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Preface

Introduction

Some people distinguish between savings and investments, where savings are
monies placed in relatively risk-free accounts with modest rewards, and where
investments involve more risk and the potential for greater rewards. In this
book we do not distinguish between these ideas. We treat them both under
the umbrella of investing.

In general, income falls into two categories: earned income—which is
the income derived from your everyday job—and unearned income—which
is income derived from investing. You attend college to strengthen your
prospects for earned income, so why do you need to worry about unearned
income, namely, investment income?

There are many reasons to invest and to learn about investing. Perhaps
the primary one is to take charge of your own financial future. You need
money for short-term goals (such as living expenses, emergencies) and for
long-term goals (such as buying a car, buying a house, educating children,
paying catastrophic medical bills, funding retirement).

Investing involves borrowing and lending, and buying and selling.

• borrowing and lending. When you put money into a bank savings
account, you are lending your money and the bank is borrowing it. You can
lend money to a bank, a business, a government, or a person. In exchange
for this, the borrower promises to pay you interest and to return your initial
investment at a future date. Why would the borrower do this? Because the
borrower anticipates using this money in a way that earns more than the
interest promised to you. Examples of borrowing and lending are savings
accounts, certificates of deposits, money-market accounts, and bonds.

• buying and selling. When you buy something for investment purposes,
you are buying an asset from a seller. You expect that this asset will
generate a profit or will increase in value, part of which will be returned
to you. Examples of this are owning real estate or stocks in companies.
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There are two ways that you can make (lose) money buying stocks: stock-
price appreciation (depreciation)—which depends on the expectations and
opinions of the public—and dividends paid to you by the company—which
depend on the company sharing its profits with you, a shareholder.

When investing, there are three things that can impact your profit—taxes,
inflation, and risk. The first, taxes, should concern everyone. The second, infla-
tion, should concern you if you make a profit. The third, risk, should concern
you before you make an investment because risk influences the profitability of
the investment. Generally, if you expect a high return on your money, then
you should also expect a high risk. In the same way, low risks are usually asso-
ciated with low returns. The larger the risk the greater the chance of actually
losing money. There are various types of risk: inflation, market, currency fluc-
tuations, political, interest-rate, liquidity, economic, default, business, etc.

Objectives and Background

We wrote this book with two objectives in mind:

• To use investing as a vehicle to introduce you, the student, to ideas, tech-
niques, and applications that you might not encounter in your other math-
ematics courses. These include proofs by induction, recurrence relations,
inequalities (in particular, the Arithmetic-Geometric Mean inequality and
the Cauchy-Schwarz inequality), and elements of probability and statistics.

• To introduce you, the student, to elements of investing that are of life-long
practical use. If you have not yet done so, then as you advance through life,
you are forced to deal with such things as credit cards, student loans, car-
loans, savings accounts, certificates of deposit, money-market accounts,
mortgage payments, buying and selling bonds, and buying and selling
stocks.

This book targets students at the sophomore/junior level, without assum-
ing a background or any experience in investing. We assume knowledge of
a two-semester calculus course as well as some mathematical sophistication.
Specifically we use inequalities, log, exp, differentiation, the Mean Value The-
orem, integration, Newton’s method, limits of sequences, geometric series, the
binomial expansion, and Taylor series.

There are problems at the end of each chapter. Some of these problems
require that you have access to a spreadsheet program and that you know how
to use it. A simple scientific or financial calculator (with functions such as log,
exp, and the ability to calculate yx) is all that is required for the remainder
of the problems that involve arithmetical calculations. Some problems require
you to obtain data from the World Wide Web (WWW), so access to the
WWW, and familiarity with a browser, is a prerequisite.1

1 The web page www.mathematics-of-money.com is dedicated to this book.
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Comments

The following numbering system is used throughout the book: Example 2.3
refers to the third example in Chapter 2, Theorem 4.1 refers to the first
theorem in Chapter 4, Figure 4.2 refers to the second figure in Chapter 4,
Table 1.3 refers to the third table in Chapter 1, and Problem 1.5 refers to the
fifth problem in Chapter 1.

The symbol � indicates the end of an example, and the symbol � indicates
the end of a proof.

Many of the theorems in the book are given names (for example, The
Compound Interest Theorem). This is done for ease of navigation for the
student.

The problems are divided into two groups: “Walking”, which involve rou-
tine, straight-forward calculations, and “Running”, which are more challeng-
ing problems.

There are two appendices. Appendix A covers mathematical induction,
recurrence relations, and inequalities. This material should be introduced at
the beginning of the course. Appendix B covers elements of probability and
statistics. It is not needed until the latter part of the course and can be
introduced as needed. Many students may have seen this material in previous
classes.

Unless indicated otherwise, all numerical results are rounded to three dec-
imal places, and all dollar amounts are rounded to cents. Because of this
convention, when the same calculation is performed in two different ways, the
answers may differ slightly.

In most, but not all, cases in this book the interest rate is assumed to be
positive. It is interesting to note that there are instances when the interest
rate is negative. See, for example, [21]. A good reference on investments is [4].
A more advanced treatment is [18].

The information contained in this book is not intended to be construed as
investment, legal, or accounting advice.

The Family

In order to try to personalize the investment examples and problems in this
book, we have introduced a fictional family, the Kendricks. Helen (48) and
Hugh (50) Kendrick, are husband and wife. They have three children, twins
Wendy (25) and Tom (25), and Amanda (20), a college freshman. Jana Carmel
(35) is one of Hugh’s coworkers.
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1

Simple Interest

Would you prefer to have $100 now or $100 a year from now? Even though the
amounts are the same, most people would prefer to have $100 now because of
the interest it can earn. Thus, whenever we talk of money we must state not
only the amount, but also the time. This concept—that money today is worth
more than the same amount of money in the future—is called the time value
of money. The present value of an amount is its worth today, while the
future value is its worth at a later time. These topics are discussed here
and in Chap. 2. Another reason that most people would prefer to have $100
now is that its purchasing power in the future may be less than at present
due to inflation, which is discussed in Chap. 3.

When money earns interest it can do so in various ways—for example, sim-
ple interest, compounded annually, compounded semi-annually, compounded
quarterly, compounded monthly, compounded daily, and compounded contin-
uously. When referring to an interest rate, it is important to know which of
these methods is being used.1

In this chapter we concentrate on simple interest. Compound interest is
the subject of Chap. 2. A thorough familiarity with these two chapters is
critical for an understanding of the rest of this book.

1.1 The Simple Interest Theorem

We invest $1,000 at 10% interest per year for 5 years. After one year we earn
10% of $1,000, namely, $100. We withdraw that interest and put it under a
mattress, leaving the original $1,000 to earn interest in the second year. It too
earns $100, which we also put under the mattress, so after two years we have
the original $1,000 and $200 under the mattress. We continue doing this for
5 years, and so after five years we have the original $1,000 and $500 under

1 A reference on interest rates with a historical summary dating back to about 400
B.C. is [15].
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the mattress, for a total of $1,500. Table 1.1 shows the details. (Check the
calculations in this table using a calculator or a spreadsheet program, and fill
in the missing entries.)

Table 1.1. Simple Interest

Year’s Beginning Year’s End
Year Principal Interest Amount

1 $1,000.00 $100.00 $1,100.00
2 $1,000.00 $100.00 $1,200.00
3
4 $1,000.00 $100.00 $1,400.00
5 $1,000.00 $100.00 $1,500.00

We now derive the general formula for this process. First, the total amount
we have at any time is the future value of $1,000 at that time. Thus, $1,500
is the future value of $1,000 after 5 years. Second, the annual interest rate
is called the nominal rate, the quoted rate, or the stated rate. Rather
than restricting ourselves to annual calculations, we let n measure the total
number of interest periods, of which we assume that there are m per year.
(For example, if interest is calculated four times a year, that is, every three
months, for five years, then m = 4 and n = 4 × 5 = 20.) So we let2

P0 be the initial principal (present value, lump sum) invested,
n be the total number of interest periods,
Pn be the future value of P0 at the end of the nth interest period,
m be the number of interest periods per year,

i(m) be the nominal rate (annual interest rate), expressed as a decimal,
i be the interest rate per interest period.

The interest rate per interest period is

i =
i(m)

m
.

For example, if the nominal rate is 12% calculated four times a year, then
m = 4 and i(4) = 0.12, so i = 0.12/4 = 0.03, the interest rate per quarter.

Using this notation we rewrite Table 1.1 symbolically in spreadsheet for-
mat3 as Table 1.2, which is explained as follows.
2 Throughout this chapter these symbols are used for this purpose. It is assumed

that the units of currency are dollars, that m and n are positive integers, and
that i(m) ≥ 0. Similar comments apply to subsequent chapters, as appropriate.

3 We use this spreadsheet format throughout. It is always advisable to check calcu-
lations in more than one way—the spreadsheet is an excellent tool for this. The
last entry on the Year 1 row, namely, P0 + iP0 = P1, means that P0 + iP0 is the
value of that entry, and we call it P1.
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Table 1.2. Simple Interest—Spreadsheet Format

Period’s Beginning Period’s End
Period Principal Interest Amount

1 P0 iP0 P0 + iP0 = P1

2 P0 iP0 P1 + iP0 = P2

3 P0 iP0 P2 + iP0 = P3

4 P0 iP0 P3 + iP0 = P4

5 P0 iP0 P4 + iP0 = P5

At the end of the first interest period (n = 1) we receive iP0 in interest,
so the future value of P0 after one period is

P1 = P0 + iP0 = P0 (1 + i) .

At the end of the second interest period (n = 2) we again receive iP0 in
interest, so the future value after two periods is

P2 = P1 + iP0 = P0 (1 + i) + iP0 = P0 (1 + 2i) .

At the end of the third interest period (n = 3) we again receive iP0 in
interest, so the future value after three periods is

P3 = P2 + iP0 = P0 (1 + 2i) + iP0 = P0 (1 + 3i) .

This suggests the following theorem.

Theorem 1.1. The Simple Interest Theorem.
If we start with principal P0, and invest it for n interest periods at a nominal
rate of i(m) (expressed as a decimal) calculated m times a year using simple
interest, then Pn, the future value of P0 at the end of n interest periods, is

Pn = P0 (1 + ni) , (1.1)

where i = i(m)/m.

Proof. We can prove this theorem in at least two different ways: either using
mathematical induction (see p. 245) or using recurrence relations (see p. 247).

We first prove it using mathematical induction. We know that (1.1) is true
for n = 1. We assume that it is true for n = k, that is,

Pk = P0(1 + ki),

and we must show that it is true for n = k + 1.
Now Pk+1, the amount of money at the end of period k + 1, is the sum of

Pk, the amount of money at the beginning of this period, and iP0, the interest
earned during that period, that is,
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Pk+1 = Pk + iP0,

so
Pk+1 = P0(1 + ki) + iP0 = P0(1 + (k + 1)i),

which shows that (1.1) is true for n = k + 1. This concludes the proof by
mathematical induction.

We now prove (1.1) using recurrence relations. We know that

Pk+1 = Pk + iP0,

so if we sum this from k = 0 to k = n − 1, then we have

n−1∑
k=0

Pk+1 =
n−1∑
k=0

Pk +
n−1∑
k=0

iP0.

By canceling the common terms on both sides of this equation, we find that

Pn = P0 +
n−1∑
k=0

iP0 = P0(1 + ni).

This concludes the proof using recurrence relations. ��

Comments About the Simple Interest Theorem

• We notice that Pn = P0(1 + ni) is a function of the three variables P0, n,
and i. We see that it is directly proportional4 to P0 and linear in each of the
other two variables. Thus, a plot of the future value versus any one of these
three variables, holding the other two fixed, is a line. An example of this
is seen in Fig. 1.1, which shows the future value of $1 as a function of n in
years for 5% (the lower curve) and 10% (the upper curve) nominal interest
rates i(1). You might ask why we selected P0 = 1. We did this because Pn

is directly proportional to P0, so knowing the value of Pn when P0 = 1
allows us to compute Pn for any other P0, simply by multiplying by P0.
This is an important point, which recurs in later chapters.

• The quantity Pn −P0 is the principal appreciation. Notice that, in the case
of simple interest, Pn −P0 = P0ni, that is, Pn −P0 is directly proportional
to P0, n, and i, so doubling any of them doubles the principal appreciation.
This is seen in Fig. 1.1. For example, if we look at n = 20, then we see
that the vertical distance from the future value at 10% ($3) to the present
value ($1) is twice the distance from the future value at 5% ($2) to the
present value ($1).

4 A function f(x) is directly proportional to x if f(x) = ax, where a is a constant.
“Directly proportional” is a special case of “linear”.
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Fig. 1.1. Future Value of $1 at 5% and 10% simple interest

• The quantity (Pn − P0)/P0 is called the rate of return. Notice that in
the case of simple interest we have (Pn − P0)/P0 = ni, so doubling either
n, the number of interest periods, or i, the interest rate per period, doubles
the rate of return.

• The quantity (Pn − P0)/(nP0) is the rate of return per period. No-
tice that in the case of simple interest we have (Pn − P0)/(nP0) = i, so
the simple interest rate per interest period is the rate of return per period.

• Equation (1.1) is valid for n ≥ 0. What happens if n < 0? In other words,
if we accumulate P0 over the past n years at a simple interest rate of i
per year, then what amount, which we call P−n, did we start with n years
ago? From (1.1) we have

P0 = P−n(1 + ni),

so
P−n = P0

1
1 + ni

, (1.2)

which is not (1.1) with n replaced by −n. Thus, (1.1) is valid only for
n ≥ 0.

Financial Digression
A common form of investing is through a certificate of deposit (CD).
CDs are issued by financial institutions. The institution pays a fixed interest
rate on the lender’s initial investment for a specified term. Typical terms
are 6 months, and 1, 2, or 5 years. Usually the longer the term, the higher
the rate because long-term investments are usually riskier than short-term
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investments.5 The lender cannot withdraw the initial investment before the
end of the term without penalty (see Problem 1.4 on p. 10), but the lender can
withdraw the interest as it is credited to the lender’s account, if desired. Often
a minimum amount is required to open a CD. Some CDs are insured up to a
maximum amount by the Federal Deposit Insurance Corporation (FDIC) and
so are relatively risk-free. Others are uninsured, and should the institution
fail, the lender could lose money. Such CDs usually pay higher rates than
FDIC-insured CDs.

Certificate of Deposit
Typical Term 6 to 60 months
Payment Frequency At maturity for short-term; monthly for long-term
Penalty Early withdrawal
Issuer Commercial Banks, Savings & Loans, Credit Unions
Risks Inflation, Interest Rate, Reinvestment, Liquidity
Marketable Some
Restrictions Minimum Investment

Example 1.1. Tom Kendrick invests $1,000 in a CD at 10% a year for five
years. He withdraws the interest at the end of each year. What amount does
he have at the end of five years assuming that he does not spend or invest the
interest?

Solution. This is a simple interest example because the interest is withdrawn
at the end of each year. Here the principal is $1,000 (so P0 = 1000), the
number of periods per year is 1 (so m = 1), the interest rate is 10% (so
i(1) = 0.1, and i = i(1)/m = 0.1), and the number of years is 5 (so n = 5).
Thus, the final amount is P5 = 1000(1 + 5(0.1)) = $1,500, which agrees with
the step-by-step calculation on p. 2. �
Example 1.2. Helen Kendrick invests $1,000 in a CD that doubles her money
in five years. To what annual interest rate does this correspond assuming that
she withdraws the interest each year?

Solution. Here the principal is $1,000 (so P0 = 1000), the number of periods
per year is 1 (so m = 1), the number of years is 5 (so n = 5), and the final
amount is $2,000 (so P5 = 2000). From (1.1) we have

2000 = 1000(1 + 5i),

so i = 0.2 and i(1) = mi = 0.2, which is 20%.
We could also solve this using (1.2) with P0 = 2000, P−5 = 1000, and

n = 5, so that

1000 = 2000
1

1 + 5i
,

which again yields i(1) = mi = 0.2. �
5 Examples of such risks are an institution defaulting on payment or an investor

being locked in to a lower interest rate. Risks are discussed in greater detail in
Chaps. 5 and 10.
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Financial Digression
There are several investment vehicles available at banks and savings and loans
in addition to CDs. The most common ones are savings accounts, checking
accounts, and money market accounts.

Savings accounts pay a stated annual interest rate. In many cases, the
interest is computed based on the daily balance. Checking accounts may
or may not pay interest. Both savings and checking accounts are “liquid”,
that is, the holder of the account may withdraw money at any time with-
out penalty. Savings and checking accounts are frequently insured up to a
maximum amount by the federal government.

The funds in a money market account are invested in vehicles such
as short-term municipal bonds, Treasury bills,6 and forms of short-term cor-
porate debt. Money market accounts tend to pay a higher rate than savings
accounts, checking accounts, or CDs. Money market accounts are not liquid
in the sense that the number of withdrawals per month is limited.

The rates offered at different institutions for CDs, savings and checking
accounts, and money market accounts are found in the financial sections of
large city papers as well as financial newspapers such as the Investor’s Busi-
ness Daily and The Wall Street Journal.

Savings Account
Typical Term None
Payment Frequency Monthly
Penalty None
Issuer Commercial Banks, Savings & Loans, Credit Unions
Risks Reinvestment
Marketable No
Restrictions None

Example 1.3. Helen Kendrick has a savings account that pays interest at a
nominal rate of 5%. Interest is calculated 365 times per year on the minimum
daily balance and credited to the account at the end of the month. Helen
has an opening balance of $1,000 at the beginning of April. On April 11 she
deposits $200, and on April 21 she withdraws $300. How much interest does
she earn in April?

Solution. Here i(m) = 0.05 and m = 365, so i = 0.05/365. From April 1 to
the end of April 11 Helen has $1,000 in the bank, so the interest earned is
1000 (1 + 11(0.05/365)) − 1000 = $1.51.7 However, she does not receive this
$1.51 until the month’s end. From April 12 to the end of April 20 Helen has
$1,200 in the bank, so the interest earned is 1200 (1 + 9(0.05/365)) − 1200 =
$1.48. However, she does not receive this $1.48 until the month’s end. From

6 We discuss Treasury bills in Section 8.5.
7 Note that interest is computed on the minimum daily balance. On April 11 the

minimum balance is $1,000.
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April 21 to the end of April 30 Helen has $900 in the bank, so the interest
earned is 900 (1 + 10(0.05/365)) − 900 = $1.23. At this stage Helen receives
$1.51 + $1.48 + $1.23 = $4.22 in total interest.8 �

1.2 Ambiguities When Interest Period is Measured in
Days

From a mathematical point of view, there is no ambiguity in calculating n, the
total number of interest periods, and m, the number of interest periods per
year. However, in practice, these quantities are ambiguous when the interest
period is measured in days.

Number of Days Between Two Dates
There are different conventions used to calculate the total number of days

between two dates. The most common are based either on the actual number
of days between the dates or on a 30 day month.

The actual or exact number of days between two dates is calculated
by counting the number of days between the given dates, excluding either the
first or last day. Thus, the actual number of days between January 31 and
February 5 is 5. Table 1.3 on p. 9 numbers the days of a year and is useful
when computing the actual number of days.

Example 1.4. How many actual days are there between May 4, 2005 and Oc-
tober 3, 2005?

Solution. From Table 1.3, May 4 is day number 124 and October 3 is day
number 276. So the actual number of days between them is 276 − 124 = 152
days. �

In the case of a leap year, there are two conventions: either February 29 is
ignored, or it is included, in which case all numbers in Table 1.3 after February
28 are increased by one. In the actual method, February 29 is included.

The second convention, the 30-day month method, assumes that all
months have 30 days. Here the number of days from the date m1/d1/y1 to
the date m2/d2/y2, where mi is the number of the month, di the day, and yi

the year of the date (i = 1, 2), is given by the formula9

Number of days = 360 (y2 − y1) + 30 (m2 − m1) + (d2 − d1) . (1.3)

8 Because financial transactions are rounded to the nearest penny, all calculations
are subject to roundoff error. It makes a difference whether the rounding is done
before or after a calculation. For example, rounding 1.3698 + 1.6438 + 1.2328 =
4.2464 after adding gives 4.25; rounding before gives 1.37 + 1.64 + 1.23 = 4.24.

9 Even this formula is not universally accepted. Sometimes additional conventions
are adopted if either d1 = 31 or d2 = 31. (See Problem 1.9 on p. 11.)
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Table 1.3. Numbered Days of the Year

Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 1 32 60 91 121 152 182 213 244 274 305 335
2 2 33 61 92 122 153 183 214 245 275 306 336
3 3 34 62 93 123 154 184 215 246 276 307 337
4 4 35 63 94 124 155 185 216 247 277 308 338
5 5 36 64 95 125 156 186 217 248 278 309 339
6 6 37 65 96 126 157 187 218 249 279 310 340
7 7 38 66 97 127 158 188 219 250 280 311 341
8 8 39 67 98 128 159 189 220 251 281 312 342
9 9 40 68 99 129 160 190 221 252 282 313 343

10 10 41 69 100 130 161 191 222 253 283 314 344
11 11 42 70 101 131 162 192 223 254 284 315 345
12 12 43 71 102 132 163 193 224 255 285 316 346
13 13 44 72 103 133 164 194 225 256 286 317 347
14 14 45 73 104 134 165 195 226 257 287 318 348
15 15 46 74 105 135 166 196 227 258 288 319 349
16 16 47 75 106 136 167 197 228 259 289 320 350
17 17 48 76 107 137 168 198 229 260 290 321 351
18 18 49 77 108 138 169 199 230 261 291 322 352
19 19 50 78 109 139 170 200 231 262 292 323 353
20 20 51 79 110 140 171 201 232 263 293 324 354
21 21 52 80 111 141 172 202 233 264 294 325 355
22 22 53 81 112 142 173 203 234 265 295 326 356
23 23 54 82 113 143 174 204 235 266 296 327 357
24 24 55 83 114 144 175 205 236 267 297 328 358
25 25 56 84 115 145 176 206 237 268 298 329 359
26 26 57 85 116 146 177 207 238 269 299 330 360
27 27 58 86 117 147 178 208 239 270 300 331 361
28 28 59 87 118 148 179 209 240 271 301 332 362
29 29 88 119 149 180 210 241 272 302 333 363
30 30 89 120 150 181 211 242 273 303 334 364
31 31 90 151 212 243 304 365

Example 1.5. How many days are there between May 4, 2005 and October 3,
2005 using the 30-day month convention?

Solution. Here m1 = 5, d1 = 4, y1 = 2005, m2 = 10, d2 = 3, and y2 = 2005,
so (1.3) gives 360 (2005 − 2005) + 30 (10 − 5) + (3 − 4) = 149 days. �

Number of Days in a Year
There are also different conventions used to determine the number of days

in the year. The two most common are the actual method (where the number
of days is either 365 or 366) and the 30-day month method (where the number
of days is computed from 12 × 30 = 360.)

When the actual method is used to calculate the number of days between
two dates and the actual method is used to compute the number of days
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in a year, this is denoted by “actual/actual”. Interest calculated using this
convention is called exact interest.

When the 30-day month method is used to calculate the number of days
between two dates and the 30-day month method is used to compute the
number of days in a year, this is denoted by “30/360”. Interest calculated
using this convention is called ordinary interest.

When the actual method is used to calculate the number of days between
two dates and the 30-day month method is used to compute the number of
days in a year, this is denoted by “actual/360”. Interest calculated using this
convention is said to be computed by the Banker’s Rule.

1.3 Problems

Walking

1.1. Tom Kendrick invests $1,000 at a nominal rate of i(1), and he withdraws
the interest at the end of each year. At the end of the fourth year he has
earned $300 in total interest. What nominal interest rate does he earn?

1.2. Tom Kendrick invests $1,000 at a nominal rate of i(2), and he withdraws
the interest at the end of each six months. At the end of the fourth year he
has earned $300 in total interest. What nominal interest rate does he earn?
Would you expect it to be higher or lower than the answer to Problem 1.1?

1.3. Hugh Kendrick has a savings account that pays interest at a nominal rate
of 3%. Interest is calculated 365 times a year on the minimum daily balance
and credited to the account at the end of the month. Hugh has an opening
balance of $1,500 at the beginning of March. On March 13 he withdraws $500,
and on March 27 he deposits $750. How much interest does he earn in March?

1.4. A certificate of deposit usually carries a penalty for early withdrawal:
“The penalty is 90 days loss of interest, whether earned or not.” Under what
circumstances is it possible to lose money on a CD?

1.5. What is the actual number of days between October 4, 2004 and May 4,
2005?

1.6. What is the number of days between October 4, 2004 and May 4, 2005
using the 30-day month convention?

1.7. Explain why (1.3), namely 360 (y2 − y1)+30 (m2 − m1)+(d2 − d1), gives
the correct number of days between dates using the 30-day month convention.

1.8. Explain why the 30/360 method for calculating interest is unambiguous
in a leap year.
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1.9. A convention that is sometimes used to compute the number of days be-
tween two dates is based on 30-day month formula (1.3), namely 360 (y2 − y1)+
30 (m2 − m1) + (d2 − d1), but d1 and d2 are calculated from

di =
{

di if 1 ≤ di ≤ 30,
30 if di = 31,

for i = 1, 2. This is sometimes referred to as the 30(E) method. Find two
dates where the number of days between them differs using the 30-day month
method and the 30(E) method.

Running

1.10. Show that simple interest calculated using exact interest is never greater
than simple interest calculated using the Banker’s Rule. Does a similar rela-
tionship hold between ordinary interest and the Banker’s Rule? Explain.

Questions for Review

• What is meant by the expression “the time value of money”?
• What is the difference between the present value and the future value of

money?
• How do you calculate simple interest?
• What is a proof by induction?
• What is a recurrence relation?
• Why is there ambiguity in counting the number of days between two dates?
• How do you count the number of days between two dates?
• What are the major differences between a CD, a savings account, a check-

ing account, and a money market account?
• What is the rate of return on an investment?
• What does the Simple Interest Theorem say?
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Compound Interest

The difference between simple interest and compound interest—the subject of
this chapter—is that compound interest generates interest on interest, whereas
simple interest does not.

2.1 The Compound Interest Theorem

We invest $1,000 at 10% per annum (per year), compounded annually for
5 years. After one year we earn 10% of $1,000 in interest, that is, $100.
We combine that interest with the original amount, giving a new amount of
$1,000 + $100 = $1,100. At the end of the second year this new amount earns
10% interest, that is, $110, giving a new amount of $1,100 + $110 = $1,210.
If we continue doing this for 5 years, then at the end of the fifth year we have
$1,610.51.1 Table 2.1 shows the details. (Check the calculations in this table
using a calculator or a spreadsheet program, and fill in the missing entries.)

Table 2.1. Compound Interest

Year’s Beginning Year’s End
Year Principal Interest Amount

1 $1,000.00 $100.00 $1,100.00
2 $1,100.00 $110.00 $1,210.00
3
4 $1,331.00 $133.10 $1,464.10
5 $1,464.10 $146.41 $1,610.51

1 Compare this with $1,000 invested for five years at 10% using simple interest. See
Example 1.1 on p. 6.
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We now derive the general formula for this process. As with simple interest,
we let n measure the total number of interest periods, of which we assume
that there are m per year. The total amount we have at the end of n interest
periods is called the future value (or accumulated principal), and the annual
interest rate is called the nominal rate. So we let2

P0 be the initial principal (present value, lump sum) invested,
n be the total number of interest periods,
Pn be the future value of P0 (accumulated principal) at the end

of the nth interest period,
m be the number of interest periods per year,

i(m) be the nominal rate (annual interest rate), expressed as a decimal,
i be the interest rate per interest period.

The interest rate per interest period is i = i(m)/m.
We want to find a formula for the future value Pn, and we do this by looking

at n = 1, n = 2, and so on, hoping to see a pattern. Using this notation we
rewrite Table 2.1 symbolically in spreadsheet format as Table 2.2, which is
explained as follows.

Table 2.2. Compound Interest—Spreadsheet Format

Period’s Beginning Period’s End
Period Principal Interest Amount

1 P0 iP0 P0 + iP0 = P1

2 P1 iP1 P1 + iP1 = P2

3 P2 iP2 P2 + iP2 = P3

4 P3 iP3 P3 + iP3 = P4

5 P4 iP4 P4 + iP4 = P5

At the end of the first interest period (n = 1) we receive iP0 in interest,
so the future value of P0 after one interest period is

P1 = P0 + iP0 = P0(1 + i).

At the end of the second interest period (n = 2) we receive iP1 in interest,
so the future value of P0 after two interest periods is

P2 = P1 + iP1 = P1(1 + i) = P0(1 + i)2.

At the end of the third interest period (n = 3) we receive iP2 in interest,
so the future value of P0 after three interest periods is

P3 = P2 + iP2 = P2(1 + i) = P0(1 + i)3.

2 See footnote 2 on p. 2.
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This suggests the following theorem.

Theorem 2.1. The Compound Interest Theorem.
If we start with principal P0, and invest it for n interest periods at a nominal
rate of i(m) (expressed as a decimal) compounded m times a year, then Pn,
the future value of P0 at the end of n interest periods, is

Pn = P0(1 + i)n, (2.1)

where i = i(m)/m.

Proof. We can prove this theorem either by mathematical induction or by
recurrence relations.

We first prove it using mathematical induction. We already know that
(2.1) is true for n = 1. We assume that it is true for n = k, that is,

Pk = P0(1 + i)k,

and we must show that it is true for n = k + 1.
Now,

Pk+1 = Pk + iPk,

so
Pk+1 = Pk(1 + i) = P0(1 + i)k+1,

which shows that (2.1) is true for n = k + 1. This concludes the proof by
mathematical induction.

We now prove (2.1) using recurrence relations. We know that

Pk+1 = Pk + iPk = (1 + i)Pk,

so if we multiply this by 1/(1 + i)k+1, then we can write it as

1
(1 + i)k+1 Pk+1 =

1
(1 + i)k

Pk.

Summing this from k = 0 to k = n − 1 gives

n−1∑
k=0

1
(1 + i)k+1 Pk+1 =

n−1∑
k=0

1
(1 + i)k

Pk,

or by canceling the common terms on both sides of this equation,

1
(1 + i)n

Pn = P0,

which is (2.1). This concludes the proof using recurrence relations. ��
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Comments About the Compound Interest Theorem

• We see that Pn = P0(1 + i)n is a function of the three variables P0, n,
and i. It is linear in P0, but nonlinear in i and n. Thus, a plot of the future
value versus either i or n, holding P0 fixed, is not a line.

• Table 2.3 shows the future value of $1 compounded annually (so m = 1)
for different interest rates i and different numbers of years.

Table 2.3. Future Value of $1

Years
Interest Rate 5 10 15 20 25 30

3% 1.159 1.344 1.558 1.806 2.094 2.427
4% 1.217 1.480 1.801 2.191 2.666 3.243
5% 1.276 1.629 2.079 2.653 3.386 4.322
6% 1.338 1.791 2.397 3.207 4.292 5.744
7% 1.403 1.967 2.759 3.870 5.427 7.612
8% 1.469 2.159 3.172 4.661 6.849 10.063
9% 1.539 2.367 3.643 5.604 8.623 13.268
10% 1.611 2.594 4.177 6.728 10.835 17.449
11% 1.685 2.839 4.785 8.062 13.586 22.892
12% 1.762 3.106 5.474 9.646 17.000 29.960
13% 1.842 3.395 6.254 11.523 21.231 39.115
14% 1.925 3.707 7.138 13.744 26.462 50.950
15% 2.011 4.046 8.137 16.367 32.919 66.212

• We can use Table 2.3 to show the dependence of Pn on i. This is seen in
Fig. 2.1, which shows the future value of $1 as a function of i for 10 years
(the lower curve) and 20 years (the upper curve) with annual compound-
ing. Both curves appear to be increasing and concave up. In Problem 2.26
on p. 40 you are asked to prove this.

• We can use Table 2.3 to show the dependence of Pn on n. This is seen
in Fig. 2.2, which shows the future value of $1 as a function of n for 5%
interest (the lower curve) and 10% interest (the upper curve) compounded
annually. Both curves appear to be increasing and concave up. In Prob-
lem 2.27 on p. 40 you are asked to prove this.

• Due to the linear relationship between Pn−P0 and P0, the principal appre-
ciation, Pn −P0 = P0 ((1 + i)n − 1), doubles if P0 doubles. What happens,
however, when i or n doubles?
◦ First, we discuss what happens to the principal appreciation if we dou-

ble the interest rate, i. If we look at n = 25 in Fig. 2.2, then we see
that the vertical distance from the future value at 10% (about $10.80)
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Fig. 2.2. Future Value of $1 at 5% and 10% interest compounded annually

to the present value ($1) is more than twice the distance from the
future value at 5% (about $3.40) to the present value ($1). This sug-
gests that doubling the interest rate more than doubles the principal
appreciation. In Problem 2.28 on p. 40 you are asked to prove this.

◦ Second, we discuss what happens to the principal appreciation if we
double the number of periods n. If we look at the 10% curve in Fig. 2.2,
then we see that the vertical distance from the future value at n = 20
(about $6.70) to the present value ($1) is more than twice the distance
from the future value at n = 10 (about $2.60) to the present value ($1).
This suggests that doubling the number of periods more than doubles
the principal appreciation. In Problem 2.29 you are asked to prove this.
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• Equation (2.1) is valid for n ≥ 0. What happens if n < 0? In other words, if
we accumulate P0 over the past n interest periods at a compound interest
rate of i per interest period, what amount, which we call P−n, did we start
with n interest periods ago? From (2.1) we must have

P0 = P−n(1 + i)n,

so
P−n = P0

1
(1 + i)n

= P0(1 + i)−n,

which is (2.1) with n replaced by −n. Thus, (2.1) is valid for n =
0,±1,±2, . . ..

• When we calculate the value of an amount of money at a future time—that
is, when we calculate the future value from the present value—we talk of
compounding. When we calculate the value of an amount of money at
a previous time—that is, when we calculate the present value from the
future value—we talk of discounting.
For example, if we invest $1,000 at 6% compounded annually for two years,
then this $1,000 grows to 1000 (1 + 0.06)2 = $1,123.60. This is compound-
ing, and we say the future value of $1,000 is $1,123.60, while (1 + 0.06)2

is the compounding factor. On the other hand, if we ask the question,
“How much must we invest at 6% per annum compounded once a year
if we want $1,123.60 in our account in two years?” then the answer is
1123.60 (1 + 0.06)−2 = $1,000.00. This is discounting, and we refer to the
$1,000 as the discounted value of $1,123.60, while (1 + 0.06)−2 is the
discount factor.

Example 2.1. Wendy Kendrick, Tom’s twin sister, invests $1,000 in a CD at
10% a year for five years, but when the interest is credited at the end of each
year, she leaves it in her account. What amount does she have at the end of
five years?

Solution. This is a compound interest example because the interest is not
withdrawn, but earns interest. Here the principal is $1,000 (so P0 = 1000),
the compounding is once per year (so m = 1), the interest is 10% (so i(1) = 0.1
and i = i(1)/1 = 0.1), and the number of interest periods is 5 (so n = 5). Thus,
the final amount is P5 = 1000(1 + 0.1)5 = $1,610.51. This is $110.51 more
than her brother made using simple interest in Example 1.1 on p. 6. �
Example 2.2. Under the conditions of Example 2.1, find the future value if
interest is compounded

(a) Semi-annually, that is, 2 times a year.
(b) Quarterly, that is, 4 times a year.
(c) Monthly, that is, 12 times a year.
(d) Daily, that is, 365 times a year.
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Solution.

(a) In this case i(2) = 0.10 and m = 2, so the semi-annual interest rate i is
i(2)/2 = 0.10/2. This is compounded 2× 5 times, so the future value of P0
after 5 years is

P10 = P0

(
1 +

i(2)

2

)2×5

= 1000
(

1 +
0.10
2

)10

= $1,628.89.

(b) In this case i(4) = 0.10 and m = 4, so the quarterly interest rate i is
i(4)/4 = 0.10/4. This is compounded 4× 5 times, so the future value of P0
after 5 years is

P20 = P0

(
1 +

i(4)

4

)4×5

= 1000
(

1 +
0.10
4

)20

= $1,638.62.

(c) In this case i(12) = 0.10 and m = 12, so the monthly interest rate i is
i(12)/12 = 0.10/12. This is compounded 12 × 5 times, so the future value
of P0 after 5 years is

P60 = P0

(
1 +

i(12)

12

)12×5

= 1000
(

1 +
0.10
12

)60

= $1,645.31.

(d) In this case i(365) = 0.10 and m = 365, so the daily interest rate i is
i(365)/365 = 0.10/365. This is compounded 365 × 5 times, so the future
value of P0 after 5 years is

P1825 = P0

(
1 +

i(365)

365

)365×5

= 1000
(

1 +
0.10
365

)1825

= $1,648.61.

�

This leads to the following result.
If P0 is compounded m times a year at a nominal interest rate of i(m),
then the future value of P0 after N years is

PmN = P0

(
1 +

i(m)

m

)mN

. (2.2)

If we compound continuously, by which we mean that the number of
interest periods per year grows without bound, that is, m → ∞, while the
nominal rate i(m) is the same for all m, then, because limm→∞ (1 + x/m)m =
ex for all x,3 the future value of P0, denoted by P∞, after N years at a nominal

3 See Problem 2.31.
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rate of i(∞) is
P∞ = P0ei(∞)N .

So in Example 2.1 on p. 18, if $1,000 is compounded continuously at 10% for
5 years, then we have P∞ = 1000e0.1×5 = $1,648.72.

If we tabulate these previous results with i(m) = 0.1, then we have

m Future Value
1 $1,610.51
2 $1,628.89
4 $1,638.62

12 $1,645.31
365 $1,648.61
∞ $1,648.72

From this table, and from our intuition, it appears that if the nominal rate
i(m) is the same for all m, then the more frequently the compounding, the
greater the future value. We justify this as follows.

Theorem 2.2. If i(m) is positive and independent of m, m ≥ 1, then the
sequence

{(
1 + i(m)

m

)m}
is increasing, that is,

(
1 +

i(m−1)

m − 1

)m−1

<

(
1 +

i(m)

m

)m

,

and is bounded above by ei(m)
, and limm→∞

(
1 + i(m)

m

)m

= ei(m)
.

Proof. To prove this we use the Arithmetic-Geometric Mean Inequality (see
Appendix A.3 on p. 249), namely, if a1, a2, . . . , am are non-negative and not
all zero, then

(a1a2 · · · am)1/m ≤ a1 + a2 + · · · + am

m
,

with equality if and only if a1 = a2 = · · · = am.
If we select a1 = 1, a2 = a3 = · · · = am = 1 + i(m−1)/(m − 1), then we

get4 (
1
(

1 +
i(m−1)

m − 1

)m−1)1/m

<
1 + (m − 1)

(
1 + i(m−1)

m−1

)
m

,

or ((
1 +

i(m−1)

m − 1

)m−1)1/m

<
m + i(m−1)

m
= 1 +

i(m−1)

m
.

4 Equality cannot occur because a1 �= a2.



2.1 The Compound Interest Theorem 21

But i(m−1) = i(m) (why?), so(
1 +

i(m−1)

m − 1

)m−1

<

(
1 +

i(m)

m

)m

.

Thus, the sequence
{(

1 + i(m)

m

)m}
is increasing.

Because limm→∞
(
1 + i(m)/m

)m
= ei(m)

, the sequence is bounded above
by ei(m)

. ��

In Problem 2.42 on p. 42, you are asked to prove a more general result
than Theorem 2.2.

In order to compare investments with a constant rate of return but with
different frequencies of compounding, it is common to calculate the Annual
Effective Rate (EFF) for each investment.5

Definition 2.1. The annual effective rate (EFF), ieff, is the annual
rate of return i(1) that is equivalent to the nominal rate i(m) (compounded m
times a year), or the nominal rate i(∞) (compounded continuously).6

If the investment is compounded m times a year, then this means that

P0(1 + ieff) = P0

(
1 +

i(m)

m

)m

,

so

ieff =
(

1 +
i(m)

m

)m

− 1 = (1 + i)m − 1. (2.3)

If the investment is compounded continuously, then this means that

P0(1 + ieff) = P0ei(∞)
,

so
ieff = ei(∞) − 1. (2.4)

Example 2.3. Washington Federal Savings offers a CD with a nominal rate of
4.88% compounded 365 times a year. What is the EFF?

5 In Sect. 2.3, we discuss how to compare investments that are not annual. This
comparison requires introducing the Internal Rate of Return of an investment.

6 The annual effective rate is sometimes called the Annual Percentage Rate (APR)
when one is referring to debts. On financial calculators, the Annual Effective Rate
is often calculated using the EFF button.
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Solution. From (2.3), with i(365) = 0.0488 and m = 365, we have

ieff =
(

1 +
0.0488
365

)365

− 1 = 0.05.

So ieff = 5%. �
Example 2.4. Wendy Kendrick has the choice between two CDs, both of which
mature in one year. One offers a nominal rate of 8% compounded semi-
annually, and the other 7.85% compounded 365 times a year. Which is the
better deal?

Solution. With i(2) = 0.08, we have i = 0.08/2, so

ieff =
(

1 +
0.08
2

)2

− 1 = 0.0816.

With i(365) = 0.0785, we have i = 0.0785/365, so

ieff =
(

1 +
0.0785
365

)365

− 1 = 0.0817.

The second CD is the better deal.
An alternative way of answering this question is to compute the future

value of each CD assuming an initial investment of P0. The future value of P0
in the first case is P0 (1 + 0.08/2)2 = 1.0816P0, while in the second case it is
P0 (1 + 0.0785/365)365 = 1.0817P0. �
Example 2.5. Henry Kendrick’s business can buy a piece of equipment for
$200,000 now, or for $70,000 now, $70,000 in one year, and $70,000 in two
years. Which option is better if money can be invested at a nominal rate of
6% compounded monthly?

Solution. We can solve this in two different ways, which shed light on the
concept of present value.

Solution 1.
The present value of the three cash flows is

70000 + 70000
(

1 +
0.06
12

)−12

+ 70000
(

1 +
0.06
12

)−24

= $198,036.37.

Thus, the present value is less than $200,000 so he would save $200,000 −
$198,036.37, that is, $1,963.63, which has a future value of 1963.63(1 +
0.06/12)24 = $2,213.32. Thus, the installment plan is better.
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Solution 2.
In order to consider these two options, Henry’s business must have

$200,000 available. So under the installment plan, he first pays $70,000, leaving
$130,000. He invests this at 6% for one year, giving $138,018.12. He then pays
$70,000, leaving $68,018.12. This is invested for one year, giving $72,213.33.
After paying $70,000 he is left with $2,213.33, which has a present value of
$1,963.63.

If we let P = 200000, M = 70000, and i = 0.06/12, then we can see the
equivalence of these two approaches because

P − M − M(1 + i)−12 − M(1 + i)−24

=
((

(P − M) (1 + i)12 − M
)

(1 + i)12 − M
)

(1 + i)−24.

�

2.2 Time Diagrams and Cash Flows

A useful device, called a time diagram, allows us to visualize the cash
flow—the flow of cash in and out of an investment.

• First, a horizontal line is drawn, which represents time increasing from the
present (denoted by 0) as we move from left to right.

• Second, we draw short vertical lines that start on the horizontal line. Those
that go up represent cash coming in (a positive cash flow, or receipts),
while those that go down represent cash going out (a negative cash flow,
or disbursement). Thus, the vertical lines represent the cash flow.

For example, suppose that we invest $1,000 at 6% compounded annually
for two years. At the end of two years this $1,000 grows to the future value
1000(1 + 0.06)2 = $1,123.60. The cash flows are represented as follows:

Years 0 1 2
Cash Flow −$1,000.00 $0.00 +$1,123.60 .

At year zero we invested $1,000 (so the cash went out, and hence the
minus sign), and at year two we received $1,123.60 (so the cash came in, and
hence the plus sign, which we normally omit). We represent this with the time
diagram shown in Fig. 2.3.

In general, the cash flows for compounding are

Time 0 1 · · · n − 1 n
Cash Flow −P 0 · · · 0 P (1 + i)n ,
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0 1

$1,000

$1,123.60

2

Fig. 2.3. Time diagram

0

P

P (1 + i)n

n

Fig. 2.4. Time diagram for compounding

and are represented by Fig. 2.4.
The cash flows for discounting are

Time 0 1 · · · n − 1 n
Cash Flow −P (1 + i)−n 0 · · · 0 P

,

and are represented by Fig. 2.5.

0

P (1 + i)−n

P

n

Fig. 2.5. Time diagram for discounting

If we consider Fig. 2.6, then we see that it represents the following cash

0

P

F

1

F

2

· · ·
F

n − 1

F + P

n

Fig. 2.6. Mystery time diagram

flows: initially an amount P is invested, and at unit time intervals an amount
F is received regularly, and finally, after n time intervals, an amount F + P
is received, that is,

Time 0 1 2 · · · n − 1 n
Cash Flow −P F F · · · F F + P

.
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The following net cash flows represent the general case,

Time 0 1 2 · · · n − 1 n
Cash Flow C0 C1 C2 · · · Cn−1 Cn

,

where Ck (k = 0, 1, . . . , n) are positive, negative, or zero. In this case, without
knowing the sign of Ck we cannot, on the time diagram, correctly indicate
whether Ck should be above or below the time line. We use Fig. 2.7 to repre-
sent this general case.

C0

0

C1

1

C2

2

· · ·
Cn−1

n − 1

Cn

n

Fig. 2.7. Time diagram for general cash flows

The net present value, NPV, of an investment is the difference between
the present value of the cash inflows and the present value of the cash outflows,
that is,

NPV = C0 + C1(1 + i)−1 + C2(1 + i)−2 + · · · + Cn(1 + i)−n,

where i is the prevailing interest rate. (Usually the initial cash flow, C0, is
negative.) This interest rate is a function of the risk of the investment. When
attempting to choose between two investments with the same risks, the in-
vestor generally chooses the one with the higher net present value. If both
investments have the same net present value and the same time interval, then
the investor is said to be indifferent between the investments.

Example 2.6. Tom Kendrick is considering two investments with annual cash
flows

Years 0 1 2 3
Cash Flow (Investment 1) −$13,000 $5,000 $6,000 $7,000
Cash Flow (Investment 2) −$13,000 $7,000 $4,800 $6,000

.

Which is the better investment if the prevailing interest rate is (a) 4.5%?
(b) 9%?

Solution.

(a) At 4.5%, the NPV for Investment 1 is

NPV(1) = −13000+
5000

1 + 0.045
+

6000
(1 + 0.045)2

+
7000

(1 + 0.045)3
= $3,413.14,
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and for Investment 2,

NPV(2) = −13000+
7000

1 + 0.045
+

4800
(1 + 0.045)2

+
6000

(1 + 0.045)3
= $3,351.85.

Thus, at 4.5%, Investment 1 is the better choice.
(b) At 9%, the NPV for Investment 1 is

NPV(1) = −13000 +
5000

1 + 0.09
+

6000
(1 + 0.09)2

+
7000

(1 + 0.09)3
= $2,042.52,

and for Investment 2,

NPV(2) = −13000 +
7000

1 + 0.09
+

4800
(1 + 0.09)2

+
6000

(1 + 0.09)3
= $2,095.18.

Thus, at 9%, Investment 2 is the better choice.

�
In this example we see that increasing the prevailing interest rate causes

the NPV of a cash flow to drop. This is generally true if C0 < 0 and
C1, C2, . . . , Cn are non-negative, but not all zero.

2.3 Internal Rate of Return

If we invest $1,000 at 6% per annum, and then a year later invest $2,000 at
5% per annum, what is the future value of the entire investment after a total
of two years? This is represented by the following cash flows,

Years 0 1 2
Cash Flow −$1,000.00 −$2,000.00 ? ,

or by Fig. 2.8.

0

$1,000 $2,000

1
?

2

Fig. 2.8. Time diagram

The $1,000 has a future value of 1000 (1 + 0.06)2 = $1,123.60 after 2 years,
while the $2,000 has a future value of 2000 (1 + 0.05) = $2,100 after 1 year,
so the future value of the entire investment is

1000 (1 + 0.06)2 + 2000 (1 + 0.05) = 1123.60 + 2, 100 = $3,223.60.
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0

$1,000

1
$1,123.60

2
+

0

$2,000

1
$2,100

2
=

0

$1,000 $2,000

1
$3,223.60

2

Fig. 2.9. Decomposition of time diagram

Figure 2.9 shows how to decompose Fig. 2.8.

Because the interest rates changed during the investment period, a natural
question to ask is, “What rate have we really been earning over the two
years?” (We cannot use the annual effective rate ieff because that applies only
to investments that earn a constant rate of return.) One way to answer this
question is to say that we made $223.60 on an investment of $3,000 over two
years, so we made $223.60/$3,000 = 0.0745 over two years, which is a rate of
0.03725 per year.

However, there are two things wrong with this. First, by dividing 0.0745
by 2 we have computed a simple interest rate. Second, we have not taken into
account that the $2,000 and the $1,000 are deposited at different times.

We can correct the first problem by finding the annual interest rate i
required to discount $3,223.60 to $3,000, that is, find i > 0 for which

3000 = 3223.60 (1 + i)−2
,

so

i = ±
√

3223.60
3000

− 1 = 0.0366 or − 2.0366.

Because i must be positive, we find that i = 0.0366. (Why is this way of
computing the interest rate lower than 0.03725, the interest rate we obtained
the previous way?)

However, this technique does not take into account the second problem,
namely, that the $2,000 was deposited at a different time from the $1,000.
We can solve this problem by finding the annual interest rate r required
to discount $3,223.60 to $1,000 plus the discounted value of $2,000, namely
2000(1 + r)−1. Thus, we must find r for which

1000 + 2000(1 + r)−1 = 3223.60(1 + r)−2.

This means we must solve the quadratic equation

1000(1 + r)2 + 2000(1 + r) − 3223.60 = 0,

that is,
(1 + r)2 + 2(1 + r) − 3.2236 = 0,
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for 1 + r, giving

1 + r =
1
2

(
−2 ±

√
22 + 4 × 3.22360

)
= 1.055 or − 3.055,

so r = 0.055 or −4.055. However, r must be positive, so r = 0.055. The
annual interest rate computed in this way is called the internal rate of
return (IRR), and takes into account both compounding and the time value
of money.

Definition 2.2. The internal rate of return (IRR), iirr, for an invest-
ment is the interest rate that is equal to the annually compounded rate earned
on a savings account with the same cash flows.

Example 2.7. Hugh Kendrick, the father of Wendy and Tom, invests $10,000
in a CD that yields 5% compounded 365 days a year. At the end of the year
he moves the proceeds to a new CD that yields 6% compounded 4 times a
year. How much interest does he have when the second CD matures? What
is the IRR, iirr, for this investment?

Solution. At the end of the first year he has 10000 (1 + 0.05/365)365, which is
the amount he invests as the principal in the second CD. This leads to(

10000
(

1 +
0.05
365

)365
)(

1 +
0.06
4

)4

= $11,157.77,

so he earned $1,157.77 in interest.
To find the IRR, we want to find the rate iirr for which

10000(1 + iirr)2 = 10000
(

1 +
0.05
365

)365 (
1 +

0.06
4

)4

,

so

iirr = ±
√(

1 +
0.05
365

)365 (
1 +

0.06
4

)4

− 1 = 0.0563 or − 2.0563.

Thus, the IRR is about 5.6%. �
Example 2.8. Find the IRR, iirr, that is equivalent to a simple interest invest-
ment rate of 20% a year for 5 years.

Solution. Over 5 years under simple interest with P0 = 1, i = 0.20, and n = 5,
(1.1) gives

P5 = (1 + (5 × 0.2)) = 2.

Now, (1 + iirr)
5 = 2 means that iirr = 21/5 − 1 = 0.149.

Thus, a rate of 14.9%, compounded annually, doubles an investment in 5
years. �
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Financial Digression
An index fund is a fund whose collection of assets is designed to mirror
the performance of a particular broad-based stock market index.7 Usually
index funds are managed so that decisions are automated and transactions are
infrequent. There is usually a minimum opening balance, unless the investor
invests a regular amount each month. Investors are usually discouraged from
frequent buying and selling, and they may be penalized for this. The first index
fund for individual investors was created by The Vanguard Group in 1976.

Example 2.9. At the beginning of every month for 12 months, Hugh Kendrick
buys $100 worth of shares in an index fund. At the end of the twelfth month
his shares are worth $1,500. What is the internal rate of return, iirr, of his
investment?

Solution. Hugh’s investment is represented by Fig. 2.10.

0

$100 $100

1

$100

2 · · ·

$100

11
$1,500

12

Fig. 2.10. Internal rate of return

The present value of his investment at an annual interest rate of iirr is

100 + 100(1 + iirr)−1/12 + 100(1 + iirr)−2/12 + · · · + 100(1 + iirr)−11/12

= 1500(1 + iirr)−12/12,

or

100(1 + iirr)12/12 + 100(1 + iirr)11/12 + · · · + 100(1 + iirr)1/12 = 1500.

The first equation is obtained by discounting to the present value, the second
by compounding to the future value at the end of the twelfth month. Notice
we assume that 1 + iirr > 0.

If in the second equation we let 1 + i = (1 + iirr)1/12, so 1 + i > 0, then we
find that

100(1 + i)12 + 100(1 + i)11 + 100(1 + i)10 + · · · + 100(1 + i) = 1500. (2.5)

We rewrite the equation as(
(1 + i)11 + (1 + i)10 + · · · + 1

)
(1 + i) = 15,

7 We discuss stock market indexes in Chap. 10.
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and then use the geometric series8

1 + x + x2 + · · · + xn−1 = (xn − 1)/(x − 1), valid for x 	= 1 and n ≥ 1,

with x = 1 + i and n = 12, to find that i satisfies

(1 + i)12 − 1
i

(1 + i) − 15 = 0. (2.6)

In general we are unable to solve the equation for i analytically, but it can
be solved numerically—for example, by the bisection method or by Newton’s
Method (see Problem 2.20 on p. 39)—or graphically, by graphing the left-hand
side of (2.6) and estimating where it crosses the horizontal axis (see Fig. 2.11),
giving i = 0.0339. Here 1 + i = 1.0339 > 0 and from 1 + i = (1 + iirr)1/12

we find that iirr = (1 + i)12 − 1 = 0.492. Thus, the internal rate of return is
49.2%. �

i

0.030 0.032 0.034 0.036 0.038 0.040

f(
i)

0.0

0.5

1.0

Fig. 2.11. The function f(i) = (1+i)12−1
i

(1 + i) − 15

In the previous example we have overlooked a very important point—how
do we know that 1 + i = 1.0339 is the only solution of (2.6)? We don’t, and it
isn’t, because 1 + i = −1.318 is another solution. But this solution does not
satisfy 1 + i > 0, so we reject it. So how do we know that 1.0339 is the only
acceptable solution?
8 See Problems 2.34 and 2.35.
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In fact, if we rewrite (2.5) in the form

100(1 + i)12 + 100(1 + i)11 + 100(1 + i)10 + · · · + 100(1 + i) − 1500 = 0, (2.7)

then we see that this is a polynomial equation of degree 12 in (1+i). In general,
polynomials of degree n have n roots (some of which may be complex); thus,
we might expect (2.7) to have 12 solutions! In fact, it has only one real solution
that satisfies 1 + i > 0, which we show shortly.

To show this, we turn to the general case, where we have the following net
cash flows:

Period 0 1 2 · · · n − 1 n
Cash Flow C0 C1 C2 · · · Cn−1 Cn

,

where Ck (k = 0, 1, . . . , n) are positive, negative, or zero. We let m be the
number of periods per year, while n is the total number of periods. Figure 2.12
represents this general case.

C0

0

C1

1

C2

2

· · ·
Cn−1

n − 1

Cn

n

Fig. 2.12. General time diagram

The IRR, iirr, for this series of cash flows is the solution of the equation9

C0 + C1(1 + iirr)−1/m + C2(1 + iirr)−2/m + · · · + Cn(1 + iirr)−n/m = 0,

which can be written in the form

C0(1 + iirr)n/m + C1(1 + iirr)(n−1)/m + C2(1 + iirr)(n−2)/m + · · · + Cn = 0.

If we let 1+ i = (1+ iirr)1/m, where 1+ i > 0, then this last equation becomes

C0(1 + i)n + C1(1 + i)n−1 + C2(1 + i)n−2 + · · · + Cn = 0.

This is a polynomial equation of degree n in 1 + i, and therefore has exactly
n solutions, including complex ones.
9 Notice that the IRR for an investment is the annual rate that makes the net

present value equal to zero. So the IRR is the rate that makes the present value
of the expected future cash flows equal to the initial cost of the investment. The
IRR is useful for comparing investments with different costs or with cash flows
that differ in terms of amount or frequency of payment, and for determining how
a potential investment compares with the investor’s requirements.
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From 1 + i = (1 + iirr)1/m we find that

iirr = (1 + i)m − 1,

which relates the internal rate of return, iirr, to the periodic internal rate of
return, i. Notice that if m = 1, then iirr = i, and that if i > 0, then iirr > 0.
If we use the binomial approximation

(1 + i)m = 1 + mi + · · · ,

then we find that
iirr ≈ mi,

which is sometimes used in place of iirr = (1 + i)m − 1.
For the case n = 1 (so there are two cash flows), this equation reduces to

C0(1 + i) + C1 = 0,

which has the solution
i =

−C1 − C0

C0
.

If we let P0 = −C0 < 0 and P1 = C1 > 0, which corresponds to a savings
account that is opened with a balance of P0 and accumulates to P1 after one
period, then

i =
P1 − P0

P0
.

This is the rate of return defined on p. 5 for these cash flows. Thus, if there
is one cash inflow and one cash outflow, then the periodic internal
rate of return and the rate of return of the investment are identical.

For the case n = 2 this equation reduces to

C0i
2 + (2C0 + C1) i + (C0 + C1 + C2) = 0,

which could have no real solutions, one real solution repeated, or two distinct
real solutions. Only in the second and third cases does i exist and is possibly
unique. In fact, it is possible to construct perfectly reasonable cash flows for
which the IRR does not exist, or does exist, but is not unique.

Example 2.10. Find the IRR for

Years 0 1 2
Cash Flow −$1,000 $2,000 −$1,500 .

This corresponds to giving someone $1,000 now and $1,500 after two years,
in exchange for $2,000 after one year.
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Solution. Here iirr must satisfy

−1000(1 + iirr)2 + 2000(1 + iirr) − 1500 = 0,

which reduces to
2i2irr + 1 = 0,

which has no real solutions. Thus, this transaction has no IRR. �
Example 2.11. Find the IRR for

Years 0 1 2
Cash Flow −$1,000 $2,150 −$1,155 .

This corresponds to giving someone $1,000 now and $1,155 after two years,
in exchange for $2,150 after one year.

Solution. Here iirr must satisfy

−1000(1 + iirr)2 + 2150(1 + iirr) − 1155 = 0,

which, when solved for 1 + iirr, reduces to

1 + iirr = 1.05 or 1.1.

Thus, iirr = 0.05 or iirr = 0.10, and iirr is not unique. �

We can give partial answers to the uniqueness question as follows.

Theorem 2.3. The IRR Uniqueness Theorem I.
If there exists an integer p for which C0, C1, . . . , Cp are of the same sign or
zero (but not all zero) and for which Cp+1, Cp+2, . . . , Cn are all of the opposite
sign or zero (but not all zero), then

C0 + C1(1 + i)−1 + C2(1 + i)−2 + · · · + Cn(1 + i)−n = 0

has at most one positive solution 1 + i.

Proof. By thinking of

C0(1 + i)n + C1(1 + i)n−1 + C2(1 + i)n−2 + · · · + Cn = 0

as a polynomial equation in 1 + i, and using Descartes’ Rule of Signs,10 there
is exactly one change of sign, so there is at most one positive root of the
polynomial. ��
10 Descartes’ Rule of Signs states that the maximum number of positive solutions

of the polynomial equation anxn + an−1x
n−1 + · · · + a1x + a0 = 0 is the number

of sign changes that occur when one looks at the coefficients an, an−1, . . . , a1, a0

in order (excluding the coefficients that are zero).
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Comments About the IRR Uniqueness Theorem I

• This theorem guarantees that there is at most one positive solution, 1 + i.
However, that does not guarantee that i is positive.

• Returning to (2.7) we see that it has one change of sign, so it has at
most one positive solution—the one we found numerically. Each of the
two examples for which the IRR either did not exist (Example 2.10 on
p. 32) or was not unique (Example 2.11 on p. 33) had two sign changes.

There is another theorem that is sometimes useful (see [16]).

Theorem 2.4. The IRR Uniqueness Theorem II.
If there exists an i for which

(a) 1 + i > 0,
(b)

∑p
k=0 Ck(1 + i)p−k > 0 for all integers p satisfying 0 ≤ p ≤ n − 1 (that is,

the future value of all the cash flows up to period p are positive), and
(c)

∑n
k=0 Ck(1 + i)n−k = 0,

then i is unique.

Proof. Assume that there is a second solution j of (c), that is,

n∑
k=0

Ck(1 + j)n−k = 0,

satisfying (a) and (b). Without loss of generality, we may assume that j > i.

We first prove, by induction on p, that

p∑
k=0

Ck(1 + j)p−k >

p∑
k=0

Ck(1 + i)p−k

for p = 1 to n. For p = 1 this becomes

C0(1 + j) + C1 > C0(1 + i) + C1,

which is true because from condition (b) with p = 0, we have C0 > 0.

We assume that
∑h

k=0 Ck(1 + j)h−k >
∑h

k=0 Ck(1 + i)h−k, and we must
show that

h+1∑
k=0

Ck(1 + j)h+1−k >

h+1∑
k=0

Ck(1 + i)h+1−k.
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Now,

h+1∑
k=0

Ck(1 + j)h+1−k =
h∑

k=0

Ck(1 + j)h+1−k + Ch+1

=
h∑

k=0

Ck(1 + j)h−k(1 + j) + Ch+1

>

h∑
k=0

Ck(1 + i)h−k(1 + j) + Ch+1

>

h∑
k=0

Ck(1 + i)h−k(1 + i) + Ch+1

=
h+1∑
k=0

Ck(1 + i)h+1−k,

which proves the inequality by induction. (Where did we use condition (a)?
Condition (b)?)

Thus,
n∑

k=0

Ck(1 + j)n−k >

n∑
k=0

Ck(1 + i)n−k = 0.

But by (c),
n∑

k=0

Ck(1 + j)n−k = 0,

which is a contradiction. (Why were we allowed to assume that j > i?) ��

Comments About the IRR Uniqueness Theorem II

• Condition (b) requires that C0 > 0. Condition (c) requires that Cn =
−∑n−1

k=0 Ck(1 + i)n−k = −(1 + i)
∑n−1

k=0 Ck(1 + i)n−1−k, which is nega-
tive by conditions (a) and (b). Thus, Cn < 0. However, the remaining
C1, . . . , Cn−1 have no sign restrictions, other than satisfying (b).

• This theorem guarantees that a typical savings account has a unique IRR,
in the following sense. If the savings account is opened with a positive
balance C0 > 0, and despite withdrawals and deposits, the interest rate, i,
is unchanged and the account is never overdrawn, so

∑p
k=0 Ck(1+i)p−k > 0

for 0 ≤ p ≤ n − 1, then there is an IRR, namely i, and it is unique. (Here
the quantity Cn is the value of the account, and we are viewing everything
through the eyes of the savings institution.)

• This theorem is also valid if the inequality in condition (b) is replaced with∑p
k=0 Ck(1 + i)p−k < 0. (See Problem 2.44 on p. 43.)
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2.4 The Rule of 72

The Rule of 72 is a rule of thumb sometimes used by investors. It states: to
calculate the time it takes to double an investment, divide 72 by the annual
interest rate expressed as a percentage. For example, if the interest rate is
14%, then, according to the Rule of 72, it takes 72/14 = 5.14 years to double
an investment.

The justification for this rule is based on the following. If interest is com-
pounded continuously at a nominal rate of i(∞), then the future value at time
n is

P (n) = P0ei(∞)n.

The question we want answered is, at what time n + T is P (n + T ) = 2P (n)?
The condition P (n + T ) = 2P (n) requires that

P0ei(∞)(n+T ) = 2P0ei(∞)n,

or
ei(∞)T = 2,

so that
T =

ln 2
i(∞) =

0.693
i(∞) .

Thus, if i(∞) is expressed as a percentage, then the time T needed to double
our money is approximately 69.3/i(∞). (Notice that this does not depend on
the initial investment nor does it depend on when we start.) Thus, the Rule
of 72 should really be called the Rule of 69.3, and it applies only if interest is
compounded continuously.

However, investments are frequently compound annually, not continuously.
So what rule of thumb applies in this case? The answer is, there is no simple
rule of thumb like “dividing a particular number by the interest rate”. In this
case

Pn = P0 (1 + i)n
,

so we want to find the N for which

PN = 2P0,

or
(1 + i)N = 2.

Solving for N gives

N =
ln 2

ln (1 + i)
. (2.8)

So the rule of thumb is, divide 0.693 by the natural logarithm of (1 + i). Not
exactly a handy rule of thumb!
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2.5 Problems

Walking

2.1. Use a spreadsheet to confirm the entries in Table 2.3 on p. 16.

2.2. Tom Kendrick invests $1,000 at a nominal rate of i(1), leaving the interest
at the end of each year to compound. At the end of the fourth year he earned
$300 in total interest. Determine i(1). Compare your answer to the one you
found for Problem 1.1 on p. 10. Which one do you expect to be higher?
Explain.

2.3. We invest $1,000 in an account earning 6% per year for 3 years. What is
the net present value of our investment if the nominal interest rate is 5%?

2.4. At what nominal interest rate, compounded daily, will money double in
7 years? What is the IRR for this investment?

2.5. How long will it take for an investment of $1,000 to increase to $1,500 at
a nominal interest rate of 7% compounded semi-annually? What is the IRR
for this investment?

2.6. Tom lends a friend $1,000 on the condition that in 10 years, the friend
repays $4,000. What is the IRR for this investment?

2.7. Wendy decides to save for her retirement starting on her 25th birthday.
She puts $1,000 a year in an investment that earns 10% a year compounded
annually. She does this for 20 years (she is then 45, and has invested $20,000)
and then stops adding more money. She then leaves the money invested at
10% annually until she is 65, when she retires. Tom, Wendy’s twin brother,
does not save for his retirement until his 45th birthday, and then he starts
investing a fixed amount each year at 10% per annum for 20 years (at which
time both Tom and Wendy are 65). How much does Tom have to invest per
year to have the same amount of money as Wendy when she retires?

2.8. Tom buys a stock for $50 and a year later it is worth $100, so the return
on Tom’s investment for that year is 100%. A year later the stock is worth
$50, so the return on Tom’s investment for the second year is −50%. Tom
claims that the average return on his investment per year over the two year
period is (100 + (−50)) /2 = 25%. Comment on this claim.

2.9. What is the IRR that corresponds to a simple interest investment rate
of 20% over 5 years? Over 4 years? Over 10 years?

2.10. Hugh’s wife, Helen Kendrick, buys shares in Cisco for $68. Two months
later they are worth $104. What is Helen’s IRR?
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2.11. Hugh estimates that he needs $1,000,000 when he retires in 15 years.
How much must he have in his current retirement account, which earns $8% a
year compounded annually, to reach his goal assuming that he adds no more
to his current account?

2.12. An initial amount of $10,000 is invested for 2 years at successive annual
interest rates of 10% and 9% compounded annually. Do you think the future
value of this investment is different from the future value of $10,000 invested
for 2 years at successive annual interest rates of 9% and 10% compounded
annually? Justify your answer.

2.13. If the EFF of an investment is 8%, then what is the nominal interest
rate, if interest is compounded monthly?

2.14. The National Association of Investors Corporation (NAIC) encourages
its members to use a special form (the Stock Selection Guide) to analyze
stocks. Part of the form requires the user to convert the projected annual rate
of return on an investment over five years from simple to compound interest.
The following table is used for this purpose—for example, according to this
table five years of simple interest at an annual rate of 10.00% is equivalent
to 5 years of compound interest at an annual rate of 8.45%. Confirm that this
table is accurate. Is the compound interest row a concave up or a concave
down function of the simple interest row?

Simple (%) 10.00 15.00 20.00 25.00 30.00 35.00 40.00
Compound (%) 8.45 11.84 14.87 17.61 20.11 22.42 24.57

2.15. Some banks used to make the promise: “Deposit by the 10th of the
month and earn interest from the 1st. Withdraw your money at any time.”
Two banks, A and B, both compound interest daily at the nominal rate i(360),
while only Bank B makes this promise. You deposit an amount in Bank A
from the 1st to the 10th of the month, then transfer all your money from Bank
A to Bank B on the 10th, and finally transfer all your money from Bank B
back to Bank A at the end of the month. You do this every month for a year.
Assuming that each month has 30 days, what is the EFF? What is the IRR?

2.16. Use (2.8) on p. 36 to construct a table with the following headings,

Annual Interest Rate Number of Years Rule Of

for annual interest rates running from 1% to 30% in increments of 1%. The
“Number of Years” column is the number of years it takes for the investment
to double at the corresponding annual interest rate. The “Rule Of” column is
calculated by multiplying the interest rate (as a percentage) by the number
of years, as was the case in the Rule of 72. For what interest rates is there a
Rule of 72?
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2.17. Use (2.8) on p. 36 to construct a table with the following headings,

Number of Years Annual Interest Rate Rule Of

for numbers of years running from 1 to 15 in increments of 1. The “Annual
Interest Rate” column is the interest rate (as a percentage) required for the
investment to double in the number of years. The “Rule Of” column is cal-
culated by multiplying the interest rate (as a percentage) by the number of
years, as was the case in the Rule of 72. For what years is there a Rule of 72?

2.18. Construct a time diagram that represents the cash flows

Years 0 1 2
Cash Flow $1,000 −$500 −$600 .

What is the IRR? Give an explanation of these cash flows in terms of everyday
experiences, starting with “If I borrow . . ..”

2.19. Assuming that P > 0, construct a time diagram that represents the
cash flows

Years 0 1 2 3 4 5
Cash Flow −P $0 $0 $1,000 $2,000 $3,000 .

Find P assuming a 10% nominal interest compounded annually. Give an ex-
planation of these cash flows in terms of everyday experiences, starting with
“To be able to withdraw . . ..”

2.20. Rewrite (2.6) on p. 30 in the form

(1 + i)13 − 16(1 + i) + 15 = 0.

(a) Find three solutions of this equation by graphing the function f(x) =
x13 − 16x + 15.

(b) Find three solutions of this equation using the bisection method.
(c) Find three solutions of this equation using Newton’s Method.
(d) Show that one solution of this equation is i = 0. Explain why i = 0 is not

a solution of (2.5) on p. 29.

2.21. What are the interest rates compounded (a) monthly, (b) semi-annually,
and (c) annually that yield the same return as an investment earning 6%
interest compounded continuously?
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2.22. Consider four different loans for $50,000:

(a) A 10-year loan at 7.5% a year.
(b) A 10-year loan at 10% a year.
(c) A 15-year loan at 7.5% a year.
(d) A 15-year loan at 10% a year.

The monthly payments on the four loans are $593.51, $463.51, $660.76, and
$537.71, although not necessarily in that order. The monthly payment for the
10-year loan at 7.5% a year is $593.51. Without using a calculator, match the
monthly payments with the loans.

2.23. Find the IRR of a three-year investment of $10,000 that returns the
following amounts at the end of each of the three years. What do you conclude?

(a) $400, $500, $10,600.
(b) $500, $600, $10,400.
(c) $600, $400, $10,500.
(d) $600, $500, $10,400.

2.24. Hugh Kendrick is considering three different investments:

(a) One paying 7% compounded quarterly.
(b) One paying 7.1% compounded annually.
(c) One paying 6.9% compounded continuously.

Which has the highest IRR?

2.25. Tom Kendrick is considering two investments with cash flows

Years 0 1 2 3
Cash Flow −$13,000 $5,000 $6,000 $7,000 .

What is the IRR? Give an explanation of these cash flows in terms of everyday
experiences, starting with “If I borrow . . ..”

Running

2.26. Show that P0(1 + x)n is an increasing, concave up function of x. (See
p. 16.)

2.27. Show that P0(1 + i)x is an increasing, concave up function of x. (See
p. 16.)

2.28. Show, by induction, that for n > 1 and i > 0,

(1 + 2i)n − 1 > 2 ((1 + i)n − 1) .

Use this to show that if i, the interest rate per period, is doubled, then the
price appreciation from compounding is more than doubled if n > 1. What
happens if n = 1? (See p. 17.)
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2.29. Show that for n > 0 and i > 0,

(1 + i)2n − 1 > 2 ((1 + i)n − 1) ,

by rewriting the inequality as a quadratic in (1 + i)n. Use this to show that
if n, the number of periods, is doubled, then the principal appreciation from
compounding is more than doubled. (See p. 17.)

2.30. We used Fig. 2.2 on p. 17 to suggest that doubling the interest rate
more than doubles the principal appreciation, and that doubling the number
of periods more than doubles the principal appreciation. Explain how those
suggestions could also be made from Fig. 2.1 on p. 17.

2.31. Show that
lim

m→∞

(
1 +

x

m

)m

= ex.

2.32. Look at (2.2) on p. 19. Based on the fact that mN = Nm, do you think
that PmN = PNm? If so, prove it. If not, provide a counter-example.

2.33. Show that the EFF of a nominal rate i(m) compounded m times a year
is always greater than i(m) for m > 1.

2.34. Use induction to sum the geometric series
∑n

k=1 xk−1, that is, prove
that

n∑
k=1

xk−1 =
xn − 1
x − 1

,

where x 	= 1, for n = 1, 2, . . . by induction. (See p. 30.)

2.35. Sum the geometric series
∑n

k=1 xk−1, where x 	= 1, using the following
idea. Let Sn =

∑n
k=1 xk−1. Show that xSn − Sn = xn − 1. Solve this for Sn.

(See p. 30.)

2.36. The geometric mean of the non-negative numbers a1, a2, . . . , an is

(a1a2 · · · an)1/n.

Prove that the IRR of n successive annual investments with rates i1, i2, . . . , in
compounded m1, m2, . . . , mn times a year, respectively, is one less than the
geometric mean of(

1 +
i1
m1

)m1

,

(
1 +

i2
m2

)m2

, . . . ,

(
1 +

i1
mn

)mn

.

2.37. Show that the IRR that corresponds to a nominal rate i(m) compounded
m times a year does not depend on the number of years it is invested.

2.38. Show that the IRR that corresponds to a simple interest investment
rate of i depends on the number of years it is invested.
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2.39. Show that for a sequence of cash flows over one year, the IRR is the
same as the EFF.

2.40. Show that the future value at the end of the first year when invested at
a simple annual interest rate of i is the same as the future value at the end
of the first year when invested at a compound annual interest rate of i. Show
that the future value at the end of the nth year (n ≥ 2) when invested at a
simple annual interest rate of i is always less than the future value at the end
of the nth year when invested at a compound annual interest rate of i.

2.41. An initial amount P0 is compounded annually for n years at successive
annual interest rates of i1, i2, · · · , in. Show that11

Pn = P0

n∏
j=1

(1 + ij) .

What has this result to do with Problem 2.12 on p. 38?

2.42. The purpose of this problem is to show that the function (1 + i/t)t is
an increasing function of t if i > 0.

(a) Consider the function

g(x) =
x

x + 1
− ln(1 + x)

for x > 0. Show that g′(x) < 0. Explain why this leads to g(0) > g(x),
that is, if x > 0, then

x

x + 1
− ln(1 + x) < 0.

(b) Now consider the function

f(x) = (1 + x)1/x

for x > 0. By considering f ′(x) and the inequality from part (a), show
that f(x) is a decreasing function of x.

(c) By putting x = i/t in part (b), show that (1 + i/t)t is an increasing
function of t. (Where did you need i > 0?)

(d) Explain how part (c) generalizes Theorem 2.2 on p. 20.

11 The product symbol,
∏n

j=1 aj , is defined by

n∏
j=1

aj = a1a2 · · · an.
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2.43. Is it possible for the cash flows

Time 0 1 2
Cash Flow C0 C1 C2

to have no IRR if the sequence C0, C1, C2 has exactly one sign change?

2.44. Prove that the IRR Uniqueness Theorem II on p. 34 is also true if the
inequality in condition (b) is replaced with

∑p
k=0 Ck(1 + i)p−k < 0.

2.45. Give an example of constants C0, C1, . . . , Cn such that there is a unique
i that satisfies condition (c) of the IRR Uniqueness Theorem II on p. 34, but
not conditions (a) and (b).

2.46. If the rate of change of P (t) with respect to t is proportional to the
initial amount P0 = P (0), that is, if dP/dt = kP0 where k is a positive
constant, then show that P is growing at a simple interest rate of k.

2.47. If the rate of change of P (t) with respect to t is proportional to the
amount P (t) present at time t, that is, if dP/dt = kP , where k is a positive
constant, then show that P is growing at an interest rate of k, compounded
continuously.

2.48. If the rate of change of P (t) with respect to t is proportional to the
square of the amount P (t) present at time t, that is, if dP/dt = kP 2, where k
is a positive constant, then show that the graph of P has a vertical asymptote.
What is the practical significance of this asymptote?

2.49. What compound annual interest rate of i gives the Rule of 72 exactly?

Questions for Review

• How do you calculate compound interest?
• What does compounded continuously mean?
• What is discounting?
• What is the difference between the annual effective rate and the internal

rate of return?
• What is a time diagram?
• What is the NPV?
• Why are the IRR Uniqueness Theorems important?
• What is the Rule of 72?
• What is a proof by induction?
• What is a recurrence relation?
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Inflation and Taxes

In this chapter we discuss two topics that usually reduce the annual effective
rate (EFF) of an investment—inflation and taxes. The impact of these two
items on any profits should not be ignored.

3.1 Inflation

Inflation changes the purchasing power of money and so behaves like interest
but in reverse. For example, if inflation in one year is 10%, then $100 worth of
goods at the beginning of the year typically costs $110 at the end. Thus, we are
only able to purchase 100/110 of the goods at the end of the year compared
to the beginning. Thus, if the annual inflation rate is iinf (expressed as a
decimal), then P0 at the beginning of a year purchases P0/(1 + iinf) at the
end.

Imagine that we keep our money P0 under the mattress and that the
inflation rate, iinf , is constant. After n years, the purchasing power of our
money is reduced to

Pn = P0

(
1

1 + iinf

)n

.

Another way of saying this is that Pn future dollars are worth P0 in today’s
dollars.

Theorem 3.1. The Purchasing Power Theorem.
If the annual inflation rate is iinf , then the purchasing power of P0 after n
years is reduced to

Pn = P0

(
1

1 + iinf

)n

. (3.1)
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Comments About the Purchasing Power Theorem

• Table 3.1 shows the impact of inflation on the buying power of $1,000 over
time, in five-year intervals, for various annual inflation rates.

Table 3.1. Impact of Inflation on Buying Power of $1,000

Years
Inflation Rate 5 10 15 20 25 30

3% 862.61 744.09 641.86 553.68 477.61 411.99
4% 821.93 675.56 555.26 456.39 375.12 308.32
5% 783.53 613.91 481.02 376.89 295.30 231.38
6% 747.26 558.39 417.27 311.80 233.00 174.11
7% 712.99 508.35 362.45 258.42 184.25 131.37
8% 680.58 463.19 315.24 214.55 146.02 99.38
9% 649.93 422.41 274.54 178.43 115.97 75.37

• Figure 3.1 shows the purchasing power of $1,000 as a function of the in-
flation rate for 10 years (the upper curve) and 20 years (the lower curve).

Inflation Rate
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Fig. 3.1. Purchasing power of $1,000 as a function of inflation rate for 10 and 20
years

• Figure 3.2 shows the purchasing power of $1,000 as a function of years for
3% (the upper curve) and 6% (the lower curve).

• Notice, from Figure 3.2, that at a modest 3% inflation rate our purchasing
power decreases by 50% in about 23 years. Some parents start saving for
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their children’s college education shortly after the child’s birth. If inflation
rates are between 3% and 5% during that time, then they need to save
more than twice as much as the current estimate since increases in the
cost of education typically outpace inflation.

• We notice that Pn is directly proportional to P0 but is a nonlinear function
of iinf and n. Figures 3.1 and 3.2 suggest that the graphs of Pn as a
function of i, and Pn as a function of n are both decreasing and concave
up.1 Problems 3.9 and 3.10 on p. 52 ask you to prove these conjectures.

• If iinf > 0, then {Pn} is a decreasing sequence for which limn→∞ Pn = 0.
Thus, during times of inflation, our money buys less and less as time goes
by.

• If iinf < 0—this is usually called deflation—then {Pn} is an increasing
sequence for which limn→∞ Pn = ∞. Thus, during times of deflation, our
money buys more and more as time goes by.
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Fig. 3.2. Purchasing power of $1,000 as a function of years for 3% and 6% inflation
rates

Example 3.1. Today Amanda Kendrick pays $7 for a movie ticket. In 20 years,
how much does she pay in today’s dollars if inflation runs at 5%?

Solution. We want to find P0 in today’s dollars if P20 = 7. From Pn = P0(1 +
iinf)−n, we have P0 = 7(1 + 0.05)20 = 18.57. Thus, we estimate that a movie
ticket costs $18.57 in 20 years due to inflation. �

1 Concave up functions are special cases of convex functions, and are widely used
in financial circles. (See Problem 3.13 on p. 52.)
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Now imagine that we keep our money P0 in an interest bearing account
at an annual effective rate of ieff. If the inflation rate iinf is a constant, then
after n years, the purchasing power of our money is

Pn = P0(1 + ieff)n

(
1

1 + iinf

)n

= P0

(
1 + ieff
1 + iinf

)n

. (3.2)

• If iinf > ieff, then {Pn} is a decreasing sequence for which limn→∞ Pn = 0.
Thus, as time goes by, our money buys less and less.

• If iinf = ieff, then {Pn} is a constant sequence. As time goes by, our money
buys the same amount even though we are earning interest.

• If iinf < ieff, then {Pn} is an increasing sequence for which limn→∞ Pn =
∞. Thus, as time goes by, our money buys more and more.

We introduce the real rate of interest, ireal, which is the annual rate
at which P0 grows to Pn when interest is compounded annually at ieff adjusted
for inflation. Thus,

Pn = P0(1 + ireal)n.

So from (3.2), we have

1 + ireal =
1 + ieff
1 + iinf

.

This can be rewritten as

ireal =
1 + ieff
1 + iinf

− 1 =
ieff − iinf

1 + iinf
.

Thus, we have the following theorem.

Theorem 3.2. The Inflation Theorem.
If the annual inflation rate is iinf , then the real rate of interest, ireal, that
corresponds to an annual effective rate of ieff, is

ireal =
ieff − iinf

1 + iinf
. (3.3)

Solving (3.3) for ieff gives

ieff = iinf + ireal + iinf ireal.

3.2 Consumer Price Index (CPI)

The Consumer Price Index (CPI) is a measure of the average price over time
of a fixed market basket of goods and services bought by consumers for day-to-
day living. The CPI for the United States is the broadest, most comprehensive
index and is often quoted as the source for the “rate of inflation”.2

2 Some people feel that the CPI is an upper limit for the rate of inflation.
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Table 3.2 shows the average annual CPI, and how it has changed from
1913 to 2005, with the CPI of 100 occurring in mid-1983.3

Table 3.2. Average Annual CPI

Year Index % Year Index % Year Index %
1913 9.9 1944 17.6 1.7 1975 53.8 9.1
1914 10.0 1.0 1945 18.0 2.3 1976 56.9 5.8
1915 10.1 1.0 1946 19.5 8.3 1977 60.6 6.5
1916 10.9 7.9 1947 22.3 14.4 1978 65.2 7.6
1917 12.8 17.4 1948 24.1 8.1 1979 72.6 11.3
1918 15.1 18.0 1949 23.8 −1.2 1980 82.4 13.5
1919 17.3 14.6 1950 24.1 1.3 1981 90.9 10.3
1920 20.0 15.6 1951 26.0 7.9 1982 96.5 6.2
1921 17.9 −10.5 1952 26.5 1.9 1983 99.6 3.2
1922 16.8 −6.1 1953 26.7 0.8 1984 103.9 4.3
1923 17.1 1.8 1954 26.9 0.7 1985 107.6 3.6
1924 17.1 0.0 1955 26.8 −0.4 1986 109.6 1.9
1925 17.5 2.3 1956 27.2 1.5 1987 113.6 3.6
1926 17.7 1.1 1957 28.1 3.3 1988 118.3 4.1
1927 17.4 −1.7 1958 28.9 2.8 1989 124.0 4.8
1928 17.1 −1.7 1959 29.1 0.7 1990 130.7 5.4
1929 17.1 0.0 1960 29.6 1.7 1991 136.2 4.2
1930 16.7 −2.3 1961 29.9 1.0 1992 140.3 3.0
1931 15.2 −9.0 1962 30.2 1.0 1993 144.5 3.0
1932 13.7 −9.9 1963 30.6 1.3 1994 148.2 2.6
1933 13.0 −5.1 1964 31.0 1.3 1995 152.4 2.8
1934 13.4 3.1 1965 31.5 1.6 1996 156.9 3.0
1935 13.7 2.2 1966 32.4 2.9 1997 160.5 2.3
1936 13.9 1.5 1967 33.4 3.1 1998 163.0 1.6
1937 14.4 3.6 1968 34.8 4.2 1999 166.6 2.2
1938 14.1 −2.1 1969 36.7 5.5 2000 172.2 3.4
1939 13.9 −1.4 1970 38.8 5.7 2001 177.1 2.8
1940 14.0 0.7 1971 40.5 4.4 2002 179.9 1.6
1941 14.7 5.0 1972 41.8 3.2 2003 184.0 2.3
1942 16.3 10.9 1973 44.4 6.2 2004 188.9 2.7
1943 17.3 6.1 1974 49.3 11.0 2005 195.3 3.4

The % column represents the percentage change in the index from one year
to the next. For example, the percentage change of 3.4 in 2005 is calculated
from

Index in 2005 − Index in 2004
Index in 2004

=
195.3 − 188.9

188.9
= 0.0339,

which is 3.4% to one decimal place.

3 ftp://ftp.bls.gov/pub/special.requests/CPI/cpiai.txt, accessed March 17, 2006.
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From the table, we see that in 1970 the index was 38.8, and by 2005 it
had grown to 195.3. This suggests that goods that cost $38.80 in 1970 cost
$195.30 in 2005. Thus, after 35 years an amount P0 has its purchasing power
reduced to P35 = (38.8/195.3)P0, and so the inflation rate, iinf , for those 35
years must satisfy

38.8
195.3

P0 = P0

(
1

1 + iinf

)35

,

that is,

iinf =
(

195.3
38.8

)1/35

− 1 = 0.047.

So inflation has been about 5% per year over those 35 years.

3.3 Personal Taxes

If we keep our money P0 in an interest bearing account at an annual effective
rate of ieff, then after one year we have P0(1 + ieff). Thus, our pre-tax profit
that year is ieffP0. This profit incurs taxes, and if t is our tax rate (expressed
as a decimal), then we pay ieffP0t in taxes.4 Thus, the actual after-tax amount
we have available to re-invest the second year is

P1 = P0(1 + ieff) − ieffP0t = P0(1 + ieff − iefft).

One year later this has grown to P1(1 + ieff), pre-tax, and so after taxes
we have

P2 = P1(1 + ieff) − ieffP1t = P1(1 + ieff − iefft).

Continuing in this way, we find that

Pk+1 = Pk(1 + ieff) − ieffPkt = Pk(1 + ieff − iefft).

This is the same recurrence relation that we found in the proof of Theorem
2.1 on p. 15, which has solution

Pn = P0(1 + ieff − iefft)n.

Thus, we have the following theorem.

4 In the United States, as of July 2006, the tax rates on earned income depend on
marital status and taxable income. The rates are: 15%, 25%, 28%, and 35%. The
tax rates on unearned income (such as investments) are different from those on
earned income (such as salary).
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Theorem 3.3. The Tax Theorem.
If the annual effective rate is ieff and the annual tax rate, t, is constant, then
the after-tax future value of P0 after n years is

Pn = P0(1 + ieff − iefft)n. (3.4)

We now introduce the after-tax rate of interest, itax, which is the
after-tax annual rate at which P0 grows to Pn when compounded annually at
that rate. Thus,

Pn = P0(1 + itax)n,

and so from (3.4), we have

1 + itax = 1 + ieff − iefft.

This can be rewritten as

itax = ieff − iefft = ieff(1 − t). (3.5)

3.4 Problems

Walking

3.1. Confirm that the entries in Table 3.1 on p. 46 are correct.

3.2. In what years did the United States experience deflation?

3.3. What is the rate of inflation for the period 1980–2005? The period 1990–
2005? The period 2000–2005?

3.4. In 1974, Helen Kendrick received 10% interest compounded annually on
her savings account. Should she be pleased? What was the real rate of interest?

3.5. On average, the cost of a college textbook is about $75. How much does
it cost 25 years from now (in today’s dollars)—when the children of current
freshmen are themselves freshmen—if inflation runs at 5%?

3.6. In January 1970, Hugh Kendrick bought a new Toyota Corolla for $2,000.
In January 2000, he bought one for $14,000. What annual rate of inflation does
this correspond to?

3.7. Some investments are tax-exempt. The following table shows that, for a
person in the 15% taxable income bracket, an annual effective rate of 2.35%
on a taxable investment is equivalent to an annual effective rate of 2% on a
tax-exempt investment. Complete this table.
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Tax Rate
Tax Exempt Return 15% 25% 28% 35%

2% 2.35% 2.67% 2.78% 3.08%
3%
4%
5%
6%
7%
8%
9%
10%

Running

3.8. A rule of thumb used to estimate the real interest rate is ireal ≈ ieff − iinf .
Show that this estimate is always too high during times of inflation and too
low during times of deflation.

3.9. Show that

f(x) = P0

(
1

1 + iinf

)x

is a decreasing, concave up function of x for iinf > 0. (See p. 47.)

3.10. Show that

g(x) = P0

(
1

1 + x

)n

is a decreasing, concave up function of x. (See p. 47.)

3.11. Some people think, incorrectly, that the inflation equation is not (3.2)
on p. 48, but is given by P0(1 − iinf)n. Show that these people predict a value
that is always lower than the correct one when −1 < iinf < 1.

3.12. If P0 is placed in an interest bearing account at an annual effective rate
of ieff, if the annual inflation rate is iinf , and if the annual tax rate is t, then
what is the after-tax after-inflation rate of interest?

3.13. A function f(x) on an interval I is said to be convex on I if for every
p ∈ (0, 1) and every x, y ∈ I, the function f(x) satisfies5

f (px + (1 − p)y) ≤ pf(x) + (1 − p)f(y).

(a) Show that the function f(x) = x is convex.
(b) Show that the function f(x) = |x| is convex.
(c) Show that the function f(x) = x2 is convex.

5 The notation a ∈ I, means that a is an element or member of I. If I is not
specified it is assumed to be (−∞, ∞).
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3.14. Give an example of a function that is not convex.

3.15. Consider the function

f(x) =
{

x if x ≤ 1,
2 − x if x > 1.

Show that f(x) is convex on −∞ < x ≤ 1 and convex on 1 < x < ∞ but not
convex on −∞ < x < ∞.

3.16. If f(x) is convex on an interval I, if pi ≥ 0 (i = 1, 2, . . . , n) where
p1 + p2 + · · · pn = 1, and if x1, x2, · · · , xn ∈ I, then show that

f

(
n∑

i=1

pixi

)
≤

n∑
i=1

pif(xi).

[Hint: Use induction.]

3.17. Suppose that f(x) is defined on the interval I. If x1 < x2 < x3 are in
I and f(x1) < f(x2) and f(x3) < f(x2), then show that f(x) is not convex
on I.

Questions for Review

• What is inflation?
• What is deflation?
• What is meant by the expression “the purchasing power of money”? How

is it calculated?
• What is the real rate of interest?
• What is the Consumer Price Index?
• What is the after-tax rate of interest?
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Annuities

An annuity is a constant amount of money paid at regular intervals, called
periods. When the payments are made at the end of the period, the annuity
is called an ordinary annuity. When payments are made at the beginning
of the period, the annuity is called an annuity due.

Annuities occur in a variety of different settings. For example, someone
who is saving for retirement by investing a constant amount of money at the
end of every month in an account that pays a fixed interest rate is creating
an ordinary annuity. Someone who wins the lottery and who has selected the
annuity payout option is paid a constant amount of money immediately and
every year thereafter for a fixed number of years—an annuity due.

It is important that annuities be thoroughly understood—they are funda-
mental to the remaining chapters.

4.1 An Ordinary Annuity

We invest $1,000 at the end of each year at 10% annual interest for 5 years.
At the end of the first year we earn no interest because we have just deposited
$1,000. At the end of the second year we earn 10% of $1,000, namely, $100, and
we deposit $1,000, totaling $2,100. At the end of the third year we earn 10%
of $2,100, namely, $210, and we deposit $1,000, totaling $3,310. We continue
doing this for 5 years. Table 4.1 shows the details. (Check the calculations in
this table using a calculator or a spreadsheet program, and fill in the missing
entries.)

We now derive the general formula for this process. We let

P be the amount invested at the end of every period,
n be the total number of periods,
Pn be the future value of the annuity at the end of the nth period,
m be the number of periods per year,

i(m) be the nominal rate (annual interest rate), expressed as a decimal,
i be the interest rate per interest period.
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Table 4.1. Ordinary Annuity

Year’s Beginning Year’s End
Year Principal Interest Investment Amount

1 $0.00 $0.00 $1,000.00 $1,000.00
2 $1,000.00 $100.00 $1,000.00 $2,100.00
3 $2,100.00 $210.00 $1,000.00 $3,310.00
4
5 $4,641.00 $464.10 $1,000.00 $6,105.10

The interest rate per period is i = i(m)/m.
We want to find a formula for the future value Pn, and we do this by looking

at n = 1, n = 2, and so on, hoping to see a pattern. Using this notation, we
rewrite Table 4.1 symbolically in spreadsheet format as Table 4.2, which is
explained as follows.

Table 4.2. Ordinary Annuity—Spreadsheet Format

Period’s Beginning Period’s End
Period Principal Interest Investment Amount

1 0 0 P 0 + 0 + P = P1

2 P1 iP1 P P1 + iP1 + P = P2

3 P2 iP2 P P2 + iP2 + P = P3

4 P3 iP3 P P3 + iP3 + P = P4

5 P4 iP4 P P4 + iP4 + P = P5

At the end of period 1 we have made 1 payment, and our future value is

P1 = P.

At the end of period 2 we have made 2 payments, and our future value is

P2 = P1(1 + i) + P = P (1 + i) + P.

At the end of period 3 we have made 3 payments, and our future value is

P3 = P2(1 + i) + P = P (1 + i)2 + P (1 + i) + P.

At the end of period 4 we have made 4 payments, and our future value is

P4 = P3(1 + i) + P = P (1 + i)3 + P (1 + i)2 + P (1 + i) + P.

This suggests that at the end of period n we have made n payments, and
our future value is

Pn = P (1 + i)n−1 + P (1 + i)n−2 + · · · + P (1 + i) + P.
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Using the geometric series

1 + x + · · · + xn−1 =
xn − 1
x − 1

, x 	= 1,

we can rewrite this conjecture in closed form1

Pn = P
(
(1 + i)n−1 + (1 + i)n−2 + · · · + (1 + i) + 1

)
= P

(1 + i)n − 1
i

.

This suggests the following theorem.

Theorem 4.1. The Future Value of an Ordinary Annuity Theorem.
If we invest P at the end of every period for n periods (where there are m
periods per year) at a nominal rate of i(m) (expressed as a decimal), then Pn,
the future value of the annuity after n periods, is

Pn = P

n∑
k=1

(1 + i)k−1 = P
(1 + i)n − 1

i
, (4.1)

where i = i(m)/m.

Proof. We can prove this conjecture in at least two different ways: either using
mathematical induction or using recurrence relations.

We first prove it using mathematical induction. We already know that
(4.1) is true for n = 1. We assume that it is true for n = k, that is,

Pk = P
(1 + i)k − 1

i
.

and we must show that it is true for n = k + 1. Now,

Pk+1 = Pk(1 + i) + P,

so

Pk+1 = P
(1 + i)k − 1

i
(1 + i) + P = P

(1 + i)k+1 − 1
i

,

which shows that (4.1) is true for n = k + 1. This concludes the proof by
mathematical induction.

We now prove it using recurrence relations. We know that P1 = P and
that for k > 0,

Pk+1 = Pk(1 + i) + P,

so if we multiply this by 1/(1 + i)k+1, then we can write it as

1 Loosely speaking, an expression is in “closed form” if it does not contain terms
such as “· · · ”.
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Pk+1
1

(1 + i)k+1 = Pk
1

(1 + i)k
+ P

1

(1 + i)k+1 .

Summing this from k = 1 to k = n − 1 (where n > 1) gives

n−1∑
k=1

Pk+1
1

(1 + i)k+1 =
n−1∑
k=1

Pk
1

(1 + i)k
+ P

n−1∑
k=1

1

(1 + i)k+1 ,

or by canceling the common terms on both sides of this equation,

Pn
1

(1 + i)n = P
1

1 + i
+ P

n−1∑
k=1

1

(1 + i)k+1 ,

that is,

Pn = P

n−1∑
k=0

(1 + i)n

(1 + i)k+1 .

However,
n−1∑
k=0

(1 + i)n

(1 + i)k+1 = 1 + (1 + i) + · · · + (1 + i)n−1
,

which is a geometric series that can be written in the form

n−1∑
k=0

(1 + i)n

(1 + i)k+1 =
(1 + i)n − 1

i
.

Thus,

Pn = P
(1 + i)n − 1

i
,

which is (4.1). This concludes the proof using recurrence relations. ��

Comments About the Future Value of an Ordinary Annuity Theo-
rem

• The general situation is represented by Fig. 4.1.

0

P

1

P

2 · · ·

P

n − 1
Pn

P

Fig. 4.1. Time diagram of an ordinary annuity
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• Notice that (4.1), namely,

Pn = P (1 + i)n−1 + P (1 + i)n−2 + · · · + P (1 + i) + P,

is consistent with Fig. 4.1 because the future value of the first payment P
(after n periods) is P (1 + i)n−1, the future value of the second payment
P (after n periods) is P (1 + i)n−2, and so on.

• Table 4.3 shows the future value of an ordinary annuity of $1 for different
annually-compounded interest rates and different numbers of years.

Table 4.3. Future Value of an Ordinary Annual Annuity of $1

Years
Interest Rate 5 10 15 20 25 30

3% 5.309 11.464 18.599 26.870 36.459 47.575
4% 5.416 12.006 20.024 29.778 41.646 56.085
5% 5.526 12.578 21.579 33.066 47.727 66.439
6% 5.637 13.181 23.276 36.786 54.865 79.058
7% 5.751 13.816 25.129 40.995 63.249 94.461
8% 5.867 14.487 27.152 45.762 73.106 113.283
9% 5.985 15.193 29.361 51.160 84.701 136.308
10% 6.105 15.937 31.772 57.275 98.347 164.494
11% 6.228 16.722 34.405 64.203 114.413 199.021
12% 6.353 17.549 37.280 72.052 133.334 241.333
13% 6.480 18.420 40.417 80.947 155.620 293.199
14% 6.610 19.337 43.842 91.025 181.871 356.787
15% 6.742 20.304 47.580 102.444 212.793 434.745

• We notice that Pn is a function of the three variables P , n, and i. It is
directly proportional to P—which is why we selected P = 1 in Table 4.3—
but nonlinear in i and n.

• The dependence of Pn on i is seen in Fig. 4.2, which shows the future
value of an ordinary annuity of $1 as a function of i for 10 years (the lower
curve) and 20 years (the upper curve) with annual compounding. Notice
that both curves appear to be increasing and concave up. In Problem 4.18
on p. 73 you are asked to prove this.

• The dependence of Pn on n is seen in Fig. 4.3, which shows the future value
of an ordinary annuity of $1 as a function of n for 5% interest (the lower
curve) and 10% interest (the upper curve) compounded annually. Notice
that both curves appear to be increasing and concave up. In Problem 4.19
on p. 73 you are asked to prove this.

Example 4.1. Helen and Hugh Kendrick decide to give Amanda, their 20-year
old daughter, an extended birthday gift. They deposit $2,000 in her name on
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Fig. 4.2. Future Value of $1 annuity for 10 and 20 years with annual compounding
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Fig. 4.3. Future Value of $1 annuity at 5% and 10% interest compounded annually

her next five birthdays at a nominal rate of 8% compounded annually, and
then they stop the annual deposits. Amanda leaves the accumulated amount
invested at 8%. How much does Amanda have when she turns 65?

Solution. In this case Helen and Hugh make five deposits, so n = 5, and
at the end of the fifth year Amanda has

P5 = 2000
(1 + 0.08)5 − 1

0.08
= $11,733.20.

This is now invested for 40 years at 8%, giving

11733.20 (1 + 0.08)40 = $254,898.16. �
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Example 4.2. If, under the circumstances of Example 4.1, a rival institution
offered the Kendricks a 10% interest rate (instead of 8%), then how much
does Amanda have when she turns 65?

Solution. At the end of the fifth year she has

P5 = 2000
(1 + 0.10)5 − 1

0.10
= $12,210.20.

This is now invested for 40 years at 10%, giving

12210.20 (1 + 0.10)40 = $552,624.56.

�

Notice that a relatively small change in interest rates, in this case from
8% to 10%, can make a huge difference in the value of the investment after
a number of years, in this case a difference of about $300,000 on an initial
investment of $10,000.

Example 4.3. Tom Kendrick is repaying a student loan with a nominal interest
of 5% at $100 a month. He misses three successive payments but makes the
fourth. He then pays an additional lump sum2 to make up for the three missed
payments. How much is the lump sum? How much extra interest does he pay
as a result of his late payments?

Solution. Tom’s scheduled cash flows are represented by Fig. 4.4, where P4 is
the total value of the four payments.

0

$100

1

$100

2

$100

3
P4

$100

Fig. 4.4. Time diagram of Tom’s scheduled cash flows

We recognize this as an ordinary annuity with P = $100, n = 4, and
i = 0.05/12, so

P4 = 100

(
1 + 0.05

12

)4 − 1
0.05
12

= $402.51.

Thus, the lump sum is P4 − 100 = $302.51. The $302.51 − $300.00 = $2.51 is
the extra interest for the late payments. An alternative way to think of this
problem is represented by Fig. 4.5, where L is the lump sum owed due to the
missed payments.
2 In practice, there might be an additional charge for missing the payments.
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0

$100

1

$100

2

$100

3
L

Fig. 4.5. Time diagram of Tom’s debt

The future value of the first missed payment is 100 (1 + 0.05/12)3, of the
second missed payment is 100 (1 + 0.05/12)2, and of the final missed payment
is 100 (1 + 0.05/12). Thus,

L = 100
(

1 +
0.05
12

)3

+ 100
(

1 +
0.05
12

)2

+ 100
(

1 +
0.05
12

)
= $302.51.

�
The present value of Pn is P0, where Pn = P0 (1 + i)n, so the present value

of an ordinary annuity is

P0 = Pn(1 + i)−n = P
(1 + i)n − 1

i
(1 + i)−n = P

1 − (1 + i)−n

i
.

We thus have the following theorem.

Theorem 4.2. The Present Value of an Ordinary Annuity Theorem.
If we invest P at the end of every period for n periods (where there are m
periods per year) at a nominal rate of i(m) (expressed as a decimal), then P0,
the present value of the annuity, is

P0 =
Pn

(1 + i)n = P

n∑
k=1

1

(1 + i)n+1−k
= P

1 − (1 + i)−n

i
, (4.2)

where i = i(m)/m.

Comments About the Present Value of an Ordinary Annuity The-
orem

• Notice that (4.2), namely,

P0 = P

n∑
k=1

1

(1 + i)n+1−k
=

P

1 + i
+

P

(1 + i)2
+ · · · +

P

(1 + i)n ,

is represented by Fig. 4.6.
This is interpreted as receiving an initial loan of P0 and repaying P over n
payment periods—called amortizing a loan. Given any positive P , i, and
n (where n is an integer), we use (4.2) to compute P0. In other words, we
can answer questions like, “If I can afford to pay P a month for n months,
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P
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2 · · ·
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P

Fig. 4.6. Time diagram of a simple loan

then how much can I borrow at a monthly interest rate of i?” However, in
general and for a very subtle reason, we cannot answer the question, “If I
want to borrow P0 at a monthly interest rate of i and can afford to pay
P a month, then how long does it take to repay the loan?” To answer this
question, we have to solve (4.2), namely,

P0 = P
1 − (1 + i)−n

i
,

for n, obtaining

n =
ln

(
P

P−iP0

)
ln (1 + i)

.

However, in general the left-hand side is an integer, whereas the right-hand
side is not. We return to this type of problem in Chap. 6.

Example 4.4. The Kendricks are thinking of buying a new house by amortizing
a loan. They can afford to pay $700 a month for 30 years. If the current interest
rate is 8%, then how much can they borrow?

Solution. From (4.2), with P = 700, m = 12, i = 0.08/12, and n = 30 × 12 =
360, we find that

P0 = 700
1 − (

1 + 0.08
12

)−360

0.08
12

= $95,398.45.

Thus, they can borrow about $95,000. �

A sinking fund is an account, earning a nominal interest rate of i(m),
into which a constant amount of money P is deposited regularly m times a
year (often monthly) with a view to accumulating a targeted amount F on a
specified date n periods in the future. If the deposits are made at the end of
each period, including the final period, then the time diagram is Fig. 4.7.

This is just an ordinary annuity, so from (4.1), we have

F = P
(1 + i)n − 1

i
, (4.3)
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Fig. 4.7. Time diagram of a sinking fund

where i = i(m)/m. Usually the question with a sinking fund is, “How much
must we deposit every period to have a targeted final figure at a specified
time?” In other words, find P in terms of F , n, and i. Thus, from (4.3),

P = F
i

(1 + i)n − 1
. (4.4)

Example 4.5. Hugh Kendrick expects to replace his car in 5 years. He estimates
that he needs $20,000. How much per month must he put into a sinking fund
at a nominal rate of 6% compounded monthly to replace his car?

Solution. Here F = 20000, n = 5 × 12 = 60, and i = 0.06/12 = 0.005, so

P = 20000
0.005

(1.005)60 − 1
= 286.656,

namely, $286.66 a month. �

We can do two back-of-the-envelope, order-of-magnitude calculations to
see whether $286.66 a month is in the right ballpark.

• First, intuition suggests that the total deposited is less than the fi-
nal amount because most deposits earn interest. The total deposited is
$286.66 × 60 = $17,199.60, which is less than $20,000. This intuitive cal-
culation suggests that for n > 1,

nP < F.

But is our intuition correct?
For nP < F to be true we need, from (4.3),

n <
(1 + i)n − 1

i
,

or
(1 + i)n − 1 − ni > 0.

We prove this by induction on n > 1. With n = 2, the left-hand side of
this inequality becomes (1 + i)2 − 1 − 2i = i2 > 0, so it is true for n = 2.
We assume that it is true for n = k, that is,

(1 + i)k − 1 − ki > 0,
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and consider the left-hand side with n = k + 1, namely, (1 + i)k+1 − 1 −
(k + 1)i. Now,

(1 + i)k+1 − 1 − (k + 1)i = (1 + i)k(1 + i) − 1 − (k + 1)i
> (1 + ki)(1 + i) − 1 − (k + 1)i
= ki2,

which is positive. Thus, our intuition is correct.

• Second, intuition suggests that the total deposited is greater than the
present value of the final amount because each new deposit only earns
interest from the time it is made to the time of the final deposit, whereas
the present value of the final amount is computed assuming that the
investment earns interest immediately. The present value of $20,000 is
$20,000(1 + 0.005)−60 = $14,827.44, which is less than $286.66 × 60 =
$17,199.60. This intuitive calculation suggests that for n > 0,

F (1 + i)−n < nP.

But is our intuition correct? For this to be true we need, from (4.3),

(1 + i)n − 1
i

(1 + i)−n < n,

or
(1 + i)n(1 − ni) < 1.

This is clearly true if 1 − ni ≤ 0, so we prove this by induction on n > 0
assuming that 1 − ni > 0, that is, n < 1/i.

With n = 1, the left-hand side of this inequality becomes (1 + i)(1 − i) =
1− i2 < 1, so it is true for n = 1. We assume that it is true for n = k, that
is,

(1 + i)k(1 − ki) < 1,

and consider the left-hand side with n = k + 1, namely, (1 + i)k+1 (1−
(k + 1)i).

Now,
(1 + i)k+1(1 − (k + 1)i) = (1 + i)k(1 + i)(1 − ki − i)

< 1
1−ki (1 + i)(1 − ki − i)

= 1 + i − i(1+i)
1−ki

= 1 − i2(1+k)
1−ki

< 1.

Thus, our intuition is correct again. (Where did we use the fact that n <
1/i?)
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Thus, we can always check the numerical value of P using the following
result.

Theorem 4.3. For a sinking fund, the periodic payment P given by (4.4),

P = F
i

(1 + i)n − 1
,

must satisfy the inequality

F

n
(1 + i)−n

< P <
F

n
,

for n > 1.

Example 4.6. Jana Carmel, a coworker of Hugh Kendrick, is 35 years old and
wants to have $1 million when she retires at age 65. If she earns 10% interest
compounded annually on her savings, then how much must she save per year
assuming no inflation? Assuming inflation at 5% per year?

Solution. Here F = 106, n = 65 − 35 = 30, and i = 0.1/1 = 0.1, so we know
that 106/30× (1.1)−30

< P < 106/30, that is, $1,910.29 < P < $33,333.33. In
fact,

P = 106 0.1
(1.1)30 − 1

= $6,079.25.

Thus, Jana must save $6,079.25 a year for 30 years to become a before-inflation
millionaire.

If inflation runs at 5% per year, then by the Purchasing Power Theorem
on p. 45, the purchasing power of 106 dollars 30 years from now is F =
106 (1 + 0.05)30, so

P = 106 (1 + 0.05)30
0.1

(1.1)30 − 1
= $26,274.16.

Thus, Jana should save $26,274.16 a year for 30 years to become an after-
inflation millionaire. The moral of the story is: inflation matters. �

4.2 An Annuity Due

Now let us assume that we invest $1,000 at the beginning of each year at
10% annual interest for 5 years. At the end of the first year we earn 10% of
$1,000, namely, $100, totaling $1,100. At the beginning of the second year
we deposit an additional $1,000, totaling $2,100, so at end of the second year
we earn 10% of $2,100, namely, $210, totaling $2,310. We continue doing this
for 5 years. Table 4.4 shows the details. (Check the calculations in this table
using a calculator or a spreadsheet program, and fill in the missing entries.)
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Table 4.4. Annuity Due

Year’s Beginning Year’s End
Year Investment Principal Interest Amount

1 $1,000.00 $1,000.00 $100.00 $1,100.00
2 $1,000.00 $2,100.00 $210.00 $2,310.00
3 $1,000.00 $3,310.00 $331.00 $3,641.00
4
5 $1,000.00 $6,105.10 $610.51 $6,715.61

We now derive the general formula for this process. We let

P be the amount invested at the beginning of every period,
n be the total number of periods,
Pn be the future value of the annuity at the end of the nth period,
m be the number of periods per year,

i(m) be the nominal rate (annual interest rate), expressed as a decimal,
i be the interest rate per interest period.

The interest rate per period is i = i(m)/m.
The general situation is represented by Fig. 4.8.

P

0

P

1

P

2 · · ·

P

n − 1
Pn

Fig. 4.8. Time diagram of an annuity due

We want to find a formula for the future value Pn, and we do this by looking
at n = 1, n = 2, and so on, hoping to see a pattern. Using this notation, we
rewrite Table 4.4 symbolically in spreadsheet format as Table 4.5, which is
explained as follows.

Table 4.5. Annuities Due—Spreadsheet Format

Period’s Beginning Period’s End
Period Investment Principal Interest Amount

1 P P iP P + iP = P1

2 P P + P1 i (P + P1) P + P1 + i (P + P1) = P2

3 P P + P2 i (P + P2) P + P2 + i (P + P2) = P3

4 P P + P3 i (P + P3) P + P3 + i (P + P3) = P4

5 P P + P4 i (P + P4) P + P4 + i (P + P4) = P5
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If we make only 1 payment, then at the end of period 1 our future value is

P1 = P (1 + i) .

If we make 2 payments, then at the end of period 2 our future value is

P2 = (P + P1) (1 + i) = P (1 + i) + P (1 + i)2 .

If we make 3 payments, then at the end of period 3 our future value is

P3 = (P + P2) (1 + i) = P (1 + i) + P (1 + i)2 + P (1 + i)3 .

If we make 4 payments, then at the end of period 4 our future value is

P4 = (P + P3) (1 + i) = P (1 + i) + P (1 + i)2 + P (1 + i)3 + P (1 + i)4 .

This suggests that if we make n payments, then at the end of period n our
future value is

Pn = P (1 + i) + P (1 + i)2 + · · · + P (1 + i)n−1 + P (1 + i)n
,

which we write in the form

Pn = P
(
1 + (1 + i) + (1 + i)2 + · · · + (1 + i)n−2 + (1 + i)n−1

)
(1 + i) .

Using the geometric series for x 	= 1,

1 + x + · · · + xn−1 =
xn − 1
x − 1

,

we rewrite this conjecture in closed form

Pn = P
(1 + i)n − 1

i
(1 + i) .

Thus, we have the following theorem.

Theorem 4.4. The Future Value of an Annuity Due Theorem.
If we invest P at the beginning of every period for n periods (where there are
m periods per year) at a nominal rate of i(m) (expressed as a decimal), then
Pn, the future value of the annuity after n periods, is

Pn = P
(1 + i)n − 1

i
(1 + i) , (4.5)

where i = i(m)/m.

The proof of this theorem is developed in Problem 4.21 on p. 73.
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Comments About the Future Value of an Annuity Due Theorem

• The future value of an annuity due is always greater than the future value
of an ordinary annuity with the same P , n, m, and i because it is (1 + i)
times the future value of an ordinary annuity.

• The future value of an annuity due is always increasing and concave up as
a function of i because it is (1 + i) times the future value of an increasing
and concave up ordinary annuity. (See Problem 4.23 on p. 73.)

Example 4.7. Repeat Example 4.1 on p. 59 for the case when all payments are
made one year earlier.

Solution. At the end of the fifth year Amanda has

P5 = 2000
(1 + 0.08)5 − 1

0.08
(1 + 0.08) = $12,671.86.

This is now invested for 40 years at 8%, giving

12671.86 (1 + 0.08)40 = $275,290.09,

a difference of over $20,000 from the result of Example 4.1. �
Example 4.8. Repeat Example 4.2 on p. 61 for the case when all payments are
made one year earlier.

Solution. At the end of the fifth year Amanda has

P5 = 2000
(1 + 0.10)5 − 1

0.10
(1 + 0.10) = $13,431.22.

This is now invested for 40 years at 10%, giving

13431.22 (1 + 0.10)40 = $607,887.02,

a difference of over $55,000 from the result of Example 4.2. �

The present value of Pn is P0, where Pn = P0(1 + i)n. From this we may
derive the following theorem.

Theorem 4.5. The Present Value of an Annuity Due Theorem.
If we invest P at the beginning of every period for n periods (where there are
m periods per year) at a nominal rate of i(m) (expressed as a decimal), then
P0, the present value of the annuity, is

P0 =
Pn

(1 + i)n = P
1 − (1 + i)−n

i
(1 + i) , (4.6)

where i = i(m)/m.
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In Problem 4.22 on p. 73 you are asked to prove this theorem.

Example 4.9. Jana Carmel wins the Arizona Lottery. She receives $207,850
immediately and at the end of each of the following 19 years for a total of 20
payments.

(a) The State of Arizona buys an annuity to cover this. If the nominal interest
rate is 7.06%, then how much does the state pay for this annuity?

(b) If Jana pays 28% in taxes, then what is her after-taxes yearly payout?
(c) If Jana pays 28% in taxes and inflation averages 5% a year, then what is

her final payment worth, after taxes, in today’s dollars?

Solution.

(a) Because Jana received the first payment immediately, this is an annuity
due where P = 207850, m = 1, i(1) = 0.0706, and n = 20, so the present
value (which is what the state pays) is

P0 = 207850
1 − (1 + 0.0706)−20

0.0706
(1 + 0.0706) = $2,346,471.02.

(b) After taxes, $207,850 becomes 207850 × (1 − 0.28) = $149,652.
(c) After taxes and after 19 years inflation (remember, her final payment

is made at the end of the 19th year) this is worth 149652 (1/1.05)19 =
$59,222.38 in today’s dollars, which is less than one third of the original
yearly payout.

�

4.3 Perpetuities

In case you think that your intuition is infallible—so it is really not worth
proving anything—consider the following situation.

Example 4.10. Which would you prefer to receive: $10,000 at the end of every
year forever or $200,000 now if both are invested at 5% compounded annually?

Solution. The way to compare these two choices is to calculate the present
value, P0, of the first choice and compare that to $200,000. The present value
is

P0 = 10000(1 + 0.05)−1 + 10000(1 + 0.05)−2 + · · · + 10000(1 + 0.05)−n + · · · .

This can be written as

P0 = 10000(1 + 0.05)−1 (
1 + (1 + 0.05)−1 + · · · + (1 + 0.05)−n+1 + · · · ) ,
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or

P0 = 10000(1 + 0.05)−1
∞∑

n=0

(
1

1 + 0.05

)n

.

The series is the infinite geometric series,
∑∞

n=0 xn, which converges to
1/(1 − x) if |x| < 1. In our case x = 1/1.05, so

P0 = 10000(1.05)−1 1
1 − 1

1.05

=
10000
0.05

= $200,000.

Thus, you should have no preference between the two propositions. To some
this is counter-intuitive because they think that $10,000 a year forever is the
better choice. It isn’t. In fact, if instead of receiving $10,000 a year forever,
you only receive $10,000 a year for a finite number of years, no matter how
many, the $200,000 now is the better deal. �

An annuity that goes on forever is called a perpetuity. The present value,
P0, of a perpetuity of payments in the amount of P per payment period at
interest i per payment period, is given by

P0 = P (1 + i)−1 + P (1 + i)−2 + · · · + P (1 + i)−n + · · · ,

that is,

P0 = P (1 + i)−1
∞∑

n=0

(
1

1 + i

)n

= P (1 + i)−1 1
1 − 1

1+i

=
P

i
.

We thus have the following result.

Theorem 4.6. The present value, P0, of a perpetuity of payments in the
amount of P per payment period at interest i per payment period, is

P0 =
P

i
.

4.4 Problems

Walking

4.1. Use a spreadsheet program to confirm the entries in Table 4.3 on p. 59.

4.2. Use Table 4.2 on p. 56 as a template to construct a spreadsheet that
solves Examples 4.1 on p. 59 and 4.2 on p. 61.

4.3. The following is a quotation from The Arizona Daily Star (February 27,
2000): “If a person saved $50 a month for 20 years and earned 8% a year
over the entire period, that person would end up with $29,451.02.” Is this
statement true?
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4.4. The Department of Mathematics at the University of Arizona wants to
set up a fund to assist graduate students with travel expenses to conferences.
The department estimates that it needs to withdraw $1,000 from the fund at
the end of each year, forever. If the fund earns 7% interest per annum, then
how much money needs to be placed in the fund at the beginning?

4.5. Repeat Problem 4.4 taking into account inflation at 3% a year.

4.6. The cost of a four-year college education at a public university is expected
to be $7,000 a year in 18 years. How much money should be invested now at
7% so that the balance of the account after 18 years covers the cost of a college
education?

4.7. A person deposits $50 at the end of every month for the next 10 years
in an account earning 9% compounded monthly. What is the balance of the
account at the end of the 10 years?

4.8. Repeat Problem 4.7 under the assumption that the deposits are made at
the beginning of each month rather than at the end of each month.

4.9. A college education is expected to cost $20,000 per year in 18 years. How
much money should be deposited at the end of each year for 18 years in an
account earning 10% compounded monthly so that the balance of the account
after 18 years covers the cost of a college education?

4.10. Repeat Problem 4.9 under the assumption that the deposits are made
at the beginning of each year rather than at the end of each year.

4.11. In five years, a person plans to buy a car that is currently valued at
$16,000. The expected inflation rate is 3% per year. How much money should
that person invest at the end of each month for 60 months in an account
earning 9% compounded monthly so that the balance of the account at the
end of the five years covers the cost of the car?

4.12. The cost of a college education is currently $15,000 per year. The ex-
pected annual inflation rate over the next five years is 3%. How much money
should be deposited at the end of each year for five years in an account earning
10% compounded quarterly so that the balance of the account after five years
covers the cost of a college education?

4.13. A person pays $100,000 for an investment that promises to pay $15,000
per year at the end of each year for 10 years. What is the rate of return on
the investment?

4.14. Repeat Problem 4.13 under the assumption that the payments are made
at the beginning of each year rather than at the end of each year.

4.15. A person pays $50,000 for an investment that promises to pay a fixed
amount of money at the end of each year for 15 years. If the rate of return is
8%, then what is the amount of the annual payments?
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4.16. Repeat Problem 4.15 under the assumption that the payments are made
at the beginning of each year rather than at the end of each year.

4.17. An investment promises to pay $50 per year in perpetuity. If the in-
vestor’s tax rate is 30% and if the investor can deposit the payments into an
account earning 10% compounded monthly, then what is the present value of
the perpetuity?

Running

4.18. Show that

f(x) = P0
(1 + x)n − 1

x

is an increasing, concave up function of x. What is limx→0+ f(x)? (See p. 59.)

4.19. Show that

g(x) = P0
(1 + i)x − 1

i

is an increasing, concave up function of x. What is limi→0+ g(x)? (See p. 59.)

4.20. Prove Theorem 4.3 on p. 66 by induction.

4.21. Prove (4.5) on p. 68.

4.22. Prove (4.6) on p. 69.

4.23. Show that for x > 0, if f(x) is positive, increasing, and concave up,
then so is g(x) = (1 + x)f(x). (See p. 69.)

4.24. It is claimed that an annuity due can be thought of as one initial pay-
ment and n − 1 ordinary annuity payments. Is this true?

Questions for Review

• What is an annuity?
• What is the difference between an ordinary annuity and an annuity due?
• How do you calculate the future value of an ordinary annuity? An annuity

due?
• How do you calculate the present value of an ordinary annuity? An annuity

due?
• What is a sinking fund?
• What is a perpetuity?
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Loans and Risks

Many students obtain student loans. These loans may be issued by in-
dividuals, businesses (as part of an employee’s benefit program), or by the
government. A common type of student loan is a Stafford loan, which is guar-
anteed by the federal government. Typical conditions for a Stafford loan are
that the repayment period of the loan is at most 10 years, the minimum
monthly payment is $50, and there is no prepayment penalty (this last condi-
tion is important because many real estate loans, for example, charge a very
high penalty for paying off the loan early). These loans are currently at a fixed
rate, and there is a late fee for late payments. An important feature of these
loans is that the student does not begin to repay the loan until 6 months after
completing the academic program or leaving school.

Home loans are available through banks, savings and loans, and mort-
gage brokers. Home loans can be at a fixed or adjustable rate.

• Fixed rate loans are usually given for terms of 15 or 30 years. Usually, the
interest rate for a 30-year loan is higher than that for a 15-year loan. In
this case the borrower pays an added premium (a higher interest rate) for
the privilege of paying off the loan over a longer period of time.

• An adjustable rate loan offers a fixed rate for an initial period of time
(typically 1 to 5 years). At the end of this initial period the rate may
be adjusted, usually in relation to some government index, such as the
Treasury bill rate. Generally, the initial rate for an adjustable rate loan
is lower than the comparable rate for a fixed rate loan. The borrower is
given this consideration to compensate for the uncertainty of future rates.
At the end of the initial period, periodic reviews of the loan are made, and
the rate is adjusted according to the index being used. Usually there is a
“cap”—a maximum amount that the rate may be increased at any time.

Home loans often carry a prepayment penalty. If homeowners wish to pay
off their loans early in order to refinance at a lower rate, then a prepayment
penalty may make this a bad decision. A prepayment penalty may be as much
as six months interest on 80% of the remaining balance.
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Business loans are available from many banks, individuals, and local,
state, or federal government agencies. In many cases the seller of a business
may “carry back” a loan to the buyer. In these cases there may be great
flexibility in the structure of the loan. For example, a common practice is to
defer payment of the principal and interest until the new owner has been in
business for a fixed period of time. This is an example of a concession by the
owner. In other cases there may be a “balloon” payment. In these cases the
buyer makes periodic payments until a fixed date, at which time the remainder
of the principal is due. This is an example of a concession by the buyer.

Borrowers often have many choices when deciding how to finance pur-
chases. The choices vary with respect to the term of the loan, the interest rate
charged for the loan, whether or not payments include principal, and whether
or not the loan is secured. For example, business loans tend to have higher
rates than home loans, real estate loans for non-owner-occupied properties
generally have higher interest rates than for owner-occupied properties, and
fixed rate loans generally have higher initial interest rates than adjustable rate
loans. The differences in choices are associated with differences in the associ-
ated risks. In this and other financial contexts, the term risk is synonymous
with uncertainty.

One source of risk is interest rate risk. The more quickly a loan is repaid,
the lower the impact of unexpected increases in interest rates on the lender.
Therefore, short-term loans and loans that include principal repayments are
less risky than long-term loans and loans that do not include principal repay-
ments.

Another source of risk is default risk. Default risk is the risk that a borrower
fails to make interest or principal payments when promised. Again, the more
quickly a loan is repaid, the less risky the loan for the lender; if a borrower
defaults on a loan, then the amount of the outstanding principal is lower for
short-term loans that include principal repayments. Also, secured loans are
less risky than unsecured loans. If a borrower fails to repay a loan that is
secured by collateral, then the lender can take possession of the collateral.
However, this is not the case with unsecured loans. These differences in risk
result in differences in the rates charged for the various loans; higher rates are
charged for riskier loans.

However, even loans with the same interest rate don’t necessarily have the
same total interest. We now look at four different ways of repaying a loan, all
based on the fact that we borrow the same amount at the same interest rate.

Loan 1: Consider an annuity in which we pay $1,000 at the end of each year
for 5 years. Current interest rates are 8%. We know from (4.2) on p. 62 that
we can borrow

P0 = P
1 − (1 + i)−n

i
= 1000

1 − (1 + 0.08)−5

0.08
= $3,992.71.
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Table 5.1 shows the details of this loan repayment.

Table 5.1. Amortization

Year’s Start Year’s End
Year Remaining Interest Payment Interest Principal Remaining

Principal Owed Paid Paid Principal
1 $3,992.71 $319.42 $1,000.00 $319.42 $680.58 $3,312.13
2 $3,312.13 $264.97 $1,000.00 $264.97 $735.03 $2,577.10
3 $2,577.10 $206.17 $1,000.00 $206.17 $793.83 $1,783.27
4 $1,783.27 $142.66 $1,000.00 $142.66 $857.34 $925.93
5 $925.93 $74.07 $1,000.00 $74.07 $925.93 $0.00

The total interest paid is $1,007.29. This is typical of an amortization,
which was discussed in Section 4.1 and is discussed fully in Chap. 6. An
amortized loan is one for which constant principal and interest payments are
made at regular intervals until the loan is repaid.

The IRR, iA, for these transactions satisfies

3992.71 − 1000
1 + iA

− 1000
(1 + iA)2

− 1000
(1 + iA)3

− 1000
(1 + iA)4

− 1000
(1 + iA)5

= 0,

or
3992.71x5 − 1000x4 − 1000x3 − 1000x2 − 1000x − 1000 = 0.

where x = 1 + iA. This polynomial in x has only one change of sign and so
has at most one positive solution, namely, x = 1 + iA = 1.08, so iA = 0.08.

The remaining three loans are also for $3,992.71 at 8%, but the method
of repayment differs in each case.

Loan 2: Another institution offers to lend us the same $3,992.71 at 8% over
five years, but we are only required to pay the interest at the end of each year
and the original principal at the end of the fifth year. Table 5.2 shows the
details of the loan repayment.

Table 5.2. Bond

Year’s Start Year’s End
Year Remaining Interest Payment Interest Principal Remaining

Principal Owed Paid Paid Principal
1 $3,992.71 $319.42 $319.42 $319.42 $0.00 $3,992.71
2 $3,992.71 $319.42 $319.42 $319.42 $0.00 $3,992.71
3 $3,992.71 $319.42 $319.42 $319.42 $0.00 $3,992.71
4 $3,992.71 $319.42 $319.42 $319.42 $0.00 $3,992.71
5 $3,992.71 $319.42 $4,312.13 $319.42 $3,992.71 $0.00
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The total interest paid is $1,597.08. This is typical of bonds, which are
discussed in Chap. 8. A bond is a loan that an investor makes to a govern-
mental agency or corporation for which the borrower pays the lender a fixed
amount at regular intervals until the last payment, at which time the principal
is repaid.

The IRR, iB , for these transactions satisfies

3992.71 − 319.42
1 + iB

− 319.42
(1 + iB)2

− 319.42
(1 + iB)3

− 319.42
(1 + iB)4

− 4312.13
(1 + iB)5

= 0.

This polynomial in 1+ iB has only one change of sign and so has at most one
positive solution, namely, 1 + iB = 1.08, so iB = 0.08.

Loan 3: Another institution offers to lend us the same $3,992.71 at 8% over
five years, but we are only required to pay the principal and interest at the
end of the fifth year. Table 5.3 shows the details of this loan repayment.

Table 5.3. Zero Coupon Bond

Year’s Start Year’s End
Year Remaining Interest Payment Interest Principal Remaining

Principal Owed Paid Paid Principal
1 $3,992.71 $319.42 $0.00 $0.00 $0.00 $4,312.13
2 $4,312.13 $344.97 $0.00 $0.00 $0.00 $4,657.10
3 $4,657.10 $372.57 $0.00 $0.00 $0.00 $5,029.67
4 $5,029.67 $402.37 $0.00 $0.00 $0.00 $5,432.04
5 $5,432.04 $434.56 $5,866.60 $1,873.89 $3,992.71 $0.00

Note that for example, the remaining principal at the start of year 3
($4,657.10) includes the remaining principal at the start of year 2 ($4,312.13)
plus the interest accrued during that year ($344.97). The interest for year 3 is
calculated from the remaining principal at the start of that year ($4,657.10).
Thus, interest is computed upon interest.

The total interest paid is $1,873.89. This is typical of zero coupon bonds,
which are discussed in Chap. 8. A zero coupon bond is a bond for which there
are no regular payments. Thus, the only payment made is a lump sum payment
at the end of the loan period.

The IRR, iZ , for these transactions satisfies

3992.71 − 5866.60
(1 + iZ)5

= 0,

or

iZ =
(

5866.60
3992.71

)1/5

− 1 = 0.08.
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Loan 4: Another institution offers to lend us the same $3,992.71 at 8%, but
we are only required to pay $500 a year until the debt is repaid, and no interest
is charged the first year. Table 5.4 shows the details of this loan repayment.

Table 5.4. Credit Card

Year’s Start Year’s End
Year Remaining Interest Payment Interest Principal Remaining

Principal Owed Paid Paid Principal
1 $3,992.71 $0.00 $500.00 $0.00 $500.00 $3,492.71
2 $3,492.71 $279.42 $500.00 $279.42 $220.58 $3,272.13
3 $3,272.13 $261.77 $500.00 $261.77 $238.23 $3,033.90
4 $3,033.90 $242.71 $500.00 $242.71 $257.29 $2,776.61
5 $2,776.61 $222.13 $500.00 $222.13 $277.87 $2,498.74
6 $2,498.74 $199.90 $500.00 $199.90 $300.10 $2,198.64
7 $2,198.64 $175.89 $500.00 $175.89 $324.11 $1,874.53
8 $1,874.53 $149.96 $500.00 $149.96 $350.04 $1,524.49
9 $1,524.49 $121.96 $500.00 $121.96 $378.04 $1,146.45
10 $1,146.45 $91.72 $500.00 $91.72 $408.28 $738.16
11 $738.16 $59.05 $500.00 $59.05 $440.95 $297.22
12 $297.22 $23.78 $321.00 $23.78 $297.22 $0.00

The total interest paid is $1828.29, and it takes 12 years to pay off the
debt. This is typical of a credit card. Credit cards are discussed in Chap. 7. A
credit card is issued by a financial institution and regular payments are made
on the outstanding balance of the loan. The minimum payment is the greater
of a fixed rate times the outstanding balance and a fixed dollar amount.

The IRR, iC , for these transactions satisfies

3992.71 − 500 −
10∑

k=1

500

(1 + iC)k
− 321

(1 + iC)11
= 0.

This has only one change of sign and so has at most one positive solution,
namely, 1 + iC = 1.08, so iC = 0.08.

5.1 Problems

Walking

5.1. Helen Kendrick wishes to borrow $50,000 when the interest rate is 7.5%.
She is only willing to pay the interest at the end of each year and the original
principal at the end of the fourth year. Construct the payment schedule for
this loan.
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5.2. Hugh Kendrick has a 30-year home loan for $100,000 at 7%. After 15
years, he wishes to pay off the loan in order to refinance at a lower rate. The
loan has a prepayment penalty of six months interest on 80% of the remaining
balance of the loan.

(a) How much is the remaining balance on Hugh’s loan?
(b) If Hugh can refinance with a 15-year loan at 6% with no other costs, then

should he do it?
(c) If Hugh can refinance the loan over 15 years with no other costs, then

what interest rate would make it worthwhile?

5.3. Helen Kendrick wishes to borrow money when the interest rate is 8.5%,
and she is willing to pay $5,000 at the end of each year for four years.

(a) How much money can she borrow?
(b) Create a table similar to Table 5.1 on p. 77 for this loan.

5.4. Helen Kendrick wishes to borrow $50,000 when the interest rate is 7.5%.
She needs cash and is only willing to pay interest and principal at the end of
the fourth year. Construct the payment schedule for this loan.

5.5. Helen Kendrick wishes to borrow $50,000 when the interest rate is 7.5%.
She is only willing to pay $3,000 interest for the first three years and then pay
off the loan at the end of the fourth year. Construct the payment schedule for
this loan.

5.6. Consider two four-year loans—one for $50,000 and one for $100,000—
both at 7.5%. Treating these loans as amortization loans, is the monthly pay-
ment of the second loan twice the monthly payment of the first loan? Is the
amount of interest paid during any given month for the second loan twice the
interest paid during the same month for the first loan?

Running

5.7. The following is a partially completed table similar to Table 5.1 on p. 77
for an amortized loan.

Year’s Start Year’s End
Year Remaining Int. Payment Int. Princ. Remaining

Principal Owed Paid Paid Principal
1 $10,000.00 $2,820.12
2
3
4 $0.00

(a) What is the interest rate?
(b) Complete the table.
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5.8. Under what circumstances is an adjustable rate loan preferable to a fixed
rate loan?

5.9. Compare the four different ways of repaying a loan discussed in this
chapter. Noting that they all have an IRR of 8%, are there situations where
one of these loans may be better than the others?

5.10. Hugh Kendrick wishes to borrow $10,000. He must choose between two
fixed rate five-year loans: one at 7% with no prepayment penalty, and one
at 6.75% with a 1% prepayment penalty. Under what circumstances is the
second loan preferable to the first loan?

5.11. Referring to Problem 5.10, how much is Hugh’s final payment if he
chooses the loan with the prepayment penalty and pays off the loan immedi-
ately after his third payment? Will he have paid more or less in total than he
would had he taken the other loan?

Questions for Review

• How does risk impact the interest rate charged to a borrower?
• What are some of the risks associated with loans?
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Amortization

The largest investment that most people make is buying a house. However, it
is unusual to buy a house with cash. Most people borrow the money from a
company that issues mortgages. The same process used to repay mortgages is
frequently used to repay student loans and car loans. In Chap. 5 we mentioned
amortization. In this chapter we study the process in detail.

6.1 Amortization Tables

Initially an amount of money (the initial principal or term amount) is bor-
rowed at a specified annual interest rate, and principal and interest payments
are made at constant periodic intervals for a certain time until the debt is
repaid—this is called “amortizing the loan”. Lending companies have tables—
called amortization tables—in which the various payments are tabulated
by interest rate and term. For example, Table 6.1 is part of one such table
where the nominal interest rate is 10% and monthly payments are made. Thus,
according to this table if we borrow $10,000 for 10 years (at 10%), then our
monthly payment is $132.16.

With this information, we complete Table 6.2—called an amortization
schedule—which shows the first five months of the loan repayment. At the
end of the first month we pay $132.16. Of this, 0.10/12×10000 = $83.33 is the
interest owed, and $132.16−$83.33 = $48.83 goes to reducing the principal to
$10, 000.00 − $48.83 = $9, 951.17. (Check the calculations in this table using
a calculator or a spreadsheet program, and fill in the missing entries.)

Table 6.1. Part of an Amortization Table

Term Amount 10 years 11 years 12 years 13 years 14 years
$10,000 $132.16 $125.20 $119.51 $114.79 $ 110.83
$11,000 $145.37 $137.72 $131.46 $126.27 $121.91
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Table 6.2. Amortization Schedule

Month Monthly Interest Principal Outstanding
Payment Paid Repaid Principal

0 $0.00 $0.00 $0.00 $10,000.00
1 $132.16 $83.33 $48.83 $9,951.17
2 $132.16 $82.93 $49.23 $9,901.94
3 $132.16 $82.52 $49.64 $9,852.30
4
5 $132.16 $81.69 $50.47 $9,751.77

Notice that Table 6.2 depends critically on knowing Table 6.1. But how do
we know Table 6.1, and more importantly, how do we know that it is accurate?

In this section we show how these loan payments are computed. We let

P0 be the initial principal (term amount) that has to be repaid,
Pn be the outstanding principal (principal remaining to be paid)

at the end of the nth payment period,
M be the periodic payment,
N be the total number of payment periods,
m be the number of periodic payments per year,

i(m) be the annual interest rate, expressed as a decimal, and
i be the periodic interest rate,

so i = i(m)/m.
Figure 6.1 shows a time diagram for this.

P0

0

M

1

M

2 · · ·

M

N − 1 N

M

Fig. 6.1. Time diagram of a mortgage

Using this notation, we rewrite Table 6.2 symbolically in spreadsheet for-
mat as Table 6.3, which is explained as follows.

At the end of the first payment period (n = 1) we make our periodic
payment of M , but the interest owed is iP0, so the outstanding principal is

P1 = P0 − M + iP0 = P0(1 + i) − M.

At the end of the second payment period (n = 2) the interest owed is iP1,
so the outstanding principal is

P2 = P1 − M + iP1 = P1(1 + i) − M = (P0(1 + i) − M) (1 + i) − M,
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Table 6.3. Amortization Schedule—Spreadsheet Format

Period Periodic Interest Principal Outstanding
Payment Paid Repaid Principal

0 P0

1 M iP0 M − iP0 P0 − (M − iP0) = P1

2 M iP1 M − iP1 P1 − (M − iP1) = P2

3 M iP2 M − iP2 P2 − (M − iP2) = P3

4 M iP3 M − iP3 P3 − (M − iP3) = P4

5 M iP4 M − iP4 P4 − (M − iP4) = P5

which reduces to
P2 = P0(1 + i)2 − M(1 + (1 + i)).

At the end of the third payment period (n = 3) the interest owed is iP2,
so the outstanding principal is

P3 = P2 − M + iP2,

which reduces to

P3 = P0(1 + i)3 − M
(
1 + (1 + i) + (1 + i)2

)
.

This suggests that Pn, the outstanding principal at the end of the nth

payment period, is

Pn = P0(1 + i)n − M
(
1 + (1 + i) + · · · + (1 + i)n−1

)
.

We rewrite this conjecture, using the fact that for

1 + x + · · · + xn−1 =
xn − 1
x − 1

for x 	= 1,

in the form1

Pn = P0(1 + i)n − M
(1 + i)n − 1

i
, (6.1)

or

Pn =
(

P0 − M

i

)
(1 + i)n +

M

i
.

1 Equation (6.1) can be interpreted as the future value of the principal, P0(1+ i)n,
less the future value of the annuity payments, M((1 + i)n−)/i.
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Thus, we have the following theorem.

Theorem 6.1. The Amortization Theorem.
If P0 is the initial principal borrowed at a nominal interest rate of i(m) and if
periodic payments of M are made m times a year, then Pn, the outstanding
principal after n payment periods, is

Pn =
(

P0 − M

i

)
(1 + i)n +

M

i
, (6.2)

where i = i(m)/m.

Proof. We can prove this conjecture either by mathematical induction or by
recurrence relations. We prove it using recurrence relations and leave the proof
by induction for Problem 6.12 on p. 98.

We know that
Pk+1 = Pk (1 + i) − M,

so if we multiply this by 1/(1 + i)k+1, then we can write it as

Pk+1
1

(1 + i)k+1 = Pk
1

(1 + i)k
− M

1

(1 + i)k+1 .

Summing this from k = 0 to k = n − 1 gives

n−1∑
k=0

Pk+1
1

(1 + i)k+1 =
n−1∑
k=0

Pk
1

(1 + i)k
− M

n−1∑
k=0

1

(1 + i)k+1 ,

or by canceling the common terms on both sides of this equation,

Pn
1

(1 + i)n = P0 − M

n−1∑
k=0

1

(1 + i)k+1 ,

that is,

Pn = P0(1 + i)n − M (1 + i)n
n−1∑
k=0

1

(1 + i)k+1 .

However,

(1 + i)n
n−1∑
k=0

1

(1 + i)k+1 = 1 + (1 + i) + · · · + (1 + i)n−1 =
(1 + i)n − 1

i
.

Thus,

Pn = P0(1 + i)n − M
(1 + i)n − 1

i
,

which is (6.2). This concludes the proof using recurrence relations. ��
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Because

Pn =
(

P0 − M

i

)
(1 + i)n +

M

i

and because {(1 + i)n} is an increasing sequence, that is, (1 + i)n
< (1 + i)n+1,

we see that Pn < Pn+1 if P0 − M/i > 0 and that Pn > Pn+1 if P0 − M/i < 0.
We thus have the following intuitively obvious result.

Theorem 6.2. Let Pn be given by (6.2).

(a) If M > iP0, then Pn > Pn+1, that is, if the periodic payment exceeds the
initial periodic interest owed, then the outstanding principal decreases.

(b) If M = iP0, then Pn = Pn+1, that is, if the periodic payment exactly
equals the initial periodic interest owed, then the outstanding principal is
constant.

(c) If M < iP0, then Pn < Pn+1, that is, if the periodic payment is less than
the initial periodic interest owed, then the outstanding principal increases
and is never paid off.

From now on we concentrate on the case M > iP0, which also implies that
M > iPn (why?), and we rewrite (6.2) in the form

Pn =
M

i
−

(
M

i
− P0

)
(1 + i)n

.

In this form we see that mathematically limn→∞ Pn = −∞. In view of this
fact and that {Pn} is a decreasing sequence for which P0 > 0, there must be
an integer N for which PN−1 > 0 and PN ≤ 0. This N represents the number
of payment periods required to repay the loan. Thus, N must satisfy

M

i
−

(
M

i
− P0

)
(1 + i)N−1

> 0

and
M

i
−

(
M

i
− P0

)
(1 + i)N ≤ 0,

so (
M

i
− P0

)
(1 + i)N−1

<
M

i
≤

(
M

i
− P0

)
(1 + i)N

.

This can be rewritten in the form

M

M − iP0
≤ (1 + i)N

<
M

M − iP0
(1 + i) , (6.3)
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so that N must satisfy

ln
(

M
M−iP0

)
ln (1 + i)

≤ N <
ln

((
M

M−iP0

)
(1 + i)

)
ln (1 + i)

.

A natural question to ask is whether more than one integer N can satisfy
(6.3). Intuitively we expect not, and this is seen by rewriting the last inequality
as

ln
(

M
M−iP0

)
ln (1 + i)

≤ N <
ln

(
M

M−iP0

)
ln (1 + i)

+ 1. (6.4)

6.2 Periodic Payments

If we finish repaying the loan exactly at the end of the N th payment period,
then we have PN = 0 and we can then calculate the periodic payment M . In
(6.2) we set n = N and PN = 0 and solve for M , finding

M =
iP0 (1 + i)N

(1 + i)N − 1
,

so the periodic payments are

M =
iP0

1 − (1 + i)−N
.

Theorem 6.3. The Periodic Payment Theorem.
If P0 is the initial principal borrowed at a nominal interest rate of i(m) for N
payment periods, then M , the payment that is made m times a year, is

M =
iP0

1 − (1 + i)−N
, (6.5)

where i = i(m)/m.

Comments About the Periodic Payment Theorem

• We notice that M is a function of the three variables P0, i, and N . The
quantity M is directly proportional to P0. Table 6.4 and Fig. 6.2 show M
as a function of i. Notice that all the curves appear to be increasing and
concave up. In Problem 6.15 on p. 99 you are asked to prove this. Table 6.5
and Fig. 6.3 show M as a function of N . Notice that all the curves appear
to be decreasing and concave up. In Problem 6.16 on p. 100 you are asked
to prove this.
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Table 6.4. Monthly payments as a function of the annual interest rate for 5-, 15-,
and 30-year loans in the amount of $10,000

Interest Rate 5 years 15 years 30 years
1% $170.94 $59.85 $32.16
2% $175.28 $64.35 $36.96
3% $179.69 $69.06 $42.16
4% $184.17 $73.97 $47.74
5% $188.71 $79.08 $53.68
6% $193.33 $84.39 $59.96
7% $198.01 $89.88 $66.53
8% $202.76 $95.57 $73.38
9% $207.58 $101.43 $80.46
10% $212.47 $107.46 $87.76
11% $217.42 $113.66 $95.23
12% $222.44 $120.02 $102.86

Interest Rate

0% 2% 4% 6% 8% 10% 12%

M
o

n
th

ly
P

ay
m

en
ts

$0

$50

$100

$150

$200

$250

5 years
15 years
30 years

Fig. 6.2. Monthly payments as a function of the annual interest rate for 5-, 15-,
and 30-year loans in the amount of $10,000

Table 6.5. Monthly payments as a function of the length of a $10,000 loan for
annual interest rates of 4%, 8%, and 12%

Length of Loan 4% 8% 12%
5 $184.17 $202.76 $222.44
10 $101.25 $121.33 $143.47
15 $73.97 $95.57 $120.02
20 $60.60 $83.64 $110.11
25 $52.78 $77.18 $105.32
30 $47.74 $73.38 $102.86
35 $44.28 $71.03 $101.55
40 $41.79 $69.53 $100.85
45 $39.96 $68.56 $100.47
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Fig. 6.3. Monthly payments as a function of the length of a $10,000 loan for annual
interest rates of 4%, 8%, and 12%

• Because the periodic payment is typically rounded up to the nearest cent,
PN is usually negative, not zero. Therefore, the final payment, F , may
not be exactly M . Figure 6.4 shows a time diagram for this. Now, F is
given by

F = PN−1(1 + i) =
((

P0 − M

i

)
(1 + i)N−1 +

M

i

)
(1 + i) .

Thus, the final payment2 is

F =
(

P0 − M

i

)
(1 + i)N + M

1 + i

i
. (6.6)

Intuitively we expect 0 < F ≤ M (why?), but is it? From (6.3) and (6.6)
and the fact that M > iP0, we have 0 < F ≤ M.

Example 6.1. Amanda Kendrick takes out a student loan for $10,000 at an
annual interest rate of 10% to be repaid monthly over 10 years. How much
are her monthly payments? What is the final payment?

2 In practice, the final payment may differ slightly from the amount given by F . This
could occur if the lender rounds all calculations to two decimal places at every
stage. In this case an accumulative round-off error in Pn may come into effect.
For example, if $130,000 is borrowed at 8.5% for 180 months and M = $1,280.16,
then F = $1,280.68, whereas if all calculations are rounded to two decimal places,
then the final payment is $1,280.62. (See Problems 6.4 and 6.5 on p. 98.)
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P0

0

M

1

M

2 · · ·

M

N − 1 N

F

Fig. 6.4. Time diagram of a mortgage

Solution. Here P0 = 10,000, i = 0.10 (10%), m = 12, and N = 120 (10
years), so (6.5) gives

M =
0.10
12 10000

1 − (
1 + 0.10

12

)−120 = 132.151.

The amortization table on p. 83 gives $132.16. It is common practice to round
the payments up (why?), so these two numbers agree if we do that. Henceforth,
we follow this practice of rounding all amortization payments up.3

The final payment is

F =
(

10000 − 132.16
0.10
12

)(
1 +

0.10
12

)120

+ 132.16
(

1 + 0.10
12

0.10
12

)
= $130.26.

The payments total 119 × $132.16 + $130.26 = $15,857.30. Thus, Amanda
pays $5,857.30 interest on a $10,000 loan over 10 years at 10%. �
Example 6.2. Amanda wants to borrow the same $10,000 at the same annual
interest rate of 10%, but she wants to extend her payments over 30 years.
How much is her monthly payment?

Solution. Here P0 = 10, 000, i = 0.10 (10%), m = 12, and N = 360 (30 years),
so (6.5) gives

M =
0.10
12 10000

1 − (
1 + 0.10

12

)−360 = $87.757.

Amortization tables give $87.76.
The final payment is

F =
(

10000 − 87.76
0.10
12

)(
1 +

0.10
12

)360

+ 87.76
(

1 + 0.10
12

0.10
12

)
= $81.33.

The payments total 359 × $87.76 + $81.34 = $31,587.18. Thus, Amanda
pays $21,587.18 interest on a $10,000 loan over 30 years at 10%. �
3 This is the practice of lending agencies such as the Government National Mortgage

Association (GNMA, known as “Ginnie Mae”), the Federal National Mortgage
Association (FNMA, known as “Fannie Mae”), and the Federal Home Loan Mort-
gage Corporation (FHLMC, known as “Freddie Mac”). However, this practice is
not universal; see the previous footnote.
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Borrowers are commonly advised to repay amortized loans, such as mort-
gages, every two weeks rather than every month.4 This results in 26 biweekly
payments. One way to accomplish this while still making payments only 12
times a year, is to raise the current monthly payment from M to (13/12)M.
Let’s see what difference that makes to the previous example.

Example 6.3. Under the circumstances of Example 6.2, how many months
does it take to repay the loan if Amanda decides to make payments of
(13/12)87.76 = $95.07 per month?

Solution. Here P0 = 10, 000, i = 0.10 (10%), and M = $95.07, so (6.4) gives

ln
(

95.07
95.07− 0.10

12 10000

)
ln

(
1 + 0.10

12

) ≤ N <
ln

(
95.07

95.07− 0.10
12 10000

)
ln

(
1 + 0.10

12

) + 1,

that is,
252.07 ≤ N < 253.07,

so N = 253 months (21 years and 1 month). The final payment is

F =
(

10000 − 95.07
0.10
12

)(
1 +

0.10
12

)253

+ 95.07
(

1 + 0.10
12

0.10
12

)
= $6.87.

Thus, the loan is repaid in about 21 years, with payments totaling 252 ×
$95.07 + $6.87 = $23,964.51, which is $7,500 less than the answer to Exam-
ple 6.2. �
Example 6.4. Helen and Hugh Kendrick pay $500 a month on a 30-year home
loan for $48,000. What interest rate are they being charged?

Solution. From (6.5), we want to solve

500 =
48000i

1 − (1 + i)−360

for i. There is no simple algebraic way to solve this equation. However, if we
write it in the form

500
(
1 − (1 + i)−360

)
− 48000i = 0,

or
(1 + i)−360 + 96i − 1 = 0,

then we can use Newton’s Method5 or the bisection method to find that
i = 0.0101, so i(12) = 12i = 0.121. (Another solution is i = 0. Why is this
unacceptable?) �
4 In practice, the lending company may impose a penalty for these extra payments.
5 Newton’s Method requires a reasonable initial guess. In the equation (1 + i)−360+

96i− 1 = 0 the term (1 + i)−360 is negligible compared with the other two terms,
so as a first approximation we can assume that 96i−1 ≈ 0, which leads to i ≈ 1/96
as an initial guess.
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Example 6.5. Helen is in the market for a new car. She sees an advertisement
that offers either a $1,500 discount for paying cash or 0.9% nominal interest
on a 60-month amortized loan. Which is the better deal if savings accounts
are currently earning 5% per year?

Solution. For Helen to consider the first option, she must have enough cash to
buy the car outright. If she chooses the second option, then she could invest
her money in a savings account.

We look at this problem in a general setting and calculate how much Helen
would have in her savings account if she does not buy the car outright. Let
P0 be the cost of the car, let i be the monthly interest rate on the savings
account, and let j the monthly interest on the car loan. Let P be the monthly
car payment of which there are N , so from (6.5)

P =
jP0

1 − (1 + j)−N
.

At the end of the first month she receives iP0 interest and pays P , so P1,
the amount in the savings account at the end of the first month, would be

P1 = P0 + iP0 − P = (1 + i)P0 − P.

At the end of the second month she receives iP1 interest and pays P , so

P2 = P1 + iP1 − P = (1 + i)P1 − P = ((1 + i)P0 − P ) (1 + i) − P,

or
P2 = (1 + i)2P0 − P ((1 + i) + 1) .

Thus, the amount in the savings account at the end of the nth month would
be

Pn = (1 + i)nP0 − P
(
(1 + i)n−1 + (1 + i)n−2 + · · · + 1

)
= (1 + i)nP0 − (1 + i)n − 1

i
P,

or

Pn = (1 + i)nP0 − (1 + i)n − 1
i

jP0

1 − (1 + j)−N

= (1 + i)n

(
1 − j

i

1 − (1 + i)−n

1 − (1 + j)−N

)
P0.

For PN , the amount in the savings account when the car is paid off, to be
equivalent to C(1 + i)N , the future value of a discount of C dollars, we must
have PN = C(1 + i)N , so

P0 =
C(

1 − j
i

1−(1+i)−N

1−(1+j)−N

) .
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For i = 0.05/12, j = 0.009/12, N = 60, and C = 1500, we have

P0 =
1500(

1 − 0.009
0.05

1−(1+ 0.05
12 )−60

1−(1+ 0.009
12 )−60

) = 15548.89.

So if the car costs less than $15,548.89, then Helen should pay cash; otherwise
she should choose the loan. �

6.3 Linear Interpolation

There are a number of financial tables available that tabulate, in numerical
form, some of the formulas we have derived so far. For example, reference [9]
contains tables of future values, present values, compound interest compar-
isons, and amortization tables. Inevitably, the tables cannot contain all pos-
sible cases.

What do we do if we are forced to use tables, but the information that
we require is not contained in the tables? We approximate. For example, Ta-
ble 2.3 on p. 16 shows the future value of $1 compounded annually for different
interest rates i and different numbers of years. Part of that is reproduced here
as Table 6.6.

Table 6.6. Future Value of $1

Years
Interest Rate 5 15

3% $1.159 $1.558
5% $1.276 $2.079

If all we have is this table and we need the future value of $1 for 5 years
at 4%, which is halfway between 3% and 5%, then we estimate halfway be-
tween 1.159 and 1.276, that is, (1.159 + 1.276)/2 = 1.2175. The exact number,
computed from (2.1) on p. 15, is

Pn = P0(1 + i)n = (1 + 0.04)5 = 1.2166 . . . ,

so the estimate of 1.2175 is reasonable.
On the other hand if we need the future value of $1 at 3% for 10 years,

which is halfway between 5 years and 15 years, then we estimate halfway be-
tween 1.159 and 1.558, that is, (1.159 + 1.558)/2 = 1.3585. The exact number
is

Pn = P0(1 + i)n = (1 + 0.03)10 = 1.3439 . . . ,

so the estimate of 1.3585 is reasonable.
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This estimation technique is called linear interpolation and can be
explained in the following way. Given two points (a, f(a)) and (b, f(b)) and a
number l such that a < l < b, how do we estimate f(l)? Without any other
information, we join the two given points with a line, y = g(x), and then
approximate f(l) with g(l). We derive a general formula for g(l) as follows.

The line y = g(x) that joins the points (a, f(a)) and (b, f(b)) passes
through (a, f(a)) and has slope (f(b) − f(a))/(b − a); therefore its equation
is given by

g(x) − f(a) =
f(b) − f(a)

b − a
(x − a).

With x = l, where a < l < b, we have

g(l) =
f(b) − f(a)

b − a
(l − a) + f(a),

which can be rewritten in the form

g(l) =
b − l

b − a
f(a) +

l − a

b − a
f(b). (6.7)

This can be interpreted geometrically if we realize that (b − l)/(b − a) is
the ratio of the distance from l to b to the distance from a to b and that
(l − a)/(b − a) is the corresponding ratio from a to l. In the event that l is
midway between a and b, that is, l = (a + b)/2, we find that

g

(
a + b

2

)
=

1
2
f(a) +

1
2
f(b),

the formula we used at the start of this section.

Example 6.6. Use Table 6.6 to estimate the future value of $1 at 3.5% for 15
years. Compare this to the exact number obtained from (2.1) on p. 15.

Solution. Here a = 3, b = 5, and l = 3.5, so

g(3.5) =
1.5
2

f(3) +
0.5
2

f(5) =
3
4
1.558 +

1
4
2.079 = 1.68825.

The exact number is

Pn = P0(1 + i)n = (1 + 0.035)15 = 1.6753 . . . .

�
Again 1.68825 is a reasonable estimate of the exact number 1.6753 . . ..

However, from this calculation, we cannot tell how good the estimate is or
even whether the estimate is too large or too small. But we notice that all
three estimates that we have made are larger than the exact number. Is that
an accident? If we look at Fig. 2.1 on p. 17, then we are reminded that the
future value is a concave up function of the interest rate. Thus, if we try to
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estimate a value between two points by joining those two points with a line,
then our estimate is too large. A similar observation is true when we think
of the future value as a function of the total number of interest periods (see
Fig. 2.2 on p. 17).

That f(l) < g(l) in this case is made precise by the following theorem.

Theorem 6.4. Let f(x) be a twice differentiable function on the closed inter-
val [a, b] with the property that f ′′(x) > 0 for all x in the open interval (a, b).
Then for any point l in the open interval (a, b), we have

f(l) <
b − l

b − a
f(a) +

l − a

b − a
f(b). (6.8)

Proof. By the Mean Value Theorem6 applied to f(x) in the closed interval
[a, l], there must exist a c in (a, l) for which

f ′(c) =
f(l) − f(a)

l − a
.

Similarly, there must exist a d in (l, b) for which

f ′(d) =
f(b) − f(l)

b − l
.

Because f ′′(x) > 0, it follows that f ′(x) is an increasing function. Also,
a < c < l < d < b, so f ′(c) < f ′(d), that is,

f(l) − f(a)
l − a

<
f(b) − f(l)

b − l
.

Solving this inequality for f(l) shows that

f(l) <
b − l

b − a
f(a) +

l − a

b − a
f(b).

Comments

• The equation of the line y = g(x) that joins the points (a, f(a)) and
(b, f(b)) is

g(x) =
b − x

b − a
f(a) +

x − a

b − a
f(b),

which is the right-hand side of (6.8) when x = l. Thus, the right-hand side
of (6.8) is the height of the line at x = l, whereas the left-hand side, f(l),
is the height of the function f(x) at x = l. Thus, this theorem proves the
intuitively obvious fact that if a positive function is concave up, then the
line between the end-points is always higher than the function.

6 Let f be a continuous function on the closed interval [a, b] with a derivative at
every x in the open interval (a, b). Then there is at least one number c in the
open interval (a, b) such that f ′(c) = (f(b) − f(a))/(b − a).
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• If we are given the value of the function f(x) at the two points a and
b—so we are given the two points (a, f(a)) and (b, f(b))—and are asked
to estimate the value of f(x) at the point x = l between a and b, then
a standard way to do this is by linear interpolation, that is, join the two
points with a line y = g(x) and use the estimate g(l) for f(l). The theorem
tells us that in the case of a positive, concave up function, the estimate
g(l) is always too large. In the same way, an estimate obtained by linear
interpolation for a positive, concave down function is always too small.

• The inequality (6.8) can be rewritten in the form

f (λa + (1 − λ)b) < λf(a) + (1 − λ)f(b) (6.9)

for all λ satisfying 0 < λ < 1. (See Problem 6.17.)

6.4 Problems

Walking

6.1. Use a spreadsheet program to reproduce the following amortization table
for 10% interest.

Term Amount 10 years 11 years 12 years 13 years 14 years
$10,000 132.16 125.20 119.51 114.79 110.83
$11,000 145.37 137.72 131.46 126.27 121.91

6.2. An amortization schedule is a table with the following (or equivalent)
headings.

Month Monthly Interest Principal Outstanding
Payment Paid Repaid Principal

Complete the following partial amortization schedule.

Month Monthly Interest Principal Outstanding
Payment Paid Repaid Principal

1 $188.12 $55.42 $132.70 $9,367.30
2
3
4
5

6.3. You buy a house by borrowing $100,000 at 8% over 30 years. Show the
first two and last two lines of the amortization schedule. Is the final payment
the same as the monthly payment?
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6.4. Use a spreadsheet program to construct an amortization schedule for a
15-year loan for $130,000 at 8.5% with monthly payments of $1,280.16. What
is the final payment? Does it agree with (6.6) on p. 90? Why does the final
payment exceed the monthly payment? What monthly payment guarantees
that the final payment is less than the monthly payment?

6.5. Repeat Problem 6.4, but now round the entries in the Interest Paid col-
umn to 2 decimal places. What is the final payment? Does it agree with (6.6)
on p. 90?

6.6. A person pays $200.04 a month on a 15-year loan for $30,000. What
interest rate is being charged?

6.7. In [10], a 30-year loan for $75,000 at 10% is discussed. On page 51 it
is claimed that paying $25 a month more than the regular monthly amount
reduces the term of the mortgage by 12 years and 3 months, while saving
$34,162 in interest costs. Is this claim valid?

6.8. Use linear interpolation to estimate the monthly loan payment on $45,000
at 10% for 30 years given that the monthly loan payment on $100,000 at 10%
for 30 years is $877.58. Is your estimate exact, too large, or too small?

6.9. Use linear interpolation to complete the following amortization table.
Indicate which of your entries are exact, too large, or too small

(a) Without calculating exact values.
(b) By calculating exact values.

Term Amount 10 years 11 years 12 years 13 years 14 years
$1,000

$10,000 $132.16 $110.83
$11,000

Given that m=12, that is, payments are made monthly, what is the annual
interest rate?

Running

6.10. Intuitively you might expect that if you double the amount of money
that you borrow (at the same rate over the same number of years), then you
have to double your monthly payments. Prove that this is true.

6.11. Intuitively you might expect that if you double the monthly payments,
then your loan is repaid in half the time. Is this true?

6.12. Prove (6.2) on p. 86 by induction.

6.13. Show that if we finish repaying a loan exactly at the end of the N th

period, so that PN = 0, then (6.2) can be written in the form

Pn =
M

i

(
1 − (1 + i)n−N

)
.
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6.14. Consider the following eight loans, with initial principals (amounts bor-
rowed) of $10,000 and $20,000, maturities of 10 and 25 years, and interest
rates of 10% and 7.5%.

Amount Borrowed Maturity Interest Rate Monthly Payment
$10,000 10 10.0%
$10,000 10 7.5%
$10,000 25 10.0%
$10,000 25 7.5%
$20,000 10 10.0%
$20,000 10 7.5%
$20,000 25 10.0% $181.75
$20,000 25 7.5%

The monthly payment for the $20,000 loan with a maturity of 25 years and
an interest rate of 10% is $181.75. The remaining monthly payments are

$73.90, $90.88, $118.71, $132.16, $147.80, $237.41, and $264.31,

although not necessarily in this order. Without using a calculator, complete
the table.

6.15. Show that by substituting i = x − 1 and N = n + 1 into (6.5) on p. 88,
we have

M

P0
=

i

1 − (1 + i)−N
=

(x − 1)xn+1

xn+1 − 1
=

xn+1∑n
k=0 xk

.

(a) Show that

d

dx

(
M

P0

)
=

1
(
∑n

k=0 xk)2

n∑
k=0

(n + 1 − k)xn+k.

Explain how this shows that M is an increasing function of i if i > 0.
(b) Show that

d2

dx2

(
M

P0

)
=

1
(
∑n

k=0 xk)3

n∑
k=0

n∑
h=0

(n + 1 − k)(n + k − 2h)xn+k+h−1.

(c) Show that
n∑

k=0

n∑
h=0

akhxn+k+h−1 =
2n∑

j=0

bjx
n+j−1,

where bj =
∑j

k=0 akj−k if 0 ≤ j ≤ n and bj =
∑2n−j

k=0 an−kj+k−n if
n ≤ j ≤ 2n.
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(d) Use parts (b) and (c) to show that bj = (j + 1)(n + 1)(n − j) if 0 ≤ j ≤ n
and bj = 0 if n ≤ j ≤ 2n.

(e) Explain how parts (b), (c), and (d) show that M is a concave up function
of i if i > 0.

6.16. Show that by substituting N = x and 1 + i = a into (6.5) on p. 88, we
have

M

iP0
=

1
1 − a−x

= 1 +
1

ax − 1
.

(a) Show that
d

dx

(
M

iP0

)
= − ax ln a

(ax − 1)2
.

Explain how this shows that M is a decreasing function of the positive
integer N .

(b) Show that
d2

dx2

(
M

iP0

)
=

(ln a)2(a2x + ax)
(ax − 1)3

.

Explain how this shows that M is a concave up function of i if i > 0.

6.17. By introducing λ = (b − l)/(b − a), show that 1 − λ = (l − a)/(b − a)
and that l = λa + (1 − λ) b. Now show that (6.9) is a consequence of (6.8).

6.18. Show that for a concave down function f(x) if we estimate the value of
f(x) at a point x with a < x < b using linear interpolation, then the estimate
is too small.

Questions for Review

• What is amortization?
• What is an amortization table?
• What is an amortization schedule?
• How do you calculate the principal remaining to be paid after n periods?
• What is the impact on the outstanding principal if M > iP0? If M = iP0?

If M < iP0?
• How do you calculate the number of months required to repay the loan?
• How do you calculate the periodic payment on a loan?
• How do you calculate the final payment on a loan?
• What does the Amortization Theorem say?
• What is linear interpolation?
• What is the Mean Value Theorem?
• How do you use linear interpolation to estimate the value of a function at

a point c in (a, b)?
• Why are the estimates of the future value of $1 obtained by linear inter-

polation always too high?
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Credit Cards

A credit card account is an unsecured revolving line of credit issued by a
financial institution to an entity.1 Credit cards are often used for purchases
of goods and services when payment by cash is not convenient or permissi-
ble. Examples of such transactions include on-line or telephone purchases of
goods and services, business expenditures, reservations for hotel rooms, and
car rentals.

The loan is unsecured, so there is no collateral that the bank can seize if
the borrower defaults on the loan. The loan is also revolving, which means that
the borrower can continue to borrow against the line of credit as long as there
are available funds. These aspects cause credit cards to be riskier from the
financial institution’s perspective than mortgages, car loans, and other secured
installment loans. Therefore, the interest rates charged on credit cards tend
to be higher than those charged on secured loans. In return for the borrowed
funds, the borrower promises to pay each month either a fixed amount or a
percentage of the outstanding balance, whichever is higher. In general, credit
card disclosures contain a statement similar to “the minimum payment will
be $p or r% of the balance remaining to be paid, whichever is higher”.

In this chapter we show how credit card payments are computed.

7.1 Credit Card Payments

We charge $1,000 to a credit card with an annual interest rate of 15% for
which the minimum monthly payment is $10 or 2% of the balance remaining
to be paid, whichever is higher. We do not charge anything more to the card
and decide to make only the minimum payment each month.

1 An unsecured loan is a loan that is not backed by collateral, a mortgage, or
other lien. A line of credit is an agreement between a lender and a borrower
establishing a maximum balance that the lender permits the borrower to carry.
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When the first month’s bill arrives we pay the higher of $10 and $1,000 ×
0.02 = $20, namely, $20. The outstanding balance when next month’s bill
arrives is $1,000 − $20 = $980. We pay the higher of $10 and $980 × 0.02 =
$19.60, namely, $19.60. However, the outstanding balance is $980, so we owe
$980×0.15/12 = $12.25 in interest. Thus, the outstanding balance in the third
month is $980−$19.60+$12.25 = $972.65. With this information, we complete
Table 7.1, which shows the first five payments. (Check the calculations in this
table using a calculator or a spreadsheet program, and fill in the missing
entries.)

Table 7.1. Credit Card Schedule

Month Monthly Interest Remaining
Payment Accrued Principal

0 $0.00 $0.00 $1,000.00
1 $20.00 $0.00 $980.00
2 $19.60 $12.25 $972.65
3 $19.45 $12.16 $965.36
4
5 $19.16 $11.98 $950.94

Based on this, we let

P0 be the initial principal (initial balance) that has to be repaid,
Pn be the principal remaining to be paid (outstanding balance) at the

end of the nth month,
i(12) be the fixed annual interest rate, expressed as a decimal,

i be the monthly interest rate,
(
i = i(12)/12

)
,

p be the minimum monthly payment, and
r be the minimum monthly balance repayment rate, expressed as

a decimal.

Using this notation we rewrite Table 7.1 symbolically in spreadsheet format
as Table 7.2, which is explained as follows.

Table 7.2. Credit Card Schedule—Spreadsheet Format

Month Monthly Interest Remaining
Payment Accrued Principal

0 0 0 P0

1 rP0 0 P0 − rP0 = P1

2 rP1 iP1 P1 − rP1 + iP1 = P2

3 rP2 iP2 P2 − rP2 + iP2 = P3

4 rP3 iP3 P3 − rP3 + iP3 = P4

5 rP4 iP4 P4 − rP4 + iP4 = P5
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We concentrate on the case where we charge P0 to this credit card and
then charge nothing else but elect to pay the minimum each month. Also,
initially we assume that rP0 > p. (See Problem 7.8 on p. 111 for the case in
which rP0 ≤ p.)

At the end of the first month (n = 1) we make our monthly payment of
rP0 (assuming that rP0 > p), and because there is no interest, the principal
remaining to be paid is

P1 = P0 − rP0 = P0(1 − r).

At the end of the second month (n = 2) we make our monthly payment of
rP1 (assuming that rP1 > p), but the interest that we owe on the outstanding
balance P1 is iP1, so the principal remaining to be paid is

P2 = P1 − rP1 + iP1 = P1(1 − r + i) = P0(1 − r + i)(1 − r).

At the end of the third month (n = 3) the interest that we owe is iP2, so
the principal remaining to be paid is

P3 = P2 − rP2 + iP2,

which reduces to
P3 = P0(1 − r + i)2(1 − r).

This suggests that Pn, the principal remaining to be paid at the end of
the nth month, is

Pn = P0(1 − r + i)n−1(1 − r). (7.1)

We make three observations about this formula.

1. If i > r, then Pn+1 > Pn and limn→∞ Pn = ∞, that is, {Pn} is an in-
creasing sequence that is unbounded. In other words, the amount owed
increases each month. Not only does it increase, it increases at an expo-
nential rate.

2. If i = r, then Pn = P0(1 − r) for all n, so the amount owed remains
constant.

3. If i < r, then Pn+1 < Pn, Pn > 0, and limn→∞ Pn = 0, that is, it takes
an infinite time to repay the loan. We note that rPn+1 < rPn, so our
payments always decrease. However, we see that the amount going to pay
off the debt, namely (r − i)Pn, is also decreasing. Finally, the proportion
i of our payment going to interest every month is constant.

However, credit cards have a statement to the effect that the minimum
monthly payment is either p or r% of the balance remaining to be paid,
whichever is higher. Thus, in the third case there is a month N1 when, for
the last time, our proposed monthly payment (rPN1−1) is greater than p, that
is, rPN1−1 > p. Because N1 is the last month in which this occurs, the next
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monthly payment (rPN1) cannot be greater than p, that is, rPN1 ≤ p. Thus,
the integer N1 must satisfy

rPN1 ≤ p < rPN1−1,

or
P0 (1 − r + i)N1−1 (1 − r) ≤ p

r
< P0 (1 − r + i)N1−2 (1 − r) .

Because ln (1 − r + i) < 0, we have

N1 − 2 <
ln

(
p

P0r(1−r)

)
ln (1 − r + i)

≤ N1 − 1,

or N1, the month when we switch from decreasing payments to the constant
payment of p, is determined from

1 +
ln

(
p

P0r(1−r)

)
ln (1 − r + i)

≤ N1 < 2 +
ln

(
p

P0r(1−r)

)
ln (1 − r + i)

. (7.2)

Because we have assumed that rP1 > p, we have p/(P0r (1 − r)) < 1, which
requires that ln (p/(P0r (1 − r))) < 0 (why?), so that

ln
(

p
P0r(1−r)

)
ln (1 − r + i)

> 0.

Thus, (7.2) has an integer solution N1 ≥ 2. (See Problems 7.9 and 7.8 on
p. 111 for the case in which rP1 ≤ p.)

In this case

PN1+1 = PN1 − p + iPN1 = PN1(1 + i) − p.

However, because i < r, we then have

PN1+1 = PN1(1 + i) − p ≤ (1 + i)
p

r
− p =

p

r
(1 + i − r) <

p

r
,

so PN1+1 < p/r. Thus, once the constant payment starts it remains in effect,
giving

PN1+2 = PN1+1 − p + iPN1+1 = PN1+1(1 + i) − p,

which can be written as

PN1+2 = (PN1(1 + i) − p)(1 + i) − p = PN1(1 + i)2 − p(1 + (1 + i)).

Similarly,

PN1+3 = PN1+2 − p + iPN1+2 = PN1(1 + i)3 − p(1 + (1 + i) + (1 + i)2).
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Thus, we expect, once PN1 ≤ p/r, that

PN1+n = PN1(1 + i)n − p
(
1 + (1 + i) + · · · + (1 + i)n−1

)
,

or, using the fact that for x 	= 1,

1 + x + · · · + xn−1 =
xn − 1
x − 1

,

we have

PN1+n = PN1(1 + i)n − p
(1 + i)n − 1

i
. (7.3)

Except for notation, this is exactly the same equation as (6.1) on p. 85
and is proved in the same way, leading to a result similar to (6.4). We thus
have the following results.

Theorem 7.1. The Credit Card Theorem.
Assume that rP0 > p and rP1 > p.

(a) If i > r, then
Pn = P0 (1 − r + i)n−1 (1 − r)

and Pn+1 > Pn, so the amount owed increases each month.
(b) If i = r, then

Pn = P0 (1 − r)

and Pn+1 = Pn, so the amount owed remains constant each month.
(c) If i < r, then we have

Pn =
{

P0 (1 − r + i)n−1 (1 − r) for 1 ≤ n ≤ N1,(
PN1 − p

i

)
(1 + i)n−N1 + p

i for N1 < n,

where the month N1 is determined by (7.2). In this case the amount charged
is paid off in N1 + N2 months, where

ln
(

p
p−iPN1

)
ln (1 + i)

≤ N2 <
ln

(
p

p−iPN1

)
ln (1 + i)

+ 1. (7.4)

Comments About the Credit Card Theorem

• If part (c) of the theorem applies, then the total amount paid is approxi-
mately2 (see Problem 7.13 on p. 111)

rP0

⎛⎝1 +
(1 − r)

(
1 − (1 − r + i)N1−1

)
r − i

⎞⎠ + N2p. (7.5)

2 This formula assumes that the final payment is exactly p. However, as with amor-
tization, the final payment may be smaller than p.
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• The Credit Card Theorem is also valid if the borrower decides to pay a
larger p, the minimum monthly payment, and a larger r, the minimum
monthly balance repayment rate, than the credit card company requires.

Example 7.1. Tom charges $1,000 on a credit card with an annual interest
rate of 15% and for which the minimum payment is $10 or 2% of the balance
remaining to be paid, whichever is higher. If Tom charges no more on this
card but makes the minimum payment each month, then how long does it
take for him to repay the debt, and approximately how much does he pay in
total?

Solution. Here P0 = 1, 000, i(12) = 0.15 (15%), r = 0.02 (2%), and p = 10.
First, we see that rP0 = 20 is greater than p and that rP1 = P0r (1 − r) =
$19.60 is greater than p, so the Credit Card Theorem applies. Second, we see
that i = 0.15/12 = 0.0125 is less than 0.02, so part (c) of that theorem applies.

We find N1 from (7.2),

1 +
ln

(
10

1000×0.02(1−0.02)

)
ln

(
1 − 0.02 + 0.15

12

) ≤ N1 < 2 +
ln

(
10

1000×0.02(1−0.02)

)
ln

(
1 − 0.02 + 0.15

12

) .

Now,
ln

(
10

1000×0.02(1−0.02)

)
ln

(
1 − 0.02 + 0.15

12

) = 89.389,

so
90.389 ≤ N1 < 91.389,

giving N1 = 91. It takes 91 months (7 years 7 months) to switch from de-
creasing minimum payments to constant ones.

We find N2 from (7.4),

ln
(

10
10− 0.15

12 P91

)
ln

(
1 + 0.15

12

) ≤ N2 <
ln

(
10

10− 0.15
12 P91

)
ln

(
1 + 0.15

12

) + 1,

where from (7.1),

P91 = 1000
(

1 − 0.02 +
0.15
12

)91−1

(1 − 0.02) = 497.71,

so
ln

(
10

10− 0.15
12 P91

)
ln

(
1 + 0.15

12

) = 78.34.

Thus,
78.34 ≤ N2 < 79.34,

so N2 = 79. Thus, N1 + N2 = 91 + 79 = 170, so it takes 170 months (14 years
and 2 months) to repay the loan.
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The total amount paid is given approximately3 by (7.5), namely,

0.02(1000)

⎛⎝1 +
(1 − 0.02)

(
1 − (1 − 0.02 + 0.0125)90

)
0.02 − 0.0125

⎞⎠+79(10) = 2096.119.

So on the $1,000 loan, Tom pays about $2,096.12. �
We now repeat Example 7.1, to see what happens if Tom decides to pay

more than the minimum each month.

Example 7.2. Tom charges $1,000 on a credit card with an annual interest
rate of 15% and for which the minimum payment is $10 or 2% of the balance
remaining to be paid, whichever is higher. If Tom charges no more on this
card but pays twice the minimum payment each month, then how long does
it take Tom to repay the debt and approximately how much does he pay in
total?

Solution. Here P0 = 1000, i(12) = 0.15 (15%), r = 0.04 (twice 2%), and
p = 20 (twice 10). First, we see that rP0 = 40 is greater than p, and that
rP1 = P0r (1 − r) = $38.40 is greater than p, so the Credit Card Theorem
applies. Second, we see that i = 0.15/12 = 0.0125 is less than 0.04, so part (c)
of that theorem applies.

We find N1 from (7.2),

1 +
ln

(
20

1000×0.04(1−0.04)

)
ln

(
1 − 0.04 + 0.15

12

) ≤ N1 < 2 +
ln

(
20

1000×0.04(1−0.04)

)
ln

(
1 − 0.04 + 0.15

12

) .

Now,
ln

(
20

1000×0.04(1−0.04)

)
ln

(
1 − 0.04 + 0.15

12

) = 23.39,

so
24.39 ≤ N1 < 25.39,

giving N1 = 25. It takes 25 months (2 years 1 month) to switch from decreasing
minimum payments to constant ones.

We find N2 from (7.4),

ln
(

20
20− 0.15

12 P25

)
ln

(
1 + 0.15

12

) ≤ N2 <
ln

(
20

20− 0.15
12 P25

)
ln

(
1 + 0.15

12

) + 1,

3 In fact, the final payment is not $10, but P169 = $3.40. (See Problem 7.1 on
p. 110.)
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where from (7.1),

P25 = 1000
(

1 − 0.04 +
0.15
12

)25−1

(1 − 0.04) = 491.61,

so
ln

(
20

20− 0.15
12 P25

)
ln

(
1 + 0.15

12

) = 29.55.

Thus,
29.55 ≤ N2 < 30.55,

so N2 = 30. Thus, N1 + N2 = 25 + 30 = 55, so it takes 55 months (4 years
and 7 months) to repay the loan.

The total amount paid is given approximately by (7.5), namely,

0.04(1000)

⎛⎝1 +
(1 − 0.04)

(
1 − (1 − 0.04 + 0.0125)24

)
0.04 − 0.0125

⎞⎠+30(20) = 1321.293.

So on the $1,000 loan Tom pays about $1,321.29.
Thus, by doubling the payments, the time to repay the loan drops from

14 years and 2 months to 4 years and 7 months and the amount paid drops
from $2,096.12 to $1,321.29. �

7.2 Credit Card Numbers

The digits on a credit card are not chosen randomly, and many of the popular
ones (VISA, Mastercard, American Express, Diners Club, Discover) follow a
similar pattern. The total number of digits (usually between 13 and 16) is
specified by the company. The initial digits determine the type of card, the
next digits the issuing financial institution, and the remaining digits (except
for the final one) identifies the customer. The final digit is a checksum. It is
computed from the previous digits in such a way so as to reduce the risk of
incorrectly entering a digit, transposing adjacent digits, or simply entering an
invalid card number.

The technique that is used to compute the checksum is called the Luhn
algorithm or the Mod 10 Method.4 To demonstrate the algorithm, consider
the credit card number 9876543219876543, so that 3 is the checksum. We con-
centrate on the other 15 digits. Starting from the right-hand side we multiply
every other digit by 2 and leave the remaining digits unchanged, giving

9 8 7 6 5 4 3 2 1 9 8 7 6 5 4
×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2
18 8 14 6 10 4 6 2 2 9 16 7 12 5 8

.

4 Canadian Social Insurance Numbers, which are nine digits long, also use the Luhn
algorithm to check the last digit.
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Now, we add the resulting digits, treating each digit separately, so that 18
is treated as 1 + 8. Thus,

(1 + 8)+8+(1 + 4)+6+(1 + 0)+4+6+2+2+9+(1 + 6)+7+(1 + 2)+5+8 = 82.

We now add the checksum, 3, to this total to find 85. If the new total is
divisible by 10, then the credit card number has passed the validation test.5

This number fails, whereas 9876543219876548 passes.
In order to analyze whether this algorithm detects the incorrect entry of

a digit or the transposition of adjacent digits, we look at what each of the
numbers from 0 to 9 transform into as a result of the “multiply by two and
add the digits” rule.

Initial Digit ×2 Final Digit
d 2d f(d)
0 0 0
1 2 2
2 4 4
3 6 6
4 8 8
5 10 1
6 12 3
7 14 5
8 16 7
9 18 9

Imagine that we inadvertently change one digit in an otherwise valid credit
card number. If it is the check digit that is changed, then the new number is
no longer valid because the sum of the remaining digits requires the correct
check digit to pass the test. If it is one of the undoubled digits that is changed,
then the new sum differs from the old one by a number less than 10, so it does
not give the correct check digit. The same is true if one of the doubled digits
is changed.

Imagine that we inadvertently transpose adjacent digits in an otherwise
valid credit card number. There are 100 possible combinations of two digits,
from 00 through 99, of which ten (00, 11, 22, . . ., 99) won’t cause any problems
if the digits are transposed. If d1 and d2 are adjacent digits in the credit card
number (d1 	= d2), then their contribution to the checksum is either f(d1)+d2
or f(d2) + d1, and if transposed they are either f(d2) + d1 or f(d1) + d2. If
these two sums are the same or their difference is a multiple of 10, then the
checksum does not distinguish between their transposition. This suggests that
we should look at (f(d1) + d2) − (f(d2) + d1) = (f(d1) − d1) − (f(d2) − d2).
In other words, we should consider f(d) − d.

5 Of course, this does not check whether the credit card is valid.
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d f(d) f(d) − d
0 0 0
1 2 1
2 4 2
3 6 3
4 8 4
5 1 −4
6 3 −3
7 5 −2
8 7 −1
9 9 0

One question that we can ask is, “Are there two different d’s, called d1
and d2, for which (f(d1) − d1) − (f(d2) − d2) = 0?” Looking at the preceding
table, we can answer “Yes, 0 and 9.” Thus, if the adjacent digits are 0 and
9 and they are interchanged, then the checksum does not pick up this error.
Another question we can ask is, “Are there two different d’s, called d1 and d2,
for which (f(d1) − d1) − (f(d2) − d2) 	= 0 but is divisible by 10?” Looking at
the preceding table, we can answer “No.” Thus, the Luhn algorithm detects
the transposition of adjacent digits if they are not 09 or 90.

7.3 Problems

Walking

7.1. Show that the final payment in Example 7.1 on p. 106 is P169 and that
it is $3.40.

7.2. We charge $2,100 on a credit card with an annual interest rate of 18% and
for which the minimum payment is $10 or 2.5% of the balance remaining to
be paid, whichever is higher. How long will it take to repay the debt assuming
that the minimum payment is always made, and how much will we have paid
in total? If we borrow the same $2,100 at the same annual interest rate of
18% but repay it as an amortized loan with a monthly payment of $55, how
long will it take to repay the debt, and how much will we have paid in total?

7.3. Using Table 7.2 on p. 102 as a template, construct a spreadsheet that
reproduces the calculations in Example 7.1 on p. 106 and in Problem 7.2.

7.4. Use (7.5) on p. 105 and the Credit Card Theorem on p. 105 to construct
a spreadsheet that calculates N1, N2, and the (approximate) total amount
repaid after the user inputs P0, i(12), p, and r. Use the format in the following
table.
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Amount owed = P0 = $1,000.00
Annual interest rate = i(12) = 15%

Minimum monthly payment = p = $10.00
Minimum monthly balance repayment rate = r = 2%

i < r? Yes
rP0 > p? Yes
rP1 > p? Yes

N1 91
PN1 $491.71
N2 79

Months to repay = N1 + N2 170
Total repaid = $2,096.12

7.5. Apply the Luhn algorithm to 9876543219876453. Is the checksum a valid
one? If not, then what should the final digit be?

7.6. If 9876543219076545 has a valid checksum using the Luhn Algorithm,
will 9876543210976545?

7.7. Apply the Luhn algorithm to 0000000000000000. Is the checksum a valid
one?

Running

7.8. State and prove a result similar to the Credit Card Theorem on p. 105
if initially rP0 ≤ p.

7.9. State and prove a result similar to the Credit Card Theorem on p. 105
if initially rP0 > p but rP1 ≤ p.

7.10. Determine what happens if instead of a single charge of P0 to a credit
card, we charge P0 every month but still elect to pay the minimum each
month.

7.11. Determine what happens if in addition to paying the minimum amount
each month, we add a fixed dollar amount $M .

7.12. Sometimes a credit card company lets a borrower skip a monthly pay-
ment (but not the interest). How does this affect the total interest paid?

7.13. Assuming that the final payment is exactly p, prove (7.5) on p. 105.

7.14. Sometimes in the Luhn algorithm, the “multiply by two and add the
digits” rule, is replaced by “multiply by two and, if the resulting number is
greater than 9, subtract 9” rule. Are these rules the same? Verify.

7.15. Sometimes in the Luhn algorithm, the “multiply by two and add the
digits” rule, is replaced by “multiply by two, divide the resulting number by
9, and keep the remainder” rule. Are these rules the same? Verify.
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Questions for Review

• How do you find the total amount paid when i < r?
• What does the Credit Card Theorem say?
• What is the Luhn algorithm?
• What is the purpose of the Luhn algorithm?
• How does the Luhn algorithm work?
• What is a checksum?
• How is the outstanding balance on a credit card computed?
• How are the payments on the outstanding balance on a credit card com-

puted?
• How does the remaining balance on a credit card change when i > r?

When i = r? When i < r?
• How do you find the month in which you switch from decreasing payments

to constant payments?
• How do you find the number of months in which the minimum monthly

payment, p, is made?
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Bonds

Bonds are loans that an investor makes either to a government agency (US
Treasury bonds or notes1 or Municipal bonds) or to a corporation (Corporate
bonds). The borrower promises to pay the lender interest at regular intervals
(usually every six months) and to repay the principal at the end of the loan.
In investor’s language the previous sentence reads, “The borrower promises
to pay the lender the coupons on the coupon payment dates and to pay
the face value of the bond at the redemption date.”

Government Bonds and Notes
Typical Term 2 years, 3 years, 5 years, 10 years, 30 years
Payment Frequency Semi-annually
Penalty None
Issuer Federal Government
Risks Inflation, Interest Rate, Reinvestment, Maturity
Marketable Yes
Restrictions Minimum Investment

Corporate Bonds
Typical Term 10 to 30 years
Payment Frequency Semi-annually
Penalty None
Issuer Corporations
Risks Inflation, Market, Interest Rate, Liquidity,

Default, Business, Reinvestment, Maturity
Marketable Yes
Restrictions Minimum Investment

1 US Treasury bonds are obligations of the United States government with a ma-
turity of more than 10 years. US Treasury notes are obligations of the United
States government with a maturity of between 1 and 10 years.
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There are various types of bonds, but one which is not redeemable be-
fore the scheduled redemption date is called noncallable. In this book we
concentrate on noncallable bonds.

8.1 Noncallable Bonds

The value of a noncallable bond varies with time. When a bond is first is-
sued, the interest rate is determined by the competitive interest rates of other
bonds available at that time. This determines the initial value of the bond—
the primary market value. Later this bond may be offered for resale. Then
its resale value—the secondary market value—is determined by the com-
petitive interest rates available at that time, as well as the proportion of the
coupon period that has elapsed by the record date.2

For example, suppose that an investor purchases a 20-year bond for $1,000
when the interest rate is 7%. Later the competitive interest rate falls to 6.5%,
and the investor decides to sell the bond. Clearly the investor expects more
than $1,000 for the bond because bonds with coupon rates of 6.5% are selling
for $1,000. However, if the interest rate rises to 7.5%, then no one will pay
$1,000 for the investor’s bond because it is worth less than $1,000. But what
is a fair price for these bonds? In other words, how do we value a bond that
is for sale? This section is devoted to answering that question.

When a bond is sold its value is reported as a percent of its face value;
for example, the price of a $1,000 bond may be reported as 98, which means
that the market value of the bond is 98/100 × $1, 000 = $980. A price of 100
means that the value of the bond is its face value.

Let

F be the face value (par value, redemption value) of the bond,
P be the price of the bond (percentage of the face value),
n be the total number of coupon payment periods,
m be the number of coupon payments per year,

r(m) be the annual coupon rate (nominal yield), expressed as a decimal,
r be the coupon rate per coupon payment period,

expressed as a decimal,
y(m) be the annual yield to maturity (investor’s rate of return),

expressed as a decimal, and
y be the yield to maturity per coupon payment period,

expressed as a decimal.

2 The Record Date is the date on which a purchaser of a bond becomes the legal
owner.
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Notice that P is expressed as a percentage, whereas r and y are expressed as
decimals,3 and that y = y(m)/m and r = r(m)/m. The cost of the bond is
(P/100)F , and the coupon payment is rF .

Initially we assume that the price, P , is to be determined immediately
following a coupon payment, so the next coupon payment is due exactly one
payment period in the future and there are n coupon payment periods re-
maining. Later we take into account what happens to the price if the bond is
sold between coupon payment periods.

The future value of the first coupon payment, rF , on the maturity date
is rF (1 + y)n−1. The future value of the second coupon payment, rF , on the
maturity date is rF (1+ y)n−2. The future value of the final coupon payment,
rF , on the maturity date is rF . The future value of the face value, F , is F .
The future value of the cost of the bond, (P/100)F , on the maturity date is
(P/100)F (1+ y)n. This is represented by the time diagram shown in Fig. 8.1.

P
100F

rF

1

rF

2

· · ·
rF

n − 1

rF + F

n

Fig. 8.1. Time diagram of a typical bond

Thus,

P

100
F (1 + y)n = rF

(
(1 + y)n−1 + (1 + y)n−2 + · · · + (1 + y) + 1

)
+ F,

or

P

100
(1 + y)n = r

(
(1 + y)n−1 + (1 + y)n−2 + · · · + (1 + y) + 1

)
+ 1. (8.1)

This equation can be rewritten in various ways. If we multiply by 100/(1 + y)n,
then we have

P = 100r

(
1

1 + y
+

1
(1 + y)2

+ · · · +
1

(1 + y)n

)
+

100
(1 + y)n , (8.2)

or

P = 100r

n∑
k=1

(1 + y)−k + 100 (1 + y)−n
, (8.3)

3 Sometimes, instead of being measured in decimal or percentage, rates and yields
are measured in basis points. A basis point is 0.01%, that is, 0.0001. Basis
points are frequently used by dealers dealing with billions of dollars of bonds,
and a change of one basis point on one billion dollars is $100,000.
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which can be interpreted as “the price is the present value of the expected
future cash flows”. By rewriting (8.2) in the form

P =
100r

1 + y

(
1 +

1
1 + y

+ · · · +
1

(1 + y)n−1

)
+

100
(1 + y)n

and recognizing the expression in parentheses as a geometric series, we find,
after a little algebra, that for y 	= 0,

P = 100

(
r
1 − (1 + y)−n

y
+ (1 + y)−n

)
, (8.4)

or

P = 100

(
(r − y)

1 − (1 + y)−n

y
+ 1

)
. (8.5)

Theorem 8.1. The Bond Theorem.
The price, P , of a noncallable bond immediately following a coupon payment
is given by any of the four equivalent equations (8.1), (8.2), (8.4), and (8.5).

If r = 0, that is, there are no coupons paid, then the bond is called a zero
coupon bond. Thus, from (8.4) we have the following result.

Theorem 8.2. The Zero Coupon Bond Theorem.
The price, P , of a zero coupon bond is given by

P = 100(1 + y)−n.

Comments About the Bond Theorem

• There are three different annual yields used in connection with bonds: the
nominal yield r(m) = rm, the current yield 100rm/P , and the yield
to maturity y(m) = ym. The yield to maturity is frequently referred to
just as the yield. The nominal yield or stated yield, is of little practical
significance. The yield to maturity is the annual rate of return that an
investor should receive if the bond is held to maturity. The current yield
measures that part of the yield to maturity that is due to coupon payments.

• From (8.5), written in the form

P − 100 = 100(r − y)
1 − (1 + y)−n

y
,

we see that P = 100 is equivalent to y = r. If P = 100, then the bond
is said to be purchased at par. In this case y = r = 100r/P. Thus, when
a bond is purchased at par, the nominal yield, the current yield, and the
yield to maturity are equivalent.
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• From (8.5), written in the form

P − 100 = 100(r − y)
1 − (1 + y)−n

y
,

and realizing that (1 + y)n > 1, so that 1 − (1 + y)−n > 0, we see that
the sign of P − 100 is the same as the sign of r − y. If P > 100 (which is
equivalent to r > y), then the bond is said to be purchased at a premium.
If P < 100 (which is equivalent to r < y), then the bond is said to be
purchased at a discount.

• From (8.5), written in the form

y − 100r

P
= (y − r)

100
P

(1 + y)−n
,

we see that the sign of y − r is the same as the sign of y − 100r/P .
Thus, if a bond is purchased at a premium (so P > 100 and r > y),
then y − 100r/P < 0, so ym < 100rm/P < rm, that is, the yield to
maturity is less than the current yield, which is less than the nominal
yield. However, if a bond is purchased at a discount (so P < 100 and
r < y), then y − 100r/P > 0, so ym > 100rm/P > rm, that is, the yield
to maturity is greater than the current yield, which is greater than the
nominal yield.

• The relationship between the yield to maturity, ym, and the maturity,4

n/m, for bonds with similar degrees of default risk is represented graph-
ically by a yield curve. During economic expansion, yield curves are gen-
erally upward sloping, that is, the yields on long-term bonds are higher
than the yields on short-term bonds. However, at economic peaks, yield
curves often become inverted, that is, the yields on long-term bonds are
lower than the yields on short-term bonds.

Example 8.1. What are the semi-annual coupon payments and the price of a
9% noncallable bond with 20 years to maturity and a face value of $1,000 if
the yield to maturity is 12%? What are the nominal and current yields for
this bond? Is the bond selling at par, at a premium, or at a discount?

Solution. Here the coupons are paid twice a year (m = 2), so there are 40
payments (n = 40). We also have F = 1000 and r(2) = 0.09, so r = 0.045 and
the semi-annual coupon payments, rF , are 0.045 × 1, 000 = $45. The yield to
maturity is y(2) = 0.12, so y = 0.06. From (8.5) we find that

P = 100

(
(0.045 − 0.06)

1 − (1 + 0.06)−40

0.06
+ 1

)
= 77.43.

Thus, the bond should sell for 77.43% of its face value, that is, for 77.43/100×
1000 = $774.30.
4 We use the terms “maturity” and “years to maturity” interchangeably.
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The nominal yield is rm = 0.045 × 2 = 0.09, and the current yield is
100rm/P = 100 × 0.045 × 2/77.43 ≈ 0.116. The bond is selling at a discount
because P < 100. �
Example 8.2. What are the semi-annual coupon payments and the price of a
12% noncallable bond with 2 years to maturity and a face value of $1,000 if
the yield to maturity is 9%?

Solution. Here the coupons are paid twice a year (m = 2), so there are 4
payments (n = 4). We also have F = 1000 and r(2) = 0.12, so r = 0.06 and
the semi-annual coupon payments, rF , are 0.06 × 1, 000 = $60. The yield to
maturity is y(2) = 0.09, so y = 0.045. From (8.5) we find that

P = 100

(
(0.06 − 0.045)

1 − (1 + 0.045)−4

0.045
+ 1

)
= 105.381.

Thus, the bond should sell for about 105.381% of its face value, that is, for
105.381/100 × 1000 = $1,053.81. �

There is another way of looking at this last example, which sheds a dif-
ferent light on bonds. Imagine that we buy this bond for $1,053.81 when the
yield is 9% and the coupon rate is 12%. We can think of this as lending
someone $1053.81 at 9% per annum. Then after six months we receive a $60
payment, of which $1053.81 × 0.09/2 = $47.42 is interest, and the remainder,
$60 − $47.42 = $12.58, is used to reduce the principal. This is deducted from
$1053.81, giving $1,041.23, which represents the outstanding principal (the
value of the bond) with only three payments left. In this way we can con-
struct the bond amortization schedule shown in Table 8.1. Notice that,
at the fourth and final payment, the value of the bond is $1,000—its face
value.

Table 8.1. Bond Amortization Schedule

Period Payment Interest Principal Repaid Value
0 $1,053.81
1 $60.00 $47.42 $12.58 $1,041.23
2 $60.00 $46.86 $13.14 $1,028.09
3 $60.00 $46.26 $13.74 $1,014.35
4 $60.00 $45.65 $14.35 $1,000.00

Table 8.2 shows the general situation symbolically in spreadsheet format,
where Pi is the value of the bond at period i.

Notice that this schedule does not use (8.4). In fact, it can be used to give
an alternative derivation of (8.4), as follows. It is not difficult to see that

P2 = (1 + y) P1 − rF = (1 + y) ((1 + y) P0 − rF ) − rF

= (1 + y)2 P0 − rF (1 + (1 + y)) ,
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Table 8.2. Bond Amortization Schedule—Spreadsheet Format

Period Payment Interest Principal Repaid Value
0 P

100F = P0

1 rF yP0 rF − yP0 (1 + y) P0 − rF = P1

2 rF yP1 rF − yP1 (1 + y) P1 − rF = P2

...
...

...
...

...
n − 1 rF yPn−2 rF − yPn−2 (1 + y) Pn−2 − rF = Pn−1

n rF yPn−1 rF − yPn−1 (1 + y) Pn−1 − rF = Pn

and

P3 = (1 + y) P2 − rF = (1 + y)3 P0 − rF
(
1 + (1 + y) + (1 + y)2

)
,

and finally

Pn = (1 + y) Pn−1 − rF = (1 + y)n
P0 − rF

(
1 + (1 + y) + · · · + (1 + y)n−1

)
,

or

Pn = (1 + y)n
P0 − rF

(1 + y)n − 1
y

.

However, P0 = P
100F and Pn = F (why?), so

F = (1 + y)n P

100
F − rF

(1 + y)n − 1
y

,

or

(1 + y)n P

100
=

(
r
(1 + y)n − 1

y
+ 1

)
,

from which (8.4) follows.

From (8.4) we can construct Table 8.3 which gives the prices of different
noncallable bonds,5 with coupon rates of 5% and 10%, with 5 and 20 years
to maturity, and for yields from 4% to 12%. Notice that the price of 100.00
(that is, the price of the bond that exactly equals the face value) occurs when
the yield equals the coupon rate, in agreement with one of the comments we
made following the Bond Theorem.

Let’s look at this table in detail and make a number of observations.

• First, if we look at the second and fourth columns, then we see that for
a fixed yield, the price of a 5-year bond with a coupon rate of 10% is
larger than the price of a 5-year bond with a coupon rate of 5%. We see
that the same phenomenon is true for the 20-year bonds if we compare
the third and fifth columns. This leads us to suspect that, in general, the

5 Unless stated otherwise, all coupons are paid semi-annually, so m = 2.
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Table 8.3. The Prices of Different Noncallable Bonds

Yield 5%/5 years 5%/20 years 10%/5 years 10%/20 years
4% 104.491 113.678 126.948 182.066
5% 100.000 100.000 121.880 162.757
6% 95.735 88.443 117.060 146.230
7% 91.683 78.645 112.475 132.033
8% 87.834 70.311 108.111 119.793
9% 84.175 63.197 103.956 109.201
10% 80.696 57.102 100.000 100.000
11% 77.387 51.862 96.231 91.977
12% 74.240 47.338 92.640 84.954

price increases with the coupon rate, something that is intuitively obvious
(if the coupon rate increases, then so does the value of the coupon so the
bond is worth more). Thus, we conjecture that P is an increasing function
of r, and we prove this shortly.

• Second, if we look at the second and third columns, then we see that
for a fixed coupon rate, the price of a 5-year bond is smaller than the
price of a 20-year bond if the coupon rate is larger than the yield, but is
larger if the coupon rate is smaller than the yield. We see that the same
phenomenon is true for the 10% bonds if we compare the fourth and fifth
columns. This leads us to suspect that, in general, the price increases with
maturity if the coupon rate is larger than the yield and decreases with
maturity if the coupon rate is smaller than the yield. (This is intuitively
obvious because if the coupon rate is higher than the yield, the investor
is receiving more than required over a longer time, and therefore, should
expect to pay more. A similar argument holds when the coupon rate is
less than the yield.) Thus, we conjecture that P is an increasing function
of n if r > y and is a decreasing function of n if r < y. We prove this
conjecture shortly.

• Third, looking at the second column, we see that the price decreases as the
yield increases. We see the same phenomenon in the third, fourth and fifth
columns. This leads us to suspect that, in general, the price and the yield
move in opposite directions, something that is also intuitively obvious (if
the current interest rates rise, then the prudent investor does not invest
in a bond that has a lower interest rate unless the price is right, namely,
lower). Thus, we conjecture that P is a decreasing function of y. We prove
this conjecture shortly as well.

We now look at these three conjectures, by noting that, from the Bond
Theorem on p. 116, the price P is a function of the three independent variables,
r, n, and y (or equivalently, y(m) because y(m) = my). We look at these three
dependencies in turn.

First, if we think of P as a function of r (with n and y fixed), then we
see from (8.4) that P is linear in r. Because (1 + y)n

> 1, the coefficient
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of r, namely (1 − (1 + y)−n)/y, is always positive. Thus, P is an increasing
function of r, that is, as the coupon rate increases so does the price, exactly
as expected. Notice also that as n increases, the slope becomes larger, and
limn→∞ P = 100r/y.

Plotting P versus r gives a line with positive slope—see Fig. 8.2. From
(8.5) we see that if r = y, then P = 100, so this line passes through the point
(y, 100) . This tells us that when the coupon rate and the yield coincide, the
bond should sell for 100% of the face value, namely the face value. We also
note that if r = 0, then P = 100 (1 + y)−n, so the line must also pass through
the point

(
0, 100 (1 + y)−n

)
. This is the price of a zero coupon bond. Thus,

the line joins the points (y, 100) and
(
0, 100 (1 + y)−n

)
.
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Fig. 8.2. Price as a function of coupon rate for 1, 5, 10, and 30 years with 6% yield

Second, if we think of P as a function of n (with r and y fixed), then
we see from (8.5) that P is linear in −100 (r − y) (1 + y)−n. The sequence{

− (1 + y)−n
}

is increasing, so P is an increasing function of n if r > y and
a decreasing function of n if r < y. This is what we expected. We also notice
that limn→∞ P = 100r/y. This is seen in Fig. 8.3.

Third, we now think of P as a function of y (with r and n fixed). If we
differentiate (8.2) with respect to y, then we find that6

dP

dy
= −100r

n∑
k=1

k (1 + y)−k−1 − 100n (1 + y)−n−1
,

6 Strictly speaking, because P is a function of three independent variables, we
should use the notation ∂P/∂y, rather than dP/dy.
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Fig. 8.3. Price as a function of maturity (with m = 1) for a bond yielding 6% with
coupons of 2%, 6%, and 10%

which is negative, so P is a decreasing function of y and therefore a decreasing
function of y(m). Thus, as the yield rises the price falls, and as the yield
falls, the price rises, leading to the following commonly quoted property of
noncallable bonds.

Theorem 8.3. The Price-Yield Theorem.
The price and yield of a noncallable bond move in opposite directions.

If we evaluate the second derivative of (8.2) with respect to y, then we find
that

d2P

dy2 = 100r

n∑
k=1

k (k + 1) (1 + y)−k−2 + 100n (n + 1) (1 + y)−n−2
,

which is positive, so the graph of P versus y is concave up. Thus, P (y) is a
decreasing, concave up function of y and therefore of y(m) as is demonstrated
in Fig. 8.4.

If we think of P as a function of y, and if we are given a value for P , then
how do we know that y exists, that is, how do we know that there is always
a solution to (8.1)? We know that P is a continuous decreasing function of y
for y ≥ 0. Furthermore

lim
y→∞ P = 0,

and from (8.2)
lim

y→0+
P = 100nr + 100.

So for there to be a solution, P must satisfy the inequality 0 < P < 100nr +
100.
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Fig. 8.4. Price versus yield for a 6% bond with a 20-year maturity

Theorem 8.4. The Yield Existence Theorem.
If P satisfies

0 < P < 100nr + 100,

then (8.1) has a solution y for given P , r, and n.

Comments About the Yield Existence Theorem

• By rewriting (8.1) we see that the equation has one change of sign, so the
IRR Uniqueness Theorem I on p. 33 applies. Thus, that theorem guaran-
tees that there is no more than one solution for which 1 + y > 0.

• In general, for n > 4, there is no algebraic way to solve (8.1) for y.
• It is instructive to solve (8.1) exactly for n = 2 to see where the restriction

0 < P < 200r + 100 comes into play. In this case we try to solve the
quadratic

P

100
(1 + y)2 = r ((1 + y) + 1) + 1,

that is,
P (1 + y)2 − 100r (1 + y) − 100 (1 + r) = 0,

or
Py2 + y (2P − 100r) + (P − 100 − 200r) = 0

for y. This has solutions

y =
− (2P − 100r) ±

√
(2P − 100r)2 − 4P (P − 100 − 200r)

2P
.
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If P ≥ 200r + 100, then

(2P − 100r)2 − 4P (P − 100 − 200r) ≤ (2P − 100r)2 ,

so both solutions are non-positive. If 0 < P < 200r + 100, then

(2P − 100r)2 − 4P (P − 100 − 200r) > (2P − 100r)2 ,

giving one positive and one negative solution.
• Although (8.5) cannot in general be solved analytically for y, it can be

solved numerically, for example, by Newton’s method, if we can find a
reasonable initial guess for y. We now construct two such guesses.
Equation (8.5) can be written in the form

y = r − (P − 100) y

100
(
1 − (1 + y)−n

) .

Our objective is to simplify the right-hand side’s dependence on y using
various approximations. If we use the approximation

(1 + y)−n ≈ 1 − ny +
n (n + 1)

2
y2,

valid for y near 0, so that

1 − (1 + y)−n ≈ n

(
y − (n + 1)

2
y2

)
,

then we have
y ≈ r − P − 100

100n
(
1 − (n+1)

2 y
) .

If we use the approximation

1

1 − (n+1)
2 y

≈ 1 +
(n + 1)

2
y,

then we have

y ≈ r − P − 100
100n

(
1 +

(n + 1)
2

y

)
.

Solving this for y gives

y ≈ 100nr + 100 − P

P n+1
2 + 100n−1

2

, (8.6)

which is used as an approximation for y. If n is large, then this leads to

y ≈
100−P

n + 100r
P+100

2

, (8.7)
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which can be interpreted as follows:

y ≈ Average price change per period + coupon
Average of price and face value

.

Either of (8.6) or (8.7) could be used as the initial guess in Newton’s
Method to find y.

Example 8.3. What is the yield to maturity of a 9% noncallable bond with 20
years to maturity and a face value of $1,000 if the price is 77.43?

Solution. We want to solve (8.5), namely,

P = 100 (r − y)
1 − (1 + y)−n

y
+ 100,

for y given P = 77.43, r = 0.09/2 = 0.045, and n = 40, that is,

77.43 = 100 (0.045 − y)
1 − (1 + y)−40

y
+ 100.

The two approximations, (8.6) and (8.7), are

y ≈ 100nr + 100 − P

P n+1
2 + 100n−1

2

=
100 × 40 × 0.045 + 100 − 77.43

77.43 × 41
2 + 100 × 39

2

= 0.0573,

and

y ≈
100−P

n + 100r
P+100

2

=
100−77.43

40 + 100 × 0.045
77.43+100

2

= 0.0571,

either of which can be used as an initial value in Newton’s Method to find
that y = 0.06, so the yield y(m) is approximately 12%. �

Accrued Interest
We have calculated the price of a bond on a coupon date. Now, we look at

the case when the bond is sold part way through the coupon period—which is
what often happens in practice. We view this through the eyes of the buyer, so
the next coupon is the buyer’s first coupon, and there are n coupon payment
periods remaining. We let w, where 0 < w < 1, be the proportion of the first
coupon payment period remaining when the bond value is calculated. There
are two issues to be addressed.

1. The first coupon is owned partly by the seller (for 1 − w of a coupon
payment period) and partly by the buyer (for w of a coupon payment
period).

2. The buyer is going to receive all of the first coupon, so the seller should
receive that part of the coupon in proportion to the time that it was
technically owned by the seller, namely (1 − w) rF , called the accrued
coupon.
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Fig. 8.5. Time diagram

We treat these two issues in turn, using Figure 8.5, which shows the time
diagram for this cash flow.

Using the time 1 − w as the present time, we find that

P

100
F = rF

(
1

(1 + y)w +
1

(1 + y)1+w + · · · +
1

(1 + y)n−1+w

)
+

F

(1 + y)n−1+w .

This can be written as follows:

P

100
=

r

(1 + y)w

[
1 +

(
1

1 + y

)
+ · · · +

(
1

1 + y

)n−1
]

+
1

(1 + y)n−1+w

=
r

(1 + y)w

(
1

1+y

)n

− 1(
1

1+y

)
− 1

+
1

(1 + y)n−1+w ,

that is,

P =
100r

(1 + y)w

(
1 + y − (1 + y)1−n

y

)
+

100
(1 + y)n−1+w ,

or

P = 100

(
(r − y)

1 − (1 + y)−n

y
+ 1

)
(1 + y)1−w

.

The price that should be paid for the bond is P plus the accrued coupon
(1 − w) rF .

8.2 Duration

Sometimes we need to compare two different bonds, but because the price P is
a function of three variables, namely r, y, and n, this is difficult. However, we
can compare two bonds from the point of view of risk. In order to introduce
this method, we consider the following question. Which bond do you expect
to be riskier—a 10-year zero coupon bond or a 10-year noncallable bond, if
both have a 7% yield? Most people regard the second bond as carrying less
risk than the first, because if the issuers both default, then the second bond
has paid some coupons, whereas the first has not.
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To quantify this idea, consider placing n weights, a1, a2, . . . , an, equal
distances, s, apart on a weightless beam. We want to find the distance d at
which the beam balances. (See Fig. 8.6.)

0

a1

s

a2

2s

ak

ks

d

· · ·
ak+1

(k + 1)s

· · ·
an

ns

Fig. 8.6. Balancing weights

Assuming that d falls between ks and (k + 1) s, we require that the con-
tributions of the weights to the left of d to balance those on the right, that
is,

(d − s) a1 + · · · + (d − ks) ak = ((k + 1) s − d) ak+1 + · · · + (ns − d) an.

Solving this for d gives

d =
sa1 + 2sa2 + · · · + nsan

a1 + a2 + · · · + an
= s

∑n
k=1 kak∑n
k=1 ak

,

the weighted average of a1, a2, . . . , an. In Problem 8.15 you are asked to show
that d always lies between s and ns.

We apply this idea to bonds, by considering the future values of the
coupons, which are paid m times a year. (See Fig. 8.7.)

0

rF (1 + y)n−1

1
m

rF (1 + y)n−2

2
m

d

· · ·
rF (1 + y)

n−1
m

rF + F

n
m

Fig. 8.7. The weighted average of a typical bond

In this case s = 1/m, ak = rF (1 + y)n−k for k = 1, . . . , n − 1, and
an = rF + F , so7

d =
1
m

∑n−1
k=1 krF (1 + y)n−k + n(rF + F )∑n−1

k=1 rF (1 + y)n−k + rF + F
,

7 The same formula results if we consider the present value of the coupons, rather
than the future value.
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which can be rewritten as

d =
1
m

r
∑n

k=1 k(1 + y)n−k + n

r
∑n

k=1(1 + y)n−k + 1
. (8.8)

In this context d is called the duration or Macaulay duration, and
it has the dimension of time. It is the weighted average time that it takes to
receive all of the cash flows. Thus, for bonds with the same yield, the smaller
the duration, the lower the risk.

Example 8.4. If the yield to maturity is 6%, then what is the duration of

(a) A 9% noncallable bond with 20 years to maturity?
(b) A 7% noncallable bond with 15 years to maturity?

Which bond is less risky?

Solution.

(a) Here m = 2, r = 0.09/2 = 0.045, y = 0.06/2 = 0.03, and n = 40, so
from (8.8) we have

d =
1
2

0.045
∑40

k=1 k(1 + 0.03)40−k + 40

0.045
∑40

k=1(1 + 0.03)40−k + 1
= 10.983 years.

(b) Here m = 2, r = 0.07/2 = 0.035, y = 0.06/2 = 0.03, and n = 30, so
from (8.8) we have

d =
1
2

0.035
∑30

k=1 k(1 + 0.03)30−k + 30

0.035
∑30

k=1(1 + 0.03)30−k + 1
= 9.787 years.

The second bond is less risky. �
The concept of duration can be extended to any sequence of cash flows

as follows. If Ck is the cash flow at period k, paid m times a year, where
0 ≤ k ≤ n, (see Fig. 8.8) then the duration, d, of these cash flows when the
interest rate per period is y is the time weighted average of the future values
of these cash flows, that is,

d =
∑n

k=0
k
mCk(1 + y)n−k∑n

k=0 Ck(1 + y)n−k
=

∑n
k=0 kCk(1 + y)n−k

m
∑n

k=0 Ck(1 + y)n−k
.

This is equivalent to the time weighted average of the present values of these
cash flows,

d =
∑n

k=0 kCk(1 + y)−k

m
∑n

k=0 Ck(1 + y)−k
. (8.9)
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8.3 Modified Duration

We can also compare two bonds by looking at the sensitivity of the prices to
a change in yield, that is, if the yield y(m) changes by an amount ∆y(m), then
we can compare how the percent price changes are affected. Thus, we want to
calculate the percent price change,8

P
(
y(m) + ∆y(m)

) − P
(
y(m)

)
P

(
y(m)

) ,

for each bond. For bonds with the same yield, the larger the magnitude of
this number, the greater the risk.

Example 8.5. Which is riskier under a 1% increase in yield, a 9% noncallable
bond with 20 years to maturity or a 7% noncallable bond with 15 years to
maturity if the yield to maturity in each case is 6%?

Solution. In this case y(m) = 0.06 and ∆y(m) = 0.01, so

P (0.06 + 0.01) − P (0.06)
P (0.06)

=
P (0.07)
P (0.06)

− 1.

For the first bond (with m = 2, r = 0.09/2 = 0.045, and n = 40) we have,
from (8.4),

P
(
y(m)

)
= 100

⎛⎜⎝0.045
1 −

(
1 + y(m)

2

)−40

y(m)

2

+
(

1 +
y(m)

2

)−40
⎞⎟⎠ ,

so
P (0.06) = 134.672,

and
P (0.07) = 121.355.

Thus, for the first bond

P (0.07)
P (0.06)

− 1 = −0.0989,

8 Although this is called the percent price change, it is not a percent, it is a decimal.
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so a 1% increase in the yield gives approximately a 9.9% decrease in the
percent price change. (Were you surprised by the minus sign?)

For the second bond (with m = 2, r = 0.07/2 = 0.035, and n = 30) we
have, in the same way,

P (0.06) = 109.8,

and
P (0.07) = 100,

giving
P (0.07)
P (0.06)

− 1 = −0.0893,

so a 1% increase in the yield gives approximately an 8.9% decrease in the
percent price change. (Were you surprised that P (0.07) = 100?)

Thus, the first bond is riskier than the second. �
We now derive a formula that gives us an approximate measure of the

percent price change of a bond. From local linearity, we have

P
(
y(m) + ∆y(m)

)
− P

(
y(m)

)
≈ ∆y(m) dP

dy(m)

for small ∆y(m), which we can write as

P
(
y(m) + ∆y(m)

) − P
(
y(m)

)
P

(
y(m)

) ≈ ∆y(m) P
′ (y(m)

)
P

(
y(m)

) .

In this form we see that the percent price change of P
(
y(m)

)
to changes in

y(m) is approximately linear in the change, ∆y(m) and linear in the quantity
P ′(y(m))/P

(
y(m)

)
. Because P

(
y(m)

)
> 0 and P ′ (y(m)

)
< 0, we see that

the sign of the percent price change is the opposite of the sign of the change
in y(m).

It is common to define the modified duration by

v = −P ′ (y(m)
)

P
(
y(m)

) . (8.10)

The minus sign is introduced to ensure that v is positive. Modified duration
has the dimension of time. (Why?)

With this definition, we have

P
(
y(m) + ∆y(m)

) − P
(
y(m)

)
P

(
y(m)

) ≈ −∆y(m)v. (8.11)

Thus, the percent price change of P
(
y(m)

)
to changes in y(m) is proportional

to the modified duration v, once ∆y(m) is selected.
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From (8.11) if ∆y(m) = 0.01, then we have

v ≈ −100

(
P

(
y(m) + 0.01

) − P
(
y(m)

)
P

(
y(m)

) )
.

We can interpret this as follows: for every 1% increase (or decrease) in the
yield, the percent decrease (or increase) in the price is approximately v, the
modified duration. For example, the price of a bond with a modified duration
of 10.00 decreases by approximately 10% for every 1% increase in the yield.

We derive an equation for v as follows. From (8.4), namely

P
(
y(m)

)
= 100

(
r
1 − (1 + y)−n

y
+ (1 + y)−n

)

where y = y(m)/m, and because

dP

dy(m) =
dP

dy

dy

dy(m) =
dP

dy

1
m

,

we have

dP

dy(m) = 100
1
m

(
r
n (1 + y)−n−1

y − 1 + (1 + y)−n

y2 − n (1 + y)−n−1

)
.

Thus,

v = − 1
m

r n(1+y)−n−1y−1+(1+y)−n

y2 − n (1 + y)−n−1

r 1−(1+y)−n

y + (1 + y)−n
. (8.12)

If we multiply the numerator and denominator by y2 (1 + y)n+1, then we find
that

v = − 1
ym

r
(
ny − (1 + y)n+1 + (1 + y)

)
− ny2

r
(
(1 + y)n+1 − (1 + y)

)
+ y (1 + y)

,

or

v = − 1
ym

r
(
1 + y + ny − (1 + y)n+1

)
− ny2

(1 + y) [r {(1 + y)n − 1} + y]
. (8.13)

Example 8.6. If the yield to maturity is 6%, then what is the modified duration
and the percent price change of

(a) A 9% noncallable bond with 20 years to maturity?
(b) A 7% noncallable bond with 15 years to maturity?
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Solution.

(a) Here m = 2, r = 0.09/2 = 0.045, y = 0.06/2 = 0.03, and n = 40, so from
(8.13), we have

v = − 1
0.03 × 2

0.045
(
1 + 0.03 + 40 × 0.03 − (1 + 0.03)40+1

)
− 40 × 0.032

(1 + 0.03)
(
0.045

(
(1 + 0.03)40 − 1

)
+ 0.03

)
= 10.663.

From (8.11)

P
(
0.06 + ∆y(m)

) − P (0.06)
P (0.06)

≈ −10.663∆y(m).

Thus, a 1% increase in the yield gives about a 10.663% decrease in the
percent price change compared to the value of 9.89% found in Example 8.5.

(b) Here m = 2, r = 0.07/2 = 0.035, y = 0.06/2 = 0.03, and n = 30, so

v = − 1
0.03 × 2

0.035
(
1 + 0.03 + 30 × 0.03 − (1 + 0.03)30+1

)
− 30 × 0.032

(1 + 0.03)
(
0.035

(
(1 + 0.03)30 − 1

)
+ 0.03

)
= 9.502.

From (8.11)

P
(
0.06 + ∆y(m)

) − P (0.06)
P (0.06)

≈ −9.502∆y(m).

Thus, a 1% increase in the yield gives about a 9.502% decrease in the
percent price change compared to the value of 8.93% found in Example 8.5.

�
From (8.2), namely,

P = 100r

n∑
k=1

(1 + y)−k + 100 (1 + y)−n
,

we derive another equation for v that is occasionally useful. If we let

pk =
{

r (1 + y)−k for 1 ≤ k ≤ n − 1,

(r + 1) (1 + y)−n for k = n,
(8.14)

then

P = 100
n∑

k=1

pk.
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Notice that pk is the present value of the kth cash flow. From (8.14) we have

dpk

dy
= −kpk (1 + y)−1 for 1 ≤ k ≤ n, (8.15)

so

v = −
dP

dy(m)

P
= − 1

m

dP
dy

P
,

giving

v =
1
m

1
1 + y

∑n
k=1 kpk∑n
k=1 pk

, (8.16)

or

v =
1
m

1
1 + y

r
∑n

k=1 k (1 + y)−k + n (1 + y)−n

r
∑n

k=1 (1 + y)−k + (1 + y)−n
. (8.17)

Equations (8.12), (8.13), and (8.17) show that the modified duration is a
function of r, y, and n. We investigate each of these dependencies in turn.

We use (8.13) to construct Table 8.4 and Fig. 8.9 for the modified durations
of different noncallable bonds with a 9% yield for different coupon rates and
maturities.

Table 8.4. The Modified Durations of Different Noncallable Bonds with 9% Yield

Coupon Rate 10 years 20 years 30 years 50 years
3% 7.894 11.744 12.614 11.857
6% 7.030 9.988 10.952 11.200
9% 6.504 9.201 10.319 10.975
12% 6.150 8.755 9.985 10.862

We notice that for a fixed maturity, the modified duration decreases as the
coupon rate increases. We prove this as follows. If we differentiate (8.17) with
respect to r and simplify, then we find that

dv

dr
= − 1

m

1
1 + y

∑n
k=1 (n − k) (1 + y)−k−n(

r
∑n

k=1 (1 + y)−k + (1 + y)−n
)2 .

Because this is negative we have proved that modified duration is a de-
creasing function of the coupon rate. The higher the coupon rate, the
faster the investment is repaid, so the lower the modified duration.

We use (8.13) to construct Table 8.5 and Fig. 8.10 for the modified dura-
tions of different noncallable bonds with a 9% coupon rate for different yields
and maturities.
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Fig. 8.9. The modified durations of different noncallable bonds with 9% yield

Table 8.5. The Modified Durations of Different Noncallable Bonds with 9% Coupon
Rate

Yield 10 years 20 years 30 years 50 years
3% 7.342 12.200 15.988 21.661
6% 6.925 10.663 12.921 15.222
9% 6.504 9.201 10.319 10.975
12% 6.083 7.879 8.283 8.347
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Fig. 8.10. The modified durations of different noncallable bonds with 9% coupon
rate
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We notice that for a fixed maturity, the modified duration decreases as
the yield increases. We prove this as follows. If we differentiate (8.16) with
respect to y and simplify, then we find that

m
dv

dy
= −

(∑n
k=1 k2pk

)
(
∑n

k=1 pk) − (
∑n

k=1 kpk)2

(1 + y)2 (
∑n

k=1 pk)2
− (

∑n
k=1 kpk)

(1 + y)2 (
∑n

k=1 pk)
.

The second term is negative, so we need concentrate only on the numerator
of the first term. If we consider the Cauchy-Schwarz inequality (see p. 250),
namely (

n∑
k=1

akbk

)2

≤
(

n∑
k=1

a2
k

)(
n∑

k=1

b2
k

)
,

with ak = k
√

pk and bk =
√

pk, then we find that(
n∑

k=1

kpk

)2

≤
(

n∑
k=1

k2pk

)(
n∑

k=1

pk

)
.

Thus, dv/dy is negative, so modified duration is a decreasing function
of the yield. The higher the yield, the faster the investment is repaid, so the
lower the modified duration.

If we plot the modified duration, v, as a function of the maturity (from 5
to 30 years) for a 9% yield and coupon rates of 3%, 6%, 9% and 12%, then
we have Fig. 8.11.
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Fig. 8.11. The modified duration as a function of maturity for 9% yield and coupon
rates of 3%, 6%, 9% and 12%

This suggests that v is an increasing, concave down function of n. However,
if we extend the maturity to 100 years, then we have Fig. 8.12.
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Fig. 8.12. The modified duration as a function of maturity for 9% yield and coupons
of 3%, 6%, 9% and 12%

This clearly shows that v is neither an increasing nor a concave down
function of maturity.9 However, it does suggest that there is a horizontal
asymptote. So what happens to the modified duration if n → ∞? From (8.12)
because

lim
n→∞ (1 + y)−n = 0

and
lim

n→∞ n (1 + y)−n = 0,

we have
lim

n→∞ v =
1

ym
=

1
y(m) .

This is consistent with Fig. 8.12, where y(m) = 0.09, so limn→∞ v = 1/0.09 =
11.111. This asymptote is independent of the coupon rate.

Modified duration is closely related to duration. From (8.17) we have

v =
1
m

1
1 + y

r
∑n

k=1 k (1 + y)−k + n (1 + y)−n

r
∑n

k=1 (1 + y)−k + (1 + y)−n
,

which we rewrite as

v =
1

1 + y

1
m

r
∑n

k=1 k (1 + y)n−k + n

r
∑n

k=1 (1 + y)n−k + 1
.

9 Based on Fig. 8.12 it appears that v is an increasing, concave down function of
n if y ≤ r, while v has a single maximum if y > r. You are asked to prove this
conjecture for the case y = r (see Problem 8.17). The result for y �= r has only
recently been proved (see [22]).
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From (8.8) we find that

v =
d

1 + y
, (8.18)

so

d = − 1
ym

r
(
1 + y + ny − (1 + y)n+1

)
− ny2

[r {(1 + y)n − 1} + y]
. (8.19)

Because d = (1 + y)v, we use the fact that v decreases with r to state
that the duration is a decreasing function of the coupon rate. This is
intuitively obvious because if the coupon rate increases, then the owner of the
bond receives more per coupon period, thereby shortening the duration.

However, from d = (1 + y) v and the fact that v decreases with y, we cannot
conclude that d decreases with y. (Why?) Nevertheless, in Problem 8.18 you
are asked to show that duration is a decreasing function of yield. Because
duration is the weighted average time that it takes to receive the cash flows,
the higher the yield the faster the return of money, hence the shorter the
duration.

From d = (1 + y)v and

lim
n→∞ v =

1
y(m) ,

we have

lim
n→∞ d =

1 + y

y(m) =
1 + y(m)

m

y(m) .

8.4 Convexity

On p. 130 we saw that for bonds with the same yield, the larger the magnitude
of

P
(
y(m) + ∆y(m)

) − P
(
y(m)

)
P

(
y(m)

) ,

the greater the risk. Using local linearity, that is, the first two terms of a
Taylor expansion,

P
(
y(m) + ∆y(m)

)
− P

(
y(m)

)
≈ ∆y(m)P ′

(
y(m)

)
,

we showed in (8.11) that

P
(
y(m) + ∆y(m)

) − P
(
y(m)

)
P

(
y(m)

) ≈ −∆y(m)v,
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where the modified duration, v, is

v = −P ′ (y(m)
)

P
(
y(m)

) .

Generally, if ∆y(m) > 0, then because of the minus sign in the definition of v,
the larger the modified duration the riskier the bond.

What do we do if two bonds have the same yield and the same modified
duration? We include the next term of the Taylor expansion,

P
(
y(m) + ∆y(m)

)
− P

(
y(m)

)
≈ ∆y(m)P ′

(
y(m)

)
+

1
2

(
∆y(m)

)2
P ′′

(
y(m)

)
,

so
P

(
y(m) + ∆y(m)

) − P
(
y(m)

)
P

(
y(m)

) ≈ −∆y(m)v +
1
2

(
∆y(m)

)2
C,

where

C =
P ′′ (y(m)

)
P

(
y(m)

) .

The quantity C is called the convexity of the bond. So if ∆y(m) > 0 for
bonds with the same yield and the same modified duration, then the larger
the convexity the riskier the bond.

From (8.3) we can show that the convexity is given by

C =
r
∑n

k=1 k(k + 1) (1 + y)−k + n(n + 1) (1 + y)−n

(1 + y)2
(
r
∑n

k=1 (1 + y)−k + (1 + y)−n
) . (8.20)

(See Problem 8.21.)

It is important to realize that the terms “convexity”, “second derivative”,
and “curvature” are not interchangeable. In fact, neither convexity nor the
second derivative of a function measure how much a function “bends”. The
curvature κ of P

(
y(m)

)
, namely

κ =
P ′′ (y(m)

)(
1 +

(
P ′ (y(m)

))2
)3/2 ,

does that. (See Problems 8.22–8.24.)
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8.5 Treasury Bills

United States Treasury bills (T-bills) are short term obligations with initial
maturities of 4 weeks, 13 weeks, or 26 weeks.10 They differ from traditional
bonds in that they do not pay coupons. They are purchased at less than face
value and are redeemed at face value. Thus, a T-bill is discounted from its
face value. The profit is the difference between the face value and the purchase
price.

Treasury Bills
Typical Term 4 weeks, 13 weeks, 26 weeks
Payment Frequency At maturity
Penalty None
Issuer Federal Government
Risks Inflation, Interest Rate, Reinvestment, Maturity
Marketable Yes
Restrictions Minimum Investment of $1,000

Table 8.6 shows a sample of Treasury bill quotations from The Wall Street
Journal of September 1, 2000.

Table 8.6. Treasury Bill Quotations

Days
to Ask

Maturity Mat. Bid Asked Chg. Yld.
Sep 07 2000 6 6.03 5.95 −0.07 6.04
Oct 26 2000 55 6.12 6.08 +0.01 6.22
Jan 04 2001 125 6.07 6.05 +0.01 6.27

The figures in the Bid and Asked columns are discount yields (expressed
as percentages) and are calculated using the discount yield method, which
assumes that a year consists of 360 days (that is, twelve 30-day months). If F
is the face value of the T-bill, if P is either the purchase price from a dealer
(asked price) or the selling price to a dealer (bid price), and if n is the number
of days to maturity, then the discount yield, yd, is

yd =
F − P

F

360
n

=
(F − P ) /F

n/360
.

Thus, the discount yield is the annualized ratio of the profit to the face value
of the T-bill, based on a 360-day year. Solving for P gives the price

P = F
(
1 − n

360
yd

)
.

10 This is the situation as of July 1, 2006. Until February 2001, there was also a 52
week T-bill.
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Example 8.7. Use Table 8.6 to find the asked price for a $10,000 T-bill that
matures on October 26, 2000.

Solution. Here F = 10000, while from Table 8.6 we have n = 55 and yd =
0.0608, so

P = 10000
(

1 − 55
360

0.0608
)

= $9,907.11.

�

The figures under the Ask Yld. column are investment yields11 (ex-
pressed as percentages) and are calculated using the investment yield
method. If F is the face value of the T-bill, if P is the purchase price from a
dealer (asked price), and if n is the actual number of days to maturity, then
the investment yield, yi, is12

yi =
F − P

P

365
n

.

Thus, the investment yield is the annualized ratio of the profit to the price of
the T-bill, based on a 365-day year. Solving for P gives the price

P =
F

1 + n
365yi

.

The relationship between yd and yi is

yi =
365yd

360 − nyd
.

Example 8.8. Use the values of yd and n from Table 8.6 to confirm the invest-
ment yield (ask yield) for the T-bill that matures on October 26, 2000.

Solution. From Table 8.6 we have yd = 0.0608 and n = 55, so

yi =
365 × 0.0608

360 − 55 × 0.0608
= 0.0622,

in agreement with Table 8.6. �

From Table 8.6 we see that yd < yi. Is this true in general?

11 The investment yield is also called the bond equivalent yield, the coupon equiva-
lent yield, the interest yield, and the effective yield.

12 The reason that the investment yield is calculated using the asked price (as op-
posed to the bid price) is that the investor buying the bond is interested in the
yield, whereas the investor selling the bond is not.
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Theorem 8.5. The T-bill Theorem
If P < F , then yd < yi.

Proof. Here

yd =
F − P

F

360
n

=
F − P

P

P

F

365
n

360
365

=
(

P

F

360
365

)
yi.

If P < F , then (P/F )(360/365) < 1, so yd < yi. ��

8.6 Portfolio of Bonds

It is prudent to diversify investments over several assets. Instead of a single
bond, a prudent investor holds a portfolio consisting of several bonds. Thus,
we are interested in obtaining a measure of the sensitivity of the value of a
portfolio to changes in interest rates. As with a single bond, an appropriate
measure of sensitivity for a portfolio is duration.

We assume that the portfolio consists of J bonds, each with maturity
nj/m, price Pj , and duration dj , where 1 ≤ j ≤ J . For each bond the yield
per period is y and the number of coupons payments per year is m.

There are two equivalent methods to compute the duration of a portfolio.
In the first method, the duration of the portfolio is the weighted average

duration of the bonds that comprise the portfolio, where the weights are the
ratios of the market values (prices) of the bonds to the total market value of
the portfolio. Thus, if Ckj is the cash flow13 at period k for bond j, then the
duration D of the portfolio is

D =
J∑

j=1

(
Pj∑J

h=1 Ph

)
dj =

∑J
j=1 Pjdj∑J
h=1 Ph

,

where

Pj =
nj∑

k=0

Ckj
(1 + y)−k

and

dj =
∑nj

k=0 kCkj (1 + y)−k

m
∑nj

k=0 Ckj (1 + y)−k
.

13 For a bond, the cash flow is the coupon payment, which is determined by the face
value and the coupon rate.
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For example, consider a portfolio consisting of two bonds—Bond 1 (a
$10,000 face value, 5% coupon rate, 2-year bond) and Bond 2 (a $20,000
face value, 8% coupon rate, 3-year bond). If the yield is currently 7%, then
from (8.4), the market value of Bond 1 is

P1 = 10000

(
0.025

1 − (1 + 0.035)−4

0.035
+ (1 + 0.035)−4

)
= $9,632.69,

and the market value of Bond 2 is

P2 = 20000

(
0.04

1 − (1 + 0.035)−6

0.035
+ (1 + 0.035)−6

)
= $20,532.86.

Thus, the market value of the portfolio is

P1 + P2 = $9,632.69 + $20,532.86 = $30,165.55.

From (8.19), the duration of Bond 1 is

d1 = − 1
0.035 × 2

0.025
(
1 + 0.035 + 4 × 0.035 − (1 + 0.035)4+1

)
− 4 × 0.0352

0.025
(
(1 + 0.035)4 − 1

)
+ 0.035

= 1.926,

and the duration of Bond 2 is

d2 = − 1
0.035 × 2

0.04
(
1 + 0.035 + 6 × 0.035 − (1 + 0.035)6+1

)
− 6 × 0.0352

0.04
(
(1 + 0.035)6 − 1

)
+ 0.035

= 2.730.

Thus, the duration of the portfolio is

D =
P1d1 + P2d2

P1 + P2
=

9632.69 × 1.926 + 20532.86 × 2.730
30165.55

= 2.473.

In the second method for computing the duration of a portfolio, the cash
flows of the bonds that make-up the portfolio are combined and the formula
for the computation of duration is applied to this single stream of cash flows
according to (8.9). Thus, the duration of the portfolio is∑n

k=0 k (1 + y)−k ∑J
j=1 Ckj

m
∑n

k=0 (1 + y)−k ∑J
h=1 Ckh

,

where n is the maximum of n1, n2, . . . , nJ , and Ckj = 0 if k > nj . In the
previous example, the cash flows from Bond 1 are (check these)
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Period 1 2 3 4
Cash Flow $250 $250 $250 $10,250 ,

and those from Bond 2 are (check these)

Period 1 2 3 4 5 6
Cash Flow $800 $800 $800 $800 $800 $20,800 ,

giving the time diagram shown in Fig. 8.13.
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$250
$800
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$800
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$20,800

6

Fig. 8.13. Cash flows of a portfolio

Combining these cash flows gives

Period 1 2 3 4 5 6
Cash Flow $1,050 $1,050 $1,050 $11,050 $800 $20,800 .

In order to substitute this into∑n
k=0 k (1 + y)−k ∑J

j=1 Ckj

m
∑n

k=0 (1 + y)−k ∑J
h=1 Ckh

,

we construct the following table.

k
∑J

j=1 Ckj (1 + y)−k ∑J
j=1 Ckj k (1 + y)−k ∑J

j=1 Ckj

1 $1,050.00 $1,014.49 $1,014.49
2 $1,050.00 $980.19 $1,960.37
3 $1,050.00 $947.04 $2,841.12
4 $11,050.00 $9,629.44 $38,517.75
5 $800.00 $673.58 $3,367.89
6 $20,800.00 $16,920.81 $101,524.88

Total $30,165.55 $149,226.50

From this we find that∑n
k=0 k (1 + y)−k ∑J

j=1 Ckj

m
∑n

k=0 (1 + y)−k ∑J
h=1 Ckh

=
149226.50

2 × 30165.55
= 2.473,

in agreement with the first method.
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That the two methods are equivalent is seen from the following.

D =

∑J
j=1 Pjdj∑J
h=1 Ph

=

∑J
j=1

(∑n
k=0 Ckj (1 + y)−k

) ∑n
k=0 kCkj(1+y)−k

∑n
k=0 Ckj(1+y)−k

m
∑J

h=1
∑n

k=0 Ckh (1 + y)−k

=

∑J
j=1

∑n
k=0 kCkj (1 + y)−k

m
∑J

h=1
∑n

k=0 Ckh (1 + y)−k

=

∑n
k=0 k (1 + y)−k ∑J

j=1 Ckj

m
∑n

k=0 (1 + y)−k ∑J
h=1 Ckh

.

8.7 Problems

Walking

8.1. Construct a bond amortization schedule, similar to that shown in Ta-
ble 8.1 on p. 118, for a 9% noncallable bond with 2 years to maturity and a
face value of $1,000 if the yield to maturity is 12% and the coupons are paid
semi-annually.

8.2. How can you tell from Table 8.4 on p. 133 that modified duration is not
an increasing function of maturity?

8.3. How can you tell from Fig. 8.9 on p. 134 that modified duration is not
an increasing function of maturity?

8.4. Show that limn→∞ y(m) = 100rm/P , the current yield. Under what cir-
cumstances is the current yield of a bond a good approximation for the yield
to maturity?

8.5. Confirm that the yields yi in the Ask Yld. column in Table 8.6 on p. 139
are accurate.

8.6. Prove the T-bill Theorem on p. 141 using

yi =
365yd

360 − nyd
.

8.7. Use Table 8.6 on p. 139 to find the annual effective rate (EFF) for the
T-bill that matures on October 26, 2000.

8.8. By looking at two successive editions of The Wall Street Journal , decide
what the figures in the Chg. column in Table 8.6 on p. 139 represent.



8.7 Problems 145

8.9. On March 1, 2000 Hugh Kendrick invests $2,000 in Bond 1 and $2,000 in
Bond 2. On the same day Tom Kendrick invests $2,000 in Bond 3 and $8,000
in Bond 4. At the end of six months Bond 1 is worth $2,050, Bond 2 is worth
$2,100, Bond 3 is worth $2,040, and Bond 4 is worth $8,360. Confirm that
Hugh has a higher (internal) rate of return on each of his bonds than Tom,
but Tom has a higher (internal) rate of return on his total portfolio.14

8.10. Tom invests $2,000 in a bond, and at the end of one year its value is
$2,100. How much must he invest in a second bond that yields 10% over the
same period to have a total internal rate of return of 8% on this portfolio?

8.11. If Tom invests $2,000 in a bond with an annual rate of return of 4.5%
and $4,000 in a second bond with the same maturity, then what rate of return
is needed on the second bond to have a total internal rate of return of 8% on
this portfolio?

8.12. Wendy and Amanda Kendrick purchase bonds on the same day. Both
bonds have a yield of 6% and a face value of $10,000.

(a) If Wendy’s bond is a 9% bond with 15 years to maturity, then how much
does she pay for it?

(b) If Amanda’s bond has 10 years to maturity and she pays $11,487.75 for
it, then what is the coupon rate?

8.13. Referring to Problem 8.12, find the duration and modified duration for
both bonds.

8.14. Referring to Problems 8.12 and 8.13, find the duration and modified du-
ration for the single portfolio consisting of both Wendy’s bond and Amanda’s
bond.

Running

8.15. Prove that if a1, a2, · · · , an are positive, then

n∑
k=1

ak ≤
n∑

k=1

kak ≤ n

n∑
k=1

ak.

Use this to show that if

d = s

∑n
k=1 kak∑n
k=1 ak

,

then s ≤ d ≤ ns. (See p. 127.)

8.16. Show that the duration can never exceed the maturity, that is, d ≤ n/m.

14 This is an example of Simpson’s paradox, which states that if a/b > c/d and
e/f > g/h, then it need not follow that (a + e)/(b + f) > (c + g)/(d + h).
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8.17. Show that if a bond is selling at par, that is, r = y, then the modified
duration, v, is an increasing, concave down function of maturity, n/m. (See
p. 136.)

8.18. If pk are given by (8.14), then show that

md =
∑n

k=1 kpk∑n
k=1 pk

.

Differentiate this with respect to y and use the Cauchy-Schwarz inequality to
show that duration is a decreasing function of yield. (See p. 137.)

8.19. Show that for a zero coupon bond, we have d = (1/m)n, which is a line
of slope 1 if duration is plotted as a function of maturity. Conversely, show
that if d = (1/m)n, then r = 0 or n = 1, a zero coupon bond.

8.20. Suppose that the price of an investment is
∑n

k=1 C/(1 + y)k, the cash
flow C > 0 is paid over n time periods, and the yield is y > 0. Thus, the total
of the cash flows is nC. Compare this to a second investment in a zero coupon
bond with yield y and face value nC, which is paid at time T .

(a) Show that the price of the second investment is nC/(1 + y)T .
(b) Show that, in order to have the prices of the two investments equal, we

need

(1 + y)−T =
n∑

k=1

(1 + y)−k

n
.

(c) Prove that if T satisfies the equation in part (b), then T ≤ (n + 1)/2.
(d) Express T in terms of y and n.
(e) Show that, with n fixed, T is a decreasing function of y.
(f) Show that, with n fixed, lim

y→0+
T = (n + 1)/2.

8.21. Show, from (8.3) on p. 115, that the convexity, C, of a bond is given by

C =
r
∑n

k=1 k(k + 1) (1 + y)−k + n(n + 1) (1 + y)−n

(1 + y)2
(
r
∑n

k=1 (1 + y)−k + (1 + y)−n
) .

(See (8.20) on p. 138.)

8.22. If P (y) = y2, then evaluate

(a) P ′′(y).
(b) P ′′(y)/P (y).

(c) P ′′(y)/
(
1 + (P ′(y))2

)3/2
.

Does the graph of the parabola P (y) = y2 have a constant “bend” for all
y? Which of your answers to parts (a), (b), and (c) is constant? Is that a
reasonable measure of the “bend” of the function? (See p. 138.)
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8.23. If P (y) = ey, then evaluate

(a) P ′′(y).
(b) P ′′(y)/P (y).

(c) P ′′(y)/
(
1 + (P ′(y))2

)3/2
.

Does the graph of the exponential function P (y) = ey have a constant “bend”
for all y? Which of your answers to parts (a), (b), and (c) is constant? Is that
a reasonable measure of the “bend” of the function? (See p. 138.)

8.24. If P (y) =
√

1 − y2, then evaluate

(a) P ′′(y).
(b) P ′′(y)/P (y).

(c) P ′′(y)/
(
1 + (P ′(y))2

)3/2
.

Does the graph of the semi-circle P (y) =
√

1 − y2 have a constant “bend” for
all y? Which of your answers to parts (a), (b), and (c) is constant? Is that a
reasonable measure of the “bend” of the function? (See p. 138.)

Questions for Review

• What is the difference between a callable and a noncallable bond?
• What is the yield to maturity? The current yield?
• How do you calculate the price of a bond immediately following a coupon

payment?
• What is a zero coupon bond?
• What does it mean to say that a bond is purchased at a premium? At a

discount?
• How is the price of a bond related to r? To n? To y?
• What is duration?
• How do you compute the duration of a bond?
• How is duration related to r? To y?
• How do you compute the duration of a portfolio?
• What is modified duration?
• How do you compute the modified duration of a bond?
• How is modified duration related to r? To y?
• What do the Bond and Zero Coupon Bond Theorems say?
• What is the Price-Yield Theorem?
• What is the Yield Existence Theorem?
• What is a T-bill?
• How are the discount and investment yields for a T-bill computed?
• What does the T-bill Theorem say?
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Stocks and Stock Markets

Stock represents ownership of a corporation. The stockholders, or sharehold-
ers, are the holders of the stock. There are different types of stock, but in this
book we study common stock.1

A corporation in need of funds may issue stock to private investors. The
investors purchase shares of stock in the company. These investors assume a
large amount of risk in return for the possibility of growth of the company
and a corresponding increase in the value of the shares. If the company is
successful, then it may decide to “go public” and offer shares of stock to the
general public. This is accomplished through an initial public offering. If in
the future the company wants to raise additional funds, then it may have
a secondary public offering. It is important to realize that the corporation
receives its money when the shares are issued. Any trading after that point
takes place between the shareholders and the persons wishing to purchase the
stock, and does not directly represent a profit or loss to the company.

Investors who purchase stock may receive dividends periodically (usually
quarterly). Thus, the investor may profit in two ways: through an increase
in the value of the stock and through the receipt of dividends. There can be
substantial risk for the shareholders, but historically stocks have been a very
good investment for individuals who hold stocks for long periods of time.

Corporations sometimes use stock splits to create more shares of the stock
at a lower price per share. For example, if a company declares a two-for-one
stock split, then each shareholder receives two new shares for each old share
of the stock. The price of each new share is initially one-half the price of an
old share. Companies may do this to attract new buyers since the new price
is less than the old price. Less frequently, a company may declare a reverse

1 Owners of common stock have voting rights and are entitled to the earnings of
the company after all obligations are paid.
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stock split. For example, it may declare a two-for-one reverse split. In this
case one new share is issued for every two old shares. A company may do this
to attract institutional investors, who may have a minimum price requirement
per share.

The first stock market in the United States originated in Philadelphia
in 1790. It eventually became known as the Philadelphia Stock Exchange.
The New York Stock Exchange (NYSE), initiated in 1792, is the largest stock
exchange in the world. As many as one billion shares are traded during a
single day on the NYSE. Trading on this exchange occurs auction style. The
buyers and sellers have the option of sending bids and offers to the exchange
and accepting the bids and offers from others at the exchange. Stock is sold
to the highest bidder and bought at the lowest offer. The NASDAQ (National
Association of Securities Dealers Automatic Quotation System) is another
major United States stock exchange. As with the NYSE, over one billion
shares have been traded on this exchange during some trading days. This
exchange differs in operation from the NYSE in that orders are placed and
trades are made electronically.

There are several types of risk involved in the purchase and sale of stock.
Among these are economic risk, interest rate sensitivity, the possibility of com-
pany failure, company management problems, competition from other com-
panies, and governmental rulings that may negatively affect the company.
In order to study some of these risks, we break companies into three dif-
ferent groups, depending on the capitalization—the total value of issued
shares2—of the company.3

Common Stock
Issuer Corporation
Risks Default, Exchange Rate, Interest Rate,

Market Price, Volatility, Political

The largest companies are called big caps or large caps. In general, these
companies have a very high capitalization (over $10 billion). These are large
companies with an established track record. There is usually little possibility
of company failure. Stock prices are usually relatively high, and thus there
may not be a high growth potential. Many of these companies pay regular
dividends.

Mid-cap companies have a capitalization of around $1.5 billion to $10
billion. These companies usually have a higher growth potential than big cap
companies.

Small-cap companies have a capitalization of less than $1.5 billion. These
companies have the highest growth potential but also have a corresponding
higher chance of company failure.
2 The total value of issued shares is the product of the share price and the number

of shares issued. Shares that have been issued to investors are frequently called
“outstanding shares”.

3 The capitalization cut-off values between these groups are approximate.
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9.1 Buying and Selling Stock

In order to buy or sell stock in the United States, the investor uses an in-
vestment firm registered with the appropriate governmental agencies—the
Securities and Exchange Commission (SEC) and the National Association of
Securities Dealers (NASD). The person actually making the transactions for
the firm is called a broker.4

The fee or commission charged for the transaction is an important con-
sideration. Fees are highest for a full-service broker, who can also provide
investment advice. Investors placing trades through the Internet usually pay
lower commissions. It is important to note that a commission is charged for
both buying and selling stock.

There are different ways to buy and sell stock. The most common way is to
pay the full price in cash. For example, if Helen Kendrick buys 500 shares of a
stock when the price is $20 a share, then she pays $10,000 to her investment
firm plus the commission for the purchase. If the stock increases in price to
$30 per share, then she sells the stock through her investment firm, receiving
$15,000 less commission for the sale. So Helen makes a profit of $5,000 less
any commissions.

Suppose that Helen and Hugh Kendrick both buy the same stock on a
regular monthly basis using different methods. Helen buys 10 shares every
month, while Hugh buys $100 worth of the same shares, regardless of the
number that can be purchased for that amount. The method of investing used
by Hugh is called dollar cost averaging. We discuss these two methods
in more detail.

Let S(t) be the stock price at time t. If we buy the same number of shares,
N , at times t = 1 and t = 2, then we pay NS(1) + NS(2) for a total of 2N
shares, so the average price per share is

NS(1) + NS(2)
2N

=
S(1) + S(2)

2
=

1
2

2∑
t=1

S(t).

If we buy the same number of shares at times t = 1, . . . , n, then the average
price per share is

1
n

n∑
t=1

S(t).

If we use dollar cost averaging and spend D dollars to buy shares at times
t = 1 and t = 2, then we pay 2D for a total of D/S(1) + D/S(2) shares, so
the average price per share is

2D
D

S(1) + D
S(2)

=
2

1
S(1) + 1

S(2)

=
2∑2

t=1
1

S(t))

.

4 We use the terms “the firm” and “the broker” interchangeably.
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If we spend D dollars to buy shares at times t = 1, . . . , n, then the average
price per share is

n∑n
t=1

1
S(t)

.

The question we want to answer is, “Which method gives the lower average
price per share?”

First, we concentrate on n = 2. If we look at the difference between the
average prices per share, then we see that

S(1) + S(2)
2

− 2
1

S(1) + 1
S(2)

=
S(1) + S(2)

2
− 2S(1)S(2)

S(1) + S(2)

=
(S(1) + S(2))2 − 4S(1)S(S)

2(S(1) + S(2))

=
(S(1) − S(2))2

2(S(1) + S(2))
.

This difference is positive unless S(1) = S(2), in which case it is zero. Thus,
unless S(1) = S(2), dollar cost averaging gives the lower average share price
if n = 2. If S(1) = S(2), then both methods give the same average price per
share.

This can be generalized to n time intervals by considering the sign of the
quantity

1
n

n∑
t=1

S(t) − n∑n
t=1

1
S(t)

=
1

n
∑n

t=1
1
(t)

((
n∑

t=1

S(t)

)(
n∑

t=1

1
S(t)

)
− n2

)
.

Now, the Cauchy-Schwarz inequality (see Appendix A.3 on p. 249) states that(
n∑

t=1

atbt

)2

≤
(

n∑
t=1

a2
t

)(
n∑

t=1

b2
t

)
,

with equality if and only if either at = λbt (t = 1, 2, . . . , n) for some constant
λ, or bt = 0 (t = 1, 2, . . . , n). With at =

√
S(t) and bt = 1/

√
S(t), we see that

n2 ≤
(

n∑
t=1

S(t)

)(
n∑

t=1

1
S(t)

)
,

with equality if and only if
√

S(t) = λ/
√

S(t), that is, S(1)) = S(2) = · · · =
S(n) = λ. Thus, unless S(1) = S(2) = · · · = S(n), then dollar cost averaging
gives the lower average price per share. If S(1) = S(2) = · · · = S(n), then
both methods give the same average price per share.
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This leads to the following theorem.

Theorem 9.1. The Dollar Cost Averaging Theorem.
If we are buying shares of stock, then dollar cost averaging gives a lower
average price per share than buying a fixed number of shares on a regular
basis. If we are selling shares, then selling a fixed number of shares on a
regular basis gives a higher average price per share than dollar cost averaging.

Another way to buy stock is buying on margin, which allows investors to
leverage their purchases. An investor who wishes to buy stock on margin must
set up a margin account with a broker. The investor may then purchase stock
in this account using money borrowed from the broker. However, the investor
is required to deposit a down payment on the purchase of the stock. The
required minimum down payment, the margin equity, is 50% of the purchase
price of the stock.5 This is called the margin requirement. The equity in
the margin account is the difference between the current market value of the
shares and the money owed to the broker for the purchase of the stock, the
debit balance. As the market value of the shares fluctuates then so will
the equity in the margin account. Although the margin requirement applies
only to the initial purchase of the stock, the investor is required to maintain
sufficient equity in the margin account at all times. The required minimum
equity, the required (maintenance) equity, is a specified proportion, the
maintenance level, of the current market value of the shares. This is called
the maintenance requirement.

We illustrate this with the following example. An investor opens a margin
account with a deposit of $5,000 and borrows $5,000 from the broker, so the
debit balance is $5,000. The investor uses the $10,000 to buy 500 shares of
stock at $20 a share. At this point the investor has a total of $10,000−$5,000 =
$5,000 in equity. In this example, the maintenance requirement is 25% of the
market value of the shares in the account. This means that the equity in the
account must be at least 25% of the market value of the shares. The required
equity is 0.25 × $10,000 = $2,500, which is smaller than the equity of $5,000,
so the investor satisfies the maintenance requirement.

This is expressed symbolically in Table 9.1, where m is the maintenance
level (expressed as a decimal).

Table 9.1. Buying on Margin

Price Number Market Debit Equity Required Margin
Shares Value Balance Equity Equity

S N V = NS D E = V − D mV 0.5V
$20 500.00 $10,000.00 $5,000.00 $5,000.00 $2,500.00 $5,000.00

5 The rate of 50% is the rate in effect in the United States as of July, 2006.
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We consider three scenarios.

1. The price of the stock rises to $30 per share.
(a) If the investor sells all of the shares, then the investor makes a profit of

500 × ($30 − $20) = $5,000 less any commissions and interest charged
for the loan.

(b) If the investor sells no shares, then because the market value of the
shares is now V = NS = 500 × $30 = $15,000, but the debit balance
is still D = $5, 000, the equity is now E = V −D = $15,000− 5,000 =
$10,000. The required equity is mV = 0.25× $15,000 = $3,750, so the
maintenance requirement is satisfied. The margin equity is 0.5V =
0.5 × $15,000 = $7,500. Thus, there is excess equity in the margin
account of $10,000 − $7,500 = $2,500.
This excess equity can be used to borrow an additional $2,500/0.5 =
$5,000 to purchase $5,000/$30 = 166.67 additional shares. The mar-
ket value of the shares is now V = 666.67 × $30 = $20,000, and the
investor has a debit balance of D = $5,000 + $5,000 = $10,000.6 The
equity is E = V − D = $20,000 − $10,000 = $10,000, the required
equity is 0.25V = 0.25 × $20,000 = $5,000, and the margin equity is
0.5V = 0.5 × $20,000 = $10,000. As long as the stock price rises, the
investor can buy additional shares by borrowing from the broker with-
out investing more money. This is an example of leveraging money.
Table 9.2 follows this example as the stock price increases from $20 to
$50 a share assuming that the excess equity is always used to purchase
additional shares on margin.

Table 9.2. The Effect of a Price Increase When Stock is Purchased on Margin

Price Number Market Debit Equity Required Margin
Shares Value Balance Equity Equity

$20 500.00 $10,000.00 $5,000.00 $5,000.00 $2,500.00 $5,000.00
$30 500.00 $15,000.00 $5,000.00 $10,000.00 $3,750.00 $7,500.00
$30 666.67 $20,000.00 $10,000.00 $10,000.00 $5,000.00 $10,000.00
$40 666.67 $26,666.67 $10,000.00 $16,666.67 $6,666.67 $13,333.33
$40 833.33 $33,333.33 $16,666.67 $16,666.67 $8,333.33 $16,666.67
$50 833.33 $41,666.67 $16,666.67 $25,000.00 $10,416.67 $20,833.33
$50 1000.00 $50,000.00 $25,000.00 $25,000.00 $12,500.00 $25,000.00

At this stage the investor owns 1,000 shares with a market value of
$50,000, and the equity is $25,000. The value of the investor’s position
in the stock has quintupled! It is important to note that the investor
pays commissions on each purchase and pays interest on the loans.

6 Note that at this point the broker loaned the investor another $5,000 for the
purchase of additional shares, bringing the debit balance to $10,000.
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2. The price of the stock falls to $15 per share. At this point the required
equity is mV = mNS = 0.25 × 500 × $15 = $1,875, and the equity is
E = V −D = 500×$15−$5,000 = $2,500, so the maintenance requirement
is satisfied. These calculations are summarized in Table 9.3.

Table 9.3. The Effect of a Price Decrease When Stock is Purchased on Margin

Price Number Market Debit Equity Required Margin
Shares Value Balance Equity Equity

$20 500.00 $10,000.00 $5,000.00 $5,000.00 $2,500.00 $5,000.00
$15 500.00 $7,500.00 $5,000.00 $2,500.00 $1,875.00 $3,750.00

3. The price of the stock falls to $10 per share. At this point the re-
quired equity is mV = 0.25 × 500 × $10 = $1,250, and the equity is
E = V − D = 500 × $10 − $5,000 = $0. The value of the shares equals
the amount owed for the purchase of the stock! Thus, the maintenance re-
quirement is not met, and the investor receives a maintenance call from
the broker because the investor owes $1,250. To meet the maintenance
requirement the investor is required to deposit $1,250 into the margin
account, increasing the equity in the account so that the maintenance
requirement is met.7 If the price continues to fall, then the investor is
required to deposit additional money to meet the maintenance require-
ment. It should be noted that the investor’s potential loss is limited to
the original price of the shares plus commissions plus interest on the loan.
Table 9.4 follows this example as the stock price decreases from $20 to $5
a share.

Table 9.4. The Effect of a Price Decrease When Stock is Purchased on Margin

Price Number Market Debit Equity Required Margin
Shares Value Balance Equity Equity

$20 500.00 $10,000.00 $5,000.00 $5,000.00 $2,500.00 $5,000.00
$15 500.00 $7,500.00 $5,000.00 $2,500.00 $1,875.00 $3,750.00
$10 500.00 $5,000.00 $5,000.00 $0.00 $1,250.00 $2,500.00
$10 500.00 $5,000.00 $3,750.00 $1,250.00 $1,250.00 $2,500.00
$5 500.00 $2,500.00 $3,750.00 −$1,250.00 $625.00 $1,250.00
$5 500.00 $2,500.00 $1,875.00 $625.00 $625.00 $1,250.00

At this point the investor has paid a total of $3,125 in maintenance fees8

to meet the maintenance requirement. This is in addition to the initial
7 The investor could also sell some shares.
8 When the price falls to $10 a share, the investor pays $1,250. When it falls to

$5 a share the equity is −$1,250, and the required equity is $625, so the investor
pays $625 + $1,250 = $1,875, for a total of $1,250 + $1,875 = $3,125.
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deposit of $5,000. If the stock price continues to fall, then the investor is
required to deposit more money, but the total amount of the maintenance
fees can never exceed $5,000, the original debit balance.

Notice from Table 9.4 that somewhere between a share price of $15 and
a share price of $10, there must be a price, S, at which the required equity
equals the equity, below which a maintenance call is issued. In this case that
will occur when

0.25 × 500S = 500S − 5000,

which gives S = $13.33.

A natural question to ask is, “To what level can the stock price fall before
a maintenance call is issued?” This is answered in the following theorem.

Theorem 9.2. The Long Sale Maintenance Level Theorem.
If a stock is purchased on margin, if the original market value of the shares
purchased is Vo, if the original equity is Eo, and if the maintenance level is
m, then the minimum market value, V ∗, for which the equity, E, is equal to
or greater than the required equity (and so does not generate a maintenance
call) is

V ∗ =
1

1 − m
(Vo − Eo).

Proof. We notice that D = Vo − Eo is the debit balance, the money owed to
the broker for the purchase of the stock. However, if V is the current market
value of the shares and E is the current equity, then V − E is also the money
owed to the broker for the purchase of the stock (why?), so

V − E = Vo − Eo.

At the minimum market value V ∗ we have E∗ = mV ∗, so

V ∗ − mV ∗ = Vo − Eo,

that is,

V ∗ =
Vo − Eo

1 − m
.

We now show that (Vo − Eo)/(1 − m) is the minimum market value.
If V < (Vo − Eo)/(1 − m), then the current market value is less than

1/(1 − m) times the money owed to the broker for the purchase of the stock.
This means that V < (V − E)/(1 − m), which gives E < mV , a maintenance
call. ��
Example 9.1. To avoid a maintenance call, what is the minimum level to which
the market value of the stock can fall in a margin account containing 500 shares
if the original market value is $10,000, if the original equity is $5,000, and if
the maintenance level is 0.25? At what price per share does this occur?
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Solution. Here Vo = 10000, Eo = 5000, and m = 0.25, so the minimum market
value of the stock is 1/0.75 × ($10,000 − $5,000) = $6,666.67. The required
equity is 0.25 × $6,666.67 = $1,666.67, and the equity is $6,666.67 − $5,000 =
$1,666.67. At this level the price per share of the stock is $6,666.67/500 =
$13.33, in agreement with our previous result. �

If an investor believes that a stock is going to decrease in value, then the
investor may borrow shares from the broker, and then sell the stock. This is
called Short Selling. If the stock decreases in value, then the investor may
purchase an equivalent number of shares at the lower price, and use those
shares to repay the loan.

The following example illustrates this. An investor wishes to short sell 100
shares of stock, which is currently selling at $50 per share. The market value
of the stock is 100 × $50 = $5,000. The margin requirement is 50% of the
market value of the stock, so the investor deposits 0.50 × $5,000 = $2,500 in
a margin account, and the broker loans the investor 100 shares. The investor
then sells the stock for $50 per share, and receives 100 × $50 = $5, 000 (less
commissions). So the investor has a credit balance of $2,500+$5,000 = $7, 500
(the sum of the proceeds from the sale plus the initial deposit).

Because the investor must return the loaned shares to the broker, if there
is an increase in price, then the investor loses money on the stock, and the
investment firm incurs a risk. Therefore, there is a maintenance requirement
for short sales. We assume that the maintenance requirement is 30%, which
in this example is 0.3 × $5,000 = $1,500. This means that the equity in the
account must be at least 30% of the value of the shares at all times. The equity
is the difference between the credit balance and the current market value of
the stock, so in this example the equity is $7,500 − $5,000 = $2,500, and the
maintenance requirement is satisfied.

This is shown symbolically in Table 9.5, where m is the maintenance level
(expressed as a decimal).

Table 9.5. Selling Stock Short

Credit Price Number of Market Equity Required
Balance Per Share Shares Value Equity

C S N V = NS E = C − V mV
$7,500 $50 100 $5,000 $2,500 $1,500

We consider two cases.

1. The price of the stock falls to $40 per share.
(a) If the investor buys the stock at $40 per share, and returns the shares

to the firm, then the investor makes a profit of 100 × ($50 − $40) =
$1,000, less commissions on the sale and purchase of the shares and
any interest due to the broker on the loan of the shares.
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(b) If the investor does not buy the stock at this time, then because the
market value of the stock is $40×100 = $4,000, the required equity is
30% of $4,000, that is, 0.3 × $4,000 = $1,200. The equity is $7,500 −
$4, 000 = $3, 500. So if the price falls, then the equity is greater than
the required equity, and the maintenance requirement is satisfied. This
is summarized in Table 9.6. In fact any equity in excess of 50% of
the current price can be used for further short selling. In this case
0.50×$4,000 = $2,000, so there is $1,500 in excess equity. The investor
could use this to borrow and sell $1,500/0.50 = $3,000 worth of stock.

Table 9.6. The Effect of a Price Decrease When a Stock is Sold Short

Credit Price Number of Market Equity Required
Balance Per Share Shares Value Equity

$7,500 $50 100 $5,000 $2,500 $1,500
$7,500 $40 100 $4,000 $3,500 $1,200

2. The price of stock rises to $60 per share. In this case, the required equity is
0.30 × $6,000 = $1,800, and the equity is $7,500 − $6,000 = $1,500, so the
investor pays an extra $300 ($1, 800 − $1, 500) to satisfy the maintenance
requirement. If the stock price rises rapidly, then the investor can lose an
unlimited amount of money, whereas the investor’s profit is limited to the
proceeds of the sale less any costs (commissions and interest on the loan of
the shares). This makes short selling extremely risky. Table 9.7 illustrates
this. Notice that the maintenance fee paid when the price of the stock
rises is the difference between the required equity and the equity before
the fee is deposited.

Table 9.7. The Effect of a Price Increase When a Stock is Sold Short

Credit Price Number of Market Equity Required
Balance Per Share Shares Value Equity

$7,500 $50 100 $5,000 $2,500 $1,500
$7,500 $60 100 $6,000 $1,500 $1,800
$7,800 $60 100 $6,000 $1,800 $1,800
$7,800 $70 100 $7,000 $800 $2,100
$9,100 $70 100 $7,000 $2,100 $2,100
$9,100 $80 100 $8,000 $1,100 $2,400

$10,400 $80 100 $8,000 $2,400 $2,400
$10,400 $90 100 $9,000 $1,400 $2,700
$11,700 $90 100 $9,000 $2,700 $2,700
$11,700 $100 100 $10,000 $1,700 $3,000
$13,000 $100 100 $10,000 $3,000 $3,000
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In this example, the investor originally deposits $2,500 in the margin ac-
count to short sell the stock. When the price reaches $100 per share, the
investor has paid an additional $5,500 in maintenance fees.9 With short
selling there is no upper limit to the amount of money one can lose! In
this example, once the price of the stock reaches $60 per share, for every
$1,000 increase in the market value of the stock the investor must deposit
an additional $1,300 to satisfy the maintenance requirement.

Notice from Table 9.7 that somewhere between a share price of $50 and
a share price of $60, there must be a price, S, at which the required equity
equals the equity, above which a maintenance call is issued. In this case that
will occur when

7500 − 100S = 0.3 × 100S,

which gives S = $57.69.
A natural question to ask is, “To what level can the stock price rise before

a maintenance call is generated?” This question is answered in the following
theorem.

Theorem 9.3. The Short Sale Maintenance Level Theorem.
If an investor short sells a stock and has an initial credit balance of Co, and if
the maintenance level is m, then the maximum level, V ∗, to which the market
value of the stock can rise and not generate a maintenance call, is

V ∗ =
1

1 + m
Co.

Proof. If a stock is purchased on margin, if the original market value of the
shares purchased is Vo, and if the original equity is Eo, then Co = Vo + Eo.
If V is the current market value of the shares, and if E is the current equity,
then we have

Co = V + E,

as long as the equity has remained at least as large as the required equity.
(Why?) At the maximum level V ∗ we have E∗ = mV ∗ and Co = V ∗ + E∗,
which must be solved for V ∗, giving

V ∗ =
Co

1 + m
,

or
V ∗ =

Vo + Eo

1 + m
.

9 When the price of this stock reaches $100 per share there have been five increases
in price, each one generating a maintenance fee. The total of these additional
maintenance fees is ($1,800 − $1,500) + ($2,100 − $800) + ($2,400 − $1,100) +
($2,700 − $1,400) + ($3,000 − $1,700) = $5,500.
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To show that (Vo + Eo)/(1 + m) is the maximum level, suppose that

V >
Vo + Eo

1 + m
.

Then the equity is

Co − V = (Vo + Eo) − V

< (Vo + Eo) − Vo + Eo

1 + m

=
m

1 + m
(Vo + Eo) .

But the required equity is

mV >
m

1 + m
(Vo + Eo) ,

so E = Co − V < mV , a maintenance call. ��
Example 9.2. To avoid a maintenance call, what is the maximum level to which
the market value of a stock can rise in a margin account containing 100 shares
and an initial credit balance of $7,500 if the maintenance level is 0.3? At what
price per share does this occur?

Solution. Here Co = 7500 and m = 0.3, so the maximum market value

V ∗ =
10
13

Co =
10
13

$7,500 = $5,769.23.

The required equity is 0.3× $5,769.23 = $1,730.77, and the equity is $7,500−
$5,769.23 = $1,730.77. At this level the price per share is $5,769.23/100 =
$57.69, in agreement with our previous result. �

9.2 Reading The Wall Street Journal Stock Tables

Section C (Money and Investing) of The Wall Street Journal (WSJ) con-
tains tables for the New York Stock Exchange and the NASDAQ. There are
explanatory notes for both.

The following stock table is taken from The Wall Street Journal of Wednes-
day, October 11, 2000. The latest trading day, mentioned below, is Tuesday,
October 10, and the previous trading day is Monday, October 9.

52 Weeks Yld Vol Net

Hi Lo Stock Sym Div % P/E 100s Hi Lo Close Chg

49
58

26
38

McDonalds MCD .22 .7 21 19448 30
38

29
94

29
94 - 0

13
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We now explain each of these entries, one by one.

• 52 Weeks Hi: $49.58 is the highest price of the stock during the preceding
52 weeks including the current week, excluding the latest trading day.

• 52 Weeks Lo: $26.38 is the lowest price of the stock during the preceding
52 weeks including the current week, excluding the latest trading day.

• Stock: McDonalds is the company name.
• Sym: MCD is the company ticker symbol. Usually, companies with ticker

symbols of three or fewer letters are traded on the NYSE, and those with
four or more on the NASDAQ.

• Div: $0.22 is the latest annual cash dividend.
• Yld %: 0.7% is the dividend expressed as a percentage of the closing price

(Close), namely (0.22/29.94) × 100 = 0.7348, which is 0.7 rounded to one
decimal place.

• P/E: 21 is the price to earnings ratio, which is obtained by dividing the
closing price (Close) by the total earnings per share over the previous four
quarters. Thus, the earnings per share is $29.94/21 = $1.4257. There are
various ways of interpreting a P/E ratio of 21. One way is: If the price
per share stays constant, then it takes 21 years for the total earnings per
share to equal the current price per share. A second way is: It costs the
stockholder $21 for every $1 the company earns.

• Vol 100s: Approximately 1,944,800 McDonalds’ shares were traded (daily
and unofficial).

• Hi: $30.38 is the stock’s highest price on the latest trading day.
• Lo: $29.94 is the stock’s lowest price on the latest trading day.
• Close: $29.94 is the stock’s closing (that is, last) price on the latest trading

day.
• Net Chg: −$0.13 is the change in the closing price of the stock on the

latest trading day from the closing price on the previous trading day. Thus,
the closing price on the previous trading day is $30.07.

9.3 Problems

Walking

9.1. Use the Internet to find the ticker symbols and closing prices on April
10, 2006 for the following stocks: AT&T, International Paper, and Verizon.

9.2. Use the Internet to find the following information for Microsoft.

(a) What was the first day that Microsoft’s stock was traded publicly?
(b) What is the highest price for Microsoft from the date in (a) to the present?

(Note that there were several stock splits during this time. What does
“highest price” mean in this context?)
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9.3. Helen Kendrick buys 10 shares of stock once a month for 4 months. Hugh
Kendrick buys $100 worth of the same stock each month at the same time as
Helen. Who should have the lower cost per share if the price per share changes
over the 4 month period? Verify this if the stock prices are $20, $21, $22, and
$23 over the 4 months.

9.4. When is it better to sell a fixed number of shares on a regular basis rather
than using dollar cost averaging if one is selling stock?

9.5. Helen Kendrick buys 100 shares on margin. If the margin requirement
is 50%, if the maintenance requirement is 25%, and if the stock is selling for
$30 a share, then at what price would she receive a maintenance call? Create
a table similar to Table 9.4 on p. 155 with stock prices of $30, $25, $20, $15,
and $10.

9.6. Referring to Problem 9.5, Hugh Kendrick, believing that the stock price
will fall, short sells 100 shares. If the maintenance requirement for short sales
is 30%, then at what price would Hugh receive a maintenance call? Create a
table similar to Table 9.7 on p. 158 with share prices of $30, $35, $40, $45,
and $50.

9.7. Turn to Section C in the latest edition of The Wall Street Journal , and
find the listing for AT&T. What is the closing price? What is the closing
price on the previous trading day? Estimate the earnings per share. How is
the earnings calculated? How many shares were traded?

9.8. On which exchange (the NYSE or the NASDAQ) is the stock with ticker
symbol CSCO listed? Find the listing in the latest edition of The Wall Street
Journal . Explain each of the symbols and numbers listed for this stock.

9.9. Let S(t) be the price of XY Z at time t in months. Assume that S(1) = 10,
S(2) = 15, S(3) = 18, S(4) = 20, and S(5) = 24. Wendy and Tom Kendrick
each purchase 100 shares of the same stock at time t = 1. Show that Tom
has a greater profit at time t = 5 if he purchases 100 shares at each time,
t = 1, 2, . . . , 5, than Wendy, who uses dollar cost averaging each month. Does
this contradict what was discussed concerning dollar cost averaging? Explain.

9.10. Hugh Kendrick short sells 100 shares of stock on margin. If the margin
requirement is 50%, if the maintenance requirement for short sales is 30%,
and if the stock is sold for $60 a share, then how many additional shares can
Hugh short sell if the price falls to $55 a share? Create an appropriate table
with share prices of $60, $55, $50, $45, and $40.
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Questions for Review

• What is a stock split?
• What is dollar cost averaging?
• How do you buy on margin? What are the risks?
• What is short selling? What are the risks?
• What is the Long Sale Maintenance Level Theorem?
• What is the Short Sale Maintenance Level Theorem?
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Stock Market Indexes, Pricing, and Risk

Stock market indexes are used to compute an “average” price for groups of
stocks. A stock market index attempts to mirror the performance of the group
of stocks it represents through the use of one number, the index. Indexes may
represent the performance of all stocks in an exchange or a smaller group of
stocks, such as an industrial or technological sector of the market. In addition,
there are foreign and international indexes.

10.1 Stock Market Indexes

In this section we discuss how Dow Jones, Standard and Poor’s, NASDAQ,
and Value Line calculate their indexes. These indexes depend on stock price,
number of shares issued, stock splits, and dividends. However, these are not
independent. For example, if a $50 stock with 100 shares issued splits two-for-
one, then after the split there are 200 shares, each worth $25. If a $50 stock
pays 10% stock dividend (worth $5 a share), then after the dividend the stock
is worth $50/1.1 = $45.45.

Dow Jones Industrial Average

The oldest and most quoted stock market index is the Dow Jones Industrial
Average (DJIA) instituted in 1884. Charles Dow created the index and made
it public on May 26, 1896. The DJIA originally contained 12 stocks, but stocks
were added and deleted until the present number, 30, first appeared in 1928.1

The original Dow Jones Average was simply an equal-weighted average of
the prices of the stocks that make up the average. However, because of stock

1 There are also Dow Jones indexes for 20 transportation stocks and for 15 utility
stocks. These indexes appear in Section C of each issue of The Wall Street Journal ,
unless the NYSE was closed on the previous weekday.
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splits, dividends, and the addition and subtraction of stocks from the index,
the computation of the DJIA is now more complicated.

As an example, assume that we use the DJIA method to compute an
average for stocks S, T, U, and V, whose present share prices are $15, $20,
$20, and $25. Then our index on day 1 is

15 + 20 + 20 + 25
4

= 20.

Now, assume that on day 2 company T has a two-for-one stock split. In
this case each shareholder receives two new shares for each old share, and the
price of each new share is one-half the price of an old share, $20/2 = $10. The
DJIA adjusts for the stock split by changing the divisor, 4, so that the DJIA
does not change, while the numerator is the sum of the post-split share prices
of the stocks. In this example we have

15 + 10 + 20 + 25
d

= 20,

where d is the new divisor. Solving for d gives d = 3.5. This new divisor stays
in effect until there is another stock split, a stock dividend of 10% or more
by one of the companies, or a replacement of an existing company by a new
company.

Example 10.1. The table shows the continuing share prices for the companies
S, T, U, and V on days 1 through 5, where on day 2, company T had the
two-for-one stock split. Complete the table for days 3 through 5 assuming
that there are no more stock splits, that there are no dividends, and that no
companies are replaced.

Day Price Divisor DJIA
S T U V

1 15 20 20 25 4.0 20.00
2 15 10 20 25 3.5 20.00
3 16 11 21 26
4 15 10 20 25
5 16 10 19 26

Solution. Because there are no more stock splits and no dividends, the
divisor remains at 3.5 for days 3 though 5. The averages on these days are

16 + 11 + 21 + 26
3.5

= 21.14 (Day 3),

15 + 10 + 20 + 25
3.5

= 20.00 (Day 4), and

16 + 10 + 19 + 26
3.5

= 20.29 (Day 5).

�
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We now discuss the effect of stock splits and dividends on the DJIA and
why they may lead to a downward bias (a value smaller than expected) in the
DJIA. Suppose that after the stock split (so the divisor is 3.5) company T ’s
stock price increases by 10%, from $10 to $11. Then the new average is

15 + 11 + 20 + 25
3.5

= 20.29.

On the other hand, if company U ’s share price increases by 10%, from $20 to
$22, while the other share prices do not change, then the new average is

15 + 10 + 22 + 25
3.5

= 20.57.

This suggests that the impact of a stock that splits is less than that of a stock
that does not split in computing the average. You are asked to verify this in
Problem 10.9.

Now, consider the effect of not adjusting for stock dividends of less than
10%. Suppose that the prices of our four stocks are $15, $10, $20, and $25, and
that d = 3.5; the share prices and divisor immediately following the stock split
of company T. If company U issues a stock dividend of 5% ($1 per share),
then the resulting stock price is $20/1.05 = $19.05, which artificially lowers
the average. (Note that the divisor does not change in this case.)

Standard and Poor’s 500 Index

Standard and Poor’s Corporation publishes several stock indexes that use
a different approach than the DJIA. The most followed of these indexes is
the Standard and Poor’s 500 (S&P 500). There are two essential differences
between the S&P 500 and the DJIA. The first is that the S&P 500 includes
500 companies rather than 30, which may better reflect the overall market.
The second is that the indexes are computed differently. Because all the S&P
indexes are calculated in the same manner, we restrict our discussion to the
S&P 500.

The S&P 500 weights all stocks in the index in proportion to the sum of
their market capitalizations. The formula is

S&P 500 (t) = 10
∑500

i=1 Si(t)Ni(t)∑500
i=1 Si(1)Ni(1)

.

Here Si(1) is the price per share of the ith stock on the original date. For the
S&P 500 this is the average of the ith stock’s prices for the years 1941–1943.
The quantity Si(t) is the price per share of the ith stock at time t, and Ni(t)
is the number of shares issued of the ith stock at time t.

Returning to Example 10.1, if we calculate this average at day 1 assuming
that 100 shares are issued for each company, then we have
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4∑
i=1

Si(1)Ni(1) = 15(100) + 20(100) + 20(100) + 25(100) = 8000

as the divisor. On day 1 this is also the numerator, so the original index is

S&P 500 (1) = 10(8000/8000) = 10.

On day 2, after the stock split we have

4∑
i=1

Si(2)Ni(2) = 15(100) + 10(200) + 20(100) + 25(100) = 8000,

so that the stock split does not change the divisor. The index following the
stock split is

S&P 500 (2) = 10(8000/8000) = 10.

With this index all stock splits and stock dividends are accounted for in the
numerator. The denominator changes if new stocks are introduced in the in-
dex, replacing other stocks. In this case the numerator uses the total market
capitalization of the 500 stocks after the replacement, and the denominator is
adjusted so that the new average is the same as the old average.

Example 10.2. The table shows the continuing share prices for the companies
S, T, U, and V on days 1 through 5, where on day 2, company T had the
two-for-one stock split. Complete the table for days 3 through 5, assuming
that there are no more stock splits and no dividends.

Day Price S&P 500
S T U V

1 15 20 20 25 10.00
2 15 10 20 25 10.00
3 16 11 21 26
4 15 10 20 25
5 16 10 19 26

Solution. Because there are no more stock splits and no dividends, there
are 100 shares issued for companies S, U, and V, and 200 for company T. The
indexes on these days are

10
(

16(100) + 11(200) + 21(100) + 26(100)
8000

)
= 10.63 (Day 3),

10
(

15(100) + 10(200) + 20(100) + 25(100)
8000

)
= 10.00 (Day 4), and

10
(

16(100) + 10(200) + 19(100) + 26(100)
8000

)
= 10.13 (Day 5).

�
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NASDAQ Composite Index

Another closely watched index is the NASDAQ Composite Index. It was cre-
ated in 1971 and currently includes over 2000 stocks. It is computed in the
same manner as the S&P 500.

The following table lists the year-end closing values of the DJIA, S&P 500,
and NASDAQ Composite Index from 1980 through 2005.

DJIA S&P 500 NASDAQ DJIA S&P 500 NASDAQ
1980 963.99 135.76 202.34 1993 3754.09 466.45 776.80
1981 875.00 121.57 195.84 1994 3834.44 459.27 751.96
1982 1046.54 140.64 232.41 1995 5117.12 615.93 1052.13
1983 1258.64 164.93 278.60 1996 6448.27 740.74 1291.03
1984 1211.57 167.24 247.10 1997 7908.25 970.43 1570.35
1985 1546.67 211.28 324.90 1998 9181.43 1229.23 2192.69
1986 1895.95 242.17 348.80 1999 11497.12 1469.25 4069.31
1987 1938.83 247.08 330.50 2000 10787.99 1320.28 2470.52
1988 2168.57 277.72 381.40 2001 10021.57 1148.08 1950.40
1989 2753.20 353.40 454.80 2002 8341.63 879.82 1335.51
1990 2633.66 330.22 373.80 2003 10453.92 1111.92 2003.37
1991 3168.83 417.09 586.34 2004 10783.01 1211.92 2175.44
1992 3301.11 435.71 676.95 2005 10717.50 1248.29 2205.32

The IRR, iirr, for the DJIA over these 26 years is

iirr =
(

10717.50
963.99

)1/25

− 1 = 10.114%.

In the same way, the IRR’s for the S&P 500 and the NASDAQ Composite
Index are 9.280% and 10.026%, respectively. This is consistent with the fre-
quently heard statement that in the long run the stock market gains about
10% a year.

Value Line Index

Value Line published two indexes: the Value Line Geometric Average, started
in 1961, and the Value Line Arithmetic Average, started in 1988. Both indexes
use all the (over 1600) stocks covered by The Value Line Investment Survey.
These stocks include big cap, mid-cap, and small-cap companies, and they
are all treated equally. In both indexes stock splits and stock dividends are
considered by making the appropriate adjustment to the stock’s price.

The Value Line Geometric Average uses a geometric-average of the ratio
of stock prices. The base (original) index is 100. There are four steps to this
procedure.
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1. The closing price of each of the n stocks in The Value Line Investment
Survey is expressed as a ratio of the preceding day’s price, adjusted for
stock splits.

2. These ratios are multiplied together.
3. The nth root of this product is calculated, where n is the total number of

stocks. This gives the geometric daily ratio.
4. The geometric daily ratio is multiplied by the prior day’s index value.

We illustrate this method using stocks S, T, U, and V for a 5-day period
with a base index of 100 where T had a two-for-one stock split at the end of
day 2.

Day Stock Price
S T U V

1 15 20 20 25
2 15 10 20 25
3 16 11 21 26
4 15 10 20 25
5 16 10 19 26

On day 2 the relative price of stock T is

Price on day 2
Adjusted price on day 1

=
$10
$10

= 1,

because the adjusted price at day 1 is $20/2 = $10, reflecting the two-for-one
stock split. All the other relative stock prices are equal to 1. Steps 2 and 3
yield the geometric relative price (1 × 1 × 1 × 1)1/4 = 1, and Step 4 yields
100 × 1 = 100, reflecting the fact that the prices remained the same after
adjusting for the stock split of company T.

For day 3, combining Steps 1 through 4, we find that the index is(
16
15

· 11
10

· 21
20

· 26
25

)1/4

× 100 = 106.392.

In Problem 10.5 you are asked to compute this index for day 5. You might
suspect that if all the stock prices rise, then the value of the index increases.
Other interesting questions are, “What happens to the index if on some day
the stock prices have returned to their original levels? What happens to the
index if at some day all stocks have doubled in price?” You are asked to
consider these questions in Problems 10.6, 10.7, and 10.8.

We write a formula for this index as follows. On day t let Si(t) be the
closing price of stock i, where 1 ≤ i ≤ n, so the previous day’s closing price
is Si(t − 1). If V LG(t) is the index at the end of day t, so the previous day’s
index is V LG(t − 1), then

V LG(t) = V LG(t − 1)
(

S1(t)
S1(t − 1)

S2(t)
S2(t − 1)

· · · Sn(t)
Sn(t − 1)

)1/n

. (10.1)



10.1 Stock Market Indexes 171

The Value Line Arithmetic Average uses an equal-weighted average of the
ratio of stock prices. There are three steps to this procedure.

1. The closing price of each of the n stocks in The Value Line Investment
Survey is expressed as a ratio of the preceding day’s price, adjusted for
stock splits. This is the same calculation as the Value Line Geometric
Average

2. These ratios are added together and divided by n, giving the arithmetic
daily ratio.

3. The arithmetic daily ratio is multiplied by the prior day’s index value.

With the same notation used in defining V LG(t), the Value Line Arith-
metic Average, V LA(t), on day t is

V LA(t) = V LA(t − 1)
S1(t)

S1(t−1) + S2(t)
S2(t−1) + · · · + Sn(t)

Sn(t−1)

n
. (10.2)

These two Value Line Indexes are related by the following theorem.2

Theorem 10.1. The Value Line Theorem.
The maximum daily ratio attainable by the Value Line Geometric Average is
equal to the daily ratio of the Value Line Arithmetic Average. Equality can
only occur when every stock in the average has the same percentage price
change on a given day.

Proof. On day t, the Geometric Average daily ratio is V LG(t)/V LG(t − 1),
while the Arithmetic Average daily ratio is V LA(t)/V LA(t − 1). Thus, we
must show that V LG(t)/V LG(t − 1) ≤ V LA(t)/V LA(t − 1).

From (10.1), we have

V LG(t)
V LG(t − 1)

=
(

S1(t)
S1(t − 1)

S2(t)
S2(t − 1)

· · · Sn(t)
Sn(t − 1)

)1/n

,

while, from (10.2), we have

V LA(t)
V LA(t − 1)

=
S1(t)

S1(t−1) + S2(t)
S2(t−1) + · · · + Sn(t)

Sn(t−1)

n
,

so we must show that(
S1(t)

S1(t − 1)
S2(t)

S2(t − 1)
· · · Sn(t)

Sn(t − 1)

)1/n

≤
S1(t)

S1(t−1) + S2(t)
S2(t−1) + · · · + Sn(t)

Sn(t−1)

n
.

2 Quoted, with minor modifications, from the Value Line article “Comparing the
Value Line Averages” at http://www.valueline.com/news/vlv050311.html, ac-
cessed on May 23, 2006.
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This is just the Arithmetic-Geometric Mean Inequality (see Appendix A.3 on
p. 249), with equality if and only if

S1(t)
S1(t − 1)

=
S2(t)

S2(t − 1)
= · · · =

Sn(t)
Sn(t − 1)

,

which occurs when every stock has the same percentage price change. ��

Comparing Indexes

We now compare the DJIA, S&P 500, and the Value Line indexes.

• The DJIA is restricted to 30 of the largest US firms. The S&P 500 takes
into account 500 of the largest corporations. Neither index takes into ac-
count smaller US firms. The Value Line indexes take into account over
1600 small, medium, and large corporations.

• The DJIA deemphasizes the impact of a stock after a stock split. Stock
dividends of 10% or less are not taken into account. From the construction
of the index, a stock with a price of $50 has a greater impact than a stock
with a price of $10. This is because the numerator of the DJIA is the sum
of the current prices of all 30 stocks. Neither the DJIA nor the Value Line
indexes take into account the total market value of the stocks because they
ignore the number of shares issued. The S&P 500 takes market value into
account.

• The use of market value may not always be appropriate for all investors.
For example, an individual in a high tax bracket may wish to underweight
stocks with high dividend yields (such as public utilities).

10.2 Rates of Return for Stocks and Stock Indexes

We now consider rates of returns for stocks and stock indexes. For a given
stock, the rate of return3 during a given time period is defined as the sum of
the change in the price of the stock during that period plus any cash dividends
received during that period, divided by the price of the stock at the beginning
of the period. So if S(0) is the price of the stock at the beginning of the period,
if S(1) is the price of the stock at the end of the period, and if D is the cash
dividend, then the rate of return R is

R =
S(1) − S(0) + D

S(0)
.

From this we see that

1 + R =
S(1) + D

S(0)
,

3 This rate of return should not be confused with the internal rate of return.
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which is positive because S(0) > 0, S(1) > 0, and D ≥ 0. This property will
be used later.

Example 10.3. A stock is trading at $50 a share on 12/31/2004. The following
is a list of the stock prices and the dividends paid from 1/1/2005 through
12/31/2005 on the last day of each quarter. What are the rates of return for
each of the quarters?

Date 3/31/2005 6/30/2005 9/30/2005 12/31/2005
Price $52.00 $54.00 $53.00 $56.00

Dividend $0.50 $0.50 $0.50 $0.50

Solution. The rates of return for the four quarters are

(52.00 − 50.00) + 0.50
50.00

= 0.05 = 5%,

(54.00 − 52.00) + 0.50
52.00

= 0.0481 = 4.81%,

(53.00 − 54.00) + 0.50
54.00

= −0.0093 = −0.93%,

and
(56.00 − 53.00) + 0.50

53.00
= 0.066 = 6.6%.

�
If R1, R2, R3, and R4 are the quarterly rates of return (expressed as

decimals), then how can we quantify the average quarterly rate of return, R?
This depends on whether we use simple or compound interest.

If we use simple interest, then the year-end value of a $1 investment is
1 + R1 + R2 + R3 + R4, and we want this to be equal to 1 + 4R, so

1 + 4R = 1 + R1 + R2 + R3 + R4.

Solving this for R, gives the arithmetic average quarterly return,4

RA =
R1 + R2 + R3 + R4

4
.

If we use compound interest, then the year-end value of a $1 investment
is (1 + R1)(1 + R2)(1 + R3)(1 + R4), and we want this to equal (1 + R)4, so

(1 + R)4 = (1 + R1)(1 + R2)(1 + R3)(1 + R4).

Solving this for R, gives the geometric average quarterly return,5

4 Strictly speaking this should be called a rate of return, but for the sake of brevity,
in this section we use the shorter expression return.

5 Note that, although the Arithmetic Average Quarterly Return of R1, R2, R3, R4

is their arithmetic mean, the Geometric Average Quarterly Return of R1, R2, R3,
R4 is not their geometric mean.
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RG = ((1 + R1)(1 + R2)(1 + R3)(1 + R4))
1/4 − 1.

We have already shown that each of the terms in parentheses is positive, so
RG is always defined.

Example 10.4. For the stock in Example 10.3, calculate the arithmetic and
geometric average quarterly returns.

Solution. The arithmetic average quarterly return is

0.05 + 0.0481 + (−0.0093) + 0.066
4

= 0.0387 = 3.87%,

while the geometric average quarterly return is

((1.05)(1.0481)(0.9907)(1.066))1/4 − 1 = 0.0383 = 3.83%.

�
Note that the geometric average quarterly return is less than the arithmetic

average quarterly return. This is generally true, as can be seen in the following
theorem.

Theorem 10.2. The Average Quarterly Return Theorem.

RG ≤ RA.

Proof. Using the Arithmetic-Geometric Mean Inequality (see Appendix A.3
on p. 249), which states that if a1, a2, . . . , an are non-negative and not all zero,
then

(a1a2 · · · an)1/n ≤ a1 + a2 + · · · + an

n
,

with equality if and only if a1 = a2 = · · · = an. With n = 4 and ai = 1+Ri > 0
for i = 1, . . . , 4, this inequality becomes

((1 + R1)(1 + R2) · · · (1 + R4))
1/4 ≤ (1 + R1) + (1 + R2) + · · · + (1 + R4)

4
,

with equality if and only if R1 = R2 = R3 = R4. This shows that the geometric
average quarterly return is less than the arithmetic average quarterly return
unless the quarterly returns are equal, in which case the averages are the
same. ��

There are several things to note about these definitions of return.

• It is assumed that dividends are paid on the last day of each quarter. If
this is not the case, then the calculation is done daily.

• It is assumed that dividends are not reinvested in the stock.
• We cannot calculate this form of return if we do not know the amounts

and timing of the dividend payments. For example, we cannot calculate
the return on the S&P 500 from a listing of the year-end values of that
index.
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10.3 Pricing and Risk

As defined in the previous section, the return on an investment in common
stock consists of two components: cash dividends and the rise or fall of the
stock price, capital gains or losses. The price that an investor is willing to
pay for a share of common stock is based upon the investor’s expectations
regarding dividends and the future price of the stock.

Let S(0) be the current price per share of the stock, Dt be the expected
dividend at time t in quarters, T be the length of the holding period in quar-
ters, and k be the quarterly required rate of return (expressed as a decimal).

Initially, we assume that dividends are paid quarterly and that the price
of the stock is to be determined immediately following a dividend payment.
We also ignore certain aspects of the trading mechanism.

Theoretically, the length of the holding period could be infinite. Common
stocks do not mature, unlike bonds. As long as the company continues to
exist, then so does the stock. The investor expects to receive dividends in the
amount of D1 at the end of the first quarter, D2 at the end of the second
quarter, and so on. In return, the investor is willing to pay S(0) for the stock
today. These cash flows are represented by the diagram in Fig. 10.1.

S(0)

D1

1

D2

2

· · ·
DT

T

· · ·

Fig. 10.1. Time diagram of a typical stock held forever

The price that the investor is willing to pay for the stock today is given
by the present value of the expected future dividends discounted at the ap-
propriate required rate of return.6 Assuming that the appropriate required
rate of return per quarter is k, the general formula for the price of the stock
today is

S(0) =
D1

(1 + k)1
+

D2

(1 + k)2
+ · · · ,

or

S(0) =
∞∑

t=1

Dt

(1 + k)t
. (10.3)

In practice, however, the length of the holding period is not infinite. The
investor expects to receive dividends in the amount of D1 at the end of the
first quarter, D2 at the end of the second quarter, and so on. In addition, the
6 We discuss the required rate of return on p. 177 and the relationship between the

required rate of return and the expected rate of return on p. 184.
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investor expects to be able to sell the stock for a price of S(T ) at the end of
T quarters. In return, the investor is willing to pay S(0) for the stock today.
These cash flows are represented by the diagram in Fig. 10.2.

S(0)

D1

1

D2

2

· · ·
DT−1

T − 1

DT + S(T )

T

Fig. 10.2. Time diagram of a typical stock

Again, the price that the investor is willing to pay for the stock today is
given by the present value of the expected future cash flows discounted at the
appropriate required rate of return. Therefore, an alternative formula for the
price of the stock today is given by

S(0) =
D1

(1 + k)1
+

D2

(1 + k)2
+ · · · +

DT−1

(1 + k)T−1 +
DT + S(T )
(1 + k)T

,

or

S(0) =
T∑

t=1

Dt

(1 + k)t
+

S(T )
(1 + k)T

. (10.4)

Thus, we have the following theorem.

Theorem 10.3. The Common Stock Theorem.
If the price S(0) of a share of common stock is given by (10.3), then the price
may be written as (10.4).

The converse of this theorem is not necessarily true (see Problem 10.13).

Example 10.5. Helen Kendrick expects to receive dividends in the amount of
$1.50 at the end of each of the next four quarters and $1.75 at the end of each
of the following four quarters. Furthermore, she expects to be able to sell the
stock for $94.50 at the end of the second year. If the required rate of return
per quarter is 0.025, then what price should she pay for the stock?

Solution. Here T = 8, D1 = D2 = D3 = D4 = 1.5, D5 = D6 = D7 = D8 =
1.75, k = 0.025, and S(T ) = 94.5. Substituting these into (10.4) gives

S(0) =
4∑

t=1

1.5
(1.025)t

+
8∑

t=5

1.75
(1.025)t

+
94.5

(1.025)8
= 89.168,

so Helen should pay $89.17 for the stock. �
Dividends tend to be relatively stable over the short term; however, there is

usually variability in a perpetual stream of dividends. This creates difficulties
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in applying the general pricing formula. However, it is often assumed that the
dividends paid by a company to its shareholders will grow indefinitely at a
fixed rate. If we let g be the quarterly rate of dividend growth (expressed as
a decimal), then

D1 = D0(1 + g),

D2 = D1(1 + g) = D0(1 + g)2,

and so on.
According to the general pricing formula (10.3),

S(0) =
∞∑

t=1

D0 (1 + g)t

(1 + k)t
. (10.5)

This leads to the following theorem.

Theorem 10.4. The Constant Growth Theorem.
If the dividend grows according to Dn = D0(1 + g)n and if k > g, then

S(0) = D0
1 + g

k − g
.

Proof. We can rewrite (10.5) as

S(0) =
∞∑

t=1

D0

(
1 + g

1 + k

)t

= D0

(
1 + g

1 + k

) ∞∑
t=0

(
1 + g

1 + k

)t

,

which is a geometric series. Because k > g, we have (1 + g) / (1 + k) < 1,
which means that the series converges. Thus,

S(0) = D0

(
1 + g

1 + k

)
1

1 − 1+g
1+k

= D0
1 + g

k − g
.

��
Example 10.6. A company just paid a dividend of $2.25, and future dividends
are expected to increase at a rate of 1% per quarter. If the quarterly rate of
return on the company’s stock is 2%, then what price should the investor pay
for the stock?

Solution. Here D0 = 2.25, g = 0.01, and k = 0.02, so k > g and thus

S(0) = D0
1 + g

k − g
= 2.25

1.01
0.01

= 227.25.

The investor should pay $227.25. �
When discussing how to price a stock, we talk about using an appropriate

risk-adjusted rate to discount the dividends that are expected to be paid on
the stock in the future. This is the required rate of return mentioned on p. 175.
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However, two crucial questions remain unanswered at this point. How do we
measure the risk of a stock? How do we use that measure of risk to compute
the appropriate discount rate? These questions are now addressed.

The risk of a stock is associated with uncertainty about the returns on the
stock. If the return is certain, then there is no risk. As the uncertainty of the
returns increases, then so does risk. Risk can be estimated using any one of a
number of measures. These include the range, the mean absolute deviation, the
probability of a negative return, the semivariance, and the standard deviation
of the returns on the stock.

We assume that the returns, Rs, on a stock have S possible values, so 1 ≤
s ≤ S, and that the probability of Rs is Ps. If R is the random variable that
gives the return on the stock, then the possible values of R are R1, R2, . . . , RS ,
and the expected return on the stock is E(R) =

∑S
s=1 PsRs.

The range is the difference between the largest and smallest returns. If
the largest return is maxs∈S Rs and the smallest return is mins∈S Rs, then
the range is

max
s∈S

Rs − min
s∈S

Rs.

This is simple to compute; however, it does not consider returns between the
extremes and it does not consider the likelihoods of the possible returns.

The mean absolute deviation is the expected absolute difference be-
tween the return on the stock and its expected return, E(R), and is given
by

MAD =
S∑

s=1

Ps|Rs − E(R)|.

This may be a reasonable measure, but it is statistically difficult to use.
The probability of a negative return is the sum of the probabilities of

all negative returns and is given by7

S∑
s=1

Ps1Rs< 0.

The weakness of this measure is that it does not consider all aspects of risk.
For example, neither non-negative returns nor the magnitudes of negative
returns are considered.

Semivariance is a statistical measure of the variability of returns below
the expected return and is given by

S∑
s=1

Ps(Rs − E(R))21Rs<E(R).

7 If X is a random variable, and (X ⊂ A) is an event, then the indicator variable
1X⊂A is defined by

1X⊂A =
{

1 if X ⊂ A,
0 if X � A.
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As with the probability of a negative return, the semivariance does not con-
sider the uncertainty of returns greater than the expected return.

The standard deviation of R is one of the most commonly used measures
of risk. It is a measure of the dispersion both above and below the expected
return and is given by

σ =

√√√√ S∑
s=1

Ps(Rs − E(R))2 .

The quantity σ2 is the variance of R.

Example 10.7. Suppose that an investment has three possible annual rates of
return: a return of 0.10 with probability 0.50, a return of 0.15 with probability
0.30, and a return of −0.05 (a loss of 5%) with probability 0.20. Thus, if we
let R be the annual rate of return, then P (R = 0.10) = 0.50, P (R = 0.15) =
0.30, and P (R = −0.05) = 0.20. What is the range, expected return, MAD,
probability of a negative return, semivariance, and standard deviation?

Solution. The range is 0.15 − (−0.05) = 0.20.
The expected return is E(R) = 0.5(0.10)+0.3(0.15)+0.2(−0.05) = 0.085.
The MAD is 0.5|0.10−0.085|+0.3|0.15−0.085|+0.2|−0.05−0.085| = 0.054.
The probability of a negative return is 0.2.
The semivariance is 0.2(−0.05 − 0.085)2 = 0.0036.
The standard deviation is

σ =
√

0.5(0.10 − 0.085)2 + 0.3(0.15 − 0.085)2 + 0.2(−0.05 − 0.085)2

= 0.0709.

�

These measures of risk consider two types of risk—systematic risk and
unsystematic risk. Systematic risk is risk that is common to all risky stocks.
Unsystematic risk is unique to each company. We discuss each of these in
turn.

Systematic risk includes the impact of inflation, uncertainties about long-
run aggregate economic growth, changes in investors’ attitudes toward risk,
and changes in interest rates.

• Inflation affects stock prices through corporate profits. If inflation results
in higher borrowing rates, then expected future corporate profits are likely
to decrease. On the other hand, if inflation results in higher prices, then
expected future corporate profits are likely to increase. The effect is similar
for all stocks.
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• Uncertainties about long-run aggregate economic growth also affect stock
prices through corporate profits. Corporate profits of all firms are depen-
dent upon the long-run health and growth of the aggregate economy. Fac-
tors that affect aggregate output include population growth, labor produc-
tivity, political uncertainty, tax policy, technology, etc.

• Changes in investors’ attitudes toward risk have a more direct affect on
stock prices. If the average investor suddenly becomes more risk-averse,
then the required rate of return increases. To provide this larger return,
stock prices have to fall. The opposite occurs if the average investor sud-
denly becomes less risk-averse. Again, the effect is similar for all stocks.

• Interest rate changes also affect the prices of all stocks. Increases in interest
rates result in increases in interest expense and decreases in corporate
profits. Changes in interest rates also affect investors’ attitudes toward
risk that in turn affect stock prices.

Systematic risk cannot be eliminated through diversification. For this reason
it is often referred to as market or nondiversifiable risk.

Unsystematic risk is unique to each company. This type of risk includes
lawsuits, strikes, competition, and changes in consumer base.

• If one company sues another for breach of contract, then the market value
of the winning company increases, and the market value of the losing
company decreases. An appropriate position in both stocks eliminates the
need for any concern about the outcome of the lawsuit.

• If a company suffers a labor strike, then that company’s profit decreases.
However, if the lost sales are picked up by a competitor, then that com-
pany’s profit increases. An appropriate position in both stocks eliminates
the need for any concern about the outcome of the strike.

• If one company has a patent on a major product line that may be coun-
teracted through research and development at another company, then the
profits of the company with the patent are likely to decrease with the loss
of its effective patent position, and the profits of the competitor are likely
to increase. Once again, an appropriate position in both stocks eliminates
the need for any concern.

• If the companies in one region lose customers to companies in another
region as a result of migration, then the profits of companies in the first
region decrease, and the profits of companies in the second region increase.
Yet again, an appropriate position in the stocks of companies in both
regions eliminates the need for any concern.

Unsystematic risk can be eliminated by investing in a well diversified portfolio.
Losses in one stock are offset by gains in another stock. For this reason,
unsystematic risk is often referred to as diversifiable risk.
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Because unsystematic risk can be eliminated through proper diversifica-
tion, investors are not rewarded or compensated for that type of risk; investors
are only rewarded for systematic risk. In order to determine how much of a
stock’s return is not diversifiable, we need a measure of the relationship of the
returns on that stock with the returns on other stocks.

The correlation coefficient is a commonly used statistical measure of the
relationship between two random variables. We assume that the returns on
stocks i and j, namely, Ris and Rjs, have S possible values, so 1 ≤ s ≤ S, that
the probabilities of Ris and Rjs are the same, Ps, that the expected returns
on stocks i and j are E(Ri) and E(Rj) respectively, and that the standard
deviation of the return on stocks i and j are σi and σj respectively. Then the
correlation coefficient between the returns on stock i and the returns on stock
j is given by

ρij =

S∑
s=1

Ps(Ris − E(Ri))(Rjs − E(Rj))

σiσj
.

Example 10.8. In addition to the information given for the annual rate of
return R of the investment in Example 10.7, suppose that there is a second
investment for which the annual rate of return U is correlated with R as
follows: P (R = 0.10, U = 0.15) = 0.50, P (R = 0.15, U = 0.20) = 0.30,
and P (R = −0.05, U = −0.10) = 0.20. Find ρRU , the correlation coefficient
between R and U .

Solution. The expected return on the second stock is E(U) = 0.5(0.15) +
0.3(0.20) + 0.2(−0.10) = 0.115, and the standard deviation is

σ =
√

0.5(0.15 − 0.115)2 + 0.3(0.20 − 0.115)2 + 0.2(−0.10 − 0.115)2

= 0.1097.

Therefore, the correlation coefficient is

ρRU =
1

0.0709(0.1097)
[0.5(0.10 − 0.085)(0.15 − 0.115)

+ 0.3(0.15 − 0.085)(0.20 − 0.115)
+ 0.2(−0.05 − 0.085)(−0.10 − 0.115)]

= 0.993. �

If the correlation coefficient between the returns on two stocks is −1, then risk
can be eliminated through proper diversification. If the correlation coefficient
between the returns on two stocks is 1, then risk cannot be eliminated through
diversification.

However, it is not sufficient to consider the relationship between just two
stocks; we must consider the relationships among all stocks. Then one appro-
priate measure of the risk of a stock is the amount of nondiversifiable risk
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that the stock contributes to that of the market portfolio. For stocks issued
by domestic companies, an index such as the S&P 500 or the NYSE Compos-
ite Index8 is used as a proxy for the market portfolio. This measure of risk
is given by σiρiM , where σi is the standard deviation of the returns on the
stock, and ρiM is the correlation coefficient between the returns on the stock
and the returns on the market.

A more commonly used measure of the risk of a stock is the amount
of nondiversifiable risk inherent in the stock relative to that of the market
portfolio. This measure of the relative risk of a stock is known as the stock’s
beta and is given by βi = (σi/σM )ρiM , where σi is the standard deviation of
the returns on the stock, σM is the standard deviation of the returns on the
market, and ρiM is the correlation coefficient between the returns on the stock
and the returns on the market. For example, if RM represents the returns on
the S&P 500, then ρiM is the correlation coefficient between RM and the
returns on the given stock.

The ratio of σi to σM measures how volatile the stock is in relation to the
volatility of the reference portfolio, and the correlation coefficient determines
how much of that relative volatility should be counted. If the stock is perfectly
correlated with the market, then all of the relative volatility counts. If the
correlation is zero, then none of the relative volatility counts.

In practice, investors do not know σi, σM , or ρiM . Therefore, these pa-
rameters must be estimated. What is needed are ex ante9 estimates of σi, σM ,
and ρiM .

However, the use of ex ante values requires that all possible future returns
and the corresponding probabilities be identified—an extremely difficult, if
not impossible, task. Thus, ex post10 or historical estimates of σi, σM , and
ρiM are often used as estimates of the ex ante values of σi, σM , and ρiM

respectively.
A regression line is a line that describes the relationship between an ex-

planatory variable and a response variable. The characteristic line for a stock
is the best-fit regression line that describes the relationship between the re-
turns on the stock and the returns on the market. The slope of this line is
given by bi = (si/sM )riM , where si and sM are estimates of σi and σM re-
spectively, and riM is an estimate of ρiM (see Appendix B.7 on p. 280). Thus,
bi is the estimate of βi. In other words, the estimate of a stock’s β is obtained
by regressing the stock’s historical returns against the returns on the market.

Although this sounds simple, there are several questions that remain.
Should βi be estimated over a time period that consists of the past month, the
past year, the past five years, the past 20 years? Should βi be estimated us-
ing daily, weekly, monthly, quarterly, or annual returns? Which index should

8 The NYSE Composite Index includes all common stocks traded on the NYSE. De-
tails of its calculation can be found at www.nyse.com/pdfs/methodology nya.pdf.

9 Ex ante means before the fact.
10 Ex post means after the fact.
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be used as a proxy for the market portfolio? Unfortunately these questions
remain unanswered. Therefore, it is important to emphasize the fact that bi

is only an estimate of βi and that the value of that estimate is determined
by the particular data that was used in the regression. In other words, the
use of different data may result in a different estimate. However, in spite of
the difficulties associated with estimating βi, it is accepted as an appropriate
measure of risk.

Example 10.9. Closing prices and weekly returns for Amazon.com and the
S&P 500 from December 1999 to June 2000 are given in following table.11

Use a spreadsheet to estimate Amazon.com’s β.

Amazon.com S&P 500
Week of Close Return Close Return
26-Jun-00 36.3125 0.071956 1454.60 0.009102
19-Jun-00 33.8750 −0.263587 1441.48 −0.015692
12-Jun-00 46.0000 −0.118563 1464.46 0.005155
5-Jun-00 52.1875 −0.098272 1456.95 −0.013748

29-May-00 57.8750 0.244624 1477.26 0.072016
22-May-00 46.5000 −0.116390 1378.02 −0.020562
15-May-00 52.6250 −0.020930 1406.95 −0.009860
8-May-00 53.7500 −0.081197 1420.96 −0.008146
1-May-00 58.5000 0.060023 1432.63 −0.013632
24-Apr-00 55.1875 0.053699 1452.43 0.012471
17-Apr-00 52.3750 0.117333 1434.54 0.057484
10-Apr-00 46.8750 −0.306198 1356.56 −0.105378
3-Apr-00 67.5625 0.008396 1516.35 0.011858

27-Mar-00 67.0000 −0.078246 1498.58 −0.018907
20-Mar-00 72.6875 0.121504 1527.46 0.043012
13-Mar-00 64.8125 −0.030841 1464.47 0.049747
6-Mar-00 66.8750 0.070000 1395.07 −0.010006
28-Feb-00 62.5000 −0.095841 1409.17 0.056856
21-Feb-00 69.1250 0.067568 1333.36 −0.009457
14-Feb-00 64.7500 −0.150123 1346.09 −0.029579
7-Feb-00 76.1875 −0.030231 1387.12 −0.026152

31-Jan-00 78.5625 0.273556 1424.37 0.047208
24-Jan-00 61.6875 −0.006042 1360.16 −0.056336
17-Jan-00 62.0625 −0.034047 1441.36 −0.016237
10-Jan-00 64.2500 −0.076370 1465.15 0.016428
3-Jan-00 69.5625 −0.086207 1441.47 −0.018908

27-Dec-99 76.1250 −0.154167 1469.25 0.007481
20-Dec-99 90.0000 1458.34

11 Data obtained from http://finance.yahoo.com/.
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Solution. Microsoft� Excel was used to regress the returns for Amazon.com
on the returns for the S&P 500. The slope of the regression line is 2.214659.
Therefore, an estimate of Amazon.com’s β is 2.21. �

The price of a stock is determined by discounting all expected future div-
idends at the appropriate required rate of return. A model known as the
Capital Asset Pricing Model (CAPM) specifies the equilibrium relationship
between expected returns and risk for stocks. Equilibrium is defined to be a
state in which the expected rates of return are equal to the required rates
of return. According to this model, investors should be compensated for the
time value of money and for nondiversifiable risk.

The line that relates the expected return on a portfolio, E(R), where R
is the random variable that gives the return on the portfolio, to the standard
deviation of the returns on the portfolio, σ, is called the Capital Market Line.
The equation of this line in the (σ,E(R)) plane is given by

E(R) = Rrf +
E(RM ) − Rrf

σM
σ,

where Rrf is the risk-free rate of return,12 E(RM ) is the expected return on
the market, and σM is the standard deviation of the returns on the market.
The Capital Market Line is the efficient boundary for portfolios, so, under the
assumption that the market portfolio is efficient, all portfolios, as plotted in
the (σ,E(R)) plane, must lie on or below this line

Now, we show how the expected rate of return on an individual asset
relates to its individual risk.

Consider a portfolio consisting of a proportion w invested in asset i and a
proportion 1−w invested in the market portfolio. The expected rate of return
on this portfolio is

E(Ri,w) = wE(Ri) + (1 − w)E(RM ),

where Ri,w is the random variable that gives the return on the portfolio and
Ri is the random variable that gives the return on asset i.13 This portfolio
has standard deviation14

σi,w =
√

w2σ2
i + 2w(1 − w)σiM + (1 − w)2σ2

M ,

12 The risk-free rate of return is usually the rate of return on a United States Trea-
sury bill.

13 Thus, Ri,0 = RM and Ri,1 = Ri. Do not confuse the Ri used here, which is the
return on asset i, with the Rs used on p. 178, which is one of the possible values
of R, the return on a stock.

14 Thus, σi,0 = σM and σi,1 = σi.
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where σi is the standard deviation of Ri, σM is the standard deviation of RM ,
and σiM is the covariance of Ri and RM .

As we vary w, we obtain different points (σi,w, E(Ri,w)) in the (σ,E(R))
plane. When w = 0 we are fully invested in the market, so Ri,0 = RM and
σi,0 = σM , and we intersect the Capital Market Line at (σM , E(RM )).

By the definition of the Capital Market Line, points (σi,w, E(Ri,w)) can
never cross this line. Hence the curve (σi,w, E(Ri,w)), −∞ < w < ∞, is
tangent to the Capital Market Line at (σM , E(RM )). Thus, the slope of this
curve at (σM , E(RM )) must be equal to the slope of the Capital Market Line
at (σ0, E(R0)).

The slope of the Capital Market Line is

Slope =
E(RM ) − Rrf

σM
,

while the slope of our curve at w is

dE(Ri,w)
dσi,w

=
dE(Ri,w)

dw
dσi,w

dw

=
E(Ri) − E(RM )

(wσ2
i + (1 − 2w)σiM − (1 − w)σ2

M )/σi,w
.

Thus, when w = 0 we must have

E(RM ) − Rrf

σM
=

E(Ri) − E(RM )
(σiM − σ2

M )/σM
.

If we rearrange the terms, then we have

E(Ri) = Rrf + βi(E(RM ) − Rrf ), (10.6)

where
βi =

σi

σM
ρiM .

We interpret (10.6) as follows. The expected return (which is the same
as the required rate of return in equilibrium) is equal to the risk-free rate
of return plus a risk premium. The risk premium is proportional to βi and
the market risk premium, the difference between the expected return on the
market and the risk-free rate.

Example 10.10. Suppose that the risk-free rate is Rrf = 0.06, the expected
return on the market is E(RM ) = 0.15, and beta is βi = 1.2. What is the
expected rate of return?

Solution. From (10.6), the expected rate of return is E(Ri) = 0.06+1.2(0.15−
0.06) = 0.168. �



186 10 Stock Market Indexes, Pricing, and Risk

10.4 Portfolio of Stocks

As with bonds, prudent investors invest in portfolios of stocks rather than in
individual stocks. The primary advantage of this strategy is risk reduction, a
topic discussed in the previous section. In particular, we saw that investors
are not compensated for diversifiable risk. A portfolio of stocks consists of
investments in several underlying stocks. Therefore, the value of the portfolio
is a function of the values of the underlying stocks, and the risk of the portfolio
is a function of the risks of the underlying stocks.

The value of a portfolio is simply the sum of the values of the underlying
stocks. If the number of different stocks in a portfolio is given by n, the
current price of stock i is given by Si, and the number of shares of stock i in
the portfolio is given by Ni, then the value of the portfolio is given by

Value of portfolio =
n∑

i=1

NiSi.

Example 10.11. An investor owns 150 shares of stock X and 200 shares of
stock Y . If the current prices of stocks X and Y are $50 and $35 respectively,
then what is the value of the portfolio?

Solution. The value of the portfolio is 150($50) + 200($35) = $14,500. �
As with individual stocks, one of the most commonly used measures of

the volatility of the returns on a portfolio of stocks is the standard deviation.
Similarly, a commonly used measure of the risk of a portfolio of stocks is β.

The variance of a portfolio is not the weighted average of the variances
of the underlying stocks. Nor is the standard deviation of the returns on a
portfolio the weighted average of the standard deviations of the returns on
the underlying stocks. Recall that the returns on a stock are often correlated
with the returns on other stocks. These correlations must be considered in the
computation of the standard deviation.

The fraction of the portfolio that is invested in stock i is given by

wi =
NiSi

n∑
j=1

NjSj

.

If P is the random variable that gives the return on the portfolio, if σi and
σj are the standard deviations of the returns on stocks i and j respectively,
and if ρij is the correlation coefficient between the returns on stock i and the
returns on stock j, then the standard deviation of the returns on the portfolio
is given by

σP =

√√√√ n∑
i=1

w2
i σ2

i + 2
n−1∑
i=1

n∑
j=i+1

wiwjσiσjρij .
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Example 10.12. A portfolio consists of three stocks: Stock 1, Stock 2, and
Stock 3. The following table shows the fraction of the portfolio that is invested
in each stock and the standard deviation of the returns on each stock.

Stock Fraction of Portfolio σ
1 0.25 0.05
2 0.40 0.07
3 0.35 0.02

The correlation coefficient between the returns on Stock 1 and the returns on
Stock 2 is −0.80, the correlation coefficient between the returns on Stock 1
and the returns on Stock 3 is −0.40, and the correlation coefficient between
the returns on Stock 2 and the returns on Stock 3 is 0.10. What is the standard
deviation of the returns on the portfolio?

Solution. We find that

σP = [(0.25)2(0.05)2 + (0.40)2(0.07)2 + (0.35)2(0.02)2

+ 2(0.25)(0.40)(0.05)(0.07)(−0.80)
+ 2(0.25)(0.35)(0.05)(0.02)(−0.40) + 2(0.40)(0.35)(0.07)(0.02)(0.10)]1/2

= 0.02.

�

There are two equivalent ways to compute the beta of a portfolio of stocks.

1. If the standard deviation of the returns on the portfolio is σP , if the stan-
dard deviation of the returns on the market is σM , and if the correlation
coefficient between the returns on the portfolio and the returns on the
market is ρpM , then the beta of the portfolio is

βP =
σP

σM
ρPM .

2. The beta of a portfolio of stocks is also the weighted average of the betas
of the stocks that comprise the portfolio. If the number of stocks in the
portfolio is n, if the beta of stock i is βi, and if the weight of stock i is wi,
then the beta of the portfolio is

βP =
n∑

i=1

wiβi.

That these are equivalent is seen by showing15 they are both equal to σPM/σ2
M

as follows:
βP =

σP

σM
ρPM =

σP

σM

σPM

σP σM
=

σPM

σ2
M

,

15 Recall that the covariance of X and Y satisfies σXY = ρXY σXσY .
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while

βP =
n∑

i=1

wiβi =
n∑

i=1

wi
σi

σM
ρiM =

n∑
i=1

wi
σiM

σ2
M

=
σPM

σ2
M

.

Example 10.13. A portfolio consists of 25% of a stock with a beta of 1.10, 30%
of a stock with a beta of 0.95 and 45% of a stock with a beta of 1.30. What
is the beta of the portfolio?

Solution. The beta of the portfolio is 0.25(1.10) + 0.30(0.95) + 0.45(1.30) =
1.145. �

10.5 Problems

Walking

10.1. The following table contains data on three stocks: S, T , and U .

12/31/98 3/31/99 6/30/99 9/30/99 12/31/99
Price S 25 27 28 28 28

T 30 32 33 35 33
U 40 42 43 45 43

Shares S 100 200 200 200 200
Issued T 500 500 500 500 500

U 300 450 450 550 550

(a) Use the DJIA approach to calculate a price index for the three stocks for
each period.

(b) Calculate a price index modeled after the S&P 500.
(c) Calculate the arithmetic and geometric average quarterly returns for each

series of returns.

10.2. The following are the yearly returns on a portfolio for the years 1995
to 1998,

1995 1996 1997 1998
22.55% −13.66% −18.23% 9.34%

and the dividend and portfolio values (in millions of dollars) in 1999.

12/31/98 3/31/99 6/30/99 9/30/99 12/31/99
Dividends 0 4 4 4 2

Value 200 195 200 200 210

(a) Calculate the rate of return on the portfolio for each quarter in 1999.
(b) If the annual return for the portfolio for 1999 is given by (210−200)/200 =

0.05 = 5%, then calculate the arithmetic average return and the geometric
average return for the five year interval. Explain why these are different.
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10.3. The list of stocks that make up the DJIA changed on April 8, 2004.
The stocks that were removed from the list along with their closing prices on
April 7, 2004 are: AT&T ($19.52), International Paper ($42.40), and East-
man Kodak ($25.49). The stocks that were added to the list along with their
closing prices on April 7, 2004 are: AIG ($76.25), Pfizer ($35.67), and Verizon
($37.31). The DJIA closed at 10,480.15 on April 7, 2004, and the divisor was
0.13500289. What was the new divisor on April 8, 2004?

10.4. On September 18, 1995, International Paper, a DJIA component com-
pany, had a 2-for-1 stock split. The DJIA closed at 4797.57 on September 17,
1995, and International Paper closed at $85.625. The divisor on that date was
0.3549192. What was the divisor on September 18, 1995?

10.5. Compute the Value Line Geometric Index on day 5 for the stock prices
on p. 170.

10.6. What happens to the Value Line Geometric Index if all the stocks in-
crease in price?

10.7. Verify that the Value Line Geometric Index is 100 if all the stock prices
are at their original prices.

10.8. What happens to the Value Line Geometric Index if all the stocks double
in price?

Running

10.9. If xi > 0 for i = 1, 2, . . . , n then for n ≥ 2, their arithmetic mean is
x̄ = (1/n)

∑n
i=1 xi.

(a) For what value of d is

1
d

(
x1 + · · · + xj−1 +

1
2
xj + xj+1 + · · · + xn

)
= x̄?

(b) Let a, b, and d1 be positive, and let d2 be such that

a + b

d1
=

a + 1
2b

d2
.

(i) Write d2 in terms of a, b, and d1.
(ii) Show that 1

2d1 < d2 < d1.
(c) How do the results from parts (a) and (b) relate to the computation of

the DJIA?

10.10. Let Sn, Tn, Un, and Vn be the prices of stocks S, T , U , and V on
day n for the stocks on p. 170. What relationship must they satisfy so that
the Value Line Geometric Index on day n is 200? 50?
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10.11. From (10.1) on p. 170, show that, for any day m, where m < t,

V LG(t) = V LG(m)
(

S1(t)
S1(m)

S2(t)
S2(m)

· · · Sn(t)
Sn(m)

)1/n

.

10.12. Compute the percent increase in the DJIA, S&P 500, and NASDAQ
Composite Index from 1980 through 2005.

10.13. Give an example of prices, S(0), S(1), . . ., dividends, D1, D2, . . ., and
required rate of return, k, for a stock that satisfies (10.4) on p. 176 but
not (10.3).

10.14. Verify the calculation in Example 10.7 on p. 179.

10.15. Verify the calculation in Example 10.8 on p. 181.

10.16. Verify that β = 2.21 for the Amazon.com and S&P 500 data in Ex-
ample 10.9 on p. 183.

Questions for Review

• What is the DJIA? How is it computed?
• How does a stock split affect the DJIA?
• What is the Standard & Poor’s 500? How is it computed?
• What is the NASDAQ Composite Index? How is it computed?
• What is the Value Line Geometric Average? How is it computed?
• What is the Value Line Arithmetic Average? How is it computed?
• What is the Value Line Theorem?
• What is the Average Quarterly Return Theorem?
• What is the Common Stock Theorem?
• What is the Constant Growth Theorem?
• What are some of the measures of the risk of a stock? How are they

computed?
• What is the difference between systematic and unsystematic risk?
• What is beta? How is the beta of a stock computed? How is the beta of a

portfolio computed?
• What is the CAPM?
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Options

American options are contracts that give buyers the right, but not the obli-
gation, to buy or sell a specified product at a specified price on or before a
specified date. Options have been written for numerous products such as gold,
wheat, tulip bulbs, foreign exchange, movie scripts, and stocks.1 For exam-
ple, an owner of gold might sell an option that gives the buyer the right to
purchase the gold anytime in the next 30 days at a specified price. The buyer
does not have to exercise that right; but if the buyer does, then the seller
must sell the gold. An interesting recent example involving airline tickets can
be found in [12].

Amanda Kendrick goes to a store where MP3 players are on sale for $100.
However, they are sold out, and all the rain checks have been taken. Someone
offers to sell her a rain check for $10, which she buys. The rain check expires
in one month. In the language of options, Amanda has bought an option (the
rain check) that has an expiration date of a month from now and an exercise
price of $100 at a premium of $10.

Consider the following possibilities.

• The store restocks the MP3 players pricing them at $90. The option is
out of the money because the exercise price is higher than the current
price. Amanda need not exercise her option because she could buy the
MP3 player from the store for $90.

• The store restocks the MP3 players pricing them at $150. The option is
in the money because the exercise price is lower than the current price.
Amanda could exercise her option by buying a $150 item for $100.

• Amanda is given an MP3 player, so she offers her option for sale. If the
option is out of the money on the expiration date, then it has no value. If it
is in the money, then the premium is positive and increases as the price of
the MP3 player increases, but can be no larger than the difference between
the price of the MP3 player and the exercise price on the expiration date.

1 An advanced treatment of options and other securities is given in [14]. An ele-
mentary and entertaining discussion of options is given in [24].
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The purchase price of an option is the premium. An option is in the
money if exercising the option yields a profit, excluding the premium. It is
out of the money if exercising the option is unprofitable. If the price of the
asset is equal to the exercise price, then the option is at the money.

In this chapter we deal with stock options, which give the holder the right
to buy or sell a stock for a specified price during a specified time period. Thus,
the buyer of an option has the right, but not the obligation, to buy or sell
the stock. The seller (writer) of an option must sell or buy the stock once
the option is exercised. For an investor who holds a stock and wants to be
protected against large price drops, options can guarantee a minimum price.
For an aggressive investor, options can provide a great deal of leverage, that
is, a small change in the price of a stock can be accompanied by a large change
in the value of the options. There are option strategies that can yield a large
profit for large moves in the price of a stock in either direction.

11.1 Put and Call Options

An American option gives its holder the right to buy or sell an asset for a
specified price, called the exercise or strike price, on or before a specified
date, called the expiration date. A European option gives the same right,
except the option may only be exercised on the expiration date.2 The terms
American and European refer to the type of option, not the geographical
region where the options are bought or sold. A call option gives the right
to buy the asset at a specified price. A put option gives the right to sell the
asset at a specified price.

Table 11.1 shows some options information from The Wall Street Journal
of August 22, 2000. The first column gives the name and current price of the
underlying stock. We see that IBM traded at $121.44 at the end of the previous
trading day. In the second column the exercise or strike prices are listed in
increasing order. For IBM the exercise prices are $110, $115, $120, $125, $130,
and $135. The third column lists the expiration months. For options that are
listed on an exchange, the last day to trade or to exercise the options is the
third Friday of the expiration month, unless the market is closed on that day.
The fourth column gives the number of trades during the previous trading day
for calls at that exercise price and expiration month. The fifth column gives
the last transaction price for that call option. The final two columns give the
volumes and last prices for the put options.

2 There are several other types of options. For example, a Bermudian option can
be exercised on specific dates before expiration. An Asian option calculates the
exercise price as the average price of the asset over the life of the option.
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Table 11.1. Option Information in August

— Call — — Put —
Options Strike Exp. Vol. Last Vol. Last

IBM 110 Oct 14 14.88 673 2.56
121.44 115 Sep 174 8 636 1.56
121.44 115 Oct 18 11 595 4.13
121.44 115 Jan 11 16.50 546 7.13
121.44 120 Sep 570 5.13 865 3.13
121.44 125 Sep 1991 2.75 122 5.75
121.44 125 Oct 484 6 . . . . . .
121.44 130 Sep 1136 1.13 . . . . . .
121.44 130 Oct 984 4.13 30 11.75
121.44 135 Sep 688 0.38 5 13.50
121.44 135 Oct 608 2.69 . . . . . .

The first line shows that the holder of that call option can buy a share of
IBM at the exercise price of $110 anytime until the third Friday of October.
This is called an IBM October 110 call option, which sold at $14.88 a share.
Alternatively, the holder of that put option can sell a share of IBM for $110
in the same time frame. This is called an IBM October 110 put option, which
sold at $2.56 a share.

Option transactions take place in terms of contracts for 100 shares. For
example, if the holder of an IBM September 120 call option exercises the
option, then the holder buys 100 shares of IBM at $120 a share, for a total
of $12,000 (excluding commissions). Corresponding to this trade is another
trade involving a writer (seller) of an IBM September 120 call option. The
last price of an IBM September 120 call option is $5.13.

Notice that the last price for an IBM October 110 call option is greater
than that of an IBM October 115 call option and that the last price of an
October 110 put option is less than that of an October 115 put option. Also,
the last price for an IBM September 115 call option is less than that of an
IBM October 115 call option. We explain why these properties hold as follows.

• The holder of an IBM October 110 call option has the right to buy the
stock at $110 a share, whereas the holder of an October 115 call option
would pay $115 a share. This makes the IBM October 110 call option more
valuable than an October 115 call option, and thus it has a higher price.

• The IBM September 115 and October 115 call options both give the right
to purchase IBM stock at $115 a share, but because the IBM October 115
call option expires later than the IBM September 115 call option, there
is greater opportunity for the price of IBM stock to reach a level higher
than $115 during the life of the October option. Thus, the October option
is more valuable, and it should have a higher price.
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If the option is out of the money, then it costs less than if it were in the
money. For a call option, if the stock price is less than the exercise price, then
the option is out of the money. If the stock price is much less than the exercise
price, then there is a very good chance that the option will expire worthless,
especially if the expiration date is near. In this case, the price of the option
will be low. If we look at the IBM September 135 call option, then we see that
the last price of the option was 0.38, which makes sense, since the option has
about one month left before expiration and is “deep” out of the money.

If the option is in the money, then the value of the option will be high. In
fact, if the option is deep in the money, then a change of $1 in the price of
the stock is typically matched by a change of approximately $1 in the price of
the option. Note also that the closer to the expiration date of the call option,
the lower the price of the option.

We quantify this by deriving a formula that gives the prices of call and
put options at expiration as a function of the price of the stock by proving
the following theorem.

Theorem 11.1. The Prices of Call and Put Options Theorem.3

Suppose that T is the time of expiration, that X is the exercise price, and
that, at time T , the quantity S(T ) is the price of the stock, while C(T ) and
P (T ) are the prices per share of the call and put options, respectively. Then

C(T ) =
{

0 if S(T ) ≤ X,
S(T ) − X if S(T ) > X,

(11.1)

and

P (T ) =
{

0 if S(T ) ≥ X,
X − S(T ) if S(T ) < X.

(11.2)

Proof. We prove (11.1), which is illustrated in Fig. 11.1, and leave the proof
of (11.2) to you (see Problem 11.1).

Because an investor would not buy a call option if the option were out of
the money, that is, S(T ) ≤ X, we have C(T ) = 0 if S(T ) ≤ X, which is the
first part of (11.1).

Now, assume that just before expiration the price of the call option is equal
to C(T ), and the price of the underlying stock is equal to S(T ).

There are only three possibilities: C(T ) < S(T ) − X, C(T ) > S(T ) − X,
or C(T ) = S(T ) − X. We now show that the first two are not possible, which
leaves the third, which is the second part of (11.1).

If C(T ) < S(T )−X, then an investor could buy the call option, exercise it
for X, obtaining the stock, and then sell the stock for S(T ), making a profit
of S(T ) − C(T ) − X. Such a situation could not exist for any length of time.

3 This theorem makes several assumptions. For example, it assumes that there are
no transaction costs, and that the call option, the put option, and the stock can
be purchased at the given prices.
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If C(T ) > S(T ) − X, then C(T ) + X > S(T ), so the cost of buying the
call and exercising it, C(T ) + X, is greater than the price of the stock. Thus,
an investor who wanted the stock would never buy the call option.

Thus, C(T ) = S(T ) − X if S(T ) > X. ��

S(T)

C
(T

)

X0

C(T) = S(T) -X

Fig. 11.1. Call-stock price relationship at expiration

There are several factors that affect the premium including the price of
the underlying stock, the time to expiration, and the volatility of the returns
on the stock.4 The time to expiration is especially important. If the option
is in the money, then the intrinsic value of the option is defined as the
difference between the price of the stock and the exercise price. If the option
is out of the money, then the intrinsic value is zero. The time value is the
difference between the premium and the intrinsic value. Thus, the premium
is equal to the sum of the option’s intrinsic value and time value.

For example, if the price of the stock is $35 per share, if the exercise price
for a corresponding call option is $30, and if the call premium is $7, then the
intrinsic value is $35 − $30 = $5, and the time value is $7 − $5 = $2.

Once an investor has established an option position, there are three pos-
sible alternatives.

1. Liquidate the position. The writer (seller) of an option may repurchase
the option in the marketplace. The buyer of an option may sell the con-
tract. In both cases, these transactions are offsetting transactions, and the

4 One measure of the volatility of a stock is the variance of the continuously com-
pounded rate of return of the stock.
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investor’s option position is terminated. This is the only way in which the
holder of a European option may dispose of this asset prior to expiration.

2. Hold the position. If the option expires out of the money, then the writer
of the option will realize the premium as a gain (less any commissions).

3. Exercise the option. For example, the buyer of a call option buys the stock
at the exercise price. The writer of the option sells the stock at the exercise
price.

Suppose that a company’s stock is trading at S(t) per share, that the price
of a corresponding call option is C(t), that the price of the corresponding put
option is P (t) at time t, 0 ≤ t ≤ T , and that the exercise price is X. Because
in practice investors do not sell assets for negative amounts, we assume that
S(t) ≥ 0, X ≥ 0, C(t) ≥ 0, and P (t) ≥ 0. We now show that the following
relations hold:

C(t) ≥ S(t) − X, (11.3)

P (t) ≥ X − S(t). (11.4)

The proofs of (11.3) and (11.4) rely on the concept of arbitrage, which
we now define. Arbitrage is a no risk, no net investment strategy that, with
positive probability, generates a profit. In other words, arbitrage is the invest-
ment counterpart of a “free lunch”. In practice arbitrage situations cannot
exist for an extended period of time (why?), so henceforth we assume that
arbitrage cannot happen.

We prove (11.3). The proof of (11.4) is left to you (see Problem 11.2).
Clearly, if S(t) ≤ X, then (11.3) holds because in this case S(t) − X ≤ 0,
and we must have C(t) ≥ 0. Now, we consider the remaining case, namely
S(t) > X. We give a proof by contradiction, that is, we assume that C(t) <
S(t) − X and show that this leads to an arbitrage situation, which cannot
occur. If S(t) > X and C(t) < S(t) − X, then an investor could purchase
the call option for C(t), exercise it for X, obtaining the stock, and then sell
the stock for S(t). The investor’s profit is then S(t) − C(t) − X > 0 because
C(t) + X < S(t). Assuming that the transactions can be made (essentially
simultaneously) and that there are no transaction costs, the investor has a
risk-free, no net cost opportunity, that is, arbitrage, which cannot occur.

11.2 Adjusting for Stock Splits and Dividends

In general, option contracts are adjusted for stock splits or dividends paid of
more than 10% and are not adjusted for dividends paid of less than 10%.
We describe general rules for these adjustments. However, an adjustment
committee, as described in the By-Laws and Rules5 of the Options Clearing
Corporation, is ultimately responsible for deciding whether an adjustment is
appropriate.
5 These can be found at http://www.optionsclearing.com, accessed July 1, 2006.
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We first consider even stock splits. Suppose that the stock splits 2 for 1.
The owner of an August 50 call option contract now owns two August 25 call
option contracts. Each contract is for 100 shares, as before. In the case of even
splits, the exercise price is divided by the split factor (2 in this case), and the
number of contracts is multiplied by the split factor. In the case of an odd
split, say 5 for 2, the situation is different. Suppose that the stock splits 5
for 2. Then the owner of an August 50 stock call now owns one August 20
stock call, but the contract is for 250 shares. In the case of an odd split, the
number of contracts does not change, but the number of shares per contract
is multiplied by the split factor (5/2 in this example), and the exercise price
is divided by the split factor.

Adjustments are also made for stock dividends of more than 10%. The
adjustments are made on the ex-dividend date.6 Suppose that a stock declares
a 25% stock dividend. Then the holder of an August 50 call option contract
now owns one August 40 call option contract for 125 shares. In the case of
stock dividends of more than 10%, the exercise price is divided by 1 + d,
where d is the percent of the dividend (expressed as a decimal). The number
of shares per contract is multiplied by 1 + d.

Notice that in all cases, the total aggregate price (the number of con-
tracts times the exercise price per contract times the number of shares per
contract) does not change. For example, in the previous example the total
aggregate price is 1 × 40 × 125 = $5,000, the same as the original price of
1 × 50 × 100 = $5,000. Table 11.2 summarizes the different possibilities.

Table 11.2. Effects of Stock Splits and Dividends on Option Prices

Strike Number of Number of
Price Contracts Shares/Contract

Even split (2 for 1) 25 2 100
Odd split (5 for 2) 20 1 250
Dividend > 10% 40 1 125
Dividend ≤ 10% 50 1 100 (no change)

6 When a company declares a dividend, it sets a date by which a stock buyer must
be on the company’s books as a shareholder in order to receive the dividend. After
this date is set the stock exchanges set the ex-dividend date, which is usually two
business days before the record date. If a buyer purchases a stock on its ex-
dividend date or later, the buyer does not receive the next dividend payment; the
seller does. If a buyer purchases the stock before the ex-dividend date, the buyer
receives the dividend.
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11.3 Option Strategies

We now consider some common option strategies. Of particular emphasis are
the regions of profit and loss, the break-even points, and the maximum profit
and loss. In the following, we assume that there are no transaction costs and
that the specified prices can be realized.

11.3.1 Buying Calls

Suppose that the price of the stock at time t is S(t), the price of the call is
C(t), and the exercise price is X, where 0 ≤ t < T . If X > S(t), then the
option is out of the money, and the option should not be exercised, so we
consider the case X ≤ S(t). From 11.3, we have C(t) ≥ S(t) − X, so the
holder of the call option makes C(t) by selling the option, thereby liquidating
the position. If the holder of the option exercises it and then immediately sells
the stock, then the holder earns S(t)−X ≤ C(t). Therefore, it is never in the
interest of the holder to exercise a call option prior to expiration.

We now look at what happens at expiration. Suppose that Tom Kendrick
is bullish7 on the stock of HIGH Corp. The stock is currently at $48 a share,
and the September 50 call option is at $2 a share. Because X = 50, the option
is out of the money. Tom buys one September 50 call option, so his cost, C, is
$2 per share. If he sells the contract at or before expiration, then he makes a
profit if and only if the current option price is greater than $2. If he waits until
expiration, then the price of the contract per share, C(T ), is given by (11.1),
which in this case is

C(T ) =
{

0 if S(T ) ≤ 50,
S(T ) − 50 if S(T ) > 50.

Tom’s profit or loss per share is C(T )−C. He makes a profit if C(T ) > C,
that is, if S(T )− 50 > 2 or S(T ) > $52. He makes a loss if C(T ) < C, that is,
if S(T ) < $52. His total profit is 100(C(T )−C), which, if negative, represents
a loss. His potential profit is unlimited because at expiration each $1 increase
in the price of the stock is matched by a corresponding $1 increase in the
price of the option. His potential loss is limited to his initial investment of
$200 ($2 × 100 shares). Thus, we have Fig. 11.2, which shows his total profit
or loss on 100 shares.

From (11.1) we have

C(T ) =
{

0 if S(T ) ≤ X,
S(T ) − X if S(T ) > X.

7 Someone is bullish on a stock if that person believes that the stock will increase
in price. Someone is bearish if that person believes that the stock will decrease
in price.
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Fig. 11.2. Tom Kendrick’s total profit at expiration

If C is the price paid for the call option per share, then the profit per share,
C(T ) − C, is

Profit per share =
{ −C if S(T ) ≤ X,

S(T ) − X − C if S(T ) > X,

so the profit-loss diagram for buying calls is of the form shown in Fig. 11.3.
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Fig. 11.3. Profit per share at expiration when buying calls
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Notice that Figs. 11.2 and 11.3 are not the same. The first shows the total
profit. The second shows the profit per share. However, their shapes are the
same.

11.3.2 Buying Puts

Helen Kendrick is bearish on the stock of GOLO Corp. The stock is trading
at $78 a share, and the May 80 puts are selling at $5. (The intrinsic value is
$2 because the put is in the money by $2, and the time value is $3.) Helen
purchases 10 May 80 puts on GOLO, for a total cost of 10×$5×100 = $5,000.
If P is the price paid for the put option per share, then we have P = 5.

At expiration, Helen may close out her position by selling the put. The
price of the put per share at expiration is given by (11.2), which in this case
is

P (T ) =
{

0 if S(T ) ≥ 80,
80 − S(T ) if S(T ) < 80.

Helen’s profit or loss per share is P (T )−P . She makes a profit if P (T ) > P ,
that is, if 80 − S(T ) > 5 or S(T ) < $75. She makes a loss if P (T ) < P , that
is, if S(T ) > $75. Her total profit is 10 × 100(P (T ) − P ), which, if negative,
represents a loss. Her maximum profit occurs at a stock price of zero. (This is
actually possible as one of the authors discovered.) At this point the put can
be sold for $80, and Helen’s total profit is 10 × $80 × 100 − $5,000 = $75,000.
As with Tom, Helen’s maximum loss is her original investment, in this case
$5,000. Notice that Helen paid only $5,000 to establish her position, but her
profit per $1 decrease in share price is $1 × 10 × 100 = $1,000 because she
bought 10 option contracts. In Problem 11.3 you are asked to draw the profit-
loss diagram for Helen.

From (11.2) we have

P (T ) =
{

0 if S(T ) ≥ X,
X − S(T ) if S(T ) < X.

If P is the price paid for the put option per share, then the profit per share,
P (T ) − P , is

Profit per share =
{ −P if S(T ) ≥ X,

X − S(T ) − P if S(T ) < X.

The profit-loss per share diagram for buying puts is shown in Fig. 11.4. What
is the value of the vertical intercept in this figure? Identify this on the figure.
What does this mean in realistic terms?
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Fig. 11.4. Profit per share at expiration when buying puts

11.3.3 Writing Calls

A person who is bearish on the stock of a company may write calls on the
stock. The writer of the call is obliged to sell the stock at the exercise price if
the call is exercised. There are two different situations, depending on whether
the writer of the call owns the stock or not. We consider the more risky
situation first.

Writing Uncovered Calls
Uncovered calls are calls in which the writer of the call does not own the

underlying stock. This is considered one of the most risky option strategies
because the uncovered call writer has unlimited loss potential. The writer of
an uncovered call is subject to a margin requirement.

The stock of DROP Corp. is currently trading at $63 a share. A September
60 call ($3 in the money) is selling for $6. Hugh Kendrick writes 10 September
60 calls on DROP. His premium for the transaction is 10× $6× 100 = $6,000.
He does not own the stock, so the calls are uncovered. Hugh keeps the entire
premium if DROP closes at or below the exercise price of $60 at expiration.
He loses $1 × 10 × 100 = $1,000 times (S(T ) − 60) if the price of the stock
is above $60 at expiration but keeps the premium of $6,000. Thus, his break-
even point is $66. If S(T ) > 66, then he has a net loss of $1,000(S(T ) − 66).
Thus, Hugh has unlimited loss potential. Figure 11.5 shows Hugh’s profit or
loss at expiration.

If DROP increases in price, then Hugh may receive a maintenance call.
He can liquidate his position at any time by buying 10 September 60 calls on
DROP.
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Fig. 11.5. Hugh Kendrick’s position at expiration for writing uncovered calls

In general, we have

Profit per share =
{

C if S(T ) ≤ X,
X − S(T ) + C if S(T ) > X,

where C is the price per share received for the call, and X is the exercise price
per share. Fig. 11.6 shows the profit-loss per share diagram for this case.
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Fig. 11.6. Per share uncovered call writing position at expiration
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Writing Covered Calls
Covered calls differ from uncovered calls in that the writer of covered calls

owns the appropriate number of shares of the underlying stock. Referring to
the last example, if Hugh had bought 1,000 shares of DROP at $62 a share
prior to writing the calls, then he could supply the shares if the option were
exercised.

We now consider Hugh’s initial position if he wrote covered calls on DROP
and had previously purchased 1,000 shares at $62 a share. He paid $62,000 for
the stock and received $6,000 for the call options. Therefore, the net cost of
establishing the position is $56,000. This situation is more complicated than
the uncovered call case. Note that Hugh keeps the $6,000 premium if DROP
closes at or below $60 at expiration. However, if it closes at $56 a share at
expiration, then he loses $1,000(62 − 56) = $6,000 due to the decrease in the
value of his purchased shares, making a zero net profit. If the stock closes
below $56, then he has a net loss. His maximum profit occurs if DROP closes
at or above $60 at expiration. At that point his profit is $6,000 for the call
option and −$2,000 for the cost of the shares purchased, for a net profit of
$4,000. Hugh’s profit-loss diagram is shown in Fig. 11.7.
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Fig. 11.7. Hugh Kendrick’s covered call writing position at expiration

In general, for the writer of a covered call, we have

Profit per share =
{

S(T ) − S(0) + C if S(T ) ≤ X,
X + C − S(0) if S(T ) > X,
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where S(0) is the price paid for the stock, C is the price per share received
for the call, and X is the exercise price per share. You are asked to prove this
in Problem 11.5 and to draw the corresponding profit-loss diagram.

11.3.4 Writing Puts

A person who is bullish on a stock may write puts on the stock. The writer of a
put is obligated to buy the stock at the exercise price if the option is exercised.
As with the writing of calls, there are two different cases when writing puts.

Writing Uncovered Puts
In this case, the writer of the put does not have cash on deposit equal

to the exercise price times the number of shares written and is not short the
stock.8 The writer of an uncovered put is subject to a margin requirement.

Tom Kendrick is bullish on the stock of RISE Corp. Tom writes 10 Septem-
ber 50 puts on RISE at $2 per share. His premium for the transaction is
10 × $2 × 100 = $2,000. Tom does not have cash on deposit equal to the total
exercise price (10 × $50 × 100 = $50,000) and is not short the stock, so this is
an uncovered put, and he is subject to a margin requirement.

If the stock of RISE closes at a price greater than $50 at expiration, then
the puts are not exercised, and Tom keeps the premium of $2,000. If the stock
closes below $50 a share, then the puts should be exercised, and in that case,
he loses 10× $1× 100 = $1,000 for each dollar below $50. Thus, Tom’s break-
even point is $48, and his maximum loss occurs if RISE expires worthless, in
which case Tom loses 10 × $50 × 100 = $50,000 due to the obligated purchase
of the stock but keeps the $2,000 premium, for a net loss of $48,000. Fig. 11.8
shows the profit-loss diagram.

In general, for an uncovered put we have

Profit per share =
{

P − X + S(T ) if S(T ) ≤ X,
P if S(T ) > X,

where P is the price per share received for the put, and X is the exercise price
per share. Fig. 11.9 shows the profit-loss per share diagram for the put writer.
You are asked to prove this in Problem 11.6.

Writing Covered Puts
A put is considered covered if the writer of the put is either short the

stock or has cash on deposit equal to the total exercise price. This case is
more complicated than the case with uncovered puts, and we shall see that in
this case there is no limit to the potential loss if the writer is short the stock.

Using the last example, suppose that Tom Kendrick is short 1,000 shares of
RISE, having borrowed the 1,000 shares from his investment firm and selling

8 The expression “short the stock” means “having a short position in the stock”.
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Fig. 11.8. Tom Kendrick’s uncovered put writing position at expiration
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Fig. 11.9. Uncovered put per share writing position at expiration

them for $52 a share. In this case, Tom has $52,000 on deposit,9 and thus he
has a covered position. The exercise price is $50, and Tom writes 10 September
50 puts on RISE for $2 a share.

In this case, Tom loses 10 × $1 × 100 = $1,000 for each dollar above $52
at which the stock closes because he is short the stock. Tom’s break-even
point is $54. At this point Tom has to pay 10 × $54 × 100 = $54,000 to cover

9 This does not include any margin paid to the broker.
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his short position, offsetting the $52,000 + $2,000 = $54,000 that he received
from the short sale and writing of the put. If the stock closes above $54 a
share, then Tom loses money, and he has unlimited potential losses. Note that
the put is not exercised if the stock closes above $50 a share at expiration.
Tom’s maximum profit occurs if the stock closes at or below $50 a share at
expiration. If the stock closes below $50 at expiration, then the put should be
exercised, and Tom pays 10 × $50 × 100 = $50,000 for the obligated purchase
of the stock. These shares can cover his short position. He makes a profit of
10×($52,000−$50,000) = $2,000 from the sale and purchase of the stock, and
he keeps the $2,000 from the sale of the put, for a profit of $4,000. Fig. 11.10
shows the profit-loss diagram.
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Fig. 11.10. Tom Kendrick’s covered put writing position at expiration

In general,

Profit per share =
{

S(0) + P − X if S(T ) ≤ X,
S(0) + P − S(T ) if S(T ) > X,

where S(0) is the price per share received for the short sale, P is the price
per share received for the put, and X is the exercise price per share, and we
assume that S(0) + P > X. The profit-loss per share diagram for the writing
of covered puts, where the writer is short the stock, is shown in Fig. 11.11.
You are asked to prove this in Problem 11.7. What is the value of the vertical
intercept in this figure? Identify this on the figure. What does this mean in
realistic terms?

The maximum profit occurs when the price of the stock at expiration is
less than or equal to X. The break-even point occurs when the stock price is
S(0) + P , and there are unlimited potential losses.
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Fig. 11.11. Covered put per share writing position at expiration

11.3.5 Straddles

A straddle is the purchase of a call and a put or the sale of a call and a put on
a stock, with the exercise price and expiration date being the same for both
options. The buyer of a straddle expects a large change in the price of the
stock but is unsure of the direction of the change. If there is a large increase
in the price of the stock, then the buyer of the straddle may profit from the
call option, whereas if there is a large decrease in the price of the stock, then
the buyer may profit from the put option. Conversely, the writer of a straddle
expects little or no change in the price of the stock and may profit from the
premiums received from the sale of the options. We study the case where the
investor buys a straddle. The case of the writer of a straddle is left as an
exercise (see Problem 11.8).

Suppose that Helen Kendrick believes that the stock of MOVE Corp. is
due for a large change in price but is unsure as to the direction of the change.
MOVE is currently selling at $40 a share. The June 40 call options on MOVE
are selling at $3 a share, and the June 40 put options are selling at $2 a share.
Helen buys 10 June 40 calls and 10 June 40 puts on MOVE, paying a total of
(10 × $3 × 100) + (10 × $2 × 100) = $5,000. If MOVE is below $40 a share at
expiration, then Helen profits from the put position. If MOVE is above $40
a share at expiration, then she profits from the call position. The profit-loss
diagram for Helen’s position is shown in Fig. 11.12.

Helen breaks even if MOVE closes at $45 or at $35 at expiration. She loses
if the price is between $35 and $45 at expiration. Her maximum loss occurs
if MOVE closes at the exercise price of $40 a share at expiration, in which
case she loses the entire premium of $5,000. Her potential profit from the call
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Fig. 11.12. Helen Kendrick’s straddle position at expiration

option is unlimited, whereas the maximum profit from the put option occurs
if the stock expires worthless, in which case the put option yields a profit of
$40,000, and her total profit is $40,000 − $5,000 = $35,000.

In general,

Profit per share =
{

X − S(T ) − C − P if S(T ) ≤ X,
S(T ) − X − C − P if S(T ) > X,

where C is the price paid per share for the call option, P is the price paid per
share for the put option, and X is the exercise price per share. The profit-loss
per share diagram for the buyer of a straddle is shown in Fig. 11.13. You are
asked to prove this in Problem 11.9. What is the value of the vertical intercept
in this figure? What is the minimum value? Identify these on the figure. What
do these mean in realistic terms? Does the function have a maximum value?

There are many other option strategies. The ones that we have discussed
are very common.

11.4 Put-Call Parity Theorem

Consider a call option with price C, and a put option with price P , where
both are European options written on the same stock. (A European option
may not be exercised prior to expiration.) Both options have the same exercise
price X and expiration date T . At time t = 0 we form two portfolios. The first
consists of the call option and a risk-free zero-coupon bond, with a face value
of X, maturing at time T . The second portfolio consists of the stock and the
put option.
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Fig. 11.13. Straddle position at expiration

The following table compares the values of the two portfolios at time T ,
where S(T ) is the price of the stock at time T .

S(T ) ≤ X S(T ) > X
Portfolio 1: Value of call option 0 S(T ) − X

Value of bond X X
Total value X S(T )

Portfolio 2: Value of stock S(T ) S(T )
Value of put option X − S(T ) 0
Total value X S(T )

It follows that, regardless of the stock price at time T , the values of the two
portfolios are the same at time T . Therefore, by our no arbitrage assumption,
the initial costs of creating the two portfolios should be the same.

The cost of creating the first portfolio is C + Xe−i(∞)T , where i(∞) is the
continuously compounded risk-free rate of return. The cost of creating the
second portfolio is S(0) + P , where S(0) is the price of the stock at time 0.
This yields the following theorem.

Theorem 11.2. The Put-Call Parity Theorem.
Suppose that C is the price of a call option, that P is the price of a put option
(where both are European options written on the same stock), that both options
have the same exercise price X and expiration date T, that S(0) is the price
of the stock at time 0, and that the stock pays no dividends. Then

C + Xe−i(∞)T = S(0) + P,

where i(∞) is the continuously compounded risk-free rate of return.
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We can view this theorem in the following way. Suppose that C +
Xe−i(∞)T < S(0) + P . Then the value of the second portfolio is greater than
the value of the first portfolio. This presents the following arbitrage opportu-
nity to an investor: Purchase the call for C, purchase the bond for Xe−i(∞)T ,
short the stock, and sell the put for P . The total cost of establishing this
position is C + Xe−i(∞)T − S(0) − P < 0, that is, the investor has made an
initial net profit. Recalling that we are dealing with European options and
that the call and put options cannot be exercised prior to expiration, then we
have the following possible positions at time T .

S(T ) ≥ X S(T ) < X
Value of call option S(T ) − X 0
Value of bond X X
Value of stock (short) −S(T ) −S(T )
Value of put (short) 0 −(X − S(T ))

0 0

Thus, the value of the portfolio at time T is 0, regardless of the price of
the stock, S(T ). Since there is an initial net profit in setting up the portfolio,
there is a risk-free, guaranteed profit. We assume that this arbitrage situation
cannot exist.

Similarly, if C + Xe−i(∞)T > S(0) + P , then an investor can short the call
for C, short the bond for Xe−i(∞)T , purchase the stock for S(0) and purchase
the put for P . In Problem 11.10 you are asked to verify that this leads to an
arbitrage opportunity.

The following example illustrates the use of the Put-Call Parity Theorem.

Example 11.1. HOT1 is currently selling at $95 per share, pays no dividends,
and has call and put options expiring at time T = 0.5 (six months) with the
same exercise price of $100. The call costs $5 and the put costs $8, and the
continuously compounded risk-free rate of return is 10%.10 Calculate the costs
of creating Portfolios 1 and 2 discussed on p. 209.

Solution.
Portfolio 1.

C + Xe−i(∞)T = 5 + 100e−0.10×0.5 = 5 + 95.12 = 100.12.

Portfolio 2.
S(0) + P = 95 + 8 = 103.

Thus, the cost of creating the first portfolio is less than the cost of creating
the second portfolio. We take advantage of this arbitrage situation by “buying”
the first portfolio and “selling” the second portfolio. That is, we purchase the

10 Note that the put is in the money and thus has a higher premium than the call.
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call for $5, we purchase the bond for $95.12, we short the stock for $95, and
we sell the put for $8. This represents a net profit of $2.88. (Note that when
we short a stock, we must pay any dividends to the lender of the stock. This
is one of the reasons that we assumed that the stock pays no dividends.) At
time T (six months) we have the following values for the portfolios.

S(T ) ≤ X S(T ) > X
Value of call option 0 S(T ) − 100
Value of bond 100 100
Value of stock (short) −S(T ) −S(T )
Value of put (short) −100 + S(T ) 0
Total 0 0

We have achieved the desired result. We make a net profit of $2.88 in
creating the position, and the value of the portfolio at time T is 0, independent
of the price of the stock, S(T ). �

Let us review some of the assumptions made. We assumed that we could
purchase a risk-free bond with a face value of X that matures at time T .
Since the bond is risk-free, this excludes such investments as corporate bonds,
municipal bonds, and callable bonds. We also assumed that the portfolio could
be created at the stated values. For example, the stock, the bond, and the
call and put options could be purchased (or sold short) at the given prices,
in effect simultaneously. This is a liquidity assumption. We assumed that
the options were European, so they cannot be exercised prior to expiration.
We previously pointed out that, at least in principle, American call options
are never exercised prior to expiration, but there are cases where it makes
sense to exercise put options. The following (extreme) case illustrates this
point: Suppose that a put is bought on a company that files for bankruptcy,
after which the stock price is zero. Then it is obvious that the put should be
exercised, since the price of the stock can go no lower. A similar argument
holds if the price of the stock falls to a low non-zero price.

11.5 Hedging with Options

Hedging involves offsetting the risk of a given investment or portfolio by in-
vesting in a different asset. For example, an investment in a particular stock
may be accompanied by the purchase of a put option.

Example 11.2. Wendy Kendrick purchases 100 shares of DROP at $30 a share.
She is worried that the stock may decrease in price and wants to limit her
potential loss. She purchases one put option on DROP with an exercise price
of $25. What happens if the price of DROP falls below $25?

Solution. If the stock price falls below $25, then Wendy can exercise the put
option and limit her loss due to the decrease in stock price to 100 × ($30 −
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$25) = $500. This is an example of a protective put. Note that she pays
$30 a share for the stock, pays for the put option, and pays commissions for
each transaction. �

Now, consider the following example: At the beginning of the year, GOUP
trades at $50 a share and it can move to either $25 or $100 per share by the
end of the year. (Assume that these are the only possibilities.) Suppose that
the continuously compounded risk-free rate of return is 5% and that a call
option for GOUP has an exercise price of $75. At expiration the call price is
$25 if the price of the stock is $100 and $0 if the price of the stock is $25.
This is illustrated in the following table.

S(T ) ≤ X S(T ) > X
S(T ) 25 100
C(T ) 0 25

We illustrate hedging in the following way. We wish to create a portfolio
by purchasing ∆ shares of the stock and borrowing the present value of B
dollars discounted at 5% compounded continuously. This portfolio is to have
the same value as another portfolio consisting of one call option. In order to
owe B at the end of the year, we must borrow Be−i(∞)

. In order to create the
desired portfolio, the following equation must be satisfied

∆S(T ) − B = C(T ),

where S(T ) is the price of the stock at the end of the year and C(T ) is the
price of the call on the expiration date. This leads to the system of equations

25∆ − B = 0, and
100∆ − B = 25.

Solving for ∆ and B gives ∆ = 1/3 and B = 25/3. Thus, we purchase 1/3
share of GOUP at $50 a share and borrow (25/3)e−0.05 = $7.93. (Note that
we have assumed that we can buy fractional shares of the stock.) At the end
of the year we have the following values for the portfolios.

S(T ) ≤ X S(T ) > X
Portfolio 1: One call option 0 25

Total 0 25

Portfolio 2: 1/3 share of GOUP 8.33 33.33
Loan Repay −8.33 −8.33
Total 0 25

Thus, we have replicated the first portfolio with 1/3 share of GOUP and a
loan of $7.93 at 5% compounded continuously. What does this tell us? Using
the usual arbitrage arguments, the costs of creating the two portfolios must
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be the same. The cost of 1/3 share of GOUP is 1/3 × $50 = $16.67. The cost
of the loan is −$7.93. Thus, the total cost to set up this portfolio is $8.74.
Because Portfolio 1 consists of one call option, the price of a call option on
GOUP should be $8.74.

We now generalize the hedging method. We have a stock whose current
price is S(0), with a call expiring at time T > 0 with exercise price X. The
continuously compounded risk-free rate of return is i(∞). The stock can either
increase in price to SU or decrease in price to SD at expiration, and we
assume that these are the only two possibilities. We wish to create a portfolio
consisting of ∆ stock shares and cash in a risk-free investment with a future
value of B. Then the value of our hedged portfolio agrees with the value of
the call option, regardless of the price of the stock at time T , if the following
two equations are satisfied:

∆SU − B = CU ,

∆SD − B = CD,

where SU and SD are the possible values of the stock at expiration, and
CU and CD are the corresponding prices of the call options. Solving these
equations for ∆ and B, we find that

∆ =
CU − CD

SU − SD
,

the slope of the line passing through the points (SD, CD) and (SU , CU ), and
that

B =
CUSD − CDSU

SU − SD
.

In our example, we have SD = 25, SU = 100, CD = 0, and CU = 25.

We now consider a slightly different problem: that of hedging with a port-
folio constructed by purchasing ∆ shares of the stock and selling one call
option. We make the same assumptions and use the same notation as before.
We call the quantity

CU − CD

SU − SD

the hedge ratio.

We have the following theorem.

Theorem 11.3. The Hedge Ratio Theorem.
The hedge ratio is the ratio of stock held for every one call option sold so that
the value of the portfolio is unaffected by the price of the stock.
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Proof. For the proof of the theorem, we simply show that the value of the
portfolio is the same for the two values SU and SD. When the price of the
stock is SU , then the value of the portfolio is

∆SU − CU =
CU − CD

SU − SD
SU − CU

=
CUSD − CDSU

SU − SD
.

When the price of the stock is SD, then the value of the portfolio is

CU − CD

SU − SD
SD − CD =

CUSD − CDSU

SU − SD
.

This completes the proof of the theorem. ��
An important feature of the Hedge Ratio Theorem is that the result is

independent of the probabilities that the stock increases in price from S(0) to
SU or decreases in price from S(0) to SD.

We note that in the previous example we had SU = 100, SD = 25, CU = 25,
and CD = 0, so for that example,

∆ =
25 − 0

100 − 25
=

1
3
,

that is, we should hold 1/3 share of stock for every call option sold.
Referring to this example, suppose that the call option is overpriced, say

C = 10 instead of 8.74. Then we have S(0) = 50, SU = 100, SD = 25,
CU = 25, CD = 0, and i(∞) = 0.05.

We can use arbitrage to make a profit as follows: write three call options at
10, purchase one share at 50, and borrow $20 at 5% compounded continuously.
Our initial cash flow is 30 − 50 + 20 = 0, so there is no cost of financing the
portfolio. Let us see what happens at expiration:

S(T ) = 25 S(T ) = 100
Write three options 0.00 −75.00
Purchase one share 25.00 100.00
Borrow $20 at 5% compounded continuously −21.03 −21.03

3.97 3.97

We have a riskless investment. The initial investment was zero, and we
have a profit of $3.97, independent of the price of the stock at expiration.
Note that to get the desired profit, we simply used the hedge ratio of 1/3
(one-third share of stock for every call option sold) and borrowed enough
money at the risk-free interest rate to have no initial cost.
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11.6 Modeling Stock Market Prices

In his doctoral thesis [2] written in 1900, Bachelier laid the groundwork for
the study of stock market pricing. A discussion of different approaches is given
in [6]. Much of the material in this and the next section follows arguments
developed in [23].

We now discuss the pricing of options. Because the price of an option
depends, in large part, on the price of the underlying stock, we first discuss
the pricing of stocks, which in turn depends on how stock market prices are
modeled.

Suppose that we follow the price of a stock over time. Let S(t), 0 ≤ t < ∞,
denote the price of the stock at time t.

One model of these prices is the Brownian motion model. With this
model we assume that if 0 ≤ t0 < t1 < · · · < tn−1 < tn, n ≥ 1, then
S(ti+1) − S(ti), i = 0, 1, . . . , n − 1, has a normal distribution with mean
µ(ti+1 − ti) and variance σ2(ti+1 − ti) and that the random variables S(t1) −
S(t0), . . . , S(tn) − S(tn−1) are independent. We assume that S(t0) is known.

Thus, the change in the price of the stock has a normal distribution, with
the mean and variance of the price change linear in the length of the interval.
The price change is independent of the previous prices. One of the drawbacks
of this model is that the change S(ti+1) − S(ti) does not depend on the price
S(ti) at time ti, i = 0, 1, . . . , n − 1. Thus, for example, the probabilities that
a stock with price S(tn) = $2.00 at time tn and that a different stock with
price S(tn) = $100.00 at time tn both increase in price by $1.00 in the next
time period are the same.

A modified version of this model considers the price ratios S(ti+1)/S(ti),
rather than differences. This is the Geometric Brownian Motion Model.
For this model it is assumed that the ratios S(t1)/S(t0), . . . , S(tn)/S(tn−1) are
independent and that the random variable ln(S(ti+1)/S(ti)) is a normal ran-
dom variable with mean µ(ti+1−ti) and variance σ2(ti+1−ti), i = 0, . . . , n−1.
Note that, with this model, S(ti+1)/S(ti) has a lognormal distribution, and
if two stocks have this distribution with the same parameter σ2, then the
likelihood that each stock increases in price by the same percent is the same
for each stock.

The binomial model of stock prices is a discrete model. We assume that
a stock trades during a fixed time interval [0, T ], and we divide the interval
into n equally spaced subintervals[

0,
T

n

]
,

(
T

n
,
2T

n

]
, . . . ,

(
(n − 1) T

n
, T

]
.

We define t0 = 0, t1 = T/n, . . . , tn = T . This is called the n-step model.
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The model is the following: If the stock price is S(ti) at time ti, then we
assume that it may increase to price SU (ti+1) with probability P (ti) at time
ti+1 or decrease to price SD(ti+1) with probability 1−P (ti).11 We also assume
that the price changes S(t1) − S(t0), S(t2) − S(t1), . . . , S(tn) − S(tn−1) are
independent. Then at each time ti+1 the stock price may be at either SU (ti+1)
or SD(ti+1), and these values depend only on the past price S(ti) and the
probability P (ti). Our model (a recombining tree) contains the assumption
that the value of a stock after a decrease followed by an increase is the same
as that of the stock after an increase followed by a decrease.

We begin with a simple model that is used in practice. This is a stan-
dard binomial tree, in which it is assumed that P (ti) and the ratios
SU (ti+1)/S(ti) and SD(ti+1)/S(ti) are constant for i = 0, . . . , n − 1. These
constants are denoted by p, u, and d, respectively, and u and d are called the
up and down ratios.

Example 11.3. Confirm that Table 11.3 is the standard binomial tree for n = 4,
u = 1.02, d = 0.98, and S(t0) = 100. All values have been rounded off to the
nearest 0.01.

Table 11.3. Standard Binomial Tree for Example 11.3

t0 t1 t2 t3 t4

108.24
�

106.12
� �

104.04 104.00
� � �

102.00 101.96
� � � �

Price 100.00 99.96 99.92
� � � �

98.00 97.96
� � �

96.04 96.00
� �

94.12
�

92.24

11 The probabilities P (ti) and 1 − P (ti) are called transition probabilities.
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Solution. This tree can be constructed in the following way: The nodes in
the first column are obtained from 100 × 1.02 = 102, and 100 × 0.98 = 98.
The node in the third column with a price of 99.96 represents the price of the
stock after two time periods with either an increase followed by a decrease or a
decrease followed by an increase. Thus, 100×1.02×0.98 = 100×0.98×1.02 =
99.96. (Note that, contrary to intuition, the price is not 100, the initial price.)
At time t2 the stock can have three possible prices: 96.04, 99.96, or 104.04,
corresponding to two decreases in a row, one increase and one decrease (in
either order), or two increases in a row. �

Because the probabilities are p and 1 − p at each step, and we have a
binomial model, P (S(t1) = 102.00) = p is the probability that there is an
increase in price from time t0 to time t1, and P (S(t1) = 98.00) = 1 − p is the
probability of a decrease. We can calculate the other probabilities in the same
manner. For example, P (S(t2) = 96.04) = (1 − p)2, and P (S(t2) = 99.96) =
p(1 − p) + (1 − p)p = 2p(1 − p). What is P (S(t2) = 104.04)?

We have not yet specified the value of p. We first consider a one-step model.
Because S(t1) is a random variable, we can compute its expected value, which
is pSU (t1)+ (1− p)SD(t1). Here SU (t1) is the price following an increase, and
SD(t1) is the price following a decrease.

Now, we wish to determine the p that will yield a given (continuously
compounded) rate of return. We let i(∞) be the required rate of return per
year. Then, because the initial price was S(t0), we want the expected value
of S(t1) to be S(t0)ei(∞)δt, where δt = t1 − t0. Thus, we need pSU (t1) + (1 −
p)SD(t1) = S(t0)ei(∞)δt.

Solving for p gives

p =
S(t0)ei(∞)δt − SD(t1)

SU (t1) − SD(t1)
.

For the standard tree, P (ti) = p, SU (ti+1)/S(ti) = u, and SD(ti+1)/ S(ti) = d
for all i. Thus, we have

p =
ei(∞)δt − d

u − d
. (11.5)

In this case we need pu+(1−p)d = ei(∞)δt. This leads to the following result.

Theorem 11.4. For an n-step standard binomial tree with initial price S(t0),
transition probabilities p and 1 − p, and up and down ratios u and d, re-
spectively, suppose that the expected value of S(t1) is S(t0)ei(∞)δt, where
δt = t1−t0. Then the expected value of S(ti) is S(t0)ei(∞)iδt, for i = 0, 1, . . . , n.
Thus, the expected value of the stock price is equal to the return on an invest-
ment of S(t0) with a continuously compounded rate of return of i(∞) per year.

Proof. We note that after k increases and i − k decreases in the stock price,
the resulting price is ukdi−kS(t0), for k = 0, . . . , i. But this can occur in

(
i
k

)
different ways, each with probability pk(1 − p)i−k.
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Hence

P
(
S(ti) = ukdi−kS(t0)

)
=

(
i

k

)
pk(1 − p)i−k.

Thus, the expected value of S(ti), E(S(ti)), is

E(S(ti)) =
i∑

k=0

(
i

k

)
(pu)k((1 − p)d)i−kS(t0) = S(t0) (pu + (1 − p)d)i

.

But we have seen that pu + (1 − p)d = ei(∞)δt. Therefore E(S(ti)) =
S(t0)ei(∞)iδt. ��

Let S(t) be the price of the stock at time t, and consider times 0 = t0 <
t1 < · · · < tn = T , with ∆t = ti+1 − ti = T/n for i = 0, 1, . . ., n−1. If at time
ti the price of the stock is S(ti), then at time ti+1 the price of the stock is
uS(ti) with probability p and dS(ti) with probability 1 − p. Here u = eσ

√
∆t

and d = e−σ
√

∆t, and so from (11.5), we have

p =
ei(∞)∆t − d

u − d
=

ei(∞)∆t − e−σ
√

∆t

eσ
√

∆t − e−σ
√

∆t
.

Note that p and ∆t are functions of n because ∆t = T/n. By making n large
enough, we can ensure that

e−σ
√

∆t < ei(∞)∆t < eσ
√

∆t,

that is, d < ei(∞)∆t < u, which guarantees that 0 < p < 1.

Theorem 11.5. With these choices of u, d, and p, the random variables
S(tn)/S(0), n = 1, 2, . . . , converge in distribution to a lognormal random
variable with parameters

(
i(∞) − 1

2σ2
)
T and σ2T .

Proof. For every n we define

Xi =
{

1 if S(ti) = uS(ti−1),
0 if S(ti) = dS(ti−1),

for i = 1, 2, . . . , n. Then the random variables Xi, i = 1, 2, . . . , n, are in-
dependent binomial random variables with parameters 1 and p . If we let
X =

∑n
i=1 Xi, then X is a binomial random variable with parameters n

and p. It follows that

S(tn) = S(n∆t) = S(t0)uXdn−X = S(t0)dn
(u

d

)X

,

or
S(tn)
S(t0)

= dn
(u

d

)X

.
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Thus,

ln
(

S(tn)
S(t0)

)
= n ln d + X ln

(u

d

)
.

But,
ln d = ln

(
e−σ

√
∆t

)
= −σ

√
∆t,

and

ln
(u

d

)
= ln

(
eσ

√
∆t

e−σ
√

∆t

)
= 2σ

√
∆t,

so

ln
(

S(tn)
S(t0)

)
= −nσ

√
∆t + 2Xσ

√
∆t.

We rewrite this as

ln
(

S(tn)
S(t0)

)
= (2p − 1) nσ

√
∆t + 2 (X − np) σ

√
∆t

= (2p − 1) nσ
√

∆t +
(X − np)√
np (1 − p)

2
√

np (1 − p)σ
√

∆t.

Now,

p =
ei(∞)∆t − d

u − d

=
ei(∞)∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆t

=
σ
√

∆t + i(∞)∆t − 1
2σ2∆t

2σ
√

∆t
+ terms of order ∆t

=
1
2

+
i(∞) − 1

2σ2

2σ

√
∆t + terms of order ∆t,

so

(2p − 1) nσ
√

∆t =

(
i(∞) − 1

2σ2

σ

√
∆t + terms of order ∆t

)
σT√
∆t

,

giving

lim
n→∞ (2p − 1) nσ

√
∆t =

(
i(∞) − 1

2
σ2

)
T.

Also, we have

lim
n→∞ 2

√
np (1 − p)σ

√
∆t = lim

n→∞ 2
√

p (1 − p)σ
√

T

= σ
√

T .
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From the Binomial Convergence Theorem on p. 273 of Appendix B.4, it follows
that

Zn =
(X − np)√
np (1 − p)

d−→ Z,

the standard normal random variable. It follows immediately that

ln
(

S(tn)
S(t0)

)
d−→

(
i(∞) − 1

2
σ2

)
T + σ

√
TZ,

a normal random variable with mean
(
i(∞) − 1

2σ2
)
T and variance σ2T . ��

11.7 Pricing of Options

We now discuss option pricing using binomial trees. We consider a standard
binomial tree with initial stock price S(t0) and initial call option price C (t0).
At time t1 the stock price is SU (t1) or SD(t1) with SD(t1) < SU (t1). These
are the only two possibilities. For a one-step tree, we have CU (t1) and CD(t1)
as the call option prices at time t1. We construct a portfolio consisting of ∆
shares of the stock and cash in a risk-free investment with a future value of B,
which costs ∆S (t0) + Be−i(∞)δt , where i(∞) is the continuously compounded
risk-free rate of return and δt = t1 − t0.

At time t1 the value of our portfolio is ∆SU (t1) + B if the stock price is
SU (t1) and ∆SD(t1) + B if the stock price is SD(t1).

Suppose that we want the value of the portfolio to match the option price
in both cases, that is,

∆SU (t1) + B = CU (t1),
∆SD(t1) + B = CD(t1).

Solving for ∆ and B gives

∆ =
CU (t1) − CD(t1)
SU (t1) − SD(t1)

,

and

B = CU (t1) − CU (t1) − CD(t1)
SU (t1) − SD(t1)

SU (t1) =
CD(t1)SU (t1) − CU (t1)SD(t1)

SU (t1) − SD(t1)
.

Because the value of our portfolio at time t1 agrees with the value of the
call option at time t1, we need C(t0) = ∆S(t0) + Be−i(∞)δt . Thus,

C(t0) =
CU (t1) − CD(t1)
SU (t1) − SD(t1)

S(t0) +
(

CD(t1)SU (t1) − CU (t1)SD(t1)
SU (t1) − SD(t1)

)
e−i(∞)δt .
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So to hedge we buy (CU (t1) − CD(t1))/(SU (t1) − SD(t1)) shares of the
stock and purchase a risk-free investment with face value B.

In this case, it can be shown that

C(t0)ei(∞)δt = pCU (t1) + (1 − p)CD(t1),

with

p =
S(t0)ei(∞)δt − SD(t1)

SU (t1) − SD(t1)
.

Thus, if

0 <
S(t0)ei(∞)δt − SD(t1)

SU (t1) − SD(t1)
< 1,

then the quantity C(t0)ei(∞)δt can be thought of as the expected value of the
call option price at time t1. Note that this is equivalent to d < ei(∞)δt < u in
the case of a standard binomial tree.

We may also write this as

C(t0) = [pCU (t1) + (1 − p)CD(t1)] e−i(∞)δt , (11.6)

which can be thought of as the expected value of the call option price at time
t1, discounted to time t0.

Note that if SD(t1) < SU (t1) and

1
δt

ln
(

SD(t1)
S(t0)

)
< i(∞) <

1
δt

ln
(

SU (t1)
S(t0)

)
,

then 0 < p < 1 holds, that is,

0 <
S(t0)ei(∞)δt − SD(t1)

SU (t1) − SD(t1)
< 1.

If we do not have a standard binomial tree, that is, the up and down ratios
u and d are not constant, then the transition probabilities may differ.

We now generalize the one-step model to any number of steps. Let us
suppose that we have an n-step standard binomial tree, starting at time t0,
with tn being the expiration time of the corresponding call option. Suppose
that we also know the stock price at each node of the tree and that we know
the exercise price of the corresponding call option. We may then calculate the
fair price of the call option, as given by (11.6), at every node of the tree.

Consider the tree given previously in Table 11.3 on p. 216, which we re-
produce here.
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t0 t1 t2 t3 t4

108.24
�

106.12
� �

104.04 104.00
� � �

102.00 101.96
� � � �

Stock Price 100.00 99.96 99.92
� � � �

98.00 97.96
� � �

96.04 96.00
� �

94.12
�

92.24
t0 t1 t2 t3 t4

8.24
�

?
� �

? 4.00
� � �

? ?
� � � �

Call Price ? ? 0.00
� � � �

? ?
� � �

? 0.00
� �

?
�

0.00

Note that the call prices at time t4 (expiration) are determined uniquely
by the corresponding stock prices at that time. That is, the call prices at time
t4 are S(t4) − 100 if S(t4) > 100 and 0 if S(t4) ≤ 100.

Assuming an exercise price of 100, we use “backward induction” to fill in
the missing values. Consider the call prices at time t3 with i(∞) = 0.05 and
δt = 1/12. We need
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C(t3) = [pCU (t4) + (1 − p)CD(t4)] e−i(∞)δt ,

where e−i(∞)δt = e−1/240. Also,

p =
e1/240S(t3) − SD(t4)

SU (t4) − SD(t4)
.

We next note that because we have a standard binomial tree, this value of
p is the same throughout the tree. In this case, p = 0.6044.

At time t3 we have the following for the top branch: CU (t4) = 8.24 and
CD(t4) = 4.00. Hence

C(t3) = [pCU (t4) + (1 − p)CD(t4)] e−i(∞)δt

= [0.6044(8.24) + 0.3956(4.00)] e−1/240

= 6.54.

Similarly, for the second branch from the top, SU (t4) = 104.00, SD(t4) =
99.92, CU (t4) = 4.00, and CD(t4) = 0.00. This leads to C(t3) = 2.41. The
bottom two branches have C(t3) = 0. Similarly, at time t2, for the top branch
we have SU (t3) = 106.12, SD(t3) = 101.96, CU (t2) = 6.54, and CD(t2) = 2.41.
This yields C(t2) = 4.88.

Completing the calculations yields the following tree:

t0 t1 t2 t3 t4

8.24
�

6.54
� �

4.88 4.00
� � �

3.51 2.41
� � � �

2.46 1.45 0.00
� � � �

0.87 0.00
� � �

0.00 0.00
� �

0.00
�

0.00

Notice that the call prices satisfy the relationship C(ti) + X ≥ S(ti) (call
price plus exercise price is greater than or equal to the stock price) at each
time ti. If this were not the case (that is, C(ti)+X < S(ti)), then an investor
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could purchase the call, exercise it, and then sell the stock, for a profit of
S(ti) − (C(ti) + X) > 0, a guaranteed profit.

Notice also that several of the call prices are zero. For example, if the stock
decreases in price in each of the first two time periods, giving a price of $96.04,
then the highest possible price at expiration (time t4) is $99.92, which is less
than the exercise price.

A binomial tree that is not a standard binomial tree is called a flexible
tree. Given the stock price at each node and the exercise price, we may still
calculate the fair price of an option12 if we know the continuously compounded
risk-free rate of return.

Consider the following example for the stock of company WILD:

t0 t1 t2 t3

115.00
�

111.13
� �

102.90 101.32
� � �

95.00 95.05
� � �

92.35 92.13
� �

88.95
�

85.25

This is a three-step tree. We assume that the continuously compounded
risk-free rate of return is 4% and that the exercise price is $100. As before,
δt = 1/12, so the option expires in three months.

We use the formulas

C(ti) = [pCU (ti+1) + (1 − p)CD(ti+1)] e−i(∞)δt

and

p =
S(ti)ei(∞)δt − SD(ti+1)
SU (ti+1) − SD(ti+1)

.

We calculate e−i(∞)δt = e−0.04/12 and ei(∞)δt = e0.04/12. At time t3 the
values of the call options, from top to bottom, are 15.00, 1.32, 0.00, and
0.00 because the call option has price equal to the larger of S(t3) − X and
0 at expiration. For times t0, t1, t2, and t3 we must recalculate p at each

12 The fair price of an option is the price at which no arbitrage opportunities exist.
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branch. For example, at time t2 for the upper branch we have S(t2) = 111.13,
SU (t3) = 115.00, and SD(t3) = 101.32. Then

p =
e0.04/12(111.13) − 101.32

115.00 − 101.32
= 0.7442,

and
C(t2) = [0.7442(15.00) + 0.2558(1.32)]e−0.04/12 = 11.46.

In Problem 11.26 on p. 241 you are asked to compute the call option prices
for this tree.

11.8 The Black-Scholes Option Pricing Model

In Theorem 11.5 on p. 218 we investigated a particular binomial model of
stock prices, which in the limit converges to a Geometric Brownian Motion
Model, where at each time t the ratio S(t)/S(0) is a lognormal random vari-
able with parameters

(
i(∞) − 1

2σ2
)
T and σ2T . In this section we derive the

Black-Scholes formula, which gives the fair (arbitrage-free) price, C(0), of a
European call option on a stock using this Geometric Brownian Motion Model.

We point out that, by definition, the natural logarithm of a lognormal ran-
dom variable is a normal random variable. However, if this normal random
variable has expected value µ and variance σ2, then the lognormal random
variable has expected value eµ+σ2/2. These considerations lead to the lognor-
mal random variable

(
with parameters

(
i(∞) − 1

2σ2
)
T and σ2T

)
as the ap-

propriate one to use. We can show that, under these conditions, S(t) has
a lognormal distribution with E(S(t)) = ei(∞)tS(0). (See Problems 11.29
and 11.30.) We now find the fair call option price for a stock, the price of
which has this distribution.

In the following the stock price S(t) and the volatility σ > 0 are as in
Theorem 11.5 on p. 218. The exercise price is X, the time to expiration is T
in years, and the continuously compounded risk-free rate of return is i(∞).

Derivation of the Black-Scholes Formula

Recall from (11.1) on p. 194, that at time T the price of the stock, S(T ),
the price of the call option, C(T ), and the exercise price, X are related by

C(T ) =
{

0 if S(T ) ≤ X,
S(T ) − X if S(T ) > X,

so13

C(T ) = [S(T ) − X]+ .

13 The function [x]+ is defined to be x if x > 0, and 0 if x ≤ 0.



226 11 Options

In order to find the fair price of the option, C(0), at time14 t = 0 we discount
the expected value of the call option on the expiration date, E(C(T )), using
the continuously compounded risk-free rate of return, so

C(0) = e−i(∞)T E(C(T )) = e−i(∞)T E
(
[S(T ) − X]+

)
.

Now,

S(T ) = S(0)
S(T )
S(0)

= S(0)eln(S(T )/S(0)) = S(0)eW ,

where W = ln(S(T )/S(0)), and thus W is a normal random variable with
mean

(
i(∞) − 1

2σ2
)
T , variance σ2T , and density function

f(w) =
1√

2πσ2T
e− 1

2 (w−(i(∞)− 1
2 σ2)T)2

/(σ2T ),

for −∞ < w < ∞.
Thus, we have

C(0) = e−i(∞)T E
(
[S(T ) − X]+

)
= e−i(∞)T E

([
S(0)eW − X

]+)
,

so all that remains is to calculate E
([

S(0)eW − X
]+)

, which we do now.

We have

E
([

S(0)eW − X
]+)

=
1√

2πσ2T

∫ ∞

−∞

[
S(0)eW − X

]+
e− 1

2 (w−(i(∞)− 1
2 σ2)T)2

/(σ2T ) dw.

However, S(0)eW − X ≥ 0 if and only if W ≥ ln (X/(S(0))), so we have

E
([

S(0)eW − X
]+)

=
1√

2πσ2T

∫ ∞

ln(X/S(0))
(S(0)ew − X) e− 1

2 (w−(i(∞)− 1
2 σ2)T)2

/(σ2T ) dw.

This integral is the difference between two integrals, I1 and I2, that is,

E
([

S(0)eW − X
]+)

= I1 − I2,

where

14 We may always assume that t = 0 (the present time is 0) because it is only the
time remaining until expiration, T , that matters (in addition to S(0), X, i(∞),
and σ2) in calculating the fair price of an option.
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I1 =
1√

2πσ2T

∫ ∞

ln(X/S(0))
S(0)ewe− 1

2 (w−(i(∞)− 1
2 σ2)T)2

/(σ2T ) dw

=
S(0)√
2πσ2T

∫ ∞

ln(X/S(0))
ew− 1

2 (w−(i(∞)− 1
2 σ2)T)2

/(σ2T ) dw,

and15

I2 =
1√

2πσ2T

∫ ∞

ln(X/S(0))
Xe− 1

2 (w−(i(∞)− 1
2 σ2)T)2

/(σ2T ) dw,

which we evaluate in turn.

In order to evaluate I1 we set

u =
w − (

i(∞) + 1
2σ2

)
T

σ
√

T
,

so that

w − 1
2

(
w − (

i(∞) − 1
2σ2

)
T
)2

σ2T

= −1
2

−2σ2Tw +
(
w2 − 2

(
i(∞) − 1

2σ2
)
Tw +

(
i(∞) − 1

2σ2
)2

T 2
)

σ2T

= −1
2

(
w2 − 2

(
i(∞) + 1

2σ2
)
Tw +

(
i(∞) + 1

2σ2
)2

T 2
)

− 2i(∞)σ2T 2

σ2T

= −1
2
u2 + i(∞)T,

giving
ew− 1

2 (w−(i(∞)− 1
2 σ2)T)2

/(σ2T ) = e− 1
2 u2

ei(∞)T .

Substituting this into I1, we find that

I1 = S(0)ei(∞)T 1√
2π

∫ ∞

−δ

e− 1
2 u2

du

= S(0)ei(∞)T (1 − Φ (−δ)) ,

where δ and Φ(x) are given by

δ =

(
i(∞) + 1

2σ2
)
T − ln (X/S(0))

σ
√

T
,

15 Note that I2 is equal to the exercise price, X, times the probability that the
option is in the money at time T .
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and
Φ(x) =

1√
2π

∫ x

−∞
e−t2/2 dt.

However (see Problem 11.32),

Φ(δ) = 1 − Φ(−δ),

so
I1 = S(0)ei(∞)T Φ (δ) .

We now turn to I2. Substituting

v =
w − (

i(∞) − 1
2σ2

)
T

σ
√

T

into I2 we have

I2 =
X√
2π

∫ ∞

−δ+σ
√

T

e− 1
2 v2

dv

= X
(
1 − Φ

(
−δ + σ

√
T
))

= XΦ
(
δ − σ

√
T
)

.

Finally, we find that

E
([

S(0)eW − X
]+)

= ei(∞)T S(0)Φ (δ) − XΦ
(
δ − σ

√
T
)

,

which, when substituted into

C(0) = e−i(∞)T E
([

S(0)eW − X
]+)

,

leads to the famous Black-Scholes formula:

C(0) = S(0)Φ (δ) − Xe−i(∞)T Φ
(
δ − σ

√
T
)

, (11.7)

where δ and Φ(x) are given by

δ =

(
i(∞) + 1

2σ2
)
T − ln (X/S(0))

σ
√

T
, (11.8)

and
Φ(x) =

1√
2π

∫ x

−∞
e−t2/2 dt. (11.9)
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Significance of the Black-Scholes Formula

The Black-Scholes formula (11.7) gives the price of a European call option
assuming that the price of a stock follows a Geometric Brownian Motion. The
theory leading to this result is given in [3] and is still of great importance. In
1997, Myron Scholes and Robert Merton shared the Nobel prize in Economics
for its development.16

The Black-Scholes formula (11.7) is a major result for several reasons. It
is one of the results that ushered in the modern theory of finance, which is
based in large part on mathematical reasoning. There are five quantities in
the Black-Scholes pricing formula, of which four are observable, so there is
only one quantity, σ, that needs to be estimated.

Black-Scholes Assumptions

This derivation of the Black-Scholes formula (11.7) depends implicitly on the
following two assumptions.

1. The price of the stock follows a Geometric Brownian Motion.
As a result of this assumption we have the following consequences.
• The continuously compounded risk-free rate of return, i(∞), is con-

stant. The risk-free rate is used to discount the expected value of the
call option on the expiration date. The risk-free rate also appears in the
parameter

(
i(∞) − 1

2σ2
)
T of the Geometric Brownian Motion Model,

so if it is not constant, then the assumption that the price of the stock
follows a Geometric Brownian Motion is violated.

• The volatility, σ, is constant. If this constant volatility assumption is
not made, then changes in the value of the option may occur even if
the stock price is unchanged. This would be a violation of the model.

• The stock price follows a continuous path over time. Otherwise there
would be jumps in the price of the stock, which violates this model.

• There are no dividends during the life of the stock. Dividends are often
associated with jumps in the price of the stock. Such jumps violate the
assumption that the price of the stock follows a Geometric Brownian
Motion.17

• At time t the ratio S(t)/S(0) has a lognormal distribution.
2. There are no arbitrage opportunities.

These assumptions are generally not satisfied in the real world. For ex-
ample, jumps, occasionally large, in the stock price do occur. However, the
significance of this result, which provides a mathematical framework for option
pricing, should not be underestimated.
16 Fischer Black was deceased when the Nobel Prize was awarded. Robert Merton,

in [19], had developed a similar theory on options during the same time period.
17 However, depending on the type of dividend, alternative models are available.
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Comments on the Black-Scholes Formula

• The Black-Scholes formula (11.7) allows us to find an exact solution for
the fair price of the call option, which is one of the surprising properties
of this model.

• The Black-Scholes formula (11.7) consists of two parts, S(0)Φ(δ) and
Xe−i(∞)T Φ

(
δ − σ

√
T
)
. In Problem 11.35 you are asked to show that

Φ(δ) =
∂C(0)
∂S(0)

.

In Problem 11.36 you are asked to show that Φ
(
δ − σ

√
T
)

is the proba-
bility that the option is in the money at expiration, that is, S(T ) > X.
Thus, the Black-Scholes formula can be interpreted as: C(0) is equal to
the present stock price S(0) times the rate of change of C(0) with respect
to S(0) plus the present value of a cash flow equal to X if the option is in
the money at expiration (S(T ) > X) and equal to 0 otherwise.

• The only unobservable quantity, σ, is often estimated from historical data.
Another method uses what is called implied volatility. If we know S(0),
C(0), X, T , and i(∞), then we can estimate σ from the Black-Scholes for-
mula (11.7) because it is the only missing quantity. This requires numerical
methods because there is no analytic solution of (11.7) for σ in terms of
the remaining quantities.

• Using the Put-Call Parity Theorem on p. 209, we can derive the Black-
Scholes price for a European put option, namely

P (0) = −S(0)Φ(−δ) + e−i(∞)T Φ
(
−δ + σ

√
T
)

.

(See Problem 11.33.)
• Formulas exist for European options on stocks with dividends, and for

some American call options. At the present time there is no known analytic
formula for the value of an American put.

• We have only introduced you to the subject of Black-Scholes. There are
excellent books and articles—such as [5] and [7]—which treat this subject
in greater depth.

• To use the Black-Scholes formula (11.7) we must estimate

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt,

for different values of x. Immediately following these comments, we digress
to show various ways of doing this. If this is not new to you, please proceed
to Example 11.4 on p. 235.
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Digression on Calculating Φ(x)

To apply the Black-Scholes formula (11.7) we must be able to estimate

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt,

for different values of x. In this section we discuss four different ways of doing
this, depending on the resources available. This is done in the context of
estimating Φ(0.1584), Φ(−0.1245), and 98Φ(0.1584) − 100e−0.025Φ(−0.1245),
which are used in Example 11.4.

1. Tables
Here we use a look-up table, such as Table B.1 on p. 268 (which has values
from 0.00 to 2.99, in steps of 0.01, to 4 decimal places) or Table 26.1 on
p. 966 of [1] (which has values from 0.00 to 2.00, in steps of 0.02, to 15
decimal places).
The advantage of this method is that all we have to do is to turn to either
Table B.1 or Table 26.1 in [1] and look up the value of Φ(0.1584). The
disadvantage is that 0.1584 is not one of the entries in either table. So
what do we do? We round 0.1584 to the nearest entry in the table. We
now perform the calculations using both tables and denote these estimates
by ΦT1(x) and ΦT2(x).
(a) The nearest entry in Table B.1 to 0.1584 is 0.16, so we estimate that

ΦT1(0.1584) ≈ Φ(0.16) = 0.5636.

There is a further disadvantage when we try to estimate Φ(−0.1245)
because negative values are not in this table (nor in Table 26.1 of [1]).
In this case we need to use the identity (see Problem 11.32)

Φ(−x) = 1 − Φ(x),

so that
Φ(−0.1245) = 1 − Φ(0.1245).

Again 0.1245 is not one of the entries in Table B.1, so we round 0.1245
to the nearest entry in this table, which is 0.12, and estimate that

ΦT1(0.1245) ≈ Φ(0.12) = 0.5478,

so
ΦT1(−0.1245) ≈ 1 − 0.5478 = 0.4522.

Thus,
98Φ(0.1584) − 100e−0.025Φ(−0.1245) ≈ 11.1293.
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(b) The nearest entry in Table 26.1 of [1] to 0.1584 is 0.16, so we estimate
that

ΦT2(0.1584) ≈ Φ(0.16) = 0.563559462891433.

To estimate Φ(−0.1245) we again use the identity

Φ(−0.1245) = 1 − Φ(0.1245).

Once more 0.1245 is not one of the entries in Table 26.1, so we round
0.1245 to the nearest entry on this table, which is 0.12, and estimate
that

ΦT2(0.1245) ≈ Φ(0.12) = 0.547758426020584,

so

ΦT2(−0.1245) ≈ 1 − 0.547758426020584 = 0.452241573979416.

Thus,

98Φ(0.1584) − 100e−0.025Φ(−0.1245) ≈ 11.121258390018500.

2. Linear Interpolation
Here we use one of the tables mentioned in the first part, together with lin-
ear interpolation described by (6.7) on p. 95. We now perform the calcula-
tions using both tables and denote these estimates by ΦLI1(x) and ΦLI2(x).
(a) From Table B.1, we see that the nearest entries on either side of 0.1584

are 0.15 and 0.16, with Φ(0.15) = 0.5596 and Φ(0.16) = 0.5636. Us-
ing (6.7) with l = 0.1584, a = 0.15, and b = 0.16, gives

ΦLI1(0.1584) =
0.16 − 0.1584
0.16 − 0.15

Φ(0.15) +
0.1584 − 0.15
0.16 − 0.15

Φ(0.16)

= 0.16(0.5596) + 0.84(0.5636)
= 0.56296.

In the same way

ΦLI1(−0.1245) = 1 − ΦLI1(0.1245)

= 1 −
(

0.13 − 0.1245
0.13 − 0.12

Φ(0.12) +
0.1245 − 0.12
0.13 − 0.12

Φ(0.13)
)

= 1 − 0.55(0.5478) − 0.45(0.5517)
= 0.450445.

Thus,
98Φ(0.1584) − 100e−0.025Φ(−0.1245) ≈ 11.2377.
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(b) From Table 26.1 of [1], we see that the nearest entries on either side
of 0.1584 are 0.14 nd 0.16, with Φ(0.14) = 0.555670004805907 and
Φ(0.16) = 0.563559462891433. Using (6.7) with l = 0.1584, a = 0.14,
and b = 0.16, gives

ΦLI2(0.1584) =
0.16 − 0.1584
0.16 − 0.14

Φ(0.15) +
0.1584 − 0.14
0.16 − 0.14

Φ(0.16)

= 0.08(0.555670004805907) + 0.92(0.563559462891433)
= 0.562928306244591.

In the same way

ΦLI2(−0.1245) = 1 − ΦLI2(0.1245)

= 1 −
(

0.14 − 0.1245
0.14 − 0.12

Φ(0.12) +
0.1245 − 0.12
0.14 − 0.12

Φ(0.14)
)

= 1 − 0.775(0.547758426020584)
− 0.225(0.555670004805907)

= 0.450461468752718.

Thus,

98Φ(0.1584) − 100e−0.025Φ(−0.1245) ≈ 11.233020465833200.

Because Φ(x) is positive for all x and concave down for x > 0 (see
Problem 11.32), we can use the comments following Theorem 6.4
on p. 96 to conclude that ΦLI2(0.1584) is an underestimate for
ΦLI2(0.1584), that is,

ΦLI2(0.1584) = 0.562928306244591 < Φ(0.1584).

Also, because Φ(x) is concave up for x < 0, the value of ΦLI2(−0.1245)
is an overestimate for Φ(−0.1245), that is,

ΦLI2(−0.1245) = 0.450461468752718 > Φ(−0.1245).

Finally, because

ΦLI2(0.1584) < Φ(0.1584) and − ΦLI2(−0.1245) < −Φ(−0.1245),

we see that

98ΦLI2(0.1584) − 100e−0.025ΦLI2(−0.1245)
< 98Φ(0.1584) − 100e−0.025Φ(−0.1245),

so 11.233020465833200 is an underestimate, that is,

11.233020465833200 < 98Φ(0.1584) − 100e−0.025Φ(−0.1245).
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3. Numerical Approximations
Here we use a numerical approximation. There are various formulas used
to approximate the value of Φ(x) (see p. 932 of [1]). We present two, which
we denote by ΦNA1(x) and ΦNA2(x).
(a) The first approximation is

ΦNA1(x) = 1 − e−x2/2
√

2π

(
a1t + a2t

2 + a3t
3) ,

where
t =

1
1 + px

,

with p = 0.33267, a1 = 0.4361836, a2 = −0.1201676, and a3 =
0.9372980. This approximation has an error of less than 1.0 × 10−5.
Using this numerical approximation we find that

ΦNA1(0.1584) = 0.5629382,

ΦNA1(−0.1245) = 0.4503966,

98Φ(0.1584) − 100e−0.025Φ(−0.1245) ≈ 11.2403182.

(b) The second approximation is

ΦNA2(x) = 1 − e−x2/2
√

2π

(
b1t + b2t

2 + b3t
3 + b4t

4 + b5t
5) ,

where
t =

1
1 + px

,

with p = 0.2316419, b1 = 0.319381530, b2 = −0.356563782, b3 =
1.781477937, b4 = −1.821255978, and b5 = 1.330274429. This approx-
imation has an error of less than 7.5 × 10−8,
Using this numerical approximation we find that

ΦNA2(0.1584) = 0.56292921,

ΦNA2(−0.1245) = 0.45045863,

98ΦNA2(0.1584) − 100e−0.025ΦNA2(−0.1245) = 11.23338582.

4. Exact
Here we use an “Exact” result using either a spreadsheet or a sophisticated
scientific or financial calculator. We denote this value by ΦE(x).
In Microsoft� Excel, the command NORMSDIST (x) calculates Φ(x).
Using this we find that

ΦE(0.1584) = 0.56292920,

ΦE(−0.1245) = 0.45045966,

98Φ(0.1584) − 100e−0.025Φ(−0.1245) ≈ 11.23328500.
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Notice that, as expected when compared to the linear interpolation esti-
mates,

ΦLI2(0.1584) < ΦE(0.1584),

ΦLI2(−0.1245) > ΦE(−0.1245),

and

98ΦLI2(0.1584) − 100e−0.025ΦLI2(−0.1245)
< 98ΦE(0.1584) − 100e−0.025ΦE(−0.1245).

Table 11.4 compares these approximations, rounded to 4 decimal places.
Now that we can estimate Φ(x) we can use the Black-Scholes formula (11.7).

Table 11.4. Comparison of Different Estimates for Φ(x)

Φ(0.1584) Φ(−0.1245) 98Φ(0.1584) − 100e−0.025Φ(−0.1245)
T1 0.5636 0.4522 11.1293
T2 0.5636 0.4522 11.1213
LI1 0.5630 0.4504 11.2377
LI2 0.5629 0.4505 11.2330
NA1 0.5629 0.4504 11.2403
NA2 0.5629 0.4505 11.2334
E 0.5629 0.4505 11.2333

Example 11.4. If the current price of the stock is $98, if the exercise price for
a European call option on this stock is $100, if the time to expiration is 0.5
(one-half year), if the continuously compounded risk-free annual rate of return
is 5%, and if the volatility is 0.4, then use the Black-Scholes formula (11.7) to
find a fair price for the option.

Solution. Here S(0) = 98, X = 100, T = 0.5, i(∞) = 0.05, and σ = 0.4.
From (11.8) we have

δ =

(
0.05 + 1

2 (0.16)
)
0.50 − ln (100/98)

0.40
√

0.50
≈ 0.1584,

and
δ − σ

√
T ≈ −0.1245,

so
C(0) = 98Φ(0.1584) − 100e−0.025Φ(−0.1245).

These are exactly the values we’ve used to estimate Φ in Table 11.4. Thus,
the values we find for Φ(0.1584) and Φ(−0.1245), which determine the value
of C(0), depend on which of the estimates in Table 11.4 we use.

If we use Table B.1, then we find that C(0) ≈ 11.13, so the option should
cost approximately $11.13, whereas if we use the “exact” calculation, then we
find that C(0) ≈ 11.23, so the option should cost approximately $11.23. �
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Dependence of the Black-Scholes Quantities

There are five quantities used to calculate the Black-Scholes option price
C(0), namely S(0), X, T , i(∞), and σ, so we can think of C(0) as a func-
tion of these quantities. There are several relationships between these five
quantities and their partial derivatives of C(0). We have already seen that
Φ(δ) = ∂C(0)/∂S(0), the rate of change of C(0) with respect to S(0). This
partial derivative is called Delta, and is denoted by ∆. A list of some of these
quantities, called the “Greeks”, with their values in terms of the Black-Scholes
quantities follows.

• Delta:

∆ =
∂C(0)
∂S(0)

,

measures the sensitivity of the change in price, C(0), to the change in the
current price, S(0).
If CdS(0) is the fair price after S(0) has changed in price by dS, then from
local linearity,

CdS(0) − C(0) ≈ dS
∂C(0)
∂S(0)

= dS∆.

Thus, an increase of $1 in S(0) leads to a change of approximately $∆
in C(0). If we differentiate C(0), given by(11.7), partially with respect
to S(0), we find that (see Problem 11.35)

∆ =
∂C(0)
∂S(0)

= Φ(δ).

Because Φ(δ) > 0, we have ∂C(0)/∂S(0) > 0, so C(0) increases with S(0),
assuming that all other quantities remain constant. Thus, the change of
approximately $∆ in C(0) is an increase in C(0) by $∆, as opposed to a
decrease.

• Gamma:

Γ =
∂∆

∂S(0)
=

∂2C(0)
∂S(0)2

,

measures the sensitivity of the change in ∆, to the change in the current
price, S(0).
If we differentiate ∆ partially with respect to S(0), then we find that (see
Problem 11.37)

Γ =
∂∆

∂S(0)
=

∂2C(0)
∂S(0)2

=
Φ′(δ)

S(0)σ
√

T
.

Because Φ′(δ)/(S(0)σ
√

T ) > 0, we have ∂2C(0)/∂S(0)2 > 0, so C(0) is
concave up when plotted against S(0), assuming that all other quantities
remain constant.
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• Theta:

Θ =
∂C(0)

∂T
,

measures the sensitivity of the change in price, C(0), to the change in the
time until the expiration date, T , of the option.18

If we differentiate C(0), given by(11.7), partially with respect to T , then
we find that (see Problem 11.38)

Θ =
∂C(0)

∂T
=

S(0)σ
2
√

T
Φ′(δ) + i(∞)Xe−i(∞)T Φ(δ − σ

√
T ).

Because the right-hand side is positive, we have ∂C(0)/∂T > 0, so C(0)
increases with T , assuming that all other quantities remain constant. Thus,
a decrease of one day in T , the time until expiration, leads to a decrease
of approximately $Θ/365 in C(0).

• rho:

ρ =
∂C(0)
∂i(∞) ,

measures the sensitivity of the change in price, C(0), to the change in the
continuously compounded risk-free rate of return, i(∞).
If we differentiate C(0), given by(11.7), partially with respect to i(∞), then
we find that (see Problem 11.39)

ρ =
∂C(0)
∂i(∞) = XT e−i(∞)T Φ(δ − σ

√
T ).

Because the right-hand side is positive, we have ∂C(0)/∂i(∞) > 0, so C(0)
increases with i(∞), assuming that all other quantities remain constant.
Thus, an increase of 0.01 in i(∞) leads to an increase of approximately
$0.01ρ in C(0).

• Vega:19

V =
∂C(0)

∂σ
,

measures the sensitivity of the change in price, C(0), to the change in the
volatility of the stock, σ.
If we differentiate C(0), given by(11.7), partially with respect to σ, then
we find that (see Problem 11.40)

V =
∂C(0)

∂σ
= S(0)

√
TΦ′(δ).

18 Theta is sometimes defined by Θ = −∂C(0)/∂T .
19 This partial derivative is not named after a Greek letter, but after the brightest

star in the constellation Lyra.
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Because the right-hand side is positive, we have ∂C(0)/∂σ > 0, so C(0)
increases with σ, assuming that all other quantities remain constant. Thus,
an increase of 1 in σ leads to an increase of approximately $V in C(0).

From these equations we obtain the following condition on some of the
Greeks:

−Θ +
1
2
σ2S2(0)Γ + i(∞)S(0)∆ − i(∞)C(0) = 0.

(See Problem 11.47.) If we replace the Greeks with their partial derivatives,
then we obtain the partial differential equation

−∂F

∂T
+

1
2
σ2S2(0)

∂2F

∂S(0)2
+ i(∞)S(0)

∂F

∂S(0)
− i(∞)F = 0, (11.10)

the solution, F , of which gives the fair price of a call option,20 F = C(0), or
put option,21 F = P (0), in terms of the stock price S(0), the exercise price X,
the time to expiration T , the continuously compounded rate of return i(∞),
and the volatility σ > 0.

You may have wondered why ∂C(0)/∂X is not among the Greeks. It is
because the quantity X is constant during the life of an option. It is specified
in the contract when written. Therefore, the sensitivity of C(0) to changes
in X is of no practical significance to buyers and sellers of options. However,
it can still be evaluated mathematically, and you are asked to do this in
Problem 11.41. As a consequence of this, we see that C(0) is a decreasing
function of X. Explain why this is not unexpected.

11.9 Problems

Walking

11.1. Verify that P (T ) =
{

0 if S(T ) ≥ X,
X − S(T ) if S(T ) < X.

11.2. Prove (11.4) on p. 196.
20 Subject to the boundary condition

F (T ) =
{

0 if S(T ) ≤ X,
S(T ) − X if S(T ) > X.

21 Subject to the boundary condition

F (T ) =
{

0 if S (T ) ≥ X,
X − S (T ) if S (T ) < X.
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11.3. Draw the profit-loss diagram for Helen’s purchase of puts described on
p. 200.

11.4. Prove the profit per share formula for writing uncovered calls on p. 202.
Confirm that Fig. 11.6 is correct.

11.5. Prove the profit per share formula for writing covered calls on p. 203,
and draw the corresponding profit-loss diagram.

11.6. Prove the profit per share formula for writing uncovered puts on p. 204.
Confirm that Fig. 11.9 is correct.

11.7. Prove the profit per share formula for writing covered puts on p. 206.
Confirm that Fig. 11.11 is correct.

11.8. Referring to the stock MOVE on p. 207, create a profit-loss diagram for
a writer of a straddle for MOVE.

11.9. Prove the profit per share formula for writing straddles on p. 208. Con-
firm that Fig. 11.13 is correct.

11.10. Verify that if C + Xe−i(∞)T > S(0) + P , then the position discussed
on p. 210 creates an arbitrage opportunity.

11.11. BIG1 is currently trading at $100 per share. A put on BIG1 costs
$7, the exercise price is $105, the time until expiration is 6 months, and the
continuously compounded risk-free rate of return is 4%. What should the price
of a call option be to satisfy the put-call parity relationship?

11.12. Let X = $100, C = $8, P = $2, S(0) = $105, i(∞) = 0.05, and T = 1
(one year). Does the Put-Call Parity relationship hold? If not, describe an
arbitrage portfolio that would generate a guaranteed positive profit. What is
the amount of the profit?

11.13. Describe the arbitrage portfolio that one can create if

C + Xe−i(∞)T > S(0) + P.

11.14. There is a more general put-call parity relationship for European op-
tions in the case of dividends. The condition is

C + PV (X) + PV (dividends) = S(0) + P.

Here PV stands for the present value. Assume that only one dividend payment
is made, for D dollars, at expiration. Derive the appropriate relationship in
this case.



240 11 Options

11.15. The Put-Call Parity Theorem on p. 209 holds for European options,
where the option can only be exercised at expiration. Are there any cases
where a violation of the put-call parity relationship gives an arbitrage op-
portunity for American options? [Hint: Recall that American call options are
never exercised early, whereas American put options may be exercised in cer-
tain cases.]

11.16. Referring to the example on p. 212 with GOUP stock, and assuming
the same conditions, suppose that we have a put option on GOUP with the
same exercise price ($75) and expiration time (one year) as the call option.
Create a portfolio consisting of ∆∗ shares of GOUP stock and B dollars of
cash, discounted to the present time, which has the same payoff as a portfolio
consisting of one put option.

11.17. Prove that

∆ =
CU − CD

SU − SD
, and B =

CUSD − CDSU

SU − SD
.

(See p. 213.)

11.18. Verify that the hedge ratio for a call option can never be negative.
What is the value of ∆ when both SD < X and SU < X? What conclusions
do you infer from this answer?

11.19. Verify the values for the binomial tree in Example 11.3 on p. 216.

11.20. This problem is based on Example 11.3 on p. 216. Assume that p = 0.6.
If the stock decreases in price for the first two months, so that its price after
two months is $96.04, then what is the expected price at expiration? [Hint:
The possible prices at expiration are $99.92, $96.00, and $92.24. Calculate the
probabilities of attaining these prices and consider the appropriate random
variable.]

11.21. Prove that

p =
S(t0)ei(∞)δt − SD(t1)

SU (t1) − SD(t1)
,

for the standard binomial tree.

11.22. Consider an n-step standard binomial tree with initial stock price
S (t0) = $200. Suppose that the expected value of the stock price after one
month is E(S (t1)) = $201.

(a) What is the expected value of the stock price after six months?
(b) What is the expected value of the stock price after one year?
(c) What is the continuously compounded rate of return?
(d) What is the annually compounded rate of return?
(e) What is the semi-annually compounded rate of return?
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Running

11.23. For the standard binomial tree, let p = 0.5, 0 < d ≤ u, with u = 1/d
(so that ud = 1) and an initial stock price of S(t0).

(a) What is the expected value of S(t1), E(S(t1))?
(b) What is the smallest possible value of E(S(t1))?

11.24. Consider the standard binomial tree for the limiting case with d = 0.

(a) What is the value of E(S(tn)), n ≥ 1?
(b) What are the possible values of limn→∞ E(S(tn))?
(c) Under what conditions is limn→∞ E(S(tn)) = 0?

11.25. Verify the call option prices for the tree on p. 222.

11.26. Calculate the call option prices for the tree discussed on p. 224.

11.27. In Problem A.4 on p. 252 you are asked to prove that for any two real
numbers x and y, and n a positive integer,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

How does this result relate to the binomial distribution?

11.28. Consider the following three-step binomial tree for the stock of com-
pany SLOW. Assume that the exercise price is $200 and that the continuously
compounded rate of return is 8%. Create the corresponding tree for the call
option. What can you say about the values of p?

208.50
�

202.40
� �

201.00 201.20
� � �

200.00 200.50
� � �

199.00 198.53
� �

197.32
�

195.00

11.29. Let X be a lognormal random variable with Y = lnX having a normal
distribution with mean µ and variance σ2. Show that E(X) = eµ+σ2/2 and

σ2
X = e2µ+2σ2 − e2µ+σ2

.

(See p. 225.)
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11.30. Show that S(t) has a lognormal distribution, with E(S(t)) = ei(∞)tS(0).
(See p. 225.)

11.31. What should the Black–Scholes option price be in (11.7) on p. 228, if
we let T = 0 but do not change the other values? Verify this by taking the
limit as T approaches 0 of δ (with the other values fixed) in the three cases
X < S(0), X = S(0), and X > S(0). (Note that Φ (∞) = 1, Φ (−∞) = 0.)

11.32. Show that
Φ(x) =

1√
2π

∫ x

−∞
e−t2/2 dt,

is defined for all x and has the following properties:

(a) Φ(x) > 0.
(b) Φ(−x) = 1 − Φ(x).
(c) Φ(x) is an increasing function.
(d) Φ(x) is concave down for x > 0, and concave up for x < 0.

11.33. Prove

P (0) = −S(0)Φ(−δ) + e−i(∞)T Φ
(
−δ + σ

√
T
)

.

(See p. 230.)

11.34. If

δ =

(
i(∞) + 1

2σ2
)
T − ln (X/S(0))

σ
√

T
,

(see (11.8) on p. 228), then show that

S(0)Φ′(δ) − Xe−i(∞)T Φ′(δ − σ
√

T ) = 0.

[Hint: Start with ln
(
Φ′(δ)/Φ′(δ − σ

√
T )

)
.]

11.35. Show that

Φ(δ) =
∂C(0)
∂S(0)

.

(See p. 230.) [Hint: Use Problem 11.34.]

11.36. Show that Φ
(
δ − σ

√
T
)

is equal to the probability that the option is
in the money at expiration, that is, S(T ) > X. (See p. 230.)

11.37. Show that
∂2C(0)
∂S(0)2

=
Φ′(δ)

S(0)σ
√

T
.

(See p. 236.)
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11.38. Show that

∂C(0)
∂T

=
S(0)σ
2
√

T
Φ′(δ) + i(∞)Xe−i(∞)T Φ(δ − σ

√
T ).

(See p. 237.)

11.39. Show that

∂C(0)
∂i(∞) = XT e−i(∞)T Φ(δ − σ

√
T ).

(See p. 237.)

11.40. Show that
∂C(0)

∂σ
= S(0)

√
TΦ′(δ).

(See p. 237.)

11.41. Show that
∂C(0)
∂X

= −e−i(∞)T Φ(δ − σ
√

T ).

(See p. 238.)

11.42. Suppose, in Example 11.4 on p 235, that we change S(0) from $98 to
$102 but do not change the other four values. Calculate the new Black-Scholes
option price. Does this agree with your intuition? Verify this by calculating
the Greek ∆ for this example.

11.43. Change X from $100 to $99 in (11.7) on p. 228 and proceed as in
Problem 11.42 using the appropriate Greek.

11.44. Change i(∞) from 0.05 to 0.10 in (11.7) on p. 228. Calculate the new
Black–Scholes option price. Does this agree with your intuition? Verify this
by calculating ρ for this example.

11.45. Change T from 0.50 to 0.25 in (11.7) on p. 228 and proceed as in
Problem 11.44 using the appropriate Greek.

11.46. Change σ from 0.4 to 0.5 in (11.7) on p. 228 and proceed as in Prob-
lem 11.44 using the appropriate Greek. (Intuition may not work in this case.)

11.47. Show that

−Θ +
1
2
σ2S2(0)Γ + i(∞)S(0)∆ − i(∞)C(0) = 0,

and that

−∂C(0)
∂T

+
1
2
σ2S2(0)

∂2C(0)
∂S(0)2

+ i(∞)S(0)
∂C(0)
∂S(0)

− i(∞)C(0) = 0.

(See p. 238.)
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11.48. Show that the Black-Scholes formula

C(0) = S(0)Φ (δ) − Xe−i(∞)T Φ
(
δ − σ

√
T
)

,

where

δ =

(
i(∞) + 1

2σ2
)
T − ln (X/S(0))

σ
√

T
,

where 0 is always the current time (fixed) and T is the time remaining to
expiration (variable), can be written in the form

C(t) = S(t)Φ (δ∗) − Xe−i(∞)(T ∗−t)Φ
(
δ∗ − σ

√
T ∗ − t

)
,

where

δ∗ =

(
i(∞) + 1

2σ2
)
(T ∗ − t) − ln (X/S(t))
σ
√

T ∗ − t
,

where t is the current time (variable) and T ∗ is the expiration date (fixed).

11.49. Show, under the conditions of Problem 11.48, that the Black-Scholes
partial differential equation (11.10) is

∂F

∂t
+

1
2
σ2S2(t)

∂2F

∂S(t)2
+ i(∞)S(t)

∂F

∂S(t)
− i(∞)F = 0.

Questions for Review

• What is a call option?
• What is a put option?
• How do the price of the stock and time to expiration affect the price of a

call (put) option?
• What is a covered call?
• What is a covered put?
• What does the Put-Call Parity Theorem say?
• What does the Hedge Ratio Theorem say?
• What is a binomial tree?
• Explain arbitrage.
• What does the Black-Scholes Theorem say? What conditions are assumed?
• What are the Greeks and what do they measure?
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Appendix: Induction, Recurrence Relations,
Inequalities

A.1 Mathematical Induction

Mathematical induction is a technique used to prove a proposition that in-
volves an integer variable. Frequently the proposition is an identity or an
inequality involving an integer n such as

1 + 2 + 4 + · · · + 2n−1 = 2n − 1 for n = 1, 2, . . . ,

or
n2 > 2n + 1 for n = 3, 4, . . . .

In both cases, we have a proposition, P (n), that must be proved for n ≥ n0.
The technique of mathematical induction requires two steps.

1. Prove that P (n) is true for the first value of n, namely, n = n0. This is
the basic step.

2. Assume that P (k) is true and prove that, as a consequence of this, P (k+1)
is true. This is the inductive step.

If both of these steps are proved, then P (n) is true for n ≥ n0 by the
following reasoning. From the basic step we know that P (n0) is true. Now,
from the inductive step with k = n0 we know that P (n0) being true requires
that P (n0 + 1) is true. We use this and the inductive step again to show that
P (n0 + 2) is true, and so on.

Example A.1. Show by induction that

1 + 2 + 4 + · · · + 2n−1 = 2n − 1 for n = 1, 2, . . . .

Solution. Here n0 = 1 and the proposition P (n) is 1+2+4+· · ·+2n−1 = 2n−1.
Basic Step: We must show that P (n0), that is, P (1) is true. The statement
P (1) is the proposition that 1 = 21 − 1, which is clearly true.
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Inductive Step: We must show that P (k + 1) is true as a consequence of
P (k) being true, that is, we must show that

1 + 2 + 4 + · · · + 2k = 2k+1 − 1

is a consequence of

1 + 2 + 4 + · · · + 2k−1 = 2k − 1.

Now,

1 + 2 + 4 + · · · + 2k = 1 + 2 + 4 + · · · + 2k−1 + 2k

= (1 + 2 + 4 + · · · + 2k−1) + 2k

= (2k − 1) + 2k

= 2k+1 − 1.

By mathematical induction, the equality is valid for all integers n ≥ 1. �
Example A.2. Show by induction that

n2 > 2n + 1 for n = 3, 4, . . . .

Solution. Here n0 = 3 and the proposition P (n) is n2 > 2n + 1.
Basic Step: We must show that P (n0), that is, P (3) is true. The statement
P (3) is the proposition that 32 > 2 × 3 + 1, that is, 9 > 7, which is clearly
true.
Inductive Step: We must show that P (k + 1) is true as a consequence of
P (k) being true, that is, we must show that

(k + 1)2 > 2(k + 1) + 1

is a consequence of
k2 > 2k + 1.

Now,

(k + 1)2 = k2 + 2k + 1
> (2k + 1) + 2k + 1
= 2k + (2k + 2)
> 2k + 3
= 2(k + 1) + 1.

By mathematical induction, the inequality is valid for all integers n ≥ 3.
�

The process of mathematical induction is frequently compared to an in-
finite line of dominoes that has the property that if the nth domino falls so
does the next one. This is the inductive step, and no dominoes fall until one
of them, the nth

0 , falls. This is the basic step. If the nth
0 domino falls, then so

do all the dominos for which n ≥ n0.
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A.2 Recurrence Relations

Definition A.1. A recurrence relation among P0, P1, P2, . . ., is an
equation of the type

Pn+m = f(Pn, Pn+1, . . . , Pn+m−1),

so Pn+m is determined by its previous m terms.

Comments About Recurrence Relations

• Recurrence relations are also called finite difference equations.
• The positive integer m is the order of the recurrence relation. For exam-

ple, the recurrence relation

Pn+2 =
(n + 1)Pn

(n + 3)
, n = 0, 1, 2, . . . ,

is a second order recurrence relation.
• There is no general way to solve recurrence relations. However, a first order

recurrence relation can be solved if it can be rewritten in the form

Qn = Qn−1, n = 1, 2, . . . .

In this form we sum both sides from 1 to N , giving

N∑
n=1

Qn =
N∑

n=1

Qn−1.

Canceling the common terms on both sides gives

QN = Q0,

so the recurrence relation Qn = Qn−1 has solution Qn = Q0.
(An alternative way to show this from Qn = Qn−1 is to realize that this
implies that Q1 = Q0, that Q2 = Q1, and so on, so that

Qn = Qn−1 = Qn−2 = · · · = Q2 = Q1 = Q0,

and so the solution is Qn = Q0.)

Example A.3. Solve the following recurrence relations (n = 1, 2, . . .).

(a) Pn = −Pn−1
(b)Pn = aPn−1, where a is constant
(c) nPn = Pn−1
(d)Pn = (n + 1)Pn−1
(e) Pn = Pn−1 + a, where a 	= 0 is constant
(f) Pn = Pn−1 + ban, where a 	= 0, b 	= 0 are constants
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Solution.

(a) The recurrence relation
Pn = −Pn−1

can be rewritten in the form (−1)nPn = (−1)n−1Pn−1, that is, Qn = Qn−1
with Qn = (−1)nPn. This has the solution Qn = Q0, that is, (−1)nPn =
(−1)0P0, so Pn = (−1)nP0.

(b) The recurrence relation
Pn = aPn−1

can be rewritten in the form Pn/an = Pn−1/an−1, that is, Qn = Qn−1 with
Qn = Pn/an. This has the solution Qn = Q0, that is, Pn/an = P0/a0, so
Pn = anP0.

(c) The recurrence relation
nPn = Pn−1

can be rewritten in the form n!Pn = (n − 1)!Pn−1, that is, Qn = Qn−1
with Qn = n!Pn. This has the solution Qn = Q0, that is, n!Pn = 0!P0, so
Pn = P0/n!.

(d) The recurrence relation

Pn = (n + 1)Pn−1

can be rewritten in the form Pn/(n + 1)! = Pn−1/n!, that is, Qn = Qn−1
with Qn = Pn/(n + 1)!. This has the solution Qn = Q0, that is, Pn/(n +
1)! = P0/1!, so Pn = (n + 1)!P0.

(e) The recurrence relation
Pn = Pn−1 + a

can be rewritten in the form Pn −a = Pn−1 or Pn −na = Pn−1 − (n−1)a,
that is, Qn = Qn−1 with Qn = Pn − na. This has the solution Qn = Q0,
that is, Pn − na = P0 − 0a, so Pn = na + P0.

(f) The recurrence relation
Pn = Pn−1 + ban

can be rewritten in the form Pn − ban = Pn−1, or

Pn − ban − b

n−1∑
i=0

ai = Pn−1 − b

n−1∑
i=0

ai,

or

Pn − b

n∑
i=0

ai = Pn−1 − b

n−1∑
i=0

ai,

that is, Qn = Qn−1 with Qn = Pn − b
∑n

i=0 ai. This has the solution
Qn = Q0, that is, Pn − b

∑n
i=0 ai = P0 − b, so Pn = b

∑n
i=0 ai + P0 − b =

b
∑n

i=1 ai + P0.

�
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A.3 Inequalities

Theorem A.1. Arithmetic-Geometric Mean Inequality.
If a1, a2, . . . , an are non-negative and not all zero, then

(a1a2 · · · an)1/n ≤ a1 + a2 + · · · + an

n
,

with equality if and only if a1 = a2 = · · · = an.

Proof. The proof of the Arithmetic-Geometric Mean Inequality proceeds in
two stages. First, we prove it by induction for n = 2m, namely,

(a1a2 · · · a2m)1/2m ≤ a1 + a2 + · · · + a2m

2m

and then we fill in the missing n’s.
With m = 1 we want to show that

(a1a2)
1/2 ≤ a1 + a2

2
.

However, from (a1 − a2)
2 ≥ 0, we have a2

1 +a2
2 ≥ 2a1a2, which is the required

inequality. Equality occurs if and only if a1 = a2.
We assume that this is valid for m and show that it is true for m+1, that

is, we want to show that

(a1a2 · · · a2m+1)1/2m+1 ≤ a1 + a2 + · · · + a2m+1

2m+1 ,

with equality if and only if a1 = a2 = · · · = a2m+1 .
Now,

(a1a2 · · · a2m+1)1/2m+1

=
[
(a1a2 · · · a2m)1/2m

(a2m+1a2m+2 · · · a2m+1)1/2m
]1/2

.

But, [
(a1a2 · · · a2m)1/2m

(a2m+1a2m+2 · · · a2m+1)1/2m
]1/2

≤
[(

a1+a2+···+a2m

2m

) (
a2m+1+a2m+2+···+a2m+1

2m

)]1/2
,

with equality if and only if a1 = a2 = · · · = a2m and a2m+1 = a2m+2 = · · · =
a2m+1. Now, [(

a1+a2+···+a2m

2m

) (
a2m+1+a2m+2+···+a2m+1

2m

)]1/2

≤ 1
2

[(
a1+a2+···+a2m

2m

)
+

(
a2m+1+a2m+2+···+a2m+1

2m

)]
,

with equality if and only if a1+a2+· · ·+a2m = a2m+1+a2m+2+· · ·+a2m+1 . This
is the desired inequality, with equality if and only if a1 = a2 = · · · = a2m+1.
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Now, consider the case when n 	= 2m. Then choose an+1 = an+2 = · · · =
a2m = A, where

A =
a1 + a2 + · · · + an

n
.

Thus,(
a1a2 · · · anA2m−n

)1/2m

≤ a1 + a2 + · · · + an + (2m − n) A

2m
= A,

or
a1a2 · · · anA2m−n ≤ A2m

,

that is,
a1a2 · · · an ≤ An.

Equality occurs if and only if a1 = a2 = · · · = an.
This completes the proof. ��

Theorem A.2. (
1 +

r

n − 1

)n−1

<
(
1 +

r

n

)n

.

Proof. To prove this we use the Arithmetic-Geometric Mean Inequality with
a1 = 1 , a2 = a3 = · · · = an = 1 + r/(n − 1), which gives[

1
(

1 +
r

n − 1

)n−1
]1/n

≤
1 + (n − 1)

(
1 + r

n−1

)
n

,

or [(
1 +

r

n − 1

)n−1
]1/n

≤ n + r

n
= 1 +

r

n
.

��
Theorem A.3. Cauchy-Schwarz Inequality.(

n∑
i=1

aibi

)2

≤
(

n∑
i=1

a2
i

)(
n∑

i=1

b2
i

)
,

with equality if and only if either ai = λbi for some constant λ or bi = 0 for
all i.

Proof. The Cauchy-Schwarz inequality is obviously true if b1 = b2 = · · · =
bn = 0, so we concentrate on the case when not all bi are zero, in which case∑n

j=1 b2
j 	= 0. Consider, with

λ =

∑n
j=1 ajbj∑n
j=1 b2

j

,
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the quantity

0 ≤
n∑

i=1

(ai − λbi)
2 =

n∑
i=1

a2
i − 2λ

n∑
i=1

aibi + λ2
n∑

i=1

b2
i .

Clearly the equality holds if and only if ai = λbi for all i. Otherwise we have

0 <

n∑
i=1

a2
i − 2

∑n
j=1 ajbj∑n
j=1 b2

j

n∑
i=1

aibi +

(∑n
j=1 ajbj∑n
j=1 b2

j

)2 n∑
i=1

b2
i ,

which can be written as

0 <

n∑
i=1

a2
i −

(∑n
j=1 ajbj

)2

∑n
j=1 b2

j

.

This is the Cauchy-Schwarz inequality. ��

Theorem A.4. Hölder’s Inequality.
For p > 1 and q such that 1/p + 1/q = 1,∣∣∣∣∣

n∑
i=1

uivi

∣∣∣∣∣ ≤
(

n∑
i=1

|ui|p
)1/p (

n∑
i=1

|vi|q
)1/q

.

Proof. We assume, without loss of generality, that at least one value of ui and
at least one value of vi is non-zero. We may also assume that ui ≥ 0 and that
vi ≥ 0 for all i. (Why?) Let p > 0 and define q so that 1/p+1/q = 1. For fixed
y > 0, consider the function f(x) = xy − xp/p. We have f ′(x) = y − xp−1, so
f ′(x) = 0 if and only if x = y1/(p−1). For this value of x,

f(x) = y1/(p−1)+1 − yp/(p−1)

p
= yp/(p−1)

(
1 − 1

p

)
=

yq

q
.

Thus, for all x ≥ 0, xy ≤ xp/p + yq/q. Now, let

xi =
ui

(
∑n

i=1 |ui|p)1/p

and
yi =

vi

(
∑n

i=1 |vi|q)1/q
,

so that

uivi ≤
(

1
p

|ui|p∑n
i=1 |ui|p +

1
q

|vi|q∑n
i=1 |vi|q

)(
n∑

i=1

|ui|p
)1/p (

n∑
i=1

|vi|q
)1/q

.
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Summing from i = 1, 2, . . . , n gives

n∑
i=1

uivi ≤
(

1
p

+
1
q

)(
n∑

i=1

|ui|p
)1/p (

n∑
i=1

|vi|q
)1/q

=

(
n∑

i=1

|ui|p
)1/p (

n∑
i=1

|vi|q
)1/q

.

Hölder’s Inequality follows. ��
Note that the main statement in the Cauchy-Schwarz Inequality is a special

case of Hölder’s Inequality with p = q = 2.

A.4 Problems

A.1. Prove that
n∑

k=1

k =
1
2
n (n + 1)

for n = 1, 2, . . . by induction.

A.2. Prove that
n∑

k=1

k2 =
1
6
n (n + 1) (2n + 1)

for n = 1, 2, . . . by induction.

A.3. Prove that
n∑

k=1

k3 =
1
4
n2 (n + 1)2

for n = 1, 2, . . . by induction.

A.4. Consider1 (
n

k

)
=

n!
k! (n − k)!

.

(a) Prove that (
n

k − 1

)
+

(
n

k

)
=

(
n + 1

k

)
.

(b) Use part (a) and induction to prove the binomial expansion

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

1 Remember that 0! = 1 and that n! = n (n − 1) (n − 2) · · · 3(2)(1) for n > 0.
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A.5. Use induction to prove the triangle inequality∣∣∣∣∣
n∑

k=1

xk

∣∣∣∣∣ ≤
n∑

k=1

|xk| .

A.6. Prove that the number of subsets2 of a set with n elements is 2n.

A.7. Show that f(n) = n2 + n + 41 is prime for n = 0, n = 1, n = 2, n = 4,
and n = 5. Try this for a few more values of n, say up to n = 10. Do you
think this means that f(n) is prime for all n? If so, prove it. If not, supply
a counterexample, that is, find an n for which f(n) is the product of two
positive integers, neither of which is 1.

2 Remember that the empty set is a subset of every set.



B

Appendix: Statistics

A basic knowledge of probability and statistics is necessary for understanding
much of the material in Chaps. 10 and 11. Two useful references are [13]
and [20].

B.1 Set Theory

Consider an experiment (such as the tossing of a coin) that may result in a
fixed (possibly infinite) number of outcomes. The set of all outcomes is called
the sample space of the experiment. An event is a subset of the sample space.
Events are said to be mutually exclusive (or disjoint) if they have no elements
in common.

For any two events A and B we have the following definitions:

1. The union of A and B, A ∪ B, is the set of all elements that belong to A
or to B (or both A and B).

2. The intersection of A and B, A ∩ B, is the set of all elements that belong
to both A and B.

3. The complement of A, Ac, is the set of all elements that do not belong to
A.

4. The empty set, ∅, is the set consisting of no elements.
5. A is a subset of B, written A ⊂ B, if every element of A is also an element

of B.
6. A = B if A ⊂ B and B ⊂ A.

We extend 1 and 2 as follows:

1′ If A1, A2, . . . , An are events, then A1 ∪A2 ∪· · ·∪An is the event consisting
of all elements that are in at least one of the events A1, A2, . . . , An.

2′ If A1, A2, . . . , An are events, then A1 ∩A2 ∩· · ·∩An is the event consisting
of all elements that belong to each of the sets A1, A2, . . . , An.

1′ and 2′ extend in the obvious way for a countably infinite number of
events A1, A2, . . ..
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B.2 Probability

A probability measure is a real-valued function P (·) defined on a set of events
such that

1. 0 ≤ P (A) ≤ 1 for any event A.
2. P (A1 ∪ A2 ∪ · · · ) = P (A1) + P (A2) + · · · if A1, A2, . . . are mutually

exclusive events.
3. P (S) = 1, where S is the sample space.

Note that from 2 we have P (∅) = 2P (∅), implying that P (∅) = 0.
Because A∪Ac = S and A and Ac are mutually exclusive, we have P (A)+

P (Ac) = P (S), so P (Ac) = 1 − P (A) for any event A.
For two events A and B, with P (B) > 0, we define the conditional prob-

ability of A given B by P (A|B) = P (A ∩ B)/P (B).
Consider the following example: Suppose that P (A ∩ B) = 0.10, P (A) =

0.40, and P (B) = 0.30. We have P (A|B) = P (A ∩ B)/P (B) = 0.10/0.30 =
0.33 and P (B|A) = P (A ∩ B)/P (A) = 0.25.

We say that A and B are independent events if P (A ∩ B) = P (A)P (B).
If A and B are independent and P (B) > 0, then we have P (A|B) =
P (A ∩ B)/P (B) = (P (A)P (B))/P (B) = P (A), so A and B are independent
if P (A|B) = P (A).

We extend the definition of independence as follows: Events A1, A2, . . . , An

are said to be independent if for l = 2, . . . , n, and distinct indices i1, i2, . . . , il ⊂
{1, . . . , n}, P (Ai1 ∩ Ai2 ∩ · · · ∩ Ail

) = P (Ai1)P (Ai2) · · ·P (Ail
).

Consider the following example: Let P (A1∩A2∩A3) = 0.125, P (A1∩A2) =
P (A1 ∩ A3) = P (A2 ∩ A3) = 0.25, and P (A1) = P (A2) = P (A3) = 0.50. It is
easy to demonstrate that A1, A2, and A3 are independent events.

The definition of independence extends in the obvious way for a countably
infinite number of events A1, A2, . . . .

B.3 Random Variables

A random variable is a real-valued function defined on the sample space. The
probability distribution of the random variable is determined by its distribu-
tion function. The distribution function of a random variable X is
given by

F (x) = P (X ≤ x),

defined for any real number x.

Example B.1. Consider the stock of LMN Corp, where X is the hourly dollar
change in the stock price. Assume that the probability distribution of X is
as follows: P (X = −0.50) = 0.15, P (X = −0.25) = 0.20, P (X = 0) = 0.20,
P (X = 0.25) = 0.20, and P (X = 0.50) = 0.25. Find the probabilities of an
hourly increase and an hourly decrease in the stock price.
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Solution. The event (X > 0) is the event that there is an hourly increase
in the stock price. Note that P (X > 0) = P (X = 0.25) + P (X = 0.50) =
0.20 + 0.25 = 0.45. This is the probability of an hourly increase in the stock
price. Also, P (X < 0) = P (X = −0.50)+P (X = −0.25) = 0.15+0.20 = 0.35.
This is the probability of an hourly decrease in the stock price. Thus, the stock
price is more likely to increase than to decrease. �

B.3.1 Discrete Random Variables

We say that a random variable is a discrete random variable if the set of
all possible values of the random variable is countable. The random variable
X in Example B.1 is a discrete random variable. For any discrete random
variable X the probability function of X, f(x), is defined for all real numbers
x by f(x) = P (X = x). Note that f(x) is a probability function if and only if
f(x) ≥ 0 for all x and ∑

all x

f(x) = 1.

Example B.2. Find the probability function of the random variable X in Ex-
ample B.1.

Solution. The probability function is given by f(−0.50) = 0.15, f(−0.25) =
0.20, f(0) = 0.20, f(0.25) = 0.20, f(0.50) = 0.25, and f(x) = 0.00 otherwise.
�

We may be interested in the average hourly price change of LMN Corp.
This leads to the following definition: For a discrete random variable X with
possible values x1, x2, . . ., we define the mean or expected value of X by

µ = E(X) =
∑
all x

xf(x),

if the sum is defined. Note that µ is a weighted average of the possible values
of X, where the weights f(x) sum to one.

For LMN Corp. we have

µ = E(X)
= −0.50 × 0.15 − 0.25 × 0.20 + 0.0 × 0.20 + 0.25 × 0.20 + 0.50 × 0.25
= 0.05,

which is 5 cents. Note that this is not the unweighted or equally weighted
average of the possible values of X, which is −0.50−0.25+0.0+0.25+0.50 =
0.0.



258 B Appendix: Statistics

Example B.3. Let Y be the random variable that gives the hourly dollar price
change in the stock of company OPQ. This random variable has the following
probability distribution.

y f(y)
−0.5 0.20

0.0 0.50
0.5 0.30

Find the expected value of Y .

Solution.The expected value is E(Y ) = −0.50×0.20+0×0.50+0.50×0.30 =
0.05, which is 5 cents. �

Notice that the mean hourly dollar price change is the same for companies
LMN and OPQ. However, the probability distributions of the two random
variables are quite different. For example, P (Y = −0.50) = 0.20 > P (X =
−0.50) = 0.15, and P (Y = 0.50) = 0.30 > P (X = 0.50) = 0.25. Thus, it is
more probable that Y takes on the extreme values −0.50 and 0.50.

To account for the variability in the possible values of a random variable
we have the following definitions:

If X is a discrete random variable with finite mean E(X), then we define
the variance of X by

σ2 = E
(
(X − µ)2

)
=

∑
all x

(x − µ)2f(x).

Note that σ2 may be infinite and that σ2 = 0 if and only if f(µ) = 1. The
standard deviation of X is σ =

√
σ2. Note that

σ2 =
∑
all x

(x − µ)2f(x)

=
∑
all x

(
x2 − 2µx + µ2) f(x)

=
∑
all x

x2f(x) − 2µ
∑
all x

xf(x) + µ2
∑
all x

f(x)

=
∑
all x

x2f(x) − 2µ2 + µ2

=
∑
all x

x2f(x) − µ2.

For LMN Corp. we have

σ2 = (−0.50 − 0.05)2 × 0.15 + (−0.25 − 0.05)2 × 0.20
+(0.00 − 0.05)2 × 0.20 + (0.25 − 0.05)2 × 0.20 + (0.50 − 0.05)2 × 0.25

= 0.1225.
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We may also compute σ2 as follows:

σ2 =
∑
all x

x2f(x) − µ2

= (−0.50)2 × 0.15 + (−0.25)2 × 0.20 + (0)2 × 0.20 + (0.25)2 × 0.20
+ (0.50)2 × 0.25 − (0.05)2

= 0.1225.

It is left as an exercise to show that the variance of the random variable Y is
also equal to 0.1225. This shows that two discrete random variables may have
the same means and variances, but different probability distributions.

B.3.2 Independence of Random Variables

If X1, X2, . . . , Xn are random variables defined on the same sample space,
then we say that they are independent if

P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)
= P (X1 ≤ x1)P (X2 ≤ x2) · · ·P (Xn ≤ xn)

for any real numbers x1, x2, . . . , xn. An infinite collection of random variables
is said to be independent if every finite collection of the random variables is
independent.

It can be shown that if X1, X2, . . . , Xn are independent random variables
and A1, A2, . . . , An are subsets of real numbers such that the events (X1 ⊂
A1), (X2 ⊂ A2), . . . , (Xn ⊂ An) are defined, then

P (X1 ⊂ A1, X2 ⊂ A2, . . . , Xn ⊂ An)
= P (X1 ⊂ A1)P (X2 ⊂ A2) · · ·P (Xn ⊂ An).

Furthermore, if f1, f2, . . . , fn are functions such that f1(X1), f2(X2), . . . ,
fn(Xn) are random variables, then f1(X1), f2(X2), . . . , fn(Xn) are indepen-
dent random variables.

Also if X1, X2, . . . , Xn are independent random variables and E (| Xi |n)
is finite for i = 1, 2, . . . , n, then

E (X1X2 · · ·Xn) = E(X1)E(X2) · · ·E(Xn).

Now, consider the following experiment as exemplified by the repeated
tossing of a (possibly biased) coin:

1. The number, n, of trials is fixed in advance.
2. Each trial results in either a success or a failure.
3. The probability of success is p, with 0 ≤ p ≤ 1, on each trial.
4. The trials are independent.



260 B Appendix: Statistics

We define the random variables X1, X2, . . . , Xn by Xi = 1 if the ith trial
is a success, and Xi = 0 if the ith trial is a failure. We see that X1, X2, . . . , Xn

are independent.
Let X =

∑n
i=1 Xi. Then X is the number of successes in the n trials.

A random variable satisfying conditions 1 through 4 is a binomial ran-
dom variable. Note that the probability distribution of X is completely
determined by the parameters n and p. We now determine the probability
distribution and mean and variance of X.

Theorem B.1. If X is a binomial random variable with parameters n and p,
then we have

(a) f(x) = P (X = x) =
(
n
x

)
px(1 − p)n−x, x = 0, . . . , n.

(b) µ = E(X) = np.
(c) σ2 = E

(
(X − µ)2

)
= np(1 − p).

Proof.

(a) We prove part (a) using induction on k, the number of trials. Now, (a)
is true for k = 1 because in this case f(0) = P (X = 0) = 1 − p and
f(1) = P (X = 1) = p. Now assume that (a) holds for k = 1, . . . , n − 1.
We need to show that (a) holds for k = n. In this case, f(x) = P (X =
x) = P (x successes in the first n − 1 trials and a failure on the nth

trial) + P (x − 1 successes in the first n − 1 trials and a success on the nth

trial) for x = 0, . . . , n. (Note that the second probability is zero if x = 0.)
Using independence,

f(x) = P (X = x)

=
(

n − 1
x

)
px (1 − p)(n−1)−x (1 − p) +

(
n − 1
x − 1

)
px−1 (1 − p)(n−1)−(x−1)

p

=
[(

n − 1
x

)
+

(
n − 1
x − 1

)]
px (1 − p)n−x

.

We know, from Problem A.4 on p. 252, that(
n − 1

x

)
+

(
n − 1
x − 1

)
=

(
n

x

)
,

so

f(x) = P (X = x) =
(

n

x

)
px (1 − p)n−x

.

This proves part (a).
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(b) We prove part (b) using algebraic manipulation. The mean of X is given
by

µ = E(X) =
∑
all x

xf(x)

=
n∑

x=0

x

(
n

x

)
px (1 − p)n−x

=
n∑

x=0

x
n!

x! (n − x)!
px (1 − p)n−x

=
n∑

x=1

x
n!

x! (n − x)!
px (1 − p)n−x

= np

n∑
x=1

(n − 1)!
(x − 1)! (n − x)!

px−1 (1 − p)n−x
.

Let y = x − 1. Then

E(X) = np

n−1∑
y=0

(
n − 1

y

)
py (1 − p)(n−1)−y

= np.

Here we used the fact that
(

n − 1
y

)
py (1 − p)(n−1)−y is the probability

that a binomial random variable with parameters n − 1 and p is equal to
the value y, y = 0, 1, . . . , n − 1.

(c) The proof of part (c) is left to you (see Problem B.2). ��
Consider the following three binomial distributions. In each case the num-

ber of trials, n, is equal to four, but the probability p goes from 0.1, to 0.5, to
0.9.

f(x)
x p = 0.1 p = 0.5 p = 0.9
0 0.6561 0.0625 0.0001
1 0.2916 0.2500 0.0036
2 0.0486 0.3750 0.0486
3 0.0036 0.2500 0.2916
4 0.0001 0.0625 0.6561

We note that the graphs for p = 0.1 (Fig. B.1) and p = 0.9 (Fig. B.2) are
mirror images and that the graph for p = 0.5 (Fig. B.3) is symmetric about
its mean µ = np = 4 × 0.50 = 2.0. Can you see this from the table?
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X

0 1 2 3 4

f(
X

)

0.0

0.5

1.0

Fig. B.1. Binomial distribution with n = 4 and p = 0.1

X

0 1 2 3 4

f(
X

)

0.0

0.5

1.0

Fig. B.2. Binomial distribution with n = 4 and p = 0.9

B.3.3 Duration and Random Variables

In Chap. 8 we introduce the concept of duration as a time-weighted average
of the future values of cash flows. Using the notation of that chapter, let C(k)
be the cash flow at period k, paid m times a year, where 0 ≤ k ≤ n, and let
y be the interest rate per period. We assume that C(k) ≥ 0 for all k.
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X

0 1 2 3 4

f(
X

)

0.0

0.5

1.0

Fig. B.3. Binomial distribution with n = 4 and p = 0.5

Then we define duration as

d =
∑n

k=0
k
mC (k) (1 + y)−k∑n

k=0 C (k) (1 + y)−k
.

We now define a random variable X with expectation E(X) = d.
Let f(k), 0 ≤ k ≤ n, be defined by

f(k) =
C (k) (1 + y)−k∑n

k=0 C (k) (1 + y)−k
.

Then 0 ≤ f(k) ≤ 1, 0 ≤ k ≤ n, and
∑n

k=0 f(k) = 1, so the f(k)’s may
be thought of as probabilities. Now, let X be a random variable satisfying
P (X = k/m) = f(k), k = 0, . . . , n. By construction E(X) = d.

Consider two different series of cash flows:

C(0), . . . , C(n) and D(0), . . . , D(n).

Suppose that C(k) ≥ 0 and D(k) ≥ 0, k = 0, . . . , n, that
∑n

k=0 C(k) =∑n
k=0 D(k), that the cash flows are paid m times a year, that the interest rate

per period y is the same for both sets of cash flows, and that the durations of
the two sets of cash flows are the same.

What makes an investor favor one series of cash flows over the other?
Viewing the cash flows in terms of random variables, we derive a measure of
the “variability” of the cash flows, which may help in deciding which series of
cash flows is preferable.
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Consider the series of cash flows C(0), . . . , C(n), and let X be the random
variable with distribution given by P (X = k/m) = f(k), k = 0, . . . , n. Then
we may write

σ2 = E((X − E(X))2)
= E((X − d)2)

=
n∑

k=0

(
k

m

)2

f(k) − d2,

where we used the fact that E(X) = d.

The following example illustrates the use of this idea. Suppose that we
have two series of cash flows:

(C(0), . . . , C(4)) = (10, 10, 10, 10, 10),

and
(D(0), . . . , D(4)) = (23.7809, 0, 0, 0, 26.2191).

Also assume that y = 0.05 and m = 2 in both cases. Note that
∑4

k=0 C(k) =∑4
k=0 D(k) = 50. Let X1 and X2 be the random variables associated with the

two series of cash flows. For the first series of cash flows,

f(k) = P (X1 = k/m)
= P (X1 = k/2)

=
(1.05)−k∑4

k=0 (1.05)−k
.

Then f(0) = 0.2200, f(1) = 0.2095, f(2) = 0.1995, f(3) = 0.1900, f(4) =
0.1810, and E(X1) is

d1 =
∑n

k=0
k
mC (k) (1 + y)−k∑n

k=0 C (k) (1 + y)−k
= 0.9513.

For the second series of cash flows we have

g(k) = P (X2 = (k/2)) =

⎧⎨⎩
0.5244, if k = 0,

0, if k = 1, 2, 3,
0.4756 if k = 4,

and d2 = 0.9513.
Thus, both series of cash flows yield the same total cash flow, 50, and have

the same duration, 0.9513. Now, we compare the variances of X1 and X2.
We have σ2

X1
=

∑4
k=0(k/2)2f(k) − d2

1 = 0.4985. A similar calculation gives
σ2

X2
= 0.9975.
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Thus, the variance of X2 is approximately twice that of X1. This reflects
the fact that there are only two positive cash flows (23.7809 and 26.2191)
for the second series of cash flows, one at either end, while the first series
is a constant series of cash flows (10 each period). An investor who wants a
constant series of cash flows may prefer the first series, whereas an investor
who wants a large cash flow immediately and is willing to delay the remaining
payments may prefer the second series.

B.3.4 Continuous Random Variables

Random variables measuring quantities such as height in centimeters, weight
in pounds, and length in meters are not discrete random variables because
the number of possible values is not countable. In these cases we have the
following definition:

A random variable X is a continuous random variable if its distri-
bution function, F (x), is differentiable for all x. Because continuous random
variables can take an uncountable number of values, probability calculations
cannot be done by summing probabilities. Instead, these variables are char-
acterized by their density functions, and probabilities are calculated using
integration. The density function of a continuous random variable is defined
for all real numbers x by

f(x) =
d

dx
F (x).

Note that f(x) is a density function if and only if f(x) ≥ 0 for all x and∫ ∞

−∞
f(x) dx = 1.

It follows that1

F (x) = P (X ≤ x) =
∫ x

−∞
f(t) dt.

Consider the following example: Let X have a uniform distribution on the
interval [0, 1]. That is, F (x) = P (X ≤ x) = 0 if x < 0, F (x) = x if 0 ≤ x ≤ 1,
and F (x) = 1 if x > 1. It is easy to see that in this case we may set f(x) = 0
if x ≤ 0, f(x) = 1 if 0 < x < 1, and f(x) = 0 if x ≥ 1.2

We define the mean of a continuous random variable X with density func-
tion f(x) by

µ = E(X) =
∫ ∞

−∞
xf(x) dx,

if the integral exists. If E(X) exists, then we define the variance of X by

σ2 = E((X − µ)2) =
∫ ∞

−∞
(x − µ)2 f(x) dx.

1 Because
∫ x

x
f(t) dt = 0, we have P (X < x) = P (X ≤ x).

2 It does not matter how f (x) is defined at x = 0 or x = 1.
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The standard deviation is σ =
√

σ2. The variance σ2 may be infinite, but in
most practical cases 0 < σ2 < ∞.

The most important continuous random variable is the normal random
variable, which is characterized by its mean µ and variance σ2. It plays a
basic role in modeling the rates of returns on investments. It is defined as
follows:

A random variable X has a normal distribution with parameters µ and σ2

if
F (x) = P (X ≤ x) =

1√
2πσ2

∫ x

−∞
e−(t−µ)2/(2σ2) dt,

where −∞ < µ < ∞ and 0 < σ2 < ∞. Thus, the density function of a normal
random variable with parameters µ and σ2 is given by

f(x) =
1√

2πσ2
e−(x−µ)2/(2σ2),

where −∞ < x < ∞.

Theorem B.2. The following properties hold for a normal random variable:

(a) f(x) is a density function.
(b) The expected value of X is E(X) = µ.
(c) The variance of X is σ2 = E

(
(X − µ)2

)
.

Proof.

(a) The proof of part (a) requires multivariate calculus and is omitted.
(b) Using the substitution w = x − µ, we have

E (X)

=
1√

2πσ2

∫ ∞

−∞
xe−(x−µ)2/(2σ2) dx

=
1√

2πσ2

∫ ∞

−∞
(x − µ + µ) e−(x−µ)2/(2σ2) dx

=
1√

2πσ2

(∫ ∞

−∞
(x − µ) e−(x−µ)2/(2σ2) dx +

∫ ∞

−∞
µe−(x−µ)2/(2σ2) dx

)
=

1√
2πσ2

∫ ∞

−∞
we−w2/(2σ2) dw +

µ√
2πσ2

∫ ∞

−∞
e−(x−µ)2/(2σ2) dx.

Both integrals exist, and by symmetry, the value of the first integral is 0.
Because f(x) is a density function the value of the second integral is µ.

(c) The proof of part (c) is left as an exercise.
��
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Figure B.4 shows the density functions of normal random variables with
common mean µ = 100 and variances σ2 = 0.5, 1.0, and 2.0. Note that the
curves are all symmetric across the mean µ = 100 and that they become
flatter as σ2 becomes larger.

x

98 99 100 101 102

f(
x)

0.0

0.2

0.4

0.6 σ2 = 0.5

σ2 = 1.0

σ2 = 2.0

Fig. B.4. Density functions with mean µ = 100 and variances σ2 = 0.5, 1.0, and
2.0

One interesting and useful property of the normal distribution is the fact
that it is invariant under linear transformations.

Theorem B.3. If X has a normal distribution with mean µ and variance σ2,
and if a and b are any two real numbers, then the random variable Y = aX +b
has a normal distribution with mean aµ + b and variance a2σ2.

Proof. In the following we assume, without loss of generality, that a > 0. Let
y be any real number. Then

P (Y ≤ y) = P (aX + b ≤ y)
= P (X ≤ (y − b)/a)

=
1√

2πσ2

∫ (y−b)/a

−∞
e−(x−µ)2/(2σ2) dx.

Using the substitution t = ax + b we have

P (Y ≤ y) =
1√

2πa2σ2

∫ y

−∞
e−(t−(aµ+b))2/(2a2σ2) dt,

which is the distribution function of a normal random variable with mean
aµ + b and variance a2σ2 evaluated at y. This completes the proof of the
theorem. ��
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Table B.1 gives values of the standard normal distribution function F (z),
where Z is the standard normal random variable—the normal random variable
with mean µ = 0 and variance σ2 = 1. The function F (z0) is denoted by Φ(z0),
so

Φ(z0) = P (Z ≤ z0) =
1√
2π

∫ z0

−∞
e−t2/2 dt.

Table B.1. Standard Normal Cumulative Probability in Left-Hand Tail

Second Decimal Place of z0

z0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

The following example illustrates the use of this table.

Example B.4. Suppose that the daily price change X of an investment is nor-
mally distributed with mean µ = 0.05 and variance σ2 = 0.01. For a given
day, what is the probability that the price change is
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(a) Less than 0.05?
(b) Greater than −0.05?
(c) Greater than 0.15?
(d) Between −0.05 and 0.15?

Solution. In the following we let Z = aX + b, where a = 1/0.10 and b =
−0.05/0.10. It is easy to see that Z has the standard normal distribution.
In some of these calculations we make use of the fact that the distribution
function of Z is symmetric about 0, that is, P (Z ≥ z) = P (Z ≤ −z) for any
real number z.

(a) We have

P (X < 0.05) = P ((X − 0.05)/0.10 < (0.05 − 0.05)/0.10)
= P (Z < 0)
= 0.5000.

(b) We have

P (X > −0.05) = P ((X − 0.05)/0.10 > (−0.05 − 0.05)/0.10)
= P (Z > −1)
= P (Z ≤ 1)
= 0.8413.

(c) We have

P (X > 0.15) = P (Z > (0.15 − 0.05)/0.10)
= P (Z > 1)
= 1 − P (Z ≤ 1)
= 0.1587.

(d) We have

P (−0.05 < X < 0.15) = P (−1 < Z < 1)
= P (Z < 1) − P (Z ≤ −1)
= 0.8413 − 0.1587
= 0.6826.

�
If Xi, i = 1, 2, . . . , n, are independent normal random variables, and if Xi

has mean µi and variance σ2
i for each i, then it can be shown that

∑n
i=1 Xi

has a normal distribution with mean
∑n

i=1 µi and variance
∑n

i=1 σ2
i .
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We have the following theorem, which we state without proof.3

Theorem B.4. The Central Limit Theorem.
If X1, X2, . . . are independent random variables that have a common distri-
bution function with mean µ, −∞ < µ < ∞, and variance σ2, 0 < σ2 < ∞,
then, for any real number z,

lim
n→∞ P

( 1
n

∑n
i=1 Xi − µ

σ/
√

n
≤ z

)
= Φ(z),

where Φ (z) = P (Z ≤ z), the distribution function of the standard normal
random variable Z, evaluated at z.

We write this as

Zn =
1
n

∑n
i=1 Xi − µ

σ/
√

n

converges in distribution to the standard normal distribution4 and denote
this by Zn

d−→ Z. Notice that the restrictions placed on the random variables
X1, X2, . . . are that they are independent, have the same distribution, and
have a finite and non-zero variance.5

Example B.5. Suppose that we toss a fair coin a large number of times. We
define the random variables X1, X2, . . . by Xi = 1 if the ith toss is a head
and Xi = 0 if the ith toss is a tail. Each random variable Xi has a binomial
distribution with parameters n = 1 and p = 0.50. If we assume that the tosses
are independent and that the coin is tossed n times, then X =

∑n
i=1 Xi has

a binomial distribution with mean 0.5n and variance n × 0.5 × 0.5 = 0.25n.
Answer the following questions:

(a) If the coin is tossed 100 times, then what is P (X = 50)?
(b) If the coin is tossed 100 times, then what is P (X ≥ 60)?
(c) If the coin is tossed 100 times, then what is P (40 ≤ X ≤ 60)?

Solution. We can approximate these probabilities using the Central Limit
Theorem. We use the fact that with n = 100 and p = 0.50, the random
variable X has a binomial distribution with mean µ = E(X) = np = 50 and
variance σ2 = np(1 − p) = 100 × 0.50 × 0.50 = 25. Thus, (

∑100
i=1 Xi − 50)/5

has an approximate standard normal distribution. Note that because X is a
discrete random variable and Z is a continuous random variable, events such
as (X = 50) need to be rewritten as (49.5 < X < 50.5) in order to make use
of the Central Limit Theorem.

3 A proof of the Central Limit Theorem can be found in [17].
4 Let X1, X2, . . . and Y be random variables with distribution functions Φ1, Φ2, . . .

and ψ, respectively. We say that Xn converges in distribution to Y , written Xn
d−→

Y , if Φn(x) → ψ(x) at each continuity point of ψ.
5 If a random variable has a finite variance, then it also has a finite mean.
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(a) We have

P (X = 50) = P (49.5 < X < 50.5)
= P ((49.5 − 50)/5 < (X − 50)/5 < (50.5 − 50)/5)
≈ P (−0.1 < Z < 0.1)
= P (Z ≤ 0.1) − P (Z ≤ −0.1)
= 0.5398 − 0.4602
= 0.0796.

(b) We have

P (X ≥ 60) = P (X ≥ 59.5)
= P ((X − 50)/5 ≥ (59.5 − 50)/5)
≈ P (Z ≥ 1.90)
= 1 − P (Z ≤ 1.90)
= 1 − 0.9713
= 0.0287.

(c) We have

P (40 ≤ X ≤ 60) = P (39.5 ≤ X ≤ 60.5)
= P ((39.5 − 50)/5 ≤ (X − 50)/5 ≤ (60.5 − 50)/5)
≈ P (−2.10 ≤ Z ≤ 2.10)
= P (Z ≤ 2.10) − P (Z ≤ −2.10)
= 0.9821 − 0.0179
= 0.9642.

�
Another important continuous random variable is the lognormal ran-

dom variable. A random variable X is said to be lognormal if Y = lnX has
a normal distribution. Note that X can only take positive values. Lognormal
distributions are often used to model rates of returns on investments. Suppose
that Y = lnX has a normal distribution with mean µ and variance σ2. Note
that f(x) = 0 for x ≤ 0 and that f(x) > 0 for x > 0. It is left as an exercise
to derive the density function.

B.4 Moments

Although the Central Limit Theorem works very well in many cases, there are
instances where one or more of its assumptions are not met. The conditions
on the mean and variance (−∞ < µ < ∞, 0 < σ2 < ∞) are usually satisfied
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in real-world cases, but the other conditions may not be satisfied. For exam-
ple, suppose that for each n, Xi depends on n. Another example is the case
where X1, X2, . . . , Xn are not independent random variables. In both cases
the Central Limit Theorem is not applicable, but it may still be possible that
Zn = (X1+· · ·+Xn−nµ)/(σ

√
n) converges in distribution to Z, the standard

normal random variable.
To explore these cases further we introduce the concept of moment gen-

erating functions. Let X be a random variable and t a real number. The
moment generating function of the random variable X is defined by
MX(t) = E(etX) for all t for which the expectation exists. Note that MX(0)
exists for any random variable, but there are random variables for which
MX(t) does not exist for t 	= 0.

Consider the following two cases.
Case 1. Let X be a binomial random variable with n = 1 and probability

of success p. Then

MX(t) = E(etX) = pet×1 + (1 − p)et×0 = pet + (1 − p).

Case 2. Let X have a normal distribution with mean µ and variance σ2.
Then

MX(t) = E(etX)

=
1√

2πσ2

∫ ∞

−∞
etxe−(x−µ)2/(2σ2) dx

=
1√

2πσ2

∫ ∞

−∞
etx−(x−µ)2/(2σ2) dx.

We have

tx − (x − µ)2

2σ2 =
1

2σ2

(
2σ2tx − (x − µ)2

)
=

1
2σ2

(
− (

x − (
σ2t + µ

))2
+ σ4t2 + 2µσ2t

)
.

So
MX(t) = eµt+σ2t2/2 1√

2πσ2

∫ ∞

−∞
e−(x−(σ2t+µ))2

/(2σ2) dx.

We introduce

v =
x − (

σ2t + µ
)

σ
,

to obtain

MX(t) = eµt+σ2t2/2 1√
2π

∫ ∞

−∞
e−v2/2 dv

= eµt+σ2t2/2.
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In the important case where X = Z, the standard normal random variable,
we have MX(t) = et2/2.

The following theorem, which we state without proof,6 is often useful in
deriving limiting distributions of random variables in cases where the Central
Limit Theorem is not applicable.

Theorem B.5. Moment Generating Function Convergence Theorem.
Let Z1, Z2, . . . be random variables such that MZn(t) exists for every real num-
ber t and all n ≥ 1. Then if MZn(t) converges to MT (t) for every real number
t, where T is a random variable, then P (Zn ≤ x) converges to P (T ≤ x) for
every real number x. Thus, if the moment generating functions converge, then
the distribution functions converge and Zn

d−→ T .

Using the Moment Generating Function Convergence Theorem we may
prove the following useful result.

Theorem B.6. Binomial Convergence Theorem.
For every n, let Sn = X1 + X2 + · · · + Xn, where X1, X2, . . . , Xn are in-
dependent with P (Xi = 1) = pn and P (Xi = 0) = 1 − pn for i =
1, 2, . . . , n. This has a binomial distribution with parameters n and pn. If
Zn = (Sn − npn)/

√
npn(1 − pn) and if pn converges to p as n approaches ∞,

with 0 < p < 1, then Zn
d−→ Z.

Proof. We use the Moment Generating Function Convergence Theorem.
We have P (Xi = 1) = pn and P (Xi = 0) = 1 − pn for i = 1, 2, . . . , n. It is

important to note that for each n the Xi’s may depend on n.
Then

MZn(t) = E(etZn)

= E
(
et(Sn−npn)/

√
npn(1−pn)

)
= E

(
et(X1+X2+···+Xn−npn)/

√
npn(1−pn)

)
= E

(
et(X1−pn)/

√
npn(1−pn)

)
· · ·E

(
et(Xn−pn)/

√
npn(1−pn)

)
=

(
E

(
et(X1−pn)/

√
npn(1−pn)

))n

,

where we used the facts that the Xi’s are independent and identically dis-
tributed for each n ≥ 1.

It remains to show that

lim
n→∞ MZn(t) = MZ(t) = et2/2

for all t.
6 A proof of the Moment Generating Function Convergence Theorem can be found

in [8].
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Expanding et(X1−pn)/
√

npn(1−pn) in a Taylor series about t = 0, we see
that

et(X1−pn)/
√

npn(1−pn) = 1 +
t (X1 − pn)√
npn (1 − pn)

+
t2 (X1 − pn)2

2!npn (1 − pn)
+ · · · .

Now, E(X1 − pn) = 0 and E(X1 − pn)2 = σ2
X1

= pn (1 − pn), so

E

(
1 +

t (X1 − pn)√
npn (1 − pn)

+
t2 (X1 − pn)2

2npn (1 − pn)

)
= 1 +

t2

2n

for every n. Thus, we have

MZn(t) =
(

1 +
t2

2n
(1 + rn)

)n

,

where

rn = 2
∞∑

k=3

tk−2n1−k/2

k!
E

⎛⎝(
X1 − pn√
pn (1 − pn)

)k
⎞⎠ .

Now, ∣∣∣∣∣ X1 − pn√
pn (1 − pn)

∣∣∣∣∣ =

⎧⎨⎩
√

1−pn

pn
if X1 = 1,√

pn

1−pn
if X1 = 0.

Thus, for large enough n, ∣∣∣∣∣ X1 − pn√
pn (1 − pn)

∣∣∣∣∣ ≤ cM,

where c is any number greater than 1, and

M = max
(√

1 − p

p
,

√
p

1 − p

)
,

so ∣∣∣∣∣∣ t
k−2n1−k/2

k!
E

⎛⎝(
X1 − pn√
pn (1 − pn)

)k
⎞⎠∣∣∣∣∣∣ ≤ tk−2n1−k/2

k!
(cM)k

= tk−2n1−k/2 (cM)k

k!
.

From this we see that rn approaches 0 as n approaches infinity. Thus, it
follows (see Problem B.20 on p. 282) that

lim
n→∞ MZn(t) = MZ(t) = et2/2.

This proves that
Zn

d−→ Z,

by the Moment Generating Function Convergence Theorem. ��
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B.5 Joint Distribution of Random Variables

Suppose that X and Y are two discrete random variables defined on the same
sample space. Then we may determine the joint distribution of X and Y
from their joint probability function as follows: For all real numbers x and y,
define f(x, y) = P (X = x, Y = y). Consider the following joint probability
distribution of the random variables X and Y .

X\Y −1 0 1
0 1/12 1/8 1/24
1 1/6 1/4 1/12
2 1/12 1/8 1/24

Thus, for example, f(1, 0) = P (X = 1, Y = 0) = 1/4 and f(0, 1) = P (X =
0, Y = 1) = 1/24. Note that we may calculate the probability function of X
as follows:

P (X = 0) = f(0,−1) + f(0, 0) + f(0, 1) =
1
4
,

P (X = 1) = f(1,−1) + f(1, 0) + f(1, 1) =
1
2
,

and, similarly,

P (X = 2) =
1
4
.

From these we may calculate E(X) = 1 and σ2
X = 0.5.

Using this procedure, we may calculate the probability function of Y , and
thus the parameters E(Y ) and σ2

Y . We may also find the probability function
of the random variable XY , which is given by P (XY = −2) = 1/12, P (XY =
−1) = 1/6, P (XY = 0) = 5/8, P (XY = 1) = 1/12, and P (XY = 2) = 1/24.
From these we may calculate E(XY ) and σ2

XY . You should do this.
If we plot these data, then we have Fig. B.5. There does not appear to be

a strong linear relationship between X and Y .
On the other hand, consider the following joint probability distribution of

the random variable S and T .

S\T −1 0 1
0 1/6 1/8 1/24
1 1/12 1/8 1/12
2 1/24 1/12 1/4

If we plot these data, then we have Fig. B.6.
In this case there appears to be a positive linear relationship between S

and T . For example, f(0,−1) = P (S = 0, T = −1) = 1/6, whereas f(0, 1) =
P (S = 0, T = 1) = 1/24. Also, f(2, 1) = 1/4, and f(2,−1) = 1/24. Larger
values of S are more likely to occur with larger values of T , and smaller values
of S are more likely to occur with smaller values of T .
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Fig. B.5. Joint probability function of X and Y
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Fig. B.6. Joint probability function of S and T

A measure of linearity is given by the covariance, which is defined for
random variables X and Y by

σXY = E ((X − E(X))(Y − E(Y ))) = E(XY ) − E(X)E(Y ).

For the random variables X and Y given at the beginning of this section,
σXY = 0, whereas for the random variables S and T , σST = 0.3299. However,
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this measure of linearity is dependent on the units of measurement. For ex-
ample, it is easy to show that σ(2S)T = 2σST = 0.6597. A unitless measure of
linearity is the correlation coefficient, which is defined for random variables
X and Y by

ρXY =
σXY√
σ2

Xσ2
Y

.

Using this measure, ρXY = 0 and ρST = 0.4831. By Hölder’s Inequality, we
have −1 ≤ ρXY ≤ 1. We have ρXY = 1 if and only if Y = a + bX with
b > 0, and we have ρXY = −1 if and only if Y = c + dX with d < 0. (See
Problem B.17.)

B.6 Linear Regression

Consider the following data collected on the relationship between family size
and annual family income.

Number of Children Annual Family Income
in Family, X (Thousands of Dollars), Y

1 55
2 47
3 45
4 43
5 40
6 38

If we plot these data, then we have Fig. B.7.
We wish to fit a line—called a regression line—to these data that

describes the relationship between X and Y . How to “best” fit the line is
the subject of this section. Consider the general case where we have n pairs
of points: (x1, y1), (x2, y2), . . . , (xn, yn). One possible criterion for fitting a
line to the data is to choose a line ŷ = a + bx, which minimizes the sum
of the absolute values of the errors. That is, we seek a line that minimizes∑n

i=1 |yi − (a + bxi)|. In some cases this is a reasonable criterion, but it has
several deficiencies.

For example, consider the following data set, plotted in Fig. B.8.

x y
1 1
2 2
3 2
4 1

Now, consider three possible lines: L1: y = 1.0 (a = 1, b = 0), L2: y = 1.5
(a = 1.5, b = 0), and L3: y = 2.0 (a = 2, b = 0). It is easy to see that all three
lines yield the same sum of absolute values of errors, namely 2. Thus, there is
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Fig. B.7. Annual family income versus number of children in family

Fig. B.8. The data set

no way to choose between the three lines using this criterion. In general, there
may be more than one line that minimizes the sum of the absolute values
of the errors. Also, this method of choosing the “best fit” line is usually not
amenable to statistical analysis.
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The most common method of fitting lines to bivariate data sets uses the
“least-squares” criterion. With this criterion we choose the line ŷ = a + bx
that minimizes the sum of the squares of the errors,

∑n
i=1 (yi − (a + bxi))

2.
This method is preferred because it yields a unique line and leads to useful
applied and theoretical statistical applications. We now derive the equations
for a and b that give the least-squares regression line.

We are given n pairs of points: (x1, y1), (x2, y2), . . . , (xn, yn), and we are
to find the line ŷ = a + bx that minimizes

∑n
i=1 (yi − (a + bxi))

2. We derive
the equations for a and b using calculus. We first differentiate the expres-
sion

∑n
i=1 (yi − (a + bxi))

2 with respect to a and set the derivative equal to
zero. Then differentiate the (original) expression with respect to b and set the
derivative equal to zero. This leads to two linear equations in a and b, which
we solve for the desired values.

First, differentiating with respect to a, we have

−2
n∑

i=1

(yi − (a + bxi)) = 0,

so
n∑

i=1

yi = na + b

n∑
i=1

xi.

Second, differentiating with respect to b, we have

−2
n∑

i=1

xi (yi − (a + bxi)) = 0,

so
n∑

i=1

xiyi = a

n∑
i=1

xi + b

n∑
i=1

x2
i .

If we set x =
∑n

i=1 xi/n and y =
∑n

i=1 yi/n and solve for a and b, then we
have

a = y − bx,

and

b =
∑n

i=1 (xi − x) (yi − y)∑n
i=1 (xi − x)2

The least squares regression line is y = a + bx.
Referring back to the data set plotted in Fig. B.8, it is easy to see that

L2: y = 1.5 is the least-squares regression line. The calculation of the least-
squares regression line for family size versus annual family income is left as
an exercise. For that example, should b be less than, equal to, or greater than
zero? From Fig. B.7, estimate the value of a.
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B.7 Estimates of Parameters of Random Variables

Let X and Y be random variables, with means E(X) and E(Y ), variances σ2
X

and σ2
Y , covariance σXY , and correlation coefficient ρXY . In real-world appli-

cations these parameters are usually unknown, and they must be estimated
from random samples.

Example B.6. Consider the following sample of verbal test scores and high
school grade point averages for first-year students at a university. Use this
sample to estimate the following parameters: E(X), E(Y ), σ2

Y , σ2
X , σXY ,

and ρXY .

Verbal Test Score, X High School GPA, Y
35 2.73
50 2.93
62 3.25
58 3.30
75 3.49

Solution. In general, we have a bivariate random sample (x1, y1), (x2, y2), . . . , (xn, yn)
from the population of all pairs (X, Y ).

1. The estimate of E(X) is x =
∑n

i=1 xi/n, the sample mean. In this ex-
ample, x = 56, the arithmetic average of x1, x2, . . . , x5. The estimate of
E(Y ) is y = 3.14.
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2. The estimate of σ2
X is s2

X =
∑n

i=1 (xi − x)2/(n − 1), the sample variance.
In this example, the estimate of σ2

X is s2
X = 219.50, and the estimate of

σ2
Y is s2

Y = 0.0931.
3. The estimate of σXY is sXY =

∑n
i=1 (xi − x) (yi − y)/(n − 1). In this

example, the estimate of σXY is sXY = 4.375.
4. The estimate of ρXY is rXY = sXY /

√
s2

Xs2
Y , the sample correlation co-

efficient. In this example, the estimate of ρXY is rXY = 0.9678 . The
estimator, r, satisfies the same restriction as the population correlation
coefficient, ρ, namely −1 ≤ r ≤ 1. Note that rXY = 0.9678 is very close
to 1, indicating that there is a strong positive linear relationship between
X and Y . This should be obvious by looking at the figure.

�

B.8 Problems

B.1. If X is a random variable and (X ⊂ A) is an event, then the indicator
variable 1(X⊂A) is defined to be 1 if X ⊂ A, and 0 if X � A.

(a) Show that E(1(X⊂A)) = P (X ⊂ A).
(b) If A1, A2, . . . , An are disjoint, then what is E(1(X⊂A1) + 1(X⊂A2) + · · · +

1(X⊂An))?
(c) If X1 and X2 are independent random variables and x1, x2 are real num-

bers, then what is E(1(X1<x1)1(X2<x2))?

B.2. Verify that the variance of a binomial random variable is np(1 − p).

B.3. Verify the values of f(k) and g(k) on p. 264.

B.4. Verify that d1 = d2 = 0.9513 on p. 264.

B.5. Let λ > 0 and

f(x) =
{

cλx

x! , if x = 0, 1, . . . ,
0 otherwise.

(a) For what constant c is f(x) a probability function?
(b) What is E(X)?
(c) What is σ2?

B.6. Let X be any random variable, with moment-generating function MX(t).
What is the value of MX(0)?

B.7. Verify the calculations for σXY and σST on p. 276.

B.8. Prove that
∑n

i=1 (xi − x) = 0.
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B.9. Prove that
∑n

i=1(xi − x)2 =
∑n

i=1 x2
i − (

∑n
i=1 xi)

2
/n.

B.10. Compute the correlation coefficient between the DJIA and NASDAQ
indexes from 1980 through 2005.

B.11. In deriving the coefficients a and b for the least-squares regression line,
we differentiated

∑n
i=1 (yi − (a + bxi))

2 with respect to a and with respect
to b and set the derivatives equal to zero to obtain the desired intercept and
slope for the line. Is this enough to guarantee that these values minimize the
sum of the squared errors? If not, complete the proof.

B.12. Suppose that (x1, y1), (x2, y2), . . . , (xn, yn) are given, and we wish to
minimize

∑n
i=1

(
yi − (

c + dxi + ex2
i

))2. That is, we wish to find the quadratic
function ŷ = c+dx+ex2 that minimizes the sum of the squared errors. Using
calculus, derive the proper values of the constants c, d, and e.

B.13. Verify the values of the sample statistics on p. 280.

B.14. Let X have a normal distribution with density function

1√
2πσ2

e−(x−µ)2/(2σ2).

Show that σ2 = E
(
(X − µ)2

)
. [Hint: Use integration by parts.]

B.15. Let X have a lognormal distribution, with Y = lnX having a normal
distribution with mean µ and variance σ2. Derive the density function of X.

B.16. Prove that
∑n

i=1 x2
i ≥ (

∑n
i=1 xi)

2
/n using the Cauchy-Schwarz Inequal-

ity.

B.17. Prove that −1 ≤ rXY ≤ 1 using Hölder’s Inequality.

B.18. Calculate the sample mean and sample variance for the DJIA data from
1980 through 2005.

B.19. For any real number x, define [x]+ by

[x]+ =
{

x if x > 0,
0 if x ≤ 0.

(a) When is [ax]+ = ax?
(b) Is [x]+ + [y]+ = [x + y]+? Prove this or give a counter-example. If it is

false, under what conditions is it true?

B.20. For n ≥ 1, let r(n) be a function of n converging to 0 as n approaches
infinity. Show that (1 + (x + r (n))/n)n converges to ex as n approaches in-
finity for any x. [Hint: Use the fact that (1 + (y/n))n converges to ey for
any y.]



Answers

1.1 0.075 = 7.5%

1.2 0.075 = 7.5%; same

1.3 $3.29

1.4 Withdrawal made before 90 days

1.5 212 days

1.6 210 days

1.9 Oct. 4, 1998 and Oct. 31, 1998

1.10 No

2.2 0.0678 = 6.78%; simple interest

2.3 $28.84

2.4 0.099 = 9.9%; 0.1041 = 10.41%

2.5 5.893 years; 0.071225 = 7.1%

2.6 0.1487 = 14.87%

2.7 $6727.50

2.8 IRR = 0

2.9 0.1487, 0.1583, 0.1161

2.10 11.798 = 1179.8%

2.11 $315,241.71

2.12 Same

2.13 0.0772 = 7.72%

2.14 Concave down

2.16 7%, 8%, 9%, after rounding

2.17 8, 9, 10, 11 years

2.18 0.0639 = 6.39%

2.19 $3,980.11

2.20 x = −1.32, 1, 1.034

2.21

(a) 0.06015
(b) 0.0609
(c) 0.0618

2.22

(a) $593.51
(b) $660.76
(c) $463.51
(d) $537.71
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2.23

(a) 0.0497
(b) 0.05016
(c) 0.05017
(d) 0.0503

2.24

(a) 0.0719
(b) 0.071
(c) 0.0714

(a) is highest

2.25 0.1712 = 17.12%

2.43 No

2.45 n = 1, C(0) = −1, C(1) = −1

2.49 0.0785 = 7.85%

3.2 1921, 1922, 1927, 1928, 1930,
1931, 1932, 1933, 1938, 1939, 1949,
1955

3.3 0.03512, 0.027137, 0.02550

3.4 No; −0.009

3.5 $253.98

3.6 0.0670 = 6.7%

3.12 (ieff(1 − t) − iinf)/(1 + iinf)

3.14 f(x) = x if x ≤ 1,
f(x) = 2 − x if x > 1

4.3 Yes, if compounded monthly

4.4 $14,285.71

4.5 $25,750.00

4.6 $7,506.13

4.7 $9,675.71

4.8 $9,748.28

4.9 $1,450.53

4.10 $1,313.04

4.11 $245.92

4.12 $10,222.58

4.13 0.0814 = 8.14%.

4.14 0.104 = 10.4%

4.15 $5,841.18

4.16 $5,408.78

4.17 $334.25

4.24 Yes

5.3 (a) $16,377.98

5.6 Yes; Yes (except for rounding)

5.7 (a) 0.05 = 5%

6.6 0.025 = 2.5%

6.7 No

6.8 $394.91, exact

6.9 13.22, 12.68, 12.15, 11.62, 11.08
132.16, 126.83, 121.50, 116.16, 110.83
145.38, 139.51, 133.64, 127.78, 121.91
0.10 = 10%
estimates too large for years 11, 12,
13

6.11 No, paid off in less than half the
time

6.14 $132.16, $118.71, $90.88, $73.90,
$264.31, $237.41, $181.75, $147.80

7.2 226 months (18 yr 10 months),
$4,786.66; 58 months (4 yr 10 months),
$3,141.25

7.5 No, 6

7.6 Yes

7.7 Yes

7.11 Less total interest paid

7.12 Increases

7.14 Yes

7.15 Yes, unless the digit is 9
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8.9 Hugh: Bond 1: 0.0506,
Bond 2: 0.1025, Port.: 0.0764
Tom: Bond 3: 0.0404, Bond 4: 0.09203,
Port.: 0.0816.

8.10 $3,000.00

8.11 0.0975 = 9.75%

8.12

(a) $12,940.07
(b) 0.08 = 8%

8.13 Wendy: 9.313 years, 9.042 years
Amanda: 7.286 years, 7.074 years

8.14 8.360 years, 8.117 years

8.22

(a) 2
(b) 2/y2

(c) 2/(1 + 4y2)3/2

No; (a); no

8.23

(a) ey

(b) 1
(c) ey/(1 + e2y)3/2

No; (b); no

8.24

(a) −1/(1 − y2)3/2

(b) −1/(1 − y2)2

(c) −1

Yes; (c); yes

9.1 AT&T: T $26.03
International Paper: IP $34.00
Verizon: VZ $33.48

9.2 (a) March 13, 1986

9.3 Hugh

9.5 Below $20 a share

9.6 $34.62 per share

9.9 Profit: Tom $3300,
Wendy $2533.33
Wendy greater profit per share.
Tom greater total profit.

9.10 27.273 shares

10.1

(a) 31.67, 33.67, 34.67, 36.00, 34.67
(b) 10, 13.66, 14.05, 16.22, 15.51
(c) DJIA: Arith. 0.02357,

Geom. 0.02289;
S&P 500: Arith. 0.1263,
Geom. 0.1159

10.2

(a) −0.005, 0.046, 0.02, 0.06
(b) Arith. 0.01; Geom. −0.00134;

Arithmetic-Geometric Mean Inequal-
ity

10.3 0.1409

10.4 0.3460

10.5 101.3203

10.6 Increases

10.8 Doubles

10.10 200: product relative prices: 16
50: product relative prices: 1/16

10.12 DJIA: 1011.79%,
S&P 500: 819.48%,
NASDAQ: 989.91%

10.13 S(t) = 2t + 1, Dt = 1, k = 1

11.11 $4.08

11.12 No. Buy call option for $8,
buy zero-coupon bond with face value
of $100 for e−0.05100 = $95.12, short
stock for $105, short put for $2. Profit
$3.88

11.14 S(t0)+P = C+(X+D)e−i(∞)T

11.16 ∆∗ = −2/3, B = 200/3
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11.20 96.8096

11.22

(a) 206.076
(b) 212.336
(c) 0.0599
(d) 0.0617
(e) 0.06076

11.23

(a) (u + 1/u)S(t0)/2
(b) S(t0)

11.24

(a) (pu)nS(t0)
(b) 0, S(t0), ∞
(c) pu < 1

11.26 15, 1.32, 0, 0, 11.46, 0.46,
0, 6.048, 0.281, 1.896

11.28 Some p > 1

11.42 13.59

11.43 11.68

11.44 12.36

11.45 7.46

11.46 13.95

A.7 No; f(41) = 41 · 43

B.1

(b) P [X ⊂ A1] + · · · + P [X ⊂ An]
(c) P [X1 < x1]P [X2 < x2]

B.5

(a) c = e−λ

(b) λ
(c) λ

B.6 1

B.10 0.9371

B.18 Mean = 5138.804,
variance = 14862318.404

B.19

(a) ax ≥ 0
(b) Counter example: x = 1, y = −1.

True when x ≥ 0 and y ≥ 0, or
when x ≤ 0 and y ≤ 0.
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30-day month method, 8–11
30/360 method, 10

Accrued interest, 125
Actual number of days, 8
Adjustable rate loan, 75
After-tax rate of interest, 51
AIG, 189
Amazon.com, 183
American Express, 108
American option, 192
Amortization, 77, 80, 83–86

schedule, 83, 97
table, 83, 100
Theorem, 86

Amortization schedule, 83, 97
Amortization table, 83, 100
Amortization Theorem, 86
Annual effective rate, 21, 22, 48
Annual yield to maturity, 114
Annuity, 55–70

due, 55, 66–70
ordinary, 55

Annuity due, 55, 66–70
Arithmetic average quarterly return,

173
Arithmetic-Geometric Mean Inequality,

20, 249, 250
Asian option, 192
Ask yield, 140
Asked price, 139, 140
Asymptote, 136
AT&T, 189

Average Quarterly Return Theorem,
174

Banker’s Rule, 10
Basis points, 115
Bearish, 198, 200
Bermudian option, 192
Beta, 182–185
Bid price, 139, 140
Big caps, 150
Binomial Convergence Theorem, 220,

273
Binomial random variable, 218, 260, 272
Binomial tree, 216, 217, 220, 221, 223,

224
Bisection method, 30
Black-Scholes formula, 228, 230
Black-Scholes Option Pricing Model,

225
Bond, 77, 78, 113–121, 208–211

amortization schedule, 118
noncallable, 114–117
Theorem, 116

Bond amortization schedule, 118
Bond Theorem, 116
Broker, 151
Brownian Motion Model, 215
Bullish, 198
Business loan, 76

Call option, 192–196, 209, 224
Capital Asset Pricing Model, 184
Capital Market Line, 184
Capitalization, 150
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CAPM, see Capital Asset Pricing
Model

Cash dividend, 161
Cash flow, 23–26
Cauchy-Schwarz Inequality, 152, 249
CD, 5, 6
Central Limit Theorem, 270
Certificate of deposit, 5, 6, 18
Checking account, 7, 11
Checksum, 108, 109
Commission, 151, 157
Common Stock Theorem, 176
Complement, 255
Compound continuously, 19
Compound interest, 1, 13–25
Compound Interest Theorem, 15
Compounding, 18
Compounding factor, 18
Concave

down, 135, 136
up, 16, 47, 59, 69, 122

Concave down, 135, 136
Concave up, 16, 47, 59, 69, 122
Conditional probability, 256
Constant Growth Theorem, 177
Consumer Price Index, 48, 49
Continuous random variable, 265, 266
Convergence in distribution, 218, 270
Convex, 47, 52, 53
Convexity, 137, 138
Correlation coefficient, 181, 277
Coupon, 78, 113–118, 125, 126, 133, 137
Coupon rate, 114, 134
Coupon rate per coupon payment

period, 114
Covariance, 276
Covered call, 203
Covered put, 206
CPI, see Consumer Price Index
Credit card, 79, 101–110
Credit Card Theorem, 105–107
Current yield, 116–118

Deflation, 47
Density function, 265, 266
Descartes’ Rule of Signs, 33
Diners Club, 108
Discount, 117, 118, 139, 147, 177, 178
Discount factor, 18

Discount yield, 139
Discount yield method, 139
Discounted value, 18
Discounting, 18
Discover, 108
Discrete random variable, 257
Disjoint, 255
Divisor, 166–168
Dollar cost averaging, 151–153
Dow Jones Industrial Average, 165
Down ratio, 216
Duration, 126, 128, 146, 147, 262–264

E(R), see Expected return
Eastman Kodak, 189
EFF, see Annual effective rate
Empty set, 253, 255
Equity, 153–155, 157, 158
European option, 192
Exact interest, 10
Exact number of days, 8
Exchange rate, 150
Exercise price, 192, 194–198
Expected return, 178
Expected value, 257, 266
Expiration date, 192
Explanatory variable, 182

Face value, 113–115, 117–119, 121, 125,
139, 140, 142, 144, 211, 221

Fair price, 224
Fannie Mae, see Federal National

Mortgage Association
FDIC, see Federal Deposit Insurance

Corporation
Federal Deposit Insurance Corporation,

6
Federal Home Loan Mortgage Corpora-

tion, 91
Federal National Mortgage Association,

91
FHLMC, see Federal Home Loan

Mortgage Corporation
Final payment, 70, 90, 105, 111, 115,

118
Finite difference equation, 247
Fixed rate loan, 75, 81
Flexible tree, 224
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FNMA, see Federal National Mortgage
Association

Freddie Mac, see Federal Home Loan
Mortgage Corporation

Future value, 1–5, 14–19, 55–57, 67–69,
115

Future Value of an Annuity Due
Theorem, 68, 69

Future Value of an Ordinary Annuity
Theorem, 57, 58

Geometric average quarterly return, 173
Geometric Brownian Motion, 229
Geometric Brownian Motion Model,

215, 225
Ginnie Mae, 91
GNMA, see Government National

Mortgage Association
Government National Mortgage

Association, 91
Greeks, 236–238

Hölder’s Inequality, 251
Hedge ratio, 213, 214, 240
Hedge Ratio Theorem, 213, 244
Hedging, 211, 213

In the money, 194, 195
In the money premium, 192
Independence, 256, 259, 260
Independent random variables, 259,

270, 272, 281
Index fund, 29
Indicator variable, 178, 281
Indifferent between, 25
Induction, see Mathematical induction
Inequality

Arithmetic-Geometric Mean
Inequality, 20, 249

Cauchy-Schwarz Inequality, 250
Hölder’s Inequality, 251
Triangle inequality, 253

Inflation, 6, 45–48, 50, 113, 139, 179
Inflation Theorem, 48
Initial public offering, 149
Interest

accrued, 125
compound, 1, 13–25
exact, 10

rate, 2, 5–7, 14, 16, 17, 28, 35, 55, 56,
59, 61, 63, 67, 84, 86, 88, 89, 94,
101, 113, 139, 150

simple, 1–10, 27
Interest rate, 2, 5–7, 14, 16, 17, 28, 35,

55, 56, 59, 61, 63, 67, 84, 86, 88,
89, 94, 101, 113, 139, 150

Internal rate of return, 21, 26–36, 78
International Paper, 161, 189
Intersection, 255
Intrinsic value, 195
Investment yield, 140
Investment yield method, 140
Investor’s Business Daily, 7
Investor’s rate of return, 114
IRR, see Internal rate of return
IRR Uniqueness Theorem I, 33, 34
IRR Uniqueness Theorem II, 34, 35

Joint distribution of random variables,
275

Large caps, 150
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