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To the memory of my father –
how well I know him now.



Foreword

Everybody is interested in his/her coronary blood flow. I am delighted to
read Dr Zamir’s clear exposition of the dynamics of the coronary blood flow
in this book. I have read many of his scientific papers published in profes-
sional journals, as well as his book The Physics of Pulsatile Flow, published
by Springer-Verlag New York in 2000. His writing is a model of clarity. In an
unhurried manner, he dwells on points of conceptual difficulty, and takes his
reader to look at the difficulties from as many angles as possible. He offers
solutions of difficulties. He enhances true understanding, but never dogmati-
cally. As a reader, I am grateful for that. He loves the word conundrum. For
example, the heading of Section 10.3 of this book is “Coronary Heart Disease
and the Conundrum of Coronary Flow Reserve.” That section is, of course, the
heart of this book: every reader would be interested in this topic. What does
conundrum mean? According to Webster’s Dictionary, conundrum means “(1)
a riddle whose answer involves a pun, (2) anything that puzzles [1590-1600;
pseudo-L word of obscure orig.]” That word prepares the reader. Be patient.
Listen! Then I became patient, and I got a great deal of enlightenment out of
the book.

The book opens with a beautiful introductory Chapter 1, and concludes
with a very serious Chapter 10. I read the whole book, but I would like to
make a recommendation to any reader: read these two chapters first. Then
you can get a clear picture of the whole book right away. Then, again, for
every chapter, I would suggest to a reader to read the first and the last sec-
tions of that chapter first, in order to get a completely clear picture of that
chapter. Dr Zamir’s writing is especially clear and persuasive in these sec-
tions. Chapters 2-7 are devoted to lumped models. Chapters 8-10 are devoted
to unlumped models. The lumped models are extremely clearly described in
this book. They are mature. They are black boxes. The unlumped models are
clearly less mature. But they are transparent. We can expect many future
developments in the unlumped models, especially for the myocytes which are
nourished by the coronary blood flow. Thus, we expect attention to microcir-
culation, venous return, cellular mechanics, effects of stress and strain on and
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in the cells, heart muscle tissue remodeling, gene expression activities, protein
configuration changes, cell membrane behavior, integrins, enzymes, kinases,
and their activities. Before long, besides learning about the heart, we have
to learn how to engineer the coronary blood vessels for health and longevity.
Physics and mathematics will have a lot more to do with biology!

Y.C. Fung
La Jolla, California
November 20, 2004



Preface

Coronary blood flow is blood flow to the heart for its own metabolic needs.
In the most common form of heart disease there is a disruption in this flow
because of obstructive disease in the vessels that carry the flow. The subject of
coronary blood flow is therefore associated mostly with the pathophysiology
of this disease, rarely with dynamics or physics. Yet, the system responsible
for coronary blood flow, namely the “coronary circulation,” is a highly sophis-
ticated dynamical system in which the dynamics and physics of the flow are
as important as the integrity of the conducting vessels. While an obstruction
in the conducting vessels is a fairly obvious and clearly visible cause of dis-
ruption in coronary blood flow, any discord in the complex dynamics of the
system can cause an equally grave, though less conspicuous, disruption in the
flow.

This book is devoted specifically to the dynamics and physics of coro-
nary blood flow. While it upholds the clinical and pathophysiological issues
involved, the book focuses on dynamics and physics, approaching the sub-
ject from a strictly biomedical engineering viewpoint. The rationale for this
approach is simply that the coronary circulation involves many issues in dy-
namics and physics, as the book will demonstrate. Also, with this particular
focus, the book will complement other books on the subject, that have so far
focused largely on clinical and pathophysiological issues.

A study of the dynamics of the coronary circulation requires far more
information about the system than is currently available. Whether in terms
of anatomical details of the vasculature, system properties such as capacitance
and elasticity of the conducting vessels, or the basic and regulatory conditions
under which the system operates, the information currently available is highly
incomplete. Thus, the scope of this book is limited to dynamical aspects of
coronary blood flow, but within these limits it is also constrained to deal
necessarily with an incomplete picture of these dynamics. In particular, the
book does not include the microcirculation, the venous part of the coronary
circulation, Thebesian veins or the lymphatic system. Also, the many-faceted
regulatory mechanisms of the coronary circulation are not considered in any
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systematic or factual way, but only tangentially in how they may affect the
dynamics of the system. These omissions reflect the degree of complexity of
the coronary circulation and serve as a sober reminder that it may never be
possible or practical to deal with this complexity in a single book.

What seems possible at this time is to use known elements or properties
of the system in such a way as to construct a meaningful, though incomplete,
model of the system. This is the spirit in which the content of this book
is presented. The book deals essentially with the dynamics of that part of
the coronary circulation extending from the coronary ostia at the base of
the aorta to the capillary level of coronary vasculature. It is meaningful to
consider this part of the system in isolation because this is where the largest
part of the pressure drop driving the flow occurs. While the dynamics of this
part of the system may not represent the dynamics of the system as a whole,
they demonstrate clearly the role of dynamics in the coronary circulation
and illustrate how a disruption in these dynamics can affect coronary blood
flow as significantly as can the obstruction of a blood vessel. This is indeed
what the present book is about. Other books have in the past focused in
a similar way on clinical or pathophysiological aspects of the system, or on
the microcirculation. Each of these must clearly be seen as representing an
important, though equally incomplete, view of the system.

My foray into the subject of coronary blood flow began in earnest in 1984
when I spent a sabbatical leave in the Department of Pathology at University
Hospital in London, ON, and it is fair to say that this book would not have
come into being without my ensuing collaboration with Professor Malcolm D.
Silver, then department chair and chief of pathology. His passion for the heart
and coronary arteries, and the depth of his expertise in cardiovascular pathol-
ogy in general, was a haven for an engineer/applied mathematician seeking
entry into the subject. With his help I came to know the coronary arteries lit-
erally “in the flesh” as I attended weekly autopsy review sessions and learned
to dissect, cast and measure coronary vasculature. The collaboration was not
a hit from the start - he was as puzzled by my preoccupation with branching
angles and branch diameters as I was by his preoccupation with shades of
pink in myocardial tissue. But a meeting of the minds soon prevailed, and
together we embarked on several studies that have since formed the basis of
all my subsequent work on the subject. I am deeply indebted to Dr. Silver not
only for his continued guidance over the years but also for reading a draft of
this book and offering many valuable comments and suggestions.

I am indebted by equal measure to my long-time friend and colleague Dr.
Gerry Klassen, formerly professor of medicine, physiology and biophysics at
Dalhousie University. His passion for the subject, combined with his love of
science and engineering, made him an invaluable “resource” for me for more
than two decades. Always ready to explain and ready to help, he made a
lasting contribution to my education in the field of coronary blood flow. His
enthusiasm for the subject was always a source of inspiration to me. I am
grateful to Dr. Klassen for these “hidden” contributions to this book as well
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as for reading a draft of the book and offering many valuable comments. I
received valuable comments also from my friend and colleague Dr. Erik L
Ritman, Professor of Physiology and Medicine at the Mayo Clinic College
of Medicine, who kindly took time from his ever busy schedule to read the
manuscript.

But the mission of this book was to be in Science and Engineering rather
than in Pathology or Medicine. For many years I have been inspired by and
learned enormously from the books of Professor Y.C. Fung who, in my eyes,
is the father of biomechanics and of the notion that engineers should not
only “dabble” in the mechanics of the cardiovascular system but should do so
deliberately and with no apologies. His books on the subject exemplify this
notion and have provided me with the inspiration to write a book in the same
spirit. I am grateful to Professor Fung not only for this but for agreeing to
read this book and to write the Foreword to it.

It was important for me to have the book scrutinized by experts on both
sides of the divide, and I am grateful to three colleagues who were kind enough
to plow through the analytical aspects of the book and the tedium of equa-
tions and algebra. Professor Guy Kember from the Department of Engineering
Mathematics at Dalhousie University, Professor Matt Davison from the De-
partment of Applied Mathematics at the University of Western Ontario, and
Dr. Hope Alderson, formerly of the Department of Mathematics at the Uni-
versity of New Brunswick. I am indebted to all three for laboring tirelessly
through the manuscript, particularly to Dr. Alderson who did so heroically
with a baby in one hand and the manuscript in the other.

I am grateful to my friend and long-time aide, Mira Rasche, for technical
help with the manuscript, and to the secretarial brigade in Applied Mathemat-
ics - Gayle McKenzie, Pat Malone, and Audrey Kager– for always being there.
My deepest thanks go to my wife, Lilian, who may not share my enthusiasm
for the subject, yet so willingly plowed through the manuscript and shared
the burden in so many different ways. I am grateful to Dr. Elias Greenbaum,
Editor-in-Chief of the Biological and Medical Physics, Biomedical Engineering
Series, for his encouragement and continued support, and, at Springer NY, to
David Packer and Lee Lubarsky for walking the manuscript to production, to
MaryAnn Brickner for finally taking the manuscript away from my hands and
setting the production wheels in motion, and to Frank McGuckin and Frank
Ganz for helping with the nightmare of electronic typsetting.

M.Zamir
London, Ontario
February 7, 2005
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1

Static Design Issues

1.1 The Lone Pump

There are approximately 1014 living cells within the human body, each need-
ing to receive food (nutrients, metabolic products) and to dispose of waste
products on an individual basis. The situation is not unlike that of the (some-
what lower, though equally overwhelming) number of humans on this planet,
approximately 6×109 in this case, each needing to receive food and to dispose
of waste products, again, on an individual basis. The cardiovascular system
is responsible for bringing a line of supply and a line of return within reach
of every living cell within the human body. These service lines are fully cen-
tralized, in the sense that they all originate from one location and all return
to it. In the world analogy this would amount to having only one location for
the dispatch of food for the entire world population, only one location for the
return of all waste products, and a line of supply and one of return within
reach of every individual on the planet.

The cardiovascular system achieves this mammoth task within the human
body not by storing food and waste products in one location, but by having
them carried to and from every cell by a circulating fluid. The circulating
fluid is blood, and the service lines along which it circulates are blood vessels.
The central location which all lines of supply originate from and return to is
not a massive warehouse but a small, very small, pump. The pump keeps the
fluid in circulation (Fig.1.1.1). As it circulates, food is added to the fluid and
waste products are extracted from it, on a continuing basis, somewhat in the
manner of a conveyor belt.

The most important element of the cardiovascular system is therefore not
so much the place where nutrients and metabolic products come from but the
pump that circulates the fluid which carries these products. That pump is,
of course, the heart. Circulation of blood that carries the food is as critical
as the food itself because circulation keeps the food coming to the cells. Any
disruption in that circulation is a disruption in food supply. Yes, life is not
possible without blood, but in truth life is not possible without the circulation
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Fig. 1.1.1. Circulation of a fluid medium makes it possible to meet the metabolic
needs of several billion cells within the human body by means of only a small pump
(HEART). Metabolic substances are carried by the fluid to and from cells in every
part of the body (systemic circulation), and the fluid itself is reconditioned by a
second circulation to and from the lungs (pulmonary circulation). Circulation of the
fluid is therefore as critical as the metabolic goods which it carries. The pump must
maintain both circulations at all times and without fail. There is no backup, no
contingencies.

of blood. The heart is the pump that drives that circulation. It must pump
at all times, which it does by contracting and relaxing in a rhythmic pattern,
approximately once every second, more than 86 thousand times every day,
and about 2 billion times in a lifetime of 75 years, nonstop. If it fails, the
entire body is deprived of its lifeline and fails with it.

Is this a design error? Has nature made a mistake? We suspect not. The
human cardiovascular system is highly evolved. Indeed, it has been observed
that in the evolution of species the degree of complexity and sophistication
of an organism goes hand in hand with the degree of complexity and sophis-
tication of the metabolic system required to support it [119, 117, 118, 201].
We suspect, therefore, that far from there being any design error, the human
cardiovascular system with its lone pump is fully tested. Yet questions about
the wisdom of a lone pump linger, for when the system fails it does so in a
catastrophic manner. There is an element of finality in its failure. There is no
backup for the lone pump, no contingencies.
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1.2 Heart “Disease”?

While the heart, like other parts of the body, is subject to genetic disorders
and infectious diseases [179], only a very small proportion of heart failures in
the developed world are caused by such conditions. In all other cases a lack of
blood supply to the heart muscle, or a lack of fuel which the muscle needs for
doing its pumping work, is the principal cause of heart failure [83, 206, 14].

Yet, “heart disease” is the term most widely used in association with
heart failure. The term is somewhat misleading because it suggests that the
failure is due to a disease of the heart itself which, as stated above, occurs
in only a very small proportion of cases. The situation is analogous to using
the term “malfunction” to describe a car engine failure caused by lack of fuel.
Terms that are less commonly used but that are somewhat more accurate are
“coronary heart disease” and “coronary artery disease”, both at least hinting
at a problem in the lines of blood supply to the heart.

In this book the term “heart disease” shall be reserved for only the small
proportion of cases where the heart is diseased in the true sense of a genetic
or infectious disorder. In all other cases the term “heart failure” shall be used
instead, to mean failure of the heart as a pump caused by lack of blood supply.
The lack of blood supply may be the immediate cause of heart failure as in
the case of a thrombus or an embolus, or it may be the precipitating factor as
in the case of myocardial infarction.

It is appreciated that this usage of the terms “heart disease” and “heart
failure” differs from common usage of these terms in the clinical setting. The
intention here is to emphasize the strictly biomedical engineering view of
the coronary circulation to be adopted in this book. According to this view,
blood supply to the heart is provided by a highly dynamic system which
can be disrupted by not only a problem in the lines of supply but also by
a disturbance in the dynamics of the system. Indeed, the dynamics of blood
supply to the heart are the principal subject of this book.

The complication, of course, is that the organ responsible for blood supply
to the heart is the heart itself. When the heart fails, it fails to provide blood
supply to not only every other part of the body but to itself, too. The situation
has the elements of a control system with positive feedback. In such a system,
a small failure produces a signal which leads to more failure, while in a system
with negative feedback, a small failure produces a corrective signal which leads
to less failure. The second system is regarded as stable and the first unstable,
in the sense that after a small departure from equilibrium the second system
can recover and return to equilibrium while the first cannot. A small steel
ball at the bottom of a big bowl constitute a stable system, but if the bowl is
turned upside down and the steel ball is positioned precariously at its peak,
the system becomes unstable (Fig.1.2.1).

On the face of it, it would seem that the system of blood supply to the
heart is an unstable system, since a small failure of the heart muscle would
reduce its ability to pump which in turn would reduce blood supply to every
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(a) (b)

(c)

Fig. 1.2.1. Stability of coronary blood supply. Blood supply to the heart is provided
by the heart itself: Does heart failure, therefore, lead to more failure? Shown here
is the analogy of a small steel ball in equilibrium at the bottom of a large bowl (a).
A small departure from equilibrium in this case is corrected by a negative signal
which acts to move the ball back towards its neutral position. If the bowl is turned
upside down as in (b), however, and the ball is positioned precariously at the peak, a
small departure from equilibrium produces a positive signal which moves the ball yet
further away from the peak. Regulatory mechanisms in coronary blood flow ensure
that a small reduction in blood supply to the heart muscle does not lead to further
reduction. In the bowl analogy it is as if a small magnet is placed under the bowl’s
peak as in (c), so that a small departure of the ball from the peak is corrected by
the pull of the magnet. But if blood supply is prevented from reaching the heart
muscle because of coronary artery disease, this mechanism becomes less effective or
inoperative. In the bowl analogy it is as if the magnet is contaminated and can no
longer pull back the ball effectively.

part of the body, including the heart muscle itself. But the situation is not
in fact as precarious as the steel ball at the top of the upside-down bowl.
Regulatory mechanisms in coronary blood flow (autoregulation) ensure that
a reduction in the ability of the heart to pump does not translate immediately
into a reduction of blood supply to the heart itself [83, 128, 136, 100, 183]. This
mechanism provides a local reprieve and allows recovery to occur. In the bowl
analogy it is as if a magnet is placed under the peak of the upside-down bowl,
so that a small excursion of the steel ball away from the peak is corrected by
the magnet pull before the situation becomes beyond recovery (Fig.1.2.1).

This issue does not usually play a key role in heart failure because, in the
overwhelming majority of cases, the cause of a reduction in blood supply to
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the heart muscle is not a reduction in the innate ability of the heart muscle to
pump but a gradual occlusion or sudden blockage of some of the vessels that
carry this supply to the heart, caused in turn by a disease process within the
vessels. Thus, heart failure (as defined in this book) is not usually mediated by
positive feedback but by a direct reduction of blood supply to the heart muscle,
which is not triggered by failure of the muscle to pump in the first place. The
recovery mechanism that compensates for the reduction in blood supply to the
heart muscle is thus disrupted because of an inability of blood supply to reach
the heart. In the bowl analogy it is as if the magnet is contaminated and its
ability to bring the steel ball back to the neutral position is diminished. “Heart
disease” does not fairly describe the situation in hand, “heart starvation”
would be a more accurate term. As stated earlier, the term “coronary heart
disease”, used less often, is somewhat more accurate in that it hints at the
involvement of the coronary arteries, while “coronary artery disease” is yet
more accurate because it places the problem precisely where it belongs.

1.3 Origin of Coronary Blood Supply

As a pump, the heart consists of four chambers, two ventricles and two atria,
which contract and relax rhythmically. The two ventricles eject blood and the
two atria act as receiving chambers for returning blood [133]. Output from
the left ventricle is carried by the aorta to every part of the body, then re-
turns to the right atrium, thus producing the so-called “systemic circulation”
(Fig.1.1.1). Output from the right ventricle is carried by the pulmonary artery
to the lungs where blood is oxygenated and then returned to the left atrium,
constituting the “pulmonary circulation” [48].

The two systems must clearly operate in tandem to avoid accumulation
(congestion) of fluid proximal to or in any of the four chambers. That is, on
average, the systemic and pulmonary circulations must move the same volume
of blood per cardiac contraction (Fig.1.1.1). However, the systemic circulation
operates at a much higher pressure than the pulmonary, hence the work per-
formed by the two ventricles is not the same. The pumping power produced
by the left ventricle and hence its metabolic requirements are considerably
higher than those of the right ventricle [135, 141]. Accordingly, the muscular
walls of the left ventricle are the main focus of blood supply to the heart.
While blood supply must reach every part of the heart for the organ to re-
main viable, blood supply to the left ventricle dominates coronary blood flow
because of its intense requirements.

While the four chambers of the heart contain blood at all times, and while
the left ventricle contains oxygenated blood ready for distribution to every
part of the body, this blood must leave the heart before it can be tapped
to supply the heart itself. The reason for this is that most cardiac cells, like
those in other parts of the body, are served by a system of capillaries which
are fed, ultimately, by a supply line from the aorta [199]. As it traverses the
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Fig. 1.3.1. Origin of blood supply to the heart. As the aorta (AO) leaves the
left ventricle (LV) with oxygenated blood for every part of the body, its first two
branches, the so-called left main and right coronary arteries (RCA, LCA), are des-
tined to serve the heart itself. The figure is highly schematic, to show functional
topology only.

body the aorta gives rise to many branches, destined to different parts of the
body or to specific organs [48]. Each organ or territory within the body has
its own supply line from the aorta, followed by a vascular tree structure to
reach different parts of the organ or territory, and a system of capillaries to
reach every cell. The heart is served in the same manner [81].

It would seem appropriate, therefore, that as the aorta leaves the left
ventricle, laden with oxygenated blood for every part of the body, its first two
branches are destined to serve the heart itself (Fig.1.3.1). They are known as
the left main and right coronary arteries [133, 228, 216]. While this may seem
as if the heart is being given “first priority”, it is more likely the result of
physical proximity of the heart to the root of the aorta (Fig.1.3.1).

Not infrequently, more than two coronary branches arise at the root of the
aorta to bring blood supply to the heart (Fig.1.3.2), but in most cases only two
are prominent and serve the role of the left and right main coronary arteries.
Additional branches are usually considerably smaller than the main two and
make only a local contribution to coronary blood supply. In rare cases only
one supplying artery may arise from the aorta, and in yet others a supplying
artery may not arise directly from the aorta but from one of its branches. The
range and frequency of these and other variations have been well studied and
documented [94, 69, 16, 146, 127, 61, 73, 196, 133, 182, 81, 152].
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Fig. 1.3.2. Origin of the left main and right coronary arteries (LCA, RCA) and
two additional branches (black arrows) as they arise from the aorta. From a cast of
a human coronary network [216].

1.4 Coronary Arteries

As the left main and right coronary arteries leave the aorta they circle the
heart in the manner of a crown, hence the name “coronary” arteries. The
attributes “left” and “right” relate to the fact that the left coronary artery
circles the left side of the heart while the right coronary artery circles the
right side, though the situation is not accurately so. Furthermore, while the
term “coronary” was first applied to the two main supplying arteries, it is
now used to include all branches and sub-branches of these vessels as well as
the capillary and venous vasculature, which in total comprise the “coronary
circulation”. Thus, in general terms, the word “coronary” has come to mean
any element of blood supply to the heart for its own metabolic needs.

The left main and right coronary arteries encircle the heart along the atri-
oventricular groove, in the atrioventricular sulcus, formed between the ven-
tricular and atrial chambers of the heart [133]. Their points of origin from
the aorta are somewhat above this groove, thus each begins its course by pro-
ceeding down towards the groove. In this description, and in what follows, the
heart is imagined in an upright position, with the atria at the top and ventri-
cles at the bottom (Fig.1.4.1). If the heart is positioned in this way within the
body, its left and right sides coincide approximately with the left and right
sides of the body. Wide variations in the layout of the coronary arteries from
one heart to another make only approximate descriptions possible. Further-
more, it is important to differentiate between exact anatomical mapping of
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Fig. 1.4.1. (left) Approximate anatomical orientation of the heart (in a front view)
in relation to the median and transverse planes of the body (mp, tp). (right) A
“theoretical” upright position in which the heart is turned so that its atrioventricular
plane (avp) is approximately parallel to the transverse plane of the body, and the
interatrial and interventricular planes (iap, ivp) are approximately parallel to the
median plane of the body. This position is convenient for discussion since here the
left and right sides of the heart coincide approximately with the left and the right
sides of the body. The main coronary arteries circle the heart in the atrioventricular
plane, which is hence also known as the coronary plane (cp). From [228].

the coronary arteries in a given heart, and approximate functional layout of
these vessels in every heart. The first may be important for the purpose of
clinical intervention and treatment in a particular heart. The second relates
to fluid dynamic design and function of the coronary network in general, and
it is the main focus in this book.

As the left main coronary artery reaches the atrioventricular groove, it
bifurcates into two major branches [133]. One, known as the left anterior
descending artery, heads down along the interventricular groove, which over-
lies a thick muscular wall between the left and right ventricular chambers
(Fig.1.4.2). This wall, known as the interventricular septum, actually func-
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APEX

Fig. 1.4.2. The way in which the main coronary arteries circle the heart (in a front
view), in relation to the coronary plane (dashed circle) and the interventricular
plane (hatched plane). The right coronary artery (RCA) circles the right side of
the heart while the left circumflex artery (LCX), which is a main branch of the
left main coronary artery (LCA), circles the left side of the heart. The left anterior
descending artery (LAD), which is the other main branch of the left main coronary
artery, descends along the edge of the interventricular wall toward the apex of the
heart. From [216].

tions as part of the left ventricle, hence blood supply to it is particularly
important. The other branch, known as the left circumflex artery, turns to
circle the left side of the heart along the atrioventricular groove. As it does so
it gives rise to a number of small branches which head up to serve the right
atrial region, and larger branches which head down to serve the lateral and
posterior walls of the left ventricle (Fig.1.4.3).

As the right coronary artery reaches the atrioventricular groove, it turns
to circle the right side of the heart, coursing along the groove and giving rise
to branches heading up to serve the right atrial region and down to serve the
anterior and posterior walls of the right ventricle (Fig.1.4.3). In approximately
90% of human hearts, as the right coronary artery reaches the atrioventricular
groove at the back of the heart, it gives rise to an important branch known
as the posterior descending artery [133]. This branch runs down along this
groove to serve the posterior interventricular septum, in the same way that the
anterior descending artery serves the anterior interventricular septum. Indeed
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Fig. 1.4.3. Cast of the coronary network of a human heart in which the left main
coronary artery and its branches are seen in light grey and the right coronary artery
and its branches are seen in black. The heart is here viewed from the back. The
left circumflex artery (lcx) is seen circling the left side of the heart and giving rise
to a number of large branches (lvlcx) to serve the left ventricular wall. The right
coronary artery is seen to do the same on the right side of the heart, giving rise first
to some small branches that serve the right ventricular wall, but then a large branch
known as the posterior descending artery to serve the interventricular wall from the
back. From [228].
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Fig. 1.4.4. The left anterior descending artery, which descends along the front
edge of the interventricular wall (Fig.1.4.2), is seen here wrapping itself around the
apex of the heart (see also Fig.1.4.5). It then begins to ascend along the back edge
of the interventricular wall, as if to meet the posterior descending artery which is
descending toward it along that edge. From [228].

Fig. 1.4.5. The main “skeleton” of the coronary arterial network and the way in
which it serves different regions of the heart. The right coronary artery (RCA) and
the left circumflex artery (LCX) circle the heart as a belt or a “crown”, sending
branches up to serve the atria and down to serve the ventricles. Of the latter the
most important are the left anterior descending artery (LAD) and the posterior
descending artery (PD) which together circle and serve the interventricular wall.
Two other main branches, the acute marginal (AM) and obtuse marginal (OM),
serve the right and left arterial walls, respectively. This skeleton is supplemented by
many other branches of a wide range of sizes and in a highly variable pattern (see
Fig.1.4.3).
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both arteries head towards each other as they move towards the “apex”, the
pointed bottom of the heart. In most cases the anterior descending artery
then wraps around the apex (Fig.1.4.4) and the two vessels stop short of
meeting thereafter (Fig. 1.4.5). In 70% of human hearts the right coronary
artery continues to circle the heart, after giving rise to the posterior descending
artery, to serve some of the posterior wall of the left ventricle [133].

1.5 Left/Right Dominance

With the heart in an upright position, the right coronary and left circum-
flex arteries circle the heart in a horizontal (coronary) plane, and in opposite
directions (Fig. 1.4.2). As they reach the back of the heart, the two arteries
move toward each other and terminate short of actually meeting (Fig. 1.5.1).
The point at which this occurs is a measure of the extent to which the right
coronary artery supplies the left side of the heart, which is an important
functional aspect of the coronary network usually referred to as left/right
dominance [133]. An important anatomical landmark in this subject is the
“crux”, the point at which the horizontal atrioventricular groove crosses the
vertical interventricular groove at the back of the heart (Fig. 1.5.1). At ap-
proximately this point the posterior descending artery arises and begins its
descent along the interventricular groove to serve the interventricular wall.
Whether this artery arises from the right main coronary artery or from the
left circumflex artery depends on which of the two arteries reaches the crux.

In only 10% or so of human hearts, the left circumflex artery reaches the
crux and gives rise to the posterior descending artery [133]. Such cases are
known as “left dominant” since, functionally, blood supply to the left ventricle
then depends entirely on the left coronary artery. In approximately 20% of
human hearts, known as “balanced” cases [133], the right coronary artery
reaches the crux, gives rise to the posterior descending artery and terminates
at that point. In the remaining 70% of cases, known as “right dominant”, the
right coronary artery continues beyond the crux to serve part of the posterior
wall of the left ventricle.

Thus, in the large majority of human hearts, blood supply to the left
ventricle is shared by the left and right main coronary arteries, not necessarily
equally but in parallel, thus providing two sources of supply instead of one.
While this has a clear design advantage, the relative extent to which the
two arteries share their service to the left ventricle is highly variable. At one
extreme the right coronary artery may not serve the left ventricle at all, thus
leaving that ventricle, including the interventricular wall, to depend entirely
on the left circumflex artery. At the other extreme the right coronary artery
may supply the interventricular wall as well as the entire back wall of the
left ventricle (Fig. 1.5.2). Since this wide range of variability represents the
variable extent to which blood supply to the left ventricle may depend on one
or two main lines of supply, the degree of left/right dominance in a given heart
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Fig. 1.5.1. As the right coronary artery (RCA) and the left circumflex artery
(LCX) reach the back of the heart they move toward each other. Only one of them
reaches the “crux” and gives rise to the posterior descending artery (PD). The
numbers identify individual walls of the two ventricles: (1) interventricular septum,
(2,3) lateral and posterior walls of the left ventricle, respectively, (4,5) posterior and
anterior walls of the right ventricle, respectively. It is seen that the interventricular
septum, which separates the two ventricles, is in fact an important part of the left
ventricle. From [216].

may be regarded as an “anatomical risk factor”. While an exact numerical
measure of that risk factor based on a measure of left/right dominance is not
easy to calculate, the connection between the two measures is clear.

More generally, the concept of left/right dominance highlights the wide
range of variability in the detailed layout of the coronary arteries and their
branches, and hence the need to refer to these vessels by function rather than
name. A vessel referred to by the same name in different hearts rarely serves
precisely the same fluid dynamic function in every heart. It is as important
to assess the role of a given artery in the general scheme of blood supply to a
given heart as it is to assess the degree of stenosis in that vessel.
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Fig. 1.5.2. Casts of the arterial networks of human hearts in which the distribution
of the left main coronary artery is seen in red (a,c,f) or yellow (b,d,e) and the
distribution of the right coronary arteries is seen in blue (a,b,c,d,f) or green (e). The
hearts, in all cases, are in an upright posterior view. The figure illustrates the range
of variability in the way in which the two arteries share the responsibility of cardiac
blood supply. At one extreme (a), known as “left-dominant”, the left coronary artery
gives rise to the posterior descending artery and therefore blood supply to the left
ventricle depends on vasculature arising entirely from the left coronary artery. In a
“balanced” case (b), the right coronary artery gives rise to the posterior descending
artery and thereby contribute to blood supply to the interventricular wall, which is
an important part of the left ventricle. In “right-dominant” cases, the right coronary
artery continues beyond the crux to supply part or all the posterior wall of the left
ventricle (c,d,e,f), thereby taking a greater share of the supply to that ventricle.
From [216]. (See color insert.)

1.6 Branching Structure

The question of whether the arterial system of the heart has the structure of
an “open tree” or an “interconnected mesh” is one of whether blood supply
to any region of the heart can reach it via more than one path. In an open
tree structure a main supplying artery, such as the left main or right coronary
artery, divides into (usually two) branches, then each of these branches in turn
divides into further branches, and so on. There are no “collateral” connections
between branches. Flow from the main supplying artery to any peripheral
branch can reach it only by progressing along the strict hierarchical structure
of the tree, from parent to branch at each junction. That is, the flow can only
reach its destination via one distinct path (Fig. 1.6.1). In an interconnected
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Fig. 1.6.1. In an open tree structure, shown schematically here, flow from the main
supplying artery (top) must proceed along the strict branching hierarchy of the tree,
that is from parent to branches at each junction. Each destination (bottom) can be
reached via only one distinct path. Symmetry and uniformity are not necessary but
are used here to emphasize these hierarchical features. Arterial trees are generally
nonsymmetrical and highly nonuniform, but their underlying architecture is most
often that of an open tree structure.

mesh structure, or in an open tree structure with an overlay of collateral
connections, by contrast, there may be several paths to any given destination
(Figs. 1.6.2, 3).

This issue is of particular functional and clinical importance. In the pres-
ence of multiple paths blood supply can bypass an occluded vessel segment
and reach its destination via a different path, an important consideration
since occluded or obstructed blood vessels are the cause of most heart failures
[3, 17, 209, 83, 81, 14]. But the subject is highly controversial, for several rea-
sons. First, because the presence of collateral vessels in the vascular system of
the heart is highly variable in different species. Second, because the presence
of collateral vessels in the human heart is found to be highly variable not
only from heart to heart but also in the same heart at different times. Thus,
the way in which collateral vasculature fits in the hemodynamic design of the
coronary circulation in general, and in that of the human heart in particular,
is not fully established.

Remarkably, as early as the seventeenth century it was observed that “The
vessels which carry blood to the heart .. come together again and here and
there communicate by anastomosis” [126]. Two centuries later: “The human
heart is potentially able to develop collaterals where they are needed” [93].
And more recently, by various casting and injection techniques, investigators
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Fig. 1.6.2. In an interconnected mesh structure flow from the main supplying artery
(top) can reach its destinations (bottom) via different routes. Early studies of dog
coronary vasculature indicated that its underlying architecture has this intercon-
nected structure. Subsequent work on the human heart, on the other hand, showed
repeatedly that the underlying architecture of its vasculature is that of an open tree
structure. Interconnected mesh structures in the vascular system occur mostly at
the capillary level. At higher levels of the system they are rare because an open tree
structure is, fluid dynamically, more efficient than an interconnected mesh.

demonstrated clearly the existence of such collateral vasculature, abundant in
the dog heart, rarely or scarcely found in the pig, and variable in the human
heart [185, 173, 27, 15, 69, 16, 74, 95]. While differences between species
suggest that collateral vasculature may be part of the hemodynamic design of
the coronary circulation in some species, the matter is far from settled. Much
of the focus has been on the situation in the human heart.

An extensive study by Baroldi and Scomazzoni [16] sums up much of
our current understanding of collateral vasculature in the human heart and
resolves much of the controversy relating to variability. By a systematic survey
of human hearts the authors found that both the number and size of collateral
vessels were strongly linked to the presence of an ischemic history or conditions
within the heart. Very fine collateral vasculature may be found sporadically
here and there when ischemic conditions are absent, but in the presence of such
conditions collateral vasculature becomes more significant in size and clearer
in its mission. The results clearly established the phenomenon of collateral
vasculature as a compensatory mechanism in coronary heart disease [15, 14],
and this is how the matter rests.

But the question of the effectiveness of this mechanism is far from set-
tled, and controversy continues to surround this aspect of the phenomenon.



1.6 Branching Structure 17

Fig. 1.6.3. When interconnections occur sporadically (dashed lines) in an otherwise
open tree structure, they are referred to as “collateral” vasculature. The presence
of collateral vasculature has been demonstrated in the coronary circulation of the
human heart (see Figs. 1.6.4–6) but controversy continues over its origin, rate of
growth, and hemodynamic significance. Collateral vasculature is to be distinguished
from permanent collateral bridges such as the communicating arteries in the circle
of Willis of the human brain. The latter are part of the fluid dynamic design of the
cerebral circulation, that is, part of the normal anatomy of the cerebral vasculature.
Collateral vasculature in the human heart is not part of the normal anatomy of the
coronary vasculature.

The overwhelming majority of heart failures caused by insufficient myocar-
dial blood supply [185, 173, 27, 15, 69, 16, 74, 95] point clearly to a failure
of this mechanism in these cases. The difference between the time scale of
development and growth of collateral vessels and the time scale of vascular
obstruction, whether by a slow disease process or sudden occlusion, is clearly
an important factor. The indications are that the mechanism of collateral
vasculature cannot deal with sudden occlusion, first because the vasculature
would likely not be present before the occlusion occurs, and second because
new vasculature cannot develop within the fast time scale of a sudden occlu-
sion. In the case of the much slower pace of stenosis by atherosclerotic disease,
the indications are that collateral vasculature can develop in time to make a
significant contribution, but whether it does or not in every case, and the
magnitude of the contribution it makes in each case, is not clear. The subject
is decidedly far from settled [172, 44, 180, 77].

The ultimate question, of course, is the evolutionary origin of the mech-
anism of collateral vasculature in the human heart. Is it an integral part of
the hemodynamic design of the coronary circulation, or merely a normal an-
giogenic response to ischemia, not peculiar to the heart? If it is the former,



18 1 Static Design Issues

Fig. 1.6.4. Resin casts showing sporadic collateral vasculature between branches
of the left and right coronary arteries in four human hearts. The two sides were
perfused in different colours to uncover places where mixing of the two colours
occured. This mixing could not be mediated by capillary beds since the size of
dye particles prevented them from entering these vessels. Thus, the capillary beds
actually acted as a barrier between the two colours because only clear resin could
enter these beds (seen as white fluff in (a,b)). This ensured that any observed mixing
occured at higher levels of the tree structure. From [216]. (See color insert.)
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Fig. 1.6.5. Resin casts of four human hearts in which the left main and the right
coronary arteries were perfused in different colours. Here it is seen that in the absence
of collateral vasculature, the distributions of the left and right coronary arteries are
demarcated by clear borders, and no mixing of the two colours is observed. See also
caption for Fig. 1.6.4. From [216]. (See color insert.)
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Fig. 1.6.6. The absence of collateral connections is further confirmed by the ability
to physically separate the distributions of the left and right coronary arteries. In
fact, in (b) and (d) it is seen that the beds of individual vessels on the same side
could also be separated from each other. See also caption for Fig. 1.6.4. From [216].
(See color insert.)

collateral vessels would likely have a more permanent, less sporadic, presence
within the coronary vasculature. Yet, such permanent collateral bridges as
the communicating arteries in the circle of Willis of the brain do not exist
in the heart. Studies of the branching architecture of the coronary arteries
show repeatedly that the underlying branching pattern is that of an open
tree structure [227, 223, 214, 106]. Sporadic connections between branches
can be easily demonstrated, particularly in the presence of ischemic disease
or history (Fig. 1.6.4). Under normal circumstances, however, the indications
are that the distributions of the main coronary arteries are fairly distinct and
do not mesh with each other (Figs. 1.6.5, 6). Meshing does occur at the cap-
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illary level, of course, but at that level it can no longer serve the function of
collateral vasculature since the meshing is highly localized and cannot reach
(hemodynamically) from the distribution territory of one major artery to that
of the next.

1.7 Underlying Design?

Wide variability in the anatomical layout of the coronary arteries and their
major branches calls into question the “naming” of these vessels, because
the names imply that they are clearly defined anatomical entities. Yet we
have seen that the left or the right coronary artery in one heart is not the
same functional entity as the left or the right coronary artery in another.
This variability also calls into question the notion of “one-artery” or “two-
artery” disease as measures of the severity of coronary heart disease, since,
again, these terms suggest that one artery in one heart is the same functional
entity as an artery with the same name in another heart, or indeed that two
arteries have twice the functional value of one artery. More accurately, wide
variability in their size and distribution suggests that the coronary arteries,
as represented by their anatomical names, do not represent elements of the
underlying functional design of the coronary network as a fluid conveying
system. Elements of that functional design would be represented by features
of the coronary network which do not vary from heart to heart.

The situation is not unlike the functional design of the heart itself as
a double pump for the maintenance of two circulations. The characteristic
four chambers of the heart are essential elements of this design that do not
change from heart to heart. On the other hand, the exact size and shape of
these chambers, or the size and shape of the heart as a whole, are secondary
features that vary considerably from heart to heart. They are not essential
elements of the underlying design of the heart as a double pump. Thus, by
analogy, we ask: are there features of the coronary network that do not change
from heart to heart?

A study of human hearts with the purpose of addressing this issue found,
in summary, that the coronary network serves the heart by dividing the my-
ocardium into six distinct zones [228]. Each zone is served by two types of
vessels: “distributing vessels” that run along the borders of these zones, and
“delivering vessels” that enter the zones and branch profusely to reach the cap-
illary bed and thereby deliver blood within the zone. Indeed, subsequent stud-
ies confirmed that there is a significant difference in the branching patterns
of these two types of vessels, consistent with their different roles [214, 218].
Briefly, distributing vessels branch only sporadically and maintain their iden-
tity as they circle the zones, while delivering vessels quickly lose their iden-
tity as they branch profusely and more uniformly to reach the capillary beds
(Figs. 1.7.1–3).
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Fig. 1.7.1. A cast of the left anterior descending artery of a human heart and its
branches. The artery runs along the anterior interventricular sulcus, as a distribut-
ing vessel, while its branches probe into the plane of the interventricular wall, as
delivering vessels. This figure illustrates the difference between the branching pat-
terns of the two types of vessels. Distributing vessels branch only sporadically and
maintain their identity, while delivering vessels quickly lose their identity as they
branch profusely and more uniformly to reach the capillary beds. From [214].
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Fig. 1.7.2. A theoretical basis for the difference between the branching patterns
of distributing and delivering vessels. According to the cube law of branching, the
diameter of an artery that undergoes repeated symmetrical or near symmetrical
bifurcations diminishes rapidly, following one of the lower curves for which the value
of the symmetry ratio α is near unity. The curves describe the diameter of the
vessel at different levels n of a tree structure, or after undergoing n bifurcations. By
contrast, the diameter of an artery that undergoes asymmetrical bifurcations, giving
rise to relatively small side branches, diminishes much more slowly, following one of
the top curves for which the value of α is near zero. From [214].
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Borders defining the six zones of the myocardium in this scheme coincide
with certain anatomical landmarks of the heart, namely the “sulci” of the two
main dividing walls of the heart: the atrioventricular septum and the inter-
ventricular septum. Topographically, the sulci represent the intersections of
the two dividing planes with the outer surface of the heart. They appear as
faint grooves on the surface of the heart. The distributing vessels run along
these grooves, usually covered by a thin layer of fat. The atrioventricular sep-
tum, for example, which lies in the coronary plane (Figs. 1.4.1, 2), produces
the atrioventricular sulcus on the surface of the heart as a mark of its inter-
section with it. This sulcus runs as a “belt” around the “waist” of the heart
and it is the groove along which the right coronary artery and the left cir-
cumflex artery run (Figs. 1.4.1, 2). The analogy used more commonly is that
of a “crown” (presumably around the “head” of the heart), hence the term
“coronary” as mentioned earlier.

Fig. 1.7.3. Diameter measurements from casts of human coronary arteries. Mea-
surements from distributing vessels are identified by bold circles while those from
delivering vessels are identified by empty circles (see Fig. 1.7.2 for notation). The
curves represent a statistical fit of the data points. The figure shows clearly that
delivering vessels branch more profusely and undergo fewer bifurcations but their
diameters diminish rapidly in the process. The diameters of distributing vessels, by
contrast, diminish more slowly and the vessels undergo a larger number of bifurca-
tions. From [214].
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Another important inner wall of the heart is the interventricular septum,
which acts as a divider between the two ventricles but is functionally part
of the left ventricle. The intersection of the interventricular plane with the
outer surface of the heart produces the interventricular sulcus along which
the anterior and posterior descending arteries run (Figs. 1.4.1, 5). By what
appears to be a clear design, and in a pattern which does not vary from heart
to heart, the two arteries circle the wall as distributing vessels, while branches
from them run into the plane of the wall as delivering vessels (Fig. 1.7.1).

Two other borders coincide with the “acute margin” on the right side of
the heart, and the “obtuse margin” on the left (Fig. 1.4.5). The names of the
six zones and of the borders defining them are shown in Fig. 1.7.4.

The zones and borders are anatomical landmarks which are permanent
features that do not change from heart to heart (Fig. 1.7.3). The underlying
fluid dynamic design of the coronary network appears to be based on these
landmarks. By this functional design, distributing arteries run along the di-
viding borders, giving rise to delivering branches that enter the zones and
implement blood delivery. This scheme by which the coronary network serves
the heart does not change from heart to heart [228].

Variability in the size and shape of the zones, and wide variability in the
length and size of coronary arteries referred to earlier, do not alter this scheme.
A border may be occupied by different distributing vessels in different hearts,
but the scheme remains constant. The posterior interventricular sulcus, for
example, may be occupied by a posterior descending artery arising from the
right coronary artery or one arising from the left circumflex. The left posterior
atrioventricular sulcus may be occupied fully by the left circumflex artery, fully
by the right coronary artery, or partly by both. In these different scenarios
there is wide variability in the length and size of the coronary arteries involved,
but the underlying design of the coronary network remains the same. In all
cases distributing vessels bring blood supply to the borders of zones while
delivering vessels enter the zones and implement delivery. Only the identities
of the vessels vary from heart to heart, hence these identities, as represented
by the anatomical names of the vessels, do not represent accurate functional
elements of the coronary network.

This subject is clearly important in coronary heart disease where one or
more arteries may be affected by disease that limits its fluid dynamic func-
tion. The foregoing discussion suggests that an accurate clinical assessment
of coronary heart disease in a particular heart should be based not on the
anatomical names of the affected vessels but on the fluid dynamic role of each
affected vessel in the scheme of blood supply to that heart. What is clearly
important is whether the affected vessel is a distributing or a delivering vessel,
and what particular position it occupies in that particular heart. Only then
is it possible to deduce the effect of the diseased vessels on particular zones
of the heart, and ultimately on its ability to perform the heart’s pumping
function.
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Fig. 1.7.4. Bottom row: a human heart in (a) an upright front view, (b) a left
side view, and (c) a back view. Top row: cast of the coronary arteries of the same
heart in the same views. Six zones of the myocardium are clearly visible in both
sets of panels, defined by the distributing vessels seen in the top panels and by the
bands of fat covering the distributing vessels in the lower panels. The borders in
both cases are highlighted by dotted lines. A clear demonstration of how delivering
vessels enter a zone and lose their identity is seen in panel (b) in the bottom row.
Clear demonstrations of the way distributing vessels run along the borders of and
thereby define the zones are seen in the top panels. The six zones are: anterior right
ventricular (ARV), lateral left ventricular (LLV), posterior left ventricular (PLV),
posterior right ventricular (PRV), atrial (ATR), and interventricular septal (IVS),
not seen because it is an internal wall. From [228]
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1.8 Coronary Flow Reserve

The intensity of the pumping action of the heart varies considerably, depend-
ing on the metabolic activity of the rest of the body. The range of demand
is fairly wide, extending from a base level when the body is resting to a
considerably higher level when the body is at maximal activity. Energy re-
quired to support the pumping action of the heart is therefore highly variable,
and blood supply to the heart for the purpose of its own metabolic activity
must be able to change accordingly over a wide range. The coronary circu-
lation, being the vehicle for that supply, must therefore have the capacity
to deliver far more blood flow to the heart than it does under normal rest-
ing conditions. This excess capacity is referred to as “coronary flow reserve”
[83, 42, 66, 64, 129, 128, 100, 183, 26, 112]. How does the coronary circulation
provide this reserve?

The triggers for change in coronary blood flow and the mechanisms by
which change is accomplished have been studied widely and are well docu-
mented elsewhere [83, 42, 66, 64, 129, 128, 100, 183, 26, 112]. In this section
we are concerned with only the ultimate expression of these mechanisms in
terms of the fluid dynamic design of the coronary circulation. The first ques-
tion in that context must clearly be whether there is an element of flow reserve
in the size of the main supplying arteries of the heart, namely the left main
and right coronary arteries. Do these arteries, by design, have larger diameters
than would normally be required for normal blood flow to the heart? In other
words, are the diameters of the left and right main coronary arteries better
matched to the high or low end of the range of coronary blood flow?

Within the cardiovascular system, it is reasonably well established that
the diameters of the main arteries supplying an organ are directly related to
the organ’s requirements for blood supply. More accurately, the diameter of
a supplying artery is generally related to the flow rate which the vessel is
destined to convey. An actual relation between diameter and flow rate was
proposed many years ago in the form of what is now known as the “cube law”
[147, 190, 178, 167, 132]. It proposes that the flow rate through a vessel should
optimally be proportional to the cube of the vessel’s diameter, or conversely,
that the diameter of the vessel should optimally be proportional to the cube
root of the flow rate the vessel is destined to convey. Other relations have been
explored since then and were shown to have some theoretical or empirical
validity, but the cube law continues to have the widest support in terms of
biological data [167, 132, 225, 222, 223, 92, 106].

The cube law provides a useful tool for assessing the provisions for blood
supply to different organs, with a useful concept in this assessment being that
of “bolus speed”. A “bolus” within a blood vessel is defined as a cylindrical
volume of blood which has the same diameter as the luminal diameter of
the vessel and a length equal to that diameter (Fig. 1.8.1). The volume of a
bolus is thus proportional to the cube of the diameter of the vessel in which
it resides. Thus if the diameters of two vessels are denoted by d1, d2 and the
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bolus volume = 
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Fig. 1.8.1. The concept of bolus speed. A “bolus” within a blood vessel is defined
as a cylindrical volume of fluid which has the same diameter as the lumen diameter
of the vessel and a length equal to that diameter. Under the branching “cube law”,
whereby the diameter of a vessel is optimally proportional to the cube root of the flow
rate which the vessel carries, the bolus speed is the same throughout the vascular
network.

corresponding volumes of their boluses are denoted by V1, V2, then
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If the flow rates through the two vessels are denoted by q1, q2, respectively,
then the cube law proposes that the ratio of the diameters of the two vessels
is related to the ratio of the two flows by

d2

d1
=

(
q2

q1

)1/3

(1.8.2)

Combining the two results (Eqs.1.8.1,2) we then have

V2

V1
=

q2

q1
(1.8.3)

Now, the volumetric flow rate through a vessel is the product of the volume
of a bolus in that vessel and the number of boluses passing through the vessel
per unit time. We shall refer to the latter as the “bolus speed”. That is, if the
bolus speed is denoted by S, then

q = V S (1.8.4)

and for the two vessels discussed above we then have

q2

q1
=

V2S2

V1S1
(1.8.5)
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Results in Eqs.1.8.3,5 lead clearly to

S2 = S1 (1.8.6)

which is a useful expression of the cube law in terms of bolus speed, that
is: The relation between diameter and flow in blood vessels of different size
should optimally be such that the bolus speed is the same in all vessels. Thus
the provisions for blood supply to an organ, on this basis, may be deduced from
the diameters of the main supplying arteries to that organ, on the assumption
that the bolus speed in these arteries is the same as that in the aorta or in
the vascular system in general.

To apply this result we consider a human cardiovascular system in which
systemic flow rate through the aorta is qa = 5 l/min and aortic diameter is
a = 2.5 cm. The volume Va of a bolus in the aorta is then π(2.5)3/4 and the
corresponding bolus speed Sa is given by

Sa =
qa

Va
=

5000/60
π(2.5)3/4

= 6.79 b/s (boluses per second) (1.8.7)

This value of the bolus speed can be used as a reference for flow in other parts
of the cardiovascular system.

In particular, when we consider a human heart supplied by two main
coronary arteries, which for the purpose of discussion are assumed to have
equal diameters and carry equal flow rates, if the diameter of each artery is
taken as 3.5 mm, and if the same bolus speed is assumed to exist in these
arteries as it does in the aorta, then the volume of a bolus in each of the two
vessels is π(0.35)3/4 and the combined flow rate to the heart would be given
by

q = 2 × π(0.35)3

4
× 6.79 = 27.44 ml/min (1.8.8)

This coronary flow rate is considerably lower, by almost an order of magni-
tude, than usual estimates [83, 66, 128, 100, 183, 26, 112]. If the two coronary
arteries are each taken to be 4 mm in diameter, then the corresponding flow
rate to the heart would be 40.96 ml/min, still considerably lower than es-
timated. (Under normal conditions it is approximatly 5 percent of systemic
blood flow, or 250 ml/min [66]).

These simple calculations indicate clearly that coronary flow reserve in the
human heart is not based on having supplying vessels that are “larger than
normal”. In fact, the reverse appears to be the case. At a base flow rate of
250 ml/min, if the two main coronary arteries were to have the same bolus
speed as exists in the aorta, then the diamter of each vessel, using Eq. 1.8.2,
would be approximately given by

d = 25
(

125
5000

)1/3

= 7.31 mm (1.8.9)
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Diameters of the two main supplying coronary arteries in the human heart
are usually in the range of 3 − 5 mm [16, 73, 133].

Thus the diameters of the main supplying coronary arteries appear to be
matched decidedly to the lower end of the flow range. Coronary flow reserve,
which makes it possible for blood flow to increase by a factor of 6 or more
[83, 42, 66, 64, 129, 128, 100, 183, 26, 112], must therefore be based on a
different design paradigm. From a purely fluid dynamic standpoint, flow rate
through the coronary vascular tree can only increase by increasing the driving
pressure or by decreasing the overall resistance of the tree. Since the driving
pressure (for flow to the tree as a whole) can only change by a relatively small
amount, it is clear that a large increase in flow can only be achieved by a
change of resistance to flow. Design provisions for coronary flow reserve in
the human heart must therefore be based on having wide control over the
diameters of the resistance vessels within the coronary network.

While in steady flow the resistance to flow in a tube or a vascular tree
is determined predominantly by the tube or vessel radii, in pulsatile flow in
general, and in the coronary circulation in particular, the situation is far more
complex and is not clearly predetermined. In pulsatile flow the resistance to
flow, then more appropriately referred to as impedance, depends on the fre-
quency of pulsation, and hence on the harmonic composition of the driving
pressure wave, since the harmonic components of the wave propagate at dif-
ferent frequencies. Also, elasticity of the conducting vessels turns the flow in
each vessel into a propagating wave, with consequent wave reflections. The
relation between pressure and flow in the presence of wave reflections, and
hence the “resistance” to flow, are not clearly predetermined as they are in
steady flow, nor easy to formulate mathematically [9, 135, 141, 221].

The complex architecture of the coronary network compounds the diffi-
culty, not so much because of its degree of complexity but because of an
insufficient amount of architectural data. Also, elasticity of the coronary ves-
sels gives the system the ability to change its volume to an extent and in a
manner which are not fully known. This property of the coronary network,
generally referred to as its “capacitance”, in combination with the pulsatile
nature of the flow introduces an element of inflation and deflation which fur-
ther complicates the relation between pressure and flow. Finally, most of the
coronary vasculature is deeply imbedded within the cardiac muscular tissue,
and as this tissue contracts and relaxes in the pumping process, the effects
on pressure and flow within the vessels are far from known or fully under-
stood. Thus, while the nature of resistance to coronary blood flow is highly
complex and not fully understood, it is clear that the design provisions for
coronary flow reserve are based entirely on having substantial control over
that resistance. Coronary blood flow can increase by a factor of 6 or more
not by having supplying vessels that are designed to carry such high flow but
by having resistance vessels under strict dynamic control. We may say that
coronary flow reserve is not part of the static design of the coronary network
but rather is a dynamic property of the coronary circulation.
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1.9 Design Conflict?

Provisions for coronary flow reserve discussed in the previous section are
clearly geared, by design, to changes in flow demand associated with normal
physiological function. The sudden increase in coronary blood flow required
at the onset of vigorous physical exercise, for example, is accomplished by the
facility of coronary flow reserve. But the integrity of that facility is seriously
compromised in the presence of obstructive coronary artery disease. The rea-
sons for this are somewhat convoluted and have the appearance of a “design
conflict” between the availability of coronary flow reserve and the problem of
long term fluid dynamic changes associated with obstructive vascular disease.

The reason for this is that as disease gradually obstructs the supplying
vessels, thus increasing the resistance to flow and therefore decreasing flow
rate through the vessels, the facility for coronary flow reserve counteracts
by dilating resistance vessels to restore the overall resistance in the system
and thereby restore flow rate. But some of the capacity to further dilate the
resistance vessels and further increase the flow rate has now been lost. That
is, some of the coronary flow reserve has been “used up”. And more is used
up, in the same way, as the severity of obstructive disease increases, to a point
where the capacity to increase coronary flow rate is completely lost.

Thus, the facility of coronary flow reserve does not appear to be aimed
by design to deal with the long-term fluid dynamic effects of coronary artery
disease. It is indeed well established that coronary flow reserve diminishes in
the presence of atherosclerotic coronary artery disease [83, 66, 128, 100, 183,
26, 112]. Are there other facilities or mechanisms in the coronary circulation
that are aimed at the long term effects of coronary artery disease?

It is known that in the presence of obstructive coronary artery disease the
coronary circulation can develop collateral flow routes aimed at counteracting
the fluid dynamic restrictions imposed by the obstruction. While the precise
mechanisms for this development are not fully understood or agreed upon,
its association with the presence and severity of coronary artery disease is
fairly well established [16, 172]. Thus, the development of collateral pathways
is a mechanism that appears aimed by design to deal with the long-term fluid
dynamic effects of obstructive coronary artery disease.

The most important difference between this mechanism and that of coro-
nary flow reserve is in the time scale at which the two mechanisms operate.
While the time scale of coronary flow reserve is in the order of seconds or min-
utes, the time scale of collateral pathways is in the order of weeks, months,
or perhaps even years [15, 172, 128].

The grounds for a design conflict are thus apparent: If the faster acting
facility of coronary flow reserve is triggered to correct a deficiency in blood
flow rate, the slower acting facility of developing collateral pathways is no
longer called for and is therefore not implemented. While the trigger for both
facilities must ultimately be the presence of ischemic tissue, if the needs of
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that tissue are met by the facility of flow reserve, the other facility is not
triggered.

That is, as coronary flow reserve responds to ischemic events caused by
obstructive vascular disease, it masks the effects of that disease from the
facility of collateral pathways. The effects of the obstruction therefore do not
trigger the more permanent measure of developing collateral pathways. That
is until coronary flow reserve has been completely depleted.

An analogy which has been used for this conundrum is that of a bank
account with a large reserve that acts to mask any deficits between the totals
of deposits and debits each month [217]. A monthly deficit is “covered” by the
large balance and therefore goes unreported and does not trigger any long-
term remedies. But in the process the size of the large reserve has diminished
by the amount of the deficit and will continue to diminish if monthly deficits
continue [217].

Both in the coronary circulation and in the bank analogy the grounds for a
design conflict are clear. A reserve that has the purpose of dealing with short-
term (acute) deficits acts inadvertently to mask long-term (chronic) ones, and
in both cases a resolution of the conflict can only be achieved by removing
the “masking effect” of the reserve. In the bank analogy this would mean to
challenge the reserve on a regular basis so as to moniter its size and take
remedial action if the reserve is declining. In the coronary circulation this
would mean to challenge the coronary flow reserve on a regular basis to create
near-ischemic conditions that would trigger collateral pathways development.
In the bank analogy the challenge to the reserve may take the form of regularly
timed “conditional” spending sprees. In the coronary circulation it may take
the form of regularly timed vigorous physical exercise. The benefits to the
coronary circulation of regular physical exercise are indeed well known. The
conundrum of coronary flow reserve is a context in which these benefits can
be explained.

1.10 Summary

There are several billion cells within the human body, which consume food
(nutrients, metabolic products) and dispose of waste products on an individual
basis. The cardiovascular system achieves this mammoth task not by storing
these products in one location but by having them carried to and from every
cell by means of a circulating fluid, namely blood. The most important element
of the cardiovascular system is therefore not so much the place where nutrients
and metabolic products come from but the pump that circulates the fluid
within which these products are carried. That pump is of course the heart.

A complication arises because the heart, which is responsible for supplying
blood to every part of the body, is also responsible for its own blood supply.
This seems to suggest that the system of blood supply to the heart is an
unstable positive feedback system in which failure leads to more failure, but
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this is not the case because of regulatory mechanisms. More commonly, heart
failure is caused by coronary artery disease which disrupts cradiac blood sup-
ply by obstructing some of the conducting vessels. “Heart disease” is the term
most widely used to describe this course of events but the term is somewhat
a misnomer because in the overwhelming majority of cases the failure is due
only to a lack of blood supply to the heart for its own metabolic needs and
hence a lack of the fuel it needs to perform its function as a pump. In this
book the term “heart disease” is reserved for only the small proportion of
cases where the heart is diseased in the true sense of a genetic or infectious
disorder. In all other cases the term “heart failure” is used to mean failure of
the heart as a pump caused by lack of blood supply. While this usage of these
terms differs from their common usage in the clinical setting, the intention
here is to emphasize the strictly biomedical engineering view of the coronary
circulation to be adopted in this book. According to this view, blood supply
to the heart is a highly dynamic system which can be disrupted by not only
a problem in the lines of supply but also by a problem in the dynamics of the
system. Indeed, the dynamics of blood supply to the heart is the principal
subject of this book.

Blood supply to the heart comes via two branches of the aorta, known as
the left main and right coronary arteries. These two vessels and their branches
first circle the heart in the manner of a “crown”, hence the name “coronary”,
then establish branches and sub-branches to every part of the heart. The
resulting vasculature, which we refer to collectively as the “coronary network”,
is likely one of the most compact and complex within the human body.

The overall functional picture of the coronary network consists of main
arteries circling the heart once in a horizontal plane along the atrioventricular
groove and once in a vertical plane along the interventricular groove. This
picture is important because it does not vary from heart to heart, therefore
representing an invariant feature of the coronary network, a feature of its
functional design. While there are wide variations in the anatomical details of
the coronary arteries, this design feature of the network rarely varies.

As they reach the back of the heart, the left circumflex and the right
coronary arteries move toward each other and terminate short of actually
meeting. The point at which this occurs is a measure of the extent to which
the right coronary artery participates in blood supply to the left side of the
heart, an important functional aspect of the coronary network usually referred
to as left/right dominance.

The underlying branching pattern of coronary vasculature is that of an
open tree structure in which there is a unique pathway to every region of
the heart tissue. The question of “collateral” pathways that provide alter-
nate routes is controversial because neither the existence of collateral vessels
within the coronary network nor their functional significance are fully agreed
upon. It is generally accepted, however, that collateral vasculature is a com-
pensatory mechanism for coronary artery disease, even if the full details of
that mechanism are not fully understood.
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While there are wide variations in the “details” of coronary vasculature
from heart to heart, some underlying functional design can be identified.
According to this design the heart appears to be divided into individual zones,
each being circled by “distributing” vessels that bring blood supply to that
zone and penetrated by branches that act as “delivering” vessels. The most
important functional issue in each case is the extent to which a particular zone
depends on blood supply from the left main and/or from the right coronary
arteries.

Intensity of the pumping action of the heart varies considerably, depending
on the metabolic activity of the rest of the body, the range extending from
a base level when the body is in a resting state to a considerably higher
level when it is at maximal activity. Energy required to support this pumping
action is therefore highly variable, and coronary blood flow must be able to
change over a wide range. This capacity of the coronary circulation is known
as “coronary flow reserve”, and it is facilitated not by having vessels that are
larger than normal but by having control over the resistance to flow within
the coronary network.

It would seem that coronary flow reserve is clearly aimed at responding
to immediate changing demands for blood flow (within seconds) while the
mechanism of collateral vasculature is likely aimed at compensating for gradual
changes caused by coronary artery disease (within weeks or months). A case
can be made for a possible “design conflict” between these two mechanisms
because the capacity of coronary flow reserve is diminished by coronary artery
disease and because that capacity can also be inadvertently “used up” to
compensate for the gradual effects of coronary artery disease.
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Modelling Preliminaries

2.1 Why Modelling?

To solve fluid flow problems and fully determine the dynamics of the flow,
including mapping the velocity field and the relation between prevailing pres-
sure and flow fields, is possible only in the most simply constructed cases
and mostly in the physical sciences [134, 193]. Fluid flow problems in biology,
by contrast, are rarely simply constructed and can rarely be solved directly
[34, 120]. The problem of flow in a tube, for example, has the simple “Poiseuille
flow” solution when the tube is rigid, its cross-section is perfectly circular, the
tube is long enough for flow to fully develop, and the fluid is a smooth “con-
tinuum” that has the simple rheological properties of a “Newtonian” fluid in
which shear stress is related linearly to the velocity gradients [34, 120]. Barely
any of these ideal conditions is met in biological problems involving flow in
tubes, most notably the problem of blood flow in arteries, and particularly
flow in coronary arteries, which is the subject of this book. Here the fluid
is not a smooth continuum but a suspension in plasma of discrete red and
other blood cells and, as we saw in the previous chapter, the system does not
consist of a single tube but of many millions of tube segments that are joined
together in a hierarchical tree structure. The segments are rarely long enough
or perfectly circular to support fully developed Poiseuille flow, and the de-
tails of flow at their junctions are highly complicated and depend strongly on
the exact geometry of each junction [122]. Furthermore, the precise branch-
ing structure of the vascular system of the heart cannot be mapped to the
last detail to allow a mathematical solution of the flow problem. In fact, it is
known that these details vary widely from one heart to another as much as
do fingerprints from one individual to the next [228].

The purpose of the vascular system of the heart is to bring blood flow
to within reach of every cell of the myocardium. Schematically, the vascular
system has the hierarchical form of a tree structure (Fig. 1.6.1), with flow pro-
ceeding from the root segment of the tree to the periphery. Pressure at the
base of the aorta, where the vascular trees of the left and right coronary arter-
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ies have their roots (Fig. 1.3.2), provides the driving force for this flow, but the
relationship between this pressure and the ultimate flow at the delivering end
of the two trees is everything but simple [98, 97]. Indeed, it is far from clear
that pressure at the base of the aorta is the only driving force for coronary
blood flow, nor is it clear that the resistance to flow, which this driving force
must overcome, is limited to that of simple flow in a tube. Other mechanisms
may be at play, and while some are known, their exact role in the dynam-
ics of coronary blood flow is as yet not fully understood. Prominent among
these are the rhythmic contractions of the myocardium with each pumping
cycle and the consequent effect of these contractions on vessels that are totally
imbedded within that tissue. It has been demonstrated that one effect of this
so-called “tissue pressure effect” is to reduce or even reverse the flow in the
main coronary arteries during the contracting (systolic) phase of the pump-
ing cycle [101], but it is possible that this same effect may actually provide a
pumping (driving) force for blood flow within the peripheral vessels near the
delivering end of the tree. The cyclic compression of coronary vasculature by
surrounding tissue also has a “capacitance” effect, namely a cyclic change in
the volume of blood contained in the system. This effect plays an important
yet unclear role in the dynamics of the coronary circulation, rendering the re-
lation between driving pressure and delivering flow far less tractable [96, 97].
The same is true of the effects of wave reflections from a massive number of
vascular junctions within the coronary network and the important yet unclear
role which these play in the dynamics of the coronary circulation [219].

Direct measurements of pressure and flow within elements of the coronary
network, to establish an empirical relation between them, are fraught with
no less difficulty. While some measurements have been made successfully in
isolated hearts [98, 97], access is possible only to larger coronary vessels at
entry into the coronary network, becoming increasingly difficult with increas-
ing “depth” into the network. Measurements in vivo are further hampered by
the violent motion of the coronary vessels as the heart contracts and relaxes
in its periodic pumping action. Thus, at best some access is possible to one
end of the coronary circulation, but this can provide only a limited base for
any conclusions because of lack of access to the distal end of the circulation.
More precisely, flow measured at entry to the coronary tree does not usually
represent flow at exit, because of capacitance and other effects mentioned
earlier.

Modelling is thus a necessity rather than a luxury in the study of coro-
nary blood flow. In the absence of adequate access to the system for direct
observations or measurements of pressure and flow, the only prospect for a
good understanding of the system is by using a model. The accuracy of the
model can be improved by testing it against whatever data or observations
are available, changing its design so as to produce closer agreement. The ob-
vious and most important advantage of using a model is that its behaviour
can be studied easily and more extensively than the actual system which it
represents. Indeed a range of such models have been proposed in the past and
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we examine some of them subsequently, but the emphasis in this book is less
on the models themselves than on the elements from which the models are
constructed. The reason for this is that a model of the coronary circulation
is only useful if it can be tested against some direct measurements. In fact,
the model must be tailored to the type of measurements available, and as the
nature and availablility of such measurements changes, so must the design
and nature of the model to be used.

Our understanding of the dynamics of the coronary circulation is presently
at its infancy. Indeed, in the clinical setting a purely static view of the system
predominates, in which the concern is primarily with whether vessels are fully
open or restricted by disease [127, 133, 73]. The reason for this viewpoint is
not that the dynamics of the coronary circulation are thought unimportant
in the clinical setting but that as yet we do not have a clear understanding or
a clear model of these dynamics. The purpose of this book is to provide the
student, researcher, or indeed clinician, with basic analytical and conceptual
tools with which to explore and hopefully improve his or her understanding
of the dynamics of the coronary circulation.

2.2 The “Lumped Model” Concept

The relation between pressure and flow in a tube depends on such properties of
the tube as its diameter, length, and elasticity. It also depends on the form of
the driving pressure, in particular whether the pressure is steady or pulsatile.
The relation between pressure and flow in a vascular tree structure consisting
of a large number of tube segments depends not only on all such factors in
each tube segment but also on events at the junctions between tube segments
and on how the properties of individual segments are distributed within the
tree structure. The overwhelming complexity of this problem gives rise to the
“lumped model” concept. Detailed analysis and results based on this concept
are presented in subsequent chapters. Here we discuss only broadly the concept
itself as a valid modelling strategy.

Essentially, in a lumped model the complex vascular structure of the coro-
nary network is ignored and the network is replaced by a single tube having
properties representative of the network as a whole. It is a variant of the more
familiar “black box” concept, in which a complex system is enclosed by an
imaginary box and only the relation between input and output from the box is
examined to learn something about the characteristics of the system without
delving into the complexity that produced these characteristics. In the coro-
nary circulation the lumped model attempts to reproduce a relation between
pressure and flow similar to that observed or measured in the physiological
system but without going through the overwhelming task of determining how
the relation unfolds through the complex structure of the coronary vascular
network.
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Of particular interest is the relation between pressure and flow at input
to the system and pressure and flow at output. The reason for this is that
while some direct measurements of pressure and flow are possible at input to
the system, usually at the left or right main coronary arteries, no such mea-
surements are possible at output, that is at the capillary end of the system.
The output end of the coronary circulation is of course of particular clinical
interest because it represents the ultimate function of the system, namely the
delivery of blood to cardiac tissue. But at this end of the system flow is divided
into many millions of capillaries in which neither the velocity nor the num-
ber of capillaries can be determined with sufficient accuracy to compute total
output. A correct model of the system would thus provide a theoretical means
of obtaining important information at output which is not available experi-
mentally. However, the “correctness” of the model can ultimately be verified
only by testing its results against some measurements from the physiologi-
cal system. Thus, the modelling process becomes a highly intricate iterative
process whereby the choice and values of model parameters are guided by a
comparison of the results of the model with whatever direct measurements
are available [110, 24, 115, 90, 98, 97].

Pressure and flow in the coronary circulation are highly pulsatile because
of the pulsatile nature of the input driving pressure and because, in addition
to this, much of the coronary vasculature is imbedded in cardiac muscle tissue
and is subject to the effects of cyclic contraction of the cardiac muscle, so-
called “tissue-pressure effects”. Thus, pressure and flow at both ends of the
system are time-dependent in the sense that they have cyclic waveforms. The
waveforms are not the same at both ends, however. At any point in time
within the oscillatory cycle, total inflow into the coronary system is not usually
equal to total outflow because of the so-called “capacitance” effect. There is
continuous change in the total volume of vascular lumen within the system
during the oscillatory cycle. Therefore, some inflow may go towards “inflating”
the system and will not contribute to outflow and, conversely, some outflow
may be produced by “deflation” of the system rather than by direct inflow.
While average flow must be the same at both ends of the system, that is, flow
averaged over one or more cycles, a relation between average flow and average
pressure does not feature the time-dependent characteristics of the system
that actually contribute to that relation. Only events within the oscillatory
cycle exhibit these characteristics, but the nature of these events is lost in the
time-averaging process. For these reasons the main focus of lumped models
has been on a time-dependent relation between pressure and flow, that is on
the time course of that relation within the oscillatory cycle.

2.3 Flow in a Tube

At the core of almost every modelling scheme for coronary blood flow and for
blood flow in general is the mechanics of flow in a tube. Indeed, the lumped
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model discussed in the previous section is based on the concept that flow
through the complex vasculature of the coronary circulation can be replaced
by flow in a single tube with “equivalent” properties. It is important, therefore,
to outline the basic properties of flow in a single tube, which we do in this
section. The validity of the basic premise of the lumped model concept, namely
that flow in a complex system of vessels can be considered equivalent to flow in
a single tube, can only be discussed in the context of each particular modelling
scheme and is therefore deferred to subsequent chapters.

When fluid enters a tube, it does not simply slide along the tube as a
bullet, because of a condition of “no-slip” that prevails at the tube wall [13,
34, 174, 71] whereby elements of fluid in contact with the tube wall become
arrested there, forming a cylindrical layer of stationary fluid attached to the
inner surface of the tube wall. As fluid progresses along the tube, the next layer
of fluid adjacent to the first is slowed down by the stationary layer because of
the viscosity of the fluid, and similarly, subsequent concentric layers of fluid
that are further and further away from the wall are slowed down but to a
lesser and lesser extent and are thus able to move more freely, fluid along the
axis of the tube able to move the fastest (Fig. 2.3.1).

Fig. 2.3.1. Fully developed flow in a tube, commonly referred to as Poiseuille flow,
is characterized by a parabolically shaped velocity profile, with zero velocity at the
tube wall and maximum velocity along the tube axis.

Ultimately, at some distance downstream from the tube entrance, the flow
becomes “fully developed” and is generally referred to as “Hagen-Poiseuille
flow” after those who studied it first [168, 192, 174, 135], or more commonly as
simply “Poiseuille flow”. Flow in this region is characterized by a parabolically
shaped “velocity profile” along a diameter of the tube, with zero velocity at
the tube wall and maximum velocity at the tube axis, and is given by [221]

u =
k

4μ
(r2 − a2) (2.3.1)

where μ is viscosity of the fluid, r is radial coordinate measured from the axis
of the tube, a is the tube radius, and k is the pressure gradient driving the
flow, which in Poiseuille flow is constant and equal to the pressure difference
Δp between any two points along the tube divided by the length of tube l
between them, that is [221]
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k =
dp

dx
=

Δp

l
(2.3.2)

Here p is pressure and x is axial coordinate, positive in the direction of flow.
The pressure difference Δp is measured in the direction of flow, that is

Δp = p2 − p1 (2.3.3)

where p1, p2 are pressures at the upstream and downstream ends of the tube
segment, respectively. Since p1 must be higher than p2 to produce flow in the
positive x−direction, Δp is usually referred to as the “pressure drop” along
the tube segment.

Eq. 2.3.1 indicates that in Poiseuille flow the flow rate q through the tube
is given by

q =
∫ a

0
2πrudr =

−kπa4

8μ
(2.3.4)

Thus, average flow velocity u is given by

u =
q

πa2 =
−ka2

8μ
(2.3.5)

while maximum velocity û occurs on the tube axis where r = 0 and from
Eq. 2.3.1 is given by

û =
−ka2

4μ
(2.3.6)

The two results show that maximum velocity in Poiseuille flow is twice the
average velocity, that is

û = 2u (2.3.7)

As described earlier, Poiseuille flow is not established immediately on entry
into the tube, but evolves over a length of tube le known as the “entry length”.
Flow in that region of the tube is usually referred to as “developing flow” and
an estimate of the entry length is given by [123, 174, 71]

le = 0.04NRd (2.3.8)

where d is tube diameter and NR is the Reynolds number, defined by

NR =
ρud

μ
(2.3.9)

where ρ is fluid density.
When the lumped model is used to study flow in the coronary circulation,

which means that coronary blood flow is being modelled by an equivalent flow
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in a single tube, the equivalent flow is invariably considered fully developed.
This assumption is fairly difficult to deal with because it is at once both
necessary and unjustified. The assumption is unjustified because the entry
lengths in many millions of tube segments in the coronary circulation will
be different and cannot be represented by an “equivalent” entry length in a
single tube. Furthermore, the assumption is necessary because the problem of
determining the entry length and examining the extent to which flow is fully
developed in each of these millions of tube segments is intractable. It is in
fact further complicated because flow is entering and leaving tube segments
at different stages of development. As a result, the standard entry length
analysis leading to the result in Eq. 2.3.8, based on the assumption that flow
entering the tube is uniform, no longer applies [31]. The best that can be done
is to evaluate the weight of the assumption of fully developed flow in each
modelling scheme in context of the particular aspect of coronary circulation
being studied.

If flow entering a tube is assumed to have a uniform velocity u, then a
key difference between the developing and fully developed regions of the flow
is that in the developing region elements of fluid near the tube axis (where
u = û) are being accelerated to meet the higher velocity there, while elements
of fluid near the tube wall (where u = 0) are being decelerated because of the
condition of no-slip at the tube wall. In the fully developed region, by contrast,
fluid elements have reached their ultimate speed and are moving with constant
velocity. This difference is compounded when the flow in a tube is pulsatile.
In that case fluid elements in all regions of the tube are being accelerated
and decelerated by the oscillatory driving pressure. Thus, in the entry region
of the tube, fluid elements are being accelerated or decelerated in space by
the entry conditions described above, and accelerated and decelerated in time
by the oscillatory driving pressure. This makes the length of the entry region
time-dependent and more difficult to define [34, 71, 7, 37].

2.4 Fluid Viscosity: Resistance to Flow

Flow in a tube may be resisted in a number of ways. If it is being accelerated,
fluid inertia resists the pressure driving the flow. If the tube wall is elastic,
its elasticity may oppose the driving pressure as it expands the tube wall.
However, in both cases the same effect may also aid the flow, as it decelerates
in the first instance, and as the tube wall recoils in the second. Thus, when
flow in a tube is oscillatory these two forms of resistance do not dissipate
energy, except in the second case if the tube wall is not purely elastic but has
some viscoelastic properties.

The most important form of resistance to flow in a tube is that due to
viscous friction at the interface between fluid and the tube wall. It is important
because it is present when flow is steady or oscillatory and it always dissipates
energy whether the flow is accelerating or decelerating. Because of this, it is
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usually referred to simply as “the resistance”, and we shall follow this practice
in this book. Resistance to flow in a tube arises because of a combination of
the no-slip boundary condition at the tube wall and the viscous property of
the fluid.

A key property of viscous fluids is that the force required to move adjacent
layers of fluid at different velocities, that is, the force required to create shear
flow, is an increasing function of the local velocity gradient. For a large class
of fluids known as “Newtonian fluids”, the force is simply proportional to the
velocity gradient, that is

τ = μ

(
du

dr

)
(2.4.1)

where τ is the local shear stress, that is, the local stress required to maintain
the shearing motion, and μ is the coefficient of viscosity of the fluid. The
velocity gradient du/dr is a measure of the local change in the velocity u of
adjacent layers of fluid relative to the distance r between them. In Poiseuille
flow this corresponds to the local slope of the parabolic velocity profile shown
in Fig. 2.3.1 and given in Eq. 2.3.1.

The linear relation between shear stress and velocity gradient in Eq. 2.4.1
was first derived by Newton, hence the term “Newtonian fluids” has been used
for fluids that obey the relation [168, 192]. There is a long-standing question
whether blood, because of its corpuscular nature, is or is not a Newtonian
fluid [21]. The question is not a very meaningful one because there are blood
flow problems in which blood can be treated as a Newtonian fluid and others
where it cannot. The question must therefore be directed at the nature of
the flow problem being studied rather than at the nature of blood. Many
problems relating to the general dynamics of flow in the systemic circulation,
with focus on its pulsatile, have been studied successfully on the assumption of
a Newtonian behaviour of the fluid, that is, on the assumption that Eq. 2.4.1
is valid [135, 141, 153]. That is not to say that blood is a Newtonian fluid,
but that any non-Newtonian behaviour of blood does not significantly affect
the general dynamics of the systemic circulation as a whole, although it may
be important in the study of local flow properties in a single vessel or a single
junction. The same is appropriate for a study of the general dynamics of the
coronary circulation and we therefore uphold the Newtonian assumption in
this book.

An important consequence of the viscous property of fluids is that the
velocity difference between adjacent layers of the fluid must be infinitely small
so that the velocity gradient remains finite. In other words, change of velocity
within the fluid must be smooth. A step change of velocity (Fig. 2.4.1) is not
possible because it would produce a locally infinite velocity gradient, and the
shear stress required to maintain it would be infinite (Eq. 2.4.1).

It follows from this property that at the interface between a moving fluid
and a solid boundary, as at the inner surface of a tube, there can be no
finite difference between the fluid velocity tangential to the boundary and the
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Fig. 2.4.1. An important consequence of the viscous property of fluids is that the
velocity difference between adjacent layers of fluid must be infinitely small so that
the velocity gradient remains finite. Thus, a step change of velocity (top) is not
possible because it would produce a locally infinite velocity gradient and the shear
stress required to maintain it would be infinite. Instead, the change of velocity must
occur smoothly (bottom) so that the velocity gradient remains finite.

boundary itself. That is, the tangential velocity of fluid elements in contact
with the boundary must be zero relative to the boundary, as required by
the no-slip boundary condition (Fig. 2.4.2). This does not “prove” the no-
slip boundary condition but shows only that the viscous property of fluids
is consistent with it. Indeed, the basis of the no-slip boundary condition has
been and remains largely empirical [13, 34, 174, 71].

Eq. 2.4.1 applied to Poiseuille flow in a tube, with velocity u as given by
Eq. 2.3.1, yields the following result for the shear stress τw at the tube wall

τw = μ

(
du

dr

)
r=a

=
ka

2
=

aΔp

2l
(2.4.2)

Since the pressure gradient k or pressure difference Δp are negative in the flow
direction, it follows that τw is also negative. That is, the shear stress (acting
on the fluid) at the tube wall has the effect of opposing the flow. The velocity
gradient at the tube wall which is responsible for this shear stress is of course
a consequence of the condition of “no-slip” there. It causes fluid in contact
with the tube wall to come to rest while fluid along the tube axis charges
at maximum velocity. A velocity gradient must therefore exist between the
two regions and at the tube wall. Therefore, the condition of no-slip and the
viscous property of the fluid together produce the shear stress at the tube wall.
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Fig. 2.4.2. The viscous property of fluids requires that at the interface between
a moving fluid and a solid boundary, as at the inner surface of a tube, there be
no finite difference between the fluid velocity tangential to the boundary and the
boundary itself (top). That is, the tangential velocity of fluid elements in contact
with the boundary must be zero relative to the boundary itself (bottom), as required
by the no-slip boundary condition.

The total resistance to flow R, which results from shear stress acting on
the entire surface area of the tube, can be expressed in terms of the flow rate
q as

R =
Δp

q
(2.4.3)

and substituting for the flow rate from Eq. 2.3.4, and using Eq. 2.3.2, this gives

R = − 8μl

πa4 (2.4.4)

The minus sign indicates that the resistance, which represents the force ex-
erted by the tube wall on the fluid, is opposite to flow direction. The sign is
usually omitted because the term “resistance” in fact refers to a force oppos-
ing the flow, that is a force in the negative direction when flow represents the
positive direction. This is equivalent to modifying the definition of R to

R = −Δp

q
=

8μl

πa4 (2.4.5)

It is seen that resistance to flow, which represents the amount of pressure
difference required to produce a given amount of flow, depends critically on
tube radius, being proportional to the inverse of the radius to the fourth power.
Thus, if the tube radius is reduced by a factor of 2, the resistance increases
by a factor of 16, that is by 1, 600%. If the tube radius is increased by a factor
of 2, the resistance decreases by a factor of 16, that is by approximately 94%.
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Writing Eq. 2.4.5 as an equation for the flow rate q, we find the amount of
flow that would be produced by a given pressure difference Δp, namely

q = −πa4Δp

8μl
(2.4.6)

If in an experiment the amount of flow is found higher than that dictated by
Eq. 2.4.6, this could be interpreted as a change in one of the other parame-
ters on the right side of the equation. Indeed, experiments in the past have
shown that there is an apparent drop in blood viscosity in very small blood
vessels, usually referred to as the Fahraeus-Lindqvist effect [63, 45, 221]. The
effect is termed “apparent” because it is not based on direct measurement
of the viscosity μ but on a measurement of flow for a given pressure drop.
Thus, an observed value of q higher than that prescribed by Eq. 2.4.6 was in-
terpreted as a decrease in the viscosity μ because such a decrease would also
produce a higher value of q. Another interpretation which has been considered
is the possibility of partial slip at the tube wall which would have the effect
of requiring a smaller pressure drop for a given amount of flow, or conversely
higher flow rate than is prescribed by Eq. 2.4.6, because of lower friction at
the tube wall. However, it has been difficult to demonstrate that slip actually
occurs in small blood vessels, and this interpretation is still a matter of de-
bate [156, 211, 221]. Similar comments apply to the Fahraeus-Lindqvist effect
because of the difficulties involved in actually measuring blood viscosity in
small vessels. As a result of these difficulties it has not been possible, so far,
to incorporate the concepts of slip or of the Fahraeus-Lindqvist effect into
mainstream modelling schemes of the general dynamics of either the systemic
or the coronary circulation.

2.5 Fluid Inertia: Inductance

Acceleration in fluid flow may occur in one of two ways: in space or in time.
Acceleration in space occurs when the space available to a stream of fluid is
decreasing, so the fluid must increase its velocity to go through a reduced
amount of space. Flow in a tube with a narrowing, as in a bottle neck, is
an example (Fig. 2.5.1). Velocity at the narrowing must be higher than it
is elsewhere, since the flow rate through the tube must be everywhere the
same by conservation of mass, and since it is assumed here that the flow is
incompressible, that is fluid density is not changing. Thus, the fluid is in a
state of acceleration as it goes through the narrowing. The acceleration is in
space, that is, in the sense that fluid elements are being accelerated as they
progress along the tube.

Another, less obvious, example of acceleration in space occurs at the en-
trance to a tube. If fluid enters with uniform velocity (Fig. 2.5.2), elements of
the fluid along the tube axis must accelerate to meet the maximum velocity
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Fig. 2.5.1. Flow in a tube with a narrowing causes fluid elements to accelerate as
they approach the narrowing and decelerate as they leave, assuming that the fluid
is incompressible. Flow velocity is highest at the neck of the narrowing as indicated
by the closeness of the streamlines there. Both the acceleration and deceleration
are occurring in space, in the sense that the change in velocity is occurring as fluid
elements progress along the tube.

in Poiseuille flow, while fluid elements near the tube wall are slowed down by
the viscous resistance to meet the condition of no-slip at the tube wall. Thus
in the entrance region of the tube some fluid is in a state of acceleration and
some is in a state of deceleration, in both cases the change is occurring in
space, that is as the fluid progresses along the tube.

Fig. 2.5.2. Flow in the entrance region of a tube provides another example of
acceleration and deceleration in space. If fluid enters with uniform veleocity, elements
of the fluid along the tube axis must accelerate to meet the maximum velocity in
Poiseuille flow, while fluid elements near the tube wall are slowed down by the
viscous resistance and condition of no-slip at the tube wall.

One of the most important features of acceleration or deceleration in space
is that it occurs in steady flow, that is, in a state of flow which does not change
in time. In steady flow the velocity field does not change with time, meaning
that the velocities at fixed positions within the flow field are constant and
acceleration and deceleration occur as fluid elements move from one position
to the next. It is in this sense that acceleration and deceleration in steady
flow are seen as occurring in space.

Acceleration or deceleration in time, by contrast, is associated with un-
steady flow, a state of flow in which the velocity distribution within the flow
field changes with time. This situation occurs when the pressure driving the
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flow is not constant in time, as is the case in pulsatile blood flow where the
driving pressure changes in an oscillatory manner (Fig. 2.5.3). In this case ac-
celeration and deceleration are occurring in time, in the sense that the velocity
at fixed points within the flow field is changing in time.

Fig. 2.5.3. Changing flow field in oscillatory flow. Different panels represent differ-
ent points in time within the oscillatory cycle. Velocity is changing in time at fixed
positions in space within the flow field. Acceleration and deceleration are occurring
in time.

When a mass of fluid is accelerated or decelerated in time, the fluid does
not respond immediately, because of its inertia. Thus, if the pressure difference
Δp driving the flow in a tube changes suddenly to a higher level, it takes the
flow rate q some time before it adjusts to a new value appropriate for the
new driving pressure difference. This “reluctance” of the fluid to respond
immediately is a form of resistance which would appropriately be referred to
as “inertance” but is commonly known as inductance because of an electrical
analogy to be discussed later.

Unlike the viscous resistance to flow which is present at constant flow
rate, inductance is only present when flow is being accelerated or decelerated,
that is, only when there is change in the flow rate. In fact, it is the rate of
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change of flow rate that is being resisted by the fluid, which means that a
force is required to bring about such change. In the case of flow in a tube
this means that a pressure difference ΔpL would be required specifically for
this purpose; the subscript L is there to distinguish this pressure difference
from that required to maintain the flow against the viscous resistance. More
precisely, the required force is proportional to the rate of change of flow rate,
that is

ΔpL = L
dq

dt
(2.5.1)

Again, the symbol L is commonly used for the constant of proportionality
because of analogy with inductance in electric systems.

The basis of this relation can be found in the mechanics of an isolated
mass m, governed by Newton’s law of motion, which asserts that the product
of mass and acceleration must equal the net force acting on that mass. If the
force is denoted by F and the position of the mass is denoted by x, the law
can be written as

m
d2x

dt2
= F (2.5.2)

where t is time. In general this equation is a vector equation because both
F and x are vectors, but for the present purpose it is sufficient to work in
only one dimension. In fluid flow the corresponding situation would be that
of flow in a tube being accelerated, or decelerated, in one direction, namely
along the axis of the tube. If the viscous effect at the tube wall is neglected
for now (as it is accounted for separately below), then the body of fluid may
be considered to move freely along the tube, as a bolus, in accordance with
Newton’s law. If the diameter of the tube is d, then the mass of such bolus
of length l, being a cylindrical volume of fluid of diameter d and length l, is
ρlπd2/4, where ρ is the density of the fluid. If the velocity of the bolus is u
and the pressure difference driving it is ΔpL then the law of motion applied
to this mass gives

ρlπd2

4
du

dt
= ΔpL

πd2

4
(2.5.3)

If q is the volumetric flow rate, then q = uπd2/4 and the above can be put in
the form

ΔpL =
(

4ρl

πd2

)
dq

dt
(2.5.4)

Comparison of this with Eq. 2.5.1 indicates that the constant L in that equa-
tion corresponds to the bracketed term above, that is

L =
(

4ρl

πd2

)
(2.5.5)
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Thus, Eq. 2.5.1 and the concept of inductance on which it is based have a
basis in simple mechanics.

The total pressure difference Δp required to drive the flow in a tube in the
presence of a change in flow rate is the sum of the pressure difference needed
to overcome the force of resistance due to inductance, namely ΔpL, and the
pressure difference needed to overcome the force of resistance due to viscosity
discussed in the previous section, Eq. 2.4.3, now to be denoted by ΔpR, that
is

Δp = ΔpR + ΔpL (2.5.6)

Substituting for ΔpR from Eq. 2.4.3 and for ΔpL from Eq. 2.5.1, we then have

Δp = Rq + L
dq

dt
(2.5.7)

This is a first order ordinary differential equation which has the general solu-
tion [116]

q(t) =
e−t/(L/R)

L

∫
Δp et/(L/R)dt (2.5.8)

If the driving pressure difference is constant, say

Δp = Δp0 (2.5.9)

Eq. 2.5.8 gives upon integration

q(t) =
Δp0

R
+ Ae−t/(L/R) (2.5.10)

where A is a constant of integration. If the flow rate is zero at t = 0, we find
A = −Δp0/R and the solution finally becomes

q(t) =
Δp0

R

(
1 − e−t/(L/R)

)
(2.5.11)

As time goes on, the exponential term vanishes, leaving the flow rate at a
constant value of Δp0/R, which is what it would be against a resistance R
and with a driving pressure difference Δp0 (Eq. 2.4.3). At that value the flow
is said to be in steady state, while prior to that it is in a transient state.

The effect of inertia of the fluid is thus to cause the flow to take a certain
amount of time to reach steady state. As the driving pressure difference is
applied, the flow increases from zero to its ultimate value, but because of
inertia it takes a certain amount of time to reach that value. The higher the
inertial effect the longer it takes the flow to reach steady state (Fig. 2.5.4).
The ratio L/R has the dimensions of time and is a measure of the time delay
caused by the inertial effect. It is usually referred to as the “inertial time
constant” and we shall denote it here by tL, that is we define
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tL =
L

R
(2.5.12)

The higher the value of tL the higher the prevailing inertial effect and the
longer is the time required for flow to reach steady state. It is important
to note, however, that the approach to steady flow is asymptotic, as seen in
Fig. 2.5.4, which means that, strictly, the flow takes an infinite amount of time
to reach steady state. For practical purposes, however, the flow is sufficiently
close to steady state in a finite and usually very short time. The inertial time
constant tL is a measure of that time. More precisely, if in Eq. 2.5.11 we write

q(t) =
q(t)

Δp0/R
(2.5.13)

then

q(t) = 1 − e−t/tL (2.5.14)

and upon differentiation we find

q ′(t) =
1
tL

e−t/tL (2.5.15)

q ′(0) =
1
tL

(2.5.16)

Thus, the reciprocal of tL represents the initial slope with which the flow curve
moves towards its asymptotic value. The higher the inertial effect the higher
the value of tL and hence the lower the initial slope of the the flow curve
and the longer it takes flow to reach its asymptotic value. Also, because the
asymptotic value of the flow is here set at 1.0, then tL also represents the time
it takes the flow to reach this asymptotic value if, hypothetically, it continued
with its initial slope, as illustrated in Fig. 2.5.4

It is important not to confuse transient and steady states here with devel-
oping and fully developed flow discussed in Section 2.3. Here, and essentially
throughout the lumped model concept, the flow is assumed to be fully de-
veloped. Indeed, the relation ΔpR = Rq used in Eq. 2.5.7 is based on the
results obtained earlier for fully developed flow (Eq. 2.4.3). Steady and tran-
sient states here, by contrast, relate to flow development in time. Here we
start out in a tube where fully developed flow is already established, then the
pressure difference driving the flow is changed and we examine how, in time,
the flow rate q adjusts to this change. Steady state is reached when the flow
rate has fully adjusted to the change, while the adjustment period is referred
to as the transient state. Thus, broadly speaking, developing and fully devel-
oped flow relate to flow development in space, as in the entrance region of a
tube, while transient and steady states relate to flow development in time, as
when the pressure difference driving the flow is changed.
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Fig. 2.5.4. If the pressure difference driving the flow in a tube is suddenly increased
from 0 to some fixed value Δp0, the flow increases gradually (solid curves) until it
reaches the value Δp0/R, which is shown by the dashed line above, normalized to
1.0. At that value the flow is said to be in steady state, while prior to that it is in a
transient state. In steady state the flow rate has the value which it would have against
a resistance R and with a driving pressure difference Δp0 (Eq. 2.4.3), but because
of fluid inertia the flow rate takes time to reach this value, the higher the inertia the
longer the time. A good measure of the inertia of the fluid is the ratio L/R, which
has the dimension of time when L is the inertial constant defined in Eq. 2.5.5 and R
is the resistance defined in Eq. 2.4.4. The ratio is usually referred to as the “inertial
time constant” and is denoted here by tL (see Eq. 2.5.12). The three solid curves
above, from left to right respectively, correspond to L/R = tL = 1.0, 3.0, 6.0 seconds.
It is seen clearly how the time it takes the flow curve to reach its ultimate value is
directly related to the value of tL. More specifically, the reciprocal of tL represents
the initial slope with which the flow curve moves towards its asymptotic value as
indicated by the sloping dashed lines. The higher the inertial effect the higher the
value of tL and hence the lower the initial slope of the flow curve and the longer
it takes the flow to reach its asymptotic value. Also, because the asymptotic value
of the flow is here set at 1.0, then tL also represents the time it takes the flow to
reach this asymptotic value if, hypothetically, it continued with its initial slope. In
the absence of the inertial effect (L/R = tL = 0), the flow curve would “jump” to
the asymptotic value at time t = 0 and remain on it thereafter.
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If the driving pressure gradient Δp increases linearly with time, say

Δp =
Δp0

T
t (2.5.17)

where Δp0 is a constant and T is a fixed time interval, Eq. 2.5.8 gives upon
integration (by parts) and simplification

q(t) =
Δp0

TR

(
t − L

R

)
+ Ae−t/(L/R) (2.5.18)

where A is a constant of integration. If the flow rate is zero at t = 0, we find
A = Δp0L/(TR2) and the solution becomes

q(t) =
Δp0

TR

(
t − L

R
+

L

R
e−t/(L/R)

)
(2.5.19)

or in nondimensional form

q(t) =
q(t)

Δp0/R
=

t

T
− tL

T

(
1 − e−(t/T )/(tL/T )

)
(2.5.20)

It is clear from the form of the solution that the appropriate time variable in
this case is the fractional time t/T , where T may, for example, be taken as
the total interval over which the flow takes place, hence t/T has the range 0
to 1.0. As in the previous case, the effect of inertia is embodied in the value
of tL. Again, since tL has the dimension of time, it is appropriate in this case
to consider values of the inertial time constant tL/T , as this indeed is the
parameter required in the above equation.

Results for tL/T = 0.1, 0.3, 0.5 are shown in Fig. 2.5.5. As the driving
pressure difference Δp increases, the flow rate q ′(t) begins to increase, but
as in the previous case and because of inertia, it takes a certain amount of
time for the flow to reach a value appropriate for the prevailing value of the
pressure difference. But since in this case the pressure difference is continually
increasing, the flow rate is never able to reach that appropriate value. What
the flow rate is able to achieve as time goes on is a state in which its value is
a fixed amount below what it should be. We may refer to this state as quasi-
steady state since, strictly, steady state is usually defined as one in which the
flow rate is either constant or periodic. In the present case it is continually
increasing. Nevertheless, it is possible here to distinguish (Fig. 2.5.5) between
an initial period where the flow rate is adjusting to the new pressure difference,
which may be referred to as a transient state, and a final period in which the
flow rate is still changing but is now changing at a fixed rate, the same rate
at which the driving pressure difference is changing. It is in this sense that
the latter may be referred to as quasi-steady state.

From Eq. 2.5.20 we see that the quasi-steady state is reached asymptoti-
cally, as the exponential term becomes insignificant, and the flow rate reduces
to
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q(t) ∼ t

T
− tL

T
(2.5.21)

Thus, asymptotically, the flow acquires the same form as the driving
pressure, namely that of a linearly increasing function with a unit slope
(Eq. 2.5.20), but, because of the inertial effect the flow curve is shifted along
the time axis by an amount equal to the value of tL/T as shown in Fig. 2.5.5.
This shift represents the time interval by which the flow rate lags behind
the prevailing pressure difference. The higher the inertial effect, the higher
the value of tL and the larger this ultimate gap between pressure and flow.
Also, this gap between the flow and driving pressure never closes in this case
because the driving pressure is continuouly changing. Only in the case of con-
stant driving pressure does the flow ultimately “catch up” with the prevailing
pressure and in a sense “overcome” the inertial effect as it reaches steady
state. In the case of continuously changing pressure, as in the present case,
the inertial effect is present in the transient as well as in the quasi-steady
state.

If, finally, the driving pressure difference Δp varies as a periodic function
of time, say

Δp = Δp0 sin ωt (2.5.22)

where ω is the angular frequency of the oscillation, then Eq. 2.5.8 gives upon
integration (by parts again)

q(t) =
Δp0(R sin ωt − ωL cos ωt)

R2 + ω2L2 + Ae−(R/L)t (2.5.23)

where A is a constant of integration. If the flow rate is zero at time t = 0, we
find

A = Δp0ωL/(R2 + ω2L2) (2.5.24)

and the solution becomes

q(t) =
Δp0

R2 + ω2L2

(
R sin ωt − ωL cos ωt + ωLe−(R/L)t

)
(2.5.25)

A more useful form of the solution is obtained by combining the two trigono-
metric terms to give

q(t) =
Δp0√

R2 + ω2L2

(
sin (ωt − θ) − ωL√

R2 + ω2L2
e−(R/L)t

)
(2.5.26)

where

θ = tan−1
(

ωL

R

)
(2.5.27)

or in nondimensional form
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Fig. 2.5.5. If the pressure difference driving the flow in a tube increases linearly
from zero, the flow rate begins to increase, but because of inertia it requires a certain
amount of time to reach a value appropriate for the prevailing value of the pressure
difference. But since in this case the pressure difference is continually increasing, the
flow rate is never able to reach that appropriate value. What the flow rate is able to
achieve as time goes on is a quasi-steady state in which its value is a fixed amount
below what it should be. Thus, asymptotically, the flow acquires the same form as
the driving pressure, namely that of a linearly increasing function with a unit slope
(Eq. 2.5.20), but, because of the inertial effect the flow curve is shifted along the
time axis by an amount equal to the value of tL/T as shown. The three solid curves
above, from left to right respectively, correspond to tL/T = L/RT = 0.1, 0.3, 0.5,
where T is total time interval over which flow is taking place, here taken as 1.0.
The heavy dashed curve represents what the flow rate would be in the absence of
inertial effect, that is when the inertial parameter tL/T is zero. The light dashed
curves represent the asymptotes of the flow curves for other values of the inertial
parameter, shown at the bottom. It is seen that the higher the value of tL/T the
larger the ultimate gap between pressure and flow and hence the higher the inertial
effect.

q(t) =
q(t)

Δp0/R
=

1√
1 + ω2t2L

(
sin (ωt − θ) − ωtL√

1 + ω2t2L
e−t/tL

)
(2.5.28)

θ = tan−1 (ωtL) (2.5.29)

In this form we see that as the exponential term becomes insignificant, the flow
rate becomes the same function of time as the oscillatory pressure difference,
but with phase angle shift θ. The size of the shift is higher the higher the
inertia of the fluid, that is the higher the value of the inertial time constant



2.5 Fluid Inertia: Inductance 55

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

flo
w

 q
 (

no
nd

im
en

si
on

al
iz

ed
)

time t (s)

Fig. 2.5.6. If the pressure difference driving flow in a tube changes in an oscillatory
manner, the flow rate attempts to follow the same oscillatory pattern, but because
of inertia it requires a certain amount of time to reach that pattern. When it does,
however, the flow rate lags behind the pressure difference by a fixed phase angle θ
and its amplitude is lower than it would be in the absence of inertial effects, which
here has the normalized value of 1.0. The three solid curves above, from left to right
respectively, correspond to tL = L/R = 0.1, 0.3, 1.0 seconds. It is seen that the
higher the value of the inertial time constant tL the larger the phase shift θ and the
lower the amplitude of the flow oscillations.

tL(= L/R). Thus, here we see essentially the same behaviour of the fluid as in
the previous case. The flow begins with a transient period in which it attempts
to satisfy the prevailing pressure difference, but it never does. Instead, a steady
state is reached in which the flow rate oscillates with the same frequency as
the pressure difference driving the flow. It is a true “steady state” in this case,
by common definition of that term [116]. In this state the flow rate oscillates
in tandem with but lags behind the pressure difference by a fixed angle θ. The
higher the inertial effect the larger is θ, and in the absence of inertial effects
θ = 0 as can be seen from Eq. 2.5.29. Also, from Eq. 2.5.28 we see that the
amplitude of flow oscillation, which represents the highest flow rate reached
at the peak of each cycle, is given by

|q(t)| =
1√

1 + ω2t2L
(2.5.30)

thus the higher the inertial effect, hence the higher the value of tL, the lower
the amplitude of flow oscillation, as seen in Fig. 2.5.6. In the absence of inertial
effects the amplitude of flow oscillation would be 1.0.
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2.6 Elasticity of the Tube Wall: Capacitance

A tube in which the walls are rigid offers a fixed amount of space within it,
hence the volume of fluid filling it must also be fixed, assuming, here and
throughout the book, that the fluid is incompressible. By the law of conser-
vation of mass, flow rate q1 entering the tube must equal flow rate q2 at exit.
There is thus only one flow rate q through the tube, which may vary at dif-
ferent points in time depending on the applied pressure gradient, but at any
point in time it must be the same at all points along the tube. Indeed, the
relations between pressure gradient and flow considered in previous sections
were all of this type, where the flow rate q may be a function of time t but
not a function of position x along the tube (Eqs.2.3.4,2.4.6,2.5.11,14,19 and
Figs.2.5.3-6). Thus, the analyses and results of previous sections were all based
on the implicit assumption that flow is occurring in a rigid tube.

When flow is occurring in a nonrigid tube, two new effects come into play.
First, the volume of the tube as a whole may change, an effect known as
capacitance, again by analogy with the effect of a capacitor in an electric
circuit. Second, a local change of pressure in an elastic tube propagates like
a wave crest down the tube at a finite speed known as the wave speed. In a
rigid tube, by contrast, a local change of pressure takes effect instantaneously
everywhere within the tube. Consequently, the difference between flow of an
incompressible fluid in a rigid tube compared with that in an elastic tube can
also be expressed by saying that the wave speed is infinite in a rigid tube but
is finite in an elastic tube.

While both the effects of capacitance and wave propagation result from
elasticity of the tube wall, there is a fundamental difference between them,
which provides a basis for dealing with them separately. Under the effect of
capacitance there is a change in the total volume of the tube or system of
tubes. Under the effect of wave propagation there is no change in the total
volume of the system– a change of volume occurs only locally, as a local
bulge or narrowing, and then propagates down the tube. It is important to
emphasize, however, that while this difference makes it possible to separate the
two effects on theoretical grounds, it does not necessarily imply that the two
effects actually occur separately in practice. Hence, in this and the next section
we deal with the effects of capacitance and wave propagation separately, with
the understanding that this does not imply that the two effects must or do
occur separately.

The key to the capacitance effect on flow in an elastic tube is that it affects
the total volume of the tube, therefore flow rate at entrance to the tube may
no longer be the same as that at exit because some of the flow at entry may go
towards inflating the tube while some of the flow at exit may have come from
a deflation of the tube. A convenient way of modelling this is to imagine flow
going into a rigid tube to which a balloon is attached such that fluid has the
option of flowing through the tube as well as inflating the balloon as depicted
schematically in Fig. 2.6.1. The choice of a rigid tube is essential in order to
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eliminate the possibility of local changes in volume that would occur in wave
propagation. Thus, the model depicts change in total volume only, consistent
with the capacitance effect in isolation.

p1

p0

p0
qc qr

q

p1

Fig. 2.6.1. Capacitance effect of flow in an elastic tube can be modelled by flow into
a rigid tube with a balloon attached at one end. Flow rate q entering the system may
go into the balloon or into the tube or both. Pressure p1 at entry into the system is
equal to pressure prevailing inside the balloon. Pressure at exit from the rigid tube
is p0, the same as that outside the balloon.

Initially, we consider the entrance to the balloon to be at entrance to
the tube, so that pressure p1 at entry into the system is equal to pressure
prevailing within the balloon. Pressure outside the balloon and at exit from
the tube is p0. Flow through the tube and flow into the balloon are thus in
parallel, in the sense that they can occur independently of each other.

Flow through the tube, to be denoted by qr, is determined by the viscous
resistance R and by the pressure difference Δp, as found previously (Eq. 2.4.3),
namely

qr =
Δp

R
(2.6.1)

where

Δp = p0 − p1 (2.6.2)

For flow into the balloon we note first that the balloon is in an inflated state
when pressure inside the balloon is higher than pressure outside it, that is
when

p1 > p0, Δp < 0 (2.6.3)

If the volume of the balloon in this state is v, then the capacitance C which is
a measure of the compliance of the balloon is usually defined by the amount
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of change in the pressure difference Δp required to produce a change Δv in
the volume of the balloon, that is

C =
Δv

Δ(Δp)
(2.6.4)

The notation in the denominator emphasizes that it is not the pressure
difference Δp that produces the change in volume but a change in that pressure
difference. Also, in this form it is seen that a higher value of C represents a
balloon that requires less change in Δp to produce a given change in volume,
that is a balloon that is more elastic, or more compliant.

In coronary blood flow and blood flow in general the change in volume Δv
is not a useful entity to work with because it is not easily accessible. A more
useful entity is the capacitive flow rate qc representing the amount of flow
going into or out of the balloon, which can be related to Δv in the following
way. As before, we assume that fluid is incompressible, hence the only way to
change the volume of the balloon is to change the amount of fluid within it,
that is to have a nonzero flow rate qc going into or out of the balloon. If a
constant flow rate qc occurs over a time interval Δt, the corresponding change
in volume of the balloon will be

Δv = qcΔt (2.6.5)

Substituting this into Eq. 2.6.4 we then have

C =
qcΔt

Δ(Δp)
(2.6.6)

therefore

qc = C
Δ(Δp)

Δt
(2.6.7)

More generally, if Δp is a continuous function of time, then qc correspond-
ingly becomes a function of time, given by

qc = C
d(Δp)

dt
(2.6.8)

This result shows clearly, again, that flow rate into the balloon depends not
on the pressure difference Δp but on the rate of change of that difference.
Also, by noting that total flow rate q into the system must be the sum of flow
rates into the balloon and the tube, that is

q = qc + qr (2.6.9)

we see clearly that, because of the capacitance effect, flow rate q into the
system is not necessarily equal to flow rate qr out of the system.
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If the pressure p0 at exit from the tube and outside the balloon is now
fixed, then flow into the system is controlled by only one remaining variable,
namely the input pressure p1. Under these conditions we consider the following
three scenarios.

If the input pressure p1 is constant, that is, if

Δp = Δp0 (2.6.10)

where Δp0 is a constant, then Eqs.2.6.1,8 give

qr =
Δp0

R
qc = 0 (2.6.11)

Thus, in this case flow is entirely through the tube. Flow into the balloon is
zero because the rate of change of Δp is zero (although Δp itself is not zero).
The volume of the balloon remains unchanged in this case. The balloon comes
into play only when Δp is a function of time, which occurs if p1 is a function
of time.

If, for example, p1 increases linearly with time, then the pressure differ-
ences across the tube and across the balloon will also increase linearly with
time, say

Δp =
Δp0

T
t (2.6.12)

where Δp0 is a constant as before, t is time, and T is a fixed interval of time
over which the change is taking place, which we introduce as in the previous
section in order that Δp0 retains the physical dimensions of pressure, then
Eqs.2.6.1,8 now give

qr =
Δp0

R

t

T

qc = C
Δp0

T
(2.6.13)

There is constant flow into the balloon in this case, because the rate of change
of Δp with time is constant. Flow through the tube increases linearly with
time as Δp increases with time. To compare the two graphically it is easier to
put them in nondimensional forms, namely

qr =
qr

Δp0/R
=

t

T

qc =
qc

Δp0/R
=

RC

T
(2.6.14)

The product RC is seen to have the physical dimensions of time and is usually
referred to as the “capacitive time constant”. We shall denote it by tc, in
analogy with the inertial time constant (tL), and define it by
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tc = RC (2.6.15)

thus the two flow rates in nondimensional form are finally given by

qr =
qr

Δp0/R
=

t

T

qc =
qc

Δp0/R
=

tc
T

(2.6.16)

Fig. 2.6.2 compares these flow rates at different values of tc. We recall that
higher values of tc (= RC) are associated with higher compliance, allowing
more flow to go into the balloon. Therefore, as seen in the figure, capacitive
flow is constant at a value in fact equal to tc/T , while resistive flow (flow
through the tube) increases linearly as t/T .
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Fig. 2.6.2. Comparison of resistive (solid) and capacitive (dashed) flow rates when
the driving pressure Δp is increasing linearly with time over a time interval T and
at three different values of the capacitive time constant tc. In all cases, capacitive
flow is constant since it depends on the rate of change of Δp, while resistive flow
increases linearly with time since it depends on Δp itself. Higher values of the
capacitive constant tc correspond to higher compliance, thus allowing more flow
into the balloon.

Finally, an important scenario to consider is that in which the pressure
differences across the tube and across the balloon is oscillatory, say

Δp = Δp0 sin ωt (2.6.17)

where Δp0 is a constant and ω is the angular frequency of oscillation. In this
case Eqs.2.6.1,8 give
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Fig. 2.6.3. Comparison of resistive (solid) and capacitive (dashed) flow rates when
the driving pressure Δp is an oscillatory function of time of period T . The resistive
flow (solid) has the same form as the driving pressure since inertial effects are not
included here and since it is unaffected by the value of the capacitive time constant
tc. The capacitive flow (dashed) in each cycle, on the other hand, is higher with
higher values of tc because of higher compliance of the balloon.

qr =
Δp0

R
sin ωt

qc = Δp0ωC cos ωt (2.6.18)

As expected, both qc and qr are oscillatory functions of time, with the same
frequency as the driving pressure, namely ω. To compare the two it is more
appropriate to put them in nondimensional forms, namely

qr =
qr

Δp0/R
= sinωt

qc =
qc

Δp0/R
= ωtc cos ωt (2.6.19)

The two flows are compared graphically in Fig. 2.6.3, where it is seen that how
much of the flow goes into the balloon in each cycle depends on the value of
the capacitive time constant tC . As in the previous case, higher values of the
tc correspond to higher compliance, thus allowing more flow into the balloon.
The resistive flow, on the other hand, is unaffected by the value of tc and
has the same form as the driving pressure, noting that inertial effects are not
included here.

The results of this section illustrate the important role that capacitance
plays in the dynamics of oscillatory flow in a compliant system, and hence its
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important role in the dynamics of the coronary circulation. While the struc-
ture of the coronary vascular system is far more complicated than the simple
system in Fig. 2.6.1, the compliance of the system is known to play a role
similar to that depicted in Fig. 2.6.1. A key question in the coronary circu-
lation is how much of the oscillatory component of coronary blood flow goes
into simply inflating and deflating the volume of the system, and how much
goes into forward flow? This question is not properly addressed in the exam-
ple of Fig. 2.6.1 because the driving pressure used here is a simple harmonic
(Eq. 2.6.17) which produces only symmetrical back and forth flow in the rigid
tube of Fig. 2.6.1. In coronary blood flow the driving pressure is a more com-
plicated waveform which has a net forward component and some harmonic
components. Because the forward and the oscillatory parts of the flow are not
entirely separable from each other, capacitance of the system affects both,
and much of the work in this subject is aimed at determining the nature and
magnitude of this effect [98, 97].

2.7 Elasticity of the Tube Wall: Wave Propagation

As stated in the previous section, a fundamental difference between flow in a
rigid tube and flow in an elastic tube is that a local change of pressure in a
rigid tube is transmitted instantaneously to every part of the tube while in
an elastic tube the change is transmitted with a finite speed. The reason for
this is that a local increase in pressure in an elastic tube is able to stretch the
tube wall outward, forming a local bulge, and when the change in pressure
subsides, the bulge recoils and pushes the excess fluid down the tube [124].
The increase in pressure and the bulge associated with it propagate down
the tube like the crest of an advancing wave. This scenario is not possible
in a rigid tube because fluid in that case cannot stretch the tube wall, and
because, as stated earlier, we assume throughout this discussion that the fluid
is incompressible. It is for these two reasons that the local change in pressure
in a rigid tube is transmitted instantaneously to every part of the tube. Wave
propagation is not possible in a rigid tube.

If a change in pressure occurs at some interior position along an elastic
tube, the change will propagate equally in both directions, towards both ends
of the tube, as illustrated in Fig. 2.7.1. A scenario of more practical interest,
however, is that in which a change in pressure occurs at one end of the tube
and propagates in one direction towards the other end, which happens, for
example, when a pump is placed at one end of a tube to drive the flow, or
simply when there is a change in the pressure difference driving the flow. In
this case wave propagation is in only one direction, namely from entrance to
exit, as illustrated in Fig. 2.7.2, and this is the case we discuss in what follows
under the general heading of wave propagation. However, the possibility exists
that a wave propagating in one direction may be totally or partially reflected
by an obstacle [221], thus leading to a secondary wave moving in the opposite
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Fig. 2.7.1. A local change in pressure at an interior point in an elastic tube will
propagate equally in both directions, towards the two ends of the tube.

direction as illustrated in Fig. 2.7.3. This will be discussed later in the book
under the heading of wave reflections. Thus, in this section we consider only
a primary wave moving from one end of an elastic tube to the other end.

Fig. 2.7.2. A wave propagation scenario of more practical interest is that in which
a change in pressure occurs at one end of a tube and propagates to the other end.
This occurs, for example, when flow is driven by the stroke of a pump at the tube
entrance, or simply when there is a change in the pressure difference driving the
flow.

When considering flow in an elastic tube, it is useful to distinguish between
wave motion and fluid motion. If the flow is driven by an increase in pressure
at the tube entrance, for example, then wave motion refers to the forward
motion of the local swelling or bulge in the tube caused by the increase in
pressure, as illustrated in Figs. 2.7.2, 3, much like the motion of the crest of a
wave on the surface of a lake. The speed at which the bulge advances along
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the tube is referred to as the wave speed. Fluid motion, on the other hand,
refers to the motion of fluid elements within the tube, associated with that
wave motion. As the wave crest passes each position along the tube, fluid
elements at that location are first swept towards the local bulge in the tube,
as illustrated schematically in Fig. 2.7.4, and then as the wave passes and the
bulge subsides they are swept back by the decreasing pressure. The situation
is again much the same as that experienced by a floating or submerged body
swept by the passage of the crest of a wave on the surface of a lake.

Fig. 2.7.3. A wave moving in one direction along an elastic tube may be reflected
totally or partially by an obstacle, resulting in a secondary wave moving in the
opposite direction.

The wave speed c in an elastic tube depends on the elasticity of the tube,
a simple measure of that elasticity being the Young’s modulus E, sometimes
also referred to as the modulus of elasticity. The value of c also depends on
the diameter d of the tube and its wall thickness h, and on the density ρ of
the fluid. An approximate formula for the speed in terms of these properties
is the so called Moen-Korteweg formula [168, 135, 34, 141]

c =

√
Eh

ρd
(2.7.1)

The formula is only approximate because it does not take into account some
dependence of the wave speed on viscosity of the fluid. Also, the formula is
based on the assumption that the wall thickness h is small compared with the
tube diameter. Despite these limitations the formula can be used to provide
an estimate of the wave speed in the cardiovascular system. This is possible
if it is further assumed that an average wall-thickness-to-diameter ratio h/d
above can be taken for the entire system, which leaves c dependent on E and
ρ only. Thus, taking E = 107 dyne/cm2, ρ = 1 g/cm3, and h/d = 0.1, we find
c = 1000 cm/s which, in order of magnitude, is a representative estimate of
the wave speed in the cardiovascular system.

If the pressure at the entrance of an elastic tube does not merely rise
once but rises and falls in an oscillatory manner, the result is a train of wave
crests moving in tandem along the tube, the distance between two consecutive
crests being referred to as the wave length L, as illustrated in Fig. 2.7.5. Fluid
motion within the tube then consists of back and forth movements everywhere
along the tube as consecutive wave crests pass by. This situation provides a
basic working model for flow in the cardiovascular system where the driving



2.7 Elasticity of the Tube Wall: Wave Propagation 65

Fig. 2.7.4. As a wave crest passes each position along an elastic tube, fluid elements
at that location are first swept towards the local bulge in the tube and then, as
the crest passes and the bulge subsides, they are swept back by the decreasing
pressure. This fluid motion is to be distinguished from the wave motion, illustrated
in Figs. 2.7.1–3, which is concerned with only the motion of the wave itself. Fluid
motion is shown above only schematically in order to illustrate the difference between
fluid motion and wave motion, the motion of fluid elements is actually considerably
more complicated.

pressure generated by the heart rises and falls in a periodic manner. If the
frequency of oscillation is f cycles/s (Hz), then the wave length is related to
the wave speed by

L =
c

f
(2.7.2)

P0(t)

L

Fig. 2.7.5. If the pressure at the entrance of a tube does not change only once but
continuously, in an oscillatory manner, the result is a train of wave crests moving
along the tube, or what is commonly referred to as wave propagation. The distance
L between two consecutive crests is referred to as the wave length.

If the frequency of oscillation of the pressure pulse generated by the heart
is taken as 1 Hz, then an estimate of the wave length based on the above
estimate of the wave speed is L = 1000 cm. The wave length is shorter at
higher frequency, being only 500 cm at a frequency of 2 Hz. More important,
the pressure pulse generated by the heart is actually a composite wave con-
sisting of many so called harmonic components. Each harmonic component is
a perfect sine or cosine wave but has a different amplitude and different fre-
quency. The frequency of the pressure pulse generated by the heart represents
only the so-called fundamental frequency, that is, the frequency of the first
harmonic component which is referred to as the fundamental harmonic. The
frequency of the second harmonic is double the fundamental frequency, and
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the frequency of the third harmonic is three times the fundamental frequency,
and so on. Thus, the higher harmonics have increasingly shorter wave lengths.

Finally, wave speed and wave length are affected by the degree of elasticity
of the vessel wall, via the value of Young’s modulus E in Eq. 2.7.1. More rigid
walls have higher values of E and therefore lead to higher wave speeds and
higher wave lengths, which is relevant to blood vessels as they become more
rigid, generally with age or more locally because of disease. In the limiting
case of a totally rigid tube, E is infinite and hence both the wave speed and
wave length become infinite. Wave propagation is therefore not possible in a
rigid tube, clearly because a local increase in pressure cannot stretch the tube
radially outward and thereby start the propagation process. Nevertheless, it
is sometimes convenient to think of wave propagation in a rigid tube as one
in which the wave speed is infinite, with a change in pressure at one end
reaching all parts of the tube with infinite speed, that is instantaneously, as
stated briefly in the previous section. Indeed, if the driving pressure at the
entrance of a rigid tube changes in an oscillatory manner, the entire body of
fluid within the tube oscillates back and forth in unison, which is not to be
confused with wave propagation [221].

One of the most important effects of wave propagation in an elastic tube
is the possibility of wave reflections. Wave reflections arise when a wave meets
a change in one of the conditions under which it is propagating, such as
the diameter or elasticity of the tube, or more generally any change in the
resistance to wave propagation along the tube. It is important to distinguish
between the resistance to flow in a tube and the resistance to wave propagation
in that tube. The first represents the opposition to flow in a tube caused
by the viscous shear at the tube wall, and is usually referred to as “pure
resistance” or simply resistance. The second represents the opposition to wave
propagation in a tube caused by a combination of elasticity of the tube wall
and inertia of the fluid, and is usually referred to as reactance. We have noted
earlier, for example, that wave propagation is not possible in a rigid tube.
This can now be expressed more accurately by saying that a rigid tube has
infinite reactance. More generally, a less elastic tube has higher reactance and
offers more resistance to wave propagation than does a more elastic tube. The
combined effects of reactance and pure resistance are commonly referred to
as “impedance”. We shall see later that wave reflections in a tube arise at a
point where there is a change of impedance, which may be caused by a change
of diameter or elasticity of the tube. Impedance and wave propagation play
a central role in the dynamics of coronary blood flow and they are explored
more fully in later chapters.

2.8 Mechanical Analogy

The mechanics of flow in a tube or a system of tubes can be identified, by
analogy, with the basic mechanics of a solid object in motion under the influ-
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ence of certain forces and conditions. Indeed, both situations are governed by
the same laws of physics, and it should not be surprising that the analytical
descriptions of their mechanics are analogous. What is different between the
two situations, and what makes the analogy useful, stems from a difference
not in the governing laws but in the type of forces and conditions involved
and in the corresponding variables used in the two cases.

Thus, in the classical mechanics of a solid object, the familiar mass-
damper-spring system is used in which an applied force may be opposed by
a spring resistance proportional to the displacement of the object, a damper
(or dashpot) resistance proportional to the rate of change of displacement
(or velocity), and to an inertial resistance proportional to the second rate of
displacement (or acceleration) [139, 76]. While in fluid flow these forces and
conditions are not present in the same form, they are present in equivalent
forms which obey the same governing laws, hence the basis for the analogy.
For example, in fluid flow the capacitance of a tube or a system of tubes plays
the role of the spring in the classical mechanics system, the viscous resistance
between fluid and the tube wall plays the role of the damper, and the inertia of
the fluid plays the role of the inertia of the solid object. These properties have
already been discussed in earlier sections, what is required in this section is
only to show how they translate into the properties of the classical mechanics
system. The translation is not a direct one because the basic variables used
in the classical mechanics system, namely mass, displacement and rates of
displacement, are not readily available or convenient to work with in the fluid
flow system.

Before we carry out this translation it is important to point out that the
mechanical analogy has been used extensively in the modelling of coronary
blood flow because the classical mechanics of a solid object are familiar and
well understood. A model that can be expressed in terms of these mechanics,
therefore, has the prospect of unveiling the unknown properties of the coronary
circulation in terms which are familiar and well understood. In other words,
the analogy is useful because the properties and behaviour of the mechanical
system are more familiar and its elements more easily identified than the
properties and elements of the fluid system. A potential for error is entailed in
this modelling process, however, not because of any inaccuracy in the analogy
but because elements of the coronary circulation required for the application of
this analogy are not as easily identified as they are in a single tube. Thus, at the
core of this modelling process is the fundamental “lumped model” assumption
already discussed in Section 2.2, namely that the properties of many millions
of tube segments in the coronary circulation can be represented collectively
by those of an “equivalent” single tube. While many modelling studies have
focused on the likely values of these lumped properties [111, 49, 59, 40, 121, 32,
102, 33, 195, 107, 98, 97]– capacitance, resistance, and inertance– the greater
potential for error remains in the underlying assumption that these lumped
properties actually exist. In other words, the mechanical analogy provides a
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mechanical model of the coronary circulation only on the assumption that the
elements being modelled actually exist in the coronary circulation.

Furthermore, the behaviour of the classical mechanics system depends on
a clear relation between the mass, the spring, and the damper. This relation
is not known in the coronary circulation and must therefore be assumed in
any modelling process. The effect of capacitance in the coronary circulation,
for example, is produced by a change in the caliber, and hence the volume,
of some coronary arteries, resulting in a change in the overall volume of the
system [191, 51, 184, 110, 96, 97]. But at the same time this change in diameter
also alters the resistance to flow in these vessels. The relation between these
two effects is not known. In the classical mechanics system, by contrast, the
elements representing capacitance and resistance are entirely separate and
have no effect on each other. A related issue is the extent to which the basic
elements of capacitance, resistance, and inertance are in series or in parallel
in the coronary circulation. In the classical mechanics system this is known a
priori, but not so in the coronary circulation. Some studies have attempted
to deal with these issues by taking more than one lumped element of each
type, that is, more than one resistance and more than one capacitance, for
example, and by placing them in different combinations of series and parallel
arrangements [24, 36, 91, 115].

Despite these difficulties, the mechanical analogy is a useful tool in mod-
elling the coronary circulation because the analogy itself, as it applies to each
individual element, is clearly valid. Thus, the relation between the flow rate
q and pressure drop Δp in a tube, derived in Section 2.5 (Eq. 2.5.1), namely

Δp = L
dq

dt
(2.8.1)

where L is the inertance, or inertial constant, of a bolus of fluid within the
tube (Eq. 2.5.5), was shown in that section to be equivalent to the basic law
of motion

F = m
du

dt
(2.8.2)

where m is the mass of a solid object in motion,u is its velocity, and F is
the force acting on it. The analogy between the two equations is apparent
and the correspondence between the two situations is illustrated in Fig. 2.8.1.
The driving pressure difference Δp in the fluid flow system corresponds to
the acting force F in the classical mechanics system, while the inertance L
corresponds to the mass m, and the flow rate q corresponds to the velocity u.
In both cases the underlying law is “force equals mass times acceleration”.

Similarly, the viscous resistance to flow in a tube, discussed in Section 2.4,
and the resulting relation between the pressure difference Δp and the flow
rate q, namely (Eq. 2.4.3)

Δp = Rq (2.8.3)
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m m

Δp=L
dq
dt

F=m
du
dt

Fig. 2.8.1. The mechanical analogy between flow in a tube (bottom) and the mo-
tion of a solid object in classical mechanics (top). The driving pressure difference
Δp in the fluid flow system corresponds to the acting force F in the classical me-
chanics system, while the inertance L corresponds to the mass m, and the flow rate
q corresponds to the velocity u. In both cases the underlying law is “force equals
mass times acceleration”.

Δp=Rq

F=fu

Fig. 2.8.2. Mechanical analogy between the viscous friction at the interface between
fluid and tube wall, represented by velocity gradient at the tube wall (bottom), and
the friction law in classical mechanics at the interface between two solid objects
(top). Here the pressure difference Δp in the tube corresponds to the driving force
F in the classical mechanics system, the flow rate q corresponds to the friction
velocity u, and the viscous resistance R corresponds to the friction coefficient f .



70 2 Modelling Preliminaries

where R is the resistance to flow due to viscosity (Eq. 2.4.4), is analogous to
the classical law of friction at a solid-solid interface

F = fu (2.8.4)

where f is the coefficient of friction at the interface, u is the relative velocity
between the two surfaces, and F is the driving force. Again, the analogy
between the two equations is apparent, and the two situations are illustrated
in Fig. 2.8.2. Here the pressure difference Δp corresponds to the driving force
F and the flow rate q corresponds to the velocity u, as before, and the viscous
resistance R corresponds to the friction coefficient f .

Finally, the capacitance of an elastic tube, discussed in Section 2.6, and
the resulting relation between the pressure difference Δp and the change in
volume Δv, namely (Eqs. 2.6.4, 6)

Δ(Δp) =
1
C

Δv (2.8.5)

q v

Δv

F

Δx
F=kΔx

ΔvΔp=
1
C

Fig. 2.8.3. Mechanical analogy: between the capacitance effect of flow in an elastic
tube, here represented by a balloon, and the stretch of a spring according to Hooke’s
law. The pressure difference Δp in the flow system corresponds to the applied force
F in the spring system, the change in volume Δv of the tube/balloon corresponds
to the change in length Δx of the spring, and 1/C in the flow system corresponds to
the spring constant k, where C is a measure of the compliance of the tube/balloon,
as defined by Eq. 2.6.4.
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=
1
C

∫
qdt; Δv =

∫
qdt (2.8.6)

where C is the capacitance of the tube, is analogous to the classical Hooke’s
law for an elastic spring, namely

F = kΔx (2.8.7)

= k

∫
udt; Δx =

∫
udt (2.8.8)

where k is the spring constant, Δx is the spring extension, and F is the applied
force. In the integral terms above, the spring extension is expressed in terms
of the velocity u with which the spring is being extended, and the change in
volume Δv of the elastic tube/balloon is expressed in terms of the flow rate q.
The analogy between the two equations is apparent, with Δp corresponding
to the applied force F as before, the change in volume Δv in the flow system
corresponding to the change in length Δx of the spring, and 1/C in the flow
system corresponding to the spring constant k. In the integral terms the flow
rate q is seen to correspond to the velocity u in the mechanical system, as in
Eqs. 2.8.1, 2. The analogy between the two situations is illustrated in Fig. 2.8.3.

2.9 Electrical Analogy

The dynamics of the coronary circulation can also be modelled, by analogy,
in terms of an electric circuit with the basic elements of resistance, capaci-
tance, and inductance. This analogy is subject to the same limitations as the
mechanical analogy discussed in the previous section, namely the assumption
that these elements can be identified with lumped properties of the coronary
circulation. Nevertheless, electrical analogies have been used extensively in
the study of the coronary circulation [24, 36, 91, 115] because electric circuits
are much easier to manipulate, both analytically and experimentally, and are
thus a convenient modelling tool. A model of the coronary circulation based on
the electrical analogy can actually be built and tested experimentally. This
feature of the electrical model makes it particularly useful in the study of
pulsatile flow.

In the electrical analogy the electric potential, or voltage, V corresponds
to the pressure difference Δp in the flow system, and the electric current I
along a conductor corresponds to the flow rate q along a tube. The basis of
the analogy is that the relation between the voltage and current across an
inductor L, namely [43]

V = L
dI

dt
(2.9.1)

is analogous to the corresponding relation between the pressure difference
and flow rate in a tube, as in Eq. 2.8.1, where the inertia of the fluid produces
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Δp=L
dq
dt

V=L
dI
dt

V L

Fig. 2.9.1. Electrical analogy: between flow in a tube and the flow of current in an
electric circuit, in the presence of inductance L in both systems. The driving pressure
difference Δp in the fluid flow system corresponds to the voltage V in the electrical
system, and the flow rate q corresponds to the electric current I . Inductance in the
fluid flow system is caused by a change in the flow rate, which is associated with
acceleration or deceleration of a mass of fluid, while inductance in the electrical
system is due to change in the current, which is associated with acceleration or
deceleration of a mass of electrons.

an effect analogous to that of an inductor, as discussed in Section 2.5. The
analogy is illustrated in Fig. 2.9.1.

Similarly, the relation between the voltage and current across a resistor R,
namely [43]

V = RI (2.9.2)

is analogous to the relation between the pressure difference and flow rate in
a tube, as in Eq. 2.8.3, where viscous friction between fluid and the tube wall
produces an effect analogous to that of a resistor, as discussed in Section 2.4.
The analogy is illustrated in Fig. 2.9.2.

Finally, the relation between the voltage across and current into a capacitor
namely [43]

V =
1
C

ΔQ (2.9.3)

=
1
C

∫
Idt; ΔQ =

∫
Idt (2.9.4)

where C is the capacitance and ΔQ the accumulated electric charge on the
capacitor, is analogous to the relation between the pressure difference and
flow rate into an elastic tube, as in Eqs.2.8.5,6. Here, because of the elasticity
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Δp=Rq

V=IR

V R

Fig. 2.9.2. Electrical analogy: between flow in a tube and the flow of current in an
electric circuit, in the presence of resistance R in both systems. The driving pressure
difference Δp in the fluid flow system corresponds to the voltage V in the electrical
system, and the flow rate q corresponds to the electric current I . Resistance in the
fluid flow system is due to loss of kinetic energy because of viscous friction between
fluid and the tube wall, while that in the electrical system it results from a loss
of electric energy within the resistor. Interestingly, in both cases the lost energy is
converted to heat.

of the tube wall, the accumulated volume of fluid within the tube can change
in analogy with a change in the electric charge accumulated on the capacitor.
The analogy is illustrated in Fig. 2.9.3.

In summary, the electrical, mechanical, and fluid flow systems have three
characteristics in common, namely inductance, resistance, and capacitance,
and the dynamics of each system involves two principal variables, namely
a driving force and consequent flow or motion. In the electrical system the
three elements are an electric inductor, a resistor, and a capacitor, character-
ized respectively by their intrinsic constants L, R, C. The driving force is the
voltage V , the motion is represented by the flow of electric current I, and the
governing relations between these variables are:

inductance V = L
dI

dt
(2.9.5)

resistance V = RI (2.9.6)

capacitance V =
1
C

∫
Idt (2.9.7)

In the mechanical system the three elements are a moving object, a damper,
and a spring, characterized respectively by the mass m of the moving object,
the friction constant f of the damper, and the spring constant k. The driving
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q

V C

v

Δv

ΔvΔp=
1
C

ΔQV=
1
C

Fig. 2.9.3. Electrical analogy: between flow in a tube and the flow of current in
an electric circuit, in the presence of capacitance C in both systems. The driving
pressure difference Δp in the fluid flow system corresponds to the voltage V in
the electrical system, and the flow rate q corresponds to the electric current I .
Capacitance in the fluid flow system is due to a change in the volume v of fluid within
an elastic tube, here represented by an expandable balloon, while in the electrical
system it is caused by a change in the total electric charge Q on a capacitor. The
change in volume Δv in the fluid flow system is attained by a sustained flow rate
into or out of the balloon, while the change in electric charge ΔQ on the capacitor
is attained by a sustained current into or out of the capacitor.

force is an applied force F , the motion is represented by the velocity u of the
moving object, and the governing relations between these variables are:

inductance F = m
du

dt
(2.9.8)

resistance F = fu (2.9.9)

capacitance F = k

∫
udt (2.9.10)

In the fluid flow system, finally, the three elements are the mass of fluid in a
tube, viscous resistance between moving fluid and the tube wall, and capac-
itance produced by the elasticity of the tube wall, characterized respectively
by their intrinsic constants L, R, C. The driving force is the pressure differ-
ence Δp driving the flow, the motion is represented by the flow rate q, and
the governing relations between these variables are:

inductance Δp = L
dq

dt
(2.9.11)
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resistance Δp = Rq (2.9.12)

capacitance Δp =
1
C

∫
qdt (2.9.13)

For flow in a tube of length l and radius a, assuming Poiseuille flow throughout,
the resistance and inductance constants are respectively given by (Eqs. 2.4.4,
and 2.5.5)

R =
(

8μl

πa4

)
; L =

(
ρl

πa2

)
(2.9.14)

while the capacitance constant C is determined by the elasticity of the tube
wall.

2.10 Summary

Modelling of the coronary circulation is necessary because experimental access
to the dynamics of the system is severely limited. An understanding of the
dynamics of coronary blood flow is important because in the absence of such
understanding a purely static view of the system continues to be used in the
clinical setting. In a static view of the system the primary concern is whether
vessels are fully open or obstructed by disease. In a dynamic view the concern
is more broadly based on all factors that may affects the dynamics of the
system, the patency of the conducting vessels being only one such factor.

In a lumped model of the coronary circulation the complex vasculature of
the system is essentially replaced by an “equivalent” single tube with “lumped
parameters” that are assumed to represent the system as a whole. The model
is tested against any measurements that can be obtained from the coronary
circulation, and parameter values are adjusted in search of agreement. De-
spite difficulties associated with this concept, the lumped model has been an
invaluable tool in the study of the coronary circulation by establishing some
of its basic features.

The mechanics of flow in a tube is at the core of all lumped (as well as
unlumped) model analysis. The analysis is usually based on the assumption
of fully developed flow, ignoring flow in the entrance region of the tube where
flow is in a developing phase. This assumption is fairly difficult to deal with
because it is necessary, yet not easily justified.

Fluid viscosity together with the condition of no-slip at the tube wall
produce “resistance” to steady flow in a tube. This resistance increases as the
inverse of the tube radius to the fourth power, which means that if the radius
of the tube is reduced by a factor of 2, the resistance to flow increases by a
factor of 16. This dramatic relationship between vessel radius and resistance
to flow figures heavily in clinical practice. It must be remembered, however,
that coronary blood flow is not steady but pulsatile, where other forms of
resistance exist.
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When fluid is accelerated or decelerated, fluid inertia gives rise to another
form of resistance to flow, commonly referred to as inductance. The immedi-
ate effect of inductance is to delay the response of the fluid to a change in
the driving pressure difference. The flow rate does not “match” the prevail-
ing pressure difference immediately but with a time delay. In that “transient
state” the flow rate is attempting to reach a value appropriate for the pre-
vailing pressure difference, and it ultimately does if the prevailing pressure
difference does not change any further. But if the driving pressure difference
continues to change, as in oscillatory flow, the flow rate never reaches that
appropriate value. It falls short and lags behind, more so at higher values of
the inertial constant.

The “capacitance” of a tube or system of tubes arises when the tube wall
is elastic (or possibly viscoelastic) and hence the volume of fluid contained
within the tube or system of tubes can change. Capacitance is known to play
a significant role in the dynamics of coronary blood flow but a definitive model
of that role has yet to be formulated.

In addition to giving rise to capacitance, another fundamental consequence
of elasticity of the tube wall is that of wave propagation. In an elastic tube,
a change of pressure at one end of the tube does not reach the other end
instantaneously as it does in a rigid tube. Instead, it stretches the elastic wall
of the tube locally at first and then propagates down the tube like the crest
of a wave on the surface of a lake. In pulsatile flow this wave propagation is
continuous in space (along the tube) and in time. Inductance of the fluid and
capacitance of the tube combine to form a new type of resistance, namely
“resistance to wave propagation”, usually referred to as “reactance”, to be
distinguished from “pure resistance” caused by viscous shear at the tube wall.
Reactance and pure resistance combine to form the “impedance”, which plays
a key role in “wave reflections”, all of which will be discussed more fully in
later chapters.

Flow in an elastic tube is governed by the same physical laws and the
same equations as the motion of a mass in a mass-damper-spring system.
By this so-called “mechanical analogy”, inertia of the fluid in the fluid flow
system is equivalent to the inertia of the mass in the mechanical system,
viscous resistance in the fluid flow system is equivalent to resistance due to
damper friction in the mechanical system, and capacitance of the tube in the
fluid flow system is equivalent to the stretch of the spring in the mechanical
system. The analogy is useful because the elements of the mechanical system
are more familiar and their functions can be visualized more clearly than those
in the fluid flow system.

Flow in an elastic tube is also analogous to the flow of current in an electric
circuit. This so-called “electrical analogy” has been used widely in studying
the dynamics of the coronary circulation and forms the basis and “language”
of many lumped models of the system. Indeed, the terminology used for ele-
ments of resistance, inductance, and capacitance in the fluid flow system has
been taken directly from these familiar elements in electrical systems, thus
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correspondence between the two is fairly clear. A great advantage of the elec-
trical analogy is the availability of well developed mathematical analysis of
electric circuits of a wide range of complexity which would be fairly difficult
to formulate in terms of either the fluid flow or the mechanical system.



3

Basic Lumped Elements

3.1 Introduction

A lumped model of the coronary circulation must at a minimum include the
three basic elements of resistance, inductance, and capacitance, which we shall
associate with their respective constants R, L, C, as was done in previous
sections, and refer to the combination of the three elements generically as the
“RLC system”. The reason for this minimum requirement is that the coronary
circulation, being a fluid flow system, involves the movement of a fluid that
has mass and is therefore associated with inductance when accelerated or
decelerated; the moving fluid is viscous and is therefore subject to resistance
resulting from the no-slip boundary condition at vessel walls; and the vessels
are elastic, thus allowing changes in volume that produce capacitance effects.

What is not known, of course, is whether these elements can indeed be
considered as “lumped” in the dynamics of coronary blood flow. Thus, any
lumped model analysis must begin with the assumption that this can be done.
That is, it must be assumed that the inductance effects of blood flow in the
labyrinth of vessels in the coronary circulation can be represented by a single
inductance parameter L; that the viscous effects at the walls of the same
labyrinth of vessels can be represented by a single resistance parameter R;
and that the elasticity effects of all of these vessels can be represented by
a single capacitance parameter C. There are no clear grounds for making
these assumptions, nor any direct ways of assessing their validity, because of
the severe difficulties involved in any attempt to measure these parameters
directly from the coronary circulation. A more hopeful prospect of assessing
the validity of “lumped” parameters is that of comparing the dynamics of
an assumed lumped model with any measurable dynamics of the coronary
circulation and thus assessing indirectly the validity of the model and of the
lumped parameters on which it is based. Indeed, the validity of using the LRC
model rests on this prospect rather than on the legitimacy of the lumped model
concept.



80 3 Basic Lumped Elements

In using the RLC system it must also be assumed that the dynamics
of the coronary circulation are governed by only these three parameters. This
assumption, again, cannot be supported on any direct grounds, in fact it can be
disputed on the indirect ground that there are observed effects in the coronary
circulation which cannot be readily represented by the three basic elements.
One such effect which has so far proved very difficult to model is the so-called
“tissue pressure effect” or the effect of “cardiac muscle contraction”. This
effect arises because much of the coronary vasculature is actually imbedded
within the myocardium, and when the muscle contracts as it does within
each cardiac cycle, it exerts considerable pressure on the coronary vessels to
the extent of slowing down or even reversing the flow in some vessels, or
possibly collapsing the vessels momentarily within each cardiac cycle [84, 20,
68, 187, 41, 101]. Not only are the details of this scenario poorly known, but
its modelling has been particularly troublesome [96, 97].

A similar effect in this category is that of wave reflections. Wave reflections
are ubiquitous in the coronary circulation because of the pulsatile nature of the
flow and because of the large number of vascular junctions where reflections
occur [219, 221]. The effect of these on coronary blood flow, or more accurately
the way in which these effects are integrated into the design and dynamics of
the coronary circulation, is not known.

A related issue is that of the distinctness of R, L, C elements within the
coronary blood flow system. While it can be argued that resistance, induc-
tance, and capacitance effects must exist in the coronary circulation, that is
not to say that they must exist in “pure” form, distinct from each other as
they do in an electric circuit. Changes in vessel diameters associated with
capacitance effects, for example, clearly have an effect on the resistance to
flow because it depends critically on the diameter of the vessel. Thus, the ca-
pacitance and resistance effects are not entirely independent from each other,
they do not exist in a pure or distinct form.

Furthermore, coronary vessels are not only elastic but muscularized, thus
changes in vessel diameters may occur not only passively with pressure changes
but also actively in the course of regulation of coronary blood flow [83, 128].
While such active changes in diameters affect both the resistance to flow
and capacitance of the system, these effects cannot usually be included in a
primary lumped model of the coronary circulation because they result from
neural or humoral regulatory mechanisms that originate outside the primary
fluid dynamic system.

It may seem odd to proceed with the RLC system in the face of such
major unknowns, but the grounds for proceeding are twofold. First, as argued
earlier, these elements must exist within the physiological system in some
form, even if not lumped or distinct. Thus, the RLC system, even if not ul-
timately accurate, provides a reasonable approximation with which to start.
Second, the nature of the physiological setting, namely that of a beating heart
and deeply imbedded vasculature, is such that the location and arrangement
of these elements cannot be determined directly from the physiological sys-
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tem. The lumped model concept is based on the prospect that they can be
determined indirectly, by modelling.

3.2 RLC System in Series

When the elements of resistance R, inductance L, and capacitance C are in
series, their effects simply add up against the force driving the flow. Thus,
in the electrical system shown in Fig. 3.2.1, the equation governing the flow
of current I under the driving voltage V , using the results and notation of
Section 2.9, is given by

L
dI

dt
+ RI +

1
C

∫
Idt = V (3.2.1)

L

V R

C

Fig. 3.2.1. The electrical RLC system in series. Flow of electric charge (current) is
driven by the voltage V and opposed by an inductor (L), resistor (R), and capacitor
(C), in series.

Similarly, in the mechanical analogy shown in Fig. 3.2.2, the equation govern-
ing the velocity u of the moving mass under the driving force F , using the
results and notation of Section 2.8, is given by

L
du

dt
+ Ru +

1
C

∫
udt = F (3.2.2)

While in this case the inductance L is equal to the mass m of the moving object
(Eq. 2.8.2), the resistance R is equal to the friction coefficient f (Eq. 2.8.4),
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F

m L

R

C

Fig. 3.2.2. The mechanical RLC system in series. Motion (velocity) of mass m
is driven by a force F and opposed by the inertia of the mass, thus giving rise to
inductance (L), by the friction force of a damper, thus giving rise to resistance (R),
and by the force of a spring, thus giving rise to capacitance (C).

and the capacitance C is equal to the reciprocal of the spring constant k
(Eqs.2.8.6,8), we continue to use the symbols R, L, C in a generic manner in
order to highlight the analogy between the electrical and mechanical systems,
and in order to make the discussion and analysis of the governing equation
the same for both systems.

Finally, in the fluid flow system shown in Fig. 3.2.3, the equation governing
the flow rate q produced by the driving pressure difference Δp, using the
results and notation of Sections 2.4,5,6, is given by

L
dq

dt
+ Rq +

1
C

∫
qdt = Δp (3.2.3)

Again, while the inductance L and resistance R for flow in a tube can be
expressed in terms of properties of the fluid and of the tube (Eqs.2.4.5,2.5.5),
and for flow into an elastic balloon the capacitance C can be expressed in
terms of changes in the volume of the balloon (Eq. 2.6.4), we continue to use
the generic symbols R, L, C instead, as discussed earlier.

It is clear that in the fluid flow case of Fig. 3.2.3 the arrangement of the
three elements in series is not appropriate as a model of the physiological
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L

C

p2

p1

Δp = p2 - p1

R

Fig. 3.2.3. The fluid dynamic RLC system in series. Fluid flow is driven by a
pressure difference Δp = p2 − p1 and opposed by the inertia of the fluid, thus giving
rise to inductance (L), by the viscous resistance at the tube wall, thus giving rise
to resistance (R), and by the elasticity of a balloon, thus giving rise to capacitance
(C). Because of the series arrangement, flow is forced to go into or out of the balloon
and is therefore limited by its capacity. There is no outflow from the system, and
continuous flow is clearly not possible.

system because the flow is forced into or out of the balloon and is therefore
limited by the capacity of the balloon. There is no outflow from the system.
While it is possible to modify the model as in Fig. 3.2.4 to produce an outflow,
flow through the system, whether inflow or outflow, is still limited by the
capacity of the balloon. Continuous flow is not possible. Thus, the RLC system
in series is not a good model of the physiological system where continuous flow
is an essential feature. Nevertheless, for analytical and pedagogical reasons,
this model provides an important starting point and a useful reference.

For the analysis to follow, we use the fluid flow analogue of the RLC
system governed by Eq. 3.2.3. It is convenient to reduce the number of physical
parameters involved in this equation, so that the solution of the equation does
not require the actual values of R, L, C. We do this by dividing the equation
by the resistance R to give

tL
dq

dt
+ q +

1
tC

∫
qdt =

Δp

R
(3.2.4)
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L

C

p2

p1

Δp = p2 - p1

R

Fig. 3.2.4. Fluid dynamic RLC system in series, as in Fig. 3.2.3, but modified to
allow flow out of the system. The balloon is enclosed within a rigid box filled with
the same fluid, thus expansion of the balloon forces fluid out of the box as shown
by the arrow. Flow is still limited by the capacity of the balloon, however, and
continuous flow is not possible.

where tL (= L/R) and tC (= RC) are respectively the inertial and capacitive
time constants introduced in Sections 2.5,6, which are measures of the inertial
and capacitance effects as described in those sections.

Finally, as we found previously, it is more convenient to differentiate this
equation once to eliminate the integral term in the equation, giving

tL
d2q

dt2
+

dq

dt
+

1
tC

q =
1
R

d(Δp)
dt

(3.2.5)

3.3 Free Dynamics of the RLC System in Series

In this section we examine the dynamics of the RLC system in the absence
of any external force driving the system and refer to this as a state of “free
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dynamics”. In the governing equation (Eq. 3.2.5) this means that Δp ≡ 0, thus
the term on the right side of the equation is zero and the equation reduces to

tL
d2q

dt2
+

dq

dt
+

1
tC

q = 0 (3.3.1)

It is seen from this form of the equation that the inertial and capacitive
time constants tL, tC play a critical role in the free dynamics of the RLC
system, since they are the only parameters present in the equation, thus their
values critically affect the solution of this equation. This is particularly mean-
ingful because the values of tL, tC actually represent measures of the inertial
and capacitance effects in the system as discussed in previous sections. Thus,
these time parameters now allow a study of the free dynamics of the sys-
tem without the need to specify the values of the physical parameters R, L, C
individually.

Equation 3.3.1 is a standard second order linear differential equation with
constant coefficients [116]. Its solution depends on the nature of the roots of
the associated (so called “indicial”) equation

tLα2 + α +
1
tC

= 0 (3.3.2)

The roots are in general given by

α =
−1 ± √

1 − (4tL/tC)
2tL

(3.3.3)

but the solution of the governing equation (Eq. 3.3.1) and hence the dynamics
of the system depend critically on whether these roots are real or complex,
which in turn depends on the relative values of the time constants tL, tC .

If 4tL < tC , then Eq. 3.3.2 has two distinct real roots, given by

α1 =
−1 +

√
1 − (4tL/tC)
2tL

(3.3.4)

α2 =
−1 − √

1 − (4tL/tC)
2tL

(3.3.5)

and the solution of the governing equation is given by

q(t) = Aeα1t + Beα2t (3.3.6)

where A, B are arbitrary constants. Given the values of the flow rate at time
t = 0, namely q(0), and the rate of change of the flow rate at the same time,
namely q′(0), we find

A =
−α2q(0) + q′(0)

α1 − α2
(3.3.7)

B =
α1q(0) − q′(0)

α1 − α2
(3.3.8)
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If 4tL > tC , then Eq. 3.3.2 has two complex (conjugate) roots, given by

α1 = a + ib (3.3.9)
α2 = a − ib (3.3.10)

where

a =
−1
2tL

(3.3.11)

b =

√
(4tL/tC) − 1

2tL
(3.3.12)

i =
√−1 (3.3.13)

and the solution of the governing equation is given by

q(t) = eat{A cos(bt) + B sin(bt)} (3.3.14)

where A, B are arbitrary constants. Given the values of q(0) and q′(0), again,
we find

A = q(0)

B =
−aq(0) + q′(0)

b
(3.3.15)

If 4tL = tC , then Eq. 3.3.2 has two identical real roots, given by

α1 = α2 = a =
−1
2tL

(3.3.16)

and the solution of the governing equation is given by

q(t) = (A + Bt)eat (3.3.17)

where A, B are arbitrary constants. Given the values of q(0) and q′(0), we find

A = q(0)
B = −aq(0) + q′(0) (3.3.18)

Examples of these three scenarios are shown in Fig. 3.3.1. It must be re-
membered that the flow under these scenarios is free from any external driving
force, but it is subject to the effects of inertia (L), resistance (R), and capaci-
tance (C). The dynamics of the system are “free” in the sense that the system
is under only these internal forces.

Unlike the situation discussed in Section 2.6 where the capacitor is in par-
allel with a resistor and hence flow has the option of going into the balloon or
into the tube, in the present scenario the capacitor is in series and hence flow
has no option but to go into the balloon. Clearly, this situation is ultimately
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Fig. 3.3.1. Free dynamics of the RLC system in series with 4tL/tC = 0.4 (top
curve), 4tL/tC = 1 (middle curve), and 4tL/tC = 40 (bottom curve). The top
and bottom curves illustrate two different types of dynamics usually referred to as
“overdamped” and “underdamped” respectively. The middle curve represents the
singular dynamics, usually referred to as “critically damped”, which lies between
the two types of behaviour.

limited by the maximum size to which the balloon can stretch, but we ignore
this limit for the present and assume that the dynamics of the system are
taking place before the limit is reached.

At time t = 0 the dynamics are triggered with a pre-existing flow rate
q(0) through the system, and for the purpose of illustration we take q(0) = 1
and q′(0) = 0. This flow will diminish because it has no external driving
force and it is opposed by the tube resistance R and by the elasticity of the
balloon wall as flow stretches it. The only driving force which keeps some
flow going at this phase is an internal force due to the inertial effect, namely
the momentum which the fluid has by virtue of the pre-existing velocity with
which it was started. Since this momentum is finite and is not being renewed
by any external force, it is ultimately exhausted and the fluid comes to rest.
The flow rate becomes zero.

At this point one of two possible scenarios may unfold: the balloon may
recoil and send fluid back, thus reversing the flow direction, or the balloon
may simply absorb the increased volume of fluid and come to equilibrium
at a new volume. In the mechanical system analogy this is equivalent to the
compression (or expansion) of a spring, which may take place either “gently”
so that the spring may simply reach equilibrium at a new length, or it may
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take place more forcefully so that the spring will overshoot its equilibrium
length and bounce back.

Which of the two scenarios occurs depends on the rate at which the flow
rate diminishes, which in turn depends on the relative values of the inertial
and capacitance effects. Recalling that tL = L/R, tC = RC, if the value of
the ratio 4tL/tC is below 1.0, the balloon does not recoil, as seen in the top
curve in Fig. 3.3.1. If the value of the ratio is higher than 1.0, the balloon
recoils, leading to the oscillations seen in the bottom curve. One particular
value of that ratio, namely that corresponding to 4tL/tC = 1.0, is referred to
as “critically damped” in the sense that it acts as a separating line between
the two types of behaviour, as shown by the middle curve in Fig. 3.4.1.

The free dynamics of a dynamical system do not represent its dynamics
under the action of external forces, which is referred to as “forced dynam-
ics”, but they do represent the intrinsic characteristics of the system. An
understanding of these characteristics is important because they ultimately
determine how the system responds to external forces.

In the dynamics of the coronary circulation, the above scenarios are rele-
vant to the extent that the elements of inductance, resistance, and capacitance,
are known to exist in that system. While it is generally believed that these
elements are arranged in parallel rather than in series as they are here, and
while the dynamics of the coronary circulation is generally forced rather than
free, some of the overall conclusions reached here are relevant nevertheless.
More specifically, a change in the relative values of R, L, C, that may occur
as a result of disease or surgery, may change the intrinsic characteristics of
the system and hence its dynamic behaviour. Thus, a narrowing or stiffening
of some coronary arteries may change not only the values of R and C and
the corresponding resistance and capacitance effects, but it may cause the
system to cross over from one type of dynamic behaviour to another. Simi-
larly, a change in the consistency of blood resulting from the administration
of certain drugs which may change the density and viscosity of blood, may not
only change the values of L and R but may lead to a change in the dynamic
behaviour of the system.

3.4 R1,R2 in Parallel

When elements of the lumped model are in series, as we have seen in this
chapter so far, the flow rate through all elements at any moment in time must
be the same because of the law of conservation of mass. When the elements
are in parallel, however, this is no longer the case, as we saw in Section 2.6
where capacitance and resistance were in parallel. This is because when two
elements opposing the flow are in parallel, flow rate through the system is
divided in a manner commensurate with the relative opposition presented by
each element.



3.4 R1,R2 in Parallel 89

This division of flow is an important property of parallel systems, which is
particularly significant in coronary blood flow and in blood flow in general. It
allows different flow rates to prevail simultaneously within the system, which
is not possible when the elements are in series. We shall see in the next chapter
that this difference between series and parallel flow systems provides an im-
portant tool in the construction of a lumped model of the coronary circulation.
In the remainder of this chapter we explore some basic parallel arrangements
to highlight their properties, starting with two different resistances in parallel
as shown in Fig. 3.4.1. Only elementary properties pertaining particularly to
the parallel arrangement are discussed. In each case, the full dynamics of these
systems are deferred to subsequent chapters.

p2

p1

Δp = p2 - p1
R1 R2

Fig. 3.4.1. Two resistances in parallel, represented schematically by fully developed
Poiseuille flow in two tubes in parallel under a driving pressure drop Δp. A parallel
system allows different flow rates to prevail simultaneously within the system, which
is not possible when the elements are in series.

The scenario usually considered in this case is one in which the pressure
drop Δp is constant, so any change in one or both resistances will affect only
the flow rates. The pressure drops across the two elements will not change
because they are both the same under the parallel arrangement and are both
equal to the constant value of Δp under this scenario. However, another im-
portant scenario to consider is that in which the total flow rate through the
system is constant. This condition is likely to arise in the physiological system
because of regulatory mechanisms that respond to local oxygen consumption
by cardiac tissue, which is related to flow rate rather than to pressure. A
change in one or both resistances in this case will affect not only the indi-
vidual flow rates through the two elements but also the pressure drop across
the system, because the pressure drop must change in order to maintain the
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prescribed constant flow rate through the system. Let us consider these two
scenarios in more detail.

Under the scenario of constant pressure drop Δp the individual flow rates
through the two tubes are given by (Eq. 2.4.3)

q1 =
Δp

R1

q2 =
Δp

R2
(3.4.1)

and total flow rate through the system is given by

q = q1 + q2

=
(

R1 + R2

R1R2

)
Δp (3.4.2)

From these expressions it is clear that if the resistance in one of the two tubes
is changed then the flow rate will change in that tube but not in the other. And
since total flow rate is the sum of the two then total flow through the system
will change too. To illustrate this more clearly, let us consider R2 as being
fixed and change the ratio R1/R2. Using Δp and R2 as nondimensionalizing
constants, the flow rates can then be put in the following nondimensional
forms:

q1 =
q1

Δp/R2

=
1

R1/R2
(3.4.3)

q2 =
q2

Δp/R2

= 1 (3.4.4)

q =
q

Δp/R2

= 1 +
1

R1/R2
(3.4.5)

As the ratio R1/R2 changes, these flow rates change as illustrated graphically
in Fig. 3.4.2. It is seen that when R1/R2 = 1, flow through each tube has a
normalized value of 1.0 and total flow through the system is 2.0. As the value
of R1/R2 is decreased from this reference value, flow through R1 is increased
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Fig. 3.4.2. Normalized flow rates q1, q2 in two resistive tubes in parallel and under
a constant driving pressure drop. Total flow rate is q. If R2 is fixed, then a change
in the ratio R1/R2 will affect q1 and q but not q2.

but flow through R2 is unchanged, therefore total flow through the system is
increased.

Under the scenario of constant flow rate through the system, writing
Eq. 3.4.2 as

Δp =
(

R1R2

R1 + R2

)
q (3.4.6)

it is clear that a change in any or both of the two resistances will require a
commensurate change in Δp in order to maintain the prescribed constant flow
rate q. Also, if flow rates are now nondimensionalized in terms of the constant
flow rate, we have

q1 =
q1

q

=
1

1 + R1/R2
(3.4.7)

q2 =
q2

q

=
R1/R2

1 + R1/R2
(3.4.8)
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Fig. 3.4.3. Normalized flow rates q1, q2 in two resistive tubes in parallel and under
a condition of constant flow rate q through the system. If R2 is fixed, then a change
in the ratio R1/R2 will affect both q1 and q2 in such a way that total flow through
the system (q = q1 + q2) remains unchanged.

q =
q

q

= 1 (3.4.9)

As before, if R2 is fixed and the ratio R1/R2 is changed, then the change will
affect flow in both tubes in such a way that total flow rate remains constant
as prescribed under the present scenario. The results are shown graphically
in Fig. 3.4.3.

3.5 R,L in Parallel

Consider now an element of resistance R and an element of inductance L in
parallel under a driving pressure drop Δp as shown in Fig. 3.5.1. Schematically,
the two elements in that figure are represented by fully developed Poiseuille
flow in one tube, in which the viscous resistance to flow is R, and a hypo-
thetically “ideal” flow in which the viscous resistance is absent but fluid is
being accelerated from rest, hence the inertial effect is present. We shall refer
to these briefly as the “resistive tube” and “inductive tube”, respectively.

The pressure drop across the first tube will act to overcome the viscous
resistance while across the second tube it will act to accelerate the flow, as
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p2

p1

Δp = p2 - p1
R L

Fig. 3.5.1. Resistance R and reactance L in parallel, under a pressure drop Δp.
Resistance is represented here by fully developed flow in a tube in which the only
opposition to flow is the viscous resistance at the tube wall but with no inertial
effect since the flow is fully developed. Reactance is represented schematically by
idealized flow in a tube in which the viscous effect is absent but the fluid is being
accelerated from rest, hence the inertial effect is present.

discussed in more detail in Sections 2.4,5. If the flow rates in the two tubes are
denoted by qR and qL, respectively, then these are related to Δp as determined
in Sections 2.4,5, namely

Δp = qRR = L
dqL

dt
(3.5.1)

Thus

qR =
Δp

R
(3.5.2)

qL =
1
L

∫
Δpdt (3.5.3)

and the total flow rate is given by

q = qR + qL

=
Δp

R
+

1
L

∫
Δpdt (3.5.4)

or

dq

dt
=

1
R

d(Δp)
dt

+
Δp

L
(3.5.5)

If the driving pressure drop Δp is assumed constant, Eq. 3.5.5 reduces to
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dq

dt
=

Δp

L
(3.5.6)

and its solution is

q(t) =
Δp

L
t + A (3.5.7)

where A is a constant. Also, with Δp constant, Eqs.3.5.2,3 give

qR(t) =
Δp

R

qL(t) =
Δp

L
t + B (3.5.8)

where B is a constant. Since at time t = 0 it is assumed that fluid in the
reactance tube is at rest, that is qL(0) = 0, then B = 0 and

qL(t) =
Δp

L
t (3.5.9)

The total flow rate through the parallel system is thus given by

q(t) = qR(t) + qL(t)

=
Δp

R
+

Δp

L
t (3.5.10)

Comparing Eq. 3.5.7 and Eq. 3.5.10 we see that

A =
Δp

R
(3.5.11)

and the two equations become identical, as they should. Thus, under the
scenario of constant pressure drop, the individual and total flow rates, in
nondimensional form, are given by

qR(t) =
qR(t)
Δp/R

= 1

qL(t) =
qL(t)
Δp/R

=
t

tL

q(t) =
q(t)

Δp/R
= 1 +

t

tL
(3.5.12)

where, as in previous sections, tL = L/R. These are shown graphically in
Fig. 3.5.2 from which we see that flow rate through the resistive tube is con-
stant while that through the inductive tube increases linearly and indefinitely
with time. The reason for the latter is that in the inductive tube the only
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Fig. 3.5.2. Flow rates qR, qL in a resistive tube and an inductive tube, respectively,
in parallel and under a condition of constant pressure drop. Total flow rate is q. In
the inductive tube the only opposition to flow is fluid inertia, hence the fluid con-
tinues to accelerate under the constant driving force, a scenario which is unrealistic
physiologically under normal conditions but may arise under pathological conditions
involving a breach in the vascular system through which blood can escape.

opposition to flow is the inertia of the fluid, and in the presence of a constant
driving force the fluid continues to accelerate.

As discussed in the previous section, another scenario of physiological in-
terest is that in which the parallel system in Fig. 3.5.1 is under a condition of
constant flow rate rather than constant pressure drop. Thus, setting q constant
in Eq. 3.5.5, the equation reduces to

1
R

d(Δp)
dt

+
Δp

L
= 0 (3.5.13)

with the solution

Δp(t) = Δp(0)e−t/tL (3.5.14)

where Δp(0) is the value of Δp at time t = 0, which highlights the fact that
under the present scenario of constant flow rate the pressure drop driving the
flow is not constant. Using this result for the individual flows in Eqs.3.5.2,3,
we obtain
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Fig. 3.5.3. Flow rates qR, qL in a resistive tube and an inductive tube, respectively,
in parallel and under a condition of constant flow rate q through the system. In the
inductive tube the flow rate is increased from an initial value of zero to the value
of total flow rate through the parallel system. In the resistive tube there is viscous
resistance at any flow rate, thus the flow rate there, starting from total flow rate at
time t = 0 (when the inductive flow is zero) drops continuously as time goes on, as
more flow, and ultimately all flow, is diverted via the inductive tube.

qR(t) =
Δp(0)

R
e−t/tL

qL(t) =
Δp(0)

R

(
1 − e−t/tL

)
(3.5.15)

having assumed again that at time t = 0 fluid in the inductive tube is at rest,
that is qL(0) = 0. We note that

q(t) = qR(t) + qL(t)

=
Δp(0)

R
e−t/tL +

Δp(0)
R

(
1 − e−t/tL

)

=
Δp(0)

R
(3.5.16)

which indicates that total flow rate through the system is constant at all times
as it should be (by design) under the present scenario.

Writing these results in nondimensional form, we have



3.6 R,C in Parallel 97

qR(t) =
qR(t)

Δp(0)/R

= e−t/tL (3.5.17)

qL(t) =
qL(t)

Δp(0)/R

= 1 − e−t/tL (3.5.18)

q(t) =
q(t)

Δp(0)/R

= 1 (3.5.19)

which are shown graphically in Fig. 3.5.3. We see that as time goes on, under
this scenario resistive flow diminishes to zero while inductive flow reaches a
constant value equal to total flow. In other words, ultimately the entire flow
rate through the parallel system is diverted via the inductive tube. The reason
for this, of course, is that in the inductive tube there is no opposition to flow
at a constant rate, while in the resistive tube there is viscous resistance at
any nonzero flow rate.

3.6 R,C in Parallel

We consider next an element of resistance R and an element of capacitance
C in parallel under a driving pressure drop Δp as shown in Fig. 3.6.1, but
only briefly, since this configuration was discussed more fully in Section 2.6.
Again, the two elements in that figure are represented schematically by fully
developed Poiseuille flow in one tube, in which there is viscous resistance to
flow, and an expandable “balloon” in which the viscous resistance is absent
but a capacitance effect is present, as discussed at great length in Section 2.6.
The pressure drop across the resistance tube will act to overcome the viscous
resistance at the tube wall, while across the balloon (p2 inside and p1 outside)
it will act to overcome the capacitance effect of the balloon. More accurately,
Δp will act to keep the balloon inflated, and depending on whether and how
Δp is changing, it may drive flow into or out of the balloon, as discussed in
detail in Section 2.6.

If the flow rate going through the resistance tube is denoted by qR and
referred to as “resistive flow”, and that going into the balloon is denoted by
qC and referred to as “capacitive flow”, it is important to note that capacitive
flow is not a “through-flow” but a flow “into” (or out) of the balloon. The
extent of this flow is therefore clearly limited by the capacity of the balloon,
that is by the maximum volume to which the balloon can be stretched. Here,
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C

p2

p1 p1

Δp = p2 - p1 R

Fig. 3.6.1. Resistance R and capacitance C in parallel, under a pressure drop Δp.
Resistance is represented here by a fully developed flow in a tube in which the only
opposition to flow is the viscous resistance at the tube wall but with no inertial
effect since the flow is fully developed. Capacitance is represented by an expandable
“balloon” in which the viscous resistance is absent but a capacitance effect is present.
The pressure drop across the resistance tube acts to overcome the viscous resistance
at the tube wall, while across the balloon (p2 inside and p1 outside) it acts to keep
it inflated and, depending on whether and how Δp is changing, it may drive flow
into or out of the balloon, as discussed in Section 2.6.

as before and in subsequent analysis, we always assume that the balloon has
not reached this limit and that flow is occuring within the elastic range of the
balloon. This assumption is fairly consistent with physiological reality where
the part of blood flow that goes into stretching blood vessels normally does
so within their elastic limits. There have been suggestions that vessel walls
may in fact be not purely elastic but viscoelastic [204, 52], but this issue is
not important for the purpose of the present section.

Using the results established in Section 2.6, the two parallel flow rates are
related to Δp by

Δp = qRR =
1
C

∫
qCdt (3.6.1)

or

qR =
Δp

R
(3.6.2)

qC = C
d(Δp)

dt
(3.6.3)

and total flow is given by

q = qR + qC

=
Δp

R
+ C

d(Δp)
dt

(3.6.4)
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Under a scenario of constant pressure drop Δp, we have

qC = 0

qR = q =
Δp

R
(3.6.5)

Capacitive flow is zero because Δp is constant, and resistive flow is equal to
total flow through the system.

Under the alternate scenario of constant total flow rate q into the system,
the pressure drop Δp is no longer constant, as it must adjust in such a way
as to maintain the prescribed constant flow rate q. This behaviour of Δp is
governed by the following differential equation, from Eq. 3.6.4

C
d(Δp)

dt
+

Δp

R
= q (3.6.6)

which has the following solution, noting that q here is a constant

Δp(t) = qR + Ae−t/tC (3.6.7)

where A is a constant and, as before, tC = RC. Using this result for the
individual flows in Eqs.3.6.2,3, we obtain

qR(t) = q +
A

R
e−t/tC (3.6.8)

qC(t) = −A

R
e−t/tC (3.6.9)

To examine the interplay between capacitive and resistive flow rates we begin
with the two being equal and follow their subsequent time course. In other
words we set

qR(0) = qC(0) (3.6.10)

which gives

A = −Rq

2
(3.6.11)

Using this value of A in Eqs.3.6.8,9, the flow rates can now be put in the
following nondimentional forms

qR(t) =
qR

q
= 1 − 1

2
e−t/tC (3.6.12)

qC(t) =
qC

q
=

1
2
e−t/tC (3.6.13)

q =
q

q
= 1 (3.6.14)
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Fig. 3.6.2. Flow rates qR, qC in a resistive tube and a capacitive chamber (balloon),
respectively, in parallel and under a condition of constant flow rate q through the
system, normalized at a value of 1.0. At time t = 0 resistive and capacitive flows
are set at normalized values of 0.5 each. Subsequently, capacitive flow diminishes
from this value to an ultimate value of zero, while resistive flow increases gradually
to ultimately encompass total flow into the system. Recalling that resistive flow is
driven by the pressure drop while capacitive flow is driven by the derivative of the
pressure drop, these changes in flow rates are accompanied by corresponding changes
in the pressure drop and its derivative as described in the text.

recalling again that under the present scenario q is constant. The results are
shown in Fig. 3.6.2, where we see that as time goes on, capacitive flow dimin-
ishes while resistive flow increases gradually to encompass total flow into the
system. The reason for this can be seen from the behaviour of the pressure
drop Δp as time goes on. From Eqs.3.6.7,11 we have

Δp(t) = qR

(
1 − 1

2
e−t/tC

)
(3.6.15)

and by differentiation

Δp′(t) =
1
2

qR

tC
e−t/tC (3.6.16)

We recall from Section 2.6 that capacitive flow is driven not by the pressure
drop Δp but by the rate of change of the pressure drop, namely Δp′(t). Ac-
cordingly, from Eq. 3.6.16 we see that Δp′(t) has its maximum value at time
t = 0 and diminishes continuously thereafter to an ultimate value of zero.
Consequently, capacitive flow has its maximum value at time t = 0 and then
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diminishes gradually to an ultimate value of zero. Since total flow into the
system is constant under the present scenario, resistive flow begins with its
lowest value at time t = 0 and then increases gradually to encompass total
flow into the system, as illustrated in Fig. 3.6.2. Interestingly, the correspond-
ing change in the pressure drop is such that it actually increases from its
initial value to the value required to drive the ultimate resistive flow, but the
derivative of the pressure drop (which drives the capacitive flow) decreases
continuously from its initial value to an ultimate value of zero.

3.7 RLC System in Parallel Under Constant Pressure

Finally, we conclude this chapter, which started out by considering the three
elements of resistance R, inductance L, and capacitance C, in series, by con-
sidering now these three elements in parallel under a driving pressure drop Δp
as shown in Fig. 3.7.1. As before, the pressure drop will act to overcome the
viscous effect in the resistive tube, the inertial effect in the inductive tube,
and the capacitance effect in the balloon (capacitor).

p2

p1 p1

Δp = p2 - p1 R L C

p1

Fig. 3.7.1. Resistance R, inductance L, and capacitance C , in parallel under a
pressure drop Δp, other details as in Fig. 3.5.1 and Fig. 3.6.1.

If, as in Sections 3.5,6, resistive, inductive, and capacitive flow rates are
denoted by qR, qL, qC , respectively, then, as before, these are related to the
pressure drop by

Δp = qRR (3.7.1)

= L
dqL

dt
(3.7.2)

=
1
C

∫
qCdt (3.7.3)
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or

qR =
Δp

R
(3.7.4)

qL =
1
L

∫
Δpdt (3.7.5)

qC = C
d(Δp)

dt
(3.7.6)

Total flow rate into the parallel system is given by

q = qR + qL + qC (3.7.7)

=
Δp

R
+

1
L

∫
Δpdt + C

d(Δp)
dt

(3.7.8)

and, after differentiation, we have the following differential equation governing
the dynamics of the system

dq

dt
=

1
R

d(Δp)
dt

+
Δp

L
+ C

d2(Δp)
dt2

(3.7.9)

For the purpose of obtaining solutions of this equation, it is convenient to
put it in the following form, using the inertial and capacitive time constants
introduced in earlier sections

tC
d2(Δp)

dt2
+

d(Δp)
dt

+
1
tL

Δp = R
dq

dt
(3.7.10)

where, as before

tL = L/R (3.7.11)
tC = CR (3.7.12)

Under the scenario of constant pressure drop (Δp = constant), Eq. 3.7.10
reduces to

dq

dt
=

1
L

Δp (3.7.13)

with the solution

q(t) =
Δp

L
t + A (3.7.14)

where A is a constant. Also, from Eqs.3.7.4-6, with Δp constant, we have

qR(t) =
Δp

R
(3.7.15)

qL(t) =
Δp

L
t + B (3.7.16)

qC(t) = 0 (3.7.17)
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where B is a constant. If at time t = 0 it is assumed that fluid in the inductance
tube is at rest, that is qL(0) = 0, then B = 0 and

qL(t) =
Δp

L
t (3.7.18)

Total flow rate through the parallel system is thus given by

q(t) = qR(t) + qL(t) + qC(t)

=
Δp

R
+

Δp

L
t (3.7.19)

and comparing this with Eq. 3.7.14 we see that A = Δp/R and the two equa-
tions become identical, as they should. Thus, under the scenario of constant
pressure drop, the individual and total flow rates, in nondimensional form,
are given by

qR(t) =
qR(t)
Δp/R

= 1 (3.7.20)

qL(t) =
qL(t)
Δp/R

=
t

tL
(3.7.21)

qC(t) = 0 (3.7.22)

q(t) =
q(t)

Δp/R
= 1 +

t

tL
(3.7.23)

These results are identical with those obtained in Section 3.5, Eq. 3.5.12, and
shown in Fig. 3.5.2. Thus, under a scenario of constant pressure drop, the
LRC system in parallel is the same as the LR system in parallel. The reason
for this, of course, is that capacitive flow is driven not by Δp but by changes
in Δp.

3.8 RLC System in Parallel Under Constant Flow

With a constant flow rate, that is a constant total flow rate into the parallel
system, setting q constant in Eq. 3.7.10, the equation reduces to

tC
d2(Δp)

dt2
+

d(Δp)
dt

+
1
tL

Δp = 0 (3.8.1)

This is a standard second order linear homogeneous differential equation
with constant coefficients [116]. Its solution depends on the roots of the asso-
ciated (so-called “indicial”) equation

tCα2 + α +
1
tL

= 0 (3.8.2)



104 3 Basic Lumped Elements

The roots are in general given by

α =
−1 ± √

1 − (4tC/tL)
2tC

(3.8.3)

but the solution of the governing equation (Eq. 3.8.1) and hence the dynamics
of the system depend critically on whether these roots are real or complex,
which in turn depends on the relative values of the inertial and capacitive
time constants tL, tC .

If 4tC < tL, then Eq. 3.8.2 has two distinct real roots, given by

α1 =
−1 +

√
1 − (4tC/tL)
2tC

(3.8.4)

α2 =
−1 − √

1 − (4tC/tL)
2tC

(3.8.5)

and the solution of the governing equation (Eq. 3.8.1) is given by

Δp(t) = Aeα1t + Beα2t (3.8.6)

where A, B are arbitrary constants. Using this result for Δp in Eqs. 3.7.4–6,
we find

qR(t) =
Δp(t)

R

=
A

R
eα1t +

B

R
eα2t (3.8.7)

qL(t) =
1
L

∫
Δp(t)dt

=
A

Lα1
eα1t +

B

Lα2
eα2t + K (3.8.8)

qC(t) = C
d(Δp(t))

dt
= ACα1e

α1t + BCα2e
α2t (3.8.9)

where K is a constant of integration. Using the condition of constant total
flow rate under the present scenario, namely

qR(t) + qL(t) + qC(t) = q (constant) (3.8.10)

we find, after some algebra,

K = q (3.8.11)

The flow rates in Eqs.3.8.7-9 can now be put in the following nondimensional
form:
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qR(t) =
qR(t)

q
= Aeα1t + Beα2t (3.8.12)

qL(t) =
qL(t)

q
=

A

tLα1
eα1t +

B

tLα2
eα2t + 1 (3.8.13)

qC(t) =
qC(t)

q
= AtCα1e

α1t + BtCα2e
α2t (3.8.14)

where

A =
A

Rq
(3.8.15)

B =
B

Rq
(3.8.16)

The pressure drop can also be put in nondimensional form by writing

Δp(t) =
Δp

Rq
= Aeα1t + Beα2t (3.8.17)

from which we note that, in their nondimensional form, the pressure drop Δp
and the resistive flow qR are the same function of time (Eqs. 3.8.12, 17).

The constants A,B can be determined in terms of prescribed values for
the initial flow rates by setting t = 0 in Eqs. 3.8.12–14, to get

qR(0) = A + B (3.8.18)

qL(0) =
A

tLα1
+

B

tLα2
+ 1 (3.8.19)

qC(0) = AtCα1 + BtCα2 (3.8.20)

Since there are three initial flow rates and only two unknown constants, only
two of the flow rates can be prescribed. There are a number of different com-
binations in which this can be done. From a practical standpoint we may
assume that at time t = 0 the entire inflow q is going through the resistive
tube while the sum of the inductive and capacitive flow rates is zero, that is

qR(0) = 1 (3.8.21)
qL(0) + qC(0) = 0 (3.8.22)

From a strictly mathematical standpoint, this is equivalent to setting

qR(0) = 1 (3.8.23)
qL(0) = x (3.8.24)
qC(0) = −x (3.8.25)
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where x is as yet unknown. The second and third of these conditions can now
be used to find A,B in terms of x, and the first equation can then be used to
find the value or values of x that would satisfy that equation. When this is
done, we find in fact that all values of x satisfy this condition. From a practical
standpoint, the choice x = 0 is appropriate since it can be achieved by having
a pre-existing constant flow rate q through the resistive tube at time t < 0
with the entrances to the inductive and capacitive tubes closed, then at time
t = 0 these entrances are opened. And if the choice x = 0 is to be made, then
we may find A,B by simply setting the initial conditions

qL(0) = 0 (3.8.26)
qC(0) = 0 (3.8.27)

which give, after some algebra

A =
α2

α2 − α1
(3.8.28)

B =
−α1

α2 − α1
(3.8.29)

We note that these values satisfy the condition A + B = 1 in Eq. 3.8.18, as
well as the condition q(0) = qR(0) + qL(0) + qC(0) = 1 required under the
present scenario of constant flow rate into the parallel system. With these
values of A,B, the solution is now complete, and the nondimensional flow
rates in Eqs.3.8.12-14 can be plotted as functions of time. Values of the time
constants tL, tC are required in order to complete the process. Results using
tL = 1.0, tC = 0.1, are shown in Fig. 3.8.1. It is seen that at time t = 0
the inductive and capacitive flow rates have the prescribed nondimensional
values qL = qC = 0, while the resistive flow rate, as a consequence, has
the value 1.0. Thus, initially all flow is going through the resistive tube, but
fairly soon thereafter this flow diminishes while the inductive flow grows to
encompass total flow into the system. Capacitive flow is very small throughout
this process, and it too becomes zero as time goes on.

If 4tC > tL, then Eq. 3.8.2 has two complex (conjugate) roots, given by

α1 = a + ib (3.8.30)
α2 = a − ib (3.8.31)

where

a = −1/2tC (3.8.32)

b =

√
(4tC/tL) − 1

2tC
(3.8.33)

i =
√−1 (3.8.34)
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Fig. 3.8.1. Flow rates qR, qL, qC in a resistive tube, an inductive tube, and a capac-
itive chamber (capacitor), in parallel under a condition of constant flow rate q into
the system, normalized at a value of 1.0. At time t = 0 inductive and capacitive flows
are set at zero, and by consequence resistive flow has an initial value of 1.0, that is,
the resistive tube intially carries the entire flow rate into the system. Subsequently,
however, the situation reverses as inductive flow grows rapidly to encompass the
entire flow into the system. Since under the present scenario total flow into the sys-
tem is fixed at a normalized value of 1.0, capacitive and resistive flow rates diminish
to zero as a consequence. The way in which the flow rates approach their ultimate
values depends on the values of the inertial and capacitive time constants tL, tC .
Results in this figure are based on tL = 1.0, tC = 0.1.

and the solution of the governing equation (Eq. 3.8.1) is given by

Δp(t) = eat{A cos(bt) + B sin(bt)} (3.8.35)

where A, B are arbitrary constants. Using this result for Δp in Eqs. 3.8.7–9,
we find, after a considerable amount of algebra,

qR(t) =
Δp

R

=
eat

R
{A cos(bt) + B sin(bt)} (3.8.36)

qL(t) =
1
L

∫
Δp(t)dt

=
eat

2R
{A(− cos(bt) + 2btC sin(bt))
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+B(− sin(bt) − 2btC cos(bt))} + K (3.8.37)

qC(t) = C
d(Δp)

dt

=
eat

2R
{A(− cos(bt) − 2btC sin(bt))

+B(− sin(bt) + 2btC cos(bt))} (3.8.38)

where K is a constant of integration. As before, using the condition of con-
stant flow rate under the present scenario, namely qR(t) + qL(t) + qC(t) =
q (constant), we find, after some algebra,

K = q (3.8.39)

The flow rates in Eqs. 3.8.36–38 can now be put in the following nondimen-
sional form

qR(t) = eat(A cos(bt) + B sin(bt)) (3.8.40)

qL(t) =
eat

2
{A(− cos(bt) + 2btC sin(bt))

+B(− sin(bt) − 2btC cos(bt))} + 1 (3.8.41)

qC(t) =
eat

2
{A(− cos(bt) − 2btC sin(bt))

+B(− sin(bt) + 2btC cos(bt))} (3.8.42)

where

A =
A

Rq
(3.8.43)

B =
B

Rq
(3.8.44)

At time t = 0 these give

qR(0) = A (3.8.45)

qL(0) = −A

2
− BbtC + 1 (3.8.46)

qC(0) = −A

2
+ BbtC (3.8.47)

and setting the initial conditions as before, namely

qL(0) = 0 (3.8.48)
qC(0) = 0 (3.8.49)
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we find

A = 1 (3.8.50)
B = 1/(2btC) (3.8.51)

We note that the condition of constant flow rate into the system required
under the present scenario, which in nondimensional form reads

qR(t) + qL(t) + qC(t) = 1 (3.8.52)

is satified at time t = 0 and at all other times.
As before, only values of the time constants are required now to complete

the solution. Results using tL = 1.0, tC = 2.5 are shown in Fig. 3.8.2. At time
t = 0 the inductive and capacitive flow rates are zero as prescribed, while
the resistive flow rate, as a consequence, has the value 1.0. As in the case of
tL = 1.0, tC = 0.1 (Fig. 3.8.1), initially all flow is going through the resistive
tube, but fairly soon thereafter this flow diminishes while the inductive flow
grows to encompass total flow into the system. The difference between the
two cases, however, is that in the present case the process is accompanied
by oscillations which are usually associated with “underdamping”, while the
behaviour observed in the previous case (Fig. 3.8.1) is associated with “over-
damping”. Since the inertial time constant is the same in both cases, namely
tL = 1.0, this different behaviour is due entirely to the difference in the val-
ues of the capacitive time constant tC (= CR). Assuming, for the purpose of
comparison, that the value of C is the same in the two cases, then the value
of R in the present case where tC = 2.5 is 25 times larger than the value
of R in the previous case where tC = 0.1. Thus, the underdamped dynamics
observed in Fig. 3.8.2 is here associated with a higher value of the resistance
R, which is the reverse of what occurs when the R, L, C elements are in series.
The reason for this is that in this section we are dealing with a parallel LRC
system and under a condition of constant flow rate into the system. Under
these circumstances, a lower value of the resistance R diverts more flow into
the resistance tube which has a more stabilizing effect on the dynamics of the
system, while higher values of R have the opposite effect. By contrast, when
the LRC system is in series, lower values of R lead to an increase of flow to
all components of the system, which has a destabilizing effect, while higher
values of R have a damping and hence a stabilizing effect.

If 4tC = tL, finally, then Eq. 3.8.2 has two identical real roots given by

α1 = α2 = −1/2tC = a (3.8.53)

and the solution of the governing equation (Eq. 3.8.1) is given by

Δp(t) = (A + Bt)eat (3.8.54)

where A, B are arbitrary constants and
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Fig. 3.8.2. Flow rates qR, qL, qC in an LRC system in parallel under a condition
of constant flow, as in Fig. 3.8.1, but results here are based on tL = 1.0, tC =
2.5 (compared with tL = 1.0, tC = 2.5 in Fig. 3.8.1). While the ultimate outcome
is the same in both cases, the oscillations in this figure are indicative of what is
usually referred to as an “underdamped” system, while their absence in Fig. 3.8.1 is
indicative of an “overdamped” system. Since the higher value of tC in the present
case is associated with a higher value of R, these results show that in the parallel
LRC system higher values of the resistance have a destabilizing effect, in contrast
with the LRC system in series where the reverse is true (see text).

Using this result for Δp in Eqs. 3.8.7–9, we find

qR(t) =
Δp(t)

R

=
(

A

R
+

B

R
t

)
eat (3.8.55)

qL(t) =
1
L

∫
Δp(t)dt

= −
(

2tC
RtL

)
{A + B(t + 2tC)}eat + K (3.8.56)

qC(t) = C
d(Δp(t))

dt

=
−1
2R

{A − B(2tC − t)}eat (3.8.57)
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where K is a constant of integration. As before, using the condition of con-
stant flow rate under the present scenario, namely qR(t) + qL(t) + qC(t) =
q (constant), we find, after some algebra,

K = q (3.8.58)

The flow rates in Eqs. 3.8.55–57 can now be put in the following nondimen-
sional form

qR(t) = (A + Bt)eat (3.8.59)

qL(t) =
(−2tC

tL

)
{A + B(t + 2tC)}eat + 1 (3.8.60)

qC(t) =
(−1

2

)
{A − B(2tC − t)}eat (3.8.61)

where, as before

A =
A

Rq
(3.8.62)

B =
B

Rq
(3.8.63)

At time t = 0 these give

qR(0) = A (3.8.64)

qL(0) =
(−2tC

tL

)
{A + B(2tC)} + 1 (3.8.65)

qC(0) =
(−1

2

)
{A − B(2tC)} (3.8.66)

and setting the initial conditions as before, namely

qL(0) = 0 (3.8.67)
qC(0) = 0 (3.8.68)

we find

A = 1 (3.8.69)
B = 1/(2tC) (3.8.70)

We note that the condition of a constant flow rate into the system required
under the present scenario, namely qR(t) + qL(t) + qC(t) = 1, is satified at
time t = 0 and at all other times. As before, only values of the inertial and
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Fig. 3.8.3. Flow rates qR, qL, qC in an LRC system in parallel under a condition
of constant flow, as in Fig. 3.8.1,2, but results here are based on tL = 1.0, tC = 0.25
(hence 4tC = tL). While the ultimate outcome is the same in all three cases, the
present case represents a singular case of “critical damping” which occurs with only
this particular ratio of the time constants (see text).

capacitive time constants are required now to complete the solution. Results
using tL = 1.0, tC = 0.25 (hence 4tC = tL) are shown in Fig. 3.8.3. Dynamics
of the system observed in this figure indicate what is usually referred to as
“critical damping”, which is a singular condition between the overdamped
and the underdamped conditions. With tL = 1.0, only a single value of tC
produces critically damped dynamics, while a range of values can produce
overdamped or underdamped dynamics.

3.9 Summary

A lumped model of the coronary circulation must at a minimum include the
three basic elements of resistance, inductance, and capacitance, because that
circulation, being a fluid flow system, involves the movement of a fluid that
has mass and is therefore associated with inductance when accelerated or de-
celerated; the moving fluid is viscous and is therefore subject to resistance
resulting from the no-slip boundary condition at vessel walls; and the vessels
are elastic, thus allowing changes in volume and hence producing capacitance
effects. While the location and arrangement of these elements cannot be de-
termined directly from the physiological system, the lumped model concept is
based on the prospect that they can be determined indirectly, by modelling.
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The RLC system in series, though clearly not an appropriate model of
the physiological system, provides an important starting point and a useful
reference.

Free dynamics of the RLC system represent basic intrinsic characteris-
tics of the system which ultimately determine how it responds to external
forces. The results are relevant to the dynamics of the coronary circulation
to the extent that they demonstrate clearly how any change in the relative
values of R, L, C, that may occur as a result of disease or clinical intervention,
may change the intrinsic characteristics of the system and hence its dynamic
behaviour.

Flow in two parallel resistive tubes may be examined under two different
conditions: constant pressure drop across the two tubes, or constant total flow
rate through the system. The second of these is of particular interest in the
physiological system because of regulatory mechanisms that respond to local
oxygen consumption by cardiac tissue, which is related to flow rate rather than
pressure. Under constant pressure, a change in the resistance of one tube will
change the flow rate in that tube but not in the other. Under constant flow
rate, a change in the resistance of one tube will affect the flow rate in both
tubes.

Flow through a resistive and an inductive tube in parallel produce results
that are physiologically unrealistic under the scenario of constant pressure
drop as well as that of constant flow rate. Inductive flow rate in one case
becomes infinite and in the other it becomes equal to total flow rate through
the system. The reason for this, of course, is that under the present parallel
arrangement the inductive tube is in isolation in the sense that flow has the
option of taking the inductive route without passing through the resistance.
The situation is somewhat artificial because while the inductive effect due to
fluid inertia certainly exists in the physiological system, it does not exist in
isolation. We have seen in earlier sections that when fluid in a tube is acceler-
ated from rest, the inertial effect is normally tied in series with resistance due
to the viscous effect at the tube wall. Thus, one is led to conclude that in the
normal physiological setting inductive flow is always in series with some other
elements of the system, not in parallel. However, under pathological conditions,
specifically an injury, a breach in the vascular system through which blood
can escape, a parallel inductive route is created as depicted in the present
model.

For flow through a resistor and a capacitor in parallel, under the constant
pressure drop scenario there is no interaction between the resistive and ca-
pacitive flows, but under the scenario of constant flow rate the pressure drop
driving the two parallel flows changes as time goes on and the two flows change
with it. Since total flow rate must remain constant as prescribed under this
scenario, changes in the two parallel flows must occur in a complimentary way,
a change in one affecting the other. From a prescribed condition of the two
parallel flows being equal to each other initially, as time goes on the system
moves towards an ultimate condition of zero capacitive flow and resistive flow
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equal to total flow. Thus, while inductive flow in parallel grows, as was found
in the previous section, capacitive flow in parallel diminishes ultimately to
zero.

Under a condition of constant pressure drop the RLC system in parallel
behaves as if the capacitor C does not exist, that is, it behaves as an RL
system in parallel under constant pressure drop.

Under a condition of constant flow rate, we note first the important dif-
ference between the dynamics of the series and parallel LRC systems, namely
that in the series system the resistance R has a damping effect while in the
parallel system it has a destabilizing effect. In the series system, overdamped
dynamics occur at higher values of the resistance R, and underdamped dy-
namics occur at lower values of R. In the parallel system the reverse is true.

Second, in the parallel LRC system, under constant flow conditions, the
inductive flow ultimately encompasses the entire flow into the system, thus
reducing resistive and capacitive flow to zero. This occurs at all three dynamic
modes of the system, namely the overdamped, underdamped, and the critically
damped modes.

Finally, while inductance is an important factor in the normal dynamics
of the coronary circulation and in the cardiovascular system in general, as it
occurs whenever fluid is being accelerated or decelerated, it is usually present
in series with the resistance and capacitance rather than in parallel. Parallel
reactance routes are not normally present in the coronary circulation or in the
cardiovascular system in general, since they would ultimately “steal” the entire
flow away from other elements of the system. Under abnormal circumstances,
however, as in the presence of a breach in the vascular system through which
blood can escape freely, the new route for blood flow will act precisely as
a inductive route. Fluid will be accelerated freely through the breach until
it ultimately steals the entire flow rate available, away from all other routes
within the system, precisely as seen in Figs.3.8.1-3. This leads to failure of
the organ or organism if the breach is not stopped. While the ultimate cause
of this failure is metabolic, in the sense that tissue is being deprived from its
metabolic needs, it is important to note that the primary cause of the failure
is related to the dynamics of the system.
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Forced Dynamics of the RLC System

4.1 Introduction

In the previous chapter we examined some basic dynamics of the R, L, C ele-
ments, first arranged in series under a condition of zero driving pressure drop
(“free” dynamics), and then in parallel under a condition of either constant
flow rate into the system or constant driving pressure drop. While these sce-
narios are somewhat artificial, they illustrate some intrinsic characteristics of
the RLC system and highlight important differences between the dynamics
of the series and parallel arrangement of the system.

The dynamics of the coronary circulation are neither “free” nor driven by
constant pressure or constant flow rate. They are “forced” dynamics, driven
by the same pressure wave that drives blood flow in the systemic circulation,
namely the pulsatile pressure wave generated by the pumping action of the
left ventricle, the so-called “cardiac pressure wave”. In order to bring the
dynamics of the RLC system of the previous chapter closer to the dynamics of
the coronary circulation, therefore, it is necessary to give the driving pressure
drop Δp the form of the cardiac pressure wave.

In free dynamics, the behaviour of the RLC system is determined by the
characteristics of the system only, namely the series or parallel arrangement
of the R, L, C elements relative to each other, and their relative values. In
forced dynamics, the behaviour of the system is determined by these same
factors but also by the form of the driving pressure, that is, by the form of Δp
as a function of time. We shall see later that the cardiac pressure waveform
is a “composite” function of time consisting of an assortment of simple sine
and cosine waves which are referred to as its “harmonics”, as discussed in
Chapter 5. In the present chapter, as a first step, therefore, we examine the
dynamics of the RLC system under a driving pressure drop that consists of
a single harmonic, a simple sine or cosine function, to focus on the response
of the system to a simple periodic driving force. In Chapter 6 we consider
the dynamics of the system under the force of the full composite form of the
cardiac pressure wave.
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4.2 The Particular Solution

We begin with the RLC system in series illustrated schematically in Fig. 3.2.3
and governed by Eq. 3.2.4. Taking the driving pressure drop in that equation
as a simple cosine function, namely

Δp = Δp0 cos ωt (4.2.1)

where Δp0 is a constant and ω is the frequency of oscillation of the cosine
function. With this form of Δp Eq. 3.2.4 becomes

tL
dq

dt
+ q +

1
tC

∫
qdt =

Δp0 cos ωt

R
(4.2.2)

As before, for the purpose of solving this equation it is convenient to
differentiate it once in order to eliminate the integral term, to get

tL
d2q

dt2
+

dq

dt
+

q

tC
=

−Δp0ω sin ωt

R
(4.2.3)

The solution of this equation consists of two parts, usually referred to as
the “homogeneous” part, to be denoted by qh(t), and the “particular” part,
to be denoted by qp(t). The total solution is given by the sum of these two
parts, that is,

q(t) = qh(t) + qp(t) (4.2.4)

The homogeneous part of the solution is, by definition, the general solution
of the homogeneous form of Eq. 4.2.3, that is, it satisfies

tL
d2qh

dt2
+

dqh

dt
+

qh

tC
= 0 (4.2.5)

This equation is identical with Eq. 3.3.1 whose solutions were obtained fully in
Section 3.3. Thus qh(t) represents the flow rate obtained in the free dynamics
scenarios considered in Section 3.3, and the solutions of Eq. 4.2.5 can be taken
directly from that section.

The particular part of the solution, or the particular solution, represents
any particular solution (not containing arbitrary constants) of Eq. 4.2.3, that
is any particular solution of

tL
d2qp

dt2
+

dqp

dt
+

qp

tC
=

−Δp0ω sin ωt

R
(4.2.6)

In the theory of differential equations [116] it has been found that the form
of a particular solution of this equation depends on the functional form of the
term on the right hand side of the equation. Specifically, when the term on
the right-hand side is a simple sine or cosine function, as it is in this case, a
particular solution is of the form
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qp(t) = Kc cos ωt + Ks sin ωt (4.2.7)

where Kc, Ks are constants to be determined by the equation itself, as shown
below, and are not to be confused with the arbitrary constants A, B in the
general solution of Eq. 4.2.5 which are determined by the initial flow conditions
as will be shown in the next section, and as was done in Section 3.3. The
constants Kc, Ks here are determined simply by substituting for qp(t) and its
derivatives from Eq. 4.2.7 into Eq. 4.2.6 to get

L(−Kcω
2 cos ωt − Ksω

2 sin ωt) + R(−Kcω sin ωt + Bω cos ωt)

+
1
C

(Kc cos ωt + Ks sin ωt) = −Δp0 sin ωt (4.2.8)

Equating terms in sinωt and cos ωt on both sides of this equation, we find

−LKsω
2 − RKcω +

1
C

Ks = −Δp0ω (4.2.9)

−LKcω
2 + RKsω +

1
C

Kc = 0 (4.2.10)

These are two equations in the two unknown constants Kc, Ks. Their solution
is standard, though involving some tedious algegra, giving

Kc =
Δp0R

R2 +
(
ωL − 1

ωC

)2 (4.2.11)

Ks =
Δp0

(
ωL − 1

ωC

)
R2 +

(
ωL − 1

ωC

)2 (4.2.12)

Inserting these values of the constants in Eq. 4.2.7, we obtain, finally, the
particular solution as

qp(t) =
Δp0

R2 +
(
ωL − 1

ωC

)2

{
R cos ωt +

(
ωL − 1

ωC

)
sin ωt

}
(4.2.13)

4.3 Using the Complex Exponential Function

Results obtained in the previous section can be obtained more elegantly and
more easily by considering a driving pressure drop Δp in the form of a complex
function rather than a simple sine or cosine function. Thus, instead of the
cosine function in Eq. 4.2.1, we now write

Δp = Δp0e
iωt (4.3.1)

where Δp0 is a constant as before, and the other element on the right is the
well known complex exponential function
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eiωt ≡ cos ωt + i sin ωt (4.3.2)

where i =
√−1. The great usefulness of this function, as we shall see below,

stems from it having two different yet equivalent forms, namely those on the
two sides of Eq. 4.3.2. The two forms are not merely equal for some values of
t as an equality sign would imply, but are actually equivalent for all values of
t as indicated by the equivalence operator in that equation.

Since the real part of the complex exponential function in Eq. 4.3.2 is a
simple cosine while the imaginary part is a simple sine, then the real and
imaginary parts of the pressure drop, to be denoted respectively by �{Δp}
and �{Δp}, are correspondingly given by

�{Δp} = Δp0 cos ωt (4.3.3)
�{Δp} = Δp0 sin ωt (4.3.4)

Thus, if the complex form of Δp in Eq. 4.3.1 is used in Eq. 3.2.4, namely

tL
dq

dt
+ q +

1
tC

∫
qdt =

Δp0e
iωt

R
(4.3.5)

and differentiating this equation as in the previous section in order to eliminate
the integral sign, we then have

tL
d2q

dt2
+

dq

dt
+

q

tC
=

iωΔp0e
iωt

R
(4.3.6)

As for Eq. 4.2.3 in the previous section, the solution of Eq. 4.3.6 above
consists of two parts: a homogeneous part qh(t) which is the general solution
of

tL
d2qh

dt2
+

dqh

dt
+

qh

tC
= 0 (4.3.7)

and a particular part qp(t) which is a particular solution of

tL
d2qp

dt2
+

dqp

dt
+

qp

tC
=

iωΔp0e
iωt

R
(4.3.8)

The total solution of Eq. 4.3.6 is as before the sum of these two parts, namely

q(t) = qh(t) + qp(t) (4.3.9)

However, because of the complex term on the right-hand side of Eq. 4.3.6,
q(t) is now a complex function. It has a real part and an imaginary part which
we shall denote by �{q(t)} and �{q(t)}, respectively. The great advantage of
using the complex exponential function here stems from the fact that the gen-
eral solution of Eq. 3.2.4 using the complex exponential form of the pressure
drop, in other words the solution of Eq. 4.3.6, now yields both the real and
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imaginary parts of q(t). Furthermore, the real part of q(t) will correspond to
the general solution of Eq. 3.2.4 using the real part of Δp, namely Δp0 cos ωt,
while the imaginary part of q(t) corresponds to the general solution of Eq. 3.2.4
using the imaginary part of Δp, namely Δp0 sin ωt.

We note further that the two parts of q(t) in Eq. 4.3.9 are in themselves
complex functions, with real and imaginary parts. The particular part of q(t),
namely qp(t), is complex because its governing equation (Eq. 4.3.6) contains
the complex pressure drop term on the right hand side. And the homogeneous
part of q(t), namely qh(t), is also complex, even though its governing equation
(Eq. 4.3.7) does not involve the complex pressure drop. The reason for this is
that the arbitrary constants A, B in the general solution of Eq. 4.3.7 become
complex when the initial flow conditions are implemented, as we shall see in
the next section.

4.4 Overdamped Forced Dynamics

To implement results from the last two sections we consider now the full
solution of Eq. 3.2.4, including the homogeneous and particular parts of the
solution, that is

q(t) = qh(t) + qp(t) (4.4.1)

As discussed earlier, the homogeneous part of the solution, which repre-
sents the free dynamics of the system, has already been obtained in Section
3.3. However, the form of that solution was found to be different in each of
the three scenarios considered in that section, namely the overdamped, un-
derdamped, and critically damped scenarios. In this section we consider the
first of these scenarios, in which the solution takes the form (Eq. 3.3.6)

qh(t) = Aeα1t + Beα2t (4.4.2)

where A, B are arbitrary constants and α1, α2 are roots of the indicial equa-
tion, given by (Eqs.3.3.4,5)

α1 =
−1 +

√
1 − (4tL/tC)
2tL

(4.4.3)

α2 =
−1 − √

1 − (4tL/tC)
2tL

(4.4.4)

The particular part of the solution was obtained in Section 4.2, Eq. 4.2.13,
for a pressure drop in the form of a simple cosine function, but for the purpose
of illustration we shall rederive it here using the complex exponential function.
Our starting point is Eq. 4.3.8 governing the particular part of the solution
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when the pressure drop is in the form of a complex exponential function, that
is

tL
d2qp

dt2
+

dqp

dt
+

qp

tC
=

iωΔp0e
iωt

R
(4.4.5)

It is known that the particular solution of this equation, because of the
exponential term on the right, has the form [116]

qp(t) = Keiωt (4.4.6)

where K is a constant to be determined as shown below and is not to be con-
fused with the arbitrary constants A, B in the homogeneous part of the solu-
tion (Eq. 4.4.2). The constant K is determined by following the method used
in Section 4.2 to find the constants Kc, Ks. Eq. 4.4.6 is differentiated twice to
find the first two derivatives of qp(t), then substituting these in Eq. 4.4.5 gives

−Lω2Keiωt + RiωKeiωt +
K

C
eiωt = iωΔp0e

iωt (4.4.7)

This is a simple equation for K from which we readily find

K =
Δp0

R2 +
(
ωL − 1

ωC

)2

{
R − i

(
ωL − 1

ωC

)}
(4.4.8)

which can in fact be simplified to

K =
Δp0

R + i
(
ωL − 1

ωC

) (4.4.9)

To show that this yields the result obtained in Section 4.2, using Eqs.4.4.6,8
we find

qp(t) = Keiωt

= K(cos ωt + i sin ωt) (4.4.10)

=
Δp0

R2 +
(
ωL − 1

ωC

)2

{
R cos ωt +

(
ωL − 1

ωC

)
sin ωt

}

+
iΔp0

R2 +
(
ωL − 1

ωC

)2

{
R sin ωt −

(
ωL − 1

ωC

)
cos ωt

}
(4.4.11)

The first term in Eq. 4.4.11 represents the real part of qp(t) which in turn
represents the particular solution for the real part of the complex exponential
form of the pressure drop, namely

�{Δp} = �{Δp0e
iωt} (4.4.12)

= �{Δp0(cos ωt + i sin ωt)} (4.4.13)
= Δp0 cos ωt (4.4.14)
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which is the pressure drop used in Section 4.2 (Eq. 4.2.1). Therefore the real
part of qp(t) in Eq. 4.4.11 should be identical with the particular solution
obtained in Section 4.2, Eq. 4.2.13. We observe from Eqs.4.2.13,4.4.11 that
the two are indeed identical. The imaginary part of qp(t) in Eq. 4.4.11 above
then, similarly, represents a particular solution corresponding to a pressure
drop of the form Δp0 sin ωt.

Having found the constant K, the two parts of the solution can now be
put together, using Eqs.4.4.1,2,6, namely

q(t) = Aeα1t + Beα2t + Keiωt (4.4.15)

and proceed to find the arbitrary constants A, B in terms of initial flow con-
ditions. Differentiating Eq. 4.4.15 twice and evaluating at time t = 0, we find

q(0) = A + B + K (4.4.16)
q′(0) = Aα1 + Bα2 + iωK (4.4.17)

These are two equations for the unknown constants A, B from which we readily
find

A =
−α2q(0) + q′(0) + K(α2 − iω)

α1 − α2
(4.4.18)

B =
α1q(0) − q′(0) − K(α1 − iω)

α1 − α2
(4.4.19)

We note again that the amount of tedious algebra in this process has been
reduced considerably by using the complex exponential function.

The solution is now complete, the flow rate being given by Eq. 4.4.15 and
the arbitrary constants are given by Eqs.4.4.9,18,19. A plot of q(t) for a value
of (4tL/tC) < 1 where overdamping conditions prevail is shown in Fig. 4.4.1.
Typically, the flow rate starts from a prescribed normalized value of 1.0 then
gradually enters a phase of regular oscillations about a zero mean, consistent
with the driving oscillatory pressure drop. These two phases in the dynamics of
the RLC system will be discussed at great length in subsequent sections. Here
we note only that the pattern of dynamics observed in Fig. 4.4.1 is analogous
to the pattern observed in Fig. 3.3.1 for the overdamped case in free dynamics
where the flow also starts from a prescribed normalized value of 1.0, then
gradually diminishes to zero. The difference between the two cases is only in
the forced oscillations imposed in the present case.

Thus, the study of free dynamics of the RLC system in Section 3.3, though
at first seemed somewhat artificial as a model of the physiological system, is
now seen as an important integral part of an overall study of the system. We
now see that the properties of the RLC system observed in free dynamics
under the three different damping conditions are in fact intrinsic properties
of the system that are equally relevant in forced dynamics.

Finally, we see now that in the general solution of the forced dynamics
problem, broadly speaking, the homogeneous part of the solution, namely
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Fig. 4.4.1. Flow rate q(t) in an RLC system in series and in forced dynamics, with
an oscillatory driving pressure drop. System parameters are such that (4tL/tC) =
0.4, therefore producing overdamped conditions.

qh(t), represents the free dynamics of the system while the particular part of
the solution, namely qp(t), represents the forced part of the dynamics. How-
ever, the two are not entirely separate from each other because the forced
dynamics constant K appears in the final expressions for the free dynam-
ics constants A, B (Eqs.4.4.18,19). We also note that the constants A, B in
the solution for qh(t) are complex even though the equation governing qh(t)
(Eq. 4.3.7) does not involve the complex exponential expression for the pres-
sure drop Δp. In fact, it does not involve the pressure drop at all. The con-
stants become complex in the process of implementing the initial flow condi-
tions.

4.5 Underdamped Forced Dynamics

Here, again, the flow rate consists of two parts:

q(t) = qh(t) + qp(t) (4.5.1)

The particular part is the same as in the previous section (Eq. 4.4.9), namely
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qp(t) = Keiωt (4.5.2)

K =
Δp0

R + i
(
ωL − 1

ωC

) (4.5.3)

The homogeneous part of the solution, qh(t), comes from the general so-
lution of the free dynamics equation under the underdamped scenario and is
given by (Eq. 3.3.14)

qh(t) = eat(A cos bt + B sin bt) (4.5.4)

a =
−1
2tL

(4.5.5)

b =

√
(4tL/tC) − 1

2tL
(4.5.6)

where A,B, are arbitrary constants.
The complete solution is then given by

q(t) = eat(A cos bt + B sin bt) + Keiωt (4.5.7)

As in the previous section, to find the arbitrary constants A, B, differentiating
this expression and evaluating at time t = 0 gives

q(0) = A + K (4.5.8)
q′(0) = Aa + Bb + iωK (4.5.9)

from which we readily find

A = q(0) − K (4.5.10)

B =
q′(0) − aA − iωK

b
(4.5.11)

Again, we note the reduced amount of algebra involved in this process because
of the use of the complex exponential function.

Results are shown in Fig. 4.5.1 for a value of (4tL/tC) > 1.0 where under-
damped conditions prevail. The flow rate starts from a prescribed normalized
value of 1.0, undergoes some large irregular oscillations, then gradually en-
ters a phase of regular oscillations about a zero mean, consistent with the
driving oscillatory pressure drop. This pattern is analogous to the pattern ob-
served in Fig. 3.3.1 for the underdamped case in free dynamics where the flow
also starts from a prescribed normalized value of 1.0, undergoes some large
irregular oscillations, then gradually diminishes to zero.

We note that both in free and in forced dynamics, underdamped conditions
occur when

4tL
tC

=
(

4L

R2C

)
> 1.0 (4.5.12)
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Fig. 4.5.1. Flow rate q(t) in an RLC system in series and in forced dynamics, with
an oscillatory driving pressure drop. System parameters are such that (4tL/tC) = 40,
therefore producing underdamped conditions.

compared with the overdamped case considered in the previous section where
the quantity in brackets is less than 1.0. Thus, all else being equal, under-
damped conditions correspond to lower values of C which in turn corresponds
to an elastic balloon which is less elastic. Thus, the initial oscillations observed
in the underdamped case result from the recoiling of a stiffer balloon. A bal-
loon that is more elastic would instead absorb the filling without recoiling, as
observed in the overdamped case.

4.6 Critically Damped Forced Dynamics

Between the overdamped and underdamped conditions, which occur over a
range of values of 4tL/tC below and above 1.0, there is a singular condition
corresponding to a single value of this ratio, namely

4tL
tC

= 1.0 (4.6.1)

whereby the flow rate in the RLC system in series under conditions of forced
dynamics moves “most directly” from its prescribed initial value to the state
of forced oscillations being imposed on it. This is the scenario of critically
damped forced dynamics, analogous to that of critical damping encountered
in free dynamics.
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As in the previous two sections, the flow rate solution again consists of
two parts:

q(t) = qh(t) + qp(t) (4.6.2)

where the particular part of the solution, qp(t), is the same as before (Eq. 4.4.9),
namely

qp(t) = Keiωt (4.6.3)

K =
Δp0

R + i
(
ωL − 1

ωC

) (4.6.4)

The homogeneous part of the solution, qh(t), comes from the general solu-
tion of the free dynamics equation under the critically damped scenario and
is given by (Eq. 3.3.17,16)

qh(t) = (A + Bt)eat (4.6.5)

a =
−1
2tL

(4.6.6)

where A,B, are arbitrary constants.
The complete solution is given by

q(t) = (A + Bt)eat + Keiωt (4.6.7)

and, to find the constants A, B, differentiating this expression and evaluating
at time t = 0 gives

q(0) = A + K (4.6.8)
q′(0) = B + Aa + iωK (4.6.9)

from which we readily find

A = q(0) − K (4.6.10)
B = q′(0) − Aa − iωK (4.6.11)

Results are shown in Fig. 4.6.1 for the value of (4tL/tC) = 1.0 where criti-
cally damped conditions occur. The flow rate starts from a prescribed normal-
ized value of 1.0, then gradually enters a phase of regular oscillations about a
zero mean, consistent with the driving oscillatory pressure drop. This pattern
is analogous to the pattern observed in Fig. 3.3.1 for the critically damped case
in free dynamics where the flow also starts from a prescribed normalized value
of 1.0, then gradually diminishes to zero. Both in free and in forced dynamics,
the difference between the overdamped and critically damped dynamics is one
of degree only. In the critically damped case the flow rate moves towards its
ultimate oscillations more “expediently” than it does in the overdamped case.
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Fig. 4.6.1. Flow rate q(t) in an RLC system in series and in forced dynamics, with
an oscillatory driving pressure drop. System parameters are such that (4tL/tC) =
1.0, therefore producing critically damped conditions.

4.7 Transient and Steady States

Both in free and in forced dynamics the RLC system undergoes two distinct
phases (Figs. 3.3.1, 4.4.1, 4.5.1, 4.6.1). In the first, which is widely referred to
as the “transient state”, the system is adjusting to the imposed initial flow
conditions and the flow rate continues to change accordingly. In the second,
referred to as “steady state”, the adjustment is complete and no further change
in the pattern of flow rate takes place.

We saw that in free dynamics the steady state is a state of zero flow because
there is no imposed pressure drop to drive the flow. Any flow within the system
is there because of the prescribed initial flow conditions. The transient state
takes the system from these initial conditions to the steady state. Thus, the
steady state may be viewed as that appropriate for the system under the
particular driving force being imposed on it externally. In the absence of such
forces, as in the case of free dynamics, the appropriate state is that of zero
flow.

Similarly, in forced dynamics the steady state of the system is that appro-
priate for the applied external driving force. When the latter is oscillatory, as
we saw in previous sections, the steady state of the system is that in which
the flow rate oscillates in tandem with the externally imposed pressure drop.
Again, the transient state takes the system from whatever initial conditions
are prescribed to this steady state.
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In analytical terms, the steady state of the RLC system is a particular
solution of the governing equation (Eq. 3.2.5)

tL
d2q

dt2
+

dq

dt
+

1
tC

q =
1
R

d(Δp)
dt

(4.7.1)

while the transient state of the system is a general solution of the reduced
equation

tL
d2q

dt2
+

dq

dt
+

1
tC

q = 0 (4.7.2)

In free dynamics the pressure drop is zero, therefore the term on the right-
hand side of Eq. 4.7.1 is zero and the equation becomes identical with Eq. 4.7.2.
Therefore, in this case the steady state is a particular solution of Eq. 4.7.2
and the transient state is a general solution of the same equation. The general
solution was obtained in Section 3.3 under the three different scenarios of
overdamped, underdamped, and critically damped conditions. A particular
solution of Eq. 4.7.2 is clearly q = 0, which is consistent with results in Section
3.3 indicating that the steady state of the system is that of zero flow under
all three damping scenarios.

In forced dynamics the steady state of the RLC system depends on the
form of the driving pressure drop Δp since this determines the form of the
particular solution of Eq. 4.7.1. We saw that when the driving pressure drop is
an oscillatory function of the form Δp(t) = Δp0e

iωt where Δp0 is a constant,
the particular solution is of the same form, namely q(t) = Keiωt where K
is a constant. Thus, the steady state of the system is one in which the flow
rate oscillates with the same frequency as the pressure drop. It is appropriate
to refer to this as “steady state” even though the flow rate is a function of
time. The term “steady” here is not to be confused with “constant”, it merely
implies that the pattern of flow rate as a function of time is no longer changing.

The most important property of the transient state is that it occupies
only a relatively short time from the onset of the initial flow conditions, then
leaving the system in steady state thereafter. We saw that both in free and in
forced dynamics, and under all three damping scenarios, the transient part of
the flow rate, namely qh(t), vanishes soon after the initial flow onset, leaving
the system with only the steady part of the flow, namely with qp(t). These
results are illustrated graphically in Figs.4.7.1-4. Because of this, many studies
find it appropriate to ignore the transient state dynamics of the RLC system
and focus on the steady state dynamics only (see Chapter 7).

The relevance of this discussion to coronary blood flow is that practically
all lumped model studies of the coronary circulation are based on only the
steady state dynamics of the system.

One might attempt to examine the validity of this practice by noting from
Fig. 4.7.1 that in free dynamics the RLC system comes very close to steady
state when t/tL ≈ 15. In forced dynamics, results in Figs.4.7.2-4 indicate that
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Fig. 4.7.1. Flow rate q(t) (solid curves) in an RLC system in series and in free
dynamics, under conditions of overdamping, underdamping, and critical damping.
Dashed line represents steady state flow rate.
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Fig. 4.7.2. Flow rate q(t) (solid curve) in an RLC system in series and in forced
overdamped dynamics, with an oscillatory driving pressure drop. Dashed line rep-
resents steady state flow rate.
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Fig. 4.7.3. Flow rate q(t) (solid curve) in an RLC system in series and in forced
underdamped dynamics, with an oscillatory driving pressure drop. Dashed line rep-
resents steady state flow rate.
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Fig. 4.7.4. Flow rate q(t) (solid curve) in an RLC system in series and in forced
critically damped dynamics, with an oscillatory driving pressure drop. Dashed line
represents steady state flow rate.
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the corresponding time is t/tL ≈ 5. To determine these times in seconds re-
quires an estimate of the inertial time constant tL for the coronary circulation
which, of course, is not known. Indeed, one of the main aims of lumped model
studies is to determine such properties of the system.

Nevertheless, we may attempt to estimate tL by recalling from sections
2.4,5 (Eqs.2.4.5,2.5.5) that for flow in a single tube the resistance to flow and
the inertial constant are given by

R =
8μl

πa4 (4.7.3)

L =
4ρl

πd2 (4.7.4)

where μ, ρ are respectively the viscosity and density of the fluid, and a, d are
respectively the radius and diameter of the tube. From this, and from the
definition of tL we then have

tL =
L

R
=

ρa2

8μ
seconds (4.7.5)

Taking ρ = 1.0 g/cm3 and μ = 0.04 g/(cm s), this becomes

tL =
a2

0.32
seconds (4.7.6)

where a is in centimeters.
Now, in a lumped model of the coronary circulation the characteristic

parameters of the numerous tubes in the system are “lumped” together, which
is equivalent to considering the system as a single tube that has these lumped
properties. The problem, of course, is that these lumped properties are not
known. Indeed, whether by theory or by experiment, the ultimate goal of
lumped model studies is to determine not only the values of such properties
but the legitimacy of the lumped parameter concept on which they are based.

Thus, from Eq. 4.7.6 we can only conclude that for a tube of 1cm radius,
the equation gives a value of tL of approximately 3 seconds, while for a tube
of 1mm radius, the corresponding value is 0.03 seconds. The transient state
of an RLC system with these values of tL would then be approximately 15 tL
in free dynamics and 5 tL in forced dynamics. The highest of these values
is 45 seconds, the lowest is 0.15 seconds. Whether the true transient time
of the coronary circulation lies within or indeed outside these estimates is
not known. In the forced oscillatory dynamics of the coronary circulation tL
would represent the time it takes the system to recover from a disturbance
and return to steady state, thus knowing the actual value of this time constant
would be of considerable clinical importance.
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4.8 The Concept of Reactance

The concepts of reactance and impedance arise in the dynamics of the RLC
system in steady state. It is important to emphasize this point because these
concepts are so widely used that it is usually only implied, but rarely stated,
that their use is limited to steady state dynamics only, not to the transient
state. Thus, in introducing these concepts here, and using them in subsequent
sections, it must be clear from the outset that we are now dealing with only
the particular solution of the governing equation (Eq. 3.2.5)

tL
d2q

dt2
+

dq

dt
+

1
tC

q =
1
R

d(Δp)
dt

(4.8.1)

and for this reason we no longer use the subscripts for the homogeneous and
particular parts of the solution discussed in the previous section. It is implied
here, and whenever these concepts are used, that q(t) now represents only the
particular part of the solution, which, as discussed in the previous section,
corresponds to the steady state dynamics of the RLC system.

Furthermore, a meaningful definition of reactance and impedance is only
possible when Δp above, and consequently q(t), are simple oscillatory func-
tions such as the trigonometric sine and cosine functions. We thus begin with
the problem solved in Section 4.2, where the driving pressure drop is given by

Δp = Δp0 cos ωt (4.8.2)

Steady state solution of Eq. 4.8.1 with this form of the pressure drop was
obtained in Section 4.2 (Eq. 4.2.13), which we now write in the form

q(t) = Δp0

{
R cos ωt + S sin ωt

R2 + S2

}
(4.8.3)

where

S = ωL − 1
ωC

(4.8.4)

Using standard trigonometric identities, Eq. 4.8.3 can be simplified further to

q(t) =
Δp0√

R2 + S2
cos(ωt − θ) (4.8.5)

where

tan θ =
S

R
(4.8.6)

To discuss the nature and effect of the quantity S now, we begin by noting
that when S = 0, Eqs.4.8.5,6 give
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q(t) =
Δp0

R
cos ωt (4.8.7)

=
Δp

R
(4.8.8)

which we recognize as the simple expression for the flow rate through a resis-
tance R when the driving pressure drop across it is Δp. Thus, in the dynamics
of the RLC system the quantity S as defined in Eq. 4.8.4 embodies the com-
bined effects of inductance L and capacitance C such that when S = 0 the
system behaves as a simple resistance R. When S �= 0, it is clear from a com-
parison of Eq. 4.8.5 with Eq. 4.8.7 that S acts as an added form of resistance
to flow, resulting from the presence of inductance and capacitance. It is also
noted from the presence of ω in the expression for S that this form of resis-
tance occurs only in oscillatory flow. By analogy with the same phenomenon
in the flow of alternating current in an electric circuit, S is generally referred
to as the “reactance”. It is a form of resistance to flow, but it differs from R
in that it only occurs in oscillatory flow. Also, unlike the viscous resistance
R, the reactance S does not actually dissipate flow energy, it merely stores it
and releases it within each oscillatory cycle [221].

From Eq. 4.8.4 we note that there are two ways in which the reactance S
can be zero. First, when the capacitance and inductance effects are simply
absent, that is

L = 0 (4.8.9)
1
C

= 0 (4.8.10)

which together lead to S = 0. Second, when the values of ω, L, C are such
that

C =
1

ω2L
(4.8.11)

which again leads to S = 0. While the first of these circumstances is trivial, the
second has clear physiological significance because it deals with the critical
balance between the effects of capacitance and inductance. To pursue this
further, consider, in Eq. 4.8.4, that the frequency ω and inductance L are fixed
so that the value of S now depends on the capacitance C only. It is convenient
in this discussion to use the term “compliance” for the capacitance C. It is
a more expressive term than “capacitance” because at higher values of the
capacitance C a balloon is more elastic, more compliant, while at lower values
of the capacitance C it is less elastic, less compliant.

Starting at the extreme where a balloon is rigid, compliance (C) is zero,
and its reciprocal is infinite. The value of S from Eq. 4.8.4 is then infinite
and negative, and the corresponding value of the phase angle θ from Eq. 4.8.6
is −π/2. Eq. 4.8.5 then indicates that the flow is leading the pressure drop
by π/2. As the compliance gradually increases from this extreme value, the
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values of S and θ remain negative at first but continue to increase, until at
some point they both become zero. The value of C at which this point is
reached is given in Eq. 4.8.11, and we shall denote this value by C0, that is

C0 =
1

ω2L
(4.8.12)

At this critical value of C the reactance is zero, the phase angle between
the flow and pressure drop is zero, and the amplitude of the flow rate, which
from Eq. 4.8.5 is given by

|q(t)| =
Δp0√

R2 + S2
(4.8.13)

clearly has its highest value because S = 0. Thus,

at C = C0 : S = 0 (4.8.14)
θ = 0 (4.8.15)

|q(t)| =
Δp0

R
(4.8.16)

As compliance continues to increase beyond this point, the value of S
becomes positive, the phase angle θ becomes positive, which means that flow
is now lagging the pressure drop, and the amplitude of the flow rate begins to
decrease again from its maximum value.

To illustrate these results graphically, it is convenient to use a normalized
form of the flow rate, namely

q(t) =
q(t)

Δp0/R
(4.8.17)

=
1√

1 + (S/R)2
cos(ωt − θ) (4.8.18)

Also, instead of using the actual capacitance C, it is more convenient to use
the capacitive time constant

tC = CR (4.8.19)

Since R is assumed to be constant, tC is a direct measure of C. Also, using
the inertial time constant

tL = L/R (4.8.20)

the reactance S can be expressed in terms of these time constants as

S

R
= ωtL − 1

ωtC
(4.8.21)
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Fig. 4.8.1 shows the variation of the reactance as tC increases from zero
(where capacitance and compliance are zero) to large values (where capac-
itance and compliance are large). In that sequence the value of S changes
from large negative to positive, thus passing zero at one particular value of
tC which we shall denote by tC0, and which from Eq. 4.8.12 is given by

tC0 =
1

ω2tL
(4.8.22)
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Fig. 4.8.1. Normalized value of the reactance (S/R), as a function of the capacitive
time constant tC . Of particular significance is the point at which reactance becomes
zero, which occurs at tC = 1/4π2 ≈ 0.0253.

If the frequency of oscillation in cycles per second (Hz) is denoted by f , then
the angular frequency ω is given by

ω = 2πf radians (4.8.23)

As in previous sections, the inertial time constant tL may be used as the
normalizing unit of time, which is equivalent to taking

tL = 1.0 seconds (4.8.24)

With these values of ω and tL, Eq. 4.8.22 gives

tC0 =
1

(2π)2
≈ 0.0253 seconds (4.8.25)

as seen in Fig. 4.8.1. At higher values of tC , as capacitance effects become more
significant, the normalized reactance S/R approaches the constant value, from
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Eq. 4.8.21, 2π ≈ 6.283, again as seen in that figure. Corresponding values of
the phase angle θ are shown in Fig. 4.8.2, where it is seen that the phase angle
is zero at the same critical value of tC where the reactance is zero, namely at
tC ≈ 0.0253. At higher values of tC (higher capacitance and compliance) the
angle is positive, which means that flow is lagging behind the pressure drop,
while at lower values of tC the reverse is true.
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Fig. 4.8.2. Phase angle θ between flow rate and pressure drop, as a function of the
capacitive time constant tC . The angle becomes zero and changes sign at the same
critical value of tC where reactance is zero (Fig. 4.8.1), namely tC = 1/4π2 ≈ 0.0253.

This change in phase shift is illustrated in Figs.4.8.3-5 where values of tC
near the critical value are taken. It is remarkable that only a small departure
from the critical value of tC is needed to produce a significant change in phase
angle. A similar change occurs in the amplitude of the flow wave, which can
be put in the normalized form

|q(t)| =
1√

1 + (S/R)2
(4.8.26)

In this form the amplitude has the normalized value of 1.0 when S = 0, which
occurs at the critical value of tC . Figs.4.8.3-6 show clearly that this is the
maximum value of the flow amplitude. At all other values of tC the flow wave
is affected both in phase and amplitude.

These results have remarkable implications regarding the phyiological sys-
tem. While the RLC system in series does not appropriately model the coro-
nary circulation (RLC in parallel will be considered in Chapter 6), it nev-
ertheless points to the existence of conditions under which the system may
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Fig. 4.8.3. Normalized flow rate (solid curve) compared with pressure drop (dashed
curve) within the oscillatory cycle, and with tC = 0.03 seconds, which is just above
critical value of tC = 0.0253 at which the two curves would be identical. Flow rate
lags behind pressure drop and flow amplitude is below maximum.
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Fig. 4.8.4. Normalized flow rate (solid curve) compared with pressure drop (dashed
curve) within the oscillatory cycle, and with tC = 0.025 seconds, which is very close
to critical value (at the critical value the two curves would be indistinguishable).
Flow rate is in phase with pressure drop and flow amplitude is maximum.
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Fig. 4.8.5. Normalized flow rate (solid curve) compared with pressure drop (dashed
curve) within the oscillatory cycle, and with tC = 0.02 seconds, which is just below
critical value of tC = 0.0253 at which the two curves would be identical. Flow rate
leads pressure drop and flow amplitude is below maximum.

operate most optimally, in the sense of minimizing the effects of reactance.
The mere existence of these conditions is clearly of significant clinical interest
because it indicates that if the coronary circulation normally operates at or
near a critical value of tC , then any change in the elasticity or other properties
of the system, resulting from disease or clinical intervention, may move the
system away from its optimal dynamics.

Furthermore, in the present system if tL is set equal to 1.0 seconds, which
is not an unreasonable estimate following the discussion in Section 4.7, these
favourable conditions occur at tC = 0.0253 seconds. While these two values
may be inaccurate in absolute terms, they indicate that in relative terms the
capacitive time constant may be two orders of magnitude smaller than the
inertial time constant.

4.9 The Concepts of Impedance, Complex Impedance

The concept of “impedance”, like that of reactance, arises in the dynamics of
the RLC system in steady state under a simple oscillatory driving pressure
drop and, as emphasized in the previous section, it is only valid, indeed only
meaningful, in that context. Again, the concept is borrowed from the flow
of alternating current in electric circuits, but it has wide applications in the
dynamics of the coronary circulation, specifically in the context of lumped
models of the system.
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Broadly speaking, impedance is the total impediment to oscillatory flow
in the presence of inductance and capacitance effects. We do not use the
term “resistance” here, because that term is generally reserved for the effects
of viscosity in steady as well as in oscillatory flow. Essentially, impedance
embodies both the resistance R and the reactance S discussed in the previous
section.

There is a fundamental difference between impedance and the familiar vis-
cous resistance which makes it important not to confuse the two. Viscous re-
sistance dissipates energy which must be replaced constantly from a source of
driving energy (pump). Reactance, on the other hand, as seen in the previous
section, presents an impediment to flow in the sense of affecting the amplitude
and phase of the flow wave, but it does not actually dissipate the flow energy.
Under reactive effects flow energy is only exchanged between pressure and ki-
netic energy, as when fluid is accelerated or decelerated, or between pressure
inside the capacitive balloon and elastic energy in its walls. Impedance embod-
ies these exchanges as well as the dissipative viscous resistance and therefore
it would be inappropriate to describe it simply as “resistance to flow”.

The primary reason for using the concept of impedance is that it provides
a link beween flow and pressure drop in oscillatory flow, in the same way that
resistance provides that link in steady flow. Thus, for steady flow in a tube
we have the basic result from Section 2.4 that the flow rate q is simply equal
to the pressure drop Δp divided by the resistance R, that is (Eq. 2.4.3)

q =
Δp

R
(4.9.1)

In oscillatory flow the concept of impedance is introduced in order to be able
to write the relation between flow and pressure drop in a similar way, namely

q =
Δp

(IMP )
(4.9.2)

where IMP is used here as a generic label for impedance until it can be
defined more accurately.

In the solution obtained in the previous section the driving oscillatory
pressure drop was of the form (Eq. 4.8.2)

Δp(t) = Δp0 cos ωt (4.9.3)

while the the flow rate was found to be of the form (Eq. 4.8.5)

q(t) =
Δp0√

R2 + S2
cos (ωt − θ) (4.9.4)

where Δp0 is a constant representing the amplitude of the driving oscillatory
pressure drop, ω is the (angular) frequency of oscillation, R is resistance, S is
reactance, and θ is the phase angle between the pressure and flow waves, as
defined in the previous section.
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From Eqs.4.9.3,4 it is not possible to write the relation between q(t) and Δp
in the form of Eq. 4.9.2. This is because impedance affects both the amplitude
and the phase angle of the flow wave, and these effects appear separately in
Eq. 4.9.4. The amplitude effect is represented by the term

√
R2 + S2, while the

phase angle effect is represented by the angle θ. This suggests that impedance
itself has an amplitude and phase, which in turn suggests that impedance is
a complex quantity with a real and an imaginary part. This indeed turns out
to be the case as we shall see below.

To reach this result we begin with a driving pressure drop in complex form,
as was done in previous sections, namely

Δp(t) = Δp0e
iωt (4.9.5)

A steady state solution with this form of the pressure drop was obtained in
details in Section 4.4 (Eqs.4.4.6,9), namely

q(t) = Keiωt (4.9.6)

where

K =
Δp0

R + iS
(4.9.7)

S = ωL − 1
ωC

(4.9.8)

Using these, the equation for the flow rate (Eq. 4.9.6) can then be put in the
form

q(t) =
Δp0e

iωt

R + iS
(4.9.9)

or, using Eq. 4.9.5,

q(t) =
Δp(t)

Z
(4.9.10)

where

Z = R + iS (4.9.11)

Eq. 4.9.10 is a relation between flow rate and pressure drop in the basic
form of Eq. 4.9.2, therefore we identify Z as the impedance (IMP ) in that
equation. Furthermore, as anticipated earlier, Z is a complex quantity as
defined in Eq. 4.9.11, with the resistance R as its real part and the reactance
S as its imaginary part. It is known as “complex impedance”.

We note from Eq. 4.9.11 that the amplitude and phase of Z are respectively
given by

|Z| =
√

R2 + S2 (4.9.12)

θ = tan−1 (
S

R
) (4.9.13)
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which we recognize as the effects of impedance on the amplitude and phase
of the flow wave, as discussed earlier in this section.

To see this more clearly we now reproduce the result in Eq. 4.9.4 which
represents the flow rate when the driving pressure drop is a cosine function
(Eq. 4.9.9), which is equivalent to the real part of the complex pressure drop
in Eq. 4.9.5, that is

Δp(t) = Δp0 cos ωt (4.9.14)
= �{

Δp0e
iωt

}
(4.9.15)

The flow rate corresponding to this pressure drop is therefore the real part of
the complex flow rate in Eq. 4.9.9, that is

q(t) = �
{

Δp0e
iωt

R + iS

}
(4.9.16)

= Δp0�
{

(cos ωt + i sin ωt)(R − iS)
R2 + S2

}
(4.9.17)

= Δp0

{
R cos ωt + S sin ωt

R2 + S2

}
(4.9.18)

The last expression is identical with the result in Eq. 4.9.4.
Thus, complex impedance offers an elegant way of representing the effects

of impedance on both the amplitude and phase of the pressure wave. It also
makes it possible to maintain the simple relation between pressure drop and
flow, namely that in Eq. 4.9.10.

Indeed, because of the simple relation between q and Δp in Eq. 4.9.10, the
analysis of several impedances in series or in parallel remains as simple as the
analysis of several resistances in series or in parallel.

For impedances Z1, Z2, Z3 in series, using Eq. 4.9.10 with q as the common
flow rate through the system, we have

Δp = qZ (4.9.19)
Δp1 = qZ1 (4.9.20)
Δp2 = qZ2 (4.9.21)
Δp3 = qZ3 (4.9.22)

Then, since the total pressure drop is the sum of the partial pressure drops,
we find

Δp = Δp1 + Δp2 + Δp3 (4.9.23)
= q(Z1 + Z2 + Z3) (4.9.24)

Therefore

Z = Z1 + Z2 + Z3 (4.9.25)
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For impedances Z1, Z2, Z3 in parallel, using Eq. 4.9.10 with Δp as the
common pressure drop, we have

q =
Δp

Z
(4.9.26)

q1 =
Δp

Z1
(4.9.27)

q2 =
Δp

Z2
(4.9.28)

q3 =
Δp

Z3
(4.9.29)

Then, since the total flow rate is the sum of the partial flow rates, we find

q = q1 + q2 + q3 (4.9.30)

=
Δp

Z1
+

Δp

Z2
+

Δp

Z3
(4.9.31)

= Δp

{
1
Z1

+
1
Z2

+
1
Z3

}
(4.9.32)

Therefore
1
Z

=
1
Z1

+
1
Z2

+
1
Z3

(4.9.33)

In particular, for the elements of the RLC system, we have

Resistance: Z1 = R (4.9.34)
Inductance: Z2 = iωL (4.9.35)

Capacitance: Z3 =
1

iωC
(4.9.36)

Reactance: Z4 = Z2 + Z3 (4.9.37)

= i

(
ωL − 1

ωC

)
(4.9.38)

Thus, for the RLC system in series

Z = Z1 + Z2 + Z3 (4.9.39)
= Z1 + Z4 (4.9.40)

= R + i

(
ωL − 1

ωC

)
(4.9.41)

And for the RLC system in parallel
1
Z

=
1
Z1

+
1
Z2

+
1
Z3

(4.9.42)

=
1
R

+
1

iωL
− ωC

i
(4.9.43)

=
1
R

+ i

(
ωC − 1

ωL

)
(4.9.44)
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Note that the partial impedance of reactance, namely Z4, is defined as the
sum of the partial impedances of inductance and capacitance when these
elements are in series, therefore Z4 cannot be used when the two elements are
in parallel. Instead, we may define

1
Z5

=
1
Z2

+
1
Z3

(4.9.45)

=
1

iωL
− ωC

i
(4.9.46)

= i

(
ωC − 1

ωL

)
(4.9.47)

so that for the parallel system we can write

1
Z

=
1
Z1

+
1
Z2

+
1
Z3

(4.9.48)

=
1
Z1

+
1
Z5

(4.9.49)

=
1
R

+ i

(
ωC − 1

ωL

)
(4.9.50)

which is identical with the result in Eq. 4.9.44.
These are standard results in electric circuit theory, and they have been

used extensively in the analysis of lumped models of the coronary circulation.
We shall return to them in Chapter 6.

4.10 Summary

The dynamics of the coronary circulation are “forced” in the sense that they
are driven by an external force. In free dynamics, the system’s behaviour
depends on the internal characteristics only. In forced dynamics, by contrast,
the behaviour of the system depends on these characteristics as well as on the
form of the external driving force.

Free dynamics of the RLC system are governed by the homogeneous part
of the solution of the governing equation, which depend on the characteristic
properties of the system only. Forced dynamics are governed by the full solu-
tion of the equation, including the homogeneous part as well as the particular
part of the solution, the so-called “particular solution”, which depends on the
form of the external driving force.

When the pressure drop Δp driving the forced dynamics of the RLC sys-
tem is expressed in the form of a complex exponential function, the solution
of the governing equation produces two solutions at once: one corresponding
to Δp being a sine function and the other to Δp being a cosine function.

In overdamped forced dynamics of the RLC system in series, under an
oscillatory driving pressure, the flow begins with a “transient state” in which it
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moves from a prescribed initial value to a “steady state” in which it oscillates
in tandem with the driving oscillatory pressure. Overdamping occurs when
(4tL/tC) < 1.0 which, all else being the same, corresponds to a sufficiently
high value of the capacitance C, which in turn corresponds to a more elastic
balloon that absorbs the filling without recoil.

In underdamped forced dynamics of the RLC system in series, under an
oscillatory driving pressure, flow begins with a “transient state” in which it
moves rather erratically to a “steady state” in which it oscillates in tandem
with the driving oscillatory pressure. Underdamping occurs when (4tL/tC) >
1.0 which, all else being the same, corresponds to a sufficiently low value of
the capacitance C, which in turn corresponds to a less elastic balloon that
recoils in the initial phase.

In critically damped forced dynamics of the RLC system in series, under an
oscillatory driving pressure, the flow begins with a “transient state” in which
it moves most expediently to a “steady state” in which it oscillates in tandem
with the driving oscillatory pressure. Critical damping is a singular scenario
which occurs when (4tL/tC) = 1.0. All else being equal, it corresponds to a
unique value of the capacitance C that lies precisely between the overdamped
and underdamped values.

Lumped model analysis of the coronary circulation is based on only the
steady state dynamics of the system, transient state dynamics are neglected.
The time required for the system to complete the transient state is difficult
to estimate, yet it is clearly of clinical importance because it represents the
time it would take the system to recover from a dynamic disturbance.

There are singular circumstances under which the reactance of the RLC
system vanishes and the system behaves as if the inductance and capacitance
do not exist. These circumstances are created by specific combinations of
values of the inertial and capacitive time constants. Since the dynamics of
the RLC system in series do not accurately represent the dynamics of the
coronary circulation, these specific values of the time constants may not be
directly relevant to the dynamics of the coronary circulation. However, the
mere existence of these unique circumstances in the dynamics of the RLC
system suggests strongly that similar circumstances may exist in the dynamics
of the coronary circulation and that the system may normally operate at or
near these ideal conditions.

Impedance is the total impediment to pulsatile flow, embodying the ef-
fects of capacitance and inductance as well as the familiar effect of viscous
resistance. Analytically, impedance is a complex quantity of which the real
part represents the viscous resistance while the imaginary part represents the
reactance which in turn represents the combined effects of capacitance and
inductance. In its complex form, impedance conveniently represents that ra-
tio of pressure over flow in pulsatile flow in the same way that resistance
represents that ratio in Poiseuille flow.
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The Analysis of Composite Waveforms

5.1 Introduction

The oscillatory pressure drops used in all previous chapters have been of a
particularly simple form, namely that of a trigonometric sine or cosine func-
tion. These waveforms have specific properties that make them particularly
useful for the study of general dynamics of RLC systems such as those ex-
amined in previous chapters. However, the ultimate aim of these studies, in
the context of the coronary circulation, is to examine the dynamics of RLC
systems under oscillatory pressure drops of more general forms, in particular
the forms of pressure waves generated by the heart. In what follows we shall
refer to these generically as “composite” wave forms.

An example of a composite waveform is shown in Fig. 5.1.1, compared with
a simple sine wave. The first difference to be observed, of course, is the strictly
regular form of the sine wave compared with the highly irregular form of the
composite wave. It is this simple regular form of the sine wave that makes it
possible to describe it by a simple sine function. How to describe the irregular
form of the composite wave is dealt with in the present chapter.

Of course, a composite wave can be described numerically, by tabulating
the position of discrete points along the wave, as shown in Fig. 5.1.2 and in
Table 5.1.1, but this is a rather awkward method of description. It is certainly
not as elegant or efficient as the description of a sine or cosine wave, which
can be accomplished by the simple statement Δp = Δp0 cos ωt which was
used repeatedly in previous sections to describe the waveform of the pressure
drop Δp (Eq. 4.2.1). More important, the steady state solutions obtained in
Chapter 4 were possible only because the pressure drop Δp on the right-hand
side of the governing equation (Eq. 3.2.4) was expressed by a simple analytical
function such as sinωt, cos ωt, or eiωt. If Δp can only be described in numerical
form, the analytical solutions of Chapter 4 would not be possible.

In one of mathematics’ most beautiful triumphs this difficulty is completely
resolved, using a technique known as Fourier analysis, named for its original
author. The theory of Fourier analysis shows that a composite wave such as
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Fig. 5.1.1. Comparison of a composite waveform (top) with the very simple form
of the sine wave (bottom). While they are both periodic, as seen on the right, the
composite wave is highly irregular and is therefore not easy to describe analytically.
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Fig. 5.1.2. A composite wave can be described numerically by tabulating the posi-
tions of discrete points along the wave, as shown in Table 5.1.1. The axes are marked
generically as t for time and p for pressure. This numerical description is not ade-
quate for obtaining the steady state dynamics associated with this wave, but Fourier
analysis shows that the wave can be decomposed into a series of constituent sine and
cosine waves for which the dynamics can be obtained, as was done in Chapter 4.
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Table 5.1.1. A numerical description of the composite wave shown in Fig. 5.1.2,
giving the position (t, p) of each of the discrete points shown along the curve.

t p t p

0.000 -7.7183 0.500 8.0597
0.025 -8.2383 0.525 5.6717
0.050 -8.6444 0.550 2.5232
0.075 -8.8797 0.575 1.3301
0.100 -9.6337 0.600 1.4405
0.125 -10.5957 0.625 1.9094
0.150 -11.8705 0.650 1.8145
0.175 -10.0942 0.675 0.8738
0.200 -6.2839 0.700 0.7055
0.225 -1.1857 0.725 0.7343
0.250 2.6043 0.750 0.7788
0.275 4.4323 0.775 0.7495
0.300 6.1785 0.800 0.6711
0.325 7.8211 0.825 -0.4796
0.350 9.1311 0.850 -1.6541
0.375 9.9138 0.875 -2.8643
0.400 10.3447 0.900 -3.4902
0.425 10.4011 0.925 -4.1714
0.450 10.2807 0.950 -5.6581
0.475 9.8951 0.975 -6.8024

that shown at the top of Fig. 5.1.1 actually consists of a series of sine and cosine
waves like the one shown at the bottom of that figure. The composite wave is
simply the sum of these so called “harmonics”, each of which is a simple sine or
cosine wave. This makes it possible to express the composite waveform of the
pressure drop Δp in the governing equation (Eq. 3.2.4) as the sum of the sine
and cosine functions which constitute that particular composite waveform.
The steady state solution of the governing equation can then be obtained for
each of these sine and cosine functions separately, and then these solutions are
collected into a whole. Thus, the steady state solutions obtained in Chapter 4,
which were limited to pressure drops of simple sine or cosine waveforms, are
not irrelevant to the case of pressure drops of composite waveforms. In fact,
they are highly relevant as they actually provide the “building blocks” from
which a solution with a pressure drop of a composite waveform is constructed.

The techniques of Fourier analysis are now so well established and so highly
developed that it is fair to say that the problem of dealing with composite
waves is no longer a problem, it is only a matter of details [28, 197]. While
there are now many computer programs that handle these details efficiently, it
is not possible to use these reliably without some understanding of the basics
of the subject, which is the main purpose of the present chapter.
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5.2 Basic Theory

In mathematical language, a wave represents a periodic function. A function
p(t) is said to be periodic if

p(t + T ) = p(t) (5.2.1)

where T is then called the period of that function. An obvious example is the
trigonometric function p(t) = sin t for which

p(t + 2π) = sin (t + 2π) (5.2.2)
= sin t cos 2π + cos t sin 2π (5.2.3)
= 1 × sin t + 0 (5.2.4)
= sin t (5.2.5)
= p(t) (5.2.6)

therefore, p(t) = sin t is a periodic function with a period T = 2π. The function
is seen graphically in Fig. 5.1.1 (bottom) where the meaning of the period T
is quite clear, namely the time interval over which the function assumes a
complete cycle of its values. The composite wave seen in Fig. 5.1.1 (top) also
represents a periodic function, although the function in this case does not have
a simple mathematical form like sin ωt. Nevertheless, the composite wave in
Fig. 5.1.1 represents a periodic function because we can see graphically that
the function has a well defined period over which it assumes a complete cycle
of its values.

Another example of a periodic function which was used in Chapter 4 and
which again has a period T = 2π is p(t) = eit, because

p(t + 2π) = ei(t+2π) (5.2.7)
= ei2πeit (5.2.8)
= (cos 2π + i sin 2π)eit (5.2.9)
= (1 + 0)eit (5.2.10)
= eiωt (5.2.11)
= p(t) (5.2.12)

The theory of Fourier analysis has shown that a periodic function of period
T can be expressed as a sum of sine and cosine functions, such that

p(t) =
∞∑

n=0

An cos
(

2nπt

T

)
+

∞∑
n=1

Bn sin
(

2nπt

T

)
(5.2.13)

= A0 + A1 cos
(

2πt

T

)
+ A2 cos

(
4πt

T

)
+ ...

+B1 sin
(

2πt

T

)
+ B2 sin

(
4πt

T

)
+ ... (5.2.14)
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where the A’s and B’s are constants known as “Fourier coefficients” and are
given by

A0 =
1
T

∫ T

0
p(t)dt (5.2.15)

An =
2
T

∫ T

0
p(t) cos

(
2nπt

T

)
dt (5.2.16)

Bn =
2
T

∫ T

0
p(t) sin

(
2nπt

T

)
dt (5.2.17)

The infinite series in Eqs.5.2.13,14 are called Fourier series, and this represen-
tation of the function p(t) is then referred to as the Fourier series representa-
tion of that function.

We note from the definition of A0 that it represents the average value of
the periodic function p(t) over one period. We note further that there are
actually two series in Eq. 5.2.14 and that, except for A0, the remaining terms
in the two series are paired, meaning that the terms in A1 and B1 have the
same argument, namely 2πt/T , and the next two terms again have the same
argument, namely 4πt/T , etc. This makes it possible to combine each pair,
using standard trigonometric identities, whereby we can write

A1 cos
(

2nπt

T

)
+ B1 sin

(
2nπt

T

)
= M1 cos

(
2nπt

T
− φ1

)
(5.2.18)

where M1, φ1 are two new constants, related to A1, B1 by

A1 = M1 cos φ1 (5.2.19)
B1 = M1 sin φ1 (5.2.20)

This pairing process can now be repeated for each pair of terms in Eq. 5.2.14,
with the result that the two Fourier series can be combined into one, namely

p(t) = A0 + M1 cos
(

2πt

T
− φ1

)
+ M2 cos

(
4πt

T
− φ2

)

+M3 cos
(

6πt

T
− φ3

)
+ ... (5.2.21)

or in more compact form

p(t) = A0 +
∞∑

n=1

Mn cos
(

2nπt

T
− φn

)
(5.2.22)

where
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An = Mn cos φn (5.2.23)
Bn = Mn sin φn (5.2.24)

Eq. 5.2.22 provides a more compact Fourier series representation of the
function p(t) because it contains only one series instead of two. In this rep-
resentation each term except the first is a simple cosine wave with M as its
amplitude and φ as its phase. Because these waves add up to constitute the
function p(t), they are referred to as the “harmonics” of this periodic function.

We note in Eq. 5.2.22 that in the first harmonic the cosine function has
the same value at t = 0 and at t = T , therefore this harmonic has a period T ,
which is the same as the period of the original function p(t). For this reason
it is referred to as the “fundamental harmonic”. In the second harmonic, by
comparison, the cosine function has the same value at t = 0 and at t = T/2.
Therefore, this harmonic has a period T/2 which is half the period of p(t).
This pattern continues to higher harmonics.

Because of the reciprocal relation between the period and the frequency
of a periodic function, the above pattern can be expressed in terms of the fre-
quencies of the harmonics. Thus, if f is the frequency of the periodic function
p(t) in cycles per second (Hz), then

f =
1
T

(5.2.25)

and the angular frequency ω is given by

ω = 2πf (5.2.26)

=
2π

T
radians per second (5.2.27)

Thus the Fourier series representation in Eq. 5.2.22 can now be put in the
form

p(t) = A0 + M1 cos (ωt − φ1) + M2 cos (2ωt − φ2)
+M3 cos (3ωt − φ3) + ... (5.2.28)

in which it is seen clearly that the frequency of the first harmonic is ω, the
same as the frequency of the original function p(t) and is therefore referred to
as the “fundamental frequency”. The frequency of the second harmonic is 2ω,
and of the third is 3ω, etc. These are important properties of the harmonics of
a periodic function which we shall see more clearly later as we consider specific
functions. In particular, we shall see that in many cases the first 10 harmonics
are sufficient for producing a good representation of a given periodic function
such as the composite pressure wave produced by the heart. In that case,
the fundamental frequency is the beating frequency of the heart which, under
resting conditions, is approximately 1 Hz, thus the frequency of the tenth
harmonic would be 10 Hz. It is for this reason that frequencies as high as
10 Hz are considered in the dynamics of the coronary circulation and of the
cardiovascular system in general.
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5.3 Example: Single-Step Waveform

The theory of Fourier analysis described in the previous section is well estab-
lished and fairly straightforward, but its application to the analysis of specific
composite waveforms involves some tedious calculations and some algebraic
intricacies which can only be illustrated by considering a specific example.
While mathematical software packages now have specific tools under the head-
ing of Fast Fourier Transforms (FFT) that can handle much of the tedious
calculations, these tools cannot be used reliably without a basic understand-
ing of the analytical intricacies involved [28, 197]. For this reason, in this and
subsequent sections we consider a series of examples that are intended to il-
lustrate the analytical process involved, starting with a very simple example
in this section. In each case, the purpose of the analysis is to find the Fourier
series representation of the given waveform, that is to find the series of sine
and cosine waves of which the given waveform consists.

Consider the simple waveform consisting of a single step shown in Fig. 5.3.1,
which has a period T = 1 as seen graphically, and which is defined by the
function

p(t) = 1, 0 ≤ t <
1
2

(5.3.1)

= 0,
1
2

≤ t < 1 (5.3.2)

Following the theory presented in the previous section, the Fourier series
representation of this periodic function is given by (Eq. 5.2.13)

p(t) =
∞∑

n=0

An cos
(

2nπt

T

)
+

∞∑
n=1

Bn sin
(

2nπt

T

)
(5.3.3)

= A0 + A1 cos
(

2πt

T

)
+ A2 cos

(
4πt

T

)
+ ...

+B1 sin
(

2πt

T

)
+ B2 sin

(
4πt

T

)
+ ... (5.3.4)

and, using Eqs.5.2.15-17 to find the Fourier coefficients, recalling that T = 1
in this case, we have

A0 =
1
T

∫ T

0
p(t)dt (5.3.5)

=
∫ 1

0
p(t)dt (5.3.6)

=
∫ 1/2

0
1 × dt +

∫ 1

1/2
0 × dt (5.3.7)

=
1
2

(5.3.8)
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Fig. 5.3.1. A simple waveform consisting of a single step and having a period T = 1
as seen in the left two panels. The first ten harmonics of this waveform are shown
on the right. The even harmonics, namely harmonics 2, 4, 6, 8, 10 are zero in this
case and make no contribution to the Fourier composition of this waveform, as seen
on the right. The series is led by the fundamental harmonic which has the same
period and hence the same frequency as the original wave, namely the fundamental
period and fundamental frequency. The period of the third harmonic is one third
of the fundamental period and hence its frequency is three times the fundamental
frequency, etc.

Note that by its definition (Eq. 5.3.5), A0 represents the average value of the
periodic function over one period, which in Fig. 5.3.1 is seen graphically to be
1/2, in agreement with the above result.

An =
2
T

∫ T

0
p(t) cos

(
2nπt

T

)
dt (5.3.9)

= 2
∫ 1

0
p(t) cos(2nπt)dt (5.3.10)

= 2
∫ 1/2

0
1 × cos(2nπt)dt + 2

∫ 1

1/2
0 × cos(2nπt)dt (5.3.11)

= 2
∫ 1/2

0
cos(2nπt)dt (5.3.12)
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=
sin(2nπt)

nπ

∣∣∣∣
1/2

0
(5.3.13)

= 0 for all n (5.3.14)

Bn =
2
T

∫ T

0
p(t) sin

(
2nπt

T

)
dt (5.3.15)

= 2
∫ 1

0
p(t) sin(2nπt)dt (5.3.16)

= 2
∫ 1/2

0
1 × sin(2nπt)dt + 2

∫ 1

1/2
0 × sin(2nπt)dt (5.3.17)

= 2
∫ 1/2

0
sin(2nπt)dt (5.3.18)

=
− cos(2nπt)

nπ

∣∣∣∣
1/2

0
(5.3.19)

=
1 − cos nπ

nπ
(5.3.20)

Substituting these values of the Fourier coefficients in Eqs.5.3.4, we obtain
the required Fourier series representation of this waveform, namely

p(t) =
1
2

+
∞∑

n=1

{
1 − cos nπ

nπ

}
sin (2nπ) (5.3.21)

=
1
2

+
2
π

sin (2nπ) + 0 +
2
3π

sin (6nπ) + 0 . . .

+
2
5π

sin (10nπ) + 0 . . . (5.3.22)

=
1
2

+
2
π

sin (2nπ) +
2
3π

sin (6nπ) +
2
5π

sin (10nπ) . . . (5.3.23)

To put the series in the more compact form of Eq. 5.2.22, that is, in terms
of the amplitudes Mn and phase angles φn of the individual harmonics that
make up the waveform, we use Eqs.5.2.23,24 to find

Mn =
√

A2
n + B2

n (5.3.24)
= Bn since An = 0 for all n (5.3.25)

=
(

1 − cos nπ

nπ

)
(5.3.26)

and

φn = tan−1
(

Bn

An

)
(5.3.27)

= ±π

2
since An = 0 for all n (5.3.28)
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Fig. 5.3.2. Fourier series representations of the single-step waveform, based on the
first one, four, seven, and ten harmonics, clockwise from top left corner.

Which of the two values of φ is appropriate is determined by satisfying
Eq. 5.2.24, namely

Bn = Mn sin φn (5.3.29)

Since Mn = Bn in this case (Eq. 5.3.25), this gives sinφn = 1, and therefore

φn =
π

2
for all n (5.3.30)

Substituting these values of Mn, φn into Eq. 5.2.22 gives

p(t) = A0 +
∞∑

n=0

Mn cos (2nπt − φn) (5.3.31)

=
1
2

+
∞∑

n=0

{
1 − cos nπ

nπ

}
cos (2nπt − π

2
) (5.3.32)

=
1
2

+
∞∑

n=0

{
1 − cos nπ

nπ

}
sin (2nπt) (5.3.33)

=
1
2

+
2
π

sin (2πt) +
2
3π

sin (6πt) +
2
5π

sin (10πt) . . . (5.3.34)
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Fig. 5.3.3. Fourier series representation of the single-step waveform based on the
first 50 harmonics.

which is identical with the result in Eq. 5.3.23.
Thus, in the present example, because of the very simple form of the

wave, the two different forms of Fourier series representation in Eqs.5.2.13,22
are identical. More precisely, the Fourier series representation of this simple
waveform consists of only one series (not two as in Eq. 5.2.13), hence the
compact and the non-compact forms of the Fourier represenation are the same.
Furthermore, we shall find that the determination of the phase angle φ is in
general more troublesome than it is in the present simple case. The reason
for this is that the range of the inverse tangent function used in Eq. 5.3.27 is
limited to the interval −π/2 to +π/2 and therefore does not yield all possible
angles.

If the harmonics of this waveform are denoted by p1(t), p2(t), p3(t) . . ., then
the result in Eq. 5.3.34 can be written as

p(t) =
1
2

+ p1(t) + p2(t) + p3(t) . . . (5.3.35)

where the individual harmonics are given by

p1(t) =
2
π

sin (2πt) (5.3.36)

p2(t) = 0 (5.3.37)
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p3(t) =
2
3π

sin (6πt) (5.3.38)

p4(t) = 0 (5.3.39)
...

It is seen that the first harmonic has the same period and hence the same fre-
quency as the original wave, namely the fundamental period and fundamental
frequency. The second and other even-numbered harmonics are zero in this
case. The period of the third harmonic is one third of the fundamental period
and hence its frequency is three times the fundamental frequency, etc. The
first ten harmonics are shown graphically in Fig. 5.3.1.
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Fig. 5.3.4. Fourier series representation (circles) of the single-step waveform (solid
line) based on a Fast Fourier Transform (FFT) program. Such programs, which are
available with most mathematical software packages, use an appropriate number of
harmonics to produce highly accurate Fourier series representations.

One of the most important pillars of the theory of Fourier analysis is that
the amplitudes of successive harmonics become successively smaller and hence
they make successively smaller contribution to the Fourier representation of
the periodic function in hand. This is highly important for practical purposes
because the infinite series representing the periodic function can then be trun-
cated at some point without committing large error. This is illustrated graph-
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ically in Fig. 5.3.2, where different Fourier series representations are shown,
based on the first one, four, seven, and ten harmonics. A Fourier series rep-
resentation based on the first 50 harmonics is shown in Fig. 5.3.3 where these
properties can be observed. We shall see later that a larger number of har-
monics does not always produce a more accurate Fourier series representation.
Specifically, when the description of a given periodic function is available in
only numerical form, as in Table 5.1.1 for the cardiac wave, new complica-
tions arise which make the optimum number of harmonics dependent on the
number of data points available in the numerical description of the waveform.

Computer programs based on the Fast Fourier Transform (FFT) are opti-
mized to use a number of harmonics appropriate for the number of data points
available [28, 197], to produce a highly accurate Fourier series representation
of a given periodic function, as illustrated in Fig. 5.3.4.

5.4 Example: Piecewise Waveform

Consider next a composite waveform consisting of several steps, as shown in
Fig. 5.4.1, and defined by the function

p(t) = 4t, 0 ≤ t <
1
4

(5.4.1)

= 1,
1
4

≤ t <
1
2

(5.4.2)

=
1
2
,

1
2

≤ t <
3
4

(5.4.3)

= 0,
3
4

≤ t < 1 (5.4.4)

Following the theory presented in the Section 5.2, the Fourier series rep-
resentation of this periodic function is given by (Eq. 5.2.13)

p(t) =
∞∑

n=0

An cos
(

2nπt

T

)
+

∞∑
n=1

Bn sin
(

2nπt

T

)
(5.4.5)

= A0 + A1 cos
(

2πt

T

)
+ A2 cos

(
4πt

T

)
+ ...

+B1 sin
(

2πt

T

)
+ B2 sin

(
4πt

T

)
+ ... (5.4.6)

and, using Eqs. 5.2.15–17 to find the Fourier coefficients, recalling that T = 1
in this case, we have

A0 =
1
T

∫ T

0
p(t)dt (5.4.7)
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Fig. 5.4.1. A composite “piecewise” waveform consisting of several steps and having
a period T = 1 as seen in the left two panels. The first ten harmonics of this waveform
are shown on the right. The series is led by the fundamental harmonic which has
the same period and hence the same frequency as the original wave, namely the
fundamental period and fundamental frequency. The periods of the second and third
harmonics are one half and one third of the fundamental period, respectively, and
hence their frequencies are two and three times the fundamental frequency, etc.

=
∫ 1

0
p(t)dt (5.4.8)

=
∫ 1/4

0
4t × dt +

∫ 1/2

1/4
1 × dt +

∫ 3/4

1/2

1
2

× dt +
∫ 1

3/4
0 × dt (5.4.9)

= 2t2
∣∣1/4
0 + t|1/2

1/4 +
1
2
t

∣∣∣∣
3/4

1/2
+ 0 (5.4.10)

=
1
8

+
1
4

+
1
8

(5.4.11)

=
1
2

(5.4.12)

Again, we note that by its definition (Eq. 5.4.7), the constant A0 represents
the average value of the periodic function over one period. The result is seen
to be correct from the graphical representation of the waveform in Fig. 5.4.1.
For the other Fourier coefficients we have

An =
2
T

∫ T

0
p(t) cos

(
2nπt

T

)
dt (5.4.13)
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= 2
∫ 1

0
p(t) cos (2nπt)dt (5.4.14)

= 2
∫ 1/4

0
4t cos (2nπt)dt + 2

∫ 1/2

1/4
cos (2nπt)dt

+2
∫ 3/4

1/2

1
2

cos (2nπt)dt +
∫ 1

3/4
0 × dt (5.4.15)

= 4
{

cos (2nπt)
2(nπ)2

+
t sin (2nπt)

nπ

}∣∣∣∣
1/4

0

+
sin (2nπt)

nπ

∣∣∣∣
1/2

1/4
+

sin (2nπt)
2nπ

∣∣∣∣
3/4

1/2
+ 0 (5.4.16)

=
2

(nπ)2
[
cos

(nπ

2

)
− 1

]
+

1
2nπ

sin
(

3nπ

2

)
(5.4.17)

where the first integral in Eq. 5.4.15 was evaluated using integration by parts,
with the standard result [80, 186, 25]∫

x cos kxdx =
cos kx

k2 +
x sin kx

k
(5.4.18)

Bn =
2
T

∫ T

0
p(t) sin

(
2nπt

T

)
dt (5.4.19)

= 2
∫ 1

0
p(t) sin (2nπt)dt (5.4.20)

= 2
∫ 1/4

0
4t sin (2nπt)dt + 2

∫ 1/2

1/4
sin (2nπt)dt

+2
∫ 3/4

1/2

1
2

sin (2nπt)dt +
∫ 1

3/4
0 × dt (5.4.21)

= 4
{

sin (2nπt)
2(nπ)2

− t cos (2nπt)
nπ

}∣∣∣∣
1/4

0

− cos (2nπt)
nπ

∣∣∣∣
1/2

1/4
− cos (2nπt)

2nπ

∣∣∣∣
3/4

1/2
+ 0 (5.4.22)

=
2

(nπ)2
sin

(nπ

2

)
− 1

2nπ
cos (nπ) − 1

2nπ
cos

(
3nπ

2

)
(5.4.23)

Here, again, the first integral in Eq. 5.4.21 was evaluated using integration by
parts, with the standard result [80, 186, 25]∫

x sin kxdx =
sin kx

k2 − x cos kx

k
(5.4.24)
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Substitution of these expressions for the Fourier coefficients in Eqs.5.4.6
makes the resulting expression for the Fourier series rather cumbersome. In-
stead, numerical values of An, Bn, Mn, φn can be simply tabulated for the
required number of harmonics, as shown in Table 5.4.1.

Table 5.4.1. Numerical values of Fourier coefficients for the first ten harmonics of
the piecewise waveform shown in Fig. 5.4.1.

n An Bn Mn φn (deg)

1 -0.36180 0.36180 0.51166 135
2 -0.10132 0.00000 0.10132 180
3 0.03054 0.03054 0.04318 45
4 0.00000 -0.07958 0.07958 -90
5 -0.03994 0.03994 0.05648 135
6 -0.01126 0.00000 0.01126 180
7 0.01860 0.01860 0.02631 45
8 0.00000 -0.03979 0.03979 -90
9 -0.02019 0.02019 0.02855 135

10 -0.004053 0.00000 0.00405 180

Values of Mn in Table 5.4.1 are determined as before, namely from
(Eq. 5.3.24)

Mn =
√

A2
n + B2

n (5.4.25)

However, as mentioned in the previous section, the phase angles φn must
satisfy both conditions in Eqs.5.2.23,24, namely

An = Mn cos φn (5.4.26)
Bn = Mn sin φn (5.4.27)

These two conditions cannot be replaced by the single condition

φn = tan−1
(

Bn

An

)
(5.4.28)

because the range of values of the inverse tangent function is limited to the
interval −π/2 to π/2. For example, using the values of A1, B1 from the table,
Eq. 5.4.28 gives

φ1 = tan−1
(

B1

A1

)
(5.4.29)

= tan−1
(

0.3618
−0.3618

)
(5.4.30)

= tan−1(−1) (5.4.31)

= −π

4
(5.4.32)
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This value of φ1 is incorrect because it does not satisfy Eqs.5.4.26,27. Substi-
tuting φ1 = −π/4 in these equations gives

A1 = M1 cos (−π/4) (5.4.33)
= 0.51166 × 0.7071 (5.4.34)
= 0.3618 (5.4.35)

B1 = M1 sin (−π/4) (5.4.36)
= 0.51166 × (−0.7071) (5.4.37)
= −0.3618 (5.4.38)

(A,B)

real axis

imaginary axis

φ

Fig. 5.4.2. The phase angle φ of a harmonic with coefficients A, B is correctly ob-
tained as the argument of the complex number z = A + iB. This angle, φ = arg(z),
is measured in an anticlockwise direction from the real axis, as shown, and has
the range of values −π to π. The example shown here is that of the first har-
monic of the piecewise waveform for which the values of the coefficients (from
Table 5.4.1) are A1 = −0.3618 and B1 = 0.3618, which are shown in the com-
plex plane above as the coordinates of the complex number z, and which give
φ = arg (−0.3618 + i × 0.3618) = 3π/4 = 135◦ as given in Table 5.4.1. The in-
verse tangent function in this case would give an incorrect value, namely φ =
tan−1(B/A) = tan−1(−1) = π/4 = 45◦.

These values of A1, B1 are incorrect, the actual values are A1 = −0.3618,
B1 = 0.3618 as indicated in the table. The correct value of φ1, that is, a
value of φ1 which satisfies both of Eqs.5.4.26,27, is actually 3π/4 or 135◦ as
indicated in the table. This value is obtained by writing A1, B1 as the real
and imaginary parts of a complex number

z1 = A1 + iB1 (5.4.39)
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Fig. 5.4.3. Fourier series representations of the piecewise waveform in Fig. 5.4.1,
based on the first one, four, seven, and ten harmonics, clockwise from top left corner.

then the correct value of φ1 is obtained as the argument (“arg”) of z1, that is

φ1 = arg(z1) (5.4.40)

where the function “arg” is the angle of a complex number in the complex
plane or Argand diagram, measured in an anticlockwise direction from the
real axis and having the range of values −π to π, as illustrated in Fig. 5.4.2.

Numerical values of the coefficients A1, B1 can now be extracted from
Table 5.4.1 to construct the Fourier series representation of the piecewise
waveform in its full form, as in Eq. 5.2.14, giving

p(t) =
∞∑

n=0

An cos
(

2nπt

T

)
+

∞∑
n=1

Bn sin
(

2nπt

T

)
(5.4.41)

= A0 + A1 cos
(

2πt

T

)
+ A2 cos

(
4πt

T

)
+ ...

+B1 sin
(

2πt

T

)
+ B2 sin

(
4πt

T

)
+ ... (5.4.42)

= 0.5 − 0.3618 × cos (2πt) − 0.10132 × cos (4πt)
+0.030536 × cos (6πt) + 0.3618 × sin (2πt)
+0.030536 × sin (6πt) + ... (5.4.43)

Or, numerical values of Mn, φn can be used from Table 5.4.1 to put the series
in its compact form, as in Eqs.5.2.21,22
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Fig. 5.4.4. Fourier series representation of the piecewise waveform in Fig. 5.4.1,
based on the first 50 harmonics.
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Fig. 5.4.5. Fourier series representation (circles) of the piecewise waveform in
Fig. 5.4.1 (solid line) based on a Fast Fourier Transform (FFT) algorithm.
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p(t) = A0 +
∞∑

n=0

Mn cos
(

2nπt

T
− φn

)
(5.4.44)

= A0 + M1 cos
(

2πt

T
− φ1

)
+ M2 cos

(
4πt

T
− φ2

)

+M3 cos
(

6πt

T
− φ3

)
+ ... (5.4.45)

= 0.5 + 0.51166 × cos (2πt − 135 × π/180)
+0.10132 × cos (4πt − 180 × π/180)
+0.043184 × cos (6πt − 45 × π/180) + ... (5.4.46)

As in the previous example, if the harmonics of this waveform are denoted
by p1(t), p2(t), p3(t) etc., then the individual harmonics are given by

p1(t) = 0.51166 × cos (2πt − 135 × π/180) (5.4.47)
p2(t) = 0.10132 × cos (4πt − 180 × π/180) (5.4.48)
p3(t) = 0.043184 × cos (6πt − 45 × π/180) (5.4.49)

...
p10(t) = 0.0040528 × cos (20πt − 180 × π/180) (5.4.50)

Again, it is seen that the first harmonic has the same period and hence the
same frequency as the original wave, namely the fundamental period and
fundamental frequency. The period of the second harmonic is one half of
the fundamental period and hence its frequency is twice the fundamental
frequency, etc. The first ten harmonics are shown graphically in Fig. 5.4.1.

Fig. 5.4.3 shows the accuracy of this Fourier representation of the piecewise
waveform when only the first one, four, seven, and ten harmonics are used. A
Fourier representation with the first 50 harmonics is shown in Fig. 5.4.4, and
a representation based on a computer based Fast Fourier Transform is shown
in Fig. 5.4.5.

5.5 Numerical Formulation

The waveforms considered in the previous two sections were rather artificially
constructed in order to illustrate the basic concepts of Fourier analysis and the
basic steps involved in its application to a specific waveform. In the context
of the coronary circulation, however, the specific waveforms of interest are
the pressure and flow waveforms generated by the pumping action of the left
ventricle, as in the example shown in Fig. 5.1.2. One important feature of this
waveform which is not shared by the examples of the previous two sections
is that it cannot be presented in analytical form, as in Eqs.5.3.1,2 for the
single-step waveform, or in Eqs.5.4.1-4 for the piecewise waveform.
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As stated in the introduction to this chapter, a cardiac pressure waveform
of the type shown in Fig. 5.1.2 is generally available only in numerical form,
that is as a set of points, tabulated as in Table 5.1.1 or presented graphically
as in Fig. 5.1.2. This is the most natural way in which the waveform would
present itself in practice where the set of points would come from pressure or
flow measurements at some accessible point within the coronary vasculature,
at small time intervals during the oscillatory cycle as shown in Table 5.1.1.

The aim of the present section is to show how such a set of points would
be used in the process of Fourier analysis to produce the Fourier series rep-
resentation of the waveform. Once this representation has been achieved, the
waveform becomes like any other waveform, expressed in terms of a series of
sine and cosine functions, or in terms of its harmonics as in the examples of
the previous sections. Indeed, the data in Table 5.1.1 may be regarded as a
periodic function like any other we have considered so far, the only difference
here is that the function is presented in numerical form rather than analyti-
cally. Each pair of values (p, t) in the table represents one point in Fig. 5.1.2,
and the entire set of values in the table produce the waveform shown in the
figure.

Let the number of points available be denoted by N , which is not to be
confused with n which we shall continue to use for the number of harmonics.
The Fourier analysis process is considerably easier, of course, when the points
are spaced at regular intervals of time within the oscillatory cycle, and we shall
proceed on that assumption. In fact, if the original set points are not equally
spaced in time, it would be best first to place them on a “best-fit” curve and
then extract a new set of points from that curve at regular time intervals. It is
also easier, particularly when using Fast Fourier Transform (FFT) programs,
if N is an even number.

If the period of the waveform is denoted by T , and the time interval be-
tween successive data points is denoted by Δt, then

Δt =
T

N
(5.5.1)

In Table 5.1.1 the period has been normalized to T = 1.0 and the number of
points N = 40, therefore Δt = 1/40 = 0.025 as noted from successive points
in the table.

If the time at the beginning of the oscillatory cycle is set at t = 0, and
if this and subsequent points in time are denoted by t0, t1, t3 etc., then these
points are given by

t0 = 0
t1 = 1 × Δt

t2 = 2 × Δt

t3 = 3 × Δt

...
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tN−1 = (N − 1) × Δt (5.5.2)

Note that there are a total of N points in time within one oscillatory cycle.
If the corresponding values of p(t) are denoted similarly by p0, p1, p2 etc., then

p0 = p(t0)
p1 = p(t1)
p2 = p(t2)
p3 = p(t3)

...
pN−1 = p(tN−1) (5.5.3)

The general form of the Fourier series representation of the cardiac wave-
form in Fig. 5.1.2 is the same as for other waveforms, namely

p(t) =
∞∑

n=0

An cos
(

2nπt

T

)
+

∞∑
n=1

Bn sin
(

2nπt

T

)
(5.5.4)

= A0 + A1 cos
(

2πt

T

)
+ A2 cos

(
4πt

T

)
+ ...

+B1 sin
(

2πt

T

)
+ B2 sin

(
4πt

T

)
+ ... (5.5.5)

but the Fourier coefficients An, Bn in the present case cannot be evaluated
by means of integrals as before, because the periodic function p(t) is not
available in analytical form. But the function is available in numerical form, as
in Table 5.1.1, therefore the required integrals can be formulated and evaluated
numerically in a fairly straightforward manner as shown below.

If each of the N points describing the periodic function p(t) is associated
with one time interval Δt, then the N points together cover the entire period
T . In the simplest numerical formulation, the value of the function p(t) at
t0, namely p0, is taken to remain constant over the small time interval Δt
associated with t0, then the value of p(t) at t1, namely p1, is taken to remain
constant over the next time interval, etc., with the result that the periodic
function p(t) is presented graphically as shown in Fig. 5.5.1. This graphical
presentation provides the basis for the numerical formulation and evaluation
of the Fourier coefficients An, Bn.

Briefly, each of the integrals required in the evaluation of the coefficients
is reformulated as a sum, using standard methods. Thus, for A0 we have
(Eq. 5.2.15)

A0 =
1
T

∫ T

0
p(t)dt (5.5.6)
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Fig. 5.5.1. Graphical presentation of the periodic function p(t), when the descrip-
tion of the function is available only numerically. The data points shown are based
on the data in Table 5.1.1 for the cardiac waveform in Fig. 5.1.1. In a numerical
formulation of Fourier analysis, each data point is associated with the small time
interval Δt between it and the next data point, and over each such Δt the value
of p is taken to remain constant as shown in the figure. This allows the numerical
formulation and evaluation of the Fourier coefficients An, Bn as described in the
text.

The integral on the right in fact represents the area under the curve represent-
ing the function p(t) over one period. The graphical presentation in Fig. 5.5.1
shows that to a good approximation this area is equal to the sum of the areas
of the N long thin rectangles of width Δt rising from the t axis to the curve.
This makes it possible to write

A0 =
1
T

{p0Δt + p1Δt + p2Δt . . . pN−1Δt} (5.5.7)

=
1
N

{p0 + p1 + p2 + . . . + pN−1} Δt (5.5.8)

=
Δt

N

N−1∑
k=0

pk (5.5.9)

having used Eq. 5.5.1 in the process.
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Numerical expressions for An and Bn are obtained in the same way, al-
though the integrals in this case involve the product of p(t) and a sine or
cosine function and therefore do not represent simply the area under the p(t)
curve. Nevertheless, using the integral expressions for these coefficients from
Eqs.5.2.16,17 and converting the integrals involved into sums as for A0, we
find

An =
2
T

∫ T

0
p(t) cos

(
2nπt

T

)
dt (5.5.10)

=
2
T

{
p0 cos

(
2nπt0

T

)
Δt + p1 cos

(
2nπt1

T

)
Δt + . . .

+ pN−1 cos
(

2nπtN−1

T

)
Δt

}
(5.5.11)

=
2
N

{
p0 cos

(
2nπt0

T

)
+ p1 cos

(
2nπt1

T

)
+ . . .

+ pN−1 cos
(

2nπtN−1

T

)}
Δt (5.5.12)

=
2Δt

N

N−1∑
k=0

pk cos
(

2nπtk
T

)
(5.5.13)

Bn =
2
T

∫ T

0
p(t) sin

(
2nπt

T

)
dt (5.5.14)

=
2
T

{
p0 sin

(
2nπt0

T

)
Δt + p1 sin

(
2nπt1

T

)
Δt + . . .

+ pN−1 sin
(

2nπtN−1

T

)
Δt

}
(5.5.15)

=
2
N

{
p0 sin

(
2nπt0

T

)
+ p1 sin

(
2nπt1

T

)
+ . . .

+ pN−1 sin
(

2nπtN−1

T

)}
Δt (5.5.16)

=
2Δt

N

N−1∑
k=0

pk sin
(

2nπtk
T

)
(5.5.17)

These expressions are valid generally for any periodic function p(t) for
which a numerical description is available in terms of N data points as in
Table 5.1.1. The expressions are used specifically for that case in the next
section.
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5.6 Example: Cardiac Waveform

Using the numerical formulation of the previous section and the numerical
data in Table 5.1.1 for the cardiac waveform shown in Fig. 5.1.1, we are now
in a position to apply Fourier analysis to this wave and to find its harmonics.
Essentially, the analysis is the same as for other waves except for the evaluation
of the Fourier coefficients An, Bn, which in this case must be done numerically.

For A0, using Eq. 5.5.8 and values from Table 5.1.1, we find

A0 =
Δt

N
{p0 + p1 + p2 + . . . + pN−1} (5.6.1)

=
0.025
40

{−7.7183 − 8.2383 − 8.6444 + . . . − 6.8024} (5.6.2)

= 0.025 × 0.00000475 (5.6.3)
≈ 0 (5.6.4)

We recall from previous examples that A0 represents the average value of
the periodic function p(t) over one complete period. Thus, the fact that this
average value is zero in this case indicates that the waveform in Fig. 5.1.2 rep-
resents only the oscillatory part of a cardiac wave, any constant part has been
removed. It is always possible, and in fact desirable, to remove any constant
average from a waveform before applying Fourier analysis to it because the
analysis is concerned with only the oscillatory part. This principle is illustrated
graphically in Fig. 5.6.1.

For the other Fourier coefficients, using Eqs.5.5.12,16 and the data in Table
5.1.1, and noting that the number of data points N = 40 and the period
T = 1.0, we find

An =
2
N

{
p0 cos

(
2nπt0

T

)
+ p1 cos

(
2nπt1

T

)
+ . . .

+ pN−1 cos
(

2nπtN−1

T

)}
Δt (5.6.5)

=
1
20

{−7.7183 × cos (2nπ × 0)

−8.2383 × cos (2nπ × 0.025) + . . .

−6.8024 × cos (2nπ × 0.975)} × 0.025 (5.6.6)

Bn =
2
N

{
p0 sin

(
2nπt0

T

)
+ p1 sin

(
2nπt1

T

)
+ . . .

+ pN−1 sin
(

2nπtN−1

T

)}
Δt (5.6.7)

=
1
20

{−7.7183 × sin (2nπ × 0)

−8.2383 × sin (2nπ × 0.025) + . . .

−6.8024 × sin (2nπ × 0.975)} × 0.025 (5.6.8)
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Fig. 5.6.1. A cardiac wave such as the solid curve at the top can always be separated
into a purely constant part and a purely oscillatory part. The purely oscillatory part
is shown at the bottom and it has the property that its average over one period is
zero. In Fourier analysis the constant part of the wave is represented by A0, thus
the result A0 = 0 in Eq. 5.6.3 indicates that the data on which the result is based
represents only the oscillatory part of the waveform, any constant part has been
removed.

We recall that values of n in these expressions refer to different harmonics.
Thus, evaluating these for the first 10 harmonics (n = 1, 2, . . . , 10), the results
are shown numerically in Table 5.6.1.

The Fourier representation of this waveform, using the compact form in
Eqs.5.2.21,22, is given by

p(t) = A0 +
∞∑

n=0

Mn cos
(

2nπt

T
− φn

)
(5.6.9)

= A0 + M1 cos
(

2πt

T
− φ1

)
+ M2 cos

(
4πt

T
− φ2

)

+M3 cos
(

6πt

T
− φ3

)
+ ... (5.6.10)
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Table 5.6.1. Values of the Fourier coefficients for the cardiac wave shown in
Fig. 5.6.1, using Eqs.5.6.5,7 with n = 1, 2 . . . 10.

n An Bn Mn φn (deg)

1 -7.98840 0.15707 7.99000 178.8736
2 -0.42846 -4.41890 4.43960 -95.5381
3 0.88370 0.46246 0.99740 27.6238
4 0.68508 0.28468 0.74187 22.5649
5 -0.35969 0.87460 0.94567 112.3553
6 -0.30961 -0.28316 0.41956 -137.5548
7 -0.53143 -0.20924 0.57114 -158.5089
8 0.26366 -0.15171 0.30419 -29.9153
9 0.02955 0.06432 0.07078 65.3256

10 0.04842 0.16564 0.17258 73.7050

Thus, using values of Mn and φn from Table 5.6.1, the first 10 harmonics of
this waveform are given by, recalling that T = 1.0,

p1(t) = M1 cos
(

2πt

T
− φ1

)
(5.6.11)

= 7.99 × cos
(

2πt − 178.8736 × π

180

)
(5.6.12)

p2(t) = M2 cos
(

4πt

T
− φ2

)
(5.6.13)

= 4.4396 × cos
(

4πt − −95.5381 × π

180

)
(5.6.14)

...

p10(t) = M10 cos
(

20πt

T
− φ10

)
(5.6.15)

= 0.17258 × cos
(

20πt − 73.705 × π

180

)
(5.6.16)

Using these results, the cardiac waveform and its first 10 harmonics are shown
in Fig. 5.6.2.

Fig. 5.6.3 shows the accuracy of this Fourier representation of the cardiac
waveform when only the first one, four, seven, and ten harmonics are used.
It is seen that the representation is fairly accurate with only the first seven
harmonics. By contrast, Fourier representations of the single-step and the
piecewise waveforms considered in the previous sections were less accurate
with as many as fifty harmonics. The reasons for this can be seen clearly in
Figs.5.3.3 and 5.4.4. The presence of step changes in those cases, and the be-
haviour of the Fourier curves in the vicinity of these steps, shows that Fourier
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Fig. 5.6.2. The cardiac waveform of Fig. 5.1.1 with its first ten harmonics, using
the results in Eqs.5.6.10-15.

series have difficulty replicating step changes. The cardiac waveform does not
contain such changes, thus higher accuracy is achieved with a relatively small
number of harmonics.

In fact, as mentioned earlier, when the waveform to be represented by a
Fourier series is available only in numerical form, the number of harmonics
that produces the most accurate representation becomes dependent on the
number of data points available in the numerical description of the waveform.
Broadly speaking, the theory of Fourier analysis has shown that if the number
of data points available is N , then the number of harmonics that produces the
most accurate representation is N/2 [28, 197]. A smaller or a larger number
of harmonics produce a less accurate representation, for different reasons.
This is an oversimplification of the underlying theory, but it provides a useful
guide, indeed a necessary guide, for practical applications of Fourier analysis
to specific waveforms.

For the cardiac waveform being considered in this section, the number of
data points in the numerical description of the wave (Table 5.1.1) is 40, thus
the number of harmonics required to produce the most accurate representa-
tion is 20. However, it turns out that this maximum accuracy is reached along
a fairly shallow (not sharp) peak, thus the optimum number of harmonics
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Fig. 5.6.3. Fourier series representations of the cardiac waveform, based on the first
one, four, seven, and ten harmonics, clockwise from top left corner.

Fig. 5.6.4. Fourier series representation of the cardiac waveform, based on the first
20, 30, 38, and 45 harmonics, clockwise from top left corner.
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Fig. 5.6.5. Fourier series representation of the cardiac waveform based on a Fast
Fourier Transform (FFT) program, where crosses represent the original data points
describing the waveform and circles represent the corresponding data points produce
by the Fourier series representation. The program precisely replicates the original
data points.

need not be treated precisely. In other words, 19 or 21 harmonics will not
produce significant differences. In fact, as seen in Fig. 5.6.3, both seven and
ten harmonics produce fairly accurate representations, and the difference be-
tween them is barely detectable. A Fourier representation with precisely 20
harmonics is shown in Fig. 5.6.4, compared with representations using 30, 38,
and 45 harmonics. It is seen that only in the latter two cases the representa-
tion breaks down. A representation based on a Fast Fourier Transform (FFT)
program is shown in Fig. 5.6.5, where it is seen that the program can produce
precisely the data points given in the numerical description of the waveform.

5.7 Summary

The driving pressure in the dynamics of the coronary circulation has a com-
posite waveform such as the cardiac pressure wave, while much of the analysis
described so far deals with only simple sine or cosine waves. The theory of
Fourier analysis shows that a composite wave can in fact be expressed as the
sum of a series of sine and cosine waves which are referred to as its “harmon-
ics”. This makes it possible to extend lumped model analysis, which is based
on only simple sine and cosine waves, to now include composite pressure and
flow waveforms.
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A composite wave is a periodic function of time with period T and angular
frequency ω. Its harmonics can be expressed as cosine functions, the first has
a period T and angular frequency ω and is referred to as the “fundamental
harmonic”, the second has a period T/2 and angular frequency 2ω, and so
on. In many cases the first 10 harmonics are sufficient for producing a good
representation of a given periodic function such as the composite pressure wave
produced by the heart. In that case, the fundamental frequency is the beating
frequency of the heart which, under resting conditions, is approximately 1
Hz, thus the frequency of the tenth harmonic would be 10 Hz. It is for this
reason that frequencies as high as 10 Hz are considered in the dynamics of
the coronary circulation and of the cardiovascular system in general.

A very simple example of a composite waveform is a single step that is
repeated continuously with a period T . The example illustrates how the shape
of the step is gradually approximated as more and more harmonics are added.

Another example of a composite waveform is a “piecewise” form consisting
of several steps. Fourier analysis of the waveform is essentially the same as for
the single-step waveform, but the example illustrates how the Fourier series
approximation has difficulties at sharp corners.

Composite waveforms of interest in the dynamics of the coronary circula-
tion, such as the cardiac pressure waveform, can only be expressed in numeri-
cal form. A numerical formulation of Fourier analysis makes it possible to use
the numerical form of the composite wave and proceed to find its harmonics
as for other waves.

Typically, 40 data points would normally be sufficient to represent a car-
diac waveform numerically. The number of harmonics that produces the most
accurate Fourier series representation of the waveform is then 20. A smaller or
larger number of harmonics produces a less accurate representation. Fourier
series replicate the cardiac waveform more easily than they do a piecewise
waveform because of the absence of sharp steps in the former.
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Composite Pressure-Flow Relations

6.1 Introduction

As stated earlier in this book, in the overwhelming majority of heart failures
the precipitating factor is a lack of blood supply to the heart itself for its own
metabolic needs [83, 206, 14, 128]. In other words, in most cases of what is
generally referred to as “heart disease”, the heart is not truly diseased in the
normal sense of the word, it is simply being deprived of the energy it needs
to do its work. And the work of the heart is important, of course, because it
is the pump that provides blood supply to all other parts of the body.

As described in Chapter 1, blood supply to the heart, or coronary blood
flow, comes via two branches of the aorta as shown in Figs. 1.3.1, 2. Many
factors and mechanisms are involved in the short journey of blood from this
point at the base of the aorta to points within the myocardium. The one
that attracts most attention in medical practice is obstruction of the blood
vessels. However, the journey of coronary blood flow involves some of the
most complex and highly delicate dynamics and control mechanisms. They
can equally disrupt blood supply to the heart. In this chapter and in this
book in general, the focus is on these dynamic aspects of coronary blood flow.

The dynamics and control mechanisms of coronary blood flow require as
much attention as the obstruction of blood vessels not only because they can
and do interfere with orderly blood supply to the heart but because these dy-
namic aspects of coronary blood flow are not fully known or fully understood
and are far less “visible” than an obstruction of a blood vessel. We have seen
even in the crude models discussed in previous sections that, because of the
pulsatile nature of coronary blood flow, any change that affects capacitance
or inductance within the coronary circulation can have significant effects on
the dynamics of coronary blood flow. The change may come about as a result
of pathology, injury, or the administration of drugs or surgery that alter the
properties of the conducting vessels or of the moving fluid. Any of these can
disrupt the delicate dynamic balance of the system and thus disrupt blood
supply to heart tissue.
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Much of the dynamics of coronary blood flow is “hidden” in the sense
that many elements of these dynamics cannot be easily measured. Not only
are the controlling parameters such as capacitance and resistance inaccessible
to direct measurement but direct measurements of pressure and flow which
these parameters control are extremely difficult because of the small size of
the vessels involved, the violent pulsations of the living heart, and the phase
difference between pressure and flow which necessitates simultaneous mea-
surements of both for any meaningful interpretation.

An element of the dynamics of the coronary circulation that is reasonably
accessible is the pressure at the base of the aorta or at the entrances to the
two main coronary arteries (Fig. 1.3.2). This pressure provides an important
key into the coronary circulation because it represents the force that drives
flow into the coronary system. It is the external force in the forced dynamics
scenarios of the RLC systems examined in Chapter 4. While the driving force
is actually the difference between this pressure and pressure at exit from the
system at the capillary level, it is reasonable to neglect the small pressure at
exit and think of the pressure at entry into the system as the driving pressure
drop. Thus, if this pressure is denoted by P (t), in this chapter we shall use
the notation P (t) for the pressure drop driving the flow, instead of Δp used
in Chapter 4. This is convenient not only because it simplifies the notation in
this chapter but because this pressure represents the pressure wave generated
by the heart as it just emerges from the left ventricle, and measurements of
this pressure are widely available. We shall refer to it simply as the “cardiac
pressure wave”.

With the cardiac pressure wave P (t) taken as the force driving coronary
blood flow, the ultimate aim of all modelling and experimental studies is to
determine the corresponding flow wave generated by this force, which we shall
denote by Q(t). In experimental studies, because of lack of access and other
difficulties, Q(t) would most likely represent inflow, that is flow at entry into
the system. It would be measured at the same location as P (t), at the base
of the aorta as flow enters the two main coronary ostia, or somewhere fur-
ther downstream along the two main coronary arteries. In modelling studies,
depending on whether the system is being modelled by a parallel or a series
circuit, Q(t) may be broken down into inflow and outflow, if they differ, or into
partial flows along different branches of the parallel circuit. In physiological
or clinical studies, of course, the ultimate question is how much blood flow is
reaching the myocardium, therefore one would like Q(t) to represent outflow
from the system.

It must be remembered that both P (t) and Q(t) are functions of time,
periodic functions of time, each in general being represented by a composite
waveform. Thus, the relation between pressure and flow is itself a function
of time, it is different at different points in time within the oscillatory cy-
cle. Only when P (t) is a simple sine or cosine function, that is, when it is
a single harmonic, does the relation between pressure and flow remain the
same during the oscillatory cycle and Q(t) can be described simply by a fixed
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amplitude and a fixed phase angle as was done in previous sections. In that
case, a fixed relation exists between the amplitudes and phase angles of the
pressure and flow waves. When P (t) is a composite waveform, however, Q(t)
is also a composite waveform and no such simple relation between the two
is possible because the two composite waves cannot be described in terms of
single amplitudes and phase angles. But, as we saw in the previous chapter,
the two waves can be decomposed into harmonics which can be described in
this simple way and, as we shall see in this chapter, the simple relation be-
tween pressure and flow continues to apply to the harmonics of the composite
pressure and flow waves.

It must be remembered, also, that the relations between the harmonics
of pressure and flow waves, namely the relations based on the concept of
impedance introduced in Section 4.9, represent only steady state dynamics,
not including any transient effects as discussed in Section 4.7. This is not
an unreasonable modelling strategy of the coronary circulation because the
normal operating mode of the system is that of steady state oscillation, and
because a good understanding of the dynamics of the system must be based on
this normal steady state mode. Indeed, steady state dynamics form the basis
of all lumped models of the coronary circulation, and they form the basis of
the pressure-flow relations to be explored in this chapter.

The ultimate aim then is a relation between the form of the composite
pressure wave P (t) and the form of the corresponding flow wave Q(t). In
medical practice the form of the cardiac pressure wave is highly scrutinized
in terms of its graphic details, mainly because these details are interpreted
as indicators of the enegertic performance of the cardiac muscle. Yet, this
same pressure waveform is responsible for driving coronary blood flow, and
its graphic details can equally be interpreted as indicators of the amount
of flow going into the coronary circulation. Such interpretation requires an
understanding of the relation between the two composite waveforms, however,
and this is the subject of the present chapter.

6.2 Composite Pressure-Flow Relations
Under Pure Resistance

In this section we consider the relation between a composite pressure waveform
and the corresponding flow waveform when the opposition to flow consists of
only pure resistance. While, as we shall see, this is a rather trivial case, it
provides a good starting point and an important reference for subsequent
cases. It also serves to illustrate the analytical steps required to obtain the
composite flow waveform Q(t) from a given composite pressure waveform P (t).

We recall that when P (t) is a simple sine or cosine function, as in Eq. 4.8.2,

P (t) = P0 cos ωt (6.2.1)
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and opposition to flow consists of only the resistance R, the corresponding
flow wave is given by (Eq. 4.8.7)

Q(t) =
P0

R
cos ωt (6.2.2)

=
P (t)
R

when P (t), Q(t) are sinusoidal waves (6.2.3)

As stated in the introduction to this chapter, P (t) is now being used to denote
the pressure drop denoted by Δp in earlier chapters, and P0 is a constant
representing the amplitude of the pressure wave and denoted by Δp0 in earlier
chapters.

It is clear that in this case the relation between the pressure and flow
waves is particularly simple. The flow wave has the same form and the same
phase angle as the pressure wave, and the amplitude of the flow wave is given
by the amplitude of the pressure wave divided by the resistance R, that is

phase {Q(t)} = phase {P (t)} (6.2.4)

amplitude {Q(t)} =
amplitude {P (t)}

R
(6.2.5)

What is important is that this relationship between pressure and flow is fixed,
it does not change within the oscillatory cycle. Equally important, however,
this relation is only possible when the pressure wave is a simple sine or cosine
function. This is clear from the way these solutions were obtained in Chapter
4.

Thus, the relation between pressure and flow cannot be applied to the
composite waves of pressure and flow but it can be applied to their individ-
ual harmonics because, as we saw in Chapter 5, these harmonics consist of
simple sine and cosine waves. Thus, we decompose the pressure wave into its
harmonics by writing, as in Chapter 5,

P (t) = p + p1(t) + p2(t) + . . . + pn(t) (6.2.6)

where p1(t) . . . pn(t) are the n harmonics of the oscillatory part of p(t) and
p is the (constant) average value of P (t) over one cycle, and if each of these
parts of P (t) is now treated separately, we obtain the corresponding series of
flow rates, using Eq. 6.2.3,

q =
p

R
(6.2.7)

q1(t) =
p1(t)
R

(6.2.8)

q2(t) =
p2(t)
R

(6.2.9)
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...

qn(t) =
pn(t)

R
(6.2.10)

These components can now be added to give the composite flow wave Q(t)
produced by the composite pressure wave P (t), namely

Q(t) = q + q1(t) + q2(t) + . . . + qn(t) (6.2.11)

There are two important points to emphasize:

1. The sum in Eq. 6.2.11 to obtain the total Q(t) is only possible because
the equation governing Q(t), namely Eq. 4.7.1, is linear.

2. The simple relation in Eq. 6.2.3 between pressure and flow applies only to
the components of the pressure and flow waves but not to the composite
waves themselves, that is

Q(t) �= P (t)
R

when P (t), Q(t) are composite waves (6.2.12)

6.3 Example: Cardiac Pressure Wave

As a first example of pressure-flow analysis, consider the cardiac waveform
given numerically in Table 6.3.1 and shown in Fig. 6.3.1. The waveform repre-
sents cardiac pressure in mm Hg measured in a 20–kg dog. Note that in this
case the pressure data include both the mean and the oscillatory parts of the
pressure wave, and we use these below to illustrate the results of the previous
section.

To obtain the corresponding flow wave using the scheme outlined in the
previous section, the pressure waveform is decomposed into its harmonics as
was done in Chapter 5, and the results for the first 10 harmonics are shown
numerically in Table 6.3.2. Since the only opposition to flow in this case is
the resistance R, then the corresponding harmonics of the flow wave are as in
Eq. 6.2.10, namely

qn(t) =
pn(t)

R
n = 1, 2, . . . , 10 (6.3.1)

However, the resistance R is not known. Since in this section we are only
interested in illustrating the analysis involved, we shall use an estimate of R
for this purpose.

In the human cardiovascular system, for a 60–kg man, with a cardiac
output of 5 L/min and a mean aortic pressure of 100 mm Hg, an estimate of
total resistance in the systemic circulation would be
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Fig. 6.3.1. A cardiac pressure wave measured in a 20–kg dog and used as an example
to illustrate how the corresponding flow wave is obtained from the given pressure
waveform.

R (systemic, human) ≈ 100 [mm Hg]
5 [L/min]

(6.3.2)

= 20
[
mm Hg

L/min

]
(6.3.3)

≈ 100 × 1, 333
5 × 1, 000/60

(6.3.4)

≈ 1, 600
[
dynes · s

cm5

]
(6.3.5)

If aortic pressure is taken as the input pressure driving flow into the coronary
circulation, and if coronary blood flow is estimated at 5% of cardiac output,
then an estimate of total resistance in the coronary circulation is

R (coronary, human) ≈ 100 [mm Hg]
0.25 [L/min]

(6.3.6)

= 400
[
mm Hg

L/min

]
(6.3.7)

≈ 100 × 1, 333
0.25 × 1, 000/60

(6.3.8)
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≈ 32, 000
[
dynes · s

cm5

]
(6.3.9)

The corresponding estimates for a 20–kg dog, taking the mean cardiac
output as 2 L/min, the mean aortic pressure as 100 mm Hg, and coronary
blood flow again as 5% of cardiac output, we find

R (systemic, dog) ≈ 50
[
mm Hg

L/min

]
(6.3.10)

≈ 4, 000
[
dynes · s

cm5

]
(6.3.11)

R (coronary, dog) ≈ 1, 000
[
mm Hg

L/min

]
(6.3.12)

≈ 80, 000
[
dynes · s

cm5

]
(6.3.13)

Using the estimated value of R for the coronary system of the dog, and
the harmonic components of the cardiac pressure wave in Table 6.3.2, where

Table 6.3.1. A numerical description of the cardiac wave shown in Fig. 6.3.1, giving
the pressure (P ) at different times t within the oscillatory cycle. The oscillatory
period has been normalized to 1.0. The pressure data include both the mean and
the oscillatory part of the pressure.

t P t P

0.000 96.60 0.500 111.00
0.025 96.21 0.525 108.15
0.050 97.27 0.550 103.65
0.075 95.56 0.575 103.00
0.100 95.34 0.600 103.00
0.125 95.38 0.625 103.00
0.150 93.46 0.650 102.00
0.175 91.92 0.675 101.53
0.200 93.88 0.700 101.00
0.225 100.04 0.725 100.26
0.250 104.50 0.750 101.00
0.275 106.68 0.775 101.00
0.300 108.20 0.800 101.00
0.325 110.00 0.825 102.00
0.350 110.95 0.850 102.00
0.375 112.38 0.875 101.13
0.400 113.80 0.900 100.70
0.425 113.00 0.925 99.86
0.450 113.00 0.950 99.47
0.475 112.93 0.975 98.18
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Table 6.3.2. Fourier coefficients of the first 10 harmonics of the pressure wave in
Fig. 6.3.1.

n An Bn Mn φn (deg)

1 -6.5901 0.94298 6.65720 171.8568
2 1.08200 -4.66400 4.78780 -76.9394
3 0.74761 0.62007 0.97129 39.6723
4 0.15931 0.39243 0.42353 67.9050
5 -0.77719 0.93475 1.21560 129.7415
6 -0.28180 -0.56377 0.63028 -116.5580
7 -0.19808 -0.38691 0.43467 -117.1109
8 0.55090 -0.07722 0.55628 -7.9796
9 -0.23510 0.22975 0.32872 135.6601

10 -0.13825 0.18000 0.22696 127.5263

pn(t) = Mn cos
(

2πnt

T
− φn

)
n = 1, 2, . . . , 10 (6.3.14)

we then find

q =
p

R
(6.3.15)

=
102.5995

1, 000
(6.3.16)

≈ 0.1026 [L/min] (6.3.17)

where p and q are the mean values of p(t) and q(t) over one oscillatory cycle.
For the oscillatory parts of the flow wave, using Eq. 6.3.14 and Table 6.3.2,
and taking the period T = 1, we find

q1(t) =
p1(t)
R

(6.3.18)

=
6.6572
1, 000

× cos (2πt − 171.8568 × π/180) (6.3.19)

≈ 0.0067 × cos (2πt − 171.8568 × π/180) [L/min] (6.3.20)

q2(t) =
p2(t)
R

(6.3.21)

=
4.7878
1, 000

× cos (4πt + 76.9394 × π/180) (6.3.22)

≈ 0.0048 × cos (4πt + 76.9394 × π/180) [L/min] (6.3.23)
...

q10(t) =
p10(t)

R
(6.3.24)

=
0.22696
1, 000

× cos (20πt − 127.5263 × π/180) (6.3.25)
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≈ 0.0002 × cos (20πt − 127.5263 × π/180) [L/min] (6.3.26)

These components of Q(t) can now be added to give the composite flow wave
Q(t) produced by the composite pressure wave P (t), that is

Q(t) = q + q1(t) + q2(t) + . . . + q10(t) (6.3.27)

which is shown graphically together with the pressure wave in Fig. 6.3.2.
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Fig. 6.3.2. Cardiac pressure wave (top) and corresponding flow wave (bottom)
when opposition to flow consists of only resistance R which has been estimated at
1, 000 mm Hg · L/min. We see that in the presence of pure resistance the pressure
and flow waves have precisely the same form, the flow wave being only scaled by the
value of the resistance R.

It would be convenient to put the pressure and flow waves together, using
the same scale, and the results of this section suggest that in order to do so we
should plot P (t) and R × Q(t) (instead of Q(t)), as shown in Fig. 6.3.3. This
presentation would be useful not only when the opposition to flow consists of
pure resistance but also, and particularly, when other elements of the RLC
system are present. In such cases, as we shall see, any small change in the form
of the flow wave can be detected more easily and can be attributed directly to
inertial (L) or capacitive (C) effects only, because the effects of resistance (R)
have been scaled out. We shall refer to the product R×Q(t) as the “R-scaled”
flow.
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Fig. 6.3.3. When studying pressure-flow relations it is convenient to plot the pres-
sure and flow waves to the same scale so as to compare their waveforms. This can be
achieved as seen here by plotting P (t) (solid curve) and the “R-scaled” flow R×Q(t)
(dashed) instead of Q(t). When the opposition to flow consists of only resistance R
as it is in this case, the two curves become graphically identical. In this figure they
are slightly shifted to make them visibly distinct. The use of R-scaled flow is useful
also when other elements of the RLC system are present. In such cases any small
change in the form of the flow wave can be detected more easily and can be at-
tributed directly to inertial (L) or capacitive (C) effects only, because the effects of
resistance (R) have been scaled out.

6.4 Composite Pressure-Flow Relations
Under General Impedance

When opposition to pulsatile flow consists of more than pure resistance, that
is, when either inertial or capacitance effects or both are involved, the relation
between a composite flow wave and the corresponding flow wave is more com-
plicated than was seen in the previous section. For the purpose of considering
this relation here, the term “impedance” shall be used in a general sense here
to mean any form of opposition to flow beyond that of pure resistance.

It is convenient in this and in subsequent sections to use the concept of
complex impedance Z introduced in Section 4.9. It was seen in that section
that when the opposition to flow consists of only pure resistance, the complex
impedance Z becomes real and equal to R, but when any inertial or capacitive
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effects are present, that is any “reactive” effects, Z is a complex quantity
whose real and imaginary parts depend on the nature and arrangement of the
reactive elements. In these terms, our interest in this section is in pressure-flow
relations when Z has both a real and an imaginary part.

Let the composite pressure wave under consideration be denoted by P (t)
and the corresponding flow wave be denoted by Q(t). In Chapter 5 we saw
that P (t) can always be separated into a steady part p and a purely oscillatory
part, such that

P (t) = p + p(t) (6.4.1)

The mean part of the pressure represents the mean value of P (t) over one
oscillatory cycle, namely

p =
1
T

∫ T

0
P (t)dt (6.4.2)

The oscillation part of the pressure, by definition, has a zero mean. This
separation of the composite wave is important because the corresponding flow
wave will consist similarly of steady and oscillatory parts, which we shall
denote by q and q(t), respectively, and write

Q(t) = q + q(t) (6.4.3)

The relation between the mean components of the pressure and flow waves,
p, q, is fundamentally different from that between the oscillatory components,
p(t), q(t), and the two relations must be dealt with separately. For the steady
components, the relation between pressure and flow is simply that established
in Section 6.2, namely

q =
p

R
(6.4.4)

While in Section 6.2 the opposition to flow consisted of only pure resistance,
this relation remains valid in this section even though reactive elements are
assumed to be present. The reason for this is that reactive effects come into
play only when flow is non-steady. And since here we are able to separate the
steady and non-steady parts of the flow, as discussed in Section 6.2, Eq. 6.4.4
can be used for the steady parts of the pressure and flow waves.

One of the most important advantages of using complex impedance is that
the relation between the oscillatory parts of the pressure and flow waves can
then be put in the general form

q(t) =
p(t)
Z

(6.4.5)

However, in this equation the pressure p(t) must be in complex form. And
since both p(t) and Z are complex, it follows that q(t) is also complex. Thus,
if subscripts r and i are used to denote real and imaginary parts, and we write
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p(t) = pr(t) + ipi(t) (6.4.6)
Z = zr + izi (6.4.7)

q(t) = qr(t) + iqi(t) (6.4.8)

then Eq. 6.4.5 can be put in the form

qr(t) + iqi(t) =
pr(t) + ipi(t)

zr + izi
(6.4.9)

=
pr(t)zr + pi(t)zi + i(pi(t)zr − pr(t)zi)

z2
r + z2

i

(6.4.10)

and we find

qr(t) =
pr(t)zr + pi(t)zi

z2
r + z2

i

(6.4.11)

qi(t) =
pi(t)zr − pr(t)zi

z2
r + z2

i

(6.4.12)

As we saw in earlier sections, the real part of the oscillatory flow rate, namely
qr(t), represents the flow rate when the driving pressure is the real part of
p(t), namely pr(t), and similarly for the imaginary parts of pressure and flow.
But as we see clearly from Eqs. 6.4.11, 12

qr(t) �= pr(t)
zr

(6.4.13)

qi(t) �= pi(t)
zi

(6.4.14)

The correct pressure-flow relation is

qr(t) = �
{

p(t)
Z

}
(6.4.15)

= �
{

pr(t) + ipi(t)
zr + izi

}
(6.4.16)

qi(t) = �
{

p(t)
Z

}
(6.4.17)

= �
{

pr(t) + ipi(t)
zr + iziZ

}
(6.4.18)

which yield the results in Eqs. 6.4.11, 12.
It is important to recall that Eq. 6.4.5 and all the above results that follow

from it apply only when the driving pressure, pr or pi, is a simple sine or cosine
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wave. Thus Eq. 6.4.5 cannot be applied directly to a composite pressure wave,
but it can be applied to its individual harmonics. If there are N harmonics and
we denote these by pn(t), then, as we found in Chapter 5, they are given by

pn(t) = Mn cos
(

2πnt

T
− φn

)
n = 1, 2, . . . , N (6.4.20)

and the oscillatory part of the pressure wave is given by

p(t) = p1(t) + p2(t) + . . . + pN (t) (6.4.21)

where Mn and φn are (real) constants associated with the Fourier series rep-
resentation of the composite wave.

Eq. 6.4.5 applies only to each of these harmonics individually, and only if
each is considered to be the real or the imaginary part of the complex pressure.
Thus, for the first harmonic we can introduce a complex pressure

p1(t) = M1 cos
(

2πt

T
− φ1

)
+ iM1 sin

(
2πt

T
− φ1

)
(6.4.22)

and then use Eq. 6.4.5 to get the corresponding harmonic of the flow wave

q1(t) =
p1(t)

Z
(6.4.23)

This can be done with each harmonic, writing, in general

pn(t) = Mn cos
(

2πnt

T
− φn

)
+ iMn sin

(
2πnt

T
− φn

)
(6.4.24)

which can be put in the more compact exponential notation

pn(t) = Mnei((2πnt/T )−φn) n = 1, 2, . . . , N (6.4.25)

The corresponding harmonics of the oscillatory flow wave are then given by

qn(t) =
pn(t)

Z
n = 1, 2, . . . , N (6.4.26)

The oscillatory part of the composite pressure wave is now seen to be the
real part of the complex pressure pn(t), which in turn corresponds to the real
part of the flow wave, that is, in the notation of Eqs. 6.4.6, 8, where subscripts
r and i are used for denoting real and imaginary parts, respectively,

pnr(t) = �(pn(t)) (6.4.27)

= Mn cos
(

2πnt

T
− φn

)
n = 1, 2, . . . , N (6.4.28)
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pni(t) = �(pn(t)) (6.4.29)

= Mn sin
(

2πnt

T
− φn

)
n = 1, 2, . . . , N (6.4.30)

qnr(t) = �(qn(t)) (6.4.31)

= �
(

pn(t)
Z

)
n = 1, 2, . . . , N (6.4.32)

qni(t) = �(qn(t)) (6.4.33)

= �
(

pn(t)
Z

)
n = 1, 2, . . . , N (6.4.34)

6.5 Composite Pressure-Flow Relations
Under Inertial Effects

Inertial effects are important in coronary blood flow, and in blood flow in
general, because of the pulsatile nature of the flow. In pulsatile flow the fluid
is repeatedly accelerated and decelerated and hence fluid inertia, or what
in previous sections was referred to as the inductance (L), has a significant
effect on the relation between pressure and flow. The origin and basic nature
of the inertial effect were examined in Chapter 2. In Chapter 3 the effects of
inductance on the free dynamics of the RLC system were examined, and the
same was done in Chapter 4 for the forced dynamics of the RLC system, using
either linear or simple sinusoidal driving pressures. In this section we examine
the effects of inertia on pressure-flow relations when the driving pressure has
a composite waveform.

As noted in earlier sections, inertial effects in the coronary circulation and
in the cardiovascular system in general do not arise in pure form but always
in combination with resistance effects and frequently in combination with
capacitance effects. Only when a breach occurs within the vascular system
is blood able to accelerate and decelerate free from the constraints of the
containing vessels and hence free from resistance and capacitance effects. It
is therefore not meaningful to study the inertial effect in isolation, that is to
study only the inductance element L of the RLC system by itself. In this
section we examine the effects of inductance L in combination with resistance
R and in later sections within the complete RLC system.

Consider resistance R and inductance L in series at first, where the com-
plex impedance, from Eqs. 4.9.34, 35, is given by

Z = R + iωL (6.5.1)
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where ω is the angular frequency. Since the individual harmonics of a com-
posite wave have different frequencies, we should strictly write

Zn = R + iωnL (6.5.2)
ωn = 2πn n = 1, 2, . . . , N (6.5.3)

to highlight the fact that different harmonics will have different impedances.
We also note that in general if we write

Zn = znr + izni n = 1, 2, . . . , N (6.5.4)

where n denotes a particular harmonic, and subscripts r, i denote real and
imaginary parts as before, then

znr = R (6.5.5)
zni = ωnL (6.5.6)

In other words, as stated earlier, when R, L are in series, the real part of the
impedance for each harmonic represents pure resistance while the imaginary
part represents the inertial effects.

The expression for the real part of the flow rate for individual harmonics
can now be put together, using the above notation and the results of the
previous section (Eqs. 6.4.11, 28, 30)

qnr(t) = �
(

pn(t)
Zn

)
(6.5.7)

= �
(

pnr + ipni

znr + izni

)
(6.5.8)

=
pnrznr + pnizni

z2
nr + z2

ni

(6.5.9)

=
RMn cos

( 2πnt
T − φn

)
+ ωnLMn sin

( 2πnt
T − φn

)
R2 + ω2

nL2 (6.5.10)

When resistance and inductance are in parallel, the above analysis of the
flow wave remains intact, with only a change in the form of the impedance.
Thus, when R and L are in parallel, we have, from Eqs. 4.9.33–35 and in the
notation of the present section,

1
Zn

=
1
R

+
1

iωnL
(6.5.11)

For easier comparison of the pressure and flow waveforms, it is more con-
venient to use not the flow rate but the R-scaled flow rate introduced earlier,
namely
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R × qnr(t) =
Mn cos

( 2πnt
T − φn

)
+ ωntLMn sin

( 2πnt
T − φn

)
1 + ω2

nt2L
(6.5.12)

where

tL =
L

R
(6.5.13)

is the inertial time constant introduced earlier. We saw in the previous section
that when opposition to flow consists of pure resistance the forms of the pres-
sure and of the R-scaled flow are identical. Therefore, in the present section
where inertial effects are present, any deviation from this identity can be at-
tributed directly and entirely to inertial effects. This highlights the advantage
of using the R-scaled flow rate instead of the flow rate for comparison with the
pressure waveform. Furthermore, in this way the physical parameters R and
L do not need to be specified separately because only their ratio, the inertial
time constant tL is now required.

As discussed at great length in Section 2.5, the inertial time constant tL is
a measure of the time it takes the fluid to respond to a change in the driving
pressure. The unit of time in which tL is expressed depends on the unit of
time used for the angular frequency ωn in Eq. 6.5.11. When the frequency is
in radians per second, tL must be expressed in seconds so that the product
ωntL in Eq. 6.5.11 becomes nondimensional as it should be. Minutes can be
used in the same way. In what follows and in much of this book we express tL
in seconds. As discussed in earlier sections, while the actual value of tL in the
coronary circulation is not known, its order of magnitude is clearly seconds
rather than minutes.

Eq. 6.5.11 produces the individual harmonics of the oscillatory part of the
R-scaled flow wave. The complete oscillatory flow wave is finally obtained by
adding these harmonics, that is

R × qr(t) = R × q1r(t) + R × q2r(t) . . . + R × qNr(t) (6.5.14)

where N is the number of harmonics. The complete R-scaled flow wave (cor-
responding to real part of driving pressure) is then given by

R × Q(t) = R × q + R × qr(t) (6.5.15)

Results, comparing the R-scaled flow wave with the corresponding pressure
wave at different values of tL, and using the one-step, piecewise, and cardiac
pressure waves, are shown in Fig. 6.5.1–3. It is seen that when tL is very
small, inertial effects are insignificant and the forms of the pressure and the
R-scaled flow rate become identical. At the other extreme, at higher values
of tL, inertial effects become increasingly more significant as evidenced by
the considerable difference they produce between the forms of the pressure
and the R-scaled flow wave. Increasingly, the oscillatory part of the flow wave
diminishes, leaving only the steady part, as the value of tL increases.



6.5 Composite Pressure-Flow Relations Under Inertial Effects 193

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

a
b

c
d

e

time t (normalized)

pr
es

su
re

, R
−

sc
al

ed
 fl

ow
 (

m
m

H
g)

a
b

c
d

e

a
b

c
d

e

a
b

c
d

e

a
b

c
d

e

Fig. 6.5.1. Pressure (solid) and R-scaled flow waves (dashed) through a resistance
R and inductance L in series, and for different values of the inertial time constant
tL in seconds: (a) 0.02, (b) 0.075, (c) 0.16, (d) 0.35, (e) 2.0. At the lowest value of
tL, R-scaled flow wave is close to that of pressure, indicating that oscillatory flow is
little affected by the inertia of the fluid, while at the highest value of tL the opposite
is true and oscillatory flow is reduced almost to zero, leaving mainly the steady part
of the flow.
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Fig. 6.5.2. See caption for Fig. 6.5.1.
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Fig. 6.5.3. See caption for Fig. 6.5.1.

so that

Zn =
iωnLR

R + iωnL
(6.5.16)

=
ω2

nL2R + i(ωnLR2)
R2 + ω2

nL2 (6.5.17)

and the real and imaginary parts of the impedance are thus given by

znr =
ω2

nL2R

R2 + ω2
nL2 (6.5.18)

zni =
ωnLR2

R2 + ω2
nL2 (6.5.19)

These expressions for the complex impedance are now used instead of those
in Eqs. 6.5.5, 6 and all subsequent steps are repeated to find that the R-scaled
flow wave in this case is given by

R × qnr(t) =
ωntLMn cos

( 2πnt
T − φn

)
+ Mn sin

( 2πnt
T − φn

)
ωntL

(6.5.20)

Results for different values of the inertial time constant tL, and using the
one-step, piecewise, and cardiac pressure wave, are shown in Figs. 6.5.4–6. In
contrast with the case of RL in series, it is seen that in this case the forms
of the pressure and R-scaled flow waves become identical at higher values of
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Fig. 6.5.4. Pressure (solid) and R-scaled flow waves (dashed) through a resistance
R and inductance L in parallel, and for different values of the inertial time constant
tL in seconds: (a) 0.025, (b) 0.035, (c) 0.05, (d) 0.09, (e) 0.5. Much larger swings in
flow rate are observed in this case, compared with the case of R, L in series, because
flow has the option of accelerating or decelerating through the inductor without
being constrained by the resistor.
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Fig. 6.5.5. See caption for Fig. 6.5.4.
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Fig. 6.5.6. See caption for Fig. 6.5.4. Here (a) 0.5, (b) 0.1, (c) 0.06, (d) 0.04, (e)
0.03.
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Fig. 6.5.7. R-scaled inductive flow only, produced by the one-step pressure wave
of Fig. 6.5.4, and for different values of the inertial time constant tL in seconds: (a)
0.025, (b) 0.035, (c) 0.05, (d) 0.09, (e) 0.5. At the highest value of tL inductive
flow is near zero, leaving flow mainly through the resistor. At the lowest value of tL

inductive flow is high and is in addition to flow through the resistor. Total flow rate
through the system is shown in Fig. 6.5.4.
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Fig. 6.5.8. R-scaled inductive flow only, produced by the piecewise pressure wave
of Fig. 6.5.5, and for different values of the inertial time constant tL in seconds: (a)
0.025, (b) 0.035, (c) 0.05, (d) 0.09, (e) 0.5. At the highest value of tL inductive
flow is near zero, leaving flow mainly through the resistor. At the lowest value of tL

inductive flow is high and is in addition to flow through the resistor. Total flow rate
through the system is shown in Fig. 6.5.5.

tL, which represent higher inertial effects. The reason for this is that when R
and L are in parallel, flow has the option of going through the resistor rather
than the inductor, so that when inertial effects become very high the entire
flow goes through the resistor and, as seen Section 6.3, the pressure and R-
scaled flow waveforms become identical. At the other extreme, when inertial
effects are very low, more of the flow goes through the inductor. Under these
conditions much larger swings in flow rate are produced within the oscillatory
cycle than are produced when R and L are in series. In that case the flow is
constrained because it has to go through the resistor even when values of tL
are low.

These observations can be seen more clearly in Figs. 6.5.7–9 where only
flow through the inductor is shown. It is seen that flow through the inductor
is highest when inertial effects are low, while it is near zero when inertial
effects are high. The steady part of the flow, of course, does not contribute to
flow through the inductor.

It is interesting to note in Figs. 6.5.4–9 that when R, L are in parallel, flow
through the inductor can accelerate or decelerate freely, unimpeded by the
presence of the resistor. Thus, within an oscillatory cycle, total flow through
the system first increases in response to a positive pressure gradient and then
decreases as the gradient changes sign, or vice versa, depending on the form of
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Fig. 6.5.9. R-scaled inductive flow only, produced by the cardiac pressure wave of
Fig. 6.5.6, and for different values of the inertial time constant tL in seconds: (a) 0.5,
(b) 0.1, (c) 0.06, (d) 0.04, (e) 0.03. At the highest value of tL inductive flow is near
zero, leaving flow mainly through the resistor. At the lowest value of tL inductive
flow is high and is in addition to flow through the resistor. Total flow rate through
the system is shown in Fig. 6.5.6.

the pressure wave. The result is that inductive flow will typically go through
zero twice within the oscillatory cycle, as seen in Figs. 6.5.7–9.

6.6 Composite Pressure-Flow Relations
Under Capacitance Effects

Capacitance effects are important in coronary blood flow because of the pul-
satile nature of the flow and because of the elasticity and hence compliance
of the coronary vessels. While this statement is equally true in the cardiovas-
cular system as a whole, capacitance effects play a more critical role in the
dynamics of the coronary circulation because of the violent compression effects
which the cardiac muscle exerts on coronary vasculature imbedded within the
myocardium. The way this so called “tissue pressure” or “intramyocardial
pressure” is intermingled with normal capacitance effects due to vessel com-
pliance is far from fully understood, which makes the role of capacitance in
the coronary circulation all the more critical. Indeed, this is one of the major
problems in the modelling of the coronary circulation which we shall consider
later. In this section we consider the capacitance effect without this added
complication, with the aim of understanding the effect pure capacitance has
on pressure-flow relations.
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The origin and basic nature of the capacitance effect were examined in
Chapter 2, where the effect was likened to that of flow going into an elastic
balloon. In Chapter 3, the effects of capacitance on the free dynamics of the
RLC system were examined, and the same was done in Chapter 4 for the
forced dynamics of the RLC system, using either linear or simple sinusoidal
driving pressures. In this section we examine the effects of capacitance on
pressure-flow relations when the driving pressure has a composite waveform.

Using the analogy of flow into an elastic balloon, it was discussed in Section
3.2 that when the balloon is in series with other elements of the RLC system,
flow through the system is clearly limited by the capacity of the balloon. It is
clear from that section, therefore, that the effect of capacitance in the coronary
circulation would only arise in parallel with other elements of the RLC system.
Indeed, the nature of this effect in the physiological system enforces this view:
flow through the coronary vasculature has the option of inflating the vessels
or simply flowing through. The two options are clearly in parallel, in the sense
that they can be independent of each other. Nevertheless, in this section we
examine the capacitance effect in combination with resistance, both in series
and in parallel, in order to compare the two cases.

Consider resistance R and capacitance C in series at first, where the com-
plex impedance, from Eqs. 4.9.34, 36, is given by

Z = R +
1

iωC
(6.6.1)

= R − i

ωC
(6.6.2)

where ω is the angular frequency. As in the previous section, for the individual
harmonics of a composite wave, since they have different frequencies, we write

Zn = R − i

ωnC
(6.6.3)

ωn = 2πn n = 1, 2, . . . , N (6.6.4)

where N is the number of harmonics. The real and imaginary parts of the com-
plex impedance are given by, using subscripts r, i to denote real and imaginary
as before,

znr = R (6.6.5)

zni =
−1

ωnC
(6.6.6)

We see again that the real part of the impedance represents pure resistance
while the imaginary part in the present case represents the capacitance effects.

Following the same steps as in the previous section, we find the real parts
of individual harmonics of the flow wave



200 6 Composite Pressure-Flow Relations

qnr(t) = �
(

pn(t)
Zn

)
(6.6.7)

= �
(

pnr + ipni

znr + izni

)
(6.6.8)

=
pnrznr + pnizni

z2
nr + z2

ni

(6.6.9)

=
R(ωnC)2Mn cos

( 2πnt
T − φn

) − ωnCMn sin
( 2πnt

T − φn

)
1 + (RωnC)2

(6.6.10)

and for the corresponding harmonics of the R-scaled flow wave

R × qnr(t) =
(ωntC)2Mn cos

( 2πnt
T − φn

) − ωntCMn sin
( 2πnt

T − φn

)
1 + (ωntC)2

(6.6.11)

where tC is the inertial time constant, given by

tC = RC (6.6.12)

We recall from Section 2.6 that C and tC are measures of the compliance
of the vascular system or the balloon used as a model. The higher the value
of C or tC , the more compliant the system is, allowing a greater change in its
volume and hence more flow into it. This factor is extremely important in the
coronary circulation because it intervenes between flow entering the system
at the root of the main coronary arteries and flow leaving the system at the
capillary end. In the absence of compliance the two flows would be equal at all
times, thus a measurement of flow at entry gives a measure of the flow being
delivered at the all-important receiving end. In the presence of compliance,
the connection between inflow and outflow is lost, and while over one or more
oscillatory cycles the two flows will normally be equal, at any one moment
within an oscillatory cycle they are unequal.

Thus, a good model of the role of capacitance in the dynamics of the
coronary circulation is essential, and much of the research work in this area
has been directed at this problem. In particular, efforts have been directed at
obtaining an estimate of the value of the capacitance C. From the definition of
C in Section 2.6 (Eq. 2.6.6), the dimensions of C are seen to be the dimensions
of volume over pressure which indeed represents the change in volume obtained
from a given change in pressure. The higher the value of C the higher the
change in volume obtained for a given change in pressure, and hence the more
“compliant” the system is. In a series of experiments by Judd et al [97, 98] it
was estimated that for the dog heart the value is 0.002 ml/mm Hg per 100 g
of heart tissue. If, for the purpose of discussion we consider the dog’s heart to
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actually be 100 g (= 0.5% of body weight), then the value of C for the entire
coronary system of that dog is 0.002 ml/mm Hg.

Consistent with previous chapters, in what follows we shall continue to use
the capacitive time constant tC as a measure of capacitance or compliance,
rather than C. The dimensions of tC are, of course, the dimensions of time, and
we shall use seconds for the units of tC as we did for the inertial time constant
tL. Using the above estimate for C, and the estimate for the resistance R
obtained in Section 6.3 for the coronary system of a 20 kg dog, (Eq. 6.3.12),
we find tC ≈ 0.12 s for that system. We shall use this value as a guide to the
range of values of tC used in what follows.

With the individual harmonics of the oscillatory part of the R-scaled flow
wave obtained from Eq. 6.6.11, the complete oscillatory flow wave is finally
obtained by adding these harmonics, that is

R × qr(t) = R × q1r(t) + R × q2r(t) . . . + R × qNr(t) (6.6.13)

where N is the number of harmonics. The complete R-scaled flow wave (cor-
responding to real part of driving pressure) is then given by

R × Q(t) = R × q + R × qr(t) (6.6.14)

Results, comparing the R-scaled flow wave with the corresponding pressure
wave at different values of tC , and using the one-step, piecewise, and cardiac
pressure waves, are shown in Fig. 6.6.1–3. It is seen that when tC is high,
indicating high compliance, the R-scaled flow curve comes close to the pressure
curve. Recalling that here the resistance and capacitance are in series, the
result indicates that the capacitor is not having much effect on the flow rate,
the latter being close to what it would be in the absence of the capacitor. By
contrast, when tC is low, which corresponds to low compliance, the R-scaled
flow rate is reduced to almost steady flow at the average value of the driving
pressure. The capacitor in this case has a considerable effect on the flow. It
is, effectively, damping the oscillatory part of the flow.

When resistance and capacitance are in parallel, the complex impedance,
from Eqs. 4.9.33, 34, 36 and in the notation of the present section, is given by

1
Zn

=
1
R

+ iωnC (6.6.15)

so that

Zn =
R

1 + iRωnC
(6.6.16)

=
R − iωnCR2

1 + (RωnC)2
(6.6.17)

and the real and imaginary parts of the complex impedance are thus given by
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Fig. 6.6.1. Pressure (solid) and R-scaled flow waves (dashed) through a resistance
R and capacitance C in series, and for different values of the capacitive time constant
tC in seconds: (a) 1.0, (b) 0.2, (c) 0.1, (d) 0.04, (e) 0.01. At the highest value of tC

the R-scaled flow curve is closest to the pressure curve, indicating that the capacitor
is not having much effect on the flow rate, the latter being close to what it would
be in the absence of the capacitor. When tC is low, by contrast, the R-scaled flow
rate is reduced to almost steady flow at the average value of the driving pressure.
The capacitor in this case is effectively damping the oscillatory part of the flow.
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Fig. 6.6.2. See caption for Fig. 6.6.1.
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Fig. 6.6.3. See caption for Fig. 6.6.1.

znr =
R

1 + (RωnC)2
(6.6.18)

zni =
−ωnCR2

1 + (RωnC)2
(6.6.19)

Following the same steps as in the previous section, the R-scaled flow wave is
given by

R × qnr(t) = Mn cos
(

2πnt

T
− φn

)
− ωntCMn sin

(
2πnt

T
− φn

)
(6.6.20)

Results for a low value of the capacitance time constant (tC = 0.01 s) are
presented in Figs. 6.6.4–6 where R-scaled total flow and R-scaled capacitive
flow are shown separately. In this case, because of the low value of tC , which
indicates low compliance, and because the capacitance is in parallel with the
resistance, most flow is through the resistor with very little flow going through
the capacitor. The situation is the reverse of that in Figs. 6.6.1–3 where the
resistance and capacitance are in series.

Results for a high value of the capacitive time constant (tC = 0.3) are
shown in Figs. 6.6.7–9. In this case, because of the high compliance within the
system, and because this compliance is in parallel with the resistance, very
high flow rates are drawn into the capacitor and very little (by comparison)
into the resistor. R-scaled total flow waveform is very far from the pressure
waveform, consistent with large capacitive effects.
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Fig. 6.6.4. R-scaled total flow (dashed) and R-scaled capacitive flow (dotted)
through a resistance and capacitance in parallel and under the driving compos-
ite pressure wave shown by the solid curve and with a low value of the capacitive
time constant (tC = 0.01). Because of low compliance, capacitive flow is near zero,
hence total flow is mostly through the resistor as indicated by the closeness of the
total flow and pressure curves.
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Fig. 6.6.6. See caption for Fig. 6.6.4.
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Fig. 6.6.7. R-scaled total flow (dashed) and R-scaled capacitive flow (dotted)
through a resistance and capacitance in parallel and under the driving compos-
ite pressure wave shown by the solid curve and with a high value of the capacitive
time constant (tC = 0.3). Because of the high compliance, very high flow rates are
drawn into the capacitor, with very little (by comparison) drawn into the resistor.
Pressure and total flow waveforms are far apart, consistent with large capacitive
effects.
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6.7 Composite Pressure-Flow Relations
Under RLC in Series

The RLC system in series provides a basic model in which the elements of
resistance, inductance, and capacitance are all present but their effects are
constrained by each other because of their series arrangement. Free and forced
dynamics of this system have been examined in previous chapters using zero,
linear, or sinusoidal driving pressures. In this section we examine pressure flow
relations under this system, using composite driving pressure waves.

The complex impedance for R, L, C in series was found in Section 4.9,
Eq. 4.9.41, namely

Z = R + i

(
ωL − 1

ωC

)
(6.7.1)

where ω is the angular frequency of oscillation of the driving pressure. For
a composite pressure wave consisting of N harmonics the impedance will be
different for each of these harmonics because of their different frequencies, and
we shall use the notation

Z = R + i

(
ωnL − 1

ωnC

)
(6.7.2)

ωn = 2πn n = 1, 2, . . . , N (6.7.3)

where n denotes a particular harmonic and ωn is the angular frequency of that
harmonic. For the real and imaginary parts of the impedance, using subscripts
r, i as before, we have in this case

znr = R (6.7.4)

zni = ωnL − 1
ωnC

(6.7.5)

In the notation of previous sections, consider the composite pressure wave

P (t) = p + p(t) (6.7.6)

where p is the mean value of P (t) over one oscillatory cycle, which is also
referred to as the “steady part” of P (t), and p(t) is the purely oscillatory
part of P (t), meaning, as we saw earlier, that the mean value of p(t) over
one oscillatory cycle is zero. Being generally a composite wave, this part of
the driving pressure wave is represented in terms of its harmonics which we
shall denote by pn(t), where n = 1, 2, . . . , N and N is the total number of
harmonics used in that representation. It was seen in Chapter 5 that for any
composite waveform these harmonics can be put in the form

pn(t) = Mn cos (ωnt − φn) n = 1, 2, . . . , N (6.7.7)
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where Mn are the Fourier coefficients and φn the phase angles discussed in
Chapter 5, and where time t has been normalized such that the oscillatory
cycle is in the interval t = 0 to t = 1, which is equivalent to taking the period
of oscillation T = 1. We shall use this normalization throughout this chapter.
Furthermore, the pressure-flow analysis is greatly simplified if the harmonics
in Eq. 6.7.7 are seen as the real parts of the corresponding complex set of
harmonics, namely

pn(t) = pnr(t) (6.7.8)

pnr(t) = �
{

Mnei(ωnt−φn)
}

(6.7.9)

= Mn cos (ωnt − φn) n = 1, 2, . . . , N (6.7.10)

The corresponding imaginary parts of these harmonics, which are required in
the analysis below, are then given by

pni(t) = �
{

Mnei(ωnt−φn)
}

(6.7.11)

= Mn sin (ωnt − φn) n = 1, 2, . . . , N (6.7.12)

The advantage of using the complex form of the harmonics of the pres-
sure wave is that it makes the relation between these and the corresponding
harmonics of the flow wave particularly simple, namely

complex flow harmonic =
complex pressure harmonic

Zn
(6.7.13)

and since the driving pressure wave in this presentation is composed of the
real parts of the complex pressure harmonics (Eq. 6.7.9), the resulting flow
wave is composed of the real parts of the complex flow harmonics, that is

qnr(t) = �
(

Mnei(ωnt−φn)

Zn

)
(6.7.14)

=
pnrznr + pnizni

z2
nr + z2

ni

(6.7.15)

=
RMn cos (ωnt − φn) +

(
ωnL − 1

ωnC

)
Mn sin (ωnt − φn)

R2 +
(
ωnL − 1

ωnC

)2 (6.7.16)

and the corresponding R-scaled flow harmonics are

R × qnr(t) =
Mn cos (ωnt − φn) +

(
ωntL − 1

ωntC

)
Mn sin (ωnt − φn)

1 +
(
ωntL − 1

ωntC

)2 (6.7.17)

where tL (= L/R) and tC (= CR) are the inertial and capacitive time con-
stants. Both constants are involved in this case because both inertial and
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capacitive effects are present. The complete R-scaled oscillatory flow wave is
finally obtained by adding its individual harmonics, that is

R × qr(t) = R × q1r(t) + R × q2r(t) . . . + R × qNr(t) (6.7.18)

and the complete R-scaled flow wave (corresponding to real part of driving
pressure) is finally given by

R × Q(t) = R × q + R × qr(t) (6.7.19)

where q is the steady part of the flow wave corresponding to the steady part
of the pressure wave p, if any, the two being related by

q =
p

R
(6.7.20)

Results, comparing the R-scaled flow wave with the corresponding pres-
sure wave, with tL = 0.1 s and a range of values of tC , and using the one-step,
piecewise, and cardiac pressure waves, are shown in Fig. 6.7.1–3. They demon-
strate that at the highest value of tC the flow wave exhibits a behaviour similar
to that of the overdamped dynamics of the LRC system observed in Sections
3.3 and 4.4–6. It must be remembered, however, that overdamped or under-
damped conditions relate to the dynamics of the RLC system in the transient
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Fig. 6.7.1. Pressure (solid) and R-scaled flow waves (dashed) through the RLC
system in series, with the inertial time constant tL = 0.1 s and different values of
the capacitive time constant tC in seconds: (a) 5.0, (b) 0.2, (c) 0.1, (d) 0.04, (e)
0.01. The highest value of tC corresponds to low compliance (more rigid balloon)
and hence flow is dominated by inertial effects, and at low values of tC the reverse
is true.
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Fig. 6.7.2. See caption for Fig. 6.7.1.
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Fig. 6.7.3. See caption for Fig. 6.7.1.
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state only, while the results in this section and in the context of lumped models
in general relate to the system in steady state only. Nevertheless, the mecha-
nisms underlying the different behaviour observed in Figs. 6.7.1, 2 are similar
to those underlying overdamped and underdamped behaviour. Here, at the
highest value of tC , which indicates low compliance (or a more rigid balloon),
the balloon filling occurs without a recoil or oscillations, while at lower val-
ues of tC , because of higher compliance of the balloon, the reverse is true.
This phenomenon is seen more clearly in Figs. 6.7.1, 2 because the composite
pressure waves in these two figures contain step changes in pressure. It is as
if these step changes create “micro transient states” within the oscillatory
cycle. In Fig. 6.7.3 this does not occur as distinctly because there are no step
changes in pressure, although here too, the curve with the highest value of tC
is the one with the least oscillations.

Another way of looking at the results in Figs. 6.7.1–3, is that at higher
values of tC capacitance effects are small and the dynamics of the system
are dominated by inertial effects, so that the results resemble those of resis-
tance and inertial effects in series observed in Section 6.5. At lower values of
tC capacitive effects become more significant to the point of dominating the
dynamics, and the results then resemble those of resistance and capacitance
effects in series observed in Section 6.6. In that section, however, inertial ef-
fects were entirely absent while Figs. 6.7.1–3 still contain inertial effects, with
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Fig. 6.7.4. Pressure (solid) and R-scaled flow waves (dashed) through the RLC
system in series, as in Figs. 6.7.1–3 but with the inertial time constant tL = 0.01 s.
This change reduces the inertial effects to an insignificant level, making the system
resemble that of resistance and capacitance in series considered in Section 6.6 and
seen in Figs. 6.6.1–3.
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Fig. 6.7.6. See caption for Fig. 6.7.4.
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tL = 0.1 s. To make the two situations more comparable we must reduce the
inertial effect yet further. Indeed, Figs. 6.7.4–6 show results with the same val-
ues of tC as in Figs. 6.7.1–3 but with tL = 0.01 . The flow waves now closely
resemble those in Section 6.6, Figs. 6.6.1–3.

6.8 Composite Pressure-Flow Relations
Under RLC in Parallel

The RLC system in parallel again provides a model in which the elements of
resistance, inductance, and capacitance, are all present, but here their effects
are independent of each other because of their parallel arrangement. However,
while flow through each element is not affected by the other two elements, total
flow through the system is of course affected by all three, thus each element
continues to affect total pressure-flow relation. Again, while free and forced
dynamics of this system have been examined in previous chapters using zero,
linear, or sinusoidal driving pressures, in this section we examine pressure flow
relations using composite waves.

The complex impedance for R, L, C in parallel was found in Section 4.9,
Eq. 4.9.44, namely

1
Z

=
1
R

+ i

(
ωC − 1

ωL

)
(6.8.1)

so that

Z =
R − iR2

(
ωC − 1

ωL

)
1 + R2

(
ωC − 1

ωL

)2 (6.8.2)

where ω is the angular frequency of oscillation of the driving pressure. For
a composite pressure wave consisting of N harmonics the impedance will be
different for each of these harmonics because of their different frequencies, and
we shall use the notation

Zn =
R − iR2

(
ωnC − 1

ωnL

)
1 + R2

(
ωnC − 1

ωnL

)2 (6.8.3)

ωn = 2πn n = 1, 2, . . . , N (6.8.4)

where n denotes a particular harmonic and ωn is the angular frequency of that
harmonic. For the real and imaginary parts of the impedance, using subscripts
r, i as before, we have in this case
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znr =
R

1 + R2
(
ωnC − 1

ωnL

)2 (6.8.5)

zni =
−R2

(
ωnC − 1

ωnL

)
1 + R2

(
ωnC − 1

ωnL

)2 (6.8.6)

Following the same steps as in the previous section, and omitting some of
the details, we find the harmonics of the oscillatory flow wave

qnr(t) = �
(

Mnei(ωnt−φn)

Zn

)
(6.8.7)

=
pnrznr + pnizni

z2
nr + z2

ni

(6.8.8)

=
Mn cos (ωnt − φn) − R

(
ωnC − 1

ωnL

)
Mn sin (ωnt − φn)

R
(6.8.9)

the corresponding R-scaled flow harmonics

R × qnr(t) = Mn cos (ωnt − φn)

−
(

ωntC − 1
ωntL

)
Mn sin (ωnt − φn) (6.8.10)

and the complete R-scaled oscillatory flow wave

R × qr(t) = R × q1r(t) + R × q2r(t) . . . + R × qNr(t) (6.8.11)

using the same notation as in the previous section.
Results, comparing the R-scaled flow wave with the corresponding pressure

wave, taking tL = 0.1 s and tC = 0.01 s, and using the one-step, piecewise,
and cardiac pressure waves, are shown in Fig. 6.8.1–3. Also shown separately in
these figures are the R-scaled resistive, inductive, and capacitive flows, which
we shall denote by qres(t), qind(t), qcap(t), respectively, and which together
make up the total flow wave, that is,

q(t) = qres(t) + qind(t) + qcap(t) (6.8.12)

Since these three elements of the flow are in parallel in this case, their har-
monics, to be denoted by qn,res(t), qn,ind(t), qn,cap(t), are subject to different
impedances, which we shall denote by Zn,res, Zn,ind, Zn,cap and which are
given by (Eqs. 4.9.34–36)

Zn,res = R (6.8.13)
Zn,ind = iωnL (6.8.14)

Zn,cap =
1

iωnC
(6.8.15)
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Fig. 6.8.1. Pressure (heavy solid) and R-scaled total flow wave (tot) through the
RLC system in parallel, with the inertial time constant tL = 0.1 s and the ca-
pacitive time constant tC = 0.01 s. The dashed curves show the resistive (res),
inductive (ind), and capacitive (cap) flows. It is seen that with these values of the
time constants, flow through the system is dominated by the inductive and resistive
components, capacitive flow is small by comparison. To facilitate the comparison,
only the oscillatory parts of the pressure and flow waves are shown.
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Fig. 6.8.2. See caption for Fig. 6.8.1.
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Fig. 6.8.3. See caption for Fig. 6.8.1.

The relation between the pressure and flow harmonics for the individual
parallel flows is the same as that for the harmonics of total flow, that is, as in
Eq. 6.8.7, here

qnr,res(t) = �
(

Mnei(ωnt−φn)

Zn,res

)
(6.8.16)

qnr,ind(t) = �
(

Mnei(ωnt−φn)

Zn,ind

)
(6.8.17)

qnr,cap(t) = �
(

Mnei(ωnt−φn)

Zn,cap

)
(6.8.18)

Evaluating these by following the step as before, and omitting the details, we
find

R × qnr,res(t) = Mn cos (ωnt − φn) (6.8.19)

R × qnr,ind(t) =
(

Mn sin (ωnt − φn)
ωntL

)
(6.8.20)

R × qnr,cap(t) = −ωntCMn sin (ωnt − φn) (6.8.21)

The individual parallel flow waves shown in Figs. 7.3.1–3 are obtained by
adding the harmonics of each flow, that is,

R × qr,res(t) = R × q1r,res + R × q2r,res + . . . + R × qNr,res (6.8.22)
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R × qr,ind(t) = R × q1r,ind + R × q2r,ind + . . . + R × qNr,ind (6.8.23)
R × qr,cap(t) = R × q1r,cap + R × q2r,cap + . . . + R × qNr,cap (6.8.24)

Only the oscillatory parts of pressure and flow waves are shown, the steady
parts are omitted to make the graphical comparison easier by using the same
scale.

The results in Figs. 6.8.1–3 indicate that with tL = 0.1 s and tC = 0.01 s
capacitance effects are small and total flow is dominated by inertial effects. By
contrast, when inductance and capacitance are in series, the same values of the
time constants lead to a flow dominated by capacitive effects as seen earlier in
Figs. 6.7.1–3. If the capacitive time constant is increased to tC = 0.3 s, which
means higher compliance (a more elastic balloon), keeping the inertial time
constant unchanged, total flow becomes dominated by capacitive effects as
seen in Figs. 6.8.4–6. Because the two elements are in parallel, however, this
does not change the resistive and the inductive flows.
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Fig. 6.8.4. Pressure (heavy solid) and R-scaled total flow wave (tot) through the
RLC system in parallel, as in Figs. 6.8.1–3, with the value of the inertial time con-
stant unchanged at tL = 0.1 s but the value of the capacitive time constant is
increased to tC = 0.3 s. The increase in the value of tC corresponds to higher compli-
ance (a more elastic balloon), hence total flow is seen to be dominated by capacitive
effects. The resistive (res) and inductive (ind) flows are unaffected by this change
because the elements are in parallel.
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Fig. 6.8.5. See caption for Fig. 6.8.4.
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Fig. 6.8.6. See caption for Fig. 6.8.4.
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6.9 Summary

Coronary blood flow may be disrupted by an obstruction in the vessels con-
veying the flow or by a disruption in the delicate dynamics of the flow, the
dynamics of the coronary circulation. The focus in this book is on the latter.
At the core of the dynamics of the coronary circulation is the relation between
the form of the composite pressure wave driving the flow and the form of the
resulting flow wave.

The simple relation between the amplitudes and phase angles of pressure
and flow sine and cosine waves cannot be applied when pressure and flow
are composite waves, but they can be applied to their individual harmonics.
Furthermore, the flow contributions from individual harmonics can then be
added to obtain the composite flow wave because the equation governing the
flow is linear.

When the opposition to flow consists of pure resistance, a composite pres-
sure wave produces a composite flow wave of identical form but shifted by
only the units of pressure and flow. For the study of pressure-flow relations
it is convenient to remove this shift so that the two waves actually coincide.
This can be done by scaling the flow wave by the resistance. The resulting
“R-scaled” flow wave is useful not only when the resistance to flow consists of
pure resistance but also, and particularly, when inertial and capacitive effects
are involved too.

The flow wave associated with a composite pressure wave cannot be
obtained directly and in full when opposition to flow consists of general
impedance rather than pure resistance. In this case, direct pressure-flow rela-
tions exist only between the individual harmonics of pressure and flow. Thus,
harmonics of the flow wave must be obtained individually first, then these are
used to construct the flow wave as a whole.

Inertial effects can lead to large swings in the R-scaled flow waveform,
away from the corresponding pressure waveform. When the inductor is in
series with a resistor, as is the case in the physiological system under normal
circumstances, these swings are controlled by the presence of the resistor.
When the two elements are in parallel, however, flow swings may be very
large as they are free from the effects of the resistor. While in the coronary
circulation a parallel inductive flow can only occur in the presence of a breach
within the coronary vasculature, the results indicate clearly that any change
in effective inductance L, locally or of the system as a whole, may upset the
delicate dynamics of the system and hence the relation between pressure and
flow. Drugs affecting the consistency of blood or the caliber of blood vessels,
for example, which are generally considered as targeting only the resistance
to flow, will actually also alter inertial effects within the system.

Like inertial effects, capacitive effects can lead to large swings in the R-
scaled flow waveform, away from the corresponding pressure waveform. When
the capacitance is in series with the resistance, these swings are constrained
by the presence of the resistance, but when the two elements are in parallel,
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the flow swings may be very large because they are free from the effects of the
resistor. In the coronary circulation, and in the cardiovascular system in gen-
eral, capacitance is always in parallel with resistance because it is provided by
the elasticity of the conducting vessels while resistance is provided by viscosity
of the fluid, thus the flow always has the option of flowing through or inflating
the vessels. The two options are in parallel. Any change in this property of the
coronary system, which may be brought about, for example, by vasodilator
drugs which cause the conducting vessels to fully inflate and thereby lose their
ability to provide any further compliance, may disrupt the normal dynamics
of the system because of the absence of normal capacitive effects. Similarly,
vascular spasm, whether it is induced by drugs or by regulatory mechanisms,
will also alter the normal compliance of the system and thereby disrupt its
normal dynamics.

The dynamics of the RLC system in series depend not only on the relative
values of tC and tL but on their individual values too. The reason for this
is that even when compliance is high, capacitive effects cannot dominate the
flow because they are still constrained by any remaining inertial effects in
the system. Only when the latter are reduced to an insignificant level do
capacitance effects dominate. While in the coronary circulation, as stated
previously, capacitance effects are always in parallel, the RLC system in series
provides an important “ground state” reference for parallel and hybrid lumped
models.

Capacitive effects are much more pronounced when capacitance is in par-
allel with other elements of the RLC system. This is important because ca-
pacitive effects in the coronary circulation are in fact in parallel, as they are
caused by elasticity of the conducting vessels. Therefore, coronary flow has
the (parallel) option of flowing through or inflating the vessels. Thus, again,
a change in the capacitive property of the coronary arteries, by drugs, spasm,
or disease can drastically change the character of the flow wave.
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Lumped Models

7.1 Introduction

A succession of lumped models, guided by a series of observations and
sometimes heroic experiments, have been the principal means by which
an understanding of the dynamics of the coronary circulation has evolved
to this point. The body of work associated with this effort has become
so large and its thread so intricate that it has become almost impossi-
ble to give an accurate account of it without committing some historic
or material errors. The following sampling, in chronological order, provides
some sign posts which will lead the keen reader to many more references:
[85, 86, 83, 169, 19, 22, 111, 49, 59, 65, 128, 40, 121, 32, 110, 102, 157, 24, 33,
130, 195, 29, 107, 90, 115, 97, 98, 183, 131, 162, 163, 47].

The early notion of the coronary circulation as a “windkessel”, a combina-
tion of resistance and capacitance, was a natural off-shoot from the dynamics
of the systemic circulation as it was understood at the time [135, 141, 153], but
the special characteristics of the coronary circulation soon became apparent
[83]. The mechanically hostile milieu in which coronary vasculature is embed-
ded, the peculiar and mostly diastolic coronary flow wave, the high coronary
flow reserve, and the severe and multifaceted regulatory environment in which
the coronary circulation operates were special issues that had to be dealt with.
While some progress has been made in each case, essentially the same issues
remain outstanding today. Whether because a certain characteristic cannot be
accurately modelled or because it can be modelled in more than one way, an
all-encompassing model, lumped or otherwise, able to deal with these issues
as they combine in the dynamics of the coronary circulation is yet to emerge.
The subject remains very much a “work-in-progress”.

Most lumped models of the coronary circulation to date have been based
on essentially three types of elements, namely the elements of the RLC system.
However, the total number of elements used in a given model, the number of
each type, and the number of different ways in which these can be arranged
have provided the scope for a wide range of different models. The purpose of
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this chapter is not to enumerate these models but to return to the foundations
on which they stand. We return to the basic elements of the RLC system and
proceed from there in a systematic manner to examine the way in which they
may give rise to some of the characteristic features observed in the dynamics of
the coronary circulation. The intention here is to provide not complete models
but the conceptual ingredients from which such models would be constructed.

As we have seen in earlier chapters, in the RLC system the resistance R
is taken to represent the viscous resistance between the moving fluid and the
vessel wall, the inductance L to represent the inertia of the moving fluid, and
the capacitance C the elasticity of the vessel wall. These three effects provide
an appropriate starting point because it is known on purely physical grounds
that these effects do exist in the coronary circulation and must therefore play
a role in its dynamics. Of course, other effects exist too: viscoelasticity within
the vessel wall, intramyocardial pressure surrounding coronary vessels, wave
reflections within the coronary vascular tree, and myogenic vasomotor activity
and other control mechanisms, but these are all seen to exist at a higher level
of complexity. Models of the coronary circulation presented in the past have
been mostly at this higher level. In this chapter we focus on the foundations
on which these models are based.

Specifically, we examine four different arrangements of the RLC elements
which deal with different dynamical issues in somewhat increasing degree of
complexity. In a sense they are basic lumped models which may be referred to
as LM0, LM1, LM2, LM3. As a shorthand notation we present the elements
of the model inside curly brackets, with a comma representing a parallel con-
nection between two elements and a plus sign representing a series connection.
In this notation the four models are given by:

LM0 : {R, C} “windkessel” (7.1.1)
LM1 : {R1, {R2 + C}} viscoelastic, viscoelasticity (7.1.2)
LM2 : {{R1 + L}, {R2 + C}} inertia (inductance) (7.1.3)
LM3 : {{R1 + (Pb)}, {R2 + C}} back pressure (7.1.4)

The models are examined in more detail below. In particular, pressure-flow
relations under these models are examined, using the cardiac pressure wave
as the driving pressure.

7.2 LM0: {R,C}
The simplest lumped model of the coronary circulation, which we shall refer
to as LM0, is the so-called “windkessel” model, which was first devised for
the cardiovascular system as a whole [135, 141, 153]. In that context, it was
recognized early that the cardiac pressure pulse generated by the left ventri-
cle is not transmitted directly to the periphery but is first absorbed by the
compliance of the aorta and its major branches. It is as if the energy of the



7.2 LM0: {R,C} 223

pulse is first expended on inflating a balloon, and then as the pulse abates,
the balloon deflates and returns this energy to drive the flow downstream
somewhat more gently than the original pulse. The same scenario is believed
to occur in the coronary circulation.

Since the two main coronary arteries that bring blood supply into the
coronary circulation have their origin at the base of the ascending aorta just as
it leaves the left ventricle (Figs. 1.3.1, 2), flow entering these arteries is subject
to the full force of the cardiac pressure pulse. And it is well established that
the main coronary arteries have a considerable degree of compliance, which
can in fact be easily observed in the course of coronary cine-angiography.
Thus, the ingredients for a windkessel scenario, namely a pulsating pressure
and compliant vessels, are present in the coronary circulation as they are
in the cardiovascular system as a whole. Indeed, compliance, or capacitance
effects, within the coronary circulation are believed to be the result of not
only the elasticity of the coronary vessels but also the enormous contraction
and relaxation of the cardiac muscle tissue in which many of the coronary
vessels are embedded. Thus, capacitance effects rank high in the dynamics of
the coronary circulation.

As discussed at great length in Chapter 2, capacitance effects in the coro-
nary circulation and in the cardiovascular system as a whole do not occur in
isolation but in combination with the ever-present resistance to flow due to
viscous effects between moving blood and the vessel wall. If flow in the coro-
nary circulation were steady, the most elementary model of the circulation
would consist of only a driving pressure and the effect of that resistance, as
discussed in Section 2.4. But because of the pulsatile nature of the driving
pressure, the most elementary model of the coronary circulation must take
into account the effects of capacitance, and thus include both capacitance
and resistance. Furthermore, the nature of capacitance effects in the coronary
circulation is such that flow has the option of moving against the resistance
or capacitance, that is, the option of moving forward or inflating the vessels.
In other words, the effects of capacitance and resistance are in parallel. In
the context of previous sections, therefore, the most elementary model of the
coronary circulation is RC in parallel, as shown in Fig. 7.2.1.

The complex impedance for RC in parallel was found in Section 4.9,
Eqs.4.9.34,35, namely

1
Z

=
1
R

+ iωC (7.2.1)

so that

Z =
R

1 + iRωC
(7.2.2)

where ω is the angular frequency of oscillation of the driving pressure. For
a composite pressure wave consisting of N harmonics the impedance will be
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Fig. 7.2.1. The most elementary model of the coronary circulation is a resistance
R and capacitance C in parallel, originally known as the “windkessel” model, and
which we shall refer to as LM0 : {R,C}.

different for each harmonic because of their different frequencies and, as before,
we shall use the notation

Zn =
R

1 + iRωnC
(7.2.3)

ωn = 2πn n = 1, 2, . . . , N (7.2.4)

where n denotes a particular harmonic and ωn is the angular frequency of
that harmonic.

Following the same steps as in Chapter 6, and omitting some of the details,
we find the harmonics of the oscillatory flow wave as

qnr(t) = �
(

pn(t)
Zn

)
n = 1, 2, . . . , N (7.2.5)

where pn(t) are the harmonics of the driving pressure in their complex expo-
nential form, namely

pn(t) = Mnei(ωnt−φn) n = 1, 2, . . . , N (7.2.6)

Thus, Eq. 7.2.5 gives

qnr(t) = �
{

Mnei(ωnt−φn)

R/(1 + iRωnC)

}
(7.2.7)

=
1
R

Mn cos (ωnt − φn) − ωnCMn sin (ωnt − φn) (7.2.8)

n = 1, 2, . . . , N
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and the corresponding R-scaled flow harmonics are

R × qnr(t) = Mn cos (ωnt − φn) − ωntCMn sin (ωnt − φn) (7.2.9)
n = 1, 2, . . . , N

where tC is the capacitive time constant (= RC). The complete R-scaled
oscillatory flow wave (corresponding to real part of driving pressure) is finally
given by

R × qr(t) = R × q1(t) + R × q2(t) . . . + R × qN (t) (7.2.10)

Eq. 7.2.10 gives total flow into the parallel system (corresponding to real
part of driving pressure), denoted by qtot in Fig. 7.2.1. This total flow consists
of resistive and capacitive components, denoted by qres, qcap, respectively, in
that figure, that is

q(t) = qtot = qres(t) + qcap(t) (7.2.11)

Since here these elements of the flow are in parallel, their harmonics, to be
denoted by qn,res(t), qn,cap(t), are subject to different impedances, which we
shall denote by Zn,res, Zn,cap and which are given by (Eqs.4.9.34,36)

Zn,res = R (7.2.12)

Zn,cap =
1

iωnC
(7.2.13)

The relation between the pressure and flow harmonics for the individual
parallel flows is the same as that for the harmonics of total flow, that is, as in
Eq. 7.2.5, here we have

qnr,res(t) = �
{

pn(t)
Zn,res

}
(7.2.14)

= �
{

Mnei(ωnt−φn)

R

}
(7.2.15)

qnr,cap(t) = �
{

pn(t)
Zn,cap

}
(7.2.16)

= �
{

Mnei(ωnt−φn)

1/(iωnC)

}
(7.2.17)

Evaluating these by following the same step as before, and omitting the details,
we find

R × qnr,res(t) = Mn cos (ωnt − φn) (7.2.18)

R × qnr,cap(t) = −ωntCMn sin (ωnt − φn) (7.2.19)
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The individual parallel flow waves are obtained by adding the harmonics of
each flow, that is

R × qr,res(t) = R × q1r,res + R × q2r,res + . . . + R × qNr,res (7.2.20)
R × qr,cap(t) = R × q1r,cap + R × q2r,cap + . . . + R × qNr,cap (7.2.21)

As before, only the oscillatory parts of the pressure and flow waves are shown,
the steady parts being omitted to make the graphical comparison of these
waves easier by using the same scale.

Results, comparing total and individual R-scaled flow waves, using the
cardiac pressure wave and a relatively low value of the capacitive time con-
stant, namely tC = 0.01 s, are shown in Fig. 7.2.2. At this value of tC , which
corresponds to low compliance (the balloon is stiff), capacitive flow is small.
Resistive flow, which is independent of capacitive effects because of the par-
allel arrangement, is identical in form with the pressure waveform on an R-
scaled basis and is thus represented by the same curve as the pressure wave
in Fig. 7.2.2. Total flow, again on an R-scaled basis, is only slightly different
in form from the pressure waveform, the difference being due to the small
capacitive flow.
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Fig. 7.2.2. Pressure-flow relations under LM0, with a relatively low value of the
capacitive time constant, namely tC = 0.01 s. Heavy solid curve (p, res) represents
both the pressure wave and the R-scaled resistive flow, which are identical because
the resistance is in parallel. Thin solid curve (tot) represents total flow into the
parallel system, and the dashed curve (cap) represents capacitive flow. Total flow is
dominated by resistive flow and is only slightly affected by capacitance.
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Fig. 7.2.3. Pressure-flow relations under LM0 as in Fig. 7.2.2, but here with a
considerably higher value of the capacitive time constant, namely tC = 0.2 s. Total
flow (tot) is now dominated by capacitive effects and follows the curve of capacitive
flow (cap).

At a higher value of the capacitive time constant, namely tC = 0.2 s,
the situation is drastically changed as seen in Fig. 7.2.3. Here compliance
is considerably higher (the balloon is more elastic), allowing correspondingly
higher capacitive flow. The form of the R-scaled total flow wave is considerably
different from that of the pressure wave because total flow is dominated by
capacitive flow. Resistive flow is the same as in Fig. 7.2.2, but here, because of
much higher capacitive flow, resistive flow is a relatively less significant part
of total flow.

It is important to recall that capacitive flow is driven not by a pressure
difference but by the rate of change of a pressure difference, as discussed at
great length in Section 2.6. In present notation, where p(t) actually represents
a pressure difference, this means that capacitive flow depends not on p(t) but
on the derivative of p(t). Indeed, following Eq. 2.6.8, here we have

qcap(t) = C
dp(t)
dt

(7.2.22)

which in R-scaled form gives

R × qcap(t) = tC
dp(t)
dt

(7.2.23)

This equation indicates clearly that R-scaled capacitive flow is in fact pro-
portional to the slope of the pressure curves in Figs. 7.2.2, 3, the constant of
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Fig. 7.2.4. Flow under LM0, with tC = 0.01 s. Capacitive flow (cap) is driven not by
a pressure difference but by the rate of change of a pressure difference. Graphically,
the form of the capacitive flow curve is dictated not by the form of the pressure
curve (p) but by the slope of that curve (p-slope).
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Fig. 7.2.5. Same as in Fig. 7.2.4 but with tC = 0.2 s.
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proportionality being the capacitive time constant tC . Thus, if we compare
the R-scaled capacitive flow, R × qcap(t) not with the pressure curve but with
its slope, we expect agreement between the two. This comparison is shown in
Figs. 7.2.4, 5.

7.3 LM1: {R1,{R2+C}}
It is clear from results of the previous section that capacitive effects in the
coronary circulation are not likely to be present in isolation, or in pure
form, because this would lead to large swings in the flow waveform which
are not observed in the physiological system. This has led to the view that
the compliance of blood vessels, which is responsible for capacitance effects,
is produced by viscoelasticity rather than pure elasticity of the vessel wall
[79, 204, 78, 52, 55, 4]. Thus, capacitive flow, the filling of the balloon, is re-
sisted not only by the elasticity of the vessel wall but also by some viscoelastic
forces within the wall.

We recall from Section 2.6 that in the case of purely elastic capacitance the
relation between the pressure p(t) inside a balloon and the rate of flow q(t) into
it is such that the flow rate depends on the rate of change of pressure, dp/dt,
rather than on the pressure itself. We refrain from calling this a “pressure
gradient” because it is a rate of change of pressure with time, not to be
confused with a rate of change of pressure along a tube. The relation is such
that

dp

dt
=

1
C

q (purely elastic capacitance) (7.3.1)

where C is the capacitance constant. The flow rate (into the balloon) and
the rate of change of pressure have the same sign, so that when the rate
of change of pressure is positive (pressure is increasing), flow rate into the
balloon is positive, and vice versa. When the rate of change of pressure is
zero, capacitive flow, flow into or out of the balloon, is zero.

When the balloon wall is not purely elastic but has some viscoelastic com-
ponent, the relation between pressure and flow is of the form

dp

dt
=

1
C

q + B
dq

dt
(viscoelastic capacitance) (7.3.2)

where B is a constant relating to the viscoelastic property of the wall. Here
the rate of change of pressure required to maintain flow into or out of the
balloon depends not only on the flow rate but on the rate of change of flow
rate. The consequence of this in modelling the coronary circulation is that it
changes the complex impedance for a capacitive element.

We recall from Section 4.9 that the complex impedance for a purely elastic
capacitor is given by (Eq. 4.9.36)
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Z =
1

iωC
(purely elastic capacitance) (7.3.3)

Following the same step as in Section 4.9 to find the complex impedance
for a viscoelastic capacitor, we consider an oscillatory pressure in complex
exponential form

p(t) = p0e
iωt (7.3.4)

where p0 is a constant, and substitute in Eq. 7.3.2 to get

B
dq

dt
+

1
C

q = ip0ωeiωt (7.3.5)

To find the complex impedance we solve this equation for q(t), recalling from
Section 4.9 that only the particular part of the solution is required. Following
the same steps as in Section 4.9, we readily find

q(t) =
ip0ωeiωt

iBω + 1
C

(7.3.6)

Using Eq. 7.3.4 for p(t) and rearranging, this becomes

q(t) =
p(t)

B + 1
iωC

(7.3.7)

or

q(t) =
p(t)
Z

(7.3.8)

where

Z = B +
1

iωC
(7.3.9)

Comparing this with the results in Section 4.9, we see that the complex
impedance for viscoelastic capacitance is the same as that for a purely elastic
capacitance plus a resistance in series, as in Eq. 6.6.1, namely

Z = R +
1

iωC
(viscoelastic capacitance) (7.3.10)

Thus, to incorporate viscoelasticity into the windkessel model we simply
add a resistance in series with the purely elastic capacitance in that model,
which leads to the model shown in Fig. 7.3.1. In current notation the resulting
model is {R1 + {R2 + C}} and we shall refer to it as LM1. It is sometimes
referred to as the viscoelastic windkessel model.

The two resistances R1, R2 in this model are clearly different and for mod-
elling purposes must be allowed to assume different values. We shall find that
if we continue to use the concept of R-scaled flow as being the product of
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C

qres qcap

qtot

R1 R2

LM1

Fig. 7.3.1. A modified (viscoelastic) “windkessel” model in which capacitance is
assumed to be not purely elastic as in LM0 but viscoelastic, which is equivalent
to having a purely elastic capacitance C in series with a resistance R2. Total flow
through the system then consists of qres along one of the two parallel branches and
qcap along the other.

resistance and flow, namely R × q, and if we now use R1 in this product, that
is define R-scaled flow as R1 × q, then only the ratio of the two resistances is
required subsequently. In other words, if we introduce

λ =
R2

R1
(7.3.11)

then only the value of λ is required in subsequent analysis.
The complex impedances along the two branches of LM1, using results in

Section 4.9, are given by

Zres = R1 (7.3.12)

Zcap = R2 +
1

iωC
(7.3.13)

For convenience, we continue to refer to the two branches of the model
as the “resistive” branch and the “capacitive” branch even though there is
resistance in both branches. The complex impedance for the entire system is
then given by
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1
Z

=
1

Zres
+

1
Zcap

(7.3.14)

Z =
R1 + iωR1R2C

1 + iωC(R1 + R2)
(7.3.15)

where ω is the angular frequency of oscillation of the driving pressure. For the
individual harmonics of a composite pressure wave consisting of N harmonics,
in the notation of the previous section, we then have

Zn,res = R1 (7.3.16)

Zn,cap = R2 +
1

iωnC
(7.3.17)

Zn =
R1 + iωnR1R2C

1 + iωnC(R1 + R2)
(7.3.18)

where n denotes a particular harmonic and ωn is the angular frequency of
that harmonic.

For a composite pressure wave consisting of the following harmonics (in
their complex exponential form)

pn(t) = Mnei(ωnt−φn) n = 1, 2, . . . , N (7.3.19)

we obtain the corresponding harmonics of the flow wave, as in Chapter 6,

qnr(t) = �
{

pn(t)
Zn

}
(7.3.20)

= �
{

Mnei(ωnt−φn)

(R1 + iωnR1R2C)/(iωnR1C)

}
(7.3.21)

= [(1 + ω2
nC2R2(R1 + R2))Mn cos (ωnt − φn)

−ωnR1CMn sin (ωnt − φn)]/[R1(1 + (ωnR2C)2)] (7.3.22)

or in R-scaled form

R1 × qnr(t) = [(1 + ω2
nt2Cλ(1 + λ))Mn cos (ωnt − φn)

−ωntCMn sin (ωnt − φn)]/[1 + (ωnλtC)2] (7.3.23)

where tC is the capacitive time constant (= R1C). Similarly, and omitting the
details, we find the R-scaled resistive and capacitive flows

qnr,res(t) = �
{

pn(t)
Zn,res

}
(7.3.24)

R1 × qnr,res(t) = Mn cos (ωnt − φn) (7.3.25)
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qnr,cap(t) = �
{

pn(t)
Zn,cap

}
(7.3.26)

R1 × qnr,cap(t) =
ω2

nt2CλMn cos (ωnt − φn) − ωntCMn sin (ωnt − φn)
1 + (ωnλtC)2

(7.3.27)

Finally, the total and the two parallel flow waves are obtained by adding the
harmonics of each flow, that is, in R-scaled format

R1 × qr(t) = R1 × q1r(t) + R1 × q2r(t) . . . + R1 × qNr(t) (7.3.28)
R1 × qr,res(t) = R1 × q1r,res + R1 × q2r,res + . . . + R1 × qNr,res (7.3.29)
R1 × qr,cap(t) = R1 × q1r,cap + R1 × q2r,cap + . . . + R1 × qNr,cap (7.3.30)

As before, only the oscillatory parts of the pressure and flow waves are used,
the steady parts being omitted to make the graphical comparison of these
waves easier by using the same scale.

Results, demonstrating the effects of viscoelasticity on the relation between
pressure and flow waves are shown in Figs.7.3.2-4. In all three figures the value
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Fig. 7.3.2. Pressure-flow relations under LM1 with the same value of the capac-
itive time constant as in Fig. 7.2.3 of the purely elastic windkessel model, namely
tC = 0.2 s, but here with the addition of viscoelastic effects in the vessel wall. A
measure of these effects is the value of the parameter λ = R2/R1 where R2 is a
resistance in series with a purely elastic capacitance and R1 is a resistance in par-
allel with it. Results in this figure are based on λ = 2.0, which seems sufficient to
produce dramatic change in the forms of the R-scaled capacitive (cap) and total
(tot) flow waves compared with those in Fig. 7.2.3. The heavy solid curve represents
the pressure wave (p) as well as the R-scaled resistive flow wave (res).



234 7 Lumped Models

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

10

20

30

40

p, rescap

tot

LM1

time t (normalized)

pr
es

su
re

, R
−

sc
al

ed
 fl

ow
 (

m
m

H
g)

Fig. 7.3.3. Pressure-flow relations under LM1 as in Fig. 7.3.2 but here with reduced
viscoelastic effect, namely λ = R2/R1 = 0.5.
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Fig. 7.3.4. Flow under LM1 but with considerably reduced viscoelastic effect,
namely λ = R2/R1 = 0.1. Viscoelastic effects at this value of λ are practically
insignificant, and the total flow wave is again dominated by an erratic form of the
capacitive flow as in Fig. 7.2.3 of the purely elastic windkessel model.
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of the capacitive time constant is taken to be the same as that in Fig. 7.2.3 of
the purely elastic windkessel model in the previous section, namely tC = 0.2 s.
In addition to this, the value of λ (= R2/R1) is required in the present model as
a measure of the degree of viscoelasticity. In Fig. 7.3.2, results are shown with
λ = 2.0. Comparison of these results with those in Fig. 7.2.3 show dramatically
the effects of viscoelasticity on the form of the flow wave. Chaotic wave swings
are entirely eliminated, and the flow wave follows the form of the pressure
wave rather than the form of its slope as in Fig. 7.2.5. This dramatic effect
diminishes as the value of λ is reduced, as shown in Figs. 7.3.3, 4. A reduction
in the value of λ corresponds to a reduction in the value of R2 relative to that
of R1, which in turn corresponds to a reduction in the viscoelastic property
of the vessel wall.

7.4 LM2: {{R1+L},{R2+C}}
The modified windkessel model of the previous section lacks an important
element of the RLC system, namely the inductor L which represents iner-
tial effects as discussed in Section 2.5. With a few exceptions [203, 188, 75],
inductance has not usually been included in lumped models of the coronary
circulation, possibly because inertial effects are usually associated with the
transient dynamics of the system rather than the steady state dynamics which
lumped models deal with. It must be remembered, however, that even within
steady state dynamics, within the oscillatory cycle, fluid is being accelerated
and decelerated and therefore inertial effects will play a role. It is a different
role from that which inertial effects play in the transient state, where the ef-
fects are represented by exponential functions that die out as time goes on.
In steady state, inertial effects have a permanent cyclic presence which does
not die out and which, as we shall see, affects the dynamics of the system and
the relation between pressure and flow waveforms.

The position of an inductor in a lumped model of the coronary circula-
tion is fairly clear because acceleration and deceleration of the flow within
the oscillatory cycle occur along the conducting vessels rather than within
the capacitor. Acceleration and deceleration associated with capacitance is
usually minimal because it involves mainly local inflation and deflation of the
vessels. Flow along the vessels, on the other hand, involves considerable ac-
celeration and deceleration and hence considerable inertial effects. And these
inertial effects are coupled with the viscous resistance within the conducting
vessels such that the flow is subject to both, without an “either/or” option.
By contrast, the capacitance effects and the viscous resistance are “either/or”
options because the flow may inflate the vessels or move along them. Thus,
the capacitance C in a lumped model of the coronary circulation is appropri-
ately placed in parallel with the viscous resistance R1, as in LM0 and LM1.
Inductance L, on the other hand, is appropriately placed in series with that
resistance as shown in Fig. 7.4.1, which we shall refer to as LM2.
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CL

qind

qcap

qtot

R1 R2

LM2

Fig. 7.4.1. A viscoelastic lumped model with an inductor (L) representing inertial
effects of fluid acceleration and deceleration within the oscillatory cycle. Total flow
into the system (qtot) consists of two parallel flows: inductive flow (qind) and ca-
pacitive flow (qcap). The inductor L is in series with a resistor R1 representing the
viscous resistance along the conducting vessels, while the capacitor C is in series
with a resistor R2 representing viscoelasticity within the vessel wall.

The complex impedances along the two parallel branches of LM2, which
we shall refer to as the capacitive (cap) and inductive (ind) branches, are
obtained from the results of Section 4.9, namely

Zind = R1 + iωL (7.4.1)

Zcap = R2 +
1

iωC
(7.4.2)

and the complex impedance for the entire system is then given by

1
Z

=
1

Zind
+

1
Zcap

(7.4.3)

Z =
(R1 + iωL)(1 + iωR2C)
1 + iωC(R2 + R1 + iωL)

(7.4.4)

where ω is angular frequency of the oscillatory driving pressure. For the indi-
vidual harmonics of a composite pressure wave consisting of N harmonics, in
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the notation of the previous section, we then have

Zn,ind = R1 + iωnL (7.4.5)

Zn,cap = R2 +
1

iωnC
(7.4.6)

Zn =
(R1 + iωnL)(1 + iωnR2C)

1 + iωnC(R2 + R1 + iωnL))
(7.4.7)

where n denotes a particular harmonic and ωn is the angular frequency of
that harmonic.

For a composite pressure wave consisting of the following harmonics (in
their complex exponential form)

pn(t) = Mnei(ωnt−φn) n = 1, 2, . . . , N (7.4.8)

we obtain the corresponding harmonics of the R-scaled flow waves, as in Chap-
ter 6, but omitting a considerable amount of algebra

qnr,ind(t) = �
{

pn(t)
Zn,ind

}
(7.4.9)

R1 × qnr,ind(t) =
Mn cos (ωnt − φn) + ωntLMn sin (ωnt − φn)

1 + ω2
nt2L

(7.4.10)

qnr,cap(t) = �
{

pn(t)
Zn,cap

}
(7.4.11)

R1 × qnr,cap(t) =
ω2

nt2CλMn cos (ωnt − φn) − ωntCMn sin (ωnt − φn)
1 + ω2

nt2Cλ2 (7.4.12)

qnr(t) = �
{

pn(t)
Zn

}
(7.4.13)

R1 × qnr(t) =
[1 + ω2

nt2Cλ]{Mn cos (ωnt − φn) + ωntLMn sin (ωnt − φn)}
(1 + ω2

nt2L)(1 + (ω2
nt2Cλ2)

+
[1 + ω2

nt2L]{ω2
nt2CλMn cos (ωnt − φn) − ωntCMn sin (ωnt − φn)}

(1 + ω2
nt2L)(1 + ω2

nt2Cλ2)
(7.4.14)

where, as before (Eq. 7.3.11), λ = R2/R1. Finally, the total and the two
parallel flow waves are obtained by adding the harmonics of each flow, that
is, in R-scaled format
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R1 × qr(t) = R1 × q1r(t) + R1 × q2r(t) . . . + R1 × qNr(t) (7.4.15)
R1 × qr,ind(t) = R1 × q1r,ind + R1 × q2r,ind + . . . + R1 × qNr,ind (7.4.16)
R1 × qr,cap(t) = R1 × q1r,cap + R1 × q2r,cap + . . . + R1 × qNr,cap (7.4.17)

As before, only the oscillatory parts of the pressure and flow waves are used,
the steady parts being omitted to make the graphical comparison of these
waves easier by using the same scale.

Results based on this model require that three parameters be specified,
namely the capacitive and inertial time constants tC , tL, and the ratio λ
(= R2/R1). To examine particularly the role of inertial effects, results for
a relatively high value of tL are compared with results for a relatively low
value in Figs. 7.4.2, 3. It is seen that at a high value of tL flow along the in-
ductive branch of the system is considerably reduced, with the result that
total flow into the system is dominated by flow along its capacitive branch.
At the other extreme, where tL is low, flow along the inductive branch is fairly
high to the extent that total flow into the system is now closer in form to that
of the pressure wave rather than that of the capacitive wave.
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Fig. 7.4.2. Flow waves under LM2 and a composite driving pressure wave (p), with
tC = 0.2 s, λ = 0.5, and a relatively high value of the inertial time constant, namely
tL = 1.0 s. Flow along the inductive branch (ind) of the system is small and total
flow (tot) is dominated by flow along the capacitive branch (cap) of the system.
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Fig. 7.4.3. Flow waves under LM2 and a composite driving pressure wave (p), as
in Fig. 7.4.2 but with a relatively low value of the inertial time constant, namely
tL = 0.1 s. Inductive (ind) and capacitive (cap) flows are both high, but their forms
are complimentary, their highs and lows nearly balancing each other, leaving total
flow (tot) closer in form to that of the composite pressure wave (p).

The results in Fig. 7.4.3 in fact suggest the possibility that the most im-
portant role which inertial effects may play in the dynamics of the coronary
circulation is that of acting as a balance for capacitive effects. Thus, with the
combination of parameter values in Fig. 7.4.3 it is seen that the highs and lows
of the capacitive and inductive flows almost balance each other, suggesting
that a combination of parameters may exist at which the two flows exactly
balance each other. Indeed, a close scrutiny of Eq. 7.4.14 shows that when

λ = 1.0 and tL = tC (7.4.18)

the equation reduces to

R1 × qnr(t) = Mn cos (ωnt − φn) (7.4.19)

= �
{

Mnei(ωnt−φn)
}

(7.4.20)

which means that the R-scaled total flow wave has become identical in form
to that of the driving pressure. Under these conditions it is as if the inductor
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Fig. 7.4.4. Flow waves under LM2 and a composite driving pressure wave (p), with
λ = 1.0 and tL = tC = 0.2 s. This unique combination of parameter values reduces
the total impedance of the system to a simple resistance R1. Inductive (ind) and
capacitive (cap) flows precisely balance each other, thereby reducing the reactance
of the system to zero. The R-scaled total flow wave (tot) becomes identical in form
to the pressure waveform (p). The two waves are here represented by the heavy solid
curve and the open circles to make them visually distinguishable.

and capacitor do not exist. Also, the expression for the harmonic impedances
Zn for the system as a whole in Eq. 7.4.7 can be put in the form

Zn

R1
=

(1 + iωntL)(1 + iωnλtC)
1 + iωntC(λ + 1 + iωntL))

(7.4.21)

from which we see that when λ = 1.0 and tL = tC (as in Eq. 7.4.18), this
expression reduces to

Zn = R1 (7.4.22)

which indicates that total impedance has been reduced to simple resistance
R1. Therefore, the R-scaled flow wave becomes identical in form to that of
the driving pressure, as in Eq. 7.4.19. This unique situation is illustrated in
Fig. 7.4.4 where the results are based on λ = 1.0 and tC = tL = 0.2 s. With
these parameter values inertial and capacitive effects exactly balance each
other so that R-scaled total flow into the system follows precisely the form of
the driving pressure wave.
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When in an RLC system the effects of capacitance and inductance pre-
cisely “cancel” each other, which means that the system reactance is zero,
as discussed in Section 4.8, the system behaves as if the reactive elements
L, C do not exist. As we saw in Section 4.8, when the driving pressure is
a single harmonic (not a composite wave), the conditions under which this
unique situation occurs depend not only on the values of L and C but also
on the angular frequency ω (Eq. 4.8.11). The phenomenon is well known in
the study of electric circuits, being referred to as “series resonance” or “par-
allel resonance” depending on the configuration of the RLC system [43]. In
that context, interest is particularly in the value of the frequency at which the
unique conditions occur, hence the reference to resonance. In the context of
the coronary circulation, by contrast, the phenomenon is of interest in rela-
tion to the optimum operation of the system rather than to resonance. This
is so particularly because the driving force in electric circuits is of a single
harmonic form, while in the coronary circulation the driving force is of a com-
posite waveform. Since a composite wave consists of many single harmonics
which operate at different frequencies, the combination of values of R, L, ω
at which the unique conditions occur will generally be different for each har-
monic. What the results of this section demonstrate is that, depending on the
configuration of the RLC system, these conditions may become independent
of the frequency and thus apply equally to all harmonics as in the present
case.

7.5 LM3: {{R1+(pb)},{R2+C}}
A feature of coronary blood flow that distinguishes it from flow in other parts
of the cardiovascular system is an apparent discrepancy in the relation between
pressure and flow within the oscillatory cycle. More specifically, during the
systolic phase of the oscillatory cycle, when driving pressure is rising rapidly
to a peak, coronary blood flow is highly diminished or even reversed, while
during the diastolic phase of the oscillatory cycle, when driving pressure is
coming down from its peak, coronary blood flow is at its highest [101]. In other
words, coronary blood flow occurs mostly in diastole when driving pressure
is diminishing rather than in systole when driving pressure is rising. The
reasons for this discrepancy are not fully understood, although some possible
mechanisms have been suggested.

It is important to note in this discussion that by “coronary blood flow” is
meant input flow, that is flow entering the system. The reason for this is that
from a practical standpoint this is the only flow to which there is reasonable
access for measurements. From a clinical standpoint, of course, of more interest
is flow at exit from the system, that is flow at the capillary end of the coronary
circulation. The relation between this output flow and flow at entry into the
system is not known because it depends on what goes on inside the system,
which is what lumped models attempt to uncover. Of course, conservation of
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Fig. 7.5.1. A modified windkessel lumped model with a provision for back pressure
pb to simulate the effects of surrounding tissue pressure on coronary vessels imbedded
within the cardiac muscle tissue. Back pressure pb is assumed to affect flow qres in
the resistive branch of the system only. Both the primary driving pressure p and
the back pressure pb are oscillatory, thus resistive flow is driven by the oscillatory
difference between them, namely p − pb. Remaining features of the model are the
same as those of LM1 in Fig. 7.3.1.

mass requires that on average, inflow and outflow must be the same. That is,
under normal circumstances, the amount of fluid entering the system must
equal that leaving the system in the course of one oscillatory cycle. It is at
any particular moment within the oscillatory cycle that inflow and outflow are
usually different. We return to this question later in this chapter. The point
of raising this issue here is only to emphasize that the term “coronary blood
flow” in the present context refers to flow at entry into the system.

In this section we consider one possible mechanism that may be responsible
for the apparent discrepancy in the relation between (input) pressure and
(input) coronary blood flow within the oscillatory cycle, namely that of so
called “tissue pressure”, or “intramyocardial pressure”. Under this mechanism,
it is postulated that during the systolic phase of the oscillatory cycle, although
input driving pressure is relatively high, cardiac muscle tissue is contracting
and exerting high pressure on coronary blood vessels imbedded within this
tissue [84, 20, 10, 189, 68, 187, 151, 6, 41, 87, 113, 165, 202, 101]. The effect
of this is an increase in pressure within the lumen of these vessels, which
leads to the notion of a “back pressure” created within the system during
systole [97, 98]. The input driving pressure must overcome this back pressure
in addition to pre-existing resistance within the system, hence the reduction
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R
p2p1 q

q= (p _ pb )/R

q= p/R

p1 _ p2

p= p1 _ p2

p= p1 _ p2

R
p2 + pbp1 q

p1 _ (p2 + pb )

Fig. 7.5.2. Back pressure pb affects the flow by simply changing the pressure differ-
ence driving the flow. In the notation of the present chapter, p actually represents
a pressure difference, which in the absence of back pressure is simply the difference
(p1 − p2) between pressures at the input and output ends of the system as shown at
the top. The addition of a back pressure at the output end then simply means that
the pressure difference driving the flow is now p − pb as shown at the bottom, where
p continues to represent the pre-existing pressure difference, namely p = p1 − p2.

in flow. The situation is similar to that of obstructing the output end of a
trumpet, or of the exhaust system of a car, thus creating higher pressure
at that end with familiar consequences. In the coronary circulation this may
occur momentarily within the oscillatory cycle as the cardiac muscle contracts
in the course of its pumping action, leading to reduced flow, possibly even
reverse flow. The challenge for lumped model analysis is to use a configuration
of RCL components in such a way as to reproduce this scenario, in particular
to reproduce the possibility of drastically reduced or reverse flow during the
systolic phase of the oscillatory cycle.

In a model that addresses this challenge, which is shown in Fig. 7.5.1 and
which we shall refer to as LM3, it is postulated that tissue pressure will affect
the pressure drop driving the flow along the resistive branch of the paral-
lel system as illustrated schematically in Fig. 7.5.2. The source of the back
pressure pb is taken to be a combination of pressure within the left ventricle
and a constant residual pressure within the cardiac tissue which exists in-
dependently of ventricular pressure [97, 98]. The resulting combination is the
pressure waveform shown in Fig. 7.5.3 along with the primary driving pressure
waveform.
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Fig. 7.5.3. Primary pressure wave p and back pressure wave pb used in LM3. The
source of the back pressure pb is assumed to be a combination of pressure within the
left ventricle and a constant residual pressure within the cardiac tissue which exists
independently of ventricular pressure.
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Fig. 7.5.4. Total flow wave under LM3, with a primary driving pressure wave p(t)
and a back pressure wave pb(t). Parameter values of the system are λ = 1.0 and
tC = 0.1 s. The results demonstrate that back pressure can produce considerably
reduced and some reverse flow within the oscillatory cycle.
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The complex impedances along the two branches of this model are the
same as those of LM1 discussed in Section 7.3, namely

Zres = R1 (7.5.1)

Zcap = R2 +
1

iωC
(7.5.2)

where the subscripts res and cap refer to the resistive and capacitive branches,
respectively. The complex impedance for the entire system is given by

1
Z

=
1

Zres
+

1
Zcap

(7.5.3)

Z =
R1 + iωR1R2C

1 + iωC(R1 + R2)
(7.5.4)

where ω is the angular frequency of oscillation of the driving pressure. For the
individual harmonics of a composite pressure wave consisting of N harmonics
we have, as before,

Zn,res = R1 (7.5.5)

Zn,cap = R2 +
1

iωnC
(7.5.6)

Zn =
R1 + iωnR1R2C

1 + iωnC(R1 + R2)
(7.5.7)

where n denotes a particular harmonic and ωn is the angular frequency of
that harmonic.

The essence of the present model is that along the capacitive branch of
the parallel system the oscillatory pressure driving flow is p(t), but along
the resistive branch the driving pressure is p(t) − pb(t). Both pressures are
oscillatory and, therefore, to follow the same analysis as before, they must be
presented in their complex exponential form

pn(t) = Mnei(ωnt−φn) n = 1, 2, . . . , N (7.5.8)

pbn(t) = Mbnei(ωbnt−φbn) n = 1, 2, . . . , N (7.5.9)

where subscript b refers to properties of the back pressure wave pb.
The harmonics of the R-scaled flow rates along the two branches of the

parallel system are then given by, following the same steps as for previous
models and omitting some of the details,

qnr,res(t) = �
{

pn(t) − pbn(t)
Zn,res

}
(7.5.10)

R1 × qnr,res(t) = Mn cos (ωnt − φn) − Mbn cos (ωbnt − φbn) (7.5.11)
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qnr,cap(t) = �
{

pn(t)
Zn,cap

}
(7.5.12)

R1 × qnr,cap(t) =
ω2

nt2CλMn cos (ωnt − φn) − ωntCMn sin (ωnt − φn)
1 + (ωnλtC)2

(7.5.13)

The harmonics of total flow into the system are then simply given by

R1 × qnr(t) = R1 × qnr,res(t) + R1 × qnr,cap(t) (7.5.14)

Finally, the actual flow waves are obtained by adding their harmonics to obtain
the oscillatory parts of the waves, plus the steady part of each flow if any,

R1 × qr,res(t) = R1 × q + R1 × q1r,res + R1 × q2r,res + . . . + R1 × qNr,res

(7.5.15)
R1 × qr,cap(t) = R1 × q1r,cap + R1 × q2r,cap + . . . + R1 × qNr,cap (7.5.16)

R1 × qr(t) = R1 × qr,res(t) + R1 × qr,cap(t) (7.5.17)

Steady flow through the system is included this time because it is relevant to
present discussion. The steady flow rate q(t) is given by

q(t) =
p(t) − pb(t)

R1
(7.5.18)

where the overline bar indicates average over one oscillatory cycle. The steady
part of the flow, of course, is part of the flow in the resistive branch of the par-
allel system because the capacitive branch of the system supports oscillatory
flow only.

Total flow under LM3, with primary driving pressure p(t) and back pres-
sure pb(t) is shown in Fig. 7.5.4. It is seen that the model meets the objective
of demonstrating considerably reduced and some reverse flow through the sys-
tem. Results using the same model parameter values but in the absence of any
back pressure are shown in Fig. 7.5.5, which indicate clearly that the reduced
and reverse flow observed in Fig. 7.5.4 are due entirely to the back pressure
in this model. Furthermore, the individual flow waves along the two parallel
branches with and without back pressure are shown in Figs. 7.5.6, 7, which
confirm that the effect of back pressure is confined to the resistive part of the
flow only.

The effects of cardiac muscle contraction on the dynamics of the coronary
circulation have also given rise to a number of other concepts regarding the
possible mechanisms involved. In the “waterfall” concept, the vessels imbed-
ded within the cardiac muscle tissue are believed to collapse under muscle
contraction, leading to an interval (in systole) when pressure is rising inside
the vessels but there is no flow, as in a waterfall before the water level in
the reservoir has reached the mouth of the fall [161, 51, 111, 205, 60]. Flow



7.5 LM3: {{R1+(pb)},{R2+C}} 247

0 0.2 0.4 0.6 0.8 1

−20

0

20

40

60

80

100

LM3

time t (normalized)

pr
es

su
re

, R
−

sc
al

ed
 fl

ow
 (

m
m

H
g)

p

q

Fig. 7.5.5. Total flow wave under LM3 with a primary driving pressure wave
p(t) and the same parameter values as in Fig. 7.5.4 but in the absence of any back
pressure, demonstrating that the reduced and reverse flow observed in that figure
are due entirely to the effects of back pressure.
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Fig. 7.5.6. The resistive (res) and capacitive (cap) flow waves under LM3 with
back pressure, as in Fig. 7.5.4.
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Fig. 7.5.7. The resistive (res) and capacitive (cap) flow waves under LM3 but in
the absence of back pressure, as in Fig. 7.5.5.

water level rising

dam level rising
more quicklydam level falling

more quickly

SYSTOLE

water level falling

DIASTOLE

Fig. 7.5.8. A schematic illustration of the waterfall concept in which the water
level in the reservoir is analogous to the pressure inside the coronary vessels while
the level of the dam is analogous to pressure outside the vessels caused by cardiac
muscle contraction. In systole, water level in the reservoir is rising but the level of
the dam is rising more quickly and no flow is possible. In diastole, water level in the
reservoir is falling but the level of the dam is falling more quickly, and a point is
reached where flow becomes possible.
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resumes only when pressure inside the vessels exceeds the pressure outside,
which strangely occurs in diastole when inside pressure is actually decreasing
but at the same time the cardiac muscles are relaxing and the external pres-
sure is decreasing more steeply. Thus, to state the waterfall analogy correctly
it has to be said that flow resumes when the water level in the reservoir is
actually falling but the height of the dam is falling more quickly (Fig. 7.5.8).

In other concepts the effects of muscle contraction on the dynamics of the
coronary circulation have been described as an “intramyocardial pump” effect
[29] or “variable elastance” effect [189, 113, 114, 202].

7.6 Inflow-Outflow

One of the most important aspects of the dynamics of the coronary circulation
is the fact that at almost any point in time within the oscillatory cycle, total
inflow into the system is not equal to total outflow. This difference between
inflow and outflow is particularly important because, as mentioned earlier,
flow measurements in the coronary circulation are extremely difficult and at
best would provide only inflow data. We recall that inflow into the coronary
circulation occurs via the two main coronary ostia at the root of the ascending
aorta (Figs. 1.3.1, 2). Outflow from the system of course occurs at the capillary
bed, hence the difficulty of obtaining an actual measure of it. Yet, this outflow
is what is most relevant clinically.

It is therefore important to understand the nature and source of the differ-
ence between inflow and outflow in the dynamics of the coronary circulation, at
different times within the oscillatory cycle and under different circumstances,
which we examine in this section. It must be emphasized, of course, that this
difference is an oscillatory function of time that has a zero mean. In other
words, under normal circumstances inflow and outflow are equal on average,
the average being taken over one or at most a few cycles. Differences occur
largely within the oscillatory cycle. These differences are important, never-
theless, because they are indicators of the interplay between the dynamics of
different elements of the coronary circulation. More specifically, the difference
between inflow and outflow, as we shall see, is a measure of the interplay
between and the relative effects of capacitance, resistance, and inductance,
thus, a change in any of these properties of the coronary circulation will lead
to a change in the delicate balance between inflow and outflow within the
oscillatory cycle.

In the windkessel system (LM0) considered in Section 7.2, for example,
when compliance is low, with a value of the capacitive time constant tC = 0.01
s, capacitive flow is very low and total flow through the system is dominated
by resistive flow as seen in Fig. 7.2.2. Under these circumstances inflow into the
system is very nearly the same as outflow, as shown in Fig. 7.6.1 where inflow
is plotted against outflow at different points in time within the oscillatory
cycle. As compliance increases, however, with tC = 0.2 s, capacitive flow
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Fig. 7.6.1. Inflow-outflow during the oscillatory cycle (as the closed curve is traced
around once) through the LM0 lumped model of Section 7.2 with two different values
of the capacitive time constant tC . At the lower value of tC (top), capacitance and
capacitive flow are low and flow through the system is mostly resistive flow, thus
inflow and outflow are nearly equal at different points in time within the oscillatory
cycle. In purely resistive flow the curve would remain on the dashed line as inflow
and outflow would be exactly equal at all times. At the higher value of tC (bottom),
capacitance and capacitive flow are higher and are more involved in the dynamics
of the system. Inflow and outflow are rarely equal at any time during the oscillatory
cycle.

increases accordingly as seen in Fig. 7.6.3, and under these circumstances the
time course of inflow into the system is widely different from that of outflow,
as shown in Fig. 7.6.1. The figure indicates that in this case when inflow is
high, outflow is low, and vice versa.

In the viscoelastic windkessel system (LM1) considered in Section 7.3,
when viscoelasticity is moderately high, with λ = R2/R1 = 2.0, capacitive
flow is again constrained to the extent that flow through the system is mostly
resistive flow as seen in Fig. 7.6.3. Inflow and outflow are nearly equal through-
out the oscillatory cycle as shown in Fig. 7.6.2. As the effect of viscoelasticity
is reduced, with λ = 0.1, however, capacitive flow plays an increased role in
the dynamics of the system as seen in Fig. 7.6.3, and changes the interplay
between inflow and outflow as shown in Fig. 7.6.2.
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Fig. 7.6.2. Inflow-outflow during the oscillatory cycle as in Fig. 7.6.2 but here
through the LM1 lumped model of Section 7.3 with two different values of the
parameter λ (= R2/R1) which is a measure of the effect of viscoelasticity within
the vessel wall. At the higher value of λ (top), viscoelastic effects are high, reduc-
ing capacitive flow and the effect of capacitance within the system, with the result
that inflow and outflow are nearly equal throughout the oscillatory cycle. At the
lower value of λ (bottom), capacitance and capacitive flow are higher and are more
involved in the dynamics of the system. Inflow and outflow are rarely equal at any
time during the oscillatory cycle.

Finally, in the inductive system (LM2) considered in Section 7.4, when
inertial effects are high, with a value of the inertial time constant tL = 1.0 s,
flow through the system is mostly capacitive flow as seen in Fig. 7.4.2, and the
corresponding interplay between inflow and outflow is shown in Fig,7.6.3. In
this extreme case the dynamics of the system consist of mostly inflow which
goes towards inflating and deflating the balloon, with barely any outflow from
the system. As inertial effects are reduced, with tL = 0.1 s, more flow can go
through the inductive branch of the system as seen in Fig. 7.4.4, and the
corresponding interplay between inflow and outflow is shown in Fig. 7.6.3.
Thus, the inertial effects in LM2 act as a balance against the capacitive
effects as discussed in Section 7.4.
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Fig. 7.6.3. Inflow-outflow during the oscillatory cycle as in Fig. 7.6.1 but here
through the LM2 lumped model of Section 7.4 with two different values of the
inertial time constant tL. At the higher value of tL (top), inertial effects are high,
thus reducing resistive flow and causing flow through the system to be mostly ca-
pacitive flow. Under these conditions the dynamics of the system consist of no more
than filling and emptying the balloon, thus only inflow is involved with very little
outflow (as the curve is traced back and forth nearly horizontally). At the lower
value of tL (bottom), inertial effects are reduced, thus allowing more inductive flow
and making total flow less dominated by capacitive flow. Inflow and outflow are
rarely equal at any time during the oscillatory cycle.

7.7 Summary

Many lumped models have been proposed in the past, but issues characterizing
the dynamics of the coronary circulation remain largely unresolved, whether
because a certain characteristic cannot be accurately modelled or because it
can be modelled in more than one way. Four basic lumped models based on
elements of the RLC system illustrate some of the main issues.

LM0 : {R,C} represents the most simple lumped model of the coronary
circulation, generally referred to as the “windkessel”, incorporating the two
fundamental effects of resistance and capacitance. It is clear from the results
that capacitive effects can play a significant role in the dynamics of the coro-
nary circulation. It is equally clear, however, that the way in which capacitance
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is present in this elementary model of the system is rather crude because it
produces erratic swings in the flow waveform which are not usually observed
in the physiological system. These erratic swings, as we have seen, result from
the direct relation between capacitive flow and the slope of the pressure curve,
and this relation, in turn, results from the isolated presence of the capacitor
in this elementary model.

LM1 : {R1,{R2+C}} represents a modified windkessel model, sometimes
referred to as a “viscoelastic windkessel”. It takes into account viscoelasticity
within the vessel wall by adding a resistance R2 in series with the capacitance
C and in parallel with a resistance R1 representing viscous effects as before.
The results indicate that this has a dramatic effect on the form of the flow
wave. Chaotic wave swings observed in LM0 are entirely eliminated as the
flow wave now follows the form of the pressure wave rather than the form of
its slope. The resulting more regular flow curve is closer to what is observed
in the physiological system, which suggests that viscoelastic effects do play a
significant role in the dynamics of the coronary circulation.

In LM2: {{R1+L},{R2+C}} the effects of fluid inertia are added in the
form of an inductor in series with the viscous resistance and in parallel with the
capacitive branch of the system. The results indicate that the role of inertial
effects in the dynamics of the coronary circulation may extend far beyond the
simple effects of acceleration and deceleration of the fluid in the course of the
oscillatory cycle. In the presence of capacitance effects, the two effects may
combine to a dynamical advantage of the system. It is not unreasonable to
speculate that the coronary circulation may be designed to take advantage of
this. Indeed, this possibility may be used, as in Section 4.8, to estimate the
lumped parameter values of the system, on the assumption that the system
may be designed to operate at or near these values. On that assumption, we
are led again to conclude that any intervention that moves the system away
from this optimum state may upset the normal dynamics of the coronary
circulation. Thus, a change in the values of dynamical parameters tC , tL, or
λ, which may come about by disease or by clinical or surgical intervention,
may produce changes in the form of the flow wave which can be as detrimental
as the occlusion of an artery. Furthermore, while the occlusion of an artery
is fairly conspicuous and can be easily detected, a change in the dynamical
parameters of the system would be highly inconspicuous.

In LM3: {{R1+(pb)},{R2+C}} an attempt is made to account for the ef-
fect of cardiac muscle contraction on coronary vasculature imbedded within
the cardiac muscle tissue by introducing an element of “back pressure” into
the model. The results demonstrate that this “intramyocardial pressure” as
it is called, is a plausible mechanism for the highly reduced and some reverse
coronary blood flow during the systolic phase of the cardiac cycle. Other
mechanisms that have been proposed include the so-called “waterfall”, “in-
tramyocardial pump”, and “variable elastance” mechanisms.

In the coronary circulation as modelled by lumped RLC systems, inflow
into and outflow from the system are rarely equal at any time during the os-
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cillatory cycle. The main player in this is capacitive flow which goes towards
inflating and deflating the balloon. In the extreme case where capacitive flow is
dominant, there is no outflow at all from the system although inflow is present
at all times during the oscillatory cycle. More commonly, viscoelasticity and
inductance counteract the capacitive effect to produce a more balanced inter-
play between inflow and outflow within the oscillatory cycle. The significance
of these results in the dynamics of the coronary circulation is that a change in
any of these properties of the system will change the nature of this interplay.



8

Elements of Unlumped-Model Analysis

8.1 Introduction

In the lumped-model analysis of previous chapters the coronary circulation
was seen, in essence, as a closed “black box”. In unlumped-model analysis,
to use the same language, the box is opened. In lumped-model analysis an
attempt is made to infer the dynamic properties of the coronary circulation
in terms of only input and output. In unlumped-model analysis an attempt
is made to infer the dynamic properties in terms of internal properties and
structure of the system.

The most important internal property of the coronary circulation is the
vast geometrical structure of its conducting vessels. This aspect of the coro-
nary circulation is “invisible” to lumped-model analysis. In unlumped-model
analysis, by contrast, vascular structure provides the main grounds for analysis
as well as the most daunting challenge. Furthermore, the intricate branching
architecture of coronary vasculature gives the coronary circulation a space di-
mension which again is invisible to lumped-model analysis. Indeed, pressure
and flow waves discussed in previous chapters were considered as functions of
time only, because a space dimension does not exist in lumped-model analysis.

Another important property of the coronary circulation that is invisible to
lumped-model analysis is that of local flow phenomena within the conducting
vessels. Flow in a single tube, for example, is used in lumped-model analysis
simply as the basis for electrical and mechanical analogies. The analysis can-
not include flow phenomena within the tube if these are outside the confines
of the analogies. In particular, flow propagation within the coronary arteries,
which occurs because of the pulsatile nature of the flow and the elasticity
of the arterial wall, is well outside the scope of lumped-model analysis. This
is because wave propagation has a strong space dimension and involves flow
events such as wave reflections that are strongly related to the branching ar-
chitecture of the coronary network. In general there are strictly no theoretical
grounds for extending the single tube analogy to flow in a vast network of
tubes, yet the validity of lumped-model analysis rests heavily on the validity
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of that extension. In unlumped model analysis the basic approach is to start
from the level of a single tube and move up to larger numbers of tubes.

These differences between the lumped and unlumped models of the coro-
nary circulation indicate clearly that both approaches have their strengths
and weaknesses, and each has its own challenges in attempting to unravel the
dynamics of the coronary circulation. Having said that, however, there is no
doubt that future work in this endeavor lies with the unlumped model.

Interestingly, in medical practice today the coronary circulation is treated
as an unlumped system in the sense that the main focus is on whether flow
within individual coronary arteries is obstructed in any way. But, the system is
also treated as a black box in the sense that flow is assumed to be guaranteed
once it has been established that vessels are not obstructed. This latter view is
essentially that of a “plumbing system” devoid of any internal dynamics, which
is highly inconsistent with the intricate dynamics of the coronary circulation.

8.2 The Streamwise Space Dimension

Flow in a tube forms the basis of lumped- and unlumped-model analysis of
the coronary circulation. In lumped-model analysis, flow in a tube is used as
an analogue for flow in the coronary system as a whole. In unlumped-model
analysis, flow in a tube is used as the micro building block from which a model
of the system as a whole would be built.

The most important difference between the two approaches, however, has
to do with the way the tube is viewed in each case. In lumped-model anal-
ysis, the tube is viewed as having no space dimension, being represented by
only its resistance and/or capacitance. While the length and diameter of the
tube may be used in determining its resistance, these space properties are not
part of the lumped-model analysis. In unlumped-model analysis, by contrast,
the tube is given its streamwise space dimension and this dimension is not
only part of unlumped-model analysis but is the central part of that analysis.
Indeed, this new dimension, which we shall denote by x, is the most impor-
tant distinguishing difference between the lumped- and the unlumped-model
approaches to the coronary circulation, as illustrated in Fig. 8.2.1.

In previous chapters we saw that in lumped-model analysis changes in
pressure and flow in a tube are considered to be only changes in time t. In
unlumped-model analysis changes in pressure and flow are considered both
in space and time. The addition of space dimension is particularly important
because pulsatile flow in an elastic tube, and hence pulsatile flow in the coro-
nary circulation, is a phenomenon in space and time. This is because pulsatile
flow in an elastic tube actually propagates as a wave along the tube, much
like a wave on the surface of a lake, and wave propagation is a phenomenon
in space and time as illustrated in Fig. 8.2.2. At any fixed position within the
tube, pressure and flow vary in time in an oscillatory manner in the form of a
wave, usually a composite wave such as those considered in previous chapters.
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Fig. 8.2.1. In lumped-model analysis, flow in a tube is used as an analogue for flow
in the coronary system as a whole, with properties of the tube such as resistance R
and capacitance C being ascribed to the system as a whole. Pressure drop Δp and
flow rate q may vary in time but not along the tube. In unlumped-model analysis,
flow in a tube is used as a model for flow in each tube segment within the system.
Furthermore, in addition to being functions of time t as in the lumped model, pres-
sure and flow are here considered as functions of the streamwise space coordinate x.
The space dimension x does not exist in lumped-model analysis.

But now, in addition, at any fixed point in time, pressure and flow vary also
in space, again in the form of a wave, but now a wave in space, along the
streamwise space dimension of the tube, a dimension which does not exist in
lumped-model analysis.

The addition of a space dimension in the analysis of the coronary circula-
tion is important not only because wave propagation has a space dimension
but also because the coronary circulation itself has a space dimension. Coro-
nary vasculature is highly intricate in its space distribution and branching
pattern, and this aspect of the coronary circulation is as much a part of the
system as is the dynamics of the coronary circulation. Indeed, an ultimate
aim in the study of the coronary circulation is to determine pressure and flow
properties at different levels of the vasculature or at different regions of the
heart tissue, which requires that coronary vasculature be considered in its
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Fig. 8.2.2. Wave propagation in an elastic tube consists of two oscillations, one in
space and the other in time. At any fixed position within the tube, pressure varies
in time in an oscillatory manner in the form of a wave (p(t)). At any fixed point in
time, pressure varies again in an oscillatory manner but now in the form of a wave
in space (p(x)), along the streamwise space dimension of the tube.

space distribution, unlumped. But to do so requires knowlege of the branch-
ing architecture of coronary vasculature. Indeed, the accuracy and utility of
unlumped-model analysis depends as much on an accurate mapping of coro-
nary vasculature within the myocardium as it does on an accurate description
of the associated dynamics. Thus, the acquisition of data on the branching
form and distribution of coronary vasculature constitutes a considerable part
of unlumped-model analysis. Lumped-model analysis, by contrast, does not
require any information on coronary vasculature. We see again, in conclusion,
that differences between the lumped- and the unlumped-model approaches
to the coronary circulation make the two methods compliment rather than
compete with each other.

8.3 Steady Flow along Tube Segments

Consider flow in a single tube at first, in which we set a coordinate x along
the axis of the tube, being zero at the entrance and positive in the direction of
the flow. In contrast with the analysis in Section 2.3 where flow q is expressed
in terms of a pressure difference Δp between the two ends of the tube, the aim
here is to consider both the flow and pressure as being functions of position
x along the tube, as shown in Fig. 8.3.1. To do this we use Eqs. 2.3.2, 4
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dp

dx
= − 8μ

πa4 q (8.3.1)

which, upon integration, gives

p(x) = p(0) − 8μ

πa4 qx (8.3.2)

where p(0) is the pressure at the tube entrance (x = 0), a is the tube radius
and μ is the viscosity of the fluid. If the tube length is l, then the pressure at
the other end of the tube is

p(l) = p(0) − 8μ

πa4 ql (8.3.3)

which is the same as the result obtained in Section 2.3, Eq. 2.3.4, noting that
in that section a constant pressure gradient was used, defined by

k =
Δp

l
=

p(l) − p(0)
l

(8.3.4)

The main focus in this section is on Eq. 8.3.2 in which the pressure is seen
as a function of position x, and on using this equation to track the pressure
distribution in a system of tubes. For this purpose, consider two tube segments
in series now, to be identified by subscripts 0 and 1. Allowing the lengths and
radii of the two segments to be different but using the same flow rate, then
Eq. 8.3.2 gives

p0(x0) = p0(0) − 8μ

πa4
0
qx0 (8.3.5)

p1(x1) = p1(0) − 8μ

πa4
1
qx1 (8.3.6)

where x0 and p0(x0) are the streamwise coordinate and corresponding pressure
in the first tube only, and similarly for the second tube identified by subscript
1, as illustrated in Fig. 8.3.1. In these expressions we are clearly assuming that
the idealized conditions of Poiseuille flow prevail along the full length of each
tube segment, neglecting deviations from these conditions at entry and exit
regions and at the junction between two tube segments. Thus, the results to
follow will be inaccurate locally in these regions, but our interest here and in
subsequent sections is primarily in the global pressure distribution along a
large number of tube segments connected in series or in a branching pattern.

The junction between the two tube segments occurs at

x0 = l0 or x1 = 0 (8.3.7)

and on the assumption of pressure continuity at that point, we have

p1(0) = p0(l0) (8.3.8)
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x

x0=0 x0=l0
x1=0

x1=l1

x1

p0(x0) p1(x1)

p(x)

Fig. 8.3.1. In unlumped-model analysis the pressure p in a tube is considered as a
function of streamwise position coordinate x measured from the tube entrance. In
a sequence of tube segments in series, the pressure and the position coordinate are
re-defined in each tube segment and are confined to that tube only.

It is important to note that the domain of p0 is restricted to the first tube
segment only, and the domain of p1 is restricted to the second tube segment
only. Thus, p1(0) is a function of x1 only, and p1(0) is the value of p1 at
x1 = 0 with no ambiguity. Similarly, p0 is a function of x0 only, and p0(0) and
p0(l0) are values of p0 at x0 = 0 and at x0 = l0, respectively, again without
ambiguity.

Eqs. 8.3.5, 8 then give

p1(0) = p0(0) − 8μ

πa4
0
ql0 (8.3.9)

which indicates how the pressure at the beginning of the second tube segment
is determined by the pressure at the end of the first tube segment. Using this
result in Eq. 8.3.6, we find that the pressure at any point within the second
tube segment is then determined by

p1(x1) = p0(l0) − 8μ

πa4
1
qx1 (8.3.10)

These expressions can be generalized in a straightforward way, so that in
the presence of a third tube segment we would have

p2(0) = p1(0) − 8μ

πa4
1
ql1 (8.3.11)

p2(x2) = p1(l1) − 8μ

πa4
2
qx2 (8.3.12)
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and in general, if there are n + 1 segments,

pn(0) = pn−1(0) − 8μ

πa4
n−1

qln−1 (8.3.13)

pn(xn) = pn−1(ln−1) − 8μ

πa4
n

qxn (8.3.14)

It is convenient to put these expressions in nondimensional, normalized
forms, using properties of the first tube segment as reference properties. Thus,
the position coordinates in each tube segment are normalized by writing

X0 =
x0

l0
(8.3.15)

X1 =
x1

l1
(8.3.16)

...
Xn =

xn

ln
(8.3.17)

so that, in terms of the new position coordinate X, the normalized length of
each tube segment is now 1.0.

The magnitude of the pressure drop in the first tube segment is given by

|Δp0| = |p0(l0) − p0(0)| (8.3.18)

=
8μ

πa4
0
ql0 (8.3.19)

and this quantity is now used to define a nondimensional form of the pressure
in each tube segment, namely

P0(X0) =
p0(x0) − p0(0)

|Δp0| (8.3.20)

= −X0 (8.3.21)

and the nondimensional pressures at the two ends of the first tube segment
are then given by

P0(0) = 0 (8.3.22)
P0(1) = −1 (8.3.23)

Similarly, the pressure in the second tube, in nondimensional form, is now
defined and given by
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P1(X1) =
p1(x1) − p0(0)

|Δp0| (8.3.24)

=
p0(l0) − p0(0)

|Δp0| −
(

a0

a1

)4
x1

l0
(8.3.25)

= P0(1) −
(

a0

a1

)4 (
l1
l0

)
X1 (8.3.26)

= −1 −
(

a0

a1

)4 (
l1
l0

)
X1 (8.3.27)

and at the two ends of the tube

P1(0) = −1 (8.3.28)

P1(1) = −1 −
(

a0

a1

)4 (
l1
l0

)
(8.3.29)

In the presence of a third tube, we find

P2(X2) =
p2(x2) − p0(0)

|Δp0| (8.3.30)

=
p1(l1) − p0(0)

|Δp0| −
(

a0

a2

)4
x2

l0
(8.3.31)

= P0(1) −
(

a0

a1

)4 (
l1
l0

)
X1 (8.3.32)

= −1 −
(

a0

a1

)4 (
l1
l0

)
−

(
a0

a2

)4 (
l2
l0

)
X2 (8.3.33)

and in general

Pn(Xn) = −1 −
(

a0

a1

)4 (
l1
l0

)
−

(
a0

a2

)4 (
l2
l0

)
− . . .

−
(

a0

an

)4 (
ln
l0

)
Xn (8.3.34)

The results indicate that in this convenient nondimensional form, the pres-
sure distribution along a sequence of tube segments in series consists of a
series of linear pressure drops, with the pressure starting from a normalized
value of 0 at entry and dropping linearly to −1 at the end of the first tube.
Subsequent values of the pressure depend on the lengths and diameters of
subsequent tubes. If, for the purpose of illustration, it is assumed that the
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tube lengths are proportional to their diameters, the pressure distribution in
each tube segment becomes dependent on the ratios of radii only, namely

P1(X1) = −1 −
(

a0

a1

)3

X1 (8.3.35)

P2(X2) = −1 −
(

a0

a1

)3

−
(

a0

a2

)3

X2 (8.3.36)

...

Pn(Xn) = −1 −
(

a0

a1

)3

−
(

a0

a2

)3

− . . . −
(

a0

an

)3

Xn (8.3.37)

If it is assumed further, for the purpose of illustration again, and for reasons
to become apparent in the next section, that the radii of successive tube
segments are diminishing such that

a0

a1
=

a1

a2
=

a2

a3
. . . = 21/3 (8.3.38)

then these results become

P1(X1) = −1 − (2)1X1 (8.3.39)
P2(X2) = −1 − (2)1 − (2)2X2 (8.3.40)

...
Pn(Xn) = −1 − (2)1 − (2)2 − . . . − (2)nXn (8.3.41)

and if, for the purpose of comparison, the radii of successive tube segments
are increasing, such that

a0

a1
=

a1

a2
=

a2

a3
. . . =

(
1
2

)1/3

(8.3.42)

we find

P1(X1) = −1 −
(

1
2

)1

X1 (8.3.43)

P2(X2) = −1 −
(

1
2

)1

−
(

1
2

)2

X2 (8.3.44)

...

Pn(Xn) = −1 −
(

1
2

)1

−
(

1
2

)2

− . . . −
(

1
2

)n

Xn (8.3.45)

In the trivial case where successive tube segments have the same diameters,
the results are clearly
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P1(X1) = −1 − X1 (8.3.46)
P2(X2) = −1 − 1 − X2 (8.3.47)

...
Pn(Xn) = −1 − 1 − 1 − . . . − Xn (8.3.48)

These results are illustrated graphically in Fig. 3.8.2, where it is seen that
the above trivial case serves as a good reference in which the pressure distribu-
tion in each tube segment is linear and dropping by the same amount, namely
−1. In the case where the radii of successive tube segments are diminishing,
the drops in pressure in successive segments increase very rapidly, and the
reverse happens when the radii of successive tube segments are increasing.
While these examples are fairly artificial, they serve as useful guides when
considering branching tubes.
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Fig. 8.3.2. Pressure distribution in steady flow along a sequence of tube segments in
series. The streamwise distance X here is a cumulative coordinate along the sequence
of tube segments whereby the normalized length of each tube segment is 1.0. Thus,
the first tube segment extends from X = 0 to X = 1.0, the second extends from
X = 1.0 to X = 2.0, etc. If the radii of successive tube segments are increasing,
the pressure drops very rapidly, while if the radii are decreasing the pressure drops
very slowly. In the trivial case where the radii of successive tube segments remain
unchanged, the pressure drops by the same amount (−1.0) in each tube segment,
with this case serving as a useful reference for comparison.
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8.4 Steady Flow Through a Bifurcation

It is well established that the underlying design of arterial pathways in the
cardiovascular system is that of an open tree structure, and the same is true
in the coronary circulation. In an open tree structure (Fig. 1.6.1) a root vessel
segment divides into branches, then each branch in turn divides into new
branches, etc. It has been determined that the number of branches at each
division is almost invariably two, that is, the tree structure is formed by
repeated bifurcations as shown schematically in Fig. 1.6.1. This tree structure
is termed “open” in the sense that there are no cross-connections between
the branches, so that the path from the root segment to any other vessel
segment within this structure is unique. The issue of possible cross-connections
(collateral vessels) in the coronary circulation was discussed in Section 1.6
and will not be considered further. In this section we consider only open tree
structures, in which the building block from which the tree is constructed is
an arterial bifurcation.

We begin by considering an arterial bifurcation, being modelled by three
tube segments as shown schematically in Fig. 8.4.1. Subscripts 0,1,2 are used
to identify the parent and the two branch segments, respectively, as shown
in the figure, with the convention that subscript 1 shall always be used to
identify the branch with the larger diameter. With the flow being from parent
to branches, conservation of mass requires that flow rate q0 in the parent
vessel be equal to the sum of the flow rates in the two branches, that is

q0 = q1 + q2 (8.4.1)

q0

q2

q1

Fig. 8.4.1. Arterial trees in the cardiovascular system are formed largely by repeated
bifurcations whereby a vessel segment divides into two branches and then each of the
branches in turn divides into two branches, etc. The same is true in the coronary
circulation. An arterial bifurcation is shown here schematically, with the parent
vessel identified by subscript 0 and the two branches by subscripts 1, 2, with the
convention that subscript 1 is always reserved for the branch with the larger radius.
Flow rate q0 in the parent vessel is divided into q1, q2 in the branches.
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The pressure distribution under conditions of steady flow through the bi-
furcation can be considered by following two streamwise paths: one from par-
ent to branch-1 and another from parent to branch-2. Along each path the
situation is the same as that of two tubes in series, as considered in the previ-
ous section. It is important to emphasize again that here too we assume that
the idealized conditions of fully developed Poiseuille flow prevail along the full
length of each tube segment, ignoring local deviations at the two ends of each
segment. The justification for this is that we are interested primarily in the
pressure distribution along the tubes forming the bifurcation rather than in
the local details of the flow field within the bifurcation. The only difference
here is that, because of flow division, the flow rates in consecutive tube seg-
ments are not the same. Along the path from the root segment to the first
branch, we may then return to Eqs. 8.3.5, 6 in the previous section and, using
the same notation as in the previous section, write

p0(x0) = p0(0) − 8μ

πa4
0
q0x0 (8.4.2)

p1(x1) = p1(0) − 8μ

πa4
1
q1x1 (8.4.3)

For pressure continuity at the bifurcation point we have, as in the previous
section,

p1(0) = p0(l0) (8.4.4)

thus Eq. 8.4.3 for the pressure distribution along the path to branch-1 becomes

p1(x1) = p0(l0) − 8μ

πa4
1
q1x1 (8.4.5)

and, similarly, the pressure distribution along the path from the root segment
to branch-2 is then given by

p2(x2) = p0(l0) − 8μ

πa4
2
q2x2 (8.4.6)

The lengths of the three vessel segments can be normalized by defining
new normalized coordinates

X0 =
x0

l0
(8.4.7)

X1 =
x1

l1
(8.4.8)

X2 =
x2

l2
(8.4.9)

In terms of these coordinates, the normalized length of each of the three vessel
segments is now 1.0, which, as we see shortly, is useful for plotting the pres-
sure distributions along the paths to the two branches using the same scale
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regardless of their different lengths. Furthermore, these pressure distributions
can now be put in nondimensional form by using the properties of the par-
ent tube segment as reference properties. In particular, the magnitude of the
pressure drop in the parent tube segment, namely

|Δp0| = |p0(l0) − p0(0)| (8.4.10)

=
8μ

πa4
0
q0l0 (8.4.11)

is used to put the pressure distributions in nondimensional forms, that is

P0(X0) =
p0(x0) − p0(0)

|Δp0| (8.4.12)

= −X0 (8.4.13)

P1(X1) =
p1(x1) − p0(0)

|Δp0| (8.4.14)

=
p0(l0) − p0(0)

|Δp0| −
(

a0

a1

)4 (
q1

q0

)
x1

l0
(8.4.15)

= −1 −
(

a0

a1

)4 (
q1

q0

)(
l1
l0

)
X1 (8.4.16)

P2(X2) =
p2(x2) − p0(0)

|Δp0| (8.4.17)

=
p0(l0) − p0(0)

|Δp0| −
(

a0

a2

)4 (
q2

q0

)
x2

l0
(8.4.18)

= −1 −
(

a0

a2

)4 (
q2

q0

)(
l2
l0

)
X2 (8.4.19)

If it is assumed that vessel lengths are proportional to their radii, the
pressure distributions along the two paths become

P1(X1) = −1 −
(

a0

a1

)3 (
q1

q0

)
X1 (8.4.20)

P2(X2) = −1 −
(

a0

a2

)3 (
q2

q0

)
X2 (8.4.21)

Furthermore, in the theory of vascular branching it is found that a power law
relation exists between the radius of a blood vessel and the average flow rate
which the vessel is destined to carry, that is
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q ∼ aγ (8.4.22)

where γ shall be referred to as the “power law index”. If this relation is used
in Eqs. 8.4.20, 21, the pressure distributions become

P1(X1) = −1 −
(

a0

a1

)3−γ

X1 (8.4.23)

P2(X2) = −1 −
(

a0

a2

)3−γ

X2 (8.4.24)

If the power law relation between radius and flow rate is used also in
Eq. 8.4.1, then the relation between the three flow rates at a bifurcation be-
comes a relation between the three radii of the vessels involved, namely

aγ
0 = aγ

1 + aγ
2 (8.4.25)

Essentially, this relation dictates that if one daughter branch at a bifurca-
tion has a comparatively large radius then the other must have a compara-
tively small one. This is clearly a reflection of the conservation requirement
in Eq. 8.4.1, namely that if one branch carries a relatively larger proportion
of the flow then the other must carry a correspondingly small proportion.
The relation between the radii can be seen more clearly by introducing a
“bifurcation index”

α =
a2

a1
(8.4.26)

Recalling that in our convention branch-1 is always the branch with the larger
radius, except when the two radii are equal, this index is a measure of the
asymmetry of a bifurcation in terms of the relative radii of its two branches.
Its value is 1.0 when the bifurcation is perfectly symmetrical, meaning that
its two branches have the same radii, and close to zero when the bifurcation is
highly asymmetrical, meaning that one of the two branches has a much larger
radius than the other. Thus α has the convenient range of values of 0 to 1.0
for the entire spectrum of possible bifurcations.

The relation between the three radii in Eq. 8.4.25, after division by a1 or
a2, can now be put in terms of the bifurcation index α, that is

a0

a1
= (1 + αγ)1/γ (8.4.27)

a0

a2
=

(
1 + αγ

αγ

)1/γ

(8.4.28)

Using these diameter ratios in Eqs. 8.4.23, 24, finally, gives the following ex-
pressions for the pressure distributions
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P1(X1) = −1 − (1 + αγ)
3
γ −1 (8.4.29)

P2(X2) = −1 −
(

1 + αγ

αγ

) 3
γ −1

(8.4.30)

A considerable volume of work on arterial branching has gone into analysis
of the optimal design of arterial bifurcations which, as we see here, depends
primarily on the value of the power law index γ in the relation between the
radius of a vessel and the flow rate which that vessel is destined to carry
(Eq. 8.4.22). Three values in particular were considered on theoretical grounds,
namely γ = 2, 3, 4, while vessel diameters actually measured in the cardiovas-
cular system have produced values of γ highly scattered within and beyond
this theoretical range [220]. A key consideration in determining the “opti-
mum” value of γ is the shear stress τw which blood flow exerts on endothelial
tissue and which under the idealized conditions of Poiseuille flow is given by

τw = μ

(
du

dr

)
r=a

(8.4.31)
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Fig. 8.4.2. Pressure distributions within the three vessel segments forming an arte-
rial bifurcation, under the idealized conditions of steady Poiseuille flow and on the
assumption of a power law relation between the radius of each vessel and the flow
rate through it. If the power law index is less than 3, as it is here, the pressure drop
in the branch with the smaller radius (branch-2) is higher than that in the other
branch.
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Fig. 8.4.3. Pressure distributions within the three vessel segments forming an arte-
rial bifurcation, under the idealized conditions of steady Poiseuille flow and on the
assumption of a power law relation between the radius of each vessel and the flow
rate through it. If the power law index is more than 3, as it is here, the pressure
drop in the branch with the smaller radius (branch-2) is lower than that in the other
branch.

where r is radial coordinate within the vessel and a is its radius. Using the
results for flow in a tube and resistance to flow in sections 2.3,4, this equation
for the shear stress can be expressed in terms of the flow rate, to give

τw =
4μ

π

( q

a3

)
(8.4.32)

or in terms of the pressure drop, to give

τw = −Δp

2μ

(a

l

)
(8.4.33)

The first of these results indicates that if a power law relation as in
Eq. 8.4.22 exists between the radius of a vessel and the flow rate which it
carries, then the shear stress in vessels of different radii varies as

τw ∼ aγ−3 (8.4.34)

If the value of γ is less than 3, the shear stress will be higher in vessels of
smaller radii, which clearly cannot be supported on physiological grounds. If
the value of γ is more than 3, the shear stress will be lower in vessels of smaller
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Fig. 8.4.4. Pressure distributions within the three vessel segments forming an arte-
rial bifurcation, under the idealized conditions of steady Poiseuille flow and on the
assumption of a power law relation between the radius of each vessel and the flow
rate through it. If the power law index is equal to 3, as it is here, the pressure drop
is the same along both branches.

radii, which is more plausible on physiological grounds. But if the value of γ
is equal to 3, the shear stress in Eq. 8.4.32 will be altogether independent of
the radius a, which means that the shear stress will be the same in vessels of
different radii. With this value of γ, the flow rate is proportional to the third
power of the radius, or conversely, the radius is proportional to the cube root of
the flow rate. This relation between the radius and flow rate is widely known
as the “cube law” and is of particular interest because it was first derived
by showing that it actually provides an optimum compromise between the
pumping power required to drive the flow through the bifurcation, which is
lower when the vessel radii are large, and the metabolic power required to
maintain the volume of blood contained within the three vessels forming the
bifucation, which is lower when the vessel radii are small [147, 212, 213].

Of interest in the present context is the second of the above results, namely
that in Eq. 8.4.33, which indicates that if the length of a vessel is assumed to
be proportional to its radius then the pressure drop becomes proportional to
the shear stress, and hence everything that has been said above about the
shear stress now applies equally to the pressure drop. In particular, for the
two branches at a bifurcation, if the value of γ is more than 3, the pressure
drop along the branch with the smaller radius is lower than that along the



272 8 Elements of Unlumped-Model Analysis

branch with the larger radius. This is somewhat unlikely on physiological or
fluid dynamic grounds. On the other hand, if the value of γ is less than 3, the
reverse is true, which is more plausible on both grounds. If the value of γ is
equal to 3, the pressure drop is the same along both branches. These results
are shown in Figs. 8.4.2–4.

The interesting conclusion from this discussion is that from the point of
view of the shear stress acting on endothelial tissue, the more likely values
of γ are 3 or higher, but from the point of view of pressure drop the more
likely values are 3 or lower. The only possible compromise between these two
conflicting requirements is clearly γ = 3, and this lends further theoretical
support to the cube law. As stated earlier, values of γ based on actual mea-
surements from the cardiovascular system have shown much scatter not only
within the range of 2−4 but also outside this range [220]. The scatter, however,
is generally found to center around the value γ = 3.

8.5 Pulsatile Flow in a Rigid Tube

We have seen in Sections 2.3 and 8.3 that in steady flow through a tube the
pressure varies linearly along the tube, dropping from a high at entrance to
a low at exit, the difference between the two being the pressure drop driving
the flow. All other properties of the flow field such as the flow rate, the shear
stress at the tube wall, or velocity at any point within the tube are constant in
the sense that they do not depend on the streamwise coordinate x. Only the
pressure varies along the tube, but the pressure drop between the two ends of
the tube is constant. These features of the flow are embodied by the equation
for Poiseuille flow presented in Section 2.3 which we reproduce here using a
subscript s to indicate that the flow properties are for steady flow only, as
distinct from flow properties in pulsatile flow which we consider below. Thus,
from Eq. 2.3.1 we write

us(r) =
ks

4μ
(r2 − a2) (8.5.1)

where us is the streamwise velocity within the tube, μ is viscosity of the fluid,
a is the tube radius, r is radial coordinate measured from the tube axis, and
ks is pressure gradient defined by (Eq. 2.3.2)

ks =
Δps

l
(8.5.2)

where l is the length of the tube and Δps is the pressure difference between
the two ends of the tube.

It must be emphasized that the reference here is to fully developed flow in
a tube as described in Section 2.3. While in practice flow in a tube is rarely
fully developed along its full length, we continue to make this assumption here
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as in the previous three sections because it is necessary in the analysis of flow
in a large number of tubes, as in a vascular tree.

Under the assumption of fully developed flow, when the pressure drop
between the two ends of a rigid tube is not constant but varies in time, flow
properties within the tube vary in time too but, again, they do not vary along
the tube. In other words, when the driving pressure drop is a function of time,
flow properties within the tube become functions of time too but not functions
of the streamwise coordinate x. As the pressure drop changes from one point
in time to the next, flow properties change in the same way at every point
along the tube. This singular behaviour is only possible when (a) the tube is
rigid and (b) the fluid is incompressible; both of these conditions are assumed
to prevail in this section.

Of particular interest in this section is flow in a tube when the driving pres-
sure drop Δp is a periodic function of time, which may be a simple sinusoidal
wave or a composite wave as discussed in Chapter 5. A periodic pressure drop
along a tube may be thought to arise from a fixed pressure at the downstream
end of the tube and a periodic pressure at the upstream or “input” end. For
this reason we often refer to a periodic pressure drop as the “input pressure
wave”.

If the input pressure waveform has a nonzero mean, as discussed in Section
5.6 (Fig. 5.6.1), then that mean value will serve as a constant pressure drop,
producing steady Poiseuille flow within the tube, while the remaining part
of the pressure will be purely oscillatory. Denoting the constant part of the
waveform by Δps, as in Section 5.2, and the oscillatory part by Δpφ, we may
then write

Δp(t) = Δps + Δpφ(t) (8.5.3)

or, in terms of pressure gradients, as in Eq. 8.5.2,

k(t) = ks + kφ(t) (8.5.4)

where

k(t) =
Δp(t)

l
(8.5.5)

kφ(t) =
Δpφ(t)

l
(8.5.6)

By definition, Δps is the average value of Δp(t) over one oscillatory period
T as discussed in Section 5.2, Eq. 5.2.15, that is

Δps =
1
T

∫ T

0
Δp(t)dt (8.5.7)

and, as a consequence, the purely oscillatory part of the waveform has a zero
average over one oscillatory period, that is
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0
Δpφ(t)dt = 0 (8.5.8)

Because the equations governing fully developed flow in a tube are linear,
these two parts of the driving pressure can be dealt with separately, each
producing a flow field as if it were the only driving pressure, and the two
resulting flow fields are then added to produce the complete flow field. The
situation is precisely the same as that in which the harmonic components of
a composite pressure wave and the flows which they produce can be treated
separately and the results are then added, as discussed in Section 6.2. Indeed,
here too, the oscillatory part of the pressure, pφ(t), may itself be a composite
wave which is then decomposed into harmonic components that are dealt with
as in Chapter 6.

As a matter of terminology, when Δp(t) is a periodic function of time we
shall refer to the flow which it produces as “pulsatile flow”, to the flow which
Δps produces as “steady flow”, and to the flow which Δpφ(t) produces as
“oscillatory flow”. Because the steady and the oscillatory parts of pulsatile
flow can be dealt with separately as discussed above, and because steady flow
in a tube has already been dealt with in Section 2.3, it remains to deal with
only the oscillatory part of the flow.

A classical solution of the equations governing oscillatory flow in a rigid
tube exists for an oscillatory pressure gradient of the form

kφ(t) = k0e
iωt (8.5.9)

= k0(cos ωt + i sin ωt) (8.5.10)

In other words, the driving pressure consists of a simple sine or cosine wave
with amplitude k0. We recall that, in this complex exponential formulation,
the solution obtained is also in complex form where the real part describes
the flow when the driving pressure is of the form k0 cos ωt, and the imaginary
part describes the flow when the driving pressure is of the form k0 sin ωt.

For the oscillatory flow velocity field within the tube, the solution gives
[177, 208, 194, 221]

uφ(r, t) =
ik0a

2

μΩ2

(
1 − J0(ζ)

J0(Λ)

)
eiωt (8.5.11)

where J0 is Bessel function of order zero of the first kind, and

Ω =
√

ρω

μ
a (8.5.12)

Λ =
(

i − 1√
2

)
Ω (8.5.13)

ζ(r) = Λ
( r

a

)
(8.5.14)
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To interpret uφ(r, t) in relation to the corresponding Poiseuille flow ve-
locity in steady flow, namely us(r), it is convenient to use as a reference the
maximum velocity in Poiseuille flow (Eq. 8.5.1) which occurs on the axis of
the tube (r = 0), namely

ûs = us(0) (8.5.15)

=
−ksa

2

4μ
(8.5.16)

Also, comparison between the steady and the oscillatory velocity profiles is
made easier by taking the amplitude of the oscillatory pressure gradient to be
the same as the pressure gradient in steady flow, that is, we take

k0 = ks (8.5.17)

Nondimensional forms of the steady and the oscillatory velocity profiles
are then defined by (Eq. 8.5.1)

us(r)
ûs

= 1 − r2

a2 (8.5.18)

uφ(r, t)
ûs

=
4

iΩ2

(
1 − J0(ζ)

J0(Λ)

)
eiωt (8.5.19)

Evaluation of the last expression requires values of the Bessel functions, which
are available numerically in math tables and in most computational pro-
grams [137, 198]. Because both us(r) and uφ(r, t) have been normalized in
the same way, they can be compared graphically on the same scale, as shown
in Fig. 8.5.1. The figure compares the oscillatory velocity profile with the cor-
responding profile in Poiseuille flow at different times within the oscillatory
cycle. The comparison is made when the oscillatory flow is driven by the real
part of the oscillatory pressure gradient, namely k0 cos ωt (k0 = ks). Thus,
at t = 0 the oscillatory flow and the Poisuille flow are momentarily driven
by the same pressure gradient and, in the absence of other factors, we would
expect the two velocity profiles to be the same at that point in time within
the oscillatory cycle.

The failure of peak velocity in oscillatory flow to reach the same value as
peak velocity in Poiseuille flow (normalized at 1.0), is due clearly to inertial
effects. More accurately the difference between the two is a function of the
nondimensional frequency parameter Ω as defined in Eq. 8.5.12, also known as
the Womersley number, which combines the effects of frequency of oscillation,
tube radius, and both the density and viscosity of the fluid. The differences
observed in Fig. 8.5.1 occur with Ω = 2.0. In particular, the velocity profiles at
peak pressure gradient, which occurs at ωt = 0, is short of maximum Poiseuille
flow velocity at this value of Ω. Results at higher and lower values of Ω are
shown in Fig. 8.5.2.
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Fig. 8.5.1. Velocity profiles of oscillatory flow in a rigid tube, driven by a pressure
gradient of the form ks cos ωt where ks is a constant, ω is frequency and t is time.
The profiles are shown at different times within the oscillatory cycle, as indicated by
the value of the phase angle ωt (in degrees) on each curve. For comparison, the bold
curve represents the velocity profile in Poiseuille flow driven by a pressure gradient
ks. Velocities are normalized so that their values are comparable on the same scale.
The differences between the oscillatory profiles at different points in time within
the oscillatory cycle and the Poiseuille flow profile indicate that peak velocity in
oscillatory flow is lower than that in Poiseuille flow and occurs at a later time than
peak pressure gradient, which occurs at ωt = 0.

Oscillatory flow rate qφ(t) is given by

qφ(t) =
∫ a

0
2πruφ(r, t)dr (8.5.20)

=
iπksa

4

μΩ2

(
1 − 2J1(Λ)

ΛJ0(Λ)

)
eiωt (8.5.21)

and normalizing in terms of the corresponding flow rate in Poiseuille flow

qs =
∫ a

0
2πrus(r)dr (8.5.22)

=
−ksa

2

8μ
(8.5.23)

we have

qφ(t)
qs

=
8

iΩ2

(
1 − 2J1(Λ)

ΛJ0(Λ)

)
eiωt (8.5.24)
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Fig. 8.5.2. Velocity profiles at peak pressure gradient ks cos ωt, which occurs at ωt =
0, and different values of the nondimensional frequency parameter Ω as indicated
on individual curves. The bold curve represents the velocity profile in Poiseuille flow
driven by a pressure gradient ks.
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Fig. 8.5.3. Oscillatory flow rate qφ(t) (solid) compared with the driving pressure
gradient kφ(t) (dashed) for flow in a rigid tube with frequency parameter Ω = 3.0.
Flow rate lags behind the pressure gradient and peak flow is significantly lower than
the corresponding normalized Poiseuille flow value of 1.0.
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Fig. 8.5.4. Amplitude and phase of oscillatory flow rate qφ(t) at different values of
the frequency parameter Ω.
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Fig. 8.5.5. Velocity profiles in pulsatile flow in a rigid tube at different times
within the oscillatory cycle, indicated in degrees on the right of each panel, and
with frequency parameter Ω = 1.0. A characteristic of pulsatile flow in a rigid tube
is the absence of any change in the velocity profile as the flow progresses along the
tube. The fluid moves in tandem at all positions along the tube.



8.6 Pulsatile Flow in an Elastic Tube 279

000000

909090909090

−1

0

1

ra
di

al
 d

is
ta

nc
e 

(n
or

m
al

iz
ed

)

180180180180180180

270270270270270270

0 1/0 1/0 1/0 1/0 1
axial velocity (normalized)

360360360360360360

Fig. 8.5.6. Velocity profiles in pulsatile flow in a rigid tube at different times within
the oscillatory cycle as in Fig. 8.5.5 but here with the frequency parameter Ω = 3.0.

Variation of the flow rate within the oscillatory cycle, with Ω = 3.0, is shown
in Fig. 8.5.3. At this value of Ω peak flow rate is significantly lower than the
normalized Poiseuille flow value of 1.0, and it lags behind the driving pressure
gradient. At higher values of Ω peak flow diminishes further and the phase
lag increases, as shown in Fig. 8.5.4.

One of the characteristics of pulsatile flow in a rigid tube is the absence of
any change in the flow field as the flow progresses along the tube. The fluid
moves in tandem at all positions along the tube, as shown in Figs. 8.5.5, 6, in
other words the flow field is entirely independent of the streamwise coordinate
x along the tube. This type of flow is only possible when the tube is strictly
rigid. We shall see later that in the presence of any elasticity within the tube
wall, pulsatile flow within the tube becomes a propagating wave and the flow
field becomes a function of the streamwise coordinate x.

8.6 Pulsatile Flow in an Elastic Tube

A key difference between flow in a rigid tube and that in an elastic tube is that
in a rigid tube a local change in pressure is “sensed” instantaneously all along
the tube, while in an elastic tube a local change in pressure is first absorbed
locally by the elasticity of the tube wall and only then transmitted to other
regions of the tube as illustrated schematically in Fig. 8.6.1. In particular,
when the input pressure driving the flow in a rigid tube rises and falls in an
oscillatory manner, as we saw in Section 8.5, the rise and fall in pressure has its
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effect simultaneously at every position along the tube. As the input pressure
rises, fluid responds by an appropriate increase in flow rate, and while this
rise in flow rate is somewhat delayed because of fluid inertia, the delay is the
same everywhere along the tube.

u(x,r,t)x

r

u(r,t)

r

x

c

Fig. 8.6.1. Pulsatile flow in a rigid tube, where flow moves in tandem all along
the tube (top), compared with pulsatile flow in an elastic tube where flow is in the
form of a wave (bottom). In the elastic tube, a rise in pressure is first absorbed by
a bulging in the tube wall and then transmitted downstream as the pressure falls
and the tube recoils. Thus, in oscillatory flow where the input pressure rises and
falls repeatedly, a wave motion is created within the tube. The “wave speed” c is
the speed with which the wave progresses downstream.

If the tube is elastic, by contrast, as the input pressure rises, the rise
is initially absorbed by a local bulge in the tube wall and is therefore not
immediately sensed by fluid in other regions of the tube. Only as the input
pressure begins to fall does the bulge in the tube wall begin to recoil and the
pressure difference driving the flow begins to rise and the flow rate responds
accordingly [124, 221]. But by this point in time in the oscillatory cycle the
input pressure begins to rise again and the cycle is repeated again and again.
The result is a “delayed messaging” of the oscillatory input pressure to the
rest of the tube, compared with the instant messaging which occurs in a rigid
tube.

The most important result of this difference is that pulsatile flow in an
elastic tube produces wave motion along the tube (Fig. 8.6.1), which is strictly
analogous to the wave motion observed when the calm surface of a lake is
disturbed to cause a local change in pressure. In the latter circumstance the
local change in pressure is absorbed locally by a rise of a body of fluid against
gravity, which then falls back in analogy with the recoiling of the elastic tube,
sending the message along the lake surface.

The speed with which a local change in pressure is transmitted downstream
in pulsatile flow in an elastic tube is known as the “wave speed”, appropriately
so because it corresponds to the speed with which the bulges in the tube
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wall, like the crests on the surface of a lake, move downstream (Fig. 8.6.1).
If the material of the tube wall is perfectly elastic, and if it can be assumed
further that the tube wall is “thin” compared with the tube radius, then an
approximate expression for the wave speed, known as the Moen-Korteweg
formula, is given by

c0 =

√
Eh

ρd
(8.6.1)

where E is a measure of elasticity of the tube wall, known as Young’s modulus,
or modulus of elasticity, h is the thickness of the tube wall, d is tube diameter,
and ρ is the density of the fluid which is assumed constant. The measure of
elasticity of the tube wall is such that higher values of E represent increased
rigidity of the tube wall. The formula thus indicates that the wave speed is
higher in a more rigid tube. An important limit is that in which the tube
wall is infinitely rigid, that is it lacks any elasticity at all, in which case the
value of E is infinite and therefore the wave speed c0 is infinite. Thus, the
“instant messaging” in a rigid tube referred to earlier can now be viewed as
messaging occuring at infinite speed, and the difference between pulsatile flow
in an elastic tube and that in a rigid tube can now be re-stated by saying that
in a rigid tube wave propagation occurs at infinite speed, hence a change in
pressure is sensed instantaneously everywhere along the tube. More accurately,
wave propagation is actually absent in a rigid tube because the wave itself is
absent, it simply does not materialize.

The two assumptions on which the Moen-Korteweg formula is based,
namely that the tube wall is thin and perfectly elastic, can be dealt with by
modified forms of the formula. In most general applications, however, these
modifications are not required and the formula provides a reasonable approx-
imation as it stands.

A more important aspect of the Moen-Korteweg formula is that it has
been derived under conditions of inviscid flow, where the flow does not satisfy
the condition of “no-slip” at the tube wall. To satisfy this important physical
condition and thereby include the effects of fluid viscosity a full solution of
the equations governing the movements of both the fluid and the tube wall is
required. The mathematical problem thus becomes considerably more compli-
cated than that in a rigid tube. The problem has been solved, however, and in
what follows we use the main elements of the results [145, 208, 8, 46, 125, 221].

In general, while pulsatile flow in a rigid tube is governed critically by
the value of the frequency parameter Ω, pulsatile flow in an elastic tube is
governed similarly by the value of Ω but also by the value of the wave speed c
which in turn depends on Ω as well as on tube properties. We now distinguish
between the wave speed c based on a full solution of the problem, including
the effects of viscosity, and the inviscid wave speed c0 provided by the Moen-
Korteweg formula in Eq. 8.6.1. The full solution of the problem provides the
following relation between the two
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c =

√
2

(1 − σ2)z
c0 (8.6.2)

where σ is Poisson’s ratio for the elastic material of the tube wall, and z is a
solution of the equation

{(g − 1)(σ2 − 1)}z2 +
{

ρwh

ρa
(g − 1) +

(
2σ − 1

2

)
g − 2

}
z +

2ρwh

ρa
+ g = 0

(8.6.3)

where

g =
2J1(Λ)
ΛJ0(Λ)

(8.6.4)

and ρw is density of the tube wall.
While the wave speed c0 in inviscid flow is real, as defined by Eq. 8.6.1,

the corresponding wave speed c obtained from a full solution of the equations
in viscous flow is complex, its real and imaginary parts depending on the
frequency parameter Ω as shown in Fig. 8.6.2. It is seen that as the value of
Ω increases, the real part of c, normalized in terms of c0, rapidly approaches
1.0 while the imaginary part approaches zero. This means that for values of Ω
above 3 or so, c effectively becomes the same as c0 and the effects of viscosity
on the wave speed become negligible.

Other properties of the flow obtained by the full solution of the problem,
using the same notation and normalization used in Section 8.5 for flow in a
rigid tube, are given by

uφ(x, r, t)
ûs

=
4

iΩ2

(
1 − G

J0(ζ)
J0(Λ)

)
eiω(t−x/c) (8.6.5)

vφ(x, r, t)
ûs

=
2aω

iΛ2c

(
r

a
− G

2J1(ζ)
ΛJ0(Λ)

)
eiω(t−x/c) (8.6.6)

qφ(x, t)
qs

=
8

iΩ2 (1 − Gg)eiω(t−x/c) (8.6.7)

where

G =
2 + z(2σ − 1)

z(2σ − g)
(8.6.8)

Comparing these expressions with the corresponding expressions for flow
in a rigid tube indicates, first, the presence of a new velocity component vφ

which represents flow in the radial direction (Fig. 8.6.1). Also, comparing the
expressions for the axial velocity component uφ and for the flow rate qφ with
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Fig. 8.6.2. The real (solid) and imaginary (dashed) parts of the wave speed c in
oscillatory flow in an elastic tube, normalized in terms of the wave speed c0 in
inviscid flow which is purely real. For values of the frequency parameter Ω above
3 or so, the real part of c approaches the value of c0 and the imaginary part of c
approaches zero, thus c effectively becomes the same as c0.

the corresponding expressions for flow in a rigid tube (Eqs. 8.5.19, 24) indicates
that one difference between the two is embodied in what may be referred to as
the “elasticity factor” G. Numerical values of G can be found elsewhere [221]
and are shown graphically in Fig. 8.6.3, where it is seen that G is a complex
quantity whose real part is close to 1.0 and its imaginary part is close to 0.

Another difference between the expressions for pulsatile flow in an elastic
tube and those in a rigid tube is the presence of the streamwise coordinate x
in the exponential part of the expressions for an elastic tube. This indicates
that in the elastic tube oscillations in pressure and flow occur not only in time
as they do in a rigid tube, but also in space, which is the hallmark of wave
motion. In a rigid tube where the fluid everywhere along the tube moves in
unison there is no wave motion, the entire bulk of the fluid moves back and
forth together. In an elastic tube this is no longer the case because there are
now oscillations along the tube as indicated by the presence of the streamwise
coodinate x in the exponential part of Eqs. 8.6.5–7, which is now eiω(t−x/c)

instead of eiωt.
To see the characteristics of the wave motion more clearly we note that

eiω(t−x/c) = eiωt × e−iωx/c (8.6.9)

The first term on the right represents oscillations in time t as for flow in a
rigid tube, and the second represents oscillations in x. At a fixed position
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Fig. 8.6.3. Real and imaginary parts of the complex elasticity factor G at different
values of the frequency parameter Ω. The real part is close to 1.0 while the imaginary
part is close to zero in this range of values of the frequency parameter.

along the tube, which means a fixed value of x, the second term is constant
and acts simply as the amplitude of the oscillations in time. At a fixed point
in time on the other hand, which means a fixed value of t, the first term is
constant and acts simply as the amplitude of the oscillations in x. The wave
motion along the tube consists of the combination of these two oscillations.

The extent of one complete oscillation along tube is referred to as the
“wave length”, to be denoted by λ. It is related to the wave speed c and to
the frequency of oscillation ω by

λ =
2πc

ω
(8.6.10)

where λ is in centimeters when ω is in radians per second and c is in centime-
ters per second. Thus, the flow properties in Eqs. 8.6.5–7 can now be expressed
in terms of the wave length λ, that is

uφ(x, r, t)
ûs

=
{

4
iΩ2

(
1 − G

J0(ζ)
J0(Λ)

)
eiωt

}
e−i2πx/λ (8.6.11)

vφ(x, r, t)
ûs

=
{

2aω

iΛ2c

(
r

a
− G

2J1(ζ)
ΛJ0(Λ)

)
eiωt

}
e−i2πx/λ (8.6.12)

qφ(x, t)
qs

=
{

8
iΩ2 (1 − Gg)eiωt

}
e−i2πx/λ (8.6.13)
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In this form of these expressions it is seen that the extent to which space
oscillations modify the flow properties in pulsatile flow in an elastic tube
depends critically on the ratio x/λ appearing in the exponential terms on the
right. In a tube of length l, maximum effect clearly occurs at x = l, thus the
maximum modifications of the flow depend on the ratio of wave length to
tube length, λ/l. To estimate these modifications we may consider a tube in
which the wall thickness to diameter ratio h/d is 1/10, the fluid density ρ is
1.0 gm/cm3, and Young’s modulus E is 107 dynes/cm2. Inserting these values
in the Moen-Korteweg formula gives an estimate of the inviscid wave speed

c0 =

√
Eh

ρd
(8.6.14)

∼ 10 m/s (8.6.15)

The corresponding wave length, at a fundamental frequency f0 of 1 cycle/s,
is then

λ0 =
c0

f0
(8.6.16)

∼ 10 m (8.6.17)

We use subscript 0 for λ to indicate that here it is based on c0 and f0. The
values of both c0 and λ0 above are high because they are based on inviscid
flow but they serve as useful benchmarks. Actual values measured in the
cardiovascular system may be closer to one half of these values.

In a coronary artery of length 5 cm, therefore, the ratio of tube length to
wave length is approximately 1/100, and comparison of the flow properties
with this value are shown in Figs. 8.6.4, 5.

The radial velocity of the tube wall in pulsatile flow in an elastic tube
matches the fluid velocity at the inner surface of the tube, that is at r = a,
and from Eqs. 8.6.4, 12 and Eq. 8.5.14 we then have

vφ(x, a, t)
ûs

=
{

2aω

iΛ2c
(1 − Gg)eiωt

}
e−i2πx/λ (8.6.18)

and substituting for Λ (Eq. 8.5.13), this simplifies further to

vφ(x, a, t)
ûs

=
{

2
Rc

(1 − Gg)eiωt

}
e−i2πx/λ (8.6.19)

where Rc is a Reynolds number based on the wave speed c, namely

Rc =
ρac

μ
(8.6.20)

Plots of the normalized radial velocity scaled in terms of 2/Rc, that is
plots of (vφ(x, a, t)/ûs)/(2/Rc) are shown in Fig. 8.6.5. Because of the scaling,
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Fig. 8.6.4. Oscillatory velocity profiles in an elastic tube (solid) compared with
those in a rigid tube (dashed) when the ratio of tube length to wave length is 1/100,
which would be approximately so in a main coronary artery, and at a moderate value
of the frequency parameter, Ω = 3.0. The difference between the two is negligibly
small.
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Fig. 8.6.5. Oscillatory flow rate within an oscillatory cycle in an elastic tube (solid)
compared with that in a rigid tube (dashed) at a moderate value of the frequency
parameter, Ω = 3.0. Oscillatory flow rate reaches higher peaks in an elastic tube
than it does in a rigid tube.
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Fig. 8.6.6. Radial velocity of the tube wall in oscillatory flow in an elastic tube at
different times within the oscillatory cycle as indicated by the phase angle in degrees
on the right. The velocity is scaled in terms of a Reynolds number based on the wave
speed c (see text) and is thus exaggerated in magnitude, but the wave pattern of
the velocity illustrates the wave motion of the fluid within the tube.

the magnitude of wall velocity is much exaggerated but its pattern illustrates
the wave motion of the fluid within the tube since the wall velocity actually
matches the fluid velocity at the tube wall.

8.7 Wave Reflections

One of the most important conclusions that can be drawn from the previous
section is that pulsatile flow in an elastic tube is associated with wave motion,
wave “propagation”, along the tube. Wave motion does not arise in pulsatile
flow in a rigid tube except when the fluid is compressible, in which case the
compressibility of the fluid leads to wave motion within the tube, in much
the same way as the elasticity of a tube. This scenario is not of particular
interest in coronary blood flow or in blood flow in general where the fluid is
very nearly incompressible while blood vessels are decidedly not rigid. Thus,
our working model here is that of wave motion of an incompressible fluid in
an elastic tube.

One of the most important characteristics of a propagating wave is that
it can be reflected in the presence of an obstacle, that is, in the presence of a
change in the conditions under which the wave is propagating. The analogy of
a wave travelling on the calm surface of a lake is again useful here. It is a very
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common observation that when the wave reaches the shore or other obstacle
such as a boat, it is partially or totally reflected, producing a wave moving in
the opposite direction. This backward moving wave then combines with the
forward moving wave to produce a complex pattern of wave motion.

The same scenario occurs in an elastic tube, though it is not as clearly vis-
ible. In this case a propagating wave may be reflected because of an occlusion
or narrowing within or at the end of the tube, or a local change in its elasticity.
Any of these will act as an obstacle in the way of a propagating wave and thus
act as a reflection site. The most important reflection sites in coronary blood
flow and in blood flow in general are vascular junctions. They are important
because of their very large number. Vascular trees typically consist of many
millions of vascular junctions, and any path for blood flow within the tree
typically consists of only short tube segments, each terminating at a vascular
junction (Figs. 8.5.1, 2). The propagating wave rarely enjoys any significant
length of tube free from obstacles, thus wave reflections are ubiquitous in the
coronary circulation as they are in the cardiovascular system in general. The
effect of wave reflections from a single vascular junction may be very small,
but the cumulative effect from many thousands or millions of such junctions
can be very large. In the lake analogy this is equivalent to a wave being re-
flected from many boats of different sizes and at different positions on the
lake surface, leading to a highly complex wave pattern. In a vascular tree the
result of this complex pattern of forward and backward moving waves is a
change in the pressure distribution within the tree, which in turn affects blood
flow within the tree. Wave reflection effects in the coronary circulation have
received little attention in the past despite the significant role they may play
in the dynamics of coronary blood flow [5, 219, 164]

The effects of wave reflections on the pressure distribution within a vas-
cular tree is therefore a key element in the analysis of pulsatile blood flow.
Because these effects are cumulative, coming from many reflection sites within
the tree, and because each of these sites is typically positioned at the end of a
short tube segment, there are two essential steps in the computation of these
effects. In the first, one considers the effects of wave reflections in a single
tube, and, in the second step, the results are applied to the hierarchy of tube
segments in a branching tree structure to calculate the cumulative effect. We
consider the first of these steps in the present section, and the second in the
next chapter.

Since the ultimate aim in this work is to deal with a large number of tube
segments in a tree structure, the analysis of wave reflections is essentially
one dimensional. The detailed analysis of pulsatile flow in an elastic tube
considered in the previous section cannot be carried in full to each of many
thousands of tube segments in a tree structure. Instead, we take only the
main conclusions from that analysis, namely that an oscillatory input pressure
applied at the entrance of an elastic tube produces a travelling wave along
the tube. This conclusion can in fact be reached alternatively by considering
solutions of wave equations instead of the equations on which the results of
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pulsatile flow in an elastic tube discussed in the previous section are based.
In either case, our starting point is that an input oscillatory pressure of the
form [221]

pin(t) = p0e
iωt (8.7.1)

applied at the entry to an elastic tube, produces a travelling wave within the
tube, of the form

P (x, t) = p0e
iω(t−x/c) (8.7.2)

where p0 is the constant amplitude of the input wave, ω is the frequency of
oscillation, c is the wave speed, t is time, and x is distance along the tube
measured from the entrance.

As discussed in the previous section, this travelling wave consists of two
oscillations, one in time and one in space. To separate these two oscillations,
and to put the pressure in normalized form, we write

P (x, t) =
P (x, t)

p0
(8.7.3)

= e−iωx/c × eiωt (8.7.4)
= p(x)eiωt (8.7.5)

where

p(x) = e−iωx/c (8.7.6)

= cos
(ωx

c

)
− i sin

(ωx

c

)
(8.7.7)

Thus, at different points in time within the oscillatory cycle and at different
positions along the tube, the normalized pressure is given by

P (x, t) = cos ω(t − x/c) + i sin ω(t − x/c) (8.7.8)
= p(x)eiωt (8.7.9)

which is a simple cosine or sine function of x, depending on whether we use
the real or the imaginary part of the solution. Using the real part, we have a
simple cosine wave which progresses along the tube at increasing values of t,
as illustrated in Fig. 8.7.1.

The amplitude of this travelling wave represents the peak values of pressure
reached at different points along the tube and at different points in time and
is given by

|P (x, t)| = |eiω(t−x/c)| (8.7.10)
= |p(x)| × |eiωt| (8.7.11)
= |p(x)| (8.7.12)
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Fig. 8.7.1. Wave propagation in a tube can be thought of graphically as a simple
sine or cosine wave moving along the tube as time goes on.

Thus, because |eiωt| = 1.0, the amplitude of the travelling wave is always equal
to the amplitude of the pressure oscillations in space within the tube, namely
|p(x)|, which is a function of x representing the distribution of peak pressure
along the tube and we shall refer to it simply as the “pressure distribution”
within the tube. It is a key element in the analysis of wave reflections within
a tube because it provides a measure of the amount by which the pressure
distribution along the tube is modified by wave reflections and hence a measure
of the amount by which the flow is being affected by the moving wave. The
reason for this is that in the absence of wave reflections we have, from Eq. 8.7.7
above,

|p(x)| =
∣∣∣cos

(ωx

c

)
− i sin

(ωx

c

)∣∣∣ (8.7.13)

= 1.0 (8.7.14)

This means that in the present case the pressure peaks reached at different
points along the tube are equal, as shown graphically in Fig. 8.7.2. That is,
the pressure distribution is uniform at a normalized value of 1.0. We shall
find this result for the pressure distribution is a singular result in the sense
that it can only occur in the absence of wave reflections. Because of this, any
deviations from |p(x)| = 1.0 in other cases can be attributed immediately to
the effects of wave reflections.

To see the way in which the pressure distribution along a tube is actually
modified by wave reflections, consider a tube of length l in which the following
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Fig. 8.7.2. The peaks of pressure oscillations at different positions along the tube,
represented by the bold line, shall be referred to as the “pressure distribution” along
the tube. Only in the absence of wave reflections is this distribution uniform at a
normalized value of 1.0 as it is in this case.

forward moving pressure wave, to be identified by subscript f , is moving
towards the end of the tube

P f (x, t) = eiω(t−x/c) (8.7.15)

If a reflection site at the end of the tube (x = l) causes a fraction R of the wave
to be reflected, then the following backward moving wave, to be identified by
subscript b, will arise at that point [221]

P b(x, t) = Reiω(t−(2l−x)/c) (8.7.16)

where R is known as the “reflection coefficient” and is defined by

R =
P b(l, t)
P f (l, t)

(8.7.17)

The time and space oscillations of pressure within the tube now consists
of the combination of the two waves, namely

P (x, t) = P f (x, t) + P b(x, t) (8.7.18)

and the form of the combined wave depends on how the forward and the
backward moving waves add up. They add up differently at different points
in time within the oscillatory cycle, as illustrated in Fig. 8.7.3, because the
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Fig. 8.7.3. A reflection site at the end of a tube causes a fraction R (here R = 0.8)
of the forward moving wave (thin solid line) to be reflected as a backward moving
wave (dashed line). The oscillatory pressure within the tube now consists of the sum
of the two waves (bold line), and the result depends on how they add up. They
add up differently at different points in time within the oscillatory cycle because
the forward wave being reflected is different at different points in time within the
oscillatory cycle as illustrated in the different panels. The panels represent different
times within the oscillatory cycle in terms of the phase angle indicated in degrees
on the right.

forward wave being reflected is different at different points in time within the
oscillatory cycle.

To find an expression for the pressure distribution |p(x)|, as modified by
wave reflections, we note first that

P (x, t) = eiω(t−x/c) + Reiω(t−(2l−x)/c) (8.7.19)
= p(x)eiωt (8.7.20)

where now

p(x) = e−iωx/c + Re−iω(2l−x)/c (8.7.21)

and the amplitude of p(x) is clearly no longer equal to 1.0. To find an expres-
sion for |p(x)| we note first that if the wave length is denoted by λ as before,
then the following relation can be used to eliminate the wave speed

c =
ωλ

2π
(8.7.22)

If both x and λ are normalized in terms of the tube length l, using the notation
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x =
x

l
(8.7.23)

λ =
λ

l
(8.7.24)

then in terms of these normalized parameters we have, finally

|p(x)| = |e−iωx/c + Re−iω(2l−x)/c| (8.7.25)

= |e−i2πx/λ + Re−i2π(2−x)/λ| (8.7.26)

=

√
1 + R2 + 2R cos

(
4π

λ
[x − 1]

)
(8.7.27)

with some algebra required in the last step.
Eq. 8.7.27 indicates that the pressure distribution along the tube |p(x)|,

as modified by wave reflections, depends on two key parameters: the reflec-
tion coefficient R and the wave-length-to-tube-length ratio λ. If R = 0, the
equation reduces to |p(x)| = 1.0 as we found earlier in the absence of wave re-
flections. For other values of R the pressure distribution is no longer uniform,
as illustrated in Figs. 8.7.4–9. In all cases, the value of |p(x)| at the reflection
site, namely at x = 1.0, is determined by the value of the reflection coefficient
such that

|p(l)| =

√
1 + R2 + 2R cos

(
4π

λ
[1 − 1]

)
(8.7.28)

=
√

1 + R2 + 2R (8.7.29)
= 1 + R (8.7.30)

Also, as λ becomes large, Eq. 8.7.27 gives

lim
λ→∞

|p(x)| = lim
λ→∞

√
1 + R2 + 2R cos

(
4π

λ
[x − 1]

)
(8.7.31)

=
√

1 + R2 + 2R (8.7.32)
= 1 + R (8.7.33)

At the benchmark case in which the wave length and the tube length are
equal, hence λ = 1.0, there are four distinct points along the tube where the
forward and the backward moving waves combine to produce maxima and
minima in the oscillatory pressure. The result is a pressure distribution in
which the four points (spaced at quarter tube lengths apart, and sometimes
referred to as “node points”) are prominent, as shown in Figs. 8.7.4, 5.

As the ratio of wave length to tube length increases, the pressure dis-
tribution changes considerably. Examples are shown in Figs. 8.7.6–9 where
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Fig. 8.7.4. Wave reflections in a tube when the wave length and the tube length are
equal, i.e., λ = 1.0, and the reflection coefficient R = 0.8. The thin lines represent
the oscillatory pressure at different points in time within the oscillatory cycle, each
line representing the sum of the forward and the backward moving waves which are
not shown here. The bold line represents the “pressure distribution” along the tube,
which is the distribution of peak pressures reached at different points along the tube.
The distribution in this case is to be compared with that in Fig. 8.7.2 where wave
reflections are absent.
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Fig. 8.7.5. Solid line: Pressure distribution along a tube (from Fig. 8.7.4) as modi-
fied by wave reflections when the wave length and the tube length are equal (λ = 1.0)
and the reflection coefficient R = 0.8. The points of maxima and minima are some-
times referred to as “node points” and in this case are spaced one quarter tube
lengths apart. Dashed line: Pressure distribution in the absence of wave reflections.
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Fig. 8.7.6. Solid line: Pressure distribution along a tube as modified by wave reflec-
tions when the wave-length-to-tube-length ratio λ = 2 and the reflection coefficient
R = 0.8. Dashed line: Pressure distribution in the absence of wave reflections.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

2.5

no
rm

al
iz

ed
 p

re
ss

ur
e

normalized distance

Fig. 8.7.7. Pressure distributions in the presence (solid line) and absence (dashed
line) of wave reflections as in Fig. 8.7.6 but here with λ = 5 and R = 0.8.
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Fig. 8.7.8. Pressure distributions in the presence (solid line) and absence (dashed
line) of wave reflections as in Fig. 8.7.6 but here with λ = 10 and R = 0.8.
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Fig. 8.7.9. Pressure distributions in the presence (solid line) and absence (dashed
line) of wave reflections as in Fig. 8.7.6 but here with λ = 100 and R = 0.8.
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λ = 2, 5, 10, 100. It is seen that the number of node points is reduced to two
at λ = 2 and there are no node points at all for λ > 4. In all cases, the
value of the normalized pressure amplitude at the terminal end of the tube
(x = 1.0) is 1 + R as prescribed by Eq. 8.7.30. The characteristic pattern of
the pressure distribution at higher values of λ is described by a monotonically
increasing function, edging closer and closer towards a uniform value of 1+R
as prescribed by Eq. 8.7.33. These higher values of λ are particularly relevant
in coronary blood flow where the lengths of main coronary arteries and their
branches are of the order of centimeters while the wave length is of the order
of meters.

8.8 Summary

In unlumped-model analysis internal structures and events within the coronary
circulation are considered, thus introducing a space dimension which does not
exist in lumped models. In particular, the intricate vascular structure within
the system and flow events within this structure, including wave propagation
and wave reflections, provide the main grounds for unlumped-model analysis.

A space dimension is an essential part of unlumped-model analysis,
whether for flow in a single vessel segment or flow along the tree structure
of coronary vasculature. In both cases flow properties are considered to be
functions of space and time. In lumped-model analysis, by contrast, they are
considered to be functions of time only.

In a sequence of tube segments in series, assuming idealized Poiseuille flow
in each segment, the streamwise distribution of pressure along the tube seg-
ments depends critically on their successive diameters. The pressure drops
linearly if successive diameters are unchanged, it drops more steeply if suc-
cessive diameters are decreasing and less steeply if they are increasing.

Arterial bifurcations are the building block from which the tree structure
of coronary vasculature is constructed. The pressure distributions in steady
Poiseuille flow along the two paths in a bifurcation depend on the power law
relation between the diameter of a vessel segment and the flow rate which the
vessel is destined to convey. Under the “cube law”, whereby the diameter is
proportional to the cube root of the flow rate, the pressure drops linearly and
equally along both paths.

Pulsatile flow in a rigid tube may be divided into a steady part and an
oscillatory part and, because the equations governing the flow are linear, the
two parts can be dealt with separately and the results then simply added. A
characteristic feature of oscillatory flow in a rigid tube is that velocity profiles
at a particular moment in time are the same at every streamwise position
along the tube. In other words, the velocity field is a function of time only,
not a function of position along the tube. This is only possible when the tube
is rigid, hence the results cannot be applied to coronary vasculature because
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of the elasticity of the vessels, but the results and the solutions on which they
are based form the basis for a solution for pulsatile flow in an elastic tube.

Pulsatile flow in an elastic tube consists of wave motion along the tube.
The velocity field within the tube is a function both of time and of streamwise
position along the tube. At a fixed point in time the pressure distribution along
the tube is periodic in position, while at a fixed position along the tube the
pressure is periodic in time. A key parameter of the flow is the wave speed,
which represents the speed with which the wave motion progresses along the
tube. Pulsatile flow within coronary vasculature has the characteristics of
pulsatile flow in an elastic tube.

One of the most important consequences of wave propagation in an elastic
tube is the possibility of wave reflection. Reflections arise when a forward
moving wave meets an “obstacle”, a change in the conditions under which
it is moving. Part of the wave is reflected, thus giving rise to a backward
moving wave and the combination of the two waves changes the pressure
distribution within the tube. In coronary blood flow the most common obstacle
is a vascular junction, and since there are so many of these within the coronary
vasculature, the cumulative effect of wave reflections can be very large.



9

Basic Unlumped Models

9.1 Introduction

There are as yet no well defined or complete unlumped models of the coronary
circulation. Work towards this goal has been going on for some time but
the subject is still in its infancy because the first few decades of that work
were spent largely on attempts to unravel the functional anatomy of coronary
vasculature [94, 69, 16, 127, 61, 73, 196, 133, 182, 81, 227, 228, 223, 224, 214,
229, 216, 106, 218, 175, 233, 39, 103, 181]. Also, studies of flow within this
vasculature, whether theoretical or experimental, have been rather sporadic
because of the enormous difficulties involved, and have so far been able to
consider only flow in specific parts of coronary vasculature or only specific
aspects of coronary blood flow [108, 38, 11, 12, 160, 101, 143, 88, 104, 159,
170, 219, 105, 109, 18, 144, 148, 99, 23, 231].

The ultimate unlumped model of the coronary circulation would be one
in which the branching architecture of coronary vasculature is represented
in accurate details, the elasticities and other properties of all vessel segments
within the coronary network are specified, intramyocardial pressure is mapped
out in space within the myocardium and in time within the oscillatory cycle
so that its effect on flow in each vessel segment at each moment during the
oscillatory cycle is determined, regulatory feedback loops and mechanisms are
integrated into the dynamics of the system, and the form of the input pressure
wave is specified.

It is an unattainable model, and likely an unnecessary luxury even if it
could be attained. The representation of every vessel segment within the coro-
nary network in a model of the coronary circulation is not only an (almost)
impossible task but also a wasteful one because the detailed architecture of the
coronary network is highly variable from one heart to another [228, 216]. Two
coronary networks are never the same in terms of the location and properties
of every vessel segment. Therefore, to strive for the validity of such details in
a model of the coronary circulation is not highly meaningful, even if it were
possible.
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The challenge for unlumped model analysis of the coronary circulation is
to (1) extract salient features of the coronary network that are more global
in nature, such as the scale of the network, its general branching structure,
and the flow rate that it is required to carry compared with that in the
systemic circulation and to use combinations and variations of such features
to demonstrate the type of dynamics that they can or cannot produce; (2)
show how the propagating pressure wave driving the flow is likely to evolve
under different models and properties of the coronary arterial tree and under
different circumstances; and (3) determine under what circumstances wave
reflections are likely to affect the flow and therefore to what extent they may
play a significant role in the dynamics of the coronary circulation. These issues
are considered in the present chapter.

9.2 Steady Flow in Branching Tubes

Arterial trees are generally found to consist of a succession of bifurcations
whereby a root vessel segment divides into two branches, then each of the
branches in turn divides into two branches, etc. [212]. The “symmetry” of
each bifurcation, that is the relative radii of the two branches, is measured
by the bifurcation index α = a2/a1 introduced in the previous section, where
a1, a2 are radii of the two branches, subscript 1 being reserved by conven-
tion to the branch with the larger radius. The branching process is illustrated
schematically in Fig. 9.2.1 where α = 1.0 and in Fig. 9.2.2 where α = 0.7.
In each case, the value of α is the same at every bifurcation within the tree
structure, thus producing a degree of uniformity which is not characteristic
of arterial trees in the cardiovascular system where it is found that the value
of α varies widely throughout the tree [224, 215, 226, 106, 218, 220]. Never-
theless, these theoretical structures are useful for the purpose of the present
section, which is to analyse the pressure distribution in steady flow along such
a vascular tree structure by generalizing the results of the previous chapter.

The strategy we follow is based on that used for a single bifurcation in the
previous chapter. Here too the pressure distribution within the tree structure
is determined simply by following all possible paths from the root segment of
the tree to the terminal branch segments. Since each of these paths is unique
and consists of a simple succession of tube segments in series, the results of
Section 8.3 for tubes in series can then be used, noting only that the flow rate
in this succession of tube segments is not the same but varies according to
the bifurcation rules discussed in the previous chapter.

To carry out this strategy, the notation of the previous chapter must
clearly be generalized to cater for a much larger number of branches. The
term “branches” used in the previous chapter to identify the two branch ves-
sel segments at a bifurcation is no longer adequate here because most vessel
segments within the tree structure are both parents and branches. The only
vessel segments that can be identified by name here are the root segment and
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α = 1.0

Fig. 9.2.1. A 5-level branching tree structure in which the value of the bifurcation
index α is 1.0, which means that the two branches at each bifurcation along the tree
structure have the same radius.

the terminal branch segments, and we shall continue to use that terminology
for these segments. For general notation throughout the tree structure, how-
ever, this descriptive scheme is rather inadequate and a more analytic scheme
is required. For this purpose we note that each vessel segment has a unique
position within the tree structure in terms of the generation or “level” of the
tree in which it is located and in terms of its sequential position among other
vessel segments at that level. Thus each vessel segment within the tree struc-
ture can be identified uniquely by a double subscript notation j, k whereby the
first denotes the “level coordinate” of that segment and the second denotes
its “sequential coordinate”, as illustrated schematically in Fig. 9.2.3.

The convention used in the previous chapter to designate branch-1 as the
branch with the larger radius at a bifurcation can also be extended. Here we

α = 0.7

Fig. 9.2.2. A 5-level branching tree as in Fig. 9.2.1 but with α = 0.7.
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Fig. 9.2.3. A notation scheme for identifying the position of vessel segments in a
branching tree structure. Each segment is assigned a coordinate pair j, k in which
the first identifies the level of the tree at which the segment is located, and the
second identifies the sequential position of that segment among other segments at
that level of the tree. The insert shows that in general at each bifurcation one of
the two branch segments has an odd sequential number and the other has an even
sequential number. We use the convention of reserving the odd sequential number
for the branch with the larger radius at each bifurcation.

note that a vessel segment with position coordinates of segment j, k in general
has two branches with position coordinates j + 1, 2k − 1 and j + 1, 2k. The
sequential coordinate of the first of these (2k − 1) is an odd number while
that of the second (2k) is even. Thus, to generalize the convention of the
previous chapter we reserve the odd sequential number at each bifurcation for
the branch segment with the larger radius and the even sequential number
for the branch with the smaller radius. An application of this scheme to the
5-level tree structure is illustrated in Fig. 9.2.4.

Using these notation schemes, together with results from the previous
two sections, we may now evaluate the pressure distribution along any vessel
segment within the tree structure by simply following the unique path from
the root segment of the tree to that particular segment. Along this path, as we
proceed from one level of the tree to the next, the ratio of parent to branch
radius will be given by Eq. 8.4.27 or Eq. 8.4.28, depending on whether the
branch has the larger or smaller radius at that particular bifurcation. In the
first case the ratio is given by Eq. 8.4.27 and we shall denote it by λ1, so that

λ1 =
aj,k

aj+1,2k−1
(9.2.1)

= (1 + αγ)1/γ (9.2.2)
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Fig. 9.2.4. Position coordinates of vessel segments along the 5-level tree structure
shown in Fig. 9.2.2, illustrating the notation scheme used in the text and in Fig. 9.2.4.
At each bifurcation, the ratio of the radii of the two branch segments is 0.7, which
means that at each bifurcation one of the two branches has a larger diameter than
the other. The path from the root segment to any other segment within the tree
structure is unique. One path of particular significance is that of following the branch
with the larger radius at each bifurcation, another is that of following the branch
with the smaller diameter. These two singular paths are referred to as “bounding
paths” in the text, and here they are seen to be bounding in the sense of lying on
the two boundaries of the tree structure.

where α is the bifurcation index (= aj+1,2k/aj+1,2k−1) and γ is the power law
index. In the second case the ratio is given by Eq. 8.4.28 and we shall denote
it by λ2, that is

λ2 =
aj,k

aj+1,2k
(9.2.3)

=
(

1 + αγ

αγ

)1/γ

(9.2.4)

As an example, for the 5-level tree shown in Fig. 9.2.4, using Eqs.8.4.23,24,
the pressure distribution in the terminal branch segment with position coor-
dinates 4, 1 is given by
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Fig. 9.2.5. Pressure distributions along paths from the root segment to all termi-
nal segments of the 5-level tree structure shown in the inset. The two bold curves
represent the pressure distributions along the two “bounding paths”, the pressure
distributions along all other paths fall in between those two. The pressure falls lin-
early in each segment in accordance with the pressure drop in Poiseuille flow, but
the magnitude of the drop depends on the radius of each vessel segment and on the
amont of flow. Results in this figure are based on the assumption that the flow rate
in a vessel segment is proportional to the square of its radius.

P4,1(X4,1)

= −1 −
(

a0,1

a1,1

)3−γ

−
(

a0,1

a2,1

)3−γ

−
(

a0,1

a3,1

)3−γ

−
(

a0,1

a4,1

)3−γ

X4,1

(9.2.5)

= −1 −
(

a0,1

a1,1

)3−γ

−
(

a0,1

a1,1
× a1,1

a2,1

)3−γ

−
(

a0,1

a1,1
× a1,1

a2,1
× a2,1

a3,1

)3−γ

−
(

a0,1

a1,1
× a1,1

a2,1
× a2,1

a3,1
× a3,1

a4,1

)3−γ

X4,1 (9.2.6)

= −1 − (λ1)
3−γ − (

λ2
1
)3−γ − (

λ3
1
)3−γ − (

λ4
1
)3−γ

X4,1 (9.2.7)

Similarly, the pressure distribution in the terminal branch segment with po-
sition coordinates 4, 16 is given by
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Fig. 9.2.6. Pressure distributions in the 5-level tree structure as in Fig. 9.2.5, but
here the results are based on the assumption that the flow rate in a vessel segment is
proportional to the fourth power of its radius. It is seen that under this assumption
the pressure drops more steeply along the path of branches with the larger radii
than it does along the path of branches with the smaller radii, which is somewhat
unlikely on physiological or fluid dynamic grounds.

P4,16(X4,16)

= −1 −
(

a0,1

a1,2

)3−γ

−
(

a0,1

a2,4

)3−γ

−
(

a0,1

a3,8

)3−γ

−
(

a0,1

a4,16

)3−γ

X4,16

(9.2.8)

= −1 −
(

a0,1

a1,2

)3−γ

−
(

a0,1

a1,2
× a1,2

a2,4

)3−γ

−
(

a0,1

a1,2
× a1,2

a2,4
× a2,4

a3,8

)3−γ

−
(

a0,1

a1,2
× a1,2

a2,4
× a2,4

a3,8
× a3,8

a4,16

)3−γ

X4,16 (9.2.9)

= −1 − (λ2)
3−γ − (

λ2
2
)3−γ − (

λ3
2
)3−γ − (

λ4
2
)3−γ

X4,16 (9.2.10)

These two particular segments and the paths leading to them from the root
segment of the tree are clearly singular in the sense that the path to segment
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Fig. 9.2.7. Pressure distributions in the 5-level tree structure as in Fig. 9.2.5, but
here the results are based on the assumption that the flow rate in a vessel segment
is proportional to the third power of its radius, which is widely known as the “cube
law”. Under this assumption the pressure distributions are identical along all paths
from the root segment of the tree to the terminal branches, which lends strong
theoretical support to the validity of the cube law.

4, 1 is followed by selecting the branch with the larger radius and hence using
λ1 at every bifurcation, while the path to segment 4, 16 is followed by selecting
the branch with the smaller radius and hence using λ2 at every bifurcation.
We may thus refer to these as “bounding paths” in the sense that along all
other paths along the tree structure a combination of λ1 and λ2 must be used.

The pressure distributions along the two bounding paths and along all
other paths are shown in Figs. 9.2.6–8 where the singular nature of the two
bounding paths is seen again in terms of the pressure distributions within
the entire tree structure. The figures also show the critical dependence of the
pressure distribution on the value of the power law index γ in the relation
between flow rate and vessel radius (Eq. 8.4.22). Again, the cube law (γ = 3)
appears to present the ideal compromise as concluded in the previous chap-
ter. However, pressure distributions based on vessel radii actually measured
in the cardiovascular system exhibit characteristics of Fig. 9.2.6 rather than
Fig. 9.2.7. This indicates clearly that the assumptions on which the results in
Fig. 9.2.7 are based, namely the cube law relation between flow rate and vessel
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radius, and the linear relation between vessel length and radius, are not met
exactly in the cardiovascular system but are met with considerable scatter as
stated in the previous chapter and as data from the cardiovascular system
indeed indicate [224, 215, 226, 106, 218, 220].

9.3 Pulsatile Flow in Rigid Branching Tubes

While pulsatile flow in a rigid tube is an idealized model of pulsatile flow in
an elastic blood vessel as remarked at the end of the previous section, the
results which the model produces provide important benchmarks for pulsatile
flow in elastic tubes. Before we consider that problem, therefore, we continue
to use the rigid tube model in this section to examine pulsatile flow in a tree
structure consisting of rigid tube segments such as that considered for steady
flow in Section 9.2.

From the previous chapter the key parameter that determines the prop-
erties of pulsatile flow in a rigid tube is the frequency parameter, also known
as the Womersley number,

Ω =
√

ρω

μ
a (9.3.1)

If the flow in a tree structure made up of many rigid tube segments is driven
by an oscillatory input pressure of the form

kφ(t) = k0e
iωt (9.3.2)

then the frequency of oscillation ω in Eq. 9.3.1 for tube segments throughout
the tree will be determined by the frequency of that input pressure. Assuming,
also, that the fluid density ρ and viscosity μ in that equation remain constant
throughout the tree, then the value of the frequency parameter Ω will change
only with the radius a of tube segments within the tree.

To illustrate the variation of Ω along the 5-level tree structure considered
in Section 9.2, taking the following property values

ρ = 1.0 g/cm3 (9.3.3)
μ = 0.04 g/(cm.s) (9.3.4)
ω = 1.0 cycles/s (9.3.5)

= 2π radians/s (9.3.6)

the value of the frequency parameter in Eq. 9.3.1 is then given by

Ω =
√

50π a (9.3.7)

where a is the radius of the tube in centimeters. This expression can be used
to map out the values of Ω along the 5-level tree structure in which the radii
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Fig. 9.3.1. Values of the frequency parameter Ω at different segments of the 5-level
tree shown in the inset. The tree is based on a power law relation between flow rate
and vessel radius, with power law index γ = 3.0 and bifurcation index α = 0.7. The
values of Ω decrease most rapidly along the bounding path marked Ω2 consisting of
branch segments with the smaller radii at each bifurcation, and most slowly along
the other bounding path, marked Ω1. Values of Ω at other branch segments fall in
between these two extremes.

of branch segments are determined by the power law relation between flow
and radii used in Section 8.4.

Starting out with a = 0.2 cm as the radius of the root segment of the tree,
which is representative of the radius of a main human coronary artery, the
radii of subsequent branch segments are then given by Eqs.8.4.27,28 assuming
the power law relation on which these equations are based. Values of the
frequency parameter Ω obtained with these radii, and with the parameter
values in Eqs.9.3.3-6 are shown in Fig. 9.3.1. In general the value of Ω decreases
along any streamwise path from the root segment of the tree. It decreases
most rapidly along the bounding path consisting of branch segments with the
smaller radii at each bifurcation, and most slowly along the other bounding
path. In a tree structure with a larger number of levels the values of Ω continue
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Fig. 9.3.2. Values of the frequency parameter Ω in a tree with the same parameters
as that in Fig. 9.3.1 but here the tree has 11 levels (marked 0 to 10). Values of Ω
continue to decrease, ultimately reaching towards zero.

to decrease, reaching ultimately towards zero, as illustrated in Fig. 9.3.2 for
an 11-level tree.

Based on values of the frequency parameter, the maximum flow rate
reached within the oscillatory cycle in each tube segment within the tree,
which we shall refer to simply as “peak flow”, can be calculated using
Eq. 8.5.24 for the oscillatory flow rate qφ(t). In normalized form, this peak
flow is given by

|qφ(t)|
qs

=
∣∣∣∣ 8
iΩ2

(
1 − 2J1(Λ)

ΛJ0(Λ)

)∣∣∣∣ (9.3.8)

The distribution of peak flow within the 5-level vascular tree is shown in
Fig. 9.3.3. Because it is normalized in terms of the steady flow rate qs in
Poiseuille flow (Eq. 9.3.8), this peak flow is a measure of how close the oscil-
latory flow at each point in time is to a Poiseuille flow driven by a pressure
gradient equal to the value of the oscillatory pressure gradient at that point
in time. Thus, a normalized peak flow of 1.0 represents an oscillatory flow
in which the velocity profile at each point in time is a Poiseuille flow pro-
file, while values less than 1.0 represent oscillatory flows in which peak flow
does not quite reach the corresponding Poiseuille flow value. The results in
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Fig. 9.3.3. Normalized peak flow rates reached at different branch segments of the
5-level tree shown in the inset. A value of 1.0 represents a peak flow equal to that
in steady flow. This value is reached more rapidly along the bounding path marked
q2 consisting of branch segments with the smaller radii, and more slowly along the
other path, marked q1. Other lines represent values of the peak flow along other
paths within the tree structure.

Fig. 9.3.3 indicate that peak flows reach the Poiseuille flow values more rapidly
along the bounding path with the smaller branch segments than they do along
the path with the larger branch segments. The reason for this is that the os-
cillatory flow profile is a more complete Poiseuille profile at smaller values of
the frequency parameter Ω, which are reached more rapidly along the path
with the smaller branch segments.

Another flow property of particular interest is the oscillatory shear stress
τφ exerted by the fluid on the tube wall and defined by

τφ(t) = −μ

(
∂uφ(r, t)

∂r

)
r=a

(9.3.9)

Using the solution for uφ(r, t) in Eq. 8.5.11, and noting that
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Fig. 9.3.4. Normalized peak shear stress reached at different branch segments of
the 5-level tree shown in the inset. A value of 1.0 represents a peak shear stress equal
to that in steady flow. This value is reached more rapidly along the bounding path
marked τ2 consisting of branch segments with the smaller radii, and more slowly
along the other path, marked τ1. Other lines represent values of the peak flow along
other paths within the tree structure. The results are based on the cube law relation
between flow rate and vessel radius, q ∼ aγ , γ = 3.0, as indicated in the inset.

dJ0(ζ)
dζ

= −J1(ζ) (9.3.10)

we find

τφ(t)
τs

=
2
Λ

(
J1(Λ)
J0(Λ)

)
eiωt (9.3.11)

where τs is the constant shear stress in steady Poiseuille flow in a tube of
radius a under a pressure gradient ks, which is given by

τs =
−ksa

2
(9.3.12)

Within each oscillatory cycle the normalized shear stress reaches a peak
value given by

|τφ(t)|
τs

=
∣∣∣∣ 2
Λ

(
J1(Λ)
J0(Λ)

)∣∣∣∣ (9.3.13)
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Fig. 9.3.5. Normalized peak shear stress reached at different branch segments of
the 5-level tree shown in the inset, as in Fig. 9.3.4, but here the results are based on
a power law index γ = 2.0.

Because of the way it is normalized the value of the peak shear stress is
expressed as a fraction of the constant shear stress in steady Poiseuille flow.
Thus, a normalized value of 1.0 represents peak oscillatory shear stress equal
to that in Poiseuille flow. The distribution of peak shear stress within the
5-level tree is shown in Fig. 9.3.4. It is similar to that of peak flow rate, as
would be expected, because shear stress is high at high flow rates and low at
low flow rates.

We recall that in steady flow, a cube law relation between vessel radius
and flow rate, namely q ∼ a3, ensures a constant shear stress throughout the
tree structure, as illustrated in Section 9.2. This is not the case in pulsatile
flow, as we see in Fig. 9.3.4 where the results are based on the cube law. Other
values of the power law index, namely γ = 2.0 and γ = 4.0, produce similar
results as shown in Figs. 9.3.5, 6. The reason for this is that in steady flow
the shear stress depends on the ratio of flow rate over the third power of the
radius (Eq. 8.4.32), while in pulsatile flow the corresponding relation is not as
simple [221].



9.4 Elastic Branching Tubes 313

0 1 2 3 4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

tree level

no
rm

al
iz

ed
 p

ea
k 

sh
ea

r 
st

re
ss

q ∼ a4

τ1τ1
τ2

τ2

Fig. 9.3.6. Normalized peak shear stress reached at different branch segments of
the 5-level tree shown in the inset, as in Fig. 9.3.4, but here the results are based on
a power law index γ = 4.0.

9.4 Elastic Branching Tubes

Results for pulsatile flow in an elastic tube discussed in Section 8.6 indicate
that when the wave-length-to-tube-length ratio, λ = λ/L, is of the order of
100 or greater, the basic characteristics of the flow are nearly the same as
those of pulsatile flow in a rigid tube. In particular, the oscillatory velocity
profiles in the elastic tube (Fig. 8.6.4) and the wave form of the oscillatory flow
rate (Fig. 8.6.5) are very close to those in a rigid tube. In the human coronary
circulation the length of a main coronary artery may be between 5 and 10
cm, while the length of the propagating wave is between 5 and 10 m. Thus,
λ ∼ 100 is a good estimate of the order of magnitude of the wave-length-
to-tube-length ratio in the coronary circulation. However, the length λ of a
propagating wave is related to the wave speed c and the angular frequency ω
by

λ =
2πc

ω
(9.4.1)

Thus, at a fundamental frequency of 1 Hz, or ω = 2π radians/s, the wave
length is directly related to the wave speed. If the wave speed can be assumed
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Fig. 9.4.1. The real part of the wave speed, normalized in terms of the Moen-
Korteweg wave speed c0, in a vascular tree model in which the root segment has
approximately the same diameter (4 mm) as a main coronary artery in the human
heart and in which subsequent branching follows the cube law with power law index
γ = 3.0 as described in Section 8.4 and bifurcation index α = 0.7. The two bounding
paths marked c1, c2 in the tree model are singular paths along which the branch with
the larger diameter is followed at each junction in one case (c1), and the branch with
the smaller diameter is followed in the second (c2). They represent two paths along
which the real part of the wave speed decreases most slowly (c1), or most rapidly
(c2), as indicated on the graph. Everywhere else within the tree structure the value
of the real part of the wave speed is bound by these two curves. Thus, since the
normalized values are everywhere less than 1.0, the figure indicates that the wave
speed is everywhere lower than the Moen-Korteweg wave speed.
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Fig. 9.4.2. The imaginary part of the wave speed associated with the real part
shown in Fig. 9.4.1. Since the Moen-Korteweg wave speed is purely real, it follows
that the wave speed here is different from the Moen-Korteweg wave speed everywhere
along the tree structure, consistent with the results in Fig. 9.4.1. Remaining caption
is the same as in that figure.

constant throughout the coronary circulation, the same assumption can be
made about the wave length, and the above estimate of λ ∼ 100 can be used
throughout. However, in Section 8.6 we saw that the value of the wave speed
actually depends on the frequency parameter Ω such that when Ω > 3 the
wave speed can indeed be assumed constant and equal to the Moen-Korteweg
wave speed c0 (Eq. 8.6.1), but when Ω < 3 the wave speed departs significantly
from this value. In fact, its value becomes complex, with real and imaginary
parts depending on the value of Ω as shown in Fig. 8.6.2. Now, values of Ω
in the coronary arterial tree were estimated in Section 9.3 and are shown in
Figs. 9.3.1, 2. It is seen in these two figures and in Fig. 8.6.2 that the coronary
circulation lies entirely in the region Ω < 3 where the wave speed is certainly
not constant and not equal to the Moen-Korteweg wave speed c0. Therefore, in
a model of the coronary circulation consisting of elastic tubes, it is necessary
to map out the values of c within the tree structure on which the model is
based. To do so, the value of Ω for each vessel segment in that model must
be used to calculate the corresponding value of c according to the solution for
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pulsatile flow in an elastic tube as was done in Section 8.6. Results, using the
11-level tree model as an example, are shown in Figs.9.4.1,2 where the real
and the imaginary parts of the wave speed are shown normalized in terms of
the Moen-Korteweg wave speed c0.
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Fig. 9.4.3. The ratio of wave length to tube length (λ = λ/L) for vessel segments
along the same 11-level tree model used in Fig. 9.4.1 and using values of the wave
speed shown in that figure. The two bounding paths marked λ1 and λ2 correspond
to those marked c1, c2 in Fig. 9.4.1 and have the same interpretation. The figure
indicates that the value of λ is significantly above 100 everywhere along the tree
structure, which means that the effects of wave propagation on flow within individual
vessel segments is minimal if wave reflections are absent. Because of the large number
of vessel junctions, however, wave reflections are ubiquitous and their effects on
pressure and flow within the tree structure must be calculated.

At the root segment of this tree model, in which the root segment has approx-
imately the same diameter (4 mm) as a main coronary artery in the human
heart, the real part of the wave speed is below the normalized value of 1.0,
which means that it is below the Moen-Korteweg value. Thereafter, at smaller
and smaller branch segments, the wave speed continues to decrease in value,
more rapidly along the bounding path with the smaller branches. Similarly,
the imaginary part of the wave speed, is above zero everywhere along the tree
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structure, which means that the wave speed is complex and hence different
from c0 everywhere along the tree structure.

Based on these values of c, the wave-length-to-tube-length ratio can be cal-
culated for each vessel segment using the radii and lengths of vessel segments
prescribed in the model. In particular, the model assumes that the hierarchy
of radii at different levels of the tree follows the cube law as described earlier
(Section 8.4), and that the length-to-diameter ratio for each vessel segment
is 10. Thus, at a fundamental frequency of 10 Hz, or ω = 2π radians/s, from
Eq. 9.4.1 we have

λ =
λ

L
(9.4.2)

=
c

10 × d
(9.4.3)

Results are shown in Fig. 9.4.3 where it is seen that, based on this model,
values of λ would be well above 100 throughout the coronary circulation.
From these results, therefore, it would seem that the model of pulsatile flow
in branching rigid tubes considered in Section 9.3 should be a good model
for pulsatile flow in the coronary circulation. This is decidedly not the case,
however, because pulsatile flow in an elastic tube is characterized by wave
propagation, a phenomenon which does not (cannot) arise in a rigid tube. The
only exception to this, as mentioned previously, is when the fluid is compress-
ible, which is not under consideration here. Wave propagation is a critically
important element in any model of pulsatile flow in an elastic tube not only
because of the different patterns of flow that it brings with it, namely those
described in Sections 8.5 and 8.6, but because wave propagation brings the
prospect for wave reflections.

9.5 Effective Impedance, Admittance

From a functional standpoint, the effects of wave reflections in a tube or
vascular tree can be thought of in terms of the way they affect the opposition
to flow. The term “opposition” is used here deliberately because the opposition
to pulsatile flow in the presence of wave reflections is neither pure “resistance”
as it is in steady flow, nor pure “impedance” as it is in oscillatory flow in a
rigid tube. In fact, the opposition to pulsatile flow in the presence of wave
reflections is best described by a modified impedance usually referred to as
“effective” impedance. The pure impedance in oscillatory flow in a rigid tube
is then renamed “characteristic impedance” to differentiate between the two.
Thus, the difference between the characteristic impedance and the effective
impedance in a tube or vascular tree is a direct and functionally meaningful
measure of the effects of wave reflections.

In general, opposition to flow is defined in terms of the amount of flow
produced by a given amount of driving pressure. More specifically, in steady
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Poiseuille flow the ratio of pressure difference driving the flow to flow rate
is termed the “resistance” to flow, as discussed in Section 2.4. In oscillatory
flow, if the driving pressure and the flow rate are simple harmonic (sine or
cosine) functions, the ratio of the amplitudes of pressure over flow is termed
the “impedance” as discussed in Section 4.9.

The resistance in steady Poiseuille flow in a tube depends on only static
properties of the tube and of the fluid (Eq. 2.4.4). The impedance in oscil-
latory flow through a rigid tube (hence in the absence of wave propagation
and the potential for wave reflections) depends on static properties of the
tube and of the fluid as well as on the frequency of oscillation (Eqs.4.9.8,11).
The impedance in oscillatory flow through an elastic tube, where flow is char-
acterized by wave propagation and the potential exists for wave reflections,
depends on static properties of the tube and of the fluid as well as on the
frequency of oscillation, as in a rigid tube, but now also on the extent of wave
reflection effects if any. Now, wave reflection effects depend on the properties
of a reflection site at the downstream end of a tube or many reflection sites far
downstream in a vascular tree structure, and in both cases the effects depend
critically on the frequency of oscillation or more accurately on the ratios of
wave lengths to tube lengths as we saw in Section 8.7. As mentioned earlier,
in order to distinguish between impedance to flow when these added wave
reflection effects are absent or when they are present, the term “characteris-
tic impedance” is used for the first and “effective impedance” is used for the
second.

From a solution of the wave equations for pressure and flow, an input
oscillatory pressure of the form

pin(t) = p0e
iωt (9.5.1)

in the absence of wave reflections, leads to a pressure wave and a flow wave
within the tube, of the form

P (x, t) = p0e
iω(t−x/c) (9.5.2)

Q(x, t) = q0e
iω(t−x/c) (9.5.3)

q0 = Y0p0 (9.5.4)

Y0 =
πa2

ρc
(9.5.5)

where a is tube radius, ρ is fluid density and c is wave speed which is assumed
constant within the tube. It is seen that

Y0 =
q0

p0
(9.5.6)

=
Q(0, t)
P (0, t)

(9.5.7)

The name “admittance” for Y0 is thus appropriate as it represents a measure of
the amount of oscillatory flow which the tube “admits” for a given oscillatory
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pressure. By the same logic, the reciprocal of Y0, which represents the extent
to which the tube “impedes” the flow, is then given the name “impedance”
and is defined by

Z0 =
1
Y0

(9.5.8)

=
q0

p0
(9.5.9)

=
P (0, t)
Q(0, t)

(9.5.10)

=
ρc

πa2 (9.5.11)

In the way they are defined here, Y0 and Z0 are referred to as “input”
admittance and “input” impedance, respectively, because they are based on
pressure and flow at the input end of the tube. A number of other definitions
are possible.

It is important to note that Y0, Z0 represent the admittance and impedance
in a given tube not only in the absence of wave reflections, but also on the
assumption of constant wave speed within the tube. As we saw in Section 8.6,
in the coronary circulation this constant wave speed is typically not equal to
the Moen-Korteweg wave speed but must be determined from the solution for
pulsatile flow in an elastic tube for each vessel segment. As seen in Fig. 8.6.2,
the wave speed then depends on the frequency parameter ω and therefore
Y0, Z0 will also depend on ω.

In the presence of wave reflections, the pressure and flow waves are no
longer given by Eqs.9.5.2,3 because they then consist of both forward and
backward moving waves as discussed in Section 8.7. As determined for the
pressure in detail in that section, and using similar analysis for the flow wave,
the two waves are now given by

P (x, t) = p0e
iω(t−x/c) + Rp0e

iω(t−(2l−x)/c) (9.5.12)
Q(x, t) = q0e

iω(t−x/c) − Rq0e
iω(t−(2l−x)/c) (9.5.13)

from which it is clear that admittance or impedance are no longer determined
by p0, q0 only. For this reason they are now referred to as the “effective”
admittance and “effective” impedance and denoted by Ye, Ze to distinguish
these from the characteristic admittance and impedance. They are defined to
have the same meaning as before, however, in terms of the pressure and flow
at input to the tube, namely, as in Eq. 9.5.10
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Ye =
Q(0, t)
P (0, t)

(9.5.14)

=
q0 − Rq0e

−iω(2l/c)

p0 + Rp0e−iω(2l/c) (9.5.15)

= Y0

(
1 − Re−iω(2l/c)

1 + Re−iω(2l/c)

)
(9.5.16)

If wave reflections arise at a junction between two tubes denoted by A
and B whose characteristic admittances are Y0A and Y0B , and if there are
no further reflections at the downstream end of the second tube, as shown
schematically in Fig. 9.5.1, then the reflection coefficient RA at the junction
can be expressed in terms of the two characteristic admittances

RA =
Y0A − Y0B

Y0A + Y0B
(9.5.17)

But if there are wave reflections at the downstream end of the second tube
then its admittance is now its effective admittance YeA, and the expression
for the reflection coefficient becomes

RA =
Y0A − YeB

Y0A + YeB
(9.5.18)

Similarly, at a bifurcation, since the combined admittance of the two branches
is simply the sum of the two (hence it is convenient to use admittance

A B

RB = 0RA = 
Y0A - Y0B

Y0A + Y0B

A B

RB = 0RA = 
Y0A - YeB

Y0A + YeB

Fig. 9.5.1. The reflection coefficient RA at the junction between two tubes depends
on the difference between the characteristic admittances Y0A of the first tube and
Y0B of the second if wave reflections are absent (top), or the difference between the
characteristic admittance Y0A of the first tube and the effective admittance YeB of
the second if wave reflections are present (bottom).
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A

C

B

RA = 
Y0A - (YeB + YeC)
Y0A + (YeB + YeC)

RB = 0

RC = 0

A

C

B

RA = 
Y0A - (Y0B + Y0C)
Y0A + (Y0B + Y0C)

RB = 0

RC = 0

Fig. 9.5.2. The reflection coefficient RA at an arterial bifurcation depends on the
difference between the characteristic admittance Y0A of the parent vessel segment
and the sum of the characteristic admittances Y0B , Y0C of the two branch segments
if wave reflections are absent (top), or the difference between the characteristic
admittance Y0A of the parent vessel segment and the sum of the effective admittance
YeB , YeC of the two branch segments if wave reflections are present (bottom).

rather than impedance in the analysis of branching trees), then, as illus-
trated schematically in Fig. 9.5.2, in the absence of wave reflections at the
downstream ends of the two branches we have

RA =
Y0A − (Y0B + Y0C)
Y0A + (Y0B + Y0C)

(9.5.19)

and in the presence of wave reflections

RA =
Y0A − (YeB + YeC)
Y0A + (YeB + YeC)

(9.5.20)

In a tree structure the effective admittance of each vessel segment depends
on wave reflections from all junction sites downstream of that segment. To
calculate these, we may use Eq. 9.5.16 for the effective admittance of the
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parent vessel segment, with the reflection coefficient as given by Eq. 9.5.20,
that is,

YeA = Y0A

{
1 − RAe−iω(2lA/cA)

1 + RAe−iω(2lA/cA)

}
(9.5.21)

It is then convenient to eliminate the reflection coefficient RA from this ex-
pression by using Eq. 9.5.20 to substitute for RA, which requires some algebra,
to get

YeA = Y0A

(
(YeB + YeC) + iY0A tan θ

Y0A + i(YeB + YeC) tan θ

)
(9.5.22)

θ =
ωlA
cA

(9.5.23)

In this form we see that the effective admittance of the parent vessel segment
in a bifurcation is determined by its characteristic admittance and the effec-
tive admittance of the two branches. If there are no wave reflections at the
downstream ends of the two branches, then their effective admittances are the
same as their characteristic admittances.
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Fig. 9.5.3. Absolute values of the effective (bold) and characteristic (thin) admit-
tances at different levels of the 11-level tree model, with parameter values as shown
in the figure. The difference between the two distributions is due entirely to wave
reflections.

An important measure of the effects of wave reflections in a vascular tree
structure is therefore the difference between the characteristic and the ef-
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fective admittances of all vessel segments within the tree. The characteristic
impedances can be calculated from the prescribed properties of these seg-
ments, using Eq. 9.5.5. The calculation of effective impedances, since it in-
volves the effects of wave reflections from all junctions up to and including
the upstream ends of the peripheral terminal segments, must therefore begin
at this end of the tree. From known or prescribed reflection coefficients at
these ends, the effective admittances of the terminal vessel segments are de-
termined, using Eqs.9.5.22,23. If there are no wave reflections at these ends,
then the reflection coefficients are zero and the effective admittances of the
terminal branches are the same as their characteristic admittances. In either
case, the calculation can then progress to the next level of the tree in which
each vessel segment is a parent segment in a bifurcation in which the two
branches are two of the peripheral segments, thus the effective admittance of
the parent segment is determined using Eq. 9.5.21. This process then contin-
ues to the next upstream level of the tree, and so on, until the root segment
is reached. The results of such calculations are illustrated for the 11-level tree
model in Fig. 9.5.3.
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Fig. 9.5.4. Absolute values of the effective (bold) and characteristic (thin) admit-
tances at different levels of the 11-level tree model, as in Fig. 9.5.3 but here with a
frequency of 5 Hz.
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Fig. 9.5.5. Absolute values of the effective (bold) and characteristic (thin) admit-
tances at different levels of the 11-level tree model, as in Fig. 9.5.3 but here with a
frequency of 10 Hz.
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Fig. 9.5.6. Absolute values of the effective (bold) and characteristic (thin) admit-
tances at different levels of the 11-level tree model at a frequency of 1 Hz, as in
Fig. 9.5.3, but here using a value of the wave speed c obtained from a solution of the
pulsatile flow in an elastic tube for each vessel segment.
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Fig. 9.5.7. Absolute values of the effective (bold) and characteristic (thin) admit-
tances at different levels of the 11-level tree model at a frequency of 5 Hz, as in
Fig. 9.5.4, but here using a value of the wave speed c obtained from a solution of the
pulsatile flow in an elastic tube for each vessel segment.

The difference between the distribution of characteristic admittances and
that of effective admittances, which is due entirely to the effects of wave
reflections, is seen to be fairly large. Furthermore, because these effects are
cumulative, they reach their highest value at the root of the tree as observed
in the figure.

The most important aspect of the results in Fig. 9.5.3 is that the effects of
wave reflections in this tree model are seen to produce higher admittance, and
hence lower impedance, within the tree. This is particularly significant because
the physical dimensions of the model are of the same order of magnitude
as those in the coronary circulation, with wave-length-to-tube-length ratios
well above 100 everywhere along the tree as illustrated in Fig. 9.4.3. This
means that the direct effects of wave propagation, due to the difference between
pulsatile flow in an elastic tube and that in a rigid tube, are negligibly small
as shown in Figs. 8.6.4, 5, but the indirect effects, due to wave reflections, are
very large and far from being negligible.

Indeed, while the direct effects of wave propagation diminish at higher
values of λ as observed in Figs. 8.6.4, 5, the reverse is true for the indirect
effects, namely the effects of wave reflections. This is because the relation
between the wave length λ and the frequency f (in cycles per second) is

λ =
c

f
(9.5.24)
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where c is the wave speed. Thus, all else being unchanged, higher frequencies
are associated with lower wave lengths and hence lower values of wave-length-
to-tube-length ratios λ. In Section 8.6 we saw that this produces more sig-
nificant direct effects of wave propagation, in terms of direct changes in the
flow field, than those in a rigid tube. By contrast, the indirect effects of wave
propagation due to wave reflections, are less significant at higher frequencies
as shown in Figs. 9.5.4, 5 where the calculations for the 11-level tree model
are repeated at frequencies of 5 and 10 Hz. Compared with the results at 1
Hz in Fig. 9.5.3, it is seen that the difference between effective and character-
istic admittances is much higher at 1 Hz. This is particularly significant in
the physiological system because the fundamental frequency of the compos-
ite pressure wave (in humans), which represents the frequency of the largest
harmonic component of the composite wave, is very close to 1 Hz. The higher
frequencies are associated with the much smaller harmonics of the composite
wave.

The situation is somewhat more complicated, however, because the wave
speed c in Eq. 9.5.23 is also a function of frequency. In Figs.9.5.3-5 this was
simplified by taking c = c0 where c0 is the constant Moen-Korteweg wave
speed. In order to account for this effect, the calculations of characteristic
admittances in these figures must be repeated by using a value of c obtained
from the solution for pulsatile flow in an elastic tube for each vessel segment.
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Fig. 9.5.8. Absolute values of the effective (bold) and characteristic (thin) admit-
tances at different levels of the 11-level tree model at a frequency of 10 Hz, as in
Fig. 9.5.5, but here using a value of the wave speed c obtained from a solution of the
pulsatile flow in an elastic tube for each vessel segment.
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Fig. 9.5.9. Absolute values of the effective (bold) and characteristic (thin) admit-
tances (which in this case coincide) at different levels of the 11-level tree model at a
frequency of 1 Hz and c = c0, as in Fig. 9.5.3, but here using a square law (γ = 2) for
the hierarchy of radii at different levels of the tree. The law produces what is gener-
ally referred to as “impedance matching” at arterial bifurcations because it implies
that the impedance of the parent vessel is equal to the combined impedance of the
two branches. Under these conditions the effective admittances are everywhere the
same as the corresponding characteristic admittances, which means that the effects
of wave reflections are entirely eliminated. It is important to note that impedance
matching requires not only γ = 2 but also c = c0.

The results are shown in Figs.9.5.6-8. This “refinement” produces essentially
the same results, though with even higher effects of wave reflections.

Finally, the results in Figs.9.5.3-8 are all based on a tree model in which
the hierarchy of vessel radii follows the cube law discussed in Section 8.4,
namely γ = 3.0. An interesting case to consider is a model in which γ = 2.0
and c = c0. The results are shown in Fig. 9.5.9, where the effects of wave
reflections are seen to be totally absent and the distributions of characterisic
and of effective admittances are identical. The result shown is for a frequency
f = 1 Hz, but the same results are obtained for other frequencies.

The reason for these rather singular results is that when the power law
index γ = 2.0, the sum of cross-sectional areas of the two branches at a
bifurcation is equal to the cross-sectional area of the parent vessel, that is
(Eq. 8.4.25)

a2
A = a2

B + a2
C (9.5.25)
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Fig. 9.5.10. Absolute values of the effective (bold) and characteristic (thin) admit-
tances at different levels of the 11-level tree model, as in Fig. 9.5.9, but here using a
value of the wave speed c obtained from a solution of the pulsatile flow in an elastic
tube for each vessel segment, instead of c = c0 on which the results in Fig. 9.5.9
are based. The results show that impedance matching does not occur in this case
because it requires γ = 2 and c = c0.

Now, using Eq. 9.5.5, the characteristic admittances of the three vessels are
given by

Y0A =
πa2

A

ρcA
(9.5.26)

Y0B =
πa2

B

ρcB
(9.5.27)

Y0C =
πa2

C

ρcC
(9.5.28)

and the corresponding characteristic impedances are given by

Z0A =
ρcA

πa2
A

(9.5.29)

Z0B =
ρcB

πa2
B

(9.5.30)

Z0C =
ρcC

πa2
C

(9.5.31)
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If c = c0, which is assumed to be the case in Fig. 9.5.9, it is clear that in view
of Eq. 9.5.25 the three admittances and three impedances are related by

Y0A = Y0B + Y0C (9.5.32)

and

1
Z0A

=
1

Z0B
+

1
Z0C

(9.5.33)

which constitute what is generally referred to as “impedance matching” at
the bifurcation, meaning that the propagating wave does not encounter any
change of impedance (or admittance) as it crosses the bifurcation and hence
there are no wave reflections at the junction. Since this is true at all bi-
furcations of the 11-level tree model, with γ = 2, it follows that no wave
reflections arise throughout the tree and hence the effective admittances are
everywhere the same as the corresponding characteristic admittances as ob-
served in Fig. 9.5.9.

It has been suggested that “square law” conditions (γ = 2.0) prevail in the
first branching levels of the aorta [230, 201], and that this is a deliberate design
feature of the cardiovascular system which has the advantage of avoiding wave
reflection effects at these levels of the vascular tree. This may indeed be the
case in the larger vessels of the cardiovascular system where values of the
frequency parameter Ω are sufficiently high that the wave speed is close to
the constant Moen-Korteweg wave speed (Fig. 8.6.2) which the conditions for
impedance matching require. However, in the coronary circulation where the
values of Ω are typically much lower (Fig. 9.3.2) these conditions are not met,
and as we saw in Section 9.4, the wave speed in fact is significantly different
from c0 (Fig. 9.4.1). Thus, strictly, for application to the coronary circulation
the calculations on which the results of impedance matching in Fig. 9.5.9 are
based must be repeated using the actual value of c obtained from a solution for
pulsatile flow in an elastic tube for each vessel segment. The results are shown
in Fig. 9.5.10 where it is seen clearly that impedance matching does not occur
at the junctions, and effective admittances are significantly different from the
corresponding characteristic admittances in most of the tree structure.

9.6 Pulsatile Flow in Elastic Branching Tubes

A principal tool in the analysis of pulsatile flow in branching elastic tubes is
the “pressure distribution” along a tube segment within the branching tree
structure, which we defined earlier as the amplitude of time oscillations in
pressure at different points along that segment. In the absence of wave reflec-
tions the pressure distribution is uniform at a normalized value of 1.0 along
the entire length of the tube segment (Fig. 8.7.2), but in the presence of wave
reflections this is no longer the case, as illustrated in Figs.8.7.5-9. Thus, in
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a tube segment within a tree structure, any departure of the pressure distri-
bution from the “benchmark” of a uniform normalized value of 1.0 provides
a direct and useful measure of the effects of wave reflections in that struc-
ture. It is also a highly meaningful measure because the pressure distribution
produced by wave reflections in a vessel segment within a vascular tree is
superimposed on a pre-existing pressure distribution associated with steady
flow within that vessel segment, and the net result is a modified distribution
of pressure gradients driving the flow. For the same reasons, the pressure dis-
tribution along a vascular tree as a whole has the same utility and functional
significance. The focus in this section, therefore, is on determining the pressure
distribution within a vascular tree structure under different conditions.

We recall from Section 8.7 that an oscillatory input pressure applied at
entry to an elastic tube produces a travelling wave within the tube. If this
scenario occurs in a tube segment within a vascular tree structure, the trav-
elling wave will progress to the next tube segment within the hierarchy of
the tree structure, with the junction point between the two segments usually
acting as a wave reflection site because of any difference in the admittance
properties of the two tubes. Typically, only part of the wave will be reflected.
The remaining part, usually referred to as the “transmitted” part of the wave,
will continue on to the next junction point, and so on. The net result is that
the pressure distribution within the tree structure will be modified because of
the many reflected waves within the system.

In order to determine the pressure distribution in a branching tree struc-
ture, it is necessary to keep track of the “net” pressure wave as it progresses
from the root segment of the tree to the periphery, the net pressure wave in
each tube segment being the sum of the transmitted wave and any reflected
waves. In each tube segment along the way, we use essentially the same anal-
ysis as that in Section 8.7 for wave reflections in a single tube, but now the
tube position within the tree structure must be identified so that the pressure
and flow within it can be mapped along with the pressure and flow within the
tree as a whole. For this purpose we use the j, k notation introduced in Section
9.2, whereby j denotes the level of the tree in which a given tube segment is
located and k denotes the sequential position of that segment within other
segments at that level, as illustrated in Figs. 9.2.3, 4.

Using that notation, the results of Section 8.7 for wave reflections in a
single tube can now be placed in the context of a tree structure. In particular,
the net pressure wave within a general tube segment at position j, k in a tree
structure, using Eqs.8.7.3,19, is now given by

Pj,k(xj,k, t) = p0,j,k

(
eiω(t−xj,k/cj,k) + Rj,keiω(t−(2lj,k−xj,k)/cj,k)

)
(9.6.1)

where lj,k is the length of the tube segment and xj,k is a position coordinate
within that length such that the tube segment extends from xj,k = 0 to
xj,k = lj,k, Rj,k is the reflection coefficient at the downstream end of the
vessel segment, cj,k is the wave speed and p0,j,k is the amplitude of the input
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oscillatory pressure at entry to that segment, namely

pin,j,k(t) = p0,j,keiωt (9.6.2)

As was done in Section 8.7, the net pressure wave in Eq. 9.6.1 can now be
broken into its oscillatory components in time and space such that

Pj,k(xj,k, t) = pj,k(x) × eiωt (9.6.3)

where

pj,k(x) = p0,j,k

(
e−iωxj,k/cj,k + Rj,ke−iω(2lj,k−xj,k)/cj,k

)
(9.6.4)

The absolute value of this complex function of x, namely |pj,k(x)|, is what
we refer to as the “pressure distribution” in a tube segment within a tree
structure, and the map of all such distributions together make up the pressure
distribution in the tree as a whole. It is a key property of the propagating
pressure wave within each tube segment. It represents the net pressure at a
fixed point in time at each point along the segment, including forward and
backward moving waves. Also, in view of Eq. 9.6.3, it represents the amplitude
of time oscillations in pressure at a fixed position within the tube segment.

In the context of a tree structure, it is seen from Eq. 9.6.4 that the pressure
distribution in a vessel segment at position j, k within the tree depends on the
wave speed cj,k within that segment, on the reflection coefficient Rj,k at the
downstream end of the segment, and on the input pressure amplitude p0,j,k

at entry to the tube segment. The way in which each of these is determined
is outlined below.

Depending on the desired accuracy, the wave speed in a vessel segment
within a tree structure may be taken as the constant Moen-Korteweg wave
speed c0 as defined by Eq. 8.6.1 and which depends on properties of that
segment only, or it may be taken as the wave speed c as defined by Eq. 8.6.2
based on a solution of pulsatile flow in an elastic tube which depends on
properties of the tube as well as on the frequency parameter Ω. For comparison
purposes, results based on these two alternatives to be presented below shall
be identified by c = c0 and c = c respectively.

The reflection coefficient at the downstream end of a tube segment in
a tree structure is determined by the characteristic admittance of that seg-
ment and by the effective admittances of the two branch segments forming
the bifurcation at that end, as discussed in Section 9.5. If the position of
the vessel segment under consideration is j, k, then the positions of the two
branch segments at its downstream end (xj,k = lj,k) are j + 1, 2k − 1 and
j +1, 2k, as illustrated in Figs. 9.2.3, 4. Using the results of Section 9.5, there-
fore, Eq. 9.5.20 expressed in the notation of the present section gives for the
reflection coefficient

Rj,k =
Y0,j,k − (Ye,j+1,2k−1 + Ye,j+1,2k)
Y0,j,k + (Ye,j+1,2k−1 + Ye,j+1,2k)

(9.6.5)
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The characteristic admittance Y0 is defined by Eq. 9.5.5 and is determined by
the radius of the tube segment and by the wave speed which again may be
taken as c or c0 as discussed above, depending on the desired accuracy. The
effective admittance Ye, using Eq. 9.5.22 in present notation, is given by

Ye,j,k = Y0,j,k ×
(

(Ye,j+1,2k−1 + Ye,j+1,2k) + iY0,j,k tan θj,k

Y0,j,k + i(Ye,j+1,2k−1 + Ye,j+1,2k) tan θj,k

)

θj,k =
ωlj,k
cj,k

(9.6.6)

Finally, the input pressure amplitude p0,j,k at entry to the tube segment
at position j, k is obtained by equating the local pressure in all three vessel
segments that meet at that point (xj,k = 0), recalling that in a branching tree
structure based on repeated bifurcations, three vessel segments meet at entry
to and at exit from each interior tube segment, as illustrated in Figs. 9.2.3, 4.
For junctions beyond the root level of the tree, that is for j > 0, this gives

p0,j,k(x) = p0,j−1,n

(
(1 + Rj−1,n)e−iωlj−1,n/cj−1,n

1 + Rj,ke−i2ωlj,k/cj,k

)
, j > 0 (9.6.7)

where

n =
k

2
if k is even (9.6.8)

=
k + 1

2
if k is odd (9.6.9)

For the root segment of the tree where j = 0 the input pressure amplitude
p0,0,1 is clearly equal to the amplitude of input pressure to the tree as a whole.
That is, if the latter is given by

p(t) = p0e
iωt (9.6.10)

then

p0,0,1 = p0 (9.6.11)

Note, however, that the oscillatory pressure that actually prevails at the root
of the tree is given by

P0,1(0, t) = p0,0,1
{
1 + R0,1e

−i2θ0,1
}

eiωt (9.6.12)

=
{
1 + R0,1e

−i2θ0,1
}

p0e
iωt (9.6.13)

�= p(t) unless R0,1 = 0 (9.6.14)

and
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|P0,1(0, t)| �= |p0(t)| (9.6.15)
�= p0 unless R0,1 = 0 (9.6.16)

In other words, the oscillatory pressure that actually prevails at entry to the
tree is in general not equal to the input oscillatory pressure, and the amplitude
of the oscillatory pressure at entry to the tree is in general not equal to the
amplitude of the input pressure. The difference in each case is due to wave
reflections from downstream junctions.

To illustrate these results, examples of pressure distributions are presented
below for the 5-level and the 11-level tree models used earlier. In each case
the two bounding paths are identified as path-1 and path-2, where the first
path follows the branch with the larger diameter at each bifurcation while the
second path follows the branch with the smaller diameter at each bifurcation,
as illustrated in Fig. 9.6.1.

path-1 path-2

path-1 path-2

Fig. 9.6.1. The 5-level and the 11-level tree models along which the pressure distri-
butions are calculated to illstrate the effects of wave reflections. The bounding paths
identified as path-1 and path-2 are of particular interest because they represent the
paths along which the diameter of vessel segments diminish most slowly (path-1) or
most rapidly (path-2).

Pressure distributions along the 5-level tree are shown in Figs.9.6.2-4 at
high, moderate, and low frequencies, respectively. We recall that the pressure
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Fig. 9.6.2. Pressure distribution along different paths within the 5-level tree model,
at a frequency of 10 Hz. In the absence of wave reflections the pressure distribution
would be uniform at a normalized constant value of 1.0, thus the observed deviations
from this benchmark are due entirely to the effects of wave reflections. Pressure
distributions along the two bounding paths defined in Fig. 9.6.1 are shown in bold.
They are seen to be “bounding” here too, in the sense that they represent bounding
values for the pressure distribution in the tree as a whole.

shown is normalized such that in the absence of wave reflections the pressure
distribution would be uniform at a normalized value of 1.0 (Eq. 8.7.14). The
figures show that in the presence of wave reflections the pressure distributions
lie below this value at all three frequencies. At the highest frequency, which
corresponds to the lowest wave length, the pressure decreases from the root
segment of the tree to the periphery, while at the lowest frequency the pressure
is uniformly below the normalized benchmark value. This is consistent with
effects of wave reflection at high and low wave-length-to-tube-length ratio
discussed in Section 8.7.

Corresponding results for the 11-level tree model are shown in Figs.9.6.5-
7. The results indicate that the effects of wave reflection are even more pro-
nounced here than in the 5-level tree model, as indicated by larger deviations
of the pressure distribution from the benchmark of uniform distribution at a
normalized value of 1.0. This indicates clearly that the effects of wave reflec-
tions in a vascular tree structure are cumulative, thus producing larger overall
effects in the 11-level tree where there are a larger number of wave reflection
sites.

The dimensions of the 11-level tree model on which the results in Figs.9.6.2-
4 are based have been chosen to be of the same order of magnitude as those
of the human coronary arterial tree, with the root segment of the tree having
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a diameter of 4.0 mm and the diameters of its subsequent branches diminish-
ing hierarchically according to the cube law thereafter. Results in Section 9.4
showed that these dimensions produce fairly high wave-length-to-tube-length
ratios, in excess of 200 throughout the 11-level tree. It has been thought in the
past that because such high ratios lead to what seem to be “inconspicuous”
effects in a single tube (Fig. 8.7.9 compared with Fig. 8.7.4), the same would
likely be true in the coronary circulation. The results in Figs.9.6.5-7 indicate
clearly that this is not the case. The reasons for this are twofold. First, while
the effects of wave reflections in a single tube at high wave-length-to-tube-
length ratio are inconspicuous, they are not insignificant. As seen clearly in
Fig. 8.7.9, while the pressure distribution within the tube remains uniform
under these circumstances, it is so at a much higher level than the bench-
mark level of 1.0 when wave reflections are absent. Second, in a branching
tree consisting of many tube segments these effects are cumulative because of
the large number of reflection sites.

To pursue these issues further, the dimensions of the 11-level tree can now
be changed to the effect that they become of the order of magnitude of the
human systemic arterial tree rather than the coronary arterial tree. To do so
we give the root segment of the tree a diameter of 25 mm, being represen-
tative of the human aorta, and let subsequent branches assume diminishing
diameters in accordance with the cube law as before. The results are shown
in Figs.9.6.7-9. The effects of wave reflections on the pressure distribution are
indeed more conspicuous here and have the characteristic highs and lows as-
sociated with low wave-length-to-tube-length ratios (as in Figs. 8.7.5, 6). The
difference between these results and those based on the smaller coronary scale
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Fig. 9.6.3. Pressure distribution along different paths within the 5-level tree model,
as in Fig. 9.6.2, but here at a frequency of 5 Hz.
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Fig. 9.6.4. Pressure distribution along different paths within the 5-level tree model,
as in Fig. 9.6.2, but here at a frequency of 1 Hz.

(Figs. 9.6.5–7) is a difference in the pattern of pressure distributions which
they produce rather than a difference of significance. While under the smaller
scale of the coronary vasculature the pressure distributions have a monotoni-
cally decreasing pattern at all three frequencies, under the larger scale of the
systemic vasculature there are regions of increasing pressure at the higher fre-
quencies and at levels of the tree closer to the root segment. It is under these
conditions that the well known “peaking” phenomenon occurs in the systemic
circulation, but not in the coronary circulation where these conditions are
absent.

All the results above are based on the wave speed approximation c = c0
as indicated in the figures, where c0 is the constant Moen-Korteweg wave
speed. Results based on the more accurate c = c model, where c is the wave
speed obtained from a solution of pulsatile flow in an elastic tube, are shown
in Figs.9.6.11-13. Comparison of these with results in Figs.9.6.5-7 based on
c = c0 indicates that the difference between the two is not highly significant.

A more significant difference arises if the hierarchy of branch diameters
within the tree structure is changed from one based on the cube law (γ = 3)
to one based on the square law (γ = 2). Under the square law the sum of the
cross-sectional areas of the two branch segments is equal to the cross-sectional
area of the parent segment at all bifurcations within the tree structure. If
this is combined with the c = c0 wave speed assumption, then there is no
change of admittance as the flow crosses each bifurcation within the entire
tree structure, which means that the bifurcations are no longer reflection sites
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Fig. 9.6.5. Pressure distributions along different paths within the 11-level tree
model at a frequency of 10 Hz. Comparison with the corresponding results for the
5-level tree model shown in Fig. 9.6.2 indicates clearly that the effects of wave reflec-
tions are larger here, as marked by larger departures from the benchmark of uniform
distribution at a normalized value of 1.0 which occurs when wave reflections are ab-
sent.
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Fig. 9.6.6. Pressure distributions along different paths within the 11-level tree
model as in Fig. 9.6.5 but here at a frequency of 5 Hz.
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Fig. 9.6.7. Pressure distributions along different paths within the 11-level tree
model as in Fig. 9.6.5 but here at a frequency of 1 Hz.
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Fig. 9.6.8. Pressure distributions along different paths within the 11-level tree
model at a frequency of 10 Hz as in Fig. 9.6.5 but here the root segment of the
tree has a diameter of 25 mm compared with 4 mm in that figure. Thus the scale
of the tree model in this case is representative of the scale of the human systemic
arterial tree while that in Fig. 9.6.5 is representative of the coronary arterial tree.
Wave-length-to-tube-length ratios are much lower in this case, thus the characteristic
highs and lows in the pressure distributions.
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Fig. 9.6.9. Pressure distributions along different paths within the 11-level tree
model as in Fig. 9.6.8, but here at a frequency of 5 Hz which means higher wave
lengths and thus higher wave-length-to-tube-length ratios than in that figure.
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Fig. 9.6.10. Pressure distributions along different paths within the 11-level tree
model as in Fig. 9.6.8, but here at a frequency of 1 Hz, which means considerably
higher wave lengths and thus considerably higher wave-length-to-tube-length ratios
than in that figure.



340 9 Basic Unlumped Models

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

level

no
rm

al
iz

ed
 p

re
ss

ur
e

f = 10 Hz

c=c

γ = 3

α = 0.7

path−2

path−1

Fig. 9.6.11. Pressure distributions along different paths within the 11-level tree
model at a frequency of 10 Hz as in Fig. 9.6.5, but here the results are based on the
wave speed c obtained from a solution of pulsatile flow in an elastic tube rather than
on the constant Moen-Korteweg wave speed c0 on which the results in that figure
are based. The difference between the two is quantitative rather than qualitative.
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Fig. 9.6.12. Pressure distributions along different paths within the 11-level tree
model at a frequency of 5 Hz as in Fig. 9.6.6, but here the results are based on the
wave speed c obtained from a solution of pulsatile flow in an elastic tube rather than
on the constant Moen-Korteweg wave speed c0 on which the results in that figure
are based.
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Fig. 9.6.13. Pressure distributions along different paths within the 11-level tree
model at a frequency of 1 Hz as in Fig. 9.6.7, but here the results are based on the
wave speed c obtained from a solution of pulsatile flow in an elastic tube rather than
on the constant Moen-Korteweg wave speed c0 on which the results in that figure
are based.
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Fig. 9.6.14. Pressure distributions along all paths within the 11-level tree model
at frequencies of 10 Hz, 5 Hz, and 1 Hz, as in Figs.9.6.5-7, but here the results are
based on a square power law index (γ = 2) compared with the cube law (γ = 3)
in those figures. The square law produces a unique set of circumstances known as
“impedance matching” whereby there is no change of admittance across bifurcations,
and hence no wave reflections arise. Pressure distributions along any path within
the tree, therefore, are identical with the benchmark of uniform distribution at a
normalized value of 1.0.
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Fig. 9.6.15. Pressure distributions along different paths within the 11-level tree
model at a frequency of 10 Hz and based on a square power law index (γ = 2) as in
Fig. 9.6.14, but here the results are based on the calculated wave speed c = c rather
than on c = c0 in that figure. Wave reflection effects are clearly evident here, thus
the unique conditions of “impedance matching” observed in Fig. 9.6.14 require both
γ = 2 and c = c0.
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Fig. 9.6.16. Pressure distributions along different paths within the 11-level tree
model based on γ = 2 and c = c as in Fig. 9.6.15, but here at a frequency of 5 Hz
where wave reflection effects are still evident.
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Fig. 9.6.17. Pressure distributions along different paths within the 11-level tree
model based on γ = 2 and c = c as in Fig. 9.6.15, but here at the much lower
frequency of 1 Hz where significant wave reflection effects are still evident. In the
absence of such effects the pressure distributions would be uniform at a normalized
value of 1.0, as in Fig. 9.6.14.

and wave reflections do not arise, a condition known as “impedance matching”.
Results based on these circumstances are shown in Fig. 9.6.14 where it is seen
that the pressure distribution under these circumstances is identical with the
benchmark distribution at all three frequencies.

It is important to note, however, that this only occurs under the c = c0
wave speed assumption. Under the more accurate c = c model the special
condition of impedance matching at arterial bifurcations is broken and wave
reflections arise and lead to significant effects as shown in Figs.9.6.15-17.

9.7 Cardiac Pressure Wave
in Elastic Branching Tubes

What is of ultimate interest in an unlumped model of the coronary circulation
is to determine the way in which a composite pressure wave is modified by wave
reflections as it travels down a branching tree structure consisting of elastic
tube segments. For this purpose we use the cardiac pressure wave considered
in previous chapters which represents the oscillatory pressure measured in the
ascending aorta and is produced by the pumping action of the left ventricle.
Because the main left and the main right coronary arteries have their origin at
the ascending aorta (or more accurately in the sinus of valsalva), as discussed
in Section 1.3, the cardiac pressure wave, sometimes referred to as “aortic
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pressure”, may be considered reasonably accurately as the oscillatory input
pressure for the coronary circulation. In other words, the cardiac pressure
wave may be taken as the “input pressure” pin(t) at the root segments of the
two main coronary arterial trees, with the role and significance of pin(t) as
described in Section 8.7 and used in the previous two sections. However, in
those sections pin(t) was taken as a single harmonic function, meaning that
it has the form of a simple sine or cosine function. In the present section
we consider pin(t) to be a composite wave that has the form of the cardiac
pressure wave shown in Fig. 9.7.1.
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Fig. 9.7.1. The composite pressure wave considered as the input pressure driving
coronary blood flow. Of ultimate interest is to determine the way in which the form
of the wave is modified as it travels down the coronary vasculature. To do so requires
that the wave be decomposed into its harmonic components and then recomposed
in terms of its modified components.

As discussed in Section 8.7, when the oscillatory input pressure pin(t)
at entry to an elastic tube is a single harmonic, the pressure wave which it
produces within the tube is also a single harmonic function of time but with
amplitude which depends on position x within the tube. The way in which
the amplitude varies with x is what we have called the “pressure distribution”
along the tube. When the oscillatory input pressure pin(t) is a composite wave,
these concepts cannot be applied to the composite wave as a whole because the
notion of an amplitude does not apply to a composite wave. But the concepts
of amplitude and pressure distribution do apply to the individual harmonics
of the composite wave.
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Thus, if the cardiac wave in Fig. 9.7.1 is decomposed into its individual har-
monics as discussed in Chapter 5, the pressure distribution associated with
each harmonic can be obtained as in the previous section. This pressure dis-
tribution represents the amplitude of the propagating wave associated with
that particular harmonic at differrent positions x along each tube segment
and along the tree as a whole. At a particular position x, therefore, the col-
lective amplitudes associated with all the harmonics of the composite cardiac
wave represent the amplitudes of the individual harmonics of the modified
form of the composite wave at that position. The modified form of the wave is
thus determined from the collective amplitudes at that position by simply re-
composing the harmonics associated with these amplitudes, using the Fourier
analysis techniques discussed in Chapter 5.

In fact, since the pressure distributions obtained in the previous section
were all normalized so that the input pressure at entry has an amplitude of
1.0, then the same analysis and results can be applied to all the harmonics
of the composite cardiac pressure wave if each harmonic is first normalized so
that the input pressure at entry associated with it has a normalized value of
1.0, and then “denormalized” when the modified harmonics are put together
to recompose the modified composite wave.

The end results of this exercise provide a picture of the evolution of the
composite pressure wave as it travels along different paths within the tree
structure. These results are strongly linked to results obtained in the previous
section because the evolution of the composite wave along a given path indeed
consists of the aggregate pressure distributions associated with its individual
harmonics along that path. In a graphical presentation of the results, however,
only one path can be considered at a time because the full form of the wave
must be presented at different points along the path. For this reason we shall
focus on the evolution of the wave along the two bounding paths defined in
Fig. 9.6.1. Since the pressure distributions along these two paths represent the
bounds on the pressure distribution within the tree as a whole, the evolution
of the composite pressure wave along these two paths will represent similar
bounds on the evolution of the composite pressure wave along the tree as a
whole.

Computed evolutions of the composite pressure wave along the two bound-
ing paths of the 5-level tree model at three different frequencies are shown in
Figs.9.7.2-7. At each frequency, the evolution of the composite wave along a
given path can be interpreted in terms of the corresponding pressure distri-
bution along that path obtained in the previous section. Thus, the pressure
distribution along path-1 of the 5-level tree model in Fig. 9.6.2 of the previous
section indicates that at a frequency of 10 Hz the amplitude of a harmonic
wave starting with a normalized amplitude of 1.0 is modified by wave reflec-
tions so that its values at different points along the path are as indicated by
that curve. Since the values of the modified amplitude are everywhere below
the initial value of 1.0 and continue to decrease along the path, it follows
that the same will be true of the individual harmonics of a composite wave
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travelling down the same path. Thus, because the amplitudes of its harmonic
components are diminishing as it travels, the composite wave will be “flat-
tened”, or “blunted”, as it progresses along the path, as is indeed observed in
Figs. 9.7.2, 3 where the frequency is 10 Hz as it is in Fig. 9.6.2.
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Fig. 9.7.2. Evolution of the composite cardiac pressure wave as it travels down path-
1 of the 5-level tree model. The top bold curve represents the input pressure wave at
entry while the thin curve next to it in sequence represents the form of the pressure
wave that actually prevails at entry, which illustrates graphically that the two are
different because of wave reflections returning from downstream as discussed in
Section 9.6 (Eqs.9.6.13,14). Thin curves further down in sequence represent modified
forms of the wave at higher levels of the tree. There is thus a general “flattening”, or
“blunting”, of the wave as it progresses, consistent with the corresponding pressure
distribution along the same path shown in Fig. 9.6.2.

At the lower frequencies of 5 Hz and 1 Hz, the evolutions of the com-
posite pressure wave are shown in Figs. 9.7.4–7 and they can be interpreted
in the same way in relation to the corresponding pressure distributions in
Figs.9.6.3,4. In particular, at the lowest frequency of 1 Hz, the pressure distri-
bution in Fig. 9.6.4 shows not a gradual but a uniform drop in the amplitude
of harmonic components, therefore leading to the abrupt change in the form
of the composite wave observed in Figs. 9.7.6, 7.

Evolutions of the composite cardiac pressure wave along the 11-level tree
model are shown in Figs.9.7.8-13, to be interpreted in terms of the correspond-
ing pressure distributions in Figs.9.6.5-7. In particular, results in Figs. 9.7.8, 9
indicate that at the highest frequency of 10 Hz some “peaking” of the wave-
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Fig. 9.7.3. Evolution of the composite cardiac pressure wave as in Fig. 9.7.2 but
here as it travels down path-2 of the 5-level tree model.
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Fig. 9.7.4. Evolution of the composite cardiac pressure wave as it travels along the
5-level tree model as in Figs. 9.7.2, 3 but here at a frequency of 5 Hz, consistent with
the corresponding pressure distribution along the same path shown in Fig. 9.6.3.
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Fig. 9.7.5. Evolution of the composite cardiac pressure wave as it travels along the
5-level tree model as in Figs. 9.7.2, 3 but here at a frequency of 5 Hz, consistent with
the corresponding pressure distribution along the same path shown in Fig. 9.6.3.
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Fig. 9.7.6. Evolution of the composite cardiac pressure wave as it travels along the
5-level tree model as in Figs. 9.7.2, 3 but here at a frequency of 1 Hz, consistent with
the corresponding pressure distribution along the same path shown in Fig. 9.6.4.
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Fig. 9.7.7. Evolution of the composite cardiac pressure wave as it travels along the
5-level tree model as in Figs. 9.7.2, 3 but here at a frequency of 1 Hz, consistent with
the corresponding pressure distribution along the same path shown in Fig. 9.6.4.

form occurs initially. This is consistent with the pressure distributions in
Fig. 9.6.5 where it is seen that at the root segment of the tree the normal-
ized pressure amplitude is higher than the benchmark of 1.0. Peaking of the
pressure waveform due to wave reflections is known to occur in the systemic
circulation as the cardiac pressure wave travels down the abdominal aorta.
Results obtained in this section so far indicate that in the coronary circu-
lation, because of the much higher wave-length-to-tube-length ratios, wave
reflections lead mostly to a flattening of the pressure waveform, which is the
reverse of peaking. But the results in Figs.9.7.8,9 demonstrate that peaking
may occur in the coronary circulation too, though only locally and under lim-
ited circumstances. Indeed, the phenomenon is no longer present at higher
levels of the tree at 10 Hz, and not present at all at the lower frequencies of
5 Hz and 1 Hz as seen in Figs.9.7.10-13.

To pursue the peaking phenomenon a little further, and to compare the
evolution of the pressure waveform on the scale of the coronary circulation
with that on the scale of the systemic circulation, the dimensions of the 11-
level tree model are increased accordingly as before, with the root segment of
the tree being given a diameter of 25 mm. Results are shown in Figs.9.7.14-16.
Compared with the corresponding results on the scale of the coronary circu-
lation (Figs. 9.7.8, 10, 12), the peaking phenomenon is clearly more prominent
here than it is on the scale of the coronary circulation. Also, here the evolu-
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Fig. 9.7.8. Evolution of the composite cardiac pressure wave as it travels down
path-1 of the 11-level tree model at a frequency of 10 Hz. The bold curve at the
top represents the initial form of the wave as applied at entry while the thin curve
above it represents the form of the wave that actually prevails at entry, the two being
different because of wave reflections returning from downstream. This demonstrates
graphically that some local “peaking” occurs initially before the waveform begins to
flatten as it progresses further along the hierarchy of the tree and as indicated by
subsequent curves in the sequence. Both the local peaking and subsequent flattening
is consistent with the corresponding pressure distributions shown in Fig. 9.6.5.

tion of the wave is more gradual at all three frequencies, consistent with the
corresponding pressure distributions in Figs. 9.6.8–10.

Effects of using the wave speed c obtained from a solution of pulsatile
flow in an elastic tube instead of the constant Moen-Korteweg wave speed on
which all the above results are based, are shown in Figs.9.7.17-19. Comparing
these with the results in Figs. 9.7.8, 10, 12 which are based on c = c0 indicates
that the difference between the two is unremarkable at all three frequencies.

As for the pressure distribution obtained in the previous section, however,
it is important to note that the unique condition of “impedance matching”
occurs only when γ = 2 and c = c0 (Fig. 9.6.14). When the more accurate
wave speed c is used instead of the Moen-Korteweg wave speed c0, matching
is no longer attained and significant wave reflection effects arise as illustrated
in Figs.9.7.21-23.

However, as for the pressure distributions discussed in the previous section,
a more significant difference arises if the hierarchy of branch diameters within
the tree is changed from one based on the cube law (γ = 3) to one based on the
square law (γ = 2). Under the square law the sum of the cross-sectional areas
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Fig. 9.7.9. Evolution of the composite cardiac pressure wave as it travels down
path-2 of the 11-level tree model at a frequency of 10 Hz, which again indicates
some initial peaking as in Fig. 9.7.8.
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Fig. 9.7.10. Evolution of the composite cardiac pressure wave as it travels down
path-1 of the 11-level tree model, as in Fig. 9.7.8 but here at a frequency of 5 Hz,
which means higher wave-length-to-tube-length ratios, and hence no peaking in the
waveform is observed, consistent with the corresponding pressure distributions in
Fig. 9.6.6.
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Fig. 9.7.11. Evolution of the composite cardiac pressure wave as in Fig. 9.7.10, but
here as it travels down path-2 of the 11-level tree model.
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Fig. 9.7.12. Evolution of the composite cardiac pressure wave as it travels down
path-1 of the 11-level tree model at the lowest frequency of 1 Hz, which means much
higher wave-length-to-tube-length ratios. The abrupt flattening of the waveform is
consistent with the pressure distributions in Fig. 9.6.7.
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Fig. 9.7.13. Evolution of the composite cardiac pressure wave, as in Fig. 9.7.12,
but here as it travels down path-2 of the 11-level tree model.

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

time t (normalized)

os
ci

lla
to

ry
 p

re
ss

ur
e 

(m
m

H
g)

f = 10 Hz

c=c
0

γ = 3

α = 0.7

path−1

11−level tree
−−−−−−−−−−

Fig. 9.7.14. Evolution of the composite cardiac pressure wave as it travels down
path-1 of the 11-level tree model at a frequency of 10 Hz as in Fig. 9.7.8, but here
the dimensions of the tree are increased to the scale of the systemic circulation, with
the root segment of the tree given a diameter of 25 mm compared with 4 mm in that
figure. Some initial peaking is observed, consistent with the corresponding pressure
distribution in Fig. 9.6.8.
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Fig. 9.7.15. Evolution of the composite cardiac pressure wave as it travels down
path-1 of the 11-level tree model at a frequency of 5 Hz as in Fig. 9.7.10, but here
the dimensions of the tree are increased to the scale of the systemic circulation,
with the root segment of the tree given a diameter of 25 mm compared with 4 mm
in that figure. Considerably more peaking is observed here while it is completely
absent on the scale of the coronary circulation, consistent with the corresponding
pressure distribution in Fig. 9.6.9.
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Fig. 9.7.16. Evolution of the composite cardiac pressure wave as it travels down
path-1 of the 11-level tree model at a frequency of 1 Hz as in Fig. 9.7.12, but here
the dimensions of the tree are increased to the scale of the systemic circulation,
with the root segment of the tree given a diameter of 25 mm compared with 4
mm in that figure. Peaking is absent in both cases, but the evolution of the wave
is considerably more gradual on the systemic scale, clearly because of the lower
wave-length-to-tube-length ratios on that scale.
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Fig. 9.7.17. Evolution of the composite cardiac pressure wave as it travels down
path-1 of the 11-level tree model at a frequency of 10 Hz as in Fig. 9.7.8, but here
using the actual wave speed c instead of the Moen-Korteweg wave speed c0 on which
the results in that figure are based. The difference between the two is unremarkable.
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Fig. 9.7.18. Evolution of the composite cardiac pressure wave as it travels down
path-1 of the 11-level tree model at a frequency of 5 Hz as in Fig. 9.7.10, but here
using the actual wave speed c instead of the Moen-Korteweg wave speed c0 on which
the results in that figure are based. The difference between the two is unremarkable.
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Fig. 9.7.19. Evolution of the composite cardiac pressure wave as it travels down
path-1 of the 11-level tree model at a frequency of 1 Hz as in Fig. 9.7.12, but here
using the actual wave speed c instead of the Moen-Korteweg wave speed c0 on which
the results in that figure are based. The difference between the two is unremarkable.
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Fig. 9.7.20. Under the unique conditions of γ = 2 and c = c0, the composite
cardiac pressure waveform remains unchanged at all levels of the tree and at all
three frequencies, a condition known as “impedance matching”.
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Fig. 9.7.21. Evolution of the composite cardiac pressure waveform as it travels
down path-1 of the 11-level tree model at a frequency of 10 Hz. Although γ = 2
here as in Fig. 9.7.20, impedance matching is not attained here because the more
accurate wave speed is used here instead of the Moen-Korteweg wave speed c0.
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Fig. 9.7.22. Evolution of the composite cardiac pressure waveform as it travels
down path-1 of the 11-level tree model as in Fig. 9.7.21, but here at a frequency of
5 Hz. Impedance matching is not attained at this frequency.
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Fig. 9.7.23. Evolution of the composite cardiac pressure waveform as it travels
down path-1 of the 11-level tree model as in Fig. 9.7.21, but here at a frequency of
1 Hz. Impedance matching is not attained at this frequency.

of the two branch segments is equal to the cross-sectional area of the parent
segment at all bifurcations within the tree structure. If this is combined with
the c = c0 wave speed assumption, then there is no change of admittance as
the flow crosses each bifurcation within the entire tree structure, which means
that the bifurcations are no longer reflection sites and wave reflections do not
arise. Results obtained in the previous section (Fig. 9.6.14) indicated that the
pressure distributions obtained under these circumstances are identical with
the benchmark of uniform distribution at 1.0, which means, therefore, that
the composite pressure waveform would be unchanged as it travels down the
tree, a condition known as “admittance matching”. This is indeed the case
as illustrated in Fig. 9.7.20. The waveform is unchanged at all levels of the
tree and at all three frequencies, consistent with the corresponding pressure
distribution in Fig. 9.6.14

9.8 Summary

The ultimate unlumped model of the coronary circulation is unattainable in
practice because of the overwhelming details of coronary vasculature and the
high degree of variablility in these details from one heart to another, and
because of the enormous difficulties involved in a study of all aspects of flow
in this vasculature. A more modest approach is that of constructing unlumped
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models that have only the broad features of scale and branching pattern of
coronary vasculature, and to use combinations and variations of these features
to probe into the type of dynamics that they can or cannot give rise to, and
under what type of conditions.

In order to track the flow in an arterial tree structure it is necessary to
identify the position of each vessel segment within that structure. A simple j, k
coordinate system can be used for that purpose, whereby the first coordinate
identifies the level of the tree in which a vessel segment is located and the
second identifies the sequential position of that segment among other segments
at that level of the tree. Any path within the tree structure can then be
specified in terms of the vessel segments that make up that path, and the
pressure distribution along the path can be pieced together from the pressure
distributions along each vessel segment. A theoretical tree structure based
on a power law with three different values of the power law index is used to
illustrate this scheme and to find the pressure distributions under steady flow
conditions. Because of their uniformity, these theoretical structures do not
represent the characteristic heterogenous structure of coronary vasculature,
but they serve to illustrate the way in which the pressure varies along the
hierarchy of a tree structure.

In pulsatile flow through a rigid tube flow properties depend on the value of
the frequency parameter Ω which in turn depends on the tube radius, amongst
other things. In a tree structure, therefore, the distribution of the values of
Ω within the tree structure is an important determinant of the properties of
pulsatile flow along the tree. In general, the value of Ω has its highest value at
the root segment of the tree, then decreases from there, along the hierarchy
of the tree as the diameters of vessel segments decrease. Peak flow rate and
peak shear stress, the maximum values reached within the oscillatory cycle,
actually increase from the root segment of the tree towards the periphery
because of the decrease in the value of Ω in that direction.

Pulsatile flow in a tree structure consisting of elastic tube segments gives
rise to wave propagation and widespread wave reflections because of the large
number of vascular junctions. With the ratio of wave length to tube length
λ ∼ 100 or greater in the coronary circulation as indicated in Fig. 9.4.3, effects
of wave propagation on the flow field are minimal, but the cumulative effects
of wave reflections can be enormous. The aim of the elastic branching tubes
model is therefore to establish a method of tracking these reflections and cal-
culating the effects which they produce in a vascular tree structure consisting
of many vascular tube segments and hence many vascular junctions which act
as reflection sites.

Pulsatile flow in an elastic tube gives rise to wave propagation within the
tube. Impedance is the total opposition to pulsatile flow in an elastic tube,
which consists of normal resistance to the steady part of the flow plus oppo-
sition to wave propagation. Admittance is the reciprocal of impedance and it
represents the extent to which pulsatile flow in an elastic tube is “admitted”,
rather than opposed. In a vascular tree structure consisting of elastic tube
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segments, the total opposition to pulsatile flow registered at entry into the
tree is referred to as “input impedance”. One part of this opposition depends
on the elasticity and other geometric properties of the tube segments as well
as on the frequency of the oscillatory flow and is referred to as “characteristic”
impedance. Another part is due to wave reflections and it depends on the suc-
cession of local impedances at vascular junctions as well as on the frequency
of the oscillatory flow. When this part is included in the total opposition to
pulsatile flow it is referred to as “effective” impedance. Similar terminology
is used for admittance. Only under very special circumstances is the effec-
tive impedance in a vascular tree the same as the characteristic impedance.
These circumstances require that the characteristic impedance of the parent
vessel at every vascular junction be the same as the combined characteristic
impedance of the two daughter segments, which is generally referred to as
“impedance matching”, and that the wave speed be constant throughout the
tree and equal to the Moen-Korteweg wave speed. These circumstances do
not occur in the coronary circulation.

In a tree model consisting of elastic tube segments and having dimensions
comparable with those of the human coronary arterial tree, pulsatile flow
is associated with significant wave reflection effects that produce a negative
pressure gradient along the tree that actually aids rather than impedes the
flow. If the dimensions of the tree are made comparable with those of the
systemic arterial tree, this trend is reversed initially to produce a positive
pressure gradient, consistent with the well known “peaking” phenomenon in
the descending aorta, and then becomes negative again towards the periphery.

A cardiac pressure wave representing input pressure into a tree model
consisting of elastic tube segments and having dimensions comparable with
those of the human coronary arterial tree, is generally “blunted” or “flattened”
as it progresses from the root segment of the tree to the periphery. This is
the reverse of the “peaking” phenomenon observed in the descending aorta,
the difference being due to the different scales of the coronary and systemic
circulations, but the change in the form of the wave in both cases is due to
wave reflections. In the systemic circulation the wave would be blunted by
viscous dissipation as it travels along the descending aorta, but instead it
peaks because of wave reflections coming from downstream. In the coronary
circulation model being considered here the wave is blunted with or without
the effects of viscosity (by using c or c0) thus the blunting is due largely to
wave reflections.
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Dynamic Pathologies

10.1 Introduction

The dynamics of the coronary circulation are under strict regulation, mediated
by several neural and humoral control mechanisms [83, 128]. While a great
deal has been learned about the isolated effects of certain humoral agents
or neural stimuli, a full understanding of the feedback loops associated with
these mechanisms does not exist at present. These aspects of the coronary
circulation have yet to be integrated into a unified model of the dynamics of
the system.

In the absence of an integrated model, it is not unreasonable to assume
that the regulatory mechanisms of the system will aim to keep it in a mode
of operation in which its dynamics are “optimal” in some way. And if the pa-
rameter values associated with these optimal dynamics are changed, whether
by disease or clinical intervention, the dynamics of the system will then be
less than optimal. They will be “pathological” in the sense of being away from
the normal dynamics of the system, and it is in this sense that we use the
term “dynamic pathology” in this chapter.

A dynamic pathology is not unlike a structural or a functional pathology
in a tissue or organ, but it deals specifically with dynamics. Furthermore,
it deals with the dynamics of an integrated system as a whole, such as the
dynamics of the coronary circulation as a whole. Thus, an atherosclerotic
lesion in a coronary artery is a vascular pathology but the ultimate significance
of this lesion lies in the dynamic pathology which it produces. The ultimate
significance of the lesion lies in the way it affects the dynamics of the coronary
circulation as a whole, and in particular in the way it affects the ultimate goal
of the coronary circulation to provide the heart with sufficient blood supply. If
the occlusive progression of a lesion is sufficiently slow, so that the occlusion is
compensated for by vascular restructuring, then the dynamic pathology may
be minimal or nonexistent. Thus, the presence of vascular pathology does not
necessarily imply the presence of dynamic pathology. The tenet of this book
is that the reverse of this statement is also true, namely that the absence of



362 10 Dynamic Pathologies

vascular pathology in the coronary circulation does not necessarily imply the
absence of dynamic pathology.

Arrhythmia, in all its forms, is a familiar example of a dynamic pathol-
ogy. It affects the harmony between the pumping rhythm of the heart and
the compliance of the aorta, thereby affecting cardiac output and hence the
dynamics of the systemic circulation. Similarly, a disruption in the harmony
between the pulsatile rhythm of the input pressure driving the flow into the
coronary circulation, the pulsatile rhythm of the contracting cardiac muscle
and its effect on coronary vessels imbedded within it, and the combination
of wave propagation and wave reflections within the coronary vascular tree,
will lead to dynamic pathology in the coronary circulation. Anyone who has
pushed a child on a swing in the park will know the exquisite harmony re-
quired between the timing of the push and the rhythmic momentum of the
swing. Any disruption in that harmony will cause the swing to lose rather
than gain momentum, thus producing a dynamic pathology. The analogy is
quite pertinent and we shall use it again later. Any disruption in the harmony
between the several factors involved in the dynamics of the coronary circu-
lation will reduce the efficiency of coronary blood flow and thereby produce
dynamic pathology.

While an integrated model of the coronary circulation that can deal with
these dynamic issues and with dynamic pathologies in the system does not
exist at present, the lumped and the unlumped models introduced in previous
chapters, though incomplete, can provide tools for a useful prelude to dealing
with these issues. The models can be used to assess the consequences of a
change in diameters or mechanical properties of the vessels involved or in the
frequency of oscillation, to then speculate on the possible role such changes
might play in an integrated model of the coronary circulation. Alternatively,
results of lumped and unlumped models, though incomplete, can be used
in combination with known dynamic features of the coronary circulation to
speculate on possible dynamic factors in coronary heart disease. We follow
some of these lines in this concluding chapter of the book, which is therefore
largely speculative in scope.

10.2 Magic Norms?

While the goal of uncovering the full range of dynamics of the coronary cir-
culation may be out of reach, a more modest goal is that of finding “ideal” or
“normal” modes of operation of the system, modes of operation in which
the dynamics of the system appear to be particularly simplified or opti-
mal in some sense. We shall refer to these loosely as “magic norms” of
the system in the sense that they may represent modes of operation for
which the system is designed (or towards which the system has evolved).
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Fig. 10.2.1. Oscillatory pressure (solid) and flow (dashed) in an RLC system in
series. The flow rate is “R-scaled” such that the pressure and flow curves become
identical under pure resistance, that is when L and C are absent. In the presence of
L and C , however, the system has a magic norm in which it behaves as if L and C
are absent. If the value of the inertial time constant tL is taken as 0.1 s, the magic
norm conditions occur when the value of the capacitive time constant tC is 0.0253 s.
Any deviation from this value moves the system away from this mode, as indicated
by the departure of the flow curve away from the pressure curve.

Thus, a lumped or unlumped model of the coronary circulation may not
embody the full range of dynamics of the system, but it may embody some of
its magic norms. While the model may be incomplete in terms of the range
of parameters on which it is based, it may point to modes of operation of
the system in which a unique combination of the values of these parameters
produce remarkably simplified dynamics.

An example from another area of application may illustrate the point. The
dynamics of a pendulum depend on several parameters such as length, weight,
and any driving forces. The differential equations governing these dynamics,
as well as their solutions, are fully known in even the most complicated cases.
When a child sits on a swing in the park for the first time, however, the
child does not know that the swing is in fact a pendulum with fully known
dynamics, yet he or she very quickly discovers the magic norm of the system.
The child soon discovers how to use his or her body weight to drive the swing
to higher and higher altitudes. He or she soon learns that the amount and
exquisite timing of the applied body force is crucial to attaining the magic
norm, and reaching the ideal conditions under which the system operates.
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Fig. 10.2.2. Oscillatory pressure (solid) and flow (dashed) in Lumped Model 2 of
Section 7.4 whose composition in the notation of that section is {{R1+L}, {R2+C}}.
A magic norm occurs when λ = R2/R1 = 1.0 and tL = tC = 0.2 s whereby the
system behaves as if L and C were absent, and the pressure and R-scaled flow
curves again become identical. Other values of λ (shown) move the system away
from the magic norm.

Any deviation from the precise timing or the precise force moves the system
away from its magic norm.

While the dynamics of the coronary circulation may be several orders of
magnitude more complicated than the dynamics of a swing, the example is
pertinent in the sense that we are somewhat in the position of the child who
does not know the equations governing the full dynamics of the system, yet
we may recognize conditions under which the dynamics of the system appear
to be ideal in some sense.

The first example of a magic norm was actually found in Section 4.8, where
under certain circumstances the inertial and the capacitive effects of the RLC
system were found to “cancel” each other and produce zero reactance. These
conditions were found to occur when the value of the capacitive time constant
tC (= CR) and the value of the inertial time constant tL (= L/R) were such
that (Eq. 4.8.22)

1
tC × tL

= ω2 (10.2.1)
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Fig. 10.2.3. Propagation of the cardiac pressure wave along the 11-level tree model.
The input wave, shown in bold, would normally be modified as it progresses along
the tree structure, but a “magic norm” occurs when the wave speed c is equal to
the Moen-Korteweg wave speed c0 and the value of the power law index γ is 2.0
whereby the wave remains unchanged. Departure from any of these values moves
the system away from this magic norm. The thin curves indicate the changed form
of the wave as it travels in that case.

where ω is the frequency of oscillation of the driving pressure, R is resistance,
L is inductance, and C is capacitance. Under this unique combination of values
the RLC system behaves as if L and C do not exist, thus the relation between
pressure and flow is particulary simple and is the same as that in the presence
of resistance R only, namely

q(t) =
Δp(t)

R
(10.2.2)

where q(t) is the oscillatory flow rate and Δp(t) is the oscillatory driving
pressure. Thus, if the flow rate is multiplied by R, the resulting “R-scaled” flow
rate becomes identical with the driving pressure, as illustrated in Fig. 10.2.1.

For the purpose of illustration, in Fig. 10.2.1 the value of tL is taken as
1 s and the frequency of oscillation is taken as 1 Hz, thus ω = 2π rad/s. This
means that the magic norm conditions occur when tC = 1/ω2 = 0.0253 s
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Fig. 10.2.4. Effects of “vasoconstriction” and “vasodilatation”, as defined in the
text, on the values of admittance within the 11-level tree model, compared with
the “normal” case, at a frequency of 1 Hz. The two conditions produce significant
changes in the distribution of admittance and hence in the dynamics of pressure and
flow within the tree model.

as required by Eq. 10.2.1. The “magic” in this magic norm is illustrated in
Fig. 10.2.1 where it is seen that any small departure from this particular value
of tC leads to a departure from the ideal relation between pressure and flow.

As discussed in Section 4.7, an appropriate value of tL for the coronary
circulation is not known, if indeed a single such value is appropriate at all.
Nevertheless, the results in Fig. 10.2.1 are valuable in providing a hint at the
relative values of the two time constants, as provided by Eq. 10.2.1. Because of
the great simplicity of the pressure-flow relations under these conditions, it is
highly tempting to speculate that the coronary circulation may be designed to
operate with values of the two time constants that are close to those provided
by Eq. 10.2.1. It would then follow that any departure from these ideal values
would be functionally undesirable in the sense that it would disrupt the ideal
relation between pressure and flow. As in the case of the child on a swing, any
departure from the perfect timing of the force which the child applies with
his or her body leads to disruption in the ideal operation of the swing.

While the magic norm in Fig. 10.2.1 is based on a driving pressure con-
sisting of a single harmonic through a simple RLC system in series, similar
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Fig. 10.2.5. Effects of “vasoconstriction” and “vasodilatation”, as defined in the
text, on the pressure distribution within the 11-level tree model, compared with the
“normal” case, at a frequency of 1 Hz. While the form of the distribution is not
greatly changed by the two conditions, there is considerable change in the level of
the pressure, moving higher in both cases.

results were found in Section 7.4 (Fig. 7.4.4) where the driving pressure is a
composite wave and the RLC system is somewhat more complicated. Results
in that section for LM2, whose composition in the notation of Chapter 7 is
{{R1+L}, {R2+C}}, show that when λ = R2/R1 = 1.0 and tL = tC = 0.2 s a
magic norm occurs whereby this RLC system behaves as if L and C were ab-
sent. As illustrated in Fig. 10.2.2, with this combination of values of the time
constants and the ratio λ of the two resistances, the pressure and R-scaled
flow curves again become identical, but any departure from these values moves
the system away from this magic norm.

The concept of magic norms extends also to unlumped model analysis
where the architecture of the vascular tree plays a key role. Here, the propa-
gation of the pressure and flow waves along the tree structure is an important
issue as discussed in Section 9.7. Results in that section (Fig. 9.7.20) showed
that under the ideal conditions of the so-called “impedance matching”, the
pressure wave remains unchanged as it travels along the tree structure. This
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Fig. 10.2.6. Effects of “vasoconstriction” and “vasodilatation”, as defined in the
text, on the pressure distribution within the 11-level tree model, compared with the
“normal” case as in Fig. 10.2.5 but here at a frequency of 10 Hz. The effects of the
two conditions on the pressure distribution are clearly more dramatic at the higher
frequency.

magic norm occurs when the value of the power law index γ is 2.0 and the
wave speed c is taken equal to the Moen-Korteweg wave speed c0. Any de-
parture from these conditions leads to departure from the magic norm, as
illustrated in Fig. 10.2.3.

It must be remembered, of course, that the coronary circulation is not a
simple RLC system nor an idealized tree model, thus the parameter values
for the magic norms described here cannot be applied directly to the coronary
circulation. The ultimate value of these results lies in pointing out that the
coronary circulation very likely has its own magic norm or norms and that
any disruption in the conditions required for these norms will move the sys-
tem away from its optimal dynamics. Such disruptions may occur as a result
of vascular disease or aging, which would change the mechanical properties
of the vessel wall or constrict the lumen available for the flow, or as a result
of clinical intervention, whether by drugs or surgery. To illustrate this more
succinctly, we finish this section by considering the 11-level tree model with
architecture on the scale of the coronary circulation as was done in Chapter
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Fig. 10.2.7. Propagation of the cardiac pressure wave along the 11-level tree model,
the input waveform being shown in bold, while the thin curves indicate the changed
form of the wave as it travels in that case. The three panels show the effects of
“vasoconstriction” and “vasodilatation”, as defined in the text, compared with the
“normal” case at a frequency of 1 Hz.

9. Then we consider two scenarios in which the peripheral 6 levels of the tree
are either constricted, with vessel diameters reduced by 50%, or dilated, with
vessel diameters increased by 50%, while the elasticity of the same vessels is
reduced to the effect that the vessels become more rigid, with Young’s Mod-
ulus increased from 107 to 109 dyn/cm2. While the two scenarios are highly
idealized, we shall refer to them loosely as conditions of “vasoconstriction”
and “vasodilatation”, respectively, suggesting not that they replicate the cor-
responding physiological conditions but that they may be relevant to them.
Effects of these scenarios on admittance or pressure distribution or on the form
of the propagating wave within the tree structure are shown in Figs.10.2.4-9.
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Fig. 10.2.8. Propagation of the cardiac pressure wave along the 11-level tree model,
the input waveform being shown in bold, while the thin curves indicate the changed
form of the wave as it travels in that case. The three panels show the effects of
“vasoconstriction” and “vasodilatation”, as defined in the text, compared with the
“normal” case as in Fig. 10.2.7, but here at a frequency of 10 Hz.

10.3 Coronary Heart Disease, Physical Exercise,
and the Conundrum of Coronary Flow Reserve

One of the characteristic features of the coronary circulation that distinguishes
it from other circulations is its capacity to increase blood flow to the heart “on
demand” by as much as five or six times normal flow rate, a feature generally
referred to as “coronary flow reserve” [83, 42, 66, 64, 129, 128, 100, 183, 26,
112]. Elements of this subject were introduced earlier in Sections 1.8,9. In the
present section we attempt to unify these elements into a useful whole and
place the subject of coronary flow reserve in the context of coronary heart
disease and physical exercise.

It was shown in Section 1.8 that coronary flow reserve is not provided by
coronary arteries that are “oversized” compared with other arteries, or over-
sized in relation to the flow rate which they carry under normal conditions. It
was shown in fact that the coronary arteries are of fairly normal caliber com-
pared with arteries elsewhere in the body. It is widely accepted that coronary
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flow reserve is provided simply by an increase in the caliber of the so called
“resistance vessels” within the coronary vascular tree, thus leading to a higher
flow rate through the system [83, 42, 66, 64, 129, 128, 100, 183, 26, 112]. The
conventional wisdom is that the five- to six-fold increase in flow is achieved
simply by decreasing the resistance to flow. While this wisdom is to a large ex-
tent correct, it is not entirely so because it is based on a model of the coronary
circulation in which flow is assumed to be steady and flow rate is assumed to
be determined entirely by resistance to flow.

Coronary blood flow, on the other hand, is pulsatile, and in pulsatile flow,
as we have seen throughout this book, many more factors are involved in de-
termining the flow rate through a vascular system. In particular, the effects of
capacitance, inductance, and wave reflections, as discussed in previous chap-
ters, make it clear that the coronary circulation has more tools at its disposal
for changing the flow rate than that of a simple change in pure resistance. An
increase in the caliber of the so-called resistance vessels will indeed reduce re-
sistance to the steady part of the flow, but as we have seen in previous sections
it will also change the admittance to the pulsatile part of the flow, change the
dynamics of wave reflections, reduce the elasticity of the vessels involved and
hence increase the wave speed, all of which pointing to the number of variables
that may be involved in the facility and function of coronary flow reserve. The
concept of magic norms discussed in the previous section and the examples
of vasoconstriction and vasodilatation discussed in that section make it clear
that a change in one variable may lead to more than the effect of that partic-
ular variable in isolation. What is ultimately important is whether a change
in one variable will move the system away from its magic norm, and this, as
we have seen, cannot be determined by considering that variable alone. This
is clearly relevant when the change is introduced by clinical intervention.

While models of the coronary circulation have yet to grapple with the full
intricacies of coronary flow reserve, enough is known to indicate clearly that
this aspect of the coronary circulation has evolved to respond to increased
demand for coronary blood flow resulting from increased physical activity,
rather than to compensate for reduced coronary blood flow in coronary heart
disease. As mentioned earlier, the difference between the two situations is
one of time scale. Coronary heart disease may reduce blood flow to the heart
gradually over a period of months or years, while the increased demand for
coronary blood flow following a sudden increase in physical activity may occur
within seconds. In both cases the prevailing condition is a deficit in coronary
blood flow, but in one case the deficit is small and chronic while in the other
it is large and acute. Coronary flow reserve has evolved as a mechanism for
dealing with acute deficits in coronary blood flow.

The only mechanism which seems to have evolved for dealing with chronic
deficits in coronary blood flow is that of slow “restructuring” of the vascula-
ture to deal with new conditions. Under this general heading may be included
some angiogenic responses that are not specific to the heart, such as enlarge-
ment of existing vessels to carry higher flow rates, or the development of new
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vasculature. A response which is more specific to the heart is that of “collateral
vasculature” discussed in Section 1.7. It has been adequately demonstrated
that in the presence of coronary artery disease the coronary circulation re-
sponds by developing new routes for coronary blood flow [15, 14]. It is not
clear, however, whether these new routes are based on pre-existing collateral
vasculature or are the result of angiogenesis. It is also not clear to what ex-
tent this mechanism is effective in dealing with chronic deficits in coronary
blood flow since it has evidently not succeeded in preventing heart failures
resulting from coronary heart disease [83, 206, 14, 128]. This and many other
issues asociated with the efficacy and clinical significance of this mechanism
are shrouded with a great deal of controversy. It is widely accepted, however,
that the time scale of this mechanism is months or years, not seconds.

We thus have two mechanisms for dealing with coronary blood flow deficits
which we shall refer to simply as “fast” and “slow”. In addition to the dif-
ference in their time scales, another important difference between the two
mechanisms is their triggers. It is widely accepted that the trigger for the fast
mechanism is an increase in myocardial oxygen consumption. The trigger for
the slow mechanism, on the other hand, is repeated episodes of hypoxia and
ischemia [83, 128]. The interplay between these two mechanisms in coronary
heart disease and in heart failure under different circumstances is discussed
in what follows.

We note first that when heart failure results from coronary artery disease,
the ultimate cause of the failure is that the heart is not receiving sufficient
blood supply for its own metabolic needs. It is thus a failure of the coronary
circulation rather than a failure of the heart itself. In the analogy of a car
engine, it is a failure of an engine that has run out of fuel rather than an engine
that has broken down. While these statements seem to state the obvious,
they bear repeating because the terminology used in this subject is somewhat
misleading. Thus, what is widely referred to as “coronary heart disease” is a
disease not of the heart but of the coronary arteries, and a more accurate term
for it is “coronary artery disease”. And what is widely referred to as “heart
failure” is a failure not of the heart but of sufficient blood supply to reach the
heart, and a more accurate term for it would be “heart starvation”.

From the point of view of energetics, normal operation of the heart as a
pump is based on a very simple equation, whereby under steady state condi-
tions (

rate of oxygen consumption
by heart muscle

)
=

(
rate of oxygen delivery

to heart muscle

)
(10.3.1)

Coronary blood flow is associated with the right hand side of this equation.
More precisely, oxygen delivery to the myocardium depends directly on the
rate of coronary blood flow and on “oxygen extraction”, which is the per-
centage of oxygen being extracted from the blood by the heart muscle. While
oxygen extraction may vary, under normal modes of operation the dominant
factor in the delivery of oxygen to the heart muscle is the rate of coronary
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blood flow. To simplify matters, therefore, in what follows we shall consider
coronary blood flow to be a direct measure of the rate of oxygen delivery to
heart muscle.

In what we shall call the “normal” course of events, if the energetics of
the heart muscle are in a non-steady state, as, for example, when the level
of physical activity of the body increases from rest to a higher level, work
of the heart increases appropriately and the rate of oxygen consumption by
the heart muscle increases with it. In response to the latter, coronary flow
reserve is triggered within seconds to increase coronary blood flow and the
rate of oxygen delivery to the heart muscle is thereby increased to a level that
would satisfy Eq. 10.3.1. This sequence of events is shown schematically in
the form of a flow chart in Fig. 10.3.1. This scenario may be repeated many
times, at different levels of activity. If these levels are such that coronary flow
reserve is always able to respond and satisfy the oxygen demands of the heart
muscle then it is in this sense that we refer to this case as “normal”. This
term is not intended to imply that the coronary arteries are necessarily free
from disease or that the capacity of coronary flow reserve is intact. It only
implies that coronary flow reserve is robust to the level of physical activity it
is being subjected to.

In what is generally referred to as “coronary heart disease”, because of
coronary artery disease, the base rate of coronary blood flow has been reduced
and the capacity of coronary flow reserve has been reduced. A situation may be
reached whereby a certain level of physical activity can no longer be supported,
and the only way to satisfy Eq. 10.3.1 is to reduce the level of physical activity
to a level that can be supported by the impaired coronary flow reserve. This
course of events is illustrated schematically in Fig. 10.3.2.

If the conditions of coronary heart disease continue unabated, the capacity
of coronary flow reserve will deteriorate to the point where it can no longer
augment coronary blood flow in any significant way. And since the base rate
of coronary blood flow has also been considerably reduced by the disease, a
point is reached where the oxygen demands of the heart muscle can no longer
be met even when physical activity has been reduced to a minimum. The
heart fails to function as a pump, as illustrated schematically in Fig. 10.3.3.

A course of events that is counter to that of coronary heart disease and
heart failure is that of physical “exercise”. Here physical activity is taken de-
liberately to maximal levels so as to create hypoxia and momentary ischemia,
and the scenario is repeated so as to presumably trigger the “slow” mechanism
of dealing with coronary blood flow deficits, namely the mechanism of vascular
restructuring [83, 128]. As mentioned earlier, this may include new angiogenic
activity as well as the restructuring (enlarging) of existing normal and any
collateral vessels. In the absence of coronary artery disease, this would act to
maintain the capacity of coronary vasculature and of coronary flow reserve
at sufficiently high levels that they can deal with maximal demands for coro-
nary blood flow, a state of so called cardiovascular “fitness”. In the presence
of coronary artery disease, or ageing, the restructuring activity triggered by
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Fig. 10.3.1. Flow chart illustrating schematically the sequence of events following
an increase in physical activity, and the role of coronary flow reserve in that sequence
under “normal” circumstances, by which is meant that coronary flow reserve is
able to provide the necessary rate of coronary blood flow so that the balance of
myocardial oxygen consumption and oxygen delivery is satified. The bar chart on
the left illustrates, schematically again, the variable level of physical activity as
time goes on. Under the “normal” scenario, coronary flow reserve is able to deal
with these levels but it is not known if it can handle higher levels or if it is actually
compensating for any decline in normal coronary blood flow due to coronary artery
disease.

physical exercise may counter and possibly reverse the deteriorating capacity
of coronary arteries and of coronary flow reserve, as illustrated schematically
in Fig. 10.3.4.

The “bank analogy” mentioned briefly in Section 1.9 can be used to illus-
trate these scenarios in the context of a worker who earns $1,000 per month
and, under normal circumstances, spends as much. Earnings are deposited di-
rectly into a “special” bank account and expenses are charged directly to the
same account [217]. What is special about the account is that (a) it started out
with a reserve of $6,000 and (b) no statements are issued about the balance
in the account each month, unless the account is in deficit. Under normal cir-
cumstances the worker has no idea whether earnings and expenditures are in
balance each month, because any small discrepancies are masked by the large
reserve. If such discrepancies continue for a long time, however, a day will
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Fig. 10.3.2. Flow chart illustrating schematically the sequence of events following
an increase in physical activity, and the role of coronary flow reserve in that sequence
under conditions of “coronary heart disease”. Normal coronary blood flow and the
capacity of coronary flow reserve are both affected negatively by the disease to the
extent that a balance between myocardial oxygen consumption and oxygen delivery
can only be reached by reducing physical activity. The bar chart on the left illustrates
the variable level of physical activity as time goes on, while the dashed line represents
the declining capacity of coronary flow reserve. The combination of the two on
the time scale is clearly inaccurate because the time scale of variation in physical
activity is widely different from the time scale of decline in coronary flow reserve.
Nevertheless, it is useful to see the two together, though with the understanding
that “time” is different in each case.

be reached when the worker will receive a statement from the bank declaring
that his account is in deficit. The worker’s options at this time are limited be-
cause his reserve is now clearly exhausted. While in the presence of a healthy
reserve any monthly discrepancies can be corrected by appropriate changes in
spending habits, in the absence of such reserve such measures would be too
slow and ineffective. Thus, while the reserve plays a very important role in
the worker’s financial system, it also inadvertently masks monthly discrepan-
cies which would serve as important warning signs to the worker before the
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Fig. 10.3.3. Flow chart illustrating schematically the sequence of events following
an increase in physical activity, and the role of coronary flow reserve, as in Fig. 10.3.2,
but here under conditions of “heart failure”. Normal coronary blood flow and the
capacity of coronary flow reserve are both severely impaired by the disease to the
extent that a balance between myocardial oxygen consumption and oxygen delivery
cannot be achieved even at minimal or no physical activity. Remaining caption
concerning the chart on the left is as in Fig. 10.3.2.

“terminal” event of a negative statement from the bank. In time, the worker
finds that the only way to guard against this terminal event is to devise a
method of monitoring the state of his reserve. The method consisted of oc-
casional “spending sprees” that would deliberately challenge the reserve by
large conditional expenditures that can easily be reversed if a statement from
the bank arrives. As a result of this exercise the worker is constantly aware of
the state of the reserve and is able to improve it if necessary by appropriate
changes in regular spending habits. While the analogy with the coronary cir-
culation is not accurate in every respect, it serves the purpose of illustrating
the conundrum of the coronary flow reserve in coronary heart disease.
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Fig. 10.3.4. Flow chart illustrating schematically the sequence of events under
conditions of “physical conditioning” and the roles of coronary flow reserve and of
vascular restructuring under these conditions. Only repeated episodes of oxygen im-
balance trigger the mechanism of vascular restructuring and the consequent benefits
of improved coronary blood flow and improved coronary flow reserve. Remaining
caption concerning the chart on the left is as in Fig. 10.3.2.
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10.4 Wave Propagation Through a Coronary Bypass

The placement of a vascular graft to bypass an obstruction in a coronary blood
vessel is one of the most common surgical cardiovascular procedures in current
practice [155, 142, 210, 166]. In its most common form it consists of creating
an alternate route for blood flow from the aorta to a point downstream of an
obstruction in a main coronary artery as illustrated schematically in Fig. 10.4.1

Fig. 10.4.1. Schematic representation of a coronary bypass graft arrangement (in-
set) and of model used for analysis. The model consists of six vessel segments iden-
tified by numbers 1 − 6 and three junctions identified by letters A-C. Segment 4
represents the diseased coronary artery and segment 6 represents the bypass graft,
both having variable diameters, to simulate the severity of the disease in one case
and the relative size of the graft in the other. From [1].

The clinical basis of coronary bypass procedures is fairly straightforward,
namely that of providing coronary blood flow with a new supply route from the
aorta. While this has a fairly sound fluid dynamic basis, its tenets lie strictly in
the dynamics of steady flow in rigid tubes, thus ignoring the pulsatile nature
of coronary blood flow and the elasticity of coronary arteries as well as that
of the bypass graft. The dynamics of coronary blood flow, as we have seen,
are those of wave propagation and wave reflections in elastic tubes, and the
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Fig. 10.4.2. Pressure distribution in a coronary bypass graft, created by wave
reflections when the Young’s modulus of elasticity of the graft is the same as that
of the native coronary artery (curve labeled E6 = 1), when it is twice as large
(E6 = 2), and when it is 10 times as large (E6 = 10). A stiffer graft produces a
pressure difference between the two ends of the graft that is more favorable to flow
from the aorta to the coronary artery. From [1].

placement of a coronary bypass graft must correctly be viewed in this broader
context.

More specifically, the placement of a graft should be viewed as not only
creating a new path for coronary blood flow but also as introducing a new
vascular impedance and two new vascular junctions which, as we have seen,
can act as wave reflection sites [53, 54]. Thus, the length of the graft, its
diameter, and its elasticity are all be important in this context. Analysis of
wave propagation and wave reflections in the bypass graft configuration shown
in Fig. 10.4.1, taking into account properties of the bypass graft and of the
obstructed coronary artery, have been reported elsewhere [1]. We omit the
analytical details here and present only a sample of the main findings.
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Fig. 10.4.3. Pressure distribution in a coronary bypass graft, created by wave
reflections when the diameter of the graft is the same as that of the native coronary
artery (curve labeled d6 = 1), when it is 50% larger (d6 = 1.5), and when it is
50% smaller (d6 = 0.5). A graft of smaller diameter produces a pressure difference
between the two ends of the graft that is more favorable to flow from the aorta to
the coronary artery. From [1].

If the elasticity of the bypass graft is the same as that of the native coronary
arteries, it is found that wave reflections from the three vascular junctions
involved have the net effect of creating a pressure difference within the bypass
graft which is positive in the desired flow direction, as shown in Fig. 10.4.2.
In other words, as a result of wave reflections the pressure at junction C in
that figure is higher than the pressure at junction B. This pressure difference
by itself would cause the flow to go from the coronary network to the aorta
instead of the reverse, for which the bypass is intended. But, of course, this
pressure difference is not present by itself, it represents merely a perturbation
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on the main pressure difference between the aorta and the coronary network.
Nevertheless, it is a perturbation with an adverse effect on the main pressure
difference driving the flow. The analysis shows that if the bypass graft is
chosen to be stiffer (less elastic) than the native coronary artery, this adverse
effect can in fact be diminished as shown in Fig. 10.4.2. In the clinical setting
the choice of a bypass graft is usually between a saphenous vein graft and a
mammary or other arterial graft [57, 82, 30], and it is usually made on surgical
grounds. From the perspective of the dynamics of the flow, the results suggest
that an arterial or a synthetic graft that is stiffer than a saphenous vein would
be preferable. Arteries generally have a higher modulus of elasticity than do
veins [34, 70, 71], and arterial grafts are reported to have better performance
than vein grafts [30].

Similarly, the pressure difference between the two ends of the bypass graft,
created by wave reflections from all junctions, is found to be more favorable
to flow from the aorta to the coronary vessel when the diameter of the bypass
graft is smaller than the native coronary artery, and more adverse when the
reverse is true, as shown in Fig. 10.4.3. Common wisdom in coronary bypass
surgery is to use a graft of larger diameter than that of the native coronary
artery [57, 82, 72, 58], clearly, that wisdom is being based on considerations
of steady flow through the bypass system.

10.5 Wave Propagation Through a Coronary Stent

The placement of a coronary stent within a diseased coronary artery, like the
placement of a coronary bypass graft, is a practice based largely on consider-
ations of steady flow. The stent functions by scaffolding a diseased coronary
artery to compress any lesions protruding into the lumen, thus keeping the
vessel open for blood flow as illustrated schematically in Fig. 10.5.1. The ba-
sis of this practice is perfectly valid in the context of steady flow where an

elastic elastic

      wave
reflection sites

rigid

Fig. 10.5.1. From the standpoint of the dynamics of pulsatile flow, a coronary
stent represents a rigid tube segment in an otherwise elastic vessel. Because the
impedance of the rigid segment is much higher than that of the elastic segments to
which it is attached, the propagating wave is blunted within the stent as illustrated
schematically, and because of impedance mismatch at the two ends of the stent, two
wave reflection sites are created there.
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Fig. 10.5.2. Normalized pressure distribution along a coronary artery of length 10
cm, with a stent, shown in bold, of length 1 cm and placed at different position
along the vessel, position ‘0’ being the entrance to and ‘10’ being the exit from the
artery. When the stent is placed near the entrance of the native vessel it has the
effect of producing a pressure distribution (curve a) with a small favorable pressure
difference between entrance and exit from the vessel, but this pressure difference
becomes increasingly larger as the position of the stent is moved closer to the exit
end of the vessel (curves b − h). From [2].

open vessel is clearly better than an obstructed one, and several studies have
examined various mechanical and other aspects of coronary stents within this
context [67, 176, 138, 232, 62, 89, 56, 149, 200, 35, 140].

But in the context of pulsatile flow in elastic tubes a number of additional
issues must be addressed. The stent is usually made of a steel mesh with
high radial strength [171, 154, 50], and it is found that soon after the stent
is implanted the open mesh fills with growing tissue and the stent fuses with
the vessel wall [150]. Thus, the combination of stent and vessel wall together
become a rigid segment within an otherwise elastic vessel, which presents a
considerable change in local impedance within the vessel. Because the stented
segment is considerably more rigid than the upstream (proximal) and down-
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Fig. 10.5.3. Normalized pressure distribution along a coronary artery of length 10
cm, with a stent, shown in bold, of length 5 cm and placed at different position along
the vessel, position ‘0’ being the entrance to and ‘10’ being the exit from the artery.
When the stent is placed near the entrance of the native vessel it has the effect
of producing a pressure distribution (curve a) with a significant favorable pressure
difference between entrance and exit from the native vessel, and this difference be-
comes yet larger as the position of the stent is moved closer to the exit end of the
vessel (curves b − d). From [2].
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stream (distal) segments to which it is attached, there is a change in impedance
at the two junctions between the stented and non-stented segments and hence
the two junctions will act as wave reflection sites (Fig. 10.5.1). These issues
have only recently been examined in full elsewhere [2], and the essence of the
results is presented below, omitting the analytical details.

Of particular interest is the effect of a coronary stent on the pressure
distribution within the vessel in which it is placed. As in the previous section,
the pressure distribution in question is only that arising as a result of wave
reflections, and it is normalized such that in the absence of wave reflections,
which means in the absence of the stent, the pressure distribution would
be uniform at a normalized value of 1.0. Any departure from this uniform
distribution can thus be attributed entirely to the presence of the stent.

In general it is found that a stent has the effect of producing a pressure
distribution that is actually favourable for flow in the native vessel, with
the pressure being higher at entrance to the vessel than it is at exit. The
extent of this effect depends on two main parameters: the length of the stent
in relation to the length of the native vessel, and the position of the stent
within the length of the native vessel. The results show that a relatively short
stent placed near the entrance of the native vessel has the smallest effect and
produces a pressure distribution with the smallest pressure difference between
the two ends of the vessel. This effect becomes increasingly more significant,
however, as the stent is moved closer to the exit end of the native vessel, as
shown in Fig. 10.5.2.

In the case of a relatively long stent it is found that the pressure distri-
bution it produces and the associated pressure difference are fairly significant
even when the stent is placed near the entrance of the native vessel, and it
becomes considerably more so as the stent is moved closer to the exit end of
the vessel, as shown in Fig. 10.5.3.

10.6 Sudden Cardiac Death

A principal theme of this book has been to highlight the dynamics of the
coronary circulation and to show the central role that these dynamics can play
in coronary blood flow. Nowhere does this theme find a better application than
in the phenomenon of sudden cardiac death, and it is therefore appropriate
that this subject be discussed in the last chapter of the book. The material to
be presented is indeed no more than a brief discussion, based on an extensive
review by Osborn [158].

Sudden cardiac death is death due to heart failure in which the timing of
the failure is sudden or unexpected [158]. It is a major public health problem,
being the leading cause of death in the industrialized world, claiming more
than one thousand lives per day in the United States alone [158].

The cause of sudden cardiac death in all cases is a precipitous fall in cardiac
output to levels that can no longer sustain cerebral or cardiac function. The
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fall in cardiac output is usually associated with a disruption in heart rhythm
in one form or another: ventricular fibrillation, tachycardia, bradycardia, and
the like. Common causes of disruption in heart rhythm include myocardial
infarction or ischemia and cardiomyopathy, all of which act to disrupt the
“electrical uniformity” of the myocardium. Other causes include disruptions
in neural activity and environmental or psychological stresses such as startle,
fright, anger, and excitement. Coronary artery disease, which is found in most
cases of sudden cardiac death in adults, is generally seen to be a precursor
to conditions of myocardial ischemia and infarction leading to a disruption in
heart rhythm.

Thus, the sequence of events leading to sudden cardiac death according
to current theory is as shown schematically in the form of a flow chart in
Fig. 10.6.1.

  disruption in
  heart rhythm

     myocardial
ischemia/infarction 

           fall in 
coronary blood supply

     HEART FAILURE

      fall in
cardiac output

      disruption in neural activity,
environmental/psychological stress

   coronary artery
        disease

Fig. 10.6.1. A summary of current theory on the sequence of events leading to
heart failure in sudden cardiac death.

A difficulty with this sequence of events is that it proposes that a fall in
cardiac output is followed by a fall in coronary blood flow. The mechanism
for this sequence is not clear, if indeed possible. If the fall in cardiac output
leads to a drop in aortic pressure, then it is well known that autoregulation
of coronary blood flow ensures that this does not lead to a fall in coronary
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blood flow. As discussed briefly in Section 1.2, in the absence of this protective
regulatory feature of the coronary circulation the system would behave as an
unstable “positive feedback” system in which a fall in cardiac output would
lead to a fall in coronary blood flow and to a further fall in cardiac output
and a further fall in coronary blood flow, etc. It is known that the coronary
circulation as a feedback system does not behave in this way, as discussed in
Section 1.2.

Thus, a fall or disruption in coronary blood flow is unlikely to be the result
of a fall in cardiac output because this is inconsistent with the regulatory
mechanisms of the system. Indeed, the reverse is more consistent with the
regulatory mechanisms of the system and is therefore more likely to be the
case. A fall in cardiac output is more likely to be the consequence rather than
the cause of a fall in coronary blood flow in the sequence of events leading to
sudden cardiac death.

We have seen throughout this book that a fall in coronary blood flow
may result from a disruption in the dynamics of the coronary circulation,
which in turn can result from coronary artery disease, cardiac damage, or a
disruption in neural activity. The fall in coronary blood flow then leads to a
fall in cardiac output, to possible disruptions in heart rhythm, and to heart
failure. This sequence of events is shown schematically in Fig. 10.6.2.

  disruption in the dynamics
  of the coronary circulation

  disruption in
  heart rhythm

     myocardial
ischemia/infarction 

           fall in 
coronary blood supply

     HEART FAILURE      fall in
cardiac output

      disruption in neural activity,
environmental/psychological stress

   coronary artery
        disease

Fig. 10.6.2. A summary of proposed theory on the sequence of events leading to
heart failure in sudden cardiac death.
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10.7 Broken Heart Syndrome

As this book goes to press, an issue of The New England Journal of Medicine
flags one of its leading articles [207] with the banner “Broken Heart Syn-
drome” and a brief news item to the effect that “Sudden emotional distress
... can sometimes produce severe transient left ventricular dysfunction. This
stress-induced cardiomyopathy appears to be a form of myocardial stunning
associated with marked sympathetic stimulation.” Both the banner and news
item provide a particularly fitting epilogue to this chapter, and, indeed, to the
principal tenet of this book that dynamic pathologies in the coronary circula-
tion can produce calamities equal to those produced by structural pathologies.

The authors of the article report in more detail that “.. a unique pattern
of transient myocardial dysfunction can occur after severe emotional stress.
Patients with this syndrome have evidence of exaggerated sympathetic acti-
vation, with plasma catecholamine levels several times those in age- and sex-
matched patients with Killip class III myocardial infarction. Although our
data suggest that catecholamines may be central to the mechanism of stress-
related myocardial stunning, a more complete understanding of the pathogen-
esis of this syndrome awaits further research.” Three possible mechanisms are
discussed: epicardial coronary arterial spasm, microvascular spasm, and direct
myocyte injury. It is concluded that “Emotional stress can precipitate severe,
reversible left ventricular dysfunction in patients without coronary disease.
Exaggerated sympathetic stimulation is probably central to the cause of this
syndrome.”

As mentioned in Section 10.6, psychological stresses such as startle, fright,
anger and excitement, have been identified to cause disruptions in heart
rhythm associated with sudden cardiac death [158]. Emotional stresses that
have been identified in conjunction with the broken heart syndrome include
death in a family, accident, fear and surprise [207]. These emotional stresses
may clearly have some features in common with the above psychological
stresses, but the key to the new findings is that the broken heart syndrome is
marked by highly elevated plasma levels of catecholamines and “stress-related
neuropeptides”. These agents are known to control parameters that affect the
dynamics of the coronary circulation as they produce changes in vascular cal-
ibers and vascular resistance. The broken heart syndrome may therefore be
considered another example of a disruption in, indeed an insult to, the dy-
namics of the coronary circulation leading to a fall in coronary blood supply
and to a fall in cardiac output, as outlined schematically in Fig. 10.6.2. Thus,
both the sudden cardiac death syndrome and the broken heart syndrome offer
examples of dynamic pathologies in the coronary circulation, although an im-
portant distinction of the latter is that it is found to be transient and reversible
[207].

One of the most important aspects of dynamic pathologies is that, unlike
structural pathologies, they do not leave a “footprint” after they have resolved
or produced their damage. Following sudden cardiac death, indeed following
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any death attributed to heart disease, only structural pathologies can usually
be found and they become the focus of attention. Any dynamic pathologies
involved are not in evidence because they are no longer at play. The broken
heart syndrome on the other hand, with the distinction of being transient, re-
versible and free from coronary artery disease, offers an opportunity to detect
dynamic pathologies while they are at play and in “pure form” because the
syndrom is not associated with coronary artery disease.

10.8 Summary

Coronary blood flow can be disrupted by dynamic pathology in the same way
that it can be disrupted by vascular pathology. Any disruption in the exquisite
harmony between the pulsatile rhythm of the input pressure driving the flow,
the pulsatile rhythm of the contracting myocardium muscle and its effect on
coronary vessels imbedded within the muscle tissue, and the combination of
wave propagation and wave reflections within the coronary vascular tree, can
produce dynamic pathology that disrupts coronary blood flow.

Changes in the architecture or mechanical properties of coronary vascula-
ture have significant dynamical consequences and may move the system away
from its magic norm or norms, which are modes of operations in which the dy-
namics of the system appear particularly simplified or optimal in some sense.
Every aspect of the distribution and propagation of pressure and flow within
the tree model is affected. And while the dynamics of the coronary circulation
are far more complicated than those of the 11-level tree model, it is reason-
able to speculate that changes in the architecture or mechanical properties
of the coronary arteries, whether brought on by neural or humoral agents,
under normal or pathological conditions, will have significant effects on the
dynamics of coronary blood flow.

Coronary flow reserve and vascular restructuring are two mechanisms by
which the coronary circulation can increase coronary blood flow. The trigger
for the first is an increase in oxygen consumption by the heart muscle and its
response time is of the order of seconds, while the trigger for the second is
repeated episodes of hypoxia and momentary ischemia and its response time
is at best of the order of weeks but more likely months or years. It would
thus seem that coronary flow reserve is designed to deal with acute shortfalls
in coronary blood flow, as at the onset of increased physical activity, while
vascular restructuring is designed to deal with chronic shortfalls in coronary
blood flow, as under the progression of obstructive coronary artery disease.
The conundrum of coronary flow reserve is that it may “mask” the gradual
shortfall in coronary blood flow at the initial stages of coronary heart dis-
ease and thereby prevent the mechanism of vascular restructuring from being
triggered. At the latter stages of the disease the capacity of coronary flow
reserve is largely depleted and the mechanism of vascular restructuring may
not have the time required for its slow course of action. Physical conditioning
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may forestall this course of events by deliberately and regularly triggering the
mechanism of vascular restructuring while coronary flow reserve is still intact.

The placement of a coronary bypass graft is usually viewed in terms of
providing a conduit for steady flow through the graft. If the pulsatile nature
of the flow and the elasticity of the vessels are considered, the effects of wave
propagation and wave reflections produce a pressure difference between the
two ends of the graft that is more favorable to flow in the desired direction
through the graft when the graft is stiffer than the native coronary artery and
when the diameter of the graft is smaller than that of the native coronary
artery.

Because of impedance mismatch and consequent wave reflections, the
placement of a stent within a coronary artery has the effect of producing
a pressure distribution with a favorable pressure difference within the native
coronary artery such that the pressure at entrance to is higher than that at
exit from the artery. This effect is least significant when the stent is small and
is placed near the entrance end of the coronary artery, and most significant
when the stent is large and is placed near the exit end. From a clinical stand-
point the first of these scenarios produces the least disturbance to flow and
possibly a reduced chance of restenosis, while the reverse is true in the second
scenario.

In the course of events leading to sudden cardiac death a fall in coronary
blood supply is more likely to be the cause rather than the consequence of a
fall in cardiac output. Because of the sudden and unexpected timing of the
phenomenon, the fall in coronary blood supply may be caused by a disruption
in the dynamics of coronary blood flow as discussed in this and previous
chapters.

Broken heart syndrome, where transient and reversible ventricular dys-
function is observed in patients without coronary artery disease, may be an-
other example of a disruption in the dynamics of the coronary circulation,
that is, another example of a dynamic pathology. Furthermore, while in sud-
den cardiac death the dynamic pathology is usually coupled with structural
pathologies, in broken heart syndrome, where the effects are transient, re-
versible and free from coronary artery disease, the dynamic pathology is in
“pure form”.
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clinical importance, 15
controversy, 15–17
effectiveness, 16
evolutionary origin?, 17
presence, 16, 18

complex conjugate roots, 86, 106
complex exponential function, 117, 119,

121, 123, 142
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complex harmonics, 208
complex impedance, 139, 140, 186, 194,

199, 201, 207, 213, 236
compliance, 57, 58, 60–62, 70, 132, 200,

203, 211, 223, 249
composite wave, waveform, 65, 115,

145–147, 157, 158, 174, 175, 179,
181, 185, 189, 190, 199, 207, 213,
219, 223, 241, 343–347

conservation of mass, 88
constant flow rate, 91, 95, 96, 99, 100,

103, 104, 107, 109, 110, 112–114
constant pressure drop, 90, 93–95, 99,

101–103, 113, 114
continuum, 35
control mechanisms, 361
coronary, 7, 11, 24, 33
coronary arterial tree, 334, 344, 360
coronary arteries, 7, 308, 316, 370

acute marginal, 11
anatomical risk factor, 13
anterior descending, 25
back view, 26
balanced, 12, 14
branching structure, 14
collaterals?, 14, 17, 18
delivering vessels, 21–25, 34
diameters, 29, 30
distributing vessels, 21–25, 34
front view, 9, 11, 26
interconnected mesh?, 16
left, see left main
left anterior descending, 8, 9, 11, 22
left circumflex, 9–13, 24, 25
left main, 6–10, 27, 33, 36, 38
left ventricular branches, 10
obtuse marginal, 11
origin, 6, 7
posterior descending, 9–11, 13, 14, 25
posterior view, 14
right, 6, 7, 9–13, 24, 25, 27, 33, 36, 38
side view, 26

coronary artery disease, 3, 5, 31, 33, 34,
372

coronary blood flow, 36, 182, 190, 288,
344, 362, 371, 384–386, 388

driving force, 36
dynamics, 36, 66, 76, 79, 177, 378,

388, 389

modelling, 67
rate, 29
regulation, 4, 80

coronary blood supply, 389
origin, 5
stability of, 3, 4

coronary circulation, 37, 38, 40, 42, 79,
112, 182, 299, 313, 315, 329, 335,
344, 349

dynamics, 36, 37, 62, 71, 76, 79, 80,
88, 114, 115, 142, 143, 178, 198,
221, 222, 239, 249, 253–257, 300,
361, 362, 384, 386–389

measurements, 37
modelling, 68, 89

coronary flow reserve, 27, 29–32, 34,
370, 371, 373–377, 388

bank analogy, 32, 374
conundrum, 32, 370, 376, 388
design conflict?, 31, 32

coronary heart disease, 3, 5, 21, 25, 372,
373, 375, 376, 388

coronary network, 33
coronary vasculature, 257, 297, 299, 336
critically damped, 87, 88, 112, 124, 126,

128, 129, 143
cube law, 23, 27, 29, 271, 297, 306, 311,

312, 314, 327, 336, 350

damper, dashpot, 67, 68, 73, 76, 82
design conflict?, 31, 32, 34
diastole, diastolic, 241
displacement, 67
dominance, left, right, 12, 14, 33
dynamic pathology, 361, 362, 387–389

effective impedance, admittance,
317–329, 331, 332, 360

elastic spring, 71
elastic tube, 56, 57, 62–64, 76, 279–281,

283, 285–288, 298, 313, 315, 318,
324–326, 328, 329, 343, 359, 360,
378, 382

elasticity, 30, 41, 56, 64, 66, 72, 74, 76,
299, 379

modulus of, 64
Young’s modulus, 64

elasticity factor, 283, 284
electric charge, 72, 74
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electric circuit, 72–74, 76, 80
electric current, 71–74, 76, 81
electric potential, voltage, 71
electrical analogy, 47, 56, 71, 76, 132
emotional stress, distress, 387
energy dissipation, 41, 138

Fahraeus-Lindqvist effect, 45
fast Fourier transform, 151, 156, 157,

163–165, 174
flow “steal”, 114
flow division, 89
flow in a tube, 38, 39, 48, 49, 55, 72–75,

256, 258
developing, 40, 41, 50, 75
entrance region, 41, 46, 75
entry length, 40, 41
flow rate, 40, 45
fully developed, 39, 41, 50, 272, 273
Hagen-Poiseuille, 39
incompressible, 46
pressure drop, 40
velocity profile, 39
with a narrowing, 45, 46

flow in elastic tube, 76
flow rate, 73, 74, 88–90
flow wave, 178–180, 185, 189, 192, 193,

195, 200–203, 209, 211, 214, 215,
217, 219, 220

forced dynamics, 88, 115, 119, 121, 122,
124, 126–130, 142, 143

forced oscillations, 121, 124
Fourier analysis, 145–148, 156, 169, 172,

174, 175, 345
Fourier coefficients, 149, 151, 153, 157,

160, 166, 167, 169, 171, 184
Fourier series, representation, 149–151,

153–157, 162–164, 166, 171,
173–175

free dynamics, 84, 85, 87, 88, 113, 115,
119, 126–128, 130, 142

frequency, 53, 65, 150
high, 150, 175

frequency parameter, 275, 277–279, 281,
283, 284, 286, 307–309, 315, 329

friction, 76, 82
friction coefficient, 69, 70, 81
friction constant, 73
friction, law of, 69, 70

functional design, 21, 25, 33, 34
fundamental frequency, 65, 150, 152,

156, 158, 164, 313
fundamental harmonic, 65, 150, 152,

158, 175
fundamental period, 152, 156, 158, 164

general solution, 117, 118, 127
generation, see level, level coordinate

Hagen-Poiseuille flow, 39
harmonic components, 65
harmonic compsition, 30
harmonics, 115, 147, 150, 155, 169,

171–175, 179–181, 184, 189, 191,
192, 199, 207, 214, 219, 224, 345

heart
acute margin, 25
anterior interventricular sulcus, 22
apex, 9, 11, 12
as a pump, 1, 2, 21, 32, 33
atrioventricular groove, 7
atrioventricular septum, 24
atrioventricular sulcus, 7, 24
back view, 10, 26
broken, 387
crux, 12, 13
front view, 8, 9, 26
interventricular groove, 8
interventricular plane, 25
interventricular septum, 8, 13, 24, 25
interventricular sulcus, 25
interventricular wall, 9
left ventricle, 13
obtuse margin, 25
orientation, 8
posterior atrioventricular sulcus, 25
posterior interventricular sulcus, 25
pumping action, 36
right ventricle, 13
side view, 26
upright position, 8
ventricles, 5, 13, 25
ventricular walls, 13
zones, 21, 25, 26, 34

heart disease, 3, 5, 33
heart failure, 3, 33, 372, 376, 386
homogeneous part of solution, 116, 118,

119, 142
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Hooke’s law, 70, 71

imaginary part, 118, 119, 121
impedance, 66, 76, 137–139, 186, 240,

317–319, 359
in parallel, 141
in series, 140

impedance matching, 327–329, 341–343,
350, 356–358, 360, 367

impedance mismatch, 381, 389
incompressible, 273
incompressible fluid, 45, 56, 58, 62
indicial equation, 85, 103
inductance, 45, 47–49, 71–74, 76, 79–81,

112, 114, 132, 141, 190, 193, 195,
222, 371

inductance parameter L, 79
inductive flow, 97, 101, 105–107, 109,

114, 196–198, 236, 239, 240, 252
inductive tube, 92, 94–96, 101, 106, 107,

113
inductor, 71, 72, 219, 235, 236, 253
inertance, inertial constant, 47, 51,

67–69, 76, 130
inertia, 41, 45, 47, 49, 51, 52, 54, 67, 71,

76, 82, 86, 280
inertial effects, 53–55, 92, 93, 185,

186, 190, 191, 211, 219, 235, 236,
238–240, 251–253, 275, 364

inertial resistance, 67
inertial time constant, 49–52, 54, 55, 84,

85, 102, 107, 109, 112, 130, 134,
192, 239

inflow, 178, 242
inflow, outflow, 249–254
input impedance, admittance, 319, 360
input pressure, 299, 330, 332, 333, 344,

346
integrated model, 361, 362
intramyocardial pressure, 198, 242, 299
inviscid flow, 281, 285

level, level coordinate, 301, 302, 330,
359

lumped model, 39, 40, 67, 75, 79, 89,
112, 127, 130, 143, 221, 222, 257,
362, 363

lumped model concept, 37, 39, 81, 112
lumped properties, 67, 71, 130

magic norm, 362–368, 371, 388
mammary artery, 381
mass, 67–69, 73, 76, 81, 82
mass-damper-spring system, 76
maximal activity, 34
mechanical analogy, 66–70, 76, 81
model, 36–38
model parameters, 38
modelling, 36–38, 41, 71, 81, 112
Moen-Korteweg formula, 64, 281, 285
Moen-Korteweg wave speed, 314–316,

319, 326, 329, 331, 336, 340, 350,
355–357, 360

Newtonian fluid, 35, 42
no-slip condition, 39, 42–44, 46, 79, 112,

281
node points, 293, 294, 297
nonrigid tube, 56
numerical form, formulation, 164–167,

169, 172, 175

one-step waveform, 192, 196, 201, 209
open tree structure, 265
opposition to flow, 317
optimal dynamics, 137
oscillatory flow, 274, 276–278
oscillatory part, 169, 170
oscillatory pressure, flow, 47, 60, 61
outflow, 178, 242
overdamped, 87, 109, 110, 112, 119,

122, 128, 142
oxygen delivery, 372, 373
oxygen extraction, 372

parallel, 57, 68, 88, 89, 91–93, 95–98,
100, 113, 191, 201, 203, 204, 219,
223

parameters, physical, 83, 85, 192
parameters, time, 85
particular part of solution, see

particular solution
particular solution, 116, 118–120, 127,

131, 142
peak flow, 309, 310
peak shear stress, 311–313
peaking phenomenon, 336, 349–351,

354, 360
period, 148, 150, 175
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periodic function, 53, 148
phase angle, 160, 161, 179, 180, 219, 292
phase angle, shift, 54, 55
physical activity, 31, 371, 373–376
physical conditioning, 377, 388
physical exercise, 32, 373, 374
piecewise waveform, 157, 158, 160, 162,

175, 192, 197, 201, 209
Poiseuille flow, 39, 42, 43, 46, 75, 259,

266, 272, 297
Poisson’s ratio, 282
position coordinates, 303
power law, 268, 308, 359
power law index, 268–271, 306, 308,

312–314, 327, 359
power law relation, 297
pressure difference, 43, 68, 69, 72–74
pressure distribution, 264, 288, 290–297,

302, 306, 329, 331, 333–343, 345,
359, 379, 380, 382–384, 389

pressure drop, 40, 89, 91, 178, 180
pressure gradient, 43, 272, 273
pressure pulse, 65
pressure wave, 179, 184, 192, 193, 195,

202, 209, 211, 215, 217, 219, 300
pressure-flow measurements, 36
pressure-flow relations, 30, 37, 38,

179–181, 186, 187, 190, 198, 213,
219

propagating wave, 381
psychological stress, 385
pulmonary circulation, 2, 5
pulsatile flow, 30, 37, 38, 41, 47, 75,

190, 255, 256, 272, 274, 278–280,
283, 285, 287, 288, 297, 298, 329,
359, 360, 381, 382, 389

pump, 1, 32, 33
heart as a, 1, 2, 32, 33

pumping action, 36

quasi-steady state, 52–54

R-scaled, 186, 191, 192, 200–203, 219,
225–227, 231, 232, 237, 245

reactance, 66, 76, 92, 131, 133–135, 137,
138, 141, 143, 240

reactive effects, 187
real part, 118–120
recoil, 88, 143

reflection coefficient, 291, 293, 294,
320–323, 331

reflection site, 288, 291, 292, 330, 359,
381

regulation, autoregulation, regulatory
mechanisms, 4, 299, 361

resistance, 46, 49, 57, 66–68, 71, 73, 74,
76, 79–81, 86, 92, 98, 112, 130,
132, 138, 141, 179–182, 185, 191,
219, 222, 223, 252, 317, 318

resistance parameter R, 79
resistance to flow, 30, 36, 42, 44, 47, 66,

68, 80
resistance to wave propagation, 66, 76
resistance vessels, 30, 371
resistive flow, 60, 61, 97, 99–101, 106,

109, 113, 114, 226, 227, 250
resistive tube, 92, 94–96, 101, 105–107,

113
resistor, 72, 113
reverse flow, 243
Reynolds number, 40, 285, 287
rigid tube, 56, 62, 66, 272, 273, 276–281,

297, 313, 318, 381
RLC system, 79, 80, 113, 115

dynamics, 131, 132, 143
in parallel, 101, 103, 110, 112, 114,

141, 213, 215, 217, 220
in series, 81–84, 87, 113, 114, 122,

124, 126, 128, 129, 135, 141–143,
207, 209, 211, 220

saphenous vein, 381
sequential position, coordinate, 301,

302, 330, 359
series, 68, 82, 88, 190, 191, 199, 219
shear stress, 42, 43, 269, 310
shearing motion, 42
single-step waveform, 151, 152, 175
space dimension, 255–258, 297
spring, 67, 68, 70, 76, 82, 87
spring constant, 70, 71, 73, 82
spring extension, 71
spring resistance, 67
square law, 327, 329, 336, 350
steady flow, 41, 46, 75, 272, 274, 371,

378, 389
steady state, 49–52, 55, 126–129, 131,

137, 143, 211
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steady state dynamics, 127, 143, 179
stent, coronary stent, 381–384, 389
stress

emotional, 387
psychological, 385

sudden cardiac death, 384–387, 389
systemic arterial tree, 335, 338, 360
systemic circulation, 2, 5, 349, 354
systemic vasculature, 336
systole, systolic, 241, 242
systolic phase, 36

time constants, 84
time delay, 76
tissue pressure, 36, 38, 80, 198, 242
transient period, 55
transient state, 49–53, 76, 126, 127, 142,

143, 179, 211
transient state dynamics, 127
travelling wave, 330
tree model, 333–343, 360
tree structure, 14, 15, 33, 35, 37, 301,

302, 306, 307, 321, 343, 359
tube diameter, 66
tube segment, segments, 259, 264, 266,

297
tube, flow in a, see flow in a tube

underdamped, 87, 109, 110, 112, 124,
128, 129, 143

underdamped dynamics, 122
underlying design, 21, 25, 34
unlumped model, 299, 358, 362, 363
unlumped model, analysis, 255–258, 297
unsteady flow, 46

vascular junctions, 288, 359
vascular restructuring, 371, 373, 388
vascular structure, 255, 297
vascular tree, structure, 318, 330, 359

vasoconstriction, 366–370
vasodilatation, 366–370
vasodilator drugs, 220
velocity gradient, 42, 43
velocity profiles, 276–279, 286
ventricles, 5
vessel segment, 299, 302, 303, 330, 359
vessel wall, 66
viscoelastic windkessel, 230, 231, 253
viscoelastic, viscoelasticity, 41, 76, 229,

230, 233–235, 250, 251
viscosity, 41–43, 64, 272

apparent, 45
coefficient of, 42
Fahraeus-Lindqvist effect, 45

voltage, 72–74, 81

wall thickness, 64
wave crest, 65
wave length, 64–66, 284, 285, 293–295,

313, 316, 317, 326, 334, 335, 338,
339, 359

estimate, 65
wave motion, 63, 65, 280, 287, 298
wave propagation, 30, 56, 62, 63, 65, 66,

76, 255, 256, 258, 287, 290, 297,
317, 359

wave reflections, 30, 36, 64, 66, 76, 80,
255, 287, 288, 290–294, 297, 300,
316–323, 325, 327, 330, 333, 334,
343, 359, 360, 371, 379–381, 384,
389

wave speed, 56, 64–66, 280–285, 287,
298, 313–315, 319, 324–326, 331,
336, 340, 342, 350, 355–357, 360

estimate, 64
windkessel, 221, 222, 224, 249, 252
Womersley number, 275, 307

Young’s modulus, 66, 281, 285, 379
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