-level appearance that can be interpreted in a different way by

physicians. A simulation model for IVUS data can help train the medical staff

as well as play an important role in designing and testing new interventional
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devices. At the end, being aware which parameters and in which grade influence

to image formation is of unquestionable importance for all persons involved in

comprehension of IVUS data and taking final decision for diagnosis and inter-

vention of vessel lesions. In this chapter, we discuss a simple simulation model

for the formation of 2D IVUS data that explains the complete process of data

generation as a result of the interaction between ultrasound signals and vessel

morphological structures.

1.2.1 A Basic IVUS Image Model

Correct image processing needs an understanding of image formation, gray-level

meaning, artifact causes, the averaging, and the motion of the dynamics struc-

tures effects in the image. The generation of simulated IVUS images investigates

four important aspects: (a) The generation, processing, and visualization of the

data in the format that doctors use, (b) the exploration of some of the artifacts

generated by the averaging of the beams, (c) the smoothing and treatment of the

images to generate sufficient data for the validation of image processing algo-

rithms, and (d) comparison of data generated by the image formation model with

the real data. IVUS images can be obtained in a simulated form, from a simple

physical model based on the transmission and reception of high-frequency sound

waves, when these radially penetrate a simulated arterial structure (Fig. 1.4).

We assume that for this model the waves are emitted by a transducer located

at the center of the artery and that these waves propagate radially through the

blood and the arterial structures (intima, media, and adventitia), being reflected

progressively by them. The reflected waves or echoes that return are received

by the transducer, which now behaves as a receiver. The time interval between

the emission and the reception of the waves is directly related to the distance

between the source and the reflector (Fig. 1.5). The echo amplitude, which is

a function of time, is transformed on gray scale and later to penetration depth,

so the radial coordinate is determined. If we place a rotatory transducer, make

a registry of the corresponding echoes for each angular position of the trans-

ducer, and combine all the lines obtained from different positions, we will be

able to obtain a simulated 2D image of the structure under study. The 3D IVUS

simulated images can be generated as a sequence of n-planes generated inde-

pendently, taking into account the arterial deformation caused by the blood

pulsatile pressure.
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Figure 1.4: The disposition of the simulated arterial structures (blood, intima,

media, and adventitia) and calcification are illustrated. The ultrasound rotatory

transducer, which emits the pulse Po and receives pulse P1, has been placed at

the coordinate center.

Figure 1.5: The determination of the distance D between the emitter/receiver

and the reflecting object is made from the difference of time interval between the

transmitted pulse Po and the received pulse P1, assuming that the pulse speed c

is constant.
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Figure 1.6: Coordinates system used with the corresponding ultrasound emit-

ter/receiver and the scatterers localization.

1.3 Formal Definition of the Image Model

Let us consider an ultrasound pulse Po that is emitted at time to with speed

c from a point with coordinates (ro, θo, zo) (Fig. 1.6), and that interacts with

the scatterer located at position (R, �, Z) with the spatial distribution of the

differential backscattering cross-section, σ (R, �, Z). The reflected pulse Pi for

the ith scatterer is an exact replica [10] of the transmitted sound pulse Po that will

return to the point (ro, θo, zo) at time (ti − to) and will be out of phase temporarily

with respect to the pulse Po by time difference δ = ti − to between the emitted

pulse at ti and the received pulse at to. The time delay δ is given by

δ = 2|R|
c

(1.1)

−→
R = −→r −−→ro , −→r = x̂i+ yĵ + ẑk, −→ro = xôi+ yo ĵ + zok̂

We choose a coordinate system (X, Y, Z) with respect to the emitter/receiver

position:

−→
X = (x− xo)̂i,

−→
Y = (y− yo) ĵ,

−→
Z = (z− zo)̂k

and the corresponding cylindrical coordinates are given by

|R| =
√

X 2 + Y 2 + Z 2, � = arctan(Y/X)

where X = |−→X |, Y = |−→Y |, and Z = |−→Z |.
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Assuming the Born approximation [11, 12], the ultrasound reflected signal

S(t, τ ) for a finite set of N reflecting scatterers with coordinates (R, �, Z) and

spatial distribution of the differential backscattering cross-section σ (R, �, Z)

is given by:

S(R, �, Z, t, τ ) =
N∑

i=1

σi(R, �, Z)ζi(t, τ ) (1.2)

where N is the number of scatterers, σi(R, �, Z) is the spatial distribution of

the differential backscattering cross-section (DBC) of the ith scatterer located

at position (R, �, Z), ζi(t, τ ) is the transducer impulse function, and τ is the

delay time which leads to constructive and destructive contributions to the

received signal. The Born approximation implies that the scattered echoes are

weak compared to the incident signal and it is possible to use the principle of

superposition to represent the wave scattered by a collection of particles by

adding their respective contribution.

1.3.1 The Ultrasound Pulse

We consider a planar transducer that is mounted inside an infinite baffle, so that

the ultrasound is only radiated in the forward direction. We assumed that the

transducer is excited with uniform particle velocity across its face [13, 14]. Ac-

cording to the coordinates system illustrated in the far field circular transducer,

pressure P(r, θ, t) (Fig. 1.7) can be written as:

P(r, θ, t) = j
ρocka2vo

2r

[2J1(ka sin(θ))
ka sin(θ)

]
exp( j(wt − kr))

where t is time, ρo is the medium propagation density, c is the sound speed

for biological tissue (typically c = 1540 m/sec), vo is the radial speed at a point

on the transducer surface, a is the transducer radius,
−→
k is the propagation

vector, defined as k = |−→k | = 2π/λ, where λ is the ultrasound wavelength defined

as λ = c/ fo, where fo is ultrasound frequency, ω = 2π fo, and J1(x) is the first

class Bessel function. Figure 1.8 shows a graphics of the pressure as a function

of ν, where ν = ka sin(θ). In some applications, particularly when discussing

biological effects of ultrasound, it is useful to specify the acoustic intensity [16].

The intensity at a location in an ultrasound beam, I , is proportional to the square

of the pressure amplitude P . The actual relationship is:

I(r, θ, t) = P(r, θ, t)2

2ρc
(1.3)
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Figure 1.7: Geometrical variables used for the calculations of the pressure

distributions P(r, θ, t) for a planar circular transducer of radius a.

Again, ρ is the density of the medium and c is the speed of sound. The impulse

function ζ (t, δ) is generally approximated [15] by a Gaussian (Fig. 1.9(a)), which

envelopes the intensity distribution, and is given by:

ζ (t, δ) = I(r, θ, t) exp
(
− (t − δ)2

2σ 2

)
(1.4)

where σ is the pulse standard deviation. We consider that the beam is colli-

mated by θ = θa. In our model only the corresponding interval dθ ≈ 0.1◦ is used

that corresponds to the transducer lateral resolution zone (Fig. 1.9(b)). Hence

Figure 1.8: Transducer pressure distribution.
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Figure 1.9: Typical ultrasound pulse and its Gaussian envelope (a). The trans-

ducer pattern radiation (b).

Eq. (1.2) in the transducer coordinate system is based on a discrete representa-

tion of the tissue of individual scatterer elements with given position and DBC

with respect to the transducer coordinates given by:

S(R, �, Z, t, δ) = Co

N∑
i=1

σi(R, �, Z)
|Ri| ζ (t, δ) (1.5)

where δ is given by Eq. (1.1), and ζ (t, δ) is the impulse function given by

Eq. (1.4). If we consider only the axial intensity contributions, Co can be written

as [14]:

Co = ρock2v2
o A

8π
(1.6)

where A is the transducer area.

1.4 Principal Features of IVUS Data

1.4.1 Image Resolution

Resolution is the capacity of a technique or an instrument to separate two events

or objects in time and/or space [14]. At the moment, much of the effort in the

design of new transducers is centered in improving the spatial and the tempo-

ral resolution. Unfortunately, most of the medical applications demand that the
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Figure 1.10: An ultrasound pulse P1 that has width d1 frontally affects a linear

scatterer array placed at a distance doi.

transducers be smaller so that the resolution is increased, but this diminishes

their capacity to explore greater tissues depth. For the IVUS techniques, the res-

olution plays a very important role since most of the structures to be visualized

directly depend on these parameters.

1.4.1.1 Axial Resolution

Axial resolution is the capacity of an ultrasound technique to separate the spa-

tial position of two consecutive scatterers through its corresponding echoes

[13, 14, 16]. In Fig. 1.10 an ultrasound pulse P1 that has a width d1 frontally af-

fects a linear scatterer array at a distance doi. Each one of the echoes forms a

“train” of pulses temporally distanced according to the equation toi = 2|Ri|/c,

Ri being the ith relative emitter/scatterer distance and c is the pulse propaga-

tion speed. The progressive distance reduction of the linear scatterers, given by

(a1, . . . , a4) (Fig. 1.10) and (b1, . . . , b4) (Fig. 1.11), reduces the time interval be-

tween the maximums of the “trains” pulses. There exists a critical distance width

dt at which the pulses that arrive at the receiver are superposed, therefore, not

being able to discriminate or separate individually the echoes produced by each

scatterer. In Fig. 1.11 one can observe that the resolution can be improved by
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Figure 1.11: We can see that the progressive distance reduction of the linear

scatterers, from (a1, . . . , a4) (Fig. 1.10) to (b1, . . . , b4) reduces the time difference

between the maximums of the “train” pulses. The maximums can be separated

reducing the pulse width from d1 (Fig. 1.10) to d2, this is equivalent to an increase

in the pulse frequency.

diminishing the pulse width dt, which is equivalent to increasing the frequency

of the emitted pulse. The axial resolution of this technique depends essentially

on two factors: ultrasound speed c and pulse duration dt. The functional depen-

dency between the spatial resolution, the frequency, and the ultrasound speed

propagation is given by:

dr = cdt = cT = c

f
(1.7)

where dr is the axial resolution, c is the ultrasound speed for biological tissues,

dt is the pulse width, T is the period of ultrasound wave, and f is the ultrasound

frequency. For IVUS, the typical values are: c = 1540 m/sec and f = 30 MHz,

the axial resolution is approximately dr = 1540/(30× 106) = 0.05 mm≈ 50 µm,

and the relative error of the axial resolution is given by:

�dr

dr

=
∣∣∣�c

c

∣∣∣+ ∣∣∣� f

f

∣∣∣
The axial resolution dependency versus the ultrasound frequency is shown in

Fig. 1.12.
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Figure 1.12: The functional dependency between the axial resolution and the

ultrasound frequency for a rank of typical ultrasound speeds (see Table 1.1) in

biological tissue. The typical IVUS (30 MHz) frequency as well as the tolerance

in the axial resolution �dr are emphasized.

1.4.1.2 Angular Resolution

Angular resolution is the capacity to discern two objects or events located in

the tangential direction [13, 14, 16] and depends on the beam width. The beam

Table 1.1: Sound speed in selected

tissues [16]

Material Sound speed (m/sec)

Fat 1460
Aqueous humor 1510
Liver 1555
Blood 1560
Kidney 1565
Muscle 1600
Lens of eye 1620
Average 1553
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Figure 1.13: The focal length and the focal zone of an ultrasound transducer

are indicated. The transducer lateral resolution dθ is a function of its diameter

D and the emission frequency f .

width depends on the transducer effective emission area (Fig. 1.13). Figure 1.14

shows the standard dimensions of a typical IVUS ultrasound transducer. The

tangential or lateral resolution of an ultrasound emitter of diameter D houring

emission frequency f is given by:

dθ = 1.22
λ

D
, dθ = 1.22

c

D

1
f

and the focal distance (focal length) F is given by:

F = 1
4

D2

λ

Figure 1.14: Typical IVUS transducer dimension used by Boston Sci.
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where λ = c/ f and D is the transducer diameter. For a typical transducer of 30

MHz, c = 1540 m/sec and transducer dimensions given in Fig. 1.14, the lateral

resolution is dθ ≈ 0.10◦ and the focal length is F = 2 mm.

1.4.2 The Beam Intensity

The beam ultrasound intensity, as a function of the penetration depth and the

ultrasound frequency, is given by [13, 14, 16]:

I(r) = Io exp(−α(Nθ )r f ) (1.8)

where Io is the beam intensity at r = 0 and the coefficient α gives the rate of

diminution of average power with respect to the distance along a transmission

path [17]. It is composed of two parts, one (absorption) proportional to the

frequency and the other (scattering) dependent on the particle size, or the scat-

terer number Nθ located along the ultrasound beam path (see Section 1.5.2).

Since the attenuation is frequency dependent, a single attenuation coefficient

only applies to a single frequency. The attenuation coefficient of ultrasound is

measured in units of dB/cm, which is the logarithm of relative energy loss per

centimeter traveled. In biological soft tissues, the ultrasound attenuation coef-

ficient is roughly proportional to the ultrasound frequency (for the frequency

range used in medical imaging). This means that the attenuation coefficient di-

vided by the frequency (unit dB/MHz cm) is nearly constant in a given tissue.

Typical soft tissue values are 0.5–1.0 dB/MHz cm. In our model we assumed that

the attenuation coefficient α is only dependent on the scatterer number in the

way beam. Figure 1.15 shows the beam intensity dependence on penetration

depth for several typical frequencies used by IVUS.

1.4.3 Ultrasound Beam Sweeping Criterion

Let us explore a criterion that assures that all the reflected echoes reach the

transducer before it moves to the following angular position. Let us define β as

the ratio between transducer diameter D and arc length ε (Fig. 1.16):

β = D

ε

where D is the transducer diameter and ε is the arc segment swept by the beam
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Figure 1.15: Ultrasound beam intensity versus the penetration depth for several

frequencies (5–50 MHz).

Figure 1.16: A rotatory transducer emits a radially focused beam. Angu-

lar positions θ1 and θ2 define a segment of arc S, which can be calculated

from the speed of rotation and the speed of propagation of the ultrasound

beam.
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Figure 1.17: Functional dependence between parameter β and transducer an-

gular speed ω.

between two angular consecutive positions. Note that:

dθ = ωdt, dt = 2
R

c
, ε = Rdθ (1.9)

Taking into account these definitions, β can be rewritten as:

β =
( r

R2

)( c

ω

)
where r is the transducer radius, R is the maximum penetration depth, c is

the ultrasound speed, and ω is the transducer angular speed. The parameter β

implies that the transducer area is β times the sweeping area for the rotatory

beam and the maximal depth penetration. This assures that a high percentage

of echoes is received by the transducer before it changes to the following an-

gular position. We can determine the parameter β by calculating the frequency

at which the ultrasound pulse should be emitted. Figure 1.17 shows the func-

tional dependence between parameter β and the transducer angular velocity for

several typical velocities in biological tissues. We emphasize the typical IVUS

transducer angular velocity. Figure 1.18 gives the relation between the sample

frequency ( fm = 1/dt) and the typical IVUS transducer angular velocity ω.

1.4.4 Determining the Scatterer Number of

Arterial Structures

1) The red blood cells (RBCs) number swept by the ultrasound beam (Fig. 1.19)

can be estimated by taking into account the plastic sheathing dimensions of
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Figure 1.18: Functional dependence between the sample frequency and the

transducer angular speed.

the transducer (Fig. 1.14) and the typical arterial lumen diameter. The scatterer

number contained in a sweeping beam volume given by the difference between

the sweeping lumen arterial volume Va and the plastic sheathing transducer

volume Vt:

Vb = Va − Vt = πa(D2 − D2
M)/4 (1.10)

where D and DM are the arterial lumen and the sheathing transducer exterior

Figure 1.19: The scatterers volume for each arterial structure can be calculated

by taking into account the total volume Vb swept by the ultrasound beam.
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diameters respectively, and a is the effective emission diameter of the trans-

ducer. Typical arterial lumen diameter of coronary arteries is D ≈ 3 mm [18,19].

From Fig. 1.14 we can see that DM ≈ 0.84 mm and a = 0.60 mm. Using Eq. (1.10)

we obtain the sweeping volume of the transducer beam approximately as

Vb ≈ 3.91 mm3. The RBCs can be approximated by spherical scatterers having

a volume of 87 µm3 [20], which corresponds to a radius of 2.75 µm (diameter,

dg = 5.5 µm). Considering a typical hematocrit concentration [21] of 35%, we

can estimate the RBCs number by the beam sweeping volume. The RBCs sweep-

ing volume is VRBC = 1.36 mm3, and the typical human RBCs number is approx-

imately N ≈ 4.1× 106 cells/mm3 [21]. Thus, the RBCs number by the sweep-

ing volume is No ≈ 5.61× 106 cells. The maximal axial resolution at 40 MHz

is approximately dr = 38 µm, at which we can observe the order of dr/dg ≈ 7

RBCs. If we take the scatterers as perfect spheres with radius dr at maximal

axial resolution, we would have scatterers of the order of 1.37× 107 to be sim-

ulated. It is not possible to estimate this value for RBCs scatterers with a com-

puter. In order to generate the number of scatterers possible to emulate, we

generate scatterers groups namely “voxel” [11]. In Table 1.2, the most impor-

tant numerical data used by this simulation model is summarized. The mini-

mal structure dimensions that can be measured by an IVUS image at 40 MHz

is 1/25 mm/pixel ≈ 0.04 mm. We take this dimension to estimate the minimal

Table 1.2: Important features and the corresponding

approximated values used in this simulation model

Feature Approximated values

Arterial diameter D = 3 [mm]
Sheathing transducer diameter DM = 0.84 [mm]
Transducer diameter a = 0.60 [mm]
Sweeping volume by the beam Vb = 3.91 [mm3]
RBC volume 87 [µm3]
Hematocrit concentration 35%
RBC volume by 35% of Vb 1.36 [mm3]
Typical human RBC number N = 4.1× 106 [cells/mm3]
Maximal axial resolution at 40 MHz dr = 38 [µm]
IVUS image resolution (1/25) ≈ 0.04 [mm/pixel]
Minimal voxel volume 6.4× 10−5 [mm3]
Total RBC voxel 360 [voxels]
RBC voxel to be emulated 1.5× 104 [voxels]
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Table 1.3: An example of simulated values of arterial structures

Rk ηk (DBC)µk σk

k Structure Nk [mm] [mm] [m2]× E− 6 [m2]× E− 6

0 Transducer 475 0.59 0.05 7.2E−1 2.68E−2
1 Blood 6204 1.57 1.22 9.0E−2 9.48E−1
2 Intima 729 2.18 0.25 8.2E−1 2.86E−2
3 Media 150 2.38 0.35 3.3E−3 1.82E−1
4 Adventitia 25794 3.44 3.02 7.3E−1 2.71E−2

Nk is the scatterer number, Rk is the mean radial position, ηk is the radial deviation, µk is the backscattering

cross section, and σk is the DBC deviation.

“voxel” volume. For the RBCs, Vo = 0.04× 0.04× 0.04 ≈ 6.4× 10−5 mm3. The

total number of RBCs per voxel is Nt = Vo × N ≈ 360 cells/voxel. Now, we can

calculate the total RBCs “voxel” number as NRBC = No/Nt ≈ 1.5× 104 voxels

for the sweeping volume by the ultrasound beam. This “voxel” number is even

computer intractable. Therefore, we must consider that the typical structure

dimensions that can be measured by IVUS image are greater than 0.04 mm. A

well contrasted image structure dimension by IVUS begins from 0.06 mm. Using

these “voxel” dimensions, Vo = 2.14× 10−4 mm3, the total “voxel” number is

Nt ≈ 880 cells/voxel, and the RBC “voxels” number is approximately N1 ≈ 6200

voxels. An example of RBCs “voxel” number used in this simulation is given in

Table 1.3.

(2) The intima, media, and adventitia. The numerical values necessary for

the evaluation of the scatterer number for the intima, media, and adventitia

were taken from results of Perelman et al. [22], which give the typical nuclear

cells size l (µm) distribution for human cells. The “voxel” number for each layer

was computed taking into account the typical dimensions of intima, media, and

adventitia of a normal artery.

(3) The voxel number for the sheathing transducer was calculated taking

into account the minimal scatterers that can be observed at maximal resolution

when the frequency is fixed at 40 MHz, a typical IVUS frequency. From Figs. 1.14

and 1.19, the transducer sweeping volume is Vt = πa(D2
M − D2

m)/4, where

a ≈ 0.60 mm is the transducer diameter, and DM ≈ 0.84 mm and Dm ≈ 0.72 mm

are the exterior and interior transducer sheathing diameters respectively. Us-

ing these dimensions, Vt ≈ 0.08 mm3. The sheathing “voxel” number No can be

calculated as No = Vt/Vo, where Vt ≈ 0.08 mm3 is the sheathing volume by the

beam and Vo = 4πd3
r /3 is formed by the minimal spherical scatterers with radius
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dr = c/ f able to be measured when the frequency f and the ultrasound speed c

are known. Taken typical values for c = 1540 m/sec and frequency of 40 MHz,

Vo ≈ 2.39× 10−4 mm3, thus No ≈ 370 “voxels.”

1.5 Simulation of IVUS Image

1.5.1 Generation of the Simulated Arterial Structure

Considering the goal of simulating different arterial structures, we can classify

them into three groups: tissue structures, nontissue structures, and artifacts.

The spatial distribution of the scatterer number with a given DBC, σ (R, �, Z)

at point (R,�, Z), has the following contributions:

σ (R, �, Z) = A(R)+ B(R, �, Z)+ C(R) (1.11)

where A(R), B(R, θ, Z), and C(R) are the contributions of tissue structures,

nontissue structures, and artifacts respectively.

1. Tissue scatterers. These are determined by the contribution of the normal

artery structures, corresponding to lumen, intima, media, and adventi-

tia. Figure 1.20 shows a k-layers spatial distribution of the scatterers for a

simulated arterial image. These scatterers are simulated as radial Gaussian

Figure 1.20: A plane of k-layers simulated artery. The scatterer numbers are

represented by the height coordinate in the figure.
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distributions [23] centered in the average radius Rk and having standard

deviation ηk corresponding to each arterial structures. Tissue scatterers

are represented by:

A(R) =
ko∑

k=1

ak

ηk

exp
(
− (R− Rk)2

2η2
k

)
(1.12)

where ak is the maximal number of scatterers at R = Rk, k is the kth radial

simulated tissue layer, and Rk is the radial layer average position.

2. Nontissue scatterers. These contributions can be made by structures

formed by spatial calcium accumulation, which are characterized as hav-

ing greater DBC density than the rest of the arterial structures. They are

simulated by a Gaussian distribution in the radial, angular, and longitudinal

arterial positions of the simulated structure:

B(R, �, Z) =
lo∑

l=1

mo∑
m=1

no∑
n=1

blcmdn

βlγmνn

F(R, �, Z)

F(R, �, Z) = exp
(
−1

2

( (R− Rl)2

β2
l

+ (�−�m)2

γ 2
m

+ (Z − Zn)2

ν2
n

))
where (l, m, n) correspond to the radial, angular, and longitudinal axes

directions, (lo, mo, no) are the structures number in radial, angular, and

longitudinal directions, (bl , cm, dn) are the scatterer numbers that have a

maximum at R = Rl , � = �m, and Z = Zn, (βl , γm, νn) are the radial, angu-

lar, and longitudinal standard deviations, and (Rl , �m, Zn) are the radial,

angular, and longitudinal average positions.

3. Artifacts scatterers. In our model we consider the artifact caused by the

sheathing transducer:

C(R) = ao

αo

exp
(
− (R− Ro)2

2α2
o

)
where ao is the scatterers number that has a maximum at R = Ro, αo is the

artifact standard deviation, and Ro is the artifact radial average position.

1.5.2 1D Echogram Generation

To obtain a 1D echogram, an ultrasound pulse is generated in accordance

with Eq. (1.4) and emitted from the transducer position. The pulse moves
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Figure 1.21: The 1D echogram is obtained by fixing the angular position �0 = �

of the ultrasound beam (a). The total signal S(t) is only generated by the scatter-

ers N� located at an angular position �a ≤ �0 ≤ �b. The intensity distribution

decreases with the depth penetration and the scatterers numbers N� through

the beam path (b).

axially through scatterers (Fig. 1.21(a)) and its intensity distribution decreases

(Fig. 1.21(b)) with the penetration depth and the scatterers numbers in the

ultrasound path given by Eq. (1.8). The echo amplitude is registered by the

transducers (Fig. 1.22) as a signal function of time S(t) (Eq. 1.13). The value

is transformed to penetration depth replacing t = x/c and normalized to gray

scale. The spatial distribution of cross-section scatterers, σ , is generated by

Figure 1.22: The corresponding echoes are finally transformed to normal-

ized echo amplitude and then to gray-level scale versus time or penetration

depth.
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using Eq. (1.11). Figure 1.21 shows the simulations of N scatterers located

in (Ri, �a ≤ � j ≤ �b):

S(t, �o) =
NR∑
i=1

N�i∑
j=1

σ (Ri, �o ±� j)ζ (t, δi)
|Ri| (1.13)

S(t, �o) = Co

NR∑
i=1

Nθi∑
j=1

σ (Ri, �o ±� j)
|Ri| exp

(−(t − δi)2

2σ 2

)
sin(ωt − δi)

where �o = (�a +�b)/2, Co defines the transducer constant parameters, and

N�i
is the total scatterers number at the angular position θa ≤ � ≤ θb for a radial

position Ri. The sum only operates on the scatterers located in the angular

position θa ≤ � ≤ θb that is the focal transducer zone (Figs. 1.9(b) and 1.13).

Therefore, N� is the total scatterers number in this region. Equation (1.13) can be

written as a function of the penetration depth, replacing t = x/c. Equation (1.13)

can be rewritten on gray-level scale as:

S(t, �o) = 256
max(S(t))

Co

NR∑
i=1

Nθi∑
j=1

σ (Ri, �o ±� j)
|Ri| exp

(−(t − δi)2

2σ 2

)
sin(ωt − δi)

(1.14)

where δi = 2Ri/c and S(x) is the 1D echogram generated by a set of N� scatterers

located in (Ri, �a ≤ �i ≤ �b). The overall distribution backscattering cross-

section σi(Ri, �i ± δ�) is given by Eq. (1.11).

1.5.3 2D Echogram Generation

The procedure to obtain the 2D simulated IVUS is the following: A rotatory

transducer with angular velocity ω (Fig. 1.23(a)) is located at the center of

the simulated arterial configuration given by Eq. (1.11). The transducer emits

an ultrasound pulse radially focused at frequency fo along angular direction

θ1 (Fig. 1.23(a)). The pulse progressively penetrates each one of the layers of

the simulated arterial structure according to Eq. (1.15). Each one of the layers

generates a profile of amplitude or echoes in time, which can be transformed

into a profile of amplitude as a function of the penetration depth (Fig. 1.23(b)).

Therefore, the depth can be calculated using Eq. (1.1). As the penetration depth

is coincident with the axial beam direction, the radial coordinate R is thus

determined. This procedure is repeated n times for angles, (θ1, . . . , θn) and the

2D image is generated. The generated echo profiles are transformed to a polar
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Figure 1.23: The transducer emits from the artery center (a), echo profile trans-

formed into penetration depth (b), the echo profiles are transformed to a polar

image (c), and empty pixels filled and the final IVUS image is smoothed (d).

image, and the intermediate beams are computed (Fig. 1.23(c)). The image is

transformed to Cartesian form and the empty pixels are filled (Fig. 1.23(d)).

Using the ultrasound reflected signal S(t, �) for a finite set of N reflecting

scatterers with coordinates (R, �, Z) and spatial distribution of the differen-

tial backscattering cross-section, σ (R, �, Z), the 2D echo signal S(t, �) can be

written as:

S(t, �) = Co

NR∑
i=1

Nθi∑
j=1

σ (Ri, �± θ j)ζ (t, δi)
|Ri| (1.15)

where S(t, �) is the temporally generated signal by a set NR of scatterers, which

are localized in angular position θ , θ ∈ [θa, θb], Nθi
is the total scatterers number
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in the angular position θa ≤ � ≤ θb for a radial position Ri. We consider two

forms of �:

� with no uniform distributed scatterers:

� = (θa + θb)/2

� with uniform distributed scatterers:

� = 1
NR

NR∑
j=1

� j

1.5.4 Final Image Processing

The actual image obtained with only the original beams is very poor; we must

explore several smoothing procedures to improve the image appearance. The

procedures to obtain the final simulated image are as follows:

1. The echoes are obtained by the pivoting transducer (Fig. 1.23(a)).

2. Each echo profile is ordered according to the angular position

(Fig. 1.23(b)).

3. The original image is transformed to a polar form (Fig. 1.23(c)).

4. Secondary beams are computed between two original neighboring beams

(Fig. 1.23(c)).

5. The image is smoothed by a 2× 2 median filter.

6. The image is again transformed to Cartesian form. As a result of this trans-

formation, a significant number of pixels will be empty (Fig. 1.23(d)).

7. The empty pixels are filled in a recursive way form, using an average of

the eight nearest neighbors (Fig. 1.23(d)).

8. An image reference reticle is added and a Gaussian filter is applied.

Figure 1.24 shows the scatterers distribution for a concentric arterial structure

and an axial ultrasound beam position (a), and its corresponding echo profiles

(b). Each axial echo is positioned by an angular position (c). In this way, the 2D

echogram is constructed (d). The procedure of image smoothing is described in

Section 1.5.4.
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Figure 1.24: The scatterers distribution (a), the corresponding 1D echoes (b),

2D echogram is constructed (c), and the image is smoothed (d).

1.6 Validation of the Image Simulation Model

Once the generic basic model of IVUS image formation is defined, we need to

compare it to real images contrasting expert opinion to test its use. For this

purpose, we defined procedures to extract quantitative parameters that permit

the measurement of the global and local similarities of the images obtained. The

main goal of this simulation is to give a general representation of the princi-

pal characteristics of the image. The comparison of real and simulated images

should be done on the global image descriptors. We concentrated on the dis-

tribution of the gray levels. Data such as transducer dimensions (Fig. 1.14),

the catheter as well as the reticle locations, operation frequency, band width,
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and original and secondary beam number used for the simulation are stan-

dard values obtained from Boston Sci. [24]. However, the optimal values of

frequency and attenuation coefficient are obtained by the cross validation pro-

cedure [23]. The dimensions, scatterer number, and the backscattering cross-

section of the simulated arterial structures were obtained from different lit-

erature [7, 10, 11, 19, 22, 24]. Typical values of the RBCs “voxel” numbers took

into account the typical hematocrit percentage [11] (Section 1.4.4). Instrumen-

tal and video noise has been incorporated into the simulated image, due to

electronics acquisition data, and the acquisition and processing to the video

format.

The zones of greater medical interest (lumen, lumen/intima, intima/media,

and media/adventitia) were simulated for several real IVUS images. The smooth-

ing image protocol is not known so that the corresponding tests were done until

the maximal similarity to the real images was found, based on the use of three

progressive methods. (1) The empty pixels are filled using the average of eight

neighbors, (2) a median filter is used, and (3) a Gaussian filter is applied in or-

der to find the noise reduction. The quantitative parameters used for the image

comparison were directed for global and local image regions, and are described

below.

1. Gray-level average projections px and py, that is horizontal and vertical

image projections, are defined for an m× n image I as [25]:

px(i) = 1
m

m∑
j=1

Iij, py( j) = 1
n

n∑
i=1

Iij (1.16)

2. We define a global linear correlation between real (x) and simulated (y)

data as follows:

y= mx+ b (1.17)

where m and b are the linear correlation coefficients.

3. Contrast to noise ratio signal (CNRS) as figure of merit, defined as [26]:

CNRS = (µ1 − µ2)
2√

σ 2
1 + σ 2

2

(1.18)

where µ1, µ2, σ1, and σ2 are the mean and the standard deviations inside

the ROIs.
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1.6.1 Scatterer Radial Distribution

The radial scatterer distribution is an important factor for a good image simula-

tion. The scatterers under consideration in this simulation are: the transducer

sheath, blood, intima, media, and adventitia. We can obtain the arterial structure

configuration from an emulated form and from a real validated IVUS image. For

the study of the synthetic images, we have used two procedures:

1. Standard data. Typical geometric arterial parameters and their interfaces

such as lumen/intima, intima/media, and media/adventitia are obtained

from standard literature.

2. Validated data. Geometrical parameters are obtained from manually seg-

mented IVUS images.

In order to investigate the image dependencies of IVUS parameters (frequency,

attenuation coefficient, original beam number, secondary beam, and smoothing

procedures), we have used a standard data procedure, using a concentric scat-

terer distribution for this modality. To compare simulated images to real data,

we use manually segmented real images, which correspond to the validated data

procedure. In manually delineated structures of IVUS images, we extract the po-

sition radius Rk of lumen, intima, media adventitia, and transducer sheath. Fig-

ure 1.25 shows typical 2D spatial scatterer distributions obtained from standard

procedure for the most important arterial structures and the scatterer artifact

caused by the transducer sheath.

The radial scatterer distributions play a crucial role in the definition of the

IVUS images because they define the ultrasound attenuation in the axial direc-

tion. Medical doctors have special interest in gray-level transition in the interface

of two media. For instance, the lumen/intima transition defines the frontiers of

the lumen. These transitions can only be found through a good radial scatterer

distribution.

The radial scatterers distribution of the typical arterial structures and the

transducer sheath are shown in Fig. 1.26.

1.6.2 DBC Distribution

The k-layers DBCk values for a typical simulated arterial structure are shown

in Figs. 1.27 and 1.28 where the count of scatterers of each tissue is shown as
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Figure 1.25: Typical concentric 2D scatterer distribution for the most impor-

tant simulated arterial structures (blood, intima, media, and adventitia) and the

scatterer artefact generated by the transducer sheath.

a function of the cross-section of scatterers. The numerical values are given in

Table 1.3 [27].

1.6.3 IVUS Image Features

1.6.3.1 Spatial Resolution

A good spatial resolution gives the possibility of improving the visualization

of the lumen/intima transition and studying the structures, which gives impor-

tant information for medical doctors. Typical numerical parameters such as

scatterers number Nk, k-layer average radial position Rk, its standard devia-

tion ηk, the DBC k-layer mean µk, and its standard deviation σk are given in

Table 1.3. The typical IVUS parameters used in this simulation are given in
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Figure 1.26: Radial scatterer distribution for the arterial structure: blood, in-

tima, media, adventitia, and the transducer sheath.

Figure 1.27: DBC distributions of simulated arterial structures: blood (a) and

intima (b).
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Figure 1.28: DBC distributions of simulated arterial structures: media (a) and

adventitia (b).

Table 1.4. The typical cell nuclear size was obtained by Perelman et al. [22].

In Fig. 1.29 we can observe the dependency of axial resolution and the ultra-

sound frequency. To illustrate this, four IVUS simulated images are shown. Low

frequency ranging from 10 to 20 MHz corresponds to an axial resolution from

154 to 77 µm, and intermediate frequency from 20 to 30 MHz gives axial res-

olution from 77 to 51 µm. In these cases, it is possible to visualize accumu-

lations around 100 RBCs. High frequency from 30 to 50 MHz leads to 51–31

µm of axial resolution. Moreover, it is now possible to visualize accumula-

tions of tens of RBCs. The IVUS appearance improves when the frequency in-

creases, allowing different structures and tissue transition interfaces to be better

detected.

Table 1.4: Typical IVUS simulation magnitudes

Parameter Magnitude

Ultrasound speed 1540 m/sec
Maximal penetration depth 2E− 2 m
Transducer angular velocity 1800 rpm
Transducer emission radius 3E− 4 m
Attenuation coefficient α 0.8 dB/MHz cm
Ultrasound frequency 10–50 MHz
Beam scan number 160–400
Video noise 8 gray level
Instrumental noise 12.8 gray level
Beta parameter β = 38.5 ad
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(a) (b)

(c) (d)

Figure 1.29: Synthetic images generated by low frequency: 10 MHz (a) and

20 MHz (b), intermediate frequency of 30 MHz (c), and high frequency of

50 MHz (d).

1.6.3.2 Optimal Ultrasound Frequency

In order to validate our model, we compare synthetic to real images. We gener-

ated synthetic images for a great rank of frequency and used the cross-validation

method [23] to find the most similar image to the real one generated using Boston

Sci. equipment at 40 MHz frequency. The sum square error (SSE) from the real to

the simulated images for each ultrasound simulated frequency is computed. Fig-

ure 1.30(a) shows the SSE versus ultrasound frequency. The optimal frequency
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(a) (b)

Figure 1.30: The optimal ultrasound simulation frequency fo ≈ 46 MHz (a) and

the optimal attenuation coefficient (b) α ≈ 0.8 dB/MHz cm are obtained by the

cross validation method.

is located in the interval 40–50 MHz. Note that the central frequency of Boston

Sci. equipment is 40 MHz; therefore, it can be considered as evidence to show

the correctness of the method.

1.6.3.3 Optimal Attenuation Coefficient

We have emulated synthetic IVUS images with different attenuation coefficients;

the optimal attenuation coefficient was tested by applying the cross validation

method of the synthetic images versus the real images. Figure 1.30(b) shows SSE

versus attenuation coefficient α; the optimal attenuation coefficient obtained

was 0.8 dB/MHz cm. There is a range of suboptimal attenuation coefficient values

for a fixed ultrasound frequency due to the great axial variability of scatterers.

However, the attenuation coefficient can be taken as constant for each simulated

region [28]; however, in the transition zones (lumen/intima, intima/media, and

media/adventitia) the attenuation gives great variability. For this reason, we

must average the attenuation coefficient value. It is very important to confirm

that the optimal frequency is approximating the standard central ultrasound

frequency of 40 MHz and that the attenuation coefficient is near the standard

values of biological tissues, which ranges from 0.5 to 1 dB/MHz cm. This result

can be used in different ways: first, to check the used simulation parameters in
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the case of ultrasound frequency and second to find structures of interest when

the attenuation coefficient is known.

1.6.3.4 The Beam Number Influence

Figure 1.31 shows the appearance of several simulated IVUS images when the

original and intermediate beam numbers are changed. We obtained the best

appearance when the original beam number was 80 and the secondary beam

number was 240. In total, 320 beams were used by the simulation. We can see

that the IVUS appearance in the tangential direction is significantly affected by

(a) (b)

(c) (d)

Figure 1.31: Different combinations of original (NH) and intermediate (nh)

beams yield different IVUS appearances.
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the beam number change. The total number of beams for the standard IVUS

equipment is normally between 240 and 360 beams [24].

1.6.4 Real versus Simulated IVUS

In order to compare the real and simulated IVUS images, we have generated 20

synthetic images with morphological structures corresponding to the structures

of a set of real images. We have used a real IVUS image with manually delimited

lumen, intima, and adventitia to obtain the average radius location Rk for each

arterial structure. We applied the optimal frequency of 46 MHz and attenuation

coefficient of 0.8 dB/MHZ cm. Figure 1.32(a) shows an IVUS real image of right

coronary artery, obtained with a 40 MHz Boston Sci. equipment. Figure 1.32(b)

shows a simulated image obtained at the optimal ultrasound simulation fre-

quency of 46 MHz. In the real image, we can observe a guide zone artifact (12

to 1 o’clock) due to the presence of guide; this artifact will not be simulated

in this study. The horizontal ECG baseline appears as an image artifact on the

bottom of the real image. The global appearance of each image region (lumen,

intima, media, and adventitia) and its corresponding interface transitions (lu-

men/intima, intima/media, and media/adventitia) are visually well contrasted,

compared to the real image. A good quantitative global measure for comparison

(a) (b)

Real image Simulated image

Figure 1.32: Real (a) and simulated (b) IVUS images segmentation. ROIs are

given as squares. Manual segmentation of the vessel is given in (a).
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Figure 1.33: Horizontal ((a) and (b)) and vertical directions ((c) and (d))

gray-level profile average projections, from real (Fig. 1.32(a)) and simulated

(Fig. 1.32(b)) IVUS images.

is the average gray-level projection that allows a simple form to find the main

image correlated characteristics in an 1D shape gray-level profile. Gray-level

baseline, video noise, instrumental noise, reticle influence, and the main gray-

level distribution coming from the main arterial structures are roughly visible

from the gray-level average projection. The average gray-level projection gives a

global measure of the similarity between real and simulated images. The similar-

ity measured can be computed, for example, by the local attenuation coefficient

of the projection profile of each ROI [28]. Figure 1.33 gives the projections in

the horizontal and vertical directions for the real (Fig. 1.32(a)) and simulated

(Fig. 1.32(b)) IVUS images. The correlation coefficients mand b (Fig. 1.34) for the

gray-level average projection in the horizontal (m= 0.63, b = 13.53) and vertical

(m= 0.75, b = 9.07) directions show a positive correlation between the real and

simulated data. Figure 1.35 shows two selected regions of interest of the real

(Fig. 1.32(a)) and simulated (Fig. 1.32(b)) images. We can see a good gray-level

distribution and a soft gray-level decay from the center to the peripheries of the

IVUS image, produced by the inverse relation between the ultrasound intensity

and the penetration depth. The other reason is that the normal attenuation is

caused by the scattering intensity given by the tissue impedance. Figure 1.36
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Figure 1.34: Horizontal correlation using (a) versus (b) from Fig. 1.33 and the

vertical global correlation using (c) versus (d) from the same figure.

shows gray-level average projections in the vertical direction ((a) and (c)) and

the horizontal direction ((b) and (d)) of the selected ROIs from Figs. 1.32(a)

and (b). The linear correlation coefficients mand b (Fig. 1.37) for the gray-level

average projection in the horizontal direction (m= 0.87, b = 4.91) and verti-

cal direction (m= 0.85, b = 5.79) show a significant gray-level correspondence

between the real and simulated ROIs image.

Figure 1.35: Real (a) and simulated (b) IVUS image ROIs.
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Figure 1.36: Horizontal ((a) and (b)) and vertical ((c) and (d)) projections of

(Fig. 1.35(a)) and simulated (Fig. 1.35(b)) ROIs IVUS images.

1.6.5 Polar Images

A polar representation of IVUS images offers several advantages: (1) The ROIs

to study are very easy to select, (2) we can compare the artifact generated by the

smoothing procedures, (3) radial and angular comparisons are totally separated,

therefore the transition zones in each direction are very easy to observe. Fig-

ure 1.38 shows real (a) and simulated (c) Cartesian IVUS images and the corre-

sponding real (b) and simulated (d) polar transformations. An ROI was selected

(a) (b)

Figure 1.37: Gray-level average correlation, horizontal simulated (pxs) versus

real projection (px), obtained from Fig. 1.36(a) versus (b), and vertical simulated

(pys) versus real (py) data, from Fig. 1.36(c) versus (d).
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(a)

(c)

(b)

(d)

Figure 1.38: Real (a) and simulated (c) Cartesian images and their correspond-

ing real (b) and simulated (d) polar transformation.

from the real and simulated polar images and the correlation coefficients were

obtained. Figure 1.39(a) shows the gray-level average vertical projection for the

real and simulated ROIs data (delineated in red in Fig. 1.38). We can see that the

gray-level profiles of the transition of arterial structure in the lumen/intima, in-

tima/media, and media/adventitia are very well simulated, the linear correlation

coefficients being m= 0.93 and b = 1.61 (Fig. 1.39(b)). The global horizontal

profile of the polar images along the projection θ (Figs. 1.40(a) and (b)) gives

very important and comparative information about the real and simulated gray-

level average of arterial structures. The information that can be extracted is

relative to the global gray-level distribution. The histogram (Fig. 1.40(b)) of

gray-level differences between the horizontal profiles of real and simulated data

indicates a very good correspondence (mean µ = 8.5 and deviation σ = 10.2).

Figure 1.41(a) shows the global projection in the radial direction (the vertical

profile). We can see a very good correspondence between the gray-level shape

profiles (mean µ = 5.7 and deviation σ = 8.5). The histogram (Fig. 1.41(b)) of

gray-level difference confirms the good correlation between the real and simu-

lated IVUS data.
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(b)(a)

Figure 1.39: Real (blue) and simulated (red) gray-level vertical profile (a) of

ROIs of Fig. 1.38(b) and data correlation (b).

The maximal difference profiles are localized in the transducer sheath gray-

level distribution and the baseline of the transducer sheath inner region. These

differences can be smaller, increasing the video and instrumental noise. The

high-frequency oscillations in the gray-level profiles come from the concentric

arterial structures. We can also observe the gradual reduction of the gray-level

magnitude from intima/media interface to adventitia, caused by the ultrasound

intensity attenuation.

(a) (b)

Figure 1.40: Global projections in the direction θ (a), from Figs. 1.38(b) and

(d) and the corresponding histogram gray-level differences (b).
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Figure 1.41: Global projection in the R direction (c), from Figs. 1.38(b) and (d),

the corresponding histogram gray-level differences are shown in (b).

The next step in the validation of the model is to show the significant corre-

spondence between real and simulated gray-level distribution data in the medi-

cal zones of interest. For this purpose, 20 validated real IVUS images and their

corresponding ROIs were selected. The spatial boundaries of the morphological

structures of the real data are kept in the synthetic data. Figure 1.42(a) shows

ten real IVUS images and their corresponding simulated (b) synthetic images.

The polar images are shown in Fig. 1.43.

Figure 1.44 shows the simulated versus real gray-level correlation for the

polar ROIs images selected as shown in Fig. 1.38. The linear correlation co-

efficients show a good gray-levels correspondence, these being m= 0.90 and

b = 1.42. The best correspondence is located by low gray levels (20–40 gray lev-

els), lumen scatterers, lumen/intima transition, and adventitia. The transitions

of intima/media and media/adventitia (45–60 gray levels) indicate gradual dis-

persion. The CNRS average presents significative uniformity values, µ = 6.89

and σ = 2.88, for all validated frames. The CNRS as figure of merit for each

arterial validated region is shown in Fig. 1.45. The CNRS region mean, standard

deviation, and the SSE values referring to the 20 image frames are summarized

in Table 1.5. The lumen is a good simulated region, with mean µ = 0.46 and

deviation σ = 0.42. The explanation is that the lumen is not a transition zone,

the attenuation ultrasound intensity in this region is very poor (1–2%), which

determines a simple gray-level profile.
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(a) (b)

Figure 1.42: Ten original IVUS images (a) and the corresponding simulated (b)

images.

The histograms of gray-level differences for each region of interest in the

20 validated frames are displayed in Figs. 1.46 and 1.47. Table 1.6 explains

the distribution center µ and the standard deviation σ for the gray-level dif-

ference distribution for each simulated region. The minus sign in the mean

values means that the simulated images are brighter than the real images. A

symmetric Gaussian can be seen in the lumen gray-level differences distribu-

tion, with mean µ = −2.44 and deviation σ = 15.13. The intima distribution has
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Figure 1.43: Ten polar real images (a) and the corresponding simulated

(b) images.

Table 1.5: CNRS mean, standard

deviation (std), and sum square error for

different tissues structures

ROI Mean Std SSE

Lumen 0.46 0.42 47.68
Intima 10.0 4.38 12.63
Media 9.91 5.14 15.05
Adventitia 7.21 2.76 4.28
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Figure 1.44: Simulated versus real gray-level values for 20 ROIs comparing

pixel gray-level and the regression line.

a mean of µ = −18.56 and deviation of σ = 24.01, and the media region has a

mean of µ = −17.82 and a deviation of σ = 22.62. The gray-level differences

distribution displays a light asymmetry. As a result, the simulated image tends

to be brighter than the real image. The adventitia gray-level differences values

show a symmetric distribution with a center of µ = −13.30 and a deviation of

σ = 14.27.

Table 1.6: Mean and deviation of the

ROIs gray-level differences referred from

histograms in Figs. 1.46 and 1.47

ROI µ σ

Blood −2.44 15.13
Intima −18.56 24.01
Media −17.82 22.62
Adventitia −13.30 14.27
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Figure 1.45: CNRS values for each ROI of 20 manually segmented image

frames.

It is very important to note that the gray-level difference distribution ex-

hibited Gaussian distributions for all regions of interest. Certainly, the syn-

thetic image brightness is an open problem of the image formation model.

The simplest approach is to variate it by modifying the original intensity

Io of the ultrasound beam, similar to the offset of the image acquisition

system. Real and simulated gray-level distributions for each region of in-

terest are shown in Figs. 1.48 and 1.49. We can note the great similarity

in the gray-level distributions profile. Figure 1.50 shows the gray-level his-

togram of the different tissues structures that appear in IVUS images. As

expected, it can be seen that the gray-level distributions of different struc-

tures overlap and as a result it is not possible to separate the main regions

of interest in IVUS images, using only the gray-level distributions as image

descriptors.
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Figure 1.46: Histogram of gray-level differences for lumen (a) and intima (b).

Figure 1.47: Histogram of gray-level differences for media (a) and adventitia

(b).

(a) (b)

Figure 1.48: Real (blue) and simulated (red) gray-level distributions for lumen

(a) and intima (b).
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(a) (b)

Figure 1.49: Real (blue) and simulated (red) gray-level distributions for media

(a) and adventitia (b).

Figure 1.50: Simulated gray-level distributions for blood, intima, media, and

adventitia.
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1.7 Conclusions

Although IVUS is continuously gaining in use in practice due to its multiple

clinical advantages, the technical process of IVUS image generation is not known

to doctors and researchers developing IVUS image analysis. This fact leads to

a simplified use, analysis, and interpretation of IVUS images based only on the

gray-level values of image pixels.

In this chapter we discuss a basic physical model to generate synthetic 2D

IVUS images. The model has different utilities: Firstly, an expert can generate

simulated IVUS images in order to observe different arterial structures of clinical

interest and their gray-level distribution in real images. Secondly, researchers

and doctors can use our model to learn and to compare the influence of different

physical parameters in the IVUS image formation, such as the ultrasound fre-

quency, the attenuation coefficient, the beam number influence, and the artifact

generations. Thirdly, this model can generate a large database of synthetic data

under different device and acquisition parameters to be used for validating the

robustness of image processing techniques. The IVUS image generation model

provides a basic methodology that allows us to observe the most important

real image emulation aspects. This initial phase does not compare pixel to pixel

values generation, showing the coincidence with the real image, but looks for a

global comparison method based on gray-level difference distribution. The input

model applies standard parameters that have been extracted from the literature.

Hence this model is generic in the sense that the model allows simulation of dif-

ferent processes, parameters, and makes it possible to compare to real data and

to justify the generated data from the technical point of view.

The model is based on the interaction of the ultrasound waves with a discrete

scatterer distribution of the main arterial structures. The obtained results of the

validation of our model illustrate a good approximation to the image formation

process. The 2D IVUS images show a good correspondence between the arte-

rial structures that generate the image structures and their gray-level values. The

simulations of the regions and tissue transitions of interest lumen, lumen/intima,

intima/media, media/adventitia and adventitia, have been achieved to a satisfac-

tory degree. Interested readers are invited to check the generation model in

http://www.cvc.uab.es/∼misael.
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Questions

1. Which qualitative phenomenon and parameters are possible to observe

using the IVUS technique?

2. Which principles is IVUS data acquisition based on?

3. What are the principal limitations of the IVUS technique?

4. How is the distance to reflecting object by ultrasound technique deter-

mined?

5. What is attenuation coefficient?

6. What are axial and radial resolution?

7. What is the usual IVUS resolution?

8. How many scatterers structures are taken into account by a basic IVUS

image model?

9. How are 1D and 2D echograms generated?

10. What are the steps followed in the generation of an IVUS image?
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Chapter 2

Quantitative Functional Imaging

with Positron Emission Tomography:

Principles and Instrumentation

Koon-Pong Wong1

2.1 Introduction

The last few decades of the twentieth century have witnessed significant ad-

vances in medical imaging, which had been exclusively concerned with conven-

tional film/screen X-ray imaging for more than 75 years after the discovery of

X-ray by Wilhelm Röntgen in 1895. In particular, when Allen Cormack and God-

frey Hounsfield introduced X-ray computed tomography (CT) independently in

the early 1970s [1–3] based on the mathematical foundation laid by Radon [4]

for reconstructing images of an object from its projections, the field of medi-

cal imaging was revolutionized. Imaging with X-ray CT has enabled us to view

noninvasively, for the first time, the anatomic structure of internal organs with

unprecedented precision and to recognize any gross pathology of organs and dis-

eases. This also marked a new era of medical diagnostics with many invasive and

potentially morbid procedures being substituted by noninvasive cross-sectional

imaging.

The breakthrough development of X-ray CT was made possible by contin-

uing advances in instrumentation and computer technologies, which also ac-

celerated the development of other multi-dimensional imaging modalities that

possess a great potential for providing, in addition to morphologic (structural)

1 Department of Electronic and Information Engineering, Hong Kong Polytechnic
University Hung Hom, Kowloon, Hong Kong
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information, dynamic and functional information on biochemical and patho-

physiologic processes or organs of the human body. The importance of studying

organ functions was recognized in the middle of the nineteenth century, but the

actual relationship between physiological disturbances and anatomical lesions

was not yet elucidated. This was partly due to the concept of disease classifi-

cation, which was primarily based on anatomical lesions and causes of disease,

during that period of time.

Recent advances in basic molecular and cell biology have led to a revolu-

tionary change in our understanding of diseases. Instead of defining disease as

structural changes or histopathological abnormality, it can be defined as alter-

nations in cellular behavior that reflect functional changes. It is important to

realize that in living systems, what we call function is a process that evolves

over time as energy is produced during the life cycle or information is trans-

ferred and processed within cells, whereas structure is simply a snapshot of

function at a particular time instant. Indeed, it is very common that in many

diseases structural changes are completely absent, or physiological changes

precede structural changes. A typical example is cancer, which consists of cells

in which malfunctioning transformation has taken place owing to exposure to

some environmental factors (e.g. viruses, bacteria, irradiation, saccharin, and a

variety of chemical substances) that can cause altered membrane characteristics

and cell metabolism, deformed cell morphology, etc. as a result of alternation

in cell functions and damage in genes that control cell proliferation and migra-

tion. It was first hypothesized by Otto Warburg in 1930 that the rate of glucose

metabolism (aerobic glycolysis) in tumors increases with higher degree of ma-

lignancy when compared to normal tissue [5], and this is regarded as one of the

important indicators of tumor proliferation. If these biological characteristics

could be evaluated in vivo, useful information may be obtained to study the

nature of disease early in and throughout its evolution, as well as to identify and

develop effective therapies for treatment. Functional imaging makes it possible

to visualize and measure, with the use of appropriate imaging probes and agents,

these complex pathophysiologic and biochemical processes in a living system

in vivo in multi-dimensional domains (three-dimensional spatial domains plus

a temporal domain).

There is no doubt that substantial progress has been achieved in deliver-

ing health care more efficiently and in improving disease management, and
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that diagnostic imaging techniques have played a decisive role in routine clin-

ical practice in almost all disciplines of contemporary medicine. With further

development of functional imaging techniques, in conjunction with continuing

progress in molecular biology and functional genomics, it is anticipated that we

will be able to visualize and determine the actual molecular errors in a specific

disease within a decade or so, and be able to incorporate this biological infor-

mation into clinical management of that particular group of patients. This is

definitely not achievable with the use of structural imaging techniques.

In this chapter, we will take a quick tour of a functional imaging technique

called positron emission tomography (PET), which, in conjunction with single-

photon emission computed tomography (SPECT), is commonly known as emis-

sion computed tomography. PET is a primer biologic imaging tool, being able

to provide in vivo quantitative functional information in most organ systems

of the body. In the following sections, an overview of this imaging technique is

provided, including the basic principles and instrumentation, methods of image

reconstruction from projections, some specific correction factors necessary to

achieve quantitative images, as well as basic assumptions and special require-

ments for quantitation. Paradigms based on the framework of tracer kinetic

modeling for absolute quantification of physiological parameters of interest are

also introduced. However, as they deem inappropriate for inclusion in this book,

topics on hardware technologies (e.g. display and archival units, data-acquisition

computer system, electronics circuitry, array processors, etc.) of a PET system,

operating principles of a cyclotron, as well as design and development of radio-

pharmaceuticals are not discussed in this chapter.

2.2 A Brief History of PET

The development of PET has involved efforts of investigators from diverse dis-

ciplines and spanned almost the whole twentieth century. At the turn of the

twentieth century, Ernest Rutherford and Frederick Soddy (who coined the

term isotope) reported their studies on the nature and cause of radioactivity in

McGill University [6]. Their work on radioactive half-life and exponential de-

cay is the foundation for medical applications of radioisotopes, including the

breakthrough development of emission computed tomography.



60 Wong

The existence of positively charged electrons (positrons) was postulated

by Paul Dirac in 1928, based on Einstein’s theory of relativity and the equa-

tions of quantum mechanics [7]. It was first observed experimentally by Carl

Anderson in 1932 [8], for which he was awarded the Nobel Prize for Physics

in 1936. The phenomenon of positron annihilation that gives rise to gamma

rays was observed by Joliot [9] and Thibaud [10] in 1933. It was shown later

that, in general, two photons are simultaneously emitted in almost exactly op-

posite directions whenever a positron passes through matter [11]. The use of

positron emitters for medical imaging purposes was first suggested by Wrenn

et al. [12] and Sweet [13] in the early 1950s. The first successful positron imag-

ing device was described by Brownell and Sweet [14]. The system was used

for two-dimensional imaging of positron-emitting radionuclides (copper-64 and

arsenic-75) distribution to locate brain tumors in human, using a pair of NaI(Tl)

detectors. In 1963, Kuhl and Edwards introduced the concept of transverse- and

longitudinal-section scanning with single-photon emitting radionuclides [15] and

a device (Mark IV scanner), which consisted of a square array of 32 NaI(T1) de-

tectors, was built later for constructing images by superimposing multiple cross

sections of transverse axial scans [16]. Although the reconstruction method

was very primitive and the reconstructed images were severely blurred, the

development of PET was accelerated by the introduction of transverse axial

X-ray CT for radiography by Cormack and Hounsfield [1–3]. There have also

been a number of techniques developed for performing emission tomography

during the early 1970s [17–19], but all of these approaches were limited by inade-

quate mathematical reconstruction algorithms, insufficient angular sampling fre-

quency, image distortions due to photon attenuation and some other statistical

limitations.

The first positron computed tomograph was developed in 1975 by Ter-

Pogossian et al. [20]. This system was referred to as positron emission transax-

ial tomography (PETT II), which consisted of a hexagonal array of NaI(T1)

detectors connected in coincidence between opposite pairs. The filtered-

backprojection (FBP) reconstruction method was adopted in that system, and

the quality of the reconstructed images was markedly improved. The first whole-

body positron computed tomograph (PETT III) was developed shortly thereafter

and it was used in human studies [21–24]. This system was subsequently re-

designed and manufactured by EG&G/ORTEC as the commercial PET scanner,

ECAT [25].
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2.3 Modes of Decay

The nucleus of an atom contains both protons and neutrons, which are col-

lectively known as nucleons. In a stable nucleus, the number of protons and

neutrons is such that the repulsive electrostatic force between the positively

charged protons is balanced by the very strong attractive nuclear forces which

act on all nucleons. It is possible to create unstable isotopes which have an ex-

cess number of protons using nuclear reactors or cyclotrons. These proton-rich

(or neutron-deficient) isotopes can have two means of decay that will reduce

the excess positive charge on the nucleus: (1) electron capture and (2) positron

emission.

If the nucleus does not have sufficient energy to decay by positron emission

(to be described next), it will decay by electron capture, whereby the nucleus

captures one of the orbital electrons from the inner shells and combines this

with the proton to form a neutron, while the vacancy in the inner electron shell is

immediately filled by an electron from a higher energy shell, resulting in emission

of characteristics X-rays whose energies are carried off by the neutrino:

A
Z X + e− −→ A

Z−1Y + ν (2.1)

where Z represents the atomic number of the atom X, A is the mass number,

e− is an electron, and ν is a neutrino, which has a very small mass and zero

charge. Electron capture occurs in heavier proton-rich nuclides with higher

likelihood due to the closer proximity of the inner (usually K or L) shell electrons

to the nucleus and the greater magnitude of the Coulombic attractive force

from the positive charges. The characteristics X-ray energy increases with the

mass number of the nuclides. For example, the decay of 125I produces 27 keV

characteristics X-ray which is used for in vitro counting, whereas the decay of
201Tl produces characteristics X-rays ranged from 68 to 80 keV which are used

in gamma-camera imaging.

The major radioactive decay mechanism for positron emitters used in PET

is positron emission, whereby a proton in the nucleus is transformed into a

neutron and a positron. The positron (β+) has exactly the same mass and same

magnitude of charge as the electron except that the charge being carried is

positive. The nuclear equation for positron emission can be written as

A
Z X −→ A

Z−1Y + β+ + ν (2.2)
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Table 2.1: Properties of some commonly used positron-emitting isotopes

β+ Emax Half-life Range
Radionuclide Production fraction (MeV)a (min) (mm)b

Carbon-11 (11C) Cyclotron 0.99 0.96 20.4 0.28
Fluorine-18 (18F) Cyclotron 0.97 0.64 109.7 0.22
Nitrogen-13 (13N) Cyclotron 1.00 1.19 9.96 0.45
Oxygen-15 (15O) Cyclotron 1.00 1.72 2.07 1.04
Gallium-68 (68Ga) Cyclotron 0.89 1.90 68.3 1.35
Rubidium-82 (82Rb) Generator 0.96 3.35 1.25 2.6

a Emax=maximal positron energy.
b Approximated distance that a positron traveled before annihilation, expressed in full width at half

maximum (FWHM).

For positron emission to be energetically feasible, the total energy difference

between the parent and the daughter states should be at least 1.022 MeV, which

is the energy equivalent of a positron and an electron, according to Einstein’s

energy–mass equivalence: E = mc2. The energy difference between the parent

and the daughter states is shared between the positron and the neutrino. In other

words, the emitted positrons have a spectrum of energies, whose maximum is

given by

Emax = E(A
Z X)− E( A

Z−1Y)− 1.022 MeV. (2.3)

Typically, the likelihood of positron emission is higher for elements with lower

atomic number, but for proton-rich nuclei with intermediate atomic number both

decay modes are competing with each other. Table 2.1 lists some commonly

used positron-emitting isotopes and their properties. Positron emitters are of

special interest in medicine because the main elements (e.g. carbon, oxygen and

nitrogen) that constitute living organisms have isotopes that emit positrons. The

only exception is hydrogen for which fluorine-18 is an analogue.

2.4 Positron Annihilation

The positron will have some initial energy after emission from the parent nu-

cleus. It travels a short distance from the nucleus, scatters and collides with

loosely bound electrons nearby before fusing with one of them to form positro-

nium (which has a very short half-life, ≈10−7 s) and then annihilates. Their
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Figure 2.1: Positron emission and annihilation. A positron is emitted from a

proton-rich nucleus, losing energy by scattering from atomic electrons in tissue

before annihilating with an electron to produce two 511 keV photons (or gamma

rays) which are moving 180◦ (±0.25◦ FWHM) apart.

mass converts into energy in the form of two 511 keV photons, which are in-

distinguishable from gamma rays. To simultaneously conserve both momentum

and energy, the photons are emitted 180◦ to each other. Figure 2.1 shows the

positron annihilation and the emission of two 511 keV photons. The detection

of these two 511 keV photons forms the basis of PET imaging.

2.5 Coincidence Detection

Since the probability that both 511 keV photons will escape from the body with-

out scattering is very high in general, the line along which the positron annihi-

lation occurred (i.e. the line of response, LoR) can be defined if both photons

can be detected with two detectors at opposite ends of the line, as illustrated in

Fig. 2.2. As the distance that a positron traveled before annihilation is generally

very small, this is a good approximation to the line along which the emitted pho-

tons must be located. The scheme for detection of photon emissions is called
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Figure 2.2: Annihilation coincidence detection. The two gamma-ray detectors

are placed at the opposite ends of the object to detect the photons that originate

from the positron annihilation site. The event is registered if the annihilation

occurs within the region of coincidence detection of the detector pairs. If the

gamma rays originate outside the region of coincidence detection of the two

detectors but only one of the photons is detected, the event is not registered as

the detection of a single photon violates the condition of coincidence.

coincidence detection [21], which is unique to PET imaging. It should be noted,

however, that the condition of coincidence (or simultaneity) is not achievable in

practice, and a coincidence resolving time (or a coincidence timing window)

of less than 15 ns is often used to account for differences in arrival times of the
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two gamma rays, time taken to produce scintillation light in the detector, and

time delays in the electronic devices in the PET system.

Once the signal leaves the detector module, it is processed by several elec-

tronic circuits. The choice of components depends upon the application and,

therefore, there are many ways to implement the coincidence detection circuitry.

A simplified schematic representation of detecting coincidence events with two

detectors is also shown in Fig. 2.2. The output signal from each detector is fed

into a pulse generator. Note that the signal amplitude from the two detectors (VA

and VB) may not be the same due to incomplete deposition of photon energies

or variation in efficiency among the detectors. In addition, there exists a time

difference between the detectors to react upon the photons arrival, and a finite

reaction time for the electronic devices to response, resulting in difference in

the time t1 and t2 at which the amplitude of the signal crosses a certain fixed

voltage level (VT ), which triggered the pulse generator to produce a narrow

pulse. The narrow pulse is then fed into the gate-pulse generator where a pulse

of width 2τ (coincidence timing window) is generated for individual detectors.

A coincidence detection circuit is then used to check for a logical AND between

the incoming pulses. For the example shown in Fig. 2.2, there is a pulse over-

lap between two signals produced by the gate-pulse generators. Therefore, the

event is a true coincidence which is regarded as valid and is registered. It is

easy to see that if t2 − t1 ≥ 2τ , the event is not in coincidence, and thus it is not

recorded by the coincidence detection circuit.

2.6 Coincidence Criteria

In general, an event (positron annihilation/photon emissions) is regarded as valid

and is registered by the coincidence detection circuit if the following criteria

are satisfied [26, 53]:

� two photons are detected within a predefined coincidence window,

� the LoR formed between the two photons is within a valid acceptance

angle of the tomograph, and

� the energy deposited in the crystal of the detector by both photons is within

the selected energy window.

Such coincident events are often referred to as prompt events.
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2.7 Detectors

To image the distribution of positron-emitting isotope in the body, both of the 511

keV photons emitted from positron annihilation must be detected in coincidence.

Unlike other instruments used in nuclear medicine, PET uses electronic rather

than lead collimators to detect signal (event) results from annihilation of the

positron and an electron. The probability of detecting both photons depends

on the detector efficiency, which is strongly related to the stopping power of

the scintillator and the thickness of the scintillator used in the detector. Early

generation of PET scanners used NaI(Tl) crystals, the same material used in

gamma camera. Modern PET scanners use much denser scintillators, such as

bismuth germanate oxide (BGO) [27], which has been the scintillator of choice

for more than two decades due to its very high density and stopping power for

the 511 keV gamma rays. In order to provide higher detection efficiency and

spatial resolution with lower production cost, a number of detector designs

were proposed in the 1980s and the most successful one was the block detector

technique proposed by Casey and Nutt, using BGO crystal [28]. A typical BGO

block detector comprises a rectangular block consisting of between 6× 8 and

8× 8 individual scintillation crystals, attached to an array (usually 2× 2) of

photomultiplier tubes (PMTs) at which the scintillation light is amplified and

converted into electrical signal for the coincidence detection circuit to register.

A schematic outline of such a block detector is shown in Fig. 2.3. The BGO

element in which a gamma ray interacts is determined by the relative light output

Scintillator
array

PMTs X =
P1 + P2 - P3 - P4

P1 + P2 + P3 + P4

Y =
P1 - P2 + P3 - P4

P1 + P2 + P3 + P4

Figure 2.3: Schematic diagram of a BGO block detector commonly used in

commercial PET systems.
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from the four PMTs. Anger-logic is used to obtain the X and Y positions based

on the four PMT outputs Pi:

X = P1 + P2 − P3 − P4

P1 + P2 + P3 + P4
(2.4)

Y = P1 − P2 + P3 − P4

P1 + P2 + P3 + P4
(2.5)

The combined BGO block/photomultiplier system has an approximately cubic

spatial resolution of 4 mm full-width-at-half-maximum and coincidence timing

window of approximately 12 ns.

As seen from Fig. 2.2, the probability that the annihilation event occurs ex-

actly within the region of coincidence detection and is recorded by the detectors

is very small because most gamma rays may travel out of the region of coinci-

dence detection even if the annihilation event occurs within that region. This

probability can be increased by using a ring of detectors within which any detec-

tor is in coincidence with all other detectors located at the opposite side of the

ring. With the use of multiple rings of detectors, the probability of coincidence

detection is further increased because coincidences can be detected by other

rings of detectors if they cannot be recorded by the plane of the ring within

which the annihilation events occur. The device that used to detect the 511 keV

gamma rays emitted from annihilation and construct a map of radiopharma-

ceutical distribution inside the body is called tomograph (or scanner), which

usually has multiple rings of detectors surrounding the patient.

2.8 Detected Events

Ideally the only prompt events registered by the detectors are those which arise

from “real” positron annihilation. However, a number of other unwanted events

that satisfied the coincidence criteria are also registered. The detection of un-

wanted events causes noise and degradation in spatial resolution. Therefore,

their correction is essential to improve the quantification. In general, five types of

event can be detected by PET scanner, and four of them are illustrated in Fig. 2.4.

A true coincidence refers to an event that two photons are emitted back-

to-back from a single positron–electron annihilation, and are detected simulta-

neously by opposing detectors within the region of coincidence detection and

within the coincidence timing window of the system.
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(A) (B)

(C) (D)

Figure 2.4: Types of coincidence event recorded by a full-ring PET system.

The white circle indicates the site of positron annihilation, and the solid line

represents the gamma ray, (A) true coincidence, (B) scattered coincidence, (C)

random (or accidental) coincidence, and (D) multiple coincidence. The mispo-

sitioned line of response is indicated by the dashed line.

Scattered coincidence occurs when one or both of the emitted photons un-

dergo a Compton scatter interaction in tissue. Compton scattering causes a loss

in energy of the photon and change in direction of the photon. Since the direction

is changed, the origin where the photons were emitted cannot be located cor-

rectly and, as a result, the event is mispositioned, leading to decreased contrast

and deteriorated quantification.

A random (or accidental) coincidence occurs when two unrelated photons,

which have not originated from the same site of positron annihilation, strike

opposing detectors within the coincidence timing window. Since the random

events are produced by photons emitted from unrelated decays, they are spa-

tially uncorrelated with the activity distribution. The random coincidences are
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a source of noise, the rate of which is approximately proportional to the square

of the activity in the field of view (FOV). The performance of PET scanner for

high count rate studies is degraded and therefore, correction for randoms is

necessary.

Multiple events are similar to random events, except that three photons

originated from two positron annihilations are detected within the coincidence

timing window. Because of the ambiguity in positioning the event, these coinci-

dences are normally discarded.

A single event for which only one photon is emitted is also possible due to

some physical factors. The single events are usually rejected by the coincidence

detection circuit since detection of only one event within the timing window

violate the condition of coincidence. Yet in practice, about 1–10% of single events

are converted into paired coincidence events.

2.9 Data Acquisition

Most of the modern PET tomographs are capable of acquiring data in two

different modes: two-dimensional (planar) acquisition with septa in-place and

three-dimensional (volumetric) acquisition with septa retracted, exposing the

detectors to oblique and transaxial annihilation photon pairs. Both modes of

configuration for data acquisition are shown in Fig. 2.5. In two-dimensional

imaging, each ring of detectors is separated by septa made of lead or tungsten.

The main aim is to keep the scatter and random coincidence event rates low so

as to minimize the cross-talk between rings. However, in doing so, the sensitivity

of the scanner is drastically reduced. Three-dimensional acquisition can be used

to improve the sensitivity by removing the interplane septa, thus allowing coin-

cidences that happened within all rings of detector to be detected. Although the

sensitivity of the scanner is increased, higher fraction of scattered and random

coincidences and substantial dead time are more apparent.

In a tomograph, each detector pair records the sum of radioactivity along

a given line (i.e. the line integral or projection) through the body. The data

recorded by many millions of detector pairs in a given ring surrounding the body

is stored in a two-dimensional (projection) matrix called sinogram, as shown

in Fig. 2.6(B) and Fig. 2.6(A) shows how data is acquired in two-dimensional

mode. Each point in the sinogram represents the sum of all events detected with
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(A)

(B)

Figure 2.5: (A) Axial cross-section of a PET scanner with septa in-place for

two-dimensional data acquisition. (B) Axial cross-section of a PET scanner with

septa retracted for three-dimensional data acquisition.
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Figure 2.6: Schematic diagram showing how projection data is acquired (A)

and stored in the sinogram (B) for two-dimensional PET imaging.
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a particular pair of detectors, and each row represents the projected activity of

parallel detector pairs at a given angle relative to the detector ring. In other

words, if p represents the sinogram and p(r, θ) represents the value recorded

at the (r, θ) position of p, then p(r, θ) represents the total number of photon

emissions occurring along a particular line joining two detectors at a distance

r from the center of the tomograph, viewed at an angle θ with respect to the

y-axis (or the x-axis, depending on how the coordinate system is chosen) of

the tomograph. However, the sinogram provides only little information about

the radiopharmaceutical distribution in the body. The projection data in the

sinogram has to be reconstructed to yield an interpretable tomographic image.

2.10 Image Reconstruction

The goal of image reconstruction is to recover the radiotracer distribution from

the sinogram. The reconstruction of images for the data acquired with the two-

dimensional mode is simple, while the reconstruction of a three-dimensional

volumetric PET data is more complicated, but the basic principles of recon-

struction are the same as those for the two-dimensional PET imaging. We focus

the discussion on the two-dimensional PET image reconstruction for simplicity.

A more thorough discussion of three-dimensional data acquisition and image

reconstruction can be found elsewhere [29].

The theory of image reconstruction from projections was developed by

Radon in 1917 [4]. In his work, Radon proved that a two-dimensional (or

three-dimensional) object can be reconstructed exactly from its full set of one-

dimensional projections (two-dimensional projections for three-dimensional ob-

ject). In general, image reconstruction algorithms can be roughly classified into

(1) Fourier-based and (2) iterative-based.

2.10.1 Fourier-Based Reconstruction

The Radon transform defines a mathematical mapping that relates a two-

dimensional object, f (x, y), to its one-dimensional projections, p(r, θ), mea-

sured at different angles around the object [4, 30]:

p(r, θ) =
∫ ∞

0
f (x, y) dlr,θ (2.6)
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where

r = x cos θ + ysin θ (2.7)

and lr,θ represents a straight line that has a perpendicular distance r from the

origin and is at an angle θ with respect to the x-axis. It can be shown that an

object can be uniquely reconstructed if its projections at various angles are

known [4, 30]. Here, p(r, θ) is also referred to as line integral. It can also be

shown that the Fourier transform of a one-dimensional projection at a given

angle describes a line in the two-dimensional Fourier transform of f (x, y) at

the same angle. This is known as the central slice theorem, which relates the

Fourier transform of the object and the Fourier transform of the object’s Radon

transform or projection. The original object can be reconstructed by taking

the inverse Fourier transform of the two-dimensional signal which contains

superimposed one-dimensional Fourier transform of the projections at different

angles, and this is the so-called Fourier reconstruction method. A great deal of

interpolation is required to fill the Fourier space evenly in order to avoid artifacts

in the reconstructed images. Yet in practice, an equivalent but computationally

less demanding approach to the Fourier reconstruction method is used which

determines f (x, y) in terms of p(r, θ) as:

f (x, y) =
∫ π

0

∫ ∞

−∞
p(r, θ) ψ(r − s) ds dθ (2.8)

where ψ(r) is a filter function that is convolved with the projection function

in the spatial domain. Ramachandran and Lakshminarayanan [31] showed that

exact reconstruction of f (x, y) can be achieved if the filter function ψ(r) in

equation (2.8) is chosen as

	{ψ} =
{
|ω| if ω ≤ ω◦
0 otherwise

(2.9)

where 	{ψ} represents the Fourier transform of ψ(r) and ω◦ is the highest

frequency component in f (x, y). The filter function ψ(r) in the spatial domain

can be expressed as:

ψ(r) = 2ω2
◦

(
sin 2πω◦r

2πω◦r

)
− ω2

◦

(
sin πω◦r

πω◦r

)2

(2.10)

This method of reconstruction is referred to as the filtered-backprojection, or
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the convolution-backprojection in the spatial domain. The implementation of

FBP involves four major steps:

1. Take the one-dimensional Fourier transform for each projection.

2. Multiply the resultant transformation by the frequency filter.

3. Compute the inverse Fourier transform of the filtered projection.

4. Back-project the data for each projection angle.

However, the side effect of the ramp filtering using equation (2.9) is that

high-frequency components in the image that tend to be dominated by statis-

tical noise are amplified [32]. The detectability of lesion or tumor is therefore

severely hampered by this noise amplification during reconstruction by FBP,

particularly when the scan duration is short or the number of counts recorded is

low. To obtain better image quality, it is desirable to attenuate the high-frequency

components by using some window functions, such as the Shepp–Logan or

the Hann windows, which modify the shape of the ramp filter at higher fre-

quencies [33]. Unfortunately, the attenuation of higher frequencies in filtering

process will degrade the spatial resolution of the reconstructed images, and we

will briefly discuss it in Section 2.13.

2.10.2 Iterative Reconstruction

Alternatively, emission tomographic images can be reconstructed with iterative

statistical-based reconstruction methods. Instead of using an analytical solu-

tion to produce an image of radioactivity distribution from its projection data,

iterative reconstruction makes a series of image estimates, compares forward-

projections of these image estimates with the measured projection data and

refines the image estimates by optimizing an objective function iteratively until

a satisfactory result is obtained. Improved reconstruction compared with FBP

can be achieved using these approaches, because they allow accurate modeling

of statistical fluctuation (noise) in emission and transmission data and other

physical processes [34, 35]. In addition, appropriate constraints (e.g. nonnega-

tivity) and a priori information about the object (e.g. anatomic boundaries) can

be incorporated into the reconstruction process so that better image quality can

be achieved [36, 37].
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An iterative reconstruction algorithm consists of three components: (1) a

data model which describes the data and acquisition artifacts, (2) an objective

function that quantifies the agreement between the image estimate and the mea-

sured data, and (3) an optimization algorithm that determines the next image

estimate based on the current estimate. The measured data can be modeled by

p = Cλ (2.11)

where p = {pj, j = 1, 2, . . . , M} is a vector containing values of the measured

projection data (i.e. sinogram); λ = {λi, i = 1, 2, . . . , N} is a vector containing

all the voxel values of the image to be reconstructed; and C = {Cij} is a transfor-

mation (or system) matrix which defines a mapping (forward-projection) from f

to p. The elements of the matrix Cij is the probability that a positron annihilation

event that occurred at voxel i is detected at projection ray j. Other physical pro-

cesses such as nonuniform attenuation and scattered and random effects can be

incorporated into the data model in the form of additive noise that corrupted the

acquired projection data. Detailed discussion of more complex data models is

considered beyond the scope of this chapter. The objective function can include

any a priori constraints such as nonnegativity and smoothness. Depending on

the assumed number of counts, the objective function can include the Poisson

likelihood or the Gaussian likelihood for maximization. The iterative algorithm

seeks successive estimates of the image that best match the measured data and

it should converge to a solution that maximizes the objective function, with the

use of certain termination criteria.

Iterative reconstruction methods based on the maximum-likelihood (ML)

have been studied extensively, and the expectation maximization (EM) algo-

rithm [38, 39] is the most popular. The ML-EM algorithm seeks to maximize the

Poisson likelihood. In practical implementation, the logarithm of the likelihood

function is maximized instead for computational reasons:

L(p|λ) =
M∑

j=1

[
ln

(
N∑

i=1

Cijλi

)
−

N∑
i=1

Cijλi

]
(2.12)

The EM algorithm updates the image values by

λk+1
i = λk

i∑M

j′=1 Cij′

M∑
j=1

Cij

pj∑N

i′=1 Ci′ jλ
k
i′

(2.13)
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where λk and λk+1 are the image estimates obtained from iterations k and k+ 1,

respectively. The ML-EM algorithm has some special properties:

� The objective function increases monotonically at each iteration, i.e.

L(p|λk+1) ≥ L(p|λk).

� The estimateλk converges to an image λ̃ that maximizes the log-likelihood

function for k →∞ and

� All successive estimates λk are nonnegative if the initial estimate is non-

negative.

The major drawback of iterative reconstruction methods, however, has been

their excessive computational burden, which has been the main reason that

these methods are less practical to implement than FBP. Considerable effort has

been directed toward the development of accelerated reconstruction schemes

that converge much rapidly. The ordered subsets EM (OS-EM) algorithm pro-

posed by Hudson and Larkin [40] which subdivides the projection data into

“ordered subsets” has shown accelerated convergence of at least an order of

magnitude as compared to the standard EM algorithm. Practical application of

the OS-EM algorithm has demonstrated marked improvement in tumor detec-

tion in whole-body PET [41].

A problem with iterative reconstruction algorithms is that they all produce

images with larger variance when the number of iterations is increased. Some

forms of regularization are required to control the visual quality of the recon-

structed image. Regularization can be accomplished by many different ways,

including post-reconstruction smoothing, stopping the algorithm after an ef-

fective number of reconstruction parameters (number of iterations and sub-

sets for OS-EM), and incorporation of constraints and a priori information

as described earlier. However, caution should be taken when using regular-

ization because too much regularization can have an adverse effect on the

bias of the physiologic parameter estimates obtained from kinetic modeling,

which will be described later in this chapter. Nevertheless, with the develop-

ment of fast algorithm and the improvement in computational hardware, ap-

plication of iterative reconstruction techniques on a routine basis has become

practical.
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2.11 Data Corrections

Since one of the unique features of PET is its ability to provide quantitative

images that are directly related to the physiology of the process under study,

accurate data acquisition and corrections are required before or during the re-

construction process in order to achieve absolute or relative quantification.

2.11.1 Detector Normalization

A modern PET scanner consists of multiple rings of many thousands of detector.

It is not possible that all detectors have the same operation characteristics due

to differences in exact dimensions of the detectors, the optical coupling to the

PMTs, and the physical and geometrical arrangement of the detectors. In other

words, it means that different detector pairs in coincidence will register different

counts when viewing the same emitting source. Therefore, the entire set of

projection data must be normalized for differences in detector response. The

normalization factors can be generated for each coincidence pair by acquiring

a scan in the same way as blank scan, with a rotating rod source of activity

orbits at the edge of the FOV of the gantry. Adequate counts must be acquired to

prevent noise propagation from the normalization scan into the reconstructed

image.

2.11.2 Dead-Time Correction

During the period when a detector is processing the scintillation light from a

detected event, it is effectively “dead” because it is unable to process another

event. Since radioactive decay is a random process, there is a finite probabil-

ity that an event occurs at a given time interval. If an event occurs during the

interval when the detector is “dead,” it will be unprocessed, resulting in a loss

of data. Such loss of data is referred to as dead-time loss. As count rate in-

creases, the probability of losing data due to dead-time increases. Dead-time

losses are not only related to the count rates but also depend upon the analog

and digital electronic devices of the system. To correct for dead-time, one can

plot the measured count rate of a decaying source over time. If the source is

a single radionuclide, one can calculate the count rate from the half-life of the
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radionuclide and plot this against the measured count rate. Such a plot is linear

at low radioactivity (hence low count rate), but nonlinearity is apparent when

the count rate increases because the measured number of counts will be less

than the expected number. The ratio of the measured to the expected number

of counts will give an estimate of dead-time.

2.11.3 Scatter Correction

Compton scattering is one of the major factors that limits the quantitative accu-

racy of PET and SPECT. Some degree of scatter rejection can be accomplished,

using scintillation detectors of higher density so that the number of photoelec-

tric interactions can be maximized. However, Compton scattering of photons is

unavoidable within human tissue, causing the location of the positron annihi-

lation to be mispositioned. This leads to a relatively uniform background and

reduction in image contrast and signal-to-noise ratio. For two-dimensional data

acquisition, the contribution of scatter to the reconstructed image is moderate

and in many cases it is ignored. In three-dimensional imaging, 35–50% of detected

events are scattered and correction is essential. There are four major categories

of scatter correction methods:

� empirical approaches that fit an analytical function to the scatter tails

outside the object in projection space [42], and a direct measurement

technique that takes the advantage of differences between the scatter

distribution with septa in-place and the scatter distribution with septa

retracted [42];

� multiple energy window techniques which make use of energy spectrum

to determine a critical energy above which only scattered photons are

recorded [43];

� convolution or deconvolution methods which model scatter distribution

with an integral transformation of the projections recorded in the photo-

peak window [44], and

� simulation-based methods which model the scatter distribution based on

Monte Carlo simulation [45].

Details of all these methods are beyond the scope of this text.
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2.11.4 Randoms Correction

As mentioned before, the basis of PET imaging is the coincidence detection

scheme, which registers a coincidence event (as well as LoR) if two photons

are detected within the coincidence timing window. This finite timing window

(typically 12 ns for BGO), however, cannot prevent the coincidence detectors

from registering random events that occur when two unrelated photons do not

originate from the same site of positron annihilation. The rate of registering ran-

dom coincidences by a detector pair relates to the rate of single events on each

detector and the width of the timing window. The random rate for a particular

LoR, Rij , for a given pair of detectors i and j is

Rij = 2τ × Si × Sj (2.14)

where Si and Sj are the rate of single events of detector i and detector j, and 2τ

is coincidence timing window. As the radioactivity increases, the event rate in

each detector also increases. The random event rate will increase as the square

of the activity and therefore correction for random coincidences is essential.

The most commonly used method for estimating the random coincidences

is the delayed coincidence detection method which employs two coincidence

detection circuits with an offset inserted within their coincidence timing win-

dows. The first coincidence detection circuit (called prompt circuit) is used to

measure the prompt coincidences, which equal the sum of the true coincidences

and the random coincidences. The second circuit is set up with an offset which

is much longer than the time width of the coincidence window. Because of the

offset in timing window, the second circuit records the so-called delayed coinci-

dences which are random events, whereas all true coincidences are effectively

discarded. To correct for random coincidences, the counts obtained from the

delayed circuit are subtracted from those obtained from the prompt circuit. The

resultant prompt events are then the “true” coincidences. However, because

the random events obtained from the first circuit are not exactly the same as

those obtained from the delayed circuit, subtraction of random events increases

the statistical noise.

2.11.5 Attenuation Correction

One of the most important data correction techniques for PET (and also SPECT)

studies is the correction for attenuation. Although the basic principles of image
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reconstruction in emission computed tomography (PET and SPECT) are the

same as transmission tomography (X-ray CT), there is a distinct difference in

these two modalities on the data to be reconstructed. In X-ray CT, image recon-

struction gives attenuation coefficient distribution of a known source while scat-

tering is usually ignored. In PET (and SPECT), image reconstruction provides

the number of photon emissions from unknown sources at unknown positions,

and the photons have gone through attenuation by unknown matter (tissue)

before they are externally detected. Therefore, attenuation correction factors

must be estimated accurately to recover the original signals.

Attenuation occurs when high-energy photons emitted by the radiopharma-

ceutical in the patient are scattered and/or absorbed by the matter (tissue) be-

tween the detector and the emission site of the photon(s). The fraction of photon

absorbed depends on a number of factors, including density and thickness of

the intervening tissue, and photon energy. Typically, the attenuation coefficients

(at 511 keV) for bone, soft tissue, and lungs are 0.151 cm−1, 0.095 cm−1, and

0.031 cm−1, respectively.

Mathematically, the fraction of photons that will pass through a matter with

linear attenuation coefficient µ is:

� = exp (−µx) (2.15)

where x is the thickness of the matter. If the matter is made up of different

materials, then the total fraction of photons that passes through the matter

would be the sum of the attenuation coefficients for each material multiplied by

the thickness of the material that the photons pass through:

� = exp

(
−

∑
i

µi xi

)
(2.16)

where µi is the attenuation coefficient of the ith material and xi is the thickness

of the ith material that the photons pass through. Accordingly, if a detector mea-

sures N◦ counts per unit time from a source without attenuation (for example,

in air, where the attenuation coefficient is close to zero), the attenuated counts,

N, after placing a matter with varying linear attenuation coefficient in between,

is:

N = N◦ exp
(
−

∫ d

0
µ(x)dx

)
(2.17)

where µ(x) is a distance-dependent attenuation coefficient function which
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accounts for the varying attenuation within the matter, and d is the distance

between the source and the detector (in cm). Therefore, in PET and SPECT,

attenuation artifacts can cause a significant reduction in measured counts, par-

ticularly for deep structures. For example, attenuation artifacts can resemble

hypoperfusion in the septal and inferior–posterior parts of the myocardium in

cardiac PET or SPECT study. Failure to correct for attenuation can cause se-

vere error in interpretation and quantitation. As the attenuation coefficient varies

with different tissue types, the extent of photon attenuation/absorption will also

vary even though the distance between the emission site of the photons and the

detector remains unchanged. Therefore, spatial distribution of attenuation co-

efficients, i.e. an attenuation map, is required for each individual patient in order

to correct for photon attenuation accurately.

Consider the attenuation in an object whose total thickness is D, measured

along the LoR, and the attenuation coefficient is µ, as shown in Fig. 2.7. If the

annihilation event occurs at position x, measured along the LoR, then the prob-

abilities for the two gamma rays to reach the opposing detectors are e−µ(D−x)

and e−µx, respectively. The probability of registering the coincidence event is

the product of the probabilities of detection of the gamma rays by the opposing

detectors, i.e. e−µ(D−x) · e−µx ≡ e−µD , which is independent of the source posi-

tion, x. This remains true when the attenuation coefficient is not uniform within

the cross-section of the body. Thus, the attenuation is always the same even if

the source position is outside the object.

The measured projection data will differ from the unattenuated projection

data in the same fashion. Suppose µ(x, y) denotes the attenuation coefficient

D− xx

D

Object

DetectorDetector

Figure 2.7: Attenuation of the gamma rays in an object for a given line of

response.
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map of the object, the general equation for the attenuated projection data can

be described by the attenuated Radon transform

pm(r, θ) =
∫ ∞

0
f (x, y) exp

(
−

∫ l(x,y)

0
µ(x′, y′)ds

)
dlr,θ (2.18)

where pm(r, θ) is the measured projection data, l(x, y) is the distance from the

detector to a point (x, y) in the object, while lr,θ and r have the same definitions

as in equations (2.6) and (2.7). It should be noted that unlike the unattenuated

Radon transform as in equation (2.6), there is no analytical inversion formula

available for equation (2.18).

The attenuation correction in PET is simpler and easier as compared to

SPECT due to the difference in the photon detection schemes. In SPECT, the

attenuation depends not only on the source position, but also on the total path

length that the photon travels through the object. It is not straightforward to

correct for attenuation or find an inversion of equation (2.18) for image recon-

struction. On the contrary, the attenuation in PET is independent of the source

position because both gamma rays must escape from the body for external

detection and the LoR can be determined. Therefore, the exponential term in

equation (2.18) can be separated from the outer integral. The unattenuated pro-

jection data and the measured projection data can then be related as follows:

pm(r, θ) = p(r, θ) pµ(r, θ) (2.19)

where p(r, θ) is the unattenuated projection data, and

pµ(r, θ) = exp
(
−

∫ ∞

0
µ(x, y) dlr,θ

)
(2.20)

is the projection data of the attenuation map. Therefore, if the attenuation coeffi-

cient map µ(x, y) or its projection data pµ(r, θ) is known, then the unattenuated

projection data p(r, θ) of the object can be calculated as:

p(r, θ) = pm(r, θ)
pµ(r, θ)

(2.21)

and f (x, y) can then be reconstructed without attenuation artifacts.

Since the attenuation is always the same regardless of the source position

inside the FOV, it is possible to use an external (transmission) positron-emitting

source that comprises a fixed ring or rotating rod sources, to measure the attenu-

ation correction factors through two extra scans: blank scan and transmission

scan. A blank scan is acquired with nothing inside the FOV, and a transmission
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Figure 2.8: Attenuation correction in PET using a rotating rod source of
68Ge. Blank and transmission scans are generally acquired before tracer

administration.

scan is acquired to measure the coincidence rate when the patient being im-

aged is in the FOV but has not been given an injection of positron emitter.

Figure 2.8 shows a schematic for measured attenuation correction using a ro-

tating rod source of positron emitter 68Ge. Attenuation correction factors are

then determined by calculating the pixelwise ratio of the measured projection

data obtained from the blank scan and the transmission scan. The major draw-

back of this approach is that statistical noise in the transmission data would

propagate into the emission images [46, 47]. Therefore, transmission scans of

sufficiently long duration have to be acquired to limit the effect of noise propa-

gation. Depending on the radioactivity present in the external radiation source

and on the dimension and composition of the body, transmission scans of 15–30

min are performed to minimize the propagation of noise into the emission data

through attenuation correction, at the expense of patient throughput. Further,

lengthened scan duration increases the likelihood of patient movement, which

can cause significant artifacts in the attenuation factors for particular LoRs.

Application of analytical, so-called calculated attenuation correction elim-

inates the need for a transmission scan, thus making this method attractive

in many clinical PET centers. This method assumes uniform skull thickness

and constant attenuation in the brain and skull. However, such assumptions
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do not hold for sections that pass through sinuses and regions where the ad-

jacent bone is much thicker. Alternatively, the transmission scan may be per-

formed after tracer administration, referred to as postinjection transmission

(PIT) scanning [48], which utilizes strong rotating rod (or point) sources for the

transmission source. A small fraction of “transmission” coincidences contains

in the sinogram data can be distinguished from emission coincidences that orig-

inate from the administered radiopharmaceuticals by knowing the positions of

the orbiting sources. Another approach is to integrate measured and calculated

attenuation that makes use of the advantages of each approach. A transmis-

sion scan is still required and the attenuation coefficient images derived from

the transmission and blank scans are reconstructed and then segmented into a

small number of tissue types, which are assigned with a priori known atten-

uation coefficients [49–51]. These processes greatly reduce noise propagation

from the transmission data into the reconstructed emission images.

2.12 Calibration

Once the acquired data has been corrected for various sources of bias introduced

by different physical artifacts as mentioned in the previous section, images can

be reconstructed without artifacts, provided that there are sufficient axial and

angular sampling of projection data. To reconstruct images in absolute units of

radioactivity concentration (kiloBecquerel per milliliter, kBq/mL, or nanoCurie

per milliliter, nCi/mL), calibration of the scanner against a source of known

activity is required. This can be accomplished by scanning a source of uniform

radioactivity concentration (e.g. a uniform cylinder) and then counting an aliquot

taken from the source in a calibrated well-counter to obtain the absolute activity

concentration, which is then compared to the voxel values in the reconstructed

images for the source (after corrections for physical artifacts have been applied)

to determine a calibration factor.

2.13 Resolution Limitations of PET

Although there has been significant improvement in PET instrumentation over

the last two decades, there is a finite limit to the spatial resolution of PET scanner.
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In this section, we briefly describe some of the major factors that directly relate

to the spatial resolution of PET. Spatial resolution is defined as the ability of the

scanner to depict small objects and is limited by a number of factors:

� distance the positron travels before it annihilates;

� annihilation photon noncollinearity due to residual momentum of the

positron;

� intrinsic resolution and size of the detectors;

� stopping power (and material) of the detector,

� sampling requirements, and

� image reconstruction parameters (e.g., reconstruction filter, matrix size,

reconstruction algorithm, etc).

The finite distance travelled by the positron before annihilation also has adverse

effects on the spatial resolution of PET scanner [52]. This distance is referred

to as the positron range which varies from fraction of a millimeter to several

millimeters, depending on the density of the tissue in which the emission occurs

and the maximal positron energy of the radionuclide (Eq. (2.3) and Table 2.1). It

is apparent that a positron with higher energy can travel farther from the nucleus

before annihilation occurs. This effect leads to a blurring of the data which is

characterized by an exponential function with a FWHM of the order of 0.2–3 mm

for most positron-emitting isotopes.

Another factor which can degrade the spatial resolution is caused by the

residual kinetic energy and momentum possessed by the positron and the elec-

tron (because both of them are moving) when they annihilate. The apparent

angle between the two emitted photons deviates slightly from 180◦ for about

0.5◦ FWHM. The degradation in resolution due to this photon noncollinearity ef-

fect depends on the diameter of the detector ring of the PET scanner. This effect,

and the positron range, imposes a lower limit of the spatial resolution which is

approximately 3 mm for human PET imaging and 1 mm for a small-diameter

animal PET system.

The intrinsic resolution of the detectors is the crucial factor which deter-

mines the spatial resolution of modern PET scanners. For arrays of a single-

element detector of width D, the resulting coincidence point spread function is
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triangular with spatial resolution approximately D/2 [53]. It is therefore appar-

ent that a small detector must be used, in order to achieve high spatial resolu-

tion [54]. Most of the modern clinical PET scanners utilize multiple rings of BGO

block detectors to simultaneously achieve high spatial resolution and sensitiv-

ity (Section 2.7). BGO crystals are commonly used in commercial PET systems

because they have high stopping power (high efficiency) for the 511 keV gamma

rays and high spatial resolution (≈5 mm which is near the theoretical limit of

resolution), and are 50% more efficient than NaI(T1) crystals. However, the ma-

jor disadvantages of BGO crystals are that their photofluorescent decay time is

very long (0.3 µs) which causes countrate limitations and that they have lower

light output. During the last decade, many scintillators have been explored and

some of them are currently in use in new generation of PET scanners. The best

known ones are barium fluoride [55] and gadolinium oxyorthosilicate [56]. Block

detectors are also being developed with lutetium oxyorthosilicate (LSO) [57],

a new detector material which has much shorter photofluorescent decay time

and provides higher spatial resolution images. The images obtained with PET

device built from LSO detectors are much sharper and they can be acquired at a

much faster rate than current PET scanners. Therefore, faster scans and higher

patient throughput can be achieved. Many of PET centers in the world have

installed, or planned to install, the latest generation of LSO-based PET scanner

such as the ECAT HRRT system (CTI/Siemens, Knoxville, TN).

Spatial resolution is also affected by the coincidence events detected by the

PET scanner, as described in Section 2.8. Image reconstruction algorithms also

have an impact on the spatial resolution that can be achieved with modern PET

scanner. The statistical nature of radioactive decay described by Poisson distri-

bution produces noise in the PET measurements. This noise can be amplified by

the reconstruction process and visualized in the reconstructed images due to its

high-frequency nature. In order to suppress noise in the reconstructed images

with FBP, the projection data (or sinogram) has to be filtered with a ramp filter

(in frequency domain) before the reconstruction process [31, 58]. However, the

side effect of the ramp filtering is that high-frequency components in the image

that tend to be dominated by statistical noise are amplified [32]. To obtain bet-

ter image quality, it is desirable to attenuate the high-frequency components by

using some window functions, such as the Shepp–Logan or the Hann windows,

which modify the shape of the ramp filter at higher frequencies [33]. Although the

use of window functions can help control the image noise and thereby increase
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the signal-to-noise ratio, the spatial resolution must degrade because reducing

the higher frequencies is equivalent to smoothing the image data. A recent study

found that it is difficult to select a filter for FBP based on some objective cri-

teria [59]. The trade-off between filter selection (or image noise) and spatial

resolution is therefore dependent on the preferences of the clinical physicians

and the types of PET study.

As the overall resolution of PET imaging system is a convolution of all of

the above components, it is therefore important to note that improvement in

resolution by considering only one of the above components in designing a

high-resolution PET imaging system will produce limited improvement in the

resulting spatial resolution [60].

2.14 Quantitative Physiological Parameter

Estimation

PET is a unique and state-of-the-art imaging tool in that it is able to target specific

biochemical or physiologic processes using short-lived radiopharmaceuticals

(or radiotracers) of major elemental constituents of the body, such as carbon,

fluorine, nitrogen, and oxygen; and that the time course of radiotracer in the

body can be recorded and reconstructed as multidimensional images which

represent the radiotracer distribution in the body. With an appropriate recon-

struction algorithm and with proper corrections for physical artifacts, quantita-

tively accurate radiopharmaceutical distribution can be obtained and calibrated

in absolute units of radioactivity concentration (in kBq/mL or nCi/mL). However,

the radiotracer distribution in the body is not static over the course of the study,

but varies with time, depending on the different processes that govern its deliv-

ery, uptake, and subsequent biologic fate in the body. By acquiring a dynamic

sequence of tomographic images, quantitative information of the time-varying

radiopharmaceutical distribution can be obtained which can be used to provide

in vivo measurements of specific physiologic functions.

2.14.1 Tracer Kinetic Modeling

Radiotracers provide a means for investigation of biochemical or physiologic

processes without altering the normal functions of the biologic system. Each ra-

diotracer must be targeted to provide a physiologic parameter of interest, such
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as blood flow, glucose metabolism, oxygen utilization, protein synthesis, and

receptor or binding site density, etc. in the body. The concentration of the radio-

tracer introduced into the biologic system is assumed to be negligible so that it

does not perturb the natural process of the system. Otherwise, the measurement

does not represent the process we want to measure but the effect induced by the

introduction of the radiotracer. External measurable data is the time course of

total tissue activity concentration obtained from the PET images, and the time

course of blood (or plasma) activity concentration (i.e. the input function of the

compartment model), obtained from peripheral blood sampling. These curves

are described as time-activity curves (TACs), where the term “activity” refers

to concentration of the radiotracer rather than the tissue (or blood) activity.

Yet, the measured time course of tracer uptake and delivery does not directly

provide quantitative information about the biologic and physiologic processes

but the kinetic information of the radiotracer. Mathematical modeling of the

measured tracer kinetics is thus required to transform the kinetic information

into physiologically meaningful information, i.e. the physiologic parameters of

interest. This can be accomplished through the use of an analysis technique

commonly referred to as compartmental or tracer kinetic modeling.

Mathematical modeling of biologic processes and systems is well established

and a wide variety of models have been developed [61]. Although nonlinear

models should be used to study biological systems which are commonly non-

linear, linear compartmental models have properties which make them attrac-

tive for radiotracer experiments with PET and SPECT [62]. A given system

can be described by a compartment model, which consists of a finite num-

ber of interconnected compartments (or pools), each of which is assumed

to behave as a distinct component of the biologic system with well-mixed

and homogeneous concentration [63]. An example is shown in Fig. 2.9 for

[18F]fluorodeoxyglucose, which is the primary radiopharmaceutical used in PET

to assess glucose metabolism. A compartment can be a physical space, such as

plasma or tissue, or a chemical entity, where tracer may exist in different forms

FDG in plasma
Cp(t)

FDG in tissue
Ce(t)

k1 k3

2k 4k

FDG -6-P in
tissue Cm(t)

Figure 2.9: The three-compartment model for transport and metabolism of

[18F]fluorodeoxyglucose (FDG).
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(FDG and its phosphorylated form FDG-6-PO4). The compartments of a tracer

kinetic model are linked by a set of parameters called rate constants, ki, which

represent the rates at which the radiotracer in one compartment is transported

to the connected compartments. More precisely, these rate constant parameters

represent specific physiologic or biochemical processes (e.g. flow or transport

across physical spaces, or rates of transformation from one chemical form to

the other in a chemical entity) within the biologic system. For the FDG model as

shown in Fig. 2.9, the three compartments represent (from left) vascular space

for FDG, tissue space for free FDG, and tissue space for FDG-6-phosphate (FDG-

6-P). The rate constants describe the movement of FDG between compartments:

k1 and k2 for the forward and backward transport of FDG across the blood-brain

barrier, k3 for the phosphorylation of FDG to FDG-6-P, and k4 for the dephos-

phorylation of FDG-6-P back to FDG.

The aim of modeling is to interpret the fate of the administered radiotracer

quantitatively in terms of the standard parameters in the compartmental model.

In conjunction with knowledge of the transport and metabolism of the radio-

tracer, it is possible to relate the rate constants to physiologic parameters of in-

terest. Figure 2.10 summarizes the key steps in physiologic parameter estimation

Acquired arterial
blood samples

(input function)

Plasma/Blood
TAC

Tissue TAC

Compartment
model

Acquired
PET images

(output function)

Weighted
integration

Compartmental
model fitting

Spectral
analysis

e.g. rCBF,
rCMRGlc,

Vd, BP, etc.

Physiological
parameters

Graphical
techniques

Injected
or inhaled

tracer

Figure 2.10: (Color slide) Quantitative physiological parameter estimation with

PET includes radiotracer administration, data acquisition with a PET scanner,

measurement of tracer plasma concentration, a suitable mathematical model

and a parameter estimation method to estimate the physiological parameter of

interest.
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in a quantitative PET study. After radiopharmaceutical administration, PET data

is acquired at a predefined sampling schedule and individual voxel values in the

reconstructed images represent the localized radiotracer time-activity concen-

tration in the body upon correction for some degrading factors (e.g. attenuation

and scatter) and cross-calibration. A vector formed by extracting a voxel curve

from the sequence of images corresponds to a tissue TAC, which represents the

response of the local tissue as a function of time after the tracer administration.

Alternatively, the tissue TAC can be obtained by manual delineation of region

of interest (ROI) on the reconstructed PET images. Plasma tracer concentra-

tion is typically measured by means of arterial blood sampling. A mathematical

model is applied to the tissue and the plasma tracer concentration to estimate

the physiological parameters of interest. Kinetic modeling approaches based

on the framework of tracer kinetic modeling could be applied to estimate the

physiologic parameters. The same analysis procedures can also be applied to

dynamic SPECT without loss of generality, although the challenges tend to be

much greater in SPECT.

2.14.2 Compartmental Model Fitting

As the rate of tracer exchanges is assumed to be proportional to the amount

of tracer in the compartment, a system of first-order differential equations can

be derived. Compartmental model fitting performs the mathematical estimation

process to seek the values for the rate constant parameters that provide a best

fit for the observed tissue and blood (or plasma) TAC to the predefined com-

partmental model. The general solution to the system of first-order differential

equations has the form

CT (t) = (1− VB)

[
N∑

j=1

α je
β j t ⊗ Cp(t)

]
+ VBCa(t) (2.22)

where CT (t) is the measured time course of total tissue activity concentration (or

tissue TAC) in the FOV, Cp(t) is the input function of the compartment model,

Ca(t) is the tracer concentration in whole blood, N is the number of tissue

compartments assumed for the radiotracer, α j and β j are the fitted parameters

from which the rate constant parameters, ki, of the compartment model can

be derived, VB is the fraction of the measured volume occupied by the blood

pool (0 ≤ VB ≤ 1), and ⊗ is the convolution operator. It is assumed that Cp(t)
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and Ca(t) have been corrected for delay and dispersion. The term VBCa(t) in

Eq. (2.22) represents intravascular activity present in the FOV of the scanner

and is particularly important at the times immediately following tracer admin-

istration. Note that although CT (t) has an analytical representation, it is a non-

linear function of parameters α j and β j , and therefore nonlinear parameter

estimation approach such as the nonlinear least-squares (NLLS) method using

Gauss–Newton type algorithms [64] is required to estimate the parameters α j

and β j , unless the model equation is “linearized” by certain transformations. Al-

ternatively, the rate constant parameters in the system of differential equations

can be estimated directly by numerical method.

Ideally, a comprehensive model describing the full kinetics of a tracer is de-

sirable, but this may require a complicated compartmental model configuration

with many parameters and compartments. Given that the counting statistics of

the acquired data and the spatial resolution of the imaging device are limited, the

compartments and parameters in the complicated compartmental model cannot

be resolved and identified from the measured data. Thus, the actual compartmen-

tal model configuration must be simplified. Typically, measured data from PET

and SPECT can support compartmental models with six parameters or less. In

general, including more number of compartments (or parameters) or increasing

the complexity of the model improves the fit to the measured data. However, the

improvement in the fitting may not be statistically significant. In many cases, the

reliability of individual parameter estimates degrades with increasing number

of compartments (or model complexity). Therefore, the model with the smallest

number of compartments which can fully describe the measured data should be

used.

2.14.3 Input Function

For compartmental models used in PET, one of the compartments represents

blood pool or extravascular space. This compartment can be seen as the input

stage to the model because the tracer is delivered into the tissue through the

blood, as indicated by Eq. (2.22), and therefore the time-activity concentration

for blood is called input function. In other words, the time-activity concentra-

tion of the tracer in a particular tissue is dependent both on the amount of the

tracer delivered to the tissue via the blood supply (the input function) and on the
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exchanges of the tracer within the tissue compartment (the impulse response

function of the tissue).

Ideally, the input function should be measured in the capillaries of the tis-

sue of interest but this is not possible. Instead, samples are obtained by fre-

quent blood sampling at the peripheral artery such as radial artery or femoral

artery, under local anesthesia. The arterial concentration of the tracer has to

be measured because the concentration of the tracer in venous blood may dif-

fer markedly from that in arterial blood. This is particularly true for tracer with

high extraction fractions. Unless the tracer can freely diffuse between red blood

cells and plasma, the concentration time course in plasma is required for the

input function. Another consideration is the in vivo formation of radiolabeled

metabolites that can contribute to the radioactivity counts in total plasma or

whole-blood, necessitating a time-dependent estimation of the fraction of radio-

labeled metabolites present in plasma. Estimation of radiolabeled metabolites in

plasma is often possible by means of chromatographic analysis (e.g. using HPLC,

TLC, or octanol extraction) for the measured samples. Modeling of metabolites

formation is also possible [65,66], but the statistical quality of the measurements

may not support reliable estimation of the additional parameters in the more

complicated compartment model.

Arterial blood sampling is currently regarded as the gold standard method of

measuring the input function for PET study in spite of many possible sources of

error such as insufficient sampling rates and counting errors in the blood sam-

ples. Particularly for radiotracers with rapid kinetics and short measurement

times, delay and dispersion effects between the blood sampling site and the ac-

tual arterial blood that drives the tissue of interest need to be taken into account

during the compartmental model fitting. The procedure of arterial catheteriza-

tion under local anaesthesia, however, is very invasive in nature and would

involve potential risks of arterial sclerosis and ischemia to the distal extrem-

ity. An alternative, yet less invasive, approach is to obtain blood samples from

arterialized-vein (or “hot” vein). This method is referred to as the arterialized-

venous (a-v) sampling method. The hand is heated in a water bath which then

promotes arterio-venous shunting to avoid the discomfort and risks associated

with arterial cannulation [67,68]. Since it only requires the placement of venous

cannulas, it is less invasive and is better tolerated than arterial cannulation by

the subjects. However, it requires prolonged hand warming to ensure adequate

shunting, and it is very dependent upon the site chosen for the placement of the
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venous cannula and the rate of blood flow. The best results are usually obtained

from a cannula that is placed in a large vein on the dorsum of the hand, typically

in a muscular male. As mentioned earlier in this section, tracer concentration

in venous blood may differ markedly from that in arterial blood, especially for

tracer with high extraction fractions, and the use of venous blood as the input

function could introduce significant errors in absolute quantification of physio-

logical parameters.

When a suitable vascular structure, such as a large artery or the left ventricle,

is contained within the FOV, the input functions can be derived noninvasively

from the image data and the need for blood sampling is completely eliminated.

However, careful correction for the extravascular contamination in the blood

region is required to obtain an accurate approximation to the input function.

In certain circumstances, if regions can be identified with the same input but

with different kinetic behavior (e.g. gray and white matter in the brain), then

the compartment model can be reformulated to solve for the kinetic parameters

of interest and the required input function [69–71]. However, these approaches

may have very high computational complexity as the number of parameters to

be estimated (kinetic parameters and the input function) increased drastically

and careful selection of parameter estimation algorithm may be required.

In the case of receptor studies, the need for measuring arterial input function

may be avoided if a tissue region can be identified which is devoid of specific

binding but shows similar nonspecific binding to the tissues of interest. Typically,

the cerebellum is used as a reference tissue region in the brain for a number

of neuroreceptor systems. Once the reference tissue region is identified, the

compartmental model can be reformulated to use the reference tissue TAC as

the input function [72–74]. The use of reference tissue also eliminates the need

to estimate the fraction of labeled metabolites present in the plasma.

2.14.4 Parametric Imaging

PET (and SPECT) provide multidimensional images of the time-varying radio-

pharmaceutical distribution. The aforementioned compartmental analysis has

concentrated only on fitting tissue TACs derived from ROIs to a predefined com-

partment model. Although it is possible to generate TACs for each voxel of the

image data and fit them to the model, this is not practical as many thousands

of model fit using NLLS, which is computationally expensive, would have to

be performed. Further, the high noise levels and heterogeneity in individual
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voxel curves make the compartmental model fitting approach unappealing. A

number of “fast” estimation techniques have been developed to reduce the com-

putational load and improve the reliability of estimating images whose voxels

represent parameters of interest, commonly known as parametric images. A

brief description of these estimation techniques follows.

2.14.5 Linearization Approaches

Linearization approaches reformulate the model equations so that (1) a linear

relationship exists between the transformed data and the primary physiological

parameter of interest, or (2) the reformulated model equations contain only

linear parameters. In these circumstances, estimation of parameters can be

accomplished by a simple linear regression or by linear least-squares (LLSs)

techniques.

A number of graphical techniques that aim at transforming the measured

data into a plot which is linear after a certain “transformed time” have been

proposed for specific tracer studies, including the Patlak [75,76], Logan [77, 72],

and Yokoi [78, 79] plots. Applications of the techniques depend on the tracer

studies and parameter of interest. The Patlak plot [75] was initially developed

for estimating the influx rate constant of radiotracer accumulation in an irre-

versible compartment, and was extended to allow for slow clearance from the

irreversible compartment [76]. When employed in FDG studies, the influx rate

constant is directly proportional to the regional metabolic rate of glucose. The

Logan plot [77, 72] was primarily developed for estimation of parameters re-

lated to receptor density such as binding potential and volume of distribution

for neuroreceptor studies and the radiotracers can have reversible uptake. The

Yokoi plot [78, 79] has been proposed as a rapid algorithm for cerebral blood

flow measurements with dynamic SPECT. Although all these methods permit

the estimation of physiologic parameter in rapid succession and have been used

extensively because of their computational simplicity, the bias introduced into

the physiologic parameters is significant in the presence of statistical noise in

the image data.

The use of linearized model equations was first proposed by Blomqvist [80]

for the Kety–Schmidt one-compartment model used for measuring cerebral

blood flow [81] and was extended by Evans [82] for the three-compartment

model (as shown in Fig. 2.9) to measure cerebral metabolic rate of glucose.

The key idea is that by reformulating and integrating the model equations, the
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operational equations will be linear in the parameters to be estimated, whereby

linear least-squares or weighted linear least-squares methods can be used to

estimate the parameters of interest. While the measurement errors are typically

statistically independent in time, integration introduces correlation of measure-

ment errors, which can introduce bias into the parameter estimates [83]. The

generalized linear least-squares method was designed to remove bias in the

estimates resulting from integration of measurements and has been extended

to multicompartment models and has been found useful in fast generation of

parametric images [84–86].

2.14.6 Spectral Analysis

In compartmental model fitting, the number of compartments and their intercon-

nection are defined a priori. This implies that the physiological or biochemical

pathways are somewhat known. Yet, a priori knowledge about the behavior of

novel anticancer drugs may not be available. Further, the compartmental mod-

eling approach assumes well-mixed, homogeneous tracer distribution within

the tissue or the ROI. This may not be true for tumor which normally has high

degree of heterogeneity. Spectral analysis does not rely on tracer assumptions

and the number of compartments and their connectivity; it is particularly useful

for tracer kinetics studies.

Spectral analysis [87] fits the model defined in equation (2.22) with a prede-

fined set of basis functions, eβ j t ⊗ Cp(t), where β j can take on a discrete set of

values so that a large number (100 or more) of basis functions are generated. The

fitting to tissue data is accomplished by nonnegative least squares (NNLS) algo-

rithm with a constraint αi ≥ 0 [88]. Typically, a linear combination of only two

or three basis functions from the complete set of basis functions are identified

which can best describe the observed tissue data. From the fitted basis func-

tions, the impulse response function and other physiological parameters can

be estimated. Spectral analysis can also be applied to projection data directly,

but it may not produce results equivalent to those obtained from reconstructed

images because the NNLS fitting may not be linear [89].

Since spectral analysis does not require any a priori definition of the nu-

merical identifiable components present in the PET data, it is more flexible than

compartmental model fitting. However, the assumption on the nonnegativity co-

efficients of exponentials may not be valid in a generic compartmental model as
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negative coefficients of exponentials are also possible if the input and output are

not taken from the same compartment [90]. Furthermore, repeated eigenvalues

may be inherent in the data and the impulse response function of the underlying

system could have different formats [91].

2.14.7 Weighted Integration

Another approach for dynamic PET data analysis is by means of weighted inte-

gration or integrated projection methods. Different from the techniques men-

tioned before which calculate parameters of interest from a series of recon-

structed images based on the framework of compartmental model fitting, these

methods eliminate the need to reconstruct the dynamic projection data. Instead,

the parameters of interest are calculated from the weighted integrals of the pro-

jection data based on the relationship between the time-dependent weighting

functions and the projection data [92–95]. Indeed, the weighted integration ap-

proach can be applied to the reconstructed data by integrating the full set of

dynamic images. Reconstruction load, however, can be significantly reduced if

the weighted integration is performed on the projection data because only the

integrated projection data is reconstructed. This relies on the fact that image re-

construction is a linear operation in the spatial domain and the linear operations

in time is communicative with image reconstruction [96, 62]. Therefore, the or-

der of reconstruction and integration can be interchanged. It is apparent that

integration of the projection data prior to image reconstruction has an attractive

computational advantage.

Typically weighted integration or integrated projection methods are used to

determine the rate of blood flow and the tissue-to-blood partition coefficient. In

fact, the use of weighted integration does not limit to one-compartment model

such as that used to measure cerebral blood flow. With the use of additional

weighting functions, physiologic parameters in two- and three-compartment

models can also be estimated. As might be expected, the formulation is consid-

erably more complicated.

2.15 Applications of PET

As PET is a physiological/functional imaging modality, which provides infor-

mation about the physiology in tissue, it is therefore complementary to the
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traditional tomographic imaging techniques, such as CT and MRI, that can pro-

vide anatomical (or structural) information of the tissue only. These latter tech-

niques are method of choice when normal anatomy is expected to be disrupted

by disease. However, there are many situations where functional changes pre-

cede anatomic changes or anatomic changes may be absent. Examples include

cancers in their early stage, and various neurodegenerative diseases such as

Alzheimer’s, Huntington’s, and Parkinson’s diseases, epilepsy and psychiatric

disorders, [97–99], in addition to a wide variety of neuroreceptor studies [100].

Historically, clinical applications of PET were centered around neurology

and cardiology. The clinical role of PET has evolved considerably during the

past 10 years, and it is well recognized that PET has a preeminent clinical role

in oncology. Currently, oncological PET studies contribute to over 80% of clini-

cal studies performed worldwide [101]. It is well recognized that PET is useful

for monitoring patient response to cancer treatment and assessing whether le-

sions seen with CT and MRI are cancerous, and is capable of grading degree

of malignancy of tumors, detecting early developing disease, staging the extent

of disease, detecting primary site of tumor, measuring myocardial perfusion,

differentiating residual tumor or recurrence from radiation-induced necrosis

or chemonecrosis, and monitoring cancer treatment efficacy [102–107]. FDG is

the primary radiopharmaceutical used in oncological PET studies to assess glu-

cose metabolism. Improvements in instrumentation in the late 1980s overcame

the limitation of the restricted imaging aperture and enabled three-dimensional

whole-body to be imaged. Whole-body PET imaging has been proven highly ac-

curate in the detection of a number of different malignancies, particularly in

cancers of the colon, breast, pancreas, head and neck, lungs, liver, lymphoma,

melanoma, thyroid, and skeletal system, depending on the use of specific radio-

tracers. Figures 2.11 and 2.12 show examples of neuro-oncologic and whole-body

coronal FDG-PET images.

As mentioned in Section 2.3, PET offers some unique features that cannot be

found in other imaging modalities. The radiolabeled compounds used in PET are

usually carbon (11C), nitrogen (13N), oxygen (15O), and fluorine (18F), which can

be used to label a wide variety of natural substances, metabolites, and drugs,

without perturbing their natural biochemical and physiological properties. In

particular, these labeled compounds are the major elemental constituents of

the body, making them very suitable to trace the biological processes in the

body. As the measurements are obtained noninvasively using external detectors,
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Figure 2.11: Neuro-oncologic FDG-PET images.

experiments can be performed repeatedly without sacrificing the small labora-

tory animals, such as mice and rats. This is not possible with in vitro tests which

involve sacrifice of the animal at a specified time after radiotracer injection and

preclude the kinetics of the radiotracer to be studied in the same animal. The

greater flexibility in producing natural labeled probes for imaging on a macro-

scopic level in PET has raised the possibility of in vivo imaging on a cellular

or genetic level. Recent advances in this field appear promising, particularly in

the imaging of gene expression. Progress is being made and PET is expected to

assume a pivotal role in the development of new genetic markers [108].

Figure 2.12: Whole-body coronal FDG-PET images.
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2.16 Discussion and Concluding Remarks

This chapter presented an overview of quantitative PET imaging, including the

basic principles and instrumentation, methods of image reconstruction from

projections, and some specific correction factors necessary to achieve quantita-

tive images. Techniques for absolute physiologic parameters estimation based on

the framework of tracer kinetic modeling are also introduced. Recent advances

in instrumentation and detector technologies have partially resolved some of

the challenges. Research is still under way to develop new detector materials

not only for improving the spatial resolution but also the system sensitivity,

while keeping the cost of the instrument acceptable. Another active research

area is image reconstruction. Although the filtered backprojection method is still

widely used nowadays, it is not an optimal reconstruction technique. Iterative

algorithms have been shown to improve the signal-to-noise ratio of the recon-

structed images and provide more accurate image reconstruction for low count

studies, but the computational complexity and appreciably long reconstruction

times as compared with filtered backprojection, as well as the requirement of

using some ad hoc techniques to control the visual quality of the reconstructed

images, remain a substantial obstacle for routine implementation. It should be

noted, however, that a good reconstructed image is not only dependent on the

reconstruction algorithm, but also dependent on the sufficient axial and angu-

lar sampling of projection data such that the reconstruction artifacts can be

minimized. In order to achieve accurate absolute or relative quantification, ap-

propriate data corrections have to be applied prior to image reconstruction.

The use of SPECT for studying physiologic functions deserves mention here.

SPECT is another form of emission computed tomography which had its begin-

ning in the early 1960s, initiated by the work of Kuhl and Edwards on transverse-

and longitudinal-section scanning with single-photon-emitting radiotracers [15],

and the work of Anger on the development of scintillation camera (also known

as gamma camera or Anger camera) coupled with photomultiplier tubes [108].

Although the innovative idea of how gamma rays interact with inorganic crystal

(scintillator) to produce scintillation light and how optical coupling with pho-

tomultiplier tubes helps amplify the scintillation signal may shed some light on

detector design in PET, the development of SPECT imaging, however, has been

overshadowed by PET for reasons to be detailed. The principles for detecting
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the emerging radiation and the formation of tomographic images are similar for

both PET and SPECT but the underlying physics and the instruments employed

are completely different. In SPECT, nuclear decay results in the emission of one

or a few uncorrelated photons in the 100–200 keV energy range. A lead colli-

mator drilled with small holes is used to mechanically collimate the incoming

photons by allowing those traveling in one particular direction to interact with

the scintillator, while all others are absorbed. Rotating gamma cameras with

single or multiple crystal detectors are used to form a tomographic image. Here

lies the sensitivity differences between PET and SPECT, and partly explains why

PET has received much more attention than SPECT for in vivo assessment and

quantification of physiologic functions in the body.

Despite the fact that both PET and SPECT suffer from attenuation and Comp-

ton scattering of the photons inside the body which can result in image artifacts

and loss of quantitative accuracy, SPECT has been largely considered to be

nonquantitative and limited to providing qualitative or relative functional im-

ages. This is because correction of attenuation and scatter in SPECT are not

easy as compared to PET, where attenuation correction is routine (with the

exception of whole-body PET). In addition, the spatial resolution of SPECT is

inferior to that in PET. Even with triple-headed gamma cameras, the resolution

is approximately 8–10 mm FWHM but the theoretical limit of 1–2 mm FWHM

can be achieved for PET with new generation of detector technology. Further,

typically higher signal-to-noise ratio and lower scatter with PET also helped

establish PET as the favorable method for quantitative measurements of physi-

ological parameters.

Although PET will continue to provide insights into biochemical and physio-

logical processes in vivo, access to PET is limited due to the requirement of a cy-

clotron and high operation costs. Recent advances in quantitative SPECT and the

widespread application of multidetector SPECT systems with improved sensitiv-

ity and dynamic imaging capabilities have made absolute physiological parame-

ter estimation possible with the much more widely available SPECT. One of the

major applications of dynamic SPECT is to quantify myocardial perfusion, which

is important for the diagnosis and clinical management of patients with coronary

artery disease where a perfusion defect after an intervention may indicate in-

complete reperfusion or persistent coronary occlusion. Similar to dynamic PET,

compartmental modeling is used in dynamic SPECT to quantify physiologic
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parameters of interest. It has been demonstrated that myocardial blood flow

can be studied by dynamic SPECT imaging of 99mTc-teboroxime [109, 110]. An-

other interesting application of dynamic cardiac SPECT is the measurement

of perfusion and the distribution volume in the heart using 201Tl [111, 112].

Other applications include brain imaging with 99mTc and 123I flow agents

and some neuroreceptor studies, such as [123I]iomazenil for benzodiazepine

receptors [115], [123I]iododexetimide for cholinergic muscarinic neurorecep-

tors [114], and [123I]iodo-A-85380 for central neuronal nicotinic acetylcholine

receptors [115, 116], etc., both in human and nonhuman primates.

While PET and SPECT allow absolute measurements of radioactivity con-

centration in tissue and have the capability to relate the in vivo measurements

to physiological functions, there are a number of limiting factors which can im-

pact on their ability to produce reliable physiologic parameters. In particular, the

small tissue volume, limitation on the total amount of activity that can be admin-

istered, physical artifacts, and low sensitivity (particularly for SPECT) result in

measurements with high noise levels. The measurement noise (and mechanical

rotation of the detectors in the case of SPECT) has imposed an upper limit on

the fastest sampling rate which is >1 sec/sample for PET and >5 sec/sample

for SPECT. Furthermore, the short half-life of the radiopharmaceuticals used

for PET and SPECT and the need for the patient to remain still on the scan-

ner bed usually limit duration of the PET and SPECT experiments to relatively

short periods of time, which vary from minutes to hours rather than days.

Slow physiologic processes are therefore difficult to be reliably estimated with

both PET and SPECT. All these factors limit the number of parameters which

can be reliably estimated from PET or SPECT measurement and complicated

compartmental models used for analysis must be simplified. Huang et al. pro-

vide detailed guidelines on kinetic model development for PET applications and

these principles are equally applicable to SPECT tracer studies.

One intrinsic limitation of PET imaging is the presence of physiological sites

of tracer accumulation (secretion or excretion). It is sometimes difficult to differ-

entiate real pathology from an unusual pattern of physiologic accumulation. In

contrast, some organs of the body, for instance, the pancreas, uterus, and ovary,

do not have significant physiological uptake. Spatially differentiation among

these organs is sometimes difficult, particularly when they are closely related

to one another. In this respect, structural imaging modalities such as X-ray CT

can serve as an excellent anatomical roadmap for the functional PET images.
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Integration of anatomical and functional images began to emerge during the

late 1980s using software-based registration techniques [117, 118], although it

was pointed out much earlier by Wagner [119] that this would be the trend for

clinical imaging. These software-based registration techniques are applied to

register images obtained with different imaging modalities or tracers (in case

of registering emission tomographic images), of the same subject at different

times. Registration techniques are successful for a rigid organ, such as the brain

but they have been found to be problematic for other parts of the body.

Recognizing the advantages of combining the information provided by ana-

tomic imaging and functional imaging, a prototype of an integrated scanner for

PET and CT was designed in the early 1990s and a commercial hybrid scanner,

named “PET/CT,” has been developed recently [120]. PET/CT is a completely

new imaging technique that will likely revolutionize the conventional habit of

acquiring and reading PET and CT data separately in the clinical environment.

PET/CT imaging will enhance the combined utilization rate of what used to

be PET-only or CT-only imaging as it provides, simultaneously, co-registered

(fusion) images of both functional and anatomical information in a single acqui-

sition. A potential advantage is the use of CT images for attenuation correction of

PET emission data, thereby the need for acquiring a separate, lengthy transmis-

sion scan can be completely eliminated. Figure 2.13 shows a combined PET/CT

Figure 2.13: (Color slide) Combined PET/CT scan on a 72-year-old woman with

a primary pancreatic cancer. From left to right: FDG-PET image, CT image, and

fused PET and CT images. The scan shows abnormal FDG uptake in the pancreas

(arrow). The fused image shows good alignment of two modalities and enables

uptake to be localized to pancreas (arrow).
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scan performed on a 72-year-old woman for investigation of unknown primary

malignancy, and the combined PET/CT revealed a primary pancreatic cancer.

Although the PET/CT imaging is still in its infancy and a number of technical

problems remain to be solved, it is anticipated that the combination has the

potential to solve many of the present diagnostic challenges associated with

whole-body oncologic imaging and has an important role in surgical planning,

radiation therapy, treatment monitoring, and diagnosis of disease.
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Questions

1. Medical imaging modalities can be broadly classified into structural and

functional. Briefly account for their meanings and give some examples

for each case.

2. What are the major differences in the reconstructed images of emission

computed tomography and X-ray CT?

3. PET and SPECT are collectively known as emission computed tomogra-

phy. Briefly describe some of the major differences between them in terms

of physics and instrumentation.

4. List the various events and their meanings in PET detection.

5. List some of the current applications of PET in clinical oncology.

6. Photon attenuation effect is common to both PET and SPECT imaging.

Why is it so important to correct for this effect?

7. Briefly describe the main difference in correction of photon attenuation

in PET and SPECT.

8. Attenuation correction in PET is usually performed using a transmission

scan. What are the major drawbacks of this approach?
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9. What is the basic assumption of filtered backprojection reconstruction?

What is its major drawback?

10. What are the main factors that determine the suitability of a scintillator

for PET imaging?

11. What is the main goal of tracer kinetic modeling?

12. Briefly describe some parametric imaging techniques for quantitative

physiological parameter estimation in dynamic PET and SPECT.
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Chapter 3

Advances in Magnetic Resonance Angiography

and Physical Principles

Rakesh Sharma1 and Avdhesh Sharma2

3.1 Introduction

In this chapter, we will discuss the physical principles of magnetic resonance

angiography (MRA). MRA may at first appear very complicated, but we shall try

to present the major concepts in the simplest form. The first part concentrates

on physical principles of flow magnetization and flow characteristics in human

vascular system. The later part is devoted to various magnetic resonance an-

giography techniques from the MRA physics as well as angiography technique

refinement points of view.

MRA is a technique for obtaining information on blood motion mainly in

the cardiovascular and cerebrovascular systems. Let us consider how motion

or flow in the vessels generates the angiographic effect for creating magnetic

resonance (MR) images.

3.1.1 Principles of Magnetization and Flow

The vascular system experiences motion of blood due to continuous flow of

blood inside. Precession frequency and gradient field vectors are related. These

vectors are represented as spin isochromats. The behavior of the moving spin
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isochromats can be explained as follows:

δ�/δt = ω0 = γ (B0 + xGx + yGy+ zGz) (3.1)

where γ is gyromagnetic ratio, B0 is magnetic field strength, x, y, z are position

vectors of a spin isochromat, and G is the applied gradient field vector. This

vector has components viz. Gx, Gy, and Gz along the x, y, and z directions, re-

spectively. Inside the vessels, slight variations in magnetic field make the spin

isochromats precess at different speeds. The spin isochromat precessing in dif-

ferent directions can be represented as different points on a precession circle.

Simultaneously, they lose phase coherence in this process that results in loss of

MR signal. However, two methods are commonly used to recover MR signal loss

viz. refocusing 180◦ RF pulse and gradient recalled echo (GRE). Spin isochro-

mat magnetization is inverted by applying excitation time less than TE i.e. T =
TE/2. Refocusing 180◦ RF pulse in spin echo (SE) sequence sent after time T =
TE/2 inverts isochromat magnetization. The refocusing 180◦ RF pulse creates

a head start. So, it refocuses the slow moving spins to reach the x axis as

shown in Fig. 3.1. This whole process is known as dephasing or defocusing.

Figure 3.1: RF pulse is shown to flip the magnetization out of its orientation

along the z-axis by a variable flip angle θ , magnetetization vector starts to pre-

cess, describing a isochromat circle in the x,y plane (Figure A) for spin-echo

imaging at flip angle 90◦. After 90 pulse, the isochromats precess with differ-

ent Larmor frequencies due to experience of different magnetic fields (shown

with arrows). A typical spin-echo pulse is shown with RF pulse flipping mag-

netization 180◦ and back to create an echo (middle row). In GRE sequence,

inverted readout gradient is used to invert precession and result refocusing

pulse.
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Alternatively, the gradient field-recalled echo or gradient inversion method

inverts the precession direction of spin isochromats. Interestingly, slice-

selection gradient is not needed after initial phase in this process. So, refo-

cusing is achieved by using a negative read-out gradient for the first echo, a

positive one for the second echo, and so on. In both methods, all the precessing

isochromats point along the x direction after time TE. It results in first spin echo

generation.

3.1.1.1 Spin Isochromats in Motion

Let us consider the case of time-dependent position x(t) of a spin isochromat

in motion. The position may be represented as Taylor series expansion in the x

direction:

x(t) = S + Vt + Axt2+higher order terms

where S is initial position of spin isochromat, V is velocity, and A is acceleration

in time t.

For simplicity, assume a spin isochromat moves along the x axis (y axis

and z axis assumed zero) and read-out occurs along the x axis. In that case,

according to Eq. (3.1), Gx gradient will have an effect on spin isochromat to

generate precession phase of moving spin isochromat relative to stationary

spin isochromat (see Fig. 3.2). This precession phase can be represented as

Figure 3.2: Precessing isochromats are shown in motion to result nonzero

phase angle at odd echoes (arrows with lebel “0”). The isochromat magneti-

zation vectors within a voxel add up to a small resultant vector (short thick

arrow) if the isochromats within the voxel have different velocities. On even

echoes, all isochromat magnetization vectors point in the 0◦ direction (along

the x-axis) independent of velocity (arrows lebeled “e”).
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follows:

δ� = γ [(GxSx + GxVxt + Gx Axt2/2)+ (higher order terms)]δt (3.2)

The phases of precession and motion under the influence of gradient Gx

may be explained to generate spin echo and even echo refocusing phenomena.

Gradient field Gx is turned on. Precession phase of moving spin isochromat is in-

tegrated over different time intervals on a precession circle. It will show station-

ary spin isochromat pointing along the x direction at the first echo. Moving spin

isochromats will point in any direction in the xy plane. Let us consider the basis

of ‘even echo refocusing phenomenon’ in these spin isochromats. The phase an-

gle � in these spin isochromats is proportional to the velocity and gradient field

strength Gx. However, the second and other even echoes (n= 2, 4, 6, . . .) have

phase angle zero. The phase angles of even echoes are independent of velocity

in the case of constant-velocity motion and symmetrical echoes.

These concepts explain the behavior of phase and motion. Variations in phase

and motion of flowing blood inside vessels appear with variable spin-phase

appearance of flowing blood. Similarly for accelerated motion, the phase angle is

proportional to acceleration. In this case, even echo refocusing does not happen.

Interestingly, velocity-induced phase changes are proportional to the time tp. tp

is defined as the time during which the gradient field Gx is switched on, and is a

function of the echo time (T = TE/2). Acceleration-induced phase changes are

functions of the echo time TE and tp.

3.1.1.2 Flow Information in Spin Isochromats

In spin echo pulse sequence, gradient vectors are represented in the x, y, and z

directions as Gx, Gy, and Gz gradient fields. In an earlier section, motion in the

gradient field Gx was explained. Let us consider the case of motion along the

other gradient fields Gy and Gz. Similar spin isochromat effects and relationship

may be explained. These flow effects are stronger along the slice-selected gra-

dient. These flow effects are negligible along phase encoding gradient. For read

gradient, area under Gz, before and after 180◦ refocusing pulse are equal. On

the contrary, for GRE sequence, read gradient is opposite. This read gradient is

equal to 1, just prior to read-out gradient. So, the refocusing effect is generated.

For it, during read-out, gradient is turned on for twice as long as that at the

beginning of the pulse sequence.
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Motion inside the vessels produces predictable changes in the precession

phases of moving spin isochromats relative to stationary spin isochromats.

Inside the vessel, for each voxel, phase angles can be determined based on

the projections of magnetization Mxy along the x and y axes. Precessing spins

in the voxel exhibit different phase angles. These phase angles in the voxel

generate real and imaginary images. In general, the images may be repre-

sented as modulus or amplitude images in different voxels. These phase im-

age amplitudes correspond to the length of magnetization vector Mxy. So,

these images represent voxel-by-voxel velocity for applied gradient fields. In

other words, motion can be identified as areas on phase images where phase

is nonzero. However, in the voxel, spin phases and image generation suffer

from magnetic field inhomogeneity artifacts. These inhomogeneity artifacts

affect the entire magnetic field. An abrupt change in phase along a smaller

intravascular area exhibits phase variation due to intravascular signal. This

abrupt phase variation along a smaller area is used for generating image flow

abnormality.

3.1.1.3 Laminar, Turbulent and Pulsatile Flow in

Human Vascular System

Blood flows in a human body in a well-defined physiological closed circula-

tory system. The flow is regulated by the heart and exhibits different flow

properties known as flow patterns. Blood flow patterns are different at dif-

ferent locations in the intravascular system. MR signal intensities from such

intravascular locations in cardiovascular and cerebrovascular systems appear

dependent on hemodynamic properties of the cardiovascular or cerebrovas-

cular system. The other important property of vascular system is flow ve-

locity. In general, blood velocity inside a vessel is the largest at the center

and zero around the walls. The flow velocity and vessel diameter plots are

known as flow profile. This concept is significant in the analysis of MR signal

loss.

Three types of flow velocities are representative viz. laminar, turbulent, and

pulsatile flow (see Fig. 3.3). Laminar flow is defined as a flow pattern in which

adjacent layers of fluid glide past each other without mixing different flowing

blood layers. This type of flow may be called parabolic flow. The velocity varies

quadratically with the distance from the center of the vessel. At the center, the
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Figure 3.3: The central streamline flow separating from the vessel wall to pro-

duce a vertex or flow eddy stagnant blood to cause hemodynamic condition in

VMRI (on left). The flow pattern at carotid bifurcation shows countercurrent

flow and flow separation phenomena within the carotid bifurcation.

flow is maximum. Turbulent flow is defined as a rectangular flow pattern. The

flow velocity is high in the whole region and vortices do appear. Adjacent layers

are mixed. The flow is known as ‘plug flow’ otherwise velocity as a function of

spin position is defined by Laminar flow as following:

V (r) = Vmax[1− (r/a)2] (3.3)

where a is radius of vessel as cylinder. So, the plug flow for every phase-encoding

step may be defined at constant flow as:

ρ(x, y) = eiγ G0ν(x,y)τ/2 . ρ(x, y)τ (3.4)

where G0 is bipolar pulse strength and τ is length of time and phase is γ Gvτ 2

with flow along x. In case of velocity as function of spin position for the flow

along x when vessel is in-plane the laminar flow may be defined as:

ρ(x, y) = eiγ G0ν(x,y)τ/2 . ρ(x, y) (3.5)

These flow characteristics are interrelated by Reynolds number, Re, as:

Re = 2R0vavρ/η (3.6)

where ρ is density and η is viscosity of fluid.

For Re > 2000, the flow is defined as turbulent flow. For Re > 7000, the flow

is defined as pulsatile flow as observed in arteries for a transition state between
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laminar and turbulent flow. First, laminar flow facilitates the acceleration of

the blood flow to reach peak flow velocity. Later, the transition from laminar

flow to turbulent flow appears as early phase in the deceleration phase soon

after the peak velocity. In such situations, the transition flow depends upon the

curvature and radius of a vessel. This flow generates forces parallel to the vessel

wall termed as ‘shear force’. For example, shear forces are common at the points

of atherosclerotic plaque in the arterial wall. The shear force can be represented

as: s = ηδv/δr where η is coefficient of viscosity and δv/δr is the radial variation

of velocity in the vessel. In the vessel, the shear force is greater close to the

vessel wall. The reason for this is that the radial spatial variation in velocity is

largest there.

In humans, laminar flow is common in veins and capillaries. This flow varies

due to respiratory motion and arterial contractions. The flow velocity in the veins

varies on the order of 10–20 cm/sec. In the arteries, blood flow is pulsatile with

Reynolds number > 7000. In blood vessels, turbulence is rarely observed. How-

ever, turbulence may be seen in large arteries and systolic motion in the heart.

Typical flow velocities in large arteries vary from zero in the end-diastolic phase

of cardiac cycle to 50–100 cm/sec in the mid-systole. Larger spatial variations

in flow velocity are also observed at the vessel walls near vascular bifurcation

sites at which atherosclerotic plaque appears. In arteries, blood flow in cardiac

chambers is pulsatile because cardiac chambers are large open spaces. In these

chambers, R0 is large and inflow and outflow of blood result in vertex formation

and also in large spatial velocity variations. This flow characteristic is known as

‘cine ventriculography’. Vertex formation is related to rapid inflow and outflow

of blood in the cardiac chambers. In the diastolic phase, little flow and small

volume changes are observed as short-lived phase. This short-lived phase of

cardiac cycle depends on the heart rate. These are common in patients with low

heart rates. In these patients blood is approximately stagnant during late dias-

tole, while systolic events are less affected by heart rate. At heartbeats above

70 beats per minute, patients show appearance of vortices and spatial variation

in flow velocity in cardiac chamber. These spatial variations affect systole and

diastole. On the other hand, microvascular circulation occurs at flow velocities

0.5–1.0 cm/sec and is pulsatile in the arterioles up to the precapillary sphincter.

It is continuous in the capillaries and venules distal to it. Vessel walls experience

high shear forces. Microcirculation vessels do form a network of vessels with

changing orientation inside the vessel.
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3.1.1.4 Factors Influencing the Appearance of Flowing Blood

on MR Images

The magnetization Mxy, after application of 90◦ nutation pulse in an SE experi-

ment, can be explained as:

Mxy = F{v, a, . . . }H{1− exp (t/T1)}(exp(−t/T2)) (3.7)

where the expressions in parentheses characterize longitudinal (T1) and trans-

verse (T2) dependent magnetizations and are known as relaxation times. H

is proton density. The factor F(v, a, . . .) is flow factor which depends on spin

isochromats. Velocity (v), acceleration (a), slice transition, spin phase phenom-

ena, and high-order motion terms are the main variables.

3.1.2 Flow Physical Principles

Let us discuss the basic flow patterns in blood vessels and related MRA signal

magnitudes. Mathematical models of laminar and plug flow for signals from

spin echo pulses are well established. Flow causes a physical displacement of

spins between successive excitations. This time-of-flight effect leads to different

series of RF pulses producing different echo amplitudes for a number of different

spin populations. The fraction volume of each population can be expressed as

a function of the interpulse interval length during which each population enters

the slice. So, the total signal is the sum of the echo amplitudes from each spin

population. Different pulse sequences generate image signal intensity (SI) as a

function of velocity, TR, T I, TE and slice thickness.

Fractional volume segments. The cylindrical volume of the vessel cut by a

slice is equal to fraction of flowing blood volume of imaging (VOI).

MRA image signal. The evolution of magnetization for each spin popula-

tion can be described by Bloch equations. For simplicity, magnetization may be

expressed for transforming to a reference rotating frame at Larmor frequency

(−γ H0) according to Bloch equations as follows:

Mx(t) = M0x exp(−t/T2) (3.8)

My(t) = M0y exp(−t/T2) (3.9)

Mz(t) = M0[1− exp(t−t/T1)]+ M0z exp(−t/T1) (3.10)
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where M0x, M0y, and M0z are the values of Mx, My, and Mz at t = 0, and M0 is the

steady-state magnetization in the z direction. This condition is good for spins

rotating in the transverse plane aligning through the x axis at M0y = 0.

For fundamental understanding for the signal generation, we describe dif-

ferent signal intensities of main pulse sequences as follows:

90◦ selective− TE/2− 180◦: S = M0exp(−TE/T2)

180◦ − (TR− TE/2)− 90◦ − TE/2− 180◦:

S = M0{1− 2exp[−(TR− TE/2)/T1]}exp(−TE/T2)

90◦ − TE/2− 180◦ − (TR− TE/2)− 90◦ − TE/2− 180◦:

S = M0{1− 2exp[−(TR− TE/2)/T1]+ exp(−TR/T1)}exp(−TE/2)

The complete expression for the echo signal has four separate velocity boundary

conditions:

Plug flow signal will be:

SV (TR− TE/2)/D + SVTE/(2D)+ S[1− V (TR+ TE/2)D]

if 0 < V < D/(TR+ TE/2)

SV (TR− TE/2)/D + S(1− VTR/D) if D/TR+ TE/2) < V < (TR

S[1− V TE/(2D) if D/TR < V < D/(TE/2)

0 if V > D/(TE/2)

Laminar flow signal will be:

Sa[Vm(TR− TE/2)/(2D)]+ SbVmTE/(4D)+ Sc[1− Vm(TR+ TE/2)/2D)]

if 0 < Vm < D/(TR+ TE/2)

Sa[Vm(TR− TE/2)/(2D)]+ Sb{1− D/2Vm(TR+ TE/2)]− VmTR/(2D)}
+ Sc D/[2Vm(TR+ TE/2)] if D/(TR+ TE/2) < Vm < D/TR

Sa[1− D/(2VmTR)− VmTE/4D)]+ Sb{D/(2VmTR)− D/[2Vm(TR+ TE/2)]}
+ Sc D/[2Vm(TR+ TE/2)] if D/(TR) < Vm < D/(TE/2)

Sa[D/VmTE)− D/2Vm(TR)]+ Sb{D/(2VmTR)− D/[2Vm(TR+ TE/2)]}
+ Sc D/[2Vm(TR+ TE/2)] if Vm > D/(TE/2)

90◦ selective−TI−90◦ selective−TE/2−180◦ selective pulse:

a. 90◦−TE/2−180◦: Sa = M0 exp (TE/T2)

b. 90◦−TI−90◦−TE/2−180◦: Sb = M0[1− exp(−TI/T1] exp(−TE/T2)
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3.1.2.1 Slice-Transition Phenomenon

It is known as the time-of-flight effect. The time-of-flight effect occurs when-

ever a vessel takes course in part perpendicular to the imaging plane. During

this course, substantial amount of blood volume is replaced within the imaged

slice for several hundred milliseconds. Different pulse sequences capture these

events of blood volume turnover in selected slices and voxels of the circulatory

system. For example, images are captured in several hundred milliseconds by

spin echo (SE) pulse sequence and a few tens of milliseconds in GRE imaging.

Normally, the flow direction is selected perpendicular to the imaged slice axis

in the xy plane. The flow is chosen along the z direction. Time-of-flight depends

upon the slice thickness, position of slices in stack region of interest, multislice

acquisition order, flow velocity, and flow direction of spin isochromats. Assume

a volume element or voxel that moves with constant velocity V0. If it moves a

distance z0 during time t, we can write

V0 = z0/t.

Two types of slice-transition phenomenon can occur. In the first case, blood

moves so fast that it leaves the slice between the 90◦ nutation pulse and the

180◦ refocusing pulse in an SE sequence. It results in signal loss and has been

termed as high-velocity signal loss. In the second case, the flow velocity is small

enough that only a small fraction of blood leaves the slice between the 90◦ and

180◦ pulses in the SE sequence, but a part of the blood is replaced by fully

magnetized blood from outside of the imaged volume during the repetition time

(TR). It leads to increased intravascular signal and has been termed flow-related

enhancement.

3.1.2.1.1 High-Velocity Loss. Spin isochromats leave the imaged slice in an

SE sequence before the rephasing pulse for a given echo is applied. These spin

isochromats will not contribute to this echo. These spin isochromats continue

with their dephasing process or rephrasing. This dephasing process or rephras-

ing will not be experienced by spin isochromats. In general, the rephasing pulse

occurs at time Te, which is equal to TE/2 for the first echo, or (n− 1/2)TE if

the nth echo in a multiecho sequence with regular echo spacing is used. Here

Te is equal to TE1 + (TE2 − TE1)/2 if a sequence with two asymmetrical echoes

(at times TE1 and TE2) is used. The maximum velocity (Vz) depends on slice
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thickness (s). The maximum velocity of blood (Vz) above which blood leaves

the slice will be more than s/Te. For lower velocities, only a fraction of blood

leaves the voxel up to the rephrasing pulse time Te. The fraction of blood (g)

will be dependent on maximum velocity and slice thickness as:

g = Vz/s.

Thus, the recorded magnetization decreases linearly with the velocity down to

zero. The blood flow may be observed to be very slow. As a result, intravascular

signal is seen on first echo, but no longer on second echo. It indicates blood

has moved out of the slice during the time interval of TE/2 and 3TE/2. If we

know the slice thickness, we can calculate blood flow velocity. The signal loss

on the first echo at the rim of the vessel is commonly observed due to spin-

phase effect in SE sequences. On the contrary, in GRE sequences, slice-selective

rephrasing pulse is not applied. So, slice-transition effects are not observed and

do not produce any intravascular signal loss. At low blood velocities, only few

out of all spin isochromats leave the slice during the time Te. Hence, during the

repetition time TR � Te applied, some or all spin isochromats can be replaced

by still fully magnetized spin isochromats. These spin isochromats represent

from outside the imaged volume. In this region, these spin isochromats have

not undergone repetitive 90◦ pulse in SE or alpha pulse in GRE sequences. This

gives rise to ‘entry slice phenomenon’. We shall discuss entry slice phenomenon

in the following section.

3.1.2.1.2 Entry Slice Phenomenon. If T1�TR for blood, spin isochromats

cannot fully recover their magnetization along the z axis. If spin isochromats in

blood move perpendicular to a stack of slices with velocity v, they are subjected

to 90◦ in SE imaging and to an alpha pulse in GRE pulse sequence. Due to flow,

they are partly replaced by spin isochromats from outside imaging volume. This

outside volume has not been subject to such pulse. So, net magnetization M

available for the next 90◦ pulse or alpha pulse is the sum of the magnetization

of the remaining spin isochromats. It leads to increased intravascular signal in-

tensity. The temporal dependence of M over time will represent an increase in

M in such a way that the first linear increase will be due to incomplete magneti-

zation recovery. The later phase in the increase in M as a plateau will represent

flow-related enhancement. The magnitude of this effect is again dependent on

the flow velocity (v), the slice thicknes, and TR. The fraction of blood g in the
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voxel that is replaced is given by

g1 = vT/s (3.11)

while other one remaining is given by 1− g2. The sum of the two magnetization

components in the vessel is thus

M(TR) = M{(1− g1)[1− exp(−TR/T1)]+ g2}{(1− g1)[1− exp(−TR/T1)]}
(3.12)

It represents previous voxel in slice and g2 represents fresh voxel. The flow-

related enhancement is prominent when a significant fraction of blood in a

slice is replaced during the time TR. With optimized values for slice thickness,

s, and repetition time, TR, in a sequence, such flow velocities, v, are of the

order of a few centimeters per second. At TR = 500 msec, s = 0.5 cm, the

flow velocity will measure 1 cm/sec. At higher velocities the combination of

higher velocity signal loss and flow-related enhancement tends to reduce the

intravascular signal intensity.

3.1.2.1.3 Flow-Related Enhancement. During multislice acquisition, it

can be operative in several slices of a stack. The spin isochromats moving at

the center of a vessel are generally faster than those close to the vessel wall.

Therefore, centrally located spin isochromats move deeper onto the stack dur-

ing the repetition time (TR) than peripherally located ones. Suppose the planes

of entry into different slices are separated by a distance q(q � slice thickness),

then fully magnetized spin isochromats moving with a velocity v will enter the

jth slice after a time, t = j · q/v after entering the first slice. Spin isochromats

that move a distance j · q after the jth slice and before the ( j + 1)th slice are

irradiated with RF pulses. These contribute their full magnetization to the signal

measured in the ( j + 1)th slice from outside the stack without being disturbed

by RF irradiation. Here slices are acquired in the sequence parallel to flow. The

deeper slice in the stack indicates that faster blood flow enhances the signal

in that slice. The fast flow causes high-velocity signal loss in SE images. Thus

flow-related enhancement cannot be observed in all slices of a stack. Suppose

q = 10 mm, TE = 30 msec, and adjacent slices are excited 100 msec apart, the

total signal loss will occur for velocities of approximately 65 cm/sec and above

according to V = K · s/TE where K and s are slice thickness. Blood moving

through the first slice between the refocusing pulse at T= 15 msec and into the
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next slice before it is excited at t = 100 msec will contribute full magnetization to

the second slice. Such spin isochromats must move with a velocity V of at least 1

cm/(100− 15 msec)= 12 cm/sec, which is lower than 65 cm/sec (velocity needed

for total signal loss). Such spin isochromats contribute to signal enhancement

in the second slice. In fact, isochromats moving at approximately 24 cm/sec

and 36 cm/sec can reach the third and fourth slices, respectively, to contribute

to the signal enhancement. However, spin isochromats getting to slices farther

into the stack move progressively faster and these isochromats approach the

velocities at which high-velocity signal loss occurs. On this basis, it is possible

to detect a bright spot of signal with decreased diameter at multiple slices into

a stack. On the contrary, if the order of acquisition is reversed in another way

to minimize crosstalk between slices, signal enhancement may occur in slices

even deeper into the stack. Entry slice effects are principal causes for the high

signal intensity of blood vessels on gradient-recalled-echo (GRE) images. This

is a result of the fact that the short TR in GRE sequences does not permit the

z magnetization to regrow to the values close to its maximum Mz0. It is only a

small fraction when the next alpha (α) pulse is applied. If a substantial fraction

of blood is replaced during the TR of the sequence, entry slice effects can lead

to a very strong signal increase. It results in invisible high-velocity signal loss. It

is due to the fact that no slice-selective rephrasing pulse is applied. As a result,

intravascular signal will be very bright.

3.1.2.1.4 Slice Transition Effects. These slice transition variations mea-

sure the flow in a vessel. The velocity of flowing spins depends upon the distance

traveled by the flowing spin isochromats and their travel time. Hence, their veloc-

ity may be calculated by dividing these two quantities. Velocity may be measured

as the number of excited spins present inside the voxel of interest as a function

of time. For this, one way is to apply a slice-selective 90◦ pulse and then to apply

a 180◦ rephasing pulse in the slice-displaced phase along the direction of flow at

some distance. Any signal measured in this second-slice duration will represent

spin isochromats that have been washed-in by the flow in the vessel. This type

of method of determination of the flow velocity is advantageous over the spin-

phase method. In this method, flow sensitization occurs by selecting a read-out

slice either proximal or distal to the tagging slice. However, the disadvantage

of this approach is that it measures the flow in positive, negative, or in both

directions. So, clinically this method is not acceptable.



130 Rakesh Sharma and Avdhesh Sharma

3.1.2.2 Inflow Related Artifacts and Their Suppression

High intravascular signal intensity on GRE images shows the vascular ghost

appearance. These ghosts appear due to pulsation artifacts. These pulsation

artifacts affect the image quality, if the images are acquired without electro-

cardiographic (ECG) triggering. These artifacts may be suppressed by the use

of phase encoding steps. For this, the principle frequency is selected as super-

imposed with inspiration rate. It will shift the ghost to the edge of the image.

Motion-insensitive pulse sequence is also used to suppress the artifacts. In gen-

eral, second echo and velocity-insensitive gradients are applied. These methods

compensate for high-order motions and thereby minimize the vascular ghosting.

Hence, these methods are known as flow-compensated techniques. However, for

quantification of vascular features, the spatial-presaturation method is a current

practice. This method uses 90◦ RF pulse. The 90◦ RF pulse is applied outside

the imaged volume. This imaged volume represents the stack of slices in any

region. In any selected region, the inflowing spins may produce entry-slice phe-

nomenon. After applying 90◦ RF pulse, the z magnetization of inflowing spins is

completely abolished just before their flow in the imaging volume. This results

in no flow-related enhancement effects and the vessels appear black on GRE

images. The disadvantage of this method is that it cannot completely suppress

signal from stagnant blood imaged with pulse sequences even using the long

repetition times (TR).

In order to overcome this problem, MR-projection angiograms of vessels

have emerged as an alternative method. In this method, many adjacent thin

slices perpendicular to the principal vessel orientation are acquired consecu-

tively. The method is known as 2D Fourier transform gradient recalled echo

(2D-FT GRE). As a result of entry-slice phenomenon, the vessels appear very

bright in these slices, particularly if they have been acquired using flow compen-

sation to suppress the dephasing. These acquired data are three dimensionally

reconstructed using maximal-intensity-projection or surface-rendering methods

to generate vascular angiograms. This method is described later in the section

on techniques. If presaturation pulse is applied in distal to imaged slice, the

signals from veins are suppressed. Similarly, if presaturation pulse is applied in

the proximal direction to the imaged slice, it will suppress arterial signals. This

method was further refined by the use of two image sequences of the veins and

arteries being imaged. It was done by subtracting a flow compensated sequence
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from the uncompensated sequence or by subtracting a fully presaturated image

from a unilaterally presaturated image. The image acquisition in the interleaved

fashion will further minimize the motion artifacts.

3.1.2.3 Spin Phase Phenomenon

This effect is based on the motion in a vessel in the direction of magnetic field

gradients. It leads to the precession phases different from zero in bulk motion,

while the magnitude of the magnetization vector remains unaffected. All of the

moving spin isochromats within the voxel experience the same phase change.

Interestingly, the moving fluid will have a different phase. Flowing blood gives

rise to a velocity profile in a vessel, divided into different voxels. Due to phase

change along the vessel wall and surrounding regions, velocity variation is ob-

served due to phase changes either 90◦ or 180◦. It causes considerable signal

loss in the voxel at the location of fat tissue.

Suppose a velocity difference of 1 cm/sec within a voxel produces preces-

sional phase changes of approximately 360◦, it will lead to complete signal loss

by use of SE sequence with typical gradient values. For slower blood flow, in-

travascular signal is seen less dephased and is more prominent at the center of

the vessel such as accelerated blood flow. With acceleration, the signal loss that

results from the dephasing of spin isochromats increases in proportion to the

echo number (see Fig. 3.4). For constant velocity motion, this method may be

known as even-echo rephrasing or even-echo refocusing for the flow along the

Figure 3.4: Intravoxel spin-phase dispersion due to incoherence is shown near

the center of the vessel (point A) for minimal phase dispersion. Point B near

the vessel wall encompasses a large range of velocities resulting with intravoxel

dephasing and signal loss.
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direction of a symmetrical gradient field. This is the case of read-out gradient

when multiple echoes with constant echo spacing are obtained. In a multiecho

sequence obtained in this fashion, echoes occur at all multiple integers of the

echo time (TE) such that even echoes correspond to phase change zero for

stationary and moving spin isochromats independent of their velocity. The in-

travascular signal does not show up and results in no dephasing at even echoes.

So, the rephrasing phenomenon is dramatic, as vessels without signal on the first

echo can have very bright signal on the second echos or even echos. Arteries

do have the pulsatile blood flow and experience the velocity and acceleration

dephasing effects. During diastole, arterial blood is almost stagnant and leads to

high signal intensity. There is complete signal loss during diastole when blood

is moving fast in the veins.

Both slice-transition and spin-phase phenomena are responsible simultane-

ously for the suppression of intravascular signal. In in-plane flow, spin-phase

effects must be dominant, whereas for in-flow perpendicular to the imaging

plane, slice-transition effects must be prominent. In gradient echo imaging, in-

traluminal signal loss occurs due to spin-phase phenomenon. It does not show

high-velocity signal loss. This intraluminal signal loss results from spatial vari-

ation in velocities and accelerations at the site of increased shear stress in the

vascular tree such as arterial bifurcation, arterial proximal parts, pulmonary

arteries, and venous confluences around cardiac valves. However, dephasing

effects and therefore the signal losses on GRE images are pulse sequence de-

pendent.

In general, MR imaging requires the product of the gradient field G and the

time to turn-on (tp) to be constant for spatial resolution. So, the dephasing effect

on constant velocity is dependent on tp2 and tp3, and shorter TE. In other words,

shorter TE and tp will result in less dephasing effect and less signal loss. The

SE and GRE pulse sequences are standardized for using dephasing effect in the

evaluation of valvular diseases.

3.1.2.4 Turbulence-Induced Signal Loss

On GRE images around vascular stenoses, turbulence-induced signal loss further

deteriorates the capacity of this approach in flow quantification in valvular dis-

eases. Spin dephasing and consecutive signal loss make the lesions appear more

prominent. The turbulence-induced effects are corrected by flow-compensated
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Figure 3.5: Velocity-induced phase shifts. Stationary pins do not show any

velocity-induced phase shift or intravoxel dephasing (box A). Constant velocity

flow throughout voxel results in net phase shift (box B). Turbulence and shear

stress within a voxel produce randomly oriented velocity vectors, resulting in a

loss of signal.

sequences at short echo times (see Fig. 3.5). These recent advances are de-

scribed later in this chapter. The velocity distribution inside the voxels is not

the result of an intravascular flow profile, but there are multiple small vessels

inside a single voxel that take course in all directions. In the case of vessels tak-

ing many turns, intravascular velocities and accelerations inside the voxel are

due to spatial arrangement rather than the flow profile. Spin isochromats expe-

rience destructive interference of isochromat vector components. This results

in signal loss and the magnitudes depend upon the cardiac cycle. These signal

losses may be avoided by the use of subtraction of flow-sensitive images from

the flow-insensitive images to demonstrate tissue perfusion and tissue diffusion.

3.1.2.5 Quantification of Flow by Spin-Phase Effect

Intravascular signals of voxel within the vessel are characterized by the mag-

nitude and phase angle of the magnetization vector. Flow-compensated pulse

sequences are sensitive to velocities because the phase angle is a measure of

blood flow velocity or acceleration. The phase angle is adjusted below 360◦ for
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all the possible velocities in the vessels. This concept is also used in Doppler

sonography. The sequence uses the gradient reversal. Reversed gradient sup-

presses the signal from stationary tissue but does not affect phase angle of the

flowing tissue. It also corrects magnetic field inhomogeneity and zero phase

determination.

3.2 Techniques and Principles of Magnetic

Resonance Angiography

There are two main methods of acquiring angiographic images. We shall de-

scribe them from the point of view of intravascular flow imaging. Later, we shall

describe recent refinements and modifications in the angiography methods.

TOF MRA

PC MRA

Each technique can be performed using 2D-FT. Thus, there are mainly four

different methods:

1. 2D-TOF MRA

2. 2D-PC MRA

3. 3D-TOF MRA

4. 3D-PC MRA.

Each of these techniques is advantageous to a different type of clinical applica-

tion.

Before discussing these techniques, let us understand the basic physical

principles of flow inside the vessel which is the fundamental principle of an-

giography. This information is important for MR instrument physicists in day to

day practice.

3.2.1 TOF MRA

This approach is based on flow-related enhancement in which 2D or 3D GRE

techniques are applied (see Fig. 3.6). Usually, FC (flow compensation) is used

perpendicular to the lumen of the vessel. So, it relies primarily on flow-related
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Figure 3.6: Two-dimensional TOF MRA pulse sequence (left) and 3D TOF pulse

sequence (right) are shown. Several gradient waveforms are combined to reduce

TE.

enhancement to distinguish two types of spins i.e., moving spins and stationary

spins. The advantage of this flow-related enhancement is mainly fast scanning

time. It uses minimized FRE because each slice represents an entry slice.

3.2.1.1 2D TOF MRA

A typical pulse sequence is represented for TOF MRA. A presaturation pulse is

applied above or below each slice to eliminate signal from overlapping venous

or arterial structures. Usually a short TR (about 50 msec), a moderate flip angle

(45−50◦), and a short TE (a few msec) are used. This method has the following

advantages. It generates high SNR as signal is generated from a large volume. It

improves spatial resolution. During time of flight, blood flowing into the imag-

ing slice is fully magnetized and appears brighter than the partially saturated

stationary tissues. Optimized scan parameters to acquire angiographic images

are described.

3.2.1.1.1 Image Contrast. To get better image contrast, repetition times

(TR) must be kept short with respect to the stationary tissues’ T1 times. It helps

to suppress the signal from stationary tissue and to maximize the vessel contrast

due to flow-related enhancement (see Fig. 3.7). TR of 45–50 msec are adequate

for suppressing the signal from stationary spins within the slice. During this

time, the fully relaxed blood moving into the slice remains unsaturated. As a

result, blood appears bright (high signal intensity) compared to the low-signal-

intensity stationary tissues. Other flow and imaging parameters influencing the
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Figure 3.7: Effect of TR is shown. At short TR, stationary tissue is partially

saturated causing saturated blood flowing out of slice and replaced with unsat-

urated blood appearing as high signal in the blood relative to surrounding tissue

(on left). At long TR, stationary tissue may recover between excitations and

excited blood flows out of the slice before it is refocused to form echo or high

signal of stationary tissue with no signal from flow.

image contrast in 2D TOF images include flow velocity and direction, vessel

geometry, T1 of blood and stationary tissues, flip angle, TE, and slice thickness.

3.2.1.1.2 Flow Velocity. Initially, flow-related enhancement increases with

the flow velocity. At moderate flow velocity rates, there is flow-related enhance-

ment for a complete new set of the spins. Later, no further increase is possible

in image contrast or signal intensity.

3.2.1.1.3 Vessel Geometry. The orientation of the blood vessel to the slice

plane also affects vascular signal intensity. Maximum inflow enhancement oc-

curs when blood flow is perpendicular to the imaging plane. When a vessel

travels obliquely through the slice or the vessel lies within the slice plane, the

flowing spins are subjected to multiple RF pulses. As a result, spins begin to

become saturated. As a result, intravascular signal intensity decreases and the

vessel may be incompletely visualized.

3.2.1.1.4 Slice Thickness. The thinnest slices maximize inflow enhance-

ment. These thin slices reduce the effects of in-plane flow. Typically, for our

carotid bifurcation imaging, a nominal 1.5 mm slice is obtained using a narrow

bandwidth RF pulse at 625 Hz and gradient amplitudes of 1 G/cm or 10 mT/m.
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The larger slice-select gradient amplitudes require larger flow compensation

gradients. These gradients in turn limit the minimum TE to 8–9 msec.

3.2.1.1.5 Longitudinal Relaxation Times (T1). T1 values of blood may

have a significant effect on intravascular signal intensity, particularly in slow-

flow conditions. Suppose the velocity is not sufficient to completely refresh spins

within the imaged slice; in this case the blood will begin to become saturated. In

the 2D TOF procedure described for the carotid bifurcation, saturation would

occur at flow velocities of approximately 3 cm/sec. It can be represented as 1.5

mm divided by 50 msec. The ability of TOF angiography to detect slow flow may

be improved by shortening the T1 of blood through the use of MR contrast agents.

3.2.1.1.6 Flip Angle. Flip angle affects the slice-saturation rate. It is selected

to saturate the stationary tissues without compromising intravascular signal

intensity. Normally, flip angle of 45–60◦ is selected for 2D TOF angiography.

3.2.1.1.7 Asymmetric Echo Acquisitions. These acquisitions are ob-

tained using the fractional echo or partial echo times. Shortest echo times are

obtained for optimizing MR angiographic images. These short echo times are ob-

tained by the use of asymmetric echo acquisition. In this approach, the gradient

echo may offset in the acquisition window by shortening the duration and size of

the dephasing and flow-compensation gradient pulses. This permits shortening

of the sequence and reduced echo times. Asymmetric echo acquisition has the

advantage of reducing the size of the refocusing gradients on the read-out axis.

It results in decreased signal loss and reduces artifacts from accelerations or

higher order moments.

3.2.1.2 Presaturation Pulses

Blood may flow into the imaging plane from any direction. The blood may pro-

duce flow-related enhancement i.e. 2D TOF images of carotid artery show blood

flowing to the imaging plane from above or below. As a result, the carotid arter-

ies appear bright. This brightness is due to overlapping of the carotid arteries

and jugular arteries. To eliminate the signal from overlapping vascular struc-

tures in the projection images, a presaturation pulse is applied as a 3 cm wide

saturation band at the level of 0.5 cm superior to the slice. The saturation pulse
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moves superiorly with each successive tissue slice. As a result, the image data

set emphasizes exclusively arterial structures.

3.2.1.3 2D TOF Angiography of the Carotid Bifurcations

In patients with vascular diseases, the 2D TOF imaging technique is an effective

method of imaging the carotid artery bifurcation. We acquired typically 50–70

contiguous axial slices, each approximately 1.5 mm thick. The acquisition is

performed by using flow compensation in both slice-select and read-out direc-

tions. For this, typically a gradient echo pulse sequence is employed, with TR=
45–50 msec, a flip angle of 45–60◦, NEX = 1, 128 × 256 matrix, and minimum

available echo time. The field of view (FOV) may vary from 16 to 20 cm, depend-

ing on the patient size. As a result, axial image slices show the blood vessels as

bright (see Fig. 3.8). Other surrounding tissues appear with much lower signal

intensity. However, the 2D TOF angiography method has limitations.

Figure 3.8: In carotid artery, glomus tumor vasculature is shown in pre- and

postsurgery (left and right panels at the top). Carotid stenosis (left on bottom)

and carotid aneurysm (right at bottom) are highlighted.
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The presence of vascular stenosis may produce areas of increased flow ve-

locity within the stenosis segment. So, these regions (having relatively less flow)

further slow the flow in the poststenotic vortices. Turbulence is also frequently

encountered distal to the stenosis. These factors will produce intravoxel incoher-

ence, spin saturation in the slowly flowing eddies, and loss of signal intensity.

Large ulcerations are often difficult to image because of the slow and com-

plex flow within the location of ulceration. Use of the shortest TE and smallest

voxel size can substantially minimize signal loss. In spite of these measures,

some signal will be lost adjacent to the stenosis region. It is possible to over-

estimate the degree of stenosis when interpreting the carotid MR angiograms

(see Fig. 3.9). In-plane flow can also compromise the quality of 2D TOF an-

giograms. When a blood vessel runs parallel to the imaging plane, the blood will

experience multiple RF pulses. As a result, the blood will eventually become

saturated. The portion of the vessel coursing through the imaging plane may ex-

hibit little or no signal intensity. These vessels appear as artificially narrowed or

Figure 3.9: Three-dimensional coronal inflow targeted MIP angiography of

carotid arteries is shown. Boxes in both rows represent isolated single carotid

arteries at 1.5 mm 32 partitions.
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discontinuous. Artificial loss of signal is usually easy to identify if caused by

the in-plane flow. It is due to the fact that the vessel geometry can be appre-

ciated above and below the in-plane segment. On several occasions, vessels

may become so intertwined that vascular loops are formed. Presaturation pulse

obliterates the signal intensity from inferior vessel taking course. Similarly, re-

versed flow in the internal or external carotid arteries will be undetectable. The

invisibility is because of the superior presaturation pulse. For better results,

the maximum intensity pixel (MIP) approach was suggested as described in the

following section.

3.2.1.4 2D-TOF Imaging of Venous Anatomy

Images of cortical veins have been generated with the use of 2D TOF imaging.

When superimposed on axial MR images, a map of the cortical veins can be

produced to relate intraparenchymal pathology with cortical venous anatomy.

This approach has been successful for preoperative localization of lesions prior

to surgery. For this, a presaturation pulse is applied to eliminate arterial signal

using slice thickness 2.0– 2.9 mm. The method allows the relatively fast coverage

of a large anatomical region without compromising in-flow enhancement. The

trade-off in this approach is the decrease in image-resolution.

3.2.1.5 MIP Projection Ray Tracing Technique

The MIP projection ray tracing technique is used for viewing 2D TOF angiograms

after data acquisition and reconstruction (see Fig. 3.10). As a result, multiple pro-

jection images are generated from volume of stacked axial slices’ image data.

When volume data is projected onto a two-dimensional plane, each pixel in

the projection image depends on the pixels along each line, or ray, through the

volume of data. Several procedures can be used to determine pixel intensity

in the projection image. Using MIP, the projection pixel is assigned the maxi-

mum pixel intensity found along a ray traversing the imaging volume. Additional

parallel rays are passed through the volume until a complete projection image

of the vessels is obtained. Once all pixel intensities for a projection have been

calculated, the process may be repeated for any other projection angles (see

Fig. 3.11). Typically, 18 projection angiograms are obtained at 10◦ increments.

The collections of projected images may be viewed as a cine loop to give the
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Figure 3.10: Maximum intensity projection: 3D structure is represented on a

2D plane based on the maximum signal intensity. Projecting successive views

from different angles results in an apparent rotation when later displayed in a

cine loop.

appearance of rotation and depth. These images result in a three-dimensional

representation of the vascular structures. Angiographic imaging parameters are

selected to maximize the signal intensity of vascular structures. For this, the

MIP procedure produces projection images in which vessels appear bright and

the background signal intensity is reduced. The MIP technique has limitations

despite improved contrast. It results in a slight decrease in vessel size. So, this

technique contributes to an overestimation of stenotic regions. The MIP pro-

cess also slightly reduces the diameter of normal vessels. The MIP projection

images lack increased signal at points of vessel overlap. A ray tracing through a

region of vessel-overlap selects the brightest pixel along the ray. It presents the

overlapped vessels as a single vessel.

3.2.2 3D TOF MRA

A pulse sequence is represented for 3D TOF MRA (see Fig. 3.6). A slab of several

cm (usually about 5 cm) is obtained which contains up to 28–60 slice 3D volumes

in axial plane through region of interest. The slice thickness is 0.7–1.0 mm, repe-

tition time is 40 msec, and flip angle is 15–20◦ with FOV of 16–20 cm, depending

on the patient size and region of interest. Depending upon the desired resolution
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Figure 3.11: Three-dimensional TOF angiogram showing circle of Willis con-

firming the occlusion of the left internal carotid artery (left panel). Two-

dimensional TOF angiograms demonstrating an internal carotid artery occlu-

sion. A sagittal projection of right carotid bifurcation reveals a patent vessel post

endarterectomy (top row on right). The sagittal projection of the left carotid bi-

furcation reveals stenosis of the proximal external carotid artery and occlusion

of the internal carotid artery (bottom row on right).

and imaging time, 128 × 128, 192 × 256, or 256 × 256 matrix can be used with

NEX= 1. Very short echo times may be attained with flow compensation. These

optimized scan parameters permit adequate penetration of inflowing, fresh, fully

magnetized spins into the imaging volume. The resultant 3D data set initially is

displayed as a series of slices, acquired in the axial plane. Later, it is subjected

to the MIP ray tracing technique to create coronal and sagittal projections. A

series of projections may also be generated to “rotate” the vascular structures

around a single axis. Cine loop display can provide the perception of depth.

Advantages of 3D techniques are appreciable as these techniques are more sus-

ceptible to saturation effects and less sensitive to slow flow. Thus, 3D volume

acquisition techniques offer superior signal-to-noise ratios (SNR). 3D TOF MRA

offers a prescription of very thin slices, thereby reducing the voxel size and

decreasing the intravoxel dephasing. 3D TOF MRA maximizes the flow-related

enhancement.
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3.2.2.1 Optimization of Image Parameters of 3D TOF MRA

Optimization parameters are blood velocity, vessel orientation in relation to

the slab, the size of the imaging volume, TR, slice thickness, voxel size, and

flip angle. Flow velocity should ideally permit fresh, fully magnetized spins to

traverse the entire imaging volume between successive RF pulses. This results in

optimal signal enhancement because of in-flow effects. For instance, at normal

flow velocity saturation effects will be minimal. At lower velocity, slow flowing

blood becomes saturated as it moves through the imaging volume, and signal

intensity decreases. Slow flow conditions may be encountered in the cases of

vascular occlusive disease, venous thrombosis, and aneurysms with complex

flow patterns.

3.2.2.1.1 Imaging Flow Orientation. It should be selected to minimize the

saturation of moving spins as they course through the volume. For instance, ax-

ial orientation permits imaging of ‘circle of Willis’ using a small volume, thereby

reducing the imaging time (see Fig. 3.11). In practice, coronal and sagittal ori-

entations have been used to image both extracranial and intracranial carotid

arteries in a single acquisition. Larger flip angles of 35–60◦ maximize signal in

the extracranial carotids, but result in saturation of the intracranial vessels.

Smaller flip angles of 15–30◦ improve visualization of the intracranial vessel be-

cause of the reduced saturation. As a result, trade-off is the decreased intensity

of intravascular signal from the extracranial carotid arteries.

3.2.2.1.2 Repetition Time (TR). At short TR, stationary tissues exhibit

greater saturation. It increases the tissue contrast between vessel and the sur-

rounding tissues (see Fig. 3.12). However, at short TR, spins flowing through

the imaging volume become saturated, resulting in loss of intravascular signal

intensity. These saturation effects can be somewhat reduced by using a smaller

flip angle or by shortening the T1 of blood through the use of MR contrast agents.

Nonetheless, when the 3D acquisition is optimized for normal intracranial arte-

rial flow (flip = 15–20◦, TR = 40), slower flow will become saturated, reducing

the delineation of venous anatomy and slow flow within aneurysm or diseased

arteries. Despite this, 3D TOF MRA does not distinguish flowing spins from sub-

acute hemorrhage. For instance, methemoglobin within a subacute hematoma

has a short T1 and does not become saturated during the 3D acquisition. The
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Figure 3.12: Three-dimensional TOF angiogram (left panel) shows cavernous

angioma with visible methemoglobin due to short T1 due to simulated blood

flow. For comparison, SPGR images are shown with high signal intensity center

representing methemoglobin.

result is bright signal intensity in the images, which may simulate flow-related

enhancement.

3.2.2.1.3 Echo Time (TE). Lower TE reduces motion-induced phase errors.

Partial RF pulses reduce the minimum TE while these RF pulses preserve an

acceptable slab profile. Very low TE may be achieved by removing flow compen-

sation from the gradient waveform. Thus there is a trade-off between minimum

echo time at the cost of flow compensation. This approach is currently used for

clinical imaging.

3.2.2.1.4 Flip Angle. Flip angle has an effect on intravascular signal intensity

and background suppression. Smaller arteries may be visualized at flip angles

of 15–20◦ with TR of 40 msec. Stationary tissues exhibit greater saturation at a

larger flip angle. For example, small 3D volumes of 28 slices show intravascular

signal intensity of larger arterial structures at flip angles 20–35◦ with rapid flow.

Arterial flow begins to saturate at flip angles greater than 40◦. It results in reduced

intravascular signal intensity (see Fig. 3.13).

3.2.2.1.5 Flow Compensation. Flow compensation is critical in 3D TOF

MRA. Motion-induced phase dispersion results in signal void areas. These areas

are frequently identified within the juxtasellar carotid arteries and proximal

middle cerebral arteries. These signal void areas can be minimized by the use

of shortest possible TE with flow compensation applied in the slice-select and

read-out directions. This combined approach reduces the phase dispersion and
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Figure 3.13: Effect of flip angle in 3D TOF angiogram images shows at different

flip angles 20◦ (left) and 30◦ (right).

therefore maximizes intravascular signal. Intraluminal signal loss may still occur

in spite of the use of first-order motion compensation. High order motions such

as jerks and acceleration may still produce regions of signal loss due to the phase

dispersion. For instance, blood flow in carotid siphon experiences centripetal

acceleration along the carotid vessel’s outer wall. In 3D TOF images, the effects

of acceleration are not compensated and result in linear regions of signal loss

at curves in the carotid artery and proximal middle cerebral artery. However,

magnetic susceptibility effects from the adjacent paranasal sinuses play a minor

role in the loss of signal intensity in the juxtasellar carotid artery and proximal

middle carotid artery at short TE. Mostly, signal intensity losses are observed at

the bends of these arteries during diastole. Higher order motion compensation

gradients extend TE. At extended TE, susceptibility effects are significant and

the signal loss is more apparent.

3.2.2.1.6 Slice Thickness. Slice thickness also contributes to signal loss.

Thicker slices show significant signal loss. Thin slices exhibit phase dispersion

within the voxel which minimizes signal loss and effects of intravoxel dephasing.

However, thin slices reduce signal-to-noise ratio and the volume of interest.

Other important refinements in this technique are described in Section 3.4.

3.2.3 Phase Contrast MRA

Phase contrast (PC) MRA is based on the fact that the phase gain of flowing blood

through a gradient is proportional to its velocity (assuming constant velocity).
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Figure 3.14: Two-dimensional Phase contrast pulse sequence (left) and 3D

phase contrast pulse sequence (right) are shown with velocity-induced phase

shift to distinguish stationary and flowing spins. In both 2D/3D PC MRA, two or

more acquisitions with opposite polarity of the bipolar flow-encoding gradients

are subtracted to produce image of vasculture while these gradients are not

applied to all three axes simultaneously.

Phase (φ) and velocity (ν) are related by

φ = ∫ωdt = ∫(γ Gνt) dt =1/2 γ Gνt2 (3.13)

Therefore, knowledge of the phase at any point in time allows us to calculate

the velocity. The most common method for PC MRA is the use of bipolar gradient

(see Fig. 3.14). This process is called flow encoding. Because the two lobes in

this bipolar gradient have equal areas, stationary tissues observe no net phase

change. However, flowing blood will experience a net phase shift proportional to

its velocity (assuming a constant flow velocity). This is how flow is distinguished

from stationary tissue in PC MRA (see Fig. 3.15).

PC MRA is illustrated for 2D PC and 3D PC MRA, respectively in the fol-

lowing section. At this point, it is important to describe “flow phase,” “velocity-

dephasing,” and the distinction between “magnitude” image and “phase” image.

Flow image results from phase changes in transverse magnetization of spins

moving along a magnetic field gradient. These phase shift effects can be used

to generate flow images to quantify flow velocities. These phase effects are also

present in stationary spins due to differences in their precession frequency.

Stationary tissues dephase over time in a spatially-dependent magnetic field

gradient. This dephasing can be exactly compensated to form an echo using a
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Figure 3.15: Flow is encoded in one direction using bipolar gradients. Through

encoding, stationary tissue receives zero phase shift, φ, while moving spins

receive a phase shift proportional to their velocity, v.

second gradient in the opposite direction. Flowing spins change the position

during application of the dephasing and rephasing gradients (see Fig. 3.16). As

in PC MRA, both magnitude and phase images can be obtained with information

on direction of flow in the vessel (see Fig. 3.17).

The effect of velocity-dephasing on phase information indicates the flow di-

rection in right–left (R/L), superior–inferior (S/I), or anterior–posterior (A/P).

This effect may be described as follows: flow-induced different phase shifts are

generated due to spins moving in-plane along frequency gradient in different

directions (see Fig. 3.18 shown by zig-zag arrows). Conventionally, spin flow is

higher at the center than near the wall due to laminar flow. Due to this differ-

ence, spins at the center cause larger phase shift than the phase shift by slower

peripheral coherence. This results in velocity dephasing and total signal loss

called “flow void.” In this way, phase information is transferred to a magnitude

contrast.

3.2.3.1 2D Phase Contrast Angiography

The primary advantage is that a variety of velocity encoding may be opted in a

short period of time (within a few minutes). If limited angiographic information
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Figure 3.16: Flow phase dephasing and rephasing: stationary pins are dephased

between the first gradient pulse that later rephrased in opposite direction at the

echo time . Moving spins acquire an additional phase shift φ as they move along

a spatially dependent gradient.

Figure 3.17: Two-dimensional MRA (left on top) and 3D MRA (bottom on left)

angiogram images are shown to highlight the limitations and advantages of

each. Magnitude contrast provides signal enhancement over long distance (on

right).
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Figure 3.18: (top): Velocity dephasing: Moving spins show different velocity

profile. They acquire a net velocity dependent phase shift indicated by the zig-zag

arrows. Different flow phases within one volume element cause signal attenua-

tion in that region. A representative RACE pulse sequence is shown (bottom).

is needed, 2D phase contrast images may be sufficient to define the anatomy

of interest. To overcome this problem, RE pulse sequence is used to generate

velocity profiles inside the vessels (see Fig. 3.19). It uses slice selective gradient

and modulated RF pulse to excite a slice perpendicular to the flow direction. An

echo is read out thereafter. Spins flowing in this slice experience a phase shift

moving along the slice selection gradient because a read-out gradient is also

used perpendicular to flow. It allows correlation of phase shift with position

across the vessel diameter for generating a phase-shift profile which is linear

with velocity profile (see Fig. 3.19). Another advantage of 2D phase contrast
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Figure 3.19: Two-dimensional phase contrast localizer as guide image to apply

multiple velocities in a short period of time (left panel on top row). Sagittal 2D

phase contrast angiogram images are shown at VENC 20◦ to highlight drain-

ing veins of AVM (panel in center) and VENC 80◦ to highlight arterial supply

(right panel on top row). Axial collapsed image from 3D TOF angiogram shows

clear delineated AVM nidus (left on bottom row). Axial collapsed images from

3D phase contrast angiogram is shown with greater signal intensity in the left

hemisphere arterial structures (right panel on bottom row).

angiography is that, by varying the VENC, the user can generate images of the

arteries or the veins. Vascular occlusions can also be confirmed by imaging at

slower flow rates. However, 2D techniques are faster than 3D techniques while

3D PC MRA generates better SNR.

3.2.3.1.1 Image Acquisition. Here bipolar phase-encoding gradients are

used in a fashion analogous to 3D PC techniques. Instead of 3D volume, however,
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the system collects and displays the data as a series of thick slices or a single

slab. The slices, or slab, are then projected onto a single plane. The most efficient

way to acquire 2D PC angiogram is to use the shortest possible repetition time

and a large number of excitations, e.g. NEX = 2–16.

The optimized NEX permits data emerging during an R-to-R interval for each

set of the phase-encoding gradients. Since the data is averaged during the entire

cardiac cycle, the resulting angiogram will be a measure of the average flow.

Averaging also reduces ghosting artifacts. 2D phase contrast images may also

be obtained without the use of flow compensation, to minimize echo time.

3.2.3.1.2 Dynamic-Range Compression. Compared with the signal com-

ing from all the other spins in the regions being imaged, the MR signal from

moving blood is very small. Since the primary mechanism of stationary-spin

suppression is the subtraction of two excitations drawing most of their MR sig-

nal from nonmoving spin, minor errors in the stationary-spin signal prohibit

good background suppression.

To overcome this problem, a projection-dephasing gradient can be applied

to diminish signal from thick objects. This gradient has little effect on vascular

signal because the vessels are small with respect to the head and neck. For this

reason, the signal from stationary tissues is substantially suppressed, while the

MR signal from vessel is only slightly diminished (see Fig. 3.20). This results

in a reduction in dynamic range (an important imaging enhancement for PC

angiography). Projection dephasing may also modify the appearance of vessels

separated in the direction of projection. Under these circumstances, the region

of overlapped vessels may exhibit enhanced signal intensity, reduced signal

intensity, or no change in intensity.

3.2.3.1.3 Cardiac-Gated 2D Phase Contrast Angiography. Cardiac

gated 2D phase contrast angiography is based on cine MR acquisition meth-

ods in which TR remains constant, and each step in phase encoding is initiated

by the ECG trigger. The cine gradient echo pulse sequence is modified to include

bipolar gradients for positive and negative flow encoding in a fashion analogous

to multislice/slab 2D phase contrast angiography. The velocity encoding is also

similar to nongated 2D PC MRA. With this approach, up to 32 points in the car-

diac cycle are retrospectively sorted from the scan data. Magnitude and phase

images are then generated for each point in the cardiac cycle. On the phase
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Figure 3.20: Three-dimensional Phase contrast angiograms are shown as nor-

mal four projection images for normal vasculature with no signal loss (panels

A); 3D PC angiogram of intracranial arteries showing well visualized middle

cerebral artery and anterior cerebral artery (panels B); 3D PC angiogram axial

projection image from 2 mm slice (left) and 5 mm slice (right) (panels C). Using

single projection, thicker slices can be achieved at less imaging time.
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images, signal intensity is proportional to blood flow velocity for each phase of

the cardiac cycle. The phase images also display the direction of blood flow;

a bright vascular structure represents flow in the same direction as the flow-

encoding gradient, while dark vessels indicate flow in the opposite direction.

Scan information may be acquired in a multislice or projection/slab format. This

technique allows the assessment of alterations in hemodynamic conditions dur-

ing the cardiac cycle. Phase contrast angiograms may also be obtained using a

projection technique, to create a single-projection angiogram through a selected

volume of interest.

3.2.4 3D Phase Contrast Angiography

3D PC MRA technique relies on velocity-induced phase shifts to distinguish

flowing blood from surrounding tissue. The phase contrast approach can be

made sensitive to slow flow in small vessels. The reason for this can be attributed

to the fact that the contrast between flowing blood and stationary-tissues is

related to blood velocity, rather than stationary-tissue T1. PC angiography also

permits excellent cancellation of stationary tissues and offers the potential for

quantitative measurements of blood velocity.

3.2.4.1 Image Acquisition

To understand the mechanisms of image acquisition during phase contrast vascu-

lar imaging, conventional, rotating-frame vector of spin magnetization provides

a simple picture. This is described in the following section. After a 90◦ pulse

has been applied to the equilibrium magnetization, the spin is rotated into the

transverse plane, on an axis perpendicular to the static magnetic field B. Here,

it precesses at the Larmor frequency; at any moment in time, the magnetiza-

tion can be described by the length of the magnetization vector and its phase

in relation to reference positions. As this precession continues, the phase of

the magnetization vector or the phase angle varies. It is primarily because of

the effect of the main magnetic field, although smaller contributions may also

change the rate of phase evolution. For example, if the local magnetic field of

spin is changed by a magnetic field gradient, the spin’s Larmor frequency will

be slightly different and the rate of change of the phase will be altered. To de-

tect flow, phase contrast angiography uses a bipolar gradient to encode a spin’s
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velocity as a change of phase. The phase accumulation associated with such a

gradient is expressed as:

φ = γ V · T · A (3.14)

where φ is phase shift induced by flow in the transverse spin magnetization, γ

is the gyromagnetic ratio of the spin, V is the component of the spin’s velocity

in the applied gradient’s direction, T is the center-to-center time interval between

the two gradient lobes, and A is the area of each gradient lobe. This equation

describes only the phase shift induced by constant velocity flow when a bipolar

gradient is applied and not phase shifts due to such higher orders of motion as

acceleration or jerk. Since the flow-induced phase shift is directly proportional

to velocity, a stationary spin with zero velocity will have no net phase accumula-

tion. For subsequent acquisitions, this pulse sequence inverts the polarity of the

bipolar flow-encoding gradients. The polarity of the gradient (A) is now negative,

giving the equation for the second acquisition as φ = −γ VTA. When the image

data from the first acquisition is subtracted from the second acquisition, the

remaining data is from the signal that is different in two acquisitions i.e., the

intravascular signal from moving blood. The procedural difference in these two

acquisitions is the negation of bipolar gradients. A stationary spin will have iden-

tical (zero) phase shifts for each polarity of the flow-encoding pulse, resulting

in a zero net phase shift. So, the subtraction of two vectors result in zero. The

vector subtraction of signals from the spins moving with constant velocity is

quite different.

Suppose two signals have the same magnitude but different phases. Con-

sequently, when the vectors are subtracted, the resulting vector is not zero.

The result is signal originating from vascular structures with nearly complete

elimination of stationary tissues from the MR angiogram. In MRA, the imager

acquires the equivalent of three raw data sets for three flow-encoding directions.

The magnitudes of these data sets are combined into a total flow angiogram.

3.2.4.2 Image Contrast

Image contrast in PC angiography is influenced by several factors such as flow

direction, velocity encoding and aliasing, phase dispersion and flow compensa-

tion, and saturation effects.
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3.2.4.3 Flow-Encoding Gradients

In PC angiography, the bipolar flow-encoding gradients may be applied in a single

direction (e.g. superior/inferior) or in all directions—S/I, A/P, and R/L. In some

anatomic regions, the carotid bifurcation such as application of a single flow-

encoding axis may be sufficient. The resulting images represent flow direction

by the sign of the pixel value in an S/I flow image, for example superior-to-

inferior flow is represented by positive pixel values (brighter), while inferior-

to-superior flow is represented by negative pixel values (darker). In such a

case, single flow-encoding directions will not be adequate i.e., intracranial MRA

shows blood flow components in all directions. However, the total flow image

can be obtained by measurement of individual flow components and combin-

ing them mathematically into a composite image called “velocity image.” This

image is made of flows in multiple directions and has magnitude (in cm/sec)

but no specific direction. Velocity is defined as a vector with a magnitude (in

cm/sec) and direction such as S/I, A/P, and R/L. The individual flow measure-

ments can also generate a phase image with velocity and directional flow in-

formation. In the phase contrast angiograms, display pixel values are propor-

tional to the product of image magnitude and velocity encoding. This relation-

ship of velocity with image magnitude provides quantitative measurement of

velocity.

3.2.4.4 Spatial Misregistration Effects

The reason for spatial misregistration artifacts can be understood with the

pulse sequence. In this sequence, phase encoding fixes the position of an

isochromat in the phase-encoding direction, which occurs shortly after the

90◦ nutation pulse. This fixing of the isochromat position in the read-out di-

rection is followed by read-out which occurs only at echo time (e.g. approx-

imately at TE, 2TE, etc.) after phase encoding. If spin isochromats move be-

tween these two events in an oblique in-plane direction, their signal is mis-

registered. Spatial misregistration occurs because the position of the flowing

isochromats is identified in the phase-encoding direction prior to the read-out

direction. The result is a shift in intravascular signal intensity in the direc-

tion of flow along the read-out gradient. Measurements of the displacement

of the signal delineating an apparent vessel and the angle between vessel and
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read-out direction are used to determine flow velocity. In quantitative terms,

the time difference �t is the time between the phase-encoding and the read-

out events. The distance A is the measurement by which the signal is dis-

placed outside a vessel. Measurement of the angle C is the angle between

the vessel and the read-out direction, which permits determination of the flow

velocity V :

V = A/(�t cos C) (3.15)

3.2.5 Velocity-Encoding and Aliasing

Flow encoding in a vessel can be called velocity encoding (VENC). It is a pa-

rameter that is selected by the MR operator when using PC MRA. VENC is the

maximum velocity present in the imaging volume. Any velocity greater than

VENC will be aliased according to the following formula: aliased velocity =
VENC − actual velocity. A small VENC is always more sensitive to slow flow

(venous flow) and to smaller branches, but it causes more rapid (arterial) flow

to get aliased. A larger VENC is more appropriate for arterial flow. So, small and

large VENC are important for imaging all flow components. This method has

several advantages. PC MRA is capable of generating magnitude and phase im-

ages with superior background suppression. VENC is less sensitive to intravoxel

dephasing or saturation effects. On the other hand, this method suffers from

several disadvantages such as long scan time, sensitivity to signal losses due to

turbulence and dephasing on vessel turns (carotid siphon), and dependence on

maximum flow velocity in order to select an optimum VENC. To provide quan-

titative information regarding velocity in PC angiography, the VENC should be

selected to encompass the highest velocities that are likely to be encountered

within the area of interest (see Fig. 3.21). The normal maximal flow velocities

are likely to be encountered within the vessel region of interest. The normal

maximal flow velocities of intracranial arteries do not exceed 80 cm/sec. So,

the VENC of 80 cm/sec would encompass all flow velocities up to and including

80 cm/sec. When a velocity encoding is selected, the amplitude of the bipolar

flow-encoding gradients is adjusted so that all velocities including the selected

value can be imaged without aliasing. Aliasing in phase contrast occurs when

high flow velocities are incorrectly represented in the velocity image as lower

flow velocities.
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Figure 3.21: Three-Dimensional PC angiogram at multiple velocity encoding

(VENC) shows the effect of high velocity encoding (cm/sec) at 80◦ (left panel),

40◦ (right panel) on top row and 20◦ (left panel), 10◦ (right panel) on bottom

row to emphasize the better venous anatomical appearance with clear spheno-

parietal sinus at low VENC.

3.2.5.1 Aliasing in Speed Images

When the velocity-encoding set below the peak velocities is encountered within

the vessel lumen, the higher velocities will be aliased and appear as lower sig-

nal intensities from the lower velocities. Since the highest velocities are usually

present at the center of the vessel, aliasing may result in a decrease in signal

intensity within the center of the vessel. If a very low velocity encoding (VENC=
20 cm/sec) is used, the higher flow velocities will be aliased and the slower ve-

locities will have greater signal intensity. The advantage of aliasing in magnitude

and velocity images is also noticeable to bring out slower flow along the walls of

arteries, structures, or to emphasize venous anatomy. VENC may be set lower

than the peak velocity. Aliasing artifacts makes the flow information at the cen-

ter of the artery meaningless but this part of the vessel is often not seen in the

MIP projection images.
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3.2.5.2 Aliasing in Phase Images

When peak velocity in a vessel is equal to the VENC value, the bipolar gradients

give either a 180◦ or 180◦ phase shift, depending on the direction of flow. When

velocity exceeds the VENC value and the phase shift exceeds 180◦, it becomes

indistinguishable from the phase shift produced by flow in the opposite direction.

The result is phase aliasing. Here aliasing flow seems to change direction, since

the+190◦ phase shift is equivalent to a−170◦ phase shift (see Fig. 3.22). For this

reason, aliasing in individual flow-axis images is often recognized by adjacent

white and black pixels. In addition, the measured phase shift increases with

velocity up to a value of 180◦, at which point it is aliased with an equal negative

velocity. This sets a limit on the usable degree of flow encoding for quantitative

Figure 3.22: Phase plot shows the effect of a gradient on transverse magneti-

zation at three different locations along the frequency axis. The gradient echo

is formed by first dephasing the transverse magnetization along the frequency-

encoding axis. The first half of the read-out gradient refocuses the magnetization,

producing an echo at time TE.
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studies. With higher velocity encoding, pulse is wrapped. Magnitude and speed

images show a drop in signal intensity with increasing velocity.

For quantitative studies, one sets the flow encoding to produce a phase

shift just below 180◦ for the highest velocities present. The quantitative rela-

tionship between velocity and phase shift reduces the detectability of small

vessels and some aneurysms and reduces the apparent diameter of large

vessels.

3.2.5.3 Phase Dispersion and Flow Compensation

Intravoxel spin-phase dispersion is called intravoxel incoherence or loss of spin-

phase coherence. It imposes a limitation for vascular MRI. This loss of signal

intensity can occur whenever any of the three conditions exists: (1) A wide

spectrum of flow velocities exists within an imaging voxel; (2) higher orders

of motion, such as acceleration and jerk, are not compensated; and (3) local

variations in magnetic field homogeneity are present, such as those produced

by magnetic susceptibility effects. In a long straight vessel with no bifurcation,

blood flow is typically laminar flow. That is, the velocity profile across the vessel

is not constant, but varies across the vessel lumen. The flow at the center of

the lumen of the vessel is faster than that at the vessel wall, where resistance

slows down the blood flow. As a result, the blood velocity is almost zero near the

wall, and increases toward the center of the vessel. The velocity profile becomes

more complicated when the flow is pulsatile and the vessel curves or bifurcates.

In general, shear rate increases near the vessel wall, resulting in greater velocity

variations, intravoxel phase dispersion, and loss of signal intensity. Decreasing

the voxel size is one important strategy for minimizing intravoxel dephasing

in vascular MRI studies. Smaller voxels encompass a smaller range of flow ve-

locities. This reduced size of voxel also reduces SNR in a linear fashion. The

loss of SNR can be offset by the use of long acquisition times. SNR is propor-

tional to the square root of the imaging time. The other alternative is employing

the stronger magnetic fields, as SNR is proportional to magnetic field strength.

Thus, voxel-size reduction will improve nonturbulent flow only such as vascular

structures with well-characterized distribution of velocities within a vessel. It

will not eliminate signal loss due to true turbulence. The reason for this is that

turbulence flow has randomly oriented the velocity vectors. The lower voxel-size

strategy offers similar improvements in the regions with magnetic susceptibility
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changes due to magnetic field gradients. Phase shift induced by flowing blood in

the presence of a flow-encoding gradient is directly proportional to the velocity.

A dispersion of velocities in a vessel, therefore, results in a dispersion of phase

shifts. Consequently, a projection measurement of phase through a vessel with

laminar flow will represent the average velocity provided that the flow-encoding

gradient is not too strong. If the flow becomes complex or turbulent, the dis-

persion of velocity components along the projection may cause an attenuation

of the signal, or even zero signal. Turbulent flow is the flows with different ve-

locities that fluctuate randomly. The difference in velocities across the vessel

changes erratically.

3.2.5.4 Flow Compensation

Spin echoes recover the loss of signal because of magnetic field inhomogeneity

or susceptibility gradients. However, these spin echoes with longer echo times

are less effective in overcoming the phase dispersion due to spins moving at dif-

ferent velocities. Flow compensation is a first-order gradient moment nulling.

It employs the refocusing gradients to re-establish phase coherence. For this,

lobes are added to the read-out and slice-select gradient waveforms. As a result,

the loss of phase coherence due to different velocity distributions is minimized

and velocity-induced phase shifts are canceled. This strategy results in an acqui-

sition at constant velocity. However, high-order motions such as acceleration

and jerks are compensated by the use of waveform complexity. As a result of

additional lobes of gradient waveforms, the echo time and degrade image quality

are increased.

3.2.5.5 First-Order Gradient Moment Nulling

It means that the system applies gradient pulses so that constant velocity spins

and stationary spins have no net phase accumulation at each echo time. For

stationary spins, the signs of the gradients are reversed so that the phase ad-

vance experienced at a given location is compensated by appropriate phase re-

tardation. The first-order gradient moment nulling balances the phase for both

stationary spins and spins moving with constant velocity. This can be accom-

plished with the application of a gradient sequence in which the strength and

duration of the gradient pulses have a 1:2:1 ratio (see Fig. 3.22). Vascular blood
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flow is pulsatile and velocity is not constant between excitation and detection.

However, some phase dispersion will normally occur. In addition, in some

anatomic regions the effects of acceleration become prominent and “acceler-

ation drop out” signal loss becomes apparent in the resulting images. In periph-

eral vascular studies, pulsatile motion and jerk are significant causes of artifacts.

Although acceleration compensation schemes exist, the inevitable trade-off of

increased echo time can make them impractical.

3.2.5.6 Phase Dispersion

When magnetic field gradient is applied to a spin system, the spins within the

voxel accumulate a phase angle in relation to one another. This phase angle

difference is known as “phase dispersion.” To correct for this phase dispersion,

the gradient is typically reversed to rephase the spins. This technique is used

frequently in imaging sequences to refocus stationary spins. These “bipolar”

gradient lobes are of equal strength and duration but have opposite signs (see

Fig. 3.23). Spins that are moving in the direction of the magnetic field gradient are

not refocused and are left with some residual phase. The motion-induced phase

shifts occurring in the presence of magnetic field gradients are arithmetically

defined by position/time derivatives called “moments.” The zeroth moment (M0)

describes the effect of a gradient on the phase of stationary spins. Similarly, the

Figure 3.23: Gradient reversal.
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first moment (M1) describes its effect on the phase of a spin with constant

velocity. The second moment (M2) describes the gradient’s relationship to the

phase of spins experiencing acceleration. The third moment (M3) defines the

effect of jerk on spin phase. Even higher order moments exist, but they are

usually less important.

3.2.5.7 Shorter Echo Times

Shorter echo times (TE) may also reduce the problem of signal loss due to phase

dispersion. Short TE reduces the time for spins to dephase after the RF pulse.

Short TE thereby reduces the signal loss arising from susceptibility gradients,

velocity distributions, and higher orders of motion. For all VMRI techniques,

flow-related phase errors accumulate as a function of TE(n+ 1), where n is

the moment (i.e., n= 1 for velocity and n= 2 for acceleration). Phase error is,

proportional to TE(n+ 1).

The effects of higher order moments become more significant for long echo

delays. This is because the second moment (acceleration) has a cubic depen-

dence on echo time, while the third moment (jerk) has fourth-power depen-

dence. Using the shortest possible TE can therefore minimize signal loss due to

these higher order moments. For example, a VMRI exam obtained with TE =
3 msec will have approximately one-half the velocity-related phase errors of the

same study performed with TE = 4 msec.

3.2.5.8 Complex Flow

To minimize the problem of signal loss due to complex flow, several strategies

may be employed. The dispersion of velocities along a projection can be greatly

reduced by obtaining vessel images in thin cross-sections rather than in full

projection. 3D data acquisition overcomes the problem of velocity dispersion

within a voxel. Since the phase contrast technique relies on the phase shift

induced in moving spins, conventional flow compensation techniques cannot be

used on flow-encoding axis. To minimize phase dispersion, the bipolar phase-

encoding gradient is placed symmetrically around the first moment (called PC

flow compensation). However, a slightly shorter echo time can be achieved by

placing this gradient asymmetrically in relation to the first moment. The resulting
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technique may be called “minimum TE.” It produces the shortest possible TE

with the PC sequence, and is selected by not choosing the flow compensation.

3.2.6 MRA Image Reformation

The MR data from MRA images is reformatted and this reformatting plays a major

role in vascular anatomy observed in the MRA imaging. The common method

for reformatting TOF-MRA uses the technique known as MIP. This technique

also generates 3D images of blood vessels with blood motion. The other method

for reformatting MRA images is shaded surface display. This method reformats

image data in such a way that it appears as if a light is thrown onto structures

to generate 3D appearance of vasculature.

3.2.6.1 Maximum Intensity Projection

The method of reformatting based on ‘maximum intensity projection’ is known

as ‘mipping.’ The mipping of blood can be done based upon the blood flow char-

acteristics. Flowing blood in MRA techniques has a high intensity. The intensity

of a pixel in a slice is compared with that of the corresponding pixels in all the

other slices (as in a channel), and the one with maximum intensity is selected.

For example, pixel (1, 1) in slice 1 is compared with other pixels (1, 1) of all

other slices. For this, an internal threshold is used, below which no pixel in

the channel falls. This threshold process is repeated for all the pixels in the

slice to connect high intensity dots in space in order to generate an MRA image.

Thus MRA image represents the highest intensities (caused by flowing blood)

in the imaging volume. A major drawback of this method is that bright struc-

tures other than blood may be included in the mipped image i.e. fat, posterior

pituitary glands and subacute hemorrhage. This problem is observed only with

TOF MRA and not with PC MRA. PC MRA is a subtraction technique based on

velocity-induced phase shifts rather than on tissue T1 and T2 relaxation times.

3.2.6.2 Saturation Effects

The saturation effects can minimize the loss in signal intensity if small (15–20◦)

flip angles are used. The 3D phase contrast technique can image large volumes,

such as the entire head, without serious signal loss due to saturation effects. As
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a result of the reduced saturation dependency, short TR of 25–28 msec is used

with the minimal saturation of moving spins. It allows the spins to recover from

previous RF pulses. Longitudinal recovery occurs exponentially with a time

constant T1. Normally, repitition time TR five times the value of T1 is needed to

ensure complete relaxation. However, long TR would limit the amount of data

acquired and make 3D imaging difficult. Full relaxation can be achieved with a

short pulse delay if smaller flip angles are used. Partially relaxed steady states

are easily achieved with shorter pulse delays using the limited flip angles, the

so-called gradient-recalled acquisition in the steady state for 2D or 3D volume

acquisitions. Further reductions in saturation effects may also be realized by

using intravenous contrast agents that shorten the T1 of blood. These refer to

the gradual loss of longitudinal magnetization caused by repeated excitation RF

pulses. This leads to loss of signal-to-noise ratio during 2D acquisition in which

flowing blood has to travel within a slice or in a 3D acquisition in which the blood

travels through a thick imaging volume (or slab). In such a situation, saturation

effects may prevent the imaging of the distal portion of a vessel.

Contrast mechanism for vessel imaging is based on the differences in satu-

ration between blood and stationary tissue, rather than flow itself. This contrast

mechanism is usually dominated by “in flow” effects. TOF techniques differenti-

ate blood only when its magnetization differs from that of surrounding stationary

tissue. Longer blood stay in the imaging volume makes it more difficult to detect

the vessels. Signal loss therefore occurs whenever slowly moving blood enters

the volume of interest and reaches a new saturated steady state. Phase contrast

angiography is less susceptible to this problem of signal loss. This may be due

to saturation effects arising out of decreased TR and increased α factor.

Let us describe these factors.

3.2.6.2.1 Short TR. Short repetition times (TR) cause less recovery of lon-

gitudinal magnetization from one cycle to the next, causing gradual loss of the

Mz component. This effect is less pronounced with longer repetition times.

3.2.6.2.2 Larger Flip Angle (α). A large flip angle causes more signal loss

due to loss of longitudinal magnetization. Therefore, for a given TR, there is

greater gradual loss of Mz with a larger flip angle (α) than with a smaller flip

angle (see Fig. 3.24). In GRE, very short TR is selected, as a result saturation

effects pose a problem. The uses of small flip angles counteract this effect. These

saturation effects become especially important in 2D and 3D-plane flow or in
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Figure 3.24: The figure represents the method of reformatting of TOF-MRA im-

ages by MIP. The technique generates the 3D images of blood vessels with blood

motion. Larger flip angle at given TR show loss of magnetization and generate

the different 3D appearance of vasculature (shown on right panel at bottom).

3D imaging in which volume imaging is performed over an imaging slab. Signal

losses might be significant from one end of the slab to the other end of the slab.

3.2.7 Multislice GRE Techniques

These techniques use longer decrease in repetition time TR. As a result, the

saturation effects lead to signal loss with the use of larger flip angles. This

approach using longer decrease in TR improves the SNR. Other ways are also

used to decrease saturation effects. Common use of paramagnetic contrast agent

such as gadolinium chelate causes spin-lattice relaxation time (T1) shortening

of blood (see Fig. 3.25). Consequently, the T1 recovery (from short T1 to normal

T1 values) is faster with less saturation effects. In routine, multiple overlapping

thin-slab acquisition (MOTSA) tilt optimized nonsaturated excitation (TONE)

are also promising techniques to reduce saturation effects.
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Figure 3.25: A method of multislice gradient echo is represented using short TR

and larger flip angles with sufficient SNR (on left panel). However, gadolinium

contrast agent shortened the blood with T1 recovery with less saturation effects

(on right panel).

3.2.7.1 Multiple Overlapping Thin-Slab Acquisition (MOTSA)

It is a combination of 2D TOF and 3D TOF techniques for the purpose of reducing

the saturation effects associated with a thick slab. In this method, multiple thin

slabs used, which overlap by 25–50%. Extracting the central slices of each slab

creates the final imaging volume and discards the peripheral slices, which are

more affected by saturation effects. The main drawback of this technique is the

appearance of “Venetian blind” artifact at the points where the slabs overlap.

3.2.7.2 Tilt Optimized Nonsaturated Excitation (TONE)

In this technique, flip angle (α) is increased progressively as the flowing spins

move into the imaging volume by using increasing RF pulses. A large flip angle

(α) yields higher SNR. Thus, larger flip angle counteracts the saturation effects

of slow-flowing blood in deeper slices. This allows better visualization of distal

vessels and the slow-flowing vessels. In common practice, ramped flip angle

excitation pulse is used. In our commonly used scheme, the center flip angle is

30◦ and the flip angle at each end varies by 30%. As a result, flip angle changes

20◦ at the entry slice and 40◦ at the exit slice.
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3.2.8 Magnetization Transfer

This method is based on suppression of the off-resonant protein-bound water

protons. If magnetization transfer (MT) is combined with TOF MRA, it helps

suppress the background signal at least by 30%. The best-known example is

brain parenchyma where MT-TOF MRA increases conspicuity of small and distal

branches of vessels with slow flow, and aneurysms. MT can be combined with

TONE for further visualization of small vessels.

3.2.9 Flow Eddies

The flow eddies are unique for identification and estimation of stenosis although

these cause overestimation of stenosis by MRA. Flow eddies are mainly con-

tributed by turbulent flow and vertex flow as well as stream separation distal

to stenosis and carotid siphons (vessel turns). This overestimation of stenosis

is the result of accelerated flow through the stenotic area leading to dephasing

and flow void during TE. Common examples of overestimation are estimation

of length of stenosis in the case of poststenosis or mimicking stenosis in the

case of vessel turns.

3.2.10 Bright Blood Imaging

In addition to making the vessels appear black, vascular structures can also be

visualized by making them brighter. Several techniques can be used to enhance

the signal from flowing blood including gradient echo imaging and/or gradient

moment rephasing and/or contrast enhancement. In gradient echo imaging, the

flowing spins are refocused by the rephasing gradient. The patent vessels appear

brighter on the images. This technique can be referred to as “bright blood imag-

ing” and can be further improved by the application of an imaging option known

as “gradient moment rephasing.” It is a first-order velocity compensation tech-

nique to visualize slow moving protons with constant velocity (see Fig. 3.26).

Protons in venous blood or CSF are put into phase with the stationary protons.

So, the intravoxel dephasing is reduced. Gradient moment rephasing compen-

sates the flow by making these vessels containing slow flowing spins appear

brighter. It enhances the signal from blood and CSF.



168 Rakesh Sharma and Avdhesh Sharma

Figure 3.26: V1, V2, and V3 effect.

3.2.11 Black Blood MRA

Black blood MRA is another technique for MRA in which flowing blood appears

dark rather than bright. It appears as negative of bright blood MRA. Rapidly

flowing blood in arteries exhibits the TOF MRA signal losses. Slow flowing

blood in veins appears as higher signal intensity. Various flow presaturation

pulses and dephasing methods via gradients are employed in this technique to

render flowing blood as black. This technique uses the MIP algorithm. Black

blood MRA has several advantages. They offer no overestimation for the degree

of stenosis and no dephasing in vessel turns that mimic stenosis. On the other

hand, the technique has disadvantages that calcified plaque appears dark. Thus,

this technique may underestimate the degree of stenosis or invisible plaques.

Other black materials such as air or bone may mimic the blood flow.

Black blood MR angiograms make use of another time-of-flight

phenomenon—the signal void observed for flowing blood in spin echo images.

Unlike white blood, or INFLOW angiograms, which use a gradient echo sequence

to enhance flowing blood and saturate static tissue, black blood angiography

uses a spin echo sequence with presaturation to increase the signal of the tissue

and to create a signal void (i.e. no MR signal) for flowing blood. The data is then

processed using an MIP algorithm to yield the final MR angiogram. Black blood

magnetic resonance angiography offers the advantage that signal voids due to

turbulent flow are avoided. However, the contrast between vessel and static

tissue may be lower, arterial and venous flow cannot be easily distinguished,

and several regions of signal void such as nasal sinuses exist on images. Despite

these disadvantages, black blood MRA may prove useful in the determination

of some pathologies, such as severe stenotic lesions.
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3.3 Acquisition Methods

This section describes the basic theory of MR angiography, mainly the INFLOW,

FLAG, and rapid sequential excitation (RSE) methods.

3.3.1 INFLOW Method—Time of Flight

This method belongs to a class of MR angiographic techniques known as “time-

of-flight.” This technique gives rise to 3D information about the vessels in the

volume of tissue being imaged with high contrast between the stationary tissue

and the flowing blood. The INFLOW method relies on the flow related image en-

hancement caused by the movement of fresh, unsaturated blood into an already

saturated slab of tissue. The INFLOW method has a number of advantages over

other angiographic imaging methods. First, image subtraction is not necessary,

thereby reducing scan time and computing requirements while speeding data

manipulation. Second, high contrast can be obtained virtually independent of

flow velocity. Third, the arteries or veins may be selectively imaged by the use

of presaturation slabs. Finally, the technique does not require the use of self-

shielded gradients. It is less sensitive to motion than the phase contrast methods.

Using the INFLOW technique, angiograms may be obtained in only 10–15 min.

For example, the data can be processed by sending a batch job or processed

interactively with AP500 within 10 min. The choices are available on selecting

INFLOW processing under the ANPROC key. Both batch and interactive pro-

cessing are discussed later in this section.

To achieve the best possible contrast in the final images, the imaging param-

eters must provide for maximum refreshment of blood in the imaging volume.

The threshold minimum velocity (Vt) is given by:

Vt = d/TR, (3.16)

where d is the slice thickness and TR is the repetition time. For a typical 2D

INFLOW sequence with 2 mm slices and TR= 50 ms, threshold velocity (Vt) will

be 0.04 m/sec. For velocities greater than Vt, the signal intensity is essentially

independent of the flow velocity. Typical velocities range from 1 m/sec for the

aorta and 0.8 m/sec in the carotid artery and 0.03 m/sec in small veins.
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Figure 3.27: Partition effect.

The phase of the transverse magnetization is made independent of the flow

velocity by the use of velocity compensated gradients. However, higher order

flow terms may cause signal void in the areas of turbulent flow. The use of

short echo times compensates for this. If the stationary tissue is selected as the

volume of interest, it may be saturated using a short TR and a large tip angle

(see Fig. 3.27). During this pulse sequence, fresh unsaturated blood moves into

the imaging slice. This results in good contrast between the unsaturated blood

and the stationary tissue.

The INFLOW technique may be used with 2D multiple single slice or 3D

acquisition with a flow compensated gradient echo sequence. For 2D multiple-

single-slice INFLOW, many thin (2–3 mm) contiguous (or over contiguous) slices

are collected in a plane that is orthogonal to the blood flow. The optimum con-

trast between flowing blood and stationary tissue should be obtained with the

shortest TE, a TR of the order of 40–60 msec, and a large tip angle of 45–90◦,

depending on the anatomy being studied and the flow rate of blood. Presatura-

tion of a slab above or below the imaging slice allows selective imaging of the

veins or arteries. The single sided, parallel presaturation slab moves with the

slice position, ensuring good suppression. The slab thickness is adjusted in the

second pass parameters and is typically set to 50 mm. An alternative method for

certain imaging protocols employs a presaturation plane that is perpendicular

to the imaging slice. An example is the use of a sagittal or coronal slice for

imaging the carotid arteries. A perpendicular presaturation slab is necessary to

remove the venous flow.
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Figure 3.28: Excitation in coil.

Since the 2D method is a multiple-single-slice technique, the slices are re-

constructed as they are collected. They may be viewed while subsequent slices

are being collected. This feature allows the operator to monitor the data collec-

tion. Later, data collection may be stopped to correct the protocol, if necessary,

without waiting for all the data to be collected. It also shortens the study time by

reconstructing the slices while the acquisition is still in progress. In our experi-

ence for routine transverse slices of the carotids, processing methods consist of

projecting the stack of slices in a plane orthogonal axis. Top–down projections

or perpendicular projections in the AP direction may be generated with appro-

priate selection of projections in the select procedure menu (see Fig. 3.28). First

projection will be generated when slices are reconstructed. INFLOW image pro-

cessing uses a maximum intensity projection with the interpolation between the

slices. The maximum intensity voxel in a given vector is used for that projection

view.

3.3.2 FLAG, RSE-Phase Contrast

Flow adjusted gradient (FLAG) and RSE are fast field echo sequences. They

have velocity-sensitive gradients that are designed to image flow by adjusting

their sensitivities to different flow velocities. The contrast between flowing and

stationary tissue is based on the phase of the transverse magnetization of moving

spins rather than on time-of-flight effects. Spins moving in the presence of a mag-

netic gradient accumulate a flow-induced phase shift. This phase shift depends

on the strength and duration of the gradient and the velocity of the moving spins.
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In our experience, two or more images are collected, one of which is velocity

sensitive in a specified direction and the other is velocity compensated image.

For example, a thick slab (100 mm) FLAG sequence in the plane of flow (thick

coronal slab for imaging the abdominal aorta) will yield a projective MR angio-

graphic image. The resultant phase images are phase corrected and subtracted

to yield the projection angiogram. The FLAG sequence can be run with or with-

out cardiac triggering. In the noncardiac triggered version, a “shortest” TR is not

recommended. The FLAG sequence interleaves the velocity compensated and

velocity-sensitive data in consecutive TR periods. If the scan is gated, FLAG se-

quence interleaves the velocity sensitive data such as in consecutive heartbeats.

For better suppression of respiratory motion, the RSE sequence may be used.

RSE interleaves the velocity compensated and velocity-sensitive data in the same

heartbeat. The RSE sequence must be run in the cardiac triggered mode.

3.3.3 Digital Subtraction MRA

Digital subtraction MRA has been compared to digital subtraction angiography

(DSA) as contrast is selectively produced for moving spins during two acqui-

sitions. These moving spins are then subtracted to remove the signal from the

stationary spins, leaving behind an image of the moving spins. An early sub-

traction angiogram may be performed while gating to the cardiac cycle. An

acquisition during systole (fast flow) is generally subtracted from an acquisition

during dystole (slow flow). In this case, the stationary spins were subtracted,

retaining only the moving spins, such as the vasculature, on the resultant image.

This technique is significant as recent techniques were based on same principles.

3.4 Recent Advancement in MRA Techniques

Different newer methods are reported in the literature for MRA from the per-

spective of different applications applied for flow imaging.

3.4.1 Sensitivity Encoding

Sensitivity encoding (SENSE) is used to increase spatial resolution and decrease

venous contamination in peripheral MRA. In this method, single-bolus peripheral
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contrast-enhanced (CE)-MRA was performed [1]. Manual table movements com-

bined with SENSE in the upper station allowed for more rapid overall scan cover-

age such that acquisition of the lower station began 34 sec after aortic contrast ar-

rival. True submillimeter isotropic resolution was achieved in the lower station.

Diagnostic MR angiograms of all three stations were obtained. Venous enhance-

ment did not confound interpretation in any case. Submillimeter lower station

resolution provided excellent vascular details. Decreased delay time between

upper and lower station acquisition in single-bolus peripheral MR angiograms,

now possible using parallel imaging techniques, combined with lower station

submillimeter resolution, may decrease venous contamination and increase

overall interpretability, thus increasing clinical acceptance of peripheral MRA.

3.4.2 Blood Pool Contrast Enhancement

This technique of blood pool contrast-enhanced MRA was used to visualize the

arterial and venous vessel tree and to detect deep venous thrombosis of the

lower extremities. Patients with pulmonary embolism were randomized to eval-

uate various doses of NC100150 by T1-weighted (T1W) 3D gradient recalled

echo sequence. Qualitative assessment of overall MRA image quality and semi-

quantitative vessel scoring revealed good to excellent delineation of venous and

arterial vessel segments independent of the dose of NC100150. However, quan-

titative region of interest analysis revealed a significantly higher signal-to-noise

ratio in the high-dose group than in the mid- and low-dose groups of NC100150.

Between dose groups, the SNR was independent of vessel type (artery or vein)

and vessel segment localization (proximal or distal). Venous thrombi were char-

acterized by very low signal intensity, approximately one tenth the SI in adjacent

venous segments. High-quality MR angiograms of the lower extremities can be

obtained using low concentrations of NC100150 in combination with a strong

T1W 3D GRE sequence. The obvious delineation of venous thrombi suggests that

this technique may be potentially used as a noninvasive “one-stop shopping” tool

in the evaluation of thrombo-embolic disease [2].

3.4.3 Digital Subtraction Angiography

Contrast-magnetic resonance angiography (CE-MRA) MoBI-trak was used in

the evaluation of the peripheral vessels in patients with peripheral vascular
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disease [3]. CE-MRA with automated table movement (MoBI-trak) using a 1.5

T superconducting magnet (Philips Gyroscan ACS NT) was equipped with a

Power Trak 6000 gradient. Contrast medium (Gd-DTPA) was administered in

two sequential boluses-20 cm3 at 0.6 cm3/sec (starting phase) and 20 cm3 at

0.3 cm3/sec (maintenance phase), using a MedRad Spectris automatic injector.

DSA was the gold standard and was performed using a Philips Integris 3000,

with a brilliance intensifier of 38 sec. DSA and MRA were evaluated on printed

films. DSA provided more than 200 diagnostic assessments including stenosis

<50–99% occlusions. CE-MRA MoBI-trak exhibited good sensitivity, specificity,

positive and negative predictive values and high diagnostic accuracy. Using this

technique MoBI-trak has been shown to be a reliable technique for the detec-

tion of peripheral vascular disease up to the trifurcation, although it under-

lines the necessity for more diagnostic investigation and improvements in the

technique.

3.4.4 Magnetic Resonance Angiography with

Diffusion-Weighted Imaging

This approach was used for intraoperative magnetic resonance imaging, in-

cluding magnetic resonance angiography and diffusion-weighted imaging [4].

This integrated approach was used to monitor the surgical treatment of a

patient with an intracranial aneurysm. Intraoperative imaging was performed

with a ceiling-mounted, mobile, 1.5-T magnet (developed in collaboration

with Innovative Magnetic Resonance Imaging Systems, Inc., Winnipeg, MB,

Canada) that included high-performance 20-mT/m gradients. Pre- and postclip-

ping, intraoperative, T1-weighted, angiographic, and diffusion-weighted mag-

netic resonance images were obtained from a patient with an incidental, 8-

mm, anterior communicating artery aneurysm. T1-weighted images demon-

strated brain anatomic features, with visible shifts induced by surgery. Mag-

netic resonance angiography demonstrated the aneurysm and indicated that,

after clipping, the A1 and A2 anterior cerebral artery branches were patent.

Diffusion-weighted studies demonstrated no evidence of brain ischemia. For

the first time, intraoperative magnetic resonance imaging was reported to mon-

itor the surgical treatment of a patient with an intracranial aneurysm (see

Fig. 3.29).
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Figure 3.29: Magnetic resonance angiography is shown to demonstrate the

aneurysm with both A1 and A2 anterior cerebral artery branches as patent

(shown with arrows in left panel on top). Pre- and post-clipping, intraoperative,

T1-weighted, angiographic and diffusion-weighted magnetic resonance images

were obtained from a patient with an incidental, 8-mm, anterior communicat-

ing artery aneurysm. T1-weighted images showed brain anatomic features with

visible shifts induced by surgery.

3.4.5 3D-Navigator Echo MRA

A three-dimensional navigator echo (NE) sequence on an MR scanner with a

high performance gradient system was used to evaluate MR coronary angiogs-

raphy [5]. For imaging, a navigated gradient-echo (GE) pulse sequence with an

in-plane resolution between 0.63× 0.63 and 0.78× 0.78 mm2 with two overlap-

ping slabs was acquired. The number of visualized coronary artery segments

was estimated. In addition, signal-to-noise measurements were performed in

the ascending aorta at the level of the proximal right and left coronary arteries.
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This technique visualized the left main, the right coronary artery up to segment 3,

the LAD up to segment 8, and the RCX with segments 11 and 13. The average

signal-to-noise value at the level of the right coronary artery was 11.4± 5.0, at the

level of the left coronary artery 12.3± 4.5 with an in-place resolution of 0.63×
0.63 mm2. This resulted in a too low signal-to-noise ratio so that an adequate

assessment of coronary arteries was no longer possible. 3D-MR coronary angiog-

raphy using the navigator technique is limited by the low signal-to-noise ratio.

3.4.6 Navigator Echo and Cine Gradient-Echo Technique

This technique was used to evaluate coronary artery stents with MR [6]. For

both sequences the low-signal artifact was used to localize the stent, whereas

the flow-related high signal before and distal to the stent was considered as

a potency sign. All the stents were recognized as signal void with GE, and all

but one with NE. Positive EET, with a stent on the left anterior descending

coronary artery, presented low signal distal to the stent at both MR sequences.

These suggested the dysfunction stenosis at conventional coronary angiography

(CCA). Two sequential stents on the right coronary artery presented lack of

signal distal to the stents at both MR sequences. It suggested occlusion (97%

stenosis at CCA). However, negative EET, MR high signal before and distal to

the stent suggested patency at both sequences. MR seems to be a safe and

promising technique for noninvasive evaluation of coronary stents.

3.4.7 MR Phase-Contrast Doppler Flow Quantification

Determination of blood flow volume is useful in assessing ischemic cerebrovas-

cular disease. Blood flow volume measurement was evaluated by three noninva-

sive imaging techniques, namely color velocity imaging quantification, spectral

Doppler imaging quantification, and MR phase-contrast flow quantification, to

see how well the flow values determined by each technique agreed with one

another [7]. Flow volume quantification was tested experimentally using a flow

simulator and three techniques. These techniques evaluated the vertebral and in-

ternal carotid arteries of patients with history of cerebral ischemia. In the flow

simulation study, the flow values in each technique were compared with the

phantom flow using Wilcoxon’s signed rank test. Flow volumes were measured

by color velocity imaging quantification. MR phase-contrast flow quantification
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agreed with the phantom flow simulation within the tested range, and spec-

tral Doppler imaging quantification values were significantly overestimated. In

patients, a large variation in the blood flow volume was obtained between each

technique. Blood flow volume measurements determined by the three nonin-

vasive imaging techniques on the same vessel can differ widely, and spectral

Doppler imaging quantification consistently overestimated the flow volume.

Color velocity imaging quantification or MR phase-contrast flow quantification

can be used for clinical follow-up investigations in the future.

3.4.8 Breath-Hold Contrast Enhanced MRA

The purpose of this technique was to evaluate the effect of breathing on image

quality of the aortic arch and carotid vessels during contrast-enhanced MR an-

giography. It showed that high-resolution breath-hold contrast-enhanced MR an-

giography combined with a timing-bolus technique can produce high-quality im-

ages of the entire carotid circulation [8]. High-resolution contrast-enhanced MR

angiography on a 1.5-T Siemens imager was used for coronal three-dimensional

gradient-echo sequence (TR/TE, 4.36/1.64; flip angle, 25◦) with asymmetric k-

space acquisition. The 136× 512 matrix yielded voxel sizes of 1.33× 0.64× 1.0

mm3. A timing-bolus acquisition, orientated in the coronal plane to include the

aortic arch, was obtained initially during free-breathing. Twenty milliliters of

gadopenetate dimeglumine was injected at 2 mL/sec. Unenhanced and enhanced

3D volumes were recorded. A subtracted 3D set was calculated and subjected to

a maximum-intensity-projection algorithm. Half of the patients held their breath

during angiography and the other half did not. Aortic arch motion was measured

on the timing-bolus acquisition as the distance moved by a single pixel in both

the x and y directions. Two observers assessed MIP MR images independently

and vessel sharpness was scored on a scale of 1–5. Sharpness was also assessed

quantitatively by generating a signal intensity profile across the aortic arch ves-

sel wall and calculating the average of the upward slope and downward slope

at full-width half maximum. Visualization of carotid branch vessels was scored

on a scale of 0–5, and venous contamination was scored on a scale of 0–3. Aver-

age in-plane aortic arch movement was 10.3 mm in the x direction and 8.7 mm

in the y direction. Quantitative and qualitative sharpness of the aortic arch and

great vessel origins was better (p < 0.05) during breath-holding than during non-

breath-holding. No difference in the sharpness of the carotid vessels was noted
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between the two groups. Carotid branch vessels were well visualized from the

aortic arch to the intracerebral circulation. The average venous contamination

score was 0.56. Breath-holding greatly improves the sharpness of the aortic arch

and great vessel origins but has no effect on visualization of the carotid vessels.

High-resolution breath-hold contrast-enhanced MRA can produce high-quality,

artifact-free images of the entire carotid circulation from the aortic arch to the

intracerebral circulation.

3.4.9 K-space 3D Navigator-Gated MRA

To acquire the center of k-space while extending three-dimensional free-

breathing navigator-gated coronary MRA by an initial single breath-hold [9], this

approach was successfully applied. Resulting images were compared with con-

ventionally acquired free-breathing navigator-gated MR angiograms. The acqui-

sition of k-space center during the single breath-hold resulted in an appreciable

increase in the signal-to-noise ratio. Visible length of the right coronary artery, as

well as contrast-to-noise ratio between blood and the myocardial muscle were

identical. The breath-hold extension was shown to be a valuable technique that

may be combined with first-pass contrast-enhanced MR imaging. The other ad-

vantage was the creation of photographic freeze scans of coronary small arteries

and heart within each heartbeat of approximately 80 msec intervals.

3.4.10 MR Arterial Spin Tagging Projection Coronary

MRA Technique

Conventional coronary MRA techniques display the coronary blood-pool along

with the surrounding structures, including myocardium, the ventricular and

atrial blood-pool, and the great vessels [10]. This representation of the coronary

lumen is not directly analogous to the information provided by X-ray coronary

angiography, in which the coronary lumen displayed by iodinated contrast agent

is seen. Analogous “luminographic” data may be obtained using MR arterial spin

tagging (projection coronary MRA) techniques. Such an approach was imple-

mented using a 2D selective “pencil” excitation for aortic spin tagging in concert

with a 3D interleaved segmented spiral imaging sequence with free-breathing

and real-time navigator technology. This technique allows for selective 3D
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visualization of the coronary lumen blood-pool, while signal from the surround-

ing structures is suppressed. However, there are technical hurdles for visualizing

the coronal arteries because of small size and near-constant mobility, which is

related to cardiac cycle and normal breathing.

3.4.11 Collateral Flow Assessment with Contrast

Enhanced MR Velocity Mapping

To correlate quantification of collateral flow in aortic coarctation with the mor-

phological visualization of the collateral vessels and to compare different ap-

proaches to the measurement of collateral flow [11], coarctation was examined

with T1-weighted spin-echo (T1-W SE) imaging and 3D contrast-enhanced MRA.

MR velocity mapping was performed at four levels in the descending aorta. The

flow immediately above and below the coarctation did not differ significantly.

Measuring within the coarctation resulted in flow overestimation. The increase

in flow from proximal to distal aorta was 12± 21% in patients with no or uncer-

tain collaterals and 69± 55% in patients with pronounced collaterals. Spin-echo

images and MRA were comparable in visualizing collateral vessels. The visual

estimation of collaterals was correlated reasonably well with flow quantification

MR velocity mapping. Collateral flow assessment with MR velocity mapping was

an accurate technique for evaluating the hemodynamic importance of a coarcta-

tion and was recommended if abundant collaterals are not visualized with spin

echo or MRA.

3.4.12 (Gd)-Enhanced Three-Dimensional Magnetic

Resonance Angiography

The goal of this technique was to evaluate the diagnostic value of gadolinium

(Gd)-enhanced three-dimensional MRA in patients with congenital and acquired

anomalies of the pulmonary and systemic veins [12]. Gadolinium-enhanced 3D

MRA is a fast magnetic resonance imaging technique that has shown great

promise in the evaluation of large and medium-sized arteries. However, its

application to venous anomalies has not been established. Gd-enhanced 3D

MRA examination was used for diagnosis with anomalies of the pulmonary or



180 Rakesh Sharma and Avdhesh Sharma

systemic veins and had additional diagnostic data available for comparison with

the MRA findings. The technique did not detect anomalies of the pulmonary veins

that were subsequently diagnosed by MRA. Intervention catheterization proce-

dures and operations followed the 3D MRA diagnoses. 3D MRA either diagnosed

previously unsuspected venous anomalies or added new clinically important in-

formation. The mechanism of pulmonary vein compression in eight patients was

determined by MRA but not by other imaging modalities. Gadolinium-enhanced

3D MRA is rapid and accurate. 3D MRA has been shown to be the premier

noninvasive technique for imaging large blood vessels in the body.

3.4.13 3D Time-Resolved Imaging of Contrast

Kinetics Technique

This technique based on contrast-enhanced MR angiography was used by direct

comparison with the fluoroscopic triggered 3D-elliptical centric view ordering

(3D-ELLIP) technique [13]. 3D-TRICKS and 3D-ELLIP were directly compared

on a 1.5-T MR unit using the same spatial resolution and matrix. In 3D-TRICKS,

the central part of the k-space is updated more frequently than the peripheral

part of the k-space, which is divided in the slice-encoding direction. The carotid

arteries were imaged using 3D-TRICKS and 3D-ELLIP sequentially in 14 pa-

tients. Temporal resolution was 12 sec for 3D-ELLIP and 6 sec for 3D-TRICKS.

The signal-to-noise ratio (S/N) of the common carotid artery was measured

and the quality of MIP images was then scored in terms of venous overlap and

blurring of vessel contours. No significant difference in mean S/N was seen

between the two methods. Significant venous overlap was not seen in any of

the patients examined. Moderate blurring of vessel contours was noted on

3D-TRICKS in five patients and on 3D-ELLIP in four patients. Blurring in the

slice-encoding direction was slightly more pronounced in 3D-TRICKS. How-

ever, qualitative analysis scores showed no significant differences. When the

spatial resolution of the two methods was identical, the performance of 3D-

TRICKS was found to be comparable in static visualization of the carotid arter-

ies with 3D-ELLIP, although blurring in the slice-encoding direction was slightly

more pronounced in 3D-TRICKS. 3D-TRICKS is a more robust technique than

3D-ELLIP, because 3D-ELLIP requires operator-dependent fluoroscopic trigger-

ing. Furthermore, 3D-TRICKS can achieve higher temporal resolution. For the
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spatial resolution employed in this study, 3D-TRICKS may be the method of

choice.

3.4.14 Autocorrected MRA for Motion-Induced Artifacts

This technique was used to investigate the efficacy of a retrospective adap-

tive motion correction technique known as autocorrection for reducing

motion-induced artifacts in high-resolution three-dimensional time-of-flight MR

angiography of the circle of Willis [14]. Gradient-recalled echo three-dimensional

time-of-flight MR angiography sequence was used for MRA of the circle of Willis.

Each volunteer was asked to rotate approximately 2◦ after completion of one

third and one half of the acquisition in the axial, sagittal, and oblique planes (45◦

to the axial and sagittal planes). A single static data set was also acquired for

each volunteer. Unprocessed and autocorrected maximum-intensity-projection

images were reviewed as blinded image pairs by six radiologists and were com-

pared on a five-point image quality scale. Mean improvement in image quality

after autocorrection was 1.4 (p < 0.0001), 1.1 (p < 0.0001), and 0.2 (p = 0.003)

observer points (maximum value 2.0), respectively, for examinations corrupted

by motion in the axial, oblique, and sagittal planes. All three axes had statisti-

cally significant improvement in image quality compared with the uncorrected

images. Autocorrection can reduce artifacts in motion-corrupted MR angiogra-

phy of the circle of Willis without distorting motion-free examinations.

3.4.15 Multiphase Contrast-Enhanced Magnetic

Resonance Angiography

A fast pulse sequence with spiral in-plane readout and conventional 3D partition

encoding was reported for multiphase contrast-enhanced magnetic resonance

angiography (CE-MRA) of the renal vasculature and compared to a standard

multiphase 3D CE-MRA with FLASH readout [15]. An isotropic in-plane spa-

tial resolution of 1.4× 1.4 mm2 over 2.0× 1.4 mm2 could be achieved with a

high temporal resolution. The theoretical gain of spatial resolution by using the

spiral pulse sequence and the performance in the presence of turbulent flow

was evaluated in phantom measurements. A deblurring technique corrected the

spiral raw data. Thereby, the off-resonance frequencies were determined by
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Figure 3.30: FFEP MRA.

minimizing the imaginary part of the data in image space. The correction algo-

rithm reduced image blurring substantially in all MRA phases (see Fig. 3.30).

The image quality of the spiral CE-MRA pulse sequence was comparable to

that of the FLASH CE-MRA with increased spatial resolution and a reduced

contrast-to-noise ratio. Additionally, artifacts specific to spiral MRI could be

observed that had no impact on the assessment of the renal arteries.

3.4.16 High-Resolution MRA with Phase/Frequency

Flow Compensation

A newly developed pulse sequence 3D TOF-VTE was tested on clinical MRI

systems, by performing scans of the cervical carotid artery and intracranial

carotid artery at the carotid siphon. It required very long echo delay times (TE).

Variable TE (VTE) was implemented into flow-compensated 3D TOF to minimize

the effective TE and reduce the flow-related signal void. The k-space of the

3D TOF was divided into segment groups ranging from two to 32 segments

with different TE. The TE were minimized and the flow-compensation gradient

lobes were calculated to null the total first moment at the peak of the echo for

each segment [16]. Possible artifacts and off-resonance effects were evaluated,

with respect to the number of TE segments, using the point spread function
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(PSF) and corresponding experiments. The optimal number of TE segments

for the least artifact was determined to be one-half of the number of slices. Two

types of artifacts caused by VTE were predicted and subsequently observed. The

signal distribution near the bifurcation and the siphon was much more uniform

with VTE, and the flow-related signal loss was greatly reduced (see Fig. 3.30).

The resultant MR angiograms provided improved vessel detail. The results show

that VTE improved the quality of flow-compensated 3D TOF MRA.

3.4.17 Cardiac-Triggered Free-Breathing 3D Balanced

Fast Field-Echo Projection MRA

A two-dimensional pencil-beam aortic labeling pulse was developed for the renal

arteries [17]. For data acquisition during free breathing in eight healthy adults

and seven consecutive patients with renal artery disease, real- time navigator

technology was implemented. This technique allows high spatial resolution and

high contrast renal MR angiography and visualization of renal artery stenosis

without exogenous contrast agent or breath hold (see Fig. 3.31). Initial promising

results warrant larger clinical studies.

3.4.18 Cervical MRA

Initial experience with intracranial and cervical MRA at 3.0 T was re-

ported. Phantom measurement s (corrected for relaxation effects) show S/N

(3.0T) = 2.14+ /− 0.08× S/N (1.5 T) in identical–geometry head coils [18]. A

3.0 T TOF intracranial imaging protocol with higher-order autoshimming was

developed and compared to 1.5 T 3D TOF in 12 patients with aneurysms. A com-

parison by two radiologists showed the 3.0 T to be significantly better (P < 0.001)

for visualization of the aneurysms (see Fig. 3.29). The feasibility of cervical and

intracranial contrast enhanced MR angiography (CEMRA) at 3.0 T was also

examined. The relaxivity of the gadolinium contrast agent decreased by only

about 4–7% when the field strength was increased from 1.5 T to 3.0 T. Cervi-

cal 3.0 T CEMRA was obtained in eight patients available for direct compari-

son. Image comparison suggested 3.0 T to be favorable field strength for cer-

vical CEMRA. Voxel volumes of 0.62–0.73 mm3 were readily achieved at 3.0 T

with the use of single-channel transmit-receive head or cervical coil, a 25 mL
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Figure 3.31: Source images of the 3D TOF MRA of the left carotid artery of a

volunteer: (a and b) inferior and (c and d) at the carotid bifurcation. Images were

acquired (a and c) without VTE and (b and d) with VTE (16 TE segments). The

imaging parameters were as follows: matrix= 256 Å∼ 256 Å∼ 32, slice thickness

= 1 mm, TR= 24 ms, FOV= 14 cm, and TE= 1.8/2.9 ms for VTE on/off. MT was

not applied. The reduced signal indicated by arrows in a and c was much more

uniform in images b and d with VTE.

bolus of Gadoteridol, and a 3D pulse sequence with a 66% sampling efficiency.

This spatial resolution allowed visualization of intracranial aneurysms, carotid

dissections, and atherosclerotic disease including ulcerations. Potential draw-

backs of 3.0 T MRA are increased SAR and T(*)2 dephasing compared to 1.5 T.
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The dependence of RF power deposition on TR for CEMRA was calculated and

described.

3.4.19 Magnetization Transfer MRA with

RF Labeling Technique

A method for MT angiography using an RF labeling technique was suggested.

The method utilized a slice-selective spin-lock pulse sequence for tagging the

spins of inflowing blood [19]. The pulse sequence begins with a spatially selective

90◦ (x) RF pulses, followed by a nonselective composite locking pulse of 135◦

(y) – n[360◦ (y)] – 135◦ (y) and by a 90◦ (−x) pulse. A spoiler gradient was then

applied. A rapid imaging stage, which yielded a T1 rho-weighted signal from

the tagged spins, completed the sequence. Untagged spins were thoroughly de-

phased and consequently suppressed in the image. Thus, contrast was obtained

without an injection of a contrast material or image subtraction. Furthermore,

the flow of the tagged bolus could be visualized. The sequence was implemented

on phantoms and on human volunteers using a 1.5 T scanner. The results indi-

cated the feasibility of the suggested sequence.

3.4.20 Oscillating Dual-Equilibrium Steady-State

Angiography (ODESSA)

A novel technique of generating non-contrast angiograms was proposed [20].

This method utilized a modified steady-state free precession (SSFP) pulse se-

quence (see Fig. 3.32). The SSFP sequence was modified such that flowing

material reaches a steady state that oscillates between two equilibrium values,

while stationary material attains a single, non-oscillatory steady state. Subtrac-

tion of adjacent echoes results in large, uniform signal from all flowing spins

and zero signal from stationary spins. Venous signal can be suppressed based

on its reduced T2. ODESSA arterial signal was more than three times larger

than that of traditional phase-contrast angiography (PCA) in the same scan time,

and also compares favorably with other techniques of MR angiography (MRA).

Pulse sequences are implemented in 2D, 3D, and volumetric-projection modes.

Angiograms of the lower leg, generated in as few as 5 seconds, showed high

arterial signal-to-noise ratio (SNR) and full suppression of other tissues.
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Figure 3.32: (a) Two-dimensional and (b) 3D ODESSA pulse sequences. Two

TR intervals are shown. Each axis has zero net gradient area over the TR interval.

During odd TRs (at left), a bipolar flow-encoding pulse follows readout on any

axis. A triphasic pulse after even readouts, though not necessary, is included to

mitigate imaging system nonidealities. The numbered locations correspond to

spin states.

3.4.21 Fat-Suppressed 3D MRA

Appropriate rate of fat-suppression pulses (using spec IR spectral selective

inversion recovery) were determined for fat-suppressed 3D magnetic resonance

angiography (MRA) with an elliptical centric view order [21]. In abdominal

3D fast spoiled gradient echo (fast SPGR) wit an elliptical centric view order,

the spec IR pulse rate was changed from zero to one every 15 repetitions (in

nine steps) in eight volunteers. In the equilibrium phase, abdominal contrast-

enhanced 3D MRA was obtained by 3D fast SPGR using an elliptical centric

order without fat–suppression and with two spec IR, and by fat-suppressed 3D

fast SPGR with a sequential-centric view order (3D-EFGRE). Fat and vascular

signals were estimated. Although 3D fast SPGR using an elliptical centric order

with two spec IR placed every 15 TR and 3D-EFGRE effectively decreased fat

signals, these sequences lengthened the breath-hold by 4–6 seconds compared
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with non-fat suppressed sequence. 3D fat SPGR using an elliptical centric

order and two spec IR reduced the fat signal by 30%. And provided good 3D

MR angiography without substantial prolongation of breath-hold. Two spec

IR can be used for generation of partially fat-suppressed abdominal 3D MRA

without prolongation of the breath-hold when performing 3D fast SPGR using

an elliptical centric view order.

3.4.22 Gadolinium Enhanced MRA with MR

Cholangiography (MRC)

Simultaneously both methods were used in the preoperative evaluation of

gallbladder carcinoma [22]. All MR images were analyzed in order to assess

bile duct invasion, vascular invasion, hepatic invasion or metastasis, lymph

node metastasis, and invasion into adjacent organs. The sensitivity and speci-

ficity of MR examination were distinctive 100% and 89% for bile duct invasion,

100% and 87% for vascular invasion, 67% and 89% for hepatic invasion, and

56% and 89% for lymph node metastasis supported by histopathologic findings.

The “all-in-one” MR protocol, including MR imaging, MRC, and MRA, could be

an effective diagnostic approach in the preoperative work-up for gallbladder

carcinoma.

3.4.23 Ultrashort Contrast-Enhanced (CE) MRA

It was used for the morphologic evaluation of cerebral arteriovenous malfor-

mations (AVMs). The method was compared with conventional X-ray digital

subtraction angiography (DSA) and time-of-flight (TOF) MRA to assess the an-

gioarchitecture of the malformations that is essential for treatment planning

and follow-up. Contrast-enhanced MRA was able to detect all AVMs seen on

DSA, whereas the TOF MRA failed with a very small AVM [23]. However, there

was no difference for the detection and delineation of feeding arteries and the

AVM. The venous drainage patterns could always be clearly delineated in the

CE MRA, whereas TOF MRA could demonstrate the exact venous drainage.

Contrast-enhanced MRA was found to be superior to conventional TOF MRA

in the assessment of the angioarchitecture of cerebral AVMs especially re-

garding the assessment of the venous drainage patterns. The superiority was
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supported by the improved vessel-to-background contrast and contrast-to-noise

ratios. The major limitation of this new technique was a low spatial resolution at

the used time resolution that could be improved by further sequence modifica-

tions. Contrast-enhanced MRA is still an important additional imaging technique

for treatment planning and follow-up of AVMs.

3.4.24 Quadruple Contrast Enhancement with

MRA and MR Spectroscopic Imaging

This approach minimized the false tissue classifications by: (1) improving the

lesion-to-tissue contrast on MR images by developing a fast imaging pulse

sequence that incorporated both cerebrospinal fluid signal attenuation and

magnetization transfer contrast (see Fig. 3.33); and (2) including information

from MR flow images [24]. In pathologically defined abnormalities in the corti-

cal gray matter (GM) and normal volunteers, high resolution MRI and short echo

Figure 3.33: An approach is represented to improve the multiple sclerosis

lesion-to-tissue contrast using MRA images by a fast imaging pulse sequence

incorporating both cerebrospinal fluid signal and flow attenuation with magne-

tization transfer contrast. The technique suppressed gray matter or white matter

and highlighted the lesion-to-tissue contrast.
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proton magnetic resonance spectroscopic imaging (MRSI) estimated individual

tissue contributions to the spectroscopic voxels in multiple sclerosis (MS).

3.4.25 Coronary MRA

For assessment of patients with atherosclerotic CAD, CMRA is reported use-

ful for detection of patency of bypass grafts. Patients with suspected coronary

artery anomalies and patients with Kawasaki disease and coronary aneurysms

are among those for whom CMRA has demonstrated clinical usefulness. At cen-

ters with appropriate expertise and resources, CMRA also appears to be of value

for exclusion of severe proximal multivessel CAD in selected patients. Data from

multicenter trials defined the clinical role of CMRA, particularly as it relates to

assessment of CAD. Future developments and enhancements of CMRA promise

better lumen and coronary artery wall imaging. This may become the new target

in noninvasive evaluation of CAD [25].

3.4.26 4D Phase Contrast (PC) Technique

4D PC technique was demonstrated for its feasibility that permits spatial and

temporal coverage of an entire 3D volume [26]. It validated quantitatively the

accuracy against an established time resolved 2D PC technique to explore advan-

tages of the approach with regard to the 4D nature of the data. Time-resolved,

3D anatomical images were generated simultaneously with registered three-

directional velocity vector fields. Improvements were compared to prior meth-

ods for gated and respiratory compensated image acquisition, interleaved flow

encoding with freely selectable velocity encoding (VENC) along each spatial di-

rection, and flexible trade-off between temporal resolution and total acquisition

time. The implementation was validated against established 2D PC techniques

using a well-defined phantom, and successfully applied in volunteer and patient

examinations. Human studies were performed after contrast administration in

order to compensate for loss of in-flow enhancement in the 4D approach. Advan-

tages of the 4D approach included the complete spatial and temporal coverage

of the cardiovascular region of interest and the ability to obtain high spatial

resolution in all three dimensions with higher signal-to-noise ratio compared

to 2D methods at the same resolution. In addition, the 4D nature of the data

offered a variety of image processing options, such as magnitude and velocity
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multi-planar reformation, 3D vector field plots, and velocity profiles mapped

onto selected planes of interest.

3.4.27 Coronary MRA Receiver Operator

Characteristics (ROC) Analysis

Magnetic resonance imaging (MRI) was evaluated as a potential noninvasive

diagnostic tool to detect coronary artery bypass graft stenosis, in detecting

stenotic grafts, including recipient vessels. Coronary angiography with baseline

and stress flow mapping was performed. Marginal logistic regression was

used to predict the probability for the presence of stenosis per graft type

using multiple MRI variables. Receiver operator characteristics (ROC) analysis

showed the diagnostic value of MRI. Sensitivity/specificity in detecting single

vein grafts with stenosis > or= 50% and > or= 70% were significant. MRI with

flow mapping was useful for identifying grafts and recipient vessels with flow-

limiting stenosis. This proof-of-concept study suggested that noninvasive MRI

detection of stenotic grafts in patients who present with recurrent chest pain

after graft may be useful in selecting those in need of an invasive procedure [27].

3.4.28 MIP for Stenoses

MIP versus original source images (SI) were compared in respect to detection

of coronary artery stenoses by means of magnetic resonance (MR) coronary

angiography in the proximal and mid coronary segments and compared with

x-ray angiography. The MIP reconstructions showed comparable accuracy to

unprocessed SI. However, MIP post-processing was compromised by a higher

number of images that were unable to be evaluated due to overlap of coronary

arteries with adjacent cardiac structures [28].

3.4.29 3D Magnetization-Prepared True Fast Imaging

with Steady-State Precession Sequence

Breath-hold coronary magnetic resonance (MR) angiography with and without

preoxygenation was measured and the effect of preoxygenation on coronary

artery imaging was evaluated. This sequence was employed for coronary MR
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angiography. The extra imaging time allowed coronary artery imaging with in-

creased spatial resolution [29].

3.4.30 3D Real-Time Navigator Magnetic Resonance

(MR) Coronary Angiography

3D real-time navigator magnetic resonance (MR) coronary angiographic exam-

ination was reported for detection of significant coronary artery stenoses, with

conventional coronary angiography as the standard of reference immediately be-

fore catheterization. It quantified coronary artery visualization, and evaluated

the presence of significant narrowing or stenoses. Receiver operating character-

istic (ROC) analysis signified that large portions of the coronary arteries could

be visualized with MR coronary angiography. Imaging results were not consis-

tently reliable, however, the examination was premature for routine clinical

assessment of significant coronary artery stenosis owing to low sensitivity and

large observer variability [30].

3.4.31 Free-breathing three-dimensional (3D) coronary

magnetic resonance (MR) angiography

This method was reported to determine the anatomy of anomalous coronary

arteries, in particular the relationship of the vessels to the aortic root. Multiple

3D volume slabs were acquired at the level of the sinuses of Valsalva by us-

ing diaphragmatic navigators for respiratory artifact suppression. The proximal

anatomy of the coronary arteries was determined. Free-breathing 3D coronary

MR angiography could be used to identify the proximal anatomy of anomalous

coronary arteries [31].

3.4.32 BACSPIN (Breathing AutoCorrection with SPiral

INterleaves) Coronary MRA Technique

Signal-to-noise ratio (SNR) of breath independent coronary magnetic resonance

angiography (CMRA) was improved without increasing the number or duration

of breath holds. In this BACSPIN technique, a single breath-held electrocardio-

gram (ECG)-gated multi-slice interleaved-spiral data set was acquired, followed
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by repeated imaging of the same slices during free breathing. Each spiral interleaf

from the breath-held data set was used as a standard for comparison with corre-

sponding acquisitions at the same interleaf angle during free breathing. The most

closely matched acquisitions are incorporated into a multi-slice, multi-average

data set with increasing SNR over time. In-plane translations of the coronary

artery could be measured and compensated for each accepted acquisition before

combination with the other acquisitions. CMRA was performed with improved

SNR and minimal motional blurring. BACSPIN provided a promising method for

CMRA with improved SNR and limited breath-holding requirements [32].

3.4.33 Motion-Adapted Gating Window in

Coronary MRA

An acquisition technique was reported that used subject-specific acquisition win-

dows in the cardiac cycle and a motion-adapted gating window for respiratory

navigator gating. Cardiac acquisition windows and trigger delays were deter-

mined individually from a coronary motion scan. Motion-adapted gating used a

2-mm acceptance window for the central 35% of k-space and a 6-mm window

for the outer 65% of k-space. The adaptive technique was applied in patients

who underwent coronary radiographic angiography. Scanning times with the

adaptive technique were reduced for the right coronary artery and left coronary

artery system compared with the conventional technique, due to the use of longer

subject-specific acquisition windows in patients with low heart rates. Subjective

and objective measurements of image quality showed no significant differences

between the two techniques. Coronary MR angiography with subject-specific

acquisition windows and motion-adapted respiratory gating reduced scanning

times while maintaining image quality and provided high diagnostic accuracy

for the detection of coronary artery stenosis [33].

3.4.34 Attenuated Coronary Blood—Myocardium

In-Flow Contrast 3D Coronary Magnetic

Resonance Angiography (CMRA)

The in-flow contrast between the coronary blood and the surrounding my-

ocardium was attenuated as compared to thin-slab 2D techniques. The
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application of a gadolinium (Gd)-based intravascular contrast agent provided an

additional source of signal and contrast by reducing T1(blood) and supporting

the visualization of more distal or branching segments of the coronary arterial

tree. For imaging, an optimized free breathing, navigator-gated and -corrected

3D inversion recovery (IR) sequence was used. For comparison, state-of-the-art

baseline 3D coronary MRA with T(2) preparation for non-exogenous contrast

enhancement was acquired. The combination of IR 3D coronary MRA, sophisti-

cated navigator technology, and B-22956 contrast agent allowed for an extensive

visualization of the LCA system. Postcontrast showed a significant increase in

both the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Vessel

sharpness of the left anterior descending (LAD) artery and the left coronary

circumflex (LCx) were improved [34].

3.5 Limitations and Future Prospects

No specific MRA techniques have emerged so far that can provide sufficient sen-

sitivity and specificity for quantification. MR angiography still remains a clinical

choice of cardiovascular MR despite of cardiac and respiratory motion factors.

Physical principles further highlight the intricacies and need of MRA technical

improvements and modifications in coming years. From all techniques available,

2D/3D breath-hold coronary MRA(CMRA), black-blood FSE method, real-time

navigator for respiratory gating with slice position correction and contrast en-

hanced CMRA have been evaluated clinically useful for coronary wall imaging.

However, these high contrast angiography techniques suffer from limitations in

temporal and spatial resolution and motion artifacts. These restrictions further

limit its prediction value. Other hand, high contrast MR angiography techniques

suffer from limitations in temporal and spatial resolution and motion artifacts.

These advanced techniques have been described less sensitive <70% and speci-

ficity <75% while human artery risk in the wall is established >50% stenosis.

These methods no doubt provide a quick way to image blood flow in a long

segment of the artery for rapid burden measurements.

Other emerging MR techniques, such as water diffusion weighting, magneti-

zation transfer weighting, steady-state free precession (SSFP) sequences, con-

trast enhancement methods may provide thin slices. Still measurements and

plaque characterization methods are in infancy using thin slices. Some notable
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improved blood suppression methods are promising for accurate imaging by

dual-inversion 3D FSE imaging sequence with real-time navigator technology

for high-resolution, free-breathing black-blood CMRA, delineation of coronary

artery by echoplanar imaging. In general, in future, high-resolution MRA seems

well suited to 3.0 T MR field strength since spatial resolution is often limited by

S/N at 1.5 T. Initial feasibility of CMRA for intracranial and cervical studies is en-

couraging. 3.0 T and higher magnetic field scanners with superior field strength

for 3DTOF and is extremely promising for 3DTOF and CMRA. The CMRA has

advantages of shorter scan time and better depiction of slow flow hence it was

the attention in last decade with combination of other modalities.

Questions

1. What do you understand by term MRA?

2. How spatial encoding, spatial resolution show relationship?

3. What are MRA k-space trajectories and how do they are applied?

4. What are the unique properties of blood and MRA contrast agents?

5. How ‘Black blood MRA’ is unique and significant?

6. What are newer approaches commonly known as Bright blood MRA with

t extragenous contrast?

7. How both Cine MRI and PC MRA are comparable?

8. How contrast enhanced bright blood MRA is unique and better clinical

imaging modality?

9. What is present state-of -art in quantitative analysis of MRA images?

10. What are advanced approaches in vessel detection and artery-vessel sepa-

ration in MRA image data sets?
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Chapter 4

Recent Advances in the Level Set Method

David Chopp1

4.1 Introduction

The level set method was introduced in the groundbreaking paper by Osher

and Sethian in 1988 [85]. The ground work for this paper began with a paper

by Sethian on moving fronts [102]. The original application for this work was

to solve problems in flame propagation, where the flame speed was given as a

function of the local mean curvature of the propagating flame front. The work

in [85] combined two fundamental ideas together in a unique way, and formed

the basis for the level set method in wide use today.

The first fundamental idea was the choice of an implicit representation for

the moving interface. At first glance, this appears to be a completely unnatural

choice; it is more difficult to specifically locate the interface at any given time,

and, in its simplest form, requires an order of magnitude greater computational

cost. However, this approach also offers powerful geometric properties which

no other method can as easily provide, and can be extended to higher dimen-

sions with vastly greater ease. Specifically, the implicit representation allows for

changes in the topology of the interface to happen naturally without requiring

collision detection and interface reconstruction as required by Lagrangian-type

methods. Also, the evolution equation they derived for propagating the interface

can be written entirely in terms of the embedding function, so that (at least for

their application) the actual location of the interface at any given time need not

be determined.

1 Engineering Sciences and Applied Mathematics Department, Northwestern University.
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The second fundamental idea was the adaptation of numerical methods de-

veloped for hyperbolic conservation laws. The field of numerical hyperbolic

conservation laws is a mature field with a substantial body of research devoted

to both the theory and practice of these methods. Much of this field is concerned

with the construction of numerical flux functions, which approximate the phys-

ical flux function in a way which respects the propagating characteristics of

the problem. The resulting numerical methods more accurately compute the

speeds for propagating shocks, and find the unique entropy condition satisfy-

ing rarefaction fans. In [102], Sethian observed that the theory of hyperbolic

conservation laws could be applied to the problem of propagating interfaces.

This naturally led to [85], where the equation for propagating the interface

using the implicit representation was formulated as the integral of a hyper-

bolic conservation law. In the context of moving interfaces, the shocks became

corners in the interface, and the rarefaction fans became regions of interface

expansion.

The coupling of the numerical hyperbolic conservation laws with the implicit

representation led to the first level set method, which was demonstrated to be

a powerful, robust method for solving the flame propagation problem.

Though the level set method, in its original form, was successful for the

original application, it was soon observed by Chopp [19] that a fundamental

problem in the method still existed. At that point, nearly all of the applications of

the level set method involved interface speed functions which depended solely

upon mean curvature. This class of problems is very special, as indicated in

[39–42], because the embedding function maintained bounded gradients almost

everywhere, giving the method additional stability properties. This property

does not hold for a general interface speed function, and so for the level set

method to be generalizable, one important modification was required in order

to maintain a stable level set method.

The key modification to the level set method, proposed in [19], was to observe

that forcing the embedding function to maintain bounded gradients was possible,

without changing the underlying motion of the interface. This process was called

reinitialization, and it essentially forced the embedding function to be the signed

distance function, even if the level set evolution equation would not do it on its

own. Once this piece was added to the level set method toolbox, the level set

method exploded in popularity, being used in a wide array of interface motion

applications.
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In the remainder of this chapter, we will begin by giving a more detailed de-

scription of the basic level set method. Next, some of the recent modifications to

the method will be explored, particularly those relevant to the medical imaging

community. The chapter will conclude with a brief review of the myriad applica-

tions of the level set and fast marching methods that have been published over

the last few years.

4.2 Basic Level Set Method

In this section, the necessary pieces for implementing the general level set

method are presented. These include the implicit representation of the inter-

face, the equation which describes interface motion, and the gradient control

process. There are now two methods for gradient control: reinitialization and

velocity extensions. Both of these methods will require some background in-

formation on the fast marching method for implementation. The fast marching

method is an interesting method in its own right, and a description of this method

will also be presented.

4.2.1 The Level Set Representation

At the heart of the level set method is the implicit representation of the interface.

If the interface is given by �, � can then be represented by a function φ, called

the level set function, defined by the signed distance function

φ(x) = ±d�(x). (4.1)

Here d�(x) is the distance from the point x to the interface �, and the sign is

determined so that it is negative on the inside and positive on the outside. At

any time, the interface can be recovered by locating the set

� = {x : φ(x) = 0} ≡ φ−1(0). (4.2)

For example, a circle interface and the corresponding level set function repre-

sentation are shown in Fig. 4.1.

For most applications, this representation works well, but there are inter-

faces which cannot use it. For example, interfaces with triple junctions or any

interface which does not have a clearly defined inside and outside cannot easily
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graph of ϕ

level set ϕ = 0

F
γ

Figure 4.1: Example of a level set representation of a circle.

be represented using a level set function. However, the level set method, with

some modifications, can even be applied to these cases as well. These variations

will be discussed in Section 4.3.

Once the level set function, φ, is constructed, the evolution equation for the

interface must be rewritten in terms of φ. Given the interface �, let F(x) be the

speed of the interface in the direction of the normal (see Fig. 4.2). Let x(t) be a

point on the interface which evolves with the interface, then φ(x(t), t) ≡ 0 for

all t. Differentiating with respect to t gives

∂φ

∂t
+ ∇φ · dx

dt
= 0. (4.3)

Now, the evolution of x(t) can be described by

dx

dt
= F(x(t), t)n, (4.4)

where n is the unit normal to the interface. Use the fact that the unit normal can

also be computed to be n = ∇φ/‖∇φ‖, and substituting this with Eq. 4.4 into

x(t)

ϕ = 0

Fn = F ∇ϕ
||∇ϕ||

Figure 4.2: Illustration of the relationship between φ(x, t), x, and F .
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Eq. 4.3 gives the level set evolution equation,

∂φ

∂t
+ F‖∇φ‖ = 0. (4.5)

This is the key evolution equation that was introduced in [85]. Through this

equation, the motion of the interface �(t) is captured through Eq. 4.5 so that at

any time t,

�(t) = {x : φ(x, t) = 0}. (4.6)

One key observation about Eq. 4.5 is that we have implicitly assumed that

the function F is known over the entire domain of φ. Very often, this is not the

case, and F is only defined on the interface itself. However, this problem can be

solved by using velocity extensions, which will be discussed in Section 4.2.5.

4.2.2 Numerical Implementation of the

Level Set Method

As noted in the introduction, the second critical part of the paper by Osher and

Sethian was the use of methods borrowed from hyperbolic conservation laws for

discretizing the level set equation Eq. 4.5. This concept was generalized in [103],

where numerical flux functions designed for hyperbolic conservation laws were

used to solve Hamilton–Jacobi equations of the form

∂φ

∂t
+ H(∇φ) = 0. (4.7)

Here, the function H(∇φ) is called the Hamiltonian, and it is a function of the

gradient of φ. There is a rich history of numerical methods for hyperbolic con-

servation laws. An excellent review of numerical methods for hyperbolic con-

servation laws can be found in [75].

In the case of the level set method, the Hamiltonian is given by

H(∇φ) = F‖∇φ‖. (4.8)

A first-order numerical Hamiltonian for solving Eq. 4.7 is given by Godunov’s

method, where

φn+1
ij = φn

ij −�t(max( sign(Fij)D−xφ
n
ij,− sign(Fij)D+xφ

n
ij, 0)2

+ max( sign(Fij)D−yφ
n
ij,− sign(Fij)D+yφ

n
ij, 0)2)1/2. (4.9)
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Here, the finite difference operators D±x are defined by

D+xφi, j = φi+1, j − φi, j

�x
, D−xφi, j = φi, j − φi−1, j

�x
. (4.10)

The operators D±y are defined in a similar manner for the jth index. Note that

the numerical flux function, the term multiplied by �t in Eq. 4.9, senses the

direction in which the interface is moving, then chooses the finite difference

approximation which looks in the correct direction, also known as the upwind

direction.

A second-order method based upon the ENO method [55] is given by

φn+1
ij = φn

ij −�t(max( sign(Fij)A,− sign(Fij)B, 0)2

+ max( sign(Fij)C,− sign(Fij)D, 0)2)1/2, (4.11)

where

A = D−xφ
n
ij +

�x

2
minmod(D−xD−xφ

n
ij, D−xD+xφ

n
ij), (4.12)

B = D+xφ
n
ij +

�x

2
minmod(D+xD−xφ

n
ij, D+xD+xφ

n
ij), (4.13)

C = D−yφ
n
ij +

�y

2
minmod(D−yD−yφ

n
ij, D−yD+yφ

n
ij), (4.14)

D = D+yφ
n
ij +

�y

2
minmod(D+yD−yφ

n
ij, D+yD+yφ

n
ij), (4.15)

and where

minmod(a, b) = 1
2

( sign(a)+ sign(b)) min(|a|, |b|). (4.16)

In general, the speed function, F , in Eq. 4.5 is split into F = Fadv + Fdiff, where

Fadv is the advective part and Fdiff is the diffusive part. When constructing the

numerical method for solving Eq. 4.5, the numerical flux function is used for

the advective part, and the diffusive part is discretized using standard central

differences.

To illustrate this, we take an example used in [85], where F = 1− εκ , 0 <

ε << 1, and κ is the mean curvature given by

κ = φxxφ
2
y + φyyφ

2
x − 2φxyφxφy(

φ2
x + φ2

y

)3/2 . (4.17)

In this example, F is broken down so that Fadv = 1 and Fdiff = −εκ . Using Go-

dunov’s method for the advective term and central differences for the diffusive



Recent Advances in the Level Set Method 207

term gives

φn+1
ij = φn

ij −�t(max( sign(Fij)D−xφ
n
ij,− sign(Fij)D+xφ

n
ij, 0)2

+max( sign(Fij)D−yφ
n
ij,− sign(Fij)D+yφ

n
ij, 0)2)1/2

+ ε
D+xD−xφij D0yφij + D+yD−yφij D0xφij − 2D0xD0yφij D0xφij D0yφij

(D0xφij)2 + (D0yφij)2
.

(4.18)

Here, the difference operators, D0x, D0y, are the central finite difference opera-

tors defined by

D0xφi, j = φi+1, j − φi−1, j

2�x
, D0yφi, j = φi, j+1 − φi, j−1

2�y
. (4.19)

4.2.3 The Fast Marching Method

An interesting method related to the level set method is the fast marching

method, which was introduced by Sethian [105, 106]. While the fast march-

ing method is used for some subsidiary algorithms within the general level set

method, this method is interesting in its own right. The fast marching method

solves a subclass of the problems normally solved with the level set method, but

it does so much more quickly.

Like the level set method, the fast marching method also uses an implicit rep-

resentation for an evolving interface, but for the fast marching method, the em-

bedding function carries much more information. For the fast marching method,

the entire evolution of the interface is encoded in the embedding function, not

just a single time slice. In other words, the location of the interface at time t is

given by the set

�(t) = {x : φ(x) = t}. (4.20)

As a result, in the fast marching method, the embedding function, φ, has no time

dependency.

The embedding function, φ, is constructed by solving a static Hamilton–

Jacobi equation of the form

F‖∇φ‖ = 1, (4.21)

where F is again the speed of the interface. What makes the fast marching

method fast is the fact that Eq. 4.21 can be solved with one pass over the mesh.
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This contrasts with the level set method, where each time step requires an

additional pass over the mesh to evolve the level set function in time.

The implementation of the fast marching method also uses the numerical

flux functions discussed in Section 4.2.2; however, in this case, only one-sided

differences such as Godunov’s method may be used. For example, suppose the

values of φi−1, j , φi, j+1 are already determined, and we wish to compute φij . Then

Eq. 4.21 is discretized using one-sided differences to obtain

F2
ij((D−xφij)2 + (D+yφij)2) = 1. (4.22)

This equation can be rewritten as a quadratic in terms of the unknown φij :(
1

�x2 +
1

�y2

)
φ2

i, j − 2
(

φi−1, j

�x2 + φi, j+1

�y2

)
φi, j +

φ2
i−1, j

�x2 + φ2
i, j+1

�y2 − 1
F2
= 0.

(4.23)

In most cases, solving Eq. 4.23 will produce two solutions, one which is less than

the values of φi−1, j , φi, j+1, and one which is greater. The larger of the two values

is always chosen because of the causality assumption made by this method;

values that are unknown are always greater than the known values.

Occasionally, Eq. 4.23 will not have any real roots. In that case, each of the

coordinate directions is considered separately. For example, if we consider the

x-direction, we assume that ∂φ/∂y= 0, and then discretize Eq. 4.21 to get

Fij D−xφij = 1. (4.24)

This equation is linear and is easily solved for φij . Similarly, the y-direction is

considered, and the smaller of the two solutions is taken as the new estimate

for φij .

The key to solving Eq. 4.21 in one pass is to traverse the mesh in the proper

order. The grid points must be evaluated in the order of increasing t. This is

accomplished by using a sorted heap which always keeps track of which grid

point is to be evaluated next. To begin, the set of grid points is divided into

three disjoint sets, the accepted points A, the tentative points T , and the distant

points D. The accepted points in A are the points xij for which the computed

value of φij is already determined. The tentative points in T are the points xij

for which a tentative value for φij is computed. The remainder of the points

are in the set D. One by one, points in T are taken, in order of increasing

value of φij , from the set T into A. Each time, points φij in D which become

adjacent to points in the set A are moved into the set T and a tentative value
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Accepted

Tentative
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φ−1
(0)

φ−1
(t)

Figure 4.3: Illustration of the sets A, T , and D associated with the fast marching

method. This figure reprinted from [22].

for φij is computed using Eq. 4.21. The algorithm terminates when all points

have migrated into the set A. See Fig. 4.3 for an illustration of the sets A, T ,

and D.

The full algorithm for the fast marching method becomes:

1. Initialize all the points adjacent to the initial interface with an initial

value, put those points in A. A discussion about initialization follows in

Section 4.2.3. All points xi, j /∈ A, adjacent to a point in A, are given initial

estimates for φi, j by solving Eq. 4.21. These points are tentative points and

put in the set T . All remaining points unaccounted for are placed in D and

given initial value of φi, j = +∞.

2. Choose the point xi, j ∈ T which has the smallest value of φi, j and move it

into A.

3. Any point which is adjacent to xi, j (i.e. the points xi−1, j , xi, j−1, xi+1, j , and

xi, j+1) which is in T has its value φi, j recalculated using Eq. 4.21. Any point

adjacent to xi, j and in D has its value φi, j computed using Eq. 4.21 and is

moved into the set T .

4. If T �= ∅, go to step 2.
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Increasing
values of ϕ

Figure 4.4: Example of a binary tree for the heap sort algorithm.

A higher order version of the fast marching method can be obtained by

replacing Eq. 4.23 with

max(D−xφi, j + sx,−1
�x

2
D−xD−xφi, j + sx,−1sx,−2

�x2

6
D−xD−xD−xφi, j,

−D+xφi, j − sx,1
�x

2
D+xD+xφi, j − sx,1sx,2

�x2

6
D+xD+xD+xφi, j, 0)2

+max(D−yφi, j + sy,−1
�y

2
D−yD−yφi, j + sy,−1sy,−2

�y2

6
D−yD−yD−yφi, j,

−D+yφi, j − sy,1
�y

2
D+yD+yφi, j − sy,1sy,2

�y2

6
D+yD+yD+yφi, j, 0)2

= 1

F2
i, j

. (4.25)

The fast marching method algorithm presented in [105], is first-order accurate

and can be recovered from Eq. 4.25 by taking all the switches s∗,∗ = 0. The

second-order accurate method presented in [106] can also be recovered from

Eq. 4.25 by taking all the switches s∗,±2 = 0.

The Heap-Sort Algorithm

The heap sort algorithm employed in the fast marching method is a balanced

binary-tree structure which always maintains the smallest value of φ at the top.

For purposes of illustration, see Fig. 4.4. The top of the tree is indicated by the

single node at the top in Fig. 4.4. Each of the nodes connected to the top is called

the child of that node, and the top node is the parent of its children. Except for

the top node, each node has one parent, and may have zero, one, or two children

depending upon where it is in the tree.

The operations on the tree that are required for the fast marching method

are:

1. Resort the tree from one element.
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1
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up-sweep

N

N

Figure 4.5: Example of the up-sweep for re-sorting a tree.

It is important that any operation on the tree ensures that after the op-

eration, the tree preserves its property that any parent node has a smaller

value of φ than either of its children. Occasionally, an operation on a par-

ticular node may mean that it is no longer correctly placed. This requires

the tree to be re-sorted to accommodate this modified node. Either an up-

sweep or a down-sweep process is required to restore the tree structure.

Suppose there is a single misplaced node, N. First, compare N with its

parent. If N is smaller than its parent, than an up-sweep is required. Other-

wise, N is compared with its children, and if N is larger than either child,

a down-sweep is used.

In the up-sweep, since N is smaller than its parent, N and its parent

are exchanged. This process continues, with N comparing with its parent,

until the parent is smaller or N has reached the top of the tree; see Fig. 4.5

for an illustration.

In the down-sweep, the node N is compared against its children. If N

is smaller than either child, it is exchanged with the smaller of its two

children. Like the up-sweep, this process is repeated until N is smaller

than both of its children, or reaches the end of the tree. The down-sweep

is illustrated in Fig. 4.6.

41

2

4 54 5

5

3

0

42

3 5

1

0

down-sweep
N

N

Figure 4.6: Example of the down-sweep for re-sorting a tree.
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2. Remove the smallest (top) node of the tree.

When the top node of the tree is removed, the child of the top node,

whose value for φ is smallest, is chosen to be the new top node. This

process of promoting the smallest child up the tree is then propagated

down until a node with less than two children is detected. This process

preserves the property of the tree that parent nodes always have a smaller

value of φ than the children.

3. Add a new node to the tree.

When a grid point is moved from the set D to T , it is also added to

the tree. Since the initial estimate for φ at this point is likely to be larger

than any of those already in the tree, it is best to add the node to an outer

branch. For purposes of efficiency, care should be taken to keep the tree as

balanced as possible, hence the new node should be added to the sparsest

part of the tree. Once the node is appended, an up-sweep is performed to

ensure proper placement.

4. Change the key value of an element in the tree.

When a grid point value is changed, it may require the tree to be re-

sorted. If the value of the node is increased, then a down-sweep is done,

and if the value is decreased, an up-sweep is done.

Initialization of the Fast Marching Method

The best form of initialization is where the exact solution is assigned to all

the points in the original set A. These are all the nodes which are immedi-

ately adjacent to the initial interface. Most often, the exact solution is not

known, and the initial values for the set A must be approximated from the initial

data.

The method for initializing the set A given in [105, 106] is only first-order

accurate, and can be prone to errors which will propagate through the remainder

of the calculation. It was shown in [22] that a more accurate method is available,

which can drive higher order fast marching method solutions.

The underpinning of this higher degree of accuracy around the initial front

is the use of a bicubic interpolation function p which is a second-order ac-

curate local representation of a level set function φ, i.e. p(x) ≈ φ(x). The in-

terpolation function p(x) can serve many purposes, including second-order



Recent Advances in the Level Set Method 213

xi, j xi+1, j
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xi, j−1 xi+1, j−1xi−1, j−1 xi+2, j−1

Figure 4.7: Sample portion of the mesh where a bicubic interpolation is used.

This figure reprinted from [22].

accuracy for the distance to the zero level set, subgrid resolution of the shape

of the interface, as well as subgrid resolution of the level set function φ(x)

itself.

We begin with a description of the bicubic interpolation for a level set func-

tion given on a rectangular mesh. The approximation is done locally in a box of

the mesh bounded by grid points, call them xi, j , xi+1, j , xi, j+1, and xi+1, j+1, as in

Fig. 4.7.

A bicubic interpolation p(x) of a function φ(x) is a function

p(x) = p(x, y) =
3∑

m=0

3∑
n=0

am,nxmyn, (4.26)

which solves the following set of equations:

p(xk,�) = φ(xk,�)
∂p

∂x
(xk,�) = ∂φ

∂x
(xk,�)

∂p

∂y
(xk,�) = ∂φ

∂y
(xk,�)

∂2 p

∂x∂y
(xk,�) = ∂2φ

∂x∂y
(xk,�)
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for k = i, i+ 1, � = j, j + 1. This gives 16 equations for the 16 unknown coef-

ficients am,n. Solving for am,n makes p(x, y) a bicubic interpolating function

of φ(x, y) on the rectangle bounded by the corners xi, j , xi+1, j , xi, j+1, and

xi+1, j+1.

Since φ is only known on the mesh points, the values for the derivatives of

φ must be approximated. We use second-order finite difference approximations

for the derivatives of φ:

∂φ

∂x
(xm,n) ≈ 1

2�x
(φ(xm+1,n)− φ(xm−1,n))

∂φ

∂y
(xm,n) ≈ 1

2�y
(φ(xm,n+1)− φ(xm,n−1))

∂2φ

∂x∂y
(xm,n) ≈ 1

4�x�y
(φ(xm+1,n+1)− φ(xm−1,n+1)

−φ(xm+1,n−1)+ φ(xm−1,n−1))

for m= i, i+ 1 and n= j, j + 1. Thus, construction of the interpolant p requires

all the points shown in Fig. 4.7. Higher order local approximations can be made

using higher order finite difference approximations and using a larger set of grid

points around the box where the interpolant is used.

Now, given the interpolating function p(x, y) in the domain [xi, xi+1]×
[yj, yj+1], and given a point (x0, y0) in that domain, we compute the distance

between (x0, y0) and the zero level curve of p(x, y). The point (x1, y1) on the

zero level curve closest to (x0, y0) must satisfy two conditions:

p(x1, y1) = 0, (4.27)

∇ p(x1, y1)× ((x0, y0)− (x1, y1)) = 0. (4.28)

Equation 4.27 is a requirement that (x1, y1) must be on the interface. Equa-

tion 4.28 is a requirement that the interface normal, given by ∇ p(x1, y1),

must be aligned with the line through the points (x0, y0) and (x1, y1). Equa-

tions 4.27 and 4.28 are solved simultaneously using Newton’s method. Typ-

ically, less than five iterations are necessary in order to achieve sufficient

accuracy.

Given the front speed F(x1, y1) and the initial distance to the front,

d = ‖(x1, y1)− (x0, y0)‖, the initial value for a point adjacent to the initial front

for the general fast marching method solving Eq. 4.21 is d/F .
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4.2.4 Reinitialization

As noted in the introduction to this chapter, there are two means by which the

level set method can be kept stable for arbitrary speed functions. For nearly all

applications of the level set method, one of these techniques must be used. One

method involves using velocity extensions, and the other uses reinitialization.

Both methods are frequently used, and there is disagreement as to which method

is preferred. Recent advances in the level set method have resulted in either

method producing good results. For balance, both methods are presented, with

reinitialization treated here and velocity extensions to follow in Section 4.2.5.

Reinitialization was first introduced in [19], where it was observed that the

only part of the level set function which is of interest is the portion immediately

around the zero level set. While initially, the level set function can be constructed

to be the signed distance function to the interface, most speed functions, F , will

not preserve this property over time. This can lead to instability, and ultimately

failure of the method. Reinitialization is, therefore, a process where the level set

function is reconstructed to be the signed distance function.

Let φ be the level set function, and let φ̃ be the desired reconstructed level

set function, then φ̃ solves

φ−1(0) = φ̃−1(0), (4.29)

‖∇φ̃‖ = 1. (4.30)

This pair of equations is precisely the type of problem the fast marching method

is designed to solve, with F ≡ 1 in Eq. 4.21. Furthermore, the function φ can be

used to initialize the fast marching method, as described in Section 4.2.3. The

solution φ̃ of Eqs. 4.29 and 4.30 is now called reinitialized.

Early implementations of reinitialization suffered from accuracy, particularly

in regions of high curvature. When the interface was reinitialized, there was

significant error in the computed solution in Eq. 4.29. This was primarily due to

the low-order accurate methods used for interpolating φ. More recent methods,

such as the one presented in Section 4.2.3, significantly reduced this error, as

illustrated in Fig. 4.8.

It has been observed recently [100] that for the specific application of reini-

tialization, it is not necessary to use the heap sort method. In fact, the same

results can be achieved by simply taking a first-in-first-out strategy for the order

of the grid points. In other words, instead of maintaining the binary tree and
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Figure 4.8: Comparison of modern and original reinitialization results for a

coarsely meshed circle. The exact solution and the modern reinitialization

method are nearly overlapping. This figure reprinted from [22].

continually sorting the nodes, it is sufficient to simply take points out of the set

T in the same order in which they entered. The only exception is that the initial

set of grid points in the set T should still start out sorted. This observation is of

interest because it reduces the computational complexity of the fast marching

method from O(N log N ) to simply O(N ) where N is the total number of grid

points.

4.2.5 Velocity Extensions

As noted in the previous section, reinitialization fixes the level set function when

the velocity field does not preserve the level set function as a signed distance

function. An alternative way to preserve the signed distance function is to adjust
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the velocity field in the first place. This approach was introduced by Adalsteins-

son and Sethian [3] as an alternative to the use of reinitialization. As noted in

the introduction, velocity extensions also serve the purpose of constructing a

velocity field for the entire domain of φ even when the speed, F , is defined only

on the interface itself.

For velocity extensions, the objective is to force the velocity field, F , to be

such that the signed distance function is preserved, i.e.

∇φ · ∇φ ≡ 1. (4.31)

Differentiating Eq. 4.31 with respect to t, and using Eqs. 4.5 and 4.31, gives

∇φ · ∇F = 0. (4.32)

Viewed geometrically, Eq. 4.32 makes sense because it requires the speed func-

tion normal to the interface to be constant along that normal. This effectively

keeps the level sets of φ evenly spaced.

To solve Eq. 4.32, assume the function F is given on the zero level set of φ.

The goal is to construct an extension velocity Fext, such that

Fext
∣∣∣
φ=0

= F

∣∣∣
φ=0

and ∇Fext · ∇φ = 0. (4.33)

The solution of Eq. 4.33 is done in a manner very similar to the fast marching

method. The discretization of Eq. 4.33 is given by

min(D+xφi, j, 0)D+xFext
i, j +max(D−xφi, j, 0)D−xFext

i, j

+ min(D+yφi, j, 0)D+yFext
i, j +max(D−yφi, j, 0)D−yFext

i, j = 0. (4.34)

This is a linear equation in terms of the unknown Fext
i, j and is easily solved. Note

that Eq. 4.34 must be solved at the grid points xi, j in the order of increasing mag-

nitude of φi, j similar to the fast marching method. This is easily accomplished

using the same heap-sort strategy described in Section 4.2.3.

The initialization of Fext
i, j on the grid points near the interface φ−1(0) is done

using the bicubic interpolation method discussed in Section 4.2.3. Given a grid

point xi, j , the point, y, on the interface φ−1(0) nearest to xi, j is computed using

the bicubic interpolant. The value of Fext
i, j must be the same as F(y), because the

vector xi, j − y is orthogonal to the interface, and hence parallel to ∇φ, so Fext

must be constant along that vector. This populates the grid points adjacent to

the interface, and the velocity extension algorithm can then proceed.

The algorithm for velocity extensions is therefore given by
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1. Initialize the value of Fext at all the grid points adjacent to the interface

φ−1(0) using the bicubic interpolation algorithm discussed in Section 4.2.3.

Place all those grid points in the accepted set A. Add all grid points adjacent

to a point in the set A into the set T , and the remainder of the grid points

are placed in the set D.

2. Take the grid point xi, j with the smallest value of |φi, j| from the set T and

place it in set A. Solve Eq. 4.34 for Fext
i, j at this xi, j . Take all neighbors of

xi, j which are in D, and place them in T .

3. Repeat step 2 while T �= ∅.

Similar to the comments made in the previous section, the velocity extension

method also can avoid the cost of the heap sort by taking the first-in-first-out

strategy. Therefore, the computational cost for the velocity extension is the same

as for reinitialization, O(N ).

4.2.6 Narrow Band Methods

There is another technique frequently used in level set methods that deserves

attention. While it is not an essential part of the level set method it is useful in

that it can significantly reduce the computational cost.

As noted earlier, switching from a parametric representation to the implicit

representation used in the level set method also increased the computational

cost. For example, if an evolving curve in the plane can be modeled with O(N )

points, then the corresponding level set representation would require O(N2)

points, due to the higher dimension of the level set function. However, most

of that increased computational cost is spent computing the evolution of φ in

regions far from the φ = 0 interface of interest.

It was observed in [19] that it is not necessary to compute the evolution

of φ everywhere, but only in the neighborhood of the φ = 0 interface. This

observation effectively reduces the computation back to O(N ). This technique

is called a narrow-band level set method, and was significantly refined in [2].

Basically, the evolution equation of φ is computed on a dynamically determined

set of grid points where φ is small.

Not all applications will benefit from a narrow band implementation; it de-

pends heavily on the cost of computing F , which can easily overwhelm the cost
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of the rest of the level set method. However, if that is not the case, the reader

should see [2] for a detailed description of the narrow band method.

4.2.7 Assembling the Basic Algorithm

To summarize this section, we conclude with an algorithmic description of the

full level set method. The strategies of using reinitialization or velocity exten-

sions are similar, so the algorithms will be presented together.

1. Initialize φ to be the signed distance function to the initial interface �. If

necessary, reinitialization can be used to enforce this condition.

2. Compute the speed function F . This is, obviously, application dependent.

3. Determine Fext from F (if using velocity extensions).

4. Advance φ in time using Eq. 4.5, with speed F (or Fext if using velocity

extensions).

5. Reinitialize (if using reinitialization).

6. Return to step 2.

Note that reinitialization does not have to be done every time step, but can

be done as needed, so step 5 can be skipped most of the time. The frequency of

reinitialization is application dependent. Automated detectors for determining

when reinitialization is required have been proposed, but the computational cost

of these detectors is of the same order of magnitude as doing reinitialization in

the first place. Consequently, it is preferable to simply choose an appropriate

number of time steps between each reinitialization.

On the other hand, velocity extensions must be done every time step. The

common belief that the velocity extension method is more accurate was certainly

true when it was first introduced. However, improvements in the reinitialization

process have closed the gap. Nonetheless, for the majority of applications, the

speed function F is defined only on the front, so velocity extensions will be

required every step anyway, just to be able to use Eq. 4.5. In that case, it makes

more sense to use velocity extensions and never do reinitialization. For the

remainder of the applications where stability is a concern, it is essentially a

toss-up between the two.
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4.2.8 Example Calculations

There are numerous examples of applications for the level set and fast marching

methods. A comprehensive list of the most recent applications will be given in

Section 4.4. Two simple examples which illustrate the basic level set method are

presented here.

Minimal Surfaces with Voids

As noted in the introduction, the original paper on the level set function involved

a speed function which depended on mean curvature. Flow by mean curvature

was also used to compute examples of minimal surfaces [19]. In the present

example, flow by mean curvature is again used, but this time there are void

regions where the surface area contained in the void is not counted in the total

surface area.

It is shown in [123] that the minimal surface in this case will meet the voids

orthogonally. The orthogonality boundary condition can be rewritten in a way

that is familiar. Suppose φ is the evolving surface moving by mean curvature, and

assume ψ is a level set function representing the voids with the surface of the

voids identified by ψ = 0. The orthogonality boundary condition is equivalent

to the surface normals being orthogonal; in other words, we must have

∇φ · ∇ψ = 0. (4.35)

This equation is reminiscent of the equation for velocity extensions, Eq. 4.32. In

fact, the velocity extension algorithm is used to determine φ inside the voids.

In Fig. 4.9, a surface which passes through five spherical voids is illustrated.

Initially, the surface passes over the central void. As the surface relaxes, it strikes

the center sphere and finally reaches equilibrium on the lower side of the sphere.

The voids are semitransparent so that the results of applying the velocity ex-

tension code to φ can be seen. Also, the shading on the surface indicates the

magnitude of the mean curvature.

Curvature Flow in Hyperbolic Space

In [25], mean curvature flow in hyperbolic space mapped onto the upper half-

space is investigated. In particular, foliations of the space are computed using a
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Figure 4.9: Example of curvature flow with voids.
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: Change in topology of prescribed level for a notched annulus.

Time steps are (a) t = 0, (b) t = 0.05, (c) t = 0.1, (d) t = 0.15, (e) t = 0.2, and

(f) t = 0.5. Reprinted with permission from [25].

flow of the form

∂φ

∂t
= (κ − φ)‖∇φ‖, (4.36)

with the boundary condition

φ(x) =
{

1 x inside �

−1 x outside �
, on the plane z= 0, (4.37)

where � is a closed curve in the z= 0 plane.

In Fig. 4.10, a sample evolution of one of the level curves is shown. One of the

questions addressed in [25] is whether all disks in a foliation are topologically

disks. In Fig. 4.10, the resolving of the topology for a particular leaf in a foliation

is illustrated as it evolves in time. The numerical experiments conducted in [25]

suggest that the answer is that the foliation is of disks, even for very complicated

boundary curves.

4.3 Recent Developments

There have been numerous modifications and additions to the level set method

since its inception. Sometimes multiple level set functions are used in tandem

to produce other effects. For example, multiple level set functions are used to
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represent the step edges of a stratified material [21]. Lower dimensional mani-

folds, such as one-dimensional curves in R
3, can be captured by the intersection

of two level surfaces [14]. Multiple distinct regions with interfaces that result in

triple junctions can also be captured using multiple level set functions [17,108].

Interfaces with boundaries, such as a finite-length crack in a plate, can also be

represented using multiple level sets [107, 115, 117].

In other examples, multiple level surfaces of a single level set function are

used. In [95], the level surfaces for each of the integers represent a different

interface. In other applications, the entire continuous spectrum of level surfaces

are used. For example, in [25], each level surface evolves to a surface of constant

curvature, while in [20], the spectrum of evolving level surfaces is shifted in order

to locate an unstable equilibrium surface.

The fast marching method has also been used in a variety of applications,

resulting in dramatically increased speed in some computationally intensive cal-

culations. For example, see the work on computing multiple travel-time arrivals

in [46].

The range of applications for the level set and fast marching methods is

now very wide, and still growing. Many times, variations of the method are

required to make it fit the problem. In this section, some recent improvements

and variations, which will be of general interest are presented.

4.3.1 Ordered Upwind Methods

In [101, 129], Sethian and Vladimirsky developed a novel extension of the fast

marching method, making it applicable to a significantly wider class of problems.

Recall the fast marching method equation

F‖∇φ‖ = 1. (4.38)

It is important to recognize that this equation assumes that from any point x,

the speed, F , is the same, independent of the direction the interface is traveling.

In other words, the speed function is isotropic. Sethian and Vladimirsky have

generalized the fast marching method so that the speed function can vary with

direction, i.e. the speed function, F , may depend on ∇φ. In this case, the speed

function is called anisotropic. The generalized method is called the ordered

upwind method, of which the fast marching method is a special case.
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Which path
is shorter?

A

B55

Figure 4.11: Illustration of the difficulty with anisotropic speed functions.

Which path is optimal depends on the speed and direction.

To illustrate the difference, consider the problem of finding the fastest route

between two cities. If the problem were isotropic, then it would mean that you

will travel at the same speed regardless of the direction you are traveling. The

solution is therefore simple: a straight line path between the two cities. However,

in reality, there are roads, bridges, rivers, mountains, and other assorted terrain

features that can influence the choice of the path. When on a road, the speed

function depends heavily on the direction to be traveled, with the highest speed

along the road and the slowest speed off the road.

The example of the road highlights one of the key technical issues that had to

be addressed in this paper. In the isotropic case, when computing an estimate for

the value of φ(x), it is sufficient to only check immediately neighboring points.

In the anisotropic case, this is not the case. When standing at a point on the road,

one must check not only the immediate neighborhood, but must also check far

down the road to see if a shorter path along the road would be possible. This

comparison is illustrated in Fig. 4.11, where the shortest path arriving at point B

may not be directly from nearby points, but may come from far away points along

directions which are faster. The key observation in [129] was the identification

of how far away one must check to assure locating the shortest path.

More specifically, the ordered upwind method solves equations of the form

F(∇φ, x)‖∇φ‖ = 1, (4.39)

with the additional assumption that F(∇φ, x) > 0 is convex. The case where F

is non-convex is significantly more challenging and remains an open problem.

The algorithm for the ordered upwind method is similar to the fast marching

method described in Section 4.2.3, with only step 3 requiring modification. In

the fast marching method, when a point x is moved from the tentative set, T ,
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to the accepted set, A, only the immediately adjacent grid points require the

approximate value of φ to be updated. Let Fmin and Fmax be the minimum and

maximum values of the speed function F . For the more general ordered upwind

method, all the tentative points in a radius of �xFmax/Fmin around x must be

updated. If the new approximate value for φ is smaller, this new value is used.

This is to account for the possible highest speed direction which could allow

the point x to influence grid points within this radius before the immediately

adjacent grid points. The formulation for computing the approximation for φ at

these tentative points uses the same type of one-sided discretization as used in

the fast marching method to follow the characteristics from x.

As an example of the use of the ordered upwind method, the geodesic dis-

tance from the origin on the manifold z= 3
4 sin(3πx) sin(3πy) is computed on

the square [− 1
2 , 1

2 ]× [− 1
2 , 1

2 ] in the x–yplane. The resulting distance isocontours

are shown in Fig. 4.12

4.3.2 Improved Velocity Extensions

The velocity extension method currently in common usage was described in

Section 4.2.5, and can be attributed to [3]. However, as noted in [23], the velocity

extension characteristics are not supposed to be the straight line extensions that

are currently constructed. While it is true that ∇F · ∇φ = 0 should hold at the

initial interface, it does not necessarily hold off the interface.

As an example of what can happen with the current velocity extension

method, consider the example of an interface consisting of two circles, with

the left circle having speed 1, and the right circle having speed 2 (see Fig. 4.13).

The current velocity extension method is such that the left half-plane will have

F = 1, and the right half-plane will have F = 2, with the break indicated by the

dashed line in Fig. 4.13. The evolution makes a clear error when the right circle

expands to the dividing line. Once the circle crosses that line, the velocity ex-

tension incorrectly changes the speed from 2 to 1. By noting the gap between

successive contours, it is clear that the right-hand circle has slowed down on the

left side. The reason that the velocity extension in Fig. 4.13 failed is because the

characteristics of the problem were not respected. Once the interface crossed

the center line, the velocity came from the left circle, while the characteris-

tics came from the right circle. Ultimately, this happened because the velocity

extension was done independent of, and prior to, the actual evolution.
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Figure 4.12: A contour map of the distance from the origin on the manifold

z= 3
4 sin(3πx) sin(3πy), computed using the ordered upwind method. Reprinted

with permission from [101].

The solution is to do both the fast marching method with the velocity exten-

sion at the same time:

F‖∇φ‖ = 1, (4.40)

∇F · ∇φ = 0. (4.41)

The discretization of these two equations is the same as before, but the solution

method requires some explanation. Again, suppose the values of φ and F are

already determined at xi−1, j and xi, j+1. Then Eqs. 4.40 and 4.41 become

F2
i, j((D−

x φi, j)2 + (D+
y φi, j)2) = 1, (4.42)

(D−
x Fi, j)(D−

x φi, j)+ (D+
y Fi, j)(D+

y φi, j) = 0. (4.43)

These equations correspond to Eqs. 4.22 and 4.34 respectively, where the un-

knowns are Fi, j and φi, j , and the remainder of the terms are known. This pair
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Figure 4.13: Example of two circles expanding using the current velocity ex-

tension method.

of equations results in a quartic polynomial in Fi, j which can be solved using a

Newton solver or by a direct quartic polynomial solver. Once Fi, j is computed,

the value of φi, j is easily computed from Eq. 4.43.

The initialization of this method uses a similar bicubic representation as was

discussed in Section 4.2.3. The initialization process is based upon the following

theorem from [23], and illustrated in Fig. 4.14:

Theorem 1. Suppose � = {(x, y) : ax+ by= c} and F0(x, y) = dx+ ey+ f

for (x, y) ∈ � with F0 not identically zero on �, then the equations

F‖∇φ‖ = 1, (4.44)

∇F · ∇φ = 0, (4.45)
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Figure 4.14: Illustration of a sample initial condition and the corresponding

solution.

with φ(x, y) = 0, F(x, y)

∣∣∣∣
�

= F0(x, y), have a solution of the form

F(x, y) = db − ea√
a2 + b2

√
X(x, y)2 + Y(x, y)2, (4.46)

φ(x, y) =
√

a2 + b2

db − ea
tan−1

(
Y(x, y)
X(x, y)

)
. (4.47)

If db − ea �= 0, where

X(x, y) = b√
a2 + b2

(x− A)− a√
a2 + b2

(y− B), (4.48)

Y(x, y) = a√
a2 + b2

(x− A)+ b√
a2 + b2

(y− B) (4.49)

and where A = ec+ f b

ae−bd
, B = af+cd

bd−ae
. The solution is valid in the set R

2 \ L, where

L is an arbitrary line passing through the point (A, B).

If db − ea = 0, then F0(x, y) = F0 is constant on �, and the solution be-

comes

F(x, y) = F0, (4.50)

φ(x, y) = ±1

F0
√

a2 + b2
(ax+ by− c), (4.51)

valid on all R
2.

Given an initial piece of the interface, the interface is approximated us-

ing a linear function, and also the speed, F , along the interface uses a linear
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approximation. The linear approximation allows the solutions in the theorem

to apply, where it is observed that the characteristics travel in circles with vary-

ing speed F , and the linear approximation of F designates a center of rotation,

(A, B), depending on where F crosses zero. This leads to a generalized form of

Eq. 4.28:

∇φ(y)× (x− y) = ‖x− y‖2(k · (∇F(y)×∇φ(y)))
2F(y)

. (4.52)

Note that Eq. 4.28 is recovered if ∇F = 0 is assumed. Equations 4.27 and 4.52

are solved in the same manner as described in Section 4.2.3.

Using the modified velocity extension method on the earlier two-circle ex-

ample produces the correct results as shown in Fig. 4.15.

Another example that illustrates the difference between the two velocity

extension methods is given by an initial circle, with F varying linearly with

respect to x, and near zero on the left side. The largest difference between the

two methods can be seen on the side where F is small. In the old method,
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Figure 4.15: Two-circle example with the modified velocity extension method.
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Figure 4.16: Comparison of the old (left) and new (right) velocity extension

methods.

the interface slows down when it approaches the left side, while with the new

method the interface wraps around and merges. The two solutions are shown

side by side in Fig. 4.16. The characteristics for this example, represented by the

lines of constant F , are shown in Fig. 4.17, illustrating the analogous solution as

computed in the theorem. Note how the lines of constant F are orthogonal to

the lines of constant φ, as a result of solving Eq. 4.41.

4.3.3 Coupling to Elliptic Solvers

Very often, the speed of the interface is determined by solving an associated

elliptic equation, e.g. the pressure equation for incompressible fluid flow. This

leads to an elliptic equation which must be solved on an irregularly shaped

domain or where there is an internal boundary with jump conditions across the

boundary. There are several strategies to handle this problem. When using finite

elements to solve this elliptic equation, a mesh is dynamically generated so that

it conforms to this irregular boundary. When using finite differences, special

delta functions can be added at nodes near the interface to enforce the jump

conditions, see e.g. [88].

In the context of the level set method, there are three strategies for set-

ting up and solving the associated elliptic equation. They vary in generality,
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Figure 4.17: Plot of the characteristic curves along which F is constant.

complexity, and accuracy, and provide different advantages. All three strategies

are presented here.

The Extended Finite Element Method

The extended finite element method (X-FEM) [29,81,121] is a numerical method

to model internal (or external) boundaries without the need for the mesh to con-

form to these boundaries. The X-FEM is based on a standard Galerkin proce-

dure and uses the concept of partition of unity [80] to accommodate the internal

boundaries in the discrete model. The partition of unity method [80] generalized

finite element approximations by presenting a means to embed local solutions

of boundary-value problems into the finite element approximation.

For a standard finite element approximation, consider a point x of R
d that

lies inside a finite element e. Denote the nodal set N = {n1, n2, . . . , nm}, where

m is the number of nodes of element e. The approximation for a vector-valued
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function u(x) : R
d → R

d assumes the form

uh(x) =
∑

I

nI∈N

φI(x)uI , (uI ∈ R
d), (4.53)

where the functions φI(x) are the finite element basis functions and uI are the

weights.

The extended finite element method uses enrichment functions, extra basis

functions which are sensitive to prescribed boundaries, to capture the boundary

conditions and improve the solution in the neighborhood of regions which would

otherwise require greater spatial resolution. Consider again a point x that lies

inside a finite element e. The enriched approximation for the function u(x)

becomes

uh(x) =
∑

I

nI∈N

φI(x)uI

︸ ︷︷ ︸
classical

+
∑

J

nJ∈Ng

φJ(x)ψ(x)aJ

︸ ︷︷ ︸
enriched

, (4.54)

where the nodal set Ng consists of nodes which are on elements cut by the

boundary, for example, see Fig. 4.18. In general, the choice of the enrichment

function ψ(x) that appears in Eq. 4.54 depends on the geometry, the boundary

condition, and the elliptic equation being solved.

To illustrate the effectiveness of this approach, consider the following simple

example. Suppose we wish to solve the radial heat equation on an annulus given

Figure 4.18: Example of choosing enriched nodes. Enriched nodes are indi-

cated by gray dots.
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by

urr + 1
r

ur = 0, 0 < ε ≤ r < L , (4.55)

ur(ε) = −10, u(L) = 0. (4.56)

The exact solution is given by

u(r) = −10ε ln(r)+ 10ε ln(L). (4.57)

If we solve this equation for ε = 0.01, L = 9 using a standard finite element

method with linear elements and with nodes at r = 0, . . . , 9, the solution for

ε ≤ r < 1 is very unsatisfactory, as shown in Fig. 4.19. However, by using a simple

enrichment function ψ1(r) = ln(r), and using this enrichment function on the

first two nodes (located at r = 0, 1), dramatically better results are achieved

(Fig. 4.19). Of course, refining the finite element mesh would also improve the

results, but this requires remeshing as the interface (in this example the left

boundary) moves. The X-FEM achieves this accuracy without remeshing.

The merits of coupling level sets to the extended finite element method

were first explored in [118], and subsequently its advantages further realized

in [53, 61, 82, 115, 117, 120]. The two methods make a natural pair of methods

where:

1. Level sets provide greater ease and simplification in the representation

of geometric interfaces.

2. The X-FEM, given the right enrichment functions, can accurately compute

solutions of elliptic equations which are often required for computing the

interface velocity.

3. Geometric computations required for evaluating the enrichment func-

tions (such as the normal or the distance to the interface) are readily

computed from the level set function [120].

4. The nodes to be enriched are easily identified using the signed distance

construction of the level set function [115, 117, 118, 120].

Compared to the other methods to follow, this algorithm is more complex,

but it is also much more general. Through the use of enrichment functions, this

method provides a much better solution near the interface, providing subgrid

resolution in that region without requiring additional mesh refinement. This is
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Figure 4.19: Solutions of the radial heat equation: (a) whole domain ε ≤ r ≤ L

and (b) across first three nodes.



Recent Advances in the Level Set Method 235

important when having to interpolate the data to determine the front speed on

the boundary contour. Of the three methods, this is the only one that has this

capability.

The Immersed Interface Method

The immersed interface method, introduced by LeVeque and Li [74], has also

been coupled to the level set method [76, 78]. Like the X-FEM described above,

the immersed interface method is designed to solve elliptic equations which arise

in a variety of physical applications. The advantage of the immersed interface

method is that it is second-order accurate, even near the interface where jump

conditions may appear.

The immersed interface method is designed to solve equations of the form

∇ · (β(x)∇u(x))+ κ(x)u(x) = f (x), (4.58)

where the coefficient functions β, κ , and f may have discontinuities across an

interface �. The function f may also have a delta function singularity, which

often arises, for example, from surface tension in multiphase flow.

The key idea in the immersed interface method is to modify the discretization

of Eq. 4.58 in such a way that the jump discontinuities and singularities are

accounted for, leading to a fully second-order method. At points away from

the interface, where the coefficient functions and the solution are smooth, the

standard central difference approximation is used. However, for grid points

which are near the interface, an additional grid point is added to the usual

central difference stencil to account for a second-order Taylor approximation

around a point on the interface.

To illustrate how this method works, consider the one-dimensional problem

(βux)x +κu= f, x ∈ [0, 1] \ α, (4.59)

u+ − u− = a, at x = α, (4.60)

u+x − u−x = b, at x = α, (4.61)

where u− is the value of u on the interval [0, α], and u+ is the value of u on the

interval [α, 1]. Suppose that the point α is located between the uniformly spaced

grid points xi and xi+1. The idea is to calculate coefficients γi−1, γi, γi+1, and an
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additional constant, Ci, so that the approximation

γi−1ui−1 + γiui + γi+1ui+1 + κiui = fi + Ci (4.62)

is second-order accurate, with jump conditions Eqs. 4.60 and 4.61.

To determine the γi’s, Taylor expansions are taken about the point x = α to

get

u(xi−1) = u− + (xi−1 − α)u−x +
1
2

(xi−1 − α)2u−xx + O(�x3), (4.63)

u(xi) = u− + (xi − α)u−x +
1
2

(xi − α)2u−xx + O(�x3), (4.64)

u(xi+1) = u+ + (xi+1 − α)u+x +
1
2

(xi+1 − α)2u+xx + O(�x3). (4.65)

These expansions are inserted into Eq. 4.62, and the u+ terms are eliminated

from the equation by using the jump conditions Eqs. 4.60 and 4.61, combined

with the equation

(βu+x )x + κu+ = (βu−x )x + κu−, (4.66)

which comes from the continuity of f in Eq. 4.59. The function f on the right side

of Eq. 4.62 is replaced with the approximation from the left side, f = (βu−x )x +
κu−. This results in the following equation:

γi−1

(
u− + (xi−1 − α)u−x +

1
2

(xi−1 − α)2u−xx

)
+ γi

(
u− + (xi − α)u−x +

1
2

(xi − α)2u−xx

)
+ γi+1

(
u− + a+ (xi+1 − α)(u−x + b)+ 1

2
(xi+1 − α)2

(
u−xx −

bβx − κa

β

))
+ κ

(
u− + (xi − α)u−x +

1
2

(xi − α)2u−xx

)
=βxu−x + βu−xx + κu− + Ci + O(�x3) (4.67)

The coefficients γi−1, γi, γi+1, and Ci are now chosen so that Eq. 4.67 holds up

to second order. This leads to the following equations:

γi−1 + γi + γi+1 = 0, (4.68)

γi−1(xi−1 − α)+ γi(xi − α)+ γi+1(xi+1 − α)+ κ(xi − α) = βx, (4.69)

γi−1(xi−1 − α)2 + γi(xi − α)2 + γi+1(xi+1 − α)2 + κ(xi − α)2 = 2β, (4.70)

γi+1

(
a+ b(xi+1 − α)− 1

2
(bβx − κa)(xi+1 − α)2

β

)
= Ci. (4.71)
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Figure 4.20: Choice of stencil for (a) points not crossed by the interface and (b)

points where the interface crosses the stencil. Dashed lines indicate the points

used in the stencil.

These equations are solved for γi−1, γi, γi+1, and Ci, thus determining the nu-

merical approximation corresponding to the point xi using Eq. 4.62. A similar

process is followed for the approximation centered at xi+1. This results in a

specialized discretization at these two points and standard central difference

approximations everywhere else.

For higher dimensional problems, a similar approach is taken. At grid points

not crossed by the interface, the standard central difference stencil is used (see

Fig. 4.20(a)) to approximate Eq. 4.58. At grid points where the interface crosses

through the stencil, an additional grid point is chosen across the interface from

the center of the stencil (see Fig. 4.20(b)).

When building the specialized discretization for the stencil at grid points

as in Fig. 4.20(b), a point (x∗, y∗) is chosen for the point around which the

approximation will be computed, and around which all Taylor expansions will be

taken. Usually, the point (x∗, y∗) is the point on the interface closest to the center

of the stencil (in this example, point 2). Once (x∗, y∗) is chosen, a coordinate

transformation is taken so that the interface normal maps onto the x-axis. Once

this coordinate transformation is completed, the computation of the stencil is

similar to the one-dimensional case described above.

As noted earlier, the advantage of this method is that it is truly second-order

accurate, even in the neighborhood of the interface. However, the stencil that

is produced is irregular, and it sometimes can be difficult to solve the resulting

linear system. Also, the choice of the points (x∗, y∗) is somewhat arbitrary, and
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it is not clear what the best choices should be. Nonetheless, the method has

been used successfully in a number of applications, e.g. see the review in [76].

The Ghost Point Method

The ghost point method [50] is another method designed to solve elliptic equa-

tions with irregular and moving boundaries represented by the level set method.

The idea behind this method is similar to the use of what are often called ghost

points for discretizing boundary conditions in finite difference methods. In this

context, ghost points are grid points located outside the computational domain,

and are used to enforce boundary conditions.

The method presented in [50] is designed to solve equations of the form

∇ · (β∇u) = f, u
∣∣
∂�
= g, (4.72)

in an irregularly shaped domain �, where β and f are smooth functions defined

on �, and g is defined on ∂�, the boundary of �. This is a more restrictive class

of problems than can be handled by the previous two methods described, but

it is a class of problems that often arises. By focusing on this simpler class, a

second-order method with a simple discretization can be employed, which uses

a stencil that has properties which make it easier to solve numerically than the

system created by the previous methods.

To illustrate this method, consider first the one-dimensional problem

(βux)x = f, (4.73)

with ∂� = xI , and u(xI) = uI . Assume xI lies between the two grid points xi

and xi+1. For points xj in the interior of the domain, the central difference

discretization, similar to the one used in the immersed interface method, is

used:

1
�x

(
β j+ 1

2

(
uj+1 − uj

�x

)
− β j− 1

2

(
uj − uj−1

�x

))
= f j. (4.74)

At the boundary, the discretization Eq. 4.74 is again employed, but the value

of ui+1 is not defined because xi+1 is outside of �. Instead, a ghost value for ui+1

is computed from the boundary condition using a linear extrapolation:

ui+1 = uI + (θ − 1)ui

θ
, where θ = xI − xi

�x
. (4.75)
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For stability reasons, if θ < �x, then Eq. 4.75 is replaced with ui+1 = uI . Using

Eq. 4.75 in Eq. 4.74 produces the following discretization for the point near the

boundary:

1
�x

(
βi+ 1

2

(
uI − ui

θ�x

)
− βi− 1

2

(
ui − ui−1

�x

))
= fi. (4.76)

In multiple dimensions, this same extrapolation technique is carried out along

each coordinate direction.

The resulting discretization is only first-order accurate near the boundary,

but is second-order accurate overall. This is due to the confinement of the first-

order error to the nodes adjacent to the boundary. On the other hand, the linear

system that comes from this discretization can be solved using faster conjugate

gradient-type algorithms. Increasing the order of the extrapolation to compute

ui+1 can result in a linear system that is more difficult to solve numerically,

because of the non-symmetric stencil, and hence is not preferred.

This method is used primarily for its simplicity, while still yielding second-

order convergence overall. For problems where the accuracy at the boundary

is critical, this is probably not the preferred method, especially if the solution is

difficult to resolve near the boundary. The method has been used in a handful

of applications, for example, see [124].

Comparison of the Elliptic Equation Solvers

The algorithms presented here, for solving elliptic equations in conjunction with

the level set method, vary significantly in sophistication, complexity, and capa-

bility. The X-FEM approach is by far the most difficult to construct, but is also

the most general, and has the greatest potential to solve challenging problems.

In particular, the X-FEM approach provides a much more accurate representa-

tion of the solution near the boundary, a property that is of critical importance

when the velocity of the interface depends on this very value.

The immersed interface method and ghost point method, on the other hand,

are built much more easily, and still produce accurate solutions. The immersed

interface method handles a larger range of equations than does the ghost point

method, which is the most restrictive in this regard. Between these two methods,

the immersed interface method is more accurate at the boundary, but at the

expense of a more difficult system of equations to solve numerically.
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The ghost point method is probably the fastest, due to its use of faster linear

solvers, but an actual direct comparison has not been done. Both the immersed

interface method and ghost point method will be faster than the X-FEM approach

on the same mesh. However, to obtain the same accuracy near the interface, the

X-FEM will not require as fine a mesh as the others, and hence can make up

the difference in time by using a coarser mesh to obtain comparable results. A

direct comparison of these three methods is the subject of current research.

4.3.4 Particle Level Set Method

Another modification of the level set method, called the particle level set method,

was proposed by Enright et al. in [38]. In the particle level set method, the level

set function is compared with the motion of particles which move along the

characteristics of the same velocity field. For an interface which is passively

advected using the same velocity field, the particles, in theory, should not cross

the interface. By comparing the motion of the particles with the moving interface,

problems with the location of the interface can be identified and corrected.

Suppose the interface velocity is determined by a velocity field v(x, t). Given

this velocity, the interface speed function, F , in Eq. 4.5 is given by

F = v · n = v · ∇φ

‖∇φ‖ . (4.77)

Substituting this expression for F into Eq. 4.77 gives the passive interface ad-

vection equation

∂φ

∂t
+ v · ∇φ = 0. (4.78)

At the same time, the particles themselves are moving with this same velocity,

v. These two evolutions are coupled together when the particles are checked to

see if any has crossed the interface, which in this case indicates that a particle

has moved from a point where φ > 0 to a point where φ < 0, or vice versa. At

that point, the level set function is “corrected.”

In [38], a large number of particles are randomly distributed uniformly in

the neighborhood of the interface φ = 0. Each particle, p, is assigned a sign, sp,

to indicate whether it is starting where φ > 0 or φ < 0, and is also assigned its

distance, rp, to the interface. As the evolution of the interface and the particles
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proceeds, the particle locations are periodically checked to determine whether

they have strayed across the level set function interface.

When a particle is determined to have strayed sufficiently far across the level

set interface, the interface is reconstructed using the particle information. To do

this, each particle, p, located at the point xp, is assigned a local signed distance

function

dp(x) = sp(rp − ‖x− xp‖). (4.79)

The level set function is now reconstructed in two steps. First, the functions φ+

and φ− are computed where

φ+(x) = max
p∈P+

dp(x), (4.80)

φ−(x) = min
p∈P−

dp(x), (4.81)

and where P+ and P− are the sets of points which were assigned positive and

negative sp respectively. The final φ function is now recovered from φ+ and φ−

by the equation

φ(x) = absmin(φ+(x), φ−(x)), (4.82)

where

absmin(a, b) =
{

a, |a| < |b|
b, |b| ≤ |a| . (4.83)

There is no guarantee that the resulting reconstructed level set function will

be a signed distance function, so if this is desired, a reinitialization step will be

applied to reform φ into a signed distance function.

What is novel about this approach is the use of the Lagrangian and Eulerian

methods to play against each other to ensure proper interface motion. However,

one must carefully determine when the particle solution is correct, versus the

level set evolution. This is determined by checking the local characteristics to

see if they are colliding or expanding. The level set evolution tends to be better

when characteristics are colliding, whereas the particle method will be more

reliable when the interface is moving tangentially or stretching. Nonetheless,

this combination tries to extract the positive capabilities of both the Lagrangian

and Eulerian types of approaches to interface motion, while discounting the

negatives.
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4.4 Conclusion

The level set method has been used for a wide variety of applications and con-

tinues to be a very popular tool. Since 2001, the method has been applied to

multiphase flow [7–9, 11, 16, 26, 34, 48, 49, 58, 61, 64, 72, 92, 94, 108–113, 135–138],

combustion [98], granular flow [36], surfactants [1], solid mechanics [90, 119],

crack propagation [53, 116, 117, 127], welding [65, 66], superconductor man-

ufacturing [91], sintering [77], crystal growth [70, 71], Ostwald ripening and

epitaxial growth [18, 37, 51, 89, 95], etching and deposition [59, 62, 63, 73, 96,

97, 130, 132], inverse scattering and shape reconstruction [15, 31, 43–45], im-

age processing [10, 13, 27, 54, 79, 93, 99, 125, 126, 128, 134], medical imaging

[30, 87, 122], shape optimization and tomography [5, 60, 86, 131], grid genera-

tion [57], bacterial biofilms [33], tissue engineering [83], and string theory [56].

The breadth of the applications is a tribute to the level set method and its

creators.

In addition, the fast marching method on its own has made a contribution to a

number of areas including crack propagation [24,120], shape reconstruction [35],

image processing [4,28,47,52,67,114], medical imaging [6,12,32,133], computer

graphics and visualization [139], and robotic navigation [68, 69].

Despite its tremendous popularity, the level set method is not suitable for

every interface propagation problem. The implicit representation of the interface

can be cumbersome at times, and if the more powerful features of the level set

method are not required for a given problem, then simpler methods may be

more appropriate. This is especially true if the alternative methods are also

faster, which can often be the case. For this reason, it is important to remember

the following key distinguishing features of the level set method:

1. topological changes are handled smoothly with no user intervention re-

quired,

2. corners and cusps in the interface are handled properly by using methods

borrowed from hyperbolic conservation laws,

3. the method is easily extended to higher dimensions.

Any one of these reasons may be sufficient to employ the level set method, but

not every problem requires these advantages. In that case, it would serve the
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practitioner to consider alternative numerical methods. It may or may not be

the case that the level set method is still the best choice.

For a more comprehensive discussion on the level set method, the interested

reader is directed to the books by Sethian [104] (which also includes the fast

marching method) and Osher and Fedkiw [84].

Questions

1. What are the main advantages of the level set method?

2. What is the importance of the connection between the level set method and

hyperbolic conservation laws?

3. What is the difference between the level set method and the fast marching

method?

4. Why are triple junctions a problem for the level set method?

5. What is the primary purpose of reinitialization, and why is it important

to do it as accurately as possible?

6. What is the alternative to using repeated reinitializations?

7. What kinds of problems can be solved by the general ordered upwind

method that could not be solved by the fast marching method?

8. What is the difference between the original velocity extension and the new

velocity extension methods?

9. Can the level set method be implemented using the finite element method?

10. What is the advantage of using the X-FEM over a standard finite element

formulation?

11. Is the level set method appropriate for all interface propagation problems?
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[80] Melenk, J. M., and Babuška, I., The partition of unity finite element

method: Basic theory and applications, Comput. Meth. Appl. Mech.

Eng., Vol. 139, pp. 289–314, 1996.
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Chapter 5

Shape From Shading Models

Xiaoping Shen1 and Lin Yang2

5.1 Introduction

In many applications, for instance, visual inspection in robot vision and au-

tonomous land vehicle navigation to name a few, a procedure of recovering

three-dimensional surfaces of unknown objects is of considerable practical in-

terest. In this chapter, we consider one of the reconstruction models: the shape

from shading (SFS) model. The SFS models are not only important for applica-

tions in engineering but also of great intrinsic mathematical interest. We begin

with a portrait of the model.

5.1.1 The Shape from Shading Model

The problem of SFS is to determine the shape of a surface, given a single gray

level image of the surface. Mathematically speaking, if we denote the surface of

the object by

Z = Z(x, y), (x, y) ∈ �

with the unit normal to the surface

−→
N = 1√

1+ p2 + q2
(−p,−q, 1)T ,

1 Department of Mathematics, Ohio University, Athens, OH 45701, USA
2 Department of EECS, Ohio University, Athens, OH 45701, USA
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where

(p, q) =
(

∂ Z

∂x
,
∂ Z

∂y

)
(5.1)

is the gradient field, the image irradiance (intensity function) of the surface

I(x, y) and the reflectance map R(p, q) are related by the following image irra-

diance equation [29] (p. 218):

I(x, y) = R(p, q). (5.2)

The reflectance map R(p, q) depends on the reflectance properties of the

surface and the distribution of the light sources. It could be linear or nonlin-

ear. An SFS problem is classified as a linear shape from shading problem if the

reflectance map is linear or otherwise it is a nonlinear shape from shading prob-

lem. For instance, the one commonly used to model the lunar surface—Maria

of the moon—is linear:

R(p, q) = ρ
1+ p0 p+ q0q√

1+ p2
0 + q2

0

, (5.3)

where ρ, the surface albedo, and

−→s0 = 1√
1+ p2

0 + q2
0

(p0, q0,−1)T ,

the light source direction, are given. Solving the surface Z from (5.3) is a linear

shape from shading problem.

Equation (5.2) is sometimes called the Horn image irradiance equation since

it was first derived by Horn in 1970 in his thesis [26]. We would like to point out

that since Eq. (5.2) depends only on the partial derivatives (p, q) of the surface

Z(x, y), therefore without additional conditions, the uniqueness of the solution

is obviously not possible. These additional conditions are usually given by the

boundary conditions. Boundary conditions can be given in many different ways;

as an example, we consider the system

ρ
1+ p0 p+ q0q√

1+ p2
0 + q2

0

= I(x, y), (x, y) ∈ �,
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where � = [0, 1]× [0, 1] with boundary conditions:

(i) Z(0, y) = g1(y), 0 ≤ y≤ 1,

(ii) Z(1, y) = g2(y), 0 ≤ y≤ 1,

(iii) Z(x, 0) = g3(x), 0 ≤ x ≤ 1.

(5.4)

Here gi, i = 1, 2, 3, are smooth functions.

An ideal Lambertian surface is one that appears equally bright from all view-

ing directions and reflects all incident light, absorbing none ( [29], p. 212). One

of the most interesting properties of a Lambertian surface is that the maximum

point of reflectance map is unique if it exists [51]. Assuming that the object has a

Lambertian surface and is illuminated by a planar wave of light, the Lambertain

reflectance map becomes

R(p, q) = −→N · −→s ,

where −→s is the unit vector pointing to the light source, which is given.

A nonlinear shape from shading model is given by an ideal Lambertian sur-

face. In this case, the reflectance map has the well-known form:

R(p, q)(x, y) = ρ
1+ p0 p+ q0q√

1+ p2
0 + q2

0

√
1+ p2 + q2

. (5.5)

In a stereographic coordinate system, the stereographic coordinate ( f, g) is

related to the Cartesian coordinate by

f = 2p

1+
√

1+ p2 + q2
and g = 2q

1+
√

1+ p2 + q2
,

or conversely

p = 4 f

4− f 2 − g2
and q = 4g

4− f 2 − g2
.

In such a coordinate system, instead of using (p, q), the reflectance map be-

comes

R( f, g) = 4− ( f 2 + g2)
4+ ( f 2 + g2)

(
− 4 f

4− ( f 2 + g2)
,− 4g

4− ( f 2 + g2)
, 1

)
· −→s . (5.6)

In summary, the shape from shading problems can be formulated by using

either
−→
N or (p, q) or ( f, g). Together with adequate boundary conditions, the

shape from shading problem is to solve a linear or nonlinear partial differential

equation (PDE) of first order. In this chapter, we have limited our attention to
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recovering a non-self-shadowing Lambertian surface with constant albedo. We

further assume that the object is illuminated by a single distant light source.

The earliest mathematical method to solve this problem, posed by Horn [28],

is based on the characteristic strip expansion (see next section). Like the idea

of dealing with any other nonlinear problems, linearization is the most common

and easiest approach to obtain an approximation to the exact solution. Taylor

expansion can be used to derive a linear equation associated with the original

equation. After the equation is linearized, some criteria are chosen to discretize

the linear PDE to get an algebraic equation. Such methods include, for example,

numerical differentiation and integral transform (see [13,15]). Then a numerical

method is selected to find an approximation of the solution to the algebraic

problem numerically. Since there is no guarantee to the existence of the solution,

another approach is to search for optimization solution. This procedure includes

introduction of a satisfactory energy function and finding the solution of the

posed optimization problem numerically.

5.1.2 About this Chapter

This chapter is written for the purpose of introducing students and practitioners

to the necessary elements, including numerical methods and algorithms, in order

to understand the current methods and use them in dealing with some practical

problems. With a limited set of mathematical jargons and symbols, the emphasis

is given to kindle interest for the problem. This has been done by selecting those

methods which are easily understood and best demonstrate the idea of SFS

models. Of course, our selection of the techniques and numerical examples is

limited by the usual constraints: author prejudice and author limitation. Our

goal is to draw an outline or describe the framework for solving this problem

and leave the details to the readers for further study.

We conclude this section by giving an outline of the chapter. In this chapter,

we consider one of the reconstruction methods: shape from shading. The chapter

is organized as follows: the first section serves as a brief review of the SFS

models, their history, and recent developments. Section 5.2 provides certain

mathematical background related to SFS. It discusses some selected numerical

methods for solving discretized SFS problems. The emphasis is given to the well-

developed method—Finite difference method (FDM). Section 5.4 is devoted to

the illustration of numerical techniques for solving SFS problems. It concerns
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related algorithms and their implementations. The section ends with a discussion

about the advantages and disadvantages of the algorithms introduced in this

section. The last section attempts to introduce the recently developed wavelet-

based methods by using an example. A part of the section, however, is devoted

to a brief introduction of the basic facts of wavelet theory. In the hope that

readers will be able to extrapolate the elements presented here to initiate the

understanding of the subject on their own, the chapter concludes with some

remarks on other advanced methods. Finally, we include an intensive set of

references to make up whatever important spirits which the authors have indeed

hardly to touch in this short chapter.

5.2 Mathematical Background of SFS Models

Many problems of mathematical physics lead to PDEs. In general, PDEs are

classified in many different ways. However, in most mathematics literature,

PDEs are classified on the basis of their characteristics, or curves of information

propagation (see, for example, [60] and [19]). The irradiance equation (5.2) is

a first-order nonlinear equation. The general format of such an equation in the

two-dimensional space is given by

f

(
∂ Z

∂x
,
∂ Z

∂y
, z, x, y

)
= 0, (x, y) ∈ �. (5.7)

Theoretically, a compactible boundary condition should be given as

Z(x, y) = g(x, y), (x, y) ∈ �,

where � is the boundary curve of the domain �.

In general, nonlinear PDEs are much more difficult than the linear equa-

tions, while the more the nonlinearity affects the higher derivatives, the more

difficult the PDE is. The irradiance equation (5.2) with a nonlinear reflectance

map (5.5) is a hyperbolic PDE of first order with severe nonlinearity. Although

the nonlinearity prevents the possibility of deriving any simple method to solve

the equation, there are still some techniques developed to obtain local informa-

tion of the solution to a certain extent. In this section, we briefly review some

basics about the irradiance equation, namely, the existence and uniqueness of



262 Shen and Yang

the solution. We also describe a technique, characteristic strip method, which

leads to the solution of the equation.

5.2.1 The Uniqueness and Existence

It has been shown that surfaces with continuously varying surface orientation

give rise to shaded images. The problem of shape from shading is to recon-

struct the three-dimensional shape of a surface from the brightness or intensity

variation in a single black-and-white photographic image of the surface. For a

long time in history, the SFS model was believed ill-posed. However, it has been

shown that the problem in its idealized form is actually well posed or “partially”

well posed under a wide range of conditions ( [32, 42]).

The standard assumptions for the idealized surface are:

� “Lambertian” reflectance—the surface is matte, rather than mirror-like and

reflects light evenly in all directions,

� “Orthographic” projection—the illuminating light is from a single known

direction and that the surface is distant from the camera, and

� “Nonocclusion”—all portions of the surface are visible.

If only one source of illumination is available, uniqueness can be proved. Fur-

ther Saxberg [51, 52] discussed conditions for existence of the solution. Olien-

sis [41, 42] has shown the following:

Proposition 1. For an image of a light region contained in a black back-

ground, if the reflectance map is known, as given in (5.2), then there is a

unique solution for a generic surface which is smooth and non-self-occluding.

Despite various existence and uniqueness theorems for smooth solutions

(see [14, 30, 34, 41, 42, 51, 52, 64]), in practice the problem is unstable, which

is catastrophic for general numerical algorithms [4, 18]. This is because the

reflectance map is, in general, given by its sampled data rather than an analytic

expression. This data may be sparse and contaminated by noise. We will not

go into the detailed discussion about the uniqueness and existence issue here;

the readers who are interested in this issue are referred to the excellent review

paper by Hurt [32] and references [14, 30, 34].
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5.2.2 The Characteristic Strip Method

Horn [29] established a method to find the solution of (5.2), the characteristic

strip method ( [29], p. 244). This method is to generate the characteristic strip

expansion for the nonlinear PDE (5.2) along a curve on the surface by solving a

group of five ordinary differential equations called characteristic equations:

·
x = Rp,

·
y= Rq ,

·
Z = pRp + q Rq ,

·
p = Ex,

·
q = Ey,

where the dot denotes differentiation along a solution curve. The characteristic

equation can be organized in a matrix format:

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x

y

Z

p

q

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rp

Rq

pRp + q Rq

Ex

Ey

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.8)

The solution, (x, y, Z, p, q)T , to (5.8) forms a characteristic strip along the

curve. The curves traced out by the solutions of the five ordinary differential

equations are called characteristic curves, and their projections in the image

are called base characteristics. If an initial curve (with known derivative along

this curve) is given by a parametric equation:

−→r (η) = {x(η), y(η), Z(η)}T ,

then we can derive the surface by integrating the equation

∂ Z

∂η
= p

∂x

∂η
+ q

∂y

∂η
. (5.9)

Example 2. Consider an ideal Lambertian surface illuminated by a light

source close to the viewer at (p0, q0, 1) = (0, 0, 1). (p0, q0) is the direction to-

ward the light source. In this case, the image irradiance equation is

I(x, y) = 1√
1+ p2 + q2

,

where we have set ρ = 1 for simplicity.
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The characteristic equation is then given by

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x

y

Z

p

q

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−p(1+ p2 + q2)−
3
2

−q(1+ p2 + q2)−
3
2

−(p2 + q2)(1+ p2 + q2)−
3
2

Ix

Iy

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−pI3(x, y)

−q I3(x, y)

−(p2 + q2)I3(x, y)

Ix

Iy

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.10)

In general, (5.10) has to be solved numerically to get characteristic curves.

In practice, since the intensity function is only available as a discrete set of

data, analytic solution is simply impossible. An alternative method, which is

also the most common method in solving any nonlinear problem, is the calculus

of variations.

5.2.3 The Idea of Calculus of Variations

We denote the nonlinear partial differential operator associated with (5.7) by

D[Z](x, y) = 0. (5.11)

If there exists an “energy” function E[z](x, y) such that

D[·] = E′[·],

then the problem (5.11) is equivalent to solving:

E′[Z] = 0. (5.12)

The solution of the irradiance equation is the critical point of E. In many cases,

finding the minimum (or maximum) is easier than solving (5.11) directly. In ad-

dition, many of the laws of physics and other scientific disciplines arise directly

as variational principle [11, 19, 60].

5.2.3.1 Euler Equation and Lagrange Multipliers

Calculus of variations seeks to find the path, curve, surface, etc. for which a

given function has a stationary value (which, in physical problems, is usually a

minimum or maximum). In 2D space, this involves finding stationary values of
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integrals of the form

E =
∫

�

F(x, y, Z, p, q)dx dy.

E has an extremum only if the Euler differential equation

Fz− ∂

∂x
Fp − ∂

∂y
Fq = 0

is satisfied. If the solution is subject to the constraints

g j(x, y, Z) = 0, j = 1, . . . , k,

then we have

G = F +
k∑

j=1

λ jg j(x, y, Z).

Now the Euler equation is

Fz− ∂

∂x
Fp − ∂

∂y
Fq +

k∑
j=1

λ j

∂g j

∂ Z
= 0. (5.13)

The λ j ’s are called Lagrange multipliers. An example is provided in Section

5.3.2.1.

5.2.3.2 The Constraint Functions Used in SFS Models

When iterative algorithms are used for solving the SFS problem, constraints will

be proposed to secure a weak solution. The following constraints are examples:

(1) total squared brightness error [27]:

G0 =
∫

�

(I(x, y)− R(p, q))2dx dy. (5.14)

(2) weak smoothness: After the tangent planes are available, the surface Z

is reconstructed by minimizing the following functional:

G1 =
∫

�

(p2
x + p2

y+ q2
x + q2

y)dx dy. (5.15)

(3) integrability: Since p and q are considered independent variables, (p, q)

may not correspond to the orientation of the underlying surface Z, that

is, the surface Z cannot be derived by integrating Zx = p, Zy = q. An
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integrability constraint is then posed as

G2 =
∫

�

(py− qx)2dx dy, (5.16)

or

G3 =
∫

�

(Zx − p)2 + (Zy− q)2dx dy. (5.17)

(4) depth [58]:

G4 =
∫

�

(Z(x, y)− d(x, y))2dx dy. (5.18)

(5) minimal curvature:

G5 =
∫

�

(Z2
xx + 2Z2

xy+ Z2
yy)dx dy. (5.19)

(6) strong smoothness [31]: Introduced in [31], this constraint is used to en-

force a stronger integrability and smoothness:

G6 =
∫

�

(
(Zxx − p)2 + (Zyy− q)2) dx dy. (5.20)

A combination of the first three of the above constrains (5.14), (5.15), and

(5.16), that is,

Eng(p, q) =
3∑

k=1

λkGk, (5.21)

is commonly used to control the stability of iteration algorithms. Here λk,

k = 1, 2, 3, are the Lagrange multipliers. The last three of the above constraints

are introduced to enforce the smoothness and convergence (of the depth con-

straint) of the approximation solution. We will demonstrate some examples in

Section 5.3.

An iterative scheme for solving the shape from shading problem has been

proposed by Horn et al. [27]. The method consists the following two steps.

Step 1. A preliminary phase recovers information about orientation of the

planes tangent to the surface at each point by minimizing a functional

containing the image irradiance equation and an integrability constraint:

Eng(p, q) =
∫

�

[
(E(x, y)− R(p, q))2 + λ(py− qx)2] dx dy, (5.22)

Step 2. After the tangent planes are available, the surface Z is reconstructed

by minimizing the functional (5.17).
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Remark 1. The variational approach introduced in [27] does not necessarily

guarantee the existence of a solution of the problem. In fact, [10] has addressed

this crucial question and shown that the variational approach does not lead

to an exact solution of the SFS problem in general. For the discretization of

the Euler differential equation and some numerical methods used to solve it,

see Sections 5.2.5 and 5.3.

5.2.4 Numerical Methods for Linear

and Nonlinear SFS Models

Unfortunately, in practice, even with greatly simplified initial and boundary con-

ditions, the analytic solution for a nonlinear PDE is too difficult to obtain in a

closed form. A numerical technique is then employed to find a reasonable ap-

proximate solution. In this sense, it is more useful to know of such numerical

methods which provide us a technique to be actually used in everyday life.

When dealing with the shape from shading model, it becomes clear that the

analytic solutions to the irradiance equation (5.2) or the system of ordinary

equations (5.8) are practically impossible.

To obtain a numerical approximation for the solution, the first step is to

simplify the irradiance equation. The basic approaches for this purpose include:

� direct method: discretizing the irradiance equation directly using Taylor

series or difference formula.

� integral transform: using linear transforms, such as Fourier transform and

wavelet transform [13, 15].

� projection method: approximating the solution by a finite set of basis func-

tions.

The second step is to choose a criterion to discretize the simplified irradiance

equation to get an algebraic equation. Then a numerical method is chosen to

solve the algebraic equation. Some of these steps can be done simultaneously.

5.2.4.1 Finite Difference Method

The FDM consists of two steps: (1) replacing the (partial) derivatives by

some numerical differentiation formulas to get a difference equation, that is,
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derivatives are discretized by using “difference” and (2) solving the derived dif-

ference equation—an algebraic equation—by using either an iterative or a direct

method.

To begin with, we first partition the domain � by a mesh grid. For example,

we use a uniform mesh grid with grid lines:

xj = x0 + jh, j = 0, 1, . . . , J,

yl = y0 + lk, l = 0, 1, . . . , L ,

where h = xi+1 − xi and k = yi+1 − yi are the mesh sizes in the xand ydirections,

respectively. For simplicity, we write f j,l = f (xj, yl), the function values on the

nodes of the mesh.

Using Taylor expansion and intermediate value theorem, we can derive the

following numerical differentiation formulas:

� forward difference formula:

ux(x, y) ≈ 1
h

(ui+1, j − ui, j),
(5.23)

uy(x, y) ≈ 1
k

(ui, j+1 − ui, j);

� backward difference formula:

ux(x, y) ≈ 1
h

(ui, j − ui−1, j),
(5.24)

uy(x, y) ≈ 1
k

(ui, j − ui, j+1);

� centered difference formula:

ux(x, y) ≈ 1
2h

(ui+1, j − ui−1, j),
(5.25)

uy(x, y) ≈ 1
2k

(ui, j+1 − ui, j−1).

Similarly, the three second-order partial derivatives are given by

uxx(x, y) ≈ 1
hk

(ui+1, j − 2ui, j + ui−1, j),

uyy(x, y) ≈ 1
hk

(ui, j+1 − 2ui, j + ui, j−1), (5.26)

uxy(x, y) ≈ 1
hk

(ui+1, j+1 − 2ui, j + ui−1, j−1),

Formulas (5.23–5.26) will be used in Section 5.3 to discretize (or linearize) the

irradiance equation (5.2).
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We now demonstrate the idea of FDM by the following examples.

Example 3. As an example, we consider using FDM to solve the linear shape

from shading problem (5.3) on a square domain:

� = {(x, y), 0 < x < 1, 0 < y < 1}

with the boundary condition given by (5.4). Using forward difference formula

(5.23), we have

p ≈ 1
h

(Zi+1, j − Zi, j) and q ≈ 1
k

(Zi, j+1 − Zi, j). (5.27)

We rewrite Eq. (5.3) as

�I(x, y) = p0 p+ q0q, (5.28)

where � =
√

1+ p2
0 + q2

0 − ρ. Substituting (5.27) and (5.28), we have

�Ii, j = p0

h
(Zi+1, j − Zi, j)+ q0

k
(Zi, j+1 − Zi, j).

Solving for Zi, j+1, we have

Zi, j+1 = −αZi+1, j + (α + 1)Zi, j + β Ii, j,

where α = p0k

q0h
, β = k�

q0
, i = 0, . . . , n− 2, Zi,0 = g1(xi) and Zn−1, j = g2(yj), j =

0, . . . , n− 2. Written in matrix format, we have⎡⎢⎢⎢⎢⎣
Z0, j+1

Z1, j+1

. . . .

Zn−2, j+1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

α + 1 −α 0 . . . 0

α + 1 α . . . 0

. . . . . . . . . . . . . . .

0 0 . . . . . . α + 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Z0, j

Z1, j

. . . .

Zn−2, j

⎤⎥⎥⎥⎥⎦

+β

⎡⎢⎢⎢⎢⎣
I0, j

I1, j

. . . .

In−2, j

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎣

0

0

. . . .

−αZn−1, j

⎤⎥⎥⎥⎥⎦ , j = 0, 1, . . . , n− 2.

(5.29)

Figure 5.1 shows the discretization we are using.

The finite difference scheme (5.29) is called the explicit method since it

is given by an iterative formula. If instead, the central (5.25) and forward

difference formulas (5.23) are used to approximate the partial derivatives,

an implicit finite difference scheme can be derived. The approximate solution

is then derived iteratively by using the iteration formula (5.29). Numerical
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Figure 5.1: The grid mesh for the discretization in Example 3.

methods used to solve these matrix equations, for example, the Jacobi method,

can be found in the standard numerical analysis textbooks [24].

For a nonlinear shape from shading model (5.5), we have to linearize the

reflectance map by using Taylor expansion to get a linear equation and then apply

the FDM in a similar way as in the above example. To linearize the equation, we

only need to replace the nonlinear part in Eq. (5.2) by its linear approximation.

We first rewrite the equation to separate the linear and nonlinear parts:

I(x, y)
√

1+ p2
0 + q2

0

√
1+ p2 + q2 = ρ(1+ p0 p+ q0q). (5.30)

Denoting the nonlinear part by

F(p, q) :=
√

1+ p2 + q2,

the Taylor expansion of F(p, q) at (p, q) is

F(p, q) = F(p, q)+ (p− p)Fp(p, q)+ (q − q)Fq(p, q)

+O(|(p− p)2 + (q − q)2|) (5.31)

≈
√

1+ p2 + q2 + (p− p)
p√

1+ p2
0 + q2

0

+ (q − q)
q√

1+ p2
0 + q2

0

,

where the error term O(|(p− p)2 + (q − q)2|) depends on the value of (p, q)

and the smoothness of the solution function Z. If we assume that Z ∈ C2(�),

then this error term can be ignored locally. Now we substitute (5.30) into (5.31)

to have the linearized irradiance equation:

P(x, y)p+ Q(x, y)q = Ĩ(x, y), (5.32)
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where

P(x, y) = −pI(x, y)+ ρp0,

Q(x, y) = −q I(x, y)+ ρq0,

Ĩ(x, y) =
√

1+ p2
0 + q2

0

√
1+ p2 + q2 − (p2 + q2)− ρ.

Note that (5.32) is a first-order partial differential equation with nonconstant

coefficients P and Q and, therefore, the FDM can be used to solve it in the same

way as in Example 2.

5.2.4.2 Remarks

Remark 2. About convergence of finite difference method. Every numer-

ical method provides a formalism of generating discrete algorithms for ap-

proximating the solution of a PDE. Such a task could be done automatically

by a computer if there were no mathematical skills that require human in-

volvement. Consequently, it is necessary to understand the mathematics in

this black box which you put in your PDE for processing. This will involve

discussion on convergence, stability, and error analysis. However, these top-

ics are beyond the scope of this introductory chapter. We hope the loose ends

left here will stimulate your curiosity and further motivate your deep interest

in this subject. For the finite difference method used to solve the SFS model,

some results related to the issue of convergence can be found in Ulich [64].

For the linear problem, Ulich proved convergence for three methods: forward

difference method, backward difference method, and central and forward dif-

ference method for certain light directions. For the central and forward finite

difference method applied to the linear PDE derived from linearization of a

nonlinear shape from shading problem, she was able to prove convergence for

all light directions. For the case of application of FDM to the linear shape

from shading models, Wei et al. [65] discussed the convergence properties

for four explicit, two implicit, and four semi-implicit finite difference algo-

rithms. They also give comparisons of accuracy, solvability, stability, and

convergence of these schemes.

Remark 3. About Multiscale methods. Simple iterative methods (such as

the Jacobi method) tend to damp out high-frequency components of the er-

ror faster than any other method. Multiscale methods are introduced to
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improve the convergence and accuracy of the numerical solutions derived

in the “single scale” methods. The multigrid method appears to be one of the

most successful multiscale methods for solving the SFS problems. The multi-

grid method associated with vision problems was studied in the early 1960s

by Fedorenko and Bakhvalov [3] and later in the work of many others, for

example, [1, 56, 57]. For readers without previous experiences in the multi-

grid method, excellent tutorials can be found in the books [8] and [44,62]. A

classic book on multigrid method is [23]. Some other novel multiscale meth-

ods are developed recently, for example, the panel-clustering method, wavelet-

based matrix compression, and the hierarchical matrix decomposition

technique.

5.3 Numerical Algorithms and Their

Implementations

It is understood that the problem of shape from shading is fundamentally a very

difficult mathematical problem. Nevertheless, some methods were developed

while attempting to solve the problem numerically for some particular cases.

Most of the methods work for a particular type of images.

SFS techniques can be roughly divided into four groups:

(1) Minimization approach. The method is to reconstruct the shape of the

object by minimizing the well-designed energy function over the entire

image. The idea is similar to that in deformable models used in image seg-

mentation which segment the object by minimizing certain predefined en-

ergy functions. The constraint functions can be the brightness constraint,

the gradient constraint, the smooth constraint, etc. (See Section 5.2.3.2).

(2) Propagation approach. The method starts from some initial curve, which

is defined as special points such as the brightest or the darkest points in

the image, and propagates the shape information across the entire image.

(See 5.2.2).

(3) Local approach. The method reconstructs the shape by assuming local

surface type. The surface is derived by matching derivatives of measured

intensity to those assumed spherical surface.
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(4) Linear approach. The method linearizes the reflectance map in tilts or

depth. The linear model can be solved and the shape of the object can be

calculated. The basic assumption behind this idea is that the lower order

components of the reflectance maps dominate the reflectance maps.

In the rest of this section, we will discuss in detail two widely used methods:

the linear approach and the minimization approach.

5.3.1 Linear Approaches

In this approach, the basic idea is to linearize the reflectance map and solve the

depth information of the shape from the equations. Different linear functions

can be formulated in terms of surface gradient or the height of the surface. In

the following contexts we will introduce two approaches which are based on

linear equations in terms of gradients and the heights of the surface. Both start

with the use of first-order finite difference to discretize the reflectance equation.

However, they are different after the initial discretization. Pentland’s algorithm

uses the Fourier transform and inverse Fourier transform to obtain the depth

map, while Tsai–Shah’s algorithm uses the Newton method to derive the depth

map. We will explain these two linear approaches in the following sections.

5.3.1.1 Pentland’s Linear Approach

Pentland [6,46,47] introduced a method which takes directly linearization of the

reflectance map in the surface gradient (p, q). It greatly simplifies the shape from

shading problem with scarifying part of the accuracy of the reconstruction result.

We start with the expansion of the right-hand side of the irradiance equation (5.2)

at p = p0, q = q0 using Taylor’s expansion. We have

R(p, q) = R(p0, q0)+ (p− p0)
∂ R

∂p
(p0, q0)+ (q − q0)

∂ R

∂q
(p0, q0). (5.33)

For Lambertian reflectance, Eq. (5.33) at p0 = 0, q0 = 0 can be reduced to

I(x, y) = R(0, 0)+ p
∂ R

∂p
(0, 0)+ q

∂ R

∂q
(0, 0). (5.34)
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Denoting by τ the tilt of the illuminant and by γ the slant of the illuminant,

the above equation can be rewritten as

I(x, y) = cos γ + p cos τ sin γ + q sin τ cos γ. (5.35)

Using forward difference formula (5.23), we have

p = ∂

∂x
Z(x, y) = Z(x+ 1, y)− Z(x, y),

(5.36)
q = ∂

∂y
Z(x, y) = Z(x, y+ 1)− Z(x, y).

By taking Fourier transform on the two sides of Eq. (5.36), we can get the

following results:

p = ∂

∂x
Z(x, y)〈F−〉FZ(w1, w2)(−iw1),

q = ∂

∂x
Z(x, y)〈F−〉FZ(w1, w2)(−iw2). (5.37)

Substituting Eq. (5.37) into Eq. (5.35) and taking Fourier transform on both

sides, we obtain

FI(w1, w2) = FZ(w1, w2)(−iw1) cos τ sin σ + FZ(w1, w2)(−iw2) sin τ sin σ,

(5.38)

where FI(w1, w2) and FZ(w1, w2) are the Fourier transform of the input image

I(x, y) and depth map Z(x, y), respectively.

After rearranging Eq. (5.38), we obtain

FZ(w1, w2) = FI(w1, w2)

2π(
√

w2
1 + w2

2) sin γ (w1 cos τ + w2 sin τ )
. (5.39)

By taking the inverse Fourier transform, we can obtain the depth map

Z(x, y) = F−1(FZ(w1, w2)). (5.40)

It is obvious that this approach does not need iterative computation and

can provide an approximate solution quickly. However, like all the other linear

approaches, this method makes an assumption that the reflectance map is locally

linear. Comparing Eq. (5.35) with the normal reflectance equation:

R(p, q) = cos γ + p cos τ sin γ + q sin τ cos γ√
1+ p2 + q2

. (5.41)
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We observe that the linear method ignores the quadratic terms in Eq. (5.41). If we

have a 3D object which has rapid changes in depth, both p and q will dominate

R(p, q), Pentland’s algorithm may not provide promising results. Fortunately,

some objects do change smoothly so that linear approximation is satisfactory

to certain extent.

The algorithm can be described by the following procedure:

� Step 1. Input the original parameters of the reflectance map,

� Step 2. Calculate the Fourier transform of the depth map Z(w1, w2) using

Eq. (5.39),

� Step 3. Calculate the inverse Fourier transform of the depth map Z(x, y)

using Eq. (5.40).

The way to realize Pentland’s algorithm can be described by the following

pseudocode.

Algorithm 1. Pentland’s algorithm

Input Zmin (mindepthvalue), Zmax (maxdepthvalue), (x, y, z)(direction of the
light source), I(x, y) (input image)
D ←

√
x2 + y2 + z2, sx← x/D, sy← y/D, sz← z/D.

sin γ ← sin(arccos (lz)),
sin τ ← sin(arctan (sy/sx)),
cos τ ← cos(arctan (sy/sx)).
for i = 1 to width(I) do

for j = 1 to height(I) do
FI(w1, w2) ← FFT(I(i, j))

B ← 2π (
√

w2
1 + w2

2) sin γ (w1 cos τ + w2 sin τ )
Z(x, y) ← IFFT(F I(w1, w2)/B)

end do
end do
Normalize(Z(x, y), Zmax , Zmin)
Output Z(x, y)

The subfunctions FFT, IFFT, and Normalize are all standard math
functions used in signal and image processing.

We now demonstrate this method by using the following example.

Example 4. Reconstruct the surface of a synthetic vase using Pentland’s

method. The experiments are based on the synthetic images that are generated

using true depth maps. Figure 5.2(a) shows the synthetic vase and the recon-

struction results using Pentland’s algorithm. The light is from above at (x = 1,
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Figure 5.2: Pentland’s linear SFS algorithm applied to the synthetic vase image.

(a) is the input image with light source (x = 1, y= 0, z= 1). (b), (c), and (d) are

the reconstructed surface from three different directions.

y= 0, z= 1). The input image is showed in Fig. 5.2(a). The surface, showed

in Figs. 5.2(b), (c), and (d), is the reconstructed surface from three different

directions. Pentland’s algorithm produces reasonable results as expected for

a vase. In general, the experiment shows that Pentland’s algorithm roughly

recovered the object on the surface where the reflectance changes linearly with

respect to the surface shape.

5.3.1.2 Tsai–Shah’s Linear Approach

Tsai–Shah [63,68] proposed another linearization method to solve the SFS prob-

lem. Instead of applying the Fourier transform and inverse Fourier transform,
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this method discretizes the reflectance map in a different way. Like Pentland’s

method, the surface orientation (p, q) is approximated by its linear approx-

imation using the forward difference formula (5.36), while unlike Pentland’s

method, the reflectance map is then directly linearized in terms of the depth Z

using Taylor series expansion. Finally, Newton’s iteration method is applied to

the discretized equation to get a numerical approximation to the depth Z. In

what follows, we will derive this scheme step by step.

To begin with, we rewrite the irradiance equation (5.2) in the following for-

mat:

0 = f = I − R. (5.42)

Replacing p and q by their linear approximation using the forward difference

formulas (5.36), we obtain

0 = f (I(x, y), Z(x, y), Z(x− 1, y), Z(x, y− 1))

= I(x, y)− R(Z(x, y)− Z(x− 1, y), Z(x, y)− Z(x, y− 1)). (5.43)

If we take the Taylor series expansion about a given depth map Zn−1, we get

the following equation:

0 = f (I(x, y), Z(x, y), Z(x− 1, y), Z(x, y− 1))

≈ f (I(x, y), Zn−1(x, y), Zn−1(x− 1, y), Zn−1(x, y− 1))

+
[

(Z(x, y)− Zn−1(x, y))

× ∂ f (I(x, y), Zn−1(x, y), Zn−1(x− 1, y), Zn−1(x, y− 1))
∂ Z(x, y)

]

+
[

(Z(x− 1, y)− Zn−1(x− 1, y))

× ∂ f (I(x, y), Zn−1(x, y), Zn−1(x− 1, y), Zn−1(x, y− 1))
∂ Z(x− 1, y)

]

+
[

(Z(x, y− 1)− Zn−1(x, y− 1))

× ∂ f (I(x, y), Zn−1(x, y), Zn−1(x− 1, y), Zn−1(x, y− 1))
∂ Z(x, y− 1)

]
. (5.44)

Given an initial value Z0(x, y), and using the iterative formula:

Zn(x, y− 1) = Zn−1(x, y− 1),

Zn(x− 1, y) = Zn−1(x− 1, y),
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each value of the depth map can be iteratively calculated. In fact, (5.44) can be

read as

0 = f (Z(x, y) ≈ f (Zn−1(x, y))+
(

Z(x, y)− Zn−1(x, y)
df (Zn−1(x, y))

dZ(x, y)

)
.

(5.45)

Rearranging Eq. (5.45), we obtain

Z0(x, y) = initial value (5.46)

Zn(x, y) = Zn−1(x, y)+ − f (Zn−1(x, y))
d

dZ(x,y) f (Zn−1(x, y))
, n= 1, 2, . . . ,

where

df (Zn−1(x, y))
dZ(x, y)

= −1

(
cos τ tan γ + sin τ tan γ√

p2 + q2 + 1
√

tan2 γ + 1

− (p+ q)(p cos τ tan γ + q sin τ tan γ + 1)√
(p2 + q2 + 1)3

√
tan2 γ + 1

)
. (5.47)

By iteratively using formula (5.46), we obtain the approximation of the depth

map Z(x, y). Readers may have noticed that the iterative formula is Newton’s

formula.

This method has a similar disadvantage as the algorithm based on linear

approach. However, it is faster since it does not need to compute the FFT and

IFFT.

The algorithm can be described by the following procedure:

� Step 1. Input the original parameters of the reflectance map,

� Step 2. Set the initial guess of Z0(x, y) = 0,

� Step 3. Refine the depth map Zk(x, y) using Eq. (5.46).

The way to realize Pentland’s algorithm can be described by the following

pseudocode.

Algorithm 2: Tsai–Shah’s linearization method

Input Zmin(mindepthvalue), Zmax(maxdepthvalue), (x, y, z)(direction of the
light source), I(x, y)(inputimage)
z0 ← 0;
p0 ← q0 ← 0;
p← q ← p0 ← q0;
D ←

√
x2 + y2 + z2, sx← x/D, sy← y/D, sz← z/D.

sin γ ← sin(arccos (lz)), sin τ ← sin(arctan(sy/sx)),
cos τ ← cos(arctan (sy/sx)).
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for i = 1 to width(I) do
for j = 1 to height(I) do

df z← −1 · {(cos τ tan γ + sin τ tan γ )/√
(p2 + q2 + 1)(tan2 γ + 1)

−(p+ q)(p cos τ tan γ + q sin τ tan γ + 1)/√
(p2 + q2 + 1)3(tan2 γ + 1)}

Z(i, j) ← Z0(i, j)+− f (Z0(i, j))/df z

p← Z(i, j)− Z(i, j − 1)
q ← Z(i, j)− Z(i− 1, j)

end do
end do
Normalize(Z(x, y), Zmax, Zmin)
Output Z(x, y)

The subfunction Normalize is a standard math function used in signal and

image processing.

We now demonstrate this method by using the following example.

Example 5. Reconstruct the surface of a synthetic vase using Tsai–Shah’s

method.

In order to compare with Pentland’s method, here we consider reconstruc-

tion of the same surface as in Example 2—the surface of a synthetic vase.

Figure 5.3 shows the synthetic vase and the reconstruction results using Tsai–

Shah’s algorithm from three different directions. The light is from above at

(x = 0, y= 0, z= 1). The input image is showed in Fig. 5.3(a). The surface,

shown in Fig. 5.3(b), (c), and (d), is the reconstructed surface from three

different directions. Tsai–Shah’s algorithm works well and produces good re-

sults as expected for the vase. However, it is sensitive to noises as we will point

out in the next section. In general, the experiment shows that Tsai–Shah’s al-

gorithm can reconstruct the object well on the surface where the reflectance

changes linearly with respect to the surface shape.

5.3.2 Optimization Approaches

As we pointed out earlier, the problem of recovering the shape from shading

can be based on solving the irradiance equation (5.2). The irradiance equa-

tion is a first-order PDE. Unfortunately, in general, this PDE is nonlinear and

only well posed under limited conditions. To make things worse, in practice,
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Figure 5.3: Tsai–Shah’s linear SFS algorithm applied to the synthetic vase im-

age. (a) is the input image with light source (x = 1, y= 0, z= 1). (b), (c), and

(d) are the reconstructed surface from three different directions.

the data available for shape reconstruction is not the complete intensity func-

tion, but rather its sampled version—a discrete data set. In addition, the re-

flectance map is usually determined experimentally as well. Usually people

believe that the problem has at least one solution, but it is clear that the

uniqueness of the solution is difficult to get. The optimization approach is

one of the earliest approaches that has been proposed and researched for

several decades. The original work can be traced back to the Ph.D. thesis of

Horn [26]. Different constraint functions (see Section 5.2.3.2) can be used to

minimize the energy function. First, we consider a general way to construct
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the energy function, which contains almost all the common constraints listed in

Section 5.2.3.2,∫ ∫
{(I − R)2 + (Z2

xx + Z2
xy+ Z2

yx + Z2
yy)+ (||−→N ||2 − 1)

+ ((Zx − p)2 + (Zy− q)2)+ ((Rx − Ix)2 + (Ry− Iy)2)}dx dy, (5.48)

where
−→
N is defined as the surface normal, I is the input image, R is the re-

flectance map, (x, y) is an arbitrary pixel of the input image, and (p, q) is orien-

tation at pixel (x, y). The first term, (I − R)2, is called the brightness error term,

which is used to minimize the brightness error between the measured image

intensity and the reflectance function. The second tern, (p2
x + p2

y+ q2
x + q2

y), is

called the regularization term which will always penalize large local changes in

the surface orientation and encourage the surface change gradually. The third

term, (||−→N ||2 − 1), is called unit normal term and is used to normalize the con-

straints on the recovered normal by forcing the surface normal to be unit vectors.

The fourth term, ((Zx − p)2 + (Zy− q)2), is called integrability term which is

used to ensure the valid surface. The last term, (Rx − Ix)2 + (Ry− Iy)2, is de-

fined as the intensity gradient term. It requires that the intensity gradient of the

reconstructed image be close to the intensity gradient of the input image in the

x and y directions as much as possible. Sometimes, if an algorithm is designed

for a particular type of images, adequate constraints should be chosen to meet

some specific requirements.

In the following context we will introduce the most popular algorithm which

is based on the concept of optimization.

5.3.2.1 Zheng and Chellappa’s minimization method

Zheng–Chellappa [70] chose the squared brightness error term (5.14), the inte-

grability term, and the intensity gradient term as their energy function, which is

defined to be ∫ ∫
((E − R)2 + ((Rx − Ix)2 + (Ry− Iy)2) (5.49)

+µ((Zx − p)2 + (Zy− q)2))dx dy.

Recall that most of the traditional methods enforce the requirement that the

reconstructed (approximated) image should be close to the input (exact) image,
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which satisfies the irradiance equation (5.2):

R(p, q) = I(x, y),

where p = ∂ Z/∂x and q = ∂ Z/∂y, Z(x, y) is the height of image at (x, y).

Notice that, for each pixel, the right side of Eq. (5.2) is given values and in

the left side p and q are free variables. Therefore, we write p = p(x, y) and

q = q(x, y). Now we rewrite the energy equation (5.49) as

Energy =
∫ ∫

F(p, q, Z)dx dy, (5.50)

where F(p, q, Z) is the sum of the following three parts:

(I − R)2 = (R(p, q)− I(x, y))2, (5.51)

(Rx − Ix)2 + (Ry− Iy)2 = (Rp(p, q)px + Rq(p, q)qx − Ix(x, y))2 (5.52)

+ (Rp(p, q)py+ Rq(p, q)qy− Iy(x, y))2,

µ((Zx − p)2 + (Zy− q)2). (5.53)

Using the technique of calculus of variations in Section 5.2.3 to mini-

mize the energy function (5.50) is equivalent to solving the following Euler

equation:

Fp − ∂

∂x

∂F

∂px

− ∂

∂y

∂F

∂py

= 0, (5.54)

Fq − ∂

∂x

∂F

∂qx

− ∂

∂y

∂F

∂qy

= 0,

FZ − ∂

∂x

∂F

∂ Zx

− ∂

∂y

∂F

∂ Zy

= 0.

By taking the first-order terms in the Taylor series of the reflectance map,

Zheng–Chellappa [70] simplified the Euler equation. For example, Fp can be

approximated by the following equation:

Fp ≈ 2[R− I(x, y)]Rp + µ(p− Zx). (5.55)

From Eq. (5.55), we observe that the higher order derivatives,

Rpp, Rpq , Rqp, and Rqq , are omitted because we only take the first-order Tay-

lor expansion. Similarly, we can get Fq and FZ and all the other variables in Eq.

(5.54). Finally, we get the following iterative formula (the current values of p,
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q, and Z are updated by quantities δp, δq , and δZ , respectively):

pk+1 = pk + δp,

qk+1 = qk + δq ,

Zk+1 = Zk + δZ, (5.56)

where

δp = 4
�

[(
C1 − 1

4
µC3

)(
5R2

q +
5
4
µ

)
−

(
C2 − 1

4
µC3

)(
5RpRq + 1

4
µ

)]
,

δq = 4
�

[(
C1 − 1

4
µC3

)(
5R2

q +
5
4
µ

)
−

(
C2 − 1

4
µC3

)(
5RpRq + 1

4
µ

)]
,

δZ = 1
4

[C3 + δp + δq ], (5.57)

and

C1 = (−R+ I + Rp pxx + Rqqxx − Ixx + Rp pyy+ Rqqyy− Iyy)Rp − µ(p− Zx),

C2 = (−R+ I + Rp pxx + Rqqxx − Ixx + Rp pyy+ Rqqyy− Iyy)Rq − µ(q − Zy),

C3 = −px + Zxx − qy+ Zyy,

� = 4

[(
5R2

q +
5
4
µ

)2

−
(

5RpRq + 1
4
µ

)2
]

. (5.58)

In order to solve these equations, we need to know the values of R(p, q), we

recall the reflectance equation mentioned before (5.5):

R(p, q) = ρ
1+ p0 p+ q0q√

1+ p2
0 + q2

0

√
1+ p2 + q2

. (5.59)

If we choose
−→
L = (cos τ sin γ, sin τ sin γ, cos γ ) as the unit vector for the

illuminant direction, where τ is the tilt angle of the illuminant (the angle between

the direction of the illuminant and the x–z plane), γ is the slant angle (the

angle between the illuminant direction and the positive z axle). Given the input

parameters ρ, τ , and γ and setting the initial value as p0 = q0 = 0, we can solve

all the variables in Eq. (5.58) using the following group of equations:

R = ρ
cos γ − p cos τ sin γ − q sin τ sin γ√

1+ p2 + q2
,

Rp = R(p+ δpq , q)− R(p, q),

Rq = R(p, q + δpq)− R(p, q),

px = p(x+ 1, y)− p(x, y), (5.60)

pxx = p(x+ 1, y)+ p(x− 1, y)− 2p(x, y),

pyy = p(x, y+ 1)+ p(x, y+ 1)− 2p(x, y). (5.61)
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Similarly, we can get all the other needed values in (5.59), namely, qxx, qy,

qyy, Zx, Zy, Zxx, Zyy, Ixx, and Iyy. Notice that, in (5.61), the partial derivatives

px, pxx, and pyy are approximated by linear terms in their Taylor series.

In order to accelerate the computational process, the hierarchical imple-

mentation has been used in Zheng–Chellappa’s algorithm. The lowest layer of

the image is 32× 32, the higher one is 64× 64, etc. For a detailed discussion

about the hierarchical method and its implementation, we refer the readers to

[70].

The whole algorithm can be described by the following procedure.

� Step 1. Estimate the original parameters of the reflectance map.

� Step 2. Normalize the input image. This step can be used to reduce the

input image size to that of the lowest resolution layer.

� Step 3. Update the current shape reconstruction using Eqs. (5.56)–(5.59),

and (5.61).

� Step 4. If the current image is in the highest resolution, the algorithm

stopped. Otherwise, we will increase the image size and expand the shape

reconstruction to the adjacent higher resolution layer; reduce the normal-

ized input image to the current resolution. Then go to step 3.

The following is the pseudocodes used to realize Zheng–Chellappa’s method.

Algorithm 3: Zheng–Chellappa’s method

Input Zmin (mindepthvalue), Zmax (maxdepthvalue),
(x, y, z) (direction of the light source), I(x, y)(input image)
D ←

√
x2 + y2 + z2, sx← x/D, sy← y/D, sz← z/D.

p0 ← q0 ← Z0 ← 0
δpq ← 0.001, µ ← 1.0 (µ will be used in Eqs. (5.57) and (5.58))
sin γ ← sin(arccos (lz)), sin τ ← sin (arctan (sy/sx)),
cos τ ← cos(arctan (sy/sx)).
for i = 1 to width(I) do

for j = 1 to height(I) do
calculate(px, pxx, py, pyy,qx, qxx, qy, qyy, Zx, Zxx, Zy, Zyy)
R ← (ρ cos γ − p(i, j) cos τ sin γ − q(i, j) sin τ sin γ )/

sqrt(1+ p(i, j)2 + q(i, j)2),
Rp ← R(p(i, j)+ δpq , q(i, j))− R(p(i, j), q(i, j))
calculate(δp, δq , δZ) using Eqs. (5.57) and (5.58)
p← p0 + δp, q ← q0 + δq

Z ← Z0 + δZ
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p← Z(i, j)− Z(i, j − 1)
q ← Z(i, j)− Z(i− 1, j)

end do
end do
Normalize(Z(x, y), Zmax, Zmin)
Output Z(x, y)

The subfunction Normalize is a standard math function used in signal and

image processing.

We now demonstrate this method by using the following example.

Example 6. Reconstruct the surface of a synthetic vase using the Zheng–

Chellappa method.

The experiments are based on the synthetic images that are generated us-

ing true depth maps. Figure 5.4(a) shows the same synthetic vase as in the

previous section and the reconstruction results using Pentland’s algorithm.

The light is from above at (x = 0, y= 0, z= 1). The input image is showed

in Fig. 5.4(a). The surface, shown in Figs. 5.4(b), (c), and (d), is the re-

constructed depth map from three different directions. Zheng–Chellappa al-

gorithm produces reasonable results as expected for the vase. However, some

errors can be seen around the boundary of the vase. In general, the experi-

ment shows that Zheng–Chellappa’s algorithm can reasonably reconstruct the

object on the surface. The most important advantage of Zheng–Chellappa’s

algorithm is that the optimization approach is not limited to the situation

where the reflectance map changes linearly with respect to the surface shape.

Example 7. Reconstruct the surface of a synthetic Mozart using Zheng–

Chellappa’s method.

The experiments are also based on the synthetic images that are generated

using true depth maps. Figure 5.5(a) shows the synthetic Mozart and the

reconstruction results using Zheng–Chellappa’s algorithm. The light is from

above at (x = 0, y= 0, z= 1). The input image is showed in Fig. 5.5 (a). The

result image, shown in Figs. 5.5(b), (c), and (d), is the reconstructed depth

map from three different directions. The recovered surface is well outlined as

expected for the human’s head. However, the details of Mozart cannot be accu-

rately recovered using their approach. In our opinion, this is due to the rapid

changes and complexity of the input image. Although the results can be im-

proved by prefiltering and smoothing the input image, in general, we conclude
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Figure 5.4: Zheng–Chellappa’s linear SFS algorithm applied to the synthetic

vase image. (a) is the input image with light source (x = 1, y= 0, z= 1). (b),

(c), and (d) are the reconstructed surface from three different directions.

from the experiment that Zheng–Chellappa’s algorithm does encounter some

difficulties when the input image is complex. This observation is also true

even if we used the simplest light source direction. We expect this experiment

to inform the readers that SFS problem is indeed one of the most difficult prob-

lems in computer vision. No perfect, or even satisfactory, solution has been

proposed yet.

We summarize this section with a few words about the advantage and disad-

vantage of these two methods we introduced in this section. Pentland’s method

uses FFT and IFFT to calculate the depth map. This makes the algorithm rela-

tively nonsensitive to the initial values. However, there are a few disadvantages:

(1) When the light source direction and the viewing direction are similar, the

Fourier transforms of p2 and q2 will have a doubling effect in the frequency
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Figure 5.5: Zheng–Chellappa’s linear SFS algorithm applied to the synthetic

Mozart image. (a) is the input image with light source (x = 0, y= 0, z= 1). (b),

(c), and (d) are the reconstructed surface from three different directions.

domain, which will affect the accuracy of the linear approximation. (2) When

applying FFT and IFFT to the whole image, Pentland’s algorithm needs more

time than Tsai–Shah’s approach. Tsai–Shah’s algorithm uses Newton’s method

to solve the quadratic equations. When the initial value is close to the exact so-

lution, Tsai–Shah’s algorithm converges very fast. Actually, given certain good

initial values, Tsai–Shah’s algorithm needs several steps to converge. However,

it is well known that Newton’s method cannot always guarantee convergence.

This disadvantage makes Tsai–Shah’s approach sensitive to initial estimation

than Pentland’s.

The discussion in this subsection has also shown us that the linear approach

is conceptually simple. The related algorithms are relatively fast and easy to
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implement. However, the reconstruction accuracy of this kind of methods is

limited. The assumption of simple linear models is not quite satisfactory for the

actual objects (see Section 5.2.3.2). Therefore, more advanced methods, such

as multiscale methods, are introduced to overcome the disadvantage of these

linear approaches. As an example, we will introduce a wavelet-based method in

the following section.

To end this section, we would like to acknowledge the website http://

www.cs.ucf.edu/˜vision/source.html; all the source codes used in this section

can be found in this site.

Finally, we will iterate the importance of the direction of the light source. We

recall that the brightness of an object depends on the following three factors:

(1) microstructure of the surface,

(2) distribution of the incident light,

(3) orientation of the surface with respect to the view and light source.

It is notable that if we change the direction of the light source, the irradiance

map will be changed coordinately. This will have an impact on the convergence

properties for certain numerical methods (see Section 5.3 and [64]).

5.4 Wavelet-Based Methods

Wavelet theory has been enthusiastically adopted by people in the area of signal

and image processing. It has been proved to be a useful tool in many applications.

A wavelet-based shape from shading method was introduced in [31]. Unlike

methods introduced in Section 5.3, the objective function in the constrained

optimization problem is replaced by its projection to the wavelet subspaces. To

understand this approach, we first recall some elements in wavelet theory.

5.4.1 Background of Wavelets Analysis

5.4.1.1 1D Wavelets

To begin with, we present here a few elements of one-dimensional orthogonal

wavelet theory, in which an orthonormal basis {ψmn} of L2(R) is constructed
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having the form

ψmn(t) = 2m/2ψmn(2mt − n), n, m∈ Z,

where ψ(t) is the “mother wavelet.” Usually it is not constructed directly but

rather from another function called the “scaling function” φ(t) ∈ L2(R). The

scaling function φ is chosen in such a way that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)
∫

φ(t)φ(t − n)dt = δ0,n, n ∈ Z,

(ii) φ(t) =∑∞
−∞
√

2ckφ(2t − k), {ck}k∈Z ∈ l2,

(iii) for each f ∈ L2(R), ε > 0, there is a function

fm(t) =∑∞
n=−∞ amnφ(2mt − n) such that ‖ fm− f ‖ < ε.

(5.62)

These conditions lead to a “multiresolution approximation” {Vm}m∈Z , consist-

ing of closed subspaces of L2(R). The space Vm is taken to be the closed linear

span of {φ(2mt − n)}n∈Z . Because of (5.62) (ii), the Vm are nested, i.e. Vm ⊆ Vm+1

and because of (5.62) (iii), ∪mVm is dense in L2(R).

There are many different types of wavelet bases created and employed for

different purposes. They can be classified as time-limited wavelets, such as Haar

wavelets and Daubechies wavelets, band-limited wavelets, such as Shannon

and Meyer wavelets. Another standard prototype is the Haar system in which

φ(t) = χ[0,1](t), where

χ[0,1] = 1, x ∈[0,1],

0, x /∈[0,1]

is the characteristic function of [0, 1]. It is an easy exercise to show that (5.62)

is satisfied. This prototype has poor frequency localization but good time local-

ization. Most of the other examples found, e.g., in [12] and [66], attempt to get

fairly good time and frequency localization simultaneously.

The various scales are related by the dilation equation of the scaling function

φ(t) =
√

2
∞∑

n=−∞
cnφ(2t − n), (5.63)

ψ(t) =
√

2
∞∑

n=−∞
dnφ(2t − n),

where dn = c1−n(−1)n.
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In addition, the Fourier transform of the mother wavelet ψ(t) vanishes in a

neighborhood of the origin. We denote by Wm the closed linear span of {ψ(2mt −
n)}. This set of functions form an orthogonal basis of L2(R). That is,

Vm = Vm−1 ⊕Wm−1

L2(R) = ⊕∞m=−∞Wm

For f ∈ L2(R), we have the projections onto the subspace Vm and Wm re-

spectively given by

fm(t) = Pm f (t) =
∞∑

n=−∞
am,n2m/2φ(2mt − n), (5.64)

f m(t) = Pm f (t) =
∞∑

n=−∞
bm,n2m/2ψ(2mt − n), (5.65)

where

am,n = 2−m/2
∫ ∞

−∞
f (x)φ(2mt − n)dx,

bm,n = 2−m/2
∫ ∞

−∞
f (x)ψ(2mt − n)dx.

The coefficients aj,n and b j,n at resolution j = m and j = m+ 1 are related

by a tree algorithm. To see this, we space V1, we have two distinct orthonormal

bases: {√
2φ(2x− n)

}∞
n=−∞

and

{φ(x− n), ψ(x− k)}∞n,k=−∞ .

Hence each f ∈ V1 has an expansion

f (x) =
∞∑

n=−∞
a1,n

√
2φ(2x− n)

=
∞∑

n=−∞
a0,nφ(x− n)+

∑
b0,nψ(x− n).

By (5.63) we have

a1,n =
∞∑

k=−∞
cn−2ka0,k +

∞∑
k=−∞

(−1)n−1c1−n+2kb0,k, (5.66)
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which is the reconstruction part. The decomposition is even easier: We need

merely use the formulas for a0
n and b0

n to find

a0,n =
∫ ∞

−∞
f (x)φ(x− n)dx =

∫ ∞

−∞
f (x)

∑
k

ck

√
2φ(2x− 2n− k)dx (5.67)

=
∑

k

cka1,2n+k =
∑

k

a1,kck−2n,

b0,n =
∑

k

a1,k(−1)k−1c1−k+2n.

This works at each scale to give us the tree algorithm for decomposition

(5.67),

bm−1,n b0,n

↗ ↗ ↗ ↗
· · · −→ am,n −→ am−1,n −→ · · · −→ a1,n −→ a0,n

↗
−→ · · ·

and for reconstruction (5.66),

b0,n b1,n bm−1,n

↘ ↘ ↘ ↘ ↘
· · · −→ a0,n −→ a1,n −→ · · · −→ am−1,n −→ am,n −→ · · · .

Thus we need calculate the coefficients from the function f (t) only once at

the finest scale of interest. Then we work down to successively coarser scales

by using this decomposition algorithm, with the error at each successive scale

corresponding to the wavelet coefficients. These algorithms are called Mallat

algorithms (see [39]).

5.4.1.2 2D Separable Wavelets

In order to represent an image using wavelet bases, we need to construct a

basis for L2(R2). There are two different methods to do so. One way is based on

the multiresolution analysis in 2D space to construct 2D wavelet basis directly,

while another way is based on the tensor product of the 1D wavelets. The former

usually leads to a nonseparable basis, while the latter derives a separable basis.

Here we merely consider the separable basis, which is based on the separable

multiresolution analysis of L2(R2).
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Let {Vm} be a multiresolution of L2(R); a separable two-dimensional mul-

tiresolution is composed of the tensor product spaces

V 2
m = Vm⊗ Vm.

The space V 2
m is the set of the finite energy functions that are linear expan-

sions of the set of the separable bases
{
φm,k,l(x, y)

}∞
k,l=0 ,while the correspondent

wavelet subspace W 2
m is given by the close linear span of{

φm,k(x)ψm,l(y), ψm,l(x)φm,k(y), ψm,k(x)ψm,l(y)
}∞

k,l=0

where

φm,k(x) : = 2
m
2 φ(2mx− k), (5.68)

ψm,k(x) : = 2
m
2 ψ(2mx− k),

φm,k,l(x, y) : = φm,k(x)φm,l(y).

Like in 1D case, we have

V 2
m = V 2

m−1 ⊕W 2
m−1 = (Vm⊗ Vm)⊕W 2

m−1,

W 2
m = (Vm⊗Wm)⊕ (Wm⊗ Vm)⊕ (Wm⊗Wm),

and

L2(R2) = ⊕∞m=−∞W 2
m.

Wells et al. [67] proved the following theorem.

Theorem 8 (Wells and Zhou). Assume the function f ∈ C2(�), where � is

a bounded open set in R2. Let

fm(x, y) := 1
2m

∑
k,l∈�

f (
k+ c

2 j
,

l + c

2 j
)φm,k(x)φm,l(y), x, y ∈ �, (5.69)

where � = {
k ∈ Z : supp(φm,k) ∩� �= ∅} is the index set and

c = 1√
2

2N−1∑
k=0

kck.

Then

|| f − fm||L2(�) ≤ C(1/2m)2,

where C is dependent on the diameter of �, the first and second moduli of the

first- and second-order derivatives of f on � .

Formula (5.69) is the one which was used in the wavelet-based SFS method.

Now we are ready to introduce this method.
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5.4.2 The Wavelet-Based SFS

A wavelet-based method was developed in [31]. Instead of using the constraints

in Zheng–Chellappa’s method (see Section 5.3.2.1), the authors introduced a new

constraint (5.20). It is said that “the new constraint not only enforces integrability

but also introduces a smoothness constraint in an implicit manner.” Now the

energy function is defined as

W =
∫ ∫

�

[(E(x, y)− R(p, q))2 + (p2
x + p2

y+ q2
x + q2

y) (5.70)

+ (
(zx − p)2 + (zy− q)2)+ (

(zxx − p)2 + (zyy− q)2)]dx dy.

The objective function is first replaced by its approximation in scaling space V0

of Daubechies wavelets. Then the variational problem is solved by an iterative

algorithm. We now describe this method.

We assume that the given image size is M × M . The surface Z(x, y), its partial

derivatives ∂ Z

∂x
= p(x, y), and ∂ Z

∂y
= q(x, y) have projection to V0, the scaling

space at level 0:

Z(x, y) =
M−1∑
k=0

M−1∑
l=0

Zk,lφ0,k,l(x, y),

p(x, y) =
M−1∑
k=0

M−1∑
l=0

pk,lφ0,k,l(x, y), (5.71)

q(x, y) =
M−1∑
k=0

M−1∑
l=0

pk,lφ0,k,l(x, y).

Denoting

φ
(x)
0,k,l(x, y) = ∂

∂x
φ0,k,l(x, y), φ

(xx)
0,k,l(x, y) = ∂2

∂x2
φ0,k,l(x, y),

φ
(y)
0,k,l(x, y) = ∂

∂y
φ0,k,l(x, y), φ

(yy)
0,k,l(x, y) = ∂2

∂y2
φ0,k,l(x, y),

substitute (5.71) in each term of (5.70) to get

W =
∫ ∫

�

[
E(x, y)− R(

M−1∑
k,l=0

pk,lφ0,k,l(x, y),
M−1∑
k,l=0

qk,lφ0,k,l(x, y))

]2

dx dy (5.72)

+
∫ ∫

�

⎛⎝(
M−1∑
k,l=0

pk,lφ
(x)
0,k,l(x, y)

)2

+
(

M−1∑
k,l=0

pk,lφ
(y)
0,k,l(x, y)

)2
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+
(

M−1∑
k,l=0

qk,lφ
(x)
0,k,l(x, y)

)2

+
(

M−1∑
k,l=0

qk,lφ
(x)
0,k,l(x, y)

)2
⎞⎠ dx dy

+
∫ ∫

�

⎛⎝(
M−1∑
k,l=0

Zk,lφ
(x)
0,k,l(x, y)−

M−1∑
k,l=0

pk,lφ0,k,l(x, y)

)2

+
(

M−1∑
k,l=0

Zk,lφ
(y)
0,k,l(x, y)−

M−1∑
k,l=0

qk,lφ
(x)
0,k,l(x, y)

)2
⎞⎠ dx dy

∫ ∫
�

⎛⎝(
M−1∑
k,l=0

Zk,lφ
(xx)
0,k,l(x, y)−

M−1∑
k,l=0

pk,lφ
(x)
0,k,l(x, y)

)2

+
(

M−1∑
k,l=0

Zk,lφ
(yy)
0,k,l(x, y)−

M−1∑
k,l=0

qk,lφ
(y)
0,k,l(x, y)

)2
⎞⎠ dx dy.

There are total of 3M2 unknown variables (they are the function samples of

Z, p, and q):

{
pk,l

}
,
{
qk,l

}
, and

{
Zk,l

}
,

where the indices run on M × M grid (see (5.69)).

It is remarkable that the interpolating property (5.69) simplified the compu-

tation significantly. The integrals we need to compute in energy function are

only involved with the integrals which are the inner product of the scaling func-

tion φ(x, y) := φ0,0,0(x, y), its shifting φk,l(x, y) := φ0,k,l(x, y), and their partial

derivatives of first and second orders. Note that we have dropped the scale (or

the resolution) index 0 for simplicity, since the discussion here does not relate

to other scales. Now we assume that the scaling function φ is the Daubechies

scaling function with 2N + 1 filter coefficients ci (see (5.63)). These definite

integrals are called connection coefficients [5]:

�(4)
x (k, l) =

∫ ∫
�

φ(xx)(x, y)φ(xx)
k,l (x, y)dx dy= �(4)(k)D(l),

�(4)
y (k, l) =

∫ ∫
�

φ(yy)(x, y)φ(yy)
k,l (x, y)dx dy= D(k)�(4)(k),

�(4)
xy (k, l) =

∫ ∫
�

φ(xy)(x, y)φ(xy)
k,l (x, y)dx dy= �(2)(k)�(2)(l),



Shape From Shading Models 295

�(4)
yx (k, l) =

∫ ∫
�

φ(yx)(x, y)φ(yx)
k,l (x, y)dx dy= �(2)(k)�(2)(l),

�(3)
x (k, l) =

∫ ∫
�

φ(xx)(x, y)φ(x)
k,l (x, y)dx dy= D(l)�(3)(k),

�(3)
y (k, l) =

∫ ∫
�

φ(y)(x, y)φ(yy)
k,l (x, y)dx dy= D(k)�(3)(l),

�(2)
x (k, l) =

∫ ∫
�

φ(x)(x, y)φ(x)
k,l (x, y)dx dy= D(l)�(2)(k),

�(2)
y (k, l) =

∫ ∫
�

φ(y)(x, y)φ(y)
k,l (x, y)dx dy= D(k)�(2)(l),

�(1)
x (k, l) =

∫ ∫
�

φ(x)(x, y)φk,l(x, y)dx dy= D(l)�(1)(k),

�(1)
y (k, l) =

∫ ∫
�

φ(y)(x, y)φk,l(x, y)dx dy= D(k)�(1)(l),

where

�(1)(k) =
∫

φ(x)(x)φ(x− k)dx, �(2)(k) =
∫

φ(x)(x)φ(x)(x− k)dx,

�(3)(k) =
∫

φ(xx)(x)φ(x)(x− k)dx, �(4)(k) =
∫

φ(xx)(x)φ(xx)(x− k)dx

are 1D connection coefficients and D(0) = 1, D(n) = 0, n �= 1. Note that since

the 2D basis here is constructed from the tensor product of 1D basis, these

2D connection coefficients can be computed by using 1D coefficients. We also

notice that these connection coefficients are independent of the input images;

therefore, they only need to be computed once.

The energy function is then linearized by taking the linear term in its Taylor

expansion at (p, q). The next step is to solve the optimization problem associated

with the linearized energy function by iterations. Let δpi, j, δqi, j , and δzi, j be the

small variation of pi, j, qi, j , and zi, j, respectively, and set

∂δW

∂δpi, j

= ∂δW

∂δqi, j

= ∂δW

∂δzi, j

= 0.

We obtain

δpi, j = [C1 D22 − C2
∂ R

∂p
(i, j)

∂ R

∂q
(i, j)]/D, (5.73)

δqi, j = [C2 D11 − C1
∂ R

∂p
(i, j)

∂ R

∂q
(i, j)]/D,

δzi, j = C3/D33,
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where

D11 = R2
pi, j
+ 3�(2)(0)+ 1, (5.74)

D22 = R2
qi, j
+ 3�(2)(0)+ 1,

D33 = 2�(2)(0)+ 2�(4)(0),

D = D11 D22 − R2
pi, j

R2
qi, j

and

C1 = (E − R)Rp − pi, j

+
2N−2∑

k=−2N+2

Zi−k, j(�(3)(k)+ �(1)(k))− (2pi−k, j + pi, j−k)�(2)(k),

C2 = (E − R)Rq − qi, j

+
2N−2∑

k=−2N+2

Zi, j−k(�(3)(k)+ �(1)(k))− (qi−k, j + 2qi, j−k)�(2)(k),

C3 = −
2N−2∑

k=−2N+2

(pi−k, j + qi, j−k)(�(3)(k)+ �(1)(k))

+ (Zi−k, j + Zi, j−k)(�(2)(k)+ �(4)(k)). (5.75)

Finally, we can write the iterative formula

pm+1
i, j = pm

i, j + δpi, j, (5.76)

qm+1
i, j = qm

i, j + δqi, j,

zm+1
i, j = zm

i, j + δzi, j.

We now summarize this method as the follows:

Step 0. Compute 1D connection coefficients and 2D connection coefficients.

Step 1. Compute the set of coefficients (5.75) and (5.74).

Step 2. Compute the set of variations δpi, j, δqi, j , and δzi, j (5.73).

Step 3. Update the current (pm
i, j, qm

i, j) and then the current shape reconstruc-

tion Zm
i, j using Eq. (5.76).

5.4.3 Summary

The wavelet-based method we demonstrated in this section is based on the

approximation of the objective function in V0. It should be pointed out that it
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did not use the multiscale structure possessed by the wavelet bases, nor the

Mallat algorithm to speed up the computation. Since the selected wavelet bases

are time-limited (therefore it is not band-limited), it may be not the best choice

for approximating differential operators.

At this point, we would like to mention the idea of regularization. The shape

from shading problems can be regarded as inverse problems since they attempt

to recover physical properties of a 3D surface from a 2D image associated with

the surface. Therefore, the Tikhonov regularization approach can be applied to

this problem. The time-limited filters, such as the difference boxes [22] or the

Daubechies wavelets used in Section 5.4.2, do not satisfy one of the conditions re-

quested by the Tikhonov regularization [61]. In contrast with time-limited filters,

band-limited filters are commonly used for regularizing differential operators,

since the simplest way to avoid harmful noise is to filter out high frequencies that

are amplified by differentiation. Meyer wavelet family constitutes an interesting

class of such type of band-limited filters. The ill-posedness/ill-conditioness of the

SFS model and its connection to the regularization theory have been discussed

in [7]. Minimization (5.21) will lead to a smoother solution (the regularization

solution). In some cases, the Lagrange multipliers are the “regularizers.” How-

ever, the numerical experiments presented in Section 5.3 are treated by choosing

those regularizers equal to 1. The nonlinear ill-posed problems are quite difficult

and basically no general approaches seem to exist [7]. For the classic theory of

regularization, we highly recommend Tikhonov et al. [60].

A 2D basis constructed from the tensor product of 1D wavelet basis is much

easier to compute than the nonseparable wavelets. There is also some ongoing

research on nonseparable wavelets for use in image processing. For a detailed

discussion on nonseparable wavelets, we recommend [37,38,40] and references

therein.

The development of a wavelet-based method which reflects the multiscale

nature with an effective algorithm, namely, using Mallat algorithm, is still an

open problem.

5.5 Concluding Remarks

In this chapter, we have given a super brief introduction of the shape from shad-

ing problems. A variety of elementary numerical techniques related to solution
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of this problem is discussed and implemented to show the basic ideas. However,

a short chapter like this one has to omit many related topics, which are both

important and exciting. In fact, there are many other techniques and advanced

developments in the area. Fortunately, most of them are very well documented

in the literature. For instance, the following two approaches reflect different

flavors:

1. Statistical learning and neural network. [2] introduced a statistical

method to solve the SFS model; the principal component analysis (PCA)

was used to derive a low-dimensional parameterization of head shape

space, and an algorithm was presented for solving shape from shading

based on this approach.

2. Fast matching method. The schemes are of use in a variety of applications,

including problems of shape from shading. An excellent review about this

method is given by its pioneer [54]. Applications related to vision problems

can be found in [55] and [53].

We conclude this chapter by pointing out that there is, in general, no proof

of the convergence for the numerical methods introduced in Sections 5.3 and

5.4. An interesting example related to this topic can be found in [30].
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Chapter 6

Wavelets in Medical Image Processing:

Denoising, Segmentation, and Registration

Yinpeng Jin1, Elsa Angelini1, and Andrew Laine1

6.1 Introduction

Wavelets have been widely used in signal and image processing for the past 20

years. Although a milestone paper by Grossmann et al. [3] was considered the

beginning of modern wavelet analysis, similar ideas and theoretical bases can be

found back in the early twentieth century [4]. Following two important papers

in the late 1980s by Mallat [5] and Daubechies [6], more than 9000 journal papers

and 200 books related to wavelets have been published [7].

Wavelets were first introduced to medical imaging research in 1991 in a jour-

nal paper describing the application of wavelet transforms for noise reduction in

MRI images [8]. Ever since, wavelet transforms have been successfully applied

to many topics including tomographic reconstruction, image compression, noise

reduction, image enhancement, texture analysis/segmentation, and multiscale

registration. Two review papers, in 1996 [9] and 2000 [10], provide a summary

and overview of research works related to wavelets in medical image processing

from the past few years. Many related works can also be found in the book edited

by Aldroubi et al. [11]. More currently, a special issue of IEEE Transactions on

Medical Imaging [7] provides a large collection of most recent research works

using wavelets in medical image processing.

The purpose of this chapter is to summarize the usefulness of wavelets in vari-

ous problems of medical imaging. The chapter is organized as follows. Section 6.2

1 Department of Biomedical Engineering, Columbia University, New York, NY, USA
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overviews the theoretical fundamentals of wavelet theory and related multiscale

representations. As an example, the implementation of an overcomplete dyadic

wavelet transform will be illustrated. Section 6.3 includes a general introduc-

tion of image denoising and enhancement techniques using wavelet analysis.

Sections 6.4 and 6.5 summarize the basic principles and research works in lit-

erature for wavelet analysis applied to image segmentation and registration.

6.2 Wavelet Transform and

Multiscale Analysis

One of the most fundamental problems in signal processing is to find a suitable

representation of the data that will facilitate an analysis procedure. One way to

achieve this goal is to use transformation, or decomposition of the signal on a

set of basis functions prior to processing in the transform domain. Transform

theory has played a key role in image processing for a number of years, and

it continues to be a topic of interest in theoretical as well as applied work in

this field. Image transforms are used widely in many image processing fields,

including image enhancement, restoration, encoding, and description [12].

Historically, the Fourier transform has dominated linear time-invariant signal

processing. The associated basis functions are complex sinusoidal waves eiωt

that correspond to the eigenvectors of a linear time-invariant operator. A signal

f (t) defined in the temporal domain and its Fourier transform f̂ (ω), defined in

the frequency domain, have the following relationships [12, 13]:

f̂ (ω) =
∫ +∞

−∞
f (t)e−iωtdt, (6.1)

f (t) = 1
2π

∫ +∞

−∞
f̂ (ω)eiωtdw. (6.2)

Fourier transform characterizes a signal f (t) via its frequency components.

Since the support of the bases function eiωt covers the whole temporal domain

(i.e. infinite support), f̂ (ω) depends on the values of f (t) for all times. This

makes the Fourier transform a global transform that cannot analyze local or

transient properties of the original signal f (t).

In order to capture frequency evolution of a nonstatic signal, the basis func-

tions should have compact support in both time and frequency domains. To

achieve this goal, a windowed Fourier transform (WFT) was first introduced
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with the use of a window function w(t) into the Fourier transform [14]:

Sf (ω,t) =
∫ +∞

−∞
f (τ )w(t − τ )e−iωtdτ. (6.3)

The energy of the basis function gτ,ξ (t) = w(t − τ )e−iξ t is concentrated in the

neighborhood of time τ over an interval of size σt, measured by the standard

deviation of |g|2. Its Fourier transform is ĝτ,ξ (ω) = ŵ(ω − ξ)e−iτ (ω−ξ), with en-

ergy in frequency domain localized around ξ , over an interval of size σω. In a

time–frequency plane (t, ω), the energy spread of what is called the atom gτ,ξ (t)

is represented by the Heisenberg rectangle with time width σt and frequency

width σω. The uncertainty principle states that the energy spread of a function

and its Fourier transform cannot be simultaneously arbitrarily small, verifying:

σtσω ≥ 1
2
. (6.4)

The shape and size of Heisenberg rectangles of a WFT determine the spatial and

frequency resolution offered by such transform.

Examples of spatial-frequency tiling with Heisenberg rectangles are shown in

Fig. 6.1. Notice that for a windowed Fourier transform, the shapes of the time–

frequency boxes are identical across the whole time–frequency plane, which

means that the analysis resolution of a windowed Fourier transform remains

the same across all frequency and spatial locations.

To analyze transient signal structures of various supports and amplitudes in

time, it is necessary to use time–frequency atoms with different support sizes

for different temporal locations. For example, in the case of high-frequency

structures, which vary rapidly in time, we need higher temporal resolution to

accurately trace the trajectory of the changes; on the other hand, for lower

frequency, we will need a relatively higher absolute frequency resolution to give

a better measurement of the value of frequency. We will show in the next section

that wavelet transform provides a natural representation which satisfies these

requirements, as illustrated in Fig. 6.1(d).

6.2.1 Continuous Wavelet Transform

A wavelet function is defined as a function ψ ∈ L2(R) with a zero average [3,

14]: ∫ +∞

−∞
ψ(t)dt = 0. (6.5)
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   (a)   (b)    (c)     (d) 

Figure 6.1: Example of spatial-frequency tiling of various transformations. x-

axis: spatial resolution and y-axis: frequency resolution. (a) Discrete sampling

(no frequency localization), (b) Fourier transform (no temporal localization).

(c) windowed Fourier transform (constant Heisenberg boxes), and (d) wavelet

transform (variable Heisenberg boxes).

It is normalized ‖ψ‖ = 1, and centered in the neighborhood of t = 0. A fam-

ily of time–frequency atoms is obtained by scaling ψ by s and translating it

by u:

ψu,s(t) = 1√
s
ψ

(
t − u

s

)
. (6.6)

A continuous wavelet transform decomposes a signal over dilated and translated

wavelet functions. The wavelet transform of a signal f ∈ L2(R) at time u and

scale s is performed as:

W f (u, s) = 〈
f, ψu,s

〉 = ∫ +∞

−∞
f (t)

1√
s
ψ∗

(
t − u

s

)
dt = 0. (6.7)

Assuming that the energy of ψ̂(ω) is concentrated in a positive frequency interval

centered at η, the time–frequency support of a wavelet atom ψu,s(t) is symboli-

cally represented by a Heisenberg rectangle centered at (u, η/s), with time and

frequency supports spread proportional to s and 1/s respectively. When s varies,

the height and width of the rectangle change but its area remains constant, as

illustrated by Fig. 6.1 (d).

For the purpose of multiscale analysis, it is often convenient to introduce the

scaling function φ, which is an aggregation of wavelet functions at scales larger

than 1. The scaling function φ and the wavelet function ψ are related through

the following relations: ∣∣φ̂(ω)
∣∣2 =

∫ +∞

1

∣∣ψ̂(sω)
∣∣2 ds

s
. (6.8)
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The low-frequency approximation of a signal f at the scale s is computed as:

L f (u, s) = 〈 f (t), φs(t − u)〉 (6.9)

with

φs(t) = 1√
s
φ

(
t

s

)
. (6.10)

For a one-dimensional signal f , the continuous wavelet transform (6.7) is a two-

dimensional representation. This indicates the existence of redundancy that

can be reduced and even removed by subsampling the scale parameter s and

translation parameter u.

An orthogonal (nonredundant) wavelet transform can be constructed con-

straining the dilation parameter to be discretized on an exponential sampling

with fixed dilation steps and the translation parameter by integer multiples of a

dilation-dependent step [15]. In practice, it is convenient to follow a dyadic scale

sampling where s = 2i and u= 2i · k, with i and k being integers. With dyadic

dilation and scaling, the wavelet basis function, defined as:{
ψ j,n(t) = 1√

2 j
ψ

(
t − 2 jn

2 j

)}
( j,n)∈Z2

,

forms an orthogonal basis of L2(R).

For practical purpose, when using orthogonal basis functions, the wavelet

transform defined in Eq. (6.7) is only computed for a finite number of scales

(2J) with {J = 0, . . . , N}, and a low-frequency component L f (u, 2J) (often re-

ferred to as the DC component) is added to the set of projection coefficients

corresponding to scales larger than 2J for a complete signal representation.

In medical image processing applications, we usually deal with discrete data.

We will therefore focus the rest of our discussion on discrete wavelet transform

rather than continuous ones.

6.2.2 Discrete Wavelet Transform and Filter Bank

Given a 1D signal of length N, { f (n), n= 0, . . . , N − 1}, the discrete orthog-

onal wavelet transform can be organized as a sequence of discrete functions

according to the scale parameter s = 2 j :{
L J f, {Wj f } j∈[I,J]

}
, (6.11)

where L J f = L f (2Jn, 2J) and Wj f = W f (2 jn, 2 j).



310 Jin, Angelini, and Laine

f(n)

h[-n]

g[-n]

↓ 2 

↓ 2 

L1 f

W1 f

L2 fh[-n] ↓ 2

W2 fg[-n] ↓2

downsampling by 2↓ 2

Figure 6.2: Illustration of orthogonal wavelet transform of a discrete signal

f (n) with CMF. A two-level expansion is shown.

Wavelet coefficients Wj f at scale s = 2 j have a length of N/2 j and the largest

decomposition depth J is bounded by the signal length N as (sup(J) = log2 N).

For fast implementation (such as filter bank algorithms), a pair of conjugate

mirror filters (CMF) h and g can be constructed from the scaling function φ and

wavelet function ψ as follows:

h[n] =
〈

1√
2
φ

(
t

2

)
, φ(t − n)

〉
and g[n] =

〈
1√
2
ψ

(
t

2

)
, φ(t − n)

〉
. (6.12)

A conjugate mirror filter k satisfies the following relation:∣∣∣k̂(ω)
∣∣∣2
+

∣∣∣k̂(ω + π)
∣∣∣2
= 2 and k̂(0) = 2. (6.13)

It can be proven that h is a low-pass filter and g is a high-pass filter. The discrete

orthogonal wavelet decomposition in Eq. (6.11) can be computed by applying

these two filters to the input signal and recursively decomposing the low-pass

band, as illustrated in Fig. 6.2. A detailed proof can be found in [15].

For orthogonal basis, the input signal can be reconstructed from wavelet

coefficients computed in Eq. (6.11) using the same pair of filters, as illustrated

in Fig. 6.3.

f(n)

g↑ 2 W2 f

h h ↑ 2 ↑ 2L2 f L1 f

g↑ 2W1 f

upsampling by 2 ↑ 2

Figure 6.3: Illustration of inverse wavelet transform implemented with CMF. A

two-level expansion is shown.
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It is easy to prove that the total amount of data after a discrete wavelet expan-

sion as shown in Fig. 6.2 has the same length to the input signal. Therefore, such

transform provides a compact representation of the signal suited to data com-

pression as wavelet transform provides a better spatial-frequency localization.

On the other hand, since the data was downsampled at each level of expan-

sion, such transform performs poorly on localization or detection problems.

Mathematically, the transform is variant under translation of the signal (i.e. is

dependent on the downsampling scheme used during the decomposition), which

makes it less attractive for analysis of nonstationary signals. In image analysis,

translation invariance is critical to the preservation of all the information of the

signal and a redundant representation needs to be applied.

In the dyadic wavelet transform framework proposed by Mallat et al. [16],

sampling of the translation parameter was performed with the same sampling

period as that of the input signal in order to preserve translation invariance.

A more general framework of wavelet transform can be designed with dif-

ferent reconstruction and decomposition filters that form a biorthogonal basis.

Such generalization provides more flexibility in the design of the wavelet func-

tions. In that case, similar to Eq. (6.11), the discrete dyadic wavelet transform

of a signal s(n) is defined as a sequence of discrete functions:

{SMs(n), {Wms(n)}m∈[I,M]}n∈Z, (6.14)

where SMs(n) = s∗φM(n) represents the DC component, or the coarsest infor-

mation from the input signal.

Given a pair of wavelet function ψ(x) and reconstruction function χ(x), the

discrete dyadic wavelet transform (decomposition and reconstruction) can be

implemented with a fast filter bank scheme using a pair of decomposition filters

H, G and a reconstruction filter K [16]:

φ̂(2ω) = e−iωs H(ω)φ̂(ω),

ψ̂(2ω) = e−iωsG(ω)ψ̂(ω), (6.15)

χ̂(2ω) = eiωsK(ω)χ̂(ω),

where s is a ψ(x)-dependent sampling shift. The three filters satisfy:

|H(ω)|2 + G(ω)K(ω) = 1. (6.16)

Defining Fs(ω) = e−iωs F(ω), where F is H, G, or K , we can construct a filter

bank implementation of the discrete dyadic wavelet transform as illustrated in
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Figure 6.4: Filter bank implementation of a one-dimensional discrete dyadic

wavelet transform decomposition and reconstruction for three levels of analysis.

H∗
s (ω) denotes the complex conjugate of Hs(ω).

Fig. 6.4. Filters F(2m ω) defined at level m+ 1 (i.e., filters applied at wavelet scale

2m) are constructed by inserting 2m− 1 zeros between subsequent filter coeffi-

cients from level 1 (F(ω)). Noninteger shifts at level 1 are rounded to the nearest

integer. This implementation design is called “algorithme à trous” [17, 18] and

has a complexity that increases linearly with the number of analysis levels.

In image processing applications, we often deal with two, three, or even

higher dimensional data. Extension of the framework to higher dimension is

quite straightforward. Multidimensional wavelet bases can be constructed with

tensor products of separable basis functions defined along each dimension.

In that context, an N-dimensional discrete dyadic wavelet transform with M

analysis levels is represented as a set of wavelet coefficients:{
SMs, {W 1

ms, W 2
ms, . . . , W N

m s}m=[I,M]
}
, (6.17)

where W k
ms = 〈s, ψk

m〉 represents the detailed information along the kth coordi-

nate at scale m. The wavelet basis is dilated and translated from a set of separable

wavelet functions ψk, k = 1, . . . , N, for example in 3D:

ψk
m,n1,n2,n3

(x, y, z) = 1
23m/2

ψk

(
x− n1

2m
,

y− n2

2m
,

z− n3

2m

)
, k = 1, 2, 3.

(6.18)
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Figure 6.5: Filter bank implementation of a multidimensional discrete dyadic

wavelet transform decomposition (left) and reconstruction (right) for two levels

of analysis.

In this framework, reconstruction with an N-dimensional dyadic wavelet trans-

form requires a nonseparable filter L N to compensate the interdimension cor-

relations. This is formulated in a general context as:

N∑
l=1

K(ωl)G(ωl)L N(ω, . . . , ωl−1, ωl+1, . . . , ωN)+
N∏

l=1

|H(ωl)|2 = 1. (6.19)

Figure 6.5 illustrates a filter bank implementation with a multidimensional dis-

crete dyadic wavelet transform. For more details and discussions we refer to

[19].

6.2.3 Other Multiscale Representations

Wavelet transforms are part of a general framework of multiscale analysis. Var-

ious multiscale representations have been derived from the spatial-frequency

framework offered by wavelet expansion, many of which were introduced to

provide more flexibility for the spatial-frequency selectivity or better adaptation

to real-world applications.

In this section, we briefly review several multiscale representations de-

rived from wavelet transforms. Readers with an intention to investigate more
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theoretical and technical details are referred to the textbooks on Gabor analysis

[20], wavelet packets [21], and the original paper on brushlet [22].

6.2.3.1 Gabor Transform and Gabor Wavelets

In his early work, Gabor [23] suggested an expansion of a signal s(t) in terms of

time–frequency atoms gm,n(t) defined as:

s(t) =
∑
m,n

cm,ngm,n(t), (6.20)

where gm,n(t), m, n ∈ Z, are constructed with a window function g(x), combined

to a complex exponential:

gm,n(t) = g(t − na)ei2πmbt. (6.21)

Gabor also suggested that an appropriate choice for the window function g(x)

is the Gaussian function due to the fact that a Gaussian function has the theoret-

ically best joint spatial-frequency resolution (uncertainty principle). It is impor-

tant to note here that the Gabor elementary functions gm,n(t) are not orthogonal

and therefore require a biorthogonal dual function γ (x) for reconstruction [24].

This dual window function is used for the computation of the expansion coeffi-

cients cm,n as:

cm,n =
∫

f (x)γ̄ (x− na)e−i2πmbxdx, (6.22)

while the Gaussian window is used for the reconstruction.

The biorthogonality of the two window functions γ (x) and g(x) is expressed

as: ∫
g(x)γ̄ (x− na)e−i2πmbxdx = δmδn. (6.23)

From Eq. (6.21), it is easy to see that all spatial-frequency atom gm,n(t)

share the same spatial-frequency resolution defined by the Gaussian func-

tion g(x). As pointed out in the discussion on short-time Fourier transforms,

such design is suboptimal for the analysis of signals with different frequency

components.

A wavelet-type generalization of Gabor expansion can be constructed such

that different window functions are used instead of a single one [25] according

to their spatial-frequency location. Following the design of wavelets, a Gabor
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wavelet ψ(x) = g(t)eiηt is then obtained with a Gaussian function

g(t) = 1
(σ 2π)1/4

e
−t2

2σ2

(see [14]).

Extension of Gabor wavelet to 2D is expressed as:

ψk(s, y) = g(x, y)e−iη(x cos αk)+y sin αk). (6.24)

Different translation and scaling parameters of ψk(x, y) constitute the wavelet

basis for expansion. An extra parameter αk provides selectivity for the orien-

tation of the function. We observe here that the 2D Gabor wavelet has a non-

separable structure that provides more flexibility on orientation selection than

separable wavelet functions.

It is well known that optical sensitive cells in animal’s visual cortex respond

selectively to stimuli with particular frequency and orientation [26]. Equation

(6.24) described a wavelet representation that naturally reflects this neurophysi-

ological phenomenon. Gabor expansion and Gabor wavelets have therefore been

widely used for visual discrimination tasks and especially texture recognition

[27, 28].

6.2.3.2 Wavelet Packets

Unlike dyadic wavelet transform, wavelet packets decompose the low-frequency

component as well as the high-frequency component in every subbands [29].

Such adaptive expansion can be represented with binary trees where each sub-

band high- or low-frequency component is a node with two children correspond-

ing to the pair of high- and low-frequency expansion at the next scale. An admis-

sible tree for an adaptive expansion is therefore defined as a binary tree where

each node has either 0 or 2 children, as illustrated in Fig. 6.6(c). The number

of all different wavelet packet orthogonal basis (also called a wavelet packets

dictionary) is equal to the number of different admissible binary trees, which is

of the order of 22J

, where J is the depth of decomposition [14].

Obviously, wavelet packets provide more flexibility on partitioning the

spatial-frequency domain, and therefore improve the separation of noise and

signal into different subbands in an approximated sense (this is referred to the

near-diagonalization of signal and noise). This property can greatly facilitate
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Figure 6.6: (a) Dyadic wavelet decomposition tree. (b) Wavelet packets decom-

position tree. (c) An example of an orthogonal basis tree with wavelet packets

decomposition.

the enhancement and denoising task of a noisy signal if the wavelet packets

basis are selected properly [30]. In practical applications for various medical

imaging modalities and applications, features of interest and noise properties

have significantly different characteristics that can be efficiently characterized

separately with this framework.

A fast algorithm for wavelet-packets best basis selection was introduced by

Coifman and Wickerhauser in [30]. This algorithm identifies the “best” basis for

a specific problem inside the wavelet packets dictionary according to a criterion

(referred to as a cost function) that is minimized. This cost function typically

reflects the entropy of the coefficients or the energy of the coefficients inside

each subband and the optimal choice minimizes the cost function comparing

values at a node and its children. The complexity of the algorithm is O(N log N)

for a signal of N samples.

6.2.3.3 Brushlets

Brushlet functions were introduced to build an orthogonal basis of transient

functions with good time–frequency localization. For this purpose, lapped or-

thogonal transforms with windowed complex exponential functions, such as

Gabor functions, have been used for many years in the context of sine–cosine

transforms [31].

Brushlet functions are defined with true complex exponential functions on

subintervals of the real axis as:

uj,n(x) = bn(x− cn)e j,n(x)+ v(x− an)e j,n(2an− x)−v(x− an+1)e j,n(2an+1−x),

(6.25)
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where ln = an+1 − an and cn = ln/2. The two window functions bn and v are

derived from the ramp function r:

r(t) =
{

0 if t ≤ −1

1 if t ≥ 1
(6.26)

and

r2(t)+ r2(−t) = 1, ∀t ∈ R. (6.27)

The bump function v is defined as:

v(t) = r

(
t

ε

)
r

(−t

ε

)
, t ∈ [ε, ε]. (6.28)

The bell function bn is defined by:

bn(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r2

(
t + ln/2

ε

)
if t ∈ [−ln/2− ε,−ln/2+ ε]

1 if t ∈ [−ln/2+ ε, ln/2− ε].

r2

(
ln/2− t

ε

)
if t ∈ [ln/2− ε, ln/2+ ε]

(6.29)

An illustration of the windowing functions is provided in Fig. 6.7.

Finally, the complex-valued exponentials e j,n are defined as:

e j,n(x) = 1√
ln

e
−2iπ j

(x−an)
ln . (6.30)

In order to decompose a given signal f along directional texture components,

the Fourier transform f̂ of the signal and not the signal itself is projected on the

1

0.5

an − e an + ean an + 1an + 1an + 1 − e

v ( x )  

v ( x )  

bn ( x )

ln 2 e2 e

Figure 6.7: Windowing functions bn and bump functions ν defined on the inter-

val [an− ε, an+1 + ε].
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brushlet basis functions:

f̂ =
∑

n

∑
j

f̂n, jun, j, (6.31)

with un, j being the brushlet basis functions and f̂n, j being the brushlet coeffi-

cients.

The original signal f can then be reconstructed by:

f =
∑

n

∑
j

f̂n, jwn, j, (6.32)

where wn, j is the inverse Fourier transform of un, j , which is expressed as:

wn, j(x) =
√

ln e2iπanxeiπlnx
{

(−1) j b̂n(lnx− j)− 2i sin(πlnx)v̂(lnx+ j)
}

,

(6.33)

with b̂n and v̂ being the Fourier transforms of the window functions bn and v.

Since the Fourier operator is a unitary operator, the family of functions wn, j

is also an orthogonal basis of the real axis. We observe here the wavelet-like

structure of the wn, j functions with scaling factor ln and translation factor j. An

illustration of the brushlet analysis and synthesis functions is provided in Fig. 6.8.

Projection on the analysis functions un, j can be implemented efficiently by a

folding operator and Fourier transform. The folding technique was introduced

by Malvar [31] and is described for multidimensional implementation by Wick-

erhauser in [21]. These brushlet functions share many common properties with

Gabor wavelets and wavelet packets regarding the orientation and frequency

selection of the analysis but only brushlet can offer an orthogonal framework

n

j

l

-
n

j

l

(a) (b) 

na e- 1na e+ +
frequencytime

5

0

−5

10−2

2

0

−2

10−1

Figure 6.8: (a) Real part of analysis brushlet function un, j . (b) Real part of

synthesis brushlet function wn, j .
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with a single expansion coefficient for a particular pair of frequency and orien-

tation.

6.3 Noise Reduction and Image Enhancement

Using Wavelet Transforms

Denoising can be viewed as an estimation problem trying to recover a true

signal component X from an observation Y where the signal component has

been degraded by a noise component N:

Y = X + N. (6.34)

The estimation is computed with a thresholding estimator in an orthonormal

basis B = {gm}0≤m<N as [32]:

X̂ =
N−1∑
m=0

ρm(〈X, gm〉)gm, (6.35)

where ρm is a thresholding function that aims at eliminating noise components

(via attenuating or decreasing some coefficient sets) in the transform domain

while preserving the true signal coefficients. If the function ρm is modified to

rather preserve or increase coefficient values in the transform domain, it is

possible to enhance some features of interest in the true signal component with

the framework of Eq. (6.35).

Figure 6.9 illustrates a multiscale enhancement and denoising framework

using wavelet transforms. An overcomplete dyadic wavelet transform using

biorthogonal basis is used. Notice that since the DC cap contains the overall

energy distribution, it is usually not thresholded during the procedure. As shown

in this figure, thresholding and enhancement functions can be implemented in-

dependently from the wavelet filters and easily incorporated into the filter bank

framework.

6.3.1 Thresholding Operators for Denoising

As a general rule, wavelet coefficients with larger magnitude are correlated with

salient features in the image data. In that context, denoising can be achieved by

applying a thresholding operator to the wavelet coefficients (in the transform
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Figure 6.9: A Multiscale framework of denoising and enhancement using dis-

crete dyadic wavelet transform. A three-level decomposition was shown.

domain) followed by reconstruction of the signal to the original image (spatial)

domain.

Typical threshold operators for denoising include hard thresholding:

ρT (x) =
{

x, if |x| > T

0, if |x| ≤ T
, (6.36)

soft thresholding (wavelet shrinkage) [33]:

ρT (x) =

⎧⎪⎨⎪⎩
x− T, if x ≥ T

x+ T, if x ≤ −T,

0, if |x| < T

(6.37)

and affine (firm) thresholding [34]:

ρT (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, if |x| ≥ T

2x+ T, if − T ≤ x ≤ −T/2

2x− T, if T/2 ≤ x ≤ T

0, if |x| < T

. (6.38)

The shapes of these thresholding operators are illustrated in Fig. 6.10.

6.3.2 Enhancement Operators

Magnitude of wavelet coefficients measures the correlation between the image

data and the wavelet functions. For first-derivative-based wavelet, the magnitude
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Figure 6.10: Example of thresholding functions, assuming that the input data

was normalized to the range of [−1, 1]. (a) Hard thresholding, (b) soft thresh-

olding, and (c) affine thresholding. The threshold level was set to T = 0.5.

therefore reflects the “strength” of signal variation. For second-derivative-based

wavelets, the magnitude is related to the local contrast around a signal varia-

tion. In both cases, large wavelet coefficient magnitude occurs around strong

edges. To enhance weak edges or subtle objects buried in the background, an

enhancement function should be designed such that wavelet coefficients within

certain magnitude range are amplified.

General guidelines for designing a nonlinear enhancement function E(x)

are [35]:

1. An area of low contrast should be enhanced more than an area of high con-

trast. This is equivalent to saying that smaller values of wavelet coefficients

should be assigned larger gains.

2. A sharp edge should not be blurred.

In addition, an enhancement function may be further subjected to the following

constraints [36]:

1. Monotonically increasing: Monoticity ensures the preservation of the rel-

ative strength of signal variations and avoids changing location of local

extrema or creating new extrema.

2. Antisymmetry: (E(−x) = −E(x)): This property preserves the phase po-

larity for “edge crispening.”

A simple piecewise linear function [37] that satisfies these conditions is plotted

in Fig. 6.11(a):

E(x) =

⎧⎪⎨⎪⎩
x− (K − 1)T, if x < −T

K x, if |x| ≤ T.

x+ (K − 1)T, if x > T

(6.39)



322 Jin, Angelini, and Laine

−1 −0.5 0 0.5 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a) (b)

Figure 6.11: Example of enhancement functions, assuming that the input data

was normalized to the range of [−1, 1]. (a) Piecewise linear function, T = 0.2,

K = 20. (b) Sigmoid enhancement function, b = 0.35, c = 20. Notice the differ-

ent scales of the y-axis for the two plots.

Such enhancement is simple to implement, and was used successfully for con-

trast enhancement on mammograms [19, 38, 39].

From the analysis in the previous subsection, wavelet coefficients with small-

magnitude were also related to noise. A simple amplification of small-magnitude

coefficients as performed in Eq. (6.39) will certainly also amplify noise compo-

nents. This enhancement operator is therefore limited to contrast enhancement

of data with very low noise level, such as mammograms or CT images. Such

a problem can be alleviated by combining the enhancement with a denoising

operator presented in the previous subsection [35].

A more careful design can provide more reliable enhancement procedures

with a control of noise suppression. For example, a sigmoid function [37], plotted

in Fig. 6.11 (b), can be used:

E(x) = a[sigm(c(x− b))− sigm(−c(x+ b))], (6.40)

where

a = 1
sigm(c(1− b))− sigm(−c(1+ b))

, 0 < b < 1,

and sigm(y) is defined as sigm(y) = 1
1+ e−y

. The parameters b and c respectively

control the threshold and rate of enhancement. It can be easily shown that E(x)

in Eq. (6.40) is continuous and monotonically increasing within the interval
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[−1, 1]. Furthermore, any order of derivatives of E(x) exists and is continuous.

This property avoids creating any new discontinuities after enhancement.

6.3.3 Selection of Threshold Value

Given the basic framework of denoising using wavelet thresholding as discussed

in the previous sections, it is clear that the threshold level parameter T plays an

essential role. Values too small cannot effectively get rid of noise component,

while values too large will eliminate useful signal components. There are a

variety of ways to determine the threshold value T as will be discussed in this

section.

Depending on whether or not the threshold value T changes across wavelet

scales and spatial locations, the thresholding can be:

1. global threshold: a single value T is to be applied globally to all empirical

wavelet coefficients at different scales. T = const.

2. level-dependent threshold: a different threshold value T is selected for each

wavelet analysis level (scale). T = T( j), j = 1, . . . , J, J being the coarsest

level for wavelet expansion to be processed.

3. spatial adaptive threshold: the threshold value T varies spatially depend-

ing on local properties of individual wavelet coefficients. Usually, T is also

level dependent. T = Tj(x, y, z).

While a simple way of determining T is as a percentage of coefficients maxima,

there are different adaptive ways of assigning the T value according to the noise

level (estimated via its variance σ ):

1. universal threshold: T = σ
√

2 log n [40], with n equal to the sample size.

This threshold was determined in an optimal context for soft thresholding

with random Gaussian noise. This scheme is very easy to implement, but

typically provides a threshold level larger than with other decision criteria,

therefore resulting in smoother reconstructed data. Also such estimation

does not take into account the content of the data, but only depends on

the data size.

2. minimax threshold: T = σ Tn [41], where Tn is determined by a minimax

rule such that the maximum risk of estimation error across all locations of
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the data is minimized. This threshold level depends on the noise and signal

relationships in the input data.

3. stein unbiased estimated of risk: Similar to minimax threshold but Tn is

determined by a different risk rule [42, 43].

4. spatial adaptive threshold: T = σ 2/σX [44], where σX is the local variance

of the observation signal, which can be estimated using a local window

moving across the image data or, more accurately, by a context-based

clustering algorithm.

In many automatic denoising methods to determine the threshold value T , an

estimation of the noise variance σ is needed. Donoho et al. [45] proposed a

robust estimation of noise level σ based on the median absolute value of the

wavelet coefficients as:

σ = median(|W1(x, y, z)|)
0.6745

, (6.41)

where W1 is the most detailed level of wavelet coefficients. Such estimator has

become very popular in practice and is widely used.

6.3.4 Summary

In general, multiscale denoising techniques involve a transformation process

and a thresholding operator in the transform domain. Research dedicated to

the improvement of such a technique has been explored along both directions.

Various multiscale expansions have been proposed, aimed at better adapta-

tion to signal and feature characteristics. Traditionally, an orthogonal base was

used for expansion [33], which leads to a spatial-variant transform. Various

artifacts, e.g. pseudo-Gibbs phenomena, were exhibited in the vicinity of dis-

continuities. Coifman et al. [40] proposed a translation-invariant thresholding

scheme, which averages several denoising results on different spatial shifts of

the input image. Laine et al. [38] prompted to an overcomplete representation

which allows redundancy in the transform coefficients domain and provides

a translation-invariant decomposition. Wavelet coefficients in an overcomplete

representation have the same size as the input image, when treated as a subband

image. Many denoising and enhancement techniques can be applied within a
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multiscale framework for spatial-frequency adaptation and solve certain noise

amplification problems. For a better separation of noise and signal components

in the transform domain, other multiscale representations have also been widely

investigated. Examples of such multiscale representations can be found in

Section 6.2.3.

The magnitude of the wavelet coefficients is related to the correlations be-

tween the signal and the wavelet basis function, which is the only criterion to

determine whether or not noise variation appears. Therefore, the selection of

the wavelet basis is a critical step in the design of the denoising and enhance-

ment procedure. Wavelet basis constructed from derivatives of spline functions

[46] were shown to have many advantages in denoising and enhancement. Such

wavelet functions, either symmetric or antisymmetric, are smooth with compact

support. Higher order spline function resembles Gaussian function, therefore

providing ideal spatial-frequency resolution for signal analysis. Moreover, mod-

uli of wavelet coefficients using first-derivative spline wavelets are proportional

to the magnitude of a gradient vector [47]. Analysis over such modulus therefore

provides extra information on directional correlations, and is especially impor-

tant for three or higher dimensional data analysis. Other wavelet basis func-

tions have also been developed to provide specific adaptation to different type

of signals. To name a few, slantlet [48], curvelet [49, 50], and ridgelet [51] were

designed to improve the correlations with edge information and were used for

edge-preserved denoising, while Fresnelets functions, based on B-spline func-

tions [52], were designed for processing of digital holography.

In a parallel direction, many research works on multiscale denoising focused

on improving thresholding operators. In the following discussion, “thresholding

operator” is a rather general concept that includes both denoising and enhance-

ment operators as described before. A determination of thresholding method

includes both selection of the thresholding operator and a decision or estima-

tion of the threshold parameters (threshold level, enhancement gain, etc.). Some

examples of thresholding operators designed to improve the basic thresholding

rules as shown in Eqs. (6.36)–(6.38) include the non-negative garrote threshold-

ing [53]:

ρG
T (x) =

⎧⎨⎩0, if |x| ≤ T

x− T2

x
, if |x| > T

, (6.42)
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and the SCAD thresholding [53, 54]:

ρSCAD
T (x) =

⎧⎪⎨⎪⎩
sign(x)max(0, |x| − T), if |x| ≤ 2T

((α − 1)x− αTsign(x))/(α − 2), if 2T < |x| ≤ αT.

x, if |x| > αT

(6.43)

On the other hand, cross-validation [55–57] and recursive hypothesis testing

procedure [58] were investigated for automatically determining the threshold

level T .

6.3.5 State-of-the-Art and Applications

In this section, we review two examples of multiscale denoising. To illustrate the

power of multiscale analysis, two extreme cases of medical imaging modalities

(ultrasound and PET/SPECT) with high noise level and complicated noise pat-

terns were considered. A more detailed description of these clinical applications

can be found in [59, 60].

6.3.5.1 Spatial-Temporal Analysis of Real-Time 3D Cardiac

Ultrasound Using Brushlet [59]

Recent development of a real-time three-dimensional (RT3D) ultrasound imag-

ing modality that captures an entire cardiac volume instantaneously with fixed

geometric parameters over a complete cardiac cycle raises new issues and chal-

lenges for denoising and volume extraction. On one hand, resolution of RT3D is

lower than with previous 2D and 3D generations of ultrasound modalities and

the level of speckle noise is very high. On the other hand the amount of informa-

tion recorded per cardiac cycle is much more as this is a true 3D+time modality.

Because of the fast acquisition time and the true three-dimensional nature of the

transducer, there exists a strong coherence of surfaces in 3D space and time for

echocardiograms recorded from moving cardiac tissue that should be exploited

for optimal denoising and enhancement.

A simple observation of ultrasound images reveals the absence of true bound-

aries between the blood cavity and the myocardium muscle tissue. The myocar-

dial wall is rather depicted as a field of bright moving texture and the denoising

problem can therefore be approached as a texture characterization task. Ap-

proaches for texture classification and denoising can be divided into structural
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and statistical methods adapted respectively to macro- and micro-textural ele-

ments. Recent work on texture characterization and more specifically denoising

of ultrasound data via spatio-temporal analysis include steerable filters and Ga-

bor oriented filters [61, 62]. Both techniques are nonorthogonal and therefore

suffer from noncomplete partitioning of the Fourier domain. As we showed

in previous section, brushlets allow more flexibility on the partitioning of the

Fourier domain and work with an orthogonal basis that provides perfect re-

construction of an original signal. In this application, modifications from the

original implementation, which extended the analysis to three and four dimen-

sions and performed the analysis in an overcomplete framework, have been

made.

Brushlet basis functions decompose an N-dimensional signal along specific

spatial-directions via analysis of its Fourier domain. As they only depend on

spatial-frequency content, brushlet decompositions are invariant to the inten-

sity or contrast range in the original data. This makes them very suitable and

a powerful basis for the analysis of RT3D ultrasound where choosing a single

global-intensity-based edge threshold is not possible due to position-dependent

attenuation of the signal. There are as many basis functions as there are subin-

tervals in the Fourier domain defining brushstrokes associated with the center

frequency of each interval. The tiling of the Fourier domain therefore determines

the resolution and orientation of the brushlet basis functions as illustrated in

Fig. 6.12(a).

The resolution of each brushstroke is inversely proportional to the size of

the interval, as illustrated in Fig. 6.12(b). The major difference between the

brushlet basis and wavelet packets is the possibility of any arbitrary tiling of the

time–frequency plane and the perfect localization of a single frequency in one

coefficient.

Spatial Denoising via Thresholding. Denoising was performed via thresh-

olding of the brushlet coefficients. In the case of RT3D ultrasound, speckle noise

components are concentrated in the high-frequency coefficients without specific

direction whereas cardiac structures are decomposed into the low-frequency

components along different orientations. Decorrelation of signal and noise in the

frequency domain was therefore performed by removing the higher frequency

components and thresholding only the lower frequency components prior to

reconstruction. Denoising performance was compared for processing in 2D and
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Figure 6.12: (a) Orientation and oscillation frequency of brushlet analysis func-

tions in 2D. The size of each subquadrant in the Fourier plane determines the

resolution of the analysis function while the position of the subquadrant center

determines the orientation of the analysis function. (b) Illustration of selected

brushlet orientation and oscillation frequencies. Fourier plane size L N , center

frequency an, and subintervals size ln are provided for each 2D brushlet basis

function.

3D to demonstrate the advantage of extending the brushlet analysis to 3D as

illustrated in Fig. 6.13, for a set of six long-axis and six short-axis slices.

Qualitatively, it was observed that the third dimension improved the quality

of the denoised data in terms of spatial resolution at the cost of losing some

contrast. When compared to 2D denoising, 3D denoising produced smoother

features with better-localized contours. Specifically, small local artifacts not per-

sistent in adjacent slices were eliminated and inversely weak contours persistent

in adjacent slices were enhanced. This phenomenon can be best appreciated in

the short-axis examples where the resolution is the lowest.

Improving Denoising by Including Time: Results on a Mathemati-

cal Phantom. To quantitatively evaluate potential denoising performance im-

provement brought about by including the temporal dimension, initial testing

was performed on a mathematical phantom. The phantom, plotted in Fig. 6.14,

consisted of an ovoid volume growing in time that schematically mimicked as-

pects of the left ventricle with an inner gray cavity surrounded by a thick white



Wavelets in Medical Image Processing 329

Original

2D Denoising 

3D Denoising 

Original

2D Denoising 

3D Denoising 

(a)

(b)

Figure 6.13: 2D versus 3D spatial denoising on RT3D ultrasound data. (a) Series

of six consecutive short-axis slices extracted from a clinical data set. (b) Series

of six consecutive long-axis slices extracted from the same clinical data set.

wall on a black background. The size of a single volume was 64× 64× 64 and

there were 16 frames growing in time. The volume increased by 70% over 16

time frames, similar to the average ejection fraction in normal patients.

The phantom was corrupted with two types of noise: (1) multiplicative

speckle noise with uniform distribution and (2) multiplicative speckle noise

with Rayleigh distribution.

The level of speckle noise was set so that the signal-to-noise ratio (SNR)

of the noisy data was equal to −15 dB. Cross-sectional slices through a single

volume of the noisy phantoms are displayed in Fig. 6.15.

11 88

TTime

16

Figure 6.14: Mathematical phantom. Ovoid volume with 16 frames growing in

time.
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(a) (b)

Figure 6.15: Mathematical phantom corrupted with speckle noise. (a) Speckle

noise with uniform distribution. (b) Speckle noise with Rayleigh distribution.

Denoising was carried out with both 3D and 4D brushlet analyses. Regu-

lar tiling was applied with four subintervals in each dimension. Volumes were

reconstructed after resetting the higher frequency coefficients and hard thresh-

olding the lower frequency coefficients at 25% of their maxima. Results for a

single slice are provided in Fig. 6.16.

These results revealed that inclusion of the temporal dimension greatly im-

proved the denoising performance. From a qualitative point of view, the contrast

6.6 db 

-15 db 7.5 db 

-15 db 17 db 

16.3 db

(a.1) (a.2) (a.3) 

(b.1) (b.2) (b.3) 

Figure 6.16: Denoising of mathematical phantom with 3D and 4D brushlet anal-

yses. (a) Results for phantom corrupted with uniformly distributed speckle

noise. (b) Results for phantom corrupted with Rayleigh distributed speckle

noise. ((a.1)–(b.1)) Original slices. ((a.2)–(b.2)) Slices denoised with 3D brush-

let expansion. ((a.3)–(b.3)) Slices denoised with 4D brushlet expansion. SNR

values are indicated for each slice.
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of the denoised slices improved and with a better definition of borders and

more homogeneity inside the white and gray areas. Quantitatively, SNR values

improved by 50% between 3D and 4D denoising.

A second motivation for performing multidimensional analysis on cardiac

clinical data is to take full advantage of the continuity of spatial and temporal

frequency content of multidimensional RT3D signals. The high level of speckle

noise in ultrasound clinical data sets recorded with the real-time 3D transducer,

the nonuniform absorption coefficients of cardiac tissues, and the motion of the

heart contribute to the addition of artifacts that can either add echolike signals

inside the cavity or suppress echo signals from the myocardium wall. These

artifacts complicate the segmentation task by introducing artificial edges inside

the cavity or destroying edges at the epicardial and endocardial borders. Since

these artifacts are not persistent in time, inclusion of the temporal component

in the analysis helps resolve them. To illustrate the aptitude of the brushlet

analysis to provide missing contour information, the previous mathematical

phantom was modified by removing a part of the white wall in the eighth time

frame. Both 3D analysis on the time frame with the defect and 4D brushlet

analysis applied to the 16 time frames were computed after corruption with

Rayleigh speckle noise. Results are displayed in Fig. 6.17.

Results showed a remarkable correction of the wall defect with the 4D

(3D+time) brushlet denoising that could not be obtained with 3D analysis alone.

This type of artifact is similar to the dropouts in echo signals that result in loss

of myocardium tissue in some frames or the introduction of tissuelike signals

inside the cavity. Such artifacts are not persistent in time and could be removed

with the inclusion of temporal dimension in the denoising process.

Finally, experiments on clinical data sets, as illustrated in Fig. 6.18, showed

the superior performance of spatio-temporal denoising versus simple spatial

(a) (b) (c) 

Figure 6.17: (a) Original noisy slice with defect, (b) denoised slice with 3D

brushlet analysis, and (c) denoised slice with 4D brushlet analysis.
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Figure 6.18: Spatio-temporal denoising with brushlet expansion on RT3D ul-

trasound data illustrated on four long-axis and four short-axis slices.

denoising and Wiener filtering on RT3D ultrasound data. Adding the time dimen-

sion leads to images with better contrast and sharper contours while preserving

the original textural aspect of the ultrasound data. Wiener filtering provided

good results but introduced blurring artifacts that severely altered the quality

of the short-axis denoised images. This type of artifact is unacceptable in medi-

cal applications where anatomical structure detail needs to be preserved. It was

also observed that the epicardium borders were enhanced with sharper contrast

when combining brushlet spatial and temporal denoising. Such enhancement is

very desirable for quantification of LV mass and wall thickness analysis that re-

quires segmentation of both the myocardial endocardial and epicardial borders.

6.3.5.2 Cross-Scale Regularization for Tomographic Images [60]

Tomographic image modalities such as PET and SPECT rely on an instable in-

verse problem of spatial signal reconstruction from sampled line projections.

Tomographic reconstruction includes backprojection of the sinogram signal via

Radon transform and regularization for removal of noisy artifacts. Because the

Radon transform is a smoothing process, backprojection in the presence of

additive noise is an ill-posed inverse problem that requires a regularization of

the reconstructed noise component, which can become very large. Standard
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regularization methods include filtered backprojection (FBP) with nonlinear

filtering corrections, expectation-maximization and maximum a posteriori esti-

mators [63–66]. The most commonly used tomographic reconstruction method

combines a low-pass filter, for noise suppression, and a ramp filter for standard

filtered backprojection algorithm. The cut-off frequency of the low-pass filter

controls the balance between SNR and spatial resolution. While high-frequency

noise is eliminated after low-pass filtering, useful high-frequency information,

such as sharp varied signals and edges, is also attenuated. In addition, noise com-

ponents in low-frequency bands still exist. For these two reasons, tomographic

images reconstructed with FBP algorithms often suffer from over-smoothness

or/and low SNR. Post-processing including denoising and enhancement is there-

fore helpful in improving image qualities for reliable clinical interpretation.

As low-pass filtering has always been considered one of the most fundamen-

tal denoising techniques, embedding a multiscale denoising module to partially

replace the low-pass filtering operator in the FBP algorithm can potentially im-

prove the image quality of reconstruction in terms of both spatial resolution and

signal-to-noise ratio. The intuitive approach to combine FBP and denoising is

therefore to preserve more high-frequency features during the FBP reconstruc-

tion by using a low-pass filter with higher cut-off frequency, or removing the low-

pass prefiltering. The noise mixed with the high-frequency signal components is

then further processed via a multiscale denoising operator. An illustration of the

denoising performance is provided in Fig. 6.19 for simple comparison between

traditional FBP using a clinical console (low-pass filter using Hann filter with cut-

off frequency set to 0.4) and the proposed two-step processing. It can be observed

that the second method, based on FBP using Hann filter with a higher cut-off

frequency, generates a reconstructed image containing more detailed informa-

tion as well as more significant noisy features. After multiscale denoising (com-

bining wavelet packets thresholding and brushlet thresholding), image quality

markedly improved, showing more anatomical details and spatial information.

Thresholding on Three-Dimensional Wavelet Modulus. Both PET and

SPECT image reconstructed using FBP display strong directional noise pat-

terns. Most feature-based denoising methods, including wavelet thresholding,

are based on edge information and are not suited to directional noise compo-

nents that resemble strong edges. Indeed, edge information alone cannot accu-

rately separate noise from meaningful signal features in a single image. A novel

approach to overcome this limitation is to apply the multiscale analysis and
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Figure 6.19: Illustration, on a clinical brain SPECT slice, of the combination

of multiscale denoising and traditional FBP with higher cut-off frequency to

improve tomographic reconstruction.

denoising scheme using three-dimensional wavelet expansion that integrates

edge information along continuous boundaries in 3D space. In three dimensions,

such integration can accurately separate anatomical surfaces from noisy com-

ponents that do not exhibit a directional pattern across adjacent tomographic

slices. Unlike traditional wavelet denoising techniques, thresholding was per-

formed on the modulus of the wavelet coefficients (“wavelet modulus”). A first

derivative of the cubic spline function was used for the wavelet basis function

which approximates the first derivatives of a Gaussian function and therefore

benefits from the following properties:

1. By the uncertainty principle [14], the Gaussian probability density function

is optimally concentrated in both time and frequency domains, and thus is

suitable for time–frequency analysis.

2. Derivatives of Gaussian function can be used for rotation-invariant pro-

cessing [67].

3. The Gaussian function generates a causal (in a sense that a coarse scale

depends exclusively on the previous finer scale) scale space. This makes

scale-space “tracking” of emergent features possible [68].



Wavelets in Medical Image Processing 335

Because the wavelet basis ψ1, ψ2, and ψ3 are first derivatives of a cubic spline

function θ , the three components of a wavelet coefficient W k
ms(n1, n2, n3) =

〈s, ψk
m,n1,n2,n3

〉, k = 1, 2, 3, are proportional to the coordinates of the gradient

vector of the input image s smoothed by a dilated version of θ . From these coor-

dinates, one can compute the angle of the gradient vector, which indicates the

direction in which the first derivative of the smoothed s has the largest ampli-

tude (or the direction in which s changes most rapidly). The amplitude of this

maximized first derivative is equal to the modulus of the gradient vector, and

therefore proportional to the wavelet modulus:

Mms =
√∣∣W 1

ms
∣∣2 + ∣∣W 2

ms
∣∣2 + ∣∣W 3

ms
∣∣2

. (6.44)

Thresholding this modulus value instead of the coefficient value consists of first

selecting a direction in which the partial derivative is maximum at each scale,

and then thresholding the amplitude of the partial derivative in this direction. The

modified wavelet coefficients are then computed from the thresholded modulus

and the angle of the gradient vector. Such paradigm applies an adaptive choice

of the spatial orientation in order to best correlate the signal features with the

wavelet coefficients. It can therefore provide a more robust and accurate se-

lection of correlated signals compared to traditional orientation selection along

three orthogonal Cartesian directions.

Figure 6.20 illustrates the performance of this approach at denoising a clinical

brain PET data set reconstructed by FBP with a ramp filter. The reconstructed

PET images, illustrated for one slice in Fig. 6.20(a), contain prominent noise in

high frequency but do not express strong edge features in the wavelet modulus

expansions at scale 1 through 5 as illustrated in Fig. 6.20(b)–(f).

Cross-Scale Regularization for Images with Low SNR. As shown in

Fig. 6.20(b), very often in tomographic images, the first level of expansion (level

with more detailed information) is overwhelmed by noise in a random pattern.

Thresholding operators determined only by the information in this multiscale

level can hardly recover useful signal features from the noisy observation. On

the other hand, wavelet coefficients in the first level contain the most detailed

information in a spatial-frequency expansion, and therefore influence directly

the spatial resolution of the reconstructed image.

To have more signal-related coefficients recovered, additional information

or a priori knowledge is needed. Intuitively, an edge indication map could
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                    (a)                                       (b)                                           (c) 

                        (d)                                   (e)                                             (f )

Figure 6.20: (a) A brain PET image from a 3D data set with high level of noise.

(b)–(f) Modulus of wavelet coefficients at expansion scale 1 to 5.

beneficially assist such wavelet expansion based on first derivative of spline

wavelets. Without seeking external a priori information, it was observed that

wavelet modulus from the next higher wavelet level can serve as a good edge

estimation. An edge indication map with values between 0 and 1 (analogous to

the probability that a pixel is located on an edge) was therefore constructed

by normalizing the modulus of this subband. A pixel-wise multiplication of the

edge indication map and the first level wavelet modulus can identify the location

of wavelet coefficients that are more likely to belong to a true anatomical edge

and should be preserved, as well as the locations of the wavelet coefficients

that are unlikely to be related to real edge signal and that should be attenuated.

This approach is referred to as cross-scale regularization. A comparison be-

tween traditional wavelet shrinkage and cross-scale regularization for recover-

ing useful signals from the most detailed level of wavelet modulus is provided in

Fig. 6.21.

A cross-scale regularization process does not introduce any additional pa-

rameter avoiding extra complexity for algorithm optimization and automation.

We point out that an improved edge indication prior can be built upon a modified

wavelet modulus in the next spatial-frequency scale processed using traditional

thresholding and enhancement operator.
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Figure 6.21: (a) Wavelet modulus in first level of a PET brain image as shown

in Figs. 6.20 (a) and (b). (b) Thresholding of the wavelet modulus from (a) using

a wavelet shrinkage operator. (c) Thresholding of the wavelet modulus from (a)

with cross-scale regularization.

Spatial-frequency representations of a signal after wavelet expansion of-

fer the possibility to adaptively process an image data in different sub-bands.

Such adaptive scheme can for example combine enhancement of wavelet coef-

ficients in the coarse levels, and resetting of the most detailed levels for noise

suppression. We show in Fig. 6.22 how such adaptive processing can remarkably

FBP Reconstruction (Hann windows) 

Adaptive Multiscale Denoising and Enhancement 

Figure 6.22: Denoising of PET brain data and comparison between unpro-

cessed and multiscale processed images.
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improve image quality for PET images that were usually degraded by low reso-

lution and high level of noise.

6.4 Image Segmentation Using Wavelets

6.4.1 Multiscale Texture Classification

and Segmentation

Texture is an important characteristic for analyzing many types of images, in-

cluding natural scenes and medical images. With the unique property of spatial-

frequency localization, wavelet functions provide an ideal representation for

texture analysis. Experimental evidence on human and mammalian vision sup-

port the notion of spatial-frequency analysis that maximizes a simultaneous

localization of energy in both spatial and frequency domains [69–71]. These

psychophysical and physiological findings lead to several research works on

texture-based segmentation methods based on multiscale analysis.

Gabor transform, as suggested by the uncertainty principle, provides an op-

timal joint resolution in the space-frequency domain. Many early works utilized

Gabor transforms for texture characteristics. In [27] an example is given on

the use of Gabor coefficient spectral signatures [72] to separate distinct textu-

ral regions characterized by different orientations and predominant anisotropic

texture moments. Porat et al. proposed in [28] six features derived from Gabor

coefficients to characterize a local texture component in an image: the dominant

localized frequency; the second moment (variance) of the localized frequency;

center of gravity; variance of local orientation; local mean intensity; and vari-

ance of the intensity level. A simple minimum-distance classifier was used to

classify individual textured regions within a single image using these features.

Many wavelet-based texture segmentation methods had been investigated

thereafter. Most of these methods follow a three-step procedure: multiscale

expansion, feature characterization, and classification. As such, they are usually

different from each other in these aspects.

Various multiscale representations have been used for texture analysis.

Unser [73] used a redundant wavelet frame. Laine et al. [74] investigated a

wavelet packets representation and extended their research to a redundant

wavelet packets frame with Lemarié–Battle filters in [75]. Modulated wavelets



Wavelets in Medical Image Processing 339

were used in [76] for better orientation adaptivity. To further extend the flexibil-

ity of the spatial-frequency analysis, a multiwavelet packet, combining multiple

wavelet basis functions at different expansion levels, was used in [77]. An M -

band wavelet expansion, which differs from a dyadic wavelet transform in the

fact that each expansion level contains M channels of analysis, was used in [78]

to improve orientation selectivity.

Quality and accuracy of segmentation ultimately depend on the selection of

the characterizing features. A simple feature selection can use the amplitude

of the wavelet coefficients [76]. Many multiscale texture segmentation methods

construct the feature vector from various local statistics of the wavelet coeffi-

cients, such as its local variance [73, 79], moments [80], or energy signature [74,

78, 81]. Wavelet extrema density, defined as the number of extrema of wavelet

coefficients per unit area, was used in [77]. In [75], a 1D envelope detection was

first applied to the wavelet packets coefficients according to their orientation,

and a feature vector was constructed as the collection of envelope values for

each spatial-frequency component. More sophisticated statistical analyses in-

volving Bayesian analysis and Markov random fields (MRF) were also used to

estimate local and long-range correlations [82, 83]. Other multiscale textural fea-

tures were also reported, for example χ2 test and histogram testing were used

in [84], “Roughness” based on fractal dimension measurement was used in [85].

Texture-based segmentation is usually achieved by texture classification.

Classic classifiers, such as the minimum distance classifier [28], are easier to

implement when the dimension of the feature vector is small and the groups

of samples are well segregated. The most popular classification procedures re-

ported in the literature are the K-mean classifier [73, 75, 76, 78, 79, 81, 85] and

the neural networks classifiers [27, 74, 80, 82].

As an example, we illustrate in Fig. 6.23 a texture-based segmentation method

on a synthetic texture image and a medical image from a brain MRI data set.

The algorithm used for this example from [75] uses the combination of wavelet

packets frame with Lemarié–Battle filters, multiscale envelope features, and a

K-mean classifier.

6.4.2 Wavelet Edge Detection and Segmentation

Edge detection plays an important role in image segmentation. In many cases,

boundary delineation is the ultimate goal for an image segmentation and a good
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                    (a)           (b) 

                     (c)           (d) 

Figure 6.23: Sample results using multiscale texture segmentation. (a) Syn-

thetic texture image. (b) Segmentation result for image (a) with a 2-class label-

ing. (c) MRI T1 image of a human brain. (d) Segmentation result for image (c)

with a 4-class labeling.

edge detector itself can then fulfill the requirement of segmentation. On the

other hand, many segmentation techniques require an estimation of object edges

for their initialization. For example, with standard gradient-based deformable

models, an edge map is used to determine where the deforming interface must

stop. In this case, the final result of the segmentation method depends heavily on

the accuracy and completeness of the initial edge map. Although many research

works have made some efforts to eliminate this type of interdependency by
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introducing nonedge constraints [86, 87], it is necessary and equally important

to improve the edge estimation process itself.

As pointed out by the pioneering work of Mallat et al. [16], first- or second-

derivative-based wavelet functions can be used for multiscale edge detection.

Most multiscale edge detectors smooth the input signal at various scales and

detect sharp variation locations (edges) from their first or second derivatives.

Edge locations are related to the extrema of the first derivative of the signal

and the zero crossings of the second derivative of the signal. In [16], it was

also pointed out that first-derivative wavelet functions are more appropriate for

edge detection since the magnitude of wavelet modulus represents the relative

“strength” of the edges, and therefore enable to differentiate meaningful edges

from small fluctuations caused by noise.

Using the first derivative of a smooth function θ(x, y) as the mother wavelet

of a multiscale expansion results in a representation where the two components

of wavelet coefficients at a certain scale s are related to the gradient vector of

the input image f (x, y) smoothed by a dilated version of θ(x, y) at scale s:(
W 1

s f (x, y)

W 2
s f (x, y)

)
= s

⇀∇( f ∗ θs)(x, y). (6.45)

The direction of the gradient vector at a point (x, y) indicates the direction in

the image plane along which the directional derivative of f (x, y) has the largest

absolute value. Edge points (local maxima) can be detected as points (x0, y0)

such that the modulus of the gradient vector is maximum in the direction toward

which the gradient vector points in the image plane. Such computation is closely

related to a Canny edge detector [88]. Extension to higher dimension is quite

straightforward.

Figure 6.24 provides an example of a multiscale edge detection method based

on a first derivative wavelet function.

To further improve the robustness of such a multiscale edge detector, Mallat

and Zhong [16] also investigated the relations between singularity (Lipschitz

regularity) and the propagation of multiscale edges across wavelet scales. In

[89], the dyadic expansion was extended to an M -band expansion to increase

directional selectivity. Also, continuous scale representation was used for better

adaptation to object sizes [90]. Continuity constraints were applied to fully re-

cover a reliable boundary delineation from 2D and 3D cardiac ultrasound in [91]
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           (a)                    (b)           (c) 

          (d)           (e) 

Figure 6.24: Example of a multiscale edge detection method finding local max-

ima of wavelet modulus, with a first-derivative wavelet function. (a) Input image

and (b)–(e) multiscale edge map at expansion scale 1 to 4.

and [92]. In [93], both cross-scale edge correlations and spatial continuity were

investigated to improve the edge detection in the presence of noise. Wilson et al.

in [94] also suggested that a multiresolution Markov model can be used to track

boundary curves of objects from a multiscale expansion using a generalized

wavelet transform.

Given their robustness and natural representation as boundary information

within a multiresolution representation, multiscale edges have been used in

deformable model methods to provide a more reliable constraint on the model

deformation {Yoshida, 1997 #3686; de Rivaz, 2000 #3687; Wu, 2000 #3688; Sun,

2003 #3689}, as an alternative to traditional gradient-based edge map. In [99], it

was used as a presegmentation step in order to find the markers that are used

by watershed transform.

6.4.3 Other Wavelet-Based Segmentation

One important feature of wavelet transform is its ability to provide a repre-

sentation of the image data in a multiresolution fashion. Such hierarchical
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decomposition of the image information provides the possibility of analyzing

the coarse resolution first, and then sequentially refines the segmentation result

at more detailed scales. In general, such practice provides additional robustness

to noise and local maxima.

In [100], image data was first decomposed into “channels” for a selected set

of resolution levels using a wavelet packets transform. An MRF segmentation

was then applied to the subbands coefficients for each scale, starting with the

coarsest level and propagating the segmentation result from one level to initialize

the segmentation at the next level.

More recently, Davatzikos et al. [101] proposed hierarchical active shape

models where the statistical properties of the wavelet transform of a deformable

contour were analyzed via principal component analysis and used as priors for

constraining the contour deformations.

Many research works beneficially used image features within a spatial-

frequency domain after wavelet transform to assist the segmentation. In [102]

Strickland et al. used image features extracted in the wavelet transform do-

main for detection of microcalcifications in mammograms using a matching

process and a priori knowledge on the target objects (microcalcification). In

[103], Zhang et al. used a Bayes classifier on wavelet coefficients to determine

an appropriate scale and threshold that can separate segmentation targets from

other features.

6.5 Image Registration Using Wavelets

In this section, we give a brief overview of another very important application

of wavelets in image processing: image registration. Readers interested in this

topic are encouraged to read the references listed in the context.

Image registration is required for many image processing applications. In

medical imaging, co-registration problems are important for many clinical tasks:

1. multimodalities study,

2. cross-subject normalization and template/atlas analysis,

3. patient monitoring over time with tracking of the pathological evolution

for the same patient and the same modality.
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Many registration methods follow a feature matching procedure. Feature

points (often referred to as “control points,” or CP) are first identified in both

the reference image and the input image. An optimal spatial transformation

(rigid or nonrigid) is then computed that can connect and correlate the two

sets of control points with minimal error. Registration has always been con-

sidered as very costly in terms of computational load. Besides, when the input

image is highly deviated from the reference image, the optimization process

can be easily trapped into local minima before reaching the correct transfor-

mation mapping. Both issues can be alleviated by embedding the registration

into a “coarse to fine” procedure. In this framework, the initial registration

is carried out on a relatively low resolution image data, and sequentially re-

fined to higher resolution. Registration at higher resolution is initialized with

the result from the lower resolution and only needs to refine the mapping be-

tween the two images with local deformations for updating the transformation

parameters.

The powerful representation provided by the multiresolution analysis frame-

work with wavelet functions has lead many researchers to use a wavelet expan-

sion for such “coarse to fine” procedures [104–106]. As already discussed previ-

ously, the information representation in the wavelet transform domain offers a

better characterization of key spatial features and signal variations. In addition

to a natural framework for “coarse to fine” procedure, many research works

also reported the advantages of using wavelet subbands for feature character-

ization. For example, in [107] Zheng et al. constructed a set of feature points

from a Gabor wavelet model that represented local curvature discontinuities.

They further required that a feature point should have maximum energy among a

neighborhood and above a certain threshold. In [108], Moigne et al. used wavelet

coefficients with magnitude above 13–15% of the maximum value to form their

feature space. In [109], Dinov et al. applied a frequency adaptive thresholding

(shrinkage) to the wavelet coefficients to keep only significant coefficients in

the wavelet transform domain for registration.

6.6 Summary

This chapter provided an introduction to the fundamentals of multiscale

transform theory using wavelet functions. The versatility of these multiscale
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transforms makes them a suitable tool for several applications in signal and

image processing that can benefit from the following advantages:

1. A wavelet transform decomposes a signal to a hierarchy of subbands

with sequential decrease in resolution. Such expansions are especially

useful when a multiresolution representation is needed. Some image seg-

mentation and registration techniques can benefit from a “coarse to fine”

paradigm based on a multiresolution framework.

2. A signal can be analyzed with a multiresolution framework into a spatial-

frequency representation. By carefully selecting the wavelet function and

the space-frequency plane tiling of the transform, distinct components

from a noisy observation signal can be easily separated based on their

spatial-frequency characteristics.

3. Many important features from an image data can be characterized more

efficiently in the spatial-frequency domain. Such feature characterization

was shown to be extremely useful in many applications including registra-

tion and data compression.

In this chapter we summarized some important applications in medical image

processing using wavelet transforms. Noise reduction and enhancement can be

easily implemented by combining some very simple linear thresholding tech-

niques with wavelet expansion. Efficient denoising and enhancement improve

image quality for further analysis including segmentation and registration.

Feature characteristics in wavelet domain were proven to be potentially

more efficient and reliable when compared to spatial analysis only, and therefore

provided more effective segmentation and registration algorithms. We point out

that many other important applications of multiresolution wavelet transforms,

which are beyond the scope of this book, have not been covered in this chap-

ter, especially image compression, which is considered as one of the greatest

achievements of wavelet transform in recent years [110]. Other important appli-

cations include tomographic image reconstruction, analysis of functional MRI

images, and data encoding for MRI acquisition.

Despite the great success of multiresolutions wavelet transform in medical

imaging applications for the past 20 years, it continues to be a very active area

of research. We list a few resources below that are of interest to readers willing

to acquire more knowledge in research and applications in this area.
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Conference

SPIE—The International Society for Optical Engineering—has been offering

for several years two annual dedicated conferences related to wavelet applica-

tions:

1. Wavelets: Applications in Signal and Image Processing. (1993–current)

2. Independent Component Analyses, Wavelets, and Neural Networks (pre-

viously Wavelet Application).

These conferences are held annually during the SPIE Annual Meeting and

AeroSense conference.

Software

1. Wavelet Toolbox for MATLAB: commercial package included in MATLAB

(http://www.mathworks.com).

2. Wavelab: free MATLAB package for wavelet (http://www-

stat.stanford.edu/∼ wavelab).

3. The Rice Wavelet Tools: MATLAB toolbox for filter bank and wavelets

provided by Rice University (http://www.dsp.ece.rice.edu/software/).

4. WVLT: a wavelet library written in C, which also includes demos and

documentation (http://www.cs.ubc.ca/nest/imager/contributions/bobl/

wvlt/top.html).

5. LastWave: a wavelet signal and image processing environment, writ-

ten in C for X11/Unix and Macintosh platforms. It mainly consists of

a powerful command line language with MATLAB-like syntax which in-

cludes a high-level object-oriented graphic language (http://www.cmap.

polytechnique.fr/∼bacry/LastWave/).

Web Links

1. www.wavelet.org: offers a “wavelet digest,” an email list that reports most

recent news in the wavelet community. It also offers a gallery of links to
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many Web resources including books, software, demos, research groups,

and tutorials. Important future events are also listed.

2. www.multiresolution.com: includes useful documentation about multires-

olution image and data analysis. Its also proposes a software package and

demos for a wide range of applications.

Questions

1. What is the uncertainty principle in spatial-frequency analysis? How does

the “uncertainty principle” affect the selection of signal representation?

2. How “redundant” is an over-complete wavelet expansion? Use an example

of a three-dimensional signal, with a five level decomposition using the

filter bank implementation shown in Figure 6.5.

3. What is the difference between a Gabor transform and a windowed Fourier

transform using a Gaussian window?

4. What is the difference between a wavelet transform and a wavelet packet

transform?

5. What is the advantage of temporal analysis in image denoising?

6. Why is a true 3D denoising needed for PET/SPECT images?

7. Describe the three major components for accomplishing multiscale texture

segmentation.

8. Between first and second derivatives, which one is preferred for multiscale

edge detection?

9. What are the two most useful aspects of wavelet transforms in image reg-

istration problems?
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Chapter 7

Improving the Initialization, Convergence, and

Memory Utilization for Deformable Models

Gilson A. Giraldi1, Paulo S. Rodrigues1, Leandro S. Marturelli1, and

Rodrigo L. S. Silva1

7.1 Introduction

In this chapter our aim is twofold. Firstly, we point out some limitations of

deformable models for medical images and analyze recent works to overcome

these limitations. Next, we offer new perspectives in the area, which are part of

our current research in this field.

Deformable models, which include the popular snake models [42] and de-

formable surfaces [19, 48], are well-known techniques for tracking, boundary

extraction, and segmentation in 2D/3D images.

Basically, these models can be classified into three categories: parametric,

geodesic snakes, and implicit models. The relationships between these models

have been demonstrated in several works in the literature [57, 75].

Parametric deformable models consist of a curve (or surface) which can

dynamically conform to object shapes in response to internal (elastic) forces

and external forces (image and constraint ones) [6].

For geodesic snakes, the key idea is to construct the evolution of a con-

tour as a geodesic computation. A special metric is proposed (based on the

gradient of the image field) to let the minimal length curve correspond to the

desired boundary. This approach allows one to address the parameterization

1 National Laboratory for Scientific Computing, Brazil
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dependence of parametric snake models and can be extended to 3D through the

theory of minimal surfaces [11, 57].

Implicit models, such as the formulation used in [46], consist of embedding

the snake as the zero level set of a higher dimensional function and to solve the

corresponding equation of motion. Such methodologies are best suited to the

recovery of objects with unknown topologies.

Parametric deformable models are more intuitive than the implicit and

geodesic ones. Their mathematical formulation makes it easier to integrate im-

age data, initial estimated, desired contour properties and knowledge-based

constraints, in a single extraction process [6].

However, parametric models also have their limitations. First, most of these

methods can only handle objects with simple topology. The topology of the

structures of interest must be known in advance since the mathematical model

cannot deal with topological changes without adding extra machinery [21–47].

Second, parametric snakes are too sensitive to their initial conditions due to the

nonconvexity of the energy functional and the contraction force which arises

from the internal energy term [37,79]. Several works have been done to address

the mentioned limitations.

Topological restrictions can be addressed through a two-step approach:

firstly, a method of identifying the necessity of a topological operation (split

or merge) and secondly, a procedure of performing it. In [21] we found such

a methodology that can split a closed snake into two closed parts. This is ac-

complished by first constructing a histogram of the image force norm along the

snake to identify the appropriate region to cut it (region with weakest image

field). Next, the method identifies two points in this region to be the end points

of the segment which will cut the curve into two parts. The criterion to do this

is based on the direction of an area force used to make the contour fit concave

parts. This methodology has the disadvantages of not dealing with the contour

merges and its extension to the 3D case is very difficult.

In [65] another approach is presented. It seeds particles on the surface of an

object until their density on the surface is within some threshold value. Its com-

ponents are a dynamical particle system and an efficient triangulation scheme

which connects the particles into a continuous polygonal surface model consis-

tent with the particles configuration. Particles are oriented; that is, each one has

a position and a normal vector associated. The interparticle forces are used to

encourage neighboring oriented particles to lie in each other’s tangent planes,

and therefore favor smooth surfaces. This technique has the advantage of dealing
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easily with open and closed surfaces. The topology of the particle-based surface

can be modified during the triangulation step. However, this has the disadvan-

tages of being expensive (O(N) log N ) where N is the number of particles) and

that it may be difficult or cumbersome to find good initial seed particle sites,

especially automatically [50].

A more general approach to incorporate topological changes in the paramet-

ric snake models is the T-snakes model [47–50]. The method embeds the snake

model within a framework defined by a simplicial domain decomposition, using

classical results in the field of numerical continuation methods [1]. The resulting

model has the power of an implicit one without the need for a higher dimen-

sional formulation [46]. Besides, it can be efficiently extended to 3D, generating

the T-surfaces model [49].

The sensitivity to the initialization is a very common problem for deformable

models. The use of simulated annealing for minimization was proposed in [62].

Despite the global optimization properties, the use of this technique is limited

to both its computational complexity and memory requirements.

Levine et al. [44] applied hierarchical filtering methods, as well as a contin-

uation method based on a discrete scale-space representation. At first, a scale-

space scheme is used at a coarse scale to get closer to the global energy mini-

mum represented by the desired contour. In further steps, the optimal valley or

contour is sought at increasingly finer scales.

These methods address the nonconvexity problem but not the adverse effects

of the internal normal force. This force is a contraction force which makes the

curve collapse into a point if the external field is not strong enough. In Cohen [18]

and Gang et al. [79] this problem is addressed by the addition of another internal

force term to reduce the adverse effects of the contraction force. In both works

the number of parameters is increased if compared with the original model and

there are some trade-offs between efficiency and performance.

Another way to remove the undesired contraction force of the original snake

model is to use the concept of invariance, which is well known in the field of

computer vision [26, 36]. This concept has been applied to closed contours,

and consists in designing an internal smoothing energy, biased toward some

prior shape, which has the property of being invariant to scale, rotation, and

translation. In these models, the snake has no tendency to expand or contract,

but it tends to acquire a natural shape.

An example of a technique, which applies invariance concepts, is the dual

active contour (dual ACM) [37]. This approach basically consists of one contour
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which expands from inside the target feature, and another one which contracts

from the outside. The two contours are interlinked to provide a driving force to

carry the contours out of local minima, which makes the solution less sensitive

to the initial position.

The sensitivity to initialization of snakes can also be addressed by a two-stage

approach: (1) The region of interest is limited; and (2) a global minimization tech-

nique is used to find the object boundary. Bamford and Lovell [4] describe such

a method to segment cell nucleus based on a dynamic programming algorithm

(Viterbi algorithm) to find the solution.

The use of dynamic programming (DP) for solving variational problems is

discussed by Amini et al. [2]. Unlike the variational approach, DP ensures global

optimality of the solution and does not require estimates of higher order deriva-

tives, which improves the numerical stability. However, these techniques are

limited by their storage requirements of O(NM2) and computational complexity

of O(NM3), where N is the number of snaxels and M is the size of the neigh-

borhood around each snaxel (given a discrete search space with NM points).

These performance difficulties can be lowered with a method to reduce the

search space. That is the main point addressed in [32, 34].

In those works, we propose to reduce the search space through the dual-

T-snakes model [30] by its ability to get closer to the desired boundaries. The

result is two contours close to the border bounding the search space. Hence, a

DP algorithm [2, 4, 38] can be used more efficiently.

The sensitivity to the initial contour position can also be addressed by a

method which initializes automatically the snake closer to the boundaries [43].

An efficient methodology in this field would be worthwhile, not only to save

time/calculation, but also to facilitate the specification of parameters, a known

problem for snake models [31].

In [29, 33] we propose a method to initialize deformable models, which is

based on properties related to the topology and spatial scale of the objects

in 2D or 3D scenes. We assume some topological and scale properties for the

objects of interest. From these constraints we propose a method which first

defines a triangulation of the image domain. After that, we take a subsampling

of the image field over the grid nodes. This field is thresholded, generating a

binary one, an “object characteristic function,” from which a rough approxima-

tion of the boundary geometry is extracted. This method was extended to 3D

in [63].
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Neural networks and Hough transforms have also been applied for initializa-

tion of deformable models [14, 74].

An other possibility to address the sensitivity to initialization is the gradient

vector flow, which is a scheme based on a vector diffusion–reaction equation.

It was introduced in [77] and can be used to obtain a more efficient image force

field [78].

Deformable models can be extended to 3D, generating deformable surface

models. Besides the described problems, a new one arises when considering

these models: memory utilization.

In general, deformable surface models make use of only the data information

along the surface when evolving the model toward the object boundary [48,49].

However, state-of-the-art implementations of these models in general do not

account for this fact and fetch the whole volume from disk at the initialization.

Such a procedure brings limitations for large size image volumes, mainly if we

consider that, in general, deformable models need not only the image intensity

but also the image gradient [42, 49].

Nowadays, image volumes with 5123 sampling points can be acquired in

CT scanners. Besides, other scanning techniques were developed allowing

the acquisition of a huge amount of 3D color image volumes (www.nlm.nih.

gov/research/visible/visible human.html). In these cases, the data set informa-

tion (image intensity and gradient) can be too large to fit in main memory, even

if we take the usual cut policy: In a first stage, select a subvolume (a bounding

box) that contains the structure of interest, and then segment it. When the size

of the data that must be accessed is larger than the size of main memory, some

form of virtual memory is simply required, which leads to performance problems

[20].

The analysis of large data sets is a known problem in the context of scientific

visualization [15,24,71]. Out-of-core techniques have been developed for scalar

and vector fields visualization and new proposals are still in progress. Among

these methods, out-of-core isosurface extraction techniques are closely related

with our work, as we shall see next.

These methods partition the data set into clusters that are stored in disk

blocks, and build a data structure to index the blocks for information retrieval

(preprocessing step). At run-time, the data structure is read to main memory

and traverse to find out the data blocks that must be read to main memory to

perform the isosurface generation. The most commonly used data structures, for
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scientific visualization applications, are the octrees [64,71] and a k-d-tree-based

technique called meta-cell [15].

In [27, 28] we show that the meta-cell technique is the most suitable data

structure to perform out-of-core implementations of segmentation methods. We

take advantage of the meta-cell method to present an out-of-core implementation

of the segmentation approach proposed in [63]. This method is a straightforward

extension of the initialization method that we proposed in [26, 29].

The core of the algorithm is an out-of-core T-surfaces method based on the

meta-cell structure. To our knowledge, it is the first out-of-core algorithm for

deformable surface model reported in the literature. Besides, other parametric

deformable models as well as implicit models (level sets) and region growing

methods can be out-of-core implemented by using the same meta-cell structure

(see Section 7.10). It is important to highlight that the proposed structure is

useful not only to efficiently swap data between memory and disk, but also to

accelerate the segmentation process, as we shall demonstrate (Section 7.9).

To make this text self-contained, some background is offered in Section 7.2.

We describe the deformable model methods that will be used in this chapter.

Next, the initialization techniques of interest are described (Section 7.3).

We survey the most important works in this subject and show that their ba-

sic limitation is that the obtained contour may suffer self-intersections during

its evolution. Thus, a deformable model that can deal with such a problem is

necessary. T-snakes (or T-surfaces) is a possibility.

Thus, in Section 7.4 we describe an efficient method to initialize the T-

surfaces model, which encompasses the basic elements of the segmentation

approach presented on Section 7.5. Despite the capabilities of our segmentation

approach, we may have problems due to memory limitations for large datasets

and poor convergence for noisy images. These problems are considered in

Sections 7.6 and 7.8, respectively.

Finally, discussions and perspectives for deformable models in medical im-

ages are offered (Section 7.10). Conclusions are given in Section 7.11.

7.2 Background in Deformable Models

In some sense, deformable models used in segmentation and shape recovery

applications can be classified into two groups: free form and shape models [53].
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In shape models prior knowledge of the global structure is included using a

parameterized template of a specific structure. Free form deformable templates,

like snakes, have no explicit global structures as the prior knowledge includes

basically local continuity and smoothness constraints.

Considering as a functional energy minimization process, the snake model

consists of an initial model which is carried to the desired object boundary by

forces described by the Euler–Lagrange equations. In a different way, the snake

evolution can be formulated by local deformations to reshape dynamically the

initial model in a process which do not apply minimization techniques explicitly.

The former is the formulation used by Kass et al. [42] in the original snake model.

It will be described next.

7.2.1 Original Model

Geometrically, a snake is a parametric contour c, here assumed to be closed,

embedded in a domain D ⊂ !2:

c : [0, 1] → D ⊂ !2, c (s) = (x (s) , y(s)) . (7.1)

We can define a deformable model as a space of admissible deformations

(contours) Ad and a functional E to be minimized [18]. This functional repre-

sents the energy of the model and has the form:

E : Ad → !, (7.2)

E(c) = E1(c(s))+ E2(c(s)) ,

where

E1 =
∫

�

(
w1

∥∥c′(s)
∥∥2 + w2

∥∥c′′(s)
∥∥2

)
ds, (7.3)

E2 =
∫

�

P(c(s)) ds (7.4)

are the internal and external energy terms, respectively. In the internal energy

expression, the parameter w1 (tension) gives the snake the behavior of resisting

the stretch and w2 (rigidity) makes the snake less flexible and smoother. These

parameters can be constants or dependent on s [44]. Each prime denotes a

degree of differentiation with respect to the parameter s.
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In the external energy E2, P is a potential related with the features we seek.

For edge detection in a grayscale image a possible definition is [6]:

P = −‖∇ I‖2 , (7.5)

where I is the image intensity.

The process of minimizing the functional given in (7.2) can be viewed from a

dynamic point of view by using the Lagrangian mechanics. This leads to dynamic

deformable models that unify the description of shape and motion. In these

models the deformable contour is viewed as a time-varying curve:

c (s, t) = (x (s, t) , y(s, t)) , (7.6)

with a mass density µ and a damping density γ .

In this formulation, the Lagrange equations of motion for a snake with po-

tential energy given by expression (7.2) have the form [44, 50]:

µ
∂2c

∂t2
+ γ

∂c

∂t
+ (

w1c′(s)
)′ + (

w2c′′(s)
)′′ + ∇P(c(s)) = 0, (7.7)

where the first two terms represent the inertial and damping forces while the

third and fourth terms give the forces related to the internal energy (Eq. (7.2)).

The last term in Eq. (7.7) is the external force due to the external potential P in

expression (7.5). Equilibrium is achieved when the internal and external forces

balance and the contour comes to rest; which implies that:

∂c/∂t = ∂2c/∂t2 = 0. (7.8)

In general, Eq. (7.7) does not have analytical solutions. Thus, numerical meth-

ods must be considered. Henceforth, in order to solve this equation, for an initial

closed contour, we have to discretize the snake in space and time by using finite

differences or finite elements methods, each of them with trade-offs between

performance and numerical efficiency [19,44]. We also have to use a termination

condition, based on Eq. (7.8), to stop the numerical interactions [44].

It is important to observe that the space Ad in expression (7.2) does not

include contours with more than one connected component. So the classical

snake model does not incorporate topological changes of the contour c during

its evolution given by Eq. (7.7). Besides, the contraction force generated by

the third and fourth terms in this equation is shape dependent and makes the

stabilization of the snake too dependent on the parameters w1 and w2. While in

theory it is possible to compute a pair of proper weights of the internal energy

for each point, it is very difficult in practice [79].



Improving the Initialization, Convergence, and Memory Utilization 367

For boundary extraction and segmentation tasks, in general we use a simpli-

fied version of Eq. (7.7) in which we take µ = 0. Hence, the model has no inertial

forces, which avoids oscillations near the equilibrium point [31].

Snake models can be extended to 3D, generating deformable surface models.

The traditional mathematical description for these models is given next.

7.2.2 Deformable Surfaces

Let us consider the following balloon-like model for closed surfaces [19]:

v : !+ × [0, 1]× [0, 1] → !3, v(t, r, s) = (v1(t, r, s) , v2 (t, r, s) , v3(t, r, s)) ,

∂v

∂t
− ω10

∂2v

∂s2
− ω01

∂2v

∂r2
+ 2ω11

∂4v

∂r2∂s2
+ ω20

∂4v

∂s4
+ ω02

∂4v

∂r4
= F(v)− kn(v) ,

(7.9)

Initial estimation : v(0, r, s) = v0(r, s),

where n(v) is the normal (unitary) field over the surface v, F is the image force

field (may be normalized), and k is a force scale factor. The parameters ωij

control the smoothing and flexibility of the model.

By using the internal pressure force (kn(v)), the model behaves like a balloon,

which is inflated, passing over regions in which the external force is too weak.

Consequently, the model becomes less sensitive to initialization, which is an

advantage over more traditional active models [6, 18].

If finite differences is used to numerically solve Eq. (7.9), the continuous

surface v(r, s) is discretized, generating a polygonal mesh. During the mesh

evolution, self-intersections must be avoided.

This problem has been efficiently addressed in the context of discrete de-

formable models. Differently from the above formulation, in which the mesh

arises due to a discretization of the continuous model (defined by Eq. (7.9)),

discrete surface models start from a two-dimensional mesh. The mesh nodes

are updated by a system of forces that resembles a discrete dynamical system.

The T-surfaces model is such a system, which is fundamental for our work. It is

summarized next.

7.2.3 T-Surfaces

The T-surfaces approach is composed of three components [49]: (1) a tetrahedral

decomposition (CF-triangulation) of the image domain D ⊂ !3; (2) a particle
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model of the deformable surface; and (3) a characteristic function χ defined

on the grid nodes which distinguishes the interior (Int(S)) from the exterior

(Ext(S)) of a surface S:

χ : D ⊂ !3 → {0, 1} (7.10)

where χ(p) = 1 if p ∈ Int(S) and χ(p) = 0, otherwise p is a node of the grid.

Following the classical nomenclature [1], a tetrahedron (also called a sim-

plex) σ is a transverse one if the characteristic function χ in Eq. (7.10) changes

its value in σ . Analogously, this follows for an edge.

In the framework composed of both the simplicial decomposition and the

characteristic function, the reparameterization of a surface is done by [49]:

(1) computing the intersection points of the surface with the grid; (2) find-

ing the set of transverse tetrahedra (combinatorial manifold); (3) choosing

an intersection point, for each transverse edge; and (4) connecting the selected

points.

In this reparameterization process, the transverse simplices play a central

role. Given such a simplex, we choose in each transverse edge an intersection

point to generate the new surface patch. In general, we will obtain three or four

transverse edges in each transverse tetrahedron (Fig. 7.1). The former gives a

triangular patch and the latter defines two triangles. So, at the end of step (4), a

triangular mesh is obtained. Each triangle is called a triangular element [49].

Taking a 2D example, let us consider the characteristic functions (χ1 and χ2)

relative to the two contours pictured in Fig. 7.2. The functions are defined on the

vertices of a CF-triangulation of the plane. The vertices marked are those where

max{χ1, χ2} = 1. Observe that they are enclosed by a merge of the contours.

This merge can be approximated by a curve belonging to the region obtained

by tracing the transverse triangles. The same would be true for more than two

contours (and obviously for only one).

After the reparameterization process, a suitable evolution scheme must be

applied. Dynamically, a T-surfaces can be seen as a closed elastic mesh [49].

Figure 7.1: Basic types of intersections between a plane and a simplex in 3D.
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Figure 7.2: Two snakes colliding with the inside grid nodes and snaxels marked.

Each mesh node is called a node element and each pair of connected nodes

vi, v j is called a model element.

The node elements are linked by springs, whose natural length we set to

zero. Hence, a tensile force can be defined by:

−→αi =
∑

j

−→
S ij, where

−→
S ij = c · rij, (7.11)

c is a scale factor and rij = ‖vi − v j‖ is the length of the corresponding model

element. The model also has a normal force which can be weighted as follows

[49]:

Fi = k(signi)ni, (7.12)

where ni is the normal vector at node i, k is a scale factor, and signi = +1 if

I(vi) > T and signi = −1 otherwise (T is a threshold of the image I). This force

is used to push the model toward image edges until it is opposed by external

image forces.

The forces defined by Eqs. (7.11) and (7.12) are internal forces. The exter-

nal force is defined as a function of the image data, according to the interested

features. Several different approaches have been adopted according to the ap-

plication [34, 77]. In our case, it can be defined as follows:

image :: force :: f t
i = −γi∇P, P = ‖∇ I‖2 . (7.13)

The evolution of the surface is controlled by the following dynamical system:

v
(t+�t)
i = vt

i + hi

(−→αi
t +−→Fi

t +−→fi t
)

, (7.14)

where hi is an evolution step.

During the T-surfaces evolution, some grid nodes become interior to a sur-

face. Such nodes are called burnt nodes and its identification is required by the

update of the characteristic function [49]. To deal with self-intersections, the

T-surfaces model incorporates an entropy condition: Once a node is burnt it
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stays burnt. A termination condition is set based on the number of deformation

steps in which a simplex has remained a transverse one.

7.2.4 Level Sets

It will be useful to review some details of level sets, which is the implicit for-

mulation presented in [46]. The main idea of this method is to represent the

deformable surface (or curve) as a level set {x ∈ !3|G(x) = 0} of an embedding

function:

G : !3 ×!+ → !, (7.15)

such that the deformable surface (also called front in this formulation), at t = 0,

is given by a surface S:

S (t = 0) = {
x ∈ !3|G (x, t = 0) = 0

}
. (7.16)

The next step is to find an Eulerian formulation for the front evolution. Fol-

lowing Sethian [46], let us suppose that the front evolves in the normal direction

with velocity
−→
F , where

−→
F may be a function of the curvature, normal direction,

etc.

We need an equation for the evolution of G(x, t), considering that the surface

S is the level set given by:

S(t) = {
x ∈ !3|G(x, t) = 0

}
. (7.17)

Let us take a point x(t), t ∈ !+, of the propagating front S. From its implicit

definition given above, we have:

G (x (t) , t) = 0. (7.18)

Now, we can use the chain rule to compute the time derivative of this expression:

Gt + F |∇G| = 0, (7.19)

where F = ‖−→F ‖ is called the speed function. An initial condition G(x, t = 0) is

required. A straightforward (and expensive) technique to define this function is

to compute a signed-distance function as follows:

G(x, t = 0) = ±d, (7.20)
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where d is the distance from x to the surface S(x, t = 0) and the signal indicates

if the point is interior (−) or exterior (+) to the initial front.

Finite difference schemes, based on a uniform grid, can be used to solve

Eq. (7.19). The same entropy condition of T-surfaces (once a grid node is burnt

it stays burnt) is incorporated in order to drive the model to the desired solution

(in fact, T-surfaces was inspired on the level sets model [50]).

In this higher dimensional formulation, topological changes can be efficiently

implemented. Numerical schemes are stable, and the model is general in the

sense that the same formulation holds for 2D and 3D, as well as for merge and

splits. Besides, the surface geometry is easily computed. For example, the front

normal and curvature are given by:

−→n = ∇G(x, t) , K = ∇ ·
( ∇G(x, t)
‖∇G(x, t)‖

)
, (7.21)

respectively, where the gradient and the divergent (∇·) are computed with re-

spect to x.

7.3 Initializing Traditional Deformable

Models

In the area of deformable models, the definition of the initial estimation (see

Eq. (7.9)) from which we can start the model evolution (the initialization step)

is a difficult and important task. Problems associated with fitting the model to

data could be reduced if a better start point for the search were available. In this

section, we show a set of methods used to find the initial curve (or surface).

We start with methods that use image statistics and morphological tech-

niques, and later we present modern approaches, such as neural nets.

7.3.1 Region-Based Approaches

The simplest way to initializing deformable models is through a preprocessing

step in which the structures of interest are enhanced.

This can be done by image statistics extracted by image histograms or pattern

recognition techniques [69] (see [39] for a recent review). These statistics can

be represented by a mean µ and variance σ of the image field I or any other field
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Figure 7.3: Original grayscale image of human’s torso.

defined over the image domain (fuzzy fields [33,76], for example). The aim is to

find statistical representation of the objects, which means:

p ∈ O =⇒ |I (p)− µ| ≤ kσ, (7.22)

where k is an used defined parameter [49].

In some applications, a threshold T could be enough to characterize the

object(s). Iterative and entropy methods can be obtained by simple inspection

[40].

For an illustrative example, Fig. 7.3 shows an image of a cross section slice of

a human’s torso, where we can see several interesting regions such as arteries,

bones, and lungs (the two largest central black regions).

Suppose we are interested in extracting the boundary of the right lung. First

of all, we should isolate, in each slice, the region of interest.

Applying Eq. (7.22) with a threshold, e.g. 30, we have as output the result

pictured in Fig. 7.4(a). Thus, an isoline extraction method can be used to get a

rough approximation of the target boundary. Figure 7.4(b) shows the obtained

curve over the original data.

We can observe that the curve is not smooth, there are protrusions and

concavities due to inhomogeneities of the image field. Besides, some regions

of interest may be merged (or even slit) after binarization. Such difficulties

(a) (b)

Figure 7.4: (a) Result of applying a threshold T = 30 over image of Fig. 7.3.

(b) Initialization through isoline extraction.
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arise even when the images are preprocessed with more robust segmentation

approaches, such as image foresting transformation [23] or other fuzzy tech-

niques [70, 76]. These problems make threshold-based methods not very ade-

quate for deformable models initialization.

In the following section, we discuss an approach to improve the automatic

detection of an initial curve.

7.3.2 Mathematical Morphology for Initialization

The use of mathematical morphology to initialize deformable models is a subject

with few references in the literature [59, 76].

For the particular case of medical images, the general idea is to isolate objects

of interest (such as lungs, arteries, heart, bones, etc.) in the scene and to work

with them individually, avoiding neighboring interference of other objects, noise,

spurious artifacts, or background.

Mathematical morphology is a known set of mathematical tools used in dig-

ital image processing area to perform linear transformations on the shapes of

images’s regions. There are two basic morphological operations: erosion and

dilation. They will be defined next to make this text self-contained.

Let us take the image X and a template B, the structuring element. They will

be represented as sets in two-dimensional Euclidean space. Let Bx denote the

translation of B so that its origin is located at x. Then the erosion of X by B is

defined as the set of all points x such that Bx is included in X, that is,

erosion : X # B = {x : Bx ⊂ X}. (7.23)

Similarly, the dilation of X by B is defined as the set of all points x such that Bx

hits X, that is, they have a nonempty intersection:

dilation : X ⊕ B = {x : Bx ∩ X �= φ}. (7.24)

These two operations are the base of all more complex transformations in

mathematical morphology. For example, we can use an opening which consists

of an erosion followed by a dilation of the result. This operation allows one to

disconnect two different regions for treating them separately. The dual of open-

ing is the close operation, which consists of an erosion over the dilation’s result.

The effect of closing an image is rightly the opposite of opening: It connects

weak separated regions (see [40] for a review of other useful operations).
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(a) (b)

(d)(c)

Figure 7.5: (a) Edge map after using the canny algorithm in the image of Fig. 7.3.

(b) Erosion result over the Canny algorithm output. (c) Isolated region of inter-

est. (d) Final result after dilation.

In this section, we are interested in applying morphological chains (sequence

of a morphological operations) techniques to isolate specific regions in medical

images. These extracted regions will be used for initializing deformable models.

We begin with a grayscale image such as in Fig. 7.3. Firstly, an edge detection

filter is applied. The Canny edge detector was used [9], despite the fact that there

are many other possibilities [13,35,40]. Figure 7.5(a) gives the result of applying

the Canny methodology over the image in Fig. 7.3.

In Fig. 7.5(a) note that the two white predominant regions at the center of

the image are the two lungs, which are the regions of interest. For convenience,

this image was inverted with regard to its black–white pixels before initializing

the morphological process. In this case, when applying the erosion operation

(Eq. (7.23)) over the image in Fig. 7.5(a), we eliminate artifacts, weak edges, and

separate weak connected regions. The net effect is to attenuate or eliminate high-

frequency components. In the example of Fig. 7.5(a), we used a cross-structuring

element. The result can be seen in Fig. 7.5(b).

Now, the two bigger regions are detached from the other ones, and we can

separate and treat them individually. Figure 7.5(c) shows this result.

To restore the original size of the lung, we can apply the dilation operation

(Eq. (7.24)). The result can be seen in Fig. 7.5(d).

Finally, an algorithm for isoline extraction gives the polygonal curve pictured

in Fig. 7.5(d). This curve is an approximation of the desired boundary. It can be

used as the initial curve for a deformable model.
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Figure 7.6: Original image with the outlined initial contour.

The obtained contour was plotted over the original image for matching

(Fig. 7.6). If compared with Fig. 7.4(b) we observe an improvement in the ob-

tained initialization.

7.3.3 Neural Nets

Neural networks have been used for instantiating deformable models for face

detection [54] and handwritten digit recognition tasks [74] (see also [14] and

references therein). To the best of our knowledge, there are no references using

neural nets to initialize deformable models for medical images. However, the

network system proposed in [25], which segments MR images of the thorax,

may be closer to this proposal.

In this method each slice is a gray-level image composed of (256× 256) pixels

values and is accompanied by a corresponding (target) image containing just

the outline of the region. Target images were obtained using a semiautomatic

technique based on a region growing algorithm. The general idea is to use a

multilayer perceptron (MLP), where each pixel of each slice is classified into a

contour-boundary and non-contour-boundary one.

The inputs to the MLP are intensity values of pixels from a (7× 7) window

centered on the pixel to be classified. This window size was found to be the

smallest that enabled the contour boundary to be distinguished from the other

image’s artifacts. The output is a single node trained to have an activation of

1.0 for an input window centered in the pixel of a contour boundary, and 0.0

otherwise. The network has a single hidden layer of 30 nodes.

The network was trained using error backpropagation [12, 55] with weight

elimination [72] to improve the network’s generalization ability. The training

data should be constructed interactively: A proportion of misclassified exam-

ples should be added to the training set and used for retraining. The process
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is initiated from small random selection of contour-boundary and non-contour-

boundary examples and should be terminated when a reasonable classification

(on a given slice) is achieved.

The MLP classified each pixel independently of the others, and therefore has

no notion of a closed contour. Consequently, the contour boundaries it produces

are often fragmented and noisy (false negatives and false positives, respectively).

Then, with this initial set of points classified as contour boundaries, a deformable

model is used to link the boundary segments together, while attempting to ignore

noise.

In [25] the elastic net algorithm is used. This technique is based on the

following equations:

�ut+1
j,l = α

N∑
i=1

Gij

(
pi,l − ut

j,l

)+ Kβ
(
ut

j+1,l − 2ut
j,l + ut

j−1,l

)
, (7.25)

�ut+1
j,l = Kγ

(
ut+1

j,l+1 − 2ut+1
j,l + ut+1

j,l−1

)
, (7.26)

where �ut+1
j,l is an interslice smoothing force, K is a simulated annealing term,

α, β, γ are predefined parameters, and Gij is a normalized Gaussian that weights

the action of the force that acts over the net point uj,l due to edge point pi,l (l is

the slice index).

The deformable model initialization is performed by using a large circle

encompassing the lung boundary in each slice. This process can be improved

by using the training set.

As an example, let us consider the work [74] in handwritten digit recogni-

tion. In this reference, each digit is modeled by a cubic B-spline whose shape is

determined by the positions of the control points in the object-based frame. The

models have eight control points, except for the one model which has three,

and the model for the number seven which has five control points. A model

is transformed from the object-based frame to the image-based frame by an

affine transformation which allows translation, rotation, dilation, elongation,

and shearing. The model initialization is done by determining the correspond-

ing parameters. Next, model deformations will be produced by perturbing the

control points away from their initial locations.

There are ten classes of handwritten digits. A feedforward neural network is

trained to predict the position of the control points in a normalized 16× 16 gray-

level image. The network uses a standard three-layer architecture. The outputs

are the location of the control points in the normalized image. By inverting the
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normalization process, the positions of the control points in the unnormalized

image are determined. The affine transformation corresponding to these image

can then be determined by running a special search procedure.

7.4 Initialization of T-Surfaces

All the methods described in Section 7.3 suffer from a common limitation: Self-

intersections may happen during the evolution of the initial curve/surface.

Traditional deformable models [6, 19, 42], including the one defined by

Eq. (7.9), cannot efficiently deal with self-intersections. It is due to the non-

local testes dependency, which requires O(N2) in the worst case, where N is

the number of mesh nodes (or snaxels, for 2D).

Recently, in [63] we have shown that such limitation can be addressed by

using the T-snakes model because the reparameterization process of this model

can naturally deal with self-intersections. It can also be addressed for 3D by

using the T-surfaces.

Firstly, let us make some considerations about the T-snakes/T-surfaces.

The threshold T used in the normal force definition (7.12) plays an important

role in the T-surfaces model [47, 49]. If not chosen properly, the T-surfaces can

be frozen in a region far from the target(s) [33, 63].

The choice of T is more critical when two objects to be segmented are too

close, as shown in Fig. 7.7. In this example, the marked grid nodes are those

whose image intensity falls bellow the threshold T .

For T-snakes model to accurately segment the pictured objects, it has to

burn the marked grid nodes. However, the normal force given by expression

(7.12) changes its signal if the T-snakes gets closer. So, the force parameters

Figure 7.7: T-snake and grid nodes marked.
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in expressions (7.11) and (7.12) have to be properly chosen to guarantee the

advance over narrow regions. However, parameters choice remains an open

problem in snake models [31]. This problem can be addressed by increasing the

grid resolution as it controls the flexibility of T-surfaces. However, this increases

the computational cost of the method.

To address the trade-off between model flexibility and the computational

cost, in [22, 29] we propose to get a rough approximation of the target surfaces

by isosurfaces generation methods. Then T-surfaces model is applied.

The topological capabilities of T-surfaces enable one to efficiently evolve the

isosurfaces extracted. Thus, we combine the advantages of a closer initializa-

tion, through isosurfaces, and the advantages of using a topologically adaptable

deformable model. These are the key ideas of our previous works [22, 29]. We

give some details of them.

At first, a local scale property for the targets was supposed: Given an object

O and a point p ∈ O , let rp be the radius of a hyperball Bp which contains p and

lies entirely inside the object. We assume that rp > 1 for all p ∈ O . Hence, the

minimum of these radii (rmin) is selected.

Thus, we can use rmin to reduce the resolution of the image without losing the

objects of interest. This idea is pictured in Fig. 7.8. In this simple example, we

have a threshold which identifies the object (T < 150), and a CF triangulation

whose grid resolution is 10× 10.

Now, we can define a simple function, called an object characteristic func-

tion, as follows:

χ (p) = 1, if I (p) < T, (7.27)

χ (p) = 0, otherwise,

where p is a node of the triangulation (marked grid nodes on Fig. 7.8(a)).

(a) (b)

Figure 7.8: (a) Original image and characteristic function. (b) Boundary

approximation.
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We can do a step further, shown in Fig. 7.8(b), where we present a curve

which belongs to the transverse triangles. Observe that this curve approximates

the boundary we seek. This curve (or surface for 3D) can be obtained by isosur-

face extraction methods and can be used to efficiently initialize the T-surfaces

model, as we already pointed out before.

If we take a grid resolution coarser than rmin, the isosurface method might

split the objects. Also, in [22, 29] it is supposed that the object boundaries are

closed and connected. These topological restrictions imply that we do not need

to search inside a generated connected component.

In [63] we discard the mentioned scale and topological constraints. As a

consequence, the target topology may be corrupted. So, a careful approach will

be required to deal with topological defects. An important point is the choice of

the method to be used for isosurfaces generation. In [22, 63] we consider two

kinds of isosurface generation methods: the marching ones and continuation

ones.

In marching cubes, each surface-finding phase visits all cells of the volume,

normally by varying coordinate values in a triple “for” loop [45]. As each cell

that intersects the isosurface is found, the necessary polygon(s) to represent

the portion of the isosurface within the cell is generated. There is no attempt

to trace the surface into neighboring cells. Space subdivision schemes (such as

Octree and k-d-tree) have been used to avoid the computational cost of visiting

cells that the surface does not cut [17, 64].

Once the T-surfaces grid is a CF one, the tetra-cubes is especially interesting

for this discussion [10]. As in the marching cubes, its search is linear: Each

cell of the volume is visited and its simplices (tetrahedrons) are searched to

find surfaces patches. Following marching cubes implementations, tetra-cubes

uses auxiliary structures based on the fact that the topology of the intersections

between a plane and a tetrahedron can be reduced to three basic configurations

pictured in Fig. 7.1 (Section 7.2.3).

Unlike tetra-cubes, continuation algorithms attempt to trace the surface

into neighboring simplices [1]. Thus, given a transverse simplex, the algorithm

searches its neighbors to continue the surface reconstruction. The key idea is

to generate the combinatorial manifold (set of transverse simplices) that holds

the isosurface.

The following definition will be useful. Let us suppose two simplices σ0, σ1,

which have a common face and the vertices v ∈ σ0 and v′ ∈ σ1 both opposite
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the common face. The process of obtaining v′ from v is called pivoting. Let us

present the basic continuation algorithm [1].

PL generation algorithm:

Find a transverse triangle σ0;∑ = {σ0}; V (σ0) = set of vertices of σ0;

while V (σ ) �= ∅ for some σ ∈∑
. get σ ∈∑

such that V (σ ) �= ∅;

. get v ∈ V (σ );

. obtain σ ′ from σ by pivoting v into v′

. if σ ′ is not transverse

. then drop v from V (σ );

. else

. if σ ′ ∈∑
then

. drop v from V (σ ), v′ from V (σ ′)

. else

.
∑⇐=∑+ σ ′;

. V (σ ′) ⇐= set of vertices of σ ′;

. drop v from V (σ ), v′ from V (σ ′)

Differently from tetra-cubes, once the generation of a component is started,

the algorithm runs until it is completed. However, the algorithm needs a set of

seed simplices to be able to generate all the components of an isosurface. This

is an important point when comparing continuation and marching methods.

If we do not have guesses about seeds, every simplex should be visited. Thus,

the computational complexity of both methods is the same (O(N) where N is

the number of simplices).

However, if we know in advance that the target boundary is connected,

we do not need to search inside a connected component. Consequently, the

computational cost is reduced if continuation methods are applied.

Based on this discussion about marching cubes and PL generation, we can

conclude that, if we do not have the topological and scale restrictions given in

Section 7.4, tetra-cubes is more appropriate to initialize the T-surfaces. In this

case, it is not worthwhile to attempt to reconstruct the surface into neighboring

simplices because all simplices should be visited to find surface patches.

However, for the T-surfaces reparameterization (steps (1)–(4) in

Section 7.2.3), the situation is different. Now, each connected component is
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evolved at a time. Thus a method which generates only the connected compo-

nent being evolved—that is, the PL generation algorithm—is interesting.

7.5 Reconstruction Method

Following the above discussion, we proposed in [22,63] a segmentation/surface

reconstruction method that is based on the following steps: (1) extract region-

based statistics; (2) coarser image resolution; (3) define the object characteristic

function; (4) PL manifold extraction by the tetra-cubes; (5) if needed, increase

the resolution, return to step (3); and (6) apply T-surfaces model.

It is important to highlight that T-surfaces model can deal naturally with the

self-intersections that may happen during the evolution of the surfaces obtained

by step (4). This is an important advantage of T-surfaces.

Among the surfaces extracted in step (4), there may be open surfaces which

start and end in the image frontiers and small surfaces corresponding to arti-

facts or noise in the background. The former is discarded by a simple auto-

matic inspection. To discard the latter, we need a set of predefined features

(volume, surface area, etc.) and corresponding lower bounds. For instance, we

can set the volume lower bound as 8(r)3, where r is the dimension of the grid

cells.

Besides, some polygonal surfaces may contain more than one object of inter-

est (see Fig. 7.9). Now, we can use upper bounds for the features. These upper

bounds are application dependent (anatomical elements can be used).

(a) (b)

Figure 7.9: (a) PL manifolds for resolution 3× 3. (b) Result with the highest

(image) resolution.
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Figure 7.10: Representation of the multiresolution scheme.

The surfaces whose interior have volumes larger than the upper bound will be

processed in a finer resolution. By doing this, we adopted the basic philosophy

of some nonparametric multiresolution methods used in image segmentation

based on pyramid and quadtree approaches [3, 8, 41]. The basic idea of these

approaches is that as the resolution is decreasing, small background artifacts

become less significant relative to the object(s) of interest. So, it can be easier

to detect the objects in the lowest level and then propagate them back down the

structure. In this process, it is possible to delineate the boundaries in a coarser

resolution (step (4)) and to re-estimate them after increasing the resolution in

step (5).

It is important to stress that the upper bound(s) is not an essential point

for the method. Its role is only to avoid expending time computation in regions

where the boundaries enclose only one object.

When the grid resolution of T-surfaces is increased, we just reparameterize

the model over the finer grid and evolve the corresponding T-surfaces.

For uniform meshes, such as the one in Fig. 7.10, this multiresolution scheme

can be implemented through adaptive mesh refinement data structures [5]. In

these structures each node in the refinement level l splits into ηn nodes in level

l + 1, where η is the refinement factor and n is the space dimension (η = 2 and

n= 3 in our case). Such a scheme has also been explored in the context of level

sets methods [61].

As an example, let us consider Fig. 7.9. In this image, the outer scale corre-

sponding to the separation between the objects is finer than the object scales.

Hence, the coarsest resolution could not separate all the objects. This hap-

pens for the bottom-left cells in Fig. 7.9(a). To correct this result, we increase

the resolution only inside the extracted region to account for more details

(Figure 7.9(b)).

We shall observe that T-surfaces makes use of only the data information along

the surface when evolving the model toward the object boundary. Thus, we can
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save memory space by reading to main memory only smaller chunks of the data

set, instead of the whole volume, as is usually done by the implementations

of deformable surface models. Such point is inside the context of out-of-core

methods which are discussed next.

7.6 Out-of-Core for Improving Memory

Utilization

There are few references of out-of-core approaches for segmentation purposes.

The site (graphics.cs.ucdavis.edu/research/Slicer.html) describes a technique

based on reordering the data according to a three-dimensional Lebesgue-space-

filling-curve scheme to speed up data traversal in disk. The visualization toolkit

uses cached, streaming (pulling regions of data in a continual flow through

a pipeline) to transparently deal with large data sets [60]. Finally, and more

important for our work, out-of-core isosurface extraction techniques have been

implemented [16, 64] and can be used for segmentation purposes.

From the viewpoint of out-of-core isosurface generation, we need to effi-

ciently perform the following operations: (a) group spatial data into clusters;

(b) compute and store in disk cluster information (pointer to the correspond-

ing block recorded in disk, etc.); and (c) optimize swap from disk to main

memory. These operations require the utilization of efficient data structures.

Experimental tests show that the branch-on-need octree (BONO) [64] and the

meta-cell [16] framework provide efficient structures for out-of-core isosurface

extraction. Next, we summarize and compare these methods.

Octrees are hierarchical tree structures of degree 8. If the volume’s resolution

is the same power of 2 in each direction; e.g., 2d × 2d × 2d, octrees offer the best

ratio of the number of nodes to data points 1/7 [73]. Otherwise, an alternative,

to be close to the optimum, is the branch-on-need octree (BONO) strategy [73].

Essentially, the octree is regarded as conceptually full, but the algorithm avoids

allocating space for empty subtrees. With each node is associated a conceptual

region and an actual region, as illustrated in Fig. 7.11. Besides, at each node the

octree contains the maximum and minimum data values found in that node’s

subtree.

We shall observe that the same space partition could be obtained if we take

the following procedure: Sort all data points by the x-values and partition them
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Figure 7.11: (a) Data set; (b) conceptual region; (c) leve 1; and (d) final level.

into H consecutive chunks (H = 3 in Fig. 7.11). Then, for each such chunk, sort

its data points by the y-values and partition them into H consecutive chunks.

For 3D images we must repeat the procedure for the z-values.

That is precisely the meta-cell partition. Unlike octrees, meta-cell is not a hi-

erarchical structure. The partition is defined through the parameter H. Besides,

given a point (q1, q2, q3), inside the domain, the corresponding meta-cell is given

by:

mcell = %qi/Ci&, i = 1, 2, 3, (7.28)

where Ci is the number of data points of each chunk of the conceptual region, in

the direction i. To each meta-cell is associated a set of meta-intervals (connected

components among the intervals of the cells in that meta-cell). These meta-

intervals are used to construct an interval tree, which will be used to optimize

I/O operations. Given a set of N meta-intervals, let e1, e2, . . . , e2n be the sorted list

of left and right endpoints of these intervals. Then, the interval tree is recursively

defined as follows:

Interval tree construction: (i) If there is only one interval, then the current node

r is a leaf containing that interval; (ii) else, the value m= (en+ en+1)/2 is stored

in r as a key; the intervals that contain mare assigned to r as well as pointers to

the subtrees left(r) and right(r). Go to step (i).

Now, let us take an overview of out-of-core isosurface extraction methods

based on the above structures. The methodology presented in [64] extends the

BONO for time-varying isosurface extraction. The proposed structure (temporal
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branch-on-need (T-BON) octree) minimizes the impact of the I/O bottleneck by

reading from disk only those portions of the search structure and data necessary

to construct the current isosurface. The method works as follows.

A preprocessing step builds a BONO for each time step and properly stores

it to disk. To avoid I/O performance problems at run-time, the algorithm packs

nodes into disk blocks in order to read a number of nodes at once.

At run-time, the tree infrastructure is read from disk and recreated in mem-

ory. Isovalues queries are then accepted in the form (timestep,isovalue). The

algorithm initially fetches the root node of the octree corresponding to timestep

from disk. If the extreme values are stored in the root node span isovalue, the

algorithm next fetches all children of the root node from disk. This process re-

peats recursively until reaching the leaf nodes. Then, the algorithm computes

disk blocks containing data points needed by that leaf and inserts those blocks

into a list. Once all nodes required to construct the current isosurface have

been brought into memory, the algorithm traverses the block list and reads the

required data blocks sequentially from disk.

The meta-cell technique proposed by Chiang et al. [16] works through a

similar philosophy. Given an isovalue, the query pipeline follows the next steps:

(1) query the interval tree to find all meta-cells whose meta-intervals contain

the isovalue (active meta-cells); (b) sort the reported meta-cell IDs properly

to allow sequential disk reads; and (c) for active meta-cell, read it from disk to

main memory and compute the corresponding isosurface patches.

An important difference between the meta-cell technique and T-BON is that,

unlike T-BON, meta-cell uses two distinct structures: one for the scalar field in-

formation (interval tree) and another for the space partition. The link between

these structures is given by the interval tree leaves information (meta-intervals

and pointers to corresponding meta-cells). Such split in the way meta-cell tech-

nique deals with domain partition and the scalar field gives more flexibility to

meta-cell if compared with T-BON.

For instance, the query “given a point (x, y, z), find its image intensity,” useful

when segmenting with deformable models, is implemented more easily through

meta-cell (see expression (7.28)) than with BONO. Besides, image data sets are

represented on regular grids which means that we do not need hierarchical

structures to take account for regions with higher density of points. These are

the reasons why meta-cell is more suitable for out-of-core image segmentation

than BONO. Next, we will explore this fact.
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7.7 Out-of-Core Segmentation Approach

In this section we present the out-of-core version of the segmentation framework

described in Section 7.5.

That algorithm is interesting for this work because of two aspects. First, it

uses the T-surfaces model which uses auxiliary and very memory consuming data

structures (hash table to keep transverse simplices, T-surfaces mesh, etc.). Thus,

a suitable out-of-core implementation would improve algorithm performance as

well as make it possible to segment the data sets which would not fit in memory.

Second, it needs both the queries found in segmentation algorithms: (a) Given

a reference value q , find all image points p such that I(p) = q and (b) given a

point p, find the image intensity I( p).

The meta-cell technique used has the following elements.

Meta-cell partition: The meta-cell size is application dependent. Basically,

it depends on the data set size, disk block size, and the amount of memory

available. For isosurface extraction, we can obtain a quantitative bound by

following [16] and taking the dimensional argument that an active meta-cell

with C cells has, most of times, C2/3 active cells (or voxels). Therefore, we

read C1/3 layers of cells for each layer of isosurface. Thus, if the isosurface

cuts K cells and if B is the number of cells fitting in one disk block, we ex-

pect to read C1/3 · (K/B) disk blocks to complete the isosurface. Henceforth,

we can increase meta-cells sizes while keeping the effect of the factor C1/3

negligible.

Interval tree: Volumetric images have some particular features that must be

considered. Intensity values range from 0 to 255 and the data set is represented

by a regular grid. This information can be used to find an upper bound for the

interval tree size. Let us consider the worst case, for which the meta intervals are

of the form: I0 = [0, 0]; I1 = [2, 2]; . . . ; I127 = [254, 254]. Thus, in the worst case,

we have 128 meta-intervals for each meta-cell. Each meta-interval uses two bytes

in memory. For a 29 × 29 × 29 data set, if we take meta-cells with 24 × 24 × 24

data points, we find 215 = 32 kB meta-cells. Thus, we will need an amount of 2×
128× 32 kB = 8.0 MB, which is not restrictive for usual workstations. Besides,

in general, interval tree sizes are much smaller than this bound (see Section 7.9).

Thus, we do not pack tree nodes as in [16].

Data cache: To avoid memory swap, we must control the memory allocation

at run-time. This can be done through a data cache, which can store a predefined
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number M of meta-cells. When the cache fills, the least recently used (LRU)

meta-cell will be replaced [64].

Query algorithm: (a) Given an isovalue q, find all meta-intervals (and the

corresponding meta-cell IDs) containing q, by querying the I/O interval tree

defined in Section 7.6. (b) Given a point q = (q1, q2, q3), find the corresponding

meta-cell ID through the expression (7.28).

Besides, we need some auxiliary structures. The characteristic function (χ)

is a zero field at the beginning. There is a processing list which is dynamically

constructed through a procedure called insert neighbors:

insert neighbors( p): For each neighbor q of a node element p, verify if q

has not been evolved by Eq. (7.14) and if q /∈ processing list. In this case, insert

q in processing list.

The key idea behind the processing list construction is to update node ele-

ments according to a breadth-first-search (BFS) algorithm; that is, we consider

neighbors of a node as predecessors in the search. With such a procedure, we

can minimize I/O operations due to the following property: starting at a seed, the

algorithm visits all the neighbors; then it visits all the neighbors of neighbors,

etc. until it runs out of neighbors to visit (see Fig. 7.12).

Thus, the least recently used meta-cell must be replaced when data cache

fills because most probably the portion of T-surfaces that intersects that meta-

cell has been completely updated. Certainly, we can generate the isosurfaces

in step (2) according to a breadth-first-search continuation algorithm. However,

we chose to incorporate this procedure in the T-surfaces method to get more

generality for the out-of-core segmentation method.

Next, we outline the algorithm. We call seed a node element for which neigh-

bors belong to the same meta-cell. Also, we suppose that the object of interest

has intensity pattern inside the range [I1, I2].

Figure 7.12: (a) Example of BFS algorithm in graphs. (b) Possible order of

visiting nodes after BFS with seed S.
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Out-of-Core Segmentation Algorithm:

(1) Compute Object Characteristic Function

.Traverse interval tree to find the list L of active meta-cells;

.While L is not NULL

. Read M active meta-cells to main memory.

. Take a metacell. Given a grid node p ∈ metacell:

if I(p) ∈ [I1, I2] then χ(p) = 1

(2) Extract isosurfaces.

(3) If needed, increase grid resolution. Go to step (1)

(4) Find a seed and insert it into processing list

(5) Begin T-Surfaces model;

.While the processing list is not empty:

. Pop a point p from processing list

. Find the corresponding meta-cell(p)

. If meta-cell(p) is not in memory, read it

. Find I(p) and ∇ I ( p)

. Update p according to Eq. (7.14)

. Call insert neighbors( p)

.Update function χ

.Reparameterization of T-Surfaces (Section 7.2.3)

.If the termination condition is not reached, go to (4).

We shall observe that when the grid resolution of T-surfaces is (locally)

increased in step (3), the list L of active meta-cells remains unchanged and the

procedure to define the Object Characteristic Function does not change. Also,

we must observe that the isosurfaces are taken over the object characteristic

function field. Thus, there are no I/O operations in step (2).

7.8 Convergence of Deformable Models

and Diffusion Methods

Despite the capabilities of the segmentation approach in Section 7.5, the pro-

jection of T-surfaces can lower the precision of the final result. Following [49],

when T-surfaces stops, we can discard the grid and evolve the model without it

avoiding errors due to the projections.
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However, for noisy images the convergence of deformable models to the

boundaries is poor due to the nonconvexity of the image energy. This problem

can be addressed through diffusion techniques [18, 44, 52].

In image processing, the utilization of diffusion schemes is a common prac-

tice. Gaussian blurring is the most widely known. Other approaches are the

anisotropic diffusion [52] and the gradient vector flow [77].

From the viewpoint of deformable models, these methods can be used to im-

prove the convergence to the desired boundary. In the following, we summarize

these methods and conjecture their unification.

Anisotropic diffusion is defined by the following general equation:

∂ I (x, y, t)

∂t
= div (c (x, y, t)∇ I) , (7.29)

where I is a gray-level image [52].

In this method, the blurring on parts with high gradient can be made much

smaller than in the rest of the image. To show this property, we follow Perona

et al. [52]. Firstly, we suppose that the edge points are oriented in the x direction.

Thus, Eq. (7.29) becomes:

∂ I (x, y, t)

∂t
= ∂

∂x
(c (x, y, t) Ix (x, y, t)) . (7.30)

If c is a function of the image gradient: c(x, y, t) = g(Ix(x, y, t)), we can define

φ(Ix) ≡ g(Ix) · Ix and then rewrite Eq. (7.29) as:

It = ∂ I

∂t
= ∂

∂x
(φ(Ix)) = φ′(Ix) · Ixx. (7.31)

We are interested in the time variation of the slope: ∂ Ix

∂t
. If c(x, y, t) > 0 we

can change the order of differentiation and with a simple algebra demonstrate

that:

∂ Ix

∂t
= ∂ It

∂x
= φ′′ · I2

xx + φ′ · Ixxx.

At edge points we have Ixx = 0 and Ixxx ' 0 as these points are local maxima

of the image gradient intensity. Thus, there is a neighborhood of the edge point

in which the derivative ∂ Ix/∂t has sign opposite to φ′(Ix). If φ′(Ix) > 0 the slope

of the edge point decrease in time. Otherwise it increases, that means, border

becomes sharper. So, the diffusion scheme given by Eq. (7.29) allows to blur

small discontinuities and to enhance the stronger ones. In this work, we have
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used φ as follows:

φ =
(

∇ I(
1+ [‖∇ I‖ /K ]2)

)
, (7.32)

as shall see next.

In the above scheme, I is a scalar field. For vector fields, a useful diffusion

scheme is the gradient vector flow (GVF). It was introduced in [77] and can be

defined through the following equation [78]:

∂u

∂t
= ∇ · (g∇u)+ h (u− ∇ f ) , (7.33)

u(x, 0) = ∇ f

where f is a function of the image gradient (for example, P in Eq. (7.13)), and

g(x), h(x) are non-negative functions defined on the image domain.

The field obtained by solving the above equation is a smooth version of

the original one which tends to be extended very far away from the object

boundaries. When used as an external force for deformable models, it makes

the methods less sensitive to initialization [77] and improves their convergence

to the object boundaries.

As the result of steps (1)–(6) in Section 7.5 is in general close to the target, we

could apply this method to push the model toward the boundary when the grid

is turned off. However, for noisy images, some kind of diffusion (smoothing)

must be used before applying GVF. Gaussian diffusion has been used [77] but

precision may be lost due to the nonselective blurring [52].

The anisotropic diffusion scheme presented above is an alternative smooth-

ing method that can be used. Such observation points forward the possibility of

integrating anisotropic diffusion and the GVF in a unified framework. A straight-

forward way of doing this is allowing g and h to be dependent upon the vector

field u. The key idea would be to combine the selective smoothing of anisotropic

diffusion with the diffusion of the initial field obtained by GVF. Besides, we ex-

pect to get a more stable numerical scheme for noisy images.

Diffusion methods can be extended for color images. In [56, 57] such

a theory is developed. In what follows we summarize some results in this

subject.

Firstly, the definition of edges for multivalued images is presented [57]. Let

�(u1, u2, u3) : D ⊂ !3 → !m be a multivalued image. The difference of image

values at two points P = (u1, u2, u3) and Q = (u1 + du1, u2 + du2, u3 + du3) is
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given by d�:

d� =
i=3∑
i=1

∂�

∂ui
dui ⇒ d�2 =

i=3∑
i=1

j=3∑
j=1

〈
∂�

∂ui
,

∂�

∂uj

〉
duiduj, (7.34)

where d�2 is the square Euclidean norm of d�. The matrix composed of the

coefficients gij = 〈 ∂�
∂ui ,

∂�
∂uj 〉 is symmetric, and the extremes of the quadratic

form d�2 are obtained in the directions of the eigenvectors (θ+, θ−) of the

metric tensor [gij], and the values attained there are the corresponding maxi-

mum/minimum eigenvalues (λ+, λ−). Hence, a potential function can be defined

as [57]:

f (λ+, λ−) = λ+ − λ−, (7.35)

which recovers the usual edge definition for gray-level images: (λ+ =
‖∇ I‖2, λ− = 0 if m= 1).

Similarly to the gray-level case, noise should be removed before the edge map

computation. This can be done as follows [56, 57]. Given the directions θ±, we

can derive the corresponding anisotropic diffusion by observing that diffusion

occurs normal to the direction of maximal change θ+, which is given by θ−. Thus,

we obtain:

∂�

∂t
= ∂2�

∂θ−
, (7.36)

which means:

∂�1

∂t
= ∂2�1

∂θ−
, . . . ,

∂�m

∂t
= ∂2�m

∂θ−
. (7.37)

In order to obtain control over local diffusion, a factor gcolor is added:

∂�

∂t
= gcolor (λ+, λ−)

∂2�

∂θ−
, (7.38)

where gcolor can be a decreasing function of the difference (λ+ − λ−).

This work does not separate the vector into its direction (chromaticity) and

magnitude (brightness).

In [67], Tang et al. pointed out that, although good results have been reported,

chromaticity is not always well preserved and color artifacts are frequently ob-

served when using such a method. They proposed another diffusion scheme to

address this problem. The method is based on separating the color image � into

chromaticity and brightness, and then processing each one of these components
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with proper diffusion flows. By doing this, the following multiscale represen-

tation is proposed for 2D images, which can be straightforwardly extended to

3D. Let B : D ⊂ !2 ×!+ → !+ and C : D ⊂ !2 ×!+ → Sm−1, the image bright-

ness and chromaticity, respectively ((Sm−1) being the (m− 1)-dimensional unit

sphere), such that:

B(u1, u2, 0) =
√√√√ m∑

i=1

�i(u1, u2), (7.39)

C(u1, u2, 0) = 1
B(u1, u2, 0)

�(u1, u2) , (7.40)

and, at time t, the former will be given by the following anisotropic diffusion

flow:

∂ B

∂t
=

(
Bu1u1 B2

u2
− 2Bu1 Bu2 Bu1u2 + Bu2u2 B2

u1

)1/3

1+ ‖∇B‖ , (7.41)

which is motivated by the affine-invariant denoising method proposed in [51,

58]. The above flow can be interpreted by observing that the level sets of the

brightness function have curvature K that can be written as (see expression

(7.21) also):

K = Bu1u1 B2
u2
− 2Bu1 Bu2 Bu1u2 + Bu2u2 B2

u1

‖∇B‖3 . (7.42)

Thus, the desired effect is to get an affine-invariant diffusion without smoothing

the brightness field across edges (see [51, 57] for more details).

The chromaticity is the solution of the variational problem given by:

min

C : !2 → Sm−1

∫ ∫
D

‖∇C‖pdu1du2, (7.43)

where p ≥ 1 and ‖∇C‖ is:

‖∇C‖ =
[

m∑
i=1

((
∂Ci

∂u1

)2

+
(

∂Ci

∂u2

)2
)]1/2

. (7.44)

The scheme for the chromaticity comes from the theory of harmonic maps in

liquid crystals [66]. The optimization problem can be solved by Euler–Lagrange

equations or even in the content of weak solution. In [67] some results are

reported for 2D images and open questions related to the mathematical formu-

lation are presented.
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7.9 Experimental Results

In this section we present a set of results obtained with the methods presented

in Sections 7.5–7.8. The main application context is medical images.

7.9.1 Anisotropic Diffusion

Now, we demonstrated the utility of image diffusion methods in our work. We

take a synthetic 150× 150× 150 image volume composed of a sphere with a

radius of 30 and an ellipsoid with axes 45, 60, and 30 inside a uniform noise

specified by the image intensity range 0–150.

Figure 7.13 shows the result for steps (1)–(4) in Section 7.5, applied to

this volume after Gaussian diffusion (Fig. 7.13(a)), and anisotropic diffusion

(a) (b) (c)

(d) (e) (f)

Figure 7.13: (a) Result for steps (1)–(4) with Gaussian diffusion. (b) Cross sec-

tions of (a) for slice 40. (c) Cross section of final solution for slice 40. (d) Result

for steps (1)–(4) with anisotropic diffusion. (e) Cross sections of (d) for slice 40.

(f) Cross section of final solution when using anisotropic diffusion (slice 40).
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(Fig. 7.13(d)) defined by the equation:

∂ I

∂t
= div

(
∇ I(

1+ [‖∇ I‖ /K ]2)
)

, (7.45)

where the threshold K can be determined by a histogram of the gradient mag-

nitude. It was set to K = 300 in this example. The number of interactions of the

numerical scheme used [52] to solve this equation was 4.

Figures 7.13(b) and (e) show the cross section corresponding to the slice 40.

We observe that with anisotropic diffusion (Fig. 7.13(e)), the result is closer to

the boundary than with the Gaussian one (Fig. 7.13(b)).

Also, the final result is more precise when preprocessing with anisotropic

diffusion (Fig. 7.13(f)). This is expected because, according to Section 7.8,

Eq. (7.45) enables the blurring of small discontinuities (gradient magnitude be-

low K) as well as enhancement of edges (gradient magnitude above K).

Another point becomes clear in this example: The topological abilities

of T-surfaces enable the correction of the defects observed in the surface

extracted through steps (1)–(4). We observed that, after few interactions,

the method gives two closed components. Thus, the reconstruction becomes

better.

The T-surface parameters used are: c = 0.65, k = 1.32, and γ = 0.01. The grid

resolution is 5× 5× 5, freezing point is set to 15, and threshold T ∈ (120, 134)

in Eq. (7.12). The number of deformation steps for T-surfaces was 17. The model

evolution can be visualized in http://virtual01.lncc.br/ rodrigo/tese/elipse.html.

7.9.2 Artery Reconstruction

This section demonstrates the advantages of applying T-surfaces plus isosurface

methods. Firstly, we segment an artery from an 80× 86× 72 image volume ob-

tained from the Visible Human project. This is an interesting example because

the intensity pattern inside the artery is not homogeneous.

Figure 7.14(a) shows the result of steps (1)–(4) when using T ∈ (28, 32) to

define the object characteristic function (Eq. (7.27)). The extracted topology

is too different from that of the target. However, when applying T-surfaces the

obtained geometry is improved.

Figure 7.14(b) shows the result after the first step of evolution. The

merges among components improve the result. After four interactions of the
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(a) (b)

(c) (d)

Figure 7.14: (a) Result of steps (1)–(4) with grid 3× 3× 3. (b) T-surfaces evo-

lution (step 1). (c) Solution for initial grid. (d) Final solution for grid 1× 1× 1.

T-surfaces algorithm, the extracted geometry becomes closer to that of the tar-

get (Fig. 7.14(c)).

However, the topology remains different. The problem in this case is that

the used grid resolution is too coarse if compared with the separation between

branches of the structure. Thus, the flexibility of the model was not enough to

correctly perform the surface reconstruction.

The solution is to increase the resolution and to take the partial result of

Fig. 7.14(c) to initialize the model in the finer resolution. In this case, the correct

result is obtained only with the finest grid (1× 1× 1). Figure 7.14(d) shows the

desired result obtained after nine interactions. We also observe that new portions

of the branches were reconstructed due to the increase of T-surfaces flexibil-

ity obtained through the finer grid. We should emphasize that an advantage of
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(a) (b)

Figure 7.15: (a) Example showing an incorrect result. (b) Anisotropic diffusion

in a preprocessing phase improving final result.

the multiresolution approach is that at the lower resolution, small background

artifacts become less significant relative to the object(s) of interest. Besides, it

avoids the computational cost of using a finer grid resolution to get closer to the

target (see Section 7.4).

The T-surfaces parameters are γ = 0.01, k = 1.222, and c = 0.750. The total

number of evolution is 13. The number of triangular elements is 10 104 for the

highest resolution and the clock time was of the order of 3 min.

Sometimes, even the finest resolution may not be enough to get the correct

result. Figure 7.15(a) pictures such an example.

In this case, we segment an artery from a 155× 170× 165 image volume

obtained from the visible human project. The T-surfaces parameters are: c =
0.75, k = 1.12, γ = 0.3, grid resolution is 4× 4× 4, and freezing point is set to

10. The result of steps (1)–(6) is pictured in Fig. 7.15(a).

Among the proposals to address this problem (relax the threshold, mathemat-

ical morphology [59], etc.), we tested anisotropic diffusion [52]. The properties

of this method (Section 7.8) enable smoothing within regions in preference to

smoothing across boundaries. Figure 7.15(b) shows the correct result obtained

when preprocessing the image with anisotropic diffusion and then applying steps

(1)–(6).

7.9.3 Out-of-Core Segmentation

In this section, we attempt to experimentally demonstrate our out-of-core seg-

mentation technique. We consider three gray-level data sets and a 3D color image

(Table 7.1).
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Table 7.1: Statistics for preprocessing: number of meta-cells (no. of MC),

times for meta-cell generation (MC generation), gradient computation

(gradient), interval tree construction (IT), size of each meta-cell (MC size), and

size of the interval tree (IT size)

Data set Artery Artery2 Kidney ColorV

Size (MB) 3.37 20.97 4.57 63.08
No. of MC 125 1000 7600 125
MC generation (sec) 3 25 5 58
Gradient (sec) 16 88 24 1740
IT (sec) 0.5 0.5 0.5 1.5
Total (sec) 20 114 30 1801
MC size (kB) 343.04 285.696 8.2944 2718.72
IT size (kB) 38.62 379.13 938.95 176.01

As we already said, T-surfaces uses auxiliary and very memory consuming

data structures. We certainly can design optimizations. However, by now, we

had to use a machine with enough memory to manage the T-surfaces structures.

The machine used is Pentium III, 863 MHz with 512 MB of RAM and 768 MB of

swap space.

There are three main steps to be considered: preprocessing, isosurfaces gen-

eration, and T-surfaces evolution. Preprocessing encompasses the gradient com-

putation and meta-cell generation. Meta-cell generation is basically divided into

two steps: (a) mapping data points into meta-cells and writing data information

to the corresponding meta-cells; and (b) finding meta-intervals and computing

the interval tree. As can be seen in Table 7.1, preprocessing step can be expen-

sive due to the gradient computation. Also, we observe from this table that the

interval tree size (last row) is very much smaller than the bound computed in

Section 7.7 (8 MB).

Isosurfaces generation encompasses steps (1) and (2) of the algorithm in

Section 7.7. Table 7.2 reports some performance statistics for this step. In this

case, we use a data cache of 15 MB.

It is important to observe that, in general, the smaller the meta-cell size, the

faster the isosurface search. This fact is verified in Table 7.2 in which we vary

the number of meta-cells used for the kidney data set. For instance, when using

7600 meta-cells, the algorithm can fetch all the sets of active meta-cells from

disk. Thus, there are no extra I/O operations during step (1) of the segmentation
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Table 7.2: Statistics for isosurface generation on the kidney data set. This

table reports the number of meta-cells (no. of MC), number of active

meta-cells (activeMC), interval tree (IT) information, and total time for

isosurface generation (IsoTime). The data cache size used is 15 MB

No. of MC 7600 1000 288 125
ActiveMC 1140 474 256 125
IT size (kB) 938.95 203.56 61.23 21.25
IT time (sec) 1 1 1 1
IsoTime (sec) 13 15 15 20

algorithm. Also, the meta-cell technique minimizes the effect of the I/O bottle-

neck by reading from disk only those portions of the data necessary for step (1).

Besides, the time for an interval tree query was approximately 1 sec (“IT time” in

Table 7.2). As a consequence, if compared with the traditional implementation,

we observe a performance improvement of 2 sec when using 7600 meta-cells.

The final step, the T-surfaces evolution, is globally reported in Table 7.3 for

the kidney data set, maintaining the same partitions of Table 7.2. The quantity

“no. of I/O” reported in this table counts the number of times that the algorithm

reads a meta-cell from disk.

Again, the smaller the meta-cell size, the faster the whole process. Despite

the high number of I/O operations reported in row 2 of Table 7.3, we must

highlight that the total time for T-surfaces evolution without using the meta-cell

was 623 sec, against 600 sec for the worst case reported in Table 7.3. For the best

case, we observe a performance improvement of 120 sec, which is an important

result. The final surface (Fig. 7.16(c)) has 34 624 triangular elements.

Table 7.3: T-surfaces in the kidney data set. This table reports the

number of meta-cells (no. of MC), of number I/O operations (no. of

I/O), number of meta-cells that have been cut (CutMC), and the

total clock time for evolution (time). The data cache size is 15 MB

and the number of interactions is 16

No. of MC 7600 1000 288 125
No. of I/O 1244 4780 1818 1458
CutMC 1074 325 125 70
Time (sec) 503 570 584 600
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(a) (b) (c)

Figure 7.16: Extracted surfaces for: (a) artery data set; (b) artery2; and (c) kid-

ney data set.

The number of I/O operations is a problem that we must address in future

works. If we compare the “no. of I/O” with the number of meta-cells that the

T-surfaces cuts during evolution (cutMC, in row 3), we observe that we should

look for more efficient schemes for memory management.

The parameters used in the T-surfaces for the above experiments are: grid 4×
4× 4, freezing point = 10, γ = 0.01, k = 1.222, c = 0.750. The intensity pattern

of the targets is given by the following ranges: [10, 22] for data set, [195, 255] for

kidney, and [15, 30] for artery2. Figure 7.16 shows the extracted surfaces.

The data set artery2 is a gray-level version of a volume obtained from the

Visible Human project. The ColorV data set, mentioned in Table 7.1, is the same

volume, but in its original color (RGB). We apply our method for this volume,

just using one threshold for each color channel [7] and using the color edge

definition given in Section 7.8.

The Visual Human project encompasses a huge color data set of human body.

For 125 meta-cells, we found R, G, and B interval trees with 64.75 kB, 65.67 kB

and 45.59 kB, respectively, given the total size of 176.01 kB reported in Table 7.1.

The preprocessing time is much higher now (29 min) due to the number of

operations required to compute the gradient.

7.10 Discussion and Perspectives

When considering automatic initialization for deformable models, some aspects

must be taken into account. The target topology may be corrupted due to inho-

mogeneities of the image field or gradient discontinuities. Besides, the obtained
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curves/surfaces are in general not smooth, presenting defects such as protru-

sions, concavities, or even holes (for surfaces) due to image irregularities.

These problems can be addressed through an efficient presegmentation.

For instance, when reconstructing the geometry of the human cerebral cor-

tex, Prince et al. [76] used a fuzzy segmentation method (Adaptive Fuzzy C-

Means) to obtain the following elements: a segmented field which provides a

fuzzy membership function for each tissue class; the mean intensity of each

class; and the inhomogeneity of the image, modeled as a smoothly varying gain

field (see [76] and references therein). The result can be used to steer the iso-

surface extraction process as well as the deformable model, which is initial-

ized by the obtained isosurface. We have used a similar approach as described

in [33].

Moreover, the image forces may not be strong enough to push the model

toward the object boundary. Even the balloon model in Eq. (7.9) cannot deal

with such a problem because it is difficult to predict if the target is inside or

outside the isosurface (see Fig. 7.6). So, it makes harder to accurately define the

normal force field. The GVF (Section 7.8) can be used to generate an image force

field that improves the convergence of the model toward the boundary. GVF is

sensitive to noise and artifacts but we can achieve good results for presegmented

images [77, 78].

Now, we will compare our segmentation approach (Section 7.5) to that pro-

posed in [47]. In that reference, a set of small spherical T-snakes is uniformly

distributed over the image. These curves progressively expand/merge to recover

the geometry of interest. The same can be done for 3D.

Our approach can be considered an improvement of that one described in

[47]. Our basic argument is that we should use the threshold to get seeds closer

to the objects of interest. Thus, we avoid expanding time evolving surfaces

far from the target geometry. Besides, we have observed an improvement in

the performance of the segmentation process if compared with the traditional

initialization of T-surfaces (an implicit defined surface inside the object) [49].

Our method is adaptive in the sense that we can increase the T-surfaces grid

resolution where it is necessary. As the T-surfaces grid controls the density of

the polygonal surfaces obtained, the number of triangular elements gets larger

inside these regions. That increase in density is not due to boundary details but

because the outer scale corresponding to the separation between the objects is

too fine (as in Fig. 7.9). This is a disadvantage of our approach.
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Such a problem would be avoided if we could define significant areas along

the surfaces and then apply the refinement only in the regions around them.

However, it is difficult to automatically perform this task.

As a consequence, polygonal meshes generated by the T-surface method may

not be efficient for some further applications. For instance, for finite element

purposes, small triangles must be removed. Consequently, filtering mesh pro-

cedures must be applied in order to improve the surface. Mesh smoothing and

denoising filtering methods, such as those proposed in [68], could also be useful

in this postprocessing step.

We tested the precision of our approach when segmenting a sphere immersed

on a uniform noise specified by the image intensity range [0, 150]. We found a

mean error of 1.58 (pixels) with standard deviation of 2.49 for a 5× 5× 5 grid

resolution, which we consider acceptable in this case.

This error is due to the projection of T-surfaces as well as the image noise.

Following [49, 50], when T-surfaces stops, we can discard the grid and evolve

the model without it, avoiding errors due to the projections. However, for noisy

images, the convergence of deformable models to the boundaries is poor due to

the nonconvexity of the image energy [31].

Anisotropic diffusion applied to 3D images can improve the result, as already

demonstrated in Sections 7.8 and 7.9.1. The gradient vector flow (see Section 7.8)

can also be applied when the grid is turned off.

Now, let us consider the following question: Would it be possible to imple-

ment the reconstruction method through level sets? The relevance of it will be

clear in what follows.

The initialization of the model through expression (7.20) is computation-

ally expensive and not efficient if we have more than one front to initialize

[75].

The narrow-band technique is much more appropriate for this case. The key

idea of this technique comes from the observation that the front can be moved

by updating the level set function at a small set of points in the neighborhood

of the zero set instead of updating it at all the points in the domain (see [46, 61]

for details).

To implement this scheme, we need to pre-set a distance �d to define the

narrow band. The front can move inside the narrow band until it collides with the

narrow-band frontiers. Then, the function G should be reinitialized by treating

the current zero set configuration as the initial one.
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Also, this method can be made cheaper by observing that the grid points that

do not belong to the narrow band can be treated as sign holders [46], following

the same idea of the characteristic function of T-surfaces (Section 7.2.3). Thus,

the result of steps (1)–(5) in Section 7.5 can be used to initialize the level sets

model if the narrow-band extension technique is applied.

The proposed out-of-core method for segmentation must be analyzed against

usual procedures to deal with memory limitations when segmenting a 3D image.

General-purpose methods, such as streaming of Visualization Toolkit and

virtual memory of operating systems, have demonstrated less efficiency for sci-

entific visualization applications [24] than the meta-cell technique. The results

in Section 7.9 show that the same happens for 3D image segmentation.

Among the special-purpose methods, the simplest strategy would be to sub-

divide the region of interest in a set of subregions and then segment the structure

in each one at a time. Besides being a very tedious procedure, some additional

work must be done to put the extracted components together in order to com-

plete the reconstruction.

Another possibility would be to segment 2D slices, extract the corresponding

contours, and then reconstruct the surface through the obtained curves. This is

particularly difficult for artery segmentation, a case of interest, due to their tree

structures and branching characteristics.

On the other hand, having once segmented slice by slice, each 2D image

could be binarized (1 inside the extracted contours and 0 otherwise). The ob-

tained binary field could fit in the main memory and then the reconstruction

performed through an isosurface extraction method. However, the obtained

polygon mesh may not be smooth. The application of mesh smoothing pro-

cedures [68] may not be efficient if the data set information is not taken into

account. But, if it does not fit into the computer memory, we return to the original

problem.

The preprocessing step is very simple for the meta-cell technique applied

to image volumes because the data set is regular. The algorithm presented in

graphics.cs.ucdavis.edu/research/Slicer.html has a longer preprocessing step.

New experiments must be performed to compare both approaches.

Potentially, the most common deformable surface models (energy-

minimizing, dynamic deformable surfaces and balloons [48]) can be made out-

of-core by using the meta-cell technique. Basically, it can be performed by main-

taining the traditional algorithms, by choosing explicit methods to solve the
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evolution equations (e.g., expression (7.14)), and using the processing list to

guarantee locality during evolution.

Other interesting perspectives for our work are out-of-core implementations

of other techniques such as region growing (for segmentation) and level sets (for

surface reconstruction).

To show this, let us consider a simple region growing algorithm, which

takes a seed point p, and find out the connected set: {q ∈ Image; |I(q)−
I(p)| ≤ ε}. At run-time, we traverse the interval tree and find the active meta-

cells. Then, we fill the data cache and perform usual region growing opera-

tions [40], but calling insert neighbors for each point p incorporated to the

region.

Besides, level sets can be made out-of-core by using the narrow-band tech-

nique described above. In this case, it is just a matter of observing that the level

sets algorithm would only need the image information inside the narrow band.

Henceforth, an out-of-core implementation can be provided.

7.11 Conclusions

Deformable models offer an attractive approach for geometry recovery and

tracking because these models are able to represent complex and broad shapes

variability, particularly in the context of medical imaging.

Despite their capabilities, traditional deformable models suffer from the

strong sensitivity to the initial contour position and topological limitations.

Among the possibilities to address these problems, we follow the research

line that uses a two-step approach: Firstly, a rough approximation of the

boundary is taken. Secondly, the obtained geometry is improved by a topo-

logically adaptable deformable model. The reconstruction method presented in

Section 7.5 is a result of our research in this direction.

We have used the T-surfaces model but it is pointed out that level sets could

also be used. When T-surfaces stops, we can discard the grid and evolve the

model without it to avoid errors due to the projections. Now, GVF can be useful

to improve the convergence toward the boundary.

Also, when using deformable surfaces, memory limitations can lower the

performance of segmentation applications for large 3D images. Few works have

been done to address this problem.
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We show that the meta-cell technique is the most suitable data structure to

perform out-of-core implementations of segmentation methods. Next, we take

advantage of the meta-cell method to present an out-of-core implementation of

the segmentation approach presented in Section 7.5.

The experimental results presented in Section 7.9 demonstrate the potential

of the segmentation approach in Section 7.5 when augmented with diffusion and

out-of-core techniques. This is emphasized with the discussion and perspectives

in Section 7.10.

Questions

1. The static formulation of the original snake model is given by the mini-

mization of the energy functional

E : Ad → !,

E (c) = E1(c (s))+ E2(c(s)) ,

defined in Section 7.2.1. Supposing that c ∈ C4, show that the Euler–

Lagrange equations become:

− (
w1c′(s)

)′ + (
w2c′′(s)

)′′ + ∇P(c(s)) = 0.

2. Discuss the effect of the parameters w1 and w2 over the original snake

model in exercise 1 by using the following equations for a curve c:

dc

dα
= −→T ,

d2c

dα2
= K

−→
N ,

where α is the arc length, K is the curvature, and
−→
T and

−→
N are the

unitary tangent and normal vectors, respectively.

3. Show that the original snake model is not invariant under affine trans-

formations given by the general form:⎛⎜⎝u

v

1

⎞⎟⎠ =

⎛⎜⎝a11 a12 b1

a21 a22 b2

0 0 1

⎞⎟⎠ ·
⎛⎜⎝ x

y

1

⎞⎟⎠ .

4. Discuss the role of the characteristic function for the T-surfaces model.
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5. Let us consider a characteristic function in f : !2 → {0, 1} defined over

a CF triangulation of !2. In this case, given a triangle, it can be verified

(do it as an exercise) that it has exactly two transverse edges or it does

not have transverse edges. Based on this property, write a pseudocode

for an algorithm to generate the polygonal curves, after computing the

intersections with the triangulation (see Section 7.2.3).

6. Would it be possible to design a T-surfaces model based on a cellular de-

composition of the image domain? What would be the advantages over the

traditional T-surfaces?

7. Choose a gray scale image, binarize it applying several values of thresh-

olds. Later, with the same initial image, apply the following sequence of

operations and compare the results: Canny’s edge detector of thresholds 30

and 80; invert the result; apply over the result the erosion operation with a

cross structuring element. Observe the isolated regions with other values

of thresholds of your choice.

8. Choose a binary image, apply the following sequence of operations and

describe the net effect (B is the structuring element of your choice):

(a) XB = (X # B)⊕ B

(b) XB = (X ⊕ B)# B

(c) XB = X/(X # B)

(d) XB = (X # Bob)/(X ⊕ Bbk), where Bob is the set formed from pixels

in B that should belong to the object, and Bbk is the set formed from pixels

in B that should belong to the background.

9. Considering the implicit representation of a curve, G(x, y) = 0, show that

the normal −→n and the curvature K can be computed by:

−→n = ∇G(x, y) , K = ∇ ·
( ∇G (x, y)
‖∇G (x, y)‖

)
,

respectively, where the gradient and the divergent (∇·) are computed with

respect to the spatial coordinates (x, y).
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10. Take the anisotropic diffusion scheme (see Section 7.8):

∂φ

∂t
= div

(
∇ I(

1+ [‖∇ I‖ /T]2)
)

.

Show that if ‖∇ I‖ < T, the edges are blurring and if ‖∇ I‖ > T they become

sharper.

11. Let us suppose h and g as constants in the GVF model given by the equation:

∂u

∂t
= g�u+ h(∇ f − u).

Consider the stationary solution and take the Fourier transform of the

corresponding stationary equation to analyze the GVF in the frequency

space.
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Chapter 8

Level Set Segmentation of

Biological Volume Datasets

David Breen1, Ross Whitaker 2, Ken Museth3, and Leonid Zhukov4

8.1 Introduction

This chapter addresses the common problem of building meaningful 3D models

of complex structures from noisy datasets generated from 3D imaging devices.

In certain circumstances such data can be visualized directly [1–4]. While direct

techniques can provide useful insights into volume data, they are insufficient for

many problems. For instance, direct volume rendering techniques typically do

not remove occluding structures, i.e., they do not allow one to “peel back” the

various layers of the data to expose the inner structures that might be of interest.

They also do not generate the models needed for quantitative study/analysis of

the visualized structures. Furthermore, direct visualization techniques typically

do not perform well when applied directly to noisy data, unless one filters the

data first. Techniques for filtering noisy data are abundant in the literature, but

there is a fundamental limitation—filtering that reduces noise tends to distort

the shapes of the objects in the data. The challenge is to find methods which

present the best trade-off between fidelity and noise.

Level set segmentation relies on a surface-fitting strategy, which is effective

for dealing with both small-scale noise and smoother intensity fluctuations in

1 Department of Computer Science, Drexel University, Philadelphia, PA 19104, USA
2 School of Computing, University of Utah, Salt Lake City, UT 84112, USA
3 Department of Science and Technology, Linkoeping University, 601 74 Norrkoeping,

Sweden
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volume data. The level set segmentation method, which is well documented in

the literature [5–8], creates a new volume from the input data by solving an initial

value partial differential equation (PDE) with user-defined feature-extracting

terms. Given the local/global nature of these terms, proper initialization of the

level set algorithm is extremely important. Thus, level set deformations alone are

not sufficient, they must be combined with powerful initialization techniques in

order to produce successful segmentations. Our level set segmentation approach

consists of defining a set of suitable preprocessing techniques for initialization

and selecting/tuning different feature-extracting terms in the level set algorithm.

We demonstrate that combining several preprocessing steps, data analysis and

level set deformations produce a powerful toolkit that can be applied, under the

guidance of a user, to segment a wide variety of volumetric data.

There are more sophisticated strategies for isolating meaningful 3D struc-

tures in volume data. Indeed, the so-called segmentation problem constitutes

a significant fraction of the literature in image processing, computer vision,

and medical image analysis. For instance, statistical approaches [9–12] typically

attempt to identify tissue types, voxel by voxel, using a collection of measure-

ments at each voxel. Such strategies are best suited to problems where the data

is inherently multivalued or where there is sufficient prior knowledge [13] about

the shape or intensity characteristics of the relevant anatomy. Alternatively,

anatomical structures can be isolated by grouping voxels based on local image

properties. Traditionally, image processing has relied on collections of edges,

i.e. high-contrast boundaries, to distinguish regions of different types [14–16].

Furthermore deformable models, incorporating different degrees of domain-

specific knowledge, can be fitted to the 3D input data [17, 18].

This chapter describes a level set segmentation framework, as well as the the

preprocessing and data analysis techniques needed to segment a diverse set of

biological volume datasets. Several standard volume processing algorithms have

been incorporated into framework for segmenting conventional datasets gener-

ated from MRI, CT, and TEM scans. A technique based on moving least-squares

has been developed for segmenting multiple nonuniform scans of a single object.

New scalar measures have been defined for extracting structures from diffusion

tensor MRI scans. Finally, a direct approach to the segmentation of incomplete

tomographic data using density parameter estimation is described. These tech-

niques, combined with level set surface deformations, allow us to segment many

different types of biological volume datasets.
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8.2 Level Set Surface Models

When considering deformable models for segmenting 3D volume data, one is

faced with a choice from a variety of surface representations, including triangle

meshes [19, 20], superquadrics [21–23], and many others [18, 24–29]. Another

option is an implicit level set model, which specifies the surface as a level set

of a scalar volumetric function, φ : U (→ IR, where U ⊂ IR3 is the range of the

surface model. Thus, a surface S is

S = {s|φ(s) = k} , (8.1)

with an isovalue k. In other words, S is the set of points s in IR3 that composes

the kth isosurface of φ. The embedding φ can be specified as a regular sampling

on a rectilinear grid.

Our overall scheme for segmentation is largely based on the ideas of Osher

et al. [30] that model propagating surfaces with (time-varying) curvature-

dependent speeds. The surfaces are viewed as a specific level set of a higher

dimensional function φ—hence the name level set methods. These methods

provide the mathematical and numerical mechanisms for computing surface

deformations as isovalues of φ by solving a partial differential equation on the

3D grid. That is, the level set formulation provides a set of numerical methods

that describes how to manipulate the grayscale values in a volume, so that the

isosurfaces of φ move in a prescribed manner (shown in Fig. 8.1). This chapter

does not present a comprehensive review of level set methods, but merely

introduces the basic concepts and demonstrates how they may be applied to

(a) (b)

Figure 8.1: (a) Level set models represent curves and surfaces implicitly using

grayscale images. For example, an ellipse is represented as the level set of an

image shown here. (b) To change the shape of the ellipse we modify the grayscale

values of the image by solving a PDE.
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the problem of volume segmentation. For more details on level set methods

see [7, 31].

There are two different approaches to defining a deformable surface from

a level set of a volumetric function as described in Eq. (8.1). Either one can

think of φ(s) as a static function and change the isovalue k(t) or alternatively

fix k and let the volumetric function dynamically change in time, i.e. φ(s, t).

Thus, we can mathematically express the static and dynamic models respecti-

vely as

φ(s) = k(t), (8.2a)

φ(s, t) = k. (8.2b)

To transform these definitions into partial differential equations which can be

solved by standard numerical techniques, we differentiate both sides of Eq. (8.2)

with respect to time t, and apply the chain rule:

∇φ(s)
ds

dt
= dk(t)

dt
, (8.3a)

∂φ(s, t)
∂t

+ ∇φ(s, t) · ds

dt
= 0. (8.3b)

The static equation (8.3a) defines a boundary value problem for the time-

independent volumetric function φ. This static level set approach has been

solved [32,33] using “Fast Marching Methods.” However, it inherently has some

serious limitations following the simple definition in Eq. (8.2a). Since φ is a func-

tion (i.e. single-valued), isosurfaces cannot self-intersect over time, i.e. shapes

defined in the static model are strictly expanding or contracting over time. How-

ever, the dynamic level set approach of eq. (8.3b) is much more flexible and shall

serve as the basis of the segmentation scheme in this chapter. Equation (8.3b)

is sometimes referred to as a “Hamilton–Jacobi-type” equation and defines an

initial value problem for the time-dependent φ. Throughout the remainder of this

chapter we shall, for simplicity, refer to this dynamical approach as the level set

method, and not consider the static alternative.

Thus, to summarize the essence of the (dynamic) level set approach, let

ds/dt be the movement of a point on a surface as it deforms, such that it can be

expressed in terms of the position of s ∈ U and the geometry of the surface at

that point, which is, in turn, a differential expression of the implicit function, φ.
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This gives a partial differential equation on φ: s≡ s(t)

∂φ

∂t
= −∇φ · ds

dt
= ‖∇φ‖ F(s, n, φ, Dφ, D2φ, . . .), (8.4a)

F() ≡ n · ds

dt
, (8.4b)

where F() is a user-created “speed” term that defines the speed of the level set

at point s in the direction of the local surface normal n at s. F() may depend

on a variety of local and global measures including the order-n derivatives of

φ, Dnφ, evaluated at s, as well as other functions of s, n, φ, and external data.

Because this relationship applies to every level set of φ, i.e. all values of k, this

equation can be applied to all of U , and therefore the movements of all the level

set surfaces embedded in φ can be calculated from Eq. (8.4).

The level set representation has a number of practical and theoretical advan-

tages over conventional surface models, especially in the context of deformation

and segmentation. First, level set models are topologically flexible, they easily

represent complicated surface shapes that can form holes, split to form multiple

objects, or merge with other objects to form a single structure. These models

can incorporate many (millions) degrees of freedom, and therefore they can ac-

commodate complex shapes such as the dendrite in Fig. 8.7. Indeed, the shapes

formed by the level sets of φ are restricted only by the resolution of the sampling.

Thus, there is no need to reparameterize the model as it undergoes significant

changes in shape.

The solutions to the partial differential equations described above are com-

puted using finite differences on a discrete grid. The use of a grid and discrete

time steps raises a number of numerical and computational issues that are impor-

tant to the implementation. However, it is outside of the scope of this chapter to

give a detailed mathematical description of such a numerical implementation.

Rather we shall provide a summary in a later section and refer to the actual

source code which is publicly available5.

Equation (8.4) can be solved using finite forward differences if one uses the

up-wind scheme, proposed by Osher et al. [30], to compute the spatial deriva-

tives. This up-wind scheme produces the motion of level set models over the

entire range of the embedding, i.e., for all values of k in Eq. (8.2). However, this

5 The level set software used to produce the morphing results in this chapter is available
for public use in the VISPACK libraries at http://www.cs.utah.edu/∼whitaker/vispack.
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method requires updating every voxel in the volume for each iteration, which

means that the computation time increases as a function of the volume, rather

than the surface area, of the model. Because segmentation requires only a sin-

gle model, the calculation of solutions over the entire range of isovalues is an

unnecessary computational burden.

This problem can be avoided by the use of narrow-band methods, which

compute solutions only in a narrow band of voxels that surround the level set of

interest [34, 35]. In a previous work [36] we described an alternative numerical

algorithm, called the sparse-field method, that computes the geometry of only

a small subset of points in the range and requires a fraction of the computation

time required by previous algorithms. We have shown two advantages to this

method. The first is a significant improvement in computation times. The second

is increased accuracy when fitting models to forcing functions that are defined

to subvoxel accuracy.

8.3 Segmentation Framework

The level set segmentation process has two major stages, initialization and level

set surface deformation, as shown in Fig. 8.2. Each stage is equally important for

generating a correct segmentation. Within our framework a variety of core oper-

ations are available in each stage. A user must “mix-and-match” these operations

in order to produce the desired result [37]. Later sections describe specialized

operations for solving specific segmentation problems that build upon and ex-

tend the framework.

Figure 8.2: Level set segmentation stages—initialization and surface

deformation.



Level Set Segmentation of Biological Volume Datasets 421

8.3.1 Initialization

Because level set models move using gradient descent, they seek local solutions,

and therefore the results are strongly dependent on the initialization, i.e., the

starting position of the surface. Thus, one controls the nature of the solution

by specifying an initial model from which the surface deformation process pro-

ceeds. We have implemented both computational (i.e. “semi-automated”) and

manual/interactive initialization schemes that may be combined to produce rea-

sonable initial estimates directly from the input data.

Linear filtering: We can filter the input data with a low-pass filter (e.g. Gaussian

kernel) to blur the data and thereby reduce noise. This tends to distort

shapes, but the initialization need only be approximate.

Voxel classification: We can classify pixels based on the filtered values of the

input data. For grayscale images, such as those used in this chapter, the

classification is equivalent to high and low thresholding operations. These

operations are usually accurate to only voxel resolution (see [12] for alter-

natives), but the deformation process will achieve subvoxel results.

Topological/logical operations: This is the set of basic voxel operations that

takes into account position and connectivity. It includes unions or intersec-

tions of voxel sets to create better initializations. These logical operations

can also incorporate user-defined primitives. Topological operations consist

of connected-component analyses (e.g. flood fill) to remove small pieces or

holes from objects.

Morphological filtering: This includes binary and grayscale morphological op-

erators on the initial voxel set. For the results in the chapter we imple-

ment openings and closings using morphological propagators [38,39] imple-

mented with level set surface models. This involves defining offset surfaces

of φ by expanding/contracting a surface according to the following PDE,

∂φ

∂t
= ±|∇φ|, (8.5)

up to a certain time t. The value of t controls the offset distance from the

original surface of φ(t = 0). A dilation of size α, Dα , corresponds to the

solution of Eq. (8.5) at t = α using the positive sign, and likewise erosion, Eα ,

uses the negative sign. One can now define a morphological opening operator
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Figure 8.3: (a) Interactively positioning a CSG model relative to a Marching

Cubes mesh. (b) Isosurface of a binary scan conversion of the initialization CSG

model. (c) Final internal embryo structures.

Oα by first applying an erosion followed by a dilation of φ, i.e. Oαφ = Dα ◦
Eαφ, which removes small pieces or thin appendages. A closing is defined

as Cαφ = Eα ◦ Dαφ, and closes small gaps or holes within objects. Both

operations have the qualitative effect of low-pass filtering the isosurfaces in

φ—an opening by removing material and a closing by adding material. Both

operations tend to distort the shapes of the surfaces on which they operate,

which is acceptable for the initialization because it will be followed by a

surface deformation.

User-specified: For some applications it is desirable and easier for the user to

interactively specify the initial model. Here, the user creates a Constructive

Solid Geometry (CSG) model which defines the shape of the initial surface.

In Fig. 8.3(a) the CSG model in blue is interactively positioned relative to a

Marching Cubes mesh extracted from the original dataset. The CSG model is

scan-converted into a binary volume, with voxels simply marked as inside (1)

or outside (0), using standard CSG evaluation techniques [40]. An isosurface

of the initialization volume dataset generated from the torus and sphere is

presented in Fig. 8.3(b). This volume dataset is then deformed to produce

the final result seen in Fig. 8.3(c).

8.3.2 Level Set Surface Deformation

The initialization should position the model near the desired solution while re-

taining certain properties such as smoothness, connectivity, etc. Given a rough

initial estimate, the surface deformation process moves the surface model to-
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ward specific features in the data. One must choose those properties of the

input data to which the model will be attracted and what role the shape of the

model will have in the deformation process. Typically, the deformation process

combines a data term with a smoothing term, which prevents the solution from

fitting too closely to noise-corrupted data. There are a variety of surface-motion

terms that can be used in succession or simultaneously, in a linear combination

to form F(x) in Eq. (8.4).

Curvature: This is the smoothing term. For the work presented here we use the

mean curvature of the isosurface H to produce

Fcurv(x) = H =
(
∇ · ∇φ

|∇φ|
)

. (8.6)

The mean curvature is also the normal variation of the surface area (i.e., min-

imal surface area). There are a variety of options for second-order smoothing

terms [41], and the question of efficient, effective higher-order smoothing

terms is the subject of ongoing research [7, 31, 42]. For the work in this

chapter, we combine mean curvature with one of the following three terms,

weighting it by a factor β, which is tuned to each specific application.

Edges: Conventional edge detectors from the image processing literature pro-

duce sets of “edge” voxels that are associated with areas of high contrast. For

this work we use a gradient magnitude threshold combined with nonmaxi-

mal suppression, which is a 3D generalization of the method of Canny [16].

The edge operator typically requires a scale parameter and a gradient thresh-

old. For the scale, we use small, Gaussian kernels with standard deviation

σ = [0.5, 1.0] voxel units. The threshold depends on the contrast of the vol-

ume. The distance transform on this edge map produces a volume that has

minima at those edges. The gradient of this volume produces a field that

attracts the model to these edges. The edges are limited to voxel resolution

because of the mechanism by which they are detected. Although this fitting

is not sub-voxel accurate, it has the advantage that it can pull models toward

edges from significant distances, and thus inaccurate initial estimates can

be brought into close alignment with high-contrast regions, i.e. edges, in the

input data. If E is the set of edges, and DE(x) is the distance transform to

those edges, then the movement of the surface model is given by

Fedge(x) = n · ∇DE(x). (8.7)



424 Breen, Whitaker, Museth, and Zhukov

Grayscale features—gradient magnitude: Surface models can also be attracted

to certain grayscale features in the input data. For instance, the gradient

magnitude indicates areas of high contrast in volumes. By following the

gradient of such grayscale features, surface models are drawn to minimum

or maximum values of that feature. Typically, grayscale features, such as the

gradient magnitude, are computed with a scale operator, e.g., a derivative-of-

Gaussian kernel. If models are properly initialized, they can move according

to the gradient of the gradient magnitude and settle onto the edges of an

object at a resolution that is finer than the original volume.

If G(x) is some grayscale feature, for instance G(x) = |∇ I(x)|, where

I(x) is the input data (appropriately filtered—we use Gaussian kernels with

σ ≈ 0.5), then

Fgrad(x) = n · (±∇G(x)), (8.8)

where a positive sign moves surface toward maxima and the negative sign

toward minima.

Isosurface: Surface models can also expand or contract to conform to isosur-

faces in the input data. To a first order approximation, the distance from a

point x ∈ U to the k-level surface of I is given by (I(x)− k) /|∇ I|. If we let

g(α) be a fuzzy threshold, e.g., g(α) = α/
√

1+ α2, then

Fiso(x) = g

(
I(x)− k

|∇ I|
)

(8.9)

causes the surfaces of φ to expand or contract to match the k isosurface

of I . This term combined with curvature or one of the other fitting terms

can create “quasi-isosurfaces” that also include other considerations, such

as smoothness or edge strength.

8.3.3 Framework Results

Figure 8.4 presents one slice from an MRI scan of a mouse embryo, and an

isosurface model of its liver extracted from the unprocessed dataset. Figure 8.5

presents 3D renderings of the sequence of steps performed on the mouse MRI

data to segment the liver. The first step is the initialization, which includes

smoothing the input data, thresholding followed by a a flood fill to remove

isolated holes, and finally applying morphological operators to remove small

gaps and protrusions on the surface. The second (surface deformation) step
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Figure 8.4: (Left) one slice of a 256× 128× 128 MR scan of a mouse embryo.

The central dark structure is its liver. (Right) a dual-threshold surface rendering

highlights the segmentation problem.

first involves fitting to discrete edges and then to the gradient magnitude. This

produces a significant improvement over the result in Fig. 8.4. Figure 8.8(a)

presents several other structures that were segmented from the mouse embryo

dataset. The skin (gray) and the liver (blue) were isolated using computational

initialization. The brain ventricles (red) and the eyes (green) were segmented

with interactive initialization.

The same set of initialization and surface deformation steps may be com-

bined to extract a model of a spiny dendrite from the transmission electron

microscopy (TEM) scan presented in Fig. 8.6(a). An isosurface extracted from

the scan is presented in Fig. 8.6(b). Figure 8.7 shows the results of the pro-

posed method compared to the results of a manual segmentation, which took

approximately 10 hours of slice-by-slice hand contouring. The manual method

suffers from slice-wise artifacts, and, because of the size and complexity of the

dataset, the manual segmentation is unable to capture the level of detail that

we obtain with the surface-fitting results. Manual segmentation can, however,

form connections that are not well supported by the data in order to complete

Figure 8.5: (Left) the initialization of a mouse liver dataset using morphology

to remove small pieces and holes. (Center) surface fitting to discrete edges.

(Right) the final fit to maxima of gradient magnitude.
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(a) (b)

Figure 8.6: (a) One slice of a 154× 586× 270 TEM scan of a spiny den-

drite shows low contrast and high noise content in a relatively complex

dataset. (b) An isosurface rendering, with prefiltering, shows how noise and

inhomogeneities in density interfere with visualizing the 3D structure of the

dendrite.

Figure 8.7: (Top) rendering of a dendrite segmented using our pro-

posed method. (Bottom) rendering of a manual segmentation of the same

dendrite.
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the “spines” that cover this dendrite. These types of “judgments” that humans

make when they perform such tasks by hand are a mixed blessing. Humans can

use high-level knowledge about the problem to fill in where the data is weak,

but the expectations of a trained operator can interfere with seeing unexpected

or unusual features in the data.

Figure 8.8(c) presents models from four samples of an MR series of a devel-

oping frog embryo. The top left image (hour 9) shows the first evident structure,

the blastocoel, in blue, surrounded by the outside casing of the embryo in gray.

(a)

(b)

(c)

Figure 8.8: (a) Final mouse embryo model with skin (gray), liver (blue), brain

ventricles (red), and eyes (green). (b) Hour 16 dataset. (c) Geometric structures

extracted from MRI scans of a developing frog embryo, with blastocoel (blue),

blastoporal lip (red), and archenteron (green). Hour 9 (top left), hour 16 (top

right), hour 20 (bottom left), and hour 30 (bottom right).
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Table 8.1: Parameters for processing example datasets

Dataset Initialization Surface Fitting

Dendrite 1. Gaussian blur σ = 0.5 1. Edge fitting: σ = 0.75, threshold = 6, β = 0.1
2. Threshold: I < 127 2. Gradient magnitude fitting: σ = 0.5, β = 1.0
3. Fill isolated holes
4. Morphology: O0.5 ◦ C1.5

Mouse 1. Gaussian blur σ = 0.5 1. Edge fitting: σ = 0.75, threshold = 20, β = 2
2. Threshold: I > 3, I < 60 2. Gradient magnitude fitting: σ = 0.5, β = 16.0
3. Fill isolated holes
4. Morphology: O2.0 ◦ C3.0

Frog 1. Interactive 1. Gradient magnitude fitting: σ = 1.25, β = 1.0

The top right image (hour 16) demonstrates the expansion of the blastocoel

and the development of the blastoporal lip in red. In the bottom left image (hour

20) the blastoporal lip has collapsed, the blastocoel has contracted, and the

archenteron in green has developed. In the bottom right image (hour 30) the

blastocoel has collapsed and only the archenteron is present. For this dataset

it was difficult to isolate structures only based on their voxel values. We there-

fore used our interactive techniques to isolate (during initialization) most of the

structures in the frog embryo samples.

Table 8.1 describes for each dataset the specific techniques and parameters

we used for the results in this section. These parameters were obtained by first

making a sensible guess based on the contrasts and sizes of features in the data

and then using trial and error to obtain acceptable results. Each dataset was

processed between four and eight times to achieve these results. More tuning

could improve things further, and once these parameters are set, they work

moderately well for similar modalities with similar subjects. The method is it-

erative, but the update times are proportional to the surface area. On an SGI

180 MHz MIPS 10000 machine, the smaller mouse MR dataset required approx-

imately 10 min of CPU time, and the dendrite dataset ran for approximately 45

min. Most of this time was spent in the initialization (which requires several

complete passes through the data) and in the edge detection. The frog embryo

datasets needed only a few minutes of processing time, because they did not

require computational initialization and are significantly smaller than the other

example datatsets.
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8.4 Segmentation From Multiple Nonuniform

Volume Datasets

Many of today’s volumetric datasets are generated by medical MR, CT, and other

scanners. A typical 3D scan has a relatively high resolution in the scanning X–

Y plane, but much lower resolution in the axial Z direction. The difference in

resolution between the in-plane and out-of-plane samplings can easily range

between a factor of 5 and 10, see Fig. 8.9. This occurs both because of phys-

ical constraints on the thickness of the tissue to be excited during scanning

(MR), total tissue irradiation (CT), and scanning time restrictions. Even when

time is not an issue, most scanners are by design incapable of sampling with

high resolution in the out-of-plane direction, producing anisotropic “brick-like”

voxels.

The nonuniform sampling of an object or a patient can create certain prob-

lems. The inadequate resolution in the Z direction implies that small or thin

structures will not be properly sampled, making it difficult to capture them dur-

ing surface reconstruction and object segmentation. One way to address this

problem is to scan the same object from multiple directions, with the hope that

the small structures will be adequately sampled in one of the scans. Generating

several scans of the same object then raises the question of how to properly

combine the information contained in these multiple datasets. Simply merging

the individual scans does not necessarily assemble enough samples to produce

a high resolution volumetric model. To address this problem we have developed

a method for deforming a level set model using velocity information derived

from multiple volume datasets with nonuniform resolution in order to produce

a single high-resolution 3D model [43]. The method locally approximates the

values of the multiple datasets by fitting a distance-weighted polynomial using

moving least-squares (MLS) [44, 45]. Directional 3D edge information that may

be used during the surface deformation stage is readily derived from MLS, and

integrated within our segmentation framework.

The proposed method has several beneficial properties. Instead of merg-

ing all of the input volumes by global resampling (interpolation), we locally

approximate the derivatives of the intensity values by MLS. This local versus

global approach is feasible because the level set surface deformation only re-

quires edge information in a narrow band around the surface. Consequently, the
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MLS calculation is only performed in a small region of the volume, rather than

throughout the whole volume, making the computational cost proportional to

the object surface area [36]. As opposed to many interpolation schemes, the

MLS method is stable with respect to noise and imperfect registrations [46]. Our

implementation also allows for small intensity attenuation artifacts between the

multiple scans thereby providing gain-correction. The distance-based weighting

employed in our method ensures that the contributions from each scan are prop-

erly merged into the final result. If a slice of data from one scan is closer to a

point of interest on the model, the information from this scan will contribute

more heavily to determining the location of the point.

To the best of our knowledge there is no previous work on creating de-

formable models directly from multiple volume datasets. While there has been

previous work on 3D level set segmentation and reconstruction [5,6,8,41,47], it

has not been based on multiple volume datasets. However, 3D models have been

generated from multiple range maps [29, 36, 48, 49], but the 2D nature of these

approaches is significantly different from the 3D problem being addressed here.

The most relevant related projects involve merging multiple volumes to produce

a single high-resolution volume dataset [50,51], and extracting edge information

from a single nonuniform volume [52]. Our work does not attempt to produce a

high-resolution merging of the input data. Instead, our contribution stands apart

from previous work because it deforms a model based on local edge information

derived from multiple nonuniform volume datasets.

We have demonstrated the effectiveness of our approach on three multi-

scan datasets. The first two examples are derived from a single high-resolution

volume dataset that has been subsampled in the X, Y , and Z directions. Since

these nonuniform scans are extracted from a single dataset, they are therefore

perfectly aligned. The first scan is derived from a high-resolution MR scan of a

12-day-old mouse embryo, which has already had its outer skin isolated with a

previous segmentation process. The second example is generated from a laser

scan reconstruction of a figurine. The third example consists of multiple MR

scans of a zucchini that have been imperfectly aligned by hand. The first two

examples show that our method is able to perform level set segmentation from

multiple nonuniform scans of an object, picking up and merging features only

found in one of the scans. The second example demonstrates that our method

generates satisfactory results, even when there are misalignments in the regis-

tration.
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8.4.1 Method Description

We have formulated our approach to 3D reconstruction of geometric models

from multiple nonuniform volumetric datasets within our level set segmentation

framework. Recall that speed function F() describes the velocity at each point

on the evolving surface in the direction of the local surface normal. All of the

information needed to deform a surface is encapsulated in the speed function,

providing a simple, unified approach to evolving the surface. In this section we

define speed functions that allow us to solve the multiple-data segmentation

problem. The key to constructing suitable speed terms is 3D directional edge

information derived from the multiple datasets. This problem is solved using a

moving least-squares scheme that extracts edge information by locally fitting

sample points to high-order polynomials.

8.4.1.1 Level Set Speed Function for Segmentation

Many different speed functions have been proposed over the years for segmen-

tation of a single volume dataset [5, 6, 8, 41]. Typically such speed functions

consist of a (3D) image-based feature attraction term and a smoothing term

which serves as a regularization term that lowers the curvature and suppresses

noise in the input data. From computer vision it is well known that features, i.e.

significant changes in the intensity function, are conveniently described by an

edge detector [53]. There exists a very large body of work devoted to the problem

of designing optimal edge detectors for 2D images [14, 16], most of which are

readily generalized to 3D. For this project we found it convenient to use speed

functions with a 3D directional edge term that moves the level set toward the

maximum of the gradient magnitude. This gives a term equivalent to Eq. (8.8),

Fgrad(x, n, φ) = αn · ∇‖∇Vg‖, (8.10)

where α is a scaling factor for the image-based feature attraction term ∇‖∇Vg‖
and n is the normal to the level set surface at x. Vg symbolizes some global

uniform merging of the multiple nonuniform input volumes. This feature term is

effectively a 3D directional edge detector of Vg . However, there are two problems

associated with using this speed function exclusively. The first is that we can-

not expect to compute reliable 3D directional edge information in all regions

of space simply because of the nature of the nonuniform input volumes. In
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other words, Vg cannot be interpolated reliably in regions of space where there

are no nearby sample points. Hence the level set surface will not experience

any image-based forces in these regions. The solution is to use a regularization

term that imposes constraints on the mean curvature of the deforming level

set surface. We include the smoothing term from Eq. (8.6) and scale it with pa-

rameter β, in order to smooth the regions where no edge information exists as

well as suppress noise in the remaining regions, thereby preventing excessive

aliasing.

Normally the feature attraction term, ∇‖∇Vg‖, creates only a narrow range

of influence. In other words, this feature attraction term will only reliably move

the portion of the level set surface that is in close proximity to the actual edges

in Vg . Thus, a good initialization of the level set surface is needed before solving

the level set equation when using Fgrad (Eq. (8.10)). A reasonable initialization

of the level set surface may be obtained by computing the CSG union of the

multiple input volumes, which are first trilinearly resampled to give a uniform

sampling. However, if the input volumes are strongly nonuniform, i.e. they are

severely undersampled in one or more directions, their union produces a poor

initial model. To improve the initialization we attract the CSG union surface to

the Canny edges [16] computed from Vg using the distance transform produced

from those edges (see Eq. (8.7)). This approach allows us to move the initial

surface from a long range, but only with pixel-level accuracy.

Canny edges are nondirectional edges defined from the zero-crossing of the

second derivative of the image in the direction of the local normal. In 3D this is

∂2

∂n2
g

Vg = 0, (8.11)

where ng ≡ ∇Vg/‖∇Vg‖ is the local normal vector of Vg . Using the expression

∂/∂ng = ng · ∇, we can rewrite Eq. (8.11) as

∂2

∂n2
g

Vg = ng · ∇
[
ng · ∇Vg

] = ng · ∇‖∇Vg‖. (8.12)

The next section focuses on the methods needed to reliably compute the

vectors ng and ∇‖∇Vg‖. In preparation, the latter may be explicitly expressed

in terms of the derivatives of the merged volume Vg ,

∇‖∇Vg‖ = ∇Vg ĤVg

‖∇Vg‖ , (8.13)
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where we have defined the gradient vector and the Hessian matrix,

∇̂Vg =
(

∂Vg

∂x
,
∂Vg

∂y
,
∂Vg

∂z

)
, (8.14a)

ĤVg =

⎛⎜⎜⎜⎝
∂2Vg

∂x2
∂2Vg

∂y∂x

∂2Vg

∂z∂x

∂2Vg

∂x∂y

∂2Vg

∂y2
∂2Vg

∂z∂y

∂2Vg

∂x∂z

∂2Vg

∂y∂z

∂2Vg

∂z2

⎞⎟⎟⎟⎠ . (8.14b)

Thus, in closing we note that the level set propagation needed for segmentation

only needs information about the first- and second-order partial derivatives of

the input volumes, not the interpolated intensity values themselves.

8.4.1.2 Computing Partial Derivatives

As outlined above, the speed function F in the level set equation, Eq. (8.4), is

based on edge information derived from the input volumes. This requires esti-

mating first- and second-order partial derivatives from the multiple nonuniform

input volumes. We do this by means of moving least-squares (MLS), which is

an effective and well-established numerical technique for computing deriva-

tives of functions whose values are known only on irregularly spaced points

[44–46].

Let us assume we are given the input volumes V̂d, d = 1, 2, . . . , D, which

are volumetric samplings of an object on the nonuniform grids {̂xd}. We shall

also assume that the local coordinate frames of {̂xd} are scaled, rotated, and

translated with respect to each other. Hence, we define a world coordinate frame

(typically one of the local frames) in which we solve the level set equation. Now,

let us define the world sample points {xd} as

xd ≡ T(d)[̂xd], (8.15)

where T(d) is the coordinate transformation from a local frame d to the world

frame. Next we locally approximate the intensity values from the input vol-

umes V̂d with a 3D polynomial expansion. Thus, we define the N-order poly-

nomials

V
(d)
N (x) = C

(d)
000 +

N∑
i+ j+k=1

C
(0)
ijkxiyjzk, d = 1, 2, . . . , D, (8.16)

where the coefficients C are unknown. Note that these local approximations
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to the intensity values share coefficients C
(0)
ijk of order higher than zero, i.e.,

all of the functions V
(d)
N , d = 1, 2, . . . , D have the same edges. The fact that the

zero-order term in Eq. (8.16) is input volume dependent means we allow for local

constant offsets between the input volumes V̂d. This effectively provides built-in

gain correction in the scheme, since it can handle small intensity attenuation

artifacts between the multiple scans.

Moving least-squares: To solve for the expansion coefficients C in Eq. (8.16) we

define the moving least-squares functional

E(x0) =
D∑

d=1

∑
xd

wd(xd−x0)
[
V

(d)
N (xd−x0)− Vd(xd)

]2
, (8.17)

where x0 is the expansion point from where we are seeking edge information,

Vd(xd) ≡ V̂d (̂xd) and where

wd(x) ≡

⎧⎪⎨⎪⎩
1− 2(‖x‖/�)2 for 0 ≤ ‖x‖ ≤ �/2

2(‖x‖/�− 1)2 for �/2 < ‖x‖ < �

0 for ‖x‖ ≥ �

(8.18)

is a “moving filter” that weights the contribution of different sampling points,

xd, according to their Euclidean distance, ‖xd − x0‖, to the expansion point,

x0. Other expressions for this weighting function could, of course, be used, but

Eq. (8.18) is fast to compute, has finite support (by the window parameter �),

and its tangent is zero at the endpoints. After substitution of Eq. (8.16) into

Eq. (8.35) we obtain the functional

E(x0) =
D∑

d=1

∑
xd

wd(xd − x0)
[
C

(d)
000 − V̂d(xd) (8.19)

+
N∑

i+ j+k=1

C
(0)
ijk(xd − x0)i(yd − y0) j(zd − z0)k

]2
.

The minimization of this moving least-squares functional with respect to the

expansion coefficients C requires the partial derivatives to vanish, i.e.,

∂ Ê(x0)

∂C
(d)
000

= 0 = 2
∑
xd

wd(xd − x0)
[
C

(d)
000 − V̂d(xd) (8.20a)

+
N∑

i+ j+k=1

C
(0)
ijk(xd − x0)i(yd − y0) j(zd − z0)k

]
,
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∂ Ê(x0)

∂C
(0)
lnm

= 0 = 2
D∑

d=1

∑
xd

wd(xd − x0)
[
C

(d)
000 − V̂d(xd)

+
N∑

i+ j+k=1

C
(0)
ijk(xd − x0)i(yd − y0) j(zd − z0)k

]
× (xd − x0)l(yd − y0)m(zd − z0)n. (8.20b)

This defines a system of linear equations in the expansion coefficients C
(r)
ijk that

can be solved using standard techniques from numerical analysis, see Eqs. (8.21)

and (8.23).

Equations (8.20a) and (8.20b) can then be conveniently expressed as∑
q

Ap,q cq = bp, (8.21)

where A is a diagonal matrix, and b, c are vectors. In this equation we have

also introduced the compact index notations p≡ (i, j, k, r) and q ≡ (l, m, n, s)

defined as

p ∈ {
i, j, k, r ∈ N+∣∣ i = j = k = 0, 1≤r≤D

}
∪ {

i, j, k, r ∈ N+∣∣ 1 ≤i+ j+k≤N, r = 0
}
, (8.22a)

q ∈ {
l, m, n, s ∈ N+∣∣ l = m= n= 0, 1≤s≤D

}
∪ {

l, m, n, s ∈ N+∣∣ 1 ≤ l+m+n≤N, s = 0
}
. (8.22b)

The diagonal matrix A and the vectors b, c in Eq. (8.21) are defined as

Ap,q ≡
∑

d

(
δr,d + δr,0

) (
δs,d + δs,0

)∑
xd

wd(xd − x0)

× (xd − x0)i(yd − y0) j(zd − z0)k (8.23a)

× (xd − x0)l(yd − y0)m(zd − z0)n,

bp ≡
∑

d

(
δr,d + δr,0

)
wd(xd − x0)V̂d(xd)

× (xd − x0)i(yd − y0) j(zd − z0)k, (8.23b)

cp ≡ C
(r)
ijk. (8.23c)

Next the matrix equation Ac = b must be solved for the vector c of dimen-

sion ( N+3
3 )+ D − 1, where N is the order of the expansion in Eq. (8.16) and D

is the number of nonuniform input volumes. As is well known for many moving

least-square problems, it is possible for the condition number of the matrix A

to become very large. Any matrix is singular if its condition number is infinite
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and can be defined as ill-conditioned if the reciprocal of its condition number

approaches the computer’s floating-point precision. This can occur if the prob-

lem is overdetermined (number of sample points, xd greater than number of

coefficients C) and underdetermined (ambiguous combinations of the coeffi-

cients C work equally well or equally bad). To avoid such numerical problems,

a singular value decomposition (SVD) linear equation solver is recommended

for use in combination with the moving least-squares method. The SVD solver

identifies equations in the matrix A that are, within a specified tolerance, re-

dundant (i.e., linear combinations of the remaining equations) and eliminates

them thereby improving the condition number of the matrix. We refer the reader

to [54] for a helpful discussion of SVD pertinent to linear least-squares problems.

Once we have the expansion coefficients c, we can readily express the Hes-

sian matrix and the gradient vector of the combined input volumes as

∇V =
(
C

(0)
100, C

(0)
010, C

(0)
001

)
, (8.24a)

HV =

⎛⎜⎜⎝
2C

(0)
200 C

(0)
110 C

(0)
101

C
(0)
110 2C

(0)
020 C

(0)
011

C
(0)
101 C

(0)
011 2C

(0)
002

⎞⎟⎟⎠ (8.24b)

evaluated at the moving expansion point x0. This in turn is used in Eq. (8.13) to

compute the edge information needed to drive the level set surface.

8.4.1.3 Algorithm Overview

Algorithm 1 describes the main steps of our approach. The initialization rou-

tine, Algorithm 2, is called for all of the multiple nonuniform input volumes,

Vd. Each nonuniform input dataset is uniformly resampled in a common coordi-

nate frame (V0’s) using trilinear interpolation. Edge information and the union,

V0, of the Vd’s are then computed. Algorithm 1 calculates Canny and 3D direc-

tional edge information using moving least-squares in a narrow band in each

of the resampled input volumes, Vd, and buffers this in Vedge and Vgrad. Next

Algorithm 1 computes the distance transform of the zero-crossings of the Canny

edges and takes the gradient of this scalar volume to produce a vector field

Vedge, which pulls the initial level set model to the Canny edges. Finally the level

set model is attracted to the 3D directional edges of the multiple input volumes,

Vgrad, and a Marching Cubes mesh is extracted for visualization. The level set
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solver, described in Algorithm 3, solves Eq. (8.4) using the “up-wind scheme”

(not explicitly defined) and the sparse-field narrow-band method of [36], with

V0 as the initialization and Vedge and Vgrad as the force field in the speed

function.

Algorithm 1: MAIN(V1, . . . , VD)
comment: V1, . . . , VD are nonuniform samplings of object V

global V edge, V grad

do

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V0 ← uniform sampling of empty space
for d ← 1 to D

do V0 ← V0 ∪ INITIALIZATION (Vd)
V edge ← ∇ [distance transform[zero-crossing[V edge]]]
V0 ← SOLVELEVELSETEQ (V0, V edge, α, 0)
V0 ← SOLVELEVELSETEQ (V0, V grad, α, β)

return (Marching Cubes mesh of V0)

Algorithm 2: INITIALIZATION(Vd)
comment: Preprocessing to produce good LS initialization

do

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Vd ← Uniform trilinear resampling of Vd

�d ← Set of voxels in narrow band of isosurface of Vd

for each “unprocessed” x0 ∈ �d

do

⎧⎨⎩
Solve moving least-squares problem at x0

V edge(x0) ← scalar Canny edge, cf. Equation (8.12)
V grad(x0) ← 3D directional edge, cf. Equation (8.13)

return (Vd)

Algorithm 3: SOLVELEVELSETEQ (V0, V, α, β)
comment: Solve Equation (8.4) with initial condition φ(t=0) = V0

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ ← V0

repeat⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

� ← Set of voxels in narrow band of isosurface of φ

� t ← γ / supx∈� ‖V(x)‖, γ ≤ 1
for each x ∈ �

do

⎧⎨⎩
n← upwind scheme [−∇φ(x)/‖∇φ(x)‖]
φ̇(x) ← ‖∇φ(x)‖(αV(x) · n+ β∇ · n)
φ(x) ← φ(x)+ φ̇(x)� t

until supx∈� ‖φ̇(x)‖ ≤ ε

return (φ)



438 Breen, Whitaker, Museth, and Zhukov

Table 8.2: Maximum in-plane to out-of-plane sampling ratios of nonuniform

input datasets, and parameters for the two level set speed terms defined in

Eqs. (8.6) and (8.10)

Model Origin Ratio α β

Griffin Laser scan 6/10:1 1.0 0.5
Mouse MR scan 10:1 1.0 0.5
Zucchini MR scan 10:1 1.0 0.5

8.4.2 Multiple Volume Results

We have applied our segmentation method to several multiscan nonuniform

datasets to produce high-resolution level set models. The parameters used for

these segmentations are listed in Table 8.2. α and β are weights that the user

adjusts to balance attraction to edges with curvature-based smoothing during

the level set deformation process.

8.4.2.1 Griffin Dataset

The griffin dataset was created with a volumetric laser scan reconstruction algo-

rithm [49]. This algorithm creates a high-resolution volumetric representation

of an object by merging multiple depth maps produced via a laser scan. The

original griffin dataset has a resolution of 312× 294× 144. We have extracted

two nonuniform datasets from this high-resolution representation by copying

every sixth plane of data in the X direction and every tenth plane in the Y direc-

tion. The two derived nonuniform griffin datasets have the following resolution:

52× 294× 144 and 312× 30× 144. Isosurfaces have been extracted from these

datasets, appropriately scaled in the low-resolution direction, and are presented

in the first two images in Fig. 8.9 (top). Each low-resolution scan inadequately

captures some important geometric feature of the griffin. We have performed a

reconstruction from the undersampled nonuniform scans to produce the result

in Fig. 8.9 (top). The method produces a high-resolution (312× 294× 144) level

set model that contains all of the significant features of the original scan.

8.4.2.2 Mouse Embryo Dataset

The first three scans in Fig. 8.9 (bottom) are derived from a high-resolution MR

scan of a mouse embryo. They are subsampled versions of a 256× 128× 128
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Figure 8.9: Nonuniform datasets merged to produce high-resolution level set

models, (top) laser scan of a figurine and (bottom) MR scan of a mouse

embryo.

volume dataset, and have the following resolutions: 26× 128× 128, 256× 16×
128, and 256× 128× 13. The last image in Fig. 8.9 presents the result produced

by our multiscan segmentation method. The information in the first three scans

has been successfully used to create a level set model of the embryo with a

resolution of 256× 128× 130. The finer features of the mouse embryo, namely

its hands and feet, have been reconstructed.

8.4.2.3 Zucchini Dataset

The final dataset consists of three individual MRI scans of an actual zucchini. The

separate scans have been registered manually and are presented on the left side

of Fig. 8.10, each with a different color. The resolutions of the individual scans

are 28× 218× 188, 244× 25× 188, and 244× 218× 21. This image highlights

the rough alignment of the scans. The right side of Fig. 8.10 presents the result

of our level set segmentation. It demonstrates that our approach is able to extract

a reasonable model from multiple datasets that are imperfectly aligned.
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Figure 8.10: Three low-resolution MR scans of a zucchini that have been in-

dividually colored and overlaid to demonstrate their imperfect alignment. The

level set model on the right is derived from the three low-resolution scans.

8.5 Segmentation of DT-MRI Brain Data

Diffusion tensor magnetic resonance imaging [55, 56] (DT-MRI) is a tech-

nique used to measure the diffusion properties of water molecules in tissues.

Anisotropic diffusion can be described by the equation

∂C

∂t
= ∇ · (d∇C), (8.25)

where C is the concentration of water molecules and d is a diffusion coefficient,

which is a symmetric second-order tensor

d =

⎛⎜⎝ Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞⎟⎠ . (8.26)

Figure 8.11 presents a “slice” of the diffusion tensor volume data of human brain

used in our study. Each subimage presents the scalar values of the associated

diffusion tensor component for one slice of the dataset.

Tissue segmentation and classification based on DT-MRI offers several ad-

vantages over conventional MRI, since diffusion data contains additional phys-

ical information about the internal structure of the tissue being scanned. How-

ever, segmentation and visualization using diffusion data is not entirely straight-

forward. First of all, the diffusion matrix itself is not invariant with respect to

rotations, and the elements that form the matrix will be different for different
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Figure 8.11: Slice of a tensor volume where every “element” of the image matrix

corresponds to one component of the tensor D.

orientations of the sample or field gradient and therefore cannot themselves be

used for classification purposes. Moreover, 3D visualization and segmentation

techniques available today are predominantly designed for scalar and sometimes

vector fields. Thus, there are three fundamental problems in tensor imaging: (a)

finding an invariant representation of a tensor that is independent of a frame of

reference, (b) constructing a mapping from the tensor field to a scalar or vector

field, and (c) visualization and classification of tissue using the derived scalar

fields.

The traditional approaches to diffusion tensor imaging involve converting

the tensors into an eigenvalue/eigenvector representation, which is rotationally

invariant. Every tensor may then be interpreted as an ellipsoid with principal

axes oriented along the eigenvectors and radii equal to the corresponding eigen-

values. This ellipsoid describes the probabilistic distribution of a water molecule

after a fixed diffusion time.

Using eigenvalues/eigenvectors, one can compute different anisotropy mea-

sures [55, 57–59] that map tensor data onto scalars and can be used for further
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visualization and segmentation. Although eigenvalue/vector computation of the

3× 3 matrix is not expensive, it must be repeatedly performed for every voxel

in the volume. This calculation easily becomes a bottleneck for large datasets.

For example, computing eigenvalues and eigenvectors for a 5123 volume re-

quires over 20 CPU min on a powerful workstation. Another problem associated

with eigenvalue computation is stability—a small amount of noise will change

not only the values but also the ordering of the eigenvalues [60]. Since many

anisotropy measures depend on the ordering of the eigenvalues, the calculated

direction of diffusion and classification of tissue will be significantly altered by

the noise normally found in diffusion tensor datasets. Thus it is desirable to

have an anisotropy measure which is rotationally invariant, does not require

eigenvalue computations, and is stable with respect to noise. Tensor invari-

ants with these characteristics were first proposed by Ulug et al. [61]. In Sec-

tion 8.5.1 we formulate a new anisotropy measure for tensor field based on these

invariants.

Visualization and model extraction from the invariant 3D scalar fields is

the second issue addressed in this chapter. One of the popular approaches

to tensor visualization represents a tensor field by drawing ellipsoids asso-

ciated with the eigenvectors/values [62]. This method was developed for 2D

slices and creates visual cluttering when used in 3D. Other standard CFD

visualization techniques such as tensor-lines do not provide meaningful re-

sults for the MRI data due to rapidly changing directions and magnitudes

of eigenvector/values and the amount of noise present in the data. Recently

Kindlmann [63] developed a volume rendering approach to tensor field vi-

sualization using eigenvalue-based anisotropy measures to construct transfer

functions and color maps that highlight some brain structures and diffusion

patterns.

In our work we perform isosurfacing on the 3D scalar fields derived from

our tensor invariants to visualize and segment the data [64]. An advantage of

isosurfacing over other approaches is that it can provide the shape information

needed for constructing geometric models, and computing internal volumes and

external surface areas of the extracted regions. There has also been a number

of recent publications [65,66] devoted to brain fiber tracking. This is a different

and more complex task than the one addressed in this chapter and requires data

with a much higher resolution and better signal-to-noise ratio than the data used

in our study.
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8.5.1 Tensor Invariants

Tensor invariants (rotational invariants) are combinations of tensor elements

that do not change after the rotation of the tensor’s frame of reference, and

thus do not depend on the orientation of the patient with respect to the scanner

when performing DT imaging. The well-known invariants are the eigenvalues

of the diffusion tensor (matrix) d, which are the roots of the corresponding

characteristic equation

λ3 − C1 · λ2 + C2 · λ− C3 = 0, (8.27)

with coefficients

C1 = Dxx + Dyy+ Dzz

C2 = DxxDyy− DxyDyx + DxxDzz− DxzDzx + DyyDzz− DyzDzy (8.28)

C3 = Dxx(DyyDzz− DzyDyz)

− Dxy(DyxDzz− DzxDyz)+ Dxz(DyxDzy− DzxDyy).

Since the roots of Eq. (8.27) are rotational invariants, the coefficients C1, C2,

and C3 are also invariant. In the eigen-frame of reference they can be easily

expressed through the eigenvalues

C1 = λ1 + λ2 + λ3

C2 = λ1λ2 + λ1λ3 + λ2λ3 (8.29)

C3 = λ1λ2λ3

and are proportional to the sum of the radii, surface area, and the volume of the

“diffusion” ellipsoid. Then instead of using (λ1, λ2, λ3) to describe the dataset,

we can use (C1, C2, C3). Moreover, since Ci are the coefficients of the character-

istic equation, they are less sensitive to noise than are the roots λi of the same

equation.

Any combination of the above invariants is, in turn, an invariant. We consider

the following dimensionless combination: C1C2/C3. In the eigenvector frame of

reference, it becomes

C1C2

C3
= 3+ λ2 + λ3

λ1
+ λ1 + λ3

λ2
+ λ1 + λ2

λ3
(8.30)

and we can define a new dimensionless anisotropy measure

Ca = 1
6

[
C1C2

C3
− 3

]
. (8.31)
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It is easy to show that for isotropic diffusion, when λ1 = λ2 = λ3, the coef-

ficient Ca = 1. In the anisotropic case, this measure is identical for both linear,

directional diffusion (λ1 � λ2 ≈ λ3) and planar diffusion (λ1 ≈ λ2 � λ3) and is

equal to

C limit
a ≈ 1

3

[
1+ λ1

λ3
+ λ3

λ1

]
. (8.32)

Thus Ca is always ∼λmax/λmin and measures the magnitude of the diffusion

anisotropy. We again want to emphasize that we use the eigenvalue representa-

tion here only to analyze the behavior of the coefficient Ca, but we use invariants

(C1, C2, C3) to compute it using Eqs. (8.28) and (8.31).

8.5.2 Geometric Modeling

Two options are usually available for viewing the scalar volume datasets, direct

volume rendering [1, 4] and volume segmentation [67] combined with conven-

tional surface rendering. The first option, direct volume rendering, is only capa-

ble of supplying images of the data. While this method may provide useful views

of the data, it is well known that it is difficult to construct the exact transfer

function that highlights the desired structures in the volume dataset [68]. Our

approach instead focuses on extracting geometric models of the structures em-

bedded in the volume datasets. The extracted models may be used for interactive

viewing, but the segmentation of geometric models from the volume datasets

provides a wealth of additional benefits and possibilities. The models may be

used for quantitative analysis of the segmented structures, for example the cal-

culation of surface area and volume, quantities that are important when studying

how these structures change over time. The models may be used to provide the

shape information necessary for anatomical studies and computational simula-

tion, for example EEG/MEG modeling within the brain [69]. Creating separate

geometric models for each structure allows for the straightforward study of

the relationship between the structures, even though they come from different

datasets. The models may also be used within a surgical planning/simulation/VR

environment [70], providing the shape information needed for collision detection

and force calculations. The geometric models may even be used for manufactur-

ing real physical models of the structures [71]. It is clear that there are numerous

reasons to develop techniques for extracting geometric models from diffusion

tensor volume datasets.
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The most widely used technique for extracting polygonal models from vol-

ume datasets is the Marching Cubes algorithm [72]. This technique creates a

polygonal model that approximates the isosurface embedded in a scalar volume

dataset for a particular isovalue. While the Marching Cubes algorithm is easy to

understand and straightforward to implement, applying it directly to raw vol-

ume data from scanners can produce undesirable results, as seen in the first

images in Figs. 8.13 and 8.16. The algorithm is susceptible to noise and can pro-

duce many unwanted triangles that mask the central structures in the data. In

order to alleviate this problem, we utilize the tools in our level set framework

to smooth the data and remove the noise-related artifacts.

8.5.3 Segmentation

In this section we demonstrate the application of our methods to the segmenta-

tion of DT-MRI data of the human head. We use a high-resolution dataset from a

human volunteer which contains 60 slices each of 128× 128 pixels resolution.

The raw data is sampled on a regular uniform grid.

We begin by generating two scalar volume datasets based on the invariants

described in Section 8.5.1. The first scalar volume dataset (V1) is formed by

calculating the trace (C1) of the tensor matrix for each voxel of the diffusion

tensor volume. It provides a single number that characterizes the total diffusiv-

ity at each voxel within the sample. Higher values signify greater total diffusion

irrespective of directionality in the region represented by a particular voxel. A

slice from this volume can be seen in Fig. 8.12 (left). The second scalar volume

Figure 8.12: Isotropic C1 (left) and anisotropic Ca (right) tensor invariants for

the tensor slice shown in Fig. 8.11.
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Figure 8.13: Segmentation from isotropic measure volume V1 for the first

DT-MRI dataset. The first row is the Marching Cubes isosurface with iso-

value 7.5. The second row is the result of flood-fill algorithm applied to the

same volume and used for initialization. The third row is the final level set

model.
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dataset (V2) is formed by calculating (C1, C2, C3) invariants for each voxel and

combining them into Ca. It provides a measure of the magnitude of the anisotropy

within the volume. Higher values identify regions of greater spatial anisotropy

in the diffusion properties. A slice from the second scalar volume is presented

in Fig. 8.12 (right). The measure Ca does not by definition distinguish between

linear and planar anisotropy. This is sufficient for our current study since the

brain does not contain measurable regions with planar diffusion anisotropy.

We therefore only need two scalar volumes in order to segment the DT

dataset.

We then utilize our level set framework to extract smoothed models from the

two derived scalar volumes. First the input data is filtered with a low-pass Gaus-

sian filter (σ ≈ 0.5) to blur the data and thereby reduce noise. Next, the volume

voxels are classified for inclusion/exclusion in the initialization based on the

filtered values of the input data (k ≈ 7.0 for V1 and k ≈ 1.3 for V2). For grayscale

images, such as those used in this chapter, the classification is equivalent to high

and low thresholding operations. The last initialization step consists of perform-

ing a set of topological (e.g. flood fill) operations in order to remove small pieces

or holes from objects. This is followed by a level set deformation that pulls the

surface toward local maxima of the gradient magnitude and smooths it with a

curvature-based motion. This moves the surface toward specific features in the

data, while minimizing the influence of noise in the data.

Figures 8.13 and 8.14 present two models that we extracted from DT-MRI

volume datasets using our techniques. Figure 8.13 contains segmentations from

volume V1, the measure of total diffusivity. The top image shows a Marching

Cubes isosurface using an isovalue of 7.5. In the bottom we have extracted just

the ventricles from V1. This is accomplished by creating an initial model with a

flood-fill operation inside the ventricle structure shown in the middle image. This

identified the connected voxels with value of 7.0 or greater. The initial model

was then refined and smoothed with a level set deformation, using a β value of

0.2.

Figure 8.14 again provides the comparison between direct isosurfacing and

and level set modeling, but on the volume V2. The image in the top-left corner is

a Marching Cubes isosurface using an isovalue of 1.3. There is significant high-

frequency noise and features in this dataset. The challenge here was to isolate

coherent regions of high anisotropic diffusion. We applied our segmentation

approach to the dataset and worked with neuroscientists from LA Childrens
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Figure 8.14: Model segmentation from volume V2. Top left image is an isosur-

face of value 1.3, used for initialization of the level set. Clockwise are the results

of level set development with corresponding β values of 0.2, 0.4, and 0.5.

Hospital, City of Hope Hospital and Caltech to identify meaningful anatomical

structures. We applied our approach using a variety of parameter values, and

presented our results to them, asking them to pick the model that they felt

best represented the structures of the brain. Figure 8.14 contains three models

extracted from V2 at different values of smoothing parameter β used during seg-

mentation. Since we were not looking for a single connected structure in this

volume, we did not use a seeded flood-fill for initialization. Instead, we initialized

the deformation process with an isosurface of value 1.3. This was followed by

a level set deformation using a β value of 0.2. The result of this segmentation is

presented on the bottom-left side of Fig. 8.14. The top-right side of this figure

presents a model extracted from V2 using an initial isosurface of value 1.4 and a

β value of 0.5. The result chosen as the “best” by our scientific/medical collabo-

rators is presented on the bottom-right side of Fig. 8.14. This model is produced

with an initial isosurface of 1.3 and a β value of 0.4. Our collaborators were able

to identify structures of high diffusivity in this model, for example the corpus

callosum, the internal capsul, the optical nerve tracks, and other white matter

regions.
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Figure 8.15: Combined model of ventricles and (semi-transparent) anisotropic

regions: rear, exploded view (left), bottom view (right), side view (bottom). Note

how model of ventricles extracted from isotropic measure dataset V1 fits into

model extracted from anisotropic measure dataset V2.

We can also bring together the two models extracted from datasets V1 and V2

into a single image. They will have perfect alignment since they are derived from

the same DT-MRI dataset. Figure 8.15 demonstrates that we are able to isolate

different structures in the brain from a single DT-MRI scan and show their proper

spatial interrelationship. For example, it can be seen that the corpus callosum

lies directly on top of the ventricles, and that the white matter fans out from

both sides of the ventricles.

Finally, to verify the validity of our approach we applied it to the second

dataset from a different volunteer. This dataset has 20 slices of the 256× 256

resolution. We generated the anisotropy measure volume V2 and performed the

level set model extraction using the same isovalues and smoothing parameters

as for V2. The results are shown in Fig. 8.16, and demonstrate the generality of

our approach.
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Figure 8.16: Segmentation using anisotropic measure V2 from the second DT-

MRI dataset. (left) Marching Cubes isosurface with iso-value 1.3. (middle) Result

of flood-fill algorithm applied to the volume and used for initialization. (right)

Final level set model.

8.6 Direct Estimation of Surfaces in

Tomographic Data

The radon transform is invertible (albeit, marginally so) when the measured

data consists of a sufficient number of good quality, properly spaced projections

[73]. However, for many applications the number of realizable projections is

insufficient, and direct grayscale reconstructions are susceptible to artifacts.

We will refer to such problems as underconstrained tomographic problems.

Cases of underconstrained tomographic problems usually fall into one of two

classes. The first class is where the measuring device produces a relatively dense

set of projections (i.e. adequately spaced) that do not span a full 180◦. In these

cases, the sinogram contains regions without measured data. Considering the

radon transform in the Fourier domain, these missing regions of the sinogram

correspond to a transform with angular wedges (pie slices) that are null, making

the transform noninvertible. We assume that these missing regions are large

enough to preclude any straightforward interpolation in the frequency domain.

The second class of incomplete tomographic problems are those that consist

of an insufficient number of widely spaced projections. We assume that these

sparse samples of the sinogram space are well distributed over a wide range of

angles. For this discussion the precise spacing is not important. This problem
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is characterized by very little data in the Fourier domain, and direct inversion

approaches produce severe artifacts. Difficulties in reconstructing volumes from

such incomplete tomographic datasets are often aggravated by noise in the

measurements and misalignments among projections.

Under-constrained problems are typically solved using one or both of two

different strategies. The first strategy is to choose from among feasible solu-

tions (those that match the data) by imposing some additional criterion, such

as finding the solution that minimizes an energy function. This additional crite-

rion should be designed to capture some desirable property, such as minimum

entropy. The second strategy is to parameterize the solution in a way that re-

duces the number of degrees of freedom. Normally, the model should contain

few enough parameters so that the resulting parameter estimation problem is

overconstrained. In such situations solutions are allowed to differ from the data

in a way that accounts for noise in the measurements.

In this section we consider a special class of underconstrained tomographic

problems that permits the use of a simplifying model. The class of problems we

consider are those in which the imaging process is targeted toward tissues or

organs that have been set apart from the other anatomy by some contrast agent.

This agent could be an opaque dye, as in the case of transmission tomography,

or an emissive metabolite, as in nuclear medicine. We assume that this agent

produces relatively homogeneous patches that are bounded by areas of high

contrast. This assumption is reasonable, for instance, in subtractive angiogra-

phy or CT studies of the colon. The proposed approach, therefore, seeks to find

the boundaries of different regions in a volume by estimating sets of closed

surface models and their associated density parameters directly from the in-

complete sinogram data [74]. Thus, the reconstruction problem is converted to

a segmentation problem. Of course, we can never expect real tissues to exhibit

truly homogeneous densities. However, we assert that when inhomogeneities

are somewhat uncorrelated and of low contrast the proposed model is adequate

to obtain acceptable reconstructions.

8.6.1 Related Work

Several areas of distinct areas of research in medical imaging, computer vision,

and inverse problems impact this work. Numerous tomographic reconstruc-

tion methods are described in the literature [75, 76], and the method of choice

depends on the quality of projection data. Filtered back projection (FBP), the
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most widely used approach, works well in the case of the fully constrained

reconstruction where one is given enough high-quality projections over 180◦

angular range. Statistical, iterative approaches such as maximum likelihood

(ML) and maximum a posteriori (MAP) estimation have been proven to work

well with noisy projection data, but do not systematically address the under-

constrained reconstruction problem and generally rely on complete datasets.

An exception is [77], which proposes an iterative algebraic approach that in-

cludes some assumptions about the homogeneity of the solution to compute a

full grayscale reconstruction. Also, some hybrid approaches [78, 79] are specif-

ically developed to deal with limited-angle tomography by extrapolating the

missing sinogram data.

Other tomographics reconstruction techniques have been proposed, for ex-

ample those that utilize discrete tomography strategies [73, 80–82], and de-

formable models [83–87]. The literature also describes many examples of level

sets as curve and surface models for image segmentation [6, 7, 41, 88]. The au-

thors have examined their usefulness for 3D segmentation of TEM reconstruc-

tions [37]. Several authors have proposed solving inverse problems using level

sets [89–95], but are mostly limited to solving 2D problems.

We make several important contributions to this previous body of work; first

we give a formal derivation of the motion of deformable surface models as the

first variation of an error term that relates the projected model to the noisy

tomographic data. This formulation does not assume any specific surface repre-

sentation, and therefore applies to a wide range of tomographic, surface-fitting

problems. Second we present a level set implementation of this formulation that

computes incremental changes in the radon transform of the projected model

only along the wave front, which makes it practical on large datasets. Third

we examine the specific problem of initializing the deformable surface in the

absence of complete sinogram data, and demonstrate, using real and synthetic

data, the effectiveness of direct surface estimation for a specific class of tomo-

graphic problems which are underconstrained.

8.6.2 Mathematical Formulation

As an introduction, we begin with the derivation of surface estimation problem

in two dimensions. The goal is to simultaneously estimate the interface between

two materials and their densities, β0 and β1. Thus we have a background with
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density β0 and collection of solid objects with density β1. We denote the (open)

set of points in those regions as �, the closure of that set, the surface, as S.

The projection of a 2D signal f (x, y) produces a sinogram given by the radon

transform as

p(s, θ) =
∫ +∞

−∞

∫ +∞

−∞
f (x, y)δ(Rθ x− s)dx, (8.33)

where Rθ x= x cos(θ)+ ysin(θ) is a rotation and projection of a point x= (x, y)

onto the imaging plane associated with θ . The 3D formulation is the same, except

that the signal f (x, y, z) produces a collection of images. We denote the projec-

tion of the model, which includes estimates of the objects and the background, as

p̂(s, θ). For this work we denote the angles associated with a discrete set of pro-

jections as θ1, . . . , θN and denote the domain of each projection as S = s1, . . . sM .

Our strategy is to find �, β0, and β1 by maximizing the likelihood.

If we assume the projection measurements are corrupted by independent

noise, the log likelihood of a collection of measurements for a specific shape

and density estimate is the probability of those measurements conditional on

the model,

ln P(p(s1, θ1), p(s2, θ1), . . . , p(sM , θN)|S, β0, β1)

=
∑

i

∑
j

ln P(p(sj, θi)|S, β0, β1). (8.34)

We call the negative log likelihood the error and denote it Edata. Normally, the

probability density of a measurement is parameterized by the ideal value, which

gives

Edata =
N∑

i=1

M∑
j=1

E
(
p̂ij, pij

)
, (8.35)

where E( p̂i, j, pi, j) = − ln P( p̂i, j, pi, j) is the error associated with a particular

point in the radon space, and pi, j = p(sj, θi). In the case of independent Gaussian

noise, E is a quadratic, and the log likelihood results in a weighted least-squares

in the radon space. For all of our results, we use a Gaussian noise model. Next

we apply the object model, shown in Fig. 8.17, to the reconstruction of f . If we

let g(x, y) be a binary inside–outside function on �, then we have the following

approximation to f (x, y):

f (x, y) ≈ β0 + [β1 − β0]g(x, y). (8.36)
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Figure 8.17: The model is the interface between two densities, which are pro-

jected onto the imaging plane to create p̂(s, θi).

Applying the radon transform to the model and substituting for p̂ gives

Edata =
N∑

i=1

M∑
j=1

E

(
β0K(sj, θi)+ [β1 − β0]

∫
�

δ(Rθi
x− sj)dx, pij

)
, (8.37)

where K(sj, θi) is the projection of the background—it depends on the geometry

of the region over which the data is taken and is independent of the surface

estimate. For some applications we know that β0 = 0, and the term β0K is zero.

The integral over � results from integrating g over the entire domain.

The proposed strategy is to alternately (i.e. separately) update the shape of

the surface model and the density parameters. For the surface shape, a gradient

descent minimization approach describes the deformation of the surface, with

respect to an evolution parameter t, as it progressively improves its fit to the

Figure 8.18: The reconstruction strategy starts with an initial surface estimate

and iteratively modifies its shape and the associated density parameters to

achieve a good fit to the input data.
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sinogram data. The incremental change in the likelihood is

dEdata

dt
=

∫
S

N∑
i=1

M∑
j=1

d

dt
E
(
p̂ij, pi, j

)
dx=

∫
S

N∑
i=1

M∑
j=1

E′
(
p̂ij, pij

) d p̂ij

dt
dx,

(8.38)

where E′ = ∂E/∂ p̂, which, for Gaussian noise, is simply the difference between

p̂ and p. Next we must formulate d p̂/dt, which, by the transport equation, is

d p̂ij

dt
= [β1 − β0]

d

dt

∫
�

δ(Rθi
x− sj)dx

= [β1 − β0]
∫
S

δ(Rθi
x− sj)n(x) · v(x)dx, (8.39)

where n is an outward pointing surface normal and v(x) is the velocity of the

surface at the point x. The derivative of Edata with respect to surface motion is

therefore

dEdata

dt
= [β1 − β0]

∫
S

N∑
i=1

M∑
j=1

E′
(
p̂i, j, pij

)
δ(Rθi

x− sj)n(x) · v(x) dx. (8.40)

Note that the integral over dx and the δ functional serve merely to associate sj

in the ith scan with the appropriate xpoint. If the samples in each projection are

sufficiently dense, we can approximate the sum over j as an integral over the

image domain, and thus for every x on the surface there is a mapping back into

the ith projection. We denote this point si(x). This gives a closed-form expression

for the derivative of the derivative of Edata in terms of the surface velocity,

dEdata

dt
= [β1 − β0]

∫
S

N∑
i=1

ei(x)n(x) · v(x)dx, (8.41)

where ei(x) = E′( p̂(si(x), θi), p(si(x), θi)) is the derivative of the error associ-

ated with the point si(x) in the ith projection. The result shown in Eq. (8.41) does

not make any specific assumptions about the surface shape or its representa-

tion. Thus, this equation could be mapped onto any set of shape parameters

by inserting the derivative of a surface point with respect to those parameters.

Of course one would have to compute the surface integral, and methods for

solving such equations on parametric models (in the context of range data) are

described in [96].

For this work we are interested in free-form deformations, where each point

on the surface can move independently from the rest. If we let xt represent the

velocity of a point on the surface, the gradient descent surface free-form surface
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Figure 8.19: The model expands or contracts based on the difference in the

sinograms between the projected model and the measured data.

motion is

xt = −dEdata

dx
= (β0 − β1)

N∑
i=1

ei(x)n(x). (8.42)

Thus, at a point x ∈ S, the ith projection has the effect of causing the surface

to expand or contract according to the difference between the projected model

values and the measured data at the point si(x), the projection of x(Fig. 8.19). The

surface motion prescribed by a collection of projections is the sum of motions

from the individual projections. In the case of continuous set of angles, the

surface motion at a point is proportional to the sinusoidal line integral on the

error sinogram, which is e(s, θ).

8.6.2.1 Density Parameter Estimation

The density parameters also affect the error term in Eq. (8.37). We propose

to update the estimate of the surface model iteratively, and at each iteration

we re-estimate the quantities β0 and β1 in such a way that the energy Edata is

minimized. Treating � as fixed, Eq. (8.37) has two unknowns, β0 and β1, which

are computed from the following system:

∂Edata

∂β0
= 0,

∂Edata

∂β1
= 0. (8.43)
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In the case of a Gaussian noise model, (8.43) is a linear system. Because of

variations in instrumentation, the contrast levels of images taken at different

angles can vary. In such cases we estimate sets of such parameters, i.e., β0(θi)

and β1(θi) for i = 1, . . . , N.

To extend the domain to higher dimensions, we have x ∈ IRn, and S ⊂ IRn−1

and the mapping si : IRn (→ S models the projective geometry of the imaging

system (e.g. orthographic, cone beam, or fan beam). Otherwise, the formulation

is the same as in 2D.

One important consideration is to model more complex models of density.

If β0 and β1 are smooth, scalar functions defined over the space in which the

surface model deforms and g is a binary function, the density model is

f (x) = β0(x)+ (β1(x)− β0(x)) g(x, y). (8.44)

The first variation of the boundary is simply

dx

dt
= [β1(x)− β0(x)]

N∑
i=1

ei(x)n(x). (8.45)

Note that this formulation is different from that of Yu et al. [95], who address the

problem of reconstruction from noisy tomographic data using a single density

function f with a smoothing term that interacts with a set of deformable edge

models �. The edges models are surfaces, represented using level sets. In that

case the variational framework for deforming � requires differentiation of f

across the edge, precisely where the proposed model exhibits (intentionally) a

discontinuity.

8.6.2.2 Prior

The analysis above maximizes the likelihood. For a full MAP estimation, we in-

clude a prior term. Because we are working with the logarithm of the likelihood,

the effect of the prior is additive:

xt = −dEdata

dx
− dEprior

dx
. (8.46)

Thus in addition to the noise model, we can incorporate some knowledge about

the kinds of shapes that give rise to the measurements. With appropriately fash-

ioned priors, we can push the solution toward desirable shapes or density val-

ues, or penalize certain shape properties, such as roughness or complexity. The
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choice of prior is intimately related to the choice of surface representation and

the specific application, but is independent of the formulation that describes the

relationship between the estimate and the data, given in Eq. (8.37).

Because the data is noisy and incomplete it is useful to introduce a simple,

low-level prior on the surface estimate. We therefore use a prior that penalizes

surface area, which introduces a second-order smoothing term in the surface

motion. That term introduces a free parameter C , which controls the relative

influence of the smoothing term. The general question of how best to smooth

surfaces remains an important, open question. However, if we restrict ourselves

to curvature-based geometric flows, there are several reasonable options in

the literature [7, 31, 97]. The following subsection, which describes the surface

representation used for our application, gives a more precise description of our

smoothing methods.

8.6.3 Surface Representation and Prior

Our goal is to build an algorithm that applies to a wide range of poten-

tially complicated shapes with arbitrary topologies—topologies that could

change as the shapes deform to fit the data. For this reason, we have imple-

mented the free-form deformation given in Eq. (8.42) with an implicit level set

representation.

Substituting the expression for dx/dt (from Eqs. (8.45) and (8.46)) into the

ds/dt term of the level set equation (Eq. (8.4a)), and recalling that n= ∇φ/|∇φ|,
gives

∂φ

∂t
= −|∇φ|

(
M∑

i=1

ei(x)+ Cκ(x)

)
, (8.47)

where κ represents the effect of the prior, which is assumed to be in the normal

direction.

The prior is introduced as a curvature-based smoothing on the level set

surfaces. Thus, every level set moves according to a weighted combination of

the principle curvatures, k1 and k2, at each point. This point-wise motion is in the

direction of the surface normal. For instance, the mean curvature, widely used

for surface smoothing, is H = (k1 + k2)/2. Several authors have proposed using

Gaussian curvature K = k1k2 or functions thereof [97]. Recently [98] proposed
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using the minimum curvature, M = AbsMin(k1, k2) for preserving thin, tubular

structures, which otherwise have a tendency to pinch off under mean curvature

smoothing.

In previous work [41], the authors have proposed a weighted sum of mean

curvatures that emphasizes the minimum curvature, but incorporates a smooth

transition between different surface regions, avoiding the discontinuities (in the

derivative of motion) associated with a strict minimum. The weighted curvature

is

W = k2
1

k2
1 + k2

2

k2 + k2
2

k2
1 + k2

2

k1 = 2HK

D2
, (8.48)

where D =
√

k2
1 + k2

2 is the deviation from flatness [99].

For an implicit surface, the shape matrix [100] is the derivative of the normal

map projected onto the tangent plane of the surface. If we let the normal map

be n= ∇φ/|∇φ|, the derivative of this is the 3× 3 matrix

N =
(

∂n

∂x

∂n

∂y

∂n

∂z

)T

. (8.49)

The projection of this derivative matrix onto the tangent plane gives the shape

matrix B = N(I − n⊗ n), where ⊗ is the exterior product and I is the 3× 3

identity matrix. The eigenvalues of the matrix B are k1, k2 and zero, and the

eigenvectors are the principle directions and the normal, respectively. Because

the third eigenvalue is zero, we can compute k1, k2, and various differential

invariants directly from the invariants of B. Thus the weighted-curvature flow is

computing from B using the identities D = ||B||2, H = Tr(B)/2, and K = 2H2 −
D2/2. The choice of numerical methods for computing B is discussed in the

following section.

8.6.4 Implementation

The level set equations are solved by finite differences on a discrete grid, i.e.

a volume. This raises several important issues in the implementation. These

issues are the choice of numerical approximations to the PDE, efficient and

accurate schemes for representing the volume, and mechanisms for computing

the sinogram-based deformation in Eq. (8.47).
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8.6.4.1 Numerical Schemes

Osher et al. [30] have proposed an up-wind method for solving equations of the

form φt = ∇φ · v, of which φt = |∇φ|∑i ei(x), from Eq. (8.47), is an example.

The up-wind scheme utilizes one-sided derivatives in the computation of |∇φ|,
where the direction of the derivative depends, point-by-point, on the sign of

the speed term
∑

i ei(x). With strictly regulated time steps, this scheme avoids

overshooting (ringing) and instability.

Under normal circumstances, the curvature term, which is a directional dif-

fusion, does not suffer from overshooting; it can be computed directly from first-

and second-order derivatives of φ using central difference schemes. However,

we have found that central differences do introduce instabilities when comput-

ing flows that rely on quantities other than the mean curvature. Therefore, we

use the method of differences of normals [101,102] in lieu of central differences.

The strategy is to compute normalized gradients at staggered grid points and

take the difference of these staggered normals to get centrally located approxi-

mations to N (as in Fig. 8.20). The normal projection operator n⊗ n is computed

with gradient estimates from central differences. The resulting curvatures are

n[p-1,q] n[p,q]

n[p,q]

p-1 p+1

q-1

q

q+1

N computed as
difference of normals at
original grid location

Staggered normals
computed using 6
neighbors (18 in 3D)

p

n[p,q-1]

Figure 8.20: The shape matrix B is computed by using the differences of stag-

gered normals.
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treated as speed terms (motion in the normal direction), and the associated

gradient magnitude is computed using the up-wind scheme.

8.6.4.2 Sparse-Field Method

The computational burden associated with solving the 3D, second-order, non-

linear level set PDE is significant. For this reason several papers [34, 35] have

proposed narrow-band methods, which compute solutions only for a relatively

small set of pixels in the vicinity of k level set. The authors [36] have proposed a

sparse-field algorithm, which uses an approximation to the distance transform

and makes it feasible to recompute the neighborhood of the level set model at

each time step. It computes updates on a band of grid points, called the active

set, that is one point wide. Several layers around this active set are updated in

such a way as to maintain a neighborhood in order to calculate derivatives. The

position of the surface model is determined by the set of active points and their

values.

8.6.4.3 Incremental Projection Updates

The tomographic surface reconstruction problem entails an additional compu-

tational burden, because the measured data must be compared to the projected

model at each iteration. Specifically, computing p̂ij can be a major bottleneck.

Computing this term requires recomputing the sinogram of the surface/object

model as it moves. In the worst case, we would reproject the entire model every

iteration.

To address this computational concern, we have developed the method of

incremental projection updates (IPU). Rather than fully recompute p̂ at every

iteration, we maintain a current running version of p̂ and update it to reflect

the changes in the model as it deforms. Changes in the model are computed

only on a small set of grid points in the volume, and therefore the update time

is proportional to the area of the surface, rather than the size of the volume it

encloses.

The IPU strategy works with the the sparse-field algorithm as follows. At

each iteration, the sparse-field algorithm updates only the active layer (one voxel

wide) and modifies the set of active grid points as the surface moves. The incre-

mental projection update strategy takes advantage of this to selectively update
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Figure 8.21: A weighting coefficient for each voxel determines the portions of

the discrete sinogram influenced by incremental changes to a grid point.

the model projection to reflect those changes. At each iteration, the amount of

change in an active point’s value determines the motion of that particular surface

point as well as the percentage of the surrounding voxel that is either inside or

outside of the surface. By the linearity of projection, we can map these changes

in the object shape, computed at grid points along the surface boundary, back

into the sinogram space and thereby incrementally update the sinogram. Note

that each 3D grid point has a weighting coefficient (these are precomputed and

fixed), which is determined by its geometric mapping of the surrounding voxel

back into the sinogram, as in Fig. 8.21. In this way the IPU method maintains

subvoxel accuracy at a relatively low computational cost.

8.6.4.4 Initialization

The deformable model fitting approach requires an initial model, i.e. φ(x, t = 0).

This initial model should be obtained using the “best” information available

prior to the surface fitting. In some cases this will mean thresholding a grayscale

reconstruction, such as FBP, knowing that it has artifacts. In practice the initial

surface estimate is impacted by the reconstruction method and the choice of

threshold, and because we perform a local minimization, these choices can affect

the final result. Fortunately, the proposed formulation is moderately robust with

respect to the initial model, and our results show that the method works well

under a range of reasonable initialization strategies.
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Figure 8.22: (a) Transmission electron microscopy is used to image very small

specimens that have been set apart from the substrate by a contrast agent.

(b) TEM imaging technology provides projections over a limited set of angles.

8.6.5 Results

8.6.5.1 Transmission Electron Microscopy

Transmission electron microscopy is the process of using transmission images

of electron beams to reveal biological structures on very small dimensions. Typ-

ically transmission electron microscopy (TEM) datasets are produced using a

dye that highlights regions of interest, e.g. the interior of a microscopic structure,

such as a cell (see Fig. 8.22(a)). There are technical limits to the projection angles

from which data can be measured. These limits are due to the mechanical appa-

ratus used to tilt the specimens and the trade-off between the destructive effects

of electron energy and the effective specimen thickness, which increases with

tilt angle. Usually, the maximum tilt angle is restricted to about±60–70◦. Figure

8.22(b) shows an illustration of the geometry of this limited-angle scenario. The

TEM reconstruction problem is further aggravated by the degree of electron

scattering, which results in projection images (sinograms) that are noisy rela-

tive to many other modalities, e.g. X-ray CT. Finally, due to the flexible nature

of biological objects and the imperfections in the tilting mechanism, the objects

undergo some movements while being tilted. Manual alignment procedures used

to account for this tend to produce small misregistration errors.

We applied the proposed algorithm to 3D TEM data obtained from a 3 MeV

electron microscope. This 3D dataset consists of 67 tilt series images, each

corresponding to one view of the projection. Each tilt series image is of size 424×
334. The volume reconstructed by FBP is of size 424× 424× 334. Figures 8.23(a)
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(a) (b) (c) (d) (e)

Figure 8.23: 2D slice of dendrite data: (a) sinogram of one slice, (b) sinogram es-

timated by the proposed method, (c) back projection showing artifacts, (d) initial

model obtained by thresholding the back projection (white curve overlaid on

the back projection), and (e) final surface estimate.

and (b) show the sinogram corresponding to a single slice of this dataset and

the estimate of the same sinogram created by the method. Figure 8.23(e) shows

the surface estimate intersecting this slice overlaid on the back projected slice.

Some structures not seen in the back projection are introduced in the final

estimation, but the orientation of the structures introduced suggests that these

are valid features that were lost due to reconstruction artifacts from the FBP.

Also, the proposed method captures line-by-line brightness variations in the

input sinogram (as explained in Section 8.6.2.1). This suggests that the density

estimation procedure is correct.

Figure 8.24 shows the 3D initialization and the final 3D surface estimate. The

figure also shows enlarged initial and final versions of a small section of the sur-

face. Computing the surface estimate for the TEM dendrite with 150 iterations

took approximately 3 hours on a single 300 MHz processor of a Silicon Graph-

ics Onyx2 workstation. We consider these results positive for several reasons.

First, the biology is such that one expects the spines (small protrusions) to be

connected to the dendrite body. The proposed method clearly establishes those

connections, based solely on consistency of the model with the projected data.

The second piece of evidence is the shapes of the spines themselves. The re-

constructed model shows the recurrence of a characteristic shape—a long thin

spine with a cup-like structure on the end. This characteristic structure, which
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(a) (c)

(b) (d)

Figure 8.24: 3D results: (a) surface initialization, (b) final surface estimated

after 150 iterations, (c) a portion of the initial surface enlarged, and (d) the

corresponding portion in the final surface.

often fails to show up in the FBP reconstruction, does appear quite regularly in

hand-segmentations of the same datasets.

8.6.5.2 Sinogram Extrapolation

The fitting of surfaces to this data is a simplification. It is justified in the context

of segmentation, but there are underlying inhomogeneities in the density of

this specimen, which could be indicative of relevant structures. Thus for some

applications direct visualization of the measured data, by volume rendering,

offers advantages over the segmented surfaces. We propose to use the surface

estimation algorithm as a mechanism for estimating the missing data in the

sinograms.

Figures 8.25(a) and (b) show the input sinogram and the sinogram of the es-

timated model (for one slice) of the TEM dendrite data. The estimated sinogram

demonstrates that the surface estimation method recovers the missing infor-

mation in a reasonable way. Thus, we combine the sinograms from the model

with original sinograms to produce a “full” sinogram that still contains all of the
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(a) (b) (c) (d)

Figure 8.25: Sinogram extrapolation for slice number 150 of dendrite data: (a)

input sinogram, (b) sinogram estimated by the proposed method, (c) augmented

sinogram constructed using original data and estimating missing data from the

segmentation, and (d) FBP reconstruction of the augmented sinogram.

orginal, measured data. FBP reconstructions from such augmented sinograms

should have fewer limited-angle streak artifacts.

We demonstrate this by comparing volume renderings with and without the

augmentation. We create augmented sinograms by using sinogram data from the

estimated model only where the data is missing from the measured sinograms.

The augmented sinogram for a single slice is shown in Fig. 8.25(c). The slice

reconstructed (FBP) from the augmented sinogram is shown in Fig. 8.25(d).

Note that this reconstructed slice does not contain the limited-angle artifacts

that appear in the slice in Fig. 8.23(c). Maximum intensity projection (MIP) vol-

ume renderings of the volume created from original sinograms and the volume

created from augmented sinograms are compared in Fig. 8.26. The main body

of the dendrite, which exhibited a very convoluted and fuzzy boundary, shows

better definition. Also, several of the spines which were dangling in the original

reconstruction are now connected.

8.7 Conclusions

This chapter has described a level set segmentation framework and the pre-

processing and data analysis techniques needed for a number of segmentation
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(a) (c)

(b) (d)

Figure 8.26: Sinogram extrapolation results: (a) MIP volume rendering of vol-

ume reconstructed from original sinograms, (b) MIP volume rendering of vol-

ume reconstructed from augmented (extrapolated) sinograms, (c) a portion of

original MIP enlarged, and (d) the corresponding portion in augmented MIP

enlarged.

applications. Several standard volume processing algorithms have been incor-

porated into the framework in order to segment datasets generated from MRI,

CT, and TEM scans. A technique based on moving least-squares has been devel-

oped for segmenting multiple nonuniform scans of a single object. New scalar

measures have been defined for extracting structures from diffusion tensor MRI

scans. Finally, a direct approach to the segmentation of incomplete tomographic

data using density parameter estimation is described. These techniques, com-

bined with level set surface deformations, allow us to segment many different

types of biological volume datasets.
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Chapter 9

Advanced Segmentation Techniques

Aly A. Farag,1 Mohamed N. Ahmed,2 Ayman El-Baz,1 and

Hossam Hassan1

9.1 Introduction

The principal goal of the segmentation process is to partition an image into

regions that are homogeneous with respect to one or more characteristics or

features. Segmentation is an important tool in medical image processing and

it has been useful in many applications including lesion quatification, surgery

simulations, surgical planning, multiple scleroris, functional mapping, computer

assisted diagnosis, image registration and matching, etc.

A wide varity of segmentation techniques has been proposed. However, there

is no one standard segmentation technique that can produce satisfactory results

for all imaging applications. Quite often, methods are optimized to deal with spe-

cific imaging modalities such as magnetic resonance (MR) imaging and X-ray

computed tomography (CT), or modeled to segment specific anatomic struc-

tures such as the brain, the lungs, and the vascular system.

Recent research has demonstrated that the segmentation of anatomical

structures from MRI and CT will benefit from the exploitation of three different

types of knowledge: intensity models that describe the gray-level appearance

of individual structures, shape models that descibe the shape of different struc-

tures as well as imaging models that capture the characteristics of the imaging

process.

1 Computer Vision and Image Processing Laboratory, Department of Electrical and Com-
puter Engineering, University of Louisville, Louisville, KY 40292, USA

2 Software Research, C19L, Lexmark International Inc., Lexington, KY 40550, USA, E-mail:
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Stochastic image models are useful in quantitatively specifying natural con-

straints and general assumption about the physical world and the imaging pro-

cess. Random field models permit the introduction of spatial context into pixel

labeling problem. An introduction to random fields and its application in lung

CT segmentation will be presented in Section 9.2.

Crisp segmentation, by which a pixel is assigned to a one particular region,

often presents problems. In many situations, it is not easy to determine if a pixel

should belong to a region or not. This is because the features used to determine

homogeneity may not have sharp transitions at region boundaries. To alleviate

this situation, we can inset fuzzy set concepts into the segmentation process.

In Section 9.4, we will present an algorithm for fuzzy segmentation of MRI data

and estimation of intensity inhomogeneities using fuzzy logic. MRI intensity

inhomogeneities can be attributed to imperfections in the RF coils or to problems

associated with the acquisition sequences. The result is a slowly varying shading

artifact over the image that can produce errors with conventional intensity-

based classification. The algorithm is formulated by modifying the objective

function of the standard fuzzy c-means (FCM) algorithm to compensate for such

inhomogeneities and to allow the labeling of a pixel (voxel) to be influenced

by the labels in its immediate neighborhood. The neighborhood effect acts as

a regularizer and biases the solution toward piecewise-homogeneous labelings.

Such a regularization is useful in segmenting scans corrupted by salt and pepper

noise.

Section 9.5 is devoted to the description of geometrical methods and their

application in image segmentation. Among many methods used for shape recov-

ery, the level sets has proven to be a successful tool. The level set is a method for

capturing moving fronts introduced by Osher and Sethian in 1987. It was used

in many applications like fluid dynamics, graphics, visualization, image process-

ing, and computer vision. In this chapter, we introduce an overview of the level

set and its use in image segmentation with application in vascular segmentation.

The human cerebrovascular system is a complex three-dimensional anatomical

structure. Serious types of vascular diseases such as carotid stenosis, aneurysm,

and vascular malformation may lead to brain stroke, which are the third leading

cause of death and the main cause of disability. An accurate model of the vas-

cular system from MRA data volume is needed to detect these diseases at early

stages and hence may prevent invasive treatments. In this section, we will use
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a method based on level sets and statistical models to improve the accuracy of

the vascular segmentation.

9.2 Stochastic Image Models

The objective of modeling in image analysis is to capture the intrinsic character

of images in a few parameters so as to understand the nature of the phenomenon

generating the images. Image models are also useful in quantitatively specifying

natural constraints and general assumptions about the physical world and the

imaging process. The introduction of stochastic models in image analysis has

led to the development of many practical algorithms that would not have been

realized with ad hoc processing. Approaching problems in image analysis from

the modeling viewpoint, we focus on the key issues of model selection, sampling,

parameter estimation, and goodness-of-fit.

Formal mathematical image models have long been used in the design of

image algorithms for applications such as compression, restoration, and en-

hancement [1]. Such models are traditionally low stochastic models of limited

complexity. In recent years, however, important theoretical advances and in-

creasingly powerful computers have led to more complex and sophisticated

image models. Depending on the application, researchers have proposed both

low-level and high-level models.

Low-level image models describe the behavior of individual image pixels rel-

ative to one another. Markov random fields and other spatial interaction models

have proven useful for a variety of applications, including image segmentation

and restoration [2,3]. Bouman et al. [4], along with Willsky and Benvensite [5,6],

have developed multiscale stochastic models for image data.

High-level models are generally used to describe a more restrictive class of

images. These models explicitly describe larger structures in the image, rather

than describing individual pixel interactions. Grenander et al., for example, pro-

pose a model based on deformable templates to describe images of nonrigid ob-

jects [7], while Kopec and his colleagues model document images using a Markov

source model for symbol generation in conjunction with a noisy channel [8, 9].

The following part of this chapter is organized as follows: First, a short

introduction about Gibbs random field (GRF) and Markov random field (MRF)
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is given. A detailed description of our proposed approach to get an accurate

image model is then presented. Finally, we will apply the proposed model in the

segmentation of lung CT.

9.2.1 Statistical Framework

The observed image is assumed to be a composites of two random process: a

high-level process X, which represents the classes that form the observed image;

and a low-level process Y , which describes the statistical characteristics of each

class.

The high-level process X is a random field defined on a rectangular grid S

of N2 points, and the value of X will be written as Xs. Points in X will take

values in the set (�1, . . . , �m), where m is the number of classes in the given

image.

Given x, the conditional density function of y is assumed to exist and to be

strictly positive and is denoted by p(Y = y | X = x) or p(y | x).

Finally, an image is a square grid of pixels, or sites, {(i, j) : i = 1 to N, j =
1 to N}. We adopt a simple numbering of sites by assigning sequence number

t = j + N(i− 1) to site s. This scheme numbers the sites row by row from 1 to

N2, starting in the upper left.

9.2.2 Gibbs Random Fields

In 1987, Boltzmann investigated the distribution of energy states in molecules

of an ideal gas. According to the Boltzmann distribution, the probability of a

molecule to be in a state with energy ε is

p(ε) = 1
Z

e−
1

KT
ε, (9.1)

where Z is a normalization constant, that makes the sum of probabilities equal to

1. T is the absolute temperature, and K is Boltzmann’s constant. For simplicity

we assume that the temperature is measured in energy units, hence KT will be

replaced by T .

Gibbs used a similar distribution in 1901 to express the probability of a whole

system with many degrees of freedom to be in a state with a certain energy. A

discrete GRF provides a global model for an image by specifying a probability
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mass function in the following form

p(x) = 1
Z

e−
E(X)

T , (9.2)

where Z =∑
x∈� e

−E(x)
T , and the function E(x) is called energy function.

9.2.3 Markov Random Fields

Hassner and Sklansky introduced Markov random fields to image analysis and

throughout the last decade Markov random fields have been used extensively

as representations of visual phenomena. A Gibbs random filed describes the

global properties of an image in terms of the joint distributions of colors for all

pixels. An MRF is defined in terms of local properties. Before we show the basic

properties of MRF, we will show some definitions related to Gibbs and Markov

random fields [10–15].

Definition 1: A clique � is a subset of S for which every pair of sites is a

neighbor. Single pixels are also considered cliques. The set of all cliques on a

grid is called �.

Definition 2: A random field X is an MRF with respect to the neighborhood

system η = {ηs, s ∈ S} if and only if

� p(X = x) > 0 for all x ∈ �, where� is the set of all possible configurations

on the given grid;

� p(Xs = xs|Xs|r = xs|r) = p(Xs = xs|X∂s = x∂s), where s|r refers to all N2

sites excluding site r, and ∂s refer to the neighborhood of site s;

� p(Xs = xs|X∂s = x∂s) is the same for all sites s.

The structure of the neighborhood system determines the order of the MRF.

For a first-order MRF the neighborhood of a pixel consists of its four nearest

neighbors. In a second-order MRF the neighborhood consists of the eight nearest

neighbors. The cliques structure are illustrated in Figs 9.1 and 9.2.

Consider a graph (t, η) as shown in Fig. 9.3 having a set of N2 sites. The

energy function for a pairwise interaction model can be written in the following

form:

E(x) =
N2∑
t=1

F(xt)+
N2∑
t=1

w∑
r=1

H(xt, xt:+r), (9.3)
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Figure 9.1: Cliques for a first-order neighborhood, where α, θ1, and θ2 are the

cliques coefficients for first-order neighborhood system.

Figure 9.2: Cliques for a second-order neighborhood, where α, θ1, . . . , θ9 are

the cliques coefficients for second-order neighborhood system.

Figure 9.3: Numbering and order coding of the neighborhood structure.

where F is the potential function for single-pixel cliques and H is the poten-

tial function for all cliques of size 2. The parameter w depends on the size of

the neighborhood around each site. For example, w is 2, 4, 6, 10, and 12 for

neighborhoods of orders 1, 2, 3, 4, 5, respectively.

Using the Derin–Elliott model [15] to compute F and H, we have

F(xt) = αxt and H(xt, xt:+r) = θr I(xt, x(t : +r)),

where I(a, b) is called indicator function where

I(a, b) = −1 if a = b

= 1 if a �= b.

9.2.4 Image Models

As mentioned before, the observed image is modeled as a composite of two

random processes, a high-level process X and a low-level process Y [16–20].
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The maximum a posteriori parameters estimation involves the determination

of x that maximizes p(x|y) with respect to x. By Bayes’ rule,

p(x|y) = p(y|x)p(x)
p(y)

. (9.4)

Since the denominator of Eq. 9.4 does not affect the optimization, the MAP

parameters estimation can be obtained, equivalently, by maximizing the numer-

ator of Eq. 9.4 or its natural logarithm; that is, we need to find x which maximizes

the following criterion:

L(x|y) = ln p(y|x)+ ln p(x). (9.5)

The first term in Eq. 9.5 is the likelihood due to the low-level process and the

second term is due to the high-level process. Based on the models of the high-

level and low-level processes, the MAP estimate can be obtained.

In order to carry out the MAP parameters estimation in Eq. 9.5, one needs to

specify the parameters of the two processes. A popular model for the high-level

process is the Gibbs Markov model. In the following sections we introduce a new

accurate model to model the low-level process. In this model we will assume

that each class consists of a mixture of normal distributions which follow the

following equation:

p(y|�i) =
ni∑

l=1

πl p(y|Cl), for i = 1, 2, . . . , m, (9.6)

where ni is the number of normal components that formed class �i, π is the

corresponding mixing proportion, and {Cl}ni

l=1 is the number of Gaussian com-

ponents that formed class �i. So the overall model for the low-level process can

be expressed as follows:

pes(y) =
m∑

i=1

p(�i)p(y|�i). (9.7)

In our proposed algorithm the priori probability p(�i) is included in the mixing

proportion for each class.

9.2.5 Parameter Estimation for Low-Level Process

In order to estimate the parameters for low-level process, we need to esti-

mate the number of Gaussian components that formed the distribution for each

class, their means, the variances, and mixing proportions for each Gaussian
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component. To estimate the distribution for each class, we use the expecta-

tion maximization algorithm. The first step to estimate the distribution for each

class is to estimate the dominant Gaussian components in the given empirical

distribution.

9.2.5.1 Dominant Gaussian Components Extracting Algorithm

1. Assume the number of Gaussian components that represent the classes

�i, i = 1, ..., m. Initialize the parameters of each distribution randomly.

2. The E-step: Compute δit that represent responsibility that the given pixel

value is extracted from certain distribution as

δk
it =

πk
i p(yt|�k

i , �i)∑m

l=1 πk
l p(yt|�k

l , �l)
, for t = 1 to N2, (9.8)

where yt is the gray level at location t in the given image, πk
i is the mix-

ing proportion of Gaussian component i at step k, and �k
i is estimated

parameter for Gaussian component i at step k.

3. The M-step: we compute the new mean, the new variance, and the new

proportion from the following equations:

πk+1
i =

N2∑
t=1

δit, (9.9)

µk+1
i =

∑N2

t=1 δk
it yt∑N2

t=1 δk
it

, (9.10)

(σ k+1
i )2 =

∑N2

t=1 δk
it(yt − µk

i )2∑N2

t=1 δk
it

. (9.11)

4. Repeat steps 1 and 2 until the relative difference of the subsequent values

of Eqs. 9.9, 9.10, and 9.11 are sufficiently small.

Let pI�1(y), pI�2(y), . . . ,pI�m(y) be the dominant Gaussian components that

are estimated from the above algorithm. Then the initial estimated density

(pI(y)) for the given image can be defined as follows:

pI(y) = π1 pI�1(y)+ π2 pI�2(y)+ · · · + πmpI�m(y). (9.12)

Because the empirical data does not exactly follow mixture of normal distri-

bution, there will be error between pI(y) and pem(y). So we suggest the following
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models for the empirical data:

pem(y) = pI(y)+ ζ (y), (9.13)

where ζ (y) represent the error between pem(y) and pI(y). From Eq. 9.13, ζ (y)

can be rewritten as

ζ (y) = |pem(y)− pI(y)|sign(pem(y)− pI(y)). (9.14)

We assume that the absolute value of ζ (y) is another density which consists

of a mixture of normal distributions and we will use the following EM algorithm

to estimate the number of Gaussian components in ζ (y) and the mean, the

variance, and mixing proportion.

9.2.5.2 Sequential EM Algorithm

1. Assume the number of Gaussian components (n) in ζ (y) is 2.

2. The E-step: Given the current value of the number of Gaussian compo-

nents in ζ (y), compute δit as

δk
it =

πk
i p(yt|�k

i )∑n

l=1 πk
l p(yt|�k

l )
, for i = 1 to n and t = 1 to N2. (9.15)

3. The M-step: We compute the new mean, the new variance, and the new

proportion from the following equations:

πk+1
i =

N2∑
t=1

δit, (9.16)

µk+1
i =

∑N2

t=1 δk
it yt∑N2

t=1 δk
it

, (9.17)

(σ k+1
i )2 =

∑N2

t=1 δk
it(yt − µk

i )2∑N2

t=1 δk
it

. (9.18)

4. Repeat steps 1 and 2 until the relative differences of the subsequent values

of Eqs. 9.16, 9.17, and 9.18 are sufficiently small.

5. Compute the conditional expectation and the error between |ζ (y)| and the

estimated density (pζ (y)) for |ζ (y)| from the following equations:

Q(n) =
N2∑
t=1

n∑
i=1

δit ln pζ (y|�i), (9.19)

ε(n) = |ζ (y)| −
n∑

i=1

πi pζ i(y). (9.20)
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6. Repeat steps 2, 3, 4, and 5, and increase the number of Gaussian com-

ponents n by 1 if the conditional expectation Q(n) is still increasing and

ε(n) is still decreasing, otherwise stop and select the parameters which

correspond to maximum Q(n) and minimum ε(n).

Since EM algorithm can be trapped in a local minimum, we run the above

algorithm several times and select the number of Gaussian components and

their parameters that give maximum Q(n) and minimum ε(n).

After we determined the number of Gaussian components that formed |ζ (y)|,
we need to determine which components belong to class �1, and belong to class

�2, and so on. In this model we classify these components based on the mini-

mization of risk function under 0–1 loss. In order to minimize the risk function,

we can use the following algorithm. Note that the following algorithm is writen

for two classes but it is easy to generalize to n classes.

9.2.5.3 Components Classification Algorithm

1. All Gaussian components that have mean less than the estimated mean for

pI�1(y) belong to the first class.

2. All Gaussian components that have mean greater than the estimated mean

for pI�2(y) belong to the second class.

3. For the components which have mean greater than the estimated mean for

pI�1(y) and less than the estimated mean for pI�2(y), do the following:

(a) Assume that the first component belongs to the first class and the

other components belong to the second class. Compute the risk

value from the following equation:

R(Th) =
∫ ∞

Th

p(y|�1)dy+
∫ Th

−∞
p(y|�2)dy, (9.21)

where Th is the threshold that separates class �1 from class �2. The

above integration can be done using a second-order spline.

(b) Assume that the first and second components belong to the first

class and other components belong to the second class, and from

Eq. 9.21 compute R(Th). Continue this process as R(Th) decreases,

and stop when R(Th) starts to increase.
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Finally, to show the convergence of the proposed model, we will show ex-

perimentally, when we use this model, the Levy distance will decrease between

the estimated distribution Pes(y) and empirical distribution Pem(y). The Levy

distance ρ(Pem, Pes) is defined as

ρ(Pem, Pes) = inf{ξ > 0 : ∀yPem(y− ξ)− ξ ≤ Pes(y) ≤ Pem(y+ ξ)+ ξ}.
(9.22)

As ρ(Pem, Pes) approach zero, Pes(y) converge weakly to Pem(y).

9.2.6 Parameter Estimation for High-Level Process

In order to carry out the MAP parameters estimation in Eq. 9.5, one needs to

specify the parameters of high-level process. A popular model for the high-level

process is the Gibbs Markov model which follows Eq. 9.2. In order to estimate

the parameters of GMRF, we will find the parameters that maximize Eq. 9.2, and

we will use the Metropolis algorithm and genetic algorithm (GA).

The Metropolis algorithm is a relaxation algorithm to find a global maximum.

The algorithm assumes that the classes of all neighbors of yare known. The high-

level process is assumed to be formed of m-independent processes; each of the

m processes is modeled by Gibbs Markov random which follow Eq. 9.2. Then y

can be classified using the fact that p(xi|y) is proportional to p(y|xt) P(xt|ηs),

where s is the neighbor set to site S belonging to class xt, p(xt|ηs) is computed

from Eq. 9.2, and p(y|xt) is computed from the estimated density for each class.

By using the Bayes classifier, we get initial labeling image. In order to run the

Metropolis algorithm, first we must know the coefficients of potential function

E(x), so we will use GA to estimate the coefficient of E(x) and evaluate these

coefficients through the fitness function.

9.2.6.1 Maximization Using Genetic Algorithm

To build the genetic algorithm, we define the following parameters:

Chromosome: A chromosome is represented in binary digits and consists of

representations for model order and clique coefficients. Each chromosome has

41 bits. The first bit represent the order of the system (we use digit “0” for first-

order and digit “1” for second-order-GMRF). The remaining bits represent the



490 Farag, Ahmed, El-Baz, and Hassan

clique coefficients, where each clique coefficient is represented by 4 bits (note

that for first-order system, we estimate only five parameters, and the remaining

clique’s coefficient will be zero, but for the second-order system we will estimate

ten parameters).

Fitness Function: Since our goal is to select the high-level process X that

maximize Eq. 9.5, we can use Eq. 9.5 as the fitness function.

High-level parameters estimation algorithm:

1. Generate the first generation which consists of 30 chromosomes.

2. Apply the Metropolis algorithm for each chromosome on each image and

then compute the fitness function as shown in Eq. 9.5.

3. If the fitness values for all chromosomes do not change from one popula-

tion to another population, then stop and select the chromosome, which

gives maximum fitness value. (If there are two chromosomes that give

the same fitness value, we select the chromosome which represents lower

order system.) Otherwise go to step 2.

Using the results obtained by this algorithm, we will repeat the estimation

of low-level process and high-level process. We will stop when the difference

between the current parameters and previous parameters is small.

9.3 Applications

Lung Cancer remains the leading cause of mortality cancer. In 1999, there were

approximately 170 000 new cases of lung cancer [21]. The 5-year survival rate

from the diseases is 14% and has increased only slightly since the early 1970s

despite extensive and expensive research work to find effective therapy. The

disparity in survival between early and late-stage lung cancer is substantial,

with a 5-year survival rate of approximately 70% in stage 1A disease compared

to less than 5% in stage IV disease according to the recently revised lung cancer

staging criteria [21]. The disproportionately high prevalence of and mortality

from lung cancer has encouraged attempts to detect early lung cancer with

screening programs aimed at smokers. Smokers have an incidence rate of lung
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cancer that is ten times that of nonsmokers and accounts for greater than 80%

of lung cancer cases in the United States [21].

One in every 18 women and every 12 men develop lung cancer, making it

the leading cause of cancer deaths. Early detection of lung tumors (visible on

the chest film as nodules) may increase the patient’s chance of survival. For

this reason the Jewish Hospital designed a program for early detection with

the following specific aims: A number of lung cancer screening trials have been

conducted in the United States, Japan, and Europe for the purpose of developing

an automatic approach of tummor detection [21].

At the University of Louisville CVIP Lab a long-term effort has been ensued

to develop a comprehensive image analysis system to detect and recognize lung

nodules in low dose chest CT (LDCT) scans. The LDCT scanning was performed

with the following parameters: slice thickness of 8 mm reconstructed every 4

mm and scanning pitch of 1.5. In the following section we highlight our approach

for automatic detection and recognition of lung nodules; further details can be

found in [22].

9.3.1 Lung Extraction

The goal of lung extraction is to separate the voxels corresponding to lung tissue

from those belonging to the surrounding anatomical structures. We assume that

each slice consists of two types of pixels: lung and other tissues (e.g., chest,

ribs, and liver). The problem in lung segmentation is that there are some tissues

in the lung such as arteries, veins, bronchi, and bronchioles having gray level

close to the gray level of the chest. Therefore, in this application if we depend

only on the gray level we lose some of the lung tissues during the segmentation

process. Our proposed model which depends on estimating parameters for two

processes (high-level process and low-level process) is suitable for this appli-

cation because the proposed model not only depend on the gray level but also

takes into consideration the characterization of spatial clustering of pixels into

regions.

We will apply the approach that was described in Section 9.2.4 on lung CT.

Figure 9.4 shows a typical CT slice for the chest. We assume that each slice

consists of two types of tissues: lung and other tissues (e.g., chest, ribs, and

liver). As discussed above, we need to estimate parameters for both low-level

process and high-level process. Table 9.1 presents the results of applying the
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Table 9.1: Estimated using dominant Gaussian components

extracting algorithm

Parameter µI�1 µI�2 σ 2
I�1 σ 2

I�2 πI�1 πI�2

Value 59.29 139.97 177.15 344.29 0.25 0.758

dominant Gaussian components extracting algorithm described in 9.2.5.1. Figure

9.5 shows the empirical density for the CT slice shown in Fig. 9.4 and the initial

estimated density (which represented the two dominant Gaussian components

in the given CT). The Levy distance between the two distribution functions

which represented the densities shown in Fig. 9.5 is 0.09. This value is large and

this means there is a mismatch between empirical pem(y) and pI(y). Figure 9.6

shows the error and absolute error between pem(y) and pI(y).

After we apply sequential EM algorithm to |ζ (y)|, we get that the number of

normal components that represent |ζ (y)| is 10 as shown in Fig. 9.7. Figure 9.8

Figure 9.4: A typical slice form of a chest spiral CT scan.
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Figure 9.9: 12 Gaussian components which are used in density estimation.

shows the estimated density for |ζ (y)|. Figure 9.9 shows all Gaussian compo-

nents which are estimated after using dominant Gaussian components extract-

ing algorithm and sequential EM algorithms. Figure 9.10 shows the estimated

density for the CT slices shown in Figure 9.4. The Levy distance between the

distributions Pes(y) and Pem(y) is 0.0021 which is smaller compared to the Levy

distance between the distributions Pem(y) and P I(y).

Now we apply components classification algorithm on the ten Gaussian com-

ponents that are estimated using sequential EM algorithm in order to determine

which components belong to lung tissues and which components belong to

chest tissues. The results of components classification algorithm show that the

minimum risk equal to 0.004 48 occurs at threshold Th = 108 when Gaussian

components 1, 2, 3, and 4 belong to lung tissues and component 5, 6, 7, 8, 9,

and 10 belong to chest tissues. Figure 9.11 shows the estimated density for lung

tissues and estimated density for chest and other tissues that may appear in CT.

The next step of our algorithm is to estimate the parameters for high-level pro-

cess. A popular model for the high-level process is the Gibbs Markov mode, and

we use the Bayes classifier to get initial labeling image. After we run Metropolis

algorithm and GA to determine the coefficients of potential function E(x), we get
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Figure 9.11: Empirical density and estimated density for CT slice shown in

Fig. 9.4.
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(a) (b) (c)

Figure 9.12: (a) Segmented lung using the proposed algorithm, error = 1.09%.

(b) Output of segmentation algorithm by selecting parameters for high-level

process randomly, error = 1.86%. (c) Segmented lung by radiologist.

the following results: α = 1, θ1 = 0.89, θ2 = 0.8, θ3 = 0.78, θ4 = 0.69, θ5 = 0.54,

θ6 = 0.61, θ7 = 0.89 , θ8 = 0.56, and θ9 = 0.99.

The result of segmentation for the image shown in Fig. 9.4 using these pa-

rameters is shown in Fig. 9.12. Figure 9.12(a) shows the results of proposed algo-

rithm. Figure 9.12(b) shows output of the Metropolis algorithm by selecting pa-

rameters randomly. Figure 9.12(c) shows the segmentation done by a radiologist.

As shown in Fig. 9.12(a) the accuracy of our algorithm seems good if it is

compared with the segmentation of the radiologist. Figure 9.13 shows compari-

son between our results and the results obtained by iterative threshold method

which was proposed by Hu and Hoffman [23]. It is clear from Fig. 9.13 that the

(a) (b) (c) (d)
error = 3.01%error = 0.41%

error = 2.1% error = 9.1%

Figure 9.13: (a) Original CT, (b) segmented lung using the proposed model, (c)

segmented lung using the iterative threshold method, and (d) segmented lung

by radiologist. The errors with respect to this ground truth are highlighted by

red color.
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(a) (b) (c)

Figure 9.14: (a) Generated Phantom, (b) ground truth image (black pixel rep-

resent lung area, and gray pixels represent the chest area), and (c) segmented

lung using the proposed approach (error 0.091). The errors with respect to this

ground truth are highlighted by red color.

proposed algorithm segments the lung without causing any loss of abnormality

tissues if it is compared with the iterative threshold method. Also, in order to

validate our results we create a phantom which has the same distribution as lung

and chest tissues. This phantom is shown in Fig. 9.14. One of the advantages of

this phantom is that we know its ground truth. It is clear from Fig. 9.14 that the

error between segmented lung and ground truth is small and this shows that the

proposed model is accurate and suitable for this application.

9.4 Fuzzy Segmentation

As mentioned before, the objective of image segmentation is to divide an image

into meaningful regions. Errors made at this stage would affect all higher level

activities. Therefore, methods that incorporate the uncertainty of object and

region definitions and the faithfulness of the features to represent various objects

are desirable.

In an ideally segmented image, each region should be homogeneous with

respect to some predicate such as gray level or texture, and adjacent regions

should have significantly different characteristics or features. More formally,

segmentation is the process of partitioning the entire image into c crisp maxi-

mally connected regions {Ri} such that each Ri is homogeneous with respect to

some criteria. In many situations, it is not easy to determine if a pixel should

belong to a region or not. This is because the features used to determine homo-

geneity may not have sharp transitions at region boundaries. To alleviate this

situation, we can inset fuzzy set concepts into the segmentation process.
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In fuzzy segmentation, each pixel is assigned a membership value in each

of the c regions. If the memberships are taken into account while computing

properties of regions, we oftain obtain more accurate estimates of region prop-

erties. One of the known techniques to obtain such a classification is the FCM

algorithm [40, 41]. The FCM algorithm is an unsupervised technique that clus-

ters data by iteratively computing a fuzzy membership function and mean value

estimates for each class. The fuzzy membership function, constrained to be be-

tween 0 and 1, reflects the degree of similarity between the data value at that

location and the prototypical data value, or centroid, ot its class. Thus, a high

membership value near unity signifies that the data value at that location is close

to the centroid of that particular class.

FCM has been used with some success in image segmentation in general

[45,46], however, since it is a point operation, it does not preserve connectivity

among regions. Furthermore, FCM is highly sensitive to noise. In the following

sections, we will present a new system to segment digital images using a modified

Fuzzy c-means algorithm. Our algorithm is formulated by modifying the objec-

tive function of the standard FCM algorithm to allow the labeling of a pixel to be

influenced by the labels in its immediate neighborhood. The neighborhood ef-

fect acts as a regularizer and biases the solution toward piecewise-homogeneous

labelings. Such a regularization is useful in segmenting scans corrupted by scan-

ner noise. In this paper, we will present the results of applying this algorithm to

segment MRI data corrupted with a multiplicative gain field and salt and pepper

noise.

9.4.1 Standard Fuzzy-C-Means

The standard FCM objective function for partitioning {xk}Nk=1 into c clusters is

given by

J =
c∑

i=1

N∑
k=1

u
p

ik||xk − vi||2, (9.23)

where {xk}Nk=1 are the feature vectors for each pixel, {vi}ci=1 are the prototypes of

the clusters and the array [uik] = U represents a partition matrix, U ∈ U , namely

U{ uik ∈ [0, 1] |
c∑

i=1

uik = 1 ∀k
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and

0 <

N∑
k=1

uik < N ∀i}. (9.24)

The parameter p is a weighting exponent on each fuzzy membership and

determines the amount of fuzziness of the resulting classification. The FCM

objective function is minimized when high membership values are assigned to

pixels whose intensities are close to the centroid of its particular class, and low

membership values are assigned when the pixel data is far from the centroid.

9.4.2 Modified Fuzzy C-Means Objective Function

We propose a modification to Eq. 9.23 by introducing a term that allows the

labeling of a pixel to be influenced by the labels in its immediate neighborhood.

As mentioned before, the neighborhood effect acts as a regularizer and biases

the solution toward piecewise-homogeneous labeling. Such a regularization is

useful in segmenting scans corrupted by salt and pepper noise. The modified

objective function is given by

Jm =
c∑

i=1

N∑
k=1

u
p

ik||xk − vi||2
(9.25)

+ α

NR

c∑
i=1

N∑
k=1

u
p

ik

( ∑
xr∈Nk

||xr − vi||2
)

,

where Nk stands for the set of neighbors that exist in a window around xk and

NR is the cardinality of Nk. The effect of the neighbors term is controlled by

the parameter α. The relative importance of the regularizing term is inversely

proportional to the signal to noise ratio (SNR) of the image signal. Lower SNR

would require a higher value of the parameter α.

Formally, the optimization problem comes in the form

min
U, {vi}ci=1

Jm subject to U ∈ U . (9.26)

9.4.3 Parameter Estimation

The objective function Jm can be minimized in a fashion similar to the standard

FCM algorithm. Taking the first derivatives of Jm with respect to uik and vi, and



Advanced Segmentation Techniques 501

setting them to zero results in two necessary but not sufficient conditions for

Jm to be at a local extrema. In the following subsections, we will derive these

three conditions.

9.4.3.1 Membership Evaluation

The constrained optimization in Eq. 9.26 will be solved using one Lagrange

multiplier

Fm =
c∑

i=1

N∑
k=1

(
u

p

ik Dik + α

NR

u
p

ikγi

)
+ λ

(
1−

c∑
i=1

uik

)
, (9.27)

where Dik = ||xk − vi||2 and γi =
(∑

xr∈Nk
||xr − vi||2

)
. Taking the derivative of

Fm w.r.t. uik and setting the result to zero, we have, for p > 1,[
δFm

δuik

= pu
p−1
ik Dik + αp

NR

u
p

ikγi − λ

]
uik=u∗ik

= 0. (9.28)

Solving for u∗ik, we have

u∗ik =
(

λ

p(Dik + α
NR

γi)

) 1
p−1

. (9.29)

Since
∑c

j=1 ujk = 1 ∀k,

c∑
j=1

(
λ

p(Djk + α
NR

γ j)

) 1
p−1

= 1 (9.30)

or

λ = p(∑c

j=1

(
1

(D jk+ α
NR

γ j)

) 1
p−1

)p−1 (9.31)

Substituting into Eq. 9.29, the zero-gradient condition for the membership esti-

mator can be rewritten as

u∗ik =
1∑c

j=1

(
Dik+ α

NR
γi

D jk+ α
NR

γ j

) 1
p−1

. (9.32)
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9.4.3.2 Cluster Prototype Updating

Using the standard Eucledian distance and taking the derivative of Fm w.r.t. vi

and setting the result to zero, we have[
N∑

k=1

u
p

ik(xk − vi)+
N∑

k=1

u
p

ik

α

NR

∑
yr∈Nk

(xr − vi)

]
vi=v∗i

= 0. (9.33)

Solving for vi, we have

v∗i =
∑N

k=1 u
p

ik

(
(xk)+ α

NR

∑
xr∈Nk

(xr)
)

(1+ α)
∑N

k=1 u
p

ik

. (9.34)

9.4.4 Application: Adaptive MRI Segmentation

In this section, we describe the application of the MFCM segmentation on MRI

images having intensity inhomogeneity. Spatial intensity inhomogeneity induced

by the radio frequency (RF) coil in magnetic resonance imaging (MRI) is a major

problem in the computer analysis of MRI data [24–27]. Such inhomogeneities

have rendered conventional intensity-based classification of MR images very

difficult, even with advanced techniques such as nonparametric, multichannel

methods [28–30]. This is due to the fact that the intensity inhomogeneities ap-

pearing in MR images produce spatial changes in tissue statistics, i.e. mean and

variance. In addition, the degradation on the images obstructs the physician’s

diagnoses because the physician has to ignore the inhomogeneity artifact in the

corrupted images [31].

The removal of the spatial intensity inhomogeneity from MR images is diffi-

cult because the inhomogeneities could change with different MRI acquisition

parameters from patient to patient and from slice to slice. Therefore, the correc-

tion of intensity inhomogeneities is usually required for each new image. In the

last decade, a number of algorithms have been proposed for the intensity inho-

mogeneity correction. Meyer et al. [32] presented an edge-based segmentation

scheme to find uniform regions in the image followed by a polynomial surface

fit to those regions. The result of their correction is, however, very dependent

on the quality of the segmentation step.

Several authors have reported methods based on the use of phantoms for

intensity calibration. Wicks et al. [26] proposed methods based on the signal
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produced by a uniform phantom to correct for MRI images of any orienta-

tion. Similarly, Tincher et al. [33] modeled the inhomogeneity function by a

second-order polynomial and fitted it to a uniform phantom-scanned MR image.

These phantom approaches, however, have the drawback that the geometry

relationship of the coils and the image data is typically not available with the

image data. They also require the same acquisition parameters for the phan-

tom scan and the patient. In addition, these approaches assume the intensity

corruption effects are the same for different patients, which is not valid in

general [31].

The homomorphic filtering approach to remove the multiplicative effect of

the inhomogeneity has been commonly used due to its easy and efficient im-

plementation [29, 34]. This method, however, is effective only on images with

relatively low contrast. Some researchers [33,35] reported undesirable artifacts

with this approach.

Dawant et al. [35] used operator-selected reference points in the image to

guide the construction of a thin-plate spline correction surface. The performance

of this method depends substantially on the labeling of the reference points.

Considerable user interactions are usually required to obtain good correction

results. More recently, Gilles et al. [36] proposed an automatic and iterative B-

spline fitting algorithm for the intensity inhomogeneity correction of breast MR

images. The application of this algorithm is restricted to MR images with a single

dominant tissue class, such as breast MR images. Another polynomial surface

fitting method [37] was proposed based on the assumption that the number of

tissue classes, the true means, and standard deviations of all the tissue classes in

the image are given. Unfortunately, the required statistical information is usually

not available.

A different approach used to segment images with intensity inhomogeneities

is to simultaneously compensate for the shading effect while segmenting the

image. This approach has the advantage of being able to use intermediate infor-

mation from the segmentation while performing the correction. Recently, Wells

et al. [28] developed a new statistical approach based on the EM algorithm to

solve the bias field correction problem and the tissue classification problem.

Guillemaud et al. [38] further refined this technique by introducing the extra

class “other.” There are two main disadvantages of this EM approach. First,

the EM algorithm is extremely computationally intensive, especially for large
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problems. Second, the EM algorithm requires a good initial guess for either

the bias field or the classification estimate. Otherwise, the EM algorithm could

be easily trapped in a local minimum, resulting in an unsatisfactory solution

[31].

Another approach based on the FCM [40, 41] clustering technique has been

introduced lately [42–44]. FCM has been used with some success in image seg-

mentation in segmenting MR images [42, 47, 50]. Xu et al. [42] proposed a new

adaptive FCM technique to produce fuzzy segmentation while compensating

for intensity inhomogeneities. Their method, however, is also computationally

intensive. They reduced the computational complexity by iterating on a coarse

grid rather than the fine grid containing the image. This introduced some er-

rors in the classification results and was found to be sensitive to a considerable

amount of salt and pepper noise [43].

To solve the problem of noise sensitivity and computational complexity of

the Pham and Prince method, we will generalize the MFCM algorithm to segment

MRI data in the presence of intensity inhomogeneities.

9.4.4.1 Signal Modeling

The observed MRI signal is modeled as a product of the true signal generated

by the underlying anatomy and a spatially varying factor called the gain field:

Yk = XkGk ∀k ∈ [1, N] (9.35)

where Xk and Yk are the true and observed intensities at the kth voxel, respec-

tively, Gk is the gain field at the kth voxel, and N is the total number of voxels

in the MRI volume.

The application of a logarithmic transformation to the intensities allows the

artifact to be modeled as an additive bias field [28]

yk = xk + βk ∀k ∈ [1, N], (9.36)

where xk and yk are the true and observed log-transformed intensities at the kth

voxel, respectively, and βk is the bias field at the kth voxel. If the gain field is

known, it is relatively easy to estimate the tissue class by applying a conventional

intensity-based segmenter to the corrected data. Similarly, if the tissue classes

are known, we can estimate the gain field, but it may be problematic to estimate
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either without the knowledge of the other. We will show that by using an iterative

algorithm based on fuzzy logic, we can estimate both.

9.4.4.2 Bias Corrected Fuzzy C-means (BCFCM)

Objective Function

Substituting Eq. 9.36 into Eq. 9.25, we have

Jm =
c∑

i=1

N∑
k=1

u
p

ik||yk − βk − vi||2 + α

NR

c∑
i=1

N∑
k=1

u
p

ik

( ∑
yr∈Nk

||yr − βr − vi||2
)

.

(9.37)

Formally, the optimization problem comes in the form

min
U, {vi}ci=1, {βk}Nk=1

Jm subject to U ∈ U . (9.38)

9.4.4.3 BCFCM Parameter Estimation

The objective function Jm can be minimized in a fashion similar to the MFCM

algorithm. Taking the first derivatives of Jm with respect to uik, vi, and βk and

setting them to zero results in three necessary but not sufficient conditions for

Jm to be at a local extrema. In the following subsections, we will derive these

three conditions.

9.4.4.4 Membership Evaluation

Similar to the MFCM algorithm, the constrained optimization in Eq. 9.38 will be

solved using one Lagrange multiplier

Fm =
c∑

i=1

N∑
k=1

(
u

p

ik Dik + α

NR

u
p

ikγi

)
+ λ

(
1−

c∑
i=1

uik

)
(9.39)

where Dik = ||yk − βk − vi||2 and γi =
(∑

yr∈Nk
||yr − βr − vi||2

)
. The zero-

gradient condition for the membership estimator can be written as

u∗ik =
1∑c

j=1

(
Dik+ α

NR
γi

D jk+ α
NR

γ j

) 1
p−1

. (9.40)
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9.4.4.5 Cluster Prototype Updating

Taking the derivative of Fm w.r.t. vi and setting the result to zero, we have[
N∑

k=1

u
p

ik(yk − βk − vi)+
N∑

k=1

u
p

ik

α

NR

∑
yr∈Nk

(yr − βr − vi)

]
vi=v∗i

= 0. (9.41)

Solving for vi, we have

v∗i =
∑N

k=1 u
p

ik

(
(yk − βk)+ α

NR

∑
yr∈Nk

(yr − βr)
)

(1+ α)
∑N

k=1 u
p

ik

. (9.42)

9.4.4.6 Bias Field Estimation

In a similar fashion, taking the derivative of Fm w.r.t. βk and setting the result to

zero we have [
c∑

i=1

∂

∂βk

N∑
k=1

u
p

ik(yk − βk − vi)2

]
βk=β∗k

= 0. (9.43)

Since only the kth term in the second summation depends on βk, we have[
c∑

i=1

∂

∂βk

u
p

ik(yk − βk − vi)2

]
βk=β∗k

= 0. (9.44)

Differentiating the distance expression, we obtain[
yk

c∑
i=1

u
p

ik − βk

c∑
i=1

u
p

ik −
c∑

i=1

u
p

ikvi

]
βk=β∗k

= 0. (9.45)

Thus, the zero-gradient condition for the bias field estimator is expressed as

β∗k = yk −
∑c

i=1 u
p

ikvi∑c

i=1 u
p

ik

. (9.46)

9.4.4.7 BCFCM Algorithm

The BCFCM algorithm for correcting the bias field and segmenting the image

into different clusters can be summarized in the following steps:

Step 1. Select initial class prototypes {vi}ci=1. Set {βk}Nk=1 to equal and very

small values (e.g. 0.01).

Step 2. Update the partition matrix using Eq. 9.40.
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Step 3. The prototypes of the clusters are obtained in the form of weighted

averages of the patterns using Eq. 9.42.

Step 4. Estimate the bias term using Eq. 9.46.

Repeat steps 2–4 till termination. The termination criterion is as follows

||Vnew − Vold|| < ε, (9.47)

where || · || is the Euclidean norm, V is a vector of cluster centers, and ε is a

small number that can be set by the user.

9.4.4.8 BCFCM Results

In this section, we describe the application of the BCFCM segmentation to syn-

thetic images corrupted with multiplicative gain, as well as digital MR phan-

toms [51] and real brain MR images. The MR phantoms simulated the appear-

ance and image characteristics of the T1 weighted images. There are many

advantages of using digital phantoms rather than real image data for validating

segmentation methods. These advantages include prior knowledge of the true

tissue types and control over image parameters such as mean intensity values,

noise, and intensity inhomogeneities. We used a high-resolution T1 weighted

phantom with in-plane resolution of 0.94 mm2, Gaussian noise with σ = 6.0, and

3D linear shading of 7% in each direction. All of the real MR images shown in

this section were obtained using a General Electric Signa 1.5 T clinical MR

imager with the same in-plane resolution as the phantom. In all the exam-

ples, we set the parameter α (the neighbors effect) to be 0.7, p = 2, NR = 9

(a 3× 3 window centered around each pixel), and ε = 0.01. For low SNR im-

ages, we set α = 0.85. The choice of these parameters seems to give the best

results.

Figure 9.15(a) shows a synthetic test image. This image contains a two-class

pattern corrupted by a sinusoidal gain field of higher spatial frequency. The test

image is intended to represent two tissue classes, while the sinusoid represents

an intensity inhomogeneity. This image was constructed so that it would be dif-

ficult to correct using homomorphic filtering or traditional FCM approaches. As

shown in Fig. 9.15(b), FCM algorithm was unable to separate the two classes,

while the BCFCM and EM algorithms have succeeded in correcting and classi-

fying the data as shown in Fig. 9.15(c). The estimate of the multiplicative gain
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(c) (d)

(a) (b)

Figure 9.15: Comparison of segmentation results on a synthetic image cor-

rupted by a sinusoidal bias field. (a) The original image, (b) FCM results, (c)

BCFCM and EM results, and (d) bias field estimations using BCFCM and EM

algorithms: this was obtained by scaling the bias field values from 1 to 255.

using either BCFCM or EM is presented in Fig. 9.15(d). This image was obtained

by scaling the values of the bias field from 1 to 255. Although the BCFCM and

EM algorithms produced similar results, BCFCM was faster to converge to the

correct classification, as shown in Fig. 9.16.

Figures 9.17 and 9.18 present a comparison of segmentation results between

FCM, EM, and BCFCM, when applied on T1 weighted MR phantom corrupted

with intensity inhomogeneity and noise. From these images, we can see that



Advanced Segmentation Techniques 509

100

90

80

70

70 80 90

60

60

50

50

40

40

30

30

20

20

10

10
0

0
Number of Iterations

%
 C

or
re

ct
 C

lu
st

er
ed

 P
ix

el
s

FCM
EM
BCFM

Figure 9.16: Comparison of the performance of the proposed BCFCM algorithm

with EM and FCM segmentation when applied to the synthetic two-class image

shown in Fig. 9.15(a).

traditional FCM was unable to correctly classify the images. Both BCFCM and

EM segmented the image into three classes corresponding to background, gray

matter (GM), and white matter (WM). BCFCM produced slightly better results

than EM due to its ability to cope with noise. Moreover, BCFCM requires far

less number of iterations to converge compared to the EM algorithm. Table 9.2

depicts the segmentation accuracy (SA) of the three mentioned method when

applied to the MR phantom. SA was measured as follows:

SA = Number of correctly classified pixels
Total number of pixels

× 100% (9.48)

SA was calculated for different SNR. From the results, we can see that the

three methods produced almost similar results for high SNR. BCFCM method,

however, was found to be more accurate for lower SNR.
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Figure 9.17: Comparison of segmentation results on a MR phantom cor-

rupted with 5% Gaussian noise and 20% intensity inhomogeneity: (a) original

T1 weighted image, (b) using FCM, (c) using EM, and (d) using the proposed

BCFCM.
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Figure 9.18: Comparison of segmentation results on an MR phantom cor-

rupted with 5% Gaussian noise and 20% intensity inhomogeneity: (a) original

T1 weighted image, (b) using FCM, (c) using EM, and (d) using the proposed

BCFCM.
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Table 9.2: Segmentation accuracy of different

methods when applied on MR simulated data

SNR

Segmentation Method 13 db 10 db 8 db

FCM 98.92 86.24 78.9
EM 99.12 93.53 85.11
BCFCM 99.25 97.3 93.7

Figure 9.19 shows the results of applying the BCFCM algorithm to segment a

real axial-sectioned T1 MR brain. Strong inhomogeneities are apparent in the im-

age. The BCFCM algorithm segmented the image into three classes correspond-

ing to background, GM, and WM. The bottom right image shows the estimate of

the multiplicative gain, scaled from 1 to 255.

Figure 9.20 shows the results of applying the BCFCM for the segmentation

of noisy brain images. The results using traditional FCM without considering

the neighborhood field effect and the BCFCM are presented. Notice that the

BCFCM segmentation, which uses the the neighborhood field effect, is much

less fragmented than the traditional FCM approach. As mentioned before, the

relative importance of the regularizing term is inversely proportional to the

SNR of MRI signal. It is important to note, however, that the incorporation of

spatial constraints into the classification has the disadvantage of blurring some

fine details. There are current efforts to solve this problem by including contrast

information into the classification. High contrast pixels, which usually represent

boundaries between objects, should not be included in the neighbors.

9.5 Level Sets

The mathematical foundation of deformable models represents the confluence

of physics and geometry. Geometry serves to represent object shape and physics

puts some constrains on how it may vary over space and time. Deformable mod-

els have had great success in imaging and computer graphics. Deformable mod-

els include snakes and active contours. Snakes are used based on the geometric

properties in image data to extract objects and anatomical structures in medi-

cal imaging. After initialization, snakes evolve to get the object. The change of
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Figure 9.19: Brain MRI example: (upper left) the original MR image corrupted

with intensity inhomogeneities. (Upper right) crisp gray matter membership

using traditional FCM. (Middle left) crisp gray matter membership using the

proposed BCFCM algorithm. (Middle right) the bias-field corrected image using

BCFCM. The segmented image and bias field estimate using BCFCM are shown

in bottom left and bottom right, respectively.
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Figure 9.20: Brain tumor MRI examples. Upper row: Original MR images cor-

rupted with salt and pepper noise. Middle row: the segmented images using FCM

without any neighborhood consideration. Bottom row: The segmented images

using BCFCM (α = 0.85).
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snakes with time is guided by differential equations. These equations are de-

rived from the energy minimization concept to describe the change of snakes

with time. The output obtained using snakes depends highly on the initializa-

tion. It was found that initial curve has to lie close to the final solution to obtain

required results. The initialization is relatively easy in the case of 2D images but

in the 3D case it is very difficult. Also the topology change of the solution needs

a special regulation to the model.

Level sets were invented to handle the problem of changing topology of

curves. The level sets has had great success in computer graphics and vision.

Also, it was used widely in medical imaging for segmentation and shape re-

covery. It proved to have advantages over statistical approaches followed by

mathematical morphology. In the following section we will give a brief overview

on level sets and its application in image segmentation.

9.5.1 Level Set Function Representation

Level sets was invented by Osher and Sethian [52] to handle the topology changes

of curves. A simple representation is that a surface intersects with the zero plane

to give the curve. When this surfaces changes the curve changes. The surface

can be described by the following equation:

φ(x, t) > 0 if x ∈ �, φ(x, t) < 0 if x /∈ �, and φ(x, t) = 0 if x ∈ �, (9.49)

where φ represents the surface function, � denotes the set of points where

the function is positive, and � represents the set of points at which the func-

tion is zero. In Fig. 9.21, an example of a surface and its intersection with the

zero plane is shown. This intersection is called the front. The surface changes

with time, resulting in different fronts. So the level set function is positive at

some points, negative at other points, and zero at the front �. The time as ex-

tra dimension is added to the problem to track the changes of the front. The

topology changes of the curve are handled naturally by this presentation as we

see from Fig. 9.22. The first row represents the surface and the zero plane at

different time samples and the second row represents the resulting curves. The

front is initially two ellipses, then the two ellipses merge to make a closed curve

and it changes and so on. This representation allows the front to merge and

break.
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Figure 9.21: Change of the level set function with time resulting in different

curves.

Figure 9.22: Topology change of curves with time.

9.5.2 Curve Evolution with Level Sets

To get an equation describing the change of the curve or the front with time, we

will start with the asssumption that the level set function is zero at the front as

follows:

φ(x, y, t) = 0 if (x, y) ∈ �, (9.50)
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and then compute its derivative which is also zero,

∂φ

∂t
+ ∂φ

∂x

∂x

∂t
+ ∂φ

∂y

∂y

∂t
= 0, (9.51)

Converting the terms to the dot product form of the gradient vector and the x

and y derivatives vector, we get

∂φ

∂t
+

(
∂φ

∂x
,
∂φ

∂y

)
.

(
∂x

∂t
,
∂y

∂t

)
= 0. (9.52)

Multiplying and dividing by |∇φ| and takeing the other part to be F , we get the

following equation:

∂φ

∂t
+ F |∇φ| = 0, (9.53)

Where F , the speed function, is given by

F =
(

∂φ

∂x
,
∂φ

∂y

)
.

(
∂x

∂t
,
∂y

∂t

)
/|∇φ|. (9.54)

The selection of the speed function is very important to keep the change of

the front smooth and also it is application dependent. Equation 9.55 represents

speed function containing the mean curvature k. The positive sign means that

the front is shrinking and the negative sign means that the front is expanding

and ε is selected to be a small value for smoothness. The curvature term allows

the front to merge and break and also handles sharp corners,

F = ±1− εk, (9.55)

Where k is given by

k = φxxφ
2
y − 2φxφyφxy+ φyyφ

2
x

(φ2
x + φ2

y)3/2
. (9.56)

In 3D, the front will be an evolving surface rather than an evolving curve.

9.5.3 Stability and CFL Restriction

The numerical solution of the partial differential equation (PDE) describing the

front is very important to be accurate and stable. For simplicity, Taylor’s series

expansion is used to handle the partial derivatives of φ as listed below,

φ(x, y, t +)t) = φ(x, y, t)−)tF |∇φ|, (9.57)

φx(x, y, t) = (φ(x+)x, y, t)− φ(x, y, t))/)x, (9.58)
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φy(x, y, t) = (φ(x, y+)y, t)− φ(x, y, t))/)y, (9.59)

φxx(x, y, t) = (φ(x+ 2)x, y, t)− 2φ(x, y, t)+ φ(x− 2)x, y, t))/(2)x2),

(9.60)

φyy(x, y, t) = (φ(x, y+ 2)y, t)− 2φ(x, y, t)+ φ(x, y− 2)y, t))/(2)y2).

(9.61)

There are different numerical techniques used for this problem and the details

are given in [52]. The solution is very sensitive to the time step. Time step is

selected based on the Courant–Friedrichs–Levy (CFL) restriction. It requires the

front to cross no more than one grid cell at each time step )t. This calculation

will give the maximum time step that guarantees stability. From Eq. 9.62, we

maximize the denominator and minimize the nominator to get the best value

of the time step. The time step is calculated at each iteration of the process to

maintain the stability of the solution:

)t ≤ (φ2
x + φ2

y)1/2

F(|φx|/)x+ |φy|/)y)
(9.62)

9.5.4 Tracking the Front

Now, the solution is to find the front iteratively at different time steps. We get the

front by intersecting the surface with the zero plane. We need to track this front

by getting the length of the front or getting the area enclosed. This information is

very important in the segmentation problem as we will see in the next sections.

Simply the enclosed area contains all the points at which the level set function

is greater than or equal to zero and the points of the front are the points at which

the level set function is zero. Applying the heaviside step and delta functions

is very useful in getting the area and the front respectively. For numerical im-

plementation, it is desirable to replace the heaviside and the delta functions by

some counterparts. Approximations of these two functions are used to handle

smoothness problem as follows:

Hα(φ) =
{

1, if |φ| > α

0.5(1+ φ

α
+ 1

π
sin(πφ

α
)) if |φ| ≤ α

, (9.63)

δα(φ) =
{

0, if |φ| > α

1
2α

(1+ cos(πφ

α
)), if |φ| ≤ α

. (9.64)
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Figure 9.23: (a) The plot of the heaviside and delta functions for a specific

value of α, (b) the narrow band points, (c) the level set function, (d) applying

the heaviside step function, and (e) applying the delta function.

In Fig. 9.23(a), the two functions are plotted for α = 0.5. The value of α is always

taken to be 1.5�x to make the band equal to 3�x where �x is the mesh size,

which is always 1. The enclosed area (A) and the length of the interface or front

(L) are calculated as follows:

A =
∫ ∫

D

Hα(φ)dx dy, (9.65)

L =
∫ ∫

D

δα(φ)|∇φ|dx dy, (9.66)

where D is the domain. A proof of Eq. 9.66 to be the length of the front is found

in [53].

In Fig. 9.23(b), the red line represents the front and the yellow area represents

the points around the front where this area is called the narrow band. In (c), (d),

and (e) an example of a level set function and application of the heaviside step

and delta functions are shown.

9.5.5 Narrow Banding and Speed of the Solution

Solving the PDE of the level set function requires numerical processing at each

point of the image domain which is a time consuming process. Only we are
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interested in the change of the front. It is not important to get the solution at

points far away from the front, so the solution is important at the points near the

front. The points (highlighted in Fig. 9.23(b)) are called the narrow band points.

The change of the level set function at these points only is considered. Other

points (outside the narrow band) are called the far away points and they are given

large positive or large negative values to be out of interest (not processed), and

it speeds up the iterations. The use of the delta function defined by Eq. 9.64 is

very important to give the narrow band points.

9.5.6 Reinitialization

The existence of the front means that the level set function has positive and

negative parts, then it has negative and positive values including zeroes. The

level set function with this property is called a signed distance function. This

property should be kept through the iterations in order not to lose the front.

There are different solutions for this problem [54]. We will discuss only the

solution introduced by Osher et al. [55]. It was proved that recomputing the level

set function by solving Eq. 9.67 frequently enough will maintain the function as

signed distance function:

∂φ

∂t
= sign (φ)(1− |∇φ|), (9.67)

where it contains the sign function sign. When the level set function is negative,

the information flows one way and when it is positive, the information flows the

other way. The net effect is to “straighten out” the level set function on either

sides of the zero level set,

0 = sign (φ)(1− |∇φ|). (9.68)

By solving this equation, the derivative of φ with respect to time will vanish

resulting in Eq. 9.68. |∇φ| = 1 denotes the measure for signed distance function.

9.6 Application: MRA Data Segmentation

Using Level Sets

The human cerebrovascular system is a complex three-dimensional anatomical

structure. Serious types of vascular diseases such as carotid stenosis, aneurysm,
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and vascular malformation may lead to brain stroke, which is the third leading

cause of death and the main cause of disability. An accurate model of the vascular

system from MRA data volume is needed to detect these diseases at early stages

and hence may prevent invasive treatments. A variety of methods have been

developed for segmenting vessels within MRA. One class of methods is based

on a statistical model, which classifies voxels within the image volume into

either vascular or nonvascular class for time-of-flight MRA [56]. Another class of

segmentation is based on intensity threshold where points are classified as either

greater or less than a given intensity. This is the basis of the isointensity surface

reconstruction method [57–59]. This method suffers from errors due to image

inhomogeneities in addition; the choice of the threshold level is subjective. An

alternative to segmentation is axis detection known as skeletonization process,

where the central line of the tree vessels is extracted based on the tubular shape

of vessels [60]. Other approaches for MRA vessel segmentation are the manually

defined seed locations for segmentation [61].

In this section, we use level set method for image segmentation to improve

the accuracy of the vascular segmentation. This work is a supervised classifi-

cation which means that the number of classes and the class distribution are

assumed to be known. Usually, the class distribution is assumed to be Gaussian

with known mean and variance. In [53], classes were assumed to be phases sep-

arated by interface boundaries where each class has its corresponding level set

function. A set of functionals were developed with properties of regularity. The

level set function representation depends on these functionals. Each class oc-

cupies certain areas (regions) in the image. The level set function is represented

based on the regions i.e. it is positive inside the region, negative outside, and

zero on the boundary. The classes have no common areas i.e., the intersection

between classes is not allowed. The sum of lengths of the interfaces between

the areas is taken in consideration. The functionals are dependent mainly on

these properties and they are expected to have a local minimum which is the

segmented image. The change of each level set is guided by two forces, the min-

imal length of interfaces which is the internal force and the homogeneous class

distribution which is the external one.

A PDE guides the motion of each level set. This work saves the manual

initialization of level set functions [62]. Bad initialization for these functions

makes the segmentation fail. Automatic seed initialization is made for each

slice of the volume by dividing the image into windows, and based on the gray
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level a corresponding signed distance level set function is initialized for each

window. After segmenting the volume, a connectivity filter [63] is used to exploit

the fact that the vascular system is a tree-like structure and makes use of the

3D computer graphics region-filling algorithm to extract the vascular tree. The

used algorithm with MRA data volumes is evaluated using a phantom, showing

a good accuracy. The algorithm is applied to different types of MRA data sets,

showing good results. This approach can be extended to be not dependent only

on the gray level, but also on the geometrical features of the segmented areas,

leading to more accuracy.

9.6.1 Level Sets and Segmentation

Consider an image of c classes. We assign a level set function φi for each class.

From the definition of the level set function in Eq. 9.49, � is the class and � is

the interface of the class. Class interface denotes the boundary line between the

class and the other classes. From the following equations, F1 is the partitioning

condition as follows,

F1 = λi

2

∫
�

c∑
i=1

(Hα(φi)− 1)2 dx, where λi ∈ R+, ∀i ∈ [1, c]. (9.69)

The partitioning condition penalizes the vacuum points and prevents the over-

lapping between regions:

F2 =
c∑

i=1

ei

∫
�

Hα(φi)
(u0 − ui)2

σi
2

dx, where ei ∈ R, ∀i ∈ [1, c]. (9.70)

F2 is the data term condition with mean ui and variance σi
2 where u0 is the data

value.

F3 =
c∑

i=1

γi

∫
�

δα(φi)|∇φi|dx, where γi ∈ R, ∀i ∈ [1, c]. (9.71)

F3 is the sum of interfaces length between classes. The summation F1 + F2 + F3

is minimized with respect to φ to get the following equation:

φi
t+1 = φi

t −)tδα(φi
t)

[
ei

(u0 − ui)2

σi
2

− γidiv
(∇φi

t

|φi
t|

)
+ λi

(
K∑

i=1

Hα(φi
t)− 1

)]
.

(9.72)
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This solution represents the level set function variation with time. When the

function approaches the steady state, it does not change. It has positive, nega-

tive, and zero parts. We are interested only in the positive parts. Each pixel in the

positive parts belongs to the associated class of its function. By this representa-

tion, the level set function formulation allows breaking and merging fronts since

Eq. 9.72 contains the curvature term which is considered to be a smoothing part.

9.6.2 Volume Segmentation Algorithm

Step 0: Initialize φi, ∀i ∈ [1, c].

Step 1: t = t + 1.

Step 2: Update each function using Eq. 9.72.

Step 3: Solve Eq. 9.67 for each of n iterations to keep the signed distance

function property.

Step 4: Smooth each function and remove noise.

Step 5: If steady state is not reached, then go to Step 1, else go to next slice.

Step 0 is very important since bad initialization leads to bad segmentation. Auto-

matic seed initialization is used to speed up the process and it is also less sensitive

to noise. Automatic seed initialization is to divide the image into nonoverlapped

windows of predefined size. Then the average gray level is calculated and com-

pared to the mean of each class to specify the nearest class it belongs to. A

signed distance function is initialized to each window. The connectivity filter

is applied to remove the nonvessel tissues. The filter exploits the fact that the

vascular system is a tree-like structure.

9.6.3 Segmentation Quality Measurement

A 2D phantom is designed to simulate the MRA. This phantom image contains

many circles with decreasing diameters such as the cerebrovascular tree shape

which is a cone-shaped. Then using the level set segmentation algorithm with this

image, we obtain a resultant image containing the vessels. The SA is measured

by Eq. 9.48.
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Figure 9.24: Segmentation and Visualization of different data sets.

9.6.4 Results and Discussion

The technique has been applied to different data sets of MR angiography phase

contrast and time-of-flight types. For each type two volumes are used to prove

the accuracy of the technique. The first type of data is 117× 256× 256 (the first

two rows of Fig. 9.24) and the second type is 93× 512× 512 (the second two

rows of Fig. 9.24). First, level sets are initialized by automatic seed initialization.

Automatic seed initialization is used in each slice and each slice is divided into

windows of size 5× 5. An average mean is estimated for each class from the aver-

age histogram of the volume, and signed distance functions are assigned where

each level set function is a collection of Gaussian surfaces added together with a
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Figure 9.25: Histogram of empirical data.

time step of 0.1 sec. Using this initialization decreases the number of iterations,

leading to fast extraction of the vascular tree. The volume segmentation takes

about 20 min. on the unix workstation with the super computer. Segmentation

results are exposed to the connectivity filter to remove the nonvessel areas. Each

volume is visualized to show the vascular tree. The segmentation accuracy was

measured to be 94% which is very good for this type of data. The 2D phantom

can be modified to be a 3D one simulating the whole volume leading to more

accuracy. The results are promising with a good accuracy. This model can be

extended to unsupervised case including a parameter estimation capability in

future work. Future work will include geometrical features to the segmentation

model to enhance the segmentation results.

Questions

1. What are the main three properties of MRF?

2. Using traditional EM algorithm, estimate the mean, the variance, and

the proportional for the two classes shown in Fig. 9.25? (Hint: Before

applying EM algorithm, normalize f (y) such that
∑

f or all y f (y) = 1, and

assume each class comes from normal distribution).

3. What are the main advantages of using the genetic algorithm as optimiza-

tion tool?

4. When it is useful to use GMRF in image segmentation, and when is it not

useful?
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5. What is the advantages of using GMRF in image segmentation?

6. Derive the CFL restriction to find the optimal time step in 3D case.

7. Suggest an algorithm to mark the narrow band points in both 2D and 3D.

Compare it with the use of the Dirac delta function.

8. Level sets are used to extract anatomical structures from 2D and 3D data.

What are the advantages of using level sets in 3D?

9. Using the front as the zero level embedded in the surface has many advan-

tages over using scattered points representing the front. What are these

advantages?

10. If we have the front as a surface embedded in a 4D function, can we slice

the front as curves in 2D to make the implementation easier? Why?
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Chapter 10

A Region-Aided Color Geometric Snake1

Xianghua Xie2 and Majid Mirmehdi2

10.1 Introduction

Deformable contour models or snakes are commonly used in image process-

ing and computer vision due to their natural handling of shape variation and

independence of operation (once initialized). A hypothesized contour, repre-

sented as a curve or surface, evolves under the influence of internal forces,

external image-dependent forces, and certain constraints, till it converges on

the object(s) of interest.

Generally, there are two types of snakes, parametric snakes and geometric

snakes. The parametric model minimizes a deforming curve toward the pull of

features such as edges and lines. The energy is composed of terms that con-

trol its smoothness and attract it to the object boundary. Although significant

improvements have been made in this field over the last decade, parametric

contours still suffer from imprecise shape representation. The geometric model

of active contours, which avoids the need to parameterize the curve, has been

hailed as the solution to topological problems. Geometric snakes are based on

the theory of curve evolution and are numerically implemented via the level set

algorithm. They are totally intrinsic, which means they can automatically han-

dle topological changes without resorting to dedicated contour tracking, and

unknown numbers of objects can be detected simultaneously. Furthermore,

they can enjoy much larger capture areas than parametric snakes.

1 Portions reprinted, with permission, from IEEE T-IP, 13(5): 640–652 by the same authors.
2 Xianghua Xie and Majid Mirmehdi Department of Computer Science, University of Bristol,

England.
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Whilst geometric or geodesic snakes go a long way in improving on paramet-

ric snakes, they still suffer from two significant shortcomings. First, they allow

leakage into neighboring image regions when confronted with weak edges; here-

after we refer to this as the weak-edge leakage problem. Second, they may rest

at local maxima in noisy image regions. In this chapter, both of these problems

are dealt with by introducing diffused region forces into the standard geometric

snake formulation. The proposed method is referred to as the region-aided geo-

metric snake or RAGS. It integrates gradient flows with a diffused region vector

flow. The gradient flow forces supplant the snake with local object boundary

information, while the region vector flow force gives the snake a global view of

object boundaries. The diffused region vector flow is derived from the region

segmentation map which in turn can be generated from any image segmentation

technique. This chapter demonstrates that RAGS can indeed act as a refinement

of the results of the initial region segmentation. It also illustrates RAGS’ weak

edge leakage improvements and tolerance to noise through various examples.

Using color edge gradients, RAGS will be shown to naturally extend to object de-

tection in color images. The partial differential equations (PDEs) resulting from

the proposed method will be implemented numerically using level set theory,

which enables topological changes to be dealt with automatically.

In Section 10.2 we review the geometric snake model, encompassing its

strength and its shortcomings. Section 10.3 provides a brief overview of the

geometric GGVF snake, also outlining its shortcomings. The former section is

essential as RAGS’ theory is built upon it, and the latter is necessary since we

shall make performance comparisons to it. Section 10.4 presents the deriva-

tion of the RAGS snake including its level set representation. Then, in Section

10.5, the numerical solutions for obtaining the diffused region force and level

set implementation of RAGS are introduced. Section 10.6 describes the exten-

sion of RAGS to vector-valued images, again showing the equivalent level set

numerical representation. Since RAGS is independent of any particular region

segmentation method, its description so far is not affected by the fact that no

discussion of region segmentation has yet taken place! This happens next in

Section 10.7 where the mean shift algorithm is employed as a typical, suitable

method for obtaining a region segmentation map for use with RAGS. Follow-

ing a brief summary of the RAGS algorithm in Section 10.8, examples and re-

sults illustrating the improvements obtained on noisy images and images with

weak edges are presented in Section 10.9. This includes an application with
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quantitative results comparing the performance of RAGS against the standard

geometric snake.

10.2 The Geometric Snake

Geometric active contours were introduced by Caselles et al. [1] and Malladi

et al. [2] and are based on the theory of curve evolution. Using a reaction–

diffusion model from mathematical physics, a planar contour is evolved with a

velocity vector in the direction normal to the curve. The velocity contains two

terms: a constant (hyperbolic) motion term that leads to the formation of shocks3

from which more varied and precise representations of shapes can be derived,

and a (parabolic) curvature term that smooths the front, showing up significant

features and shortening the curve. The geodesic active contour, hereafter also

referred to as the standard geometric snake, is now introduced. Let C(x, t) be

a 2D active contour. The Euclidean curve shortening flow is given by

Ct = κ N , (10.1)

where t denotes the time, κ is the Euclidean curvature, and N is the unit in-

ward normal of the contour. This formulation has many useful properties. For

example, it provides the fastest way to reduce the Euclidean curve length in the

normal direction of the gradient of the curve. Another property is that it smooths

the evolving curve (see Fig. 10.1).

In [3,4], the authors unified curve evolution approaches with classical energy

minimization methods. The key insight was to multiply the Euclidean arc length

by a function tailored to the feature of interest in the image.

Let I : [0, a]× [0, b] → !+ be an input image in which the task of extracting

an object contour is considered. The Euclidean length of a curve C is given by

L :=
∮
|C ′(q)|dq =

∮
ds, (10.2)

where ds is the Euclidean arc length. The standard Euclidean metric ds2 = dx2 +
dy2 of the underlying space over which the evolution takes place is modified to

3 A discontinuity in orientation of the boundary of a shape; it can also be thought of as a
zero-order continuity.
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Figure 10.1: Motion under curvature flow: A simple closed curve will (become

smoother and) disappear in a circular shape no matter how twisted it is.

a conformal metric given by

ds2
g = g(|∇ I(C(q))|)2(dx2 + dy2), (10.3)

where g(·) represents a monotonically decreasing function such that g(x) → 0

as x→∞, and g(x) → 1 as x→ 0. A typical function for g(x) can be

g(x) = 1
1+ x

. (10.4)

This is plotted in Fig. 10.2. Using this metric, a new length definition in Rieman-

nian space is given by

L! :=
∫ 1

0
g(|∇ I(C(q))|)|C ′(q)|dq. (10.5)

Then it is no longer necessary that the minimum path between two points in

this metric be a straight line, which is the case in the standard Euclidean metric.

The minimum path is now affected by the weighting function g(·). Two distant

points in the standard Euclidean metric can be considered to be very close to

each other in this metric if there exists a route along which values of g(·) are

nearer to zero. The steady state of the active contour is achieved by searching
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Figure 10.2: Plot of the monotonically decreasing function g(x) = 1/(1+ x).

for the minimum length curve in the modified Euclidean metric:

min
∫ 1

0
g(|∇ I(C(q))|)|C ′(q)|dq. (10.6)

Caselles et al. [4] have shown that this steady state is achieved by determining

how each point in the active contour should move along the normal direction in

order to decrease the length. The Euler–Lagrange of (10.6) gives the right-hand

side of (10.7), i.e., the desired steady state:

Ct = g(|∇ I|)κ N − (∇g(|∇ I|) · N ) N . (10.7)

Two forces are represented by (10.7). The first is the curvature term multi-

plied by the weighting function g(·) and moves the curve toward object bound-

aries constrained by the curvature flow that ensure regularity during propaga-

tion. In application to shape modeling, the weighting factor could be an edge

indication function that has larger values in homogeneous regions and very small

values on the edges. Since (10.7) is slow, Caselles et al. [4] added a constant in-

flation term to speed up the convergence. The constant flow is given by Ct = N
showing each point on the contour moves in the direction of its normal and on
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Figure 10.3: Motion under constant flow: It causes a smooth curve to evolve

to a singular one.

its own can cause a smooth curve to evolve to a singular one (see Fig. 10.3).

However, integrating it into the geometric snake model lets the curvature flow

(10.1) remain regular:

Ct = g(|∇ I|)(κ + c) N − (∇g(|∇ I|) · N ) N , (10.8)

where c is a real constant making the contour shrink or expand to the object

boundaries at a constant speed in the normal direction.

The second term of (10.7) or (10.8) depends on the gradient of the conformal

factor and acts like a doublet (Fig. 10.4), which attracts the active contour further

to the feature of interest since the vectors of−∇g point toward the valley of g(·),

the middle of the boundaries. This −∇g increases the attraction of the active

contour toward the boundaries. For an ideal edge, g(·) tends to zero. Thus, it

Figure 10.4: The doublet effect of the second term of Eq. 10.7. The gradient

vectors are all directed toward the middle of the boundary, which forces the

snake into the valley of g(·).
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tries to force the curve to stop at the edge, but the convergence quality still

highly depends on this stopping term. If g(·) is not small enough along edges,

there will be an underlying constant force caused by c.

The geodesic or geometric active contour can be numerically implemented

using level sets. This is demonstrated later in Section 10.4.4 when we deal with

the extended formulation of the standard geometric snake into RAGS.

10.2.1 Examples of the Standard Geometric Snake

The standard geometric snake has been applied successfully in many applica-

tion areas, not least in the medical imaging arena. Figure 10.5(left) shows an

example of a geometric snake initialized in the stomach region of an abdomi-

nal section in a CT image. The final snake is shown in Fig. 10.5(right). In the

next example an extension of the geometric snake for color images is shown

in Fig. 10.6, a thigh slice from the Visible Human project. The figure on the left

shows the initial snake as before and the final converged snakes are shown

on the right, demonstrating the topological adaptation of the snake’s level set

implementation. Note that the top snake has failed to fully converge. Hence,

while adequate for many situations, geometric snakes can suffer from certain

shortcomings and the next section briefly deals with the nature of some such

failings.

Figure 10.5: Example of geometric snake segmenting an inner boundary: re-

covery of the stomach region of an abdominal CT section—from [5], c©2003

IEEE.



542 Xie and Mirmehdi

Figure 10.6: Example of a color image. (Left) original image with initial snake

and (right) converged geometric snake (with a minor convergence problem in

the top right corner of the snake)—from [6] (color slide).

10.2.2 Shortcomings of the Geometric Snake

Geometric active contour models have the significant advantage over classical

snakes that changes in topology due to the splitting and merging of multiple

contours are handled in a natural way. However, they suffer in two specific

ways:

1. They use only local information and hence are sensitive to local minima.

This means they are attracted to noisy pixels and can fail to converge

on the desired object when they rest at such strong “features.” They fail

to recognize, possibly weaker but true features further away in the im-

age landscape, for lack of a better global understanding of the image. An

example is shown in Fig. 10.7 (left).

Figure 10.7: Noise sensitivity and weak-edge leakage problems. In each case

the evolving snake is shown in a light color and the final snake in a dark one.
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2. The constant flow term makes the snake expand or shrink. It can speed

up the convergence and push the snake into concavities easily when the

objects have good contrast, i.e. when the gradient magnitudes at object

boundaries are large. However, when the object boundary is indistinct or

has gaps, the snake tends to leak through the boundary mainly because

of this constant force. The second term in (10.8) is designed to attract

the contour further close to the object boundary and also to pull back

the contour if it leaks through the boundary, but the force may just not

be strong enough since it still depends on the gradient values. It cannot

resolve the existence of a weak edge. Figure 10.7 (right) demonstrates this

shortcoming of the standard geometric snake. The evolving of the snake

is based on the gradient information, and as there is a gradual change of

the intensity, the contour leaks through.

The result of such failures is that the geometric snake will converge to a

nonsensical form. Both these effects are demonstrated in Fig. 10.8 where the

cells contain fuzzy borders and strong but tiny dark “granules” that have led the

standard geometric snake astray (top-right image). The images in the bottom

Figure 10.8: Multiple objects—top row: initial snake and standard geometric

snakes, bottom row: region segmentation used by RAGS and converged RAGS

snakes (original image courtesy of Dr. Douglas Kline, Department of Biological

Sciences, Kent State University, US) (color slide).
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row of Fig. 10.8 show the region map used for the RAGS formulation outlined

later in this chapter and the converged RAGS snakes. This figure also illustrates

the power of the geometric snake in splitting to find multiple objects.

10.3 The Geometric GGVF Snake

In this section we briefly introduce the geometric GGVF snake and consider

its advantages and shortcomings. Later in the chapter, the GGVF snake will

be used along with the standard geometric snake to make comparisons to the

performance of RAGS.

The gradient vector flow (GVF) active contour was first introduced by Xu

et al. [7] in a parametric framework. The authors proposed a new external force:

a diffusion of the gradient vectors of a gray level or binary edge map derived

from the original image. The GVF goes some way toward forcing a snake into

boundary concavities while providing a larger capture range due to its diffused

gradient vector field. Figure 10.9 (right) shows the diffused gradient vectors for

a simple object in Fig. 10.9 (left). The traditional potential force is shown in

Fig. 10.9 (center).

The same authors have also introduced the GGVF, a generalized GVF snake

model. The GGVF improves the GVF by replacing the constant weighting factor

with two spatially varying weighting functions, resulting in a new external force

field. The weighting factors provide a trade-off between the smoothness of the

GVF field and its conformity to the gradient of the edge map. The result is

Figure 10.9: GVF field compared to traditional potential force vector field. From

left: a simple line-drawing U shape (binary) image, the traditional potential force

vector field, and GVF field (from [8], c©2003 IEEE).
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Figure 10.10: Concavity convergence comparison. From left: initial snake, GVF

snake result, and GGVF snake result, from [9].

that contours can converge into long, thin boundary indentations. The GGVF

preserves clearer boundary information while performing vector diffusion, while

the GVF will diffuse everywhere within image. As shown in Fig. 10.10, the GGVF

snake shows clear ability to reach concave regions.

Later in [10], Xu et al. showed the GGVF equivalence in a geometric frame-

work. A simple bimodal region force generated as a two-class fuzzy membership

function was added to briefly demonstrate weak-edge leakage handling. The ge-

ometric GGVF snake is useful when dealing with boundaries with small gaps.

However, it is still not robust to weak edges, especially when a weak boundary

is close to a strong edge, the snake readily steps through the weak edge and

stops at the strong one. This is illustrated in Fig. 10.11 (left).

A further problem with the GGVF snake is that it does not always allow the

detection of multiple objects. These topological problems arise, even though

Figure 10.11: GGVF weaknesses. Left: The GGVF snake steps through a weak

edge toward a neighboring strong one (final snake in white). Right: It also can

encounter topological problems (final snake in black). The evolving snake is

shown in a lighter color in both cases.



546 Xie and Mirmehdi

the GGVF snake was specified in the geometric model, when the vector field

is tangent to the snake contour. In such cases there would be no force to push

or pull it in the perpendicular direction (to the vectors). This effect is shown in

Fig. 10.11 (right).

10.4 Region-Aided Geometric Snake

We now describe a novel approach to make the geometric snake much more

tolerant toward weak edges and image noise. It comprises the integration of

gradient flow forces with diffused region forces in the image, resulting in the

region-aided geometric snake:

� The gradient flow forces supplant the snake with local object boundary

information. They play a main role in all active contours4.

� The region forces are based on the global image features and supplant the

snake with global image information.

We show that this combination of forces not only improves the performance of

the geometric snake toward weak edges, but also makes it more immune to noise.

The PDE thus obtained evolves an initial contour toward final convergence under

the influence of both internal forces and boundary-regional image forces, and is

implemented via level sets.

The proposed region force can be generated from any image segmentation

technique. This means that while RAGS is independent of any particular seg-

mentation technique, it is dependent on the quality of the regions produced.

However, we show a good degree of tolerance to (reasonable) segmentation

quality, and that our snake indeed acts as a refinement of the results of the

initial region segmentation. Later in Section 10.7, we introduce the mean shift

segmentation technique presented by Comaniciu et al. in [12, 13] which is a

very elegant method to generate region maps for this work. Results will be

presented based on region maps obtained from both the under-segmentation

and over-segmentation options of the software from Comaniciu and Meer’s

study.

4 There are notable exceptions to this, e.g. [11].
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10.4.1 Gradient Flow Force: A Summary

As mentioned earlier, the gradient flows impose local constraints while the re-

gion force contributes global constraints. Within a homogeneous region of an

image, measured by region segmentation, the snake evolves mainly according

to gradient flows. The first gradient flow is the weighted length gradient flow,

which is given by (10.7). It is composed of two terms. The first is the weighted

curvature term, g(|∇ I|)κ N , which smooths the active contour and also shrinks

it. The second term, (∇g(|∇ I|) · N ) N , is on the normal factor of the gradient

of the weighting function. Unlike the curvature, the vector field ∇g(|∇ I|) is

static. The direction and strength of this field depend on position only, and is

independent of time and contour.

The second gradient flow, g(|∇ I|)c N , is introduced by constant motion

which locally minimizes area (see [14] for proof). It helps the snake shrink

or expand toward object boundaries and accelerates its convergence speed.

For all these forces, the weighting function g can be defined as any decreasing

function of the image I edge map f such that g → 0 as f →∞. When dealing

with gray level images, the solution (as used in this work) is straightforward:

f = |∇(Gauss ∗ I)| and g = 1
1+ f

. (10.9)

This monotonically decreasing nature is illustrated in Fig. 10.2. As for color

images, the edge function f becomes a little more intricate (an example function

will be presented in Section 10.6). However, the derivation of the decreasing

function g can remain the same.

10.4.2 Diffused Region Force

The aim of generating a region force is to empower the snake with a global view

of image features. A typical region segmentation method splits an image into

several regions, giving the segmentation map S. From this, the region map R

is generated by computing the gradient of S. The gradient computation is the

same as the edge computation stage for generating gradient forces. Then, we

compute the gradient∇R of this region map, resulting in region constraints in the

vicinity of the region boundaries. Having slithered across a homogeneous region

reliant on the gradient flow forces, if the snake tries to step from one region into

another, it must concur with the region force in ∇R since it breaks the region
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criteria, which probably indicates a leakage. The force field ∇R has vectors

pointing toward the center of the region boundaries. The capture area of this

pure region force is quite small: only immediate areas close to region boundaries.

The vectors need to be diffused further away from the region boundaries to

create a larger capture field. To achieve this, we can diffuse ∇R resulting in

region forces with a larger capture area along the region boundaries. Hence, the

region force vector field [R̃(z) = (u(z), v(z)), z= (x, y)] is obtained by solving

the following equations:{
p(|∇R|)∇2u− q(|∇R|)(u− ∇Ru) = 0

p(|∇R|)∇2v − q(|∇R|)(v − ∇Rv) = 0
, (10.10)

where ∇2 is the Laplacian operator with dimensions u and v, p(·) and q(·) are

weighting functions that control the amount of diffusion, and ∇Ru and ∇Rv are

the components of vector field ∇R along the u and v directions5. The weighting

functions are selected such that p(·) gets smaller as q(·) becomes larger with the

desirable result that in the proximity of large gradients, there will be very little

smoothing and the vector field will be nearly equal to the gradient of the region

map. We use the following functions for diffusing the region gradient vectors:{
p(|∇R|) = e−(|∇R|/K)

q(|∇R|) = 1− p(|∇R|) , (10.11)

where K is a constant and acts as a trade-off between field smoothness and gra-

dient conformity. The solution of (10.10) is the equilibrium state of the following

partial differential equations:{
ut = p(|∇R|)∇2u− q(|∇R|)(u− ∇Ru)

vt = p(|∇R|)∇2v − q(|∇R|)(v − ∇Rv)
, (10.12)

where u and v are treated as functions of time. These partial differential equa-

tions can be implemented using an explicit finite difference scheme. An iterative

process can be set up and guaranteed to converge with the following constraint

�t ≤ �x�y

4pmax
, (10.13)

5 Theoretically, ∇R can be diffused in any two orthogonal directions, u and v, within the
image domain. However, practically we will only choose x and y directions corresponding to
image plane coordinates. Thus ∇Ru and ∇Rv are equal to δR

δx
and δR

δy
respectively.
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Figure 10.12: Region force diffusion—top row: A synthetic image with additive

Gaussian noise, region segmentation map, region boundary map R, and gradient

of the region map R (and a small selected area)—bottom row: diffused region

vector field, and close-up views in the small selected area of the vectors in the

gradient of region map and the diffused region vector field respectively.

where �x and �y are the spatial sample intervals, pmax is the maximum of p(·),

and �t is time step, the interval between time tn and time tn+1 when iteratively

solving (10.12).

From (10.11) and (10.12) we note that within a homogeneous region, based on

the criteria of region segmentation, p(·) equals 1 while q(·) equals 0. Thus (10.12)

is only left with the first term (as the second term vanishes). This effectively

smooths the vector field. However, at the region boundaries, p(·) → 0 and q(·) →
1. The smoothing term imposes less and the region vectors are close to the

gradient of the region map R. Thus the diffused region vector field provides

the evolving snake with an attracting force in a sufficiently large range near

the region boundaries, and also allows the snake to evolve solely under other

gradient forces.

Figure 10.12 illustrates an example of region force diffusion, including close-

up views of pre- and post-diffusion vector field.

10.4.3 Region-Aided Snake Formulation

Next, we can derive the region-aided geometric snake formulation. The standard

geometric snake is given by (10.8). In the traditional sense, the snake forces fall
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into two types, internal forces and external forces. The internal forces impose

regularity on the curve and control the elasticity and rigidity of the snake. The

external forces pull the snake toward salient image features such as object

boundaries. Thus, the internal and external forces in (10.8) can be written as{
Fint = g(|∇ I|)κ N
Fext = g(|∇ I|)c N − ∇g(|∇ I|) , (10.14)

where g(·) is the stopping function as before. The first term of the external forces

is a constant shrink or expand force in the normal direction of the snake. It can

be separated from other external forces in the sense that it is not spatially static

in the image domain as other external forces and needs different numerical

schemes. However, considering the previous definition of snake forces and that

the constant force alone can push the snake toward boundaries, we keep it in

the external term.

The diffused region force is a feature driven force and spatially static. So we

can add the diffused region force to the external term:{
Fint = g(|∇ I|)κ N
Fext = αg(|∇ I|) N + β R̃− ∇g(|∇ I|) , (10.15)

where R̃ is the region force vector field obtained in (10.10) andα is a new constant

incorporating c. Constants α and β act as a trade-off between gradient forces

and region forces. In practice, β is a constant from 0 to 1 for most nonhighly

textured images. If good segmentation results are available, β should be set close

to 1.

The snake evolves under all the internal and external forces. However, only

the forces in the normal direction of the evolving contours can change the geom-

etry. The forces tangential to the contours can only change the parameterization

of the contours. Thus, a geometric snake evolving under internal and external

forces can be interpolated as

Ct = [(Fint + Fext) · N ] N . (10.16)

Finally, by substituting (10.15) into (10.16), the region-aided geometric snake

formulation becomes

Ct = [g(|∇ I|)(κ + α)− ∇g(|∇ I|) · N + β R̃ · N ] N . (10.17)
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10.4.4 Level Set Representation

In this section, we outline the level set representation for the region-aided geo-

metric snake. Level sets describe a moving front in an implicit function and are

the basis for the numerical algorithm for curve evolution according to functions

of curvature, introduced by Osher et al. [15,16]. In the application to active con-

tours, the evolving contour is embedded into a higher dimensional surface as a

zero level set. The entire surface, the level sets, is an implicit representation of

the embedded contour. As shown in Fig. 10.13, the snake is initially built in a

three-dimensional surface, which later evolves according to underlying forces.

Finally, the converged snake is extracted from the level sets by cutting it at zero

height.

Let C be a level set of a function of φ : [0, a]× [0, b] → !. That is, C is

embedded into the zero level set with φ being an implicit representation of the

curve C . This representation is parameter free and intrinsic. Given a planar

curve that evolves according to Ct = F N for a given function F, the embedding

function should deform according to φt = F|∇φ|, where F is computed on the

level sets. By embedding the evolution of C in that of φ, topological changes

Figure 10.13: Level sets evolution for an embedded snake. Top row: initial

snake on test image, evolving contour, and final converged snake. Bottom row:

corresponding evolving level sets. The snake is tracked at zero height.
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of C are handled automatically and accuracy and stability are achieved using

numerically stable computations.

The internal curvature and external pressure terms of the RAGS formulation

in (10.17) can be easily transferred to a level set representation:{
Ct = g(|∇ I|)κ N → φt = g(|∇ I|)κ|∇φ|
Ct = g(|∇ I|)α N → φt = g(|∇ I|)α|∇φ| , (10.18)

The other external forces in (10.17) are static vector fields derived from

image data which do not change as the active contour deforms. Static force

fields are defined on the spatial positions rather than the active contour itself.

Since N is the inward normal, the level set representation of the inward unit

normal is given by

N = − ∇φ

|∇φ| . (10.19)

Then, we have

F · N = − 1
|∇φ| (F · ∇φ). (10.20)

Combining (10.18) with (10.20) where F takes on the static force fields, the level

set representation of RAGS is given by

φt = g(|∇ I|)(κ + α)|∇φ| + ∇g(|∇ I|) · ∇φ − β R̃ · ∇φ, (10.21)

where g(·) is the stopping function as before. The expression for the curvature

of the zero level set assigned to the interface itself is given by

κ = div
( ∇φ

|∇φ|
)
= φxxφ

2
y − 2φyφxφxy+ φyyφ

2
x

(φ2
x + φ2

y)3/2
(10.22)

10.5 Numerical Solutions

The numerical solution for region force diffusion is discussed in detail in

Section 10.5.1, but the detailed numerical solutions for RAGS level set repre-

sentation are only presented in Appendix A as they are not critical to the under-

standing of the concepts underlying RAGS. In fact, the whole of this section can

be skipped without loss of continuity.
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10.5.1 Numerical Solutions for Region Force Diffusion

for RAGS

Initially, a mesh grid needs to be selected, with final accuracy directly dependent

on its resolution. However, due to the nature of a digital image, the grid resolution

is constrained to the pixel level. It was shown in Section 10.4.2 that the steady

solution of (10.10) can be achieved by computing the equilibrium state of (10.12).

The initial state of the region force vector field R̃ is given by the gradient of

the region map R. Simple central differences can be used to approximate ∇R,

resulting in vectors that are then diffused. Let �x and �y be the grid spacing,

�t be the time step, and i, j, and n represent the spatial position and time. The

partial derivative of time can be approximated by forward difference as

ut =
un+1

i, j − un
i, j

�t
. (10.23)

The spatial partial derivatives can be solved using central differences ap-

proximation given by

∇2u= ui+1, j + ui, j+1 + ui−1, j + ui, j−1 − 4ui, j

�x�y
. (10.24)

The solutions to partial derivatives of v(x, y, t) are similar to those of u(x, y, t).

The weighting functions given in (10.11) can be easily computed. Thus, substi-

tuting the partial derivatives into (10.12) gives the following iterative solution:⎧⎨⎩un+1
i, j = un

i, j +�t�

vn+1
i, j = vn

i, j +�t�
, (10.25)

where,

� = p(·)i, j

�x�y
(un

i+1, j + un
i, j+1 + un

i, j−1 + un
i−1, j − 4un

i, j)− q(·)i, j(un
i, j − Rx,ij)

and

� = p(·)i, j

�x�y
(vn

i+1, j + vn
i, j+1 + vn

i, j−1 + vn
i−1, j − 4vn

i, j)− q(·)i, j(vn
i, j − Ry,ij)],

where Rx,ij and Ry,ij are partial derivatives of R. They can also be approximated

by central differences as ⎧⎨⎩ Rx,ij = Ri+1, j−Ri−1, j

2�x

Ry,ij = Ri, j+1−Ri, j−1

2�y

. (10.26)

The convergence is guaranteed with the time step restriction of (10.13).



554 Xie and Mirmehdi

10.5.2 Numerical Solution for the Level Set

Implementation of RAGS

As in the numerical solution for vector diffusion, a computational grid is re-

quired. Once the grid is chosen, the initial level sets φ(x, t) = 0 can be defined

with the property that the zero level set corresponds to the initial contours of the

snake. The signed-distance transform can be used to build the initial level sets.

A brute-force Euclidean distance transform would be computationally infeasi-

ble. Practically, accuracy is required only near the initial contours, and discrete

values based on grid distance can suffice further away. A positive sign is given

to the points outside the contours, and a negative sign is applied to the points

inside.

As shown in (10.17), the snake evolves according to four forces that can be

categorized into three types based on the nature of their motions:

1. The first motion is of a smoothing and collapsing nature with speed propor-

tional to its curvature as shown in Fig. 10.1. It can be numerically approx-

imated using central differences, because the curvature is only dependent

on the contour. It is independent of time and spatial position.

2. The second is expanding or shrinking with a spatially constant speed, char-

acterized by αg(·) in the normal direction of the curve. However, when the

constant term exists, the normals can collide with each other while evolv-

ing. Thus shocks, or corners, will form and once a shock has developed,

some information will be lost as it evolves. This means that shocks cause

irreversibility; information cannot be recovered by tracing ‘backwards’ in

time. Generally, no new information can be created while evolving, which

is referred to as an entropy condition. Central difference approximation

cannot be used to approximate the gradient in this case, as it suffers from

shocks where the entropy condition is invoked. An upwind scheme can be

used, as an entropy-satisfying scheme, that engages information upwind of

the direction of its propagation. In other words, in order to achieve a stable

numerical scheme, the numerical domain of dependence should contain

the mathematical domain of dependence. Thus, in order to approximate

the gradient of the constant term, it is important to first know which way

the speed function points, and whether it is negative or positive. Then we

can choose proper backward or forward difference approximations.
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3. The third type of motion in (10.17) is contributed by the underlying static

velocity field, the direction and strength of which are based on spatial

position. It is independent of the shape and position of the snake. The

motion of contours under this velocity field can be numerically approxi-

mated through upwind schemes by checking the sign of each component

of the velocity field and constructing one-sided upwind differences in the

appropriate direction. For a positive speed component, backward differ-

ence approximation is used, otherwise forward difference approximation

should be applied.

By using these approximation schemes, (10.17) can be numerically imple-

mented. The detailed numerical solutions for RAGS are presented in Appendix

A. For general numerical solution to level sets, including concepts such as en-

tropy condition and upwind scheme, the interested reader is referred to works

by Sethian [16, 17] and by Osher et al. [18].

10.6 Region-Aided Geometric Snake on

Vector-Valued Images

The theory of boundary detection by the geometric or geodesic snake can be

applied to any general “edge detector” function. The stopping function g should

tend to zero when reaching edges.

When dealing with gray level images, the decreasing function g can be easily

derived from the edge detector f , as shown in (10.9). We use a similar stopping

function for edges obtained directly from vector-valued images such as a color

image.

A consistent extension of scalar gradients based on a solid theoretical foun-

dation has been presented by di Zenzo [19]. This extension has been applied in

the active contour literature to both geometric and parametric snakes.

In a vector-valued image the vector edge is considered as the largest differ-

ence between eigenvalues in the tensor metric. Let �(u1, u2) : !2 → !m be an

m-band image for i = 1, 2, . . . , m. For color images, m= 3. A point in the image

is considered as a vector in !m. The distance between two points, P = (u0
1, u0

2)

and Q = (u1
1, u1

2), is given by )� = �(P)−�(Q). When this distance tends to

be infinitesimal, the difference becomes the differential d� =∑2
i=1

∂�
∂ui

dui with
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its squared norm given by

d�2 =
2∑

i=1

2∑
j=1

∂�

∂ui

∂�

∂uj

duiduj. (10.27)

Using standard Riemannian geometry notation, let sij = ∂�
∂ui
· ∂�

∂uj
, such that

d�2 =
2∑

i=1

2∑
j=1

sijduiduj =
[

du1

du2

]T [
s11 s12

s21 s22

][
du1

du2

]
. (10.28)

For a unit vector v = (cos θ, sin θ), then d�2(v) indicates the rate of change of

the image in the direction of v. The extrema of the quadratic form are obtained in

the directions of the eigenvectors of the metric tensor sij , and the corresponding

eigenvalues are

λ± =
s11 + s22 ±

√
(s11 − s22)2 + 4s2

12

2
(10.29)

with eigenvectors (cos θ±, sin θ±) where the angles θ± are given by{
θ+ = 1

2 arctan 2s12
s11−s22

θ− = θ+ + π
2

. (10.30)

The maximal and minimal rates of change are the λ+ and λ− eigenvalues

respectively, with corresponding directions of change being θ+ and θ−. The

strength of an edge in a vector-valued case is not given simply by the rate

of maximal change λ+, but by the difference between the extrema. Hence, a

good approximation function for the vector edge magnitude should be based on

f = f (λ+, λ−). Now RAGS can be extended to the region-aided geometric color

snake by selecting an appropriate edge function fcol. The edge stopping function

gcol is defined such that it tends to 0 as fcol →∞. The following functions can

be used (cf. (10.9)):

fcol = λ+ − λ− and gcol = 1
1+ fcol

. (10.31)

Then replacing gcol(·) for the edge stopping term g(·) in (10.17), we have the

color RAGS snake:

Ct = [gcol(|∇ I|)(κ + α)− ∇gcol(|∇ I|) · N + β R̃ · N ] N . (10.32)
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Finally, its level set representation is also given by replacing gcol(·) for g(·) in

(10.21):

φt = gcol(|∇ I|)(κ + α)|∇φ| + ∇gcol(|∇ I|) · ∇φ − β R̃ · ∇φ. (10.33)

10.7 The Mean Shift Algorithm

This section can be skipped without loss of continuity. Its topic is the process of

generating the image region segmentation map S which is then used as described

in Section 10.4.2. The reader can assume it is available and skip to the next

section.

An essential requisite for RAGS is a segmentation map of the image. This

means that RAGS is independent of any particular segmentation technique as

long as a region map is produced; however, it is dependent on its representational

quality. In this section, the mean shift algorithm is reviewed as a robust feature

space analysis method which is then applied to image segmentation. It provides

very reasonable segmentation maps and has extremely few parameters that

require tuning.

The concept underlying the nonparametric mean shift technique is to ana-

lyze the density of a feature space generated from some input data. It aims to

delineate dense regions in the feature space by determining the modes of the un-

known density, i.e. first the data is represented by local maxima of an empirical

probability density function in the feature space and then its modes are sought.

The denser regions are regarded as significant clusters. Comaniciu et al. [13,20]

have recently provided a detailed analysis of the mean shift approach, including

the review below, and presented several applications of it in computer vision,

e.g. for color image segmentation.

We now briefly present the process of density gradient estimation. Consider

a set of n data points {xi}i=1,...,n in the d-dimensional Euclidean space Rd. Also

consider the Epanechnikov kernel, an optimum kernel yielding minimum mean

integrated square error:

K(x) =
{

1
2Zd

(d + 2)(1− xT x), if xT x < 1

0, otherwise
, (10.34)



558 Xie and Mirmehdi

where Zd is the volume of the unit d-dimensional sphere. Using K(x) and window

radius h, the multivariate kernel density estimate on the point x is

f̂ (x) = 1
nhd

n∑
i=1

K

(x− xi

h

)
. (10.35)

The estimate of the density gradient can be defined as the gradient of the kernel

density estimate since a differentiable kernel is used:

∇̂ f (x) ≡ ∇ f̂ (x) = 1
nhd

n∑
i=1

∇K

(x− xi

h

)
. (10.36)

Applying (10.34) to (10.36), we obtain

∇̂ f (x) = nx

n(hd Zd)
d + 2

h2

( 1
nx

∑
xi∈Hh(x)

[xi − x]
)
, (10.37)

where the region Hh(x) is a hypersphere of radius h and volume hd Zd, centered

on x, and containing nx data points. The sample mean shift is the last term in

(10.37)

Mh(x) ≡ 1
nx

∑
xi∈Hh(x)

[xi − x]. (10.38)

The quantity nx

n(hd Zd) is the kernel density estimate f̂ (x) computed with the hy-

persphere Hh(x), and thus (10.37) can be rewritten as

∇̂ f (x) = f̂ (x)
d + 2

h2
Mh(x), (10.39)

which can be rearranged as

Mh(x) = h2

d + 2
∇̂ f (x)

f̂ (x)
. (10.40)

Using (10.40), the mean shift vector provides the direction of the gradient of the

density estimate at x which always points toward the direction of the maximum

increase (in the density). Hence, it converges along a path leading to a mode of

the density.

In [13], Comaniciu et al. performed the mean shift procedure for image seg-

mentation in a joint domain, the image (spatial) domain, and color space (range)

domain. The spatial constraints were then inherent in the mode searching proce-

dure. The window radius is the only significant parameter in their segmentation

scheme. A small window radius results in oversegmentation (i.e. larger number

of clusters), and a large radius produces undersegmentation (yielding a smaller
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number of clusters). In this work, the performance of RAGS will be demon-

strated on both the undersegmentation and oversegmentation resolutions of

Comaniciu and Meer’s work. In either case, the result of the mean shift proce-

dure is the region segmentation map S which is passed to RAGS for generating

the diffused region boundary map R̃.

10.8 A Summary of the RAGS Algorithm

The color RAGS algorithm is now reviewed with the aid of Fig. 10.14. Given the

input color image, two streams of processing can begin concurrently.

� In the first stream, the vector gradient is computed to provide the edge

function f , which is then used in (10.9) to yield the decreasing function g,

followed by ∇g. Function g will act as spatial weights for the snake cur-

vature force and constant force, and ∇g will contribute to the underlying

doublet attraction force.

� In the second stream, a region segmentation map S is produced by apply-

ing any reasonable segmentation technique, e.g. the mean shift algorithm.

From it, region map R can then be generated using vector gradients. Gra-

dient of the region map R provides ∇R, which imposes region forces im-

mediate to region boundaries. These region forces are then diffused by

solving (10.10), resulting in a region force vector field R̃.

Thus, all the underlying velocity fields and the weighting function g are ready

and prepared. Then we can generate initial level sets based on an initial snake

using the distance transform and evolve the level sets according to all force

fields (rightmost part of Fig. 10.14). The curvature force and constant force

adaptively change with the level set snake. Along with the static forces, they

are numerically solved using the principles described in Section 10.5.2 with the

solutions given in Appendix A. After the level set evolves to a steady state, the

final snake is easily obtained by extracting the zero level set.

10.9 Experiments and Results

In this section we present results that show improvements over either the stan-

dard geometric snake or the geometric GGVF snake or both, and mainly in



560 Xie and Mirmehdi

F
ig

ur
e

10
.1

4:
R

A
G

S
pr

oc
es

si
ng

sc
he

m
a

(c
ol

or
sl

id
e)

.



A Region-Aided Color Geometric Snake 561

images where there are weak edges or noisy regions preventing the aforemen-

tioned snakes to perform at their best. Although GGVFs have been reported only

using gray level image gradients, we can also apply them to “color” gradients

(obtained as described in Section 10.6), which allows direct comparison with

the color RAGS. It must also be noted that the GGVF can sometimes perform

better than we have shown in some of the following examples as long as it is

initialized differently, i.e. much closer to the desired boundary. In all the exper-

iments, we have initiated the geometric, GGVF, and RAGS snakes at the same

starting position, unless specifically stated.

10.9.1 Preventing Weak-Edge Leakage

We first illustrate the way weak-edge leakage is handled on a synthetic image.

The test object is a circular shape with a small blurred area on the upper right

boundary as shown in Fig. 10.15.

The standard geometric snake steps through the weak edge because the in-

tensity changes so gradually that there is no clear boundary indication in the

edge map. The RAGS snake converges to the correct boundary since the ex-

tra diffused region force delivers useful global information about the object

boundary and helps prevent the snake from stepping through. Figure 10.16

shows, for the test object in Fig. 10.15, the edge map, the stopping function

g(·), its gradient magnitude |∇g(·)|, the region segmentation map S, and the

vector map of the diffused region force R̃.

Figure 10.15: Weak-edge leakage testing on a synthetic image. Top row:

geodesic snake steps through. Bottom row: RAGS snake converges properly

using its extra region force.
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Figure 10.16: Diffused region force on weak edge. From left: the edge map,

the stopping function g(·) of edge map, the magnitude of its gradient ∇g(·), the

region segmentation map, and the vector map of the diffused region force R̃.

10.9.2 Neighboring Weak/Strong Edges

The next experiment is designed to demonstrate that both the standard geo-

metric snake and the GGVF snake readily step through a weak edge to reach a

neighboring strong edge. The test object in Fig. 10.17 contains a prominent cir-

cle inside a faint one. The presence of the weaker edge at the outer boundary is

detected only by the RAGS snake. The geodesic snake fails because the weaker

outer boundary allows the whole snake to leak through (similar to but in the

opposite direction of propagation in Fig. 10.15). The GGVF snake fails due to

the strong gradient vector force caused by the inner object boundary. Practical

examples of this can also be observed in most of the real images shown later,

such as Figs 10.20 and 10.26.

10.9.3 Testing on Noisy Images

We also performed comparative tests to examine and quantify the tolerance to

noise for the standard geometric, the geometric GGVF, and the RAGS snakes.

For this a harmonic shape was used as shown in Fig. 10.18. It was generated

Figure 10.17: Strong neighboring edge leakage. From left: initial snake,

geodesic snake steps through weak edge in top right of outer boundary, GGVF is

attracted by the stronger inner edge, and RAGS snake converges properly using

extra region force.
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Figure 10.18: A shape and its boundary (a harmonic curve).

using

r = a+ b cos(mθ + c), (10.41)

where r is the length from any edge point to the center of the shape, a, b,

and c remain constant, and m can be used to produce different numbers of

‘bumps’; in this case m= 6. We added varying amounts of noise and measured

the accuracy of fit (i.e. boundary description) after convergence. The accuracy

was computed using maximum radial error (MRE), i.e. the maximum distance

in the radial direction between the true boundary and each active contour.

Impulse noise was added to the original image from 10% to 60% as shown in

the first column of Fig. 10.19. The region segmentation data used for RAGS is in

the second column (without any post-processing to close gaps, etc.). The third,

fourth, and fifth columns show the converged snake for the standard geomet-

ric, the GGVF, and RAGS snakes respectively. A simple subjective examination

clearly demonstrates the superior segmentation quality of the proposed snake.

The initial state for the standard geometric and RAGS snakes is a square at the

edge of the image, while for the GGVF it is set close to the true boundary to en-

sure better convergence. At low percentages of noise, all snakes could find the

boundary accurately enough. However, at increasing noise levels (>20%), more

and more local maxima appear in the gradient flow force field, which prevent the

standard geometric and GGVF snakes from converging to the true boundaries.

The RAGS snake has a global view of the noisy image and the underlying region

force pushes it toward the boundary. The MRE results are shown in Table 10.1.

These verify RAGS error values to be consistently and significantly lower than

the other two snake types for noise levels >10%.

10.9.4 Results on gray level images

Figures 10.20–10.22 demonstrate RAGS in comparison to the standard geomet-

ric and GGVF snakes on various gray level images. Figure (10.20) shows a good

example of weak-edge leakage on the lower side of the object of interest. While
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Figure 10.19: Shape recovery in noisy images. (Column 1) original image with

various levels of added Gaussian noise [0%, 10%, . . . , 60%], (column 2) the region

maps later diffused by RAGS, (column 3) standard geometric snake results,

(column 4) GGVF snake results, and (column 5) RAGS results.
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Table 10.1: MRE comparison for the harmonic shapes in

Fig. 10.19

Standard geometric GGVF RAGS
% noise snake error snake error snake error

0 2.00 2.00 2.00
10 2.23 2.24 2.00
20 5.00 7.07 4.03
30 10.00 16.03 3.41
40 16.16 21.31 5.22
50 15.81 21.00 5.38
60 28.17 20.10 5.83

RAGS does extremely well here, the geometric snake leaks through and the

GGVF snake leaks and fails to progress at all in the narrow object. In Fig. 10.21,

RAGS achieves a much better overall fit than the other snakes, particularly in

the lower regions of the right-hand snake and the upper-right regions of the left-

hand snake. In Fig. 10.22, again RAGS manages to segment the desired region

much better than the standard geometric and the GGVF snakes. Note the stan-

Figure 10.20: Brain MRI (corpus callosum) image. Top row: initial snake, stan-

dard geometric snake. Bottom row: GGVF snake and RAGS snake (original

image courtesy of GE Medical Systems).
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Figure 10.21: Heart MRI image. Top row: initial snakes and standard geometric

snakes. Bottom row: GGVF snakes and final RAGS snakes showing improvement

on the top right of the left snake and the lower region of the right snake.

dard snake leaks out of the object, similar to the effect demonstrated with the

synthetic image in Fig. 10.15.

10.9.5 Results on Color Images

We now consider the performance of the RAGS snake on color images. In

Fig. 10.23 we can see a cell image with both strong and fuzzy region bound-

aries. Note how the fuzzy boundaries to the right of the cell “dilute” gradually

into the background. So the results in the top-right image again demonstrate

an example of weak-edge leakage, similar to the example in Fig. 10.22, where

the standard geometric snake fails to converge on the outer boundary. The mid-

dle and bottom rows show the converged RAGS snake using the oversegmen-

tation and undersegmentation color region maps produced by the mean shift

algorithm.

A very similar example is demonstrated in Fig. 10.24 in application to images

of the optic disk in which the blood vessels have been removed using color math-

ematical morphology techniques. Again, the failing performance of the standard
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Figure 10.22: Heart MRI image. Top row: initial snake, and standard geometric

snake. Bottom row: GGVF snake and final RAGS snake showing better conver-

gence and no leakage (original image courtesy of GE Medical Systems).

snake is shown along with the RAGS results on both oversegmentation and

undersegmentation regions.

In Fig. 10.25, a full application of RAGS is presented where the result-

ing regions from the RAGS snake are quantitatively evaluated against those

hand-labeled by an expert ophthalmologist. The first column represents these

groundtruth boundaries. The second column shows the position of the starting

RAGS snakes. The boundary of the optic disk is quite fuzzy and well blended with

the background. The region force helps the proposed snake stop at weak edges

while the standard geometric snake leaks through (as shown in Fig. 10.24) and

the accuracy of the GGVF snake is highly dependent on where the initial snake

is placed (hence GGVF snake results are not provided). The last two columns

illustrate the RAGS results using oversegmented and undersegmented regions

of the mean shift algorithm respectively.

A simple measure of overlap is used to evaluate the performance of the RAGS

snake against its corresponding groundtruth:

M = n(A∩ B)
n(A∪ B)
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Figure 10.23: Weak-edge leakage testing. Top row: original image with starting

contour and geodesic snake which steps through. Middle row: oversegmentation

color region map and converged RAGS snake. Bottom row: undersegmentation

color region map and converged RAGS snake (original image courtesy of Bristol

Biomedical Image Archive, Bristol University, UK) (color slide).

where A and B correspond to ground-truth and RAGS localized optic disk re-

gions respectively, and n(·) is the number of pixels in a region. Table 10.2 shows

the result of measurement M demonstrating a 91.7% average performances for

both over/undersegmentation RAGS respectively.

The final example in Fig. 10.26 shows a darker cell center compared to the

cell outer region, but more significantlythe object of interest is surrounded by
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Table 10.2: Quantitative evaluation of RAGS snake on the optic disks in 10.25

Image 1 2 3 4 5 6 Average

% RAGS (over) 91.4 90.0 91.9 93.1 93.1 90.5 91.7
% RAGS (under) 90.7 89.5 93.1 91.3 93.0 92.7 91.7

other strong features. The standard geometric snake splits and converges un-

satisfactorily and the GGVF snake is pulled in and out by the stronger inner cell

nucleus and neighboring cells respectively, while the RAGS snake converges

well to the outer cell boundary without leaking through.

Figure 10.24: Optic disk localization. Top row: initial contour and geodesic

snake which steps through to the stronger central region. Middle row: overseg-

mentation color region map and final RAGS snake. Bottom row: undersegmen-

tation color region map and final RAGS snake (color slide).
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Figure 10.25: RAGS segmentation comparison with ground-truth. (Column 1)

ground-truth, (column 2) initial snakes, (column 3) RAGS results with over-

segmentation, and (column 4) RAGS results with undersegmentation (color

slide).



A Region-Aided Color Geometric Snake 571

Figure 10.26: Cell with strong nucleus feature. Top row: initial snake and stan-

dard geometric snake. Bottom row: GGVF snake and RAGS snake showing how

the stronger inner edge in the cell nucleus does not cause it to lose the outer

weaker edge (original image courtesy of Bristol Biomedical Image Archive,

Bristol University, UK) (color slide).

All the examples shown here illustrate the resilience of RAGS to weak edges

and noise. However, the RAGS snake does suffer from some shortcomings. As

with the standard geometric snake, or the geometric GGVF snake, it will not

perform well in highly textured regions in which the gradient flow forces may

be hampered by multitudes of texture edge information. It is also dependent on

a reasonable segmentation stage, although this was shown to be quite flexible

using a popular method of image segmentation.

10.10 Conclusions

A novel method, the region-aided geometric snake or RAGS, has been proposed.

It integrates the gradient flow forces with region constraints, composed of the

image region vector flow forces obtained through the diffusion of the region
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map. The theory behind RAGS is standalone and hence the region force can be

generated starting from any reasonable segmentation technique. We also showed

its simple extension to color gradients. We demonstrated the performance of

RAGS, against the standard geometric snake and the geometric GGVF snake, on

weak edges and noisy images as well as on a number of other examples.

The experimental results have shown that the region-aided snake is much

more robust toward weak edges. Also, it has better convergence quality com-

pared with both the standard geometric snake and the geometric GGVF snake.

The weak-edge leakage problem is usually caused by inconclusive edge values

at the boundaries, which makes it difficult for gradient-based techniques to de-

fine a good edge. The gradual changes do not provide sufficient minima for the

stopping function to prevent the level set accumulating in that area. The diffused

region map gives the snake an extra underlying force at the boundaries. It also

makes the snake more tolerable to noise as shown by the harmonic shape recov-

ery experiment and many of the real images. The noise in the image introduces

local minima in the stopping function preventing the standard geometric snake

to converge to the true boundary. However, for RAGS the diffused region forces

give a better global idea of the object boundary in the noise clutter and help the

snake step closer and converge to the global minima.

10.11 Further Reading

Deformable contour models are commonly used in image processing and com-

puter vision, for example for shape description [21], object localization [22], and

visual tracking [23].

A good starting point to learn about parametric active contours is [24]. These

snakes have undergone significant improvements since their conception, for

example see the GVF snake in [7,9]. Region-based parametric snake frameworks

have also been reported in [25–27]

The geometric model of active contours was simultaneously proposed by

Caselles et al. [1] and Malladi et al. [2]. Geometric snakes are based on the

theory of curve evolution in time according to intrinsic geometric measures of

the image. They are numerically implemented via level sets, the theory of which

can be sought in [15, 16].
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There has been a number of works based on the geometric snake and level

set framework. Siddiqi et al. [14] augmented the performance of the standard ge-

ometric snake that minimizes a modified length functional by combining it with

a weighted area functional. Xu et al. extended their parametric GVF snake [7]

into the generalized GVF snake, the GGVF, in [9]. Later, they also established

an equivalence model between parametric and geometric active contours [10]

using the GGVF. A geometric GGVF snake enhanced with simple region-based

information was presented in [10]. Paragios et al. [28,29] presented a boundary

and region unifying geometric snake framework which integrates a region seg-

mentation technique with the geometric snake. In [30], Yezzi et al. developed

coupled curve evolution equations and combined them with image statistics for

images of a known number of region types, with every pixel contributing to the

statistics of the regions inside and outside an evolving curve. Using color edge

gradients, Sapiro [6] extended the standard geometric snake for use with color

images (also see Fig. 10.6). In [11], Chan et al. described a region-segmentation-

based active contour that does not use the geometric snake’s gradient flow to

halt the curve at object boundaries. Instead, this was modeled as an energy

minimization of a Mumford–Shah-based minimal partition problem and imple-

mented via level sets. Their use of a segmented region map is similar to the

concept we have explored here.

Level set methods can be computationally expensive. A number of fast im-

plementations for geometric snakes have been proposed. The narrow band

technique, initially proposed by Chop [31], only deals with pixels that are close

to the evolving zero level set to save computation. Later, Adalsterinsson et al. [32]

analyzed and optimized this approach. Sethian [33, 34] also proposed the fast

marching method to reduce the computations, but it requires the contours to

monotonically shrink or expand. Some effort has been expended in combin-

ing these two methods. In [35], Paragios et al. showed this combination could

be efficient in application to motion tracking. Adaptive mesh techniques [36]

can also be used to speed up the convergence of PDEs. More recently, addi-

tive operative splitting (AOS) schemes were introduced by Weickert et al. [37]

as an unconditionally stable numerical scheme for nonlinear diffusion in im-

age processing. The basic idea is to decompose a multidimensional problem

into one-dimensional ones. AOS schemes can be easily applied in implementing

level set propagation [38].
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The mean shift algorithm is a nonparametric technique for estimation of the

density gradient, which was first proposed by Fukunaga et al. [39]. The idea

was later generalized by Cheng [40]. The technique was extended to various

applications, amongst them color image segmentation, by Comaniciu et al. [12,

13, 20].

10.12 Appendix. Numerical Solution for the

Level Set Implementation of RAGS

Let φi, j denote the value of φ at the grid position of xi = i�x, yi = j�y, where

�x and �y are the grid steps along x and y directions respectively. Denote

φ(xi, yj, tn) by φn
i, j , the time derivative φt at (i, j, tn) is approximated by forward

difference as φt(i, j, tn) = (φn+1
i, j − φn

i, j)/�t, where �t is a small time interval. As

given in (10.17), the snake evolves according to four forces. However, they can

be categorized into three types based on the nature of their motions.

The first motion is a collapsing one with speed proportional to its curvature. It

is a parabolic contribution to the equation of motion and it can be approximated

with central differences. The curvature κ is only dependent on contours; it is

independent of time and spatial position, hence it can also be solved using central

difference approximations. The curvature motion at time t is approximated as

(g(·)κ|∇φ|)n
i, j = g(·)i, jK

n
i, j(D0x

i, j

2 + D
0y

i, j

2
)1/2, (10.42)

where D0x
i, j = (φn

i+1, j − φn
i−1, j)/2�x, D

0y

i, j = (φn
i, j+1 − φn

i, j−1)/2�y, and Kn
i, j is the

central difference approximation to the curvature expression given in (10.22):

(φx)n
i, j = D0x

i, j, (φy)n
i, j = D

0y

i, j, (10.43)

(φxx)n
i, j =

φn
i+1, j − 2φn

i, j + φn
i−1, j

�x2 , (φyy)n
i, j =

φn
i, j+1 − 2φn

i, j + φn
i, j−1

�y2 , (10.44)

(φxy)n
i, j =

φn
i+1, j+1 − φn

i−1, j+1 − φn
i+1, j−1 + φn

i−1, j−1

4�x�y
. (10.45)

The second motion is expanding or shrinking with a spatially constant speed

in its normal direction. It must be approximated through entropy-satisfying

schemes [16]. Let V0 be the constant speed function regarding αg(·). Following
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Sethian’s upwinding finite difference scheme, the solution is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(V0|φ|)n
i, j = V0i, j[max(D−x

i, j , 0)2 +min(D+x
i, j , 0)2

+max(D
−y

i, j , 0)2 +min(D
+y

i, j )2]1/2 if V0i, j ≥ 0

(V0|φ|)n
i, j = V0i, j[max(D+x

i, j , 0)2 +min(D−x
i, j , 0)2

+max(D
+y

i, j , 0)2 +min(D
−y

i, j )2]1/2 otherwise

, (10.46)

where D+x
i, j = (φn

i+1, j − φn
i, j)/�x, D

+y

i, j = (φn
i, j+1 − φn

i, j)/�y and D−x
i, j = (φn

i, j −
φn

i−1, j)/�x, D
−y

i, j = (φn
i, j − φn

i, j−1)/�yare the forward and backward differences,

respectively.

The external forces left in (10.17) contribute the third underlying static ve-

locity field for snake evolution. Their direction and strength are based on spatial

position, but not on the snake. This motion can be numerically approximated

as follows. Let U(x, y, t) denote the underlying static velocity field according to

β R̃− ∇g(·). We check the sign of each component of U and construct one-sided

upwind differences in the appropriate (upwind) direction [16]:

( U · ∇φ)n
i, j = max(un

i, j, 0)D−x
i, j +min(un

i, j, 0)D+x
i, j

+ max(vn
i, j, 0)D

−y

i, j +min(vn
i, j, 0)D

+y

i, j , (10.47)

where U = (u, v). Thus, (10.17) is numerically solved using the schemes de-

scribed above.

Questions

1. What are the advantages of geometric snakes over their parametric coun-

terparts?

2. Which are some of the key papers on the geometric snake?

3. How do I diffuse the region segmentation map?

4. Describe how weighting functions p(·) and q(·) behave in vector diffusion?

5. What are the parameters in RAGS?

6. How do I choose the parameter values?

7. What are some of the disadvantages of RAGS?
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8. What is a good source of information for learning about level sets?

9. How are level sets initialized?

10. Is the geometric snake computationally efficient? Are there any ways to

speed up the convergence?

11. How do I find out more about the GVF and GGVF snakes?

12. Describe the mean shift process.

13. How do I find out more about the mean shift segmentation method?

14. Who else has applied di Zenzo’s method of vector gradients in the active

contour literature?

15. How do I find out more about the optic disk application from the Results

section?
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Chapter 11

Co-Volume Level Set Method in Subjective

Surface Based Medical Image Segmentation

Karol Mikula,1 Alessandro Sarti,2 and Fiorella Sgallari3

11.1 Introduction

It is well known that the so-called level set equation [42, 43, 54, 55]

ut = |∇u|∇ ·
( ∇u

|∇u|
)

(11.1)

for curvature-driven motion as well as its nontrivial generalizations are well

suited to image processing applications and they are often used nowadays. In

this chapter we deal with a specific equation of mean curvature flow type [48–50],

namely,

ut =
√

ε2 + |∇u|2∇ ·
(

g(|∇Gσ ∗ I0|) ∇u√
ε2 + |∇u|2

)
, (11.2)

where u(t, x) is an unknown (segmentation) function defined in QT ≡ [0, T]×
�. � ⊂ IRd is a bounded domain with a Lipschitz continuous boundary ∂�,

[0, T] is a time interval, I0 is a given image, and ε > 0 is a parameter. The

equation is accompanied with zero Dirichlet boundary conditions and initial

1 Department of Mathematics, Slovak University of Technology, Radlinského 11, 813 68
Bratislava, Slovakia, E-mail: mikula@vox.svf.stuba.sk

2 DEIS, University of Bologna, Via Risorgimento 2, 40136 Bologna, Italy, E-mail:
asarti@deis.unibo.it

3 Department of Mathematics, University of Bologna, Piazza di Porta S. Donato 5, 40127
Bologna, Italy, E-mail: sgallari@dm.unibo.it
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condition

u(t, x) = uD in [0, T]× ∂�, (11.3)

u(0, x) = u0(x) in �. (11.4)

Without loss of generality, we may assume uD = 0. The Perona–Malik function

g : IR+0 → IR+ is nonincreasing, g(0) = 1, admitting g(s) → 0 for s →∞ [45].

Usually we use the function g(s) = 1/(1+ Ks2), K ≥ 0. Gσ ∈ C∞(IRd) is a

smoothing kernel, e.g. the Gauss function

Gσ (x) = 1
(4πσ )d/2

e−|x|
2/4σ , (11.5)

which is used in presmoothing of image gradients by the convolution

∇Gσ ∗ I0 =
∫
IRd

∇Gσ (x− ξ) Ĩ0(ξ)dξ, (11.6)

with Ĩ0 being the extension of I0 to IRd given by periodic reflection through the

boundary of image domain. The computational domain � is usually a subdo-

main of the image domain; it should include the segmented object. In fact, in

most situations � corresponds to image domain itself. We assume that an initial

state of the segmentation function is bounded, i.e. u0 ∈ L∞(�). For shortening

notations, we will use the abbreviation

g0 = g(|∇Gσ ∗ I0|). (11.7)

Due to smoothing properties of convolution, we always have 1 ≥ g0 ≥ νσ > 0

[5, 27].

Equation (11.2) is a regularization, in the sense |∇u| ≈ |∇u|ε =
√

ε2 + |∇u|2
[19], of the segmentation equation suggested in [7–9, 30, 31], namely,

ut = |∇u|∇ ·
(

g0 ∇u

|∇u|
)

. (11.8)

However, while in [19] the ε-regularization was used just as a tool to prove the

existence of a viscosity solution of the level set equation (see also [10, 12]), in

our work ε is a modeling parameter. As we will see later, it can help in suitable

denoising and completion of missing boundaries in images. Such regularization

can be interpreted as a mean curvature flow of graphs with respect to a specific

Riemann metric given by the image features [49].
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The idea to use Riemannian mean curvature flow of graphs to compute

the so-called subjective contours [29] originates in [48–50]. The subjective sur-

faces method, developed there, has been successfully used to complete missing

boundaries of objects in digital 2D and 3D data sets and thus it is a powerful

method for segmentation of highly noisy, e.g. medical, images. In this chapter

we follow the same idea.

Initially, a “point-of-view” surface, given by an observer (user) chosen fix-

ation point inside the image, is taken as u0 (see e.g. Fig. 11.11 (top right)).

Then this initial state of the segmentation function is evolved by Eq. (11.2), un-

til the so-called subjective surface arises (see e.g. Fig. 11.11 ( bottom) right or

Fig. 11.14 (top row)). For small ε, the subjective surface closes gaps in image

object boundaries and is stabilized, i.e. almost does not change by further evolu-

tion, so it is easy to stop the segmentation process. The idea to follow evolution

of the graph of segmentation function [48–50] and not to follow evolution of a

particular level set of u is new in comparison with other level set methods used

in image segmentation (cf. [6–9, 30, 31, 36]). In standard level set approach, the

redistancing [42, 55] is used to keep unit slope along the level set of interest

(e.g. along segmentation curve). In such an approach the evolution of u itself

is forgotten at every redistancing step. Such solution prevents steepening of u

and one cannot obtain the subjective surfaces. In our computational method we

do not impose any specific requirements (e.g., redistancing) to solution of the

level set equation, the numerically computed segmentation function can natu-

rally evolve to a “piecewise constant steady state” result of the segmentation

process.

For numerical solution of the nonlinear diffusion equation (11.2), governing

Riemannian mean curvature flow of graphs, we use semi-implicit complemen-

tary volume (called also co-volume or finite volume-element) method. Since

(11.2) is regularization of (11.8), for the curvature driven level set flow (11.8) or

for some other form of the level set equation (11.1), the method can be used as

well (cf. [21, 25]).

For time discretization of nonlinear diffusion equations, there are basically

three possibilities: implicit, semi-implicit, or explicit schemes. For spatial dis-

cretization usually finite difference, finite volume, or finite element method is

used. The co-volume technique is a combination of finite element and finite vol-

ume methods. Implicit, i.e. nonlinear, time discretization, and co-volume tech-

niques for solution of the level set equation were introduced in [56]. The efficient
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co-volume level set method based on semi-implicit, i.e. linear, time discretiza-

tion was given and studied in [25]. In [25], the method was applied to image

smoothing nonlinear diffusion level set equation; here we apply the method to

image segmentation and completion of missing boundaries.

Let us note that Eq. (11.8) can be rewritten into an advection–diffusion

form as

ut = g0|∇u|∇ ·
( ∇u

|∇u|
)
+ ∇g0 · ∇u. (11.9)

Various finite difference schemes [7–9, 30, 31, 48–50] are usually based on this

form using upwinding in advection term and explicit time stepping. Our co-

volume technique relies on discretization of the basic form (11.8), or more pre-

cisely on its regularization (11.2), and we use its integral (weak, variational)

formulation. In such a way, the discretization scheme naturally respects a varia-

tional structure of the problem, it gives clear discrete form of local mass balance,

and it naturally fulfills discrete minimum–maximum principle (L∞-stability).

The semi-implicit discretization in time yields such stability property (i.e. no

spurious oscillations appear in our solution) for any length of discrete time

step. This is a main advantage in comparison with explicit time stepping, where

the stability is often achieved only under severe time step restriction. Since in

nonlinear diffusion problems (such as the level set equation), the coefficients

depend on the solution itself and thus they must be recomputed in every dis-

crete time update, an overall CPU time for explicit scheme can be tremendous.

On the other hand, the implicit time stepping as in [56], although uncondition-

ally stable, leads to solution of nonlinear systems in every discrete time up-

date. For the level-set-like problems, there is no guarantee for convergence of

a fast Newton solver, and fixed-point-like iterations are very slow [56]. From

this point of view, the semi-implicit method seems to be optimal regarding sta-

bility and efficiency. In every time update we solve linear system of equations

which can be done efficiently using, e.g., suitable preconditioned iterative linear

solvers.

In Section 11.2 we discuss various curve evolution and level set models

leading to segmentation Eqs. (11.8) and (11.2). In Section 11.3 we introduce our

semi-implicit co-volume level set method for solving these equations and discuss

some of its theoretical properties and implementation aspects. In Section 11.4

we discuss numerical experiments.
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Figure 11.1: Image corrupted by a structural noise (left), and result of filtering

by level set equation after two (middle) and ten (right) discrete scale steps.

11.2 Discussion on Related Mathematical

Models

The level set equation (11.1) has great significance in axiomatization of image

processing and computer vision [1]. It fulfills the so-called morphological prin-

ciple: If u is a solution then, for any nondecreasing function ϕ, ϕ(u) is a solution

as well. It means that level sets of a solution u move independently of each

other, or in other words, they diffuse only intrinsically (in tangential direction)

and there is no diffusion across level sets in the normal direction. In that sense it

provides a directional smoothing of the image along its level lines. We illustrate

the smoothing effect of the level set equation in Figs. 11.1 (removing structural

noise) and 11.2 (removing salt and pepper noise) [25].

Figure 11.2: Initial image corrupted by salt and pepper noise (left), and result

of filtering by level set equation after two (middle) and ten (right) discrete scale

steps.
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In image filtration, the initial condition for the level set equation (11.1) is

given by the image gray-level intensity I0 itself, i.e., u0 = I0 and usually zero

Neumann boundary conditions are used. The solution u(t, x) gives a family of

scaled (filtered, smoothed) versions of I0(x). The parameter t is understood as

scale, and the process of nonlinear selective smoothing is called image multiscale

analysis [1]. In [25], the linear semi-implicit co-volume method to solve image

selective smoothing equation [2]

ut = g(|∇Gσ ∗ u|)|∇u|∇ ·
( ∇u

|∇u|
)

(11.10)

has been suggested and studied. Equation (11.10) can be used for edge-

preserving smoothing in a similar way as the so-called Perona–Malik equa-

tion [1, 2, 5, 24–28, 37, 38, 41, 45], see Fig. 11.3.

The aim of segmentation is to find boundaries of a distinguished object of an

image. In generic situation these boundaries correspond to edges. However, in

Figure 11.3: Extraction of two chromosomes in a human cell using geometrical

diffusion (11.10) [24].
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the presence of noise or in images with occlusions or subjective contours, these

edges can be very irregular or even interrupted. Then the analysis of the scene

and segmentation of objects become a difficult task.

In the so-called active contour models [32], an evolving family of curves con-

verging to an edge is constructed. A simple approach (similar to various discrete

region-growing algorithms) is to put small seed, e.g. small circular curve, inside

the object and then evolve the curve to find automatically the object boundary.

For such moving curves the level set models have been introduced in the last

decade. A basic idea is that moving curve corresponds to a specific level line of

the level set function which solves some reasonable generalization of Eq. (11.1).

The level set methods have several advantages among which independence of di-

mension of the image and topology of objects are probably the most important.

However, a reader can be interested also in the so-called direct (Lagrangian)

approaches to curve and surface evolution (see e.g. [16–18, 39, 40]).

First simple level set model with the speed of segmentation curve modulated

by g(|∇ I0(x)|) (or more precisely by g(|∇Gσ ∗ I0|)), where g is a smooth edge

detector function, e.g. g(s) = 1/(1+ Ks2), has been given in [6] and [36]. In

such a model, “steady state” of a particular level set (level line in 2D image)

corresponds to boundary of a segmented object. Due to the shape of the Perona–

Malik function g, the moving segmentation curve is strongly slowed down in a

neighborhood of an edge, leading to a segmentation result. However, if an edge

is crossed during evolution (which is not a rare event in noisy images), there

is no mechanism to go back. Moreover, if there is a missing part of the object

boundary, the algorithm is completely unuseful (as any other simple region-

growing method).

Later on, the curve evolution and the level set models for segmentation

have been significantly improved by finding a proper driving force in the form

−∇g(|∇ I0(x)|) [7–9, 30, 31]. The vector field −∇g(|∇ I0(x)|) has an important

geometric property: It points toward regions where the norm of the gradient∇ I0

is large (see Figs. 11.4 and 11.5). Thus if an initial curve belongs to a neighborhood

of an edge, then it is driven toward this edge by this proper velocity field. Such

motion can also be interpreted as a flow of the curve on surface g(|∇ I0(x)|)
subject to gravitational-like force driving the curve down to the narrow valley

corresponding to the edge (see Fig. 11.6, [40]).

However, as one can see from Figs. 11.7 and 11.8, the situation is much

more complicated in the case of noisy images. The advection process alone is
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Figure 11.4: A graph of the image intensity function I0(x) corresponding to a

“dumbbell” image (left, see also Fig. 11.5) and a graph of the function g(|∇ I0(x)|)
(right) where a narrow valley along the edge can be observed (color slide).

not sufficient. In a noisy environment, the evolving level set can behave very

irregularly, it can be attracted to spurious edges and no reasonably convergent

process can be observed. This phenomenon is documented in Fig. 11.8 left. To

prevent such a situation, one has to regularize the evolution. A helpful regu-

larization is to add a curvature dependence to the level set flow. If evolution

Figure 11.5: Image given by the intensity I0(x) from Fig. 11.4 (left) and the

arrows representing the vector field −∇g(|∇ I0(x)|) (color slide).
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Figure 11.6: An initial ellipse driven by the vector field−∇g(|∇ I0(x)|) down to

the valley to find the edge in the image I0 (color slide).

of a curve in the normal direction depends on its curvature k, then the sharp

irregularities are smoothed. Such motion can be interpreted as an intrinsic dif-

fusion of the curve. A reasonable regularization term is given by g0k, where

the amount of curve intrinsic diffusion is small in the vicinity of unspurious

edges. In Fig. 11.8 (right), we present initial ellipse evolution to successful seg-

mentation result using such advection–(intrinsic) diffusion model, which was

computed by the direct method from [40]. The level set formulation of such

Figure 11.7: The situation is more complicated in the case of a “noisy” image

(middle); we also plot a graph of its intensity I0(x) (left) and the corresponding

surface g(|∇ I0(x)|) (right) (color slide).
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Figure 11.8: The evolution only by advection leads to attracting a curve (initial

ellipse) to spurios edges, the evolution must be stopped without any reasonable

segmentation result (left). By adding regularization term related to curvature of

evolving curve, the edge is found smoothly (right).

curve evolution is given by Eq. (11.9), which is, of course, only another form of

Eq. (11.8).

Although model (11.8) behaves very well if we are in the vicinity of an edge,

it is sometimes difficult to drive the segmentation curve there. If we start with a

small circular seed, it has large curvature and diffusion dominates advection so

the seed disappears (curve shrinks to a point [22,23]). Then some constant speed

must be added to dominate diffusion at the beginning of the process, but it is not

clear at all when to switch off this driving force to have just the mechanism of

the model (11.8). Moreover, in the case of missing boundaries of image objects,

there is no criterion for such a switch, so the segmentation curve cannot be well

localized to complete the missing boundaries.

An important observation now is that Eq. (11.8) moves not only one partic-

ular level line (segmentation curve) but all level lines by the above mentioned

advection–diffusion mechanism. So, in spite of all previously mentioned seg-

mentation approaches, we may start to think not on evolution of one particular

level set but on evolution of the whole surface composed of those level sets.

This idea to look on the solution u itself, i.e. on the behavior of our segmenta-

tion function, can help significantly.

Let us look on a simple numerical experiment presented in Fig. 11.10

representing extraction of the solid circle depicted in Fig. 11.9. The starting
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Figure 11.9: Image of a solid circle.

point-of-view surface u0 is plotted on the top left. The subsequent evolution is

depicted in the next subfigures. First, isolines which are close to the edge, i.e.

in the neighborhood of the solid circle where the advection term is nonzero,

are attracted from both sides to this edge. A small shock (steep gradient) is

formed due to accumulation of these level lines (see Fig. 11.10 (top right)).

In the regions outside the neighborhood of the circle, the advection term is

vanishing and g0 ≡ 1, so only intrinsic diffusion of level sets plays a role. This

means that all inside level sets are shrinking and finally they disappear. Such

a process is nothing else but a decrease of the maximum of our segmenta-

tion function until the upper level of the shock is achieved. It is clear that a

flat region in the profile of segmentation function inside the circle is formed.

Outside of the circle, level sets are also shrinking until they are attracted by

nonzero velocity field and then they contribute to the shock. In the bottom left

of Fig. 11.10, we see the shape of segmentation function u after such evolution,

in the bottom right there are isocontours of such function accumulated on the

edges. It is very easy to use one of them, e.g., (max(u)+min(u))/2, to get the

circle.

The situation is not so straightforward for the highly nonconvex image de-

picted in Fig. 11.11. Our numerical observation leads to formation of steps in

subsequent evolution of the segmentation function, which is understandable,

because very different level sets of initial surface u0 are attracted to different

parts of the boundary of “batman.” Fortunately, we are a bit free in choosing

the precise form of diffusion term in the segmentation model. After expansion

of divergence, Eqs. (11.2) and (11.8) give the same advection term, ∇g0 · ∇u (cf.

Eq. (11.9)), so important advection mechanism which accumulates segmenta-

tion function along the shock is the same. However, diffusion mechanisms are a
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Figure 11.10: Subjective surface based segmentation of solid circle. We plot

numerically computed time steps 0, 2, 10, 20, and 100. In the bottom right we

see accumulation of level lines of segmentation function on the edges. In this

experiment ε = 10−10, so we are very close to level set flow equation (11.8) (color

slide).

bit different. Eq. (11.2), in the case ε = 1, gives diffusion which is known as mean

curvature flow of graphs. It means that no level sets of segmentation function

move in the normal direction proportionally to curvature, but the graph of seg-

mentation function moves (as 2D surface in 3D space) in the normal direction

proportionally to the mean curvature. The large variations in the graph of seg-

mentation function are then smoothed due to large mean curvature. Of course,
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Figure 11.11: Subjective surface based segmentation of a “batman” image. In

the left column we plot the black and white images to be segmented together

with isolines of the segmentation function. In the right column there are shapes

of the segmentation function. The rows correspond to time steps 0, 1, and 10,

which gives the final result ε = 1 (color slide).
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Figure 11.12: Three testing images. Circle with a smaller (left) and a big (mid-

dle) gap, and noisy circle with a gap.

the smoothing is applied only outside the edges. On the edges the advection

dominates, since the mean curvature term is multiplied by a small value of g0.

In Fig. 11.11 (bottom) we may see formation of a piecewise flat profile of the

segmentation function, which can be again very simply used for extraction of

“batman,” although, due to Dirichlet boundary data and ε = 1, this profile moves

slowly downwards in subsequent evolution. In this (academic) example, the only

goal was to smooth (flatten) the segmentation function inside and outside the

edge, so the choice ε = 1 was really satisfactory. In the case ε = 1, Eq. (11.2) can

be interpreted as a time relaxation for the minimization of the weighted area

functional

Ag0 =
∫

�

g0
√

1+ |∇u|2dx,

or as the mean curvature motion of a graph in Riemann space with metric g0δij

[48].

In the next three testing images plotted in Fig. 11.12 we illustrate the role

of the regularization parameter ε. The same choice, ε = 1, as in the previous

image with complete edge, is clearly not appropriate for image object with a

gap (Fig. 11.12 (left)), as seen in Fig. 11.13. We see that minimal-surface-like

diffusion closes the gap with a smoothly varying “waterfall” like shape. Although

this shape is in a sense stable (it moves downwards in a “self-similar form”), it

is not appropriate for segmentation purposes. However, decreasing ε, i.e., if we

stay closer to the curvature-driven level set flow (11.8), or in other words, if

we stretch the Riemannian metric g0δij in the vertical z direction [49], we get
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Figure 11.13: Experiment on testing image plotted in Fig. 11.12 (left). The

results of evolution of the segmentation function (in the left its isolines, in the

right its graphs) after 10 (top row) and 100 (bottom row) time steps. In this case,

ε = 1, the shape is stable, but moving downwards in a “self-similar” form, so it

is not utilizable as the segmentation result.

very good segmentation results as presented in Fig. 11.14. Of course, smaller ε

is needed to close larger gaps (see Fig. 11.15).

If there is a noisy image as in Fig. 11.12 (right), the motion of level lines to

shock is more irregular, but finally the segmentation function is smoothed as well

(see Figs. 11.16 and 11.17). If the regularization parameter ε is small, then piece-

wise flat profile of the segmentation function will move very slowly downwards,

so it is easy to stop the evolution and get the result of segmentation process.

In the presented experiments, we have seen that the solution of Eq. (11.2)

is well suited to finding and completing edges in (noisy) images. Its advection–

diffusion mechanism leads to promising results. In the next section we give an

efficient and robust computational method for its solution.
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Figure 11.14: Results of the segmentation process for testing image plotted in

Fig. 11.12 (left) using ε = 10−2 (top left) and ε = 10−5 (top right). The isoline

(max (u)+min (u))/2 well represents the segmented circle (bottom red line).

For large range of ε, we get satisfactory results (color slide).

11.3 Semi-implicit Co-Volume Scheme

We present our method in discretization of Eq. (11.8), although we always use

its ε-regularization (11.2) with a specific ε > 0. The notation is simpler in the

case of (11.8) and it will be clear where regularization appears in the numerical

scheme.

First we choose a uniform discrete time step τ and a variance σ of the

smoothing kernel Gσ . Then we replace time derivative in (11.8) by backward

difference. The nonlinear terms of the equation are treated from the previous

time step while the linear ones are considered on the current time level, this

means semi-implicitness of the time discretization. In the last decade, semi-

implicit schemes have become a powerful tool in image processing, we refer

e.g. to [3, 4, 25–27, 33, 37, 51, 57, 58].

Semi-implicit in time discretization. Let τ and σ be fixed numbers, I0 be

a given image, and u0 be a given initial segmentation function. Then, for
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Figure 11.15: Segmentation of the circle with a big gap (Fig. 11.12 (middle))

using ε = 1 (top), ε = 10−2 (middle), and ε = 10−5 (bottom). For bigger missing

part a smaller ε is desirable. In the left column we see how close to the edges

the isolines are accumulating and closing the gap, and in the right we see how

steep the segmentation function is along the gap (color slide).
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Figure 11.16: Isolines of the segmentation function in the segmentation of the

noisy circle (Fig. 11.12 (right)) are shown in time steps 0, 50, 100, and 200. Since

the gap is not so big we have chosen ε = 10−1 (color slide).

n= 1, . . . , N, we look for a function un, solution of the equation,

1
|∇un−1|

un− un−1

τ
= ∇ ·

(
g0 ∇un

|∇un−1|
)

. (11.11)

A digital image is given on a structure of pixels with rectangular shape, in

general (red rectangles in Fig. 11.18). Since discrete values of I0 are given in

pixels and they influence the model, we will relate spatially discrete approxi-

mations of the segmentation function u also to image pixels, more precisely, to

their centers (red points in Fig. 11.18). In every discrete time step of the method

(11.11), we have to evaluate gradient of the segmentation function at the previ-

ous step |∇un−1|. For that goal, it is reasonable to put a triangulation (dashed

black lines in Fig. 11.18) inside the pixel structure and take a piecewise linear

approximation of the segmentation function on this triangulation. Such an ap-

proach will give a constant value of the gradient per triangle, allowing simple

and clear construction of fully discrete system of equations. This is the main

feature of the co-volume [25, 56] and finite element [13–15] methods in solving

mean curvature flow in the level set formulation.
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Figure 11.17: The graph of the segmentation function and its histograms in

time steps 100 and 200 for the same experiment as presented in Fig. 11.16.

The histograms give a practical advise to shorten the segmentation process in

case of noisy images. For a noisy image, the formation of completely piecewise

flat subjective surface takes longer time. However, the gaps in histogram of the

segmentation function are developed soon. It allows to take any level inside these

gaps and to visualize the corresponding level line to get desirable segmentation

result (color slide).

As can be seen in Fig. 11.18, in our method the centers of pixels are con-

nected by a new rectangular mesh and every new rectangle is splitted into

four triangles. The centers of pixels will be called degree of freedom (DF)

nodes. By this procedure we also get further nodes (at crossing of red lines

in Fig. 11.18) which, however, will not represent degrees of freedom. We will

call them non-degree of freedom (NDF) nodes. Let a function u be given by

discrete values in the pixel centers, i.e. in DF nodes. Then in additional NDF

nodes we take the average value of the neighboring DF nodal values. By such

defined values in NDF nodes, a piecewise linear approximation uh of u on the

triangulation can be built. Let us note that we restrict further considerations

in this chapter only to this type of grids. For triangulation Th, given by the pre-

vious construction, we construct a co-volume (dual) mesh. We modify a basic
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Figure 11.18: The image pixels (red solid lines) corresponding to co-volume

mesh. Triangulation (black dashed lines) for the co-volume method with degree

of freedom nodes (red round points) corresponding to centers of pixels (color

slide).

approach given in [25, 56] in such a way that our co-volume mesh will con-

sist of cells p associated only with DF nodes p of Th, say p = 1, . . . , M . Since

there will be one-to-one correspondence between co-volumes and DF nodes,

without any confusion, we use the same notation for them. In this way we

have excluded the boundary nodes (due to Dirichlet boundary data) and NDF

nodes.

For each DF node p of Th, let Cp denote the set of all DF nodes q connected

to the node p by an edge. This edge will be denoted by σpq and its length by

hpq . Then every co-volume p is bounded by the lines (co-edges) epq that bisect

and are perpendicular to the edges σpq , q ∈ Cp. By this construction, the co-

volume mesh corresponds exactly to the pixel structure of the image inside the

computational domain � where the segmentation is provided. We denote by Epq

the set of triangles having σpq as an edge. In a situation depicted in Fig. 11.18,

every Epq consists of two triangles. For each T ∈ Epq let cT
pq be the length of

the portion of epq that is in T , i.e., cT
pq = m(epq∩T), where m is a measure in

IRd−1. Let Np be the set of triangles that have DF node p as a vertex. Let uh be

a piecewise linear function on triangulation Th. We will denote a constant value
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of |∇uh| on T ∈ Th by |∇uT | and define regularized gradients by

|∇uT |ε =
√

ε2 + |∇uT |2. (11.12)

We will use the notation up = uh(xp), where xp is the coordinate of the node p

of triangulation Th.

With these notations, we are ready to derive co-volume spatial discretization.

As is usual in finite volume methods [20,34,44], we integrate (11.11) over every

co-volume p, i = 1, . . . , M . We get∫
p

1
|∇un−1|

un− un−1

τ
dx =

∫
p

∇ ·
(

g0 ∇un

|∇un−1|
)

dx. (11.13)

For the right-hand side of (11.13), using divergence theorem we get∫
p

∇ ·
(

g0 ∇un

|∇un−1|
)

dx =
∫

∂p

g0

|∇un−1|
∂un

∂ν
ds

=
∑
q∈Cp

∫
epq

g0

|∇un−1|
∂un

∂ν
ds.

So we have an integral formulation of (11.11)∫
p

1
|∇un−1|

un− un−1

τ
dx =

∑
q∈Cp

∫
epq

g0

|∇un−1|
∂un

∂ν
ds (11.14)

expressing a “local mass balance” property of the scheme. Now the exact “fluxes”

on the right-hand side and “capacity function” 1
|∇un−1| on the left-hand side (see

e.g. [34]) will be approximated numerically using piecewise linear reconstruc-

tion of un−1 on triangulation Th. If we denote g0
T approximation of g0 on a triangle

T ∈ Th, then for the approximation of the right-hand side of (11.14), we get

∑
q∈Cp

⎛⎝ ∑
T∈Epq

cT
pq

g0
T

|∇un−1
T |

⎞⎠ un
q − un

p

hpq

, (11.15)

and the left-hand side of (11.14) is approximated by

Mpm(p)
un

p − un−1
p

τ
, (11.16)

where m(p) is a measure in IRd of co-volume p and either

Mp = 1

|∇un−1
p | , |∇un−1

p | =
∑

T∈Np

m(T ∩ p)
m(p)

|∇un−1
T | (11.17)
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or

Mp =
∑

T∈Np

m(T ∩ p)
m(p)

1

|∇un−1
T | . (11.18)

The averaging of the gradients (11.17) has been used in [25, 56], and the ap-

proximation (11.18) is new and we have found it very useful regarding good

convergence properties in solving the linear systems (see below) iteratively for

ε ' 1. Regularizations of both the approximations of the capacity function are

as follows: either

Mε
p =

1

|∇un−1
p |ε

(11.19)

or

Mε
p =

∑
T∈Np

m(T ∩ p)
m(p)

1

|∇un−1
T |ε

. (11.20)

Now we can define coefficients, where the ε-regularization is taken into account,

namely,

bn−1
p = Mε

pm(p), (11.21)

an−1
pq = 1

hpq

∑
T∈Epq

cT
pq

g0
T

|∇un−1
T |ε

, (11.22)

which together with (11.15) and (11.16) give the following.

Fully-discrete semi-implicit co-volume scheme. Let u0
p, p = 1, . . . , M,

be given discrete initial values of the segmentation function. Then, for n=
1, . . . , N we look for un

p, p = 1, . . . , M, satisfying

bn−1
p un

p + τ
∑
q∈Cp

an−1
pq (un

p − un
q) = bn−1

p un−1
p . (11.23)

Theorem. There exists a unique solution (un
1, . . . , un

M) of the scheme (11.23)

for any τ > 0, ε > 0 and for every n= 1, . . . , N. Moreover, for any τ > 0, ε > 0

the following stability estimate holds

min
p

u0
p ≤ min

p
un

p ≤ max
p

un
p ≤ max

p
u0

p, 1 ≤ n≤ N. (11.24)

Proof. The system (11.23) can be rewritten in the form(
bn−1

p + τ
∑
q∈Cp

an−1
pq

)
un

p − τ
∑
q∈Cp

an−1
pq un

q = bn−1
p un−1

p . (11.25)
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Applying Dirichlet boundary conditions, it gives the system of linear equations

with a matrix, the off diagonal elements of which are symmetric and negative.

Diagonal elements are positive and dominate the sum of absolute values of the

nondiagonal elements in every row. Thus, the matrix of the system is symmetric

and diagonally dominant M-matrix which imply that it always has a unique solu-

tion. The M-matrix property gives us the minimum–maximum principle, which

can be seen by the following simple trick. We may temporarily rewrite (11.23)

in the equivalent form

un
p +

τ

bn−1
p

∑
q∈Cp

an−1
pq (un

p − un
q) = un−1

p (11.26)

and let max(un
1, . . . , un

M) be achieved in the node p. Then the second term

on the left-hand side is non-negative and thus max(un
1, . . . , un

M) = un
p ≤ un−1

p ≤
max(un−1

1 , . . . , un−1
M ). In the same way we can prove the relation for minimum

and together we have

min
p

un−1
p ≤ min

p
un

p ≤ max
p

un
p ≤ max

p
un−1

p , 1 ≤ n≤ N, (11.27)

which by recursion imply the desired stability estimate (11.24). �

So far, we have said nothing about evaluation of g0
T included in coefficients

(11.22). Since image is piecewise constant on pixels, we may replace the con-

volution by the weighted average to get I0
σ := Gσ ∗ I0 (see e.g. [37]) and then

relate discrete values of I0
σ to pixel centers. Then, as above, we may construct its

piecewise linear representation on triangulation and in such way we get constant

value of∇ I0
σ on every triangle T ∈ Th. Another possibility is to solve numerically

a linear heat equation for time t corresponding to variance σ with initial datum

given by I0 (see e.g. [3]). The convolution represents a preliminary smoothing

of the data. It is also a theoretical tool to have bounded gradients and thus a

strictly positive weighting coefficient g0. In practice, the evaluation of gradients

on discrete grid (e.g., on triangulation described above) always gives bounded

values. So, working on discrete grid, one can also avoid the convolution, espe-

cially if preliminary denoising is not needed or not desirable. Then it is possible

to work directly with gradients of piecewise linear representation of I0 in the

evaluation of g0
T .

Our co-volume scheme in this paper is designed for the specific mesh (see

Fig. 11.18) given by the rectangular pixel structure of 2D image. For sim-

plicity of implementation and for the reader’s convenience, we will write the
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co-volume scheme in a “finite-difference notation.” As is usual for 2D rectan-

gular grids, we associate co-volume p and its corresponding center (DF node)

with a couple (i, j), i will represent the vertical direction and j the horizontal

direction. If � is a rectangular subdomain of the image domain where n1 and

n2 are number of pixels in the vertical and horizontal directions, respectively,

then i = 1, . . . , m1, j = 1, . . . , m2, m1 ≤ n1 − 2, m2 ≤ n2 − 2 and M = m1m2.

Similarly, the unknown value un
p is associated with un

i, j . For every co-volume

p, the set Np consists of eight triangles (see Fig. 11.18). In every discrete time

step n= 1, . . . , N, and for every i = 1, . . . , m1, j = 1, . . . , m2, we compute ab-

solute value of gradient on these eight triangles denoted by Gk
i, j, k = 1, . . . , 8.

For that goal, using discrete values of u from the previous time step, we use the

following expressions (we omit upper index n− 1 on u):

G1
i, j =

√(
0.5(ui, j+1+ui+1, j+1−ui, j−ui+1, j)

h

)2
+

(
ui+1, j−ui, j

h

)2
,

G2
i, j =

√(
0.5(ui, j+ui+1, j−ui, j−1−ui+1, j−1)

h

)2
+

(
ui+1, j−ui, j

h

)2
,

G3
i, j =

√(
0.5(ui+1, j−1+ui+1, j−ui, j−1−ui, j)

h

)2
+

(
ui, j−ui, j−1

h

)2
,

G4
i, j =

√(
0.5(ui, j−1+ui, j−ui−1, j−1−ui−1, j)

h

)2
+

(
ui, j−ui, j−1

h

)2
,

G5
i, j =

√(
0.5(ui, j+ui−1, j−ui, j−1−ui−1, j−1)

h

)2
+

(
ui, j−ui−1, j

h

)2
,

G6
i, j =

√(
0.5(ui, j+1+ui−1, j+1−ui, j−ui−1, j)

h

)2
+

(
ui, j−ui−1, j

h

)2
,

G7
i, j =

√(
0.5(ui, j+ui, j+1−ui−1, j−ui−1, j+1)

h

)2
+

(
ui, j+1−ui, j

h

)2
,

G8
i, j =

√(
0.5(ui+1, j+ui+1, j+1−ui, j−ui, j+1)

h

)2
+

(
ui, j+1−ui, j

h

)2
.

In the same way, but only in the beginning of the algorithm, we compute val-

ues G
σ,k
i, j , k = 1, . . . , 8, changing u by I0

σ in the previous expressions, where

I0
σ is a smoothed image as explained in the paragraph above. Then for ev-

ery i = 1, . . . , m1, j = 1, . . . , m2 we construct (north, west, south, and east)
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coefficients

ni, j = τ
1
2

2∑
k=1

g(Gσ,k
i, j )√

ε2 + (Gk
i, j)

2
, wi, j = τ

1
2

4∑
k=3

g(Gσ,k
i, j )√

ε2 + (Gk
i, j)

2
,

si, j = τ
1
2

6∑
k=5

g(Gσ,k
i, j )√

ε2 + (Gk
i, j)

2
, ei, j = τ

1
2

8∑
k=7

g(Gσ,k
i, j )√

ε2 + (Gk
i, j)

2

and we use either (cf. (11.17))

mi, j = 1√
ε2 +

(
1
8

8∑
k=1

Gk
i, j

)2

or (cf. (11.18))

mi, j = 1
8

8∑
k=1

1√
ε2 + (Gk

i, j)
2

to define diagonal coefficients

ci, j = ni, j + wi, j + si, j + ei, j +mi, jh
2.

If we define right-hand sides at the nth discrete time step by

ri, j = mi, jh
2un−1

i, j ,

then for DF node corresponding to couple (i, j) we get the equation

ci, ju
n

i, j − ni, ju
n

i+1, j − wi, ju
n

i, j−1 − si, ju
n

i−1, j − ei, ju
n

i, j+1 = ri, j. (11.28)

Collecting these equations for all DF nodes and taking into account Dirichlet

boundary conditions, we get the linear system to be solved.

We solve this system by the so-called SOR (successive over relaxation) it-

erative method, which is a modification of the basic Gauss–Seidel algorithm

(see e.g. [46]). At the nth discrete time step we start the iterations by setting

u
n(0)
i, j = un−1

i, j , i = 1, . . . , m1, j = 1, . . . , m2. Then in every iteration l = 1, . . . and

for every i = 1, . . . , m1, j = 1, . . . , m2, we use the following two-step procedure:

Y = (si, ju
n(l)
i−1, j + wi, ju

n(l)
i, j−1 + ei, ju

n(l−1)
i, j+1 + ni, ju

n(l−1)
i+1, j + ri, j)/ci, j

u
n(l)
i, j = u

n(l−1)
i, j + ω(Y − u

n(l−1)
i, j ).
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We define squared L2 norm of residuum at current iteration by

R(l) =
∑
i, j

(ci, ju
n(l)
i, j − ni, ju

n(l)
i+1, j − wi, ju

n(l)
i, j−1 − si, ju

n(l)
i−1, j − ei, ju

n(l)
i, j+1 − ri, j)2.

The iterative process is stopped if R(l) < TOL R(0). Since the computing of

residuum is time consuming itself, we check it, e.g., after every ten iterations.

The relaxation parameter ω is chosen by a user to improve convergence rate of

the method; we have very good experience with ω = 1.85 for this type of prob-

lems. Of course, the number of iterations depends on the chosen precision TOL,

length of time step τ , and a value of the regularization parameter ε also plays a

role. If one wants to weaken this dependence, more sophisticated approaches

can be recommended (see e.g. [25,35,46] and paragraph below) but their imple-

mentation needs more programming effort. The semi-implicit co-volume method

as presented above can be implemented in tens of lines.

We also outline shortly further approaches for solving the linear systems

given in every discrete time step by (11.23). The system matrix has known

(penta-diagonal) structure and moreover it is symmetric and diagonally domi-

nant M-matrix. One could apply direct methods as Gaussian elimination, but this

approach would lead to an immense storage requirements and computational

effort. On the contrary, iterative methods can be applied in a very efficient way.

In the previous paragraph we have already presented one of the most popular

iterative methods, namely SOR. This method does not need additional storage,

the matrix elements are used only to multiply the old solution values and conver-

gence can be guaranteed for our special structure and properties of the system

matrix . However, if the convergence is slow due to condition number of the sys-

tem matrix (which increases with number of unknowns and for increasing τ and

decreasing ε), faster iterative methods can be used. For example, the precondi-

tioned conjugate gradient methods allow fast convergence, although they need

more storage. If the storage requirements are reduced, then they can be very

efficient and robust [25, 35]. For details of implementation of the efficient pre-

conditioned iterative solvers for co-volume level set method, we refer to [25],

cf. also [51]. Also an alternative direct approach based on operating splitting

schemes can be recommended [57, 58].

In the next section, comparing CPU times, we will show that semi-implicit

scheme is much more efficient and robust than explicit scheme for this type

of problems. The explicit scheme combined with finite differences in space is
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usually based on formulations such as (11.9) [7–9,30,31,48–50] where all deriva-

tives are expanded to get curvature and advection terms. Then, e.g., Eq. (11.2)

for ε = 1 is written in the form

ut = g0 (1+ u2
x2

)ux1x1 − 2ux1ux2ux1x2 + (1+ u2
x1

)ux2x2

1+ u2
x1
+ u2

x2

+ g0
x1

ux1 + g0
x2

ux2 ,

where us means partial derivative of a function u with respect to a variable s and

x1 and x2 are spatial coordinates in the plane. In this form, it is not clear (reader

may try) which terms to take from previous and which on the current time

level, having in mind the unconditional stability of the method. Fully implicit

time stepping would lead to a difficult nonlinear system solution, so the explicit

approach is the one straightforwardly utilizable. In spite of that, the basic for-

mulation (11.2) leads naturally to convenient semi-implicit time discretization.

Let us recall the usual criterion on numerical schemes for solving partial dif-

ferential equations: numerical domain of dependence should contain physical

domain of dependence. In diffusion processes, in spite of advection, a value of

solution at any point is influenced by any other value of solution in a computa-

tional domain. This is naturally fulfilled by the semi-implicit scheme. We solve

linear system of equations at every time step which, at every discrete point, takes

into account contribution of all other discrete values in computational domain.

11.4 Discussion on Numerical Results

This section is devoted to the discussion on further numerical experiments

computed by the semi-implicit co-volume level set method. In Section 11.2 we

already discussed some examples which have been used mainly to illustrate

the advection–diffusion mechanism of the segmentation equation (11.2) and the

role of parameter ε in closing the gaps. In the sequel we will discuss the role of

additional model parameters as well as all aspects of our implementation. We

also compare the method with different approaches to confirm efficiency of our

numerical scheme.

For a given discrete image I0 with n1, n2, the number of pixels in the vertical

and horizontal directions, respectively, we define space discretization step h =
1
n1

. It means, we embed the image into a rectangle [−0.5 n2
n1

, 0.5 n2
n1

]× [−0.5, 0.5].

If one wants to use h = 1 (which would correspond to pixel size equals to 1),
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all considerations can be changed accordingly. We prefer the above definition

of spatial discretization step, because it is closer to standard approaches to

numerical solution of PDEs.

First we give some CPU times overview of the method. Since we are inter-

ested in finding a “steady state” (see discussion in Section 11.2) of the evolution

in order to stop the segmentation process, the important properties are the

number of time steps needed to come to this “equilibrium” and a CPU time for

every discrete time step. We discuss CPU times in the experiment related to

segmentation of the circle with a gap given in Fig. 11.12 (left), computed using

ε = 10−2 (see Fig. 11.14 (top left)). The testing image has 200× 200 pixels and

the computational domain � corresponds to the whole image domain. Since

for the boundary nodes we prescribe Dirichlet boundary conditions, we have

M = 198× 198 degrees of freedom. As the criterion to recognize the “steady

state,” we use a change in L2 norm of solution between subsequent time steps,

i.e., we check whether

√∑
p

h2 (un
p − un−1

p )2 < δ

with a prescribed threshold δ. For the semi-implicit scheme and small ε (then the

downwards motion of the “steady state” is very slow) a good choice of threshold

is δ = 10−5.

Reasonable time steps for our semi-implicit method are of order (10h)2, e.g.,

for the discussed example very good results regarding CPU times and precision

have been obtained for τ ∈ [0.001, 0.01]. Since by a classical criterion the pre-

cision of numerical schemes for parabolic equations is optimal for τ ≈ h2, we

have also computed such a case. But, no significant difference due to precision

has been observed, only much longer CPU time was necessary. In our example

τ = 5× 10−3 and 20 time steps yield the segmentation result (using threshold

δ = 10−5). On 2.4 GHz Linux PC, the overall CPU time for this segmentation was

4.93 sec (i.e., approximately 0.25 sec for one time step including construction

of coefficients and solving the linear system). This CPU time was obtained with

TOL= 10−3. Since we are mainly interested in “equilibrium,” one can also decide

that such precision is not necessary in every discrete time step. With increasing

TOL fewer numbers of SOR iterations are needed. Another way is to prescribe

a fixed number (but not too small) of iterations in every time step, e.g., ten
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Figure 11.19: Histogram of the segmentation result given by semi-implicit

scheme after 20 time steps (top left). Histograms of the segmentation func-

tion given by the explicit scheme after 500 (top right), 1000 (bottom left), and

5000 (bottom right) time steps (color slide).

prescribed SOR iterations lead to comparable segmentation with twice faster

CPU time as mentioned above.

Now, let us look at the behavior of the explicit scheme in this example. We

use the explicit version of the scheme (11.23) where also the second term on

the left-hand side is taken from the (n− 1)th time step. Then, due to stability

reasons, we have to choose τ = 5× 10−6. Although one explicit time step takes

just 0.05 sec (including construction of coefficients and explicit time update of

the solution), to get a segmentation result comparable with the semi-implicit

scheme we need about 10 000 time steps. In Fig. 11.19 we present histograms

of the segmentation function, where the plotted range [0, 100] in the vertical

direction has been chosen for visualization. We compare histograms, because

one cannot use the same threshold δ for explicit and semi-implicit schemes due

to very small change in the solution between time steps in explicit scheme. In the

top left, there is a histogram of the segmentation result given by semi-implicit

scheme after 20 time steps. The shocks in solution (corresponding to outer and
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inner edges of the circle) are given by two large gaps in histogram. In the top

right there is a histogram of the segmentation function given by the explicit

scheme after 500 time steps, and then after 1000 (bottom left) and 5000 (bottom

right) time steps. We see that, due to necessity of small time step, the formation

of the piecewise flat solution is very slow for explicit scheme. Although after

1000 time steps one can see the formation of two gaps which could be already

used for detection of “final” segmentation result, the CPU time for 1000 steps

of explicit scheme is 49.5 sec, which is ten times longer than for semi-implicit

scheme. If we would like to obtain a similar histogram as plotted in the top left

using an explicit scheme, we would need 100 times longer CPU time as in the

case of semi-implicit scheme.

In all computations presented above, we have used g(s) = 1
1+Ks2 , K = 1. In

experiments without noise there is no significant difference by changing K . We

get the same behavior of the method changing K from 0.1 to 10. It is understand-

able because the function g plays a role only along edges and its more (K > 1) or

less (K < 1) quickly decreasing profile governs only speed by which level sets

of solution are attracted to the edge from a small neighborhood. Everywhere

else only pure mean curvature motion is considered (g = 1).

The situation is different for noisy images, e.g., depicted in Fig. 11.12 (right)

and Figs. 11.16 and 11.17. The extraction of the circle in noisy environment takes

a longer time (200 steps with τ = 0.01 and K = 1) and it is even worse for K = 10.

However, decreasing the parameter K gives stronger weight to mean curvature

flow in noisy regions, so we can extract the circle fast, in only 20 steps with the

same τ = 0.01. In the case of noisy images, also the convolution plays a role. For

example, if we switch off the convolution, the process is slower. But decreasing

K can again improve the speed of segmentation process. In our computations

we either do not apply convolution to I0 or we use image presmoothing by m×m

pixel mask with weights given by the Gauss function normalized to unit sum.

We start all computations with initial function given as a peak centered in

a “focus point” inside the segmented object, as plotted, e.g., in Fig. 11.10 (top

left). Such a function can be described for a circle with center s and radius

R by u0(x) = 1
|x−s|+v

, where s is the focus point and 1
v

gives maximum of u0.

Outside the circle we take value u0 equal to 1
R+v

. If one needs zero Dirichlet

boundary data, e.g., due to some theoretical reasons (cf. [11,49]), the value 1
R+v

can be subtracted from the peak-like profile. If the computational domain �

corresponds to image domain, we use R = 0.5. For small objects a smaller R
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Figure 11.20: Image with subjective contours: double-Kanizsa triangle (left),

and image together with isolines of initial segmentation function (right) (color

slide).

can be used to speed up computations. Our choice of peak-like initial function is

motivated by its nearly flat profile near the boundary of computational domain.

However, other choices, e.g., u0(x) = 1− |x−s|
R

, are also possible. If we put the

focus point s not too far from the center of mass of the segmented object,

we get only slightly different evolution of the segmentation function and same

segmentation result.

Now we will discuss some further segmentation examples. In Fig. 11.20 we

present image (234× 227 pixels) with subjective contours of the classic triangle

of Kanizsa. The phenomenon of contours that appear in the absence of physi-

cal gradients has attracted considerable interest among psychologists and com-

puter vision scientists. Psychologists suggested a number of images that strongly

require image completion to detect the objects. In Fig. 11.20 (left), two solid tri-

angles appear to have well defined contours, even in completely homogeneous

areas. Kanizsa called the contours without gradient “subjective contours” [29],

because the missed boundaries are provided by the visual system of the subject.

We apply our algorithm in order to extract the solid triangle and complete the

boundaries. In Figs. 11.21 and 11.22 we present evolution of the segmentation

function together with plots of level lines accumulating along edges and closing

subjective contours areas. In this experiment we used ε = 10−5, K = 1, v = 0.5,

τ = 0.001, TOL = 10−3. For long time periods (from 60th to 300th time step)

we can also easily detect subjective contours of the second triangle. The first

one, given by closing of the solid interrupted lines, is presented in Fig. 11.22

(bottom), visualizing level line (min(u)+max(u))/2. Interestingly, for bigger ε

the second triangle has not been detected.
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Figure 11.21: Level lines (left) and graphs of the segmentation function (right)

in time steps 10, 30, and 60 (color slide).
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Figure 11.22: Level lines and graph of the segmentation function in time step

100 (top row). Then we show graphs of segmentation function after 300 and 800

steps (middle row). In the bottom row we plot the segmented Kanizsa triangle

(color slide).

The next examples are related to medical image segmentation. First we pro-

cess a 2D echocardiography (165× 175 pixels) with high level of noise and gaps

in ventricular and atrium boundaries (see Fig. 11.23).

In Fig. 11.24 we present segmentation of the left atrium. We start with peak-

like segmentation function, v = 1, and we use ε = 10−2, K = 0.1, τ = 0.001,

TOL = 10−3, and δ = 10−5. In the top row of the figure we present the result of

segmentation with no presmoothing of the given echocardiography. In such a

case 68 time steps, with overall CPU time of 6.54 sec, were needed for threshold δ.
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Figure 11.23: Echocardiographic image with high level of noise and gaps.

In the top right we see a graph of the final segmentation function. In the middle

row we see its histogram (left) and zoom of the histogram around max(u) (right).

By that we take level 0.057 for visualization of the boundary of segmented object

(top left). In the bottom row we present the result of segmentation using 5× 5

convolution mask. Such a result is a bit smoother and 59 time steps (CPU

time = 5.65 sec) were used.

For visualization of the segmentation level line in further figures, we use the

same strategy as above, i.e. the value of u just below the last peak of histogram

(corresponding to upper “flat region”) is chosen. In segmentation of the right

atrium, presented in Fig. 11.25, we took the same parameters as above and no

presmoothing was applied. CPU time for 79 time steps was 7.59 sec. In segmen-

tation of the left and right ventricles, with more destroyed boundaries, we use

K = 0.5 and we apply 5× 5 convolution mask (other parameters were same as

above). Moreover, for the left ventricle we use double-peak-like initial function

(see Fig. 11.26 (top)) to speed up the process for such highly irregular object. In

that case 150 time steps (CPU time= 14.5 sec) were used. For the right ventricle,

67 time steps (CPU time= 6.57 sec) were necessary to get segmentation result,

see Fig. 11.27.

In the last example given in Fig. 11.28, we present segmentation of the mam-

mography (165× 307 pixels). Without presmoothing of the given image and with

parameters ε = 10−1, K = 0.1, τ = 0.0001, v = 1, TOL = 10−3, and δ = 10−5 we

get the segmentation after 72 time steps. Since there are no big gaps, we take

larger ε and since the object is small (found in a shorter time) we use smaller

time step τ .
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Figure 11.24: Segmentation level line and graph of the segmentation function

for computation without convolution (top row) and histogram of the segmen-

tation function and its zoom (middle row). Segmentation level line and graph

of the segmentation function for computation with convolution (bottom row)

(color slide).
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Figure 11.25: Segmentation level line and graph of the segmentation function

for the right atrium (color slide).

Figure 11.26: Initial double-peak segmentation function (top) and segmenta-

tion level line and graph of the segmentation function for the left ventricle (color

slide).
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Figure 11.27: Segmentation level line and graph of the segmentation function

for the right ventricle (color slide).

11.5 Conclusions

In this chapter we introduced the semi-implicit co-volume level set method for

solving the segmentation equation given by the Riemannian mean curvature

flow of graphs. We discussed basic properties of the model and the role of

model parameters and gave all details for computer implementation of the nu-

merical algorithm. We also showed unconditional stability of our method and its

high efficiency for this type of problems. The computational results related to

Figure 11.28: Segmentation level line and graph of the segmentation function

for extraction of tumor in mammography (color slide).
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medical image segmentation with partly missing boundaries and subjective con-

tour extraction were discussed. The method was presented for 2D image seg-

mentation. However, as is common in level set methods, the extension to 3D

case is straightforward and can be done easily using ideas of this chapter.
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Questions

1. Outline the level set segmentation models used in the last decade. What is

an advection–diffusion mechanism in such models?

2. What is the difference between previous level set segmentation models and

Riemannian mean curvature flow of graphs discussed in this chapter?

3. What are the main principles and advantages of the semi-implicit time

discretization?

4. How is the segmentation partial differential equation (11.2) discretized

by the co-volume method?

5. What are the differences between semi-implicit co-volume method and ex-

plicit finite difference method?

6. What are the properties of the system matrix given by the semi-implicit

co-volume scheme?

7. How can you get unconditional stability of the semi-implicit co-volume

level set method?

8. What are the efficient methods for solving linear systems arising in the

semi-implicit co-volume level set method?
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fuzzy c-means objective function

Fuzzy logic, 480
Fuzzy segmentation, 480, 498–512

Gabor coefficient spectral signatures, 338
Gabor functions, 316
Gabor oriented filters, 327
Gabor transforms, 314–315, 338
Gabor wavelets, 314–315, 318, 344
Gadolinium (Gd) chelate, 165
Gadolinium (Gd)-enhanced magnetic

resonance angiography, with MRC,
186–187

Gadolinium (Gd)-enhanced three-dimensional
magnetic resonance angiography (MRA),
179–180

Gadolinium (Gd) oxyorthosilicate, 85
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Gaussian distributions, 521
Gaussian filters, 28, 30, 447
Gaussian functions, 314, 325, 334, 584
Gaussian kernels, 421, 423, 424
Gaussian noise, 323, 453, 455, 457, 507, 510f,

511f
Gaussian surfaces, 524
Gauss-Newton type algorithsm, 90
Gauss-Seidel algorithm, 607
Generalized linear-least squares (LLS)

methods, 94
Genetic algorithm (GA), 489–490, 495
Geometric GGVF snake, 536, 572, 573

experiments and results, 559–571
properties of, 544–547

Geometric modeling, 444–445
Geometric (geodesic) snakes, 359–360,

535–576. See also Region-aided geometric
snake

examples of, 541
experiments and results, 559–571

properties of, 537–541
shortcomings of, 536, 542–544

Ghost point method, 238–240
Gibbs Markov model, 485, 489, 495
Gibbs random fields (GRF), 481, 482–483
Global threshold, 323
Glucose metabolism, 58, 93
Godunov’s method, 205, 206–207, 208
Gradient flow forces, 546, 547
Gradient inversion method, 119
Gradient moment rephasing, 167
Gradient-recalled acquisition, 164
Gradient recalled echo (GRE), 118, 120, 164

blood pool contrast enhancement and, 173
2D Fourier transform, 130
flow-related enhancement and, 129
inflow related artifacts and, 130
multislice techniques, 165–166
slice-transition phenomenon and, 126, 127
spin phase phenomenon and, 132
TOF MRA and, 134

Gradient vector flow (GVF), 363, 389, 390, 400,
401, 403, 544–546. See also Geometric
GGVF snake

Graphical techniques, in PET, 93
Gray-level images

deformable models and, 366, 374, 389, 391,
396–397

fuzzy segmentation and, 498
gradient flow force and, 547
intensity models and, 479
IVUS and, 5, 6, 7, 25f, 26, 29, 30, 31, 39–40, 41,

42–48, 49f, 50f, 51
level set segmentation and, 417, 421, 424,

447, 462
in lung CT, 491
RAGS and, 555, 561, 563–566
SPS models and, 257

GRE. See Gradient recalled echo
GRF. See Gibbs random fields
Grid points

fast marching method and, 208–209, 212,
213–214

as ghost points, 238
immersed interface method and, 235–236, 237
level set method and, 215–216, 217–218
ordered upwind method and, 225

Griffin dataset, 438
GVF. See Gradient vector flow

Hamilton-Jacobi equations, 205, 207, 418
Handwritten digit recognition tasks, 375,

376–377
Hann filters, 333
Hann windows, 73, 85
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Hard thresholding, 320
Head and neck cancer, 96
Heap-sort algorithm, 210–212, 215, 217, 218
Heart, MRI of, 566f, 567f
Heaviside step, 518–519
Heisenberg rectangles, 307, 308
Hessian matrix, 433, 436
Hierarchical matrix decomposition technique,

272, 284
High frequency intravascular ultrasound

(IVUS), 34, 35f
High-level processes, 484

lung CT and, 491
parameter estimation for, 489–490

High-pass filters, 310
High-resolution magnetic resonance

angiography (MRA) with phase/frequency
flow compensation, 182

High-velocity loss, 126–127
Homomorphic filtering, 503
Horn image irradiance equation, 258–259
Hough transforms, 363
Huntington’s disease, 96
Hyperbolic conservation laws, 202, 205
Hyperbolic space, curvature flow in, 220

Image acquisition
in 2D PC MRA, 150–151
in 3D PC MRA, 153–154

Image-based feature attraction term, 431
Image contrast

in PC MRA, 154
in TOF MRA, 135–136

Image enhancement, 319–338
Image irradiance equation. See Irradiance

equation
Image models, 479, 484–485
Image parameters, 143–145
Image reformation, 163–165
Image registration, 343–344
Image resolution, 12–13
Image segmentation. See Segmentation
Immersed interface method, 235–238, 239–240
Implicit models, 359, 360
Incremental projection updates (IPU), 461–462
INFLOW method, 168, 169–171
Initialization. See also Reinitialization

automatic seed, 521–522, 523, 524–525
of deformable models, 361–363, 364, 367,

371–377, 401
of the fast marching method, 209, 212–214
of geometric GGVF snake, 561
of level sets, 218, 227–228, 416, 420, 421–422,

424–425, 432, 436–437, 447, 448, 462,
521–522, 523, 524–525

mathematical morphology for, 373–375
region-based approaches, 371–373
of T-surfaces, 371–381

Insert neighbors, 387
Integrability, 265–266
Integrability term, 281
Integral transforms, 267
Integrated projection, 95
Intensity gradient term, 281
Intensity inhomogeneities, 480, 502, 503, 504,

508, 511f, 513f
Intensity models, 479
Interface, 201–202, 217–218

difficulty with level set method, 203–204, 242
elliptic solvers and, 230
fast marching method and, 207
immersed method, 235–238, 239–240
particles and, 240–241
velocity extensions and, 225–230
X-FEM and, 233

Intermediate frequency intravascular
ultrasound (IVUS), 34, 35f

Intermediate value theorem, 268
Internal forces

deformable models and, 359, 369
RAGS and, 550

Interval trees, 384, 386, 387, 397, 398, 399, 403
Intima, arterial, 22, 23, 31, 45–47, 49f, 50f
Intima/media transition, 30, 36, 38, 42, 44
Intravascular ultrasound (IVUS), 1–52

angular resolution in, 15–17
axial resolution in, 13–14, 15f
basic image model, 7–8
beam intensity, 17, 18f
beam number influence, 37–38
beam sweeping criterion, 17–19
!D echogram generation in, 24–26
2D echogram generation in, 26–28
final image processing in, 28
formal definition of image model, 9–12
image resolution in, 12–13
image simulation in, 23–28
limitations of technique, 5–6
need for data generation model, 6–7
optimal attenuation coefficient in, 36–37
optimal frequency in, 35–36
polar real vs. simulated images, 41–48
real vs. simulated images, 29, 35–36, 38–40
scatterer number of arterial structures and,

19–23
spatial resolution in, 32–34
technical aspects of, 3–4
validation of image simulation model,

29–50
Intravoxel incoherence. See Phase dispersion
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Inverse Fourier transforms
brushlets and, 318
SPS models and, 273, 274, 275, 276, 277, 286,

287
IPU. See Incremental projection updates
Irradiance equation, 258–259, 261–264, 267, 279,

282
FDM and, 268, 270–271
Tsai-Shah’s method and, 277

Isointensity surface reconstruction method,
521

Isosurface(s), 424, 425
Isosurface generation methods, 379–380
Isotropic diffusion, 444
Iterative-based image reconstruction, 71, 73–75
Iterative formula, 269, 271, 282–283, 296, 372
IVUS. See Intravascular ultrasound

Jacobi method, 270, 271

Kanizsa, triangle of, 613
Kawasaki disease, 188
K-d-tree subdivision schemes, 379
Kety-Schmidt one-compartment model, 93
K-layers, 31, 32
K-mean classifier, 339
K-space three-dimensional navigator-gated

magnetic resonance angiography (MRA),
178

Lagrange equations, 366
Lagrange multipliers

fuzzy segmentation and, 501, 505
SPS models and, 264–265, 266
wavelet-based methods and, 297

Lagrangian methods, 201, 241, 589
Lambertian reflectance, 262, 273
Lambertian surfaces, 259, 260, 263–264
Laminar flow, 121–123, 124, 125
Laplacian operators, 548
Larmor frequencies, 118, 124, 153
Least recently used (LRU) meta-cell, 387
Lemarié-Battle filters, 338, 339
Level-dependent threshold, 323
Level set(s), 382

curve evolution with, 516–517
geometric snakes and, 573
RAGS and, 551–552, 554–555, 574–575

Level set deformations, 370–371, 401, 416, 448,
455–456, 512–515. See also Level set
surface deformations

Level set equation, 583, 587
Level set function representation, 515
Level set method, 201–243. See also Co-volume

level set method

applications of, 242
basic, 203–222
basic algorithm assembly, 219
elliptic solvers and, 230–240
example calculations, 220–222
numerical implementation of, 205–207
particle, 240–241
recent developments in, 222–241

Level set representation, 203–205, 551–552
Level set segmentation, 415–467, 480, 512–525.

See also Biological volume datasets
algorithm overview, 436–437
density parameter estimation, 456–457
framework for, 420–428
implementation of, 459–462
from multiple nonuniform datasets, 429–439
numerical schemes for, 460–461
quality measurement in, 523
sparse-field method in, 420, 461
stability and CFL restriction, 517–518
surface estimation in tomographic data,

450–467
tracking the front, 518–519
volume segmentation algorithm in, 523

Level set surface deformations, 417, 420,
422–425, 429, 452. See also Level set
deformations

Level set surface models, 417–420
Levy distance, 489, 492, 495
Limited-angle tomography, 452
Linear anisotropic diffusion, 444, 447
Linear approaches

to SPS models, 273–279
velocity extensions and, 228–229

Linear filtering, 421
Linearization approaches, in PET, 93–94
Linear least-squares (LLS) methods, 93, 94
Line integral, 69, 72
Lipschitz continuous boundary, 583
Liver cancer, 96
Local approach, to SPS models, 272
Local mass balance property, 603
Local maxima, 341, 342f, 343, 389, 536, 563
Local minima, 542
Local scale property, 378
Local solutions, 421
Logan plot, 93
Longitudinal relaxation times (T1), 124, 135,

137, 163, 164
Low frequency intravascular ultrasound

(IVUS), 34, 35f
Low-level processes, 484

lung CT and, 491
parameter estimation for, 485–489

Low-pass filters, 310, 333, 421, 422
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LSO. See Lutetium oxyorthosilicate
Lumen, arterial, 23, 30, 44, 49f
Lumen/intima transition, 30, 36, 38, 42, 44
Lunar surface, 258
Lung cancer, 490–498

CT of, 480, 482, 491–498
PET of, 96

Lung extraction, 491–498
Lutetium oxyorthosilicate (LSO), 85
Lymphoma, 96

Magnetic resonance angiography (MRA),
117–193

acquisition methods, 169–172
arterial spin tagging technique in, 178
autocorrected, 180–181
black blood, 168
blood pool contrast enhancement and, 173
cardiac-triggered free-breathing 3D, 182
cervical, 182–185
contrast-enhanced (see Contrast-enhanced

magnetic resonance angiography)
coronary (see Coronary magnetic resonance

angiography)
with diffusion-weighted imaging, 174
digital subtraction, 172, 173–174, 187
3D-navigator echo, 175–176
Doppler flow quantification and, 176–177
fat-suppressed 3D, 186
Gd-enhanced 3D, 179–180
Gd-enhanced with MRC, 186–187
high-resolution, 182
k-space 3D navigator-gated, 178
level set segmentation of, 480, 520–525
limitations and future of, 192–193
magnetization transfer (see Magnetization

transfer magnetic resonance angiography)
phase contrast (see Phase contrast magnetic

resonance angiography)
with phase/frequency FC, 182
quadruple contrast enhancement with,

187–188
recent advances in, 172–192
sensitivity encoding and, 172–173
techniques and principles of, 134–168
time-of-flight (see Time-of-flight magnetic

resonance angiography)
Magnetic resonance cholangiography (MRC),

186–187
Magnetic resonance imaging (MRI), 96, 467, 479

diffusion tensor (see Diffusion tensor
magnetic resonance imaging)

fuzzy segmentation of, 480, 499, 502–512
level set segmentation of, 416, 424–425,

427–428, 429, 430, 438–439

RAGS and, 565f, 566f, 567f
wavelets in, 305, 339, 340f, 345

Magnetic resonance spectroscopic imaging
(MRSI), 187–188

Magnetization, principles of, 117–124
Magnetization transfer magnetic resonance

angiography (MT MRA)
with RF labeling technique, 184–185
TOF, 167

Magnitude image, 146
Mallat algorithms, 291, 297
Mammograms, 322, 343, 616
MAP estimation. See Maximum a posteriori

estimation
Marching cubes, 380, 422, 436, 445, 446f, 447,

450f
Markov models, 342
Markov random fields (MRF), 339, 481, 483–484
Maximum a posteriori (MAP) estimation, 452,

457, 485, 489
Maximum intensity projection (MIP), 157, 163

black blood MRA and, 168
level set segmentation and, 466
for stenoses, 190
TOF MRA and, 140–141, 142

Maximum likelihood-expectation maximization
(ML-EM) algorithm, 74–75

Maximum-likelihood (ML) methods, 452
Maximum radial error (MRE), 563, 565f
Mean curvature flow, 202

co-volume level set method and, 583, 585,
594–596, 619

in flame propagation, 201
in hyperbolic space, 220–222
level set segmentation and, 458–459, 460
level set surface deformation and, 423
minimal surfaces and, 220
Riemannian, 585, 619

Mean shift algorithm, 536, 546, 557–559, 574
Media, arterial, 22, 23, 31, 47, 49f, 50f
Media/adventitia transition, 30, 36, 38, 42, 44
Median filters, 30
Melanoma, 96
Memory utilization, 363, 383–388, 397, 399, 402,

403
Meshes

co-volume level set method and, 601–602, 605
deformable models and, 367, 368–369, 371,

401, 402, 417
elliptic solvers and, 230
fast marching method and, 207–208, 213–214
level set segmentation and, 519
RAGS and, 553
SPS models and, 268
X-FEM and, 233, 240
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Meta-cell partition, 384–385, 386
Meta-cell technique, 364, 383, 384–385, 397–398,

399, 402, 404
active meta-cells in, 385, 386, 388, 397, 403
elements of, 386–387

Meta-intervals, 384–385, 386, 387
Metropolis algorithm, 489, 490, 495, 497
Meyer wavelets, 289, 297
MFCM. See Modified fuzzy c-means objective

function
Minimal curvature, of SPS models, 266
Minimal surfaces with voids, 220
Minimax threshold, 323–324
Minimization approach, to SPS models, 272
Minimum-maximum principle, 605
MIP. See Maximum intensity projection
ML-EM algorithm. See Maximum

likelihood-expectation maximization
algorithm

MLS methods. See Moving least-squares
methods

M-matrix, 605
Model elements, 369
Modified fuzzy c-means (MFCM) objective

function, 500–505
cluster prototype updating, 502
membership evaluation, 501
parameter estimation, 500–502
signal modeling, 504–505

Moments, 161–162
Monoticity, 321
Morphological chains, 374
Morphological filtering, 421–422
Morphological principle, 587
Morphological propagators, 421
Mother wavelets, 289, 290
Motion-adapted gating window, 191–192
Motion-induced artifacts, 180–181
MOTSA. See Multiple overlapping thin-slab

acquisition
Mouse embryo, MRI scan of, 424–425, 430,

438–439
Moving least-squares (MLS) methods, 429–430,

433–436, 467
MRA. See Magnetic resonance angiography
MRC. See Magnetic resonance cholangiography
MRF. See Markov random fields
MRI. See Magnetic resonance imaging
MRSI. See Magnetic resonance spectroscopic

imaging
MT MRA. See Magnetization transfer magnetic

resonance angiography
Multidimensional discrete dyadic wavelet

transform, 312, 313

Multigrid method, 272
Multilayer perception (MLP), 375–376
Multiphase contrast-enhanced magnetic

resonance angiography (CE-MRA), 181
Multiple coincidences, 68f, 69
Multiple energy window techniques, 77
Multiple overlapping thin-slab acquisition

(MOTSA), 165, 166
Multiple sclerosis, 479
Multiresolution approximation/analysis, 289,

291–292
Multiscale envelope features, 339
Multiscale methods

SPS models and, 271–272
in texture classification, 338–339
wavelet transform and, 306–319, 326–338

Multislice gradient recalled echo (GRE)
techniques, 165–166

Multivariate kernel density estimate, 558
Myocardial perfusion, 99–100

Nal(T1) crystals, 60, 66, 85
Narrow-band techniques, 420, 436, 437,

519–520
applications of, 218–219
deformable models and, 401–402, 403
geometric snakes and, 573

Near-diagonalization of signal and noise,
315–316

Neighborhood effect, 480, 484, 499, 507, 512
Neighboring weak/strong edges, 562
Neumann boundary conditions, 588
Neural networks, 298, 363, 371, 375–377
Neural networks classifiers, 339
Neutrinos, 61
Neutrons, 61
Newton’s method, 214, 227, 273, 277, 278, 287,

586
Nitrogen-13 (13N), 62t, 96
NLLS. See Nonlinear least-squares method
Node elements, 369
Noise. See also Contrast to noise ratio signal;

Denoising; Signal-to-noise ratio
co-volume level set method and, 585, 587,

589, 597, 612
deformable models and, 376, 390, 393, 400,

401
fuzzy segmentation and, 480, 499, 500, 504,

508, 512
Gaussian, 323, 453, 455, 457, 507, 510f, 511f
geometric snakes and, 536, 542
level set segmentation and, 415–416, 421, 430,

432, 445, 447, 451, 452, 453, 455, 457, 458
near-diagonalization of signal and, 315–316
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RAGS and, 536, 546, 561, 562–563, 564f, 571,
572

salt and pepper, 480, 499, 500, 514f, 587
speckle, 329–331
stochastic image models and, 481
wavelets and, 315–316, 341, 342, 343

Non-degree of freedom (NDF) nodes, 601, 602
Nonlinear least-squares (NLLS) method, 90, 92
Non-negative garrote thresholding, 325
Non-negative least squares (NNLS) algorithms,

94
Nonocclusion, 262
Nonseparable wavelets, 297
Nontissue scatterers, 24
Nucleons, 61
Numerical flux functions, 202, 205–207, 208

Object characteristic function, 362, 378, 381,
388

Octree subdivision schemes, 379
ODESSA. See Oscillating dual-equilibrium

steady-state angiography
One-dimensional orthogonal wavelet theory,

288–291
Optimization approaches, 279–288
Ordered subsets expectation maximization

algorithm (OS-EM), 75
Ordered upwind methods, 223–225
Orthogonality boundary condition, 220
Orthographic projection, 262
Oscillating dual-equilibrium steady-state

angiography (ODESSA), 185–186
OS-EM. See Ordered subsets expectation

maximization algorithm
Out-of-core isosurface extraction techniques,

363–364
for memory utilization, 383–385
for segmention, 386–388, 396–399, 402, 404

Oversegmentation color region maps, 566–568,
569f, 570f

Oxygen-15 (15O), 62t, 96

Pancreatic cancer, 96
Panel-clustering method, 272
Parametric imaging, 92–93
Parametric snakes, 359, 360, 361, 535, 555
Parent nodes, 210–212
Parkinson’s disease, 96
Partial derivatives, computing, 433–436
Partial differential equations (PDE)

co-volume level set method and, 610
level set segmentation and, 416, 421, 459,

461, 517, 519, 521
linear, 259, 260, 279

nonlinear, 259, 261, 263, 264
numerical methods for, 267–272
RAGS and, 536, 546
SPS models and, 259, 260, 261, 263, 264,

267–272, 279
Particle level set method, 240–241
Particle model of the deformable surface,

360–361, 367–368
Patlak plot, 93
PDE. See Partial differential equations
Pentland’s algorithm, 273–276, 277, 278, 279,

285, 286–287
Perona-Malik function, 584, 588, 589
PET. See Positron emission tomography
PETT II. See Positron emission transaxial

tomography
PETT III. See Whole-body positron computed

tomograph
Phantoms

denoising on, 328–332
fuzzy segmentation and, 503, 507, 508, 509,

510f, 511f
level set segmentation and, 522, 523

Phase-contrast Doppler flow quantification,
176–177

Phase contrast magnetic resonance
angiography (PC MRA), 145–156, 524. See

also Flow adjusted gradient; Rapid
sequential excitation

2D, 134, 146, 147–153
3D, 134, 146, 153–156
4D, 189
ODESSA compared with, 186

Phase dispersion, 159–160, 161–162
Phase images, 146, 158–159
Photomultiplier tubes (PMTs), 66–67
Photons, 60
PIT. See Postinjection transmission scanning
Pivoting, 380
Pixels

co-volume level set method and, 600, 601,
605, 609–610

fuzzy segmentation and, 498–499, 500
IVUS, 30
Markov random fields and, 483, 484

Planar anisotropic diffusion, 444, 447
PL generation algorithms, 380, 381
PL manifold extraction, 381
Plug flow, 122, 124, 125
Point spread function (PSE), 182
Polar images, 41–48
Positron(s), 60, 63
Positron annihilation, 60, 62–63, 84. See also

Coincidence detection
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Positron emission, 61–62, 63
Positron emission tomography (PET), 57–102

applications of, 95–97
brief history of, 59–60
calibration in, 83
compartmental model fitting in, 89–90
data acquisition in, 69–71
data corrections in, 76–83
image reconstruction in, 71–75
input function in, 90–92
modes of decay in, 61–62
physiological parameter estimation in, 86–95
resolution limitations of, 83–86
wavelet transforms and, 326, 332–338

Positron emission transaxial tomography
(PETT II), 60

Positronium, 62
Positron range, 84
Postinjection transmission (PIT) scanning, 83
Preprocessing steps, 363, 371, 397, 399, 402, 416
Presaturation pulses, 130–131, 137–138, 140
Principal component analysis (PCA), 298
Processing list, 387, 403
Projection method, for SPS models, 267
Prompt circuits, 78
Prompt events, 65, 67
Propagation approach, to SPS models, 272
Proton(s), 61
Proton-rich isotopes, 61
Pseudo-Gibbs phenomena, 324
Pull-back unit, IVUS, 3–4
Pulsatile flow, 121–123
Pulse duration, 14

Quasi-isosurfaces, 424
Query algorithm, 387

Radial heat equation, 232–233, 234f
Radial scatterer distributions, 31, 33f
Radiofrequency (RF) coils, 480, 502
Radiofrequency (RF) labeling technique,

184–185
Radioisotopes, 59
Radionuclides, 60
Radon transforms, 71–72, 81, 332, 450
RAGS. See Region-aided geometric snake
Ramp filters, 85, 333
Ramp function, 317
Random coincidences, 68–69, 78
Random field models, 480
Randoms correction, 78
Rapid sequential excitation (RSE), 169, 171–172
Rate constants, 88
Real-time three dimensional (RT3D) cardiac

ultrasound, 326–332

Receiver operator characteristics (ROC)
analysis, 189–190

Reconstruction filters, 311–312
Reconstruction method, 381–383
Red blood cell number, IVUS and, 19–23, 30
Reflectance maps, 258, 259, 261, 262, 280, 281

linear approaches to, 273–279
Zheng-Chellappa method and, 282, 283, 284

Region-aided geometric snake (RAGS),
536–537, 544, 546–575

experiments and results, 559–571
formulation of, 549–550
mean shift algorithm and, 536, 546, 557–559,

574
numerical solutions for, 552–555
shortcomings of, 571
summary of algorithm, 559
on vector-valued images, 536, 555–557

Regularization. See Cross-scale regularization
Regularization term, 281, 297
Reinitialization

of the level set method, 202, 203, 215–216,
217, 218, 219, 520

of the particle level set method, 241
Relativity theory, 60
Renal arteries, MRA of, 182
Repetition time (TR), 126, 128, 129, 165

FLAG and, 172
INFLOW method and, 169, 170
inflow related artifacts and, 130
short, 164
TOF MRA and, 135, 136, 143–144

Ridgelets, 325
Riemannian mean curvature flow, 585, 619
Riemannian metric, 584
Riemannian notation, 556
Riemannian space, 538, 596
ROC analysis. See Receiver operator

characteristics analysis
Roughness of image, 339
RSE. See Rapid sequential excitation
RT3D cardiac ultrasound. See Real-time three

dimensional cardiac ultrasound
Rubidium-82 (82Rb), 62t

Salt and pepper noise, 480, 499, 500, 514f,
587

Sample mean shift, 558
Saturation effects, 163–166
SCAD thresholding, 326
Scaling function, 289, 294, 308–309
Scatter correction, 77
Scattered coincidences, 68
Scintillation camera, 98–99
Seed a node element, 387
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Segmentation. See also Advanced segmentation
techniques; Level set segmentation; Mean
shift algorithm; Subjective surface based
medical image segmentation

crisp, 480
diffused region force and, 547, 549
fuzzy, 480, 498–512
out-of-core approaches to, 386–388, 396–399,

402, 404
RAGS and, 536, 546
wavelets in, 338–343

Segmentation problem, 416
Semi-implicit co-volume scheme, 586, 598–609
Sensitivity encoding (SENSE), 172–173
SE sequence. See Spin echo sequence
Shaded surface display, 163
Shannon wavelets, 289
Shape from shading (SPS) models, 257–298

calculus of variations, 264–267
constant functions used in, 265–267
mathematical background of, 261–272
multiscale methods for, 271–272
numerical algorithm implementation in,

272–288
numerical methods for linear and nonlinear,

267–272
optimization approaches to, 279–288
problem of, 257–260
strip method in, 260, 262, 263–264
uniqueness and existence, 262
wavelet-based methods and (see

Wavelet-based methods)
Shape models, 364–365, 479
Shear force, 123
Shepp-Logan windows, 73, 85
Shocks, 537, 554, 611–612
Short echo proton magnetic resonance

spectroscopic imaging (MRSI), 188
Sigmoid functions, 322
Signal loss, turbulence-induced, 132–133
Signal modeling, 504–505
Signal-to-noise ratio (SNR), 86, 159, 165, 166,

192
BACSPIN and, 191
blood pool contrast enhancement and, 173
cross-scale regularization for images low in,

335–338
3D-navigator echo MRA and, 175–176
3D-TRICKS and, 180
fuzzy segmentation and, 500, 507, 509, 512
ODESSA and, 186
PC MRA and, 150
PET and, 86
wavelet transforms and, 329, 331, 333,

335–338

Signal void, 168, 170, 182
Signed distance function, 203, 215, 216–217

deformable models and, 370–371
level set segmentation and, 520, 523
particle level set method and, 241
X-FEM and, 233

Simulation-based methods, for scatter
correction, 77

Sine-cosine transforms, 316
Single event, 69
Single-photon emission computed tomography

(SPECT), 59, 87, 89, 90, 92, 93
data correction in, 77, 78–83
description and applications, 98–100
wavelet transforms and, 326, 332–338

Single scale methods, for SPS models, 272
Singular value decomposition (SVD) solver,

436
Sinogram(s)

error, 456
extrapolation from, 465–466
level set segmentation and, 450, 451, 453,

459, 464, 465–466
in PET, 69, 71, 85

Sinogram-based deformations, 459
Sinusoidal waves, 306
Slantlets, 325
Slice thickness, 136–137, 143, 145
Slice-transition phenomenon, 126–129, 132
Smoking, 490–491
Snake models, 359–362, 512–515

geometric (see Geometric (geodesic)
snakes)

original, 365–367
parametric, 359, 360, 361, 535, 555
T-, 361, 362, 364, 377–378, 400

SNR. See Signal-to-noise ratio
Soft thresholding, 320
SOR method. See Successive over relaxation

iterative method
Sound speed, 5, 11
Sparse-field method, 420, 461
Spatial adaptive threshold, 323, 324
Spatial-frequency tiling, 307, 308
Spatial misregistration effects, 155–156
Spatial resolution, 32–34
Spatial-temporal analysis, 326–332
Speckle noise, 329–331
SPECT. See Single-photon emission computed

tomography
Spectral analysis, 94–95
Speed function, 202, 215, 217, 219, 220, 419,

431–433, 437, 517
advective part of, 206
anistropic, 223–224
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Speed function (cont.)
deformable models and, 370
diffusive part of, 206–207
ordered upwind method and, 223–224
particle level set method and, 240
RAGS and, 574

Speed images, 157
Spin echo (SE) sequence, 118, 119, 120

flow-related enhancement and, 128
slice-transition phenomenon and, 126, 127
spin phase phenomenon and, 131, 132

Spin isochromats, 124, 126–129, 133
flow information in, 120–121
in motion, 119–120
PC MRA and, 155

Spin-lattice relaxation time (T1), 165
Spin-phase dispersion. See Phase dispersion
Spin-phase phenomenon, 131–132, 133–134
Spline functions, 325, 334, 335, 336
SPS models. See Shape from shading models
SSFP sequence. See Steady-state free

precession sequence
Standard data, IVUS, 31
Static force fields, 552
Static vector fields, 552
Static velocity fields, 555
Statistical learning, 298
Steady-state free precession (SSFP) sequence,

185–186, 190, 193
Steerable filters, 327
Stein unbiased estimated risk, 324
Stenoses, 167, 480, 520

black blood MRA and, 168
coronary MRA ROC and, 189–190
3D-navigator echo MRA and, 176
MIP for, 190
TOF MRA of, 139

Stereographic coordinate systems, 259
Stochastic image models, 480, 481–490

high-level processes in, 484, 489–490
low-level processes in, 484, 485–489
statistical framework for, 482

Stopping functions, 550, 552, 555, 556, 561
Strip method, 260, 262, 263–264
Strong smoothness, 266
Structure, defined, 58
Structuring element, 373
Subjective surface based medical image

segmentation, 583–620. See also

Co-volume level set method
Successive over relaxation (SOR) iterative

method, 607–608, 610–611
Sum square error, 35–36, 44, 46t
SVD solver. See Singular value decomposition

solver

TACs. See Time-activity curves
Taylor series expansions

immersed interface method and, 235–236,
237

level set segmentation and, 517
spin isochromats and, 119
SPS models and, 260, 267, 268, 270, 273, 277,

282, 284
wavelet-based methods and, 295

T-BON octree. See Temporal branch-on-need
octree

99mTc-teboroxime, 100
TE. See Echo time
TEM. See Transmission electron microscopy
Temporal branch-on-need (T-BON) octree,

384–385
Tensor invariants, 442, 443–444
Tensor product of wavelets, 291–292, 295, 297
Tentative points, 208–209, 225
Termination condition, 366
Tetra-cubes, 379, 380, 381
Tetrahedral decomposition, 367, 368
Texture classification, 326–327, 338–339
Three-dimensional (volumetric) acquisition, in

PET, 69, 71
Three-dimensional elliptical centric view

ordering (3D-ELLIP), 180
Three-dimensional magnetization-prepared

true fast imaging, 190
Three-dimensional navigator echo (NE)

magnetic resonance angiography (MRA),
175–176

Three-dimensional real-time navigator
magnetic resonance coronary
angiography, 190

Three-dimensional time-resolved imaging of
contrast kinetics (3D-TRICKS), 180

Thresholding
affine (firm), 320
on 3D wavelet modulus, 333–335
hard, 320
non-negative garrote, 325
SCAD, 326
soft, 320
spatial denoising via, 327–328

Thresholding operators, 319–320, 325–326, 336
Threshold value selection, 323–324
Thyroid cancer, 96
Tikhonov regularization approach, 297
Tilt Optimized Nonsaturated Excitation

(TONE), 165, 166, 167
Time-activity curves (TACs), 87, 89, 92
Time discretization, semi-implicit scheme in,

598–600
Time-limited wavelets, 289, 297
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Time-of-flight magnetic resonance angiography
(TOF MRA), 124, 126, 134–145, 163, 164,
167, 168, 193, 521, 524. See also INFLOW
method

2D, 134, 135–141, 166
3D, 134, 141–145, 166
ultrashort CE MRA vs., 187

Tissue scatterers, 23–24
TOF MRA. See Time-of-flight magnetic

resonance angiography
Tomographs (scanners), 67
TONE. See Tilt Optimized Nonsaturated

Excitation
Topological/logical operations, 421
Total squared brightness error, 265
TR. See Repetition time
Tracer kinetic modeling, 86–89
Trains pulses, 13–14
Transducers, IVUS, 3, 7, 8f, 10–12, 16–19, 24–26,

28, 31, 43
angular velocity of, 19, 20f
artifacts caused by, 24
sheathing dimensions of, 19–21

Transmission electron microscopy (TEM), 416,
425–427, 452, 463–465, 467

Transmission scans, 81–83
Transverse relaxation times (T2), 124, 163
Transverse tetrahedrons, 368
Travel-time arrivals, computing, 223, 224
Triangular elements, 368
True coincidences, 67, 68f, 78
Tsai-Shah’s algorithm, 273, 276–279, 280f, 287
T-snakes model, 361, 362, 364, 377–378, 400
T-surfaces model, 361, 364, 386–388, 397,

398–399, 400–401, 402, 403
artery reconstruction and, 394–396
entropy condition of, 369, 371
initialization of, 371–381
properties of, 367–370
reconstruction method and, 381, 382–383

Turbulent flow, 121–123
Two-dimensional (planar) data acquisition, in

PET, 69, 71–75
Two-dimensional Fourier transform gradient

recalled echo (2D-FT-GRE), 130
Two-dimensional separable wavelets, 291–292,

297

Ultrashort contrast-enhanced magnetic
resonance angiography (CE-MRA), 187

Ultrasound pulse, 9, 10–12, 13–14, 24–25, 26
Ultrasound speed, 14, 15f
Uncertainty principle, 307
Underconstrained tomographic problems,

450–451

Undersegmentation color region maps,
566–568, 569f, 570f

Unit normal term, 281
Universal threshold, 323
Up-sweep process, 211
Upwinding finite difference scheme, 575
Upwind methods, 206, 226f

co-volume level set method and, 586
level set segmentation and, 419–420, 437,

460, 461
ordered, 223–225
RAGS and, 554, 555

Validated data, IVUS, 31
Variable echo time (VTE), 182
Vascular malformations, 480, 521
Vector-valued images, 536, 555–557
Velocity dephasing, 146–147, 149
Velocity encoding (VENC), 150, 156–163,

189
Velocity extensions, 203, 205, 215, 219

attributes of, 216–218
improved, 225–230

Velocity image, 155
Velocity mapping, 179
Venetian blind artifact, 166
Venous anatomy, 140
Vessel geometry, 136
Vessel turns, 156, 167, 168
Visible Human project, 394, 396, 399, 541
Viterbi algorithm, 362
Volume segmentation algorithm, 523
Volumetric function, 418
Voxels, 159–160

fuzzy segmentation and, 504
IVUS and, 21–23, 30
level set segmentation and, 416, 420, 421,

429, 521
TOF MRA and, 143

Wavelet(s), 267, 305–347
band-limited, 289, 297
1D, 288–291
2D, 291–292, 297
Daubechies, 289, 293, 297
Gabor, 314–315, 318, 344
Haar, 289
image registration using, 343–344
Meyer, 289, 297
mother, 289, 290
nonseparable, 297
segmentation using, 338–343
Shannon, 289
time-limited, 289, 297

Wavelet-based matrix compression, 272
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Wavelet-based methods, 261, 288–297
background of, 288–292
SFS, 293–296

Wavelet modulus, three-dimensional,
333–335

Wavelet packets, 314, 315–316, 318, 338–339
Wavelet packets dictionary, 315, 316
Wavelet transforms, 306–338

continuous, 307–309
denoising and, 306, 316, 319–338, 345
discrete, 309–313
image enhancement and, 319–338

Weak-edge leakage problem, 536, 542, 543, 545,
546, 561, 566, 567, 568f, 571, 572

Weak smoothness, 265
Weighted curvature, 459
Weighted integration, 95

Weighted linear-least squares (LLS) methods, 94
White blood angiograms, 168
Whole-body positron computed tomograph

(PETT III), 60
Wiener filters, 332
Wilcoxon’s signed rank test, 176
Windowed Fourier transforms (WFT), 306–307,

308
Window functions, 316–318

X-FEM. See Extended finite element method

Yokoi plot, 93

Zheng-Chellappa minimization method,
281–286, 293

Zucchini dataset, 439, 440f
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