
Designing Embedded Internet Devices

[This page intentionally left blank.]
[This is a blank page.]

A m s t e rd a m B o s t o n L o n d o n N e w Yo r k O x f o rd P a r i s

S a n D i e g o S a n F r a n c i s c o S i n g a p o r e S y d n e y To k y o

An imprint of Elsevier Science

Designing Embedded Internet Devices

by Dan Eisenreich
Brian DeMuth

Newnes is an imprint of Elsevier Science.

Copyright © 2003, Elsevier Science (USA). All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Elsevier
Science prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

ISBN: 1-878707-98-1

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:

Manager of Special Sales
Elsevier Science
200 Wheeler Road
Burlington, MA 01803
Tel: 781-313-4700
Fax: 781-313-4882

For information on all Newnes publications available, contact our World Wide
Web home page at: http://www.newnespress.com

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

iv

Acknowledgments
We would like to gratefully acknowledge

… the fine folks at Dallas Semiconductor for squeezing such a
capable JVM on an 8-bit microcontroller.

… all of the hard work proofreading and organizing the draft for
the book by the folks at Newnes (Kelly, Carol, Harry).

Dedication
Dan

To Keisha and Emily

Brian
To Linda, whose love and support made this possible.

Acknowledgments..

Dedication..

What�s on the CD-ROM?..

1 Introduction 1..
Why should you read this book? 1...
What this book will do for you 2...
How this book is laid out 2...
How to get the most out of this book 3...
What you should already know 4...

2 Computer Networks 5...
A really simple network 6...
A small office and home network 7..
Connecting a LAN to the Internet (or a LAN, MAN, WAN) 8........

Broadband connection 8...
Alternate broadband connection 9..
Dial up connection 9...

The 10/100 Base- T cable 11...
Ethernet address 13...
Internet addresses 14..
Domain names 14..
Network classes 14..
Subnetworks 16...
DHCP 17..
Protocols 18...
Client/server 20..

3 Java Essentials for Embedded Networked
Devices 25..

For Windows 26...
Windows 95/98 26..
Windows 2000, Windows NT, Windows XP 26...

For Linux 28...
For Windows 31...

Windows 95/98 32..
Windows 2000, Windows NT, Windows XP 32...

For Linux 34...
Classes, objects, methods, constructors 37...................................
OOP diagrams 39..
Inheritance 41..
Errors, exceptions, and exception handling 51..............................
Network Programming 59..

Reading and writing to a socket (a simple client) 60.....................................

Reading and writing to a socket (a simple server) 63...................................
Reading and writing to a socket (a slightly less simple server) 67................
Programming with URLs 73..

Threads 74...
Implementing threads by extending the thread class 75...............................
Implementing threads by implementing the runnable interface 82...............

Serial ports 85..

4 Overview of Embedded Networked Devices 93...........

5 Getting Started with TINI 101...
The TINI SIMM 102..
The socket board 103..
Get your TINI running 105..
For Windows 107...
Windows 95/98 107..
Windows 2000, Windows NT, Windows XP 108..............................
Linux 108..
Running JavaKit 109..
Your first TINI program 114..
Windows 117..

Windows 95/98 118..
Windows 2000, Windows NT, Windows XP 118...

Linux 119..
Hardware 119...
First 1-Wire program 120...
Compile from Windows, run from Windows 122..............................
Compile from Windows, run from TINI 122......................................
Compile from Linux, run from Linux 124..
Compile from Linux, run from TINI 124..

6 The TINI Hardware 127...
Versions 128..
A high-level look at TINI 129..

What�s in a TINI stick? 129...
A quick look at how it works 130...

The SIMM (Single Inline Memory Module) edge connector 130......
The processor and oscillator module 133..

Programming example: the watchdog timer 137..
A few words about the TINI address space 139...
The TINI memory map 140...
Flash ROM 141...
Static RAM 143...

The RAM nonvolatizer 144...
The CPU Reset circuitry 146..
The internal 1-Wire net 147..
The external 1-Wire I/O, or iButton interface 149.............................
The RS232 interface 150...
The real-time clock 151..

Programming example: using the real-time clock 153.....................
The Ethernet controller 155..
The I2C interface 157...
The CAN interface 158...
What�s in an E20 socket board? 158...
The E20 in greater detail 160...

The serial interface and DTR reset enable 160..
The external 1-Wire interface 162...
The Ethernet interface 162...
The CAN interface 163...
The regulated power supply 164...
Additional FLASH 164...
Support for Serial2 and Serial3 167..
External interrupt selection circuitry 168...
Internal 1-Wire interface 169...
The parallel IO section 169...
The LCD interface from earlier versions 172..

Vinculum Technologies Group 173..
Systronix 174...
Additional products and vendors 174...
Making a custom TINI socket 175..

7 The TINI Software 177...
Terminal 180..
Starting slush 191..
Slush commands 193...

Managing programs and files 194...
Managing users 196...
Managing connectivity 196...
Miscellaneous slush commands 198..
Optional slush commands 198..

Slush files and environment 199..
passwd 199...
startup file 200..
tininet file 201..
User Home 201...
login file 202..
Servers in slush 202...

Tips for your programs 205..
Threads 205..
Memory 205..
Networking 206...
Good ideas 206...
Java classes/methods (API 1.02d) 206..
File system 207...

TINIConvertor 208..
BuildDependency 209..
A TINI example 211...
Modifying slush 219...

Recompiling Slush 219...
Modifying the slush command set 224..
Adding optional commands to slush 226..
Adding new commands to slush 227..

Utilities 232...
Using DOS batch files 232..
Using FTP 235..
Using the DOS command window 236...

GNUmake 237...
Linux 237..
Windows 237..
JEdit 240..
TiniHttpServer 242...
TiniInstaller 242..
TINIAnt 242..

8 Enhancing TINI 245...
Adding data bus buffer 256..
The address decoder 256..
Adding an LCD display 260..
Adding buttons 273..
Adding a keypad 280...
Add an LED display 286...

9 TINI Serial and Parallel I/O 295..
A few serial port details 296...

The UART 296..
Flow control, parity, stop bits, data format 296...
Serial line voltages 298...
Cables and connectors 300..

TINI serial ports 305...
Serial0 307..
Serial1 309..
Serial2, 3 310..

Serial communication software (API) 311..
A serial example 313..

Serial0 313..
Serial1 321..
Serial2 and serial3 328...

A parting word on serial ports 330...
TINI parallel ports 332..

Port control 332...
Parallel I/O buffers/drivers 332...

Parallel communication software (API) 334.....................................
A simple parallel device example 337..
Another example 341...
Other ways of handling parallel I/O 344...

10 Wire Basics for TINI 345...
Wire Reset Details 350..
Wire Data Communication Details 350..
The Read ROM command 354..
The Search ROM command 356...

Match ROM 358...
Skip ROM 358..
Memory commands 359...
DS2405 Addressable Switch ROM commands 363.........................
The DS2405 Match ROM command 364...
The DS2405 Search ROM command 364.......................................

The Active Only Search ROM command 364...
DS1920 ROM commands 367...
The DS1920 Alarm Search command 367......................................
Communication ports on the PC 371...

The RS232 or serial (COM) ports 372..
The parallel or printer port 375..
PC universal serial bus, or USB 377...
Cables and connectors 378..

The 1-Wire Java API, TMEX drivers, and these mysterious
things called port adapters 380..
Example: finding all 1-Wire devices on a specific port 382..............

The DSPortAdapter class 383..
The OneWireAccessProvider class 384...
The Enumeration class 385..
The OneWireContainer class 385...

Example: Finding devices by family on a specific port 394..............
Example: Identifying all software port adapters present 396...........
Example: Finding the default adapter 398.......................................
Example: Finding all 1-Wire devices on any port 400......................
Example: Controlling the DS2405 addressable switch 401.............

The OneWireContainer05 class 402...
Example: Measuring temperature with a DS1920
temperature iButton 411...

The OneWireContainer10 class 411...
The TINI external 1-Wire bus 419..
The TINI internal 1-Wire bus 420...
TINI port adapter objects 420...
The TINI API 421...

Example: A Java program for TINI that identifies port adapters 421..............
Example: Determining the default port on TINI 421..
Example: Determining the ROM ID for all 1-Wire devices attached to
TINI 422..

Example: Another way of determining the ROM ID for all 1-
Wire devices attached to TINI 425...
Example: Yet another way of determining the ROM ID for
all 1- Wire devices attached to TINI 428..
Example: Controlling a DS2405 addressable switch from
TINI 430...
Example: Using a temperature iButton with TINI 430......................

11 The I2C Bus 433..
The master/slave concept in I2C 434...
The I2C data format 435..

A few words about addressing 439..
A typical I2C bus configuration 439..
Extensions to the basic concept 440..
TINI and I2C: Hardware 440..

Direct use of microcontroller port pins for I2C 440..
Memory-mapped driver for I2C 441..

TINI and I2C: Software 442..
Example: Using TINI and I2C to drive a 7-segment LED
display 444...
Example: A TINI digital thermometer 455..
Example: Extending TINI�s parallel I/O 455.....................................

12 Controller Area Network 467..
General overview 467..
CAN versions 468..
Bus states 469...
Message coding 471..
Frames 472..
Priority and arbitration 476...
Error detection and handling 477...
Synchronization and bit stuffing 478..
Bit timing 478...
Physical layers and media 481..
Higher-layer protocols 482...
C390 CAN controllers 483...

Message centers 484..
TINI CAN hardware 484...

CAN0 485...
CAN1 486...

The CAN classes 487..
CanBus 487..
CanFrame 487..
CanBusException 488..

Another word on bit timing 488..
A CAN bus monitor 490...
Another CAN example 500..

13 Connecting TINI to an IP Network 511..........................
Other relevant network commands 514...
A simple TINI network 514...
A slightly more elaborate TINI network 517.....................................
The TINI networking classes 518...
How TINI does PPP 520..

The six states of the PPPEventListener FSM 521..
The physical interface (cabling and modems) 523...........................

Cables 523..
Modem AT commands/HyperTerminal 524..
Getting TINI to talk to a modem: The Modem class 528.................................
Testing the Modem class: The ModemATTest 535..

A Modem Dialing Test: The ModemDialTest class 536..................................
Example: Dialing out to an ISP (TINI as a PPP Client) 538.............
Example: Dialing into TINI from a PC (TINI as a PPP
Server) 545..

A Modem Call Answering Test: The ModemAnswerTest class 546...............
The PPPServer class 548...

Example: Dialing into TINI from a PC (With Authentication) 554.....
Rebuilding Slush to include PPP 561...

The Optional Slush Command ppp 561..
The PPPCommand.java code 563..
TINI as a PPP client using the Slush command ppp 564...............................
TINI as a PPP server using the slush command ppp 565..............................

14 A Few Final Thoughts 569..
Why internet-enable anything? 571...
Possibilities 571...

TINI Ethernet MP3 Player4 574..
TINI CAN Monitor5 574...
Servertec Web Server for TINI6 574...
X10 Libraries for TINI7 574...
TINI WAP Server8 574...
TINI Beer Keg9 574..
TINI Drink machine10 575..
Toasty11 575..

Index 577...

xi

What’s on the CD-ROM?

Included on the accompanying CD-ROM:

• A directory containing all of the example programs in the book organized by
chapter.

• A full searchable eBook version of the text in Adobe pdf format.
• Appendix A, providing information on TINI components and pinout
• Appendix B, a listing of ByteUtils.java, which is used in a number of the

example programs.
• Appendix C, a compilation of simple input/output circuits that can be easily

connected to various types of I/O for sensing or controlling external devices.

Each example from the book is in a separate folder that is named according to the
program name and the corresponding listing number from each chapter, so the proper
listing ought to be very easy to find.

To compile these listings using the supplied makefile (for linux) or build.bat (for
Windows) you will need to set your environment variable as instructed in Chapter 3
of the book. Specifically, TINI_HOME must be set to point to the TINI API installation
directory and OW_HOME must be set to point to the 1-wire API installation directory.

The build.bat and Makefiles included with the compile instructions for each listing
assume that you are using API 1.02d or e.

On Windows/DOS, if you get an “Out of environment space” error, then you will
need to increase the default environment space available for MS-DOS programs. To
do this, add this line to your config.sys and then reboot your system:

SHELL=C:\COMMAND.COM C:\ /E:2048 /P

See http://support.microsoft.com/default.aspx?scid=kb;EN-US;q230205 for more
information.

This is how we are setting the CLASSPATH for Windows (95/98/2000/NT/XP):

SET CLASSPATH=c:\jdk1.3.1\lib\;c:\jdk1.3.1\lib\comm.jar;.

SET OW_HOME=c:\opt\1wire

SET CLASSPATH=%CLASSPATH%;%OW_HOME%\lib\OneWireAPI.jar

SET TINI_HOME=c:\opt\tini1.02d

SET CLASSPATH=%CLASSPATH%;%TINI_HOME%\bin\tini.jar;

 %TINI_HOME%\bin\tiniclasses.jar

xii

This is how we are setting the CLASSPATH for Linux:

CLASSPATH=/usr/java/jdk1.3/lib/:

 /usr/java/jdk1.3/commapi/comm.jar OW_HOME=/opt/onewire

CLASSPATH=$CLASSPATH:$OW_HOME/lib/OneWireAPI.jar.

TINI_HOME=/opt/tini

CLASSPATH=$CLASSPATH:$TINI_HOME/bin/tini.jar:

 $TINI_HOME/bin/tiniclasses.jar

export TINI_HOME OW_HOME CLASSPATH

1CHAPTER

Introduction

1

Why should you read this book?
The target audience of this book is anyone interested in merging practical electronic
devices with the Internet: students, teachers, home automation enthusiasts, hobbyists,
and small businesses. Computer programmers looking for a gentle introduction to the
world of hardware will benefit, as will hardware designers looking to expand their
skills into the realm of JAVA programming. College engineering and computer
science departments will find in this book a wealth of possibilities for lab projects
that expose students to cutting-edge technology with minimal expense. Why should
you read this book? The best reason of all: fun. This book will provide anyone
interested in tinkering with hardware on the net hours of fun. Another reason: the
future. Even if you’re not interested in making hardware, this book will give you a
practical glimpse into what the real future and potential of the Internet is.

The first Internet wave connected people via computer, popularizing things such as
email, search engines, and online shopping. The next wave is going to be Internet
appliances: electronic devices connected to the Internet. Ever wondered how those
“live internet cams” work? They’re probably the most recognizable example of
hardware connected to the web. In the past they were tremendously expensive and
tended to be supported by engineering departments as an experimental thing. The
future is going to see a tremendous expansion of low-cost, practical devices, con-
nected to the Internet for home use.

A good example might be a future VCR. Have you ever found yourself at work,
wishing you had set the VCR to program your favorite show? A VCR that was an
Internet appliance would give you the capability of programming your VCR from a
web page, wherever you may be. Another good example of an Internet appliance
might be a piece of hardware that allows you to control your thermostat, your lights,

2

Designing Embedded Internet Devices

and your water heater from a web site. Cheap Internet appliance technology will
make controlling devices in your home from a web page commonplace. Will every-
thing in your house be “on the web” in the future? Probably not. But the growing
number of people with Internet on their desk and the proliferation of cell phones and
PDAs that can interact with web pages represents a growing market. That market is
raising the attention of countless companies both large and small, looking to make
products to put into every home. This book will examine commercial technology,
discussing in great detail an inexpensive web-enabled microcontroller that can be
used to connect a variety of devices to the web.

Why should you read this book? So when the next big Internet wave happens, you’ll
be in front of it! (And, there is that fun thing, too.)

What this book will do for you
This book is a complete introduction to Internet-enabled devices. We provide all of
the information you need to inexpensively build your own web-enabled hardware.
Specifically, we’ll show you:

1. The basic terms and concepts required to understand the technology of web-
enabled devices. This includes detailed sections on networking and Java
programming.

2. A quick overview of commercially available, web-enabled, microcontrollers,
comparing their price and availability.

3. A step-by-step examination of TINI1, the Tiny InterNet Interface, a commer-
cially available hardware/software package designed for use as a web
interface to hardware. We’ll examine the hardware, software, and available
enhancements in detail.

How this book is laid out
The information in this book is divided into 14 chapters.

Chapters 1 through 4 provide basic technical definitions with respect to
networking and Internet clients and servers. We’re going to go into some
detail on Java, the modern object-oriented, internet-ready, programming
language rapidly becoming the language of choice for network applications.
We’re not going to teach you Java, but we are going to cover some of the key
features of the language that are very relevant to our topic, and are frequently
not taught in the average Java course.

1 TINI is a registered trademark of Dallas Semiconductor. TINI can be purchased
on the iButton website, http://www.ibutton.com/TINI/

3

Introduction

Chapters 5 through 8 discuss, in great detail, the hardware and software
behind TINI, Dallas Semiconductor’s commercially available, web-enabled
microcontroller. This will include a high-level discussion of how the system
works and an explanation of how to obtain and set up the hardware and
software on your own Windows or Linux PC. Following that, we’ll present
an indepth discussion of the TINI hardware. We’re going to explain what it is
and how it works. Then, in a similar fashion, we’re going to take apart the
TINI software. Finally, with detailed technical discussions of the TINI
hardware and software as background, we’ll present detailed sections on how
to upgrade the TINI hardware.

Chapters 9 through 12 consist of detailed technical discussions of the various
I/O busses provided by TINI. These include 1-Wire, CAN, I2C, and standard
serial and parallel ports. Every topic is profusely illustrated, and filled with
examples.

Chapter 13 discusses how to connect TINI to a network, including how to
attach a modem to TINI. This allows you to dial-in to TINI and have it act as
a PPP server, or dial-out to an Internet service provider (ISP) allowing PPP
clients to run on TINI.

Finally, Chapter 14 provides a summary.

How to get the most out of this book
Our book is not a novel, requiring cover-to-cover reading; rather, it’s a combination
technology intro, how-to guide, and reference manual. What one needs to read, and
how to get the most out of that reading, depends on who you are and what your goals
are.

1. For those who are simply curious about how web-enabled devices might be
implemented, chapters 1, 2, 4, and 5 should be read. They will give the
necessary background and technical depth. Chapters 10, 11, and 12 can be
skimmed to provide additional information on the breadth of devices that can
be connected to a web-enabled device.

2. For those who are unfamiliar with microcontrollers but plan on implementing
a web-enabled device of some sort, chapters 1 through 7 should be read.
There’s enough information there to get you up and running. The remaining
chapters can be skimmed to provide technical ideas, and serve as an excellent
reference.

3. For those who are familiar with TINI, chapters 6 through 13 are an excellent
reference.

4

Designing Embedded Internet Devices

What you should already know
While you don’t have to be an engineer or computer scientist to have a lot of fun with
this book, there are a few prerequisites. First, we assume that you understand basic
electronics such as how to read circuit diagrams and how to use a soldering iron to
build simple electronic circuits. Lastly, but most importantly, we assume basic
knowledge of the Java programming language. We’re going to provide detailed
explanations of how to get and install the Java language for your Windows or Linux
computer, as well as how to obtain the appropriate technology-specific software and
class libraries. We do this to provide a solid foundation on which to build our later
examples. We’re going to explain in detail the Java examples we provide. But our
book isn’t going to teach you Java. If you’re unfamiliar with Java, you may want to
consider the following references.

1. Java 2 Platform, Standard Edition, v 1.3 API Specification.
http://java.sun.com/j2se/1.3/docs/api/index.html

2. Campione, Mary and Walrath, Kathy.
The Java Tutorial Second Edition: Object-Oriented Programming
for the Internet,
http://web2.java.sun.com/docs/books/tutorial/.
Addison-Wesley, 1998.

3. Flanagan, David.
Java in a Nutshell: A Desktop Quick Reference,
O’Reilly & Associates, 1999.

4. Flanagan, David.
Java Examples in a Nutshell,
O’Reilly & Associates, 1999.

5. Wu, C. Thomas.
An Introduction to Object Oriented Programming with Java,
McGraw Hill College Div, 1998.

We hope you enjoy this book.

2CHAPTER

Computer Networks

5

Since this book is about designing network-enabled devices, it probably makes some
sense to start with a little discussion about networks. This is not a substitute for a
complete lesson in building computer networks, but just enough to establish some
terms and common ground to get you through this book. Throughout this book we’ll
be talking primarily about 10base-T Ethernet networks using the TCP/IP protocols
(there are many other ways to network computers together that are far beyond the
scope of this book; see the reference section at the end of the chapter).

Network Hardware
So what is a computer network? A network is a collection (two or more) of comput-
ers that are connected together for sharing data and resources. Networks are
commonly categorized by their geographical size. A local area network (a LAN) is a
group of computers and associated devices that share a common communication line
and are typically located within a small geographic area, such as in your home or in
an office building, or even a single department in a company. A local area network
may connect as few as two or three users, as in a home network, or as many as
several hundred users, as in a business. A metropolitan area network (a MAN) is a
bit more diverse, incorporating computers and LANs that are distributed over a few
miles of area, as you would find between corporate buildings or on a college campus.
A wide area network (a WAN) is a widely geographically dispersed computer
network that is composed of multiple LANs and MANs and can be spread across a
country or around the globe. The Internet (sometimes simply referred to as “the
Net”) is a worldwide network of many computer networks (LANs, MANs, and
WANs) that is accessible to hundreds of millions of people worldwide.

6

Designing Embedded Internet Devices

A really simple network
Connecting two computers together forms the simplest computer network, as shown
in Figure 2-1. The computers, often referred to as hosts or nodes on a network, are
connected to the network through a network interface card (NIC). The network
interface is a computer circuit board or card (or sometimes a single integrated circuit)
that provides the logic for sending and receiving data from and to the host computer.
There are a number of ways to connect these computers but by far the most common
way is by using an Ethernet connection.

Ethernet is the most widely used local area network technology these days, particu-
larly for home networks and small offices. It is fully described and specified in IEEE
standard 802.3 (if knowing that sort of thing is important to you). The most com-
monly installed Ethernet system is called 10BASE-T and provides transmission
speeds up to 10 Mbps. The designation 10BASE-T is a shorthand identifier: The
“10” in the media type designation refers to the transmission speed of 10 Mbps, the
“BASE” refers to baseband signaling (not broadband), which simply means that only
a single Ethernet signal set is carried on the cable, and the “T” represents twisted-
pair. The reason we even mention this is because other types of Ethernet are
becoming more popular like 100BASE-T (100 mbps) and 100BASE-F (“F” for fiber)
but for this book we are only really concerned with 10Base-T and 100 Base-T (often
printed as 10/100Base-T).

Another thing we need to note about this simple network of two computers is the
cable directly connecting the two computers, commonly called a crossover cable. A
crossover cable is a special type of Ethernet cable that is used to interconnect two
computers by “crossing over” (reversing) their respective pin contacts for transmitted
and received data. It allows the data transmitted by one computer to be connected to
the receiving pin on the other and vice-versa. While this may seem like a trivial point,
it is important to know that this is a crossover cable and what it does.

Computer
#1

Computer
#2

NIC NIC
Network Cable

192.168.27.86 192.168.27.99

Figure 2-1: A really simple computer network

7

Computer Networks

One last thing: each node in the network has a unique address, its network address.
This is not a big deal with a simple network of two computers but as the networks
expand and LANs are connected to other LANs and WANs, this is increasingly
important. We will talk more about this address in a subsequent section.

A small office and home network
Connecting multiple computers together to form a home or small office network is
almost as simple as the previous two-computer network, just involving a few more
components. Refer to Figure 2-2 for a slightly more complex network configuration.

The first thing you will notice is the use of a network hub, usually simply called a

 Figure 2-2: A complex network

Computer
#2

Computer
#5

Computer

#6

Computer
#4

Computer
#1

Computer
#3

NIC

NIC

NIC NIC

NIC Hub

Hub

NIC

192.168.27.99

192.168.27.89

192.168.27.16

192.168.27.90

192.168.27.33

192.168.27.34

hub. A hub is a connector where network data arrives from one or more directions
and is forwarded out in all of the other directions. Each of the computers in our
network is connected to the network through a hub. Internal to the hub, the transmit
wires from one computer are connected to the receive wires of the others; in others
words the hub also performs the crossover function that the crossover cable did in the
two-computer network. So this network is connected with network cables that are
“straight through.” The wires on pin 1 through 8 are connected to pins 1 through 8 on
the opposite end, with no crossover. Hubs are connected to each other through an
uplink port. The uplink port is similar to an ordinary port but the wires have not
internally been reversed so it can be connected to another hub to increase the number
of nodes in your network. If the hub does not have an uplink port then hubs can be
connected to each other with a crossover cable.

8

Designing Embedded Internet Devices

Again, notice that each node in the network has a unique address, its network ad-
dress. We will talk more about this address in a subsequent section.

Connecting a LAN to the Internet (or a LAN, MAN, WAN)
Broadband connection
Now that we have our local area network as discussed above, how would we then connect
this to other networks, either another LAN or a WAN or even the Internet? This is done
with a wide variety of network devices. Some of these are:

• Hub – A hub is the generic name for a device where several nodes are
connected to a network. A hub may be a repeater, switch, or a router. A hub
may perform the function of several of these components.

• Gateway – A gateway is a generic name for a device that is used to connect
multiple networks together. A gateway may be a repeater, bridge or router.

• Repeater – A repeater is a network hub that serves as a connection between 2
segments of a network. Repeaters only amplify all information they receive
and pass it through to all of its ports.

• Router – A router is a smart hub, which can connect segments of different
networks that use a different protocol.

• Switch – A switch is a network hub that acts like a repeater but instead of
passing information on to all of its ports, it establishes a direct connection to
the destination port.

• Bridge – A bridge is a device for connecting segments of a network or
multiple networks that use the same protocol.

All of these devices are somewhat similar—in fact, the functions of several are often
combined in one device. We will connect our LAN to the Internet with one of these
generic network gateway devices. There are several types of gateways: repeaters,
bridges, and routers. The technical distinction between these components is based on
which layer of the Internet Protocol they operate on and that is really beyond the
scope of this chapter. We will then connect our gateway to a modem. A modem (and
there are many types of modems) can also act as a gateway from a LAN to a WAN
but are usually separate devices. The modem modulates outgoing digital signals from
a computer or other digital device to analog signals suitable for transmission on
conventional telephone lines, cable TV coax, Digital Subscriber Line (DSL) or fiber
and then demodulates the incoming analog signal and converts it to a digital signal.
This is the type of gateway shown in the following network, Figure 2-3.

This LAN could also be connected to another LAN or WAN with a simple hub or
gateway without the modem. But if we opt for the hub, then this would not keep this

9

Computer Networks

local area network as a separate network. This network would then be a part of the
larger WAN. The hub passes all data from its input to all of the lines on the network.
This is one of the reasons for creating smaller networks or sub-networks—to isolate
data transmission between computers.

Alternate broadband connection
An alternate way to connect a simple network is to use a computer with two network
interface cards as shown in Figure 2-4. In essence, this computer (and appropriate soft-
ware) acts as the gateway and router for your local area network. It is important to note
that one NIC has a network address that is known only to the WAN or Internet and the
other NIC has a network address that is known only to the LAN. These addresses can be
either static or dynamically allocated. This would allow you to use static IP addresses on
your LAN and connect to your ISP with static or dynamic addresses. Windows 98 Second
Edition directly supports multiple NICs and Internet sharing, and there are numerous
software packages that can add this function to either Windows or Linux.

Dial up connection
A final alternative for connecting your LAN to a WAN or Internet is the use of a PPP
connection through a dial-up modem. This is shown in Figure 2-5. Point-to-Point
Protocol (PPP) is a protocol for communication between two computers using a
serial interface, typically a personal computer connected by phone line to a service
provider. But this can be as simple as a serial line with no modem. Essentially, it
packages your computer’s TCP/IP packets and forwards them to the server.

Figure 2-3: Broadband network

Computer
#2

Computer
#1

Computer
#3

NIC

NIC

NIC

Hub/Router
Broadband

Modem

192.168.27.16

192.168.27.99

192.168.27.89

If Router, router has IP
address

(208.185.127.162)

If Hub, all IP addresses
are visible to WAN

Broadband
Modem

To WAN or
Internet

Twisted
Pair, Coax

Cable, Fiber
Optic cable,

etc

10

Designing Embedded Internet Devices

Figure 2-5: PPP network connection

Computer
#2

Computer
#1

Computer
#3

NIC

NIC

NIC

Hub/Router

Telephone
Modem Modem

Apparent IP Address
208.185.127.162

192.168.27.16

192.168.27.99

192.168.27.86

PPP connection

Telephone
Modem

To WAN or
Internet

Twisted
Pair

telephone
line

Computer
#2

Computer
#1

Computer
#3

NIC

NIC

NIC

Hub

Broadband
Modem NIC

192.168.27.16

192.168.27.99

192.168.27.89

208.185.127.162

Broadband
Modem

To WAN or
Internet

Twisted
Pair, Coax

Cable, Fiber
Optic cable,

etc

Figure 2-4: Alternate broadband network

11

Computer Networks

The 10/100 Base-T cable
Ethernet uses a special type of cable called twisted pair. Twisted pair cable is made
of four pairs (in this case) of insulated copper wires that are twisted around each
other in pairs to reduce electromagnetic induction between pairs of wires. The
combination of these four sets of twisted wires forms a network cable that is com-
monly referred to as Category-5 or CAT 5 cable. It derives that name from the
American National Standards Institute/Electronic Industries Association (ANSI/EIA)
Standard 568, in which this cable is specified. That same specification lists several
standards that specify categories of twisted pair cabling systems (wires and connec-
tors) in terms of the maximum data rates that they can reliably sustain. This
specification describes the cable material as well as the types of connectors and
junction blocks to be used in order to conform to a particular category. CAT5 cable is
different from the wire you buy at your local hardware store for connecting your
phone or computer modems to a wall jack, which is not twisted pair, but is a side-by-
side wire also known as silver satin.

The two most popular specifications are CAT 3 and CAT 5. While the two cables may
look identical, CAT 3 is intended for a lower data rate and can cause transmission
errors if used for faster speeds. CAT 3 cabling is for signals that are 16 MHz or less
and is suitable for 10base-T networks, while CAT 5 cable must pass a 100-MHz test
to be suitable for 100base-T networks.

The connector on a 10/100 BASE-T cable is an RJ45, which is short for Registered
Jack-45. This is an eight-pin connector that is commonly used for network cables,
especially Ethernet. The RJ-45 connectors look very much like the modular connectors

Category

CAT 1

CAT 2

CAT 3

CAT 4

CAT 5

CAT5e

CAT6

CAT7

< 1 Mbps

4 Mbps

16 Mbps

20 Mbps

100 Mbps

100 Mbps

250 Mbps

600 Mbps

Voice telephone service
Integrated Services Digital Network (ISDN)

10Base-T Ethernet

100Base-T Ethernet

100Base-T Ethernet with improved transmission

Proposed Standard

Proposed Standard

Maximum Data
Rate

Typical Applications

Table 2-1: Network cable wire categories

12

Designing Embedded Internet Devices

8
7

RD- 6
5
4

RD+ 3
TD- 2
TD+ 1

1 TD+
2 TD-
3 RD+
4
5
6 RD-
7
8

Figure 2-6: 10/100Base-T Straight-through cable

on modern telephones (RJ-11), but they are somewhat wider as they have eight wires in
them. There are many, many types of RJ style connectors and they vary widely.

Since we have talked about twisted pair cable and all that, perhaps it would make
sense if we also discussed the detail of the Ethernet cable (the wire colors/order) and
crossover cable so you can wire up your network. Essentially, the difference between
10Base-T and 100Base-T is the data rate. In Table 2-1 we can see that 10base-T
needs at least a CAT3 cable to support the 10 mbps data rate error free and 100Base-
T needs CAT5 wire. If you are wiring up a new network it is probably better to make
it with CAT5 and wire it for 100 mbps, even if you are going to use it for 10Base-T
communications. It will work just fine for 10 mbps and it’s ready to upgrade to
100Base-T. It’s also easier to find CAT5 cable and it is not noticeably more expen-
sive. If you use CAT3 cable for a 10Base-T, when you upgrade you will need new
wires and you run the risk of getting all of your 10-mbps wiring confused with 100-
mbps wire—and you’ll just have a great big mess on your hands.

Shown in Figure 2-6 is the wiring for a straight-through (not a crossover) cable that is
more typical for network connections. The wire color order is the same for both ends
of the cable.

8
7

RD- 6
5
4

RD+ 3
TD- 2
TD+ 1

1 TD+
2 TD-
3 RD+
4
5
6 RD-
7
8

Figure 2-7: 10/100Base-T Crossover cable

Shown in Figure 2-7 is the wiring for the crossover cable that we used for our simple
two-node network above. You will notice that the wire color order is not the same for
both ends of this cable. You should carefully label or mark your crossover cables so
that they are not easily confused with straight-through cables. I make mine from a
different color cable so that they are immediately obvious.

13

Computer Networks

Table 2-2 lists the wire colors and pin numbers for both straight-through and cross-
over cables. You may find reference to that fact that only pins 1, 2, 3 and 6 are used in
10/100 Base-T network cables. This is generally true but there are some networks
like 100Base-T4 that use the remaining wires, and faster networks like 1000Base-T
also use all four pairs and are capable of supporting error-free transmission using
CAT5e cable (“e” means “enhanced” for lower crosstalk between the conductors of
the neighboring twisted pairs in the same cable). If you completely wire the connec-
tor, you will maximize the usefulness of your cables by allowing them to be used in
many possible network configurations.

Table 2-2: 10/100 Base-T cable wire color code

1 – White/Orange
2 – Orange
3 – White/Green
4 – Blue
5 – White/Blue
6 – Green
7 – White/Brown
8 – Brown

1 – White/Green
2 – Green
3 – White/Orange
4 – Blue
5 – White/Blue
6 – Orange
7 – White/Brown
8 – Brown

Straight-through Cable
(Both Ends)

Crossover Cable
(One End)

Network Addresses
Each computer or node in a network really has two addresses. Actually, each inter-
face in a computer or node has two addresses, as a single computer (or any network
device) can have multiple network interfaces. These addresses are the Internet
Address and the Ethernet address. The Ethernet address is a hardware address that
identifies this specific network interface. The Internet address is a logical address that
provides routing information so other computers on the network can find it.

Ethernet address
An Ethernet hardware address is also known as the Media Access Control (MAC)
Address. This is a 12-digit hexadecimal (0-9, A-F) number that uniquely identifies
your (and every other) Ethernet adapter. Manufacturers are assigned Ethernet address
blocks to use, and they are used to identify each machine on the network. Ethernet
addresses are usually shown as bytes separated by a colon or a dash, like this:

00:06:35:00:6B:BF or 00-06-35-00-6B-BF

The Ethernet address is always exactly 12 hexadecimal digits, so all leading zeroes
are significant and must be entered. Since this address is a physical address it is

14

Designing Embedded Internet Devices

programmed into the network interface card and generally cannot be changed, while
the Internet Address is a logical address and can be reassigned as needed. Also, there
is no direct correlation between the Ethernet and Internet address and one cannot be
calculated based on the other. Ethernet addresses are unique and never reused, unlike
an Internet address that can be used on sub-networks and isolated networks. For the
scope of this book it is not necessary to know more detail about the Ethernet address.

Internet addresses
The Internet Address is also called an IP address or Host Address. It is a logical
address assigned to the network interface card in your computer. An IP address
(where IP means Internet Protocol) is how one computer can find another computer
on a network. Each node must know its own address on the network and that of any
other computer with which it will communicate. The IP address is a 32-bit binary
number that identifies each packet of information sent across the network. The IP
address is usually expressed as four decimal numbers, each representing eight bits,
separated by periods. This is sometimes known as the “dot address” or as “dotted
quad notation.” For instance, in the example network shown in Figure 2-2, address
192.168.27.16 is the IP address of one of the machines. This is internally stored and
used as the integer 3,232,242,448 which is 11000000.10101000.00011011.00010000.
This can be represented in decimal numbers as shown:

1100 0000 . 1010 1000 . 0001 1011 . 0001 0000
192 . 168 27 . 16.

Domain names
The numerical version of the IP address is usually represented by a name or series of
names called the domain name—for instance, www.someplace.com or ftp.
filearchive.edu, which is mapped into a static IP address using the Domain Name System
(DNS). The DNS is a hierarchical database used for translating the domain name to an IP
address. When your computer needs to translate a domain name into a numerical IP
address, it asks a domain name server to provide this information.

Network classes
The original Internet Protocol defines IP addresses in five major classes of address
structure, Classes A through E. This has been named classful routing (probably in
hindsight considering some of the improvements made to IP addressing that we will
get to in a minute). Each of these classes allocates one portion of the 32-bit Internet
address format to a network address and the remaining portion to the specific host
machines within the network specified by the address. Class E is reserved for experi-
mental use. Class D addresses are used for multicasting. Multicasting is data
transmission between a single sender and multiple receivers on a network.

15

Computer Networks

Class A networks use the 8 leftmost bits (the leftmost of the dotted quads) to desig-
nate the network number. The leftmost bit of these 8 bits is always 0, so Class A IP
addresses range from 0.x.x.x to 127.x.x.x, except that address 0.x.x.x and 127.x.x.x
are reserved for special use so this means there are 126 possible Class A networks.
The rest of the dotted quads refer to the specific hosts or nodes on a large network.
Since there are 24 bits in the remaining address, this means there can be 224 possible
hosts in each class A network, except that the all 0’s case is reserved and means “this
network” and the all 1’s case is used for broadcasting, which leaves 16,777,214
possible hosts. So, a portion of the IP address represents the network number or
address and a portion represents the local machine address.

Class B networks use the 16 leftmost bits (the leftmost two dotted quads) to designate
the network number. The leftmost two of these 16 bits are always 10 so Class B
addresses range from 128.0.x.x to 191.255.x.x, which means there are 16,384 pos-
sible Class B networks. The remaining two dotted quads (16 bits) refer to specific
hosts or nodes on these networks. These 16 bits means there are 216 possible hosts in
each Class B network, except that the all 0’s case is reserved and means “this net-
work” and the all 1’s case is used for broadcasting, which leaves 65,534 possible
hosts. Using the above example, here’s how the IP address is divided:

155.185 . 127.162
Network Host

Address Address

Class C networks use the 24 leftmost bits (the leftmost three dotted quads) to desig-
nate the network number. The leftmost three of these 24 bits are always 110 so Class
C addresses range from 192.0.0.x to 223.255.255.x, which means there are 2,097,152
possible Class C networks. The remaining 8 bits (the right most dotted quad) refers to
the specific hosts or nodes on each of these networks. These 8 bits means that there
are 28 possible hosts in each class C network or 254 possible hosts (256 minus the all
0’s and all 1’s case as in the Class A and B networks). In the class C network the
addresses from 192.168.0.0 to 192.168.255.0 are reserved for networks not directly
connected to the Internet.

If you are really curious, you can look up the addresses in the different classes and
see who they are assigned to on the “IP Network Index”1 web page.

Not considering all of the reserved addresses in class A, B and C, there are 223 or
4,294,967,296 possible IP addresses. While this might seem like a lot of addresses,
many were not being used by the Class A address owners and with the rapid growth
of broadband users and dedicated network devices, it turns out this is not enough
addresses to support the future growth of the Internet. To overcome this limited

1 IP Network Index, http://ipindex.dragonstar.net/

16

Designing Embedded Internet Devices

address space, a number of fixes have been devised, such as Subnetworking and
Classless Inter-Domain Routing.

Subnetworks
A subnetwork is a logically separate portion of a larger network. It is a way of
taking a single network address and splitting it so that a single network address can
be used on several local networks. While not 100% technically accurate, it is kind of
like splitting a class A or B network into smaller networks (or subnetworks). If you
wanted to a add subnet to the sample address above, then some portion of the host
address could be used for a subnet address. A company with a Class B address who
needed more than 254 host machines, but far fewer than the 65,533 host addresses
possible, would essentially be “wasting” most of the block of addresses allocated.
That company could use several subnets and the remaining could be allocated to
another company. A class A network address could be subnetted by allocating the
second and maybe even the third dotted quad for a subnet address. A class B network
address could be subnetted by allocating the third dotted quad for the subnet address
as shown in this example:

155.185 . 127 . 162
Network Subnet Host

Address Address Address

To determine which part of the IP address was the host address and which was the
subnet address, the IP address was paired with a subnet mask. This mask was used to
separate the extended-network prefix (the network address and the subnet address) from
the host address (logically ANDing the address and the subnet mask returns just the
extended network prefix). With this technique, each of the quads of the subnet mask
was either all binary 1’s or all 0’s (255 or 0).

IP address 155.185.127.162 10011011.10111001.11111111.10100010
Subnet mask 255.255.255.0 11111111.11111111.11111111.00000000

 Extended Network Prefix Host

 Number

Classless Inter-Domain Routing (CIDR) was developed to effectively solve some of
the problems with classful routing and some of the limitations of subnetting and
extended network prefix by providing a new and more flexible way to specify net-
work addresses in routers.

CIDR uses a variable-length subnet mask that does not necessarily have to be divided
on any of the whole byte boundaries of the dotted quads. CIDR essentially eliminates
classful routing (class A, B, D networks) by allowing the subnet mask to be any size.
With CIDR a network address might look like this:

17

Computer Networks

IP address 155.185.127.162 10011011.10111001.11111111.10100010
Subnet mask 255.255.248.0 11111111.11111111.11111000.00000000

 Extended Network Prefix Host

 Number

This could also be specified by simply saying how many bits were 1’s. In the ex-
ample above, this is 21. So a CIDR address is also shown like this.

155.185.127.162/21

The “155.185.127.162” is the network address and the “21” means that the first 21
bits are the network part of the address, leaving the last 11 bits for the host addresses.

There are also a number of other benefits of CIDR supporting route
aggregation, which greatly simplifies network router routing tables.

DHCP
So far, our IP address discussion above assumes that IP addresses are assigned on a
static basis, that you get a specific address for each node in your network and things
stay that way. Dynamic Host Configuration Protocol (DHCP) is a protocol that lets
a network automatically assign an IP address to each node in a network as it is
connected to the network. With the growing number of Internet users these days,
many IP addresses are assigned dynamically from a pool of allocated address. This
lets many corporate networks and online services economize on the number of IP
addresses they use by sharing the pool of IP addresses with a large number of users.
This is very often the case if you use a dial-up TCP/IP connection. Here your IP
address will vary from one login session to the next because it is assigned to you
from a pool that is much smaller than the total number of users. DHCP lets a network
administrator supervise and distribute IP addresses from a central point and automati-
cally sends a new IP address when a computer is plugged into a different place in the
network.

Understanding IP addressing thoroughly could certainly take up this entire book and
that’s not the point of this book. If you need to know more about IP addressing you
are encouraged to read some of the material listed in the reference section of the
chapter.

Network Communication
We now turn our attention to the inner workings of TCP/IP, mostly because we will
need it when we talk about sockets and some of the different protocols later on in the
book. TCP/IP is named after the most commonly used protocols in the Internet
Protocol set:

• TCP = Transmission Control Protocol

• IP = Internet Protocol

18

Designing Embedded Internet Devices

TCP/IP is the basic communication language or protocol of the Internet. It can also
be used as a communications protocol in a private network (either an intranet or an
extranet). TCP/IP is a two-layer protocol. The higher layer, Transmission Control
Protocol, manages the assembling of a message or file into smaller packets (see
packet) that are transmitted over the Internet and received by a TCP layer that reas-
sembles the packets into the original message. The lower layer, Internet Protocol,
handles the address part of each packet so that it gets to the right destination. Each
gateway computer on the network checks this address to see where to forward the
message. Even though some packets from the same message are routed differently
than others, they’ll be reassembled at the destination.

Protocols
Discussions of network communications often center on what is known as a protocol
stack. A protocol is the set of rules that computers (or other network devices) in a
network use when they communicate. In essence, a protocol is the language the
network devices use to talk to each other. A protocol stack is an abstract model that
divides the network up into layers, based on functions and communication protocols
used in those functions. Each layer in the stack only talks to the layer above or below
it, using the protocols defined in those layers. As information is passed down the
stack, it is encapsulated. Encapsulation is basically a process of adding a protocol
specific header to the information received from the layer above. As information is
passed up the stack, the header specific to the current layer is stripped off and the
data is sent to the layer above. By adhering to this protocol stack concept, software
and hardware can be designed without worrying about the details of what’s going on
in all the layers, just the neighboring layers. Things become reusable, transportable,
device independent.

The OSI (Open Systems Interconnection) reference model is an ideal protocol stack
of sorts. You will see this model in most discussions and textbooks on network
protocols. Its purpose is to guide software developers and hardware designers so that
their products will consistently work with other products. The reference model
defines seven layers of functions that take place at each end of a communication.
Although OSI is not always strictly adhered to in terms of keeping related functions
together in a well-defined layer, many if not most products involved in telecommuni-
cations make an attempt to describe them in relation to the OSI model. The software
and hardware that furnishes these seven layers of functions are usually a combination
of the computer operating system, applications (such as your Web browser), TCP/IP
or alternative transport and network protocols, and the software and hardware that
enable you to put a signal on one of the lines attached to your computer. The OSI
reference model is shown in Figure 2-8 and each layer is described below.

19

Computer Networks

• The application layer is where common services of the operating system are
offered to all applications. This layer is not the application itself, although
some applications may perform application layer functions.)

• The presentation layer is usually the part of an operating system that
converts incoming and outgoing data from one format to another (for ex-
ample, from a text stream into a popup window with the newly arrived text).
This is sometimes called the syntax layer. Compression/decompression and
encryption/decryption are performed in this layer.

• The session layer initiates, coordinates, synchronizes and terminates conver-
sations and exchanges between the applications at each end. It deals with
session and connection coordination.

• The transport layer manages the transmission of messages, determining
whether all packets have arrived, and checks for errors.

• The network layer handles the routing and forwarding of the data on the
network.

• The data-link layer is the layer that provides synchronization for the physi-
cal level. It provides data transmission protocol knowledge and management.

• The physical layer conveys the data stream through the network at the
electrical and mechanical level.

What is essential about TCP/IP is that it is a layered protocol that loosely follows this
OSI Reference model. Each layer adds information onto the previous layers without
modifying the contents of the previous layer. TCP/IP is actually (some will argue this
point) implemented in four layers as shown in Figure 2-8.

At the top of this stack is the application layer. It is so named because it is at this
highest level where we run user applications such as web browsers, Telnet, and FTP
programs. The communications protocols associated with the application layer are the
related HTTP, Telnet and FTP protocols specific to those applications. At the bottom of
the stack is hardware, requiring vendor-specific device drivers. In between are the
transport, network and link layers. Each is designed to introduce another level of
modularity from top to bottom. Our discussion is going to focus on the transport layer.

The transport layer uses communication protocols such as TCP (transport control
protocol) and UDP (user datagram protocol) to encapsulate data in the various
application layer protocols and forward it to the Internet layer for encapsulation into
the Internet Protocol. TCP is considered a connection based protocol, because when
two entities communicate using TCP, there is guaranteed receipt of the information,
or errors are reported. UDP is not a connection-based protocol. Packets of data are
sent and there is no acknowledgement of receipt of data.

20

Designing Embedded Internet Devices

Part of the application layer has some very useful functions that we will make
extensive use of throughout this book: Telnet, HTTP, FTP and SMTP.

• Telnet is the way to access another computer on a network. Telnet is both a
user application and an underlying TCP/IP protocol for accessing remote
computers.

• Hypertext Transfer Protocol (HTTP) is the set of rules for exchanging
multimedia files (text, graphic images, sound, video) on the World Wide Web.
A web server delivers files to your web browser using the HTTP protocol.

• Simple Mail Transfer Protocol (SMTP) is a TCP/IP protocol used for
sending and receiving e-mail messages.

• File Transfer Protocol (FTP) is the simple protocol for exchanging files
between computers on a network.

Client/server
All of the above listed protocols (Telnet, FTP, HTTP, SMTP) are used in a client/
server relationship.

In the computing sense, a client is a program or computer that is requesting informa-
tion (data) or a service from another program or another computer. A web browser is

Figure 2-8: TCP/IP protocols

7 - Application Layer

6 – Presentation Layer

5 – Session Layer

4 – Transport Layer

3 – Network Layer

2 – Data Link Layer

1 – Physical Layer

Application Layer

Transport

Internet

Link

21

Computer Networks

the most commonly recognized client these days. A server is a computer or program
(the term can apply to either) that provides information or services to other computer
programs on the same computer or to another computer in a network. A web server is
a common example. The client/server relationship describes the relationship between
two computer programs in which one program, the client, makes a service request
from another program, the server, which fulfills the request. There are many, many
types of clients and servers, each specializing in receiving and processing or storing
and distributing a certain king of information.

Ports and Sockets
The means by which these client/server computers communicate over the network is
through sockets, and the language they speak are protocols (more on those in the
next section).

Figure 2-9: Client/server

Rest of network

Server Client

Request

Reply

A socket is a logical connection for computer applications to pass information back
and forth between networked computers. In a similar fashion, a serial port is a
physical connection for passing information between a computer and a peripheral
device. A socket is one endpoint of a two-way communication link between two
programs running on the network. Two-way communication over the Internet is
typically performed by client-server pairs. A server creates a socket that can listen for
connection requests from clients. When a client creates a socket, a connection request
is made. The mechanism that associates a specific client socket to a specific server
socket is a port. A port is a 16-bit number typically associated with a particular
application layer service such as web browsing (the HTTP protocol), Telnet, or FTP.

Client/server communication proceeds as follows. A server creates a special server
socket that is associated with, or binds, to a specific port number. It then listens for
client requests for connections to that port. When a client wants to communicate with

22

Designing Embedded Internet Devices

the service offered the server, it creates a socket to that port. The server accepts the
connection and responds with information.

Port numbers 1-1023 are reserved and correspond to pre-defined services such as
email, web pages, Telnet, FTP, ping, finger, time, etc. Table 2-3 lists port numbers
and services for some well-known ports. Use these port numbers with caution!
Unless you are trying to write programs to communicate with these predefined
services, choose a port number 1024 or higher.

2 Assigned Numbers, http://www.isi.edu/in-notes/iana/assignments/port-numbers

Table 2-3: Some common ports

7
13
20
21
23
25
53
70
79
80

119

Echo
Daytime
FTP Data

FTP Control
Telnet
SNMP
DNS

Gopher
Finger
http

NNTP

Port Service

A very detailed (and long) list of port assignments can be found on the “Assigned
Port Numbers”2 page and also in RFC1700. Port numbers 1024 –65,535 are available
for use in your own programs to form custom services.

Summary
So now you have a nice quick overview of networks. This really was not intended to
be a complete lesson in building computer networks; in fact, we have just barely
scraped the surface. Hopefully, however, you now have enough information to
successfully complete the projects in the rest of this book and the background to
understand them. We would encourage you to examine some of the references listed
next if you need more information or are just curious.

References
1. Charles Spurgeon’s Ethernet Web Site.

http://wwwhost.ots.utexas.edu/ethernet/

23

Computer Networks

2. Configuring the DNS Service.
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/cddm/cddm111/
adguide/dns.htm

3. TechFest Ethernet Technical Summary.
http://www.techfest.com/networking/lan/ethernet.htm

4. Bennett, Geoff.
Designing TCP/IP Networks.
Van Nostrand Reinhold, 1995

5. Semeria, Chuck.
Understanding IP Addresses: Everything You Ever Wanted To Know.
3Com Corporation, April 26, 1996.
http://www.3com.com/nsc/501302.html

6. A Request for Comments (RFC) is a document written by the Internet
Engineering Task Force. These are the result of a committee drafting and
subsequently reviewed by interested parties. Some become Internet stan-
dards, however, through subsequent RFCs that supercede an existing RFC.
You can view the RFCs online in a number of places; one of the more
complete is “Internet RFC/STD/FYI/BCP Archives,”
http://www.faqs.org/rfcs/

These are some common RFCs that you might want to know about if you are
working on a project that uses a specific protocol for communication:

• 791 = IP

• 1700 = Assigned numbers

• 1920 = Telnet

• 959 = FTP

• 977 = NNTP

[This is a blank page.]

3CHAPTER

Java Essentials for
Embedded Networked Devices

25

Throughout this book, we will be using Java1 as the language of choice for control-
ling our network-enabled devices. In this chapter, we will discuss getting the Java
Development Kit (JDK version 1.3) and the Java runtime environment up and run-
ning on your computer, for both Microsoft Windows2 and Linux. If you already have
Java installed, and are familiar with programming in Java, then you can probably skip
this chapter (or just skim through it so you know what’s here).

The Java Development Kit
Java is distributed by Sun Microsystems in the form of the Software Development Kit
(SDK). The SDK includes the Java compiler, Java debugger, a number of develop-
ment tools, and the Java Runtime Environment (JRE). The JRE consists of the Java
virtual machine, the Java platform core classes, and supporting files. Along with the
base Java classes, we will be using a number of the Application Programming
Interfaces (API). An API is the interface through which an application program
accesses the operating system and other services. In other words, an API is like a
library of subroutine packages for a specific purpose. An example would be the class
libraries used for accessing a computer’s serial ports. The API provides a level of
abstraction between the application and the lower-level software, hardware, or
privileged utilities to ensure the portability of the code.

You will need to download the current version of the Java Software Development Kit
from Sun’s “Java Products & API’s” web page3. This is also called the J2SE for
“Java 2 Platform, Standard Edition.” This book is based on the Java 2 Software
Development Kit (SDK) version 1.3 for your platform (Windows or Linux). The

1 Java is a registered trademark of Sun Microsystems.
2 Windows 95, Windows 98, Windows XP, Windows 2000 and Windows NT are registered

trademarks of Microsoft Corporation.
3 Java Products & API’s, http://java.sun.com/products/

26

Designing Embedded Internet Devices

basic installation steps are listed here but if you run into difficulties, you should
follow the more detailed installation instructions listed on the Sun web page.

For Windows
Remove any older version of the Java Development Kit you may have installed on
your computer. (Click on the START button and select Settings, Control Panel, Add/
Remove Programs and examine this list of installed applications.)

Go to the “Java Products & API’s” web page and click on the link for “Java 2 SDK,
Standard Edition.” Download Java 2 SDK, saving the file (j2sdk1_3_0-win.exe) in a
temporary directory.

Using Windows Explorer, double-click on the file you just downloaded to execute the
Java SDK installer. This will install Java on your computer. Follow the instructions.
This will create a directory hierarchy on your disk starting in C:\JDK1.3 (or a different
disk if your disks are labeled differently). If you download and install a newer version,
then some of the filenames and path names will change to reflect the version number.

Windows 95/98
On Windows 95/98 you must edit your Autoexec.bat file and add a folder to your PATH
environment variable. Using Notepad (or some other ASCII editor), open your
c:\autoexec.bat file. If you already have a PATH environment variable set, then you will
need to add the location of the Java binaries. After the PATH environment variable,
insert a new line that will append the c:\jdk1.3\bin\ directory to the existing path.

SET PATH=c:\jdk1.3\bin\;%PATH%

If you don’t have a PATH environment variable, add one by inserting a line at the
bottom of the autoexec.bat file like this:

SET PATH=c:\jdk1.3\bin\;c:\windows

Save the file and exit the editor. This PATH environment variable tells the operating
system where to find the Java programs when you need them.

Windows 2000, Windows NT, Windows XP
For Windows 2000 and Windows NT you will have to use the “System” tool in the
“Control Panel.” Select the “Environment” tab and look for “Path” in the User
Variables and System Variables. If a path variable exists, add the location of the Java
binaries (c:\jdk1.3\bin\, unless you installed Java someplace else). If you don’t
have a path variable, create one.

For Windows XP, use the “System” tool in the “Control Panel.” Select the “Ad-
vanced” tab and click on the “Environment” button (under “startup and recovery”).
Modify or create the path variable as above.

27

Java Essentials for Embedded Networked Devices

At this point, you don’t need to have the CLASSPATH variable set. We will cover that
in a later section.

To test out your installation of the Java SDK you need to restart your computer. Do
that and then create a simple test program to verify that all is well so far. A simple
“HelloWorld” program like the following should work just fine.

Listing 3-1: HelloWorld.java

public class HelloWorld {
 // Simple program to make sure compiler is installed ok
 public static void main(String args[]) {
 System.out.println(“Hello, World!”);
 }
}

Open a DOS command window.
c:\> notepad HelloWorld.java

Enter the Java program above into the text editor. Save the file and exit the editor.
Then compile and run the program:

c:\> javac HelloWorld.java
c:\> java HelloWorld

If there were no errors from either of the last two commands above, then you are all
set to move on to installing the serial port API for Java. If you saw any errors when
compiling or running the program, then you should carefully check the program you
entered to see that you typed it correctly. Also check to see that you installed the Java
Software Development Kit properly. While these instructions are for J2SE version
1.3, by the time you read this book Sun will probably have released a newer version.
It is likely that the installation procedures will be slightly different.

These are some common errors and their solutions:
C:\> javac HelloWorld.java
Bad command or file name

• c:\jdk1.3\bin is not in your PATH environment variable. Or you added it but
you didn’t restart your computer. Check your current PATH with this DOS
command: echo %PATH%

C:\chapter03> java HelloWorld
Exception in thread “main” java.lang.NoClassDefFoundError:
HelloWorld

• Didn’t compile HelloWorld.java (javac HelloWorld.java).

• HelloWorld.java had errors so the compiler didn’t write the class file.

28

Designing Embedded Internet Devices

• You have a CLASSPATH environment variables set and “.” (current folder) is
not in the CLASSPATH or there are errors in your CLASSPATH (like not sepa-
rating folders with a semicolon). Check your current CLASSPATH with this
DOS command: echo %CLASSPATH%

For Linux
Go to Sun’s “Java Products & API’s” web page4 and click on the link for “Java 2
SDK, Standard Edition.” Download the Java 2 SDK tar file (j2sdk-1_3_0-linux-
rpm.bin) to a temporary directory. Be sure to select the Linux (for Intel x86) version.
In these instructions we will be using the RPM file but you can just as easily down-
load the GNUZIP Tar shell script (but many of these instructions will not apply).

Change to the temporary directory you saved this file in. Change the permissions of
the file so it is now executable (chmod +x j2sdk-1_3_0-linux-rpm.bin) and then
execute it (./j2sdk-1_3_0-linux-rpm.bin). This will unpack and verify the RPM
file. You will have the file j2sdk-1_3_0-linux.rpm placed in the current directory. If
you download and install a newer version then some of the filenames and path names
will change to reflect the version number.

You will need to be root to complete the installation. Install the RPM file (rpm -iv
j2sdk-1_3_0-linux.rpm). This will install Java in /usr/java subdirectory.

On Linux you will need to edit your shell startup file and add the directory of the Java
binaries to your PATH environment variable. Using vi (or some other ASCII editor),
edit your $HOME/.cshrc (for C shell, or $HOME/.profile for ksh, sh or bash). You
should already have a PATH environment variable set so you will need to add the
location of the Java binaries to it. After the PATH environment variable, insert a new
line that will append the /opt/jdk/bin/ directory to the existing path.

For C shell:
set path = ($path /usr/java/jdk1.3/bin)

For ksh, sh and bash shells:
PATH=$PATH:/usr/java/jdk1.3/bin

Save the file and exit the editor. This PATH environment variable tells the operating
system where to find the Java programs when you need them.

At this point, you don’t need to have the CLASSPATH variable set. We will do that in a
following section.

To test out your installation of the Java SDK, you will need to logout and log in again
to load your new startup file. Do that and then create a simple test program to verify
that all is well so far. We will use the “HelloWorld” program from listing 3-1.

4 Java Products & API’s web page, http://java.sun.com/products/

29

Java Essentials for Embedded Networked Devices

Create a subdirectory and create a test Java program:
% vi HelloWorld.java

Enter the Java program above into the text editor. Save the file and exit the editor.
Then compile and run the program:

% javac HelloWorld.java
% java HelloWorld

If there were no errors from either of the last two commands, then you are all set to
move on to installing the serial port API for Java. If there were error messages, then
read the installation instructions above and on the Sun web pages and try to figure out
what went wrong and fix it. Most likely you overlooked a step or mistyped
something. Some common mistakes are: Not properly editing the PATH environment
variable, or not rebooting the computer after editing the PATH.

If you saw any errors when compiling or running the program then you should
carefully check the program you entered to see that you typed it correctly. Also check
to see that you installed the Java Software Development Kit properly. While these
instructions are for J2SE version 1.3, by the time you read this book Sun may have
released a newer version. It is likely that the installation procedures will be slightly
different.

These are some common errors and their solutions:
% javac HelloWorld.java
javac: Command not found

• /usr/java/jdk1.3/bin is not in your PATH environment variable. Or you added it
but you didn’t restart your computer. Check your current PATH with this
command: echo $PATH

% java HelloWorld
Exception in thread “main” java.lang.NoClassDefFoundError:
HelloWorld

• Didn’t compile HelloWorld.java (javac HelloWorld.java)

• HelloWorld.java had errors so the compiler didn’t write the class file.

• You have a CLASSPATH environment variable set and “.” (the current folder) is
not in the CLASSPATH or there are errors in your CLASSPATH (like not
separating the directories with a colon). Check your current CLASSPATH with
this command: echo $CLASSPATH

Now that we have the Java compiler and runtime environment going, it may interest
you to know about the various options you can use when compiling programs with
javac and running programs with Java. Typing javac –help or java –help will
display the command options you can use.

30

Designing Embedded Internet Devices

% javac -help
Usage: javac <options> <source files>
where possible options include:

-g Generate all debugging info
-g:none Generate no debugging info
-g:{lines,vars,source} Generate only some debugging info
-O Optimize; may hinder debugging or

enlarge class file

 -nowarn Generate no warnings
 -verbose Output messages about what the compiler

is doing
 -deprecation Output source locations where deprecated

APIs are used
 -classpath <path> Specify where to find user class files
 -sourcepath <path> Specify where to find input source files
 -bootclasspath <path> Override location of bootstrap class

files
 -extdirs <dirs> Override location of installed extensions
 -d <directory> Specify where to place generated class

files
 -encoding <encoding> Specify character encoding used by

source files
 -target <release> Generate class files for specific VM

version

% java -help
Usage: java [-options] class [args...]
 (to execute a class)
 or java -jar [-options] jarfile [args...]
 (to execute a jar file)

where options include:
 -cp -classpath <directories and zip/jar files separated by :>

set search path for application classes and
resources

 -D<name>=<value>
set a system property

 -verbose[:class|gc|jni]
enable verbose output

-version print product version and exit
-showversion print product version and continue
-? -help print this help message
-X print help on non-standard options

Serial Port Communications
Once the Java Software Development Kit is working smoothly, we need to add
support for accessing the serial ports on our computer. This will be important for the

31

Java Essentials for Embedded Networked Devices

rest of this book, so we need to get this ironed out now. Sun has developed a set of
Java low-level classes for reading from and writing to serial ports.

There are three levels of classes in the Java communications API:

• High-level classes that manage access and ownership of communication ports.

• Low-level classes that provide an interface to physical communications ports.

• Driver-level classes that provide an interface between the low-level classes
and the underlying operating system. Driver-level classes are part of the
implementation but not the Java communications API.

All three levels are provided by SUN for the javax.comm API for Win32 and Solaris.
The driver level classes are not provided by SUN for Linux. They are available from
a different source. This makes the Linux installation of javax.comm a little more
difficult (just a little).

For Windows
To install the javax.comm serial port classes for Windows 98/95/NT, go to the Sun
“Java Communications API” web page5 and download the current release of the Java
Communications API. Save the ZIP file in a temporary directory. In the ZIP file is a
readme.html and a file named PlatformSpecific.html that gives more detailed installation
instructions. The general installation is summarized here but if you have problems or
if you are installing a newer version, then you should consult these files for details.

5 Java Communications API, http://java.sun.com/products/javacomm/

Figure 3-1: Model of the javax.comm API package

Provided by the
RXTX driver

package for Linux

Part of javax.comm
API used by

Linux
Part of javax.comm

API for Win32
& Solaris

Parallel Port Serial Port

Physical Devices

Parallel DriverSerial Driver

Low Level Classes

High Level Classes

Application Program

Driver Level Classes

32

Designing Embedded Internet Devices

Unzip the javacommxx-win32.zip file into C:\jdk1.3\. It will unzip into a folder
named commapi. You will need to copy three files from this folder to the jdk\bin,
jdk\jre\bin, jdk\jre and jdk\lib folders. Copy win32comm.dll to the jdk\bin and
jdk\jre\bin folders, comm.jar to the jdk\lib folder and javax.comm.properties to the
jdk\lib and jdk\jre\lib folders. From a DOS command prompt:
c:\> cd \jdk1.3
c:\jdk1.3\> copy jdk\commapi\win32com.dll jdk\bin
c:\jdk1.3\> copy jdk\commapi\win32com.dll jdk\jre\bin
c:\jdk1.3\> copy jdk\commapi\comm.jar jdk\lib
c:\jdk1.3\> copy jdk\commapi\javax.comm.properties jdk\lib
c:\jdk1.3\> copy jdk\commapi\javax.comm.properties jdk\jre\lib

Now you will need to create a CLASSPATH environment variable so javac and Java
programs can find these classes and drivers.

Windows 95/98
For Windows 95/98 you must edit your c:\autoexec.bat file again. Using Notepad (or
some other ASCII editor), open your c:\autoexec.bat file. If you already have a CLASSPATH
environment variable set, you will need to add the location of comm.jar to it by adding
a line similar to the following, just after the CLASSPATH line you already have.

SET CLASSPATH=%CLASSPATH%;c:\jdk1.3\lib\comm.jar;.

If you don’t have a CLASSPATH environment variable, add one by inserting a line at
the bottom of the autoexec.bat file like this:

SET CLASSPATH=c:\jdk1.3\lib\comm.jar;.

Notice that we are also adding the current working directory to the CLASSPATH
environment variable as specified by the single dot (“.”). You can add other directo-
ries for other classes by separating them with the semicolon (“;”). Note that this is
one of the few differences between the Windows version of the JDK and the Linux
version, where you will use the colon (“:”) to separate directories in your CLASSPATH
environment variable. Save your autoexec.bat file and exit the editor. Now you will
need to reboot your computer for these changes to be effective. Do that now.

Windows 2000, Windows NT, Windows XP
For Windows 2000 and Windows NT you will need to edit your environment vari-
ables in the usual way. Use the “System” tool in the “Control Panel.” Select the
“Environment” tab and look for CLASSPATH in the user variables and system vari-
ables. If it already exists, select it and edit its value in the text box. Add to the value;
be sure to separate the multiple paths with a semicolon(“;”).

c:\jdk1.3\lib\comm.jar;.

If it does not exist, click the “Variable” text box and enter the variable name, CLASSPATH,
then click in the “value” text box and enter the CLASSPATH value as above.

33

Java Essentials for Embedded Networked Devices

For Windows XP, use the “System” tool in the “Control Panel.” Select the “Ad-
vanced” tab and click on the “Environment” button (under “startup and recovery”).
Modify or create the CLASSPATH variable as above.

If it does not exist, click in the “Variable” text box and enter the variable name, CLASSPATH,
then click in the “value” text box and enter the CLASSPATH value as above.

Now let’s test your installation of the Java Communications API to verify that
everything is installed properly. We will use the same folder named “test” that we
used in verifying the JDK was installed. Here is a simple Java program that finds all
known ports on your computer and lists them by name. These will be known ports—
some may not actually exist. This program doesn’t really do anything all that useful,
but when it compiles, runs and spits out some output (without any errors), then you
will know that the Java Communications API was installed properly.

Listing 3:2: PortLister.java

import javax.comm.*;
import java.util.*;

// List all of the ports on my computer.

public class PortLister {

public static void main(String[] args) {

// e = All PortIdentifiers on the computer (parallel, serial, etc)
Enumeration e = CommPortIdentifier.getPortIdentifiers();

while (e.hasMoreElements()) {
CommPortIdentifier PortID = (CommPortIdentifier) e.nextElement();
System.out.print(PortID + “ is “ + PortID.getName());

switch(PortID.getPortType()) {
case CommPortIdentifier.PORT_SERIAL:

System.out.print(“, serial port”);
break;

case CommPortIdentifier.PORT_PARALLEL:
System.out.print(“, parallel port”);
break;

default:
System.out.print(“, unknown port type”);
break;

}
System.out.println();

}
}

}

34

Designing Embedded Internet Devices

Open a DOS command window.
c:\> notepad PortLister.java

Enter the Java program above into the text editor. Save the file and exit the editor.
Then compile and run the program:

c:\> javac PortLister.java
c:\> java PortLister

This is what the output from Windows looks like:
C:\> java PortLister
javax.comm.CommPortIdentifier@25ab41 is COM1, serial port
javax.comm.CommPortIdentifier@e3e60 is COM2, serial port
javax.comm.CommPortIdentifier@2125f0 is COM3, serial port
javax.comm.CommPortIdentifier@41cd1f is COM4, serial port
javax.comm.CommPortIdentifier@1afa3 is LPT1, parallel port
javax.comm.CommPortIdentifier@31f71a is LPT2, parallel port

If you saw any errors when compiling or running the program, then you should
carefully check the program you entered to see that you typed it correctly. Also check
to see that you installed the javax.comm API properly.

These are some common errors and their solutions:
C:\> javac PortLister.java
PortLister.java:4: package javax.comm does not exist
import javax.comm.*;

• Your CLASSPATH environment variable does not contain the folder for the
javax.comm libraries (\jdk1.3\lib\comm.jar), the javax.comm API was not
installed properly, or you did not restart your computer since modifying your
CLASSPATH.

For Linux
To install the javax.comm serial port classes for Linux, go to the Sun “Java Commu-
nications API” web page6 and download the current release of the Java
Communications API for Solaris/x86. Save the tar file in a temporary directory. In the
tar file is a readme.html and a file named PlatformSpecific.html that provides more
detailed installation instructions. The general installation is summarized here, but if
you have problems or if you are installing a newer version then you should consult
these files for details.

Decompress and untar the javacommxx-x86.tar.Z file into /opt/jdk. It will create a
directory named commapi.

$ cd /usr/java/jdk1.3/
$ cp $HOME/download/javacomm20-x86.tar.gz .

6 Java Communications API, http://java.sun.com/products/javacomm/

35

Java Essentials for Embedded Networked Devices

$ gunzip javacomm20-x86.tar.gz
$ tar –xf javacomm2-x86.tar

Now you will need to create a CLASSPATH environment variable so javac and Java
programs can find these classes and drivers. Put the commapi.jar file in the
CLASSPATH. Using vi (or some other ASCII editor), edit your $HOME/.cshrc (for C
shell, or $HOME/.profile for ksh, sh or bash). If you have been using Java, you might
already have a CLASSPATH environment variable set, so you will need to add the
location of the javax.comm libraries to it.

For C shell:
set CLASSPATH=/usr/java/jdk1.3/commapi/comm.jar:.
set PATH=$PATH:/usr/java/jdk1.3/bin
export CLASSPATH PATH

For ksh, sh and bash shells:
CLASSPATH=/usr/java/jdk1.3/commapi/comm.jar:.
PATH=$PATH:/usr/java/jdk1.3/bin
export CLASSPATH PATH

Save the file and exit the editor. This CLASSPATH environment variable tells the java
compiler and run time system where to find the java class libraries when you need
them.

Also you need to get rxtx. Remember the figure above for the javax.comm API?
Recall that Linux low-level drivers are not part of the package. Sun has implemented
drivers for Windows and Solaris operating systems only (so far). You will need to get
the low-level serial port drivers from the RXTX Web Site7. Download the latest
version (in this case rxtx-1.4-5.tar.gz) and save this in your /opt directory.
Decompress and untar the file. Run “make jcl” and then “make install.” Refer to the
INSTALL files for detailed installation instructions.

% gunzip rxtx-1.4-5.tar.gz
% tar –xf rxtx-1.4-5.tar
% cd rxtx-1.4-5
% ./configure
% make jcl
% make install

If all went well and there were no errors, you can proceed to testing the installation of
the javax.comm libraries. Use the same program for Windows as provided above.
This is the type of output you should get for Linux:

% javac PortLister.java
% java PortLister

7 RXTX Web Site, http://www.rxtx.org/

36

Designing Embedded Internet Devices

javax.comm.CommPortIdentifier@9df52312 is /dev/ttyS0, serial port
javax.comm.CommPortIdentifier@9e212312 is /dev/ttyS1, serial port
javax.comm.CommPortIdentifier@9dd52312 is /dev/ttyS2, serial port
javax.comm.CommPortIdentifier@9d4d2312 is /dev/ttyS3, serial port
javax.comm.CommPortIdentifier@9d752312 is /dev/lp0, parallel port
javax.comm.CommPortIdentifier@9da12312 is /dev/lp1, parallel port
javax.comm.CommPortIdentifier@9c852312 is /dev/lp2, parallel port

Note that not all of these ports are actual ports. The program simply verifies that the
javax.comm API and RXTX were installed and that they function correctly (no compile
or runtime errors). This simple test only prints the names of the ports it finds. It does
not test them to see if they are real and if they work.

If you saw any errors when compiling or running the program, then you should
carefully check the program you entered to see that you typed it correctly. Also check
to see that you installed the javax.comm API properly.

These are some common errors and their solutions:
% javac PortLister.java
PortLister.java:4: package javax.comm does not exist
import javax.comm.*;

• Your CLASSPATH environment variable does not contain the folder for the
javax.comm libraries (/usr/java/jdk1.3/lib/comm.jar or /usr/java/jdk1.3/
commapi/comm..jar), the javax.comm API was not installed properly, rxtx
was not installed properly, or you did not restart your computer since
modifying your CLASSPATH.

Here is a simple test you can perform to determine if a particular class you need is
included in any of the entries in your classpath environment variable or if you have
installed javax.comm correctly. Use the java class file disassembler, javap, that is
included with the Sun JDK. This will search the entries in your classpath looking
for the specified class. If it can’t find it, then either your classpath is incorrect or
you have installed the javax.comm. incorrectly.
From a DOS or Linux command line type:
C:\> javap javax.comm.CommPort

Javap will print out a list of the public fields and methods in the
javax.comm.CommPart class. Something like this:
public abstract class javax.comm.CommPort extends java.lang.Object {

protected java.lang.String name;

javax.comm.CommPort();

public java.lang.String getName();

...

public abstract int getOutputBufferSize();

}

If you see a message like Class ‘javax.comm.CommPort’ not found, then the
CommAPI files are either not in the correct place or you have not properly included
them in the classpath.

37

Java Essentials for Embedded Networked Devices

Significant Topics for Review in the Java Language
The previous section discussed how to obtain and set up Java for both Windows and
Linux personal computers. Now, we’re going to talk briefly about the Java language
itself. Again, we’re not trying to teach you Java—rather, we’re going to cover aspects
of the language that are especially relevant to our main topic of web-enabled devices.
In addition, we’re going to review some basic elements of the language that are key
to understanding the examples that will be sprinkled throughout the book. The
example programs in this introductory portion of the book will be presented in
somewhat tedious detail, being first presented in their entirety and then explained
code block by code block. We hope that by explaining these more fundamental
examples in great detail, we’ll be laying a strong foundation for our later, more
complicated examples, which will be explained on a somewhat higher level. There
are a number of excellent, free, online references for Java. If you need more detail
than what is presented in this quick review, check these references. They are listed in
the references section at the end of this chapter.

Classes, objects, methods, constructors
Java, in many ways is very similar to C, C++, and other languages: it uses the famil-
iar curly braces {} to denote code blocks, it has all the usual conditional statements
(if/then/else, etc.) and loop control statements (for, while, etc.). It distinguishes itself
from the other languages in that it is designed from the ground up to be an object-
oriented language. You can’t program in Java without using object-oriented
techniques and that requires understanding classes, objects, and methods (among
other things).

• A software object is an entity that contains information on both state and
behavior. State is contained in variables and behavior is manifested through
what are called methods.

• Methods are code blocks that perform operations on an object’s variables.

• A class is a template for the creation of objects, an object’s methods, and its
variables.

• A constructor is the Java program element that creates an object.

• An object is an instance of a class.

While the terminology and definitions are always important to understand, the only
way to really make any sense of this is to write some code. Let’s look at a simple
example.

38

Designing Embedded Internet Devices

Listing 3-3: Fruit.java

public class Fruit {
String fruitType;
boolean isTart;
int calories;

public Fruit(String ft, boolean it, int cal) {
this.fruitType = ft;
this.isTart = it;
this.calories = cal;

}
public void printData(String str) {

System.out.print(str + “ is a type of “ + this.fruitType);
if (this.isTart) {

System.out.print(“ that is tart and “);
} else {

System.out.print(“ that is not tart and “);
}
System.out.println(“ has about “ + this.calories + “ calories”);

}

public static void main(String[] args) {
Fruit grannySmith = new Fruit(“apple”, true, 80);
Fruit bartlet = new Fruit(“pear”, false, 100);
Fruit cavendish = new Fruit(“banana”, false, 110);
grannySmith.printData(“grannySmith”);
bartlet.printData(“bartlet”);
cavendish.printData(“cavendish”);

}
}

All Java programs are essentially class definitions. In the program above, we have
defined a class called Fruit that provides a template for the creation of Fruit objects.
Let’s take a closer look at the Fruit class. The beginning few lines of our class definition
 public class Fruit {
 String fruitType;
 boolean isTart;
 int calories;

define the class name and variables. According to this template, each time we create a
fruit object, it will have three variables: a string, a Boolean flag, and an integer. The
next few lines of our program are the constructor for the fruit object:

public Fruit(String ft, boolean it, int cal) {
this.fruitType = ft;
this.isTart = it;
this.calories = cal;

}

39

Java Essentials for Embedded Networked Devices

When called, the constructor is passed values for the three variables and it uses them
to initialize the object. The next program block is a method that, when called, prints
out the object’s variables:

public void printData(String str) {
System.out.print(str + “ is a type of “ + this.fruitType);
if (this.isTart) {

System.out.print(“ that is tart and “);
} else {

System.out.print(“ that is not tart and “);
}
System.out.println(“ has about “ + this.calories + “ calories”);

}

Finally, there is the main() method. This is a program block that is executed when
this Java class is run. The first three lines declare different instances of the fruit object
and call the fruit constructor. The next three lines invoke the printData() method
for each of the objects.

public static void main(String[] args) {
Fruit grannySmith = new Fruit(“apple”, true, 80);
Fruit bartlet = new Fruit(“pear”, false, 100);
Fruit cavendish = new Fruit(“banana”, false, 110);
grannySmith.printData(“grannySmith”);
bartlet.printData(“bartlet”);
cavendish.printData(“cavendish”);

}
}

Compile and run this program; the output should look like this:
C:\> javac Fruit.java
C:\> java Fruit
grannySmith is a type of apple that is tart and has about 80 calories
bartlet is a type of pear that is not tart and has about 100 calories
cavendish is a type of banana that is not tart and has about 110 calories

OOP diagrams
OOP, for those of you who don’t speak nerd, stands for Object-Oriented Program-
ming. OOP diagrams are a graphical way of representing programs written using
object-oriented languages. Different symbols are used for classes, objects, class
variables, instance variables, and methods. The OOP diagram is just a drawing of
these symbols in the proper relationship to one another. We will make occasional use
of OOP diagrams throughout this book. OOP diagrams perform two useful functions:

1. In order to make the diagrams, you have to understand what your objects are,
what your variables are, and what your methods are. So, in that sense, they
force you to think OOP.

40

Designing Embedded Internet Devices

2. A picture is worth a thousand words. It’s much easier to quickly grasp what a
program is trying to do by looking at a diagram.

Figure 3-2 illustrates the basic components in the scheme we will use for making
OOP diagrams. This is not an all-inclusive list of the symbols. Constructors,
overloaded methods, overridden methods, and other aspects of Java can also be
illustrated on OOP diagrams but have not been shown on the diagram to keep it
simple. We’ll explain additional, advanced features in OOP diagrams along the way.

Figure 3-2: A diagram showing the symbols used in OOP diagrams

<instance name>

object method object data member

value

<class name>

Classes are illustrated as
square boxes, with their name
at the top, just inside the box

Objects are illustrated as
rounded boxes, with their class
name and instance name at the
top, just inside the box

<class name>

An object method is shown as
a rhombus, with the name
inside. If it straddles the
border of the object, it can be
seen by other classes; if it is
inside the border, it cannot.

Class methods are shown as
rectangles, wth the name
inside. If it straddles the
border of the object, it can be
seen by other classes; if it is
inside the border, it cannot.

The arrow from class to object
indicates the object is an
instance of the class.

Object data members are
shown as rectangles on the
object, with the name inside
and the value underneath. If it
straddles the border of the
object, it can be seen by other
classes; if it is inside the
border, it cannot.

<class method>

41

Java Essentials for Embedded Networked Devices

Inheritance
We’ve seen that Java is an object-oriented language. Java programs are classes that
represent templates for the creation of objects. These objects contain variables and
methods that operate on the variables. Another important concept contained within
this is that these classes form a hierarchy. A class can extend another class and in
doing so inherit some of its objects. By inheriting a class’s objects, that object’s
methods and variables are also inherited.

The inheritance in this hierarchy doesn’t just apply to adjacent classes; by inheriting
from a class you inherit whatever it may have inherited, and so on. The following is a
concise summary of important concepts with respect to inheritance.

Figure 3-3: The OOP diagram for the Fruit Class

Fruit
cavendish

fruitType

banana

isTart

false

calories

 110

 100

calories

false

isTart

pear

fruitType

bartlet

Fruit
 80

calories

true

isTart

apple

fruitType

PrintData()

grannySmith

Fruit

main()

Fruit

PrintData()

PrintData

42

Designing Embedded Internet Devices

• Subclass is the term used to describe the class that is extending, or inheriting
from, a higher class. Superclass is the term used to describe the class that is
being extended or inherited from. One can think of the superclass as the
ancestor and the subclass as the descendent.

• Java.lang.Object is the Java class at the very top of the Java class hierarchy.
All classes extend it either directly or indirectly.

• To inherit from a class other than Object, you use the extends clause. Without
that, a class will extend the Object class by default.

• You can only directly extend one class at a time. That is to say, Java doesn’t
support multiple inheritance.

• Constructors are not inherited.

• There are ways of controlling what can and cannot be inherited from a class.
For instance, declaring a class, its objects, methods or variables as private
prevents them from being inherited.

• If a subclass declares a method that has the same name as a method in the
superclass, that method is said to be overridden. If the superclass had declared
that method as final, this would not be allowed. Overridden methods can be
accessed with the super keyword.

• If a subclass declares a variable that has the same name as a variable in the
superclass, that variable is said to be hidden. If the superclass had declared
that variable as final, this would not be allowed. Hidden variables can be
accessed with the super keyword.

Inheritance is dependent on visibility modifiers and the location of subclasses with
respect to superclasses. The following is a table that summarizes various inheritance
configurations.

x

private

x

default

x

protected

x

public

Accessible from the same class?

xxxAccessible to classes and subclasses from
the same package?

xAccessible to classes and subclasses from
a different package?

xxxInherited by subclasses in the same package?

xxInherited by subclasses in a different package?

Methods and Data Members

Table 3-1: Table of visibility modifiers and what they mean

43

Java Essentials for Embedded Networked Devices

Reading about inheritance is all well and good, but the best way to understand it is to
experiment with it. Consider the following Java program.

Listing 3-4: Tree.java

public class Tree {
String location;
int yearsOld;
int heightInFeet;

public Tree() {
this.location = “Unknown”;
this.yearsOld = 0;
this.heightInFeet = 0;

}

public Tree(String loc, int yrsOld, int ht) {
this.location = loc;
this.yearsOld = yrsOld;
this.heightInFeet = ht;

}

public void printTreeData() {
System.out.println(“Location: “ + this.location);
System.out.println(“Age: “ + this.yearsOld + “ years old”);
System.out.println(“Height: “ + this.heightInFeet + “ feet high”);

}

public static void main(String[] args) {
Tree juniper = new Tree(“north forty”, 10, 30);
Tree walnut = new Tree(“back forty”, 80, 60);
System.out.println(“Juniper tree data:”);
juniper.printTreeData();
System.out.println(“\n” + “walnut tree data:”);
walnut.printTreeData();

}
}

The structure of this Java class is very much like the previous example, Fruit.java.
The beginning few lines of our class definition,
public class Tree {

String location;
int yearsOld;
int heightInFeet;

define the class name and variables. According to this template, each time we create a
tree object, it will have three variables: a string, and two integers. The next few lines
of our program are the constructors for the Tree object. In this case there are two
constructors. Which constructor to be executed depends on the number of arguments

44

Designing Embedded Internet Devices

provided. If all three arguments are provided, the three-argument constructor will be
executed, and if none are provided, the no-argument constructor will be executed.
public Tree() {

this.location = “Unknown”;
this.yearsOld = 0;
this.heightInFeet = 0;

}

public Tree(String loc, int yrsOld, int ht) {
this.location = loc;
this.yearsOld = yrsOld;
this.heightInFeet = ht;

}

Next is a method that prints out the variables along with some text.
public void printTreeData() {

System.out.println(“Location: “ + this.location);
System.out.println(“Age: “ + this.yearsOld + “ years old”);
System.out.println(“Height: “ + this.heightInFeet + “ feet high”);

}

Finally, there is the main() method. This is the program block that is executed when
this Java class is run. The first two lines declare different instances of the Tree object
and call the constructor. Since the constructor has three arguments, it will be the
second constructor in the class definition that gets executed. The next few lines call
the printTreeData() method and print some text to the screen.

Tree

 60

heightInFeet

80

yearsOld

back forty

location

PrintTreeData()

walnut

Fruit

 30

heightInFeet

10

yearsOld

north forty

location

PrintTreeData()

juniper

Fruit

main()

Figure 3-4: The OOP diagram for the Tree Class

45

Java Essentials for Embedded Networked Devices

public static void main(String[] args) {
Tree juniper = new Tree(“north forty”, 10, 30);
Tree walnut = new Tree(“back forty”, 80, 60);
System.out.println(“Juniper tree data:”);
juniper.printTreeData();
System.out.println(“\n” + “walnut tree data:”);
walnut.printTreeData();

}

The output of this program looks like this:
C:\> javac Tree.java
C:\> java Tree
Juniper Tree Data:
Location: north forty
Age: 10 years old
Height: 30 feet high

walnut tree data:
Locaton: back forty
Age: 80 years old
Height: 60 feet high

It’s a straightforward example very much like Fruit.java. What if we wanted to
make a class that was related to the Tree class, but much more specific? What if we
wanted to make a class that described fruit trees? Since fruit trees are a subset of
trees, they would have the same characteristics as trees but would also contain
information specific to fruit trees. To do this, we will make a class that extends the
Tree class. Consider the following program.

Listing 3-5: FruitTree.java

public class FruitTree extends Tree {
String harvestDate;
String harvestMethod;

public FruitTree() {
this.harvestDate = “unknown”;
this.harvestMethod = “unknown”;

}

public FruitTree(String hd, String hm) {
this.harvestDate = hd;
this.harvestMethod = hm;

}

public FruitTree(String loc, int yrsOld, int ht, String hd, String hm) {
super(loc, yrsOld, ht);
this.harvestDate = hd;
this.harvestMethod = hm;

}

46

Designing Embedded Internet Devices

public void printFruitTreeData() {
System.out.println(“Harvest Method: “ + this.harvestMethod);
System.out.println(“Harvest Date: “ + this.harvestDate);

}

public static void main(String[] args) {
FruitTree crabApple = new FruitTree(“late July”, “hand picking”);
FruitTree bingCherry = new FruitTree(“Front Yard”, 7, 25,

“late July”, “cherry picker”);
System.out.println(“Bing Cherry Tree Information:”);
bingCherry.printFruitTreeData();
bingCherry.printTreeData();
System.out.println(“\n” + “Crab Apple Tree Information:”);
crabApple.printFruitTreeData();

}
}

The beginning few lines of our program
public class FruitTree extends Tree {

String harvestDate;
String harvestMethod;

define the class name and variables. According to this template, each time we create a
FruitTree object, it will have two string variables. But note the use of the extends
keyword. By declaring that the FruitTree class extends the Tree class, the
FruitTree objects will inherit the methods and variables that our Tree objects have
and therefore actually have five variables associated with each object. The next
several code blocks are all constructors. In this case, we are providing three
constructors with different numbers of arguments. The number of arguments in the
constructor call will determine which gets executed.

There is another interesting point to be mentioned. When the FruitTree constructor
is called, the first thing it does is attempt to execute a Tree constructor, because the
inherited variables also need to be initialized upon object creation. If there is no
reference to the Tree constructor in the Fruit Tree constructor, it will call the no-
argument Tree constructor. The five argument constructor explicitly references the
Tree constructor through the use of the super() keyword, which refers to the
constructor of the superclass. Since it is used, and three arguments are placed into it,
it will cause the three argument Tree constructor to be called, as opposed to the no
argument Tree constructor. We could have left the no argument constructor out of the
Tree class and the Tree class alone would have compiled and run properly.
public FruitTree() {

this.harvestDate = “unknown”;
this.harvestMethod = “unknown”;

}
public FruitTree(String hd, String hm) {

47

Java Essentials for Embedded Networked Devices

this.harvestDate = hd;
this.harvestMethod = hm;

}

public FruitTree(String loc, int yrsOld, int ht, String hd, String hm) {
super(loc, yrsOld, ht);
this.harvestDate = hd;
this.harvestMethod = hm;

}

The next code block is a method that prints out the two variables that are declared in
the FruitTree class. We’re not going to have it print out the variables inherited from
the Tree class, because we’re inheriting the specific method that does that from the
Tree class as well as the variables.

public void printFruitTreeData() {
System.out.println(“Harvest Method: “ + this.harvestMethod);
System.out.println(“Harvest Date: “ + this.harvestDate);

}

Finally, there is the main() method. This is the program block that is executed when
this Java class is run. The first two lines declare different instances of the FruitTree
object and call the constructor. Since the first constructor call has only two
arguments, the two-argument FruitTree constructor gets executed. The second
FruitTree constructor call has five arguments, which causes the five-argument
constructor to be executed.

The next few lines after that call the printTreeData() method and print some text to
the screen. Here, we are supplying different numbers of arguments to the FruitTree
constructor and in the case of the bingCherry object, we are accessing the inherited
method printTreeData.
public static void main(String[] args) {

FruitTree crabApple = new FruitTree(“late July”, “hand picking”);
FruitTree bingCherry = new FruitTree(“Front Yard”, 7, 25,

 “late July”, “cherry picker”);
System.out.println(“Bing Cherry Tree Information:”);

bingCherry.printFruitTreeData();
bingCherry.printTreeData();
System.out.println(“\n” + “Crab Apple Tree Information:”);
crabApple.printFruitTreeData();

}

The output of this program looks like this:
C:\> javac FruitTree.java
C:\> java FruitTree
Big Cherry Tree Information:
Harvest Method: cherry picker
Harvest Date: late July
Location: Front Yard

48

Designing Embedded Internet Devices

Age: 7 years old
Height: 25 feet high

Crab Apple Tree Information:
Harvest Method: hand picking
Harvest Date: late July

Before leaving our discussion of inheritance, we are going to take a quick look at
overridden methods and hidden variables. Consider the following simple program.

Listing 3-6: Ancestor.java

class Ancestor {
String stringVariable;

public void printStuff() {
System.out.println(“This is the ancestor’s method”);
stringVariable = “Ancestor”;

}
}

Tree

main()

FruitTree

hand picking

harvestMethod

late July

harvestDate

printFruitTreeData()

FruitTree

crabApple

cherry picker

harvestMethod

late July

harvestDate

printFruitTreeData()

FruitTree

bingCherry

main()

Figure 3-5: The OOP diagram for the FruitTree Class

49

Java Essentials for Embedded Networked Devices

public class Descendant extends Ancestor {
String stringVariable;

public void printStuff() {
super.printStuff();
System.out.println(“stringVariable = “ + super.stringVariable);
System.out.println(“This is the descendant’s method”);
stringVariable = “Descendant”;
System.out.println(“stringVariable = “ + stringVariable);

}

public static void main(String[] args) {
Descendant chld = new Descendant();
chld.printStuff();

}
}

In this example, our superclass is called Ancestor. It has one variable, one method,
and we’ve provided no constructors. We are instead relying on the default, no-
argument, constructor which Java provides when we don’t define a constructor. The
subclass in this example is called Descendant. It has one variable, one method, and
no constructors. The interesting thing about this example is that the subclass and
superclass each have a method and variable with the same name. The printStuff()
method in the subclass is said to have overridden the printStuff() method in the
superclass. The variable stringVariable in the
subclass is said to be hiding the variable of the
same name in the superclass. Each can still
be accessed, however, through the use of the
super keyword. When we used super in the
previous example, we were referring to the
superclass constructor. Now, we are using it
to refer to an instance of the superclass,
giving us a mechanism of accessing its
methods and variables. The output of this
program looks like this:
C:\> Java Descendant
This is the ancestor’s method
stringVariable = Ancestor
This is the descendant’s method
stringVariable = Descendant

stringVariable

Ancestor

FruitTree

Descendant

stringVariable

PrintStuff()

Descendant

PrintStuff()

main()

Figure 3-6: The OOP diagram for the
Ancestor Class

50

Designing Embedded Internet Devices

Having looked at method overriding in Descendant.java, are you ready for
something really scary? Consider the following program, OverRidden.java.

Listing 3-7: OverRidden.java

public class OverRidden extends Tree {
String harvestDate;
String harvestMethod;

public OverRidden() {
this.harvestDate = “unknown”;
this.harvestMethod = “unknown”;

}

public OverRidden(String hd, String hm) {
this.harvestDate = hd;
this.harvestMethod = hm;

}

public OverRidden(String loc, int yrsOld, int ht, String hd,
String hm) {

super(loc, yrsOld, ht);
this.location = loc;
this.yearsOld = yrsOld;
this.heightInFeet = ht;
this.harvestDate = hd;
this.harvestMethod = hm;

}

public String toString() {
return(

“Harvest Method: “ + this.harvestMethod + “\n”
+ “Harvest Date: “
+ this.harvestDate);

}

public static void main(String[] args) {
OverRidden crabApple = new OverRidden(“late July”, “hand picking”);
OverRidden bingCherry = new OverRidden(“Front Yard”, 7, 25,

 “late July”, “cherry picker”);
System.out.println(“Bing Cherry Tree Information:”);
System.out.println(bingCherry);
bingCherry.printTreeData();
System.out.println(“\n” + “Crab Apple Tree Information:”);
System.out.println(crabApple);

}
}

51

Java Essentials for Embedded Networked Devices

The output of this program is exactly like that of FruitTree.java. But this
program has one twist. Instead of a printFruitTreeData() method as we had
before, we now have a method called toString(), that we never explicitly call.
public String toString() {

return(
“Harvest Method: “ + this.harvestMethod + “\n”

+ “Harvest Date: “
+ this.harvestDate);

}

This is another example of method overriding. What are we overriding? By naming
our own toString() method, we are overriding the Object.toString() method. We
are inheriting the toString() method from the Object class, because every class
ultimately extends the object class. We never have to explicitly call it in this case,
because the System.out.println() method calls the appropriate toString()
method for us based on the type of object passed in its argument.

In this section we’ve taken a brief look at the hierarchical nature of Java provided by
inheritance. This has by no means been a complete discussion but rather a refresher
of some of the more salient and critical characteristics of inheritance.

Errors, exceptions, and exception handling
Nothing is worse than software that crashes. Java provides a method for handling
software errors through what is known as exception handling. This section will
briefly discuss exceptions and exception handling, including:

• Definition of exceptions and exception handling

• Different types of exceptions

• Exception examples: a specified exception, our very own exception

An exception, simply put, is something going wrong during the course of program
execution. Exception handling is the term used to describe how the program will
deal with these exceptions. When an unexpected condition occurs, an exception
object is created and the method or class that experienced the error condition is said
to throw the exception. The exception object can then be passed throughout the
program and handled where it’s most appropriate to do so. The basic mechanism in
Java for handling these exception objects is the try/catch block. Consider a simple
example.

Listing 3-8: CheckedException.java

import java.io.*;
// This program will NOT compile

52

Designing Embedded Internet Devices

public class CheckedException {

public static void main(String[] args) {
String inputLines;
BufferedReader myFile = new BufferedReader(

new FileReader(args[0]));
while ((inputLines=myFile.readLine()) != null) {

System.out.println(inputLines);
}

}
}

The program example above tries to open a text file, read in the text, and print that
text to the screen. The code block responsible for doing that work is enclosed in a
try/catch block. That indicates that the program will try to perform the operations
inside the block, and if it is unable to because of an exception, it will catch the
exception and execute the code in the catch code block. If we tried to compile the
above program without the try/catch statements, we would receive a compiler error.
C:\> javac CheckedException.Java

CheckedException.Java:5: Exception Java.io.FileNotFoundException must
be caught, or it must be declared in the throws clause of this method.

BufferedReader myFile = new BufferedReader(new
FileReader(args[0]));
 ^
CheckedException.Java:6: Exception Java.io.IOException must be caught,
or it must be declared in the throws clause of this method.

while ((inputLines=myFile.readLine()) != null) {
 ^
2 errors

The reason for this is that several of the methods used in the program throw
exceptions, which requires provisions to check for, or catch them. The Java API
shows which methods throw exceptions and precisely which exceptions they throw.
In our example, close() and readLine() are methods of the BufferedReader class,
which both throw an exception called IOException. IOException is a class that
extends the Exception class and is superclass to a host of more specific classes such
as the FileNotFoundException. The FileReader constructor throws the
FileNotFoundException, which can be caught separately, or as an IOException
because it’s a subclass of that exception. The following revised version compiles
without errors.

Listing 3-9: FixedCheckedException.java

import java.io.*;
// This one will compile

53

Java Essentials for Embedded Networked Devices

public class FixedCheckedException {
public static void main(String[] args) {

String inputLines;
try {

BufferedReader myFile = new BufferedReader(
new FileReader(args[0]));

while ((inputLines=myFile.readLine()) != null) {
System.out.println(inputLines);

}
} catch(IOException e) {

System.out.println(“There was an IOException”);
}

}
}

As already noted, there are numerous different types of exceptions, but since
exceptions are themselves objects, they form an inheritance hierarchy.

Errors are nonrecoverable conditions that should not be caught. They usually indicate
serious flaws in the logic of the program.

Exceptions are abnormal conditions that should be caught and dealt with. Exceptions
can further be broken down into different types:

• Checked Exceptions are exceptions that are checked by the Java compiler. The
compiler is looking to see that your program is either performing exception
handling through a try/catch block or specifying that the method throws an
exception, thereby passing any exception on and forcing other calling methods
to perform exception handling. This is commonly referred to as the “catch or
specify” requirement. The IOException from the example above is a checked
exception. Checked exceptions are not runtime exceptions—that is, they don’t
occur during program operation.

• Runtime Exceptions are exceptions that occur during program operation.
Rules governing runtime exceptions and checked exceptions are different.
Methods that throw runtime exceptions do not have to be enclosed in try/
catch blocks, which is to say the “check or specify” requirement does not
apply to them. The rules are different because runtime exceptions can occur in
very numerous and unpredictable ways. It can be too difficult for the compiler
to check for them and too difficult for the programmer to “catch or specify”
them all. Good examples of runtime exceptions are division by zero and
ArrayIndexOutOfBoundsException. They can be caught by try/catch
blocks just like any other exception, but methods at risk for throwing these
exceptions don’t have to be enclosed in try/catch blocks to get the program
to compile.

54

Designing Embedded Internet Devices

We’ve seen an example of a checked exception in which we caught the exception in a
try/catch block. Let’s now look at the same example, but now instead of catching
the exception, let’s specify it.

Listing 3-10: SpecifiedException.java

import java.io.*;
public class SpecifiedException {

public static void main(String[] args) throws IOException {
String inputLines;
BufferedReader myFile = new BufferedReader(

new FileReader(args[0]));
while ((inputLines=myFile.readLine()) != null) {

System.out.println(inputLines);
}

}
}

The program, SpecifiedException.java, will compile and run even though we are
no longer catching the checked exceptions. This is because we are specifying them
through the use of the throws keyword and we are meeting the “catch or specify”
requirement.

Since exceptions are essentially a class hierarchy descending from the Throwable
class, there’s nothing preventing us from extending the Exception class ourselves
and writing our own exceptions. Consider the following:

Figure 3-7: Error diagram

IndexOutOfBoundsException

Error Exception

…

RuntimeException IOException

Throwable

Object

55

Java Essentials for Embedded Networked Devices

Listing 3-11: CustomException.java

import java.io.*;
// This program will NOT compile

public class CustomException {
public static class FileIsTooShortException extends Exception {

public FileIsTooShortException(String str) {
super(str);

}
}

public void readFile(String fileName) throws
FileIsTooShortException {

String inputLines;
int index = 0;
try {

BufferedReader myFile = new BufferedReader(
new FileReader(fileName));

while ((inputLines=myFile.readLine()) != null) {
System.out.println(inputLines);
index++;

}
} catch(IOException e) {

System.out.println(“There was an IOException”);
}
if (index < 200) {

throw new FileIsTooShortException(“That file is too small”);
}

}

public static void main(String[] args) {
CustomException dummy = new CustomException();
dummy.readFile(args[0]);

}
}

This program contains a class definition for a new exception, a
FileIsTooShortException. The definition consists of nothing more than a
constructor that calls the superclass constructor, which in this case will be the
Exception constructor.
 public static class FileIsTooShortException extends Exception {
 public FileIsTooShortException(String str) {
 super(str);
 }
 }

56

Designing Embedded Internet Devices

Exactly what a FileIsTooShortException is supposed to mean isn’t clear from the
constructor. It becomes clear in the method below. Here, we have defined a method,
printFile(), that accepts a file name as an argument, opens the file and then prints
out the lines to the screen. Since several of the methods used throw IOExceptions,
there is a try/catch block for exception handling. But, we have also specified that
this method throws an exception, a FileIsTooShortException. In conjunction with
this, the method counts the number of lines. If the number of lines is less than 200, it
uses the FileIsTooShortException constructor to create an Exception object and
throws that object.
public void readFile(String fileName) throws

FileIsTooShortException {
String inputLines;
int index = 0;
try {

BufferedReader myFile = new BufferedReader(
new FileReader(fileName));

while ((inputLines=myFile.readLine()) != null) {
System.out.println(inputLines);
index++;

}
} catch(IOException e) {
System.out.println(“There was an IOException”);
}
if (index < 200) {

throw new FileIsTooShortException(“That file is too small”);
}

}

Finally, there is the main() method. This simply creates a dummy CustomException
object and invokes the printFile() method.

public static void main(String[] args) {
CustomException dummy = new CustomException();
dummy.readFile(args[0]);

}

If you try to compile this program, you will see the following:
c:\> javac CheckedException.java

CustomException.Java:28: Exception CustomException.
FileIsTooShortException must be caught, or it must be declared
in the throws clause of this method.

dummy.readFile(args[0]);
 ^

1 error

This is actually a good thing! It means that we have succeeded in making our own
custom exception. The program as written has a custom checked exception built into

57

Java Essentials for Embedded Networked Devices

it, FileIsTooShortException. The method that throws that exception is
printFile(). Since it’s a checked exception, we have to either “catch or specify” the
exception. To catch it, we would embed the printfile() method in a try/catch
block. To specify it, we would have to declare that the method calling printFile()
throws the FileIsTooShortException (thereby passing the buck). Since the program
above does neither of these, we should see exactly the error we are seeing. Both fixes
are illustrated below. The catch method of fixing it:

Listing 3-12: CatchCustomException.java

import java.io.*;
public class CatchCustomException {

public static class FileIsTooShortException extends Exception {
public FileIsTooShortException(String str) {

super(str);
}

}

public void readFile(String fileName) throws FileIsTooShortException {
String inputLines;
int index = 0;
try {

BufferedReader myFile = new BufferedReader(
new FileReader(fileName));
while ((inputLines=myFile.readLine()) != null) {

System.out.println(inputLines);
index++;

}
} catch(IOException e) {

System.out.println(“There was an IOException”);
}

if (index < 200) {
throw new FileIsTooShortException(“That file is too small”);

}
}

public static void main(String[] args) {
CatchCustomException dummy = new CatchCustomException();
try {

dummy.readFile(args[0]);
} catch(FileIsTooShortException e) {

System.out.println(“We are experiencing a strange new exception”);
}

}
}

58

Designing Embedded Internet Devices

The specify way of fixing this:

Listing 3-13: SpecifyCustomException.java

import java.io.*;
public class SpecifyCustomException {

public static class FileIsTooShortException extends Exception {
public FileIsTooShortException(String str) {

super(str);
}

}

public void readFile(String fileName) throws
FileIsTooShortException {

String inputLines;
int index = 0;
try {

BufferedReader myFile = new BufferedReader(
new FileReader(fileName));

while ((inputLines=myFile.readLine()) != null) {
System.out.println(inputLines);
index++;

}
} catch(IOException e) {

System.out.println(“There was an IOException”);
}
if (index < 200) {

throw new FileIsTooShortException(“That file is too small”);
}

}

public static void main(String[] args) throws
FileIsTooShortException {

SpecifyCustomException dummy = new SpecifyCustomException();
dummy.readFile(args[0]);

}
}

Before leaving this section, there is one more brief topic to address: the finally
keyword. In addition to the catch portion of the try/catch block, Java provides a
mechanism for cleaning up after exception handling. This is the finally keyword.
Code located within the finally block gets executed no matter what happens inside
the try/catch block. It’s a good place to close any open files or devices.

Listing 3-14: FinallyExample.java

import java.io.*;
public class FinallyExample {

public static void main(String[] args) {

59

Java Essentials for Embedded Networked Devices

String inputLines;
BufferedReader myFile = null;
try {

myFile = new BufferedReader(new FileReader(args[0]));
while ((inputLines=myFile.readLine()) != null) {

System.out.println(inputLines);
}

} catch(IOException e) {
System.out.println(“There was an IOException”);

} finally {
try {

myFile.close();
} catch (IOException e2) {

System.out.println(
“There was an IOException in closing the file”);

}
}

}
}

The finally block in the code above will always be executed after the first try
block. So no matter what kind of exception happens in the first try/catch block, the
program will at least attempt to close the BufferedReader.

Network Programming
One of the strong points of Java is that the language has networking capabilities built
in. This section will briefly highlight some of the capabilities that are most relevant to
the hardware projects we’ll be considering later, particularly sockets, ports and
URLs.

In the previous chapter on networks we discussed the TCP/IP protocol stack. The
programs that follow are written at the application layer of this protocol stack, using
Java.net classes to communicate over the Internet using the connection-based TCP.
Classes exist in the Java.net library that allow for the use of UDP (user datagram
protocol) to communicate over the Internet, but we won’t be considering them here.
TCP is a connection-based protocol and as a connection-based protocol it uses
sockets and ports as the basis for these connections.

Two-way communication over the Internet typically is performed by client/server
pairs. Client/server communication with sockets proceeds as follows:

1. A server creates a special socket, called a server socket, that can listen for
connection requests from clients. This server socket is associated with, or
binds, to a specific port number. That port number will be a well-known port
number associated with the specific service the server offers. It then listens for
client requests for connections to that port.

60

Designing Embedded Internet Devices

2. When a client wants to communicate with the service offered by the server,
the client creates a client socket. Usually we let the operating system
randomly pick an unused port to bind to the socket, but we can specify it if we
want to. A communication request is then sent to the server socket, informing
it of the client socket’s address and desire to communicate.

3. The server is listening for connections on the server’s well-known port and
when it receives a client request, it creates another socket, using a randomly
chosen unused port (1024 or higher) and responds back to the client. The
server only uses the well-known port to listen for client connection requests.
Upon receiving them, it passes the request onto a different local port to be
handle to actual data transfers.

Java provides capabilities for reading and writing to sockets through the Java.net
class library classes. The most relevant classes for our discussion are the
InetAddress, Socket, and ServerSocket classes. While a socket refers to one
endpoint of a network communication, Java Socket objects contain information on
both endpoints of a connection. Let’s consider some examples.

Reading and writing to a socket (a simple client)
The following program is a very simple HTTP client. Given an Internet address such
as www.java.sun.com and a web page such as index.html, it initiates a socket com-
munication to the well-known port 80 (HTTP services) and requests a web page. The
web page is printed to the screen in raw HTML format.

Listing 3-15: HttpSocketClient.java

import java.net.*;
import java.io.*;

public class HttpSocketClient {
public static void main(String[] args) {

try {
InetAddress addr = InetAddress.getByName(args[0]);
Socket webSocket = new Socket(addr, 80);
BufferedWriter clientRequest = new BufferedWriter(

new OutputStreamWriter(webSocket.getOutputStream()));
BufferedReader serverResponse = new BufferedReader(

new InputStreamReader(webSocket.getInputStream()));
clientRequest.write(“GET /” + args[1] + “ HTTP/1.1\n”);
clientRequest.write(“Host: “ + args[0] + “:80\n\n”);
clientRequest.flush();
while(serverResponse.readLine() != null) {

System.out.println(serverResponse.readLine());
}

61

Java Essentials for Embedded Networked Devices

serverResponse.close();
clientRequest.close();
webSocket.close();

} catch(Exception e){e.printStackTrace();}
}

}

The program consists of only one method, main(), that takes two string arguments:
an Internet domain name and a web page. We take the first of those arguments, the
domain name, and pass it to the InetAddress constructor, creating an InetAddress
object called addr. The getByName() method will accept a host name or an IP
address. This is one way of passing host information to the Socket constructor. There
are eight versions of the Socket constructor, taking different types of arguments. We
could have passed the domain name string args[0] directly to the constructor
without having first gone through the process of creating the InetAddress. But this
way gave us a context to show one more networking related class, InetAddress. The
InetAddress object addr is passed to the socket constructor along with the port
number, 80. This means we will be trying to contact the service running at port 80 on
the host machine we specify. Port 80 corresponds to the predefined service of web
browsing using HTTP. Locally, our Socket object webSocket, is not open on port
80. Java is choosing, at random, an unused port, above 1023. The socket address,
made up of our host machine and the client port number, is passed to the server
during this socket creation.
 public class HttpSocketClient {
 public static void main(String[] args) {
 try {

InetAddress addr = InetAddress.getByName(args[0]);
Socket webSocket = new Socket(addr, 80);

Having created a Socket object called webSocket, we are going to use two of its
methods to establish IO streams to the socket. It’s a good idea to use a buffered stream,
so for writing to the socket, we will use a BufferedWriter stream. Its constructor
needs to be given an OutputStreamWriter as an argument, so we need to create an
OuputStreamWriter. The OutputStreamWriter constructor takes an OutputStream as
its argument, so we need to get an OutputStream. The getOutputStream() method of
the Socket library will provide that output stream. Instead of declaring named objects
for the OutputStream and the OutputStreamWriter, we just use their creation as
arguments to the required constructor and cascade them all together. This avoids a lot of
naming objects that will never be referred to again. To read from the socket, we use an
InputStreamReader. Its creation follows a similar process as the OutputStreamWriter.
We now have an InputStreamReader, serverResponse, that corresponds to what we
are reading from the socket and we have an OutputStreamWriter, clientRequest,
that corresponds to what we are sending to the socket.

62

Designing Embedded Internet Devices

 BufferedWriter clientRequest = new BufferedWriter(
new OutputStreamWriter(webSocket.getOutputStream()));

 BufferedReader serverResponse = new BufferedReader(
new InputStreamReader(webSocket.getInputStream()));

The next few lines write an HTTP client request to the socket using the write()
method of the BufferedWriter class. The data isn’t actually sent until the flush()
method is called. It’s very important to note that the specific syntax of the text sent to
the HTTP server is very exacting. While HTTP1.1 is a well-defined protocol,
vendors differ in how tolerant they are of deviation from the protocol. We could omit
the second line,. the “Host: “ + args[0] + “:80\n\n” line, and this program
would still work for most servers we would try. But it wouldn’t work for all of them.
And it’s critical that the line ends with two new lines (\n) as opposed to just one.

clientRequest.write(“GET /” + args[1] + “ HTTP/1.1\n”);
clientRequest.write(“Host: “ + args[0] + “:80\n\n”);
clientRequest.flush();

After sending the HTTP GET request to the server through our socket, we use the
readLine() method of the BufferedReader class to read back the response from the
server through the socket. When there are no more lines, we close the Buffered
Reader, the BufferedWriter, and the socket. Since many of these methods throw
exceptions, we have a catch() block at the end.

while(serverResponse.readLine() != null) {
 System.out.println(serverResponse.readLine());

}
serverResponse.close();
clientRequest.close();
webSocket.close();

 } catch(Exception e){e.printStackTrace();}
 }
}

To execute the program, try the following:
c:\> javac HttpSocketClient.java
c:\> java HttpSocketClient www.rhubarbinfo.com index.html
Date: Mon, 15 Jan 2001 13:45:20 GMT
Filter-Revision: 1.90
Content-length: 14580

 “http://www.w3.org/TR/REC-html40/loose.dtd”>

<link rel=”STYLESHEET” TYPE=”text/css” HREF=”styles.css”>

[lots of html spews forth, omitted for brevity]
</td></tr><!—msnavigation—></table></body>
null

63

Java Essentials for Embedded Networked Devices

The program we just described represents about the simplest client we could
construct. In creating a socket connection to port 80 on a remote machine, it asks to
be connected to the service provided at port 80. That service is an HTTP web server.
Next we will construct the corresponding server.

Reading and writing to a socket (a simple server)
The program below represents a very simple server. It listens on port 80 for clients
requesting connections. When it detects a client connection request, it creates a
socket to communicate with the client, creates a BufferedWriter, and then writes a
simple web page to that socket. It doesn’t actually read anything from the client.

Listing 3-16: HttpSocketServer.java

import java.util.*;
import java.io.*;
import java.net.*;

public class HttpSocketServer {
public static void main(String[] args) {

int port = 80;
try {

ServerSocket srv = new ServerSocket(port);
Date currentDate;
String currentTime;
while (true) {

currentDate = new Date();
currentTime = currentDate.toString();
Socket mySocket = srv.accept();
System.out.println(“Connection Accepted @” +

currentTime);
BufferedWriter serverResponse = new BufferedWriter(

new OutputStreamWriter(mySocket.getOutputStream()));

writePage(serverResponse, currentTime);
mySocket.close();

}
} catch (IOException e) {

e.printStackTrace();
System.out.println(“There is an IOException in

HttpSocketServer”);
}

}

public static void writePage(BufferedWriter wr, String ct) {
try {

wr.write(“HTTP/1.0 200 OK\n”);
wr.write(“Content-type: text/html\n\n”);
wr.write(“<HTML><HEAD>\n”);

64

Designing Embedded Internet Devices

wr.write(“<TITLE>Hello Web Client!</TITLE>\n”);
wr.write(“<H3><CENTER>Hello Web Client!</CENTER></H3>\n”);
wr.write(“</HEAD>\n”);
wr.write(“<BODY><CENTER>\n”);
wr.write(“The current time is “ + ct);
wr.write(“</CENTER></BODY></HTML>\n”);
wr.flush();
wr.close();

} catch (IOException e) {
e.printStackTrace();

 System.out.println(“There is an IOException in writePage”);
}

}
}

The program begins with importing several necessary Java libraries. The class name
and the main() method are declared. The SocketServer constructor is called to
create a SocketServer object called srv, at port 80. The srv object, while not a
Socket object itself, has methods that will allow us to create a Socket object when a
client tries to connect to the port on which it was created, in this case port 80. That
new socket is not located on port 80, but is located on a non-well-known port,
randomly chosen by Java. This frees the server port to continue to listen for more
client requests.

import java.util.*;
import java.io.*;
import java.net.*;

public class HttpSocketServer {
public static void main(String[] args) {

int port = 80;
try {
ServerSocket srv = new ServerSocket(port);
Date currentDate;
String currentTime;

Following the basic declarations in the main() method, the program contains a loop
that will run forever. Not exactly elegant programming, but it allows us to create a
fairly uncluttered example. Each loop, a new Date object is created, and from that a
string that contains the current time. Then, the SocketServer object srv is now used
with the accept() method. This method waits until a client tries to connect to port
80. The loop will thus wait at this point until something tries to connect to our server.
When something does, the accept() method will return a Socket object. We’ve
called this object, mySocket, and it has information about both the local socket and
remote socket. Locally, it is not bound to port 80, but a randomly selected port above
1023. A string containing the current time is printed to the screen from which we

65

Java Essentials for Embedded Networked Devices

invoked the server. As in the example above, we create a BufferedWriter stream to
write to the socket and call that stream serverResponse. The serverResponse
BufferedWriter object and the string containing the current time are sent as
arguments to a method that will print HTML to the client.

while (true) {
currentDate = new Date();
currentTime = currentDate.toString();
Socket mySocket = srv.accept();
System.out.println(“Connection Accepted @” + currentTime);
BufferedWriter serverResponse = new BufferedWriter(

new OutputStreamWriter(mySocket.getOutputStream()));

writePage(serverResponse, currentTime);

Finally, the socket is closed and we catch() any IOException that may have
occurred.

mySocket.close();
}

} catch (IOException e) {
e.printStackTrace();
System.out.println(“There is an IOException in HttpSocketServer”);

}
}

The method writePage() takes a BufferedWriter and a string containing the time
as arguments. The write() method of the BufferedWriter class is used to send text
to the socket. The text sent by this message is in HTTP protocol format. You can
think of this as our server response to a client request. This is again a case where
great care has to be given to follow the protocol specification closely. Many web
browsers will correctly print server responses that don’t strictly follow the HTTP
standard, but some do not. Note the two new line characters (\n) in the Content-
type line of the server response. Without the second new line character, the web
browser client will generally not recognize the response.

The text isn’t actually written to the stream until the flush() method is invoked. The
stream is closed and we catch any IOException that might have occurred.

public static void writePage(BufferedWriter wr, String ct) {
try {

wr.write(“HTTP/1.0 200 OK\n”);
wr.write(“Content-type: text/html\n\n”);
wr.write(“<HTML><HEAD>\n”);
wr.write(“<TITLE>Hello Web Client!</TITLE>\n”);
wr.write(“<H3><CENTER>Hello Web Client!</CENTER></H3>\n”);
wr.write(“</HEAD>\n”);
wr.write(“<BODY><CENTER>\n”);

66

Designing Embedded Internet Devices

wr.write(“The current time is “ + ct);
wr.write(“</CENTER></BODY></HTML>\n”);
wr.flush();
wr.close();

} catch (IOException e) {
e.printStackTrace();

 System.out.println(“There is an IOException in writePage”);
}

}
}

To try this program out, invoke the HttpSocketServer program from the command
line and then open up a web browser and type in the URL http://127.0.0.1/ Both the
command line window and the browser should respond as shown below. Since web
browsers frequently cache web pages, sometimes when you hit refresh, the web page
may not update. The IP address 127.0.0.1 is what is known as the loop-back address.
It refers to the machine you are running on (the localhost).
c:\> javac HttpSocketServer.java
c:\> java HttpSocketServer
connection Accepted @Fri Jan 12 22:36:25 PST 2001

Figure 3-8: Web browser image

67

Java Essentials for Embedded Networked Devices

Reading and writing to a socket (a slightly less simple server)
The server we looked at in the previous example was very simple. It suffered from
the fact that the server contained a loop that would never end, forcing you to shut the
window down to kill the program. Let’s look at a similar example in which the server
now examines client requests to look for a command to shut down.

The program below creates a ServerSocket object binding to port 80. It uses that
ServerSocket object to listen for client requests for connection to port 80. When it
sees one, it creates a separate Socket object, on a different port, to the client.
Buffered IO streams are created to read and write from the socket. Each time the
client requests a connection to the server, a count is incremented and that count is
sent back to the client in the form of text that will be viewed by a browser as a web
page. The text is passed through the streams via HTTP protocol. This is an example
of data encapsulation: HTML text is being passed to a web browser via HTTP. The
web page has HTML FORM elements in it that can be used by the browser to send
back a command to either increment the counter, or quit. Client requests are
examined to see whether or not they contain the QUIT command. If so, the streams
and socket are closed and the server is shut down.

Listing 3-17: HttpImporvedServer.java

import java.util.*;
import java.io.*;
import java.net.*;

public class HttpImprovedServer {
public static void main(String[] args) {

int port = 80;
int count=0;
boolean serverFlag = true;

try {
ServerSocket srv = new ServerSocket(port);
while (serverFlag) {

Socket mySocket = srv.accept();
BufferedWriter serverResponse = new BufferedWriter(

new OutputStreamWriter(mySocket.getOutputStream()));

BufferedReader clientRequest = new BufferedReader(
new InputStreamReader(mySocket.getInputStream()));

String str;
str= clientRequest.readLine();
System.out.println(str);
if (str.startsWith(“GET /?QUIT”)) {

serverFlag = false;
sayGoodbye(serverResponse, count);

68

Designing Embedded Internet Devices

} else {
count++;
writePage(serverResponse, count);

}
clientRequest.close();
mySocket.close();

}
} catch (IOException e) {

e.printStackTrace();
System.out.println(“Problem with main”);

}
}

public static void writePage(BufferedWriter wr, int df) {
String str=String.valueOf(df);
try {

wr.write(“HTTP/1.0 200 OK\n”);
wr.write(“Content-type: text/html\n\n”);
wr.write(“<HEAD>\n”);
wr.write(“<TITLE>This is a counting test web page</TITLE>\n”);
wr.write(“<H3><CENTER>An HTTP counter</CENTER></H3>\n”);
wr.write(“</HEAD>\n”);
wr.write(“<BODY><CENTER>\n”);
wr.write(“Push the Button to Update the Count\n”);
wr.write(“<FORM>”);
wr.write(“<INPUT TYPE=SUBMIT NAME=’Increment’ VALUE=’Increment’>”);
wr.write(“<INPUT TYPE=SUBMIT NAME=’QUIT’ VALUE=’QUIT’>”);
wr.write(“</FORM>”);
wr.write(“The current count = “ + str);
wr.write(“</CENTER></BODY>\n”);
wr.flush();

} catch (IOException e) {
e.printStackTrace();
System.out.println(“There is an IOException in writePage”);

}
}

public static void sayGoodbye(BufferedWriter wr, int df) {
String str=String.valueOf(df);
try {

wr.write(“HTTP/1.0 200 OK\n”);
wr.write(“Content-type: text/html\n\n”);
wr.write(“<HEAD>\n”);
wr.write(“<TITLE>Goodbye!</TITLE>\n”);
wr.write(“<H3><CENTER>Goodbye</CENTER></H3>\n”);
wr.write(“</HEAD>\n”);
wr.write(“<BODY><CENTER>\n”);
wr.write(“The final count = “ + str);
wr.write(“</CENTER></BODY>\n”);
wr.flush();

69

Java Essentials for Embedded Networked Devices

} catch (IOException e) {
e.printStackTrace();

System.out.println(“There is an IOException in sayGoodbye”);
}

}
}

The program starts with the usual import statements to access the necessary libraries
and the class declaration. The main method begins by declaring a port variable, an
integer count variable, and a boolean flag. The flag, serverFlag, is used to identify
whether or not the program should continue to look for client requests in a loop. A
ServerSocket object binding to port 80 is created that will allow it to wait for client
connection requests to port 80 via the accept() method.
import java.util.*;
import java.io.*;
import java.net.*;

public class HttpSocketServer {
public static void main(String[] args) {

int port = 80;
int count=0;
boolean serverFlag = true;

try {
ServerSocket srv = new ServerSocket(port);

A loop based on our flag, serverFlag, begins. We start by waiting for the client
connection request to port 80. When it occurs, a Socket object is created on a different
port, to provide communication to the client. IO streams are created for reading and
writing to this socket, clientRequest and serverResponse. Again, we used
BufferedWriter and Bufferedreader objects as our streams.
while (serverFlag) {

Socket mySocket = srv.accept();
BufferedWriter serverResponse = new BufferedWriter(

new OutputStreamWriter(mySocket.getOutputStream()));
BufferedReader clientRequest = new BufferedReader(

new InputStreamReader(mySocket.getInputStream()));

A String object is declared and it is used to hold the text that the client is sending to
the server via the socket. It’s read from the socket via the readLine() method. The
string is printed to the screen in which the server was invoked. It is then scanned for
the text that would result if the QUIT form element on the web page being served by
our server has been depressed. If it finds it, we set our flag so that our continuous
loop is stopped and the server is shutdown. A goodbye/final count web page is served
to the client before the shutdown. If the input from the client does not indicate a
QUIT, it increments our count variable and serves the web page right back to the
client with the revised count. All of the web page serving is done via one of two

70

Designing Embedded Internet Devices

methods. Once the client has been served either a goodbye page or a revised count
page, the clientRequest stream and the mySocket Socket object is closed.

String str;
str= clientRequest.readLine();
System.out.println(str);
if (str.startsWith(“GET /?QUIT”)) {

serverFlag = false;
sayGoodbye(serverResponse, count);

} else {
count++;
writePage(serverResponse, count);

}
clientRequest.close();
mySocket.close();

}
} catch (IOException e) {

e.printStackTrace();
System.out.println(“Problem with main”);

}
}

This method, writePage(), writes an HTML web page using the HTTP protocol to
the client via the socket. It takes a BufferedWriter and an integer as arguments. The
first two lines written represent the HTTP protocol sever response header. The rest is
HTML text. The web page is actually a very simple page that features a count,
representing the number of times the page has been served The HTML also contains
a form having two buttons. One button is pressed if you want to increment the count,
the other is pressed if you want to shut down the server. After writing the text to the
socket, we catch any IOException that may have occurred. All writing to the socket
is done via the BufferedWriter.write() method.
public static void writePage(BufferedWriter wr, int df) {

String str=String.valueOf(df);
try {

wr.write(“HTTP/1.0 200 OK\n”);
wr.write(“Content-type: text/html\n\n”);
wr.write(“<HEAD>\n”);
wr.write(“<TITLE>This is a counting test web page</TITLE>\n”);
wr.write(“<H3><CENTER>An HTTP counter</CENTER></H3>\n”);
wr.write(“</HEAD>\n”);
wr.write(“<BODY><CENTER>\n”);
wr.write(“Push the Button to Update the Count\n”);
wr.write(“<FORM>”);
wr.write(“<INPUT TYPE=SUBMIT NAME=’Increment’ VALUE=’Increment’>”);
wr.write(“<INPUT TYPE=SUBMIT NAME=’QUIT’ VALUE=’QUIT’>”);
wr.write(“</FORM>”);
wr.write(“The current count = “ + str);
wr.write(“</CENTER></BODY>\n”);

71

Java Essentials for Embedded Networked Devices

wr.flush();
} catch (IOException e) {

e.printStackTrace();
System.out.println(“There is an IOException in writePage”);

}
}

This method, sayGoodBye() also writes an HTML web page using the HTTP
protocol to the client via the socket. Like the writePage() method, it takes a
BufferedWriter and an integer as arguments. The first two lines written represent
the HTTP protocol server response header. The rest is HTML text. This web page
prints the final count and some text saying “goodbye.” After writing the text to the
socket, we catch any IOException that may have occurred. All writing to the socket
is done via the BufferedWriter.write() method.
public static void sayGoodbye(BufferedWriter wr, int df) {

String str=String.valueOf(df);
try {

wr.write(“HTTP/1.0 200 OK\n”);
wr.write(“Content-type: text/html\n\n”);
wr.write(“<HEAD>\n”);
wr.write(“<TITLE>Goodbye!</TITLE>\n”);
wr.write(“<H3><CENTER>Goodbye</CENTER></H3>\n”);
wr.write(“</HEAD>\n”);
wr.write(“<BODY><CENTER>\n”);
wr.write(“The final count = “ + str);
wr.write(“</CENTER></BODY>\n”);
wr.flush();

} catch (IOException e) {
e.printStackTrace();
System.out.println(“There is an IOException in sayGoodbye”);

}
}

To try this program out, invoke the HttpImprovedServer program from the
command line and then open up a web browser and type in the URL http://127.0.0.1/
Both the command line window and the browser should respond as shown below. The
IP address 127.0.0.1 is what is known as the loop-back address. It refers to the
machine you are running on (the localhost). The command line looks like this:
c:\> javac HttpImprovedServer.java
c:\> java HttpImprovedServer
GET / HTTP/1.1
GET /?Increment=Increment HTTP/1.1
GET /?Increment=Increment HTTP/1.1
GET /?Increment=Increment HTTP/1.1
GET /?Increment=Increment HTTP/1.1
GET /?Increment=Increment HTTP/1.1
GET /?Increment=Increment HTTP/1.1
GET /?QUIT=QUIT HTTP/1.1

72

Designing Embedded Internet Devices

Figure 3-9: Web browser image #2

Figure 3-10: Web browser image #3

73

Java Essentials for Embedded Networked Devices

Programming with URLs
All of the previous examples of networking involved the use of the Socket and
ServerSocket classes. Before leaving our discussion of network programming,
there’s one more topic to be touched upon, the topic of URL objects.

A URL, or Uniform Resource Locator, typically refers to an Internet address such as
http://java.sun.com. But in the java.net class library, there is a URL class. The URL
class provides a variety of useful methods for getting network information and for
parsing information out of a provided URL. The URL class also provides ways for us
to read directly from a URL or form connections. Below is a simple example.

This program is a simple HTTP web client, very much like our first socket example.
It takes a string URL as a command line argument, then creates a URL object, webURL,
from that argument. An IO stream is created using the openStream() method of the
webURL object, which will allow us to read directly from the URL we gave as an
argument. We create a BufferedReader, webReader, to read from the URL object,
webURL. The readLine() method of the webReader object returns lines of text of the
web page we entered as an argument. We stop reading when there are no more lines,
and then close the IO stream. Finally, we use various methods of the webURL object to
parse out information about the URL we just read from.

One interesting thing to note about this process is that we didn’t have to write any
HTTP client request information to the server, as we did when we made the simple
HTTP client using sockets. This is because the URL class acts as a protocol handler
for us. It takes care of issuing those commands in its methods, transparent to us.

Listing 3-18: HttpURLClient.java

import java.net.*;
import java.io.*;

public class HttpURLClient {
public static void main(String[] args) {

try {
URL webURL = new URL(args[0]);
BufferedReader webReader = new BufferedReader(

new InputStreamReader(
webURL.openStream()));

String singleLine;
while ((singleLine = webReader.readLine()) != null) {

System.out.println(singleLine);
}
webReader.close();
System.out.println(“Protocol = “ + webURL.getProtocol());

74

Designing Embedded Internet Devices

System.out.println(“Path = “ + webURL.getPath());
System.out.println(“Port = “ + webURL.getPort());
System.out.println(“File = “ + webURL.getFile());
System.out.println(“Host = “ + webURL.getHost());

} catch(Exception e) {e.printStackTrace();}
}

}

To test this program, we’ll run it in conjunction with our HttpImprovedServer
example.

c:\> java HttpURLClient http://127.0.0.1:80/
<HEAD>
<TITLE>This is a counting test web page</TITLE>
<H3><CENTER>An HTTP counter</CENTER></H3>
</HEAD>
<BODY><CENTER>
Push the Button to Update the Count
<FORM>
<INPUT TYPE=SUBMIT NAME=’Increment’ VALUE=’Increment’>
<INPUT TYPE=SUBMIT NAME=’QUIT’ VALUE=’QUIT’>
</FORM>
The current count = 1<CENTER><BODY>
Protocol = http
Path = /
Port = 80
File = /
Host = 127.0.0.1

Meanwhile, the window we run the server from looks like this:
c:\> javac HttpImprovedServer.java
c:\> java HttpImprovedServer
GET / HTTP/1.1

Nowhere in our example HttpURLClient are we explicitly writing the GET
command to the stream. It’s taken care of for us by the URL class. The URL class has
many applications; we will be using it primarily for the parsing methods.

This section has been a quick look at network programming. Many of the concepts,
especially that of reading and writing to sockets, will be used and expanded on in
later sections of this book.

Threads
The simple HTTP servers in the previous sections raise an interesting issue: while
functional, they were not very useful because they only talked to one client at a time.
That’s not really the true spirit of networking. Networking is all about connecting
many clients to a single server. That requires the server to be multitasking, or doing
more than one thing at a time. Java has a multitasking capability called threads.

75

Java Essentials for Embedded Networked Devices

A thread, in Java, refers to a single sequential flow of control within a program. Java
programs can be multi-threaded. Many different sequential flows can be operating in
parallel, independently. We could be doing completely different things at the same
time in different threads, or we could be doing multiple copies of the same activity in
different threads. As with Exceptions, and Sockets, and URLs, Threads are also a
Java class.

There are two basic ways to implement threads in a Java program.

1. Make your own Java class that extends the Thread class.

2. Make your own Java class that implements the runnable interface.

Implementing threads by extending the thread class
This is the method of choice when your threads might be used by other classes. We
will start by looking at a simple example.

Listing 3-19: CountingThread.java

class CountingThread extends Thread {
String threadName;
int waitTime;
public CountingThread(String tName, int wTime) {

this.threadName = tName;
this.waitTime = wTime;

}

public void run() {
int count = 0;
while(count < 25) {

count++;
System.out.println(this.threadName + “ “ + count);
try {

sleep((long)this.waitTime);
} catch(Exception e) {System.out.println(“Couldn’t Sleep”);}

}
}

}

public class ExtFourThreads {
public static void main(String[] args) {

int one = Integer.parseInt(args[0]);
int two = Integer.parseInt(args[1]);
int three = Integer.parseInt(args[2]);
int four = Integer.parseInt(args[3]);
new CountingThread(“One”, one).start();
new CountingThread(“Two”, two).start();
new CountingThread(“Three”, three).start();

76

Designing Embedded Internet Devices

new CountingThread(“Four”, four).start();
}

}

This example implements four threads, each counting to 25 and printing the count out
as it goes. Each thread has its own delay between increments that is set when the
program is invoked. The first few lines,
class CountingThread extends Thread {

String threadName;
int waitTime;
public CountingThread(String tName, int wTime) {

this.threadName = tName;
this.waitTime = wTime;

}

represent the constructor for our threads. Note that we are extending the thread
through the use of the extends keyword. Each of our threads has two variables, a
name and a delay time. Next comes the run() method.
public void run() {

int count = 0;
while(count < 25) {

count++;
System.out.println(this.threadName + “ “ + count);
try {

sleep((long)this.waitTime);
} catch(Exception e) {System.out.println(“Couldn’t Sleep”);}

}
}

The run() method is a pre-existing method of the Thread superclass. It is executed
when we invoke the Thread.start() command, since CountingThread is a
subclass of Thread, and they both have a method named run(). We are overriding the
run() method in the Thread class. Lastly, we have a second class in the same file as
our CountingThread class, called FourThreads. This class is actually the program
we will run from the command line. The ExtFourThreads class makes use of the
CountingThread class. This is often the case when you implement threads by
extending the Thread class: they get used by other classes.
public class ExtFourThreads {

public static void main(String[] args) {
int one = Integer.parseInt(args[0]);
int two = Integer.parseInt(args[1]);
int three = Integer.parseInt(args[2]);
int four = Integer.parseInt(args[3]);
new CountingThread(“One”, one).start();
new CountingThread(“Two”, two).start();
new CountingThread(“Three”, three).start();

77

Java Essentials for Embedded Networked Devices

new CountingThread(“Four”, four).start();
}

}

ExtFourThreads reads in four strings from the command line (spaces between them)
and converts them to long values for use as the sleep values for the different threads.
The constructor is called four times, generating four new threads and at the same time
the start() method is invoked. This causes our overridden version of the run()
method to execute. Four separate counting processes proceed, each with user-defined
delays between increments. The program output looks like this (much abbreviated):

c:\> javac ExtFourThreads.java
c:\> java ExtFourThreads 1000 200 500 5000
….

three 25
one 14
one 15
four 4
….

That’s a very simple example illustrating one form of the thread concept. The same
concept can be applied to the HTTP servers we looked at in the previous section on
networking. The example below is a threaded HTTP server that serves a simple web
page that shows the current time. The time can be updated by pushing an HTML
form button on the page. There is also a QUIT button on the form. It doesn’t really
cause the program to “quit,” but it takes you to a different page. It’s included in the
program because it illustrates reading from the socket as well as writing. This
program is closely modeled after the nonthreaded incrementing page we saw earlier
in the section on networking.

Listing 3-20: HttpThread.java

import java.util.*;
import java.io.*;
import java.net.*;

class HttpThread extends Thread {
Socket threadSocket;
HttpThread(Socket thrdSock) {

this.threadSocket = thrdSock;
}

public void run() {
try {

BufferedWriter serverResponse = new BufferedWriter(
new OutputStreamWriter(this.threadSocket.getOutputStream()));

78

Designing Embedded Internet Devices

BufferedReader clientRequest = new BufferedReader(
new InputStreamReader(this.threadSocket.getInputStream()));

String str;
str=clientRequest.readLine();
System.out.println(str);
Date currentDate = new Date();
String currentTime = currentDate.toString();

if (str.startsWith(“GET /?QUIT”)) {
sayGoodbye(serverResponse);
clientRequest.close();
this.threadSocket.close();
System.exit(0);

} else {
writePage(serverResponse, currentTime);

}
clientRequest.close();
this.threadSocket.close();

} catch (IOException e) {
e.printStackTrace();
System.out.println(“Problem with run”);

}
}

public static void writePage(BufferedWriter wr, String str) {
try {

wr.write(“HTTP/1.0 200 OK\r\n”);
wr.write(“Content-type: text/html\n\n”);
wr.write(“<HEAD>\r\n”);
wr.write(“<TITLE>Java Http Time Server</TITLE>\r\n”);
wr.write(“<H3><CENTER>Java HTTP Time Server</CENTER>< H3>\r\n”);
wr.write(“</HEAD>\r\n”);
wr.write(“<BODY><CENTER>\r\n”);
wr.write(“Push the Button to Update the Time\r\n”);
wr.write(“<FORM>”);
wr.write(“<INPUT TYPE=SUBMIT NAME=’UPDATE’ VALUE=’UPDATE’>”);
wr.write(“<INPUT TYPE=SUBMIT NAME=’QUIT’ VALUE=’QUIT’>”);
wr.write(“</FORM>”);
wr.write(“The current time = “ + str);
wr.write(“</CENTER></BODY>\r\n”);
wr.flush();

} catch (IOException e) {
e.printStackTrace();
System.out.println(“Problem with writePage”);

}
}

public static void sayGoodbye(BufferedWriter wr) {
try {

79

Java Essentials for Embedded Networked Devices

wr.write(“HTTP/1.0 200 OK\r\n”);
wr.write(“Content-type: text/html\n\n”);
wr.write(“<HEAD>\r\n”);
wr.write(“<TITLE>Goodbye!</TITLE>\r\n”);
wr.write(“<H3><CENTER>Goodbye</CENTER></H3>\r\n”);
wr.write(“</HEAD>\r\n”);
wr.write(“<BODY><CENTER>\r\n”);
wr.write(“</CENTER></BODY>\r\n”);
wr.flush();

} catch (IOException e) {
e.printStackTrace();
System.out.println(“Problem with sayGoodbye”);

}
}

}

public class HttpThreadServer {
public static void main(String[] args) {

int port = 80;
try {

ServerSocket srv = new ServerSocket(port);
while(true) {

Socket mySocket = srv.accept();
new HttpThread(mySocket).start();

}
} catch(Exception e) {System.out.println(“Problem with main()”);}

}
}

The program begins with a simple constructor. The argument for the constructor is a
socket. As in our simple example, we are extending the thread class and overriding
the run() method.

class HttpThread extends Thread {
Socket threadSocket;
HttpThread(Socket thrdSock) {

this.threadSocket = thrdSock;
}

The run() method contains the bulk of the code. A BufferedReader and
BufferedWriter is formed using the socket as an instance variable of the thread
object. The input stream is scanned to see if the “GET /?QUIT” is in the input
stream. If it is, that means the HTTP request was the result of the “QUIT” form
button being pressed. If not, it calls a method that prints a web page to the socket
client showing the current time.
public void run() {

try {
BufferedWrigter serverResponse = new BufferedWriter(

new OutputStreamWriter(this.threadSocket.getOutputStream()));

80

Designing Embedded Internet Devices

BufferedReader clientRequest = new BufferedReader(
new InputStreamReader(this.threadSocket.getInputStream()));

String str;
str=clientRequest.readLine();
System.out.println(str);
Date currentDate = new Date();
String currentTime = currentDate.toString();
if (str.startsWith(“GET /?QUIT”)) {

sayGoodbye(serverResponse);
clientRequest.close();
this.threadSocket.close();
System.exit(0);

} else {
writePage(serverResponse, currentTime);

}
clientRequest.close();
this.threadSocket.close();

} catch (IOException e) {
e.printStackTrace();
System.out.println(“Problem with run”);

}
}

The methods writePage() and sayGoodbye() print web information to the socket
connection. They are only slight modifications of the methods of the same name we
used in Listing 3-17, so we won’t go into them further. Finally, we have a short class
that contains the main() method. This is the class that we will execute from the
command line. It creates a server socket and then listens on port 80 for connections.
When connections are being requested from clients, a socket is created and given as
an argument to the thread constructor. The Thread.start() method is called, which
executes the run() method. The thread then services the http request and main() is
free to continue listening for more clients.

public class HttpThreadServer {
public static void main(String[] args) {

int port = 80;
try {

ServerSocket srv = new ServerSocket(port);
while(true) {

Socket mySocket = srv.accept();
new HttpThread(mySocket).start();

}
} catch(Exception e) {System.out.println(“Problem with main()”);}

}
}

81

Java Essentials for Embedded Networked Devices

To try this program out, invoke the HttpThreadServer program from the command
line and then open up a web browser and type in the URL http://127.0.0.1/ Both the
command line window and the browser should respond as shown below. The IP
address 127.0.0.1 is what as known as the loop-back address. It refers to the machine
you are running on (the localhost).

c:\> javac HttpThreadServer.java
c:\> java HttpThreadServer
GET /?UPDATE=UPDATE HTTP/1.1
GET /?UPDATE=UPDATE HTTP/1.1
GET /?UPDATE=UPDATE HTTP/1.1
GET /?UPDATE=UPDATE HTTP/1.1
GET /?UPDATE=UPDATE HTTP/1.1
GET /?UPDATE=UPDATE HTTP/1.1
GET /?QUIT=QUIT HTTP/1.1

The previous two examples have shown the first way of implementing threads. That
method is to extend the thread class and override the run() method. In both
examples, we had a separate class that made use of our thread subclass. The second
way of implementing threads is to implement the Runnable interface.

Figure 3-11: Web browser image #3

82

Designing Embedded Internet Devices

Implementing threads by implementing the runnable interface
While we’re not going to go into detail about interfaces, simply put, an Interface in
Java is a named collection of method definitions, without implementations. They are
instead filled with abstract method declarations. By implementing an interface, you
are essentially establishing a contract to implement all of the abstract classes declared
in the interface.

Our first thread example, the four threaded counting program, can easily be made to
implement the Runnable interface.

Listing 3-21: IndependentCounting.java

public class IndependentCounting implements Runnable {
String threadName;
int waitTime;
Thread actualThread;

public IndependentCounting(String tName, int wTime) {
this.threadName = tName;
this.waitTime = wTime;
actualThread = new Thread(this);
actualThread.start();

}

public static void main(String[] args) {

Figure 3-12: Web browser image #4

83

Java Essentials for Embedded Networked Devices

int one = Integer.parseInt(args[0]);
int two = Integer.parseInt(args[1]);
int three = Integer.parseInt(args[2]);
int four = Integer.parseInt(args[3]);
new IndependentCounting(“Thread One Count = “, one);
new IndependentCounting(“Thread Two Count =”, two);
new IndependentCounting(“Thread Three Count = “, three);
new IndependentCounting(“Thread Four Count =”, four);

}

public void run() {
int count = 0;
while(count < 25) {

count++;
System.out.println(this.threadName + “ “ + count);
try {

Thread.sleep((long)waitTime);
} catch(Exception e) {System.out.println(“Couldn’t Sleep”);}

}
}

}

The significant thing to note about this program is that it is implemented inside a
single class, whereas our other example had the threads implemented in one class and
used in another. Let’s take a closer look.

The program begins with a class definition statement, declares three variables, and
defines a constructor. Note the use of the keywords implements runnable, which
states that it is implementing the Runnable interface. As in the CountingThread
example, we have a string variable representing the thread name and an integer
representing the user-defined wait time for each thread. We now have an additional
variable, actualThread, associated with each IndependentThread object. The
constructor initializes the string and the integer as before, but this time it also calls
the Thread constructor and calls the start() method of the Thread class. This
causes the run() method to be executed.

public class IndependentCounting implements Runnable {
String threadName;
int waitTime;
Thread actualThread;

public IndependentCounting(String tName, int wTime) {
this.threadName = tName;
this.waitTime = wTime;
actualThread = new Thread(this);
actualThread.start();

}

84

Designing Embedded Internet Devices

The main() method is executed when the Java program is executed from the
command line. It accepts four command line parameters (the integer wait times) and
passes them to the IndependentCounting constructor, which is invoked four times.
Each time it is invoked, the constructor causes the run() method to be executed.
public static void main(String[] args) {

int one = Integer.parseInt(args[0]);
int two = Integer.parseInt(args[1]);
int three = Integer.parseInt(args[2]);
int four = Integer.parseInt(args[3]);
new IndependentCounting(“Thread One Count = “, one);
new IndependentCounting(“Thread Two Count =”, two);
new IndependentCounting(“Thread Three Count = “, three);
new IndependentCounting(“Thread Four Count =”, four);

}

The run() method is almost identical to the run() method used in the
CountingThread example with one exception. When we invoke the sleep() method
in this example, we need to use a fully qualified path to ensure the Java compiler
understands what class we want the sleep method to be taken from. To do this, we
precede it with the class name, Thread.

public void run() {
int count = 0;
while(count < 25) {

count++;
System.out.println(this.threadName + “ “ + count);
try {

Thread.sleep((long)waitTime);
} catch(Exception e) {System.out.println(“Couldn’t Sleep”);}

}
}

}

The program output looks like this:

c:\> javac IndependentCounting.java
c:\> java IndependentCounting 1000 200 500 5000
….

Thread Three Count = 25
Thread One Count = 14
Thread One Count = 15
Thread Four Count = 4

….

85

Java Essentials for Embedded Networked Devices

Serial ports
We are now going to examine how to access your computer’s serial ports. In order to do
this, we need some sort of serial device to talk to. A serial port loopback plug is probably
the simplest. These are very cheap and easy to make using the proper female connector
for your serial port. The necessary connections are shown in the figures below for both 9-
pin and 25-pin serial ports. Note that the dotted line is an optional wire that some
loopback plugs have. This is not necessary for the examples in the book (but it won’t hurt
either). Once your loopback plug is installed on your serial port, compile and run the
program SerialLoopTest.java in the listing below. Don’t forget that you need
comm.jar on your CLASSPATH environment variable for this to compile and run.

9

8

7

6

5

4

3

2

1 Pin 1 CD Carrier Detect
Pin 2 RD Receive Data
Pin 3 TD Transmit Data
Pin 4 DTR Data Terminal Ready
Pin 5 SG Signal Ground
Pin 6 DSR Data Set Ready
Pin 7 RTS Ready To Send
Pin 8 CTS Clear To Send
Pin 9 RI Ring Indicator

1

2

3

4

5

14

15

16

17

6

7

8

9

10

19

20

21

22

18

11

12

13

23

24

25

Pin 1 SG Signal Ground
Pin 2 TD Transmit Data
Pin 3 RD Receive Data
Pin 4 RTS Ready To Send
Pin 5 CTS Clear To Send
Pin 6 DSR Data Set Ready
Pin 7 SG Signal Ground
Pin 8 CD Carrier Detect
Pin 20 DTR Data Terminal Ready
Pin 22 RI Ring Indicator

Figure 3-13: Serial loopback 9-pin plug

Figure 3-14: Serial loopback 25-pin plug

86

Designing Embedded Internet Devices

Listing 3-22: SerialLoopTest.java

import java.io.*;
import java.util.*;
import javax.comm.*;

public class SerialLoopTest implements Runnable,
SerialPortEventListener {

static CommPortIdentifier portId;
static Enumeration portList;

static InputStream inputStream;
static OutputStream outputStream;

static SerialPort serialPort;
Thread readThread;

static String message2send = “Hello Port!”;
static String messagereceived;

static byte[] inbuf = new byte[20];
int i = 0;
static String portname;

public static void main(String[] args) {

 // check out the command line args
 if (args.length < 1) {

System.out.println(“Specify a port! (COM1 or /dev/ ttyS0).”);
return;

 } else {
portname = args[0];
System.out.println(“Testing port: “ + portname);

 }

 try {
 // Get the ID of this port
 portId =

CommPortIdentifier.getPortIdentifier(portname);
// Is it a serial port?
if (portId.getPortType() !=
CommPortIdentifier.PORT_SERIAL) {

System.out.println(“Port is not a serial port”);
return;

 }
 }
 catch(NoSuchPortException e) {

System.out.println(“No Such Port!”);
return;

87

Java Essentials for Embedded Networked Devices

 }
 catch (Exception e) { System.out.println(e); }
 SerialLoopTest tester = new SerialLoopTest();
 }

 public SerialLoopTest() {
 try {
 serialPort = (SerialPort) portId.open(“Serial Loop Test”, 2000);
 }
 catch(PortInUseException e) {

System.out.println(“Port In Use.”);
return;

 }
 catch (Exception e) {

System.out.println(e);
return;

 }

 try {
 serialPort.addEventListener(this);
 }
 catch (TooManyListenersException e) {

System.out.println(e); }

 // Turn on some notifiers so we can catch them with an event listener.
serialPort.notifyOnDataAvailable(true);
serialPort.notifyOnCTS(true);
serialPort.notifyOnDSR(true);

 // We don’t really need to set the port parameters for a loop back test
 // but if you did, this is how you would.
 try {
 serialPort.setSerialPortParams(19200,
 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);
 serialPort.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);
 }
 catch (UnsupportedCommOperationException e) {
 System.out.println(e);
 }

 try {
 inputStream = serialPort.getInputStream();
 outputStream = serialPort.getOutputStream();
 }
 catch (IOException e) { System.out.println(e); }

 readThread = new Thread(this);
 readThread.start();

88

Designing Embedded Internet Devices

 }

 public void run() {
// send characters out the port
try {

 outputStream.write(message2send.getBytes());
}
catch (IOException e){ System.out.println(e); }

System.out.println(“Flipping RTS...”);
serialPort.setRTS(! serialPort.isRTS());

System.out.println(“Flipping DTR...”);
serialPort.setDTR(! serialPort.isDTR());
try { Thread.sleep(1000); } catch (Exception e) { }

serialPort.removeEventListener();
serialPort.close();

System.out.print(i + “ bytes read from port “ + portname
+ “. “);

if (i<1) {
 System.out.println(“Maybe something is not working.”);

}
else { System.out.println(); }

 }

 public void serialEvent(SerialPortEvent event) {
 // determine whuch event has happened
 switch(event.getEventType()) {
 case SerialPortEvent.BI:
 case SerialPortEvent.OE:
 case SerialPortEvent.FE:
 case SerialPortEvent.PE:

System.out.println(“Some status line changed.”);
break;

case SerialPortEvent.CD:
System.out.println(“Status line CD changed.”);
break;

case SerialPortEvent.CTS:
System.out.println(“Status line CTS changed.”);
break;

case SerialPortEvent.DSR:
System.out.println(“Status line DSR changed.”);
break;

case SerialPortEvent.RI:
System.out.println(“Status line RI changed.”);
break;

case SerialPortEvent.OUTPUT_BUFFER_EMPTY:
System.out.println(“Buffer Empty”);

89

Java Essentials for Embedded Networked Devices

break;
case SerialPortEvent.DATA_AVAILABLE:

byte[] readBuffer = new byte[20];
try {

 while (inputStream.available() > 0) {
int numBytes = inputStream.read(readBuffer);
i += numBytes;
messagereceived = new String(readBuffer);
System.out.println(“Read: “ + messagereceived);

 }
 }

catch (IOException e) { System.out.println(e); }
break;

 }
 }
}

The output looks like this:
C:\> javac SerialLoopTest
C:\> java SerialLoopTest COM1
Testing port: COM1
Read: Hello Po
Read: rt!
Flipping RTS...
Status line CTS changed.
Flipping DTR...
Status line DSR changed.
11 bytes read from port COM1.

Notice that the “Hello Port!” is split between two reads. This will vary depending on
the capability of your computer and what other applications are running. For Linux
machines you would use /dev/ttyS0 (or the name of your serial port) and you will
get the same output.

The line portId = CommPortIdentifier.getPortIdentifier(portname); finds
the port named by portname and assigns its identifier to portId. Once you have the
port identifier you can then determine the type of port (getPortType()), its name
(getName()), and if it is already owned by another process (isCurrentlyOwned();
and getCurrentOwner()). This port identifier is the internal Java name for the port
that you might call COM1 or /dev/ttyS0. The getPortIdentifier() method can
throw the NoSuchPortException exception if this port does not exist. This is not
always accurate. Many PC motherboards are configured to support two serial ports
but with only one port having the necessary driver chips installed (to save money).
Java will not throw the NoSuchPortException exception for this; it thinks the port is
really there. Also, on Linux, if you have a real serial port that you don’t have
permission to read or write to, Java will throw the NoSuchPortException exception.
This method will catch clearly wrong port names (such as /dev/hda1 or CON1).

90

Designing Embedded Internet Devices

The line serialPort = (SerialPort) portId.open(“Serial Loop Test”,
2000); opens the serial port and assigns an owner to it. The number 2000 is a
timeout value. The open method will wait this many milliseconds for the port to open
before timing out. If the port is owned by another Java application then this method
will throw a PortInUseException exception. If the port is owned by another, non-
Java, application then this exception will not be thrown. We have found this does not
work reliably, tending not to notice if any application (Java or not) is using a serial
port.

We then set up an event listener, serialPort.addEventListener(this); so we can
watch the activity on the serial port. The event listener, further down in the listing,
will tell us what activity is going on for that port. We tell the event listener that we are
particularly interested in the following events:

serialPort.notifyOnDataAvailable(true);
serialPort.notifyOnCTS(true);
serialPort.notifyOnDSR(true);

We want to be notified when there is data available, when the Clear-To-Send line has
changed, and when the Data Set Ready line has changed. We need to specifically tell
the event listener what we are interested in, as there are many things we can monitor
and we don’t want the event listener being called for things we don’t care about. We
chose these because they make a good example and because we can check for them
with the loop-back connector. You can also take this opportunity to set the
communication parameters for the serial port. Notice the lines:

serialPort.setSerialPortParams(19200,
SerialPort.DATABITS_8,
SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE);

serialPort.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);

In this case, setting these parameters has no effect on the workings of this program. I
show these here as examples only. Once the port is open and configured, we can start
reading from and writing to it. The lines:

inputStream = serialPort.getInputStream();
outputStream = serialPort.getOutputStream();

get the input and output streams for this port so we can read and write to it. We then
start a thread running to talk to the port.

readThread = new Thread(this);
readThread.start();

This doesn’t need to be in a thread, but this is a common way to do this. The rest of
the communication with the serial port takes place in the run method and in the
serialEvent method. This is where the loopback testing begins; the run method

91

Java Essentials for Embedded Networked Devices

writes data and changes status lines while the serialEvent method reads the data
and watches the status lines. The run method does three things. We write a message
to the serial port using the outputStream.write method, we then check the RTS and
DTR status lines, and invert them.

outputStream.write(message2send.getBytes());
serialPort.setRTS(! serialPort.isRTS());
serialPort.setDTR(! serialPort.isDTR());

Originally we tried setting the status lines to either true or false but we discovered
that they are left in an arbitrary state and this technique didn’t work very
satisfactorily. Besides, this gives us a chance to try using some of the methods to
examine the state of the status lines (like isDTR(), isRTS()). We are pretty much
done with sending data to the port. The sleep is necessary so the program won’t exit
before the event listener has a chance to catch the activity and report on it. Don’t
forget to remove the event listener and close the port. While this may not seem like
an important thing to do for this little simple program, we found that on some
Windows machines the Java program won’t exit and return to the shell until these are
done.

try { Thread.sleep(1000); } catch (Exception e) { }
serialPort.removeEventListener();
serialPort.close();

As soon as the data is sent, the SerialEvent event listener is triggered. The
serialEvent listener is a simple switch that examines the event type and reports that.
In the case of the event being SerialPortEvent.DATA_AVAILABLE we then read from
the serial port’s input stream.

while (inputStream.available() > 0) {
int numBytes = inputStream.read(readBuffer);
i += numBytes;
messagereceived = new String(readBuffer);
System.out.println(“Read: “ + messagereceived);

}

Once again, we want to call your attention to the output from this program. Notice
that not all of the data is read in at the same time. This could be the result of many
different things, such as the process being interrupted by another event or the data
being sent slower than it is being read. In either case, this is probably typical for an
event listener: you will not get everything you are expecting in one event. This can be
dealt with by simply implementing a buffer in your program and each read appends
the data to the buffer.

92

Designing Embedded Internet Devices

Summary
While some of these examples have been fairly detailed, they are a far cry from a full
tutorial on each topic. We hope to have shown you a wide sampling of the methods
and techniques you will need to assist you in developing robust programs for
communicating with your network-enabled devices. There are a number of excellent
references for Java. If you need more detail than what is presented in this quick
review, then you should check the references listed at the end of this chapter.

References
1. Java 2 Platform, Standard Edition, v 1.3 API Specification, http://

java.sun.com/j2se/1.3/docs/api/index.html

2. Campione, Mary and Walrath, Kathy, The Java Tutorial Second Edi-
tion: Object-Oriented Programming for the Internet, http://
web2.java.sun.com/docs/books/tutorial/, Addison-Wesley, 1998.

3. Chan, Patrick and Lee, Rosanna, The Java Developers Almanac 2000,
Addison-Wesley, 2000.

4. Harold, Elliotte Rusty, Java Network Programming, O’Reilly &
Associates, 2000.

5. The Java Language Specification, http://java.sun.com/docs/books/jls/
second_edition/html/j.title.doc.html.

6. Interfacing the Serial/RS232 Port, http://www.senet.com.au/~cpeacock
(one of the many available loopback plug pinout
diagrams).

4CHAPTER

Overview of
Embedded Networked Devices

93

Cheap Internet appliance technology will make controlling devices in your home,
business or factory from a web page commonplace in the near future. This book will
examine some of the available commercial technology you can apply to making just
about any device network-enabled. We will take you step by step through the process
of connecting several simple devices to the web. The first step in the process will be
selecting a capable microcontroller. There are many microcontroller boards that claim
to be web-enabled on the market now, and there are many more that you can build
from a schematic and a few components. The tables below list and compare a number
of commercially available network-enabled microcontroller boards (Table 4-1) and
some of the “free” schematics available for constructing your own devices (Table 4-2).

Table 4-1: Commercially available network-enabled microcontrollers

EtherNut1 Processor: Atmel Atmega103
Ethernet Controller: Realtek RTL8019AS

$125 Ports: RS-232
+ power supply and Network: 10base-T
cables PIO: 24

Memory: 128K Flash, 4K EEPROM, 32K RAM
Protocols: TCP/IP, HTTP
Preferred Language: C

EtherNut uses the Licorice2 open source real-time kernel. Schematics
and PCB layout files are available from the web page. Expansion
boards are available.

1 Ethernet – http://www.egnite.de/ethernut/
2 Licorice kernel – http://liquorice.sourceforge.net/

94

Designing Embedded Internet Devices

Net1863 Processor: AMD Am186-EX
Ethernet Controller: AMD Am79C961A

$420 Ports: 2 RS-232
Network: 10base-T
PIO: 32
Memory: 512K Flash, 512K RAM
Protocols: TCP/IP, HTTP
Preferred Language: C, Assembly

This is an AMD evaluation board. Online information says this retails for
$230 but both retailers referenced list the price as $420 (US dollars).

Orlin Technology Processor: PIC16F877 20Mhz microcontroller
OT7314 Ethernet Controller: n/a

Ports: 2 RS232, RJ11 telephone, RJ11 MPLAB-ICD
$299 Network: 2400 baud “plain old telephone system”

modem
Memory 128K serial flash EEPROM
Protocols: TCP/IP, UDP, PPP
Preferred Language: PIC Assembly

Other features include an LCD display, pushbutton switches, and a
thermometer.

Picoweb5 Processor: Atmel AT90S8515
Ethernet Controller: Realtek RTL8019AS

$149 Ports: RS-232
Network: 10base-T
PIO: 16
Memory 8K Flash, 512K EEPROM, 512K RAM
Protocols: TCP/IP, HTTP
Preferred Language: Assembly

Schematic is available on the web site.

Rabbit TCP/IP6 Processor: Rabbit Microprocessor
Ethernet Controller: Realtek RTL8019AS

$199 development Ports: RS-232, RS485
kit Network: 10base-T

PIO: 4 digital inputs
Memory: 512K Flash, 128K RAM
Protocols: TCP/IP, HTTP, SMTP, FTP
Preferred Language: C

TCP/IP source code is included in development kit.

3 Net186 – http://www.amd.com/products/epd/desiging/evalboards/4.net186eva/
4 Orlin Technology OT731 – http://www.orlin.com
5 Picoweb – http://www.picoweb.net/prodpw1.html
6 Rabbit – http://www.rabbitsemiconductor.com/products/rab20_tcpip/rab20_tcpip_devkit.html

95

Overview of Embedded Networked Devices

Siteplayer7 Processor: Unknown (seems to be based on a Philips 8051)
Ethernet Controller: Unknown

$99 Ports: none
Network: 10base-T
PIO: 8 (output), 4 PWM
Memory: 48K Flash, 768 bytes RAM
Protocols: TCP/IP, HTTP
Preferred Language: SiteObjects

Siteplayer needs to be embedded into some larger appliance or you
need the development kit to provide the connectors and support.

Snijder EJC8 Processor: ARM7TDMI
Ethernet Controller: unknown

$ (?) Ports: RS232, RS485, TTL, I2C, 8bit DI/DO,
VGA, LCD

Network: 10base-T
Memory: 8MB flash, 8MB DRAM
Protocols: TCP/IP, HTTP, SMTP, FTP, TELNET, POP3
Preferred Language: Java

They also offer a development board for use with the EJC Embedded
Java Controller

SX Evak Kit9 Processor: Scenix SX52BD
Ethernet Controller: Realtek RTL8019AS

$199 Ports: 2 RS-232
Network: 10base-T
Memory: 32K EEPROM
Protocols: TCP/IP, HTTP, SMTP, DHCP
Preferred Language: C

This is an evaluation board.

TINI10 Processor: Dallas Semiconductor 80C390
Ethernet Controller: SMSC LAN91C96

$85 Ports: RS-232, 1-wire
+ power supply Socket card expandable: 2 more RS-232 ports, CAN, I2C
and cables PIO: 16 on socket card

Network: 10base-T
Memory: 512K Flash, 512K RAM (each expandable

to 1 Mbyte)
Protocols: TCP/IP, FTP, Telnet, DHCP (can add HTTP,

SMTP)
Preferred Language: Java
This information is valid for the TINI simm and e20 socket card
combination. Other socket cards provide different ports and memory
expansion. TINI includes a multitasking, Unix-like, operating system.
Schematic is available on the web site.

7 Siteplayer – www.siteplayer.com
8 Snijder EJC – http://www.snijder.com
9 SX Eval Kit – http://www.ubicom.com/ethernet/ethernet_sx_stack_eval.html
10 TINI – http://www.ibutton.com/TINI/

96

Designing Embedded Internet Devices

µµµµµCsimm11 Processor: Motorola 68ex328
Ethernet Controller: Cirrus Logic CS8900A

$300 Ports: RS-232
Network: 10base-T
PIO: 21
Memory: 2 Mbyte Flash, 8 Mbyte RAM
Protocols: TCP/IP
Preferred Language: C

This thing runs a Linux derivative, so it’s closer to a microcomputer
than a microprocessor.

Xecom AWC8612 Processor: AMD Am186
$159 + , connectors, Ethernet Controller: Unknown
cables, power Ports: 2 RS-232
supply Network: 10base-T

PIO: 34 (22 and 8 analog in and 2 analog out on
the AWC86A)

Memory: 512K Flash, 512K RAM
Protocols: TCP/IP, HTTP, SMTP, FTP
Preferred Language: C

Includes a real-time operating system. Requires a development board
or other host board to provide connectors and power.

X-traWeb X-node13 Processor: 8 bit microcontroller, details unknown
Ethernet Controller: n/a

$ (?) Ports: RS232, RS485, I2C, “pulse” inputs,
wireless, analog I/O

Network: via RS232 modem (?)
Memory: 8 K flash, 512 bytes RAM
Protocols: TCP/IP, HTTP, PPP, PAP, CHAP, SLIP, UDP
Preferred Language: unknown

Works in conjunction with another product, the X-gate.

11 mCsimm – http://www.uclinux.org/ucsimm/
12 Xecom – http://xecom.com/
13 X-traWeb – http://www.x-traweb.com

97

Overview of Embedded Networked Devices

Table 4-2: “Free” schematics available for constructing
your own microcontroller board

Ipic14 Processor: MicroChip PIC12C509A
Ethernet Controller: none (done on PIC)

< $25 Ports: None
Network: Slip connection
Memory: 1K ROM, 256K RAM
Protocols: TCP/IP, HTTP, Telnet, SLIP
Preferred Language: Assembly

A minimal implementation of a network-enabled device. Schematics and
TCP source are not provided at the web site.

webACE15 Processor: Fairchild ACE1101MT8
Ethernet Controller: None (done on ACE)

< $10 Ports: I2C
Network: Slip connection
Memory: 1K EEPROM, 256K RAM
Protocols: TCP/IP, HTTP, Telnet, SLIP
Preferred Language: Assembly

Schematic on web site. TCP/IP source is not.

Uwebserver16 Processor: MicroChip PIC16F84
Ethernet Controller: Seiko S-7600A (iChip)

< $35 Ports: RS-232, I2C
Memory: 1K Flash, 68 bytes RAM
Protocols: TCP/IP, HTTP
Preferred Language: Assembly

Includes schematics, source code, PCB layout files.

MicroChip AN72417 Processor: MicroChip PIC16C63A
Ethernet Controller: CH1786LC (really a modem)
Ports: PPP, I2C
PIO: 22
Memory: 4K EPROM, 192 bytes RAM
Protocols: PPP
Preferred Language: C, Assembly

This is from a Microchip application note. Application note includes
schematic and PIC assembly source code.

14 iPic – http://www-ccs.cs.umass.edu/shri/iPic.htm
15 WebAce – http://world.std.com/~fwhite/ace/
16 uWebserver – http://www.mycal.net/wsweb/design/
17 Using PICmicro® MCUs to Connect to Internet via PPP

http://www.microchip.com/10/appnote/category/internet/index.htm

98

Designing Embedded Internet Devices

MicroChip AN73118 Processor: MicroChip PIC16F877
Ethernet Controller: Seiko S-7600A (iChip)
Ports: RS-485, I2C
PIO: 22
Memory: 8K Flash, 368 bytes RAM
Protocols: TCP/IP
Preferred Language: C, Assembly

This is from a Microchip application note. Application note includes
schematic and PIC assembly source code.

In reviewing these tables and by visiting the web sites of these manufacturers, you
will see a wide variety of microcontroller board capabilities and costs. While many of
these devices are simply embedded web page servers, we are looking for a
microcontroller that has the potential for a wide range of applications as well as being
programmed in a straightforward manner (read “high level language” here). We have
selected the TINI19 microcontroller from Dallas Semiconductor as the platform for
most of the projects in the book. While many of the microcontroller boards could do
the job, this is the only one with the combination of low-cost, high-level language
(Java), and variety of ports and interfaces.

In the remainder of this book, we’re going to be examining the hardware and soft-
ware behind the TINI microcontroller. Here is a brief overview of what we will be
examining in detail over the next few chapters

18 Embedding PICmicro Microcontrollers in the Internet
http://www.microchip.com/10/appnote/listing/index12.htm

19 TINI is a registered trademark of Dallas Semiconductor.

Figure 4-1: The TINI microcontroller board

99

Overview of Embedded Networked Devices

• Chapter 5 – Starting up TINI for the first time

• Chapter 6 – TINI hardware

• Chapter 7 – TINI software

• Chapter 8 – Enhancing your TINI board’s capabilities

• Chapter 9 – The TINI ports (serial and parallel)

• Chapter 10 – The TINI 1 wire port

• Chapter 11 – The TINI I2C interface

• Chapter 12 – The TINI CAN interface

• Chapter 13 – Connecting your TINI to a network

[This is a blank page.]

5CHAPTER

Getting Started with TINI

101

This chapter will get you started with your TINI without overwhelming you with
detail (we save that for the next 8 chapters). It focuses on installing the TINI classes
and libraries, getting TINI up and running, and then getting the 1-Wire libraries
installed (so you can control things with your desktop or laptop computer as well)
and verified, so that everything is working properly.

What Is TINI?
The TINI microcontroller is a small computer that executes Java bytecode and has
built-in Ethernet networking and interfaces for connecting many different types of
hardware. The name TINI stands for “Tiny InterNet Interface” and refers to both the
TINI Chip Set and the TINI Board.

The TINI CPU is the Dallas Semiconductor DS80C3901. TINI has built-in serial,
parallel, 1-Wire, I²C and Controller Area Network (CAN) ports, with extra pins for
controlling optional devices. It can address up to 1Mb of RAM and 1 Mb of Flash
ROM. The TINI board also contains an RS232 interface, a real-time clock, a unique
Ethernet MAC address, and a battery backup for the RAM. The Ethernet controller
supports 10-Base-T networking and allows you to Internet-enable many applications.
The Flash ROM contains the TINI firmware, Java Virtual Machine, and Java class
libraries. It also has space to store a bootstrap program.

TINI is a 1-¼″ x 4″ form factor, the footprint of a typical memory SIMM (Single
Inline Memory Module), so that a TINI microcontroller can fit almost anywhere.
With TINI you can Web-enable just about any piece of electrical equipment. You can
develop Java applications for TINI quickly and easily to provide an Internet or
intranet interface for your equipment.

1 DS80C390 datasheet – http://www.dalsemi.com/datasheets/pdfs/80c390.pdf

102

Designing Embedded Internet Devices

The 1-Wire Net, sometimes known as a MicroLAN, is a low-cost network based on a
PC or microcontroller communicating digitally over twisted-pair cable with 1-Wire
components. A 1-Wire Net-based system consists of three main elements: a bus
master (such as a TINI microcontroller or a microprocessor) with controlling
software, the wiring and associated connectors, and 1-Wire devices. An economical
DS9097 COM Port Adapter is available to interface a personal computer’s RS-232
interface to a 1-Wire network.

Figure 5-1: The TINI and 1-Wire connections

Personal
Computer

Socket
Board

TINI SIMM

Serial Cable

Ethernet Cable

‘wallwort’
power supply

Hub

Connection to
Internet / WAN

I²C bus

Serial
Ports

1-wire
devices 1-wire bus

LCD

1-wire
devices

1-wire bus

Parallel
I/O

CAN bus

2 iButton Store – http://www.ibutton.com/TINI/hardware/index.html

Getting Started
This is a practical discussion of how to get started, obtain and set up all of the pieces.

The TINI SIMM
TINI is available in two forms, the 512-kbyte SRAM version and the 1-Mbyte SRAM
version. In fact, they are both the same but with the 512-kbyte version, only one of
the two SRAM chips has been soldered to the SIMM, while the other is empty. In
Chapter 6 we will discuss the details of this memory (512k and 1 Mbyte) and in
Chapter 8 we will show you how to add memory to the 512-kbyte version. Both of
these are available from the Dallas Semiconductor iButton Store2.

103

Getting Started with TINI

Figure 5-2: The TINI SIMM
(The components will be identified in Chapter 6.)

The socket board
As TINI is a SIMM, it has no sockets on it for connecting to external devices, just a
single edge connector. To connect TINI to various devices like the serial port and a
network, it needs to be plugged into a host or motherboard that either provides the
needed connections or offers sockets and connectors for the various connections.
Why is it like this? TINI is intended to be a plug-in “brain” on an appliance. The
appliance should provide the necessary connection directly to the TINI SIMM. For
development and testing purposes (and for small-scale applications where a custom
motherboard is too costly) it is possible to use one of the many prototype sockets
available that provides the needed connectors for TINI and various interfaces. Table
5-1 below lists and compares some of these available socket boards for TINI.

Unless noted otherwise, all socket boards include:

• 72-pin SIMM connector • Power connector

• RJ45 Ethernet connector • RJ11 1-Wire network connector

Table 5-1: TINI socket boards

Dallas Semiconductor 100 mm X 160 mm
E10 socket3 DB9 (DTE RS-232) connector

iButton clip

$20.00 Expansion space (not populated with components) for:
• Second 72-pin SIMM connector
• 512K Flash ROM expansion
• Dual RS232 port with hardware handshake
• Parallel I/O lines (16 inputs, 16 outputs)
• LCD display connector
• CAN bus interface
• Output-only RS232 (RJ11) diagnostic port
• On board 5VDC reculator

3 E10 socket – http://www.ibutton.com/TINI/developers/index.html

104

Designing Embedded Internet Devices

Dallas Semiconductor Same as the E10 socket with but the onboard +5V regulator is populated
E20 socket4 (for a 8 to 20V AC/DC supply).

$35

E50 socket5 Same as the E10 but it is fully populated will all optional connectors, jacks
and components (but no LCD display, just the connector).

$200

TILT socket6 100 mm X 100 mm
DB9 (DTE RS-232) connector

$39-$43 iButton clip
Reset button
CAN transceiver and CAN connector
Power regulator (6-9 VDC supply)

Optional CAN net with 82C25X twisted pair driver

STEP socket7 100 mm X 100 mm
Second 72-pin SIMM connector

$89-$129 DB9 (DTE RS-232) connector
DB9 for serial 1
Pushbuttons and LEDs
Prototype area
Socket for boot flash
CAN connector
Power regulator (8-24 VDC/AC supply)
SBX expansion connector

Optional components
• DS1820 temperatures sensor
• DS2450 for a analog inputs
• IrDA in place of serial port

Proto adapter8 All SIMM pins are brought out to labeled headers for breadboard
development (0.100" prototyping board)

$28.50
Available with 68 or 72 pin SIMM socket

4 Dallas Semiconductor’s E10 socket – http://www.ibutton.com/TINI/developers/index.html
5 Systronix E50 socket – http://www.systronix.com/tini/sp.htm
6 Systronix TILT socket – http://www.systronix.com/tini/tilt.htm
7 Systronix STEP socket – http://www.systronix.com/tini/step.htm
8 Viniculum’s proto adapter – http://www.vinculum.com/1001.php

105

Getting Started with TINI

Nexus9 This is an expansion board for the proto adapter (above)
Accepts 68 and 72 pin TINI protoAdapters

$30 Provies space for:
• Reset switch
• Second SIMM socket
• Pads for the addition of two DB9’s, one RJ11 and an iButton clip for use
 as the developer sees fit

Includes a protoModule (protoModule provides a marix of 0.1" spaced
plated through holes for prototyping circuitry).

TINITutor10 108 x 175 mm board
8 dip switches for input (or connector for 8 bit input)

£80 (about $130) 8 leds for digital output (or connector for 8 bit output)
Pushbutton for interrupt generation
External interrupt connector
8bit DAC and connector
8bit ADC and connector
2 Line LCD display
connectors for the 1-wire bus, I2C bus, can bus,
Can interface with bus driver
2 serial ports
On board regulator

TiniTutor comes with real time experiments already configured on the
board, so you can get straight down to writing real time Java with TINI.
The experiments use all the peripherals including the ADC, DAC, LCD,
8bit Digital IO, interrupt generator.

Get your TINI running
For the devices that we will build in the remainder of this book, you need a TINI
SIMM, a TINI socket board, a 9-pin RS-232 cable, an Ethernet cable, and a power
supply. To complete this chapter you will also need a 1-Wire device, a serial port 1-
Wire adapter and a short length of CAT3 or better cable with a RJ11 on one end (to
connect to the 1-Wire device).

• The TINI SIMM can be either the 512-kbyte version or the 1-Mbyte version.

• The TINI socket board needs to support the serial, 1-Wire and network connectors.

• The RS-232 cable (serial cable) should have a 9-pin male connector on one end
and a 9-pin female connector on the other and have wires 1,2,3,4 (minimum, all
9 is good too) connected in a straight-through fashion (not a null modem cable).

9 Viniculum’s NEXUS socket – http://www.vinculum.com/1004.php
10 TayLec Ltd’s TINITutor board – http://www.taylec.co.uk/

106

Designing Embedded Internet Devices

• The Ethernet cable is a standard 10base-T CAT5 cabled with RJ45 connectors
on both ends. Whether you use a straight-through cable or a crossover cable
depends on whether or not you’re connecting your TINI to your computer’s
network card or your LAN hub.

• The TINI board requires 5 volts. The type of power supply you use depends
on the socket board you use. If your socket board has an on-board regulator,
then you need to pick a supply that is compatible with that (such as a 9–12-
volt AC or DC supply, 250-mA (minimum) in the case of the E20). If your
choice of socket board does not have a regulator, then you will need to use a
5-volt, DC, 250-mA (minimum), regulated power supply.

Now, let’s connect this all together. Connect your TINI to your personal computer
using the serial cable. Connect your TINI Ethernet connector to either your LAN hub
with a straight-through CAT5 cable or directly to the network interface card in your
personal computer with a crossover cable (you don’t need a network to use TINI).
Plug in the power supply and connect that to the TINI power connector. Your TINI
should indicate it is on by lighting the “D1” LED (marked on the circuit board) on
the TINI SIMM. After a few seconds the “D4” LED will light up, indicating that it
has a network connection.

Hub

Personal
Computer

Socket
Board

TINI SIMM

Serial Cable

Ethernet Cable
‘WallWort’

power supply

Figure 5-3: A simple TINI connection

The next step is loading the various pieces of software on your personal computer.
Several Java class libraries are necessary to get your TINI development system
working. This includes the base TINI Java virtual machine, TINI development
libraries, and 1-Wire development libraries for both TINI and your personal
computer. These are schematically shown in Figure 5-4:

107

Getting Started with TINI

TINI libraries, utilities, TINI 1-Wire libraries
The main software library and utilities for TINI are supplied by Dallas
Semiconductor. To install and verify them, follow these simple steps. Instructions are
provided for both Windows and Linux systems.

For Windows
Download the TINI SDK11 (tini1_02.tgz or the current version) to a temporary
directory.

Using Winzip or other archive program, open this archive and extract all of the files to
the folder of your choice. This will create a folder named tini1.02 (or a similar name,
depending on the current version) in that folder and a number of files and folders under
that. In our case we extracted these files to the root folder of our c: drive so the TINI
API files are in c:\tini1.02\ . We will call this the TINI_HOME directory.

Windows 95/98
Edit your autoexec.bat file and add an environment variable that indicates the
TINI_HOME directory and also add the location of tini.jar to your CLASSPATH
environment variable.

C:\>notepad autoexec.bat

Figure 5-4: TINI and 1-Wire libraries

Personal
Computer

Hub

JDK:
 Javac
 Java virtual machine

Applications:
 JavaKit
 TINIconvertor
 BuildDependancy
 User application

Drivers:
 Serial Port
 1-Wire
 Network Sockets
 User written drivers

Socket
Board

TINI SIMM

Connection to
Internet / WAN

 Java virtual machine
 File system
 Task Manager

Applications:
 FTP. Telnet
 Shell (slush)
 User applications

Drivers:
 Serial Port
 1-Wire
 Network
 CAN
 I2C
 Parallel I/O
 LCD
 User written drivers

11 TINI SDK – http://www.ibutton.com/TINI/software/index.html

108

Designing Embedded Internet Devices

Create a TINI_HOME environment variable.
SET TINI_HOME c:\tini1.02

You set your CLASSPATH with a line similar to this:
SET CLASSPATH=c:\jdk1.3\lib\;c:\jdk1.3\lib\comm.jar;%TINI_HOME%\bin\tini.jar;.

Windows 2000, Windows NT, Windows XP
For Windows 2000 and Windows NT you will have to use the “System” tool in the
“Control Panel.” Select the “Environment” tab and create a new system variable
called TINI_HOME. Set its value to be c:\tini1.02. Edit the CLASSPATH system
variable and change its value to be:

c:\jdk1.3\lib\;c:\jdk1.3\lib\comm.jar;%TINI_HOME%\bin\tini.jar;.

For Windows XP, use the “System” tool in the “Control Panel.” Select the “Ad-
vanced” tab and click on the “Environment” button (under “startup and recovery”).
Create a TINI_HOME system variable and edit the CLASSPATH variable as for NT.

In the next section we will run JavaKit to talk to your TINI (you can skip the next
part if you don’t use Linux).

Linux
Download the TINI SDK12 (tini1_02.tgz or the current version) to a temporary
directory.

Uncompress the file and then untar it in the /opt directory (or any other directory you
choose).
% cd downloads
% mv tini1_02.tgz /opt
% cd /opt
% uncompress tini1_02.tgz
% tar –xf tini1_02.tar

This will create a folder /opt/tini1.02/ (or a similar name depending on the
current version) and a number of files and folders under that. You can install any of
these files just about anyplace you like but you need to keep track of where you do
and adjust the installation instructions in the book accordingly.

Next, we need to add tini.jar to your CLASSPATH environment variable and add an
environment variable that indicates the TINI_HOME directory. Using your favorite
ASCII editor, edit your shell startup file as we did in Chapter 3.

12 TINI SDK – http://www.ibutton.com/TINI/software/index.html

109

Getting Started with TINI

For C shell:
set TINI_HOME /opt/tini1.02
set CLASSPATH=
/jdk1.3/lib/:/usr/java/jdk1.3/commapi/comm.jar:$TINI_HOME/bin/
tini.jar:.

For ksh, sh and bash shells:
set TINI_HOME /opt/tini1.02
export TINI_HOME
CLASSPATH=/jdk1.3/lib/:/usr/java/jdk1.3/commapi/comm.jar:$TINI_HOME/
bin/tini.jar:.
export CLASSPATH

Save the file. For these changes to be current, you need to start a new shell. The
easiest way to do this is to logout and login again so all shells will use the new
CLASSPATH definition.

Running JavaKit
JavaKit is an application that uses the serial port on your computer to connect to your
TINI board’s serial port. We will use JavaKit for configuring your TINI’s firmware. A
full discussion of JavaKit is provided in Chapter 7. This chapter is just enough to get
you started. To run JavaKit from Windows, you need to open a DOS window. This
DOS command should run Javakit:
C:\>java -cp \jdk1.3\lib\comm.jar;%TINI_HOME%\bin\tini.jar JavaKit

Note that if
\jdk1.3\lib\comm.jar and
%TINI_HOME%\bin\tini.jar

are in your CLASSPATH then
this DOS command should
work as well:
C:\>java JavaKit

The Linux commands are
almost the same:

% java –cp /usr/java/
jdk1.3/lib/:/usr/java/
jdk1.2/commapi/
comm.jar:$TINI_HOME/bin/
tini.jar JavaKit

or
% java JavaKit

An alternative, handy way of starting JavaKit is to create a
JavaKit.bat file and put this in any folder that is listed in your
PATH environment variable (like C:\WINDOWS\). The file
should contain the following script (which should be a single
line with no returns or new lines):

java -cp
\opt\jdk\lib\comm.jar;%TINI_HOME%\bin\tini.jar
JavaKit -port COM1 %1 %2 %3 %4 %5 %6 %7 %8 %9

This will allow you to treat JavaKit as if it is a new DOS
command. You will need the %1..%9 in the batch file because
from time to time you will need to pass command line
arguments to JavaKit. For Linux we can simply create an alias
for JavaKit. In our shell startup file.

For bash:

alias javakit=’java -cp /usr/java/jdk1.3/lib:/
usr/java/jdk1.3/commapi/comm.jar: $TINI_HOME/
bin/tini.jar JavaKit &’

For c-shell:

alias javakit ‘java -cp /usr/java/jdk1.3/lib/:/
usr/java/jdk1.3/commapi/comm.jar: $TINI_HOME/
bin/tini.jar JavaKit &’

110

Designing Embedded Internet Devices

What this means: You need the comm.jar (to access your PC’s serial port) and you need
the tini.jar (the class library for TINI) to run JavaKit. JavaKit is a class in the tini.jar
file. If you are not familiar with jar files and to satisfy any curiosity about what one looks
like, you can view the contents of tini.jar (or any other jar file by specifying the
appropriate pate and filename) use this DOS command:
C:\>jar -tf \opt\tini\bin\tini.jar

META-INF/
META-INF/MANIFEST.MF
BuildTINIROM$BryanInt.class
BuildTINIROM.class
TINIConvertor.class
...
JavaKit$1.class
JavaKit$2.class
JavaKit$ChoiceListener.class
JavaKit$CloseHandler.class
JavaKit$InputHandler.class
JavaKit$LoadFile.class
JavaKit$MacroRunner.class
JavaKit$MListener.class
JavaKit$SerialEventListener.class
JavaKit$SpecialKeyListener.class
JavaKit.class
BuildDependency.class
WatchDog.class

If you have installed everything correctly you should see the JavaKit GUI.

Figure 5-5: JavaKit window

111

Getting Started with TINI

If you don’t see this, check
the error messages carefully.

Possible errors:
• Exception in thread

“main”
java.lang.NoClassDefFound
Error: Javakit

Probably means you have
incorrectly specifed the
location of the tini.jar in the
classpath.
• Exception in thread “main” java.lang.NoClassDefFoundError:

javax/comm/UnsupportedCommOperationException

Probably means you have incorrectly specified the location of the comm.jar in your
classpath.

Now let’s connect to TINI. Change the “Port Name” selection box to your serial port
that you have connected to TINI, in this case COM1 (Linux folks should use the
proper name for Linux such as /dev/ttyS0; the selection box will show the names of
the available ports). If the port you have connected to TINI is not listed, there is a
problem with the serial port. Exit JavaKit and check that serial ports are properly
installed and configured. After selecting the proper serial port, leave the “Baud Rate”
set to 115200 and press the “Open Port” button. You should now see a screen similar
to this:

As far as this book is concerned, most of the differences
between Windows and Linux can be summarized as follows:

• For separating directories in a path, use “/” for Linux
and “\” for Windows.

• For separating elements in the CLASSPATH use “:” for
Linux and “;” for Windows.

• For referring to environment variables use %var_name%
for Windows and $var_name for Linux.

• Windows calls the serial ports COM1, COM2, etc.
Linux uses /dev/ttyS0, /dev/ttyS1, etc.

Figure 5-6: JavaKit after selecting serial port

112

Designing Embedded Internet Devices

If you are using a properly wired socket board from Dallas Semiconductor and a
serial cable that is fully wired, you can press the “Reset” button on the JavaKit GUI.
If you are using another socket board, this reset button may not work for a variety of
reasons.

• Your serial cable does not have pin 4 connected.

• Your socket board does not support reset through the serial cable.

• Your socket board needs a jumper connected to enable this feature.

• Your socket board has a hardware reset button.

Either way, reset your board. You should see the start of the TINI loader:

Figure 5-7: JavaKit after “reset”

At this point you can either boot your TINI (start the Java virtual machine and TINI
shell) or you can load a new version of the TINI virtual machine. We will load a new
virtual machine in Chapter 7; for now we are just getting started. At the > prompt in
the JavaKit window, type an “e” and press Enter. This will boot your TINI. A whole
bunch of stuff will scroll by in this window—you can use the scroll bars to read
through this if you are interested.

At this point you are ready to login to your TINI. Press any key to get the login
prompt and login. Initially, your TINI has a user called “root” and root’s password is
set to “tini”. Try this.

113

Getting Started with TINI

You are now logged into the TINI shell called slush. We are not quite done. You have
successfully connected to your TINI through the serial port of the PC. We now need
to configure the TINI network settings so you can connect to it through your LAN.
We will use the ipconfig command to set your network addresses. Type ipconfig –
help for all of the available options. You will need to know what IP address you want
to assign to your TINI, your gateway address, and your subnet mask. These all need
to be consistent with your LAN addresses. A much more thorough and detailed
discussion on network connection is to be found in Chapter 13. An example of this
command would be this:
ipconfig –a 192.168.1.85 –m 255.255.255.0

Figure 5-8: JavaKit after booting TINI

114

Designing Embedded Internet Devices

In this case this TINI has the IP address 192.168.1.85 and an IP mask of
255.255.255.0. Set an IP address for your TINI using an address that is consistent
with your network. At this point you should be able to connect to your TINI through
a Telnet session from any computer in your network. From a DOS command window
(or the Windows RUN command prompt):
C:\>telnet 192.168.1.85

and you will get a Telnet window connected to your TINI. Login using the same
username and password that you did through JavaKit. If you have gotten this far, then you
are now ready to try your hand at compiling and running your first TINI Java program.

Figure 5-9: Telnet to TINI

Your first TINI program
In this section we will be checking to see that your TINI libraries and classes are
properly installed by writing your first TINI program (Windows or Linux, it’s all the
same). We will be writing the traditional HelloWorld program, compiling it, porting it
to TINI and running it. Use your favorite text editor to create HelloWorld.java; enter
the program exactly as listed here. This is the exact same HelloWorld.java as used
earlier in Chapter 3.

Listing 5-1: HelloWorld.java

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println(“Hello, World!”);
 }
}

115

Getting Started with TINI

Save the file. From a command window compile the program:
C:> javac HelloWorld.java

Now we need to convert the Java class file to a format that is recognized by the TINI
virtual machine. To do that we will be using the TINIConvertor that is supplied in the
tini.jar class archive. Notice that we need to add the tiniclasses.jar to our
CLASSPATH so we will use the –cp command line parameter to tell the Java runtime
system to use the supplied CLASSPATH rather than the environment variable (it’s also
convenient that we don’t need most of what is already specified in the CLASSPATH that
is defined in your autoexec.bat file). The following command should be entered as a
single command (it’s long and won’t fit on a single line in a DOS window or in this book).
C:\>java –cp
%TINI_HOME%\bin\tini.jar;%TINI_HOME%\bin\tiniclasses.jar;.
TINIConvertor -f HelloWorld.class -o HelloWorld.tini -d
%TINI_HOME%\bin\tini.db

If all went well, you should have seen some output from TINIConvertor like this:
TINIConvertor + ZIP
Version 0.73 for TINI
built on or around January 24, 2001
Disassembler/Builder Version 0.15 TINI, October 30, 2000
JiBDB 0.60 for TINI, November 10, 2000
Copyright (C) 1996 - 2001 Dallas Semiconductor Corporation.
MainStartClass: First available.
Target address: 0x70100
Changed tag to 8000
Adding file: HelloWorld.class
Set mainClassIndex to: 0
Using ROM API Version: 8009
Writing Class Offsets
Writing Application: HelloWorld
Writing: HelloWorld
Total Application length: 125
Writing Application Entry point
Main offset for class with main: 32
class num: 0
main class index: 0
main class tag: 8000
Finished with build.

If you got any error messages, check your CLASSPATH and make sure that you
specified the directories properly and that you included the -d
%TINI_HOME%\bin\tini.db, as this tells the TINIConvertor how to convert .class
files to .tini format. Also, if you are using Linux, remember that it is case sensitive.

Now we need to get the HelloWorld.tini file on to your TINI. To do this we will

use FTP.

116

Designing Embedded Internet Devices

C:\>ftp 192.168.1.85
Connected to 192.168.1.85.
220 Welcome to slush. (Version 1.02) Ready for user login.
User (192.168.1.85:(none)): root
331 root login allowed. Password required.
Password: tini
230 User root logged in.
ftp> send HelloWorld.tini
200 PORT Command successful.
150 ASCII connection open, putting HelloWorld.tini
226 Closing data connection.
ftp: 173 bytes sent in 0.00Seconds 173000.00Kbytes/sec.
ftp> quit
221 Goodbye.

Login to your TINI either through JavaKit or Telnet. We prefer Telnet because by
now we have disconnected the serial cable from our TINI. Also, since TINI is a
network-capable device, you can place it anywhere you have a network connection
(but not necessarily a serial port) so this is a good thing to get used to doing.
C:\>telnet 192.168.1.85
Trying 192.168.1.85...
Connected to 192.168.1.85.
Escape character is ‘^]’.

Welcome to slush. (Version 1.02)

TINI login: root
TINI password: tini
TINI /> ls
HelloWorld.tini
etc
TINI /> java HelloWorld.tini
Hello, World!
TINI />

There are a few possible problems that might sneak in if you are not careful.

• TINI /> java HelloWorld.tini
Could not execute file: java.lang.RuntimeException: Could not
execute file. Bad API version = 8009

The version of the TINI API you used to compile your Java program and the
TINI virtual machine on the TINI SIMM must match. This error means you
have loaded a newer version of the TINI API on your computer than there is in
your TINI SIMM. To correct this, skip ahead to Chapter 7 to find out how to
update the TINI virtual machine.

• TINI /> java HelloWorld
HelloWorld does not exist.

You need to type the full filename on TINI. This would be HelloWorld.tini.

117

Getting Started with TINI

• If your TINI hangs (no response), odds are you are trying to run a program
that is not in the proper HEX file format. In other words, check that you are
not trying to execute the .java or .class file.

OK, now you have completed your first TINI java program and ported it to your TINI
and it ran successfully. Notice that we used the ls command to list the files on TINI
(slush is a Linux-like shell). We then ran the HelloWorld program in a similar manner
to how we would run it on a PC, except that you will notice that we specified the .tini
file extension. Also notice that the TINI shell is case sensitive.

1-Wire Libraries
Remember that we mentioned that a 1-Wire network is a simple, low-cost network
for communicating digitally over twisted-pair cable with 1-Wire components? Well,
we will be using a number of 1-Wire devices in later chapters so now
we are going to install the classes and libraries for 1-Wire. The TINI libraries include
the classes for 1-Wire communication. To make life a little easier, we will also install
the 1-Wire API on your PC so you can communicate with
1-Wire devices through the serial port of your personal computer as well. As before,
we’ll provide both Windows and Linux instructions.

Windows
For Windows, there are two ways we can talk to 1-Wire devices: With a Java API, and
with a native library. We will install and use both. Download the “1-Wire API for
Java”13 and the “iButton-TMEX Windows 32-Bit Install 3.12” (or the current version
if 3.12 is not the current version) from the “iButton-TMEX and Developers’ Tool
Kit”14 web page. The current version (as of this writing) of the 1-Wire API is
owapi0_01.tgz and the current version of the TMEX driver package is
tm312_32.exe. The 1-Wire API is a package of Java classes for communicating with
1-Wire devices connected to your computer’s serial or parallel port. The TMEX
package (at least the part that we are concerned with) is a native Windows driver for
communicating with the 1-Wire devices. You don’t need this native driver package
for most applications, but it makes 1-Wire communication a little faster. It does,
however, give you a little more flexibility in terms of which hardware adapters you
can use.

To install the 1-Wire Java API, create a subfolder in your C:\opt\ folder called
onewire (or you can place the 1-Wire API files in any folder of your choice). Using
Winzip or other archive program, open the owapi0_01.tgz archive and extract all of

13 1-Wire API for Java – http://www.ibutton.com/software/1wire/1wire_api.html
14 iButton TMEX and Developers’ Tool Kit – http://www.ibutton.com/software/tmex/

index.html

118

Designing Embedded Internet Devices

the files to your \opt\onewire folder (or the folder of your choice). This will create a
number of files and folders under that which contain the 1-Wire API classes,
documentation and examples. You can install any of these files just about any place
that you like, but keep track of where you do and adjust the installation instructions in
the book. While it is not required for the 1-Wire API, it is convenient to add an
environment variable, OW_HOME, by editing your autoexec.bat file. This environment
variable should be defined as the location that you chose to install the 1-Wire API.
We will use this environment variable to reference to the 1-Wire libraries when we
need to include them in the CLASSPATH for compiling Java programs. It is also helpful
to put the 1-Wire API libraries in your CLASSPATH.

Windows 95/98
In your autoexec.bat file, someplace after you have set your CLASSPATH, add the
following line:
SET OW_HOME=c:\opt\onewire
SET CLASSPATH=%CLASSPATH%;%OW_HOME%\lib\OneWireAPI.jar

Windows 2000, Windows NT, Windows XP
For Windows 2000 and Windows NT you will have to use the “System” tool in the
“Control Panel.” Select the “Environment” tab and create a new system variable
called OW_HOME. Set its value to be c:\opt\onewire. Edit the CLASSPATH system
variable and change its value to be:

%CLASSPATH%;%OW_HOME%\lib\OneWireAPI.jar

For Windows XP, use the “System” tool in the “Control Panel.” Select the “Ad-
vanced” tab and click on the “Environment” button (under “startup and recovery”).
Create a OW_HOME system variable and edit the CLASSPATH variable as for NT.

To install the TMEX native drivers, tm312_32.exe, simply double click on the file
name from Windows Explorer and follow the install script instructions. This will
install the 1-Wire API in “C:\Program Files\Dallas Semiconductor\iButton-
TMEX (32-Bit) V3.12” or a similar folder depending on the current version. There
are two programs in there that we will use later on, but we mention them now while
we are discussing these files.

• iBView32.exe – This is an iButton viewer. The iButton Viewer is a Windows
program for communicating with iButtons and other 1-Wire Net compatible
1-Wire devices.

• SetPrt32.exe – This is a tool for selecting the default iButton port. We will
use this in Chapter 10.

119

Getting Started with TINI

Linux
Download the “1-Wire API for Java”. Note that there are no native drivers for 1-Wire
on Linux as there are for Windows. This is OK; the Java 1-Wire API will work just
fine. The current version (as of this writing) of the 1-Wire API is owapi0_01.tgz.
The 1-Wire API is a package of Java classes for communicating with 1-Wire devices
connected to your computer’s serial or parallel port.

Create a subdirectory in your /opt directory called onewire (or you can install this
API in any other directory of your choice). Uncompress and untar the
owapi0_01.tgz archive and extract all of the files to your /opt/onewire directory (or
the directory of your choice). This will create a number of files and folders under that
which contain the 1-Wire API classes, documentation and example.
% cd downloads
% mv owapi0_01.tgz /opt
% cd /opt
% gunzip owapi0_01.tgz
% tar –xf owapi0_01.tar
% rm owapi0_01.tar

While it is not required for the 1-Wire API, it is convenient to add an environment
variable, OW_HOME, by editing your shell initialization file (.bash_profile or .cshrc
depending on the shell you use). This environment variable should be defined as the
location that you chose to install the 1-Wire API. We will use this environment
variable to reference to the 1-Wire libraries when we need to include them in the
CLASSPATH for compiling Java programs. It is also helpful to put the 1-Wire API
libraries in your CLASSPATH. In your shell initialization file, someplace after you have
set your CLASSPATH. In your autoexec.bat file, add the following line:

For C shell:
set OW_HOME=c:\opt\onewire
set CLASSPATH = ${CLASSPATH}:${OW_HOME}/lib/OneWireAPI.jar

For ksh, sh and bash shells:
set OW_HOME=c:\opt\onewire
set CLASSPATH=$CLASSPATH:$OW_HOME/lib/OneWireAPI.jar
export OW_HOME CLASSPATH

Hardware
You will need some sort of 1-Wire port adapter (these things will be discussed in
detail in Chapter 10), like the DS9097U. This adapter connects to a serial port on
your computer and allows you to connect 1-Wire devices to it through a RJ11
connector. Figure 5-10 shows both a Serial 1-Wire adapter and a Parallel iButton
holder. Both of these are available from Dallas Semiconductor in their iButton web
page15. We will be using the serial adapter for this section. The parallel iButton holder
will require the use of the native drivers from the TMEX package.

15 iButton – http://www.ibutton.com/

120

Designing Embedded Internet Devices

First 1-Wire program
We will check that both the PC and the TINI 1-Wire libraries are properly installed
by writing a very simple program. You will need some sort of 1-Wire device. The
schematic shown in Figure 5-11 includes a single 1-Wire device, the DS2401 (the
DS2401 1-Wire component is the same as is in the DC1990A iButton only the
package is different), which is a Silicon Serial Number. This device returns the 64-bit
serial number of the device. While a rather simple schematic, this will illustrate the
basic method for communicating on the 1-Wire bus and querying a device for
information. Details of the 1-Wire bus will be discussed in Chapter 10. The sole point
of the little sample is to verify that you have installed the TINI 1-Wire libraries
correctly so that you are ready for more complex applications in future chapters.

Use your favorite text editor to enter the following program (or better yet, copy from
the accompanying CD). The 1-Wire software and the details of 1-Wire devices will
be discussed in Chapter 10.

Figure 5-10:
A serial port 1-Wire adapter

Figure 5-11:
Simple 1-Wire schematic

Listing 5-2: FindDevices.java

import java.util.*;
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;

121

Getting Started with TINI

// Finds 1-wire devices and lists the type and serial number.
class FindDevices {

 public static void main(String[] args) {

 DSPortAdapter adapter = null;
 try {

// Get the default adapter
adapter = OneWireAccessProvider.getDefaultAdapter();
// Let me override the default adapter if I choose
if (args.length > 0)

 adapter.selectPort(args[0]);
 }
 catch (Exception e) {
 System.out.println(e);
 }
 try {
 // If there is a 1-wire adapter on the specified port, use it
 if (adapter.adapterDetected()) {
 // Tell the 1-wire adapter to look for all devices

adapter.setSearchAllDevices();
adapter.targetAllFamilies();
// Get a list of all Devices on the 1-wire net on this adapter
Enumeration ibutton_enum = adapter.getAllDeviceContainers();
// For each device, tell me something about it
while(ibutton_enum.hasMoreElements()) {

OneWireContainer node =
(OneWireContainer) ibutton_enum.nextElement();

System.out.print(“ Container: “ + node.getName());
System.out.print(“ “ + node.getAddressAsString());
System.out.println();

 }
}
adapter.freePort();

}
catch (Exception e) {
}

 }
}

This program will compile on both Windows and Linux computers. You need to
compile this with different classes in your CLASSPATH if you are compiling this for
TINI. You will also need to convert the class file to a special format for TINI. In these
examples, we show you how to compile and run this program for both Linux and
Windows and also how to compile this on both Windows and Linux and then run it on
TINI. Note that if you set your environment CLASSPATH for either Windows or Linux, it
will need to be different depending on whether you are compiling for your personal
computer or for porting to TINI. We will show how to use the javac and java

122

Designing Embedded Internet Devices

command line options to override the environment CLASSPATH so you can see exactly
which classes are needed for each instance (it does get a bit confusing at times). Also
notice that we show the command on multiple lines. This is for clarity only, since it is
hard to fit a long command line clearly on a printed page.

Compile from Windows, run from Windows
C:\>java FindDevices.java

If this doesn’t work (the compiler complains about missing classes) then you need to
add some things to your CLASSPATH as described previously, or perhaps there was a
typo. We can also specify the libraries we need on the command line like this:
C:\>javac -classpath c:\jdk1.3\lib\;c:\jdk1.3\lib\comm.jar;.;
%OW_HOME%\lib\OneWireAPI.jar FindDevices.java

C:\>java FindDevices

 Container: DS1920 700000004B8F1010
 Container: DS2406 CB00000017006112
 Container: DS1990A 21000007997D9F01

In this example you can see several devices. In the schematic, we only used a single
Silicon Serial Number, a DS2401. You may notice that there is no DS2401 listed.
This is because the 1-Wire API chooses to list it using its iButton name of DS1990A.
These are the same device, just in a different package. iButtons are packaged in metal
cans about the diameter of a nickel. You will also notice the DS2406 and the DS1920
devices are other 1-Wire devices that we added to this circuit that will not show up
when you run your program. We will be using these other devices later on in the
book.

Compile from Windows, run from TINI

C:\>javac –classpath %TINI_HOME%\bin\tiniclasses.jar;
 %TINI_HOME%\bin\owapi_dependencies_TINI_001.jar;.

 FindDevices.java

Now we need to convert the FindDevices.class file to a format for TINI. To do this
we use TINIConvertor (TINIConvertor is in the tini.jar file).
C:\>java -cp %TINI_HOME%\bin\tini.jar TINIConvertor -f FindDevices.class
 -d %TINI_HOME%\bin\tini.db -o FindDevices.tini

TINIConvertor + ZIP
Version 0.73 for TINI
built on or around January 24, 2001
Disassembler/Builder Version 0.15 TINI, October 30, 2000
JiBDB 0.60 for TINI, November 10, 2000
Copyright (C) 1996 - 2001 Dallas Semiconductor Corporation.

123

Getting Started with TINI

MainStartClass: First available.
Target address: 0x70100
Changed tag to 8000
Adding file: FindDevices.class
Set mainClassIndex to: 0
Using ROM API Version: 8009
Writing Class Offsets
Writing Application: FindDevices
Writing: FindDevices
Total Application length: 382
Writing Application Entry point
Main offset for class with main: 127
class num: 0
main class index: 0
main class tag: 8000
Finished with build.

Notice there are no errors. If you saw any errors, check carefully to see that you
specified all the file names properly. Now we need to get the FindDevices.tini file
to our TINI.
C:\>ftp 192.168.1.85

Connected to 192.168.1.85.
220 Welcome to slush. (Version 1.02) Ready for user login.
User (192.168.1.85:(none)): root
331 root login allowed. Password required.
Password: tini
230 User root logged in.
ftp> send FindDevices.tini
ftp> quit

We need to connect to our TINI to run the program. We will use Telnet, but you can
just as easily use JavaKit to connect through the serial port.
C:\>telnet 192.168.1.85
Trying 192.168.1.85...
Connected to 192.168.1.85.
Escape character is ‘^]’.
Welcome to slush. (Version 1.02)
TINI login: root
TINI password: tini

TINI /> java FindDevices.tini
 Container: Device type: 10 700000004B8F1010
 Container: Device type: 18 1C00000002795818
 Container: Device type: 12 CB00000017006112
 Container: Device type: 01 21000007997D9F01

Notice that there are no container names, just “device type” followed by a number.
Why? Because TINIConvertor didn’t build in the dependencies from the 1-Wire

124

Designing Embedded Internet Devices

Container classes so TINI doesn’t know the names of these devices. To do this, use
BuildDependency and include the 1-Wire API.
C:>java -cp %TINI_HOME%\bin\tini.jar BuildDependency -f
FindDevices.class -d %TINI_HOME%\bin\tini.db -o FindDevices.tini -x
%TINI_HOME%\bin\owapi_dep.txt -p %OW_HOME%\lib\onewireAPI.jar -add
OneWireContainer10;OneWireContainer18

Now use FTP to copy your FindDevices.tini to your TINI stick (refer to the first
section of Chapter 6 if you don’t know what this is) and then open a Telnet session
like we did in the previous steps. Run the new version of the program:
TINI /> java FindDevices.tini
 Container: DS1920 700000004B8F1010
 Container: DS1963S 1C00000002795818
 Container: Device type: 12 CB00000017006112
 Container: Device type: 01 21000007997D9F01

Notice that we only included the OneWireContainer10 and OneWireContainer18 so these
names are now known and that containers 01 and 12 are not. We could have added
them to the list for BuildDependency also. Also notice that there is another 1-Wire
device, device type 18. This is a DS1963S (Secure Hash Algorithm iButton) that we
had stuck in the iButton socket on our TINI socket board. If you have an iButton on
your TINI socket, you may also see a different device.

Compile from Linux, run from Linux
% javac -classpath /usr/java/jdk1.3/lib/:.:$OW_HOME/lib/OneWireAPI.jar
FindDevices.java

% java -cp /usr/java/jdk1.3/lib/:.:$OW_HOME/lib/OneWireAPI.jar
FindDevices
 Container: DS1920 700000004B8F1010
 Container: DS2406 CB00000017006112
 Container: DS1990A 21000007997D9F01

Compile from Linux, run from TINI
% javac -classpath $TINI_HOME/bin/tiniclasses.jar:
.:$TINI_HOME/bin/owapi_dependencies_TINI_001.jar FindDevices.java
% java -cp $TINI_HOME/bin/tini.jar TINIConvertor -
f FindDevices.class -d $TINI_HOME/bin/tini.db -o FindDevices.tini

TINIConvertor + ZIP
Version 0.73 for TINI
built on or around January 24, 2001
Disassembler/Builder Version 0.15 TINI, October 30, 2000
JiBDB 0.60 for TINI, November 10, 2000
Copyright (C) 1996 - 2001 Dallas Semiconductor Corporation.

125

Getting Started with TINI

MainStartClass: First available.
Target address: 0x70100
Changed tag to 8000
Adding file: FindDevices.class
Set mainClassIndex to: 0
Using ROM API Version: 8009
Writing Class Offsets
Writing Application: FindDevices
Writing: FindDevices
Total Application length: 382
Writing Application Entry point
Main offset for class with main: 127
class num: 0
main class index: 0
main class tag: 8000
Finished with build.

C:\>ftp 192.168.1.85

Connected to 192.168.1.85.
220 Welcome to slush. (Version 1.02) Ready for user login.
User (192.168.1.85:(none)): root
331 root login allowed. Password required.
Password: tini
230 User root logged in.
ftp> send FindDevices.tini
ftp> quit

C:\>telnet 192.168.1.85
Trying 192.168.1.85...
Connected to 192.168.1.85.
Escape character is ‘^]’.
Welcome to slush. (Version 1.02)
TINI login: root
TINI password: tini

TINI /> java FindDevices.tini
 Container: Device type: 10 700000004B8F1010
 Container: Device type: 18 1C00000002795818
 Container: Device type: 12 CB00000017006112
 Container: Device type: 01 21000007997D9F01

Again, as with Windows compilation, you will notice that there are no Container
names. Why? Because TINIConvertor didn’t build in the dependencies from the
container classes. To do this use BuildDependency and include the 1-Wire API.
% java -cp $TINI_HOME/bin/tini.jar BuildDependency
 -f FindDevices.class -d $TINI_HOME/bin/tini.db -o FindDevices.tini -x
 /opt/tini/bin/owapi_dep.txt -p $OW_HOME/lib/OneWireAPI.jar -add
OneWireContainer10,OneWireContainer18

126

Designing Embedded Internet Devices

The FTP and Telnet session are skipped for this, since it’s the same as in the previous
steps.
TINI /> java FindDevices.tini
 Container: DS1920 700000004B8F1010
 Container: DS1963S 1C00000002795818
 Container: Device type: 12 CB00000017006112
 Container: Device type: 01 21000007997D9F01

OK, this was a quick tour by example of the different ways to compile and run Java
1-Wire programs on both your PC and on TINI from either Windows or Linux. If you
had any problems you should check out the differences between Windows and Linux.
Note that with Linux we used commas, not a semicolon to separate the added classes
in BuildDependency (we could have used commas in the Windows version but you
can’t use semicolons in the Linux version). Also, always remember that Linux is case
sensitive.

Summary
So, what we have done here is
install and verify all of the TINI
and 1-Wire APIs and classes and
necessary drivers on your
computer. We have written a few
simple programs and exercised
most of the tools we will be using
throughout the rest of this book. Remember, this chapter was meant to be just enough
to get you started; we will be discussing 1-Wire in detail in Chapter 10 and most of
the software programs we used here we will discuss in detail in Chapter 7.

References
1. The Tiny InterNet Interface FAQ,

http://www.jguru.com/jguru/faq/faqpage.jsp?name=TINI

2. Introducing TINI: Tiny InterNet Interface,
http://www.ibutton.com/TINI/

3. What Is The 1-Wire Net?
http://www.dalsemi.com/products/autoinfo/1wirenet.html

4. Application Note 132, Quick Guide to 1-wire Net using PCs and Microcon-
trollers,
http://www.dalsemi.com/datasheets/pdfs/app132.pdf

5. Tech Brief No1, 1-Wire Net Design Guide,
http://www.dalsemi.com/techbriefs/tb1.html

The important things to remember from this chapter:

TINI_HOME – Where the TINI API is installed

OW_HOME – Where the 1-Wire API is installed

CLASSPATH – Should include comm.jar, tiniclasses.jar,
OneWireAPI.jar and possibly tini.jar

6CHAPTER

The TINI Hardware

127

This chapter examines the TINI hardware and some of the associated interface boards
that allow you to connect to it. We will begin by systematically reviewing each
component on the TINI schematic. We will also present useful programs that
demonstrate some of the features of the TINI API as they relate to the hardware and
provide tables and charts that will be used in the remainder of this book.

What is TINI?
The term TINI can actually refer to more than one thing. With respect to hardware,
TINI is a design concept that consists of an embeddable chipset that you can
incorporate into your own products to make them Java-powered and web-enabled.
That chipset consists of a DS80C390 microprocessor, a flash ROM, and a static
RAM. The term TINI can also be applied to the “TINI stick,” which is a specific, pre-
manufactured design implementation using the TINI chipset. The “stick” consists of
the TINI chip set, along with a host of interface devices mounted on a 72-pin SIMM.
It runs on 5V DC, (+/- 5%, 250mA) and utilizes an 18.432-MHz clock, which is
frequency doubled to 36.864 MHz after the initial portions of the booting process.
Dallas Semiconductor has created this as a reference design to give people an easy
way to get up to speed using the TINI chipset. You can use the TINI stick in your
products, by simply embedding it as is. Alternatively, you can use it as a debugging
platform to develop your design, then later build the chip set into your application.
When we discuss TINI in this chapter, we will be referring to the pre-made reference
design, the “TINI stick.”

128

Designing Embedded Internet Devices

Figure 6-1: Front and back of a TINI Stick, Design Rev D

U2: Flash
Memory

U4: RAM
Memory

U1: CPU

U7:
Clock

Battery
U10: RAM
Non-volatizer

U9:
EEPROM

U6:
Quad NAND

U8:
1-wire

U3: Ethernet
Controller

U5: For RAM
Expansion

U12: Ethernet
Filter

Y1 Y3 Y2 D4 D3 D2 D1

U14: RS232
Interface

U11: MAC
Address

Versions
There have already been a variety of different versions of the TINI stick. The original
design used a 68-pin SIMM instead of the 72-pin SIMM used now. Current versions
now come with a choice of either 512k or 1Mb of RAM. Unless otherwise noted, we
will be discussing the 512k version of the device as shown in schematic version D,
dated Oct 12, 2000 (both memory versions are the same design and board—the
512Mb version simply has half the memory).

129

The TINI Hardware

A high-level look at TINI
Included with this book is the complete schematic for the TINI stick. Before we delve
into it in detail, let’s take a high-level look at the design of the TINI stick1.

What’s in a TINI stick?
• A Dallas Semiconductor microcontroller, the DS80C390, which is a descen-

dent of the 8051. It has six 8-bit ports that can be used for a variety of
functions (more on that later).

• An 18.432-MHz oscillator for the microcontroller.

• A 512k x 8 static RAM, with space on the circuit board for an additional
512K x 8 static RAM. The design uses a 19-bit address space and has separate
chip selects for the two RAM devices. This gives TINI a theoretical on-board
RAM potential of 2Mb (by using 1Mb x 8 RAMs instead of 512k). The RAM
devices are for user program storage.

• A 512k x 8 FLASH ROM. This is divided into 8 banks, and it houses the
bootstrap loader, the runtime environment, and the primary Java application
(frequently slush).

• A Dallas Semiconductor real-time clock, so that applications have access to
true “time.”

• A battery, which provides power to the real-time clock and the static RAM
devices when the board isn’t powered up.

• A RAM nonvolatizer subsystem that works with the battery so that user
programs remain in the RAMs even when the stick is powered down.

• A DS2480 iButton interface, so that TINI can talk to external 1-Wire devices.
There is also an internal 1-Wire bus on the stick, used for communicating with
on-board 1-Wire devices.

• An RS232 interface that provides level shifting to the serial interface of the
microprocessor.

• A 10-Base-T Ethernet interface.

• Miscellaneous decoupling capacitors, resistors, status LEDs, and jumpers.

The TINI stick has additional capabilities, such as I2C and CAN interfaces, that are
an integral feature of the DS80C390 microprocessor.

1 TINI Datasheet – http://www.ibutton.com/TINI/dstini2.pdf

130

Designing Embedded Internet Devices

A quick look at how it works
When TINI is powered up, the CPU first copies the bootstrap loader from the flash
memory to a 4k SRAM located inside the CPU itself. Then it transfers control to the
runtime environment (tini.tbin), which ultimately will start the primary Java applica-
tion. The primary Java application can be the slush operating system (slush.tbin), or
some other Java program that has been installed as a .tbin file. The loader, runtime
environment, and primary Java application reside in the flash memory. Other applica-
tions that are executed later, by the primary Java application, reside in RAM as .tini
files. The flash memory is nonvolatile by virtue of its technology. The RAM is made
nonvolatile through the use of a battery backup. Additionally, you can change the
contents of the flash, by loading in a different .tbin file (such as an updated tini.tbin
or slush.tbin) and the contents of the RAM will remain unchanged.

The boot process on TINI occurs as the result of a reset and there are a couple of
different ways the reset can occur. First, it can reset as the result of the power being
turned off and on. This is called a power-on reset (POR). Second, the TINI CPU can
be reset with the power already on, by having its CPURST line pulled high. This is
referred to as an external reset. External resets and PORs behave somewhat differ-
ently. During a POR, the bootstrap loader is loaded into the CPU and then
immediately allows the runtime environment to take over. During external resets, the
device reboots, but during the booting process the bootstrap loader will wait to
receive a special pattern of characters before turning control over to the runtime
environment. If it receives this pattern of characters within three seconds of the reset,
the loader will execute a mini command shell that can be controlled via the serial0
port. That shell can be used to load new software into the flash. If the loader doesn’t
see this pattern within 3 seconds, it will continue the normal booting process, and
transfer control to the runtime environment and primary application2. This is how the
bootstrap loader gets its name—it is the bit of firmware we use to load a new runtime
environment or a new primary Java application into the TINI flash.

The Various Components of the TINI Stick
Having introduced the basic TINI system, let’s take a more detailed look at each of
these components.

The SIMM (Single Inline Memory Module) edge connector
The TINI stick connects to the outside world through a 72-pin SIMM edge connector,
mechanically identical to the ones used on PC memory modules. To make use of the
TINI stick, you must mate with this connector in some fashion. The E10/E20 socket
board, or the Vinculum proto-board are two examples of products that mate with the
TINI edge connector and provide interfaces to its signals.

2 The TINI Specification and Developer’s Guide, Don Loomis, Addison-Wesley, 2001,
pages 19 and 20.

131

The TINI Hardware

Table 6-1: SIMM connector signal names and explanations

68 PIN 72 PIN Signal Signal Description
TINI TINI Name

— 1 IOS2 Used with the EEPROM inside the LAN91C96
— 2 IOS1 Used with the EEPROM inside the LAN91C96

1-3 3-7 GND Digital Circuit Ground.
4-5 — USB Future USB connection
6 8 OWIO 1-Wire Input/Output Pin1

7 9 VPP +12V supply input for EPROM programming 2

8 10 CTX CAN bus TX line or bi-directional port pin
9 11 CRX CAN bus RX line or bi-directional port pin

10 12 CE0 CPU chip enable 0 3

11 13 A19 Address line A19 4

12 14 TX1 Serial Port 1 output TTL
13 15 XRX1 Serial Port 1 input TTL 5

14 16 RD CPU read strobe 5

15 17 INTOW Internal 1-Wire bus 6

16 18 SMCRST Peripheral reset from CPU
17 19 TX232 Serial Port 0 output
18 20 RX232 Serial Port 0 input
19 21 TX Serial Port 0 output TTL
20 22 XRX0 Serial Port 0 input TTL 6

21 23 EXTINT CPU interrupt input
22 24 CPURST CPU reset input 7

23 25 DTR232 RS232 CPU reset input 8

24 26 EN2480 On-board DS2480 enable
25-28 27-30 PCE3-0 Peripheral chip enables from CPU 5

29 31 CE3 Chip Enable 3 from CPU 5

30 32 PSEN Program Store enable from CPU 5

31-34 33–36 A7–A4 Address lines A7 – A4 5

35-42 37–44 A8–A15 Address lines A8 – A15 5

43 45 RCE0 CE0 return to on-board Flash ROM 4

Figure 6-2: Detail of the TINI SIMM connector
(All TINI schematics and portions of TINI schematics have been used with permission,

Copyright 2001 Dallas Semiconductor.)

132

Designing Embedded Internet Devices

44-51 46-53 D7-D0 Data lines 5

52-55 54–57 A0–A3 Address lines A0 – A3 5

56 58 WR CPU Write Strobe 5

57 — NC No Connect
— 59 IOS1 Used with the EEPROM inside the LAN91C96

58-60 60–62 A16-A18 Address lines A16 – A18 5

61,62 63,64 ETH3,ETH6 10Base-T differential inputs.
63,64 65,66 ETH2,ETH1 10Base-T differential outputs.
65-68 67-70 Vcc +5V DC +/- 5% @ 250mA max 9

71 EESK Used with the EEPROM inside the LAN91C96
72 EEDO Used with the EEPROM inside the LAN91C96

1 1-Wire bus with slew-rate-controlled pull-down, active pull-up, ability to switch in Vpp to program
EPROM, and ability to switch in Vdd through a low-impedance path to program EEPROM or to
perform a temperature conversion.

2 Vpp may be connected to +12V DC to allow EPROM programming with the on-board DS2480. If
Vpp is not used in this manner, it must be connected to Vcc.

3 To execute from the on-board Flash ROM, connect CE0 to RCE0. If an external boot-up memory is
provided, RCE0 must be pulled high (Vcc) to disable the on-board Flash ROM or data bus
interference could occur. Logic in the CE0 to RCE0 path must take care to present minimal delay
(< 6 ns) to the CE0 signal.

4 Address bus, data bus and strobe lines are subject to strict loading limitations. Exceeding these
limits can cause erratic system operation with on-board as well as off-board resources. Be sure to
buffer any signals that will be heavily loaded off-board. Always adhere to the design specifications
to assure reliable system operation.

5 Must be pulled high (Vcc) if not used.
6 The internal 1-Wire bus (INTOW) is a micro-controller port pin that drives the CPU status LED and

links to the board’s 1-Wire EPROM memory chip that contains the DSTINI1’s Ethernet MAC
address. Other 1-Wire devices may be connected to this bus in the future to convey configuration
DSTINI1 data to the DSTINI. If this bus is shorted to ground (low) during system boot-up, a
Master Clear will be invoked. This forces the contents of the SRAM to be reinitialized.

7 CPURST must be taken high (Vcc) and then released to cause a reset of the DSTINI1. An active
state on the DTR232 will also take this line high. This line is pulled down through a 22k Ω pull-
down on-board.

8 The RS232 level DTR control line is used to invoke a DSTINI1 reset when asserted. This is to facilitate
loaders and diagnostic equipment that must invoke a reset of the board to gain control of the system.
This line is pulled to –8 V via 22K ohms and has a 0.01 µF capacitor filter to prevent cross talk on an
open DTR conductor from causing spurious resets of the DSTINI if this function is not used.

9 TINI board power consumption is rated at no more than 250 mA.

133

The TINI Hardware

The processor and oscillator module
The CPU on TINI, the DS80C390, is technically called a Dual CAN high-speed
microprocessor. It’s compatible with the 8051 instruction set. It has six 8-bit ports.
Under software control, most have one or more functions. The DS80C390 has two
integrated CAN controllers, and it has an integrated UART, capable of controlling
two serial ports. This processor is extremely flexible and there are a number of ways
it can be used. We will concern ourselves with how it is used on the TINI stick. We’ll
start by looking at its pin-out and examining what all of its signals do for us.

Figure 6-3 shows a close up of the CPU on the TINI schematic. Notice that there are
numerous labels for each pin. Let’s make some sense of this, by taking a closer look
at a couple of the pins.

Figure 6-3: Detail of CPU

134

Designing Embedded Internet Devices

Figure 6-4: Detail of Port 0,
Illustrating port labeling conventions

Referring to the figure, the label P0 refers to port 0 of the CPU’s six 8-bit ports. P0.0
is the least significant bit in that port, P0.1 the next bit, etc. The label AD0
accompanying the P0.0 label is an indication of that pin’s function as described in the
general DS80C390 data sheet (AD0 indicates that it is an 8-bit bus that can be either
an address or data bus, and it is the least significant bit). The label 55 is the pin
number on the package, and the label D0 is the net name assigned to this pin on the
TINI schematic. It’s an indication of how this pin is being used by TINI. Unless
otherwise noted, we will make use of the port/bit designator (P0.0), and the TINI
schematic net name. Let’s go around the CPU and examine what all these signals do.

Port0, P0.0 to P0.7, is the data bus and consists of TINI signals D0 to D7.

Port1, P1.0 to P1.7, is part of the address bus and makes up TINI signals A0 to A7.

Port2, P2.0 to P2.7, is more of the address bus and makes up TINI signals A8 to
A15.

Port3, P3.0 to P3.7, provides a variety of different functions:

• P3.0 is the RX signal, the receive input for the CPU’s serial port.

• P3.1 is the TX signal, the transmit output for the CPU’s serial port.

• P3.2 is the /SMCINT signal. This is an interrupt input, coming from the
Ethernet controller device.

• P3.3 is the /EXTINT signal. This is an interrupt input, coming from a user-
defined external hardware source. A simple demo program describing how to
use this hardware interrupt is included in Chapter 9 (ExtIntDemo.java).

• P3.4 is the SMCRST signal. This is an output that serves to reset the Ethernet
controller. The SMCRST signal is used to disable the outputs of various
peripherals during power-up. This signal starts out high and goes low only
after TINI has completed its reset sequence and the firmware is ready to put
the peripheral drivers into a known state (like the network IC and parallel I/O).
Because this signal goes low only after the TINI firmware is up and running, it
is a good signal to use to prevent I/O activity during start-up.

135

The TINI Hardware

• P3.5 is the INTOWB signal. This is the internal 1-Wire bus and is bi-direc-
tional.

• P3.6 is the /WR signal. This is the active low write enable for memories and is
associated with the data and address buses.

• P3.7 is the /RD signal. This is the active low read enable for the memories and
is also associated with the data and address buses.

Port 4, P4.0 to P4.7, provides the remaining address signals and chip enable signals:

• P4.0 is the /CE0 signal. This is the chip enable output for the flash memory.
It’s routed off stick and doesn’t actually go to the on-board flash. The on-
board flash, U2, has a signal named /RCE0 as its chip enable, instead. /RCE0
comes from the TINI edge card connector. For many applications, such as
when using an E20 socket board or the Vinculum proto-board, you are prob-
ably going to route the /CE0 output on the SIMM edge connector right back
into the /RCE0 input signal on the SIMM. The reason they didn’t just
hardwire the /CE0 signal from the CPU directly to the flash memory has to do
with flexibility. By not hardwiring it, we can use the /CE0 externally to select
a different, external flash, should we desire it.

• P4.1 is the /CE1 signal. This is the chip enable output for U4, the 512k static
ram, which is SRAM0. It doesn’t go directly to SRAM0, but is gated through
U13. The U13 device is effectively an or gate controlled by U10, the RAM
nonvolatizer. /CE1 does not go off stick.

• P4.2 is the /CE2 signal. This is the chip enable output for U5, the second 512k
static ram, which is SRAM1. Depending on the stick version you have, this
component is most likely not installed. Like
/CE1, this signal is not routed directly to the ram, but rather, it is gated
through the or gate U13, which is controlled by the ram nonvolatizer U10.
/CE2 is also not routed off stick.

• P4.3 is the /CE3 signal. This a chip enable output that serves a variety of
functions. It serves as the address enable for the Ethernet controller, chip
enable for the real-time clock, and it’s routed off stick for use decoding
addresses for memory reads and writes to peripheral devices.

• P4.4 to P4.7 are the remaining address bus signals, A16 to A19.

Port 5 represents a variety of functions.

• P5.0 is the CTX signal. This is the CAN transmit output signal for the CAN0
CAN controller. It is routed off the stick. This pin is also used for the SCL line
for I2C communication.

136

Designing Embedded Internet Devices

• P5.1 is the CRX signal. This is the CAN receive input signal for the CAN0
CAN controller. It is routed off the stick. This pin is also used for the SDA
line for I2C communication.

• P5.2 is the RX1 signal. This is the input representing the received data from
the external 1-Wire bus data coming from the iButton interface circuitry. This
signal is not routed off stick. This pin can also be used for either the CTX
signal (CAN transmit) for the CAN1 CAN controller or the RX signal for the
serial1 port.

• P5.3 is the TX1 signal. This is an output representing the data to be transmit-
ted out the external 1-Wire bus via the iButton interface circuitry. This signal
is routed off stick. This pin can also be used for either the CRX signal (CAN
receive) for the CAN1 CAN controller, or the TX signal for the Serial1 port.

• P5.4 to P5.7 are the /PCE0, /PCE1, /PCE2, and /PCE3 signals. These are
peripheral chip enable outputs and can be used as chip enables to perform
memory reads and writes to peripheral devices. They are routed off chip.

You have program control of some of these through ports (port 3 and port 5) using the
BitPort class of the TINI API. You can access Port5 through the BytePort class as
well. Refer to the TINI API documentation for more information on these classes.

Beyond the six 8-bit ports, there are a handful of additional CPU signals that are used
by TINI. We’ll refer to them by the net name on the TINI schematic.

CPURST is the CPU reset input. When this signal is pulled high, the CPU resets.
This signal comes from a small circuit that converts the DTR signal into the
CPURST signal. CPURST is routed off stick. It can be used by off-stick devices
that need to reset the CPU, or, as a way to reset off-stick devices, when the CPU
resets.

/RSTOL is the reset output low signal. It is an active low output signal that goes
low whenever the CPU is resetting, the watchdog timer has expired, during the
crystal warm-up phase, or whenever the CPU VCC drops below the value on
CPURST. /RSTOL controls the reset on the real time clock, U7. It is not routed
off-stick.

XTAL1 and XTAL2 are the crystal inputs the CPU.

/PSEN is the program store enable output signal. This is an active low CPU
output that is low whenever the CPU is accessing memory. It acts as an output
enable for the flash ROM (U2), SRAM0 and SRAM1 (U4 and U5), the real-time
clock (U7), and the Ethernet controller (U3).

137

The TINI Hardware

Programming example: the watchdog timer
The CPU has an interesting feature known as a watchdog timer, that we can utilize in
our Java applications. The watchdog timer is a clock, internal to the CPU, that keeps
track of the passage of time since the last time it was fed. If the watchdog timer
doesn’t get fed within a certain interval, it resets the CPU. You can set this interval.
Below is a very simple program that demonstrates the use of the watchdog timer.

You pass the program one command line parameter, the timer interval, in
milliseconds. The watchdog will start counting down, and if your interval of time
passes, TINI will reboot. You can feed the timer, restarting the timer, and temporarily
preventing the reboot by hitting any key. We’ll first present the code in its entirety,
then we’ll go through it bit by bit.

Listing 6-1: WatchDogDemo.java

import java.io.*;
import com.dalsemi.system.*;

public class WatchDogDemo {
 public static void main(String[] args) {
 int feedInterval;
 if (args.length == 0) {
 feedInterval = 10000;
 } else {
 feedInterval = Integer.parseInt(args[0]);
 }
 TINIOS.setWatchdogTimeout(feedInterval);
 System.out.println(“Hit any key to feed the dog!”);
 while(true) {
 try {
 int keyBoardInput = System.in.read();
 } catch(Exception e) {System.out.println(e);}
 TINIOS.feedWatchdog();
 System.out.println(“You have just fed the watchdog!”);
 }
 }
}

We need to import two libraries, java.io because we print to the screen, and
com.dalsemi.system, because that’s where the watchdog class lives. Our class will
be called WatchDogDemo.
import java.io.*;
import com.dalsemi.system.*;

public class WatchDogDemo {

138

Designing Embedded Internet Devices

Our program has one method, main(). We begin by doing some simple checking to
make sure we have been given a command line parameter. If not, we will use a
default of 10 seconds, which is 10000 milliseconds. The integer, feedInterval, is
the time interval for our watchdog timer.
public static void main(String[] args) {

int feedInterval;
if (args.length == 0) {

feedInterval = 10000;
} else {

feedInterval = Integer.parseInt(args[0]);
}

Next, we set the watchdog timer interval, by using the
TINIOS.setWatchdogTimeout() method. We also print a line to the screen, giving
instructions.

TINIOS.setWatchdogTimeout(feedInterval);
System.out.println(“Hit any key to feed the dog!”);

We create a loop, which will wait for a key to be pressed. Whenever a key is pressed,
we’ll exit the loop, and feed the dog with the TINIOS.feedWatchdog() method, and
print a phrase to the screen. If we don’t exit the loop by the time the timer expires, the
TINI will reboot.
 while(true) {

try {
 int keyBoardInput = System.in.read();
 } catch(Exception e) {System.out.println(e);}
 TINIOS.feedWatchdog();
 System.out.println(“You have just fed the watchdog!”);
 }
 }
}

The following are the commands that can be used to compile the program. We are
assuming that the WatchDogDemo.java file is in its own folder, and the commands
below are being executed in that folder. Again, the Javac and Java commands are
shown with their command line parameters on separate lines, only for readability.
They all need to be on the same line for each command.
C:\> javac -classpath %TINI_HOME%\bin\tiniclasses.jar

-d tini WatchDogDemo.java
C:\> java -classpath %TINI_HOME%\bin\tini.jar TINIConvertor

-f tini
-o tini\WatchDogDemo.tini
-d %TINI_HOME%\bin\tini.db

139

The TINI Hardware

Figure 6-5 shows a screen capture of the WatchDogDemo program in action. We
could execute the program from a Telnet session through Ethernet, but we won’t see
exactly when the reboot happens, as nothing will be printed back to us (we’ll simply
lose the connection). So, we’ve used JavaKit to demonstrate it, because this will
allow us to see exactly when the watchdog reboots, as the system messages will be
echoed back to us during the reboot. In the example, we’ve moved the program over
to TINI via ftp (Ethernet), then logged onto the stick via JavaKit. Upon running the
program, we’ve selected a 5-second delay between “feedings.” We hit a key a couple
of times, at less than 5-second intervals, to feed the dog, then let the watchdog reboot.

The Memory
A few words about the TINI address space
The term address space refers to the range of addresses that the TINI operating system
can make use of. This address space bears some examination.

The TINI address space is broken up into two four-megabyte blocks:
0–0x3FFFFF and 0x800000–0xBFFFFF. This immediately leads to an interesting
question. The TINI schematic shows a 20-bit address bus, which implies our address
space should be 1 Mbyte. If our address bus is only 20 bits, how can we address 8
Mbytes? The answer is through the use of the chip enable signals, /CE0–/CE03, and
/PCE0–/PCE3. Each of these chip enables refers to 1 Mbyte of our 8-Mbyte space.

Figure 6-5: Sample output of the WatchDogDemo program

140

Designing Embedded Internet Devices

Table 6-2: Mapping chip enable signals to the address regions they select

/CE0
/CE1
/CE2
/CE3

/PCE0
/PCE1
/PCE2
/PCE3

0x000000 - 0x0FFFFF
0x100000 - 0x1FFFFF
0x200000 - 0x2FFFFF
0x300000 - 0x3FFFFF
0x800000 - 0x8FFFFF
0x900000 - 0x9FFFFF
0xA00000 - 0xAFFFFF
0xB00000 - 0xBFFFFF

Chip Enable Memory Range Selected

So, on the TINI stick, we’ll see a 20-bit address whose placement within the 8-Mbyte
space is determined by which one (and only one) of the chip enables is pulled low
(Table 6-2). Even though we only have those 20 address lines on the stick, in
software, we will proceed as if we have a 24-bit address bus. For example, the
Dataport class makes use of addresses 0x00000000 – 0x003FFFFF, and 0x00800000
– 0x00BFFFFF. The TINI Firmware will look at the lower 20 bits of that and send it
out TINI stick signal lines A0 – A19, while it uses the upper four bits to select which
of the eight chip select signals is to be driven low. Many examples using the
Dataport class are included in Chapter 9, when we discuss memory-mapped I/O.

The TINI memory map
In the previous section, we looked at the address space of TINI. A related concept is
the memory map. The memory map defines where the TINI OS thinks devices reside
within the address space. A general memory map for TINI has been documented in
several places by the manufacturer, but a more detailed memory map has only been
discussed in the TINI interest group message archive3. Below, we’re going to present
the memory map as described in the interest group. In doing so, we’re also
incorporating corrections that were presented in the message archive.

Table 6-3: TINI stick memory map

Address (hex) Chip Contents
Enable

0x000000 – 0x07FFFF /CE0 Flash ROM 1 (On Board, 512K)
0x080000 – 0x0FFFFF /CE0 Flash ROM 2 (image or off-board)1

0x100000 – 0x17FFFF /CE1 Image of SRAM0 (512K)2

0x180000 – 0x1FFFFF /CE1 SRAM0 (512K)
0x200000 – 0x27FFFF /CE2 SRAM1 (512K)

3 TINI Interest Group Archives – http://lists.dalsemi.com/maillists/tini/

141

The TINI Hardware

0x280000 – 0x2FFFFF /CE2 Image of SRAM1 (512K)3

0x300000 – 0x307FFF /CE3 SMC Ethernet Controller4

0x308000 – 0x30FFFF /CE3 Available Peripheral CODE & DATA space (32K)
0x310000 – 0x31FFFF /CE3 Real Time Clock5

0x320000 – 0x3FFFFF /CE3 Available Peripheral CODE & DATA space (896K)6

0x800000 – 0x8FFFFF /PCE0 Off Board RAM or peripheral space (1Mbyte)
0x900000 – 0x9FFFFF /PCE1 Off Board RAM or peripheral space (1Mbyte)
0xA00000 – 0xAFFFFF /PCE2 Off Board RAM or peripheral space (1Mbyte)
0xB00000 – 0xBFFFFF /PCE3 Off Board RAM or peripheral space (1Mbyte)

1 The 512K memory has an 18 bit address bus, but is residing in a 1Mbyte region in memory. This
means that two addresses refer to the same spot in memory, which results in the lower half of this
1Mbyte memory space looking exactly like the upper half (an image of itself).

2 See note 1.
3 See note 1.
4 If we just look at the address bits involved on the LAN91C96 device, it would appear that it could

reside in a larger space. It’s place in the memory map as presented here has been taken on faith
from discussions on the TINI interest group message.

5 While the Real Time Clock has been given a 64K block in memory, it only uses one specific location
within that block. The rest is room for future expansion.

6 The memory map as posted to the TINI interest group message list had this region as being
0x320000 – 0x38FFFF. We believe that was a typo.

In our map, again, we see 24-bit addresses. The lower 20 bits map directly to A0–
A19 on the stick, and the upper four bits imply one of eight chip enables going to
logic ‘0’. There are a couple of items to note about the map. The first deals with the
concept of images. Our memory parts are 512k each, and as such, they only use a
19-bit address bus. But they are residing in their own 1-Mbyte memory space within
the map. This means that there is a redundancy in our addressing: two memory map
addresses map to a single physical memory location. So, one-half of the 1-Mbyte
region will look exactly like the other half, hence the term image.

The second thing to note about this map is that there are subtleties involved with
respect to how the firmware and hardware interact, making it difficult to see why the
map is defined the way it is sometimes. As we go through the individual portions of
the design, we’ll discuss what we know about why this map is defined the way it is.

Flash ROM
The flash ROM on TINI, U2, is an Advanced Micro Devices AM29F040B, 512k x 8
device. It is an Electrically Erasable Programmable Read-Only Memory, or
EEPROM4. It is nonvolatile. The TINI flash ROM houses the bootstrap loader, the
runtime environment, and the primary Java application.

4 AM29F040B datasheet – http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/21445.pdf

142

Designing Embedded Internet Devices

Figure 6-6:
Detail of the flash ROM

Table 6-4: The function of the various banks inside the flash ROM.

Bank
(Each 64K)

0

1, 2

3, 4, 5, 6

7

Boot Loader

API (tiniapi.hex)

Firmware (tini.hex) Runtime
Environment

Primary Java application started by the runtime
environment (TINI OS). Usually slush, but it can
be a user created application as long as it's less
than 64K.

Description of Contents

The term “flash” is used to describe a type of electrically erasable, programmable,
read-only memory that doesn’t have to be erased or reprogrammed one bit at a time.
Rather, it does this in large sectors or blocks, via internal control circuitry. The flash
ROM is nonvolatile and retains its contents even when powered down. The flash
ROM on the TINI stick is divided up into eight 64k sectors, or banks.

143

The TINI Hardware

The flash ROM uses the /WR and /PSEN signals for write enabling and output
enabling, as do the static RAMs SRAM0 and SRAM1. The chip enable on the
FLASH, however, is handled a little differently. The flash chip enable is the
/RCE0 signal, or remote chip enable, coming from the SIMM edge connector. This
means that if we want to use this on-board flash as the source of our firmware, as
described in Table 6-4, we need to generate the /RCE0 signal externally and feed it
back onto the TINI. The flash memory uses 20 address bits, A0 through A18. As
shown on the memory map, the on-board flash lives at 0x000000 – 0x07FFFF in our
address space and is selected by chip enable 0, /CE0. The position of the flash in the
memory map follows by simply looking at the range of possible addresses achievable
on A0-A18. There’s nothing subtle going on there.

The simplest way to generate the remote chip enable, /RCE0, is to simply loop the
/CE0 signal right back into /RCE0. That works fine as long as you aren’t trying to
make use of an alternate, off-stick flash ROM. If you are trying to make use of off-
stick ROM, then the signal /RCE0 needs to be disabled (set to “1”) when you want to
access the off-stick flash, through some simple decoding circuitry.

Static RAM
The random access memory, or RAM, used on the TINI stick is the SAMSUNG
KM684000BLI-5L 512k x 8 static ram device5. There are other manufacturers
making equivalent devices. These devices are volatile memories, and would normally
lose their contents upon losing power. They are made nonvolatile on TINI through the
use of a lithium battery and a special battery controller. A version of the stick with U4
populated with a 1-Mbyte memory is also available. The TINI static RAM is where
all Java applications other than the primary Java application (frequently slush) are
stored.

The RAMs, like the flash ROM, use /WR as the write enable and /PSEN as the output
enable. The RAM chip enables, however, are the RAM chip enable signals
/RAMCE1 and /RAMCE2. They are signals that derived from their corresponding
CPU chip enable signals /CE1 and /CE2. The CPU chip enables are gated with the
/CEO1 output of the DS1321 RAM nonvolatizer. If /CEO1 goes to logic “1”, the U13
outputs /RAMCE1 and /RAMCE2 will go to logic “1” and the RAMs will be
disabled. This is essentially a write-protect feature. /CEO1 will go high 1.5 µs after a
power failure is detected, disabling the RAMs.

The SRAMs are not powered from VCC. Instead, they are powered by MVCC, which
is a signal generated by the RAM nonvolatizer circuitry. The MVCC signal remains
powered up by the lithium battery when the off-board VCC powers down. The

5 KM684000BLI-5L datasheet – http://www.samsungelectronics.com/semiconductors/
SRAM/Low_Power/Low_Power_5V/4M_bit/KM684000BLG/KM684000B.htm

144

Designing Embedded Internet Devices

switching of MVCC from the external VCC power supply to the lithium battery
supply, VBAT, is the primary function of the RAM nonvolatizer.

The SRAM’s place in the memory map also follows directly from the range of possible
addresses achievable on A0–A18. The fact that SRAM0 is selected by
/CE1 and SRAM1 is selected by /CE2 is a result of an arbitrary design decision: that’s
simply how they defined it to be. Another curious feature of the RAM devices is the
address ordering. The address lines attach to the component out of order—i.e., signal
A13 goes to A17 on the device, and so forth. We believe this merely had to do with
circuit board routing convenience. Since there’s a one-to-one mapping from an 18-bit
address to a single memory location, it doesn’t really make any difference whether or
not the signals are in order.

The RAM nonvolatizer
The RAM nonvolatizer manages the crossover from external power to battery backup
whenever the stick is powered down. It keeps the contents of the RAM safe and
allows the real-time clock to maintain current time when the power is shut off. The
RAM nonvolatizer circuitry has at its heart U10, a DS1321, flexible nonvolatile
controller with lithium battery monitor.

Figure 6-7: Detail of the SRAMs

145

The TINI Hardware

The DS1321, U10, watches the VCC coming from an off-stick source and uses that to
power the RAM supply, MVCC, until it senses the VCC dropping, or powering down.
Then it switches over to the supply from the lithium battery, VBAT, to power MVCC.
The point at which power failure detection is “triggered” is determined by what the
TOL signal on the DS1321 is set to. Since TOL is set to ground, according to the data
sheet, any time VCC enters the region between 4.75V and 4.5V, power failure
protection will be initiated.

U13, a Fairchild NC7WZ326 logic IC, is a dual OR gate. This OR gate combines the
/CEO1 signal from the DS1321 and the /CE1 and /CE2 signals from the CPU to
generate /RAMCE1 and /RAMCE2. The /CEO1 signal is governed by the /CEI1
signal on the DS1321. With the /CEI1 signal tied low, according to the data sheet,
/CEO1 will always be low unless there is a power failure. During a power failure, the
DS1321 will wait 1.5 µs and then drive the /CEO1 high, thus forcing the /RAMCE1
and /RAMCE2 signals high, disabling the SRAM devices. As mentioned in the RAM
section, this basically acts as a write-protect feature during events in which the power
is fluctuating, failing, or powering down. The write-protect feature will allow enough
time for a write in progress to complete, but stop any further write operations. This is
described more fully in the DS1321 data sheet.

Figure 6-8: Detail of the RAM nonvolatizer circuitry

6 NC7WZ32 datasheet – http://www.fairchildsemi.com/pf/NC/NC7WZ32.html

146

Designing Embedded Internet Devices

The RAM nonvolatizer in this version of the schematic is somewhat different than
that of previous versions. Rev B, for instance, did not utilize U13, and fed the /CE1
and /CE2 chip enables from the CPU directly into the DS1321 and took the
/RAMCE1 and /RAMCE2 signals directly from it. This implemented a similar write-
protect concept to the one described above. That method has since been modified to
the current scheme.

The RAM nonvolatizer also has an active low reset output, /RST, that is an input
signal to the CPU reset circuitry. We’ll discuss that next.

The CPU Reset circuitry
We noted before that TINI can be reset in a couple of different ways: a power-on
reset, and an external reset. The CPU reset portion of the circuit handles the external
reset, which provides JavaKit with a way to access the bootstrap loader so that we
can update the contents of the flash memory. It uses a logical AND gate to combine
the DTR signal from the RS232 interface, and an active low Reset output from the
DS1321 to generate the signal CPURST, which resets the CPU.

Figure 6-9:
Detail of the CPU Reset circuitry

U6, which is a 74HC08 quad AND gate, has two inputs that under normal conditions
will be at logic “1”, the active low reset of the DS1321 battery monitor and DTR, the
data terminal ready output of the RS232 interface. If either of those signals goes low,
the output of the AND will go to logic “0,” and that will turn on Q1, which is a BSS-
84, p channel field effect transistor (FET)7. When Q1 is turned on, current will flow
through R3, driving CPURST high, which resets the entire TINI stick. Using the
DTR signal as a mechanism to reset TINI has pros and cons. On the plus side, it gives
you a surefire way of resetting the device through the serial port. The JavaKit
software relies on this. The down side is that you have to work around this if you
intend to use the serial port yourself for things such as talking to a modem. If your

7 BSS-84 datasheet – http://www.fairchildsemi.com/ds/BS/BSS84.pdf

147

The TINI Hardware

application pulls DTR low, or upsets it in any way, the TINI stick will immediately
reboot. The work-around is usually in the form of a jumper that can be used to
connect or disconnect a signal to the DTR232 signal. This signal comes onto the
TINI stick from the SIMM edge card, and is the input to the RS232 interface that
generates the DTR signal that feeds the reset circuitry.

The internal 1-Wire net
The TINI stick has an internal 1-Wire bus that it uses to communicate between the
CPU and various on-board system resources.

Figure 6-10:
Detail of the internal 1-Wire net

Looking at the figure, INTOWB comes from the CPU and is pulled high by R1. It
connects to 1-Wire EEPROM, U9, that’s absent on many of the earlier board
revisions—it appears to be for some sort of 1-Wire expansion device. The n-channel
FET, Q4, acts as a pass transistor that transmits INTOWB onto the signal INOW and to
U11. U11 is a DS2502-UNW, Unique ID and Ethernet Address device. It is a 1-Wire
device. INTOWB goes to the CPU, but does not get routed off stick. INTOW does get
routed off stick. According to information gleaned from the TINI news group, the
reason for this is as follows. Apparently there was interest in being able to grab the
Ethernet address from the stick even when it wasn’t powered up. If the stick isn’t
powered up, Q4 is shut off and isolates INTOWB from INTOW. Thus, if the stick isn’t
powered up, U11 looks like an isolated 1-Wire device and you can access it externally
using the INTOW signal. If the stick is powered up, Q4 is turned on, and connects
INTOWB to INTOW. There are classes within the Java API that allow you to access the
internal 1-Wire net, and the components on it. Right now, on the stick, the only use for
the internal 1-Wire net is to store the Ethernet address and to control the CPU status LED.

148

Designing Embedded Internet Devices

Under normal conditions, the INTOWB signal is being pulled high. This turns on Q2,
a 2N7002, n channel, FET8. This causes current to flow through R4, which turns on
D1, the CPU status LED. During reset conditions and rebooting, the INTOWB signal
is pulled low, turning off Q2 and the CPU status LED.

This is probably a convenient place to show an example of using the TINI API
BitPort class. With this simple program you can control the CPU status LED,
demonstrating how simple it is to control the various CPU Port lines.

Listing 6-2: BitPortTest.java

import com.dalsemi.system.*;

public class BitPortTest {

 static void main(String[] args) {
 BitPort LED = new BitPort(BitPort.Port3Bit5);

 for(int i=0; i<10; i++) {
 LED.set();
 TINIOS.sleepProcess(200);
 LED.clear();
 TINIOS.sleepProcess(200);
 }
 }
}

Compile and convert this to a .tini file, FTP it to your TINI and then run it. The only
output you will see is the CPU status LED blinking on and off ten times. While this
program is very short, it shows what you can do with the BitPort class—you can
write logic “1” (set) and logic “0” (clear) on selected CPU pins. With the BitPort

Figure 6-11: Detail of the CPU Status LED

8 2N7002 datasheet – http://www.fairchildsemi.com/ds/2N/2N7002.pdf

149

The TINI Hardware

class you can access any bit on port 5 and the lower 6 bits of port 3. Other ports
control the address bus and data bus and giving API level access to these ports
probably would not be wise (or necessary). The ports were shown in Figure 6-4.

The external 1-Wire I/O, or iButton interface
The TINI stick has the 1-Wire bus designed for communicating with remote 1-Wire
devices. This is provided by a DS2480 iButton interface. The DS2480 takes byte-
oriented commands from the CPU, independent of 1-Wire timing, and converts them
into proper 1-Wire timing and protocol. It has separate transmit and receive inputs
that get converted into a single 1-Wire bus signal. This is more efficient than the 1-Wire
interface on the internal 1-Wire bus, where the timing must be generated by the CPU.

Figure 6-12: Detail of the external 1-Wire interface

The external 1-Wire bus uses the RX1 and TX1 signals from the CPU; these make up
the serial1 port. Also used are several signals that get routed off stick. These are
EN2480, XRX1, and OWIO. TX1 is also routed off stick. EN2480 and XRX1 can be
used to gate, or control the flow of transmitted and received data through the iButton
interface circuitry. Both signals are pulled high, and are inputs to U6, which is an
AND gate we saw earlier when we looked at the CPU reset circuitry. If they are
allowed to just be pulled high, then RX1, the output of AND gate B, will be RXD, the
receive output of the DS2480. TX1 will flow through AND gate C, and become TXD,
the transmit input to the DS2480. In this configuration, 1-Wire data comes onto the
stick externally via the 1-Wire I/O signal, OWIO, and gets converted to byte data that

150

Designing Embedded Internet Devices

goes to the CPU via the RX1 signal. Byte data comes back from the CPU, gets
converted to 1-Wire protocol and gets sent back out the OWIO signal.

What if you wanted to use serial1 port for something other than 1-Wire? You can use
the XRX1 and EN2480 signals to essentially disable the iButton interface circuitry.
By pulling the signal EN2480 low, externally, TX1 won’t make it through U6 gate C,
and will no longer drive the external 1-Wire bus. By putting data on XRX1, the
external 1-Wire bus won’t be driving RX1, XRX1 will. This is just a mechanism for
adding a little flexibility into the TINI stick.

Finally, the VPP signal is the EPROM programming voltage input to the DS2480. It
provides a means of supplying a higher voltage to the external 1-Wire bus, useful for
some of the 1-Wire devices such as EEPROM, that require it for writing. D5 is a
BAT54S Schottky Barrier diode9 that appears to be serving as over-voltage protection
on the OWIO and VPP signals.

For more details on 1-Wire, refer to Chapter 10.

The RS232 interface
The TINI stick has a built-in RS232 interface, provided by a DS232A device, U14.

Figure 6-13: Detail of the RS232 serial interface

9 BAT54 datasheet – http://www.fairchildsemi.com/ds/BA/BAT54S.pdf

151

The TINI Hardware

This interface uses CPU pins RX and TX, which are associated with serial0 on TINI.
Signals routed off stick are TX, TX232, RX232, DTR232, and XRX0. TX232 and
RX232 are standard RS232 transmit and receive signals. XRX0 serves a function
much like XRX1 did on the external 1-Wire interface. If we want to use serial0 for
some other purpose than RS232, we can bypass the RS232 interface circuitry. Since
TX goes from the CPU to the DS232A and to the edge card connector, we can
transmit directly from the CPU off stick, and ignore the TX232 data coming from the
DS232A. If we send data onto the stick on the XRX0 signal, it will arrive at U6, an
AND gate. As long as the signal RRX going into the other AND gate input is high,
our serial0 RX data will now be coming from XRX0. Thus, TX and XRX0 form a
basis for using serial0 independent of the RS232 interface circuitry.

The signal DTR232 is of special note. It emerges from the DS232A as the signal
DTR. As we mentioned in our discussion of the reset circuitry, if the DTR signal gets
pulled low, the CPU will be reset. This is an external reset, as opposed to a power-on
reset. During external resets, the device reboots, but during the booting process the
bootstrap loader will wait to receive a special pattern of characters before turning
control over to the runtime environment. If it receives this pattern of characters within
three seconds of the reset, the loader will execute a mini command shell that can be
controlled via the serial0 port. If it doesn’t see this pattern within 3 seconds, it will
continue the normal booting process, and load the runtime environment and primary
application. This is how JavaKit works. JavaKit resets TINI by pulling DTR232 low,
causing DTR to go low, causing CPURST to go high, causing an external reset. The
loader enters this command shell and awaits instructions from JavaKit via Serial0.
This is a good way to give us control of TINI, but it has implications. This means that
any serial0 application that you intend to use needs to take this into account. If you
attach a modem to serial0, and it pulls DTR232 low, you will initiate an external
reset. In this sense, the TINI RS232 interface really only implements the send and
receive portions of the traditional complement of signals found on a 9-pin or 25-pin
RS232 cable.

There are a number of classes that are involved in using the RS232 interface,
including javax.comm.SerialPort, TINISerialPort,
SerialInputStream, and SerialOutputStream. This is discussed in detail in
Chapter 13.

The real-time clock
TINI is capable of maintaining a time reference. It does this via a DS1315 real-time
clock chip, U7. This device, as well as the SRAM, is backed up by a 3V lithium
battery.

152

Designing Embedded Internet Devices

The DS1315 is called a Phantom Time Chip in the product data sheet. While it’s
capable of acting as a nonvolatile memory controller, the TINI stick doesn’t make use
of this feature of the device (it uses a separate DS1321 for that). The key signals are
/RSTOL, /PSEN, /CE3, /WR, and D0. Communication is serial, via reading or
writing 64-bit data streams to D0, in 8-bit chunks. /PSEN serves as the output
enables, /WR the write enable, and /CE3 is the chip enable. It’s reset with /RSTOL.
What’s being read and written? Time. One can set the current time, and the device
will then maintain that time, even with the power off. One can later read the time
from the device. Reading and writing the time follows a specific format that,
fortunately, we don’t have to worry about too much. The TINI Java API includes
classes for reading and writing to the real-time clock. If you are interested in exactly
how the device works, the data sheet explains it in detail. The Java class that we can
use to talk to the real-time clock is com.dalsemi.system.Clock. Listing 6-3 is an
example of how to read and write to the real-time clock. You can actually set and read
the clock in units as small as one-hundredth of a second.

The real-time clock’s place in the memory map is one of the memory map subtleties
we mentioned earlier. Whereas on the memory devices the spot in the map was
determined by the range of possible addresses on its bus, in combination with a chip
enable, the real-time clock’s place in the map is determined by actions behind the
scenes in the firmware. A fairly complete discussion of this is found in the TINI

Figure 6-14: Detail of the real-time clock

153

The TINI Hardware

interest group message archive. Simply put, the real-time clock is addressed serially,
when you supply it with a 64-bit recognition sequence on D0. So, it really only takes
up one specific location in the memory map, but the whole region 0x310000-0x31FFFF
is allocated to make sure there is plenty of elbow room and for future expansion.

Programming example: using the real-time clock
The code below implements a very simple demo of the real-time clock. It reads the
current time from the clock, then changes the settings of the clock based on
information you provide on the command line. Finally, it prints the updated time.
We’ll first present the code in its entirety, then we’ll go through it bit by bit.

Listing 6-3: ReadWriteClock.java

import java.io.*;
import java.util.*;
import com.dalsemi.system.*;

public class ReadWriteClock {
 public static void main(String[] args) {
 if (args.length == 5)
 {

com.dalsemi.system.Clock Clk = new com.dalsemi.system.Clock();
long time = Clk.getTickCount();
System.out.print(“Time Before Writing to Clock: “);
System.out.println(new java.util.Date(time));
Integer year = Integer.valueOf(args[0]);
Integer month = Integer.valueOf(args[1]);
Integer date = Integer.valueOf(args[2]);
Integer hour = Integer.valueOf(args[3]);
Integer minute = Integer.valueOf(args[4]);
Clk.setYear(year.intValue());
Clk.setMonth(month.intValue());
Clk.setDate(date.intValue());
Clk.setHour(hour.intValue());
Clk.setMinute(minute.intValue());
Clk.setPm(true);
Clk.setRTC();
System.out.print(“Time after Writing to Clock: “);
System.out.println(new java.util.Date(Clk.getTickCount()));

 }
 else
 {

System.out.println(“Enter year month date hour minute”);
System.out.println(“Example: 2001 11 10 7 32”);

 }
 }
}

154

Designing Embedded Internet Devices

We import some class libraries and declare our class, ReadWriteClock.
import java.io.*;
import java.util.*;
import com.dalsemi.system.*;

public class ReadWriteClock {

We only have one method in our program, main(). We do some simple error
checking, to determine that we have the right number of arguments, and we create a
Clock object.
public static void main(String[] args) {

 if (args.length == 5) {
 com.dalsemi.system.Clock Clk = new com.dalsemi.system.Clock();

Here, we grab the current time, and print it to the screen.
long time = Clk.getTickCount();
System.out.print(“Time Before Writing to Clock: “);
System.out.println(new java.util.Date(time));

Now, we take the five command line parameters we used, representing what we want
to set our clock to, and convert them to integers.
Integer year = Integer.valueOf(args[0]);
Integer month = Integer.valueOf(args[1]);
Integer date = Integer.valueOf(args[2]);
Integer hour = Integer.valueOf(args[3]);
Integer minute = Integer.valueOf(args[4]);

We set the clock:
Clk.setYear(year.intValue());
Clk.setMonth(month.intValue());
Clk.setDate(date.intValue());
Clk.setHour(hour.intValue());
Clk.setMinute(minute.intValue());
Clk.setPm(true);
Clk.setRTC();

Finally, we grab the new time and print it to the screen, demonstrating that we did, in
fact, change the clock’s settings.

System.out.print(“Time after Writing to Clock: “);
System.out.println(new java.util.Date(Clk.getTickCount()));

 } else {
 System.out.println(“Enter year month date hour minute”);
 System.out.println(“Example: 2001 11 10 7 32”);
 }
 }
}

155

The TINI Hardware

The following are the commands that can be used to compile the program. We are
assuming that the ReadWriteClock.java file is in its own folder, and the commands
below are being executed in that folder. Again, the javac and java commands are
shown with their command line parameters on separate lines, only for readability.
They all need to be on the same line for each command.
C:\> javac -classpath %TINI_HOME%\bin\tiniclasses.jar

-d tini ReadWriteClock.java
C:\> java -classpath %TINI_HOME%\bin\tini.jar TINIConvertor

-f tini
-o tini\ReadWriteClock.tini
-d %TINI_HOME%\bin\tini.db

We execute the program by copying it over to TINI via FTP, then running it from a
Telnet session. The output looks like this:
TINI />
TINI /> date
Sat Nov 10 04:56:33 GMT 2001
TINI /> java ReadWriteClock.tini 2001 12 9 8 12
Time Before Writing to Clock: Sat Nov 10 04:57:32 GMT 2001
Time after Writing to Clock: Sun Dec 09 08:12:32 GMT 2001
TINI /> date
Sat Dec 9 08:12:36 GMT 2001
TINI />

We first checked the date, and noticed that it was completely wrong. We ran
ReadWriteClock.tini and set the time to the current time. The program accessed the
clock, retrieving the current (incorrect) time, printed it to the screen, then wrote the
new (correct) time to the clock. It then retrieved the correct time and printed it to the
screen. Finally, we checked the time from the command line.

The Ethernet controller
TINI has an on-board Ethernet interface that allows a 10Base-T Ethernet connection.
The complete interface section of TINI has a variety of components. We’re going to
take a quick look at the main device, the LAN91C96 Ethernet controller. This is
produced by Standard Microsystems Corporation, from which a complete datasheet can
be obtained10. It is listed as a LAN91C96 ISA/PCMCIA Single Chip Full Duplex
Ethernet Controller with magic Packet. The schematic shows the Ethernet controller as
an SMC91C94/96, but it is really referring to either the LAN91C94 or LAN91C96.
Since the LAN91C94 device has been discontinued, most TINI boards will have the
LAN91C96.

The actual 10-Base-T signals that are used for the Ethernet communications are
ETH1, ETH2, ETH6, and ETH3. Simplified, that boils down to differential transmit

10 SMC91C94 Datasheet – http://www.smsc.com/main/catalog/lan91c96.html

156

Designing Embedded Internet Devices

and differential receive, respectively. There are a number of other signals that are
routed off stick, specifically EESK, EEDO, IOS0, IOS1, and IOS2. We won’t be
making use of them. They deal with accessing an EEPROM inside the device. Refer
to the LAN91C96 data sheet for further details on those signals. The signal /SMCINT
is an interrupt signal being sent to the CPU to tell it needs to deal with activity on the
Ethernet controller. It’s generated via Q3, which acts to invert the actual signal
SMCINT, as it emerges form the LAN91C96 device. The signal SMCRST is an
input, arriving from the CPU that resets the Ethernet controller after power-up. /CE3
acts as the address enable. The address bus on the device will only be examined if

Figure 6-15: The 10-Base-T Ethernet controller

157

The TINI Hardware

this is low. /PSEN acts as the read enable for the device, and /WR acts as the write
enable. D0 through D7 form a bi-directional data bus on the device; A0 through A3
and A15 through A19 are used to address this device. Essentially, the device acts as a
memory. When TINI wants to send data out the Ethernet interface, it writes to it as if
it were a memory. When data has arrived at the interface, an interrupt is generated
and the CPU reads it from the device again like a memory.

The Ethernet interface circuitry also controls three LEDs, D2, D3, and D4. D2 and
D3 are the transmit and receive LEDs respectively; they light up when data is being
transmitted or received. The third LED, D4, is the link LED that lights when the
Ethernet interface is connected to another Ethernet interface that is powered up.

The TINI memory map states that the Ethernet interface resides from 0x300000 to
0x307FFF. Looking at the addressing of the LAN91C96, it would appear that its
place in the memory map would be different from 0x300000 to 0x307FFF. This is
most likely another example of subtleties in the memory map. A little discussion of
this can be found in the TINI interest group archive. Fortunately, the Ethernet
interface is robust and its operation is transparent to the user, so we don’t need to pry
into its inner workings all that much.

Table 6-5: LEDs on TINI

D1
D2
D3
D4

CPU Status LED
Ethernet Transmit LED
Ethernet Receive LED

Link Status LED

LED Function

The I2C interface
The TINI stick can communicate via the I2C bus protocol. We will be discussing this
in some detail in Chapter 11, but we’ll take a very quick introductory look at it here.

Figure 6-16: Detail of CPU, showing location of I2C bus pins

158

Designing Embedded Internet Devices

The I2C capability of TINI is handled entirely by the CPU and is accomplished in
software through the I2CPort class using P5.0 for the SCL (clock) and P5.1 as the
SDA (data) line. These port pins also serve double duty as CAN interface pins, and
have a built-in weak pull-up. The two I2C signals are named CTX and CRX on the
schematic, and they get routed off stick through the SIMM connector. The I2C signals
are essentially ready to connect up to an appropriate I2C device.

The CAN interface
The TINI CPU has two CAN controllers integrated into it. The resources for one of
them overlap with the resources used for I2C (P5.0, and P5.1), and the resources used
or the other one overlap with the resources used for serial0 (P5.2 and P5.3). Because
of the importance of serial0, P5.0 and P5.1 are the most likely candidates for use with
CAN, which is why those signals on the schematic get labeled CTX and CTR (CAN
transmit and CAN receive). We have a whole chapter that delves into the wonders of
CAN, so we’re only going to give it a brief mention here. It should be noted that CTX
and CRX aren’t necessarily CAN ready. They need to be connected to a CAN
controller interface device such as the Phillip’s Semiconductor, PCA82C25011. There
is no such device on the TINI stick, but there is a spot for one of these on the E10/
E20 socket board.

The E10/E20 Socket Board
The E10/E20 socket board is an evaluation platform that allows you to connect a
TINI stick to a variety of different interfaces. It has many features, some of which
come “ready to use,” while others are “unpopulated,” requiring you to add
components to the board yourself.

The product is offered in three versions, E10, E20, and E50, the difference being that
the E20 has the components for a regulated power supply populated on the board,
while the E10 does not. Both the E10 and E20 have numerous other features that are
not populated. The E50 is the E10/E20 with all of the components populated. The
product is also being updated frequently, adding or removing certain features. We will
be discussing the E20, Rev C. Let’s take a look at the main features.

What’s in an E20 socket board?
• A 72-pin SIMM socket that accepts the TINI stick. There is unpopulated space

for an additional SIMM socket, which could be used to make custom hard-
ware in a 72-pin SIMM format and mate it to TINI.

• A DB-9 serial connector (female) that connects to TINI serial0. We use this
with JavaKit. There is also a populated DB-9 serial (male) connector and an

11 PCA82C250 datasheet – http://www.semiconductors.philips.com/pip/PCA82C250U/N4

159

The TINI Hardware

RS232 line driver that appears to be present in anticipation of a future TINI
stick revision. (The current stick doesn’t use this feature.) There are
unpopulated spaces for a dual UART, two RS232 line driver chips and pinout
extensions that allow the addition of two RS232 ports (serial2 and serial3).

• An RJ-11 connector that allows access to the TINI External 1-Wire bus, and an
iButton clip, that allows an iButton to be connected to the External 1-Wire bus.

Figure 6-17: The E20 socket board

160

Designing Embedded Internet Devices

• A DTR Reset Enable jumper that allows you to conveniently connect or
disconnect the serial0 DTR232 signal from TINI to your DTR signal on the
serial cable. This is very useful when switching back and forth between
JavaKit and other applications that use serial0. There is unpopulated space for
a rest switch.

• An RJ-45 connector for Ethernet.

• Unpopulated space for a CAN interface chip, and a pinout extension so that
you can add a serial cable for use with CAN.

• A 5V regulated power supply that can accept 8–24V AC/DC. This is a really
important feature. TINI is exacting in its power requirements and inexpensive
5V DC power supplies (simple adapters for consumer electronics) aren’t
always accurate and clean enough. The 5V regulated power supply lets you
use a cheap DC adapter, as long as it supplies between 8–24V (AC or DC). It
provides TINI with a clean, 5V DC. This supply can also be disabled by
jumpers, should you want to supply (or test) your own 5V DC supply.

• Unpopulated space for an off-stick flash memory, and associated decode
circuitry, so the stick uses it and not the flash on the stick.

• A large, unpopulated, parallel output section.

• Miscellaneous capabilities involving the internal 1-Wire bus, including a
diagnostics port, EPROM, and a special “first birthday” jumper.

The E20 in greater detail
Next, we’ll take a closer look at some of these capabilities by examining the
schematic.

The serial interface and DTR reset enable
Serial0 is accessed on the E20 via a female DB-9 connector (J6). Only two of the
traditional RS232 signals are supported, transmit (TX232) and receive (RX232). The
Data Transmit Ready signal (DTR232X) is used primarily to reset TINI and access
the bootstrap loader. Other signals on the DB-9 can be hardwired to one of two power
supply nets (V+ or Vcc). These jumpers are open on the board as shipped.

The DTR reset enable consists of a jumper that can be easily removed and replaced.
With the jumper in place, TINI will reset if DTR232X is pulled low. This allows you
to configure serial0 for use with JavaKit (jumper in place) or maybe a modem
(jumper removed). The switch, S1, is not populated. It’s intended to act as a
pushbutton reset.

161

The TINI Hardware

Figure 6-18: Detail of the Serial0 DB-9 connector

Figure 6-19: Detail of the DTR Reset jumper

162

Designing Embedded Internet Devices

The external 1-Wire interface
There are three main components to the external 1-Wire interface on the E20. They
are all populated, and shown below.

Figure 6-20: Detail of the RJ-11, external 1-Wire interface connector

Figure 6-21:
Detail of the iButton Clip, S2

Figure 6-22:
Detail of the Serial0 and Serial1 pull-ups

The pull-up is of special note. XRX1 is a signal that can be used to override the
iButton interface on TINI. By pulling it high here, we guarantee that serial1 will use
the iButton interface circuitry on the TINI stick. Similarly, XRX0 ensures serial0 will
use the RS232 interface on the TINI stick.

The Ethernet interface
The 10-base-T Ethernet interface uses an RJ-45 connector.

163

The TINI Hardware

The CAN interface
CAN is supported via unpopulated board footprints that allow you to connect (via
extension cable) to a DB-9 connector. There is also a spot for a CAN interface chip
such as a PCA82C250.

Figure 6-23:
Detail of the RJ-45 Ethernet connector

Figure 6-24: Detail of the CAN bus section

Figure 6-25: CAN interface chip area

164

Designing Embedded Internet Devices

The regulated power supply
The regulated power supply circuitry on the E20 is shown in Figure 6-26.

Figure 6-26: Detail of the power supply circuitry

It accepts 8-24V AC/DC but can be bypassed by shorting jumpers J5 and J35. You
would use this if you already have a 5V DC power supply you want to use or test
with TINI. The connector is male, which mates to many inexpensive multi-voltage
AC adapters.

Additional FLASH
The E20 has a variety of components related to using an external flash with TINI.
There is space on the board for the FLASH, as well as selection circuitry.

The selection circuitry, shown in Figure 6-28, is unpopulated, with the exception of
J27, which is shorted on the board as shipped. The schematic says “default is J13 and
J16 closed,” but that’s assuming we’ve installed the second flash. Since the E20 ships
without the flash, the jumpers aren’t shorted either. With J27 shorted, the signal
/RCE0 is equal to /CE0, which puts the stick’s on-board flash as the default flash.

165

The TINI Hardware

Figure 6-27:
Detail of the additional flash

Figure 6-28: Detail of flash selection circuitry

166

Designing Embedded Internet Devices

If we did install the flash on the E20, with J13 and J16 closed, our chip enables
would become

/RCE0 = /CE0 + A19

/XCE0 = /CE0 + /A19

The “+ “ is shorthand for logical OR provided by U3. This would change our
memory map.

Table 6-6: Memory map for external flash

Address
(hex)

0x000000 - 0x07FFFF
0x080000 - 0x0FFFFF

0x000000 - 0x07FFFF
0x080000 - 0x0FFFFF

/CE0
/CE0

/CE0
/CE0

Flash on E20
Flash on TINI Stick

Flash on TINI Stick
Flash on E20 St

J13 and J16

J14 and J15

Chip
Enable

E20
Jumpers Closed

Contents

Instead of having an onboard flash, and an image of it, we now have our external
flash, then our internal flash. The external flash will be the one used by TINI.
Closing J14 and J15 instead of J13 and J16 will cause the external flash and the
TINI onboard flash to change places. The flash onboard the stick would now be the
one used. In either case, if you intend to add the flash to the E20 and utilize
jumpers J13, J14, J15, and J16, you will need to open J27.

There is an additional feature on the socket board dealing with the flash: a flash
override. This is J29 on the socket board. It is not populated.

Figure 6-29: Detail of flash override

This is a precautionary device for use in the unlikely event that you should want to
upgrade the loader program in your flash. When updating the loader, the old loader
first replicates itself in bank 1 of the flash, at 0x10000, then loads the new one at 0. If
you short J29, the CPU is forced to execute the loader at 0x10000. So, if during the
loader update, something goes wrong before the new loader is completely installed,
you can always recover by shorting J29 and forcing the execution to begin with the
old loader now residing at 0x10000.

167

The TINI Hardware

Support for Serial2 and Serial3
The E20 has complete support in the form of unpopulated component footprints for
two additional RS232 ports. There isn’t space for two additional DB-9 connectors,
but they can be connected via cable and the pin extensions on the E20.

Figure 6-30:
Detail of the RS232 UART

Figure 6-31: Detail of the /SEL0 and /SEL1 generating circuitry

The UART that provides serial2 and serial3 has a region allocated for it in the TINI
memory map provided by U10, which is a 1-of-8 decoder.

168

Designing Embedded Internet Devices

Table 6-7: Memory map for /SEL0 and /SEL1

Signal
Selected

/SEL0
/SEL1

0011 1XX0 XXXX XXXX 000X XXXX
0011 1XX0 XXXX XXXX 001X XXXX

A23 ... A0
Address Range to Select Signal (X=don't care)

External interrupt selection circuitry
The TINI CPU has one external interrupt input, /EXTINT, available for use by off-
stick peripherals. If there are multiple peripherals generating interrupts, they have to
go through some glue logic.

Figure 6-32: Detail of external interrupt circuitry

INT1 and INT2 come from the UART in the RS232 section of the socket board. Since
you may want to use the external interrupt selection circuitry without the UART being
present, space for pull-ups R4 and R5 are provided. /AUXINT comes from the parallel
IO section and /AUXINT2 comes from the expansion SIMM connector. /EXTINT will
go low if any of these signals go low.

169

The TINI Hardware

Internal 1-Wire interface
There are three odds and ends on the socket board that connect to the internal 1-Wire
bus in the TINI stick. They are the diagnostic port, the first birthday jumper, and a
1-Wire EPROM. None are populated. The first birthday jumper can be used to clear
the heap. The diagnostic port can be used to read debug information. The EPROM
can probably be used to house a small amount of ID information, such as a serial
number, network address, etc.

The parallel IO section
The parallel IO section of the E20 socket board takes the 8-bit bidirectional data bus
of TINI and turns it into two pairs of 8-bit busses. Each pair consists of an 8-bit bus
for writing and an 8-bit bus for reading. Figure 6-36, shows the circuitry for one of
the pairs.

Figure 6-33:
Detail of the first birthday jumper

Figure 6-34: Detail of the diagnostics port

Figure 6-35:
Detail of U11, the 1-Wire

EPROM/EEPROM

170

Designing Embedded Internet Devices

Figure 6-36: Detail of the first IO bus pair

12 74VHC574 datasheet – http://www.fairchildsemi.com/pf/74/74VHC574.html

U12 is an octal D type flip-flop with tri-state outputs12 that latch the data bus from
TINI (D0-D7) onto the output lines ODB0-ODB7. That latching occurs when
/ENWR0, “enable write 0”, goes low. The output enable for this device is SMCRST,
the reset input for the Ethernet controller device (although it’s used for a number of
peripherals on TINI as well). If the TINI board is being reset, SMCRST will go high
briefly. During this logic “1” period, U12 will be tri-stated—that is, the outputs will
be set to a high impedance state. This keeps random information that may be on the
data bus during power-on from inadvertently being written to the output devices. U14
is an octal, tri-state, line driver that is selected by /ENRD0, “enable read 0”, and
/SEL0. When both /ENRD0 and /SEL0 go low, U14 will pass the 8-bit input bus
IDB0–IDB7 through to the TINI data bus D0–D7. The second pair of 8-bit data buses
behaves the same way as the first.

171

The TINI Hardware

U16 is another octal D type flip-flop with tri-state outputs13. It latches the data bus
from TINI (D0–D7) onto the output lines OCB0–OCB7. That latching occurs when
/ENWR1, “enable write 0,” goes low. The output enable for this device is SMCRST
and performs the same function as in the other output device. U17 is an octal, tri-
state, line driver that is selected by /ENRD1, “enable read 0,” and /SEL0. When both
/ENRD1 and /SEL0 go low, U17 will pass the 8-bit input bus ICB0–ICB7 through to
the TINI data bus D0–D7.

Figure 6-37: Detail of the second IO bus pair

13 74VHC541 datasheet – http://www.fairchildsemi.com/pf/74/74VHC541.html

172

Designing Embedded Internet Devices

The selection circuitry that creates the signals /ENRD0, /ENWR0, /ENRD1, and
/ENWR1 is shown in Figure 6-38.

Figure 6-38: Detail of the parallel IO selection circuitry

14 74AC139 datasheet – http://www.fairchildsemi.com/pf/74/74AC139.html

U4 is a dual 1-of-4 decoder14. One of the decoders handles selecting circuitry for
reads and one handles selecting circuitry for the writes. U3 is an OR gate whose
output will be logic “1” unless both inputs are “0.” This means that the second
decoder (U4:B) will only be selected if both /SEL0 and /WR are low. Decoder U4:A
is selected by /PSEN, which is active during memory reads. Table 6-8 illustrates the
memory map for reading and writing to the parallel port on the E20.

Table 6-8: Memory map for the parallel port

Signal
Selected

Comment

ODB0-ODB7
OCB0-OCB7
IDB0-IDB7
ICB0-ICB7

Must be Writing
Must be Writing
Must be Reading
Must be Reading

0011 1XX0 XXXX XXXX 000X XX00
0011 1XX0 XXXX XXXX 000X XX01
0011 1XX0 XXXX XXXX 000X XX00
0011 1XX0 XXXX XXXX 000X XX01

A23 ... A0
Address Range to Select Signal (X=don't care)

The LCD interface from earlier versions
Earlier versions of the E20 socket board had unpopulated component space for an
LCD interface. While this feature has been removed from the current revision of the
E20, the concept for the LCD interface still works. You simply have to implement the
same circuitry on a breadboard. This is discussed extensively in Chapter 8.

173

The TINI Hardware

Other TINI socket accessories
A number of companies produce accessories for TINI. Here is a quick summary of
some of them.

Vinculum Technologies Group
Vinculum Technologies Group15 produces several accessories. They have a product
called the TINI ProtoAdaptor, which features a SIMM socket, power connector, DTR
jumper, DB-9 serial connector, and RJ-45 Ethernet connector on a narrow
circuitboard strip that has tall wire wrap pins (connecting to the TINI signals) on the
board. This board can be inserted into a solderless breadboard for experimentation, or
it can be used in conjunction with another of their products, the TINI Nexus. The
TINI Nexus has a connector that mates to the long pins on the TINI Proto Adaptor, as
well as an additional SIMM socket, and board footprints for a variety of connectors
and components. They also produce a product called the ProtoModule, which is a
small SIMM circuit board that has no components on it. What it does have is an array
of holes and a labeled SIMM edge card that mates with the SIMM sockets used for
TINI. You can use this board to make your own hardware for mating with a TINI.

15 Vinculum Technologies Group – http://www.vinculum.com

Figure 6-39: A Vinculum Technologies ProtoAdaptor with a TINI,
in a solderless breadboard

174

Designing Embedded Internet Devices

Figure 6-40: A TINI in a ProtoAdaptor in a solderless breadboard,
connected to a ProtoModule

16 Systronix – http://www.systronix.com
17 TINI Marketplace – http://www.ibutton.com/TINI/marketplace/index.html

Systronix
A company called Systronix produces several TINI-related products, including the
TILT, (TINI Initial Learning Tool), the STEP (Systronix TINI Engineering Platform),
and the STEP+. These comprise a tiered family of socket boards, ranging from the
basic to the sophisticated. Complete details on all their products can be found on their
website16.

Additional products and vendors
A host of other products are available for TINI, with a variety of companies making
them. A good place to keep tabs on new developments is the TINI website partner
marketplace, which lists information on products available for the TINI stick17.

175

The TINI Hardware

Making a custom TINI socket
To either make your own socket or to integrate the TINI SIMM into your own design,
you will need to connect a minimum set of wires to the TINI SIMM: power (one of
pin 67–70), ground (one of pins 3–7) and tie /RCE0 (pin 45) to /CE0 (pin 12). This
will allow you to power up TINI and TINI will boot. You need to tie /RCE0 to /CE0
so TINI can select the on-board FLASH. While this may be a minimum wiring for
TINI, it will not allow you to communicate with TINI in any way. Depending on your
application, you will need to connect some of the following as well:

• Connect ETH1 (pin 66), ETH2 (pin 65), ETH3 (pin 64), ETH6 (pin63) to an
Ethernet connector if you need network connectivity.

• Connect TX232 (pin 19) and RX232 (pin 20) to a serial connector or a serial
device if serial0 connection is needed.

• Connect OWIO (pin 8) to the active line of a 1-Wire bus if 1-Wire communi-
cation is needed.

• Also, you might need to connect Vpp (pin 9) to +12 volts if you need
to program any 1-Wire EEPROM devices.

• Connect DTR232 to a switch or other device if you need to perform a hard-
ware reset of TINI.

These connections are show in Figure 6-41.

Figure 6-41: Minimum socket configuration

Summary
This chapter has been an overview of TINI hardware, specifically the TINI stick and
E20 socketboard. We’ve made an effort to constantly relate the hardware to the TINI
memory map, and explain how address selection is being decoded. Many topics
touched upon here are expanded on in other chapters, specifically CAN, 1-Wire, I2C,
and enhancing.

176

Designing Embedded Internet Devices

References
1. TINI datasheet,

http://www.ibutton.com/TINI/dstini2.pdf

2. The TINI Specification and Developer’s Guide, Don Loomis,
Addison-Wesley, 2001, pages 19-20.

3. TINI Interest Group archives,
lists.dalsemi.com/maillists/tini/

4. TINI SIMM and Socket Schematics,
www.ibutton.com/TINI/hardware/

7CHAPTER

The TINI Software

177

In this chapter we are going to examine in detail the various software programs and
Application Program Interface (API) packages you will be using to program the TINI
microcontroller. To make full use of this chapter you should already have the TINI
up and running and be familiar with the TINI hardware. We will discuss all of the
software that you can download from Dallas Semiconductor for your TINI and even a
few other programs that will help you with program development

JavaKit
We briefly mentioned JavaKit in Chapter 5. JavaKit is a program that is supplied by
Dallas Semiconductor for communicating with the TINI over a serial port connection.
JavaKit is used to download applications to TINI, run programs on TINI and config-
ure TINI’s network and server settings. JavaKit is written in Java and the source can
be downloaded from the TINI web site, should you find a reason for studying the
source or modifying it.

Because JavaKit communicates with your TINI through a serial port, it requires the
Java Communications API that you installed in Chapter 3. JavaKit will run on any
platform to which the Communications API has been ported (Windows 95/98/NT/
2000/XP, Linux).

You can run JavaKit from Windows with the following command line:
java -cp \opt\jdk\lib\comm.jar;\opt\tini\bin\tini.jar JavaKit

where \opt\jdk is the installation directory for the Java SDK and \opt\tini is the
installation directory for the TINI API.

You can run JavaKit on Linux with the following command:
java -cp /opt/jdk/lib/comm.jar:/opt/tini/bin/tini.jar JavaKit

178

Designing Embedded Internet Devices

For the remainder of this book we will be showing only Windows commands unless
there is a significant change for the Linux commands (such as in the case where we
make a c-shell script or something that does not translate as easily).

Figure 7-1: JavaKit window

JavaKit will tell you what command line options it will take if you ask. Type JavaKit
–help (actually any unrecognized option will have JavaKit dump its options). This is
shown here:

c:> javakit –help

Unknown option: -help

JavaKit Version 2.1.10

Dallas Semiconductor Corporation
-==============================-

Usage: java JavaKit <-options>
Where basic options include:
-port Specifies the COM port to auto open.
-baud Specifies the baud rate to use (default is 115200.)
-macro Specifies a macro file to auto load.
 Pass multiple macro files separated by commas.
-exitAfterRun Specifies that JavaKit should exit after running the
 macro file(s) specified with “-macro”.
-log Generates a log file called JavaKit.log.

179

The TINI Software

-advanced Show advanced options.
-allow Allow loading files to a bank higher than bank 7.

Notice the “-advanced” option. If you run javakit –advanced you will see these
additional options:
-padSize Specifies the size of the pad string when
 writing to Hex files to flash ROM (default is 12.)
-binPause Specifies the number of milliseconds to pause after
 a binary segment write. (default is 50ms.)
-bankSize Specifies the size of each memory bank.
 Default: 65536
-ROMSize Specifies the total size of the Flash ROM.
 Default: 524288
-flushWait Wait time after sending a portion of binary data.
 Default: 50 ms.
-resetWait Wait time after sending a DTR toggle.
 Default: 100 ms.
-debug Enables debug mode.
-noDTRTest Instructs JavaKit not to test for DTR connected on
 File->Load.

You can see from these commands and from the menus in JavaKit that it is possible
to automate the various tasks for which you might use JavaKit. For the most part we
will be using JavaKit for loading the TINI API and then configuring it. All the rest of
our work on TINI will be done through network programs such as Telnet and FTP.

JavaKit can record the commands and actions you issue and save them to a macro file
so you can rerun the exact session again. This is useful if you are configuring a
number of TINI boards with like settings. To do this you will use the macro feature.
To enable that, you must switch JavaKit from “Dumb Terminal” to “JavaKit
Terminal” using the selection box on the upper right of the JavaKit window. You can
start or stop recording a macro using the macro pull-down menu, and you can save
or load macros using the file pull-down menu.

JavaKit will leave a JavaKit.tmp file in the directory from which you ran it. This
contains the communication settings you used for that session. If you changed them
from the defaults, they will be restored from this file the next time you run JavaKit. If
you run JavaKit from a number of different directories, then you will have a number
of these JavaKit.tmp files hanging around.

Figure 7-2:
JavaKit terminal selection box

180

Designing Embedded Internet Devices

Figure 7-3:
JavaKit macro menu selection

Figure 7-4:
JavaKit file menu selection

Terminal
If you simply need to connect to your TINI to run various programs and you don’t have
a network connection, you can use any terminal program to connect to your TINI over a
serial line instead of JavaKit. In the following figures, you can see a Hyperterm
terminal window and a Linux Eterm window (running minicom) with an active TINI
connection. Notice the settings dialogs. You will need to configure your terminal
emulator for 115,200 bits per seconds, 8 data bits, no parity, 1 stop bit, no hardware or
software flow control. Also note that if you are using an E10 or E20 socket from Dallas
Semiconductor, you will need to remove the solder bridge on jumper J1 on the back of
the socket board. This jumper, when removed, prevents the DTR line on the serial port
from resetting your TINI board. This is explained in Chapter 9.

The TINI Loader
When you connect your TINI serial port to your computer’s serial port and communi-
cate with it using JavaKit, the first software program on TINI that you meet is the TINI
Bootstrap Loader. The loader is a small program that is stored in bank 0 of the flash
ROM on TINI. The loader code is executed when the TINI board is powered up or
reset. You will send commands to the loader through the serial port using JavaKit. You
will need the loader commands to load or upgrade the TINI firmware, to load your own
programs into flash ROM, or to clear the Java heap. The loader is essentially permanent
in the flash ROM since this is not something that you can easily restore. You should be
careful when experimenting with the loader commands so you don’t accidentally
clobber the loader, which is not easy to do but is possible. If, by some weird chance, the
bootstrap loader does get clobbered, then your only option is to send the board back to
Dallas Semiconductor to have it reprogrammed.

181

The TINI Software

Figure 7-5: Hyperterm window connected to a TINI

Figure 7-6: Linux minicom connected to a TINI

182

Designing Embedded Internet Devices

To view the loader command set, type a “?” at the loader’s “>” prompt.
>?

TINI loader 05-15-00 17:45
Copyright (C) 2000 Dallas Semiconductor. All rights reserved.
Selected bank = 18. Executing from bank 40

B [bank] - select Bank
C [range] - CRC range in selected bank
D [range] - Dump hex from selected bank
E - Exit loader
F x [range] - Fill range in bank with byte x
G - Goto 0 in selected bank in paged mode.
H or ? - Help
L - Load hex
M - Move loader to selected bank
S - Set comm Speed to 1/2 present
T - Tests
V - Verify hex
X [offset] - eXecute code at offset in this segment
Z n - Zap flash sector n (0-F). n=0AAH for all TINI software

The loader commands are more completely documented in the file “Commands for
TINI Loader”1 available on the iButton web site and loader source code (in 8051
assembly) can be found in the file “Hex Bootstrap Loader For DS80C390”2.

The TINI Firmware
It is at this loader prompt that you will use JavaKit to upload a new version of the
TINI firmware. The most recent version of the TINI firmware can be downloaded
from the Dallas Semiconductors TINI software web page and installed following the
instructions provided in Chapter 5. The firmware is in a file named tini.tbin. To
load your TINI hardware with a new version of the TINI firmware, start JavaKit.
From the JavaKit window, select the proper serial port and press the reset (you will
need to have the J1 jumper marked “DTR RESET ENABLE” shorted in order for
JavaKit to successfully load the firmware). Then, from the “File” menu bar, select
“Load File” and navigate through your file system to find the tini.tbin file
(c:\opt\tini\bin\ if you followed the installation instructions in Chapter 5). Select
the tini.tbin file and press the open button. JavaKit will communicate with the
loader and start to load the new TINI firmware into the flash ROM. You will see
something similar to this in your JavaKit window:

1 Commands for TINI Loader – http://www.ibutton.com/presentations/LDoc.txt
2 Hex Bootstrap Loader For Ds80c390 – http://www.ibutton.com/presentations/L0515.txt

183

The TINI Software

Loading file: C:\Opt\Tini\bin\tini.tbin.

Please wait... (ESC to abort.)

Load complete.

Be patient; this can take almost a full minute to complete.

Up to this step there can be several things that might have gone wrong.

Figure 7-7: Using JavaKit to load the TINI firmware

When you pressed the “Reset” button you may have seen an error message
indicating that you do not have the DTR reset enabled on your TINI socket
board, as shown in Figure 7-8. Verify that this is or is not correct. Sometimes
JavaKit gets confused and issues this error message even though everything is
OK. In that case, press the “Reset” button again. It might take several tries. If this
message persists, it may mean that even though you have the proper jumper on
the socket board, your serial cable does not have this signal connected. You will
need to verify this also. Your serial cable needs pins 2, 3, 4 and 5 connected at a
minimum.

After you found the tini.tbin file and pressed the “Open” button, you may
have seen an error message indicating that you do not have the DTR reset
enabled on your TINI socket board also as shown in Figure 7-8. If you have
followed the steps in the previous error message to verify that you do indeed have
this jumper connected, then try the load again. If that does not help, exit JavaKit
and run JavaKit again, this time with the –noDTRtest command line option.

184

Designing Embedded Internet Devices

You may see an error message like the following (Figure 7-9). This means you
selected the wrong file (you do NOT want the tini.db file).

Figure 7-8: JavaKit DTR error message

Figure 7-9: JavaKit wrong file type error message

At this point you have loaded the TINI firmware into TINI. For the most part, you
will rarely use the loader for anything but booting TINI and possibly clearing the
heap.

The heap is an area of reserved memory that programs use to store data. Having a
certain amount of heap storage already obtained from the operating system makes it
easier for the operating system to manage. If programs don’t exit properly (such as
when they crash or exit prematurely) the heap is left with inaccessible blocks. This
can be common during program development but should not be common for a stable
program. Anyway, you may run out of heap space (you will see an error message like
“Insufficient Heap”) and you may need to clear the heap. This is done by resetting
TINI and, from the Loader prompt (>), typing

B18
F0

Clearing the heap will destroy any files you may have stored in RAM and it will
destroy any state information saved by slush, so you may have to reset the IP address
from JavaKit before you can connect to your TINI via the network.

185

The TINI Software

The TINI firmware includes a JVM (Java Virtual Machine) and Application Program
Interface (API). Application programs that we will write in Java will utilize the API
to access the capabilities of the underlying hardware resources of TINI. The JVM and
API includes full support for threads as well as all primitive Java data types and
strings. The JVM provides access to the core Java packages: java.lang, java.io,
java.net and java.util and also provides access to a number of TINI specific
classes that allow access to the TINI hardware layer and resources. Dallas
Semiconductor has updated the TINI firmware as the hardware and software
develops.

The TINI API3

We briefly discussed the TINI API in Chapter 5, and here we will be digging in a little
deeper. The TINI API is the set of packages (classes and methods) for interfacing the
TINI hardware to the Java Virtual Machine. In other words, these are the set of Java
classes you will use to program TINI specific features like the 1-Wire network that are not
part of the Java Virtual Machine. Here we will provide a quick overview of the various
packages in the current TINI API and include some package diagrams that help map out
how the classes fit and interrelate. Some of the packages will be discussed in more detail
in other parts of this book (like 1-Wire, CAN, Network, I2C, ports). You will find the TINI
API documentation in the javadocs\firmware folder of your TINI install folder
(%TINI_HOME%\docs\javadocs\firmware if you followed the installation method
described in the book). Some of the package descriptions have been grouped together
because they either work together or the classes in one package directly extend the
classes of another package. Figure 7-10 shows the key to the diagrams we will be using.

3 TINI Software – http://www.ibutton.com/TINI/software/index.html

Figure 7-10:
Key to package diagrams

Package

Class

Abstract Class

Interface

extends

implements

186

Designing Embedded Internet Devices

com.dalsemi.comm – This package provides the basic communication classes and
methods for accessing some of the TINI-specific hardware devices. This includes:
Serial ports, CAN (Controller Area Network) bus, and the LCD (liquid crystal display).

com.dalsemi.fs – This package is an extension to the standard java.io.File class. It
provides methods for accessing the file permissions and the owner ID of TINI files.

Figure 7-11: Diagram of the com.dalsemi.com package

javax.comm

com.dalsemi.com java.lang

CanBus

CanFrame

InternalComPortLCDPort

java.io
DebugOutputStream

LCDOutputStream

SerialOutputStream

NullOutputStream

SerialInputStream

NullInputStream

CommPort

TINISerialPort

CanBusException

Object

Throwable

Exception

CommDriver TINICommDriver

SerialPort

OutputStream

InputStream

java.lang

com.dalsemi.fs

Object

com.dalsemi.io

ByteToCharIOS8859_1

ByteToCharUTF8

CharToByteIOS8859_1

CharToByteToUTF8

DSFile

CharToByteConverter

ByteToCharConverter

Figure 7-12: Diagram of the com.dalsemi.fs and com.dalsemi.io packages

187

The TINI Software

com.dalsemi.io – This package provides interfaces and implementations for the
conversion of bytes to characters and characters to bytes for a particular encoding
scheme, like ISO 8859-1 (see “The ISO 8859 Alphabet Soup”4 and “The ISO8859-1
table”5) and UTF8 (see “RFC2253 - UTF-8 String Representation of Distinguished
Names”6).

com.dalsemi.onewire – Contains the single class OneWireAccessProvider which
manages the Dallas Semiconductor 1-Wire adapter class. This enables an application
to be adapter independent.

com.dalsemi.onewire.adapter – This package contains the base classes for all
1-Wire port adapter objects.

com.dalsemi.onewire.container – This package includes the classes and methods
to manipulate specific 1-Wire devices.

com.dalsemi.onewire.utils – This package contains the utilities necessary to
translate and verify 1-Wire Network addresses and perform 8- and 16-bit cyclic
redundancy checks.

4 The ISO 8859 Alphabet Soup – http://czyborra.com/charsets/iso8859.html
5 The ISO8859-1 table – http://www.ramsch.org/martin/uni/fmi-hp/iso8859-1.html
6 UTF-8 String Representation of Distinguished Names – ftp://ftp.isi.edu/in-notes/rfc2253.txt

Figure 7-13: Diagram of the com.dalsemi.onewire.* packages

com.dalsemi.onewire java.lang

com.dalsemi.onewire.utils

CRC8

Address

CRC16

com.dalsemi.onewire.container

Container

OneWireAccessProvider

com.dalsemi.onewire.adapter

TINIExternalAdapter

TINIInternalAdapter

OneWireIOException

Object

Throwable

Exception

DSPortAdapter

188

Designing Embedded Internet Devices

com.dalsemi.shell – This package contains the abstract class and implementation of
a system shell for TINI. This shell interacts between a program and the TINI operating
system, and provides the current environment and the user ID of the current process.
Methods are provided for converting to and from the numerical user ID and its text
representation and for determining whether a particular user is an administrator.

com.dalsemi.shell.server – This package provides an abstract class for a generic
server and a server session. Servers will listen on some system resource for
connection requests. When a connection request arrives, the server starts up a session
to handle that request. Servers are designed to be multi-threaded, allowing multiple
simultaneous connections.

com.dalsemi.shell.server.ftp – This package extends
com.dalsemi.shell.server to implement a simple FTP server as
described in RFC 959 (see “File Transfer Protocol”7). This server uses a ServerSocket
to listen on the specified port (defaults to port 21) for FTP connection requests. For
each connection made, an FTP session is created. All command processing is handled
by the FTP session, not the server.

com.dalsemi.shell.server.serial – This package extends
com.dalsemi.shell.server to implement a serial port server. This server listens for
user connections on TINI port serial0. For each connection made, a Serial session is
created. All command processing is handled by the session.

com.dalsemi.shell.server.telnet – This package extends
com.dalsemi.shell.server to implement a Telnet server as described in RFC 854
(see “Telnet Protocol Specification”8). This server uses a ServerSocket to listen on the
specified port (defaults to port 23) for Telnet connection requests. For each
connection made, a Telnet session is created. All command processing is handled by
the Telnet session.

com.dalsemi.system – This package provides a number of classes for managing
TINI memory, accessing the state of the TINI operating system, and classes for
accessing TINI hardware such as: the watchdog timer, the clock, the bitport, the
byteport, and the dataport, interrupts, I2C interface and “a collection of hopefully
useful debug utilities.”

com.dalsemi.tininet – This package provides classes for managing the parameters
of the TINI network .

com.dalsemi.tininet.dhcp – This package provides a class that implements a
DHCPClient for dynamically obtaining new IP Addresses.

7 File Transfer Protocol – ftp://ftp.isi.edu/in-notes/rfc959.txt
8 Telnet Protocol Specification – ftp://ftp.isi.edu/in-notes/rfc854.txt

189

The TINI Software

com.dalsemi.tininet.dns – This package provides a class that implements a DNS
(Domain Name System) lookup service according to RFC 1035.

com.dalsemi.tininet.http – This package provides a class that implements a
simple HTTP server (see “Hypertext Transfer Protocol”9).

Figure 7-14: Diagram of the com.dalsemi.shell.* package

Figure 7-15: Diagram of the com.dalsemi.system package

com.dalsemi.server.telnet

java.lang

Runnable

TelnetServer

com.dalsemi.server.serial

SerialSession
com.dalsemi.server

GetOpt

com.dalsemi.shell

com.dalsemi.server.ftp

FTPServer

java.io

OutputStream

InputStream

Object

FilteredOUtput
Stream

PrintStream

SystemInputStream

SystemPrintStream

FTPSession

TelnetSession

SerialServer
DefualtTINIShell

TINIShell

Session

Server

com.dalsemi.onewire java.lang

 ArrayUtils

BitPort

CommitException

BytePort

DataPort

Clock

Debug

I2CPort

Security

ExternalInterrupt

TINIOS

ExternalInterruptException

IllegalAddressException

ExternalInterruptEvent

Throwable

Object

EventObject

Exception

9 Hypertext Transfer Protocol – http://www.w3.org/Protocols/

190

Designing Embedded Internet Devices

com.dalsemi.tininet.icmp – This package provides a class that implements an
ICMP (ping) echo request server (see “Internet Control Message Protocol”10).

com.dalsemi.tininet.ppp – This package provides a class that implements Point-
to-Point Protocol (PPP) for providing IP packet transport over a serial link (see “The
Point-to-Point Protocol”11).

com.dalsemi.protocol – This package provides classes for working with server
protocols, headers and URLs.

10 Internet Control Message Protocol – ftp://ftp.isi.edu/in-notes/rfc792.txt
11 The Point-to-Point Protocol – ftp://ftp.isi.edu/in-notes/rfc1661.txt

Figure 7-16: Diagram of the com.dalsemi.tininet.* and com.dalsemi.protocol packages

com.dalsemi.tininet

java.lang

 TININet

com.dalsemi.tininet.dhcp

com.dalsemi.tininet.ppp

PPP

com.dalsemi.tininet.icmp

Ping

com.dalsemi.tininet.http

com.dalsemi.tininet.dns

DNSClient

PPPException

HTTPServerException

com.dalsemi.protocol

URLDecoder

BasicClient

DefaultFileNameMap

HeaderManagement

Object

Throwable

Exception

Runtime
Exception

EventObject

DHCPClient

HTTPServer

PPPEvent

The next thing to do after loading the TINI firmware is to load the TINI shell (slush)
into TINI so you can actually log in and configure your network settings. Before we
do that, however, we will take a little time to discuss the TINI API.

Slush, the TINI Operating System Shell
Slush is the TINI command-line shell environment provided by Dallas Semiconduc-
tor. It is similar to a very simple UNIX-like shell. In the default configuration of
TINI, slush is loaded into bank 7 of the flash ROM so it runs as the default program
when you power on your TINI.

191

The TINI Software

Slush provides a handful of commands that interface to the TINI firmware. Slush is
used for development and when you need to run interactive sessions on your TINI,
but it is not a necessary part of the TINI. Once you have your application developed,
you can load that program into bank 7 to run instead of slush (or you can run it as a
program from slush if you want).

Starting slush
You load slush onto your TINI in a manner similar to loading the TINI firmware.
From the JavaKit “File” menu bar, select “Load File” and navigate through your file
system to find the slush.tbin file (same place as the tini.tbin file). Press the
“Open” button to load slush to your TINI. This may take 5–10 seconds and you will
see the same messages you did when loading the TINI firmware. If you saw any error
messages (similar to what you might see when loading the firmware), try again.

To execute the TINI firmware (the Java Virtual Machine) and any Java program you
loaded, such as slush, you will need to exit the loader by typing “E” at the loader
prompt. Do that now. You will see a long list of messages like the following:

——> TINI Boot <——
TINI OS 1.02
API Version 8009
Copyright (C) 1999 - 2001 Dallas Semiconductor Corporation
31000000
Running POR Code
Memory POR Routines
000020
0080,0100,0180,0200,0280,0300,0380,0400,0480,0500,0580,0600,0680,0700,Tran-
sient blocks freed: 074F, size: 024620
CPersistant blocks freed: 0000, size: 000000
KM_Init Passed
Ethernet MAC Address Part Found

TTS Revision: 170 , Date: 1/25/01 2:11p
Thread_Init Passed
External Serial Port Init
External serial ports not enabled
Memory Available: 06FB60
Creating Task:
0100
01
Loading application at 0x070100
Creating Task:
0200
02
Application load complete

192

Designing Embedded Internet Devices

[-= slush Version 1.02 =-]
[System coming up.]
[Beginning initialization...]
[Not generating log file.] [Info]
[Initializing shell commands...] [Done]

[Checking system files...] [Done]

[Initializing and parsing .startup...]
[Initializing network...]
[Starting up Telnet server...] [Done]
[Starting up FTP server...] [Done]
[Network configuration] [Done]
[System init routines] [Done]

[slush initialization complete.]

Hit any key to login.

At this point you can press any key and get the TINI login prompt. The default user
for a new TINI is root and the default password is “tini” (you won’t see this echoed to
the screen as you type it).
Welcome to slush. (Version 1.02)

TINI login: root
TINI password: tini

TINI />

If you did not get to the “Hit any key to login” prompt, you may have seen an
error message similar to the following:

——> TINI Boot <——
TINI OS 1.0
API Version 8005
Copyright (C) 1999, 2000 Dallas Semiconductor Corporation
After the OS loads, it will try to bootstrap the program stored in
bank 7 - this is usually the slush command shell. Here is where you
might encounter the problem you described:
Loading application at 0x070000
Bad API Version:8009
Load App Failed!

This boot message is saying that you have version 1.0 (API version 8005) of the
firmware loaded, while at the same time you are trying to run a version of slush
compiled with TINI OS 1.02 (API version 8009). The numbers you see may be
different but the point is that the firmware version and the slush version are not the
same. That is why you get the “Bad API Version” message. You need to go back a

193

The TINI Software

few steps and reload the firmware (perhaps you skipped this) or download the latest
TINI API to get the tini.tbin and slush.tbin files again. This error message
typically is seen when one upgrades to a new version of the TINI API and tries to
load slush without loading the firmware first (it’s easy to forget these things). Table 7-
1 shows the various updates to the TINI firmware and how the TINIOS version
relates to the API version.

Table 7-1: TINI API versions

0.6a
1.0 beta 1
1.0 beta 2
1.0 beta 2.1
1.0 beta 2.2
1.0
1.01
1.02 pre-release 1
1.02 pre-release 3
1.02
1.02b
1.02c
1.02d
1.02e
1.1 beta 1
1.1 beta 2
1.10

8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
800A
800B
800C
800D
9000
9001
9002

TINI OS version API Version

Slush commands
You can get an idea of what you can do with slush by typing help once you login.
TINI /> help
Available Commands:

append arp cat cd
chmod chown clear copy
cp date del df
dir downserver echo ftp
gc genlog help history
hostname ipconfig java kill
ls md mkdir move
mv netstat nslookup passwd
ping ps pwd rd
reboot rm rmdir sendmail
setenv source startserver stats
stopserver su touch useradd
userdel wall wd who
whoami

194

Designing Embedded Internet Devices

For more detailed help on any command, type help followed by the name of the
command. Try this:
TINI /> help ls
ls [option] FILE

Returns a listing of the files.
[-l] Show file attributes
Alias: dir

In the TINI installation directory on your computer, (\opt\tini\docs), is the file
slush.txt that fully describes each command, its usage, and provides details you
might need to know.

Managing programs and files
Slush provides a rich set of commands for manipulating files, file permissions and the slush
directory hierarchy. Slush commands do not understand wildcards like *.tini. Actually * is a
valid character in a slush filename, as are a number of other special characters that would
not be legal in Windows or Linux (* ? $ # @, to name a few). Remember, in order to keep
the memory size of slush small, it is a very small implementation of a Unix/Linux-like shell.
All of the commands are implemented in a very minimal way.

Slush allows you to redirect program input/output from commands, as well as
running Java programs in the background, very much in the same way as you would
with Unix/Linux. Use the “<” symbol to redirect input from a file, the “>” symbol to
redirect output to a file, the “>&” symbols to redirect stdout and stderr to a file, and
“&” to run a Java program in the background. Running slush commands in the
background other than the Java command is not currently supported.

For example, to run the program myProg.tini in the background and redirect the
output to a file named runlog.txt, use the following command:
TINI/ > java myProg.tini > runlog.txt &
TINI/ >

In addition to redirecting output to a file, you can redirect output to the null device
(for example, java test.tini > null) if you want to suppress the output from a
Java program, or redirect the output to the serial port (java test.tini > S0). S0
indicates the TINI serial port named “serial0” and is currently the only port supported
for redirection to a port. You must have admin privileges to redirect to the serial0
port, and should not do this if you are already at a serial server prompt (as you are
when you log in through JavaKit or a Terminal emulator) because slush will stop the
serial server before running the command and then bring it back up after the com-
mand is complete.

All of the slush commands are summarized in the following tables. Brackets (“[]”)
around some of the command options means that these parameters are optional.

195

The TINI Software

Table 7-2: Slush file/program commands

 Command
 Name Command Options Command Description

append SRC DEST Append the contents of the file SRC to the end of file
DEST.

cat FILE Display the contents of a FILE
cd DIR Change directory to DIR (use .. for moving up 1 level).

Use pwd to display the name of the current directory.
chmod [[u|o][+|-][r|w|x]] Each file has 2 permissions which control the user’s and

[##] other’s ability to access that file. Each of these 2 permissions
can have a combination of Read Write or eXecute
permission enabled or disabled.

chown USER FILE Change the owner of a file to the specified user.
copy SRC DEST Alias of cp
cp SRC DEST Make a copy file named SRC and call it DEST..
del FILE Alias of rm
df Display the amount of free RAM.
dir Alias of ls
gc This commands runs the garbage collector that frees

memory that is no longer being used and also reorganizes
the available memory space in the heap so that it isn’t
fragmented.

java FILE [&] Execute a Java prrogram. Optionally running it in the
background.

kill PROCESS Kill the identifed process. Use ps to display all running
processes.

ls [-l] List the contents of the current directory. Use –l list
[DIR] provide a long list which includes more detail: permissions,

owner, size, date created. If DIR is specified, list the
contents of the specifed directory in the current directory.

md DIR Alias of mkdir
mkdir DIR Make a directory named DIR.
move OLD NEW Alias of mv
mv OLD NEW Move (rename) a file from OLD to NEW.
ps List the running processes.
pwd Print the name of the current directory.
rd Alias of rmdir.
rm FILE Remove (delete) the named FILE.
rmdir DIR Remove the directory DIR in the current directory. DIR

must be empty (no files or subdirectories in it) and you
must have permission to write to that directory.

source [-d] FILE Execute the specified script FILE. Use –d to turn off
verification that its an ascii file.

touch FILE Update the date on the specified file to whatever the
system clock is.

196

Designing Embedded Internet Devices

Managing users
Slush offers a minimal set of commands for managing users, but enough to get the
job done.

Table 7-3: Slush user management commands

 Command
 Name Command Options Command Description

passwd [USER] Set the password for the specified user. If the user is not
specifed, the current user is assumed. You will be
prompted for the new password. You must be an admin
(root) to change the password of another user.

useradd [-n USERNAME] Adds a user to the system. If you don’t specify the
[-p PASSWORD] username, password or userid through the options you
[-i USERID] will be prompted for them. Valid id’s range from 1 to 255:

0 is reserved for guest login
1-127 for normal users
128 is reserved for root
129-255 for super user privileges.

userdel USER Delete the specified user from the system. Current user
must have admin priveledge (userid > 127).

wall MESSAGE Broadcast a message to all users that are logged in.
wd [-i INT] Set or display the slush watchdog timer settings. -i sets

[-p INT] the watchdog interval in ms and must be used with –p, -p
[-s] sets the feed interval in ms and must be less than

watchdog interval, -s stops the current watchdog timer.
wd with no options, displays the current watchdog settings.

who Lists all users who are currently logged into slush.
whoami Display the name and userid of the current user.
su [USER] Switch user to either the specified user or if no user is

specifed, switch to root. Either way, you will be prompted
for a password.

Managing connectivity

Table 7-4: Slush connectivity commands

 Command
 Name Command Options Command Description

arp Display all ARP (address resolution protocol) cache
entries.

ftp [-d][-s FILE][HOST] Connect to a remote FTP server specified by HOST. –d
turns on debug output and –s uses the specified FILE as
the command script for FTP.

hostname [NAME] Sets the TINI hostname or if no NAME is specified,
displays the current hostname.

197

The TINI Software

ipconfig [-a xx.xx.xx.xx] Configures or displays the network settings. If no options
[-n domainname] are specified then display the current settings.
[-m xx.xx.xx.xx]
[-g xx.xx.xx.xx] -a sets IP address and must be used with the -m option,
[-p xx.xx.xx.xx] -n set domain name, -m sets the subnet mask and must
[-s xx.xx.xx.xx] be used with the -a option, -g sets the gateway address,
[-t dnstimeout] -p sets the primary DNS address, -s sets the secondary
[-d] DNS address, -t sets the DNS timeout (set to 0 for
[-r] backoff/retry), -d uses DHCP to lease an IP address, -r
[-x] releases the currently held DHCP IP address, -x lists all
[-h xx.xx.xx.xx] Interface data, -h sets the mailhost, -C commits the
[-C] current network configuration to flash, -D disables
[-D] restoration of configuration from flash, and -f indicates
[-f] to not prompt for confirmation.

netstat Displays all TCP connections.
nslookup [NAME|IP] Displays the name or IP of the given argument. For

nslookup to work properly you must have a valid DNS
server configured through ipconfig.

ping HOST [number] Sends ICMP ECHO_REQUEST packets to network the
specified HOST. An optional number of requests can be
specified, thius defaults to 1.

sendmail [-f fromAddr] Sends a simple email message to designated recipients.
[recipient(s)] The recipients (or cc list) is separated by commas.
[cc’s]

setenv VARIABLE VALUE Set the variable to the value in the current environment. If
no parameters (VARIABLE and VALUE) are specified then
it displays the current environment. If the VARIABLE is
specifed but no VALUE is given then the variable is
defined with no value.

genlog [-e][-d] Toggles the system log generation on boot. –e enables log
generation, -d disables it. When enabled, the boot time
messages are logged to /etc/.log, when disabled, the .log
file are deleted.

startserver [-s][-t][-f] Starts up the specified server. –s starts the serial server, -t
starts the Telnet server, -f starts the FTP server.

stopserver [-s][-d][-t][-f] Shuts down the specified server. -s stops the serial server,
-d disables console output when used with –s, -t stops the
Telnet server, -f stops the FTP Server.

downserver [-s][-d][-t][-f] Alias for stopserver.

We will discuss the ipconfig command in a bit more detail in Chapter 13.

The slush FTP client supports the following commands:

open ARG : Opens the FTP server at address ARG
user [ARG] : Logs in as user ARG
bin : Changes to binary transfer mode
ascii : Changes to ASCII transfer mode

198

Designing Embedded Internet Devices

list : Lists the files in the current directory
pwd : Lists the full path of the current directory
cd ARG : Changes the current directory to ARG
get ARG : Gets the file ARG from the server
put ARG : Puts the file ARG on the server
exit, bye, quit : Quit

Miscellaneous slush commands
This is a list of some of the miscellaneous commands that didn’t neatly fit into one of
the previous categories.

Table 7-5: Slush miscellaneous commands

 Command
 Name Command Options Command Description

clear Clears the screen. Works only for a VT100 compatible
terminal emulator. Does not work for either the Dumb
Terminal or JavaKit Terminal using JavaKit.

date [-t] Sets the system date and time. If no options are specified
[MMDDYYYYHHMMSS] then this command displays the currently set date and
[timezone] time. If –t is specified, this command lists the valid

timezones.
echo TEXT Echos the TEXT to the display. This is useful for display

ing progress in slush scripts.
help [COMMAND] Displays the usage information for slush commands. If

no COMMAND is specified, then help displays a list of all
slush commands.

history Displays the last few slush commands. The number of
commands that slush remembers is determined by the
environment variable HISTORY.

reboot [-f][-h][-a] This command shuts down all servers and then cleanly
reboots the system. -f specified to not prompt for
confirmation, -h tells slush to clear heap on reboot, -a
tells slush to clear heap and system memory on reboot.

stats [-v] Display the current status of TINI, slush and the currently
running servers. –v turns on verbose mode which gives a
little more information.

Optional slush commands
These commands are located in the src\Optional\SlushCommands directory of the
Slush source code. The next major section in the chapter discusses adding user and
optional commands to slush. Because of size restrictions, to use them you might have
to remove a current slush command.

199

The TINI Software

Table 7-6: Slush optional commands

 Command
 Name Command Options Command Description

diff FILE1 FILE2 Diff does a byte for byte compare of FILE1 to FILE2.
When a difference is found, the offset and the differing
bytes are displayed.

pollmemory [-i interval] Starts a thread that will send the amount of free RAM to
[-s] the given port every interval.
[-p port] -i specifies the report interval in milliseconds, -p specifies

the port to send to, -s stops the memory reporter.
PPP [-a xx.xx.xx.xx] Sets the options for PPP connections. -a specifies the

[-p password] local IP address, -c tells slush to close the connection, -p
[-r xx.xx.xx.xx] sets the login password, -r sets the remote IP address, -u
[-u username] sets the login username, -x sets the serial port number
[-x serial port_number] used by ppp, -s starts the PPP server, -d starts the PPP
[-s][-d][-c] client.

sled [FILE] Edit the specified file using a basic vi like command set.
Only works from Telnet sessions using terminal
emulators that support VT100 emulation (does not work
from JavaKit).

threadstat Displays information about the number of currently
running threads.

See the file slush.txt in the docs directory of your TINI installation directory
(\opt\tini\docs\slush.txt) for a description of the SLED command set.

Slush files and environment
When slush is first started, it creates several default system files, placing them in the
/etc directory. These files are

• .tininet
• .startup
• passwd

passwd
User login information is kept in the /etc/passwd file. The user’s name, hash of their
password, and user ID are the only things in this file. Slush has two accounts set up
by default: root with the initial password of “tini” and userid of 128, and guest
with the initial password “guest” and userid of 0. Valid user IDs range from 0 to 255
and have privileges assigned based on this number according to the Table 7-7:

200

Designing Embedded Internet Devices

Table 7-7: Slush UserID privileges

0
1-127
128

129-255

Guest
Normal User

Root
Admin User

UserID Privilege

You can use cat to view the passwd file. Mine looks like this right now:
root:f8491b67e91f837c13c3444965281bcee5fca964:128
guest:1bb6e3a2abc20f654fe62fd139790c06394885d3:0
dan:d8721aa38bec040436b459f2a76bbcb8fefaa7ff:007
rosie:ec246b45190ffc78f200c21c2bf6954b9b8e9c11:32
brian:6b4fd9e73f777b1ce2ff2f88d04380c8c09c26af:111

You can edit this with a text editor (Sled on TINI) but there is no real need. Use the useradd and
userdel commands to add and delete users and the passwd command to change user’s passwords.
The password is stored as a hash using the com.dalsemi.system.Security.hashMessage()
method, which is based on the “Federal Information Processing Standards Publication
180-1, Secure Hash Standard.”12

.startup file
Any user with admin permission can place commands to be run on boot time in the /
etc/.startup file. These commands will be executed as if they were from a slush
prompt. Any .tini program files run with the java command will be forced to run in
the background.

The default .startup file looks like this:
########
#Autogen’d slush startup file
setenv FTPServer enable
setenv TelnetServer enable
setenv SerialServer enable
##
#Add user calls to setenv here:
##
initializeNetwork
########
#Add other user additions here:

There are two main uses for this file: to set any necessary environment variables and
to start your own program automatically at boot time. You can add your slush
commands to the end of this file, to have them run on boot time. If you don’t want
any of the servers started on boot, you can delete the appropriate lines.

12 FIPS 180-1 Secure Hash Standard – http://www.itl.nist.gov/fipspubs/fip180-1.htm

201

The TINI Software

Sometimes you may add commands to the .startup file but you may occasionally
want to login without running them. To skip executing the contents of the .startup
file, press the “5” key during the slush boot up. Slush will still enable the serial
server, but will not execute the .startup file.

.tininet file
The /etc/.tininet file contains TINI’s hostname and domain name. The default
hostname is TINI. There is no default domain name. You can change the contents of
the file with the hostname command.
TINI /> hostname TINI.cool.net
TINI /> hostname
TINI.cool.net
TINI /> cat /etc/.tininet
HostName:TINI
DomainName:cool.net
TINI />

Also notice that the hostname is used in the Slush prompt. If you change the
hostname the prompt will change to that new hostname on your next login.
TINI /> hostname astatine.element.e
TINI /> hostname
astatine.element.e
TINI /> logout
Connection Terminated

Welcome to slush. (Version 1.02)

astatine login: root
astatine password:
astatine /> hostname
astatine.element.e
astatine />

The domain name (but not the host name) may also be set using ipconfig command.
astatine /> ipconfig -n new.name
astatine /> hostname
astatine.new.name

In addition to these special files, TINI allows for an optional home directory for each
user and an optional .login file for each user to customize their environment.

User Home
A directory created in the root directory with the same name as a user will become
that user’s home directory upon logging in. In other words, whatever your username
is, if you create a directory in / with the same name, that will be the default login
directory.

202

Designing Embedded Internet Devices

TINI /> whoami
root UID: 128
TINI /> mkdir dan
TINI /> logout
Connection Terminated

Welcome to slush. (Version 1.02)

TINI login: dan
TINI password:
TINI /dan> pwd
/dan
TINI /dan>

.login file
Any user can also place a .login file in their home directory. Every line in this file
will be executed as it would be from the slush command prompt. This is very much
like the .startup file but can be unique for each different user. You can comment out
lines by inserting a ‘#’ at the beginning of a line.
TINI /dan> echo “echo Hi Dan, Welcome back.” > .login
TINI /> logout
Connection Terminated

Welcome to slush. (Version 1.02)

TINI login: dan
TINI password:
Hi Dan, Welcome back. TINI /dan>

Obviously this little example is simple, but you can see the possibilities.

Servers in slush
You have already seen from looking at the slush commands and the TINI API that
slush supports three servers—an FTP server, a Telnet server and a serial port server.

You can check to see what servers are serving with the netstat command, and you
can view who these users are with the who command.
TINI /dan> netstat
Connection count: 13
 Local Port Remote Port Remote IP State
1: 23 ---- --------- LISTEN
2: 21 ---- --------- LISTEN
3: 21 4640 192.168.1.18 ESTABLISHED
4: 21 4641 192.168.1.2 ESTABLISHED
5: 21 4642 192.168.1.18 ESTABLISHED
6: 21 4643 192.168.1.18 ESTABLISHED
7: 21 4644 192.168.1.36 ESTABLISHED
8: 23 4645 192.168.1.18 ESTABLISHED

203

The TINI Software

TINI /dan> who
Serial
======
root

Telnet
======
dan
rosie

 FTP
======
dan
rosie

guest

FTP server

The FTP server listens on port 21 for connection requests. Each connection starts a
new session to handle that request. You can change the configuration options for the
FTP server with the following environment variables:
setenv FTP_ALLOW_ROOT [true/false] - Allow or disallow root to login

to FTP. Default is true.
setenv FTP_TIMEOUT [Number of ms] - Inactivity timeout. 0 is

infinite. Default infinity.
setenv FTP_ALLOW_ANON [true/false] - Allow or disallow anonymous

login. Default is true.
setenv FTP_LOG_ANON [file] - Log file for anonymous logins.

The directory (and the file if
it exists) must have “other”
write permission.

setenv FTP_WELCOME [file] - File to display on successful
login.

setenv FTP_CONNECT [file] - File to display on connection.

Note that any changes in the environment by changing the value of these variables
will not take effect until the FTP server is restarted.

Telnet server

The Telnet server listens on port 23 for connection requests. Each connection starts a
new session to handle that request. You can change the configuration options for the
Telnet server with the following environment variables:
setenv TELNET_ALLOW_ROOT [true/false] - Allow or disallow root to

login to Telnet. Default is
true.

204

Designing Embedded Internet Devices

setenv TELNET_TIMEOUT [Number of ms] - Inactivity timeout. 0 is
infinite. Default infinity.

setenv TELNET_WELCOME [file] - File to display on successful
login.

Note that any changes in the environment by changing the value of these variables
will not take effect until the Telnet server is restarted.

Serial server

The Serial Server provides TTY login to the slush system. This server handles
connections from JavaKit or a terminal emulator. You can change the config-uration
options each serial login with the following environment variables:
setenv HISTORY [size] - Size of history command buffer.
setenv BROADCASTS [true/false] - Allow or disallow wall broadcasts.

Default is true.

Note that any changes in the environment caused by changing the value of these
variables will not take effect until the Serial server is restarted.

Slush is set up by default to use serial0 at 115200 bits per second. If you need to change
the port, or set the speed down to 19200, you need to edit Slush.java. Change the
SERIAL_PORT and SERIAL_SPEED and other variables to your needs, and rebuild.
We will be discussing how to go about modifying Slush in a few sections.

That about does it with Slush for now. Next, we will start working with the TINI
software development tools.

Programming TINI
In this section we will be working our way through the various software development
tools and writing Java specifically for TINI. You have already had a quick overview
from Chapter 5. Here we will be digging in deeper. Here is a rough outline of the steps
for developing software for the TINI microcontroller:

• Know what parts of Java are not implemented on TINI and what the limitations
of TINI are. See “TINI Firmware 1.02 Current Limitations”13 for a complete list
of the limitations of TINI. Also see “TINI Firmware 1.02”14 for a complete list of
which parts of Java TINI does not implement.

• Learn how to develop Java programs for a small microcontroller with limited
resources. (See tips below.)

• Know the hardware (Chapter 6).

13 TINI Firmware 1.02 Current Limitations – http://www.ibutton.com/TINI/hardware/limit.html
14 TINI Firmware 1.02 – http://www.ibutton.com/TINI/hardware/differ.html

205

The TINI Software

• Write your Java program.

• Compile. Make sure to include tini.jar in your CLASSPATH.

• Convert the bytecode (.class file) to TINI format using TINIConvertor or
BuildDependency (discussed in subsequent sections).

• Port the program to TINI by using FTP or Javakit (discussed in subsequent
sections).

• Run the program.

• Sit back and watch it run or debug it as necessary.

Tips for your programs
TINI is a small microcontroller with a limited amount of memory. As a result, the
TINI firmware does not support the full Java API. Additionally, there are a number of
things that you can do as a programmer to take advantage of the hardware and things
you need know to avoid problems. Make sure you consult the online lists of the
limitations mentioned above. Here is a short list of some of the things you need to
keep in mind when programming your TINI (as of TINI API version 1.02).

Threads
• All threads run at the same priority. Thread.setPriority() will not throw

an exception, but will not change the runtime priority of that thread.

• Threads can block on I/O; this increases CPU cycle availability to other
threads and processes. Network threads will block on accept() until a
connection is established. Reads will block until data is received.

• The TINI OS limits the number of processes to 8, with 16 threads per Java
process. One process is consumed by the garbage collector. The application
(typically slush) is another process.

Memory
• A quick and memory-saving way to print the amount of free RAM is:

com.dalsemi.system.Debug.intDump(Control.getFreeRAM())

 System.out.println() consumes lots of memory.

• If you consume large amounts of memory, especially in iteration-based loops,
it is a good idea to call the garbage collector periodically yourself with
System.gc(). The garbage collector will kick off automatically when memory
dips below a certain threshold, but major garbage collection during program
run will cause the collector to run for long periods of time in the background.

• If you are doing lots of I/O then avoid reading and writing a single byte at a
time. Either use a buffered stream or write byte arrays.

206

Designing Embedded Internet Devices

• Native modules can’t be larger than 64k.

• The maximum size of any array is 64k.

• Avoid doing string concatenation with the “+” operator. If you have to concat-
enate more then one thing to a string, use StringBuffer and its append function
instead. It’s faster plus takes less memory.

Networking
• MulticastSocket – Only one local interface can send and receive on a given

group.

• TINI does not support IP datagram fragmentation/reassembly.

• TINI has 24 total allowed socket connections.

• TINI does not support IP layer routing.

Good ideas
• Print a banner—make one of the first lines of your program a println of some kind

so you know right off if your program is running. If you do not see this line, it is
possible your heap is in an unknown state. You may want to clear out the heap.

• Check com.dalsemi.system.ArrayUtils for various fast array comparison/
fill methods.

Java classes/methods (API 1.02d)
• TINI currently supports only a subset of reflection. Class.forName(),

newInstance(), etc., are supported, but java.lang.reflect.Array, Con-
structor, Field, etc. are not yet supported. See API_Diffs.txt for a full list of
nonsupported classes and methods.

• TINI does not currently support serialization.

• printStackTrace() is only partially supported. The fully qualified exception
name will be printed, but not the method stack list. The full method names do
not currently exist in the .tini files.

• PPP Dial on demand is not currently supported and get/setIdleTimeout() is not
supported.

• The method Date.toLocaleString() returns the same thing as
Date.toString(). This is because TINI does not support any of the date
formatting classes.

• Only the default locale is supported. Others can be added by users in their
Java programs.

• Dates representing times before January 1, 1970 will not return correct values
for their fields, either through a Calendar object or through a Date object.

207

The TINI Software

• A class file is limited to 255 static fields (including all super classes’ static
fields) and 255 instance fields (including all super classes’ instance fields).

• A class file is limited to 127 methods (including all super classes’ methods,
excluding native methods). A class file is limited to 255 native methods.

• A method is limited to 63 local variables.

File system
• Each converted class file can’t be larger than 64k.

• Directories can only hold 254 files. Attempting to add more will result in an
IOException.

• An IOException will be thrown when attempting to create files with names
longer than 247 characters.

C:\>javap -bootclasspath
%TINI_HOME%\tiniclasses.jar java.lang.Math

Compiled from Math.java
public final class java.lang.Math extends
java.lang.Object

/* ACC_SUPER bit NOT set */
{

public static final double E;
public static final double PI;
static final double zero;
static final double two54;
public static double abs(double);
public static float abs(float);
public static int abs(int);
public static long abs(long);
public static double ceil(double);
public static double floor(double);
public static double log(double);
public static double max(double, double);
public static float max(float, float);
public static int max(int, int);
public static long max(long, long);
public static double min(double, double);
public static float min(float, float);
public static int min(int, int);
public static long min(long, long);
public static synchronized double random();
public static double rint(double);
public static long round(double);
public static int round(float);
public static double sqrt(double);

}

C:\>javap -classpath c:\jdk1.3.1\lib\ java.lang.Math
Compiled from Math.java
public final class java.lang.Math extends java.lang.Object {

public static final double E;
public static final double PI;
public static strictfp double sin(double);
public static strictfp double cos(double);
public static strictfp double tan(double);
public static strictfp double asin(double);
public static strictfp double acos(double);
public static strictfp double atan(double);
public static strictfp double toRadians(double);
public static strictfp double toDegrees(double);
public static strictfp double exp(double);
public static strictfp double log(double);
public static strictfp double sqrt(double);
public static strictfp double IEEEremainder(double, double);
public static strictfp double ceil(double);
public static strictfp double floor(double);
public static strictfp double rint(double);
public static strictfp double atan2(double, double);
public static strictfp double pow(double, double);
public static strictfp int round(float);
public static strictfp long round(double);
public static strictfp double random();
public static strictfp int abs(int);
public static strictfp long abs(long);
public static strictfp float abs(float);
public static strictfp double abs(double);
public static strictfp int max(int, int);
public static strictfp long max(long, long);
public static strictfp float max(float, float);
public static strictfp double max(double, double);
public static strictfp int min(int, int);
public static strictfp long min(long, long);
public static strictfp float min(float, float);
public static strictfp double min(double, double);
static {};

}

A quick technique to determine if TINI supports the classes and methods you are interested in is to
use javap (the Java class file disassembler) to examine the TINI API. The following example compares
the TINI API to the SUN JDK API for the java.lang.Math class. You will notice that the trigonometric
functions have not been included in the TINI API.

208

Designing Embedded Internet Devices

TINIConvertor
Once your Java program is written and it compiles error free, you will need to convert
the .class files to a format that the TINI Java Virtual Machine likes. The tool to use is
TINIConvertor, which is supplied by Dallas Semiconductor in the tini.jar
package. TINIConvertor combines and converts normal class files into a single file
that can be directly ported to TINI. The following example shows how to run
TINIConvertor and have it list the possible command line options.

One important thing to note is that TINIConvertor can generate two different kinds
of files for the TINI Java Virtual Machine: .tini files and .tbin files. A .tini file is a
converted Java class file that’s intended to be executed from inside the Slush
operating system. You generate the .tini file on your PC, move it over to your TINI
via FTP, then Telnet onto the TINI and execute your .tini program under Slush. A
.tbin file is designed to be loaded into the TINI boot sector and will execute when the
TINI is rebooted (instead of Slush). You generate a .tbin file on your PC, move it to
your TINI via the JavaKit program, then reboot TINI to watch it execute.
TINIConvertor will generate either one for you, based on a command line parameter.
When developing a program, it’s often smart to generate .tini files and test them
under Slush, which provides a certain amount of control. Then, when the program
works just the way you want it, you can turn it into a .tbin file and make it a bootable
program.
C:>java -cp %TINI_HOME%\bin\tini.jar TINIConvertor

TINIConvertor + ZIP
Version 0.73 for TINI
built on or around January 24, 2001
Disassembler/Builder Version 0.15 TINI, October 30, 2000
JiBDB 0.60 for TINI, November 10, 2000
Copyright (C) 1996 - 2001 Dallas Semiconductor Corporation.
MainStartClass: First available.
Target address: 0x70100
USAGE: TINIConvertor -f <classfile/ZIPfile/directory> -o <outfile> -d
<JiBDB>
Other options
-v (verbose output)
-m <class containing the static void main() to execute>
-n <native file>
-l (use flash file format)
-t <target address> (starting address, defaults to 0x70100)

-d Tells TINIConvertor where the database is that it will need to convert
the .class files into .tini files. You will always need to specify this.
This should be %TINI_HOME%\bin\tini.db

209

The TINI Software

-f Specifies the class file or directory to convert. If you specify a
directory then TINIConvertor will convert all of the .class files it
finds and then write out one converted file.

-o Specifies the name of the output file. Typically this is a .tini file.

-l Tells TINIConvertor to use the flash file format. This file format
allows you to load your program in the flash boot sector instead of
Slush.

BuildDependency
BuildDependency is essentially TINIConvertor with a front-end added for finding
and including Java class file dependencies. These dependencies may be other parts of
the TINI API that are not included in the firmware, like the 1-Wire containers in
com.dalsemi.onewire.container.*. You can view the command line options and
usage information for BuildDependency by running it without any parameters:

C:>java -cp %TINI_HOME%\bin\tini.jar BuildDependency

Dallas Semiconductor TINI Program Building Tool
BuildDependency 1.03, January 24, 2001 (KLA)
———————————————————————————————

This program is meant to be used to build applications for TINI
where building one class into a TINI application means that many
other classes (dependency classes) must be built in, such as programs
that use the 1-Wire API. See the BuildDependency_README for more
information on using this program.

Usage:
 java BuildDependency [options]

options:-add NAMES — The names of the dependencies to add to this
project. This is a semi-colon or comma separated
list of dependency names.

-p PATH — Path to your dependency classes. This is a
semi-colon or comma separated list that can
include multiple jar files and directories.

-x DEP_FILE — A semi-colon or comma separated list of
filenames of dependency text database files—
multiple files can now be specified, although
note that if a key is redefined, only the last
definition found will be used by
BuildDependency—the keys won’t be added.
BuildDependency has a default set of
dependencies used for 1-Wire programs. See the
readme for more on this file’s format.

210

Designing Embedded Internet Devices

-debug — See the entire output of TINIConvertor
-dep — See the entire dependency list using the

specified depdendency file or the default.
-depNAME — See the depdendency list for dependency named

NAME.
-Any TINIConvertor Option

— BuildDependency supports all TINIConvertor
options by directly passing any other options to
TINIConvertor.

For example, for a program that uses 1-Wire Containers for the DS1920,
DS1921, and the DS1996, I might try running: (EOLN’s added for clarity)
 java BuildDependency -f ReadTemp.class -o readtemp.tini

-d d:\tini1.01\bin\tini.db -p OneWire.jar
-add OneWireContainer10;OneWireContainer21;OneWireContainer0C

**
* NOTE: 1. Dependency classes must already be compiled. *
**

BuildDependency takes all of the TINIConvertor options and a few additional ones.

-x Is a list of filenames that your program is dependent on. This can
also be a file that is a list of file names. One such file, owapi_dep.txt
(%TINI_HOME%\bin\owapi_dep.txt), is included with TINI; it lists
all of the 1-Wire container dependencies.

-p Specifies the path to use for finding the dependency files. If your
program is dependent on the 1-Wire containers, then this option
probably should be set to
%TINI_HOME%\bin\owapi_dependencies_TINI_001.jar (API
versions 1.02 and 1.02b used this name, 1.02c and later used the
name owapi_dependencies_TINI.jar. While this difference may
seem minor, it will break any scripts that you might use to compile
and convert your TINI programs).

-add Specifies a list of dependencies to be added to the .tini file that is
created. For example, if your program uses a Dallas Semiconductor
DS1820 temperature sensor that has a family code of 10, then you
would need to –add OneWireContainer10.

Getting complex builds to work properly with BuildDependency is sometimes
difficult and often appears to be impossible. Persistence, patience and exploring all
possibilities (no matter how wrong you might think they are) often pays off.
Sometimes things that you think should work, don’t. But there are several ways to do
the same thing, so try the alternatives.

211

The TINI Software

A TINI example
Now that we have discussed the tools needed to convert Java class files to a format
that TINI recognizes, we will demonstrate the use of these programs on a Java
program of our own. We will be examining a threaded web server (based on the
threaded web server developed in Chapter 3) that prints out some TINI statuses like
current time, uptime, API version, amount of free memory, all connected 1-Wire
devices, etc. The point of this is to show you a complex TINI program example and
to show more about TINIConvertor or BuildDependency tools. Then we will add
our threaded web server to the .startup so it starts up automatically on boot and then
we’ll install it on TINI in place of Slush. The program listing is shown below,
TiniWebStat.java:

Listing 7-1: TiniWebStat.java

import java.util.*;
import java.io.*;
import java.net.*;
import com.dalsemi.system.*;
import com.dalsemi.tininet.*;
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;
import com.dalsemi.onewire.container.OneWireContainer.*;

/*
 This program implements an HTTP server on TINI that
 prints out the last time TINI rebooted and a whole bunch
 of stats on your TINI.
*/

public class TiniWebStat implements Runnable {
protected Socket mySocket;
String who;

 public TiniWebStat(Socket mySocket) {
 this.mySocket = mySocket;
 }

 public static void main(String[] args) throws IOException {
 int port = 80;

 ServerSocket srv = new ServerSocket(port);

 // listen forever and start new threads as requests come in
 while (true) {

Socket mySocket = srv.accept();

212

Designing Embedded Internet Devices

TiniWebStat f2 = new TiniWebStat(mySocket);
Thread myThread = new Thread(f2);
myThread.start();

 }
 }

 // This is the content of each thread
 public void run() {
 float upT;
 try {

OutputStreamWriter osr =
 new OutputStreamWriter(mySocket.getOutputStream());

BufferedWriter bwtr = new BufferedWriter(osr);
InputStreamReader isr =

 new InputStreamReader(mySocket.getInputStream());
BufferedReader rd = new BufferedReader(isr);

// write out the one and only page and then clean up
writePage(bwtr);
rd.close();
mySocket.close();

 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 //
 public static void writePage(BufferedWriter wr) {

Date now = new Date(System.currentTimeMillis());

// import form com.dalsemi.system
long uptm = TINIOS.uptimeMillis()/1000; // convert ms to secs
int ram = TINIOS.getFreeRAM();
int tsk = TINIOS.getTaskID();
String hw = TINIOS.getTINIHWVersion();
String sr = TINIOS.getTINISerialNumber();
String fr = TINIOS.getTINIOSFirmwareVersion();
String sh = TINIOS.getShellName();

// import from com.dalsemi.tininet
String dn = TININet.getDomainname();
String en = TININet.getEthernetAddress();
String hn = TININet.getHostname();
String ip = TININet.getIPAddress();

// figure out uptime in days, hours, minutes, seconds
int h = (int)(uptm/3600);

213

The TINI Software

int m = (int)((uptm % 3600)/60);
int s = (int)(uptm % 60);
int d = h/24;
h = h % 24;

 try {
wr.write(“HTTP/1.0 200 OK\r\n”);
wr.write(“Content-type: text/html\r\n”);
wr.write(“<HTML><HEAD>\r\n”);
wr.write(“<TITLE>TINI Stats</TITLE>\r\n”);
wr.write(“</HEAD>\r\n”);
wr.write(“<H1>TINI Stats</H1>\r\n”);
wr.write(“<BODY><BLOCKQUOTE><PRE>\r\n”);
wr.write(“The current time: “ + now + “
”);
wr.write(“TINI has been up for: “ + d + “ days, “);
wr.write(h + “ hours, “ + m + “ minutes, “ + s + “

seconds.
”);
wr.write(“Hardware version: “ + hw + “
”);
wr.write(“Firmware version: “ + fr + “
”);
wr.write(“Serial Number: “ + sr + “
”);
wr.write(“Free RAM: “ + ram + “
”);
wr.write(“Current Shell: “ + sh + “
”);
wr.write(“Task ID: “ + tsk + “
”);
wr.write(“Hostname: “ + hn + “
”);
wr.write(“Domainname: “ + dn + “
”);
wr.write(“Ethernet(MAC) address: “ + en + “
”);
wr.write(“IP adddress: “ + ip + “
”);
wr.write(“
”);
wr.write(“One wire devcies connected:
”);

 Enumeration adapter_enum =
OneWireAccessProvider.enumerateAllAdapters();

 while(adapter_enum.hasMoreElements()) {
 DSPortAdapter adapter=(DSPortAdapter)

adapter_enum.nextElement();
 wr.write(“Adapter: “ + adapter.getAdapterName() +

“
”);

adapter.setSearchAllDevices();
adapter.targetAllFamilies();
Enumeration ibutton_enum =

adapter.getAllDeviceContainers();

 while(ibutton_enum.hasMoreElements()) {
 OneWireContainer node =
 (OneWireContainer) ibutton_enum.nextElement();
 wr.write(“ - “ + node.getName() + “ - “ +
 node.getAddressAsString() + “
”);
 }

214

Designing Embedded Internet Devices

 }

wr.write(“</PRE></BLOCKQUOTE></BODY></HTML>\r\n”);
wr.flush();

 }
 catch (IOException e) {
 }
 catch (Exception e) {
 }
 }
}

As you examine the preceding Java program, you will notice the use of a number of
the packages we discussed in the TINI API section (above). For instance, we import
several of the com.dalsemi.* packages:
import com.dalsemi.system.*;
import com.dalsemi.tininet.*;
import com.dalsemi.onewire.*;

From the com.dalsemi.system.TINIOS package, we use a number of methods to get
the status of TINI (uptime, amount of free RAM, and Task ID), and some of the TINI
hardware and software versions. From the com.dalsemi.tininet.TININet package,
we get a number of pieces of information on the network settings, and from the
com.dalsemi.onewire.* package, we get the 1-Wire adapters and a list of all the 1-
Wire devices attached to each adapter.

Compile this program with the following command line
C:\>javac -classpath %TINI_HOME%\bin\tiniclasses.jar;. TiniWebStat.java

Once this is compiled, we need to convert the .class file to a file that is compatible
with the TINI firmware. Run TINIConvertor:
C:\>java -cp %TINI_HOME%\bin\tini.jar TINIConvertor

-d %TINI_HOME%\bin\tini.db
-f TiniWebStat.class
-o TiniWebStat.tini

We’ve generated a .tini file, so we will
be running it under slush. With no
errors, you can copy the file to your
TINI with FTP and use Telnet to login
and run the program. If you found any
errors, check that you have typed all
of the compile and TINIConvertor
commands properly and that the
program has been typed in accurately.

The Java command line has been shown with
newlines added for clarity. We will continue to show
them this way throughout the book. Since the
command lines are often longer than can fit on a
single line of printed text, this is much easier to see
the various parameters than if we show the
commands like this:

C:\>java -cp %TINI_HOME%\bin\tini.jar
TINIConvertor -d %TINI_HOME%\bin\tini.db
-f TiniWebStat.class -o TiniWebStat.tini

215

The TINI Software

C:\>ftp 192.168.1.85
Connected to 192.168.1.85.
220 Welcome to slush. (Version 1.02) Ready for user login.
User (192.168.1.85:(none)): root
331 root login allowed. Password required.
Password: tini
230 User root logged in.
ftp> send TiniWebStat.tini
200 PORT Command successful.
150 ASCII connection open, putting TiniWebStat.tini
226 Closing data connection.
ftp: 2135 bytes sent in 0.00Seconds 2135000.00Kbytes/sec.
ftp> quit
221 Goodbye.

C:\> telnet 192.168.1.85
Trying 192.168.1.85...
Connected to TINI.
Escape character is ‘^]’.

Welcome to slush. (Version 1.02)

TINI login: root
TINI password: tini
TINI /> java TiniWebStat.tini &
TINI />

Note that the “&” at the end of java TiniWebStat.tini & runs the TiniWebStat
server as a background thread. Now start up a web browser on your desktop
computer and browse to your TINI. We wrote the server to listen to port 80. You need
to enter http:// followed by the IP address of your TINI followed by a :80. In this
case, my TINI board’s IP address is 192.168.1.85. You need to replace that with your
TINI board’s IP address.

Notice that 1-Wire devices are listed as “Device Type: 01” rather than the specific
Dallas Semiconductor device name.
One wire devcies connected:
Adapter: TINIExternalAdapter
 - Device type: 10 - 700000004B8F1010
 - Device type: 18 - 1C00000002795818
 - Device type: 12 - CB00000017006112
 - Device type: 01 - 21000007997D9F01
Adapter: TINIInternalAdapter
 - Device type: 89 - 9F5E70005C8D1089

This is because the device name returned by OneWireContainer.getName() is using
the default name as supplied by com.dalsemi.onewire.container and not by the
specific container type (there is a container type for each type of device). To get the

216

Designing Embedded Internet Devices

device name from these containers it is necessary to combine the dependencies into
the .tini class file using BuildDependency. The following will do this:
C:\> java -cp %TINI_HOME%\bin\tini.jar BuildDependency

-f TiniWebStat.class
-o TiniWebStat.tini
-d %TINI_HOME%\bin\tini.db
-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-x %TINI_HOME%\bin\owapi_dep.txt
-add OneWireContainer01;OneWireContainer10;OneWireContainer12;

OneWireContainer18
-debug

This command may exceed the DOS command line size so you may have to create a
batch file and put this command in the file and then execute the file, which is a good
thing because you don’t want to type a command this long more than once anyway.

So run BuildDependency on TiniWebStat.class and then FTP the
TiniWebStat.tini file to your TINI. Before you run this new version, make sure
you kill the old one—it’s still running (unless you have rebooted the TINI).

Figure 7-17: Internet Explorer showing the TiniWebStat output

217

The TINI Software

TINI /> ps
3 processes
1: Java GC (Owner root)
2: init (Owner root)
3: TiniWebStat.tini (Owner root)
TINI /> kill 3
TINI /> java TiniWebStat.tini &

Now browse the TiniWebStat server again and examine the output. Notice that the
“Device Type” has now changed to the actual Dallas Semiconductor device name (in
the cases where there is a named container—not all containers have named
containers, as you can see in the following output).
One wire devices connected:
Adapter: TINIExternalAdapter
 - DS1920 - 700000004B8F1010
 - DS1963S - 1C00000002795818
 - DS2406 - CB00000017006112
 - DS1990A - 21000007997D9F01
Adapter: TINIInternalAdapter
 - Device type: 89 - 9F5E70005C8D1089

One drawback to this is that building in the device names also builds in a whole pile of other
methods. Examine the last few lines of TINIConvertor and the last few lines of
BuildDependency to look at the final file byte size. With TINIConvertor the Total
Application Length is 2084 bytes; with BuildDependency the Total Application Length is
28575 bytes. Quite a big difference. This is because some of the containers we have
included here have long dependency lists (lots of methods).

Now that we have our server running, how can we make this server start automatically
whenever the TINI is rebooted? There are two ways: 1. Add the java
TiniWebStat.tini command to the .startup file; or 2. Replace slush with
TiniWebStat.tbin (which requires running BuildDependency with the –l flag). First,
let’s try adding this to the .startup file. Using FTP, get the /etc/.startup file.
C:\>ftp 192.168.1.85
Connected to 192.168.1.85.
220 Welcome to slush. (Version 1.02) Ready for user login.
User (192.168.1.85:(none)): root
331 root login allowed. Password required.
Password:
230 User root logged in.
ftp> cd etc
250 CWD command successful.
ftp> get .startup
200 PORT Command successful.
150 ASCII connection open, getting .startup
226 Closing data connection.
ftp: 225 bytes received in 0.16Seconds 1.41Kbytes/sec.

218

Designing Embedded Internet Devices

ftp> quit
221 Goodbye.
C:\>

Now edit the .startup file using your favorite text editor (such as Notepad). Change
the file, adding a single line java TiniWebStat.tini to the end of the file. Save the
file. Your .startup will now look like this:
########
#Autogen’d slush startup file
setenv FTPServer enable
setenv TelnetServer enable
setenv SerialServer enable
##
#Add user calls to setenv here:
##
initializeNetwork
########
#Add other user additions here:
java /TiniWebStat.tini

Now FTP the file back to your TINI:
C:\>ftp 192.168.1.85
Connected to 192.168.1.85.
220 Welcome to slush. (Version 1.02) Ready for user login.
User (192.168.1.85:(none)): root
331 root login allowed. Password required.
Password:
230 User root logged in.
ftp> cd etc
250 CWD command successful.
ftp> send .startup
200 PORT Command successful.
150 ASCII connection open, putting .startup
226 Closing data connection.
ftp: 247 bytes sent in 0.00Seconds 247000.00Kbytes/sec.
ftp> quit
221 Goodbye.

Through a Telnet session you can verify the file is there (use cat). Now reboot your TINI.
TINI /> reboot

Give your TINI a few seconds to reboot and then, using your web browser, check to
see that the server is running again. You can also login to TINI and use the ps
command to check the running processes:
TINI /> ps
3 processes
1: Java GC (Owner root)
2: init (Owner root)
3: /TiniWebStat.tini (Owner root)

219

The TINI Software

That was fairly easy, no? Now let’s try running the server in place of Slush.

Recompile the server into the .tbin format with BuildDependency, like this:
C:\> java -cp %TINI_HOME%\bin\tini.jar BuildDependency

-l
-f TiniWebStat.class
-o TiniWebStat.tbin
-d %TINI_HOME%\bin\tini.db
-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-x %TINI_HOME%\bin\owapi_dep.txt
-add OneWireContainer01;OneWireContainer10;OneWireContainer12;

OneWireContainer18
-debug

Using JavaKit, load the TiniWebStat.tbin file. After loading the file, don’t forget to
press “E” at the loader prompt to exit the loader and start executing the
TiniWebStat.tbin program. You will notice in the JavaKit window that the last line
you see is “Application load complete.” At that point you can browse your web
server. Remember, at this point we have replaced Slush with TiniWebStat so you
cannot FTP or Telnet into your TINI. To login to your TINI you will need to use
JavaKit to re-load Slush.tbin. Play with your new web server for a little while and
than re-load Slush, as we are going to continue on with more new things.

Modifying slush
Now that you have seen how easy it is to replace slush with your own program, we
are going to start some simple modifications to slush itself. Slush is fitted with a
variety of commands for development of TINI applications but it doesn’t have to end
there. We can add some new commands to slush and remove a few of the ones we
don’t need or want. We are going to discuss three ways to modify slush: recompiling
slush, deleting commands from slush, and adding new commands to slush.

Recompiling Slush
Before we start to add and delete commands, let’s first determine that we can properly
recompile slush and transfer it to a TINI and verify that we are actually running our
new version of slush. We need to start by creating a directory in which we can unpack
the slush source files and recompile them. For this section we are using the directory
c:\projects\modslush. You can use this or create a directory of your choosing.
C:\> mkdir projects
C:\> cd projects
C:\> mkdir modslush
C:\> cd modslush

Note that you need to find the Slush source jar file; it should be in %TINI_HOME%\src\.
Look for the file SlushSrc.jar. You will need to use the Java jar program to unpack the
jar and create the slush directory hierarchy in \projects\modslush\.

220

Designing Embedded Internet Devices

C:\> jar –xf %TINI_HOME%\src\SlushSrc.jar

Now change directory to \projects\modslush\com\dalsemi\slush\ and look around.
C:\> cd com\dalsemi\slush
C:\> dir
. <DIR> 03-18-01 3:32p .
.. <DIR> 03-18-01 3:32p ..
COMMAND <DIR> 03-18-01 3:32p command
COMMAN~1 JAV 17,117 03-19-01 6:54a CommandInterpreter.java
SLUSH~1 JAV 49,776 03-25-01 4:40p Slush.java

C:\> cd command
C:\> dir
. <DIR> 03-18-01 3:32p .
.. <DIR> 03-18-01 3:32p ..
ADDUSE~1 JAV 6,226 03-19-01 6:54a AddUserCommand.java
APPEND~1 JAV 4,562 03-19-01 6:54a AppendCommand.java
ARPCOM~1 JAV 5,823 03-19-01 6:54a ARPCommand.java
CATCOM~1 JAV 3,536 03-19-01 6:54a CatCommand.java
CDCOMM~1 JAV 3,421 03-19-01 6:54a CdCommand.java
CHMODC~1 JAV 6,385 03-19-01 6:54a ChmodCommand.java
CHOWNC~1 JAV 3,244 03-19-01 6:54a ChownCommand.java
...
FTPCOM~1 CLA 7,559 03-19-01 7:17a FTPCommand.class
NETSTA~1 CLA 2,485 03-19-01 7:17a NetStatCommand.class
STATSC~2 JAV 8,588 03-18-01 4:11p StatsCommand.java
WHOAMI~1 CLA 1,153 03-19-01 7:17a WhoamiCommand.class
WALLCO~1 CLA 1,254 03-19-01 7:17a WallCommand.class

Notice where Slush.java is located (\projects\modslush\com\dalsemi\slush\).
View this in your favorite text editor. Notice around line 418 the method
initializeShellCommands(). This is where commands are added to the slush shell
command list. For each of the commands in the initializeShellCommands() method
notice that in \projects\modslush\com\dalsemi\slush\command\ is a separate Java
class that implements this command. We will make a simple change to slush so we know
for sure that the newly compiled version is indeed what we are running on TINI when we
do finally succeed in loading it there.

• Edit StatsCommand.java (in
\projects\modslush\com\dalsemi\slush\command\)

• Somewhere around line 60, after the static find byte[] declarations, we are
going to add a greeting message so that we know we are using our new version of
Slush. Insert these lines:
// Added for verification
static final byte[] greeting = “Greetings from SLUSH!”.getBytes();

221

The TINI Software

• Then around line 135, find the code that looks like this:
 try
 {

// Display system version info (add API version)
out.write(slushVer);
out.write(osVer);

• Modify this to print out the greeting message by adding a line, like this:
 try
 {
 // Display system version info (add API version)
 out.write(greeting);
 out.write(slushVer);
 out.write(osVer);

These changes simply make the stats command in slush print out the greeting as the
first line of output. This way, after slush has been ported to our TINI we can verify
that we are actually running the version of slush that we just compiled and not the
real slush. Save the modified StatCommand.java file if you have not done so already
and exit the editor.

Compile slush. Do this by compiling slush.java. All of the commands will be
compiled also.
C:\> set SMUSH=C:\projects\modslush
C:\> cd \projects\modslush\com\dalsemi\slush\
C:\> javac -classpath %TINI_HOME%\bin\tiniclasses.jar;%SMUSH%;.
Slush.java

Notice how we have the CLASSPATH set for finding both the tiniclasses.jar and
the slush classes by specifying the path to the top level of the slush source files and
using the SMUSH environment variable. If you place your slush source files
somewhere else on your disk, you need to set the SMUSH environment variable
appropriately. We do not specify the path all the way to where the slush.java lives;
these are included in slush.java through the import statements:
import com.dalsemi.slush.command.*;

The com.dalsemi.slush.command is specified in the import statement and provides
the path to com\dalsemi\slush\command so we only include in the CLASSPATH
where to find the start of this path.

When you compile slush you will see this message:
Note: Slush.java uses or overrides a deprecated API.

Note: Recompile with -deprecation for details.

222

Designing Embedded Internet Devices

If you want to see what has been deprecated15 (usage is no longer recommended) add
the -deprecation option to the compile command and then you will see four
warnings like this:
Slush.java:1081: warning: readLine() in java.io.DataInputStream

has been deprecated while ((line = input.readLine()) != null)

If you saw any errors when compiling slush, be sure you included the proper path to
tiniclasses.jar and the top level of the slush source in your CLASSPATH. Also
check that you have correctly made the modifications to StatCommand.java
(including the semicolon at the end of the two lines that you added).

Next we need to run TINIConvertor to make the .class files into a .tbin file.
C:\> java –cp %TINI_HOME%\bin\tini.jar TINIConvertor

–o Slush.tbin
–l
–d %TINI_HOME%\bin\tini.db
–f .

We have included some new command line options to TINIConvertor

-l Tells TINIConvertor to use the flash file format. We do this because
we are going to load slush into the beginning of the flash as the boot
program.

-f Specifies to TINIConvertor the class file to convert. A “.” will use the
current directory (and included subdirectories and files).

-o Specifies the name of the output file, Slush.tbin.

-d Specifies the path to the TINIConvertor database, tini.bd.

You should not have seen any errors but, if you did, likely possibilities include either
not properly specifying the path to tini.jar (so Java can’t find the TINIConvertor),
not properly specifying the path to tini.db, and not specifying the “.” for the input
file/directory.

When TINIConvertor runs, you will see some output lines like the following (where you
see … , many of the similar messages were deleted to shorten the output printed here):
TINIConvertor + ZIP
Version 0.73 for TINI
built on or around January 24, 2001
Disassembler/Builder Version 0.15 TINI, October 30, 2000
JiBDB 0.60 for TINI, November 10, 2000
Copyright (C) 1996 - 2001 Dallas Semiconductor Corporation.
MainStartClass: First available.

15 How and When To Deprecate APIs – http://java.sun.com/products/jdk/1.2/docs/guide/misc/
deprecation/deprecation.html

223

The TINI Software

Target address: 0x70100
Changed tag to 8000
Recursing directory: .
directory: /home/dan/Projects/book/newslush/com/dalsemi/slush/./command
Adding file: /home/dan/Projects/book/newslush/com/dalsemi/slush/./
command/StatsCommand.class
...
Adding file: /home/dan/Projects/book/newslush/com/dalsemi/slush/./
Slush.class
Adding file: /home/dan/Projects/book/newslush/com/dalsemi/slush/./
CommandInterpreter.class
Set mainClassIndex to: 51
Using ROM API Version: 8009
Writing Class Offsets
Writing: com/dalsemi/slush/command/StatsCommand
...
Writing: com/dalsemi/slush/command/NetStatCommand
Writing: com/dalsemi/slush/Slush$SlushDHCPListener
Writing: com/dalsemi/slush/Slush$1
Writing Application: com/dalsemi/slush/Slush
Writing: com/dalsemi/slush/Slush
Writing: com/dalsemi/slush/CommandInterpreter
Total Application length: 56931
Writing Application Entry point
Main offset for class with main: 6965
class num: 51
main class index: 51
main class tag: 8033
Converting to flash format. (56979 bytes)
Segment start address: 70100, length: 56979, CRC: dbda
Flash file size: 56986
Finished with build.

The first important thing to notice here is the “Finished with build” line, which
means TINIConvertor successfully converted the class files. Note the “Flash file
size: 56990”. Yours may differ slightly depending on what you personalized. Recall
from a previous section in this chapter that each converted class file can’t be larger
than 64k. This will be more important when we start adding new commands to Slush.

The last thing we need to do is to get this new slush.tbin file to your TINI using
JavaKit and try running it.
C:\> javakit –port COM1 –noDTRtest

Use the –noDTRtest command line switch if you previously found you needed it.
When JavaKit starts up, press the reset button and then use the file/load menu
command. Find the slush.tbin file you just created, select it and press OK. If you
received an error, try loading the new slush again. When loading is complete and you
see the loader prompt “>” press E enter to exit the loader and start executing slush.
Once slush completes booting you can log in.

224

Designing Embedded Internet Devices

Now let’s test our new slush. Try the stats command and see what happens.
TINI /> stats
Greetings from SLUSH!
TINI slush null
TINI OS 1.02

System up time:
 Days: 0
 Hours: 0
 Minutes: 0
 Seconds: 12

Free RAM: 355264

FTP Server :active
Telnet Server:active
Serial Server:active

If this didn’t work, go back to verify that you did all the steps properly. Also be sure
to check that you loaded the new slush and not the original slush.tbin.

We have verified that we can successfully recompile slush and get it to our TINI
board, so we can move on to more complex modifications to slush with confidence.

Modifying the slush command set
Now that you have shown you can recompile slush relatively easily, let’s actually do
some real, beneficial modifications to slush. Modifying an existing slush command is
as simple as editing the command class, as we did with StatsCommand.java. Deleting
commands from slush is as simple as removing the reference from the
initializeShellCommands() method in slush.java. Adding new commands to
Slush consists of writing a new command implementation and adding that command
to the initializeShellCommands() method.

We can remove commands we don’t need or don’t want. For instance, we can
improve the security of our TINI by removing all commands that allow us to add new
users or delete files, or we can simply remove the commands we don’t need and
increase the available memory for other purposes. We can add new aliases for
commands in an effort to make slush easier to use. And we can even add new
commands. In the slush source directory hierarchy Dallas Semiconductor has
included several additional commands for slush that are not part of the base
compilation (because they take up more memory).

First things first. Open Slush.java in a text editor and examine the source code.
Notice how slush works (sort of). Skip down to around line 418, to the method
initializeShellCommands. You will see a number of lines like this one:
CommandInterpreter.addCommand(“arp”, new ARPCommand());

225

The TINI Software

There should be a line like this for each command in slush. This is where slush
commands are added to the command interpreter. In this case arp is the command that is
added to slush and ARPCommand is the name of the corresponding class that implements
this command (we will look at that part in a bit). To remove commands from slush, you
could simply delete the lines like this for the commands you don’t want. Similarly, to add
new commands, you could add lines like this for the new classes that contain new slush
commands. Also, scroll down a little and examine the copy command:
SlushCommand copy = new CopyCommand();
CommandInterpreter.addCommand(“copy”, copy);
CommandInterpreter.addCommand(“cp”, copy);

This is essentially the same as the previous single line for adding a command to
slush, except that we first define a new “SlushCommand” object and then we add it to
the command interpreter twice, with different names, cp and copy. This is how
aliases for commands are added to slush.

Edit Slush.java

Around line 417, look for the method
private void initializeShellCommands()

In here, comment out the commands you don’t want buy putting // at the beginning of
the line. I commented out the chown, arp, useradd, userdel, sendmail,
append, who, whoami, clear, wd and wall commands.
// CommandInterpreter.addCommand(“chown”, new ChownCommand());

Also, since we are making some changes, I find that I want to use more rather than
cat to view a text file, so we are going to add that as an alias to Slush. Change:
CommandInterpreter.addCommand(“cat”, new CatCommand());

To:
SlushCommand cat = new CatCommand();
CommandInterpreter.addCommand(“cat”, cat);
CommandInterpreter.addCommand(“more”, cat);

Recompile slush as we did in the previous step. Notice the final file size.
...
Converting to flash format. (56585 bytes)
Segment start address: 70100, length: 56585, CRC: a7a9
Flash file size: 56592
Finished with build.

Not much smaller, is it? What happened? We commented out the commands but they
are still added to the slush.tbin by TINIConvertor because the .class files are still in
the command directory. We need to go back in and delete the .class files for these
commands, as they are still there from our previous compiles. Notice that the class
for useradd is AddUserCommand.class and userdel is RemoveUserCommand.class.

226

Designing Embedded Internet Devices

You don’t need to recompile—you simply need to rerun TINIConvertor after these
class files have been removed. Examine the final file size.
...
Converting to flash format. (49159 bytes)
Segment start address: 70100, length: 49159, CRC: b65b
Flash file size: 49166
Finished with build.

OK, that’s much better. Now load the new version of slush to the TINI and test it out.
It should work just fine. You can verify these commands are not in Slush. Try a few:
TINI /> whoami
ERROR: Unknown Command: whoami

TINI /> who
ERROR: Unknown Command: who

Also notice that “help” does not list the commands you deleted.

Adding optional commands to slush
Now that you have deleted some commands from slush, you have room to add some
new commands. Some commands come with slush but are not in the initial version to
save space (if they were included slush would exceed 64kbytes). You can add these if
you want to use them. These commands are: PPPCommand.class,
SledCommand.class, PollMemoryCommand.class, ThreadStatCommand.class,
and DiffCommand.class. These are found in
%TINI_HOME%\src\OptionalSlushCommandsSrc.jar. The command lines options
and function of these commands were discussed near the beginning of this chapter.
To add these commands:
C:\> cd \projects\slush
C:\> jar –xf %TINI_HOME%\src\OptionalSlushCommandsSrc.jar

This will unjar the optional slush commands into com\dalsemi\slush\command, so
be sure to change directory to \projects\slush so these new optional commands
will be placed in the existing slush hierarchy.

Edit slush.java and add some of these lines to the initializeShellCommands()
method:
CommandInterpreter.addCommand(“PPP”, new PPPCommand());
CommandInterpreter.addCommand(“sled”, new SledCommand());
CommandInterpreter.addCommand(“pollmemory”, new PollMemoryCommand());
CommandInterpreter.addCommand(“threadstat”, new ThreadStatCommand());
CommandInterpreter.addCommand(“diff”, new DiffCommand());

You probably can’t get away with adding all of these commands at once, unless you
remove a number of existing commands, because you will exceed the 64kbyte limit
for the flash file format.

227

The TINI Software

Compile slush and run TINIConvertor. If you see output of TINIConvertor similar to
the following, then you have exceeded the 64kbyte limit and you need to remove
some slush commands (and don’t forget to delete all of the class files for the
commands you deleted).
Converting to flash format. (76497 bytes)
Segment start address: 70100, length: 65280, CRC: 39fc
**
**
Warning, address exceeds normal TINI flash memory boundaries!
(0x80000)
**
**
Segment start address: 80000, length: 11217, CRC: e9b0
Flash file size: 76511
Finished with build.

Adding new commands to slush
But it doesn’t end there. We can just as easily create our own commands and add
them to slush. For this, we are putting back in the commands we deleted or
commented out in the previous steps and removing the optional commands that we
added, as they are going to take memory space. We will be then be adding a new
command, owr, (for 1-Wire report), which will list all 1-Wire devices by type and
serial number on all 1-Wire busses. This is the source for OwrCommand.java that
implements the owr command. Copy the file to the slush\command directory.

Listing 7-2: OwrCommand.java

package com.dalsemi.slush.command;

import com.dalsemi.shell.server.*;
import java.io.*;
import java.util.*;
import com.dalsemi.system.*;
import com.dalsemi.slush.*;
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;

public class OwrCommand implements SlushCommand
{
 public String getUsageString()
 {
 return “owr\r\n\r\nDisplay current 1-wire devlice list.”;
 }

 public void execute(SystemInputStream in, SystemPrintStream out,
SystemPrintStream err, String[] args,

228

Designing Embedded Internet Devices

Hashtable env) throws Exception
 {

boolean verbose = false;
for(int i = 0; i < args.length; i++) {

 if(args[i].equals(“-v”)) {
 verbose = true;
 }
 else {
 out.println(getUsageString());
 return;
 }
 }

 Slush slush = (Slush)TINIOS.getShell();

 try
 {
 Enumeration adapter_enum =

OneWireAccessProvider.enumerateAllAdapters();

 while(adapter_enum.hasMoreElements()) {
DSPortAdapter adapter=(DSPortAdapter)

adapter_enum.nextElement();
out.println(“Adapter: “ + adapter.getAdapterName());

adapter.setSearchAllDevices();
adapter.targetAllFamilies();
Enumeration ibutton_enum =

adapter.getAllDeviceContainers();

while(ibutton_enum.hasMoreElements()) {
 OneWireContainer node =
 (OneWireContainer) ibutton_enum.nextElement();
 out.println(node.getName() + “ - “ +

 node.getAddressAsString());
 }
 }
 }
 catch (Exception e)
 {

out.println(“Error displaying stats”);
out.println(e);

 }
 }
}

You may notice that this is essentially an extension of the FindDevices.java
program we developed in Chapter 5 to verify we installed the 1-Wire libraries
properly. If you are curious how this works, you can compare this program to any of
the other slush commands. We have only implemented two methods:

229

The TINI Software

getUsageString() and execute(). The getUsageString() method is called from
slush whenever the user asks for help on this command (help owr). The execute()
method is called from slush whenever the user types the owr command by the slush
command interpreter. This command then asks the TINI firmware for a list of all 1-
Wire adapters:
Enumeration adapter_enum =
OneWireAccessProvider.enumerateAllAdapters();
 while(adapter_enum.hasMoreElements()) {

DSPortAdapter adapter=(DSPortAdapter)
adapter_enum.nextElement();

out.println(“Adapter: “ + adapter.getAdapterName());
...

We then ask each adapter it finds for a list of all 1-Wire devices connected to that
adapter:

adapter.setSearchAllDevices();
adapter.targetAllFamilies();
Enumeration ibutton_enum =

adapter.getAllDeviceContainers();
while(ibutton_enum.hasMoreElements()) {

 ...

We then print out a little information on each 1-Wire device.
OneWireContainer node =

 (OneWireContainer) ibutton_enum.nextElement();
out.println(node.getName() + “ - “ +

node.getAddressAsString());

We will be getting deeper into the 1-Wire API and the details of 1-Wire in Chapter
10.

To add this new command to slush, edit Slush.java and in the
initializeShellCommands() method, add a line like the following to add the owr
command to the command interpreter:

CommandInterpreter.addCommand(“owr”, new OwrCommand());

Save slush.java, recompile slush and run TINIConvertor exactly as we did in the
previous examples.
C:\>set SMUSH=\projects\modslush
C:\>javac -classpath %TINI_HOME%\bin\tiniclasses.jar;%SMUSH%
Slush.java
C:\>java -cp %TINI_HOME%\bin\tini.jar TINIConvertor

-o Slush.tbin -l
-d %TINI_HOME%\bin\tini.db
-f .

...

230

Designing Embedded Internet Devices

Converting to flash format. (57585 bytes)
Segment start address: 70100, length: 57585, CRC: 78da
Flash file size: 57592
Finished with build.

Use JavaKit to send the slush.tbin file to TINI and then test it.
TINI /> owr
Adapter: TINIExternalAdapter
Device type: 10 - 700000004B8F1010
Device type: 18 - 1C00000002795818
Device type: 12 - CB00000017006112
Device type: 01 - 21000007997D9F01
Adapter: TINIInternalAdapter
Device type: 89 - 9F5E70005C8D1089

Wow, it works! Notice the “Device type:” for the container name. That’s because
we didn’t use BuildDependency to build in the container classes that contain the
actual names of the 1-Wire devices. Now this is where BuildDependency gets tricky
(or just plain odd). We would think this command would work (due to DOS
command line limits you may need to put the following into a batch file and execute
that):
C:\> java -cp %TINI_HOME%\bin\tini.jar BuildDependency

-f .
-o slush.tbin
-l
-d %TINI_HOME%\bin\tini.db
-x %TINI_HOME%\bin\owapi_dep.txt
-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-add OneWireContainer01;OneWireContainer10
-debug

Notice that we included the –add OneWireContainer01;OneWireContainer10
which tells BuildDependency to include the class files for these classes by looking
them up in the owapi_dep.txt file, which tells BuildDependency which .class files
to include from owapi_dependencies_TINI.jar.

But it doesn’t work.
Could not create the application: Could not Add class com/dalsemi/
onewire/container/OneWireContainer01 JiBDB Error: Attempted addition
of duplicate class “com/dalsemi/onewire/container/OneWireContainer01”
BuildDependency clean-up complete.
The program did not successfully terminate.
Try running with the ‘-debug’ option to determine the cause.

This is really odd. Why does it think we are adding a duplicate class of
OneWireContainer01? It has to do with the way BuildDependency looks for
included files. It’s possible to get BuildDependency to work with something like the
following:

231

The TINI Software

C:\>java -cp %TINI_HOME%\bin\tini.jar BuildDependency
-f slush.class
-f commandinterpreter.class
-f command\
-f Slush$SlushDHCPListener.class
-o slush.tbin
-l
-d %TINI_HOME%\bin\tini.db
-x %TINI_HOME%\bin\owapi_dep.txt
-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-add OneWireContainer01;OneWireContainer10
-debug

However, this gets rather unmanageable. For one thing, javac will split up large class
files into several smaller pieces. (Look at the directory in which we are compiling
Slush right now. You will see Slush$1.class as well as Slush.class.) We will need
to include all of these intermediate class files using the –f directive to
BuildDependency. A simpler way to deal with this is to compile Slush from one level
higher in the directory hierarchy and let the –f directive include the whole
subdirectory we are using.
C:\> cd ..
C:\> notepad build.bat

Enter the following into Notepad (or your favorite text editor) but as a single line of
text:
java -cp %TINI_HOME%\bin\tini.jar BuildDependency

-f slush
-o slush.tbin
-l
-d %TINI_HOME%\bin\tini.db
-x %TINI_HOME%\bin\owapi_dep.txt
-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-add OneWireContainer01;OneWireContainer10 -debug

What we are doing is including the
whole slush subdirectory by using the
–f slush command line switch. This
is much easier than worrying about
what intermediate files the Java
compiler creates. We need to execute
this batch file on the directory that
contains the slush directory (not in the
slush directory) since we are
specifying the whole slush directory
with the –f slush commandline
directive.

For the remainder of this book, most TINI programs
will be compiled in a separate directory (as we are
doing here) of the same name as the main class
name. In the directory we will have a src and a bin
directory. The Java source files will reside in the src
directory and we will direct javac to put the class
files into the bin directory. We will also have
TINIConvertor or BuildDependency place the
tbin or tini files in the bin directory. This will
greatly help with running class files through
BuildDepencency as we can convert the entire bin
directory and not have to specify multiple files in
complex builds.

232

Designing Embedded Internet Devices

Compile Slush:
C:\> build
...
Converting to flash format. (59119 bytes)
Segment start address: 70100, length: 59119, CRC: 70bc
Flash file size: 59126
Finished with build.

We can then load this version of slush onto TINI and test it out.
TINI /> owr
Adapter: TINIExternalAdapter
DS1920 - 700000004B8F1010
Device type: 18 - 1C00000002795818
Device type: 12 - CB00000017006112
DS1990A - 21000007997D9F01
Adapter: TINIInternalAdapter
Device type: 89 - 9F5E70005C8D1089

You may be wondering why we only included OneWireContainer01 and
OneWireContainer10 when there are more devices connected to TINI. The primary
reason is that if we add the other containers then we will seriously exceed the
64kbyte limit. Why’s that? Take a peek in the file \opt\tini\bin\owapi_dep.txt
and see why. This file tells BuildDependency where to find all of the classes that are
needed by each container type. Look at line 20 where OneWireContainer18 is
defined (CONT_ROOT is defined as “com.dalsemi.onewire.container”) so this line
means that OneWireConatiner18 includes the following classes:

com.dalsemi.onewire.container.OneWireContainer18
com.dalsemi.onewire.container.MemoryBank
com.dalsemi.onewire.container.MemoryBankNV
com.dalsemi.onewire.container.MemoryBankNVCRC
com.dalsemi.onewire.container.MemoryBankScratch
com.dalsemi.onewire.container.MemoryBankScratchCRC
com.dalsemi.onewire.container.MemoryBankScratchEx
com.dalsemi.onewire.container.MemoryBankScratchSHA
com.dalsemi.onewire.container.PagedMemoryBank
com.dalsemi.onewire.container.ScratchPad
com.dalsemi.onewire.container.SHAiButton

The other containers are similarly defined. If we include several of these into our
version of slush (using the –add option), then suddenly we are adding a lot of classes.

Other Tools to Make Life Simpler
Utilities
Using DOS batch files
On our Windows 98 computers, these commands for BuildDependency are too long
to type in a DOS command window. DOS seems to limit any single command we

233

The TINI Software

type to 127 characters. To get around this, we need to create a batch file (like
build.bat) and enter the command in there. There doesn’t seem to be a limit to the
command length in a batch file. Then all we need to do is execute the build.bat file,
which also saves in typing when we need to rerun BuildDependency.

Here is a batch file that we find quite handy. This can easily be tailored to compile
each new application. It will also FTP your .tini file to TINI stick if the compile
completes successfully. Note that you will need to specify the hostname of your TINI
either in the batch file (set TINI=name) or on the command line or have the DOS
environment variable MYTINI set (set MYTINI=whatever). This batch file is well
commented, so we will not discuss it in detail here.

Listing 7-3: Build.bat

@echo off
:: Build TINI and 1-Wire programs and optionally ftp the file to your TINI
::
:: Fill in PROG as the name of the program to compile
:: ex: SET PROG=Thermometer
:: Add “-add” and class names to the BuildDependency list as neeed
:: Seperate muiltiple classes with a semicolon (;)
:: ex: SET ARGS=-add OneWireContainer10
:: Add your TINI host name. The first command line parameter will override
:: this setting if provided. If not set and no parameter then the
:: environment variable MYTINI will be used. If none of these are
:: specified then the file will NOT be ftp’ed anywhere
:: ex: SET HOST=TINI01
:: If you get an “Out of environment space” error from DOS then add
:: SHELL=C:\COMMAND.COM C:\ /E:2048 /P
:: to your config.sys and reboot.

SET PROG=Thermometer
SET ARGS=-add Thermometers
SET TINI=

:: — No need to mess with whats below this line —

:: Check to see if any environment variables are set, complain as needed.

IF “%TINI_HOME%”==”” GOTO notini
IF “%OW_HOME%”==”” GOTO noow
IF “%CLASSPATH%”==”” GOTO noclass
GOTO begin

:notini
ECHO Environment variable “TINI_HOME” is not set.
GOTO end

234

Designing Embedded Internet Devices

:noow
ECHO Environment variable “OW_HOME” is not set.
GOTO end

:noclass
ECHO Environment variable “CLASSPATH” is not set.
ECHO You may have trouble running this program”

:: Good so far. Look for a bin directory, create as needed.

:begin
Echo Looking for bin directory
IF EXIST bin GOTO next
mkdir bin

:: OK, lets compile. Look for errors on the way, bail if any.

:next
Echo Building %PROG%

echo javac ...
javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar -d bin
src\%PROG%.java

IF ERRORLEVEL 1 GOTO end

echo TINIConvertor ...
java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency -p
%TINI_HOME%\bin\owapi_dependencies_TINI.jar -f bin -x
%TINI_HOME%\bin\owapi_dep.txt -o bin\%PROG%.tini -d
%TINI_HOME%\bin\tini.db %ARGS%

IF ERRORLEVEL 1 GOTO end

:: Lets send the .tini file to the TINI
:: Use %1 as first coice. Then look for %TINI% then %MYTINI%
:: Give up if none of these

IF NOT “%1”==”” SET TINI=%1
IF “%TINI%”==”” SET TINI=%MYTINI%
IF “%TINI%”==”” GOTO end

:: Make a temp file “ftptotini”
echo sending %PROG%.tini to %TINI% ...
echo open %TINI%> ftptotini
echo root>> ftptotini
echo tini>> ftptotini
echo send bin/%PROG%.tini>> ftptotini
echo quit>> ftptotini
:: send file using ftp script

235

The TINI Software

ftp -s:ftptotini
:: clean up
del ftptotini

:end

echo .
echo Done!

We have found the following tools to be quite helpful when developing Java
applications in general and for TINI.

Using FTP
We have used FTP to copy files from our computer to our TINI. In the development
of our programs we use FTP repeatedly for copying the same file. Here is a simple
way to automate this FTP step. If you are using FTP under Windows, FTP is able to
take a script file
C:\> ftp –s:script.ftp

where the script file contains the things you would normally type at the FTP prompt.
This is what this script.ftp file looks like. You should personalize it to include the IP
address of your TINI and the filename of the program you are developing.

open 192.168.1.85
root
tini
send TiniWebStat.tini
quit

If you are using FTP from Unix or Linux, this is a little different. Use lftp instead, as
this also deals nicely with script files, just a little differently than the Windows
version of FTP:
% lftp -f script.lftp

where this script file contains the things you would normally type at the lftp prompt. This
is what this script.lftp file looks like. Again, as with FTP, you should personalize it to
include the IP address of your TINI and the filename of the program you are developing.

open 192.168.1.85
user root tini
put TiniWebStat.tini
quit

Alternately, you can specify everything on the command line:
lftp -e “put bin/TiniWebStat.tini;quit” -u root,tini 192.168.1.85

With either of these, FTP or lftp, you can add any other FTP command you need to
get the job done, like cd to change directory or even use get to retrieve files from

236

Designing Embedded Internet Devices

TINI and rm or delete to delete files from TINI. Note that if you use both Windows
and Linux, FTP and lftp don’t have exactly the same command set.

Using the DOS command window
When you are using Windows as your development environment you will be using a
DOS16 command window quite a bit. You can make this a little easier to use. First, you
should put an icon on your desktop that is a link to command.com. Using Windows
Explorer, find command.com (it’s in c:\windows\). Right click on command.com and
select “copy.” Then right click on your desktop and select “Paste Shortcut.” You can
double click on this icon to open a DOS command window. This opens a DOS window
with the initial directory as c:\windows by default. You can change this to be your TINI
development directory and assign a batch file to this DOS command window shortcut.
Right-click on the icon we just put on your desktop and select properties and then pick
the “Program” tab. Here you can enter the working directory and assign a batch file to
be run whenever that DOS windows is opened. The batch file is run first and then the
working directory is set. You can leave the working directory blank and use the batch
file to change to the appropriate directory if you like, but as we tend to change this with
each project, it’s simpler to change the DOS Prompt Properties.

16 The EasyDOS Internet Guide to DOS – http://www.easydos.com/

Figure 7-18: Assigning a batch file to a DOS window

237

The TINI Software

Here is what I use for a batch file (javastart.bat in the example)
doskey
mode con: lines=43
ls

doskey lets you use the up/down arrow keys to view previous commands and it keeps
a short command history. The mod con: lines=43 sets the DOS window to 43 lines of text.

GNUmake
We have not been using make or any other program development tool so far because
we want you to see the CLASSPATH and command line options to the Java compiler
and run time system so you can get comfortable with all of the options you need to
use to develop TINI and 1-Wire applications. For the rest of the book, we will only
show the CLASSPATH or command line options when they are significant. We will
probably be using a batch file as mentioned above or make (as in GNUmake).

Linux
If you don’t have it installed on Linux, you can get it from the GNUmake web page17.
Follow the Link for the make RPM. Download the RPM to a temporary directory and
install.

% rpm –install make-3.79.1-7-i386.html

Windows
For Windows 95/98/NT/2000/XP, you will need to get Karl M. Syring’s “GNU
utilities for Win32”18. This is a set of GNU tools that have been ported to the
Windows environment. You can install the whole package or just pull the individual
make program (and any others that you may want, like ls) out of the archive and stick
them someplace that’s on your PATH (we use c:/opt/bin). Download the
UnxUtils.zip files and save to a temporary folder. Using your favorite zip/unzip
utility, extract the directory hierarchy in the temporary folder. Create a bin folder in
the opt folder; this is where we will add our assorted utilities. If you already have a
preferred folder for adding utilities, use that. Unzipping the UnxUtil.zip file will
create a folder hierarchy similar to a Unix hierarchy for GNU tools. Using Windows
Explorer, change to the usr\local\wbin folder that was created when you extracted
the zip file. Find the make.exe file and copy it to your c:\opt\bin folder. Make
sure this c:\opt\bin\ is added to your PATH environment variable in your
autoexec.bat file using the same method we added to it in the previous paragraphs.
If you are not familiar with GNU make, the complete GNU tool manuals can be
found at the web site “Documentation of the GNU Project”19.

17 GNUmake – http://www.gnu.org/gnulist/production/make.html
18 GNU utilities for Win32 – http://www.weihenstephan.de/~syring/win32/UnxUtils.htm
19 Documentation of the GNU Project – http://www.gnu.org/manual/

238

Designing Embedded Internet Devices

Here is a makefile that is the equivalent of the DOS batch file presented above. It
does essentially the same thing. You need to modify the first three definitions in the
makefile. This makefile will work on both Windows and Linux operating systems.
You can certainly modify this makefile for more or less complex operation. You will
need to consult the make manual20 for details on what you can do with make.

Listing 7-4: Makefile

A Generic GNUmake file for either WINDOWS/DOS or Linux.
#
GNUmake allows for Linux style directory separators “/” or Windows style “\”
Use Linux for compatability

GNUmake allows for Linux style directory separators “/” or Windows style “\”
Use Linux for compatability

Build TINI and 1-Wire programs and optionally ftp the file to your TINI
#
Fill in PROG as the name of the program to compile
ex: PROG=Thermometer
Add “-add” and class names to the BuildDependency list as neeed
Seperate muiltiple classes with a semicolon (;) to work on
Windows or a colon (:) to cork on both Windows and Linux
ex: ARGS=-add OneWireContainer10
Add your TINI host name. The first command line parameter will override
this setting if provided. If not set and no parameter then the
environment variable MYTINI will be used. If none of these are
specified then the file will NOT be ftp’ed anywhere
ex: SET HOST=TINI01
If you get an “Out of environment space” error from DOS then add
SHELL=C:\COMMAND.COM C:\ /E:2048 /P
to your config.sys and reboot.

SET THESE
PROG=Thermometer
TINI=
ARGS=-add Thermometers

Now tell me where all of the various components are. Note that Windows is
not case sensitive BUT Linux is. If you plan to use this for BOTH platforms
then watch the case. This also assumes that these APIs and JARs are installed
in the same place on both systems (ie: /opt/...)

Needs the environment variable OW_HOME to point to the 1-Wire
install Directory

20 GNUmake manual – http://www.gnu.org/manual/make-3.79.1/make.html

239

The TINI Software

DOS ex: SET OW_HOME=c:\opt\onewire
Bash ex: OW_HOME=/opt/onewire; export OW_HOME
and the environment variable TINI_HOME to point to the TINI API
install directory
DOS ex: SET TINI_HOME=c:\opt\tini
Bash ex: TINI_HOME=/opt/tini; export TINI_HOME

javax_comm = /opt/jdk/lib/comm.jar
one_wire_lib = $(OW_HOME)/lib/OneWireAPI.jar
tini_classes = $(TINI_HOME)/bin/tiniclasses.jar
tini_tools = $(TINI_HOME)/bin/tini.jar
tini_one_wire_lib = $(TINI_HOME)/bin/owapi_dependencies_TINI.jar
tini_db = $(TINI_HOME)/bin/tini.db
build_x = $(TINI_HOME)/bin/owapi_dep.txt
build_p = $(TINI_HOME)/bin/owapi_dependencies_TINI.jar

Your CLASSPATH must include
$(tini_tools);$(javax_comm);$(one_wire_lib);.

You don’t need to modify ANYTHING below this line. At least I don’t
think so.

Here we compose the CLASSPATH (CP) for javac and java.
This varies depending on the operating system.
There ought to be a better way to do this.

ifdef COMSPEC
Then we are on a WIN machine
platform = “Windows”
T1 = $(tini_classes);$(tini_one_wire_lib);$(tini_tools);.
C1 = $(javax_comm);$(one_wire_lib);.
CP = SET

CLASSPATH=$(tini_tools);$(javax_comm);$(one_wire_lib);.
CLASSES_T = $(subst /,\,$(T1))
CLASSES = $(subst /,\,$(C1))

else
We are on a Linux machine

 platform = “Linux”
CLASSES_T =

$(tini_classes):$(tini_tools):$(tini_one_wire_lib):.
CLASSES = $(javax_comm):$(one_wire_lib):.
CP = CLASSPATH=$(tini_tools):$(javax_comm):$(one_wire_lib):.

endif

Make ALL
all:

-mkdir bin
@echo Building $(PROG)
@echo javac ...

240

Designing Embedded Internet Devices

@javac -classpath $(CLASSES_T) -d bin src/$(PROG).java
@echo BuildDependency ...
@java -cp $(tini_tools) BuildDependency -p $(build_p) -x

$(build_x) \
-d $(tini_db) -f bin -o bin/$(PROG).tini $(ARGS)

@echo sending $(PROG).tini to $(TINI) ...

ifdef COMSPEC
@echo open $(TINI)> ftptotini
@echo root>> ftptotini
@echo tini>> ftptotini
@echo send bin/$(PROG).tini>> ftptotini
@echo quit>> ftptotini @ftp -s:ftptotini
del ftptotini

else
@lftp -e “put bin/$(PROG).tini;quit” -u root,tini $(TINI)

endif
@echo Done!

info:
@echo PROG = $(PROG)
@echo ARGS = $(ARGS)
@echo TINI = $(TINI)
@echo MYTINI = $(MYTINI)
@echo OW_HOME = $(OW_HOME)
@echo TINI_HOME = $(TINI_HOME)
@echo CLASSPATH = $(CLASSPATH)

JEdit
jEdit21 is a very nice editor for Java. It’s not absolutely necessary, since Windows
Notepad and Linux’s vi do just fine. However, jEdit is a programmer’s text editor and
so it makes writing Java significantly easier. It is released under the GNU General
Public License. jEdit requires Java 2 (or Java 1.1 with Swing 1.1). It has an easy-to-
use interface that resembles that of many other Windows and MacOS text editors, is
extremely customizable, and has an extensive feature set that includes, among other
things:

• Syntax highlighting

• Auto indent with support for intelligent indentation

• Search and replace with support for regular expressions, and searching in
multiple files

21 jEdit – http://jedit.sourceforge.net/

241

The TINI Software

• Bracket matching

• Multiple clipboards

• Split-window operation

• Word wrap

• Macro recording

• Support for plugins, which extend the editor’s functionality

Other TINI Software
A number of people have developed some nice software for running on TINI or for
use in developing programs for TINI. Here is a short list of some of these.

Figure 7-19: jEdit

242

Designing Embedded Internet Devices

TiniHttpServer
TiniHttpServer22 by Smart Software Consulting is a multi-threaded HTTP server for
TINI that supports Java Servlets. TiniHttpServer turns your TINI into a web server
with server-side programming capabilities. TiniHttpServer is ready to serve up your
Java applets, HTML documents, and other files directly from your TINI. Included
with it are eight demonstration servlets. TiniHttpServer is free and licensed under the
GNU General Public License. Full source code is available.

TiniInstaller
TiniInstaller23, also by Smart Software Consulting, is a user-friendly graphical user
interface that simplifies the installation and configuration of software on your TINI.
TiniInstaller offers a number of simplifying features:

• During the installation process, allows you to specify the file containing the
TINI OS firmware (typically, tini.tbin).

• Performs diagnostics on your javax.comm installation and reports any prob-
lems using informative and helpful messages.

• Allows you to specify your TINI’s network configuration in an easy-to-use
GUI.

• Installs a complete working image into your TINI’s RAM. This image, also
called a TINI Package File, is a snapshot taken from an existing (and working)
TINI’s memory. This guarantees that your TINI will have the exact same file
system and heap as a working TINI.

• Ensures that the version of installed firmware matches the version required by
the TINI Package File.

• Streamlines the installation process by installing the TINI Package file in-
cluded in TiniInstaller’s jar file (if present).

TINIAnt
TiniAnt24 (pronounced “tiny ant” or “teeny ant”) is an extension to Ant that simplifies
building applications for the TINI. Ant is a portable project management tool for Java
projects, replacing system-specific build scripts and makefiles. You write a build
description in XML, and Ant does the rest, generally speeding things up since it
rarely needs to invoke additional instances of the Java Virtual Machine. You can learn
more about Ant on the Jakarta Site Ant25 page.

22 TiniHttServer – http://www.smartsc.com/tini/TiniHttpServer/docs/index.html
23 TiniInstaller – http://www.smartsc.com/tini/TiniInstaller/index.html
24 TiniAnt – http://www.ad1440.net/~kelly/sw/tiniant/index.html
25 Jakarta site, Ant page – http://jakarta.apache.org/ant/index.html

243

The TINI Software

Conclusion
In this chapter we have shown you the various software programs and applications
that you can use to program your TINI microcontroller. You should be very familiar
with the needed tools before you start off developing your own applications. We
highly recommend a good editor as it will certainly make your work simpler. jEdit is
a very good choice.

For the rest of the book, we will only show the CLASSPATH or command line
options when they are significant, so you should thoroughly understand all of the
needed classes for both compiling and running the various programs and tools. The
batch file that we used to compile the programs will, however, be included in the
companion CD.

References
1. Request For Comment Editor,

http://www.rfc-editor.org/

2. Introducing TINI: Tiny InterNet Interface,
http://www.iButton.com/TINI/

3. Your view of the Java universe,
http://www.jguru.com/

4. The Tiny InterNet Interface FAQ,
http://www.jguru.com/faq/home.jsp?topic=TINI

5. TINI Community Contributions,
http://www.ibutton.com/TINI/developers/community.html

6. GNU’s Not Unix,
http://www.gnu.org/

[This is a blank page.]

8CHAPTER

Enhancing TINI

245

In Chapter 6 we discussed the hardware perspective of the TINI stick, but TINI and
its associated socket board were designed with flexibility and expansion in mind. In
this chapter we will discuss a number of additions for TINI; some are part of the
Dallas Semiconductor E10/E20 socket board but most are additional circuitry and are
intended to demonstrate how you can add new peripherals to your TINI. For each
new device, we will give detailed schematics and a Java program to demonstrate the
capabilities of that device.

Adding 512 kbytes on the SIMM
TINI is currently available from Dallas Semiconductor in two versions depending on the
amount of SRAM included on the stick: one version with 512 kbytes of SRAM
(DSTINI1-512) and the other version with 1 Mbyte (two 512 kbyte chips) of SRAM
(DSTINI1-1MG). Early in TINI’s development, Dallas Semiconductor was only
shipping the 512 kbyte version but is now shipping both.

The amount of memory that the TINI stick knows is available for use was determined
by a software memory probe at boot time in the TINI API previous to version 1.02. In
API 1.02, the amount of memory available is determined by examining the contents
of the DS2502 1-Wire chip (1024 bits of write-once memory) on the TINI stick. This
was implemented to avoid some of the possible errors that occur with a software
probe1. It is possible to add memory to your TINI stick if you purchased a 512-kbyte
version, but you will need to reprogram the DS2502 for the API to recognize that
additional memory. This is not a simple effort, as the DS2502 needs a 12-volt
program voltage to perform the EPROM write and this is not available on the TINI
stick. You must remove the DS2502 and connect it to a 1-Wire bus that can deliver a

1 Much valuable information on the internal details of TINI is released by the Dallas
Semiconductor engineers using the TINI Discussion Mailing List – http://lists.dalsemi.com/
mailman/listinfo/tini

246

Designing Embedded Internet Devices

12-volt program pulse. If you are purchasing a new TINI, it is much more cost-
effective to purchase a TINI with the full 1 Mbyte of memory than to purchase a
512-kbyte version and add another 512 kbyte on your own.

Figure 8-1:
Photo of second SRAM location

In the event that you decide to add memory to the TINI stick, the possible memories
that are pin-for-pin compatible with the layout of the TINI stick are shown in Table 8-1.

Table 8-1: SRAM part numbers

Symbol ManufacturerDescription

U5 Hitachi Semiconductor
Mitsubishi Semiconductor
Samsung Semiconductor

HM628512BLTT51

M5M5408BTP-55L2

K6T4008C1C3

512Kbyte SRAM

Part Number

1 HM628512BLTT5 – http://www.halsp.hitachi.com/products/pdf/msmtd031d5.pdf
2 M5M5408BTP-55L – http://www.mitsubishichips.com/data/datasheets/memory/mempdf/ds/

d99024.pdf
3 K6T4008C1C – http://www.usa.samsungsemi.com/Memory/SRAM/Asynchronous_Low_Power/

4M_bit/K6T4008C1C/K6T4008C1C.pdf

Note that each of these memory chips is available in several speeds and several
package styles. TINI uses the 55-ns memory in the 32-lead TSOP (thin small outline
package).

Use the df command to find out the amount of free memory after booting. A number
less than 512,000 indicates one memory chip (or lots of stuff in the file system) and a
number between 512,000 and 1,024,000 indicates two memory chips (1 megabyte).
The exact amount of free RAM will vary depending on what you have stored on your
file system. You can use the TINIOS class for your programs to determine the amount
of free memory.

Listing 8-1: FreeMem.java

import com.dalsemi.system.*;
import com.dalsemi.tininet.*;

// Class FreeMem tells us how much FreeMemory TINI has available
class FreeMem {

 public static void main(String[] args) {

247

Enhancing TINI

 String hn = TININet.getHostname();
 int ram = TINIOS.getFreeRAM();

 System.out.println(“Node “ + hn + “ has “ + ram + “ free RAM.”);

 }
}

Compile this and convert it to a TINI file with the following commands:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\FreeMem.java
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\FreeMem.tini
-d %TINI_HOME%\bin\tini.db

Try this out on a 1-megabyte TINI (and with a relatively empty file system):
TINI /> java FreeMem.tini
Node TINI has 710528 free RAM.
TINI />

The amount of memory TINI has installed is stored on the DS2502. If the data in
page 0 of the DS2502 is corrupted, TINI tries to figure out the amount of available
memory using a software probe. If you add memory it will be wrong until you
corrupt the DS2502. Be careful as this is where the TINI MAC address is stored. 2 3

The following program dumps the contents of the DS2505 in hex and ASCII so we
can see what’s there:

Listing 8-2: UniDump.java

import java.util.*;
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;
import com.dalsemi.onewire.utils.*;

// Class UniDump - Tells us all about whats stored in the TINI
// UniquieWare 1-wire chip
class UniDump {

 public static void dump(byte[] data, int width)
 {

int i=0;
boolean done=false;

2 DS2502 Data sheet – http://pdfserv.maxim-ic.com/arpdf/DS2502.pdf
3 DS2502-UNW data sheet from Dalsemi – http://pdfserv.maxim-ic.com/arpdf/
DS2502-UNW-DS2506S-UNW.pdf

248

Designing Embedded Internet Devices

int w = width;
int pad=0;

 do {
 if ((i+width)>(data.length-1)) {
 done=true;
 w=data.length-i;
 pad=(width-w)*3;
 }

System.out.print(ByteUtils.toHexString(data,i,w));
 for (int j=0; j<pad; j++) System.out.print(“ “);

System.out.print(“ “);
System.out.println(ByteUtils.toAsciiString(data, i,w));

 i+=width;
 } while (!done);
 }

 public static void main(String[] args)
 {
 try {
 DSPortAdapter adapter = OneWireAccessProvider.getAdapter(
 “TINIInternalAdapter”, “default”);
 System.out.println(“Adapter: “ + adapter.getAdapterName());
 System.out.println(“Port: “ + adapter.getPortName());

 if (adapter.adapterDetected()) {
System.out.println(“Searching for all 2502 devices”);
System.out.println(“(0x89 family code devices)”);
adapter.setSearchAllDevices();
adapter.targetFamily(0x89);

Enumeration ibutton_enum = adapter.getAllDeviceContainers();
while(ibutton_enum.hasMoreElements()) {

OneWireContainer node =
(OneWireContainer) ibutton_enum.nextElement();

System.out.print(“Found Container “ + node.getName());
System.out.println(“at address “

+ node.getAddressAsString());
System.out.println(“”);

for (Enumeration banks=node.getMemoryBanks();
 banks.hasMoreElements();) {

//
Object memobj = banks.nextElement();
MemoryBank mem = (MemoryBank)memobj;
PagedMemoryBank pmb = (PagedMemoryBank)memobj;

System.out.println(“Has “

249

Enhancing TINI

+ pmb.getNumberPages() + “ pages of “
+ pmb.getPageLength() + “ bytes each”);

int pages = pmb.getNumberPages();

System.out.println(“Bank: “
+ mem.getBankDescription());

System.out.print(“size is “
+ mem.getSize());

System.out.print(“, start address is “
+ mem.getStartPhysicalAddress());

System.out.println(“”);

if (mem.isWriteOnce()) {
System.out.print(“write protected”);

}
if (mem.isReadWrite()) {

System.out.print(“, read/write”);
}
if (mem.isNonVolatile()) {

System.out.print(“, non volatile”);
}
if (mem.isReadOnly()) {

System.out.print(“, read only”);
}
if (mem.needsPowerDelivery()) {

System.out.print(“, needs power delivery”);
}
if (mem.needsProgramPulse()) {

System.out.print(“, needs program pulse”);
 }
 System.out.println(“”);

byte[] buff2=new byte[pmb.getPageLength()];
for (int i=0; i<pages; i++) {

pmb.readPageCRC(i, false, buff2, 0);
dump(buff2, 16);
System.out.println(“”);

 }
 }
 }
 }
 adapter.freePort();
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }
}

250

Designing Embedded Internet Devices

This program uses two methods from the ByteUtils class (found in Appendix B on
the CD-ROM) to print out the byte array in hex and ASCII. To compile this, you need
to add –add OneWireCOntainer09 to the BuildDependency options:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin UniDump.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\UniDump.tini
-d %TINI_HOME%\bin\tini.db
–add OneWireContainer09

Notice that we change the working directory to the directory where the Java source is
located, so that javac can find the static methods in ByteUtils.java and compile
that as well. We direct javac to place the class files in a separate directory (bin). We
then run BuildDependency and tell it to convert the entire bin directory. We do this so
we don’t need to tell BuildDependency which files in that directory we want to
convert (we want them all). We will use this technique throughout the book.

The output of this program (on a 1-Mb TINI) looks like this:
TINI /> java UniDump.tini
Adapter: TINIInternalAdapter
Port: default
Searching for all 2502 devices
(0x89 family code devices)
Found Container DS1982at address 0A5E70005D54B589

Has 4 pages of 32 bytes each
Bank: Main Memory
size is 128, start address is 0
write protected, non volatile, needs program pulse

0A 29 11 00 00 6D 8B 00 35 60 00 5B 9E FF FF FF .)...m..5‘.[....
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

1D 01 23 44 53 20 54 49 4E 49 20 4D 6F 64 65 6C ..#DS TINI Model
20 33 39 30 20 52 65 76 20 44 20 44 53 54 F3 3C 390 Rev D DST.<

1D 49 4E 49 31 2D 31 4D 47 02 04 86 3E 36 3A 03 .INI1-1MG...>6:.
01 02 04 03 00 00 08 05 01 00 06 01 01 07 65 37 e7

02 01 00 AF AF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

251

Enhancing TINI

Has 1 pages of 8 bytes each
Bank: Write protect pages and Page redirection
size is 8, start address is 0
write protected, non volatile, needs program pulse

EE FF FF FF FF FF FF 00

TINI />

In case you are curious what’s here, in the first line of hex, the 6D 8B 00 35 60 00 (in
bold in the UniDump output above) is the MAC address of this particular TINI.
Compare this to the output of an earlier release of the TINI stick with 512 kbytes of
memory. Not a lot of information was kept in the DS2502 (just the MAC address,
also in bold, below).

0A 29 11 00 00 16 55 00 35 60 00 F9 C6 FF FF FF .)....U.5‘......
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Adding 512 kbytes Flash Memory
The TINI stick has 512 kbytes of flash EEPROM that is used for storing the Java
Virtual Machine and Slush. TINI uses an Advanced Micro Devices AM29F040B4

512-kbyte flash EEPROM. If you examine the memory map again, you will see that
TINI can address 1 Mbyte of flash EEPROM. If you are using the E10/E20 socket
board or you have constructed your own, you can add flash off stick. One of the
biggest advantages of using a second flash chip is to allow for an alternate operating
system. Notice in the section of the TINI socket board schematic shown below that
the flash memory control logic is configured so that either the on-stick or the off-stick
flash can be addressed first. If you change these solder-jumpers to a switch, you now
have switch-selectable boot control. Notice that the flash EEPROM on the TINI stick
is enabled with the /XCE0 line and the flash EEPROM on the TINI socketboard is
enabled with the /RCE0.

4 AM29F040B – http://www.amd.com/products/nvd/techdocs/21445.pdf

252

Designing Embedded Internet Devices

Figure 8-2:
EEPROM connections

If your socket board does not have provision for a second flash chip, then the
/CE0 line is routed back onto the TINI stick as /XCE0. If you do have provision for a
second flash then these two lines are controlled by the flash control with solder
jumpers. These jumpers either bypass the flash control directly when J27 is shorted
or determine which of the two flash chips is first addressed (/XCE0). The on-stick
flash is first when J13 and J16 are shorted (as a pair) and the off-stick flash is first
when J14 and J15 are shorted. Note that an unpopulated E10/E20 socketboard uses
another solder jumper (J27) to bypass the flash control altogether.

Figure 8-3: Flash memory control

If you solder on the components for the flash control, then you can change these
solder jumpers to select which flash your TINI uses to boot from. You can replace
these solder jumpers with switches so you can select which flash ROM is the boot
flash quicker then messing with solder jumpers.

253

Enhancing TINI

Adding a SIMM Connector
The current TINI stick is based on the common 72-pin SIMM (single inline memory
module) standard. An early version of the TINI was based on a 68-pin SIMM but this
was changed to take advantage of the more common 72-pin connectors that are
popular for personal computer memory modules. The 72-pin SIMM socket is available
in many configurations, depending on how you need to mount your TINI (for
mounting the TINI stick perpendicular or parallel to the socket board). The TINI stick
form factor conforms to the JEDEC JEP95 MO-1165 standard specification, more or
less. The TINI SIMM fits in a standard 72-pin SIM socket, including the key (the
notch near pin 1) but the overall card height seems to be nonstandard. Molex6 makes
a number of 72-pin SIMM connectors as shown in Table 8-2.

Table 8-2: SIMM styles

1.27mm (.050") SIMM Socket – Left Polarization, Vertical, Metal Latch 78962

1.27mm (.050") SIMM Socket – Right Polarization, Vertical, Metal Latch 78962r

1.27mm (.050") SIMM Socket – Left Polarization, Low Profile (22.5°), Metal Latch 78964

1.27mm (.050") SIMM Socket – Left Polarization, Right Angle, Metal Latch 78968

1.27mm (.050") SIMM Socket – Left Polarization, Right Angle, Plastic Latch 78968l

1.27mm (.050") SIMM Socket – Right Polarization, Right Angle, Metal Latch, Surface Mount 78968m

1.27mm (.050") SIMM Socket – Right Polarization, Right Angle, Plastic Latch 78968p

1.27mm (.050") SIMM Socket – Right Polarization, Right Angle, Metal Latch 78968r

1.27mm (.050") SIMM Socket – Left Polarization, Right Angle, Metal Latch, Surface Mount 78968s

1.27mm (.050") SIMM Socket – Left Polarization, Low Profile (40°), Metal Latch 78976

Figure 8-4: Flash memory switches

5 JEDEC MO-116 is part of JEP95, JEDEC Registered and Standard Outlines for Solid
State and Related Products, http://www.jedec.org/, requires registration for access to free
Standards.

6 Molex – http://www.molex.com/

254

Designing Embedded Internet Devices

The E10/E20 sockets support a second SIMM connector for expansion boards.
Adding a second SIMM connector is almost as simple as unclogging the soldered
through-holes on the socket board and soldering in a second connector.

Figure 8-5: SIMM connector

7 Systronix SIMMSerial – http://www.systronix.com/expansion/exp_simm.htm
8 Vinculum protoModule – http://www.vinculum.com/1005.php

So, what to do with a second SIMM socket? There are two current expansion
boards on the market at the moment:

••••• SIMMSerial – The Systronix SIMMSerial7 is a TINI-pinout compatible, 72-
pin SIMM module with dual hardware UARTS (16C552) compatible with the
current TINI firmware. Each RS232 can be wired as DCE or DTE. One
RS232 can be used as IrDA. The module works with any TINI system with an
available SIMM72 socket.

••••• protoModule – The TINI protoModule8 allows for further expansion of the
TINI stick. The board is simply a 0.1" center grid of through holes on a 72-pin
SIMM. This allows a developer to design a variety of circuitry on one or more
protoModules and then plug them into a TINI socketboard equipped with a
72-pin SIMM connector for test and debug. ProtoModules can be used with a
variety of boards such as the Dallas Semiconductor E10/E20, the Systronix
STEP board and the Vinculum NEXUS board.

255

Enhancing TINI

Adding Memory-mapped Devices
The rest of this chapter is devoted to adding memory-mapped devices to your TINI
for user interaction. We will discuss adding other devices such as serial ports, I2C
devices and other things in later parts of this book. We will be adding:

• Liquid crystal display

• 4-digit, 7-segment LED display

• Buttons for command input

• Keypad for text/numeric input

When we implement all of these devices, we will use a common address decoder and
data bus buffer. The buttons and keypad also share some common interrupt logic as
well. A simple block diagram of what we are adding is shown in Figure 8-7 to help
give the big picture on how these components connect. We will start with the data bus
buffer and the address decoder first, since the four input or display components use
these. All of these components can be successfully implemented on solderless
breadboards, soldered protoboards or any of the prototype systems for TINI that have
been previously mentioned (such as the TINI protoModule or the TINI Nexus, both
from Vinculum).

Figure 8-6: SIMM pinout

Figure 8-7: A block diagram of memory-mapped devices

TINI SIMM

LCD

Data Bus
Buffer

Address
Decoder

LED Buttons Keypad
External
Interrupt
Control

256

Designing Embedded Internet Devices

Adding data bus buffer
As mentioned in the TINI datasheet9, “The address bus, data bus and strobe lines are
subject to strict loading limitations. Exceeding these limits can cause erratic system
operation with on-board as well as off-board resources. Be sure
to buffer any signals that will be heavily loaded off-board.” So, to avoid adding
excessive capacitive loading on the data bus, we add a simple 74ACT245, octal bi-
directional transceiver. By connecting the /RD line from TINI to the 245’s
T/R, TINI will control the direction of the transceiver appropriately. The schematic in
Figure 8-8 shows how this is connected to TINI.

9 DSTINI1 – TINI Verification Module – http://www.ibutton.com/TINI/dstini2.pdf

Figure 8-8:
Data bus buffer

The address decoder
Since we are adding several devices to TINI, we need to assign them each a place in
the TINI address space. The TINI socketboard does not come with a general-purpose
address decoder. Shown here (Figure 8-9) is a simple address decoder for a liquid
crystal display.

Figure 8-9: Address decoder

257

Enhancing TINI

This is essentially the logical AND of /CE3, A19 and /WR; the LCD enable (E) is
high when Chip Enable 3 (CE3) is low, when the write (/WR) line is low and when
address line A19 is high.

This scheme for address decoding works fine for the LCD on the TINI socket board
but has several drawbacks: it does not allow for any flexibility (it’s wired for A19 and
/CE3), it does not allow for additional peripherals to be added without additional
address decoding and, worse, it takes up a large block of address space since it only
decodes on address A19 (valid address to talk with the LCD will range from
0x00380000 to 0x003FFFFF). We will be implementing a more traditional address
decoding scheme for our peripherals using a 74ALS138, 1-of-8 decoder/
demultiplexer. We will show how to modify the address decoder we use to be
compatible with the TINI LCD class as well as how to configure the TINI class to be
compatible with this address decoder in the section on the LCD display. The
schematic in Figure 8-10 shows the address decoder we will be using that allows us
to control eight peripherals (the blocks labeled “Buttons,” “LCD,” “LED” and
“Keypad” will be discussed in detail shortly).

Figure 8-10: Memory-mapped address decoder schematic

258

Designing Embedded Internet Devices

With this address decoder we use Peripheral Chip Enable 0 (/PCE0) and address lines A2,
A3, and A4. We will also be using address lines A1 and A2 to either address specific
portions of the device, as is the case in the LED display, or to enable certain modes of the
device, as is the case of the LCD display. You can very easily use a different Peripheral
Chip Enable line or different address lines to put these devices anywhere else in the TINI

Figure 8-11: Expanded address decoder for addressing more devices

259

Enhancing TINI

memory space that you desire. In Table 8-3 we list how the address decoder maps these
devices into TINI address space. Remember from the TINI memory map (in Chapter 6,
Table 6-3) that PCE0 selects addresses in the range 0x0800000-0x08FFFFF. We are not
decoding on address lines A5-A19 so if we needed to add more address decoding we
would need to build a larger address decoder, as shown in Figure 8-11 (in the table, x
means this address line is not decoded, so the level of this address line is irrelevant in the
decoding scheme).

Table 8-3: Address decoder addresses

Decode Device A19->A0 Address (HEX)
Line

Y0 Button Clear xxxx xxxx xxxx xxx0 00xx 00800000
Y1 Button Read enable xxxx xxxx xxxx xxx0 01xx 00800004
Y2 LCD display enable xxxx xxxx xxxx xxx0 10xx 00800008
Y3 LED display enable xxxx xxxx xxxx xxx0 11xx 0080000C
Y4 Keypad read enable xxxx xxxx xxxx xxx1 00xx 00800010
Y5 xxxx xxxx xxxx xxx1 01xx 00800014
Y6 xxxx xxxx xxxx xxx1 10xx 00800018
Y7 xxxx xxxx xxxx xxx1 11xx 0080001C

We will gain software access to these devices through the
com.dalsemi.system.dataport class. This class allows byte-wide reads and writes
to memory-mapped I/O devices. Here is a quick summary of what is needed:

We need to import the proper class:
import com.dalsemi.system.*;

then create a new DataPort for the particular address:
DataPort myDevice = new DataPort(0x0080000C);

We then configure the DataPort for the proper access. TINI provides a method for
user applications to set the number of machine cycles needed in order to execute a
bus read or write. This allows TINI access to both fast and slow peripherals without
additional logic. Often memory-mapped peripherals have slow access times, so it
may not be possible to access external devices at full speed. This timing is controlled
by the selection of stretch cycles. A stretch of 0 will result in two machine cycles for
a data bus read or write. A stretch of 7 will result in twelve machine cycles for a data
bus read or write. Your software can dynamically change the stretch value depending
on the particular memory or peripheral being accessed.
myDevice.setStretchCycles(DataPort.STRETCH10);

We can read from or write to the device as needed:
myDevice.write(0x00);
int i = myDevice.read();

260

Designing Embedded Internet Devices

11 TINI LCD Example – http://www.vinculum.com/LCD_Servlet_Example.php
12 How To Connect a LCD To Your TINI – http://www.dreamfabric.com/tini/LCD/

howtoconnectLCD.html
10 The Hitachi web site doesn’t seem to have the HD44780 data sheet but various other places

do. Try http://www.acfr.usyd.edu.au/teaching/4th-year/mech4710-uP/material/ref/Hitachi/
HD44780U.pdf or http://www.electronic-engineering.ch/microchip/datasheets/lcd/
hd44780.pdf

Table 8-4: Stretch cycles

Stretch Memory Bus Cycles Number of clocks Time (ns)*

STRETCH0 2 1 54
STRETCH1 3 2 108

2 4 4 217
3 5 6 325
7 9 8 434
8 10 10 542
9 11 12 651

10 12 14 759

* Remember that external oscillator frequency = 18.432 MHz.

Refer to Chapter 6 for more details on the TINI memory map with respect to CE and PCE.

Adding an LCD display
A liquid crystal display (LCD) is a simple and cheap device to use for your TINI to
provide an output for the user. There are many parallel interface LCDs on the market
these days that adhere to a data standard of sorts. This standard seems to follow the
data formats and pinouts of displays based on the Hitachi HD4478010 controller chip.
You can find LCDs in a variety of sizes, all based on the number of characters
displayed and the size of the array: 1x16, 1x20, 1x40, 2x20, 2x40, and 4x20 are
common but a number of other sizes can be found as well.

We will connect an LCD to the TINI stick as a memory-mapped device. This involves
connecting the data bus lines from TINI to the LCD and implementing some sort of
enable for the LCD. This enable will let the LCD know when data should be read
from the data bus, and whether that data is a command or information to be
displayed. We will be using the address decoder shown in Figure 8-10 for this,
although there are many ways this address decoding can be implemented. Simply
purchasing a serial LCD and connecting that to a serial port is also an option (but we
won’t be discussing that here).

The TINI class LCDPort can be used to communicate with a HD44780-based display,
but it is somewhat limited in its implementation. You can use the address decoder
shown in Figure 8-9 and this will work nicely with the LCDport that is part of the
TINI API. 11 12 The LCDport class uses the address that is decoded by the decoder

261

Enhancing TINI

shown in Figure 8-9 by default, but the base address can be changed as needed if you
choose to implement a different address decoder (like we do, as shown in Figure 8-10).
The TINI LCDport class will not let you change which address line you use to select
the LCD mode (in this case it’s fixed on A3). The sample program below will display
“Hello World” if you have connected your LCD using the address decoder from
either of the two listed references. Note that this uses address line A19 and chip select
/CE3 to put the LCD at address 0x00380000 in memory, using A3 to select between
command mode and data mode. Listing 8-3 is written to work with the address
decoder shown in Figure 8-9 and the default settings of the LCDport class.

Listing 8-3: dsLCDporttest.java

import com.dalsemi.comm.*;
import com.dalsemi.system.*;

// Class dsLDPporttest tests out the dalsemi LCDport class
public class dsLCDporttest
{
 public static void main(String[] args)
 {

// Configure display to 8bits, 2 lines
LCDPort.sendControl(0x38);
// Turn display on, cursor off
LCDPort.sendControl(0x0C);
// Clear the display
LCDPort.sendControl(1);
// Start at 00
LCDPort.setAddress(0x00);

 String message = “Hello World”;
 byte[] databytes = message.getBytes();

 for (int i = 0; i < databytes.length; i++)
 {
 LCDPort.sendData(databytes[i]);
 }
 }
}

Compile this program:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\dsLCDporttest.java
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\dsLCDporttest.tini
-d %TINI_HOME%\bin\tini.db

262

Designing Embedded Internet Devices

You can place this LCD elsewhere in memory by changing the LCD port address
using the com.dalsemi.system.TINIOS.setLCDAddress() method but, as we
mentioned already, there is no method that allows us to select a different address line
to select the LCD data/command mode and the Dallas Semiconductor classes make
no provision for enabling the LCD mode that would allow us to read data back from it.

To add flexibility and take advantage of all of the LCD’s features, we offer an
alternative schematic for connecting the LCD using the address decoder shown in
Figure 8-10. We will connect the TINI address bus lines A0 and A1 to the LCD to
control the LCD’s modes. This allows us to read from the display (things like cursor
position or status) as well as write to it and also to control whether we are writing text
for display or sending commands (like “clear screen” and “home cursor”). We will
use address line A0 to control the LCD R/W pin, which puts the LCD in either read
(high signal) or write (low signal) mode. Read mode is the mode in which the LCD
will send data back to us, and write mode is the mode in which we will send data to
it. Address line A1 is used to control the LCD RS (register select) pin to control
whether the LCD interprets data on the data bus as instructions (signal is low for
select mode) or as text data to display (signal is high for register mode). Figure 8-12
shows how we will connect our address decoder to an LCD.

Figure 8-12: LCD display schematic

263

Enhancing TINI

Examining the schematic, there are a few noteworthy things. Some displays may have
fewer than 16 pins. If your display does not have a backlight LED, then you may
have a 14-pin connector. Some LCDs only accept data in nibbles (4 bits) so you will
have fewer data lines. We found that this circuit didn’t need a contrast adjustment so
we simply tied pin 3 on the LCD to V

cc
. In all cases, consult the data sheet for your

LCD to determine the function and order of the connector pins.

Listing 8-4 is a simple program, LCDhello, that demonstrates accessing the LCD
directly using the DataPort class to give us full control over the LCD. Note that we
can change the chip select from /PCE0 to any other unused chip select and change the
address lines to put the LCD elsewhere in memory as needed. In contrast to our
previous example, the LCD now resides in a completely different place in memory.
The LCD now lives at address 0x00800008 as decoded by the address decoder
(Figure 8-10) and is in command mode and ready for writing when A0 and A1 are
low. When A1 is high, then the address for the LCD for writing data is 0x0080000A.

Listing 8-4: LCDhello.java

// Class LCDhello demonstrates how to simply communicate with an LCD
import com.dalsemi.system.*;

public class LCDhello
{
 public static void main(String[] args)
 {

DataPort data = new DataPort(0x0080000A);
DataPort command = new DataPort(0x00800008);
data.setStretchCycles(DataPort.STRETCH10);
command.setStretchCycles(DataPort.STRETCH10);

String message=”The Quick Brown Fox Jumps Over The Lazy Sleeping Dog.”;

try {
 // set display mode
 command.write(0x38);
 TINIOS.sleepProcess(150);
 // clear display
 command.write(0x01);
 TINIOS.sleepProcess(5);
 // turn on display, cursor
 command.write(0x0F);
 TINIOS.sleepProcess(10);

 byte[] databytes = message.getBytes();
 for (int i = 0; i < databytes.length; i++)
 {
 data.write(databytes[i]);

264

Designing Embedded Internet Devices

 }
 }
 catch(IllegalAddressException e) {
 System.out.println(e);
 }
 }
}

Taking apart the above Java program a bit, we can see that two DataPorts are created,
one for sending data and one for sending commands. These are the addresses that are
defined by the address lines used by the address decoder and the data/command
enable for the LCD (with this simple program we have not yet used the read mode).
 DataPort data = new DataPort(0x0080000A);
 DataPort command = new DataPort(0x00800008);

Also notice that we have set the StretchCycles to STRETCH10. You can try changing
the values of this to see what happens. With lower values we didn’t get consistent
operation and at the lowest values the LCD does not seem to respond at all, since the
commands to the LCD are changing too fast for it to process them.
 data.setStretchCycles(DataPort.STRETCH10);
 command.setStretchCycles(DataPort.STRETCH10);

After each of the writes to the command dataport, you will notice a sleepProcess.
This is because these commands require a little longer time than the StretchCycles
provides for. Consult the Hitachi data sheets and previously mentioned references for
detailed timing information and the commands that these displays understand.
 command.write(0x38);
 TINIOS.sleepProcess(150);

Finally, we send our text to the display. You will notice that the dataport write()
method takes bytes so we first need to convert our message into an array of bytes,
and then each byte is written to the dataport sequentially.
 byte[] databytes = message.getBytes();
 for (int i = 0; i < databytes.length; i++)
 {
 data.write(databytes[i]);
 }

Compile this program the usual way:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\LCDhello.java
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\LCDhello.tini
-d %TINI_HOME%\bin\tini.db

265

Enhancing TINI

There are two other features of the LCD that we can take advantage of: The LCD
allows us to define eight custom characters for displaying, and we can also read the
cursor position, the LCD display contents, and the LCD display status. To read the
LCD status, we set the R/W line (A0) for read (high) and the R/S line (A1) for
instructions (low). To read the LCD contents we need to set the R/W line (A0) for
read (high) and the R/S line (A1) for data (high). So the dataport address for reading
the status is 0x00800009 and the dataport address for reading data is 0x0080000B.
You will see this in the program (Listing 8-7: myLCD.java).

Each custom character is defined as a sequence of bytes, each bit representing
horizontal lines of pixels that are on (1) or off (0). The figure shows two examples of
how these custom characters are defined. This data is sent to the LCD by first
sending the LCD a command to select the internal LCD memory address and then
writing a sequence of data to the LCD for it to interpret as a custom font. Figure 8-13
shows an example character definition.

Figure 8-13: LCD character definition

00001110 0x0E

00010001 0x11

00001110 0x0E

00011111 0x1F

00000100 0x04

00001110 0x0E

00001010 0x1F

00001010 0x0A

00000000 0x00

00001010 0x0A

00000000 0x00

00000000 0x00

00001110 0x0E

00010001 0x11

00000000 0x00

00000000 0x00

The following program defines the class LCDfont. This class will be used in our final
LCD class and lets us treat each custom font as an object.

Listing 8-5: LCDFont.java

// Class LCDFont implements a user defined font set for a LCD display
public class LCDfont {

 public int fontdata [];
 public int fontcode;

// Some interesting font characters
public static int SMILEY [] = { 0x00,0x0A,0x00,0x00,0x11,0x0E,0x00,0x00 };
public static int MAN [] = { 0x0E,0x11,0x0E,0x14,0x1F,0x04,0x0A,0x0A };
public static int WOMAN [] = { 0x0E,0x11,0x0E,0x1F,0x04,0x0E,0x1F,0x0A };
public static int DEGREE [] = { 0x07,0x05,0x07,0x00,0x00,0x00,0x00,0x00 };

266

Designing Embedded Internet Devices

public static int FROWNY [] = { 0x00,0x0A,0x00,0x00,0x0E,0x11,0x00,0x00 };
public static int DOWNARROW []= { 0x00,0x04,0x04,0x15,0x0E,0x04,0x00,0x00 };
public static int UPARROW [] = { 0x00,0x04,0x0E,0x15,0x04,0x04,0x00,0x00 };
public static int INVADER [] = { 0x04,0x0E,0x1F,0x15,0x1F,0x0E,0x0A,0x15 };

 public LCDfont(int f1, int f2, int f3, int f4,
 int f5, int f6, int f7, int f8) {

 fontdata = new int [8];
 fontcode = 0;

 fontdata[0] = f1;
 fontdata[1] = f2;
 fontdata[2] = f3;
 fontdata[3] = f4;
 fontdata[4] = f5;
 fontdata[5] = f6;
 fontdata[6] = f7;
 fontdata[7] = f8;
 }

 public LCDfont () {
 // The default is a simple smiley :)
 this(0x00,0x0A,0x00,0x00,0x11,0x0E,0x00,0x00);
 }

 public LCDfont(int data[]) {
 fontdata = new int[8];
 fontdata = data;
 fontcode = 0;
 }

 public void setCode(int code) {
 fontcode = code;
 }

 public String toString() {
 return (“” + (char) fontcode);
 }
}

Our final class, LCDport, uses the classes LCDfont and
com.dalsemi.system.dataport to construct a full-featured class for driving your
LCD and taking advantage of all of its features.

Listing 8-6: LCDport.java

import com.dalsemi.system.*;

// Class LCDport implements an alternative class to com.dalsemi.com.LCDport
// with additional funtionality (like reading back data, status, defining

267

Enhancing TINI

// fonts, etc
public class LCDport
{

public static final int DISPLAY_CLEAR = 0x01;
public static final int DISPLAY_HOME = 0x02;

public static final int ENTRY_MODE = 0x04;
public static final int CURSOR_INC = 0x02;
public static final int CURSOR_DEC = 0x00;
public static final int SHIFT = 0x01;

public static final int DISPLAY_MODE = 0x08;
public static final int DISPLAY_ON = 0x04;
public static final int DISPLAY_OFF = 0x00;
public static final int CURSOR_ON = 0x02;
public static final int CURSOR_OFF = 0x00;
public static final int CURSOR_BLINK = 0x01;
public static final int CURSOR_NOBLINK = 0x00;

public static final int SHIFT_MODE = 0x10;
public static final int CURSOR_MOVE = 0x00;
public static final int DISPLAY_SHIFT = 0x08;
public static final int SHIFT_LEFT = 0x00;
public static final int SHIFT_RIGHT = 0x04;

public static final int FUNCTION_SET = 0x20;
public static final int DATA_4bit = 0x00;
public static final int DATA_8bit = 0x10;
public static final int LINES_1 = 0x00;
public static final int LINES_2 = 0x08;
public static final int FONT_5x7 = 0x00;
public static final int FONT_5x10 = 0x04;

public static final int CHARACTER_ADDRESS = 0x80;

public static final int DATA_ADDRESS = 0x40;

public static final int BUSY_FLAG = 0x80;
public static final int ADDRESS_PART = 0x7F;

DataPort dataport;
DataPort cmdport;
DataPort readport;
DataPort statport;

public LCDport(int cmd_addr, int data_addr, int stat_addr, int read_addr) {
cmdport = new DataPort(cmd_addr);
cmdport.setStretchCycles(DataPort.STRETCH10);
dataport = new DataPort(data_addr);
dataport.setStretchCycles(DataPort.STRETCH10);

268

Designing Embedded Internet Devices

statport = new DataPort(stat_addr);
statport.setStretchCycles(DataPort.STRETCH10);
readport = new DataPort(read_addr);
readport.setStretchCycles(DataPort.STRETCH10);

 }

 public void init() {
 // set display mode
 this.set(FUNCTION_SET + DATA_8bit + LINES_2 + FONT_5x7);
 // Wait for it. These waits are IMPORTANT, if you don’t
 // then you will be sending commands while its not ready
 TINIOS.sleepProcess(150);
 // clear the display
 this.set(DISPLAY_CLEAR);
 TINIOS.sleepProcess(5);
 // turn on the display and cursor
 this.set(DISPLAY_MODE + DISPLAY_ON + CURSOR_ON +

CURSOR_BLINK);
 TINIOS.sleepProcess(10);
 }

 public void set(int value) {
 try {
 cmdport.write(value);
 }
 catch(IllegalAddressException e) {
 System.out.println(“Error in SET”);
 System.out.println(e);
 }
 }

 public void write(String message) {

 byte[] databytes = message.getBytes();

 try {
 for (int i = 0; i < databytes.length; i++)
 {
 dataport.write(databytes[i]);
 }
 }
 catch(IllegalAddressException e) {
 System.out.println(“Error in WRITE”);
 System.out.println(e);
 }
 }

 public void write(int address, String message) {

269

Enhancing TINI

 this.set(CHARACTER_ADDRESS + address);
 byte[] databytes = message.getBytes();

 try {
 for (int i = 0; i < databytes.length; i++)
 {
 dataport.write(databytes[i]);
 }
 }
 catch(IllegalAddressException e) {
 System.out.println(“Error in WRITE”);
 System.out.println(e);
 }
 }

 public String read(int n)
 {
 byte[] d = new byte [20*4];

 // read n bytes from whatever the current address is
 // return as a String
 try {

// Wait for display to get into output mode
readport.setStretchCycles(DataPort.STRETCH10);
for(int i = 0; i < n; i++) {

 d[i] = (byte)readport.read();
 }
 }
 catch (IllegalAddressException e) {
 System.out.println(“Error in WRITE”);
 System.out.println(e);
 }
 // This does not translate special characters
 String s = new String(d);
 return(s);
 }

 public void defineFont(int code, LCDfont font) {
 // code defines the ASCI code for this character.
 int address = (code)*8;

 this.set(DATA_ADDRESS + address);
 font.setCode(code);

 try {
 for (int i = 0; i < font.fontdata.length; i++)
 {
 dataport.write(font.fontdata[i]);
 }
 }

270

Designing Embedded Internet Devices

 catch(IllegalAddressException e) {
 System.out.println(“Error in WRITE”);
 System.out.println(e);
 }
 }

 public byte getAddress() {
 int i = 0;
 try {
 i = statport.read();
 }
 catch(IllegalAddressException e) {
 System.out.println(e);
 }
 return((byte)(i & ADDRESS_PART));
 }

 public boolean isBusy() {
 int i = 0;
 try {
 i = statport.read();
 }
 catch(IllegalAddressException e) {
 System.out.println(e);
 }
 return((i & BUSY_FLAG)>0 ? true : false);
 }
}

Most of the functions of this class are fairly straightforward.

• LCDport(int, int, int, int),the constructor, takes four parameters:
the addresses for each of the different modes (command, sending text, status,
read text)

• init() initializes the display to a known state.

• set(int) sends commands to the LCD.

• write(string) sends a character string to the LCD for display.

• write(int, string) sends a character string to the LCD for display,
starting at the specified display address.

• read(int) returns the specified number of characters from the LCD as a
character string.

• defineFont(int, Font) sends a Font object to the LCD as the specified
character (0..7). The font needs to be defined using the LCDFont(int array)
method.

• getAddress() returns the current LCD cursor address.

271

Enhancing TINI

• isBusy() returns a boolean indicating if the LCD is busy or ready (true for
busy).

Let’s take this LCDport class out for a test drive. We will create a new class, myLCD,
that will use both LCDport and LCDfont.

Listing 8-7: myLCD.java

import com.dalsemi.comm.*;
import com.dalsemi.system.*;

// Class myLCD demonstrates the methods in our LCDport class
public class myLCD
{
 public static void main(String[] args)
 {
 LCDport mylcd =
 new LCDport(0x00800008, 0x0080000A, 0x00800009, 0x0080000B);

 // define some custom fonts
 LCDfont man = new LCDfont(LCDfont.MAN);
 LCDfont woman = new LCDfont(LCDfont.WOMAN);
 LCDfont smiley = new LCDfont(LCDfont.SMILEY);
 LCDfont frowny = new LCDfont(LCDfont.FROWNY);
 LCDfont invader = new LCDfont(LCDfont.INVADER);
 LCDfont degree = new LCDfont(LCDfont.DEGREE);
 LCDfont uparrow = new LCDfont(LCDfont.UPARROW);
 LCDfont downarrow = new LCDfont(LCDfont.DOWNARROW);

// initialize it, check the status
mylcd.init();
System.out.println(“Busy? “ + mylcd.isBusy());

// home the cursor
mylcd.set(LCDport.DISPLAY_HOME);

// Send the custom fonts to the display memory
mylcd.defineFont(0, invader);
mylcd.defineFont(1, man);
mylcd.defineFont(2, woman);
mylcd.defineFont(3, smiley);

// Try writibng, assumes a 4x20 display.
// Addresses will be different for other sizes
mylcd.write(0x00, “Line 1”);
// get the current display address, should be 6
System.out.println(“Address is “ + mylcd.getAddress());
// Send some special characters
mylcd.write(0x40, “Line 2” + invader + man + woman + smiley);

272

Designing Embedded Internet Devices

// write some more.
mylcd.write(0x14, “Line 3”);
mylcd.write(0x54, “Line 4”);
mylcd.write(0x61, “The End”);

// Lets rtead back alll of the text we sent to the display.
String stuff;
System.out.println(“Reading back data”);
mylcd.set(LCDport.CHARACTER_ADDRESS + 0x00);
stuff = mylcd.read(20);
System.out.println(“[“+stuff+”] “ + stuff.length());

mylcd.set(LCDport.CHARACTER_ADDRESS + 0x40);
stuff = mylcd.read(20);
System.out.println(“[“+stuff+”] “ + stuff.length());

mylcd.set(LCDport.CHARACTER_ADDRESS + 0x14);
stuff = mylcd.read(20);
System.out.println(“[“+stuff+”] “ + stuff.length());

mylcd.set(LCDport.CHARACTER_ADDRESS + 0x54);
stuff = mylcd.read(20);
System.out.println(“[“+stuff+”] “ + stuff.length());

// done!
 }
}

Note that writing custom characters to the display requires no special action on our
part. Instead we use the toString method (implied) of the LCDfont class to return
fontcode, a number that corresponds to the character code for that custom character.
If we tried
System.out.println(invader);

Java would call the toString method for the invader object (the toString() method
of the LCDFont class) which would return the character code we assigned to the
invader object in the line:
mylcd.defineFont(0, invader);

Compile this program:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin myLCD.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\myLCD.tini
-d %TINI_HOME%\bin\tini.db

273

Enhancing TINI

This is what a 4x20 LCD looks like after running this program.

Figure 8-14: LCD example

Remember, LCD displays will vary depending on the controller chip and the size of
the LCD display. Be sure to get and read the data sheets. Also, be aware of the way
your display addresses are arranged (the 4x20 is treated as two 2x40 lines).

Adding buttons
The LCD is a nice way for your TINI to display test messages, but what about a way
to capture external events to trigger TINI software routines? In other words, how do
we get input based on some external events? We can do this using the TINI external
interrupt. The TINI stick has an /EXTINT line and the TINI API includes several
classes for dealing with and managing these external interrupts.

Figure 8-15 shows the external interrupt logic on the TINI E10/E20 socket board. This
allows for two serial port interrupts and two auxiliary interrupts to control the TINI CPU
/EXTINT line. To trigger an interrupt we need to take the /EXTINT line low. The TINI
API class com.dalsemi.system.ExternalInterrupt and ExternalInterruptEvent
are used for accessing the external interrupt and interrupt events.

Figure 8-15:
External interrupt logic

274

Designing Embedded Internet Devices

We can trigger external interrupts by attaching a simple pushbutton to the /EXTINT
line so that when the button is pressed it connects the /EXTINT line momentarily to
ground. Something along the lines of that shown in Figure 8-16 will do nicely.

Figure 8-16: A button to trigger an external interrupt

The 10K resistor is a pull-up on the /EXTINT line. It holds this line at V
cc
 until

someone (or some event) presses the button. When the button is closed it connects
ground to the /EXTINT line and this triggers an interrupt on the TINI stick. If we have
implemented an ExternalInterruptEvent then we can start a Java class executing
with a button press. Note that this is a button and not a switch. TINI can be configured
so the ExternalInterruptEvent is either falling-edge triggered or low-level triggered. The
default is level triggering. If you use level triggering with a switch then TINI will be
repeatedly sending interrupts while the switch is closed, leaving very little of the CPU
to service the interrupt. Your interrupt should be short durations to avoid this.

Listing 8-8: ExtIntDemo.java

import java.util.TooManyListenersException;
import com.dalsemi.system.*;

// Class ExtIntDemo provides a simple deonstration of implementing an
// ExternalInterruptEventListener
class ExtIntDemo implements ExternalInterruptEventListener
{
 int interruptions;

 public void init() throws TooManyListenersException
 {

ExternalInterrupt myInterrupt = new ExternalInterrupt();
myInterrupt.addEventListener(this);
try {

 myInterrupt.setTrigger(true, this);
 }

275

Enhancing TINI

 catch (ExternalInterruptException e) {
 System.out.println(e);
 }
 }

 public void externalInterruptEvent(ExternalInterruptEvent ev)
 {
 System.out.println(“Interruptions = “ + ++interruptions);
 if (interruptions > 25) { System.exit(0); }
 }

 public static void main(String[] args) throws
TooManyListenersException

 {
 ExtIntDemo interrupt = new ExtIntDemo();
 interrupt.init();

 while (true) {
 // do nothing
 }
 }
}

Compile this program:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\ExtIntDemo.java
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\ExtIntDemo.tini
-d %TINI_HOME%\bin\tini.db

Run this on your TINI. Note the triggering in the line
 myInterrupt.setTrigger(true, this);

Try changing this to false and see how the program reacts to button presses. Notice that
we are not doing any switch debouncing here. You can add that to your circuits as needed
but for this example we can be content to ignore any switch bounce as being too short of a
duration to register multiple interrupts, but that’s not always the case. Changing the
triggering can help make this program a little more sensitive to keybounce. Appendix C
(on the CD-ROM) provides a number of possible debounce circuits.

To complicate this a little more, you can then connect multiple buttons or switches by
combining their signals as shown in Figure 8-17. It’s worth noting that when the
ExternalInterruptEvent is executing, TINI will be ignoring (not queuing) any
additional external interrupts that occur. If this is a bad thing, you will need to keep
the ExternalInterruptEvent method you implement as simple as possible so it can
be executing quickly.

276

Designing Embedded Internet Devices

Figure 8-17:
External interrupt schematic

Figure 8-18: Switch state memory schematic

277

Enhancing TINI

But if we want to add more than one button, how will we know which button was
pressed? We only have one external interrupt line on the TINI stick, so we need a way
to save the state of each button so we can query them after an interrupt is caught. The
circuit in Figure 8-18 shows a 74ATC74, dual D-type flip-flop configured to store the
on state of either button that’s pressed. We use a 75HC541, octal buffer, enabled by
one of our chip selects from the address decoder to connect the stored button states to
the data bus, and another chip select to clear the stored state after our interrupt
service method has determined which of the buttons caused the external interrupt.

Now we can support multiple buttons and know which button was pressed after we
catch the interrupt. We can add additional 74ATC74 devices for more buttons as
needed. The schematic also shows a keypad data available line (KBDA) connected to
the data bus buffer. We will use it to determine if an interrupt was caused by the
keypad in the next section.

The Button class, below, provides methods for accessing the button state and
clearing them.

Listing 8-9: Button.java

import com.dalsemi.system.*;

// Class Button provides methods for accessing push buttons
class Button {

 DataPort clearButtons;
 DataPort readButtons;

 public Button(int clearaddr, int buttonaddr) {
clearButtons = new DataPort(clearaddr);
clearButtons.setStretchCycles(DataPort.STRETCH10);
readButtons = new DataPort(buttonaddr);
readButtons.setStretchCycles(DataPort.STRETCH10);

 }

 public int read() {
 int d=0;

 try {
 d = readButtons.read();
 }
 catch (IllegalAddressException e) {

System.out.println(“Error in reading switches”);
System.out.println(e);

 }
 return(d);
 }

278

Designing Embedded Internet Devices

 public void clear() {

 try {
 clearButtons.write(0x00);
 }
 catch (IllegalAddressException e) {

System.out.println(“Error in reading switches”);
 System.out.println(e);
 }
 }

 public boolean isButton1() {
 int s = this.read();
 return((s & 0x01)>0 ? true : false);
 }

 public boolean isButton2() {
 int s = this.read();
 return((s & 0x02)>0 ? true : false);
 }

 public boolean isButton3() {
 int s = this.read();
 return((s & 0x04)>0 ? true : false);
 }

 public boolean isButton4() {
 int s = this.read();
 return((s & 0x08)>0 ? true : false);
 }
}

This is a summary of the methods in this class:

• Button(int, int) is the constructor for this class, taking two parameters,
the address of the clear dataport and the address of the read dataport.

• read() returns an integer that contains the state of buttons.

• clear() clears the button states.

• isButton1(), isButton2(), isButton3(), isButton4() all return
Boolean values of the individual button states.

The simple program below demonstrates the Button class and shows how to check
the button status by simple polling. If any button (or several) is pressed, the program
prints the result of a dataport read.

279

Enhancing TINI

Listing 8-10: pollButton.java

import com.dalsemi.system.*;

// Class pollButtons demonstrates how to poll the status of the buttons
public class pollButton {

 public static void main(String[] args) {

 int state = 0;
 int i=0;
 Button mybutton = new Button(0x00800000, 0x00800004);
 mybutton.clear();

 while (i<200) {
 state = mybutton.read();
 if (state > 0) {
 if (mybutton.isButton1()) {
 System.out.println(“Button: 1”);
 }
 if (mybutton.isButton2()) {
 System.out.println(“Button: 2”);
 }
 if (mybutton.isButton3()) {
 System.out.println(“Button: 3”);
 }
 if (mybutton.isButton4()) {
 System.out.println(“Button: 4”);
 }
 }
 mybutton.clear();
 TINIOS.sleepProcess(50);
 i++;
 }
 }
}

Compile this program:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin pollButton.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\pollButton.tini
-d %TINI_HOME%\bin\tini.db

280

Designing Embedded Internet Devices

This works well when we don’t require the program to know about the button presses
in a timely manner. A busy CPU may not get around to servicing this often enough for
reasonable response time. We should use the ExternalInterrupt when we need better
response. We will implement that in the next section with the keypad.

Adding a keypad
We can implement a numeric keypad using the previously mentioned buttons and
interrupt events. But it will get a bit tedious to trap a large number of buttons and also
store which was pressed. To simplify things a bit, we will use a keypad encoder.
There are several on the market for 16 and 20 key keypads. Fairchild Semiconductor
makes the MM74C922 and MM74C92313, and e-lab makes the EDE114414 keypad
encoder integrated circuits. Figure 8-19 shows a typical keypad implementation
based on a MM74C922.

13 MM74C922/923 Data Sheet – http://www.fairchildsemi.com/pf/MM/MM74C922.html
14 EDE1144 Data Sheet – http://www.elabinc.com/ede1144.pdf

Figure 8-19: Keypad schematic

281

Enhancing TINI

1 2 3

5 6 4

9 8 7

0 *

Common

1st row

2nd row

4th row

3rd row

2nd
column

3rd
column

1st
column

Back View Front View

We can monitor our keypad by polling the DataPort or we can attach the
DataAvailable output from the IC to the /EXTINT pin on TINI (through an inverter
since the DataAvailable line is active high). The schematic for the buttons in the
previous section shows this DataAvailable (KBDA) line is connected to the
74VHC541 buffer and the external interrupt logic along with the push buttons. In this
way, we can capture events from the keypad or the pushbuttons. If you only needed to
use the keypad, without the push buttons, then there would be no need to implement
the 74LS74 D flip flops to store the state of the buttons, as the only external interrupt
would be from the keypad data available signal, and probably no need to use a circuit
like Figure 8-17 to combine multiple interrupt sources.

Be careful of the keypad pin-out. These encoder ICs need matrix switch keypads that
are arranged in rows and columns, where a single button push will connect the row
pin with the column pin for that key. Shown is the pin-out for one particular keypad.
There appears to be quite a bit of variation between keypad pinouts.

Figure 8-20: Keypad pinout

The following class, Keypad, can be used to access a keypad implemented according
to the schematic. You can use this by either polling or implementing an
ExternalInterruptEvent listener.

282

Designing Embedded Internet Devices

Listing 8-11: Keypad.java

import com.dalsemi.system.*;

// CLass Keypad defines methods for acceing a numeric keypad
class Keypad {

 DataPort keypad;

 public Keypad(int addr) {
 keypad = new DataPort(addr);
 keypad.setStretchCycles(DataPort.STRETCH10);
 }

 // read raw key info from keypad
 public int readRaw() {
 int d=0;

 try {
 d = keypad.read();
 }
 catch (IllegalAddressException e) {
 System.out.println(“Error in reading keypad”);
 System.out.println(e);
 }
 // mask off upper 4 bits
 return((d & 0x0F));
 }

 // read keypad and returs the symbol for the appropriate key
 public char readKey() {
 int d = readRaw();
 char k = ‘ ‘;
 switch(d) {

case 0x00 : k=’1'; break;
case 0x01 : k=’2'; break;
case 0x02 : k=’3'; break;
case 0x03 : k=’ ‘; break;
case 0x04 : k=’4'; break;
case 0x05 : k=’5'; break;
case 0x06 : k=’6'; break;
case 0x07 : k=’ ‘; break;
case 0x08 : k=’7'; break;
case 0x09 : k=’8'; break;
case 0x0A : k=’9'; break;
case 0x0B : k=’ ‘; break;
case 0x0C : k=’*’; break;
case 0x0D : k=’0'; break;
case 0x0E : k=’#’; break;

283

Enhancing TINI

case 0x0F : k=’ ‘; break;
default: break;

 }
 return(k);
 }

}

• Keypad(int addr) is the constructor. It takes one parameter, the address
of the keypad dataport.

• readRaw() returns an integer representing the key position on the keypad.
This starts with 0 and counts up through the rows sequentially.

• ReadKey()maps the key position number into a specific character. This
method returns a character of the key. You could modify this method for
specific keypad meanings, possibly returning bytes, strings or even objects
rather than simple characters.

We can read this keypad in a manner similar to how we read the buttons, by polling.

Listing 8-12: pollKeypad.java

import com.dalsemi.system.*;

// Class pollKeypad demonstrates how (not very well) to poll the keypad
public class pollKeypad {

 public static void main(String[] args)
 {
 char key = ‘ ‘;
 int now = 0, last=0, i=0;

 Keypad mykeypad = new Keypad(0x00800010);

 while (i<200) {
 now = mykeypad.readRaw();
 key = mykeypad.readKey();
 if (now!=last) {
 System.out.println(“Key: “ + Integer.toHexString(now)
 + “, keypad “ + key);
 }
 last=now;
 TINIOS.sleepProcess(50);
 i++;
 }
 }
}

284

Designing Embedded Internet Devices

Compile this program:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin pollKeypad.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\pollKeypad.tini
-d %TINI_HOME%\bin\tini.db

Unfortunately, the keypad encoder has no provision for clearing its output after we
have read which key was pressed, so this works well only if we never expect the user
to press the same key twice in a row. To overcome this minor limitation, we can
implement the ExternalInterruptEventListener as we did for a single button
earlier.

Listing 8-13: myKeypad.java

import java.util.TooManyListenersException;
import com.dalsemi.system.*;

// Class myKeypad demonstrates reading the keypad and buttons
// using an ExternalInterruptEventListener
class myKeypad implements ExternalInterruptEventListener {

 int i;
 Keypad mykeypad = new Keypad(0x00800010);
 Button mybutton = new Button(0x00800000, 0x00800004);

 public void init() throws TooManyListenersException
 {

 // This is the signal to which we will add an event listener
 ExternalInterrupt myInterrupt = new ExternalInterrupt();
 // Add the event listener
 myInterrupt.addEventListener(this);

 mybutton.clear();
 }

 public void externalInterruptEvent(ExternalInterruptEvent ev)
 {
 int state = 0;

 System.out.println(“Interrupt Caught: “ + ++i);
 state = mybutton.read();

285

Enhancing TINI

 // We can catch multiple simultaneous presses
 if (mybutton.isButton1()) {
 System.out.println(“Keypad: “ + mykeypad.readKey());
 }
 if (mybutton.isButton2()) {
 System.out.println(“Button: 2”);
 }
 if (mybutton.isButton3()) {
 System.out.println(“Button: 3”);
 }
 if (mybutton.isButton4()) {
 System.out.println(“Button: 4”);
 }
 mybutton.clear();

 if (i > 9) { System.exit(0); }
 }

 public static void main(String[] args) throws TooManyListenersException
 {
 myKeypad interrupt = new myKeypad();
 interrupt.init();

 while (true) {
 // do nothing
 }
 }
}

Compile this program:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin myKeypad.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\myKeypad.tini
-d %TINI_HOME%\bin\tini.db

The output of this program looks like this (after some random button and keypad
pressing):
TINI /> java myKeypad.tini
Interrupt Caught: 1
Keypad: 5
Interrupt Caught: 2
Keypad: 9
Interrupt Caught: 3

286

Designing Embedded Internet Devices

Keypad: 0
Interrupt Caught: 4
Keypad: 5
Button: 2
Button: 3
Interrupt Caught: 5
Keypad: 2
Button: 2
Button: 3
Interrupt Caught: 6
Button: 2
Button: 3
Interrupt Caught: 7
Keypad: 7
Interrupt Caught: 8
Keypad: 5
Interrupt Caught: 9
Keypad: 6
Interrupt Caught: 10
Keypad: 9
TINI />

Much better. We can now identify which button was pressed, and which key on the
keypad was pressed, and deal with multiple presses of the same key and also
simultaneous presses of several buttons.

Add an LED display
For our last memory-mapped device we will implement an LED display. If the liquid
crystal display was not good enough for you, let’s try implementing a four-digit
7-segment LED display for variety. There are a number of multiple-digit, 7-segment,
LED display driver chips available. Fairchild Semiconductor makes the MM74C911
and MM74C91215 and e-labs make the EDE707.16 Both of these work with common
anode or common cathode 7-segment LED displays. Again, we will be using one of
the chip selects from our address decoder to enable the LED driver. The schematic
(Figure 8-21) shows the circuit we will be using. Note that the LED driver needs the
2N3904 transistors to drive the common anode LED displays. The circuit will be
slightly different for common cathode LEDs.

The class provided here, LEDport, supports sending messages to a four character
array of 7-segment LED displays. Each of the four characters of the display are then
selected by using the address lines A0 and A1; the class implements this as four
consecutive dataports starting with the base address as determined by our chip select
logic.

15 MM74C911/912 data sheet – http://www.fairchildsemi.com/pf/MM/MM74C911.html
16 EDE707data sheet – http://www.elabinc.com/ede707.pdf

287

Enhancing TINI

Because we are only using seven segments, not all ASCII characters are possible. We
can display all numbers and a reasonable representation for these letters and symbols:

• AbCcdEFGHhIiJLnOoPrStUuYZ

• :?.[]|-_

This means you need to use peculiar case and spell certain words oddly (or not at all).
Some examples of this oddness are: tHE HErE tHAt tini Hello hi HI dALLAS
StAtUS AlArm Error StOP HALt HELP rESEt rESTArt rEbOOt UP dn LEFT rIGHt
UnDEr OvEr. But you can see that it is still possible to get the message across to the
user.

Listing 8-14: LEDport.java

import com.dalsemi.system.*;

// Class LEDport defines a set of methods for accessing an LED
display.
public class LEDport
{
 DataPort led0;
 DataPort led1;
 DataPort led2;
 DataPort led3;

Figure 8-21: LED display schematic

288

Designing Embedded Internet Devices

 int timedelay = 150;
 int flashcount = 4;

 public LEDport(int baseaddr)
 {

// the LED driver datasheet says that address to write enable
// time
// is 50 ns and the write enable width is 250 ns
led0 = new DataPort(baseaddr);
led0.setStretchCycles(DataPort.STRETCH10);
led1 = new DataPort(baseaddr+1);
led1.setStretchCycles(DataPort.STRETCH10);
led2 = new DataPort(baseaddr+2);
led2.setStretchCycles(DataPort.STRETCH10);
led3 = new DataPort(baseaddr+3);
led3.setStretchCycles(DataPort.STRETCH10);

 }

 public void init()
 {
 clear();
 }

 public void clear()
 {
 try {
 led0.write(0x00);
 led1.write(0x00);
 led2.write(0x00);
 led3.write(0x00);
 }
 catch(IllegalAddressException e) {
 System.out.println(“Error in INIT”);
 System.out.println(e);
 }
 }

 public void setDigit(int digit, int value)
 {
 try {
 switch (digit) {

case 0: led0.write(value);
break;

case 1: led1.write(value);
break;

case 2: led2.write(value);
break;

case 3: led3.write(value);
break;

default: break;

289

Enhancing TINI

 }
 }
 catch(IllegalAddressException e) {
 System.out.println(“Error in SET”);
 System.out.println(e);
 }
 }

 public int toSegment(char c)
 {
 // convert ASCII characters (as in INT into 7 Segments representation
 return (toSegment((int)c));
 }

 public int toSegment(int x)
 {
 int i=0;
 // We map SOME letters into an equivalent form (different case).
 // You can add more as you like.
 switch (x) {

case ((int) ‘0’): i=0x3F; break;
case ((int) ‘1’): i=0x06; break;
case ((int) ‘2’): i=0x58; break;
case ((int) ‘3’): i=0x4F; break;
case ((int) ‘4’): i=0x66; break;
case ((int) ‘5’): i=0x6D; break;
case ((int) ‘6’): i=0x7D; break;
case ((int) ‘7’): i=0x07; break;
case ((int) ‘8’): i=0x7F; break;
case ((int) ‘9’): i=0x6F; break;
case ((int) ‘A’):
case ((int) ‘a’): i=0x77; break;
case ((int) ‘B’):
case ((int) ‘b’): i=0x7C; break;
case ((int) ‘C’): i=0x39; break;
case ((int) ‘c’): i=0x58; break;
case ((int) ‘D’):
case ((int) ‘d’): i=0x5E; break;
case ((int) ‘E’):
case ((int) ‘e’): i=0x79; break;
case ((int) ‘F’):
case ((int) ‘f’): i=0x71; break;
case ((int) ‘G’):
case ((int) ‘g’): i=0x7D; break;
case ((int) ‘H’): i=0x76; break;
case ((int) ‘h’): i=0x74; break;
case ((int) ‘I’): i=0x06; break;
case ((int) ‘i’): i=0x04; break;
case ((int) ‘J’):
case ((int) ‘j’): i=0x1E; break;

290

Designing Embedded Internet Devices

case ((int) ‘L’): i=0x38; break;
case ((int) ‘l’): i=0x06; break;
case ((int) ‘N’):
case ((int) ‘n’): i=0x54; break;
case ((int) ‘O’): i=0x3F; break;
case ((int) ‘o’): i=0x5C; break;
case ((int) ‘P’):
case ((int) ‘p’): i=0x73; break;
case ((int) ‘R’):
case ((int) ‘r’): i=0x50; break;
case ((int) ‘S’):
case ((int) ‘s’): i=0x6D; break;
case ((int) ‘T’):
case ((int) ‘t’): i=0x78; break;
case ((int) ‘U’): i=0x3E; break;
case ((int) ‘u’): i=0x1C; break;
case ((int) ‘Y’):
case ((int) ‘y’): i=0x66; break;
case ((int) ‘Z’):
case ((int) ‘z’): i=0x5B; break;
case ((int) ‘?’): i=0x53; break;
case ((int) ‘.’): i=0x80; break;
case ((int) ‘[‘): i=0x39; break;
case ((int) ‘]’): i=0x0F; break;
case ((int) ‘-’): i=0x40; break;
case ((int) ‘_’): i=0x08; break;
case ((int) ‘|’): i=0x30; break;
case ((int) ‘ ‘): i=0x00; break;
case ((int) ‘:’): i=0x09; break;
default:

// other characters get mapped into a ? sort of thing
i = 0x53;
System.out.println(“Bad character: “ + x);
break;

 }
 return(i);
 }

// Format the string for the LED display, look for “.” and set
// this as
// the decimal point then convert all characters to 7seg
// representation.

 public byte[] format(String text)
 {
 String message = new String(text);
 byte[] databytes = message.getBytes();

 // scan data looking for “.”
 for(int i=0; i<databytes.length; i++) {
 if (databytes[i]==’.’) {

291

Enhancing TINI

 // put the decimal on previous character
 databytes[i-1] = (byte) (databytes[i-1] | 0x80);
 // now delete it by shifting all characters left by 1
 for (int j=i; j<databytes.length-1; j++) {
 databytes[j] = databytes[j+1];
 }
 // slap a space on the end
 databytes[databytes.length-1]=(char)’ ‘;
 }
 // convert it to a segment
 databytes[i] = (byte) toSegment(databytes[i]);
 }
 return(databytes);
 }

 // Make a long text message scoll across the 4 character display.
 // pad the left with 4 spaces for it to scroll onto the display.
 // pad the right with 4 spaces for it to scroll off the display.
 public void scrollMessage(String text)
 {
 byte[] databytes = format(text);

 // Now scroll the message
 for(int i=0; i<databytes.length-3; i++) {
 for(int j=0;j<4;j++) {
 if ((i+j)>databytes.length-1) {
 this.setDigit(j, 0x00);
 }
 else {
 this.setDigit(j, databytes[i+j]);
 }
 }
 TINIOS.sleepProcess(timedelay);
 }
 }

 // Flash a short message on the display to get attention
 public void flashMessage(String text)
 {
 byte[] databytes = format(text);

 for(int x=0; x<flashcount; x++) {
 // Now flash the first 4 characters
 for(int i=0; i<4; i++) {

 if (i>databytes.length-1) {
 this.setDigit(i, 0x00);
 }
 else {
 this.setDigit(i, databytes[i]);

292

Designing Embedded Internet Devices

 }
 }

TINIOS.sleepProcess(timedelay);
clear();
TINIOS.sleepProcess(timedelay);

 }
 }

 public void setDelay(int delay)
 {
 timedelay = delay;
 }

 public void setFlashCount(int count)
 {
 flashcount = count;
 }
}

Here is a summary of the methods in this class:

• LEDport(int) is the constructor. It takes one parameter, the base address
of the dataport.

• init() initializes the LED display.

• clear() clears the display (no digits on).

• setDigit(int, int) sets a digit (0..3) to a particular value. The value is the
character that has been encoded as an integer to turn on the proper segments.

• toSegment(char) takes a character and returns an integer that represents
the proper segments on the 7-segment display.

• toSegment (int) takes integer (ASCII value) and returns an integer that
represents the proper segments on the 7-segment display

• format(String) takes a character string and returns an array of bytes that
have been properly encoded for display.

• scrollMessage(String) takes a character string and scrolls it across the
LED display from right to left.

• flashMessage(String) takes a character string and flashes it on the LED
display.

• setDelay(int) sets the delay amount in ms that the scrollMessage will
delay between each character or the time between flashes, depending on
which method is used.

• setFlashCount(int) sets the number of times to flash a message using
the flashMessage() method.

293

Enhancing TINI

The 7-segment encoding is quite simple. You select the segment you want turned on
for a particular character. This character then requires those segments to be on, or a
logic 1. These binary segments are then ordered: dp, g, f, e, d, c, b, a, according to the
diagram in Figure 8-22. For example, “C” requires segments a, d, e and f. This is
00111001 in binary or 39 hex. Writing a 0x39 to the LED dataport for one of the
characters will display a “C” on that LED.

Figure 8-22: 7-segment encoding

dp

a

b

g

c

d

e

f
a b c d e g f dp

Byte format:
LED segments correspond to

these bit positions.

The following program demonstrates the capabilities of the LEDport class and this
LED display circuit.

Listing 8-15: myLED.java

import com.dalsemi.comm.*;
import com.dalsemi.system.*;

// Class myLED demonstrates the methods in our LEDport class
public class myLED
{
 public static void main(String[] args)
 {
 final LEDport myled = new LEDport(0x0080000C);

 myled.init();
 // milliseconds to wait bewteen scroll steps and flashes
 myled.setDelay(150);
 // our version of “hello world”
 myled.scrollMessage(“ HELLO tini “);
 // number of times to flash

294

Designing Embedded Internet Devices

 myled.setFlashCount(4);
 myled.flashMessage(“ThIS”);
 myled.flashMessage(“ IS “);
 myled.flashMessage(“CooL”);
 }
}

Compile this program:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin myLED.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\myLED.tini
-d %TINI_HOME%\bin\tini.db

Summary
In this chapter we discussed adding components and interfacing user input/output
devices to TINI. There are certainly many other types of displays or
I/O devices that you may wish to add. We hope that this chapter has provided you
with the tools necessary to add these devices. In following chapters we will be
discussing some of the other features of the Dallas Semiconductor E10/20
socketboards, such as the serial ports, parallel I/O, CAN, and I2C interface.

References
1. Computer/Microcontroller Interfacing,

http://www.ffldusoe.edu/faculty/Denenberg/courses/GK415/Computer-
Microcontroller_Interfacing.htm

2. Beyond Logic,
http://www.beyondlogic.org/

3. L.O.S.A - List of Stamp Applications,
http://www.hth.com/losa/

4. How to use Intelligent LCDs,
http://www.epemag.wimborne.co.uk/resources.htm

5. The Extended Concise LCD Data Sheet,
http://www.electronic-engineering.ch/microchip/datasheets/lcd/
the_lcd_data_sheet.pdf

6. How to Control a HD44780-based Character-LCD,
http://home.iae.nl/users/pouweha/lcd/lcd.shtml

9CHAPTER

TINI Serial and Parallel I/O

295

1 Data Transmission Circuits – http://www.national.com/appinfo/interface/0,1801,128,00.html

The TINI microcontroller is equipped for many forms of I/O. The simpler two of
these are the serial and parallel ports. The TINI CPU can directly support two serial
ports and many others can be added as memory-mapped peripherals. TINI’s parallel
I/O ports are simply 8-bit wide, memory-mapped I/O busses for general-purpose
control. We will examine each of these two I/O devices in detail and provide some
example circuits and programs.

Serial Ports
Some have called the RS-232/EIA-232 serial port the most popular interface standard
in the world1. It was first introduced in 1962 and has been widely used throughout the
industry on computers, computer terminals, and many different types of devices from
modems to multimeters. It was developed for single-ended data transmission at
relatively slow data rates (20 kbps) over short distances (typically up to 50 feet) but is
often used for faster data rates and much longer cable lengths.

Almost all personal computers currently made have at least one serial port. The serial
port converts data from internal parallel data to a serial data stream and changes the
electrical representation of the data so it can be transmitted over distance without data
loss. The serial port is defined by the RS-232-C (RS for Recommended Standard) or
the EIA-232-D (EIA for Electronics Industry Association) specifications. The RS
specification is now obsolete but still widely used. The TINI microcontroller has two
serial ports on the SIMM and more can be added as memory-mapped devices. We
have already used the primary serial port in earlier chapters for communicating with
TINI to load and configure the firmware.

296

Designing Embedded Internet Devices

Figure 9-1: Connecting to the TINI serial port

Personal
Computer

Socket
Board

TINI SIMM

Serial Cable

Serial ports

A few serial port details
You don’t have to fully understand the details of RS-232-C to use a serial port, but a
familiarization with the basics makes working with the TINI serial ports much
simpler and certainly helps if you run into any problems along the way.

The UART
The UART (Universal Asynchronous Receiver/Transmitter) is the integrated circuit
that controls the serial port. It basically does everything for the computer in the way
of managing the transmission and receipt of data. Specifically, the UART:

• converts bytes from parallel data to a serial data stream when
transmitting data.

• converts the received serial data stream back into parallel data for the com-
puter when receiving data.

• deals with the parity bit on both outgoing and incoming transmissions.

• manages the serial port flow control lines.

• Some UARTS also provide buffering (like 16 bytes or so).

The UART works with parallel-to-serial (and flow control) signals at the same
voltage levels as the computer or device; in the case of TINI this is 5 volts. A serial
line driver, discussed in a few paragraphs, will then shift these voltages to serial line
voltages.

Flow control, parity, stop bits, data format
The serial port is said to be asynchronous, meaning that there is no clock transmitted
with the data to identify to the receiving end when each bit should be valid. A trans-
mitted sequence of all 1’s or all 0’s would be hard for the receiver to identify the
individual bits (or just how many bits there are, for that matter) without some sort of

297

TINI Serial and Parallel I/O

timing information. Since this timing information is not in the data stream, the UART
provides this. The transmitting UART frames each byte sent by placing a start bit at
the beginning of the serial data and a stop bit at the end. The receiving UART listens
to the serial line for a start bit and when it detects one it starts a clock running. It uses
this clock to determine the amount of time needed for each bit in the serial data stream.
In this way, asynchronous data is actually synchronized as it is received. In serial
transmission of data by RS-232/EIA-232 ports the low-order bit is always sent first.

0

+5

Logic 0
0 volts

Logic 1
+5 volts

 Start 0 1 2 3 4 5 6 7 Stop Start …

Voltage

Serial Data

Figure 9-2: Serial data

The transmitting and receiving UARTs also need a way to communicate with each
other so that the transmitter does not send too much data for the receiver, and the
receiver can tell the transmitter if it’s ready for more data or not. This flow control
prevents data from being lost. Flow control can be implemented in either hardware or
software.

Software flow control for serial ports is called XON/XOFF. With XON/XOFF flow
control, the receiving device tells the computer when to pause by sending it an XOFF
character (control-S) and when to resume transmission by sending the computer the
XON character (control-Q). The advantage of using software flow control is that you
can implement a serial port with only three wires (transmit, receive, common).

Hardware flow control is accomplished by using additional wires for signaling
between the transmitting device and the receiving device. Hardware flow control is
managed by the UART. It controls four additional lines for this (but some devices
will only implement two of these lines):

• RTS - Ready To Send

• CTS - Clear To Send

• DSR - Data Set Ready

• DTR - Data Terminal Ready

298

Designing Embedded Internet Devices

Here is how this works. When a computer wants to stop the flow of data on the serial
line, it negates the RTS line. Negated RTS (–12 volts) means “request NOT to send”
or stop sending data. When the computer is ready for more bytes it asserts RTS (back
to +12 volts) and the flow of data resumes. Flow control signals are always sent in a
direction opposite to the flow of data that is being controlled. Serial devices (not
computers) work the same way but they send the stop signal to the computer via the
CTS pin. This is called RTS/CTS flow control.

In addition to RTS/CTS flow control; a device can implement DTR/DSR control. The
normal use of DTR and DSR like this: A device asserting DTR (+12 volts) says that it
is powered on and ready to communicate (data terminal is ready). Some modems
interpret the DTR signal from the computer as a “hang up” signal (hang up when
DTR is negative) but not always. In fact some devices require that DTR be high
before they will communicate. Readers should note that in the case of TINI and
Serial0, taking the DTR line to a non-HIGH (0 or negative) will cause a hardware
reset.

Characters are normally transmitted serially as either 7 or 8 bits of data. An addi-
tional parity bit may (or may not) be appended to this, resulting in a byte length of 7,
8 or 9 bits. The parity may be set to odd, even, or none. With odd parity, the parity bit
is determined so that the number of 1’s in a byte, including the parity bit, is odd. If a
byte gets corrupted in transmission by a bit being flipped, the result is an invalid byte
of even parity (the wrong parity). Even parity works the same way but with all valid
bytes including the parity bit having an even number of 1’s. The UART will detect a
parity error and this allows the software application to detect (if the software is
properly written) the errors and request retransmission of the appropriate information.
Figure 9-2 shows 8 data bits, no parity, 1 stop bit. This is often abbreviated as 8N1. It
is important that you know what format your serial device and computer is expecting
and set the software settings for them both to the same parameters.

Serial line voltages
Before these serial signals are transmitted on the serial cable the voltages are in-
creased to between 3 and 25 volts, but between 10–12 volts is common (we will use
10 or 12 volts throughout this book but remember that this really means 3–25). Serial
port data is considered valid for a logic “1” if the voltage is between –3 and –25 volts
and a logic “0” is valid between +3 and +25 volts. Both positive and minus voltages
are needed for data transmission. The serial port voltages are bipolar, which means
that both positive and negative voltage relative to ground are used. For the transmit
and receive lines, +12 volts represents a logical “0” and –12 volts represents a logical
“1” (which is often called reverse logic since typically a logic “1” is represented by
the positive or higher voltage). The flow control lines will be +12 volts when asserted
and –12 volts when negated. This needs to be converted to –12 to +12 volts for the

299

TINI Serial and Parallel I/O

serial port using a serial line driver. There are many serial line drivers on the market.
Common ones include the MAX2322 , the National Semiconductor DS14C2323 , and
the Dallas Semiconductor DS2324 .

2 MAX232 Datasheet – http://pdfserv.maxim-ic.com/arpdf/MAX220-MAX249.pdf
3 DS14C232 Datasheet – http://www.national.com/pf/DS/DS14C232.html
4 DS232 – http://pdfserv.maxim-ic.com/arpdf/DS232A.pdf

Figure 9-3: Serial line voltages

-10

0

+10

+20

-20

Logic 0
-12 volts

Logic 1
+12 volts

 Start 0 1 2 3 4 5 6 7 Stop Start …

Voltage

Serial Data

Figure 9-3 shows an example of a serial line communication, the same data as shown
in Figure 9-2, but notice that the serial line voltages are not only shifted from 0–5
volts to –12 to +12 volts, but the logic is also inverted. The serial port line driver does
this. The MAX232 and many other serial line drivers include an internal charge pump
so that the device will work on a single 5-volt supply voltage. If this is the case, it is
not uncommon for the serial line driver to only output ±10 volts. This voltage is often
fine for most serial devices but we have encountered a few that need ±12 volts to
work properly. The devices referenced provide two TTL to RS-232 voltage level
shifters (for transmitting lines) and two RS-232 to TTL/CMOS level shifters (for
receiving lines). This is suitable for use with two serial ports that do not use hand-
shaking or a single serial port that simply uses RTS/CTS flow control. There are
many other line drivers that are suitable for shifting all data and handshake lines on a
serial port. We will use one of these in a few pages to implement a memory-mapped
serial port on TINI.

300

Designing Embedded Internet Devices

Cables and connectors
The next things we need to worry about with wiring up a serial port is the connector
and cable. There are two different types of serial devices and so there are two differ-
ent wiring configurations of the serial port. In addition there are several common
physical connectors for the serial port, resulting in a variety of possible cable/connec-
tor wiring patterns.

If the device transmitting and receiving serial data is a computer or a computer
terminal, then these devices are called data terminal equipment (DTE). If the serial
device is some other type of device (like a modem or a printer), then these are called
data communication equipment (DCE).

The RS-232 standard defines how a DTE is connected to a DCE. The cable between
the DTE and the DCE should be straight-through wiring (simply connect pin1 to
pin1, pin2 to pin2, and so on). The main signals and their direction of flow are shown
in Figure 9-5 and described below. It is important to note that a signal that is an
output from a DTE (a computer) is an input to a device (a DCE) and vice versa. This
means that you can never tell from the signal name alone whether it is an input or an
output from a particular piece of equipment.

Figure 9-4:
Serial line driver

RS-232
OUTPUTS

RS-232
INPUTS

CMOS
INPUTS

CMOS
OUTPUTS

DCE

Serial Cable

DTE

TD
RD
CTS
RTS
DTR
DSR
DCD
RI
Ground

Modem

TD
RD

CTS
RTS
DTR
DSR
DCD

RI
Ground

Figure 9-5: Serial data lines

301

TINI Serial and Parallel I/O

• TD – Transmit data. This is the serial encoded data sent from a DTE to a DCE
device.

• RD – Receive data. This is the serial encoded data received by a DTE from a
DCE device.

• DCD – Data Carrier Detect. This is set true by the DCE when it detects the
data carrier signal on the telephone line (for modems; it may have other
meanings for other devices or it may be ignored). Active high.

• DTR – Data Terminal Ready. This should be set true by a DTE whenever it is
powered on and ready to communicate. It can be read by the DCE to deter-
mine that the DTE is ready. Active high.

• DSR – Data Set Ready. This should be set true by DCE whenever it is pow-
ered on and ready. It can be read by the DTE to determine if the DCE is ready.
Active high.

• RTS – Ready To Send. This is set true by the DTE when it wishes to transmit
data. Active high.

• CTS – Clear To Send. This is set true by DCE to notify the DTE that it can
transmit data. Active high.

• RI – Ring Indicator. This line informs the DTE that the DCE wants to start a
connection (for a modem; it may be ignored by other devices or always high).
Active high.

Part of the confusion that is common with serial ports occurs when you have two
computers (both DTE) or two devices (both DCE) connected together with a serial
cable (or, instead of being a DCE device, some serial communication devices might
be configured as DTE). Then you need to be careful that the transmit line from one is
connected to the receive line on the other. To solve this, some devices can be config-
ured as either DTE or DCE. If the device configuration cannot be changed, then you
need to perform the signal crossover in the cable. In either case (DCE to DCE or
DTE to DTE), you need a crossover cable or an adapter. This crossover is typically
called a “null modem” cable or “null modem” connector.

The most common RS-232 connectors are the D9 and D25 connector as shown in
Figure 9-6. It is common (but not a rule) to find the female connector on the DCE and
the male connector on the DTE. If you are going to be working with serial devices
you need a collection of adapters, cable, and a null modem adapter. You can pur-
chase most of these ready made or you can wire your own connectors and cables
using the pinout information given in Figures 9-6 through 9-10.

302

Designing Embedded Internet Devices

Technically, the DCE pinout is the same as the DTE pinout, knowing that the TD
output (transmitted data) from the DTE connects to the TD input of the DCE. Often
the DCE pinout is relabeled so that the TD line from the DTE connects to the RD line
of DCE. Care should be given to making serial port connection diagrams.

Figure 9-6: D9 and D25 male (top) and female (bottom) connectors

DB9 DB25

Figure 9-7: D9 and D25 pinouts

1

2

3

4

5

14

15

16

17

6

7

8

9

10

19

20

21

22

18

11

12

13

23

24

25

DTE Pinout (25 pin)

Pin 1 SG Signal Ground
Pin 2 TD Transmit Data
Pin 3 RD Receive Data
Pin 4 RTS Ready To Send
Pin 5 CTS Clear To Send
Pin 6 DSR Data Set Ready
Pin 7 SG Signal Ground
Pin 8 DCD Carrier Detect
Pin 20 DTR Data Terminal Ready
Pin 22 RI Ring Indicator

DTE Pinout (9 pin)

Pin 1 DCD Data Carrier Detect
Pin 2 RD Receive Data
Pin 3 TD Transmit Data
Pin 4 DTR Data Terminal Ready
Pin 5 SG Signal Ground
Pin 6 DSR Data Set Ready
Pin 7 RTS Ready To Send
Pin 8 CTS Clear To Send
Pin 9 RI Ring Indicator

1

2

3

4

5

6

7

8

9

303

TINI Serial and Parallel I/O

In many devices software flow control is required and the device does not implement
any sort of hardware handshaking. In these cases it is possible to simplify the serial
cable to three wires—TD, RD and signal ground. The remaining lines can be ignored,
or looped back within the connector as shown in Figure 9-10.

TD
RD
RTS
CTS
DSR
DCD
DTR
SG
RI

 DTE DCE
(25 pin (25 pin)

 2 2
 3 3
 4 4
 5 5
 6 6
 8 8
 20 20
 7 7
 22 22

 DTE DCE
(9 pin) (25 pin)

 3 2
 2 3
 7 4
 8 5
 6 6
 1 8
 4 20
 5 7
 9 22

 DTE DCE
(9 pin) (9 pin)

 3 3
 2 2
 7 7
 8 8
 6 6
 1 1
 4 4
 5 5
 9 9

Figure 9-8: DTE–DCE cables (straight-through wired)

Figure 9-9: DTE-to-DTE cables (null modem cables or adapters)

TD
RD
RTS
CTS
DSR
DCD
DTR
SG

 DTE DTE
(25 pin (25 pin)

 2 2
 3 3
 4 4
 5 5
 6 6
 8 8
 20 20
 7 7

 DTE DTE
(9 pin) (25 pin)

 3 2
 2 3
 7 4
 8 5
 6 6
 1 8
 4 20
 5 7

 DTE DTE
(9 pin) (9 pin)

 3 3
 2 2
 7 7
 8 8
 6 6
 1 1
 4 4
 5 5

Figure 9-10: Minimum serial cables

TD
RD
RTS
CTS
DSR
DCD
DTR
SG

 DTE DCE
(25 pin (25 pin)

 2 2
 3 3
 4 4
 5 5
 6 6
 8 8
 20 20
 7 7

 DTE DCE
(9 pin) (9 pin)

 3 3
 2 2
 7 7
 8 8
 6 6
 1 1
 4 4
 5 5

304

Designing Embedded Internet Devices

An alternative to these D9 and D25 connec-
tors and the need for a null modem in some
circumstances and not others is one reason
we are particularly fond of “The Yost Serial
Device Wiring Standard”5 using RJ-45
connectors and CAT5 cables. Essentially,
onto each serial port of every piece of equipment that you use you put on an appropri-
ately wired adapter from DB-25 or DB-9 to RJ-45. Now every serial port has the same
kind of connector regardless of its function (DTE or DCE). The benefits are that now
every serial port transmits and receives data and has its control lines on the same pins
so you only need one cable configuration; essentially all cables are in a null-modem-
like configuration. In addition, you only need to keep one kind of cable (CAT5) and
connector (RJ45) and crimping tool on hand. You can use a colored CAT5 cable to keep
your serial cables distinctly different from your network cables.

Table 9-1: RJ45 serial connector pinout

DB-9 DB-25 Signal Function Wire DTE DCE
Color RJ45 RJ45

8 5 CTS Clear To Send Blue 1 8
1 8 DCD Data Carrier Detect Orange 2 7
2 3 RD Received Data Black 3 6
5 7 SG Signal Ground Red 4 5
5 7 SG Signal Ground Green 5 4
3 2 TD Transmitted Data Yellow 6 3
4 20 DTR Data Terminal Ready Brown 7 2
7 4 RTS Request To Send White 8 1
6 6 DSR Data Set Ready – –
9 22 RI Ring Indicator – –
Wire DSR to DTR in the RJ45 connector to support the use of the DSR line
when needed.

The RS-232 specification lists the maximum
cable length to be 50 feet for 20,000 bits/
second data rates. For lower data rates, like
2400 bits/second, this can be extended to
400 feet using telephone wire (untwisted pair)
and in excess of 2000 feet using CAT-5 cable.

5 Yost Serial Device Wiring Standard – http://www.yost.com/computers/RJ45-serial/index.html

Figure 9-11: RJ45 serial adapter

305

TINI Serial and Parallel I/O

Cables for the Yost Serial standard are simply a reversed-order wiring on each end.
Whatever color order you use on one end to connect to pins 1–8 on the RJ45, use the
opposite order on the opposite end (in other words, you are always using a crossover
style cable).

TINI serial ports
The TINI provides direct support for up to four serial ports: serial0–serial3. The
DS80C390 has two built-in UARTs for control of serial0 and serial1. TINI also
supports communication with a 16550 UART. The details and capabilities of these
serial ports are listed in Table 9-2.

Table 9-2: TINI serial ports

Serial Details CMOS RS232
Port Interface Interface

(± 10 volts)

Software flow control but no hardware flow control TD: pin 21 TD: pin 19
Used by serial server RD: pin 22 RD: pin 20
Configured as DCE
UART internal to CPU

serial0 Baud rates of 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200
Supports 7 or 8 data bits, 1 stop bit, Odd, Even or
No parity (or 2 stop bits with 7 data bits)
E10 socketboard supports use of D9 and a
nonstandard RJ11 connector

Software flow control but no hardware flow control TD: pin 14
Disables External 1-Wire when used RD: pin 15
UART internal to CPU
External Level Shifter required

serial1 Baud rates of 2400, 4800, 9600, 19200, 38400,
57600, 115200 (300, 600, 1200 not supported)
Supports 7 or 8 data bits, 1 stop bit, Odd, Even or
No parity (or 2 stop bits with 7 data bits)
User configured as either DCE or DTE
E10 socketboard provides connection to header pins

Hardware flow control but no software flow control Configured Uses an
External UART and Level Shifter required as a memory external level

serial2 Baud rates of 300, 600, 1200, 2400, 4800, 9600, mapped shifter
19200, 38400, 57600, 115200 device
Supports 5, 6, 7 or 8 data bits, 1, 1/5 or 2 stop bits,
Odd, Even or No parity

Hardware flow control but no software flow control Configured Uses an
External UART and Level Shifter required as a memory external level

serial3 Baud rates of 300, 600, 1200, 2400, 4800, 9600, mapped shifter
19200, 38400, 57600, 115200 device
Supports 5, 6, 7 or 8 data bits, 1, 1/5 or 2 stop bits,
Odd, Even or No parity

306

Designing Embedded Internet Devices

Both serial0 and serial1 are driven by the UART that is integrated in the 80C390 CPU
on TINI. Figure 9-12 shows the connections of serial0 and serial1 to the TINI CPU
and the TINI SIMM (Figure 9-13).

Figure 9-12: Serial0 and serial1 Ports on CPU

Figure 9-13: Serial0 and serial1 ports on TINI SIMM

14 – serial1 TD
15 – serial1 RD

19 – serial0 TD (±12 volts)
20 – serial0 RD (±12 volts)

21 – serial0 TD (5 volts)
22 – serial0 RD

307

TINI Serial and Parallel I/O

Serial0
We have already used serial0, the primary serial port, for connecting to TINI with
JavaKit. Note that on the Dallas Semiconductor E10 and E20 sockets, this port is
configured as a DCE serial port. This means that to connect TINI to your computer
you need a simple serial cable, not a null modem cable. But if you are going to
connect another DCE device to this port, then you need a null modem adapter or null
modem cable. If you examine the TINI schematic, you will notice that the serial0
level shifters are included on the TINI stick (U14). This puts the complete serial port
on the stick except for the connector (serial1, 2 and 3 all require additional hardware
to do the level shifting). Also you will notice that this level shifter only deals with
three signals: TX232 (transmitted data), RX232 (received data) and DTR232. The
DTR232 is used as an external hardware reset for TINI. When this line goes high it
causes TINI to perform a power-on reset. This DTR232 can be disabled if you use the
E10 or E20 socketboard by removing the J1 solder jumper.

Figure 9-14: Serial0 (serial port on TINI SIMM)

Figure 9-15: Serial0 DTR reset jumper

Jumper in position Jumper removed

308

Designing Embedded Internet Devices

Figure 9-16: Serial0 reset jumper schematic

Removing this jumper will prevent devices that use the DTR line from resetting your
TINI. It will also prevent you from resetting your TINI using the RESET button in
JavaKit. If you do remove this jumper, it’s a good idea to wire a switch back in so
you can reset TINI easily if you need to.

Serial server

Recall from Chapter 6 that TINI is running a server that listens for incoming terminal
connections (like JavaKit, Hyperterm or minicom) to serial0. If you are using serial0
for connection to a device other than a computer, you will want to disable the boot
messages and the serial server (or your serial device will be getting these messages
and may become confused). The slush command stopserver -s is used to shutdown
the server. It accepts an optional argument, -d, that will suppress all of the console
messages the next time the TINI is booted.

You can also start or stop the serial server by editing the /etc/.startup file on TINI.
Remember that the /etc/.startup file contains instructions for the Slush command
shell that are read at boot time. The default contents of this file are as follows:
########
#Autogen’d slush startup file
setenv FTPServer enable
setenv TelnetServer enable
setenv SerialServer enable
##
#Add user calls to setenv here:
##
initializeNetwork
########
#Add other user additions here:

By changing the line:
setenv SerialServer enable

to

setenv SerialServer disable

or simply deleting that line, you will prevent the serial server from being started
when TINI is rebooted.

309

TINI Serial and Parallel I/O

Serial1
Serial1 is similar to serial0 in that the UART is part of the 80C390 CPU. It does not
have a serial line driver on the TINI SIMM. Serial1 is primarily for driving the TINI
external 1-Wire adapter (U8) but can be used as a standard serial port as well, with
the addition of a line driver. If you are planning on using this to communicate with
another serial device that does not have a line driver, then you can wire these directly.
If you need to talk with standard serial devices (that need ± 10 volts on the serial line)
then you need to connect a line driver to this to get the proper voltages. The line
driver you pick can be any of the commonly available ones. In the case of serial1, you
only need to drive one CMOS-to-±12 volt line and one ±12-volt-to-CMOS line, so a
very simple line driver is all that’s needed, such as a DS232A or a MAX233 (which
has the added benefit of not needing external capacitors for the charge pump).

Figure 9-17: Serial1 (and 1-Wire interface)

Figure 9-18: Serial1 line driver (wiring shown for both DTE and DCE)

310

Designing Embedded Internet Devices

If you use serial1 for a serial port, you need to disable the external 1-Wire port. To do
that, you need to put a 1KΩ pull-down resistor on the EN2480 line and you need to
include the following line in your program:
TINIOS.enableSerialPort1(false);

If you don’t do both of these, you are likely to get 1-Wire data on the serial port and
this will corrupt your data.

Serial2, 3
If you need more serial ports, then you can implement them on the Dallas Semicon-
ductor socketboard or an external board as memory-mapped devices. The TINI API
provides direct support for two additional memory-mapped UARTs (16550 compat-
ible) with the added benefit of supporting full hardware flow control. Figure 9-19
below shows a dual UART and one of the two line drivers (they are both basically the
same).

Figure 9-19: Serial2,3 port driver

311

TINI Serial and Parallel I/O

The Dallas Semiconductor implementation uses a DS229 line driver for most of the
serial port data and signal lines. A DS14C98 receiver is used to shift the incoming
flow control lines to CMOS logic levels (we need three CMOS-to-±12 volt drivers
and five ±12-volt-to-CMOS receivers). Alternatively, a different RS-232 line driver,
like a MAX235, would support all of the needed data and flow control lines.

The 74AC138 on the TINI E10/E20 socketboard partially decodes the address bus
and places the serial ports in memory as follows:

• serial2: 0x380020 – 0x380027

• serial3: 0x380028 – 0x38002F

Notice that the UART uses address line A3 to determine if we are communicating
with serial2 or serial3 and that the UART uses an 8-byte block in memory as decoded
by A0–A2.

Figure 9-20:
Serial2 and serial3 address decode

For adding single serial ports or for use on protoboards, we can use the National
Semiconductor single UART PC16550DN in a DIP package. With this it is possible
to implement a serial port with full hardware flow control. The address is decoded
using a 74AC138 decoder.

If you want the serial port to occupy some other address space, then you need to
modify the address decoder appropriately and then use the method
com.dalsemi.system.TINIOS.setExternalSerialPortAddress(newaddress);

to change the addresses. You must enable these external serial ports with the method
com.dalsemi.system.TINIOS.setExteranlSerialPortEnable(port, true);

Serial communication software (API)
Let’s try out the various serial ports and see how they behave and what the differ-
ences are to the TINI API. There are essentially three classes we are concerned with
when programming the TINI serial ports.

• The obvious class is the javax.comm.SerialPort class that we used in
Chapter 3 to communicate with the PC’s serial port.

312

Designing Embedded Internet Devices

• If you need more direct control over the TINI serial ports, you can use the
com.dalsemi.comm.TINISerialPort class but you will give up portability.
Your programs must be recompiled to run on a PC and may not work if you
have used any methods specific to TINI.

• In addition to the javax.comm.SerialPort class, you need to be able to select
and configure various options that are specific to TINI’s serial ports. You will find
a collection of methods in the com.dalsemi.system.TINIOS class. The methods
that you will probably be most interested in are:

• enableSerialPort1(boolean) – This method enables serial1 (and in
doing that it disables the external TINI 1-Wire bus). The state of serial1 is
preserved in TINI memory; this method only needs to be executed once
after the firmware is loaded or the heap has been cleared.

• setExternalSerialPortAddress(portnumber, address) – The
method sets the address for the external serial ports, serial2 and serial3. You
only need to use this method if you install serial2 or serial3 at a location
other than the default address. The address is preserved in TINI memory, so
this method only needs to be executed once after the firmware is loaded or
the heap has been cleared.

Figure 9-21: com.dalsemi.com

javax.comm

com .dalsemi .com java.lang

CanBus

CanFrame

InternalComPortLCDPort

java.io

OutputStream

DebugOutputStream

LCDOutputStream

SerialOutputStream

NullOutputStream

InputStream

SerialInputStream

NullInputStream

CommPort

SerialPort TINISerialPort

CanBusException

Object

Throwable

Exception

CommDriver TINICommDriver

313

TINI Serial and Parallel I/O

• setExternalSerialPortEnable(portnumber, boolean) – Call this
method to enable or disable serial2 or serial3. The state of these ports is
preserved in TINI memory until the heap is cleared.

• setExternalSerialPortSearchEnable(bootlean) – This method
tells the TINI firmware to look for serial2 and serial3 at boot time. The
state of this setting is preserved in TINI memory until the heap is cleared.

• setRTSCTSFlowControlEnable(portnumber, boolean) – This
method enables hardware flow control on the specified serial port. TINI
only supports hardware flow control on one serial port at a time.

• setSerialBootMessageState(boolean) – The method enables or
disables boot messages to serial0. The state of these ports is preserved in
TINI memory until the heap is cleared.

• getExternalSerialPortAddress(portnumber) – Returns the memory
map address of the specified serial port.

• getExternalSerialPortEnable(portnumber) – Returns a boolean
value indicating if the specified serial port is enabled.

• getExternalSerialPortSearchEnable(portnumber) – This method
returns a boolean value indicating if the firmware will search for the
specified serial port on boot.

• getRTSCTSFlowControlEnable(portnumber) – Returns a boolean
value that indicates if hardware flow control is enabled on the specified
port.

These are straightforward as to their function. The TINI API provides some addi-
tional detail on each of these methods. Remember that before you can use serial1 you
must call this method:
TINIOS.enableSerialPort1(true);

And before you can use serial2 or serial3 you need to enable them and set their
address if you have placed them at some other address in memory than the default
(0x380020 – 0x38002F)
TINIOS.setExternalSerialPortAddress(2, 0x3800020);
TINIOS.setSerialPortEnable(2, true);

A serial example
Serial0
To test serial0 we will start by using the same SerialLoopTest.java program that
we used in Chapter 3, without modification. Put your loopback plug on serial0, the
same as you used on your PC’s serial port. Remember to use a cable that does not
connect DTR or you will need to remove the solder jumper on J1 on the bottom of
your TINI socket board. If you are using a Dallas Semiconductor socketboard and
you leave the J1 jumper connected and your serial cable has the DTR line wired, your

314

Designing Embedded Internet Devices

TINI will reboot (and then hang as the DTR line is pulled low) as soon as you
connect the loopback plug. Compile SerialLoopTest.java for TINI and FTP
SerialLoopTest.tini to your TINI. The program takes one command line param-
eter, the name of the serial port to test. The SerialLoopTest.java is listed below for
your convenience, but refer to Chapter 3 for a more detailed discussion.

Listing 9-1: SerialLoopTest.java

import java.io.*;
import java.util.*;
import javax.comm.*;
import com.dalsemi.system.*;
import com.dalsemi.comm.*;

public class SerialLoopTest implements Runnable,
SerialPortEventListener {

static CommPortIdentifier portId;
static Enumeration portList;

static InputStream inputStream;
static OutputStream outputStream;

static SerialPort serialPort;
Thread readThread;

static String message2send = “Hello Port!”;

static String messagereceived;

static byte[] inbuf = new byte[20];
int i = 0;
static String portname;

public static void main(String[] args) {

 // check out the command line args
 if (args.length < 1) {

System.out.println(“Specify a port! (COM1 or /dev/ttyS0
or something).”);

 return;
 } else {

portname = args[0];
System.out.println(“Testing port: “ + portname);

 }

 try {
// Get the ID of this port
portId = CommPortIdentifier.getPortIdentifier(portname);

315

TINI Serial and Parallel I/O

// Is it a serial port?
if (portId.getPortType() != CommPortIdentifier.PORT_SERIAL) {

System.out.println(“Port is not a serial port”);
return;

 }
 }
 catch(NoSuchPortException e) {

System.out.println(“No Such Port!”);
return;

 }
 catch (Exception e) { System.out.println(e); }
 SerialLoopTest tester = new SerialLoopTest();
 }

 public SerialLoopTest() {
 try {
 serialPort = (SerialPort) portId.open(“SimpleReadApp”, 2000);
 }
 catch(PortInUseException e) {

System.out.println(“Port In Use.”);
return;

 }
 catch (Exception e) {

System.out.println(e);
return;

 }

 try {
 inputStream = serialPort.getInputStream();
 outputStream = serialPort.getOutputStream();
 }
 catch (IOException e) { System.out.println(e); }

 try {
 serialPort.addEventListener(this);
 }
 catch (TooManyListenersException e) { System.out.println(e); }

// Turn on some notifiers so we can catch them with an event listener.
serialPort.notifyOnDataAvailable(true);
serialPort.notifyOnCTS(true);
serialPort.notifyOnDSR(true);

// We don’t really need to set the port parameters for a loop back test
// but if you did, this is how you would.
try {

 serialPort.setSerialPortParams(19200,
 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);

316

Designing Embedded Internet Devices

 serialPort.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);
 }
 catch (UnsupportedCommOperationException e) {
 System.out.println(e);
 }

 readThread = new Thread(this);
 readThread.start();
 }

 public void run() {
 // send characters out the port
 try {
 outputStream.write(message2send.getBytes());
 }

catch (IOException e){ System.out.println(e); }

System.out.println(“Flipping RTS...”);
serialPort.setRTS(! serialPort.isRTS());

System.out.println(“Flipping DTR...”);
serialPort.setDTR(! serialPort.isDTR());
try { Thread.sleep(1000); } catch (Exception e) { }

serialPort.removeEventListener();
serialPort.close();

System.out.print(i + “ bytes read from port “ + portname + “. “);
if (i<1) {

 System.out.println(“Maybe something is not working.”);
 }

else { System.out.println(); }
 }

 public void serialEvent(SerialPortEvent event) {
// determine whuch event has happened
switch(event.getEventType()) {
case SerialPortEvent.BI:
case SerialPortEvent.OE:
case SerialPortEvent.FE:
case SerialPortEvent.PE:

System.out.println(“Some status line changed.”);
break;

case SerialPortEvent.CD:
System.out.println(“Status line CD changed.”);
break;

case SerialPortEvent.CTS:
System.out.println(“Status line CTS changed.”);
break;

case SerialPortEvent.DSR:

317

TINI Serial and Parallel I/O

System.out.println(“Status line DSR changed.”);
break;

case SerialPortEvent.RI:
System.out.println(“Status line RI changed.”);
break;

case SerialPortEvent.OUTPUT_BUFFER_EMPTY:
System.out.println(“Buffer Empty”);
break;

case SerialPortEvent.DATA_AVAILABLE:
byte[] readBuffer = new byte[20];
try {

 while (inputStream.available() > 0) {
int numBytes = inputStream.read(readBuffer);
i += numBytes;
messagereceived = new String(readBuffer);
System.out.println(“Read: “ + messagereceived);

 }
 }

catch (IOException e) { System.out.println(e); }
break;

 }
 }
}

Compile the program:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\SerialLoopTest.java
C:\> java -classpath c:\opt\tini1.02d\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\SerialLoopTest.tini
-d %TINI_HOME%\bin\tini.db

Run the program on TINI and observe the results:
TINI />java SerialLoopTest.tini serial0
Testing port: serial0
[Sat Jan 01 00:00:00 GMT 2000] Message from System: Serial server stopped.
Flipping RTS...
Flipping DTR...
Read: Hello Port!
11 bytes read from port serial0.
TINI />
[Sat Jan 01 00:00:00 GMT 2000] Message from System: Serial server started.

Notice the output. When we access serial0, the TINI OS automatically stops the serial
server and then restarts it when we are done. Also notice that we didn’t receive the
RTS and DTR events as we did in Chapter 3. This is simply because serial0 does not
support hardware flow control.

318

Designing Embedded Internet Devices

Let’s try a real example where we send meaningful characters to a serial device and
read back meaningful characters. We will be reading data from a digital multimeter.
This program is not much more complicated, but it does show more of the methods
for controlling the serial port. The meter expects us to talk to it at 2400 baud using 7
data bits, 2 stop bits and no parity (we know this because we looked in the manual for
the meter). To have the meter take a measurement and send back the data we first
send it a “D”. The meter then replies back with 14 bytes of ASCII information (which
is more or less what is on the meter display). Also, because the meter is configured as
a DCE and so is serial0, we will need a null modem adapter.

Listing 9-2: MeterReader.java

import java.io.*;
import java.util.*;
import javax.comm.*;
import com.dalsemi.system.*;
import com.dalsemi.comm.*;

public class MeterReader {

static CommPortIdentifier portId;
static SerialPort serialPort;
static String portname;

//static Enumeration portList;

static InputStream inputStream;
static OutputStream outputStream;

static String message2send = “D\r”;
static String messagereceived;

public static void main(String[] args) {

 // check out the command line args
 if (args.length < 1) {

System.out.println(“Specify a port! (COM1, /dev/ttyS0 or something).”);
return;

 } else {
portname = args[0];
System.out.println(“MeterReader. Using “ + portname);

 }

 int times=1; // number of readings to take
 if (args.length>1) {

times = (byte) Integer.valueOf(args[1]).intValue();
 }

319

TINI Serial and Parallel I/O

 // Is this a valid Serial port?
 try {

// Get the ID of this port
portId = CommPortIdentifier.getPortIdentifier(portname);
// Is it a serial port?
if (portId.getPortType() != CommPortIdentifier.PORT_SERIAL) {

System.out.println(“Port is not a serial port”);
return;

 }
 }
 catch(NoSuchPortException e)
 {

System.out.println(“No Such Port!”);
return;

 }
 catch (Exception e) { System.out.println(e); }

// Open the port, set parameters
System.out.println(“Configuring port...”);
try {

serialPort = (SerialPort) portId.open(“MeterReader”, 1000);

serialPort.setSerialPortParams(2400,
 SerialPort.DATABITS_7,
 SerialPort.STOPBITS_2,
 SerialPort.PARITY_NONE);
 serialPort.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);
 }
 catch(PortInUseException e) {

System.out.println(“Port In Use.”);
return;

 }
 catch (UnsupportedCommOperationException e) {

System.out.println(“Port option unsupported.”);
 }
 catch (Exception e) {

System.out.println(e);
return;

 }

 // Set input & output streams
 try {

inputStream = serialPort.getInputStream();
outputStream = serialPort.getOutputStream();

 }
catch (IOException e) { System.out.println(e); }

System.out.println(“Reading ...”);
byte[] readBuffer = new byte[20];
int numBytes = 0;

for(int i = 1; i<=times; i++) {

320

Designing Embedded Internet Devices

 // Send the command text
 try {

outputStream.write(message2send.getBytes());
Thread.sleep(500);

numBytes = inputStream.read(readBuffer);

 messagereceived = new String(readBuffer);
 System.out.println(“Meter:(“ + numBytes + “) “ +

 messagereceived);
 }
 catch (IOException e) { System.out.println(e); }
 catch (Exception e) { System.out.println(e); }
 }

 serialPort.close();

 }
}

Notice that we need to set the serial port to the proper parameters (baud rate, databits,
stopbits, and parity). While some devices are fairly tolerant of miss-set stop bits, the
receiving UART will not be able to synchronize with the serial data if the baud rate is
improperly set.
serialPort = (SerialPort) portId.open(“MeterReader”, 1000);

serialPort.setSerialPortParams(2400,
 SerialPort.DATABITS_7,
 SerialPort.STOPBITS_2,
 SerialPort.PARITY_NONE);
serialPort.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);

The program loops for the specified number of readings, each time sending a “D” to
the meter and then reading back the reply from the meter.
for(int i = 1; i<=times; i++) {
 // Send the command text
 try {

outputStream.write(message2send.getBytes());
Thread.sleep(500);

numBytes = inputStream.read(readBuffer);

messagereceived = new String(readBuffer);
System.out.println(“Meter:(“ + numBytes + “) “ + messagereceived);

 }
 catch (IOException e) { System.out.println(e); }
 catch (Exception e) { System.out.println(e); }
}

321

TINI Serial and Parallel I/O

Compile the program:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\MeterReader.java
C:\> java -classpath c:\opt\tini1.02d\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\MeterReader.tini
-d %TINI_HOME%\bin\tini.db

then FTP it to your TINI. In this case we need to stop the serial server before we run
the program. If we don’t, then it won’t work (when the program sends the first “D” to
the meter, the TINI OS sees outgoing data so it stops the serial server but then that
“D” is lost so the meter never replies with data and our program waits forever). The
program takes two command line parameters: the name of the serial port that the
meter is connected to and the number of readings to take. Run the program.
TINI /> downserver -s
Warning: This will disconnect users on specified servers.

OK to proceed? (Y/N): y
[Sat Jan 01 00:00:00 GMT 2000] Message from System: Serial server
stopped.

TINI /> java MeterReader.tini serial0 5
MeterReader. Using serial0
Configuring port...
Reading ...
Meter:(14) DC 05.09 V
Meter:(14) DC 05.10 V
Meter:(14) DC 05.10 V
Meter:(14) DC 05.09 V
Meter:(14) DC 05.09 V

TINI /> startserver -s
[Sat Jan 01 00:00:00 GMT 2000] Message from System: Serial server
started.

The program took five readings of 14 bytes each. In this case we were reading a DC
voltage of 5.09 volts (the output of the TINI power supply). Notice we restarted the
serial server when we were done.

Serial1
We can run the same two examples on serial1 that we just tested on serial0. To do this
we must first add a line driver to serial1, add the optional 1K resistor between the
EN2480 pin on the TINI stick and ground to disable the 1-Wire driver, and add a
“fake” DTR signal to the serial1 connector. This particular meter (as with many serial
devices) expects to see the DTR line high before it will communicate with a com-

322

Designing Embedded Internet Devices

puter. So we need to connect pin 4 of the serial1 to Vdd (basically we are saying to
any serial device that TINI is always ready to communicate). For the serial line level
shifter we used a MAX232 but just about any serial level shifter should do. We chose
this one because it does not require external capacitors for the charge pump (to
provide ±10 volts).

Figure 9-22: MAX232

You should be able to rerun both SerialLoopTest.tini and MeterReader.tini on
serial1 with the exact same results. You will not need to worry about stopping the
serial server for this port but you must enable serial1 first. Since the same CPU pins
control both the external 1-Wire bus and the serial1 port, we will need to indicate to
TINI that we want to use the serial port and not the 1-Wire bus. You can do this by
adding the following line to both programs (someplace in the program before actually
trying to open the serial port):
TINIOS.enableSerialPort1(true);

Before you modify the programs to enable serial1, try running either program on
TINI and specifying serial1 just for fun. You should see the exception
java.io.IOException: Could not write to serial port.

323

TINI Serial and Parallel I/O

Since the state of the serial1 port enable is preserved in TINI memory, we can write a
separate program that enables and disables serial1 (and even serial2 and serial3 if we
need them) so that our original program does not have to be modified. Why would we
want to do this? Without these TINI specific additions to enable serial1 (and we will
need similar ones for serial2 and serial3) our programs so far have been 100% non-
TINI specific. The MeterReader.java and SerialLoopTest.java program will run
on a PC just as well as on TINI by telling it to read from COM1 (Windows) or
\dev\ttyS0 (Linux).

Here is a program that runs on TINI that changes the serial1, serial2 and serial3
settings in TINI memory so that you don’t need to modify your programs to enable
these ports.

Listing 9-3: serialports.java

import java.io.*;
import java.util.*;
import javax.comm.*;

import com.dalsemi.comm.*;
import com.dalsemi.system.*;
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;

public class serialports {

 static CommPortIdentifier portId;
 static SerialPort serialPort;
 static DSPortAdapter myPortAdapter = null;

 // Tell me the command line options
 public static void usage() {

System.out.println(“serialports -enable [123] -disable [123] “);
System.out.println(“ -search -nosearch -query”);

 }

 // Query the serial ports, report what we find
 public static void query() {
 boolean isonewire = false;
 // The only way to check if serial1 enabled is to open it and
 // catch an exception if there is one.
 System.out.print(“serial1: “);
 try {

myPortAdapter =

324

Designing Embedded Internet Devices

 OneWireAccessProvider.getAdapter(“TINIExternalAdapter”,
“serial1”);
myPortAdapter.freePort();
System.out.println(“enabled for 1-wire communication”);
isonewire=true;

 }
 catch (Exception e) {

System.out.println(“disabled for 1-wire communication”);
isonewire=false;

 }
 if (!isonewire) {
 System.out.print(“ “);
 try {

portId = CommPortIdentifier.getPortIdentifier(“serial1”);
serialPort = (SerialPort) portId.open(“port enabler”, 1000);
serialPort.close();
System.out.println(“enabled for serial communication”);

 }
 catch (Exception e) {
 System.out.println(“disabled for serial communication”);
 }
 }

 // Checking serial2 and 3 is easy
 System.out.println(“serial2: “

+ (TINIOS.getExternalSerialPortEnable(2) ? “enabled” : “disabled”)
+ “, address 0x”
+ Integer.toHexString(TINIOS.getExternalSerialPortAddress(2)));

 System.out.println(“serial3: “
+ (TINIOS.getExternalSerialPortEnable(3) ? “enabled” : “disabled”)
+ “, address 0x”
+

 Integer.toHexString(TINIOS.getExternalSerialPortAddress(3)));
 System.out.println(“Search for ports on boot “
 + (TINIOS.getExternalSerialPortSearchEnable() ? “enabled” : “disabled”));
 }

 // set if TINI should search for ports on boot or not
 public static void searchOnBoot(boolean search) {
 System.out.println(“search on boot “ + (search ? “enabled” :

 “disabled”));
 TINIOS.setExternalSerialPortSearchEnable(search);
 }

 // enable/disable serial ports.
 public static void enableSerial(char port, boolean state) {

325

TINI Serial and Parallel I/O

 switch (port) {
 case ‘1’:
 System.out.println((state ? “enabling” : “disabling”) + “ serial1”);

TINIOS.enableSerialPort1(state);
break;

 case ‘2’:
System.out.println((state ? “enabling” : “disabling”) + “ serial2”);
TINIOS.setExternalSerialPortEnable(2,state);
break;

 case ‘3’:
 System.out.println((state ? “enabling” : “disabling”) + “ serial3”);

TINIOS.setExternalSerialPortEnable(3,state);
break;

 default:
System.err.println(“invalid port” + port);
break;

 }
 }

 public static void main(String[] args) {

String arg;
char flag;
String ports_on=””, ports_off=””;
int i=0;

 // Check out all of the comamnd line args and process each as we
 // find them.

 while (i < args.length && args[i].startsWith(“-”)) {
 arg = args[i++];

 if (arg.startsWith(“-s”)) { // s for search
 searchOnBoot(true);
 }
 else if (arg.startsWith(“-n”)) { // n for nosearch
 searchOnBoot(false);
 }
 else if (arg.startsWith(“-q”)) { // q for query
 query();
 }
 else if (arg.startsWith(“-e”)) { // e for enable
 if (i < args.length) {

// the the port numbers if any
ports_on = args[i++];
for (int j = 0; j < ports_on.length(); j++) {

 flag = ports_on.charAt(j);
 enableSerial(flag, true);

326

Designing Embedded Internet Devices

 }
 }
 else {
 System.err.println(“-enable requires a port”);
 }
 }
 else if (arg.startsWith(“-d”)) { // d for disable
 if (i < args.length) {

// the the port numbers if any
ports_off = args[i++];
for (int j = 0; j < ports_off.length(); j++) {

 flag = ports_off.charAt(j);
 enableSerial(flag, false);
 }
 }
 else {
 System.err.println(“-enable requires a port”);
 }
 }
 else {
 System.out.println(“Don’t understand “ + arg);
 }
 }

 }
}

This TINI utility program takes several possible parameters:

-e [1][2][3] to enable any of the serial ports 1, 2 or 3 (or any combination).
-d [1][2][3] to disable any of the serial ports 1, 2, or 3 (or any

combination of ports).
-s to tell TINI to search for serial2 and 3 on boot.
-n to tell TINI not to search for serial2 and 3 on boot.
-query to query the current settings.

As you study the program, you will see that main() method simply parses the
command line and calls the appropriate methods depending on what is specified.
There are four helper methods: usage(), query(), searchOnBoot(boolean
state), and enableSerial(char port, Boolean state). The usage() method
simply reports the command line options if you don’t provide any. The query()
method reports back what TINI thinks the current serial port settings are. The
searchOnBoot(boolean state) method either enables or disables searching for
serial2 and 3 on boot. The enableSerial(char port, Boolean state) method
enables or disables the specified serial port. All of this is straightforward use of the
methods in the com.dalsemi.system.TINIOS class with the exception of how we
determine if serial1 is enabled or not. The com.dalsemi.system.TINIOS class, does

327

TINI Serial and Parallel I/O

not provide a method for querying the status of serial1 but we know that if it is not
enabled we get an exception when we try to open it. Actually there are two ways to
get an exception: opening serial1 for 1-Wire communication when it is enabled for
serial communication, or opening and accessing it as a serial port when it is disabled
for 1-Wire communication. The method first tries to open serial1 as a 1-Wire port
adapter. If we succeed, we know serial is not enabled as a serial port. If that method
does cause an exception, then we know serial1 is enabled for serial port communica-
tion.

Compile this program:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\serialports.java
C:\> java -classpath c:\opt\tini1.02d\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\serialports.tini
-d %TINI_HOME%\bin\tini.db

So now we are ready to test out serial1. Put the loopback plug on serial1 and try the
SerialLoopTest.tini and MeterReader.tini programs.
TINI /> java SerialLoopTest.tini serial1
Testing port: serial1
java.io.IOException: Could not write to serial port
Flipping RTS...
Flipping DTR...
0 bytes read from port serial1. Maybe something is not working.
TINI />

See, it didn’t work. We didn’t enable serial1 for serial port communications. Run the
serialport.tini program to enable serial1 and try again.
TINI /> java serialports.tini -e 1
enabling serial1
TINI /> java serialports.tini -q
serial1: disabled for 1-wire communication

enabled for serial communication
serial2: disabled, address 0x380028
serial3: disabled, address 0x380020
Search for ports on boot enabled
TINI />

With the serial port now enabled we should be successful running both
SerialLooptest.tini and MeterReader.tini and telling them to read from serial1.
TINI /> java SerialLoopTest.tini serial1
Testing port: serial1
Flipping RTS...
Flipping DTR...

328

Designing Embedded Internet Devices

Read: Hello Port!
11 bytes read from port serial1.
TINI />

TINI /> java MeterReader.tini serial1 5
MeterReader. Using serial1
Configuring port...
Reading ...
Meter:(14) DC 05.03 V
Meter:(14) DC 05.03 V
Meter:(14) DC 05.03 V
Meter:(14) DC 05.02 V
Meter:(14) DC 05.03 V
TINI />

No surprises: the same results as with accessing serial0, and the best part is that we
didn’t need to modify our original program to use serial1.

Serial2 and serial3
We can run the same two examples on serial2 and serial3 that we just tested on
serial0. To do this you must implement the full serial port hardware as shown in the
schematic in Figures 9-19 and 9-20 (the UART and line drivers).

You should be able to rerun both SerialLoopTest.tini and MeterReader.tini on
serial2 and serial3 with the exact same results. But again, just as with serial1, we
need to indicate to TINI that we are interested in using the serial port2 or 3 this time.
Not only must we enable these serial ports but we have found that we need to reboot
TINI after doing so, so that the TINI firmware can find and initialize them. Run
serialports.tini to enable them.
TINI /> java serialports.tini -e 23 -q
enabling serial2
enabling serial3
serial1: disabled for 1-wire communication

enabled for serial communication
serial2: enabled, address 0x380028
serial3: enabled, address 0x380020
Search for ports on boot enabled
TINI />

Now reboot TINI. If you do this with JavaKit running and TINI serial0 connected to
your PC, you should see some new information in the boot test that goes whizzing by.
Before installing the serial2 and serial3 ports, your boot test probably looked some-
thing like this:
——> TINI Boot <——
TINI OS 1.02d
API Version 800C
Copyright (C) 1999 - 2001 Dallas Semiconductor Corporation
18000000

329

TINI Serial and Parallel I/O

Running POR Code
Memory POR Routines
000020
0080,0100,0180,0200,0280,0300,0380,0400,0480,0500,0580,0600,Transient
blocks freed: 0626, size: 01FDC0
CPersistant blocks freed: 0000, size: 000000
KM_Init Passed
Ethernet MAC Address Part Found
TTS Revision: 179 , Date: 11/05/01 5:16p
Thread_Init Passed
External Serial Port Init
External serial ports not enabled
Memory Available: 06D3C0
Creating Task:
0100
01
Loading application at 0x070100
Creating Task:
0200
02
Application load complete

The interesting lines are in bold text, telling us that the serial ports (meaning serial2
and serial3) are not enabled. If you enable them but don’t implement them in hard-
ware, or your hardware is not working properly, then you might see something like
this:
...
TTS Revision: 179 , Date: 11/05/01 5:16p
Thread_Init Passed
External Serial Port Init
Port serial2 NOT detected
Port serial3 NOT detected
Memory Available: 0F3620
Creating Task:
...

This is telling us that while TINI was trying to initialize serial2 and serial3, it
couldn’t find them. Either they are not connected or not working properly. Once the
hardware is working properly you will see this sort of message in that part of the boot
sequence:
...
TTS Revision: 179 , Date: 11/05/01 5:16p
Thread_Init Passed
External Serial Port Init
Port serial2 detected
Port serial3 detected
Memory Available: 06D3C0
Creating Task:
...

330

Designing Embedded Internet Devices

If you have gotten to this point, then serial2 and serial3 should be working just fine.
You can run both SerialLoopTest.tini and MeterReader.tini on serial2 and
serial3 with the exact same results as with serial0 and serial1.

A parting word on serial ports
It is possible to change the speed of the serial port by directly changing the clock divisor
the UART uses. Why would you want to do this? In Chapter 12 on controller area net-
works, we will find that we cannot achieve CAN bus speeds greater than 125 kbps
because the TINI CPU oscillator of 18.432 MHz doesn’t divide nicely and leaves us with
an unacceptable percent error (for the CAN bus). If we switch the TINI CPU to a 18.0
MHz oscillator, then we get very nice CAN bus speeds (with no error) at speeds of 500
kbps and 1 Mbps but this unfortunately changes the speed of the internal TINI UART as
well (the external UART has its own oscillator so that remains unchanged). By changing
the oscillator from 18.432 MHz to 18 MHz we are slowing TINI by 2.3% (and remember
that the TINI clock will be 2.3% slower so all time and time-related methods will be 2.3%
off). The 16550 UART has a number of programmable registers for adjusting various
things and controlling the UART operation. The serial port baud rate is controlled by a
divisor that divides the UART clock down. The divisor is determined by:

divisor =
frequency

baud rate . 16

If we leave the divisor alone but change the TINI clock, we can find the actual baud
rate using this new clock speed (it’s 2.3% slower):

baud rate =
frequency

divisor . 16

Table 9-3: Baud rates after changing clock

Desired Divisor Actual baudrate
baudrate using 18.0 MHz
(bps) clock (bps)

300 3840 293
600 1920 586
1200 960 1172
2400 480 2344
4800 240 4687
9600 120 9375
19200 60 18750
38400 30 37500
57600 20 56250
115200 10 112500

331

TINI Serial and Parallel I/O

Again, this error is 2.3%, which is within the 5% allowed in RS-232 specification. If
we are interested in reducing the error brought on by changing the CPU clock, then
we can program the UART with a new divisor to account for this slower clock using
this method:
TINISerialPort.setDivisor(int);

Table 9-4 shows the new divisor and the error. There is still some error as the 18-
MHz clock we use is not evenly divisible by the baud rates we want. It is worth
noting that we can’t reduce the error for the higher speeds but with all baud rates
below 38400 there is less than 1% error.

Table 9-4: UART baud rate divisor after changing clock

Desired Divisor Actual Error
baudrate baudrate (%)
(bps) (bps)

300 3750 300 0
600 1875 600 0
1200 937 1200 0
2400 469 2399 0.05
4800 234 4808 0.02
9600 117 9615 0.1
19200 59 19067 0.7
38400 29 38793 1
57600 20 56250 2.3
115200 10 112500 2.3

I think we can conclude that if you do need the faster speeds for a CAN bus and you
change the CPU oscillator to 18 MHz, it’s probably not worth changing the UART
baud rate divisor (unless, of course, you select an oscillator that is significantly faster
or slower than 18.432 MHz—then you will need to change the serial port baud rate
divisor).

Parallel Ports
The TINI stick and socketboard also support parallel I/O. This is not the traditional
parallel port that you would find on a personal computer such as that meant for a
printer, but simply parallel data lines for input and output to other digital devices. The
E10 socketboard has direct support for 16 inputs and 16 outputs. These parallel I/O
lines provide digital control lines to you for whatever purpose you can dream up.
With these you can control external logic, light-emitting diodes, and relays, and read
the status of switches and simple sensors. Review how we a added memory-mapped
device in Chapter 8. That’s exactly how the E10 socketboard implements parallel I/O.

332

Designing Embedded Internet Devices

We can add multiple banks of parallel inputs, outputs or bi-directional I/O depending
on our needs. These parallel I/O lines can be constructed from a wide variety of logic
circuits depending on the application, and they can be configured to control a still
wider variety of devices.

TINI parallel ports
If you examine the TINI socketboard Rev C schematic6 , page 4, you notice that there
are two major sections to the parallel I/O: the port control logic (address decoders
and selectors) and the I/O buffers/drivers.

Port control
The port control logic performs the address decoding and selects the appropriate buffer/
driver for either writing data to a parallel device or reading data from a parallel device.
The address decoders place the E10 parallel I/O at 0x380000 and 0x3800001 in the
TINI memory map. Both locations are available for reading and writing, but both read
and write use different drivers/buffers (not the same as 16 bi-directional I/O lines).
When writing data, the /WR line enables U4:B, which in turn enables either /ENWR0
or /ENWR1. /ENWR0 enables U12 and /ENWR1 enables U16. When reading parallel
data, the /WR line enables U4:B, which in turn enables either /ENWR0 or /ENWR1. /
ENWR0 enables U12 and /ENWR1 enables U16.

Figure 9-23: Parallel port control

6 TINI Socket Rev C schematic – http://www.ibutton.com/TINI/hardware/index.html

Parallel I/O buffers/drivers
The chips U12, U14, U16, and U17 are the input buffers and output drivers for the I/O
ports.

333

TINI Serial and Parallel I/O

• U12, U16 use a 74HC574 (octal D-type flip-flip)7 to provide 16 tristate,
latched, outline lines. U12 does not have pull-ups (these eight outputs will
float when not driven) and U16 does (these eight outputs will go high when
not driven by the flip-flop.

• U14, U17 use a 74HC541 (octal buffer/line driver)8 to provide 16 latched
inputs. All 16 input lines have pull-ups, so they will be high when there is no
input signal.

Figure 9-24: Parallel port buffers/drivers

7 74HC574 datasheet – http://www.fairchildsemi.com/ds/MM/MM74HC574.pdf
8 74HC541 datasheet – http://www.fairchildsemi.com/pf/MM/MM74HC541.html

334

Designing Embedded Internet Devices

Parallel communication software (API)
All of the parallel I/O communication is done through the TINI DataPort class. With
this class, we can read and write to any address in the TINI memory map.

Figure 9-25: com.dalsemi.system

com .dalsemi .onewire java.lang

Object ArrayUtils

BitPort

CommitException

BytePort

DataPort

Clock
EventObject

Debug

I2CPort

Security

ExternalInterrupt

TINIOS

Exception

ExternalInterruptException

IllegalAddressException

ExternalInterruptEvent

Throwable

To access the parallel I/O, we must do four things: 1 – Create a new DataPort at a
specific address. 2 – Set it as sequential or FIFO. 3 – Set the stretch cycles as needed.
Finally, we will read or write data as needed. These are the methods to use:

• DataPort(int address) – Create a new DataPort beginning at the
specified address in memory. The DataPort created can be used for reading
and writing (provided the hardware is properly connected to enable either
reading or writing or both).

• setFIFOMode(bloolean) – Each DataPort can be configured for accessing
sequential memory locations or as a FIFO. With sequential access, the
read(byte array[], int start, int length) or write(byte array[], int
start, int length) methods will automatically increment the DataPort
address to the next location. The address is set back to the beginning with the
next read() or write(). With FIFO access, reads and writes do not increment
the address.

• getFIFOMode() – This method returns true if FIFO mode is set and false if it
is not.

335

TINI Serial and Parallel I/O

• setStretchCycles(byte stretch) – Stretch cycles allow the application
to set the number of machine cycles needed in order to execute a bus read or
write. This allows access to both fast and slow peripherals without additional
logic. Some memory-mapped peripherals have slow access times, so it may
not be possible to access these external devices at full speed. A STRETCH0
will result in two memory bus cycles for a read or write. A STRETCH10 will
result in twelve machine cycles for a data bus read or write.

• read() – This method reads and returns a single byte from the DataPort. Note
that the value returned is really of the type int. Since we are reading a single
byte, it doesn’t matter if we have FIFO mode set or not.

• read(byte array[], int start, int length) – This method reads data
from the DataPort and places it into an array. It returns the number of bytes
read. This method puts the read data into the array starting with the specified
offset and reads the number of bytes as specified by the length parameter. This
reads from a single DataPort address if FIFOMode is true or it sequentially
increases the DataPort address for each byte read if FIFOMode is false. The
next read or write starts at the beginning address for this DataPort.

• write(int data) – The write() method writes a single byte to the
DataPort. Since we are writing a single byte, it doesn’t matter if we have
FIFO mode set or not.

• write(byte array[], int start, int length) – This method writes data
to the DataPort from an array. It starts writing data from the array starting
with the specified offset and writes the number of bytes as specified by the
length parameter. This writes to a single DataPort address if FIFOMode is
true or it sequentially increases the DataPort address for each byte written if
FIFOMode is false. The next read or write starts at the beginning address for
this DataPort.

A word of caution when working with bytes. Java does unexpected things with bytes
since it thinks it is working with signed numbers. If you perform any mathematical or
bitwise operation on a primitive data type smaller than an int (like a char, byte, or short)
then Java automatically promotes them to an int before performing the operation. The
operation will be performed on the resulting int value and the resulting value will then
be an int. This is why we need to cast the result back to a byte when we are done. The
following program shows how this can get us into unexpected trouble:

Listing 9-4: byteExample.java

public class byteExample {

public static void main(String[] args) {

336

Designing Embedded Internet Devices

byte b=0;
int i=0;

b=0x01;
System.out.println(“........... b= 0x” + ByteUtils.toHexString(b));
b=(byte)(b<<7);
System.out.println(“b=(b<<7), b= 0x” + ByteUtils.toHexString(b));
b=(byte)(b>>7);
System.out.println(“b=(b>>7), b= 0x” + ByteUtils.toHexString(b));
System.out.println();

b=0x01;
System.out.println(“........... b= 0x” + ByteUtils.toHexString(b));
b=(byte)(b<<7);
System.out.println(“b=(b<<7), b= 0x” + ByteUtils.toHexString(b));
b=(byte)(b>>>7);
System.out.println(“b=(b>>>7), b= 0x” + ByteUtils.toHexString(b));
System.out.println();

i=0x01;
System.out.println(“........... i= 0x” + Integer.toHexString(i));
i=(i<<31);
System.out.println(“i=(i<<31), i= 0x” + Integer.toHexString(i));
i=(i>>>31);
System.out.println(“i=(i>>>31), i= 0x” + Integer.toHexString(i));
System.out.println();

b=0x01;
System.out.println(“........... b= 0x” + ByteUtils.toHexString(b));
i=(b<<7);
System.out.println(“i=(b<<7), i= 0x” + Integer.toHexString(i));
i=(i>>7);
System.out.println(“i=(i>>7), i= 0x” + Integer.toHexString(i));
b=(byte)i;
System.out.println(“b=(byte)i, b= 0x” + ByteUtils.toHexString(b));

}
}

Compile this program:

C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin byteExample.java
C:\> cd ..
C:\> java -classpath c:\opt\tini1.02d\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\byteExample.tini
-d %TINI_HOME%\bin\tini.db

337

TINI Serial and Parallel I/O

Now run this program on either your PC or on a TINI and observe the results.
TINI /> java byteExample.tini
........... b= 0x01
b=(b<<7), b= 0x80
b=(b>>7), b= 0xFF

........... b= 0x01
b=(b<<7), b= 0x80
b=(b>>>7), b= 0xFF

........... i= 0x1
i=(i<<31), i= 0x80000000
i=(i>>>31), i= 0x1

........... b= 0x01
i=(b<<7), i= 0x80
i=(i>>7), i= 0x1
b=(byte)i, b= 0x01

Notice that we need to explicitly cast the result of the left shift (<<) and right shift (>>)
back to a byte. If we don’t, we will get a compile time error message “possible loss of
precision.” In the first part of this example we shift a 1 bit from the least significant
position to the most significant position and back again. You might think this works as
expected since we shifted the 1 into the most significant bit position indicating that this
is a negative number, so when we shift right again Java keeps this as a negative number.
Another obvious choice would be to use the shift right with 0 extension operator (>>>)
as in the second part of this example. But this doesn’t work any better as you can see,
because Java promotes the value of b to an int and we cast this back to a byte for both the
left shift and the right shift. The shift right with 0 extension is actually working, but it is
working on an int so the 8th bit of the int becomes the most significant bit of our byte
when we cast it back to a byte, and that’s still a 1. Part 3 of this example shows how the
right shift with 0 extension works on an integer. Part 4 of this example shows the proper
way to work with bytes, keeping the intermediate results of the byte operations as an int
and then casting this back to a byte when we are done.

A simple parallel device example
Let’s build a simple parallel communication example, connect it to TINI and write
some Java code to talk to it (both inputs and outputs). You can follow the parallel
schematics presented previously (like what’s on the E10 and E20 socketboards) or
you can implement this on a prototype board with a few simplifications. A simplified
address decoder is shown in Figure 9-26. This is used to select the inputs and outputs
and place them in the TINI memory map at 0x0800000 (0x0800000–0x0800003,
actually).

338

Designing Embedded Internet Devices

We are only working with one set of input buffers for this example (although you can
implement as many as you like and connect them to different addresses on the
address decoder). We are using a 74VHC541 octal line driver for these inputs. This is
enabled by both the chip select and the TINI /RD line as we are putting these inputs
and the outputs at the same location in memory.

Figure 9-26:
Simplified parallel I/O address decoder

Figure 9-27: Input buffer

For the output latches we will use a 74VHC574 octal d-type flip-flop to hold the state
on the output lines after we have written to them. For both the inputs and the outputs
we will use pull-ups on all of the input and output lines, but you can just as easily
change these to pull-downs as needed by your application (just change it on the
resistor networks to ground).

What you connect to the input and output is up to you. You can read the position of
switches for inputs and can control LEDs for some simple output. See Appendix C
for examples of general-purpose circuits. In the case of this example, we will be
connecting the output latches directly to the input buffers so we can easily see what’s
working and what’s not. It’s not the most exciting example but it shows that the
hardware and DataPorts are working.

339

TINI Serial and Parallel I/O

Listing 9-5: ParallelIO.java

import com.dalsemi.system.*;

public class ParallelIO {

 public static void main(String[] args) {

int d=0;
byte b=0;

// Configure the dataport
DataPort pio = new DataPort(0x00800000);
pio.setStretchCycles(DataPort.STRETCH2);
pio.setFIFOMode(false);

if (args.length>=1) {
// Get the command line integer
d=Integer.decode(args[0]).intValue();
b=(byte)d;
// tell me whats going on
System.out.println(“Write “ + ByteUtils.toBinaryString(b)

 + “ 0x” + ByteUtils.toHexString(b));

// write the bit pattern to the output port
try {

 pio.write(d);
}
catch(Exception e) {

 System.out.println(“error in read”);
 }

Figure 9-28: Output latches

340

Designing Embedded Internet Devices

 }

 // read the bit pattern on the input port
 try {

d=pio.read();
b=(byte)d;
System.out.println(“Read “ + ByteUtils.toBinaryString(b)

 + “ 0x” + ByteUtils.toHexString(b));
 }
 catch(Exception e) {
 System.out.println(“error in read”);
 }

 }
}

This program is very simple and straightforward. Notice that we are doing simple
single-byte reads and writes. The methods for printing bytes in hex and binary are
included in the ByteUtils class (in appendix B).

Compile this program, and convert it to a .tini file
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\ParallelIO.java
C:\> java -classpath c:\opt\tini1.02d\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\ParallelIO.tini
-d %TINI_HOME%\bin\tini.db

Then FTP the .tini file to your TINI. When you run this program with no command
line parameters it will read the value input buffers. You can optionally specify a
single value on the command line (decimal or hex) that will be written to the output
latches before the program reads from the inputs. Here is an example of the output
from this program:
TINI /> java ParallelIO.tini 0x55
Write 01010101 0x55
Read 01010101 0x55
TINI /> java ParallelIO.tini
Read 01010101 0x55
TINI /> java ParallelIO.tini 0xAA
Write 10101010 0xAA
Read 10101010 0xAA
TINI /> java ParallelIO.tini
Read 10101010 0xAA
TINI /> java ParallelIO.tini 0xFF
Write 11111111 0xFF
Read 11111111 0xFF
TINI /> java ParallelIO.tini

341

TINI Serial and Parallel I/O

Read 11111111 0xFF
TINI /> java ParallelIO.tini 0x00
Write 00000000 0x00
Read 00000000 0x00

Notice that whatever value is written to the outputs is read on the inputs. If no value
is written to the outputs, then the previous value is still read (that’s what the output
latches do). While this is a very simple circuit and program, there are many applica-
tions for simple parallel I/O lines control. These outputs could be connected to LEDs
to indicate status or to relays to control appliances. The inputs could be connected to
optical-isolators so you can sense switch positions or detect voltages. There are lots
of possibilities.

Another example
In the previous example we read and wrote single bytes from and to the parallel I/O
lines. This works well for simple device control but is somewhat slow if you are
using the parallel lines for data communication with some external device. Where
data speed is more important, we would want to use array reads and writes. You
would also want to place the address decoder for these parallel I/O lines in the CE
memory space (somewhere in /CE3, probably, but not overlapping the Ethernet
controller or the real-time clock) because accesses to CE devices are faster than
accesses to PCE devices. PCE device access is slower because the CPU is copying
data from CE memory space (internal memory) to PCE space. The following pro-
gram illustrates the differences in reading from CE space and PCE space. We are not
reading any particular data, just demonstrating the differences in the speeds of array
reads.

Listing 9-6: pspeed.java

import com.dalsemi.system.*;

public class pspeed {

 public static void testPortBlock(int port) {

int d=0;

DataPort pio = new DataPort(port);
pio.setStretchCycles(DataPort.STRETCH0);
pio.setFIFOMode(false);

int bytes=65100;
long start=0, stop=0;
float time;
byte[] data = new byte[bytes];

342

Designing Embedded Internet Devices

try {
System.out.println(“Testing 0x” + Integer.toHexString(port));
start = System.currentTimeMillis();

d=pio.read(data,0,bytes);

stop = System.currentTimeMillis();
time = ((float)(stop-start));
System.out.println(bytes + “ bytes in “ + time/1000 + “ seconds or “

 + bytes/time*1000 + “ Bytes/Sec”);
 }
 catch(Exception e) {

System.out.println(“error in read”);
 }

 }

 public static void testPortSequence(int port) {

int d=0;

DataPort pio = new DataPort(port);
pio.setStretchCycles(DataPort.STRETCH0);
pio.setFIFOMode(false);

int bytes=4096;
long start=0, stop=0;
float time;

try {
System.out.println(“Testing 0x” + Integer.toHexString(port));
start = System.currentTimeMillis();
for(int i=0; i<=bytes; i++) {

 d=pio.read();
 }

stop = System.currentTimeMillis();
time = ((float)(stop-start));
System.out.println(bytes + “ bytes in “ + time/1000 + “ seconds or “

 + bytes/time*1000 + “ Bytes/Sec”);
 }
 catch(Exception e) {
 System.out.println(“error in read”);
 }

 }

 public static void main(String[] args) {
System.out.println(“DataPort Speed Test”);
System.out.println(“Block reads”);
System.out.println(“—————”);

343

TINI Serial and Parallel I/O

testPortBlock(0x00300000);
testPortBlock(0x00800000);
System.out.println(“Sequential reads”);
System.out.println(“————————”);
testPortSequence(0x00300000);
testPortSequence(0x00800000);

 }
}

This class declares two methods: testPortBlock(int port) reads a single large
block of data from a specified address, and testPortSequence(int port) reads
single bytes from a specified address. We will invoke each of these methods on a
chunk of memory in both CE and PCE space. Since we are simply measuring the
read speed, it doesn’t really matter what the exact section of memory is or if there is a
real hardware device mapped to that section of memory or not.

Compile this program:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\pspeed.java
C:\> java -classpath c:\opt\tini1.02d\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\pspeed.tini
-d %TINI_HOME%\bin\tini.db

FTP the .tini file to your TINI and run it. The output of this is:
TINI /> java pspeed.tini
DataPort Speed Test
Block reads
—————-
Testing 0x300000
65100 bytes in 0.1099999994 seconds or 591818.18 Bytes/Sec
Testing 0x800000
65100 bytes in 0.400000005 seconds or 162750.0 Bytes/Sec
Sequential reads
————————
Testing 0x300000
4096 bytes in 5.4699997 seconds or 748.8117 Bytes/Sec
Testing 0x800000
4096 bytes in 5.4499998 seconds or 751.55963 Bytes/Sec

Notice that accessing memory by block reads is about three times faster from CE
space than from PCE space and that reading blocks of data rather than single bytes is
200–800 times faster. If you are simply controlling the parallel I/O lines for occasion-
ally sensing a status change or turning a device on or off then it doesn’t matter much.
But if you are interfacing a device that sends a large amount of data, like an analog-
to-digital converter, then the speed of using block reads is essential.

344

Designing Embedded Internet Devices

Other ways of handling parallel I/O
We have shown here how to implement memory-mapped parallel I/O drivers. In
Chapter 11 we discuss the I2C capability of TINI and there we implement I2C devices
that are capable of adding 8-bit and 16-bit parallel I/O lines.

Summary
In this chapter we have discussed the details of TINI serial ports and parallel I/O.
These two interfaces will enable you to connect many devices to your TINI for
control and automation tasks.

References
1. Interfacing the standard parallel port, Craig Peacock,

http://www.beyondlogic.org/spp/parallel.htm

2. Interfacing the standard serial port, Craig Peacock,
http://www.beyondlogic.org/serial/serial.htm (part 1 & 2)
http://www.beyondlogic.org/serial/serial1.htm (part 3 & 4)

3. Serial HOWTO, v2.15 November 2001, David S.Lawyer,
http://www.ibiblio.org/mdw/HOWTO/Serial-HOWTO.html

4. ePanorama – WiringRS-232 to RJ-45 connector,
http://www.epanorama.net/documents/lan/rs232_rj45.html

5. ePanorama – Common RS-232 cable wirings,
http://www.epanorama.net/documents/pc/rs232cables.html

6. Fairchild datasheets,
http://www.fairchildsemi.com/

10CHAPTER

1-Wire Basics for TINI

345

The 1-Wire Net, sometimes known as a MicroLAN, is a low-cost network for
communicating digitally over twisted-pair cable with 1-Wire components. A 1-Wire
network system consists of three main elements: a bus master (such as a TINI
microcontroller or a microprocessor) with controlling software, the wiring and
associated connectors, and the 1-Wire devices. In this chapter we discuss the details
of the 1-Wire network and how to communicate with a variety of 1-Wire devices
using the 1-Wire Java API from both the TINI microcontroller and from a personal
computer through a serial or parallel port.

What Is the 1-Wire Bus?
1-Wire is a bus technology developed by Dallas Semiconductor to be used for
communicating with the myriad of electronic components produced by Dallas
Semiconductor. We’re going to talk more about these devices later but, to summarize,
they’re things like temperature sensors, switches, potentiometers, A/D converters,
memories, battery monitors and identification devices. The 1-Wire bus itself gets its
name from the fact that it consists only of one signal line and a ground. In order to
communicate information over such a minimal bus, all the devices on the bus are
smart. They have their own internal circuitry to handle things like timing,
communications, and maintaining their state with respect to who is supposed to be
talking and who is supposed to be listening. Many 1-Wire devices don’t require
external power—instead, they steal power parasitically from the bus.

When a number of 1-Wire devices are networked to a 1-Wire bus master controller
such as a PC or a TINI, you have what Dallas Semiconductor calls a Micro Local
Area Network, or MicroLAN. The recommended media used for interconnecting
such a network is simple category 5 twisted pair for long runs or telephone cable for
short runs.

346

Designing Embedded Internet Devices

How the 1-Wire Bus Works
The details of how to communicate with sophisticated remote electronics through just
one signal wire and one ground aren’t trivial. In this section, we examine exactly how
it’s done. Before burrowing into the details of 1-Wire, it helps to stand back and take
a broad look at some of the salient features. We’ll start by listing and describing some
of the most important of these:

The 1-Wire bus is a master/slave environment.

A single intelligent master device such as a PC or a TINI acts as a bus
controller, initiating all bus communications, while one or more external
Dallas Semiconductor 1-Wire devices on the bus act as slaves. While there
can be multiple slaves, there can be only one master. Communication always
starts with the master talking, then the slaves responding. But, as is often the
case with the use of the word “always,” there are exceptions. In some cases,
certain types of slaves can post interrupts on the bus.

1-Wire devices are self timed.

Each of the slave devices on the bus has its own independent internal 4-MHz
clock. It uses that clock to keep track of read/write timeslots on the 1-Wire
bus, and to identify a bus reset.

There are two sorts of timing associated with the 1-Wire bus: that
associated with a reset, and that associated with data.

Both make use of the fact that individual slave devices are independently
monitoring the passage of time and can keep track of the state of the bus on
their own.

Each 1-Wire device has a unique 64-bit ID code.

This ID consists of an 8-bit family code byte, a 48-bit unique serial number,
and an 8-bit CRC, or cyclic redundancy check, byte. The 8-bit family code
establishes what type of device it is. The 48-bit serial number is a number
guaranteed to be unique to the individual device you have, within a family.
So while you may have many devices with the same family code, none ever
has the same serial number, and hence, never has the same 64-bit ID code.
The CRC, or cyclic redundancy check, byte represents the value of a specific
logical operation on the preceding 56 bits. After the master reads the 64-bit
ID code, it can re-compute the value of the CRC based on the first 56 bits
and compare it to the CRC that it received embedded in the 64-bit ID code. If
they match, that’s an indication that the data received was error free.

347

1-Wire Basics for TINI

1-Wire devices are individually selectable.

The 64-bit ID code can be used to select individual devices on the
1-Wire bus, deselecting all others.

1-Wire devices respond to a series of commands.

These commands are typically 8 bits. A family of commands is common to
all 1-Wire devices. These commands tend to relate to different methods of
selecting and identifying the devices. Beyond that, some devices have
additional commands specific to device function.

The bus master can figure out what devices are present on the bus.

There are some ingenious algorithms that are part of the 1-Wire bus protocol
that enable the bus master to identify what’s on the bus, through a smart
process of elimination.

The 1-Wire bus is open collector.

This means that the bus is actively pulled low by the master or slave devices,
but never actively driven high. Instead, the electronics responsible for pulling
the bus low are simply turned off, allowing the bus to passively be pulled
high through a pull-up resistor. This eliminates the possibility of something
on the bus actively driving the bus high while something else is actively
pulling the bus low. With the open collector configuration, bus conflicts such
as this result in a harmless “wired and.”

Figure 10-1: Open collector, 5K pull-up

348

Designing Embedded Internet Devices

The 1-Wire bus is a 5V bus.

The 1-Wire bus has logic high value (a “one”) of 2.2 volts or greater and a
logic low value (a “zero”) of 0.8 volts or less.

The TINI has a direct 1-Wire port on it.

The TINI also has a Java API that supports high-level communication with 1-
Wire devices. Details of how the individual bits are put on the bus and how
the master identifys what’s on the bus are made completely transparent to the
user.

A PC RS232 Com port or printer port can control the 1-Wire bus.

Dallas Semiconductor offers a variety of electronic components that act as
adapters between the RS232, parallel, and USB ports on a PC and 1-Wire
bus, allowing you to use your PC as the bus master. There is also a Java API
that supports high-level communication with 1-Wire devices. Once again,
details of how the individual bits are put on the bus and how the master
identifys what’s on the bus are made completely transparent to the user.

Figure 10-3: Front and back photo of iButton

There are special 1-Wire devices known as iButtons.

iButtons are 1-Wire devices that have been packaged in a special container
known as a MicroCan.

Figure 10-2: Miscellaneous port adaptors

349

1-Wire Basics for TINI

The MicroCan provides a very rugged, simple, two-contact, container for the
1-Wire electronics inside it, and a whole host of products allow you to
mount, connect, and access iButtons. iButtons are designed to be a
competing technology to bar codes, smart cards, RF tags, and similar
identification/authorization type products. There are iButtons that provide
authentication, and they can be worn on a ring, key chain, or a watchband.
There are iButtons that have nonvolatile RAM, and they can be mounted on
the outside of a piece of equipment. When the equipment calibration/
maintenance is done, one can use a simple probe to download the time/date/
maintenance record to the iButton.

MicroCans come in two sizes, the F3 and F5. Both are 17.35 mm in diameter.
The F3 is 3.1 mm thick and the F5 is 5.89 mm thick.

Figure 10-4: Dimensions of a MicroCan

There’s also a fascinating iButton known as a Thermochron. It automatically
measures temperatures at intervals set up by the user and stores them in
internal memory. If you have perishable materials and you want to monitor
the temperature they experience during shipment, you can put one of these in
the shipping crate. After shipment, you can plug it into a PC using one of the
myriad of products designed to connect to iButtons, and download the
complete temperature profile seen by the iButton during the trip.

In discussing 1-Wire devices, we will occasionally make use of iButtons
because they are very easy to handle.

With that as background on 1-Wire technology, let’s start looking at the micro details
of how it all works. We’ll start by taking a detailed look at the 1-Wire bus and its
associated timing.

The 1-Wire Bus Protocol
There are two types of timing associated with the bus: reset and data. Let’s examine
the reset1.

1 Consult the Dallas/Maxim Semiconductor 1-Wire Devices data sheets –
http://para.maxim-ic.com/1Wire.asp

350

Designing Embedded Internet Devices

1-Wire Reset Details
A reset halts whatever is taking place on the bus and prepares devices for the
beginning of a new communication cycle. A reset begins when the master pulls the
bus low for a period greater than 480 µs. There is no upper limit as to how long the
bus master can hold the bus low during a reset. The slave devices, upon seeing the
bus go low, use their internal clock to time how long the bus is being held low. If
the period exceeds 480 µs, they know the master has issued a reset. The slaves wait
until the master releases the bus, by letting it be pulled high by the 5K pull-up
resistor that needs to be present somewhere on the bus. Upon seeing the bus go
high, the slaves then use their internal timer once again to count out a delay that
can be anywhere from 15–60 µs, and then they issue a “presence pulse,” by pulling
the bus low for a period of time that can be anywhere from 60–240 µs. At the
completion of this process, the slave devices know that they have been reset and to
await a further command. They now listen to the bus. The master, on the other
hand, knows whether or not there are any 1-Wire devices connected to the net by
virtue of the presence pulse. The master doesn’t necessarily know what type or how
many devices are on the net, but if it sees a presence pulse, it knows there is at least
one device. It’s much easier to understand this with a picture.

Figure 10-5: Reset timing diagram and textual flow

1-wire
Device TX
Presence

Pulse
60 – 240 s

Master Transmits
Reset Pulse

480 s – 960 s
1-wire Slave

Waits
15-60 s

Master Reads Presence
Pulse, 480 s minimum

Bus pulled high by pullup

Bus pulled low by 1-wire Master

Bus pulled low by 1-wire Slave

1-Wire Data Communication Details
The other type of communication on the 1-Wire bus is data communications, the
reading and writing of individual bits. While the process isn’t exactly simple, it can
be understood if you go through it carefully and review it a couple of times.

351

1-Wire Basics for TINI

Data transfer on the 1-Wire bus occurs in time slots, which are predetermined
windows of time. As we’ve said, communication always begins with an action on the
part of the bus master, and consistent with this, time slots begin when the master pulls
the bus low. What differentiates this from the reset is that the duration is much
shorter. 1-Wire slave devices then keep track of whether or not they should be
listening or responding, and the time since the last falling edge on the bus. If the
master wants to write a 1 to the bus, it will pull the bus low for a period not to exceed
15 µs and then the master releases the bus so that it can be pulled high by the pull-up
resistor for the remainder of the timeslot, which can be between 60 µs and 120 µs
wide. If the master wants to write a 0 to the bus, it pulls the bus low and holds it for
the entire timeslot, and then releases it, letting it be pulled high.

If the bus master is writing to the bus, then the 1-Wire slave devices are reading from
the bus. Reading by the 1-Wire slaves devices is accomplished by sampling the bus
at a time at least 15 µs after the master pulls the bus low.

Figure 10-6: Master writing one, writing zero, 1-Wire slaves reading

Master Write 0 Timeslot
60 ms – 120 s

t > 1 s
t <

Master Write 1
Timeslot

60 s – 120 s

Bus pulled high by pullup resistor

Bus pulled low by 1wire master

1-wire Slave Reading a 0

min
15 s

typ
15 s

max
30 s

1-wire Slave Reading a 1

min
15 s

typ
15 s

max
30 s

t >1 s

How does the master read from the 1-Wire bus and the 1-Wire slave devices write to
the bus? Once again, communication on the 1-Wire bus is initiated by the bus master,
who pulls the bus low and holds it low for a period not to exceed 15 µs. The 1-Wire
slave devices, who are now writing to the bus, will meter out a 15-µs delay from the
time they saw the master pull the bus low, and then place their data on the bus. This
means that if they want to write a 1, they allow the bus to be pulled high. If they want

352

Designing Embedded Internet Devices

to write a 0, they pull the bus low. They hold this value until the end of the timeslot
and then release the bus. The bus master waits at least 1 µs and then samples the
value from the bus. This is also much easier to understand with a picture.

Figure 10-7: Slaves writing one, writing zero, master reading

 Slave Write 1 Timeslot
60 s – 120 s

Master Reading a 1

min
15 s

Slave Write 0 Timeslot
60 s – 120 s

t>1 s
t<

Bus pulled high by pullup

Bus pulled low by 1-wire Master

Master Reading a 0

min
15 s

typ
15 s

max
30 s

t >1 s

��

Bus pulled low by 1-wire Slave

��Bus pulled low by both master

Master sampling

This description begs two important questions:

1) How do the 1-Wire slave devices know they are supposed to be reading or writing?

2) What happens if more than one device is on the bus, trying to write data?

The answer to 1) has to do with the fact that 1-Wire devices have circuitry built into
them that monitors time and implements the 1-Wire bus protocol. In effect, each
device is independently keeping track of what’s going on. When the master issues a
reset, all devices are put into a known state and from that point on they follow a strict,
predefined protocol that keeps everybody on the same page in terms of who is
supposed to be talking and who is supposed to be listening.

With respect to question 2) there are cases when more than one device puts data on the
bus at the same time. This generally occurs when the master is trying to find out what
devices are on the bus. During that phase, the master hasn’t had the opportunity to
select an individual device, so all are talking at once. Since all the devices on the bus
are open collector, with a pull-up, the result is a “wired AND” of the data of all the

353

1-Wire Basics for TINI

devices that are trying to talk. The 1-Wire bus protocol specifies the algorithms that
allow the master to iteratively, through a process of elimination, identify all the devices
on the bus, even in an environment where more than one device is talking at once.

1-Wire Bus Commands
Having seen the timing details for the 1-Wire bus, let’s now examine the data content
during communications. We’ve made note of the fact that 1-Wire devices are
individually selectable, can respond to commands, and that there are some commands
that are common to most devices. We’re going to take a look at some of these
common commands now.

The commands that are common to most devices are known as the ROM commands,
because they deal with reading the device’s 64-bit ID ROM. These four commands
are the Read ROM, Search ROM, Match ROM, and Skip ROM. Each is an 8-bit
command, meaning that in order to invoke this command, the bus master writes the
8-bit command to the 1-Wire bus.

Table 10-1: ROM command and values

Rom Command Command Value (Hex)

Read Rom 33
Search Rom F0
Match Rom 55
Skip Rom CC

The best way to learn this stuff is to go through a real example, with a real device.
We’ll use the simplest device of all: the DS2401 Silicon Serial Number.

We noted earlier that 1-Wire devices all have a unique 64-bit ID consisting of an 8-bit
family code byte, a 48-bit unique serial number, and an 8-bit CRC byte. This ID code
is used to select the device, which, once selected, responds to commands and
normally performs some sensing or actuating function and responds with data. The
DS2401 is nothing more than the 64-bit ID. It has no other function. It’s the most
basic of 1-Wire devices, and is literally a silicon serial number. It comes in a variety
of packages, but always utilizes just one signal and one ground connection.

Let’s see how this device works by looking at the DS2401 command flow chart, like
those provided by Dallas Semiconductor in their data sheets2. The DS2401 command
flow charts discuss only the Read ROM command and the Search ROM command.
This is because the device is so simple it only needs two of the four commands that
are commonly shared by all 1-Wire devices and no function-specific commands. This
will make more sense as we delve into it a little deeper.

2 DS2401 Silicon Serial Number, Data sheet – http://pdfserv.maxim-ic.com/arpdf/DS2401.pdf

354

Designing Embedded Internet Devices

As shown in the flow chart (Figure 10-9), the process begins with the bus master
issuing a reset by pulling the bus low for a period > 480 µs, and then releasing the
bus to be pulled high. When the DS2401 sees the reset pulse, it waits at least 15 µs
but less than 60 µs, then responds with a presence pulse, which is at least 60 µs but
less than 240 µs. After this sequence of events, the 1-Wire bus protocol specifies that
the 1-Wire slave devices are all waiting for an 8-bit command. In the case of the
DS2401, there are only two commands that we can give it: Read ROM (0x0F) and
Search ROM (0xF0).

The Read ROM command
The Read ROM command can be represented on the bus by either 33h or 0Fh. The
reason there are two different bytes representing the same command has to do with
maintaining backward compatibility with earlier devices like the DS2400 (which is
an earlier version of the DS2401 and is no longer available).

The Read ROM command only works if there is one device on the bus. When the
master issues the read ROM command, the DS2401 slave will respond with its 64-bit
ID. That ends the process. The only function of the DS2401 is to supply that unique
ID code. The Read ROM command also works with all other 1-Wire devices in the
same fashion. When issued to them, while they are alone on the bus, they will
respond with their 64-bit ID code. What happens when there is more than one device
on the bus and a Read ROM is issued? They all respond with their 64-bit ID code at
the same time. Since the bus is open collector, the output of all the devices is ANDed
together, and the master has no idea of what the ID code really is. It thinks there is
one device on the bus.

To find out the ID code of a device when there are multiple devices on the bus, the
master needs to issue a Search ROM command.

Figure 10-8: DS2401 package styles, pin-outs

355

1-Wire Basics for TINI

Figure 10-9: DS2401 command flow chart

DS2401 Tx Bit 0

DS2401 Tx not(Bit 0)

Master Tx Bit 0

Master Tx Reset Pulse

DS2401 Tx Presence Pulse

Master Tx ROM Function Command

Search Rom
Command (F0)

Read ROM
Command (33

or 0F)

 Bit 0 Match ?

Bit 63 Match ?

DS2401 Tx Bit 63

DS2401 Tx not(Bit 63)

Master Tx Bit 63

Repeat for Bit 1-Bit 62

DS2401 Tx Family Code
(1 byte)

DS2401 Tx Serial Number
(6 bytes)

DS2401 Tx CRC
(1 byte)

No

Yes

No

Yes

No

No

No

Yes

Yes

Yes

356

Designing Embedded Internet Devices

The Search ROM command
The Search ROM command, represented by F0h on the bus, is used when there are
multiple devices on the bus. When the bus master issues a Search ROM command,
that tells all the 1-Wire slave devices to prepare for an algorithm involving the
process of elimination. It goes like this:

1) All the 1-Wire slave devices put the least significant bit (bit
0
) of their 64-bit

ID code on the bus all at once.

2) Then, the very next data time slot, they put the opposite of their least
significant bit (Nbit

0
) on the bus, all at once.

3) Then, in the next data time slot, the bus master writes a bit. Those devices
that match the bit written by the master remain active, those that don’t are
effectively deselected and no longer participate. They remain deselected until
a reset pulse is issued.

Since the bus is open collector, when the different devices try to write a 1 and a 0 at
the same time, the result is a wired AND. This means that the only way the bus can
be pulled high by the pull-up resistor is if ALL devices on the bus are trying to write
a 1. If any device is trying to write a 0, the bus is pulled low. With this in mind, there
are four possibilities as the result of the 1-Wire slaves writing bit

n
 and Nbit

n
. In the

discussion below, bit
n
is the nth bit of the 64-bit ID code, starting with 0 and going up

to 63, and Nbit
n
 is the opposite of that bit. The values of bit

n
 and Nbit

n
 are what the

bus master will see—that is, the wired AND result of numerous devices talking at
once and putting different data on the bus.

Case 1: bitn=0, Nbitn=0

This can only happen if two or more devices are trying to write different values to the
bus at the same time. This tells the bus master that, at this bit position, there is an
address conflict that indirectly tells the bus master that there are at least two devices
remaining on the bus at this point in the process.

Case 2, and Case 3: bitn=0, Nbitn=1 or bitn=1, Nbitn=0

This can only happen if all the devices on the bus are trying to write the same data at the
same time. This tells the bus master that the value for this bit

n
 is equal to the value on the

bus, but it does not give the master any insight as to how many devices are on the bus.

Case 4: bitn=1, Nbitn=1

The only way this can happen is if there are NO devices responding on the bus.

The bus master performs the sequence of two reads and a write, from bit
0
 on up to

bit
63

and after each case, makes note of the bit position

of any conflicts. Conflicts

357

1-Wire Basics for TINI

correspond to case 1, above. It also uses this conflict information to decide whether
or not to write a 1 or a 0. The bus master always writes a bit after the two reads, and
in conflict situations (case 1) , this always has the effect of removing the conflict
devices whose bit

n
 did not match the bit written. Upon reaching bit

63
, the master

knows the 64-bit ID code of one of the devices. By repeating the entire 64-bit process
(64 cycles of reading two bits and writing one bit) again and again until all of the
conflicted bit positions have been resolved, all devices will be identified.

So, if on bit
n
, it is determined that there is no conflict, (Case 2) then all devices that

are active on the bus agree on the value of bit
n
 in their 64-bit ID code. So we know

their value of bit
n
. We say active, because within any 64-bit cycle, some devices may

have been deselected. If there was a conflict, (case 1) and it’s the first time we’ve
encountered this conflict, the master will write a 0 and remember this position. 1-
Wire slaves that have bit

n
 = 1 in their 64-bit ID code are removed from this 64-bit

cycle. The master will dedicate a later 64-bit cycle to resolving the conflict in this bit
position by returning and writing a 1, thereby deselecting the devices that previously
remained active and selecting the devices that didn’t. You can think of each bit in the
64-bit ID code as being branch points in a binary tree. The Search ROM process is
an iterative process of traversing and mapping the entire tree.

Each of these 64 -bit cycles begins with a reset pulse from the bus master, followed
by a presence pulse from all 1-Wire slaves, at the same time. The master then reissues
the Search ROM command. All of the devices write bit

0
 and Nbit

0
 at the same time,

but after that point, the master uses its one bit write to take different paths through the
branches of the binary tree by selecting/deselecting different groups of devices. Old
bit conflicts are resolved, new bit conflicts are remembered and later resolved on a
subsequent pass. Each complete pass identifies an additional device’s ID code. The
bus master makes as many passes as there are devices on the bus. So, if there are 12
(for example) 1-Wire slave devices on the bus, this method identifies all of their
unique 64-bit ID codes in exactly 12 64-bit search ROM passes.

The bus master can also insert a measure of optimization in the Search ROM
command. For instance, if it’s only interested in identifying the DS2401 devices on
the 1-Wire bus, it can use that fact to speed up the process and limit its search to just
DS2402 Silicon Serial Numbers. The first eight bits of the ROM ID for any 1-Wire
device will be its family code. That will be the same for all 2401 devices. So, when
performing the search ROM command, the bus master can use the family code byte
during the first 8 cycles of the 64-cycle Search ROM process and not even pay
attention to the values of bit

n
 and Nbit

n
 being written. By doing so, all other non-

DS2401 devices are eliminated from consideration right off the bat. The only devices
on the bus remaining when the ninth ROM bit is being processed will be DS2401
devices. To use our binary tree analogy, any branches that would have occurred

358

Designing Embedded Internet Devices

during the first eight bits aren’t going to be explored. In 1-Wire jargon, this is
“targeting the family.”

The Read ROM and Search ROM commands are found in all 1-Wire slave devices.
Additional ROM commands found in most 1-Wire devices are Match ROM and Skip
ROM.

Match ROM
The Match ROM command is represented by 55h. It is used to select individual 1-Wire
devices once their 64-bit ID code is known. A common situation in which this might be
used is when there are numerous devices on the bus, all of their device ID codes are
known (having been previously found with a Search ROM command and remembered
by the application), and the bus master wants to communicate with one of them. Here,
the bus master issues a reset, waits for the presence pulse, issues the Match ROM
command, then writes the 64-bit ID code of the device it is interested in. By issuing the
Match ROM command, the bus master is telling all of the devices on the bus to listen to
(read) the next 64 bits. Any device that does not match the 64-bit ID code will be
deselected and will do nothing else but wait for the next reset pulse from the bus
master. The one device that matches the 64-bit ID code (there can be only one, since
they are all unique) will now be put into a state in which is it is waiting for additional
commands that are specific to its function.

A more common situation is the case where there are multiple devices on the bus, but
the bus master isn’t maintaining their ID codes in memory. It simply knows that one
of them is of a specific type it wants to communicate with—a thermometer, for
example—on a bus with several other types of devices such as switches and A/D
converters. In this situation, the bus master issues a reset, waits for the presence
pulses, issues the Search ROM, and determines the device IDs for everything on the
bus. The first 8 bits of the device ID is the family code, which differentiates the
thermometer from the switches and the A/D converters. The bus master takes the
device ID for the thermometer, issues a reset, waits for the presence pulse, issues a
Match ROM, writes the thermometer’s device ID, and then writes thermometer-
specific commands to the bus and retrieves the desired temperature data.

Skip ROM
The Skip ROM command is represented by CCh. It’s used when you know there is
only one device on the bus, you know what it is, and you want to select it without
going through the process of giving it the 64-bit ID code. To communicate with a 1-
Wire device in this fashion, the bus master issues a reset pulse, waits for the presence
pulse, and then issues the Skip ROM command. Then, the one device on the bus is
selected and awaiting further device-specific commands.

359

1-Wire Basics for TINI

We mentioned earlier that the only two functions that the DS2401 Silicon Serial
Number uses are the Read ROM and Search ROM command. We’ve also mentioned
that the Match ROM and Skip ROM are common to all 1-Wire devices. That
contradiction is easily explained. Match ROM and Skip ROM aren’t relevant to the
DS2401 because the DS2401 doesn’t have any other functions beyond merely
responding with its 64-bit ID code. Both Match ROM and Skip ROM are functions
that involve selecting a device with the purpose of issuing further commands. The
DS2401 ignores Match ROM and Skip ROM.

In addition to Read ROM, Search ROM, Match ROM, and Skip ROM, some 1-Wire
devices have additional ROM commands that allow more options when it comes to
selecting them. An example is the Alarm Search ROM found in the DS1920
thermometer iButton. It functions much like a Search ROM, with the exception that
only thermometer iButtons that have experienced a temperature alarm will actually
respond.

Memory commands
We’ve mentioned that the Match ROM command and the Skip ROM command select
individual 1-Wire devices and put them in a state where they are ready to read
additional commands from the 1-Wire bus. These additional, function-specific
commands are frequently referred to as Memory commands on the Dallas
Semiconductor data sheets. We’re not going to go into them in detail here. Instead,
we’ll discuss them when we cover some of the 1-Wire devices in more detail. For the
time being, just be aware that there are additional commands known as memory
commands that work generally the same way as the ROM commands.

Cyclic Redundancy Check (CRC)
The CRC, or cyclic redundancy check, is a method of verifying the integrity of data
transfers. This verification comes in the form of a CRC byte, which is the result of a
logical operation on a stream of bits. In 1-Wire devices there are two different CRC
types. One CRC is an 8-bit type and is stored in the most significant byte of the 64-
bit ROM. The other CRC is a 16-bit type. While the CRC8 is used in a number of
places in 1-Wire data transfers, a good example of it can be found in the 64-bit ID
code that every 1-Wire device has. The last 8 bits of this ID code is a CRC8 byte.
That byte is computed using the first 56 bits of the ROM ID according to the
following formula:

CRC8 = X8 + X5 + X4 + 1

The CRC16 is generated according to the standardized CRC16-polynomial. A
CRC16 is used for fast verification of a data transfer when writing memory devices.
That byte is computed according to the following formula:

360

Designing Embedded Internet Devices

CRC16 = X16 + X15 + X2 + 1

A picture can be used to put this in to more meaningful terms. Consider the following
diagram for a CRC8.

shift

Bit 7

shift

Bit 6

shift

Bit 5

shift

Bit 4

xor shift

Bit 3

shift

Bit 2

xor shift

Bit 1

shift

Bit 0

xor

input

output

Figure 10-10: The CRC shift register

For the CRC8, the process starts with the 8-bit CRC “shift register” initialized to all
zeros. (Although we are calling it a shift register, it’s important to remember that it’s
really an algorithm being implemented in software by the bus master. We’re simply
using the shift register to visualize the process.) Once the shift register is initialized
to all zeros, the bus master takes the ROM ID, one bit at a time, starting with the
least significant bit and working up, and inserts it into the CRC shift register.

1) The current input bit and the previous value of the least significant shift
register bit, Bit 0, are subjected to a logical exclusive or (XOR). XOR is
another way of saying, “one or the other, but not both.” If both are zero, the
output is zero. If both are one, the output is zero. If one is zero and the other
is one, the output is one. The result of this XOR is the feedback bit that gets
fed back into several other registers.

2) Bits 1, 2, 5, 6, and 7 get the value of their higher-order neighbor (bits 2, 3, 6,
7, and 8 respectively) shifted into them unmodified.

3) Bit 3 gets the value of the feedback bit XOR bit 4.

4) Bit 4 gets the value of the feedback bit XOR bit 5.

5) Bit 8 takes on the value of the feedback bit.

Then, another input bit is taken from the ROM ID and put into this algorithm. Once
56 bits have been taken from the ROM ID and put into the shift register computation,
the value of the 8-bit CRC shift register should equal the CRC byte. If you continue
to perform the shifting algorithm on the remaining 8-bits of the ROM ID—that is,
shift in the CRC byte into the CRC register—the contents should go to zero.

Pictures and explanations are good, but sometimes an example is even better. Below
is a worked out example using an actual ROM ID from a DS1920 thermometer iButton.

361

1-Wire Basics for TINI

Figure 10-11: CRC example, ROM ID, ID breakout, first 8 register cycles

Figure 10-12: CRC example, table with all 64 cycles

0000004B212B 10 F4

CRC Byte Unique Serial
Number

Family Code

MSB LSB

Specific
Input Bit

being
Processed

CRC
Output
Bit

CRC
Input

Bit

Current CRC

Value

Bit0 0 0 00000000
Bit1 0 0 00000000
Bi t2 0 0 00000000
Bit3 0 0 00000000
Bit4 1 1 10001100
Bit5 0 0 01000110
Bit6 0 0 00100011
Bit7 1 0 10011101

. . . .

. . . .

. . . .
Bit48 0 0 01101110
Bit49 0 0 00110111
Bit50 1 0 10010111
Bit51 1 0 11000111
Bit52 1 0 11101111
Bit53 1 0 11111011
Bit54 1 0 11110001
Bit55 1 0 11110100
Bit56 0 0 01111010
Bit57 0 0 00111101
Bit58 0 1 00011110
Bit59 0 0 00001111
Bit60 0 1 00000111
Bit61 0 1 00000011
Bit62 0 1 00000001
Bit63 0 1 00000000

Bit55 is the last bit to be
processed, the value of the
CRC is F4. Continuing the
process with F4 as input

results in a CRC of 00.

Example Rom Code = F40000004B212B10
Rom Code (Binar y) = 111101000000000000000000000000000100101100010000

shift

Bit 7

shift

Bit 6

shift

Bit 5

shift

Bit 4

xor shift

Bit 3

shift

Bit 2

xor shift

Bit 1

shift

Bit 0

xor

input

output

362

Designing Embedded Internet Devices

Now that we’ve looked at what the CRC is and how it works, there are a couple of
additional points. The cyclic redundancy check is fundamentally the responsibility of
the bus master. While the 1-Wire slave devices may send CRC bytes along with their
data, the bus master doesn’t actually have to pay any attention to them or act upon
them. The CRC is merely a capability that allows the bus master to determine
whether or not the data transfer was good, but the existence of this capability doesn’t
imply automatic error checking. The bus master has to first use the CRC byte to
identify a communication problem, and then act on that problem by repeating the
communication. Neither of those actions is mandatory or automatic.

Although the example we’ve looked at focuses on the ROM ID, many other data
transfers from the 1-Wire devices also incorporate CRC8 or CRC16 bytes. The specific
data sheets for each of the 1-Wire devices explain where and when they get sent.

One last comment about CRC. If you are wondering how you would go about writing
programs that verified the accuracy of CRC bytes, the 1-Wire Java class libraries have
CRC classes in them that provide objects and methods for handling CRC checking.

We took a look at the DS2401 Silicon Serial Number in our discussion about the Read
ROM and Search ROM commands. Now, let’s take a look at some other common
1-Wire devices: the DS2405 Addressable Switch and the DS1920 Temperature iButton.

1-Wire Device Example: the DS2405 Addressable Switch
This is one of the most useful 1-Wire devices, and it lends itself well to a whole range
of applications with respect to Internet-enabled devices. The DS2405, as its name
implies, is a 1-Wire, selectable switch. It has an output, which can be thought of as a
switchable pin, a 1-Wire bus pin, and a ground. It comes in a variety of packages
similar to the DS2401.

1-wire
protocol

Data

Ground

PIO

Figure 10-13:
DS2405 addressable switch schematic

363

1-Wire Basics for TINI

Table 10-2: DS2405 electrical characteristics

Parameter Symbol Min Typ Max Units Notes

Logic 1 V
IH

2.2 V
CC

+0.3 V 1, 4, 5
Logic 0 V

IL
-0.3 0.8 V 1,7

Output Logic Low V
OL

0.4 V 1
@4mA
Output Logic High V

OH
V

PULLUP
6.0 V 1,2

Input Load I
L

5 mA 3
Current(Data Pin)
Nput Resistance I

R
10 MW 6

(PIO pin)

1. All voltages referenced to ground.
2. Vpullup is the external pullup voltage.
3. Input load is to ground.
4. VIH is a function of the external pullup resistor and the VCC supply.
5. VIH for the PIO pin should always be greater than or equal to Vpullup-0.3 volts.
6. Input resistance is to ground.
7. Under certain low voltage conditions V

ILMAX
 may have to be reduced to as much as 0.5 volts to

always guarentee a presence pulse

The switch pin can be used to pull a node (PIO on the pinout above) to ground,
sinking up to 4 mA in the process. Since the device doesn’t connect to a positive
supply, it can’t drive the node high; it is either pulling the node low or off, and
allowed to be pulled high. You can give the circuit controlled by the PIO pin its own
positive supply that acts as that pullup. You can also query the DS2405 to find out
whether or not it is pulling the node low. Thus, it can be used to control LEDs, trigger
logic, read and control the state of relays, etc.

DS2405 Addressable Switch ROM commands
The DS2405 has the standard four ROM commands that we’ve learned about: Read
ROM, Search ROM, Match ROM, and Skip ROM. It also has an additional ROM
command, Active Only Search ROM.

Table 10-3: Table of DS2405 ROM commands

Rom Command Command Value (Hex)

Read Rom 33
Search Rom F0
Match Rom 55
Skip Rom CC

Active Only Search Rom EC

364

Designing Embedded Internet Devices

The DS2405 Match ROM command
The Match ROM command has characteristics for the DS2405 that are a little
different from what we saw earlier. The procedure is very similar: the bus master
issues a rest pulse, waits for a presence pulse, then issues a 64-bit ROM ID, and the
device that matches it is then selected. But in the case of the DS2405, after a device
receives its 64th bit and is selected, it toggles the state of the PIO output node. This is
the mechanism by which one turns the DS2405 on and off: by selecting it. Once
selected with a Match ROM command, it will output the state of its switch (on or off)
during every subsequent data time slot initiated by the bus master until a reset is
issued. This means that if the DS2405 is currently pulling the PIO pin to ground, it
will respond to every timeslot following the Match ROM with a logic 0. If the PIO
node is being pulled high, it will respond with a logic 1.

The DS2405 Search ROM command
As with the Match ROM command, the Search ROM command also has characteristics
for the DS2405 that are a little different from what we saw earlier. The process proceeds
as a standard Search ROM, but at the end of a 64-bit cycle in which a DS2405 1-Wire
switch has been identified, any subsequent data time slots after this prompt the
DS2405 to output its state to the bus. This means that if the PIO pin on the DS2405 is
currently being pulled to ground, it will respond to every time slot following the
match ROM with a logic 0. If the PIO node is being pulled high, it will respond with
a logic 1. It will do this until it sees a reset. The Search ROM process does not affect
the state of the switch. It will not toggle as the result of a Search ROM command.

The Active Only Search ROM command
The Active Only Search ROM command adds an additional level of selection to the
standard Search ROM process. As we saw earlier, the Search ROM command is a
method by which the bus master can iteratively identify all 1-Wire devices on the bus.
All 1-Wire devices will respond to it. We also mentioned the concept of targeting the
device family. That consists of performing a Search ROM command and
automatically using a device’s family code as the first 8 bits the bus master writes to
the bus during the process, independent of the bit

n
 and Nbin

n
 values being written by

the 1-Wire devices. This eliminates identifying 1-Wire device ROM ID codes for
devices that the bus master is not currently interested in. The Active Only Search
ROM command adds an additional level of selection up front. When an Active Only
Search ROM command is issued, the only devices that will respond to it are 1-Wire
switch devices that presently have their internal switch control signals set to true, or
logic 1, meaning the switch is actively trying to pull the PIO pin low. Additionally,
after an Active Only Search ROM command is issued and the 64th bit cycle has been
completed identifying one DS2405 ROM ID, that device will now output a logic 0 on
the bus during every subsequent data time slot.

365

1-Wire Basics for TINI

There’s a lot of significance in the differences between the Search ROM and the Active
Only Search ROM for the DS2405. After bus master has completed a 64-bit Search
ROM cycle, finding a DS2405, that DS2405 will output what it sees on the PIO pin.
After the bus master has completed a 64-bit Active Only Search ROM command,
finding a DS2405 with its internal switch control signal set to true, it will output a logic
0 to the bus during data time slots until reset. The significance is this: the Search ROM
command can be used to determine the actual PIO pin voltage values for DS2405s on
the bus, while the Active Only Search ROM can be used to identify the switches that
have a switch control signal set to true, thereby thinking they are pulling the PIO pin
low. But just because the internal switch control signal is set to true, this doesn’t
necessarily mean the PIO pin is able to pull that node low. Or, the internal switch
control signal could be set to false, thereby letting the PIO pin float to a logic 1, but
something else could be pulling that node low outside the DS2405.

The DS2405 PIO pin and the DS2405 internal switch control signal don’t necessarily
have to agree, and by providing a difference in functionality between the Active Only
Search ROM and the Search ROM, the bus master has a way of identifying not only how
the switches are set, but how they are actually behaving.

Table 10-4: DS2405 review table

Setting of the Value on the PIO Returned Value of Comments
Internal Latch Pin of the Switch the Sensed Level of

the PIO Pin

false Logic Low false The DS2405 is not driving
(let PIO pin float) the PIO pin low, but

something external to it is
driving it low.

true Logic Low false The DS2405 is driving
(drive PIO pin low) the PIO pin low.

false Logic High true The DS2405 is not driving
(let PIO pin float) the PIO pin low but

something external to it
has pulled it high.

true Logic HIgh true The DS2405 is driving
(drive PIO pin low) the PIO pin low, but

something external to it
is overdriving the PIO

pin high.

366

Designing Embedded Internet Devices

3 DS1920 Temperature iButton data sheet – http://pdfserv.maxim-ic.com/arpdf/DS1920.pdf

1-Wire Device Example: the DS1920 Thermometer iButton
The DS19203 is a selectable 1-Wire thermometer in a rugged iButton container. It has
0.5 °C accuracy and is useful from –55 °C to 100 °C.

The DS1920 provides an accurate temperature
measurement, requires no complicated calibration,
and only uses one signal and one ground. It uses a
proprietary scheme involving the temperature
dependence of oscillators to measure a temperature-
related count and places that value into an internal
memory that is referred to as scratch-pad memory.
This memory also supports the storage of alarm
values, which the DS1920 compares the current
temperature against. All of this smart circuitry is
powered parasitically from the 1-Wire bus.

Table 10-5: Memory in the DS1920 iButton

Byte Number Scratchpad EEPROM

0 Temperature LSB
1 Temperture MSB
2 High Alarm (TH) or User Byte 1 High Alarm (TH) or User Byte 1
3 Low Alarm (TL) or User Byte 2 Low Alarm (TL) or User Byte 2
4 Reserved
5 Reserved
6 Count Remain
7 Count / Deg C
8 CRC

Bytes zero and one correspond to the result of a temperature conversion performed
on the raw measurement data in bytes six and seven. Bytes two and three are the only
writable locations and can be used as temporary storage by the user. They also serve
the purpose of being the registers in which you will load any alarm values that you
want to enter. Scratchpad byte two is the value of the high temperature alarm point
while scratchpad byte three is the value of the low temperature alarm point. Any
temperature falling outside those bounds will result in the device being active during
a Alarm Search Only ROM command, provided that another reading isn’t performed
in the interim that clears the alarm condition. To ensure the alarm values remain
active over time, you write them to the scratchpad and then copy them to the
nonvolatile EEPROM memory. The purpose of the EEPROM is to provide a

Figure 10-14:
Picture of a DS1920 iButton

367

1-Wire Basics for TINI

nonvolatile place for the alarm values to be stored during times when the device isn’t
powered. During these times the scratchpad no longer retains its values. When the
device is powered back up, the EEPROM locations automatically are placed back
into the scratchpad memory. Scratchpad bytes four and five are labeled as reserved
and are not used. Byte nine is a CRC byte, representing a cyclic redundancy check
performed on the previous eight bytes.

The DS1920 draws as much as 1 mA during a temperature measurement, and this
requires what Dallas Semiconductor refers to as a “strong pullup.” The normal pullup
value for the 1-Wire bus is about 5k ohms and that won’t supply the necessary
current for the DS1920. Normally, this won’t be a problem, because in order to
interface to the DS1920 one normally uses a Dallas Semiconductor bus adapter that
already takes this sort of thing into account. But you’ll need to be aware of this if you
make your own interface circuitry to the DS1920.

DS1920 ROM commands
The DS1920 has the standard four ROM commands that we know about: Read ROM,
Search ROM, Match ROM and Skip ROM. These function exactly as described for the
DS2401. There is one additional ROM command known as the Alarm Search Command.

The DS1920 Alarm Search command
The Alarm Search command is exactly like the Search ROM command, except that it
only applies to thermometer devices, meaning only devices with the thermometer
family code, and only those thermometers that experienced an alarm at their last
temperature measurement, will respond. When the bus master tells the thermometer
iButton to measure temperature, the iButton also compares the result to any alarm
values that it has stored away in memory. If it experiences an alarm, it remembers this
and knows to participate in any subsequent Alarm Search command.

Table 10-6: DS1920 iButton ROM command table

Rom Command Command Value (Hex)

Read Rom 33
Search Rom F0
Match Rom 55
Skip Rom CC

Alarm Search EC

The other DS1920 commands: memory and temperature conversion

The DS1920 has additional commands, four of which are referred to as memory
functions, while one is called a temperature conversion function. Whereas ROM
functions all tend to be aimed at selecting a device, or identifying a device, these

368

Designing Embedded Internet Devices

other commands have to do with making the device do something once selected.
We’re not going to go into them in tremendous detail here, because the best way to
learn about them is from the Dallas Semiconductor data sheets, but we’ll briefly
review them. These commands are: Write Scratchpad, Read Scratchpad, Copy
Scratchpad, Convert Temperature, and Recall EEPROM.

Table 10-7: DS1920 iButton additional command table

Memory and Control Functions Command Value (Hex)

Write Scratchpad 4E
Read Scratchpad BE
Copy Scratchpad 48

Convert Temperature 44
Recall B8

DS1920 Write Scratchpad command

The Write Scratchpad command is issued by the bus master before writing two bytes
of data into the scratchpad memory. It tells the DS1920 to read the next 16 data time
slots. This memory gets put into scratchpad bytes two and three. The bus master can
issue a reset during this write process, which terminates it and leaves the contents of
the scratchpad in an unknown state.

DS1920 Read Scratchpad command

The Read Scratchpad command is issued by the bus master when it wants to read the
nine bytes of data in the DS1920 scratchpad memory. The master can stop the read
process at any time by issuing a reset.

DS1920 Copy Scratchpad command

The Copy Scratchpad command moves the values in scratchpad bytes two and three
into nonvolatile EEPROM. These two locations can be thought of as storage for the
alarm values. The alarm registers are scratchpad bytes two and three. The EEPROM
memory programming requires the use of the strong pullup, which the bus master
must enable immediately after this command is issued and hold for 10 ms.

DS1920 Convert Temperature command

The Convert Temperature command causes a temperature measurement to be
performed. This command also requires that the strong pullup be enabled
immediately after the command is issued by the bus master and held for 0.5 sec. The
raw result of the process is stored in scratchpad locations seven and eight, while the
value of the temperature computed from it is stored in bytes zero and one. The
conversion between the 16-bit temperature value and an actual Celsius number is
shown in Table 10-8.

369

1-Wire Basics for TINI

Table 10-8: DS1920 iButton hex to temperature table

Temperature Digital Output Digital Output
(Deg C) (Binary) (Hex)

100 00000000 11001000 00C8
25 00000000 00110010 0032
0.5 00000000 00000001 0001
0 00000000 00000000 0000

-0.5 11111111 11111111 FFFF
-25 11111111 11001110 FFCE
-55 11111111 10010010 FF92

DS1920 Recall EEPROM command

This command places the two bytes of data stored in the EEPROM into bytes two
and three in scratchpad memory. This happens automatically every time the device is
powered up, but also on demand through the use of this command.

There are a number of temperature-related 1-Wire devices, such as the DS1820 1-Wire
thermometer. It makes use of the same commands as the DS1920 with the addition of
some features related to how the device is powered up.

Table 10-9 lists the names and family codes of a variety of common 1-Wire devices.

Table 10-9: 1-Wire devices and their family codes

1-Wire Device or iButton Description Family Code (Hex)

DS2401, DS1990A 1-Wire Address Only 01
DS1425, DS1991 Secure Memory Device 02
DS2404, DS1994 4K NVRAM memory, Clock, Timer, Alarms 04

DS2405 Single Addressable Switch 05
DS1993 4K NVRAM memory 06
DS1992 1K NVRAM memory 08

DS2502, DS1982 1K EPROM memory 09
DS1995 16K NVRAM memory 0A

DS2505, DS1985 16K EPROM memory 0B
DS1996 64K NVRAM memory 0C

DS2506, DS1986 64K EPROM memory 0F
DS18S20, DS1820, DS1920 Temperature and Alarm Trips 10

DS2406, DS2407 1K EPROM memory, Dual Switch 12
DS2503, DS1983 4K EPROM memory 13

DS1971 256 bit EEPROM memory and OTP register 14
DS1954 Java Powered Cryptographic iButton 16

DS1963S 4K NVRAM memory and SHA-1 engine 18
DS1963L 4K NVRAM memory with Write Cycle Counters 1A
DS2423 4K NVRAM memory with External Counters 1B
DS2409 Dual Switch, Coupler 1F

370

Designing Embedded Internet Devices

DS2450 Quad A/D 20
DS1921 Thermocron Temperature Logger 21
DS1973 4K EEPROM memory 23
DS2438 Temperature, A/D 26

DS18B20 Adjustable Resolution Temperature 28
DS2890 Single Channel Digital Potentiometer 2C
DS2890 Temperature, Current, A/D 30

DS2423, DS1961S 1K EEPROM memory with SHA-1 engine 33

Connecting a PC to the 1-Wire Bus
We’ve discussed some of the 1-Wire devices that are interesting for web-enabled
devices, but our overall goal is to be able to access these devices with a computer
and, ultimately, the Internet. In this section, we look at the process of accessing
1-Wire devices with a personal computer.

Dallas Semiconductor offers a host of products that make the PC-to-1-Wire interface
easy to accomplish. But the sheer variety of products they offer can obscure how easy
it really is. Let’s take a high-level look at what we’re trying to do, then examine the details.

Figure 10-15: Bridging the gap between computer and devices

Software

Cables

I/O adapters
Connectors

I/O ports

We have a PC, and we’re trying to connect it up to 1-Wire devices which may be
iButtons, surface mount or through-hole packaged devices. To bridge the gap, we’re
going to need the following: software to drive the bus, I/O ports on the computer for
communication to the bus, a method of adapting the I/O port to the bus, cables, and a
method of connecting cables to our devices. This is how we’ll accomplish this:

Software to control the PC I/O ports

Java API supplied by Dallas Semiconductor

TMEX Touch Memory Exchange Software supplied by Dallas
Semiconductor

PC I/O ports

RS232 COM ports

371

1-Wire Basics for TINI

The parallel or printer port

The Universal Serial Bus, or USB, port

Adapters to go from the PC I/O ports to the 1-Wire bus

DS1411, DS1413 COM port to iButton adapters

DS1410E Parallel Port to iButton adapter

DS9097U-09 COM port to RJ11 adapter

DS2480B 1-Wire line driver

DS2490 USB to 1-Wire bridge chip

Cables between the adapters and the 1-Wire devices

Category 5 telephone cable, with RJ11 modular connectors

DS1420X pre-made cables

Connectors to attach the cables to printed circuit boards with 1-Wire electronics

RJ11 modular plugs

DS9094 iButton clip, DS9098 iButton retainer

DS9092R iButton port

DS1401 front panel iButton holder

We’ll start by examining the physical and electrical interfaces, and then end with a
discussion of the Java 1-Wire API and some examples.

Communication ports on the PC
There are three ports on the PC that we can use to connect to a 1-Wire bus: RS232
COM ports, the parallel port, and the Universal Serial Bus or USB port. Dallas
Semiconductor makes a variety of products that can be used as translators/adapters.
These products provide mechanical connections to the bus, and contain electronics
that help translate your computer’s output into the 1-Wire protocol. Let’s take a look
at them all, starting with the serial, or RS232, port.

Figure 10-16: Ports

372

Designing Embedded Internet Devices

The RS232 or serial (COM) ports
Most, if not all, PCs have traditional RS232 serial ports often referred to as COM
ports. They usually have a male DB-9 connector as shown in Figure 10-17.

Figure 10-17: Male, female DB-9, pinout

To connect the 1-Wire bus to this, you need a female DB-9 connector. Dallas
Semiconductor makes several adapters that connect to a male DB-9 connector and
provide a connection to either an iButton directly, an iButton cable, or an RJ11
(telephone modular plug) and category 5 1-Wire cable.

The DS1413 Passive Serial iButton holder

Figure 10-18: DS1413 images and schematic

This port adapter, the most basic and least expensive, has a metal retaining clip for
holding an iButton device. You plug the iButton device into the retaining clip and
plug the adapter into your COM port and run software that communicates in the 1-
Wire protocol. There are cables that can plug into the iButton retaining clip that allow
you to use this as a generic 1-Wire adapter. But that basic design of the DS1413 has
limitations.

373

1-Wire Basics for TINI

What it does

1. It performs the mechanical adaptation between the male DB-9 COM port and
either an iButton or an iButton cable.

2. It performs voltage level conversions between the 12V RS232 provided by the
COM port and the 5V needed by the 1-Wire bus.

What it does not do

1. It has no active electronics inside it, so it doesn’t actually format data coming
from the COM port into the 1-Wire protocol for you. The data coming from the
COM port into the DS1413 must already have the correct timing. This makes the
controlling software somewhat more complicated.

2. The Dallas Semiconductor Java 1-Wire API doesn’t support it directly—
rather, it supports it indirectly, by using a driver supplied in the Dallas
Semiconductor TMEX software.

3. The datasheet makes note of the fact that it does not support what is called a
strong 5V pull-up. Certain devices need a pull-up on the bus beyond what is
normally supplied by the 5K resistor. The DS1411 has no provision to supply
that. Having said that, We’ve found that it seems to work with thermometer
iButtons in terms of making a temperature measurement, but not for writing to
the EEPROMS, even though they both require the strong pull-up.

4. It doesn’t have a provision for supplying the 12V signals required for
programming EPROM devices.

The limitations of the DS1413 are significant for our applications, so we won’t really be
discussing it further in this book. It’s designed for use in special-purpose applications
where cost is an issue. We’re mentioning it here because you need to understand the
differences between it and the DS1411, which is basically the same device without the
limitations described above. Be aware that it looks exactly like a DS1411, with the
exception of a tiny little sticker label. If you have both, it’s best to keep them separate.

The DS1411 Serial Port iButton holder

Figure 10-19: DS1411 images and schematic

374

Designing Embedded Internet Devices

This port adaptor is more sophisticated than the DS1413 mentioned above. Notice on
the schematic that there is a DS2480 device embedded within it. The DS2480, or
serial 1-Wire line driver, is an integrated circuit that takes byte-based commands and
data from the COM port and generates all the necessary 1-Wire timing (the time
slots) for you. This frees up the computer and software from having to deal it. Both
the Dallas Semiconductor TMEX software and their 1-Wire Java API support the
DS1411, which means that you can communicate with it through software that’s
entirely Java-based, or communicate with it using Java that uses a TMEX driver. The
DS1411 translates the voltage levels and has a strong pull-up, allowing it to be used
with thermometer devices and devices with EEPROM that you want to write to. It
does not support the 12V 1-Wire programming voltage required for EPROM devices.

This is a very useful device, especially when you are just getting started, because of
its versatility and ease of use. You can plug a DS1920 thermometer iButton into it,
plug it into the COM port, and start working on software, confident that you don’t
have any cabling or connections or soldering problems, etc. As with the DS1413, it
can also accept iButton cables.

The DS9097U Universal 1-Wire COM Port adapter

Figure 10-20: DS9097U images and schematic

This port adapter doesn’t accept an iButton device or an iButton cable; it accepts an
RJ-11 modular plug. This makes it really useful, because you can use telephone
cabling instead of the special iButton cables. The DS9097U uses the DS2480 serial
1-Wire line driver just like the DS1411, so it takes bytes from the COM port and
translates them into 1-Wire time slots. Also like the DS1411, it can be used with the
1-Wire Java API alone, or a combination of the Java API and the TMEX 1-Wire
drivers. The DS9097U also supports the strong pull-up so you can use with it with
EEPROM devices and temperature 1-Wire devices/iButtons. It does not support the
12V signals required for EPROM programming though.

DS9097U comes in three flavors, one with an embedded DS2502 ID chip embedded
within it, another with the embedded DS2502 and 12V supply for programming
EPROMs and one version without the DS2502. The presence of the DS2502 ID chip
provides a way to identify a particular adapter to a particular COM port in an

375

1-Wire Basics for TINI

environment when there might be numerous adapters being used. This can also be
useful for simple software setup experiments because you can plug it into the COM
port and test 1-Wire operation without having to hook anything else up to it: it
already has a 1-Wire device inside it that will respond.

Table 10-10: DS9097U varieties

DS9097U-009 Active 1-Wire adapter with Ds2502 EPROM

DS9097U-E25 Active 1-Wire adapter with Ds2502 EPROM
and 12 volt supply

DS9097U-S09 Active 1-Wire adapter without Ds2502 EPROM

The DS2480 Serial 1-Wire line driver chip

We’ve noted that two of the COM port adapters have a chip embedded within them.
Let’s take a moment and examine that device.

The DS2480B4 is a serial-port-to-1-Wire interface chip that supports both the regular
and overdrive speeds of the 1-wire bus. It connects directly to UARTs and 5V RS232
systems. The DS2480B contains internal timers that relieve the host of the burden of
generating the time-critical 1-Wire communication waveforms. The DS2480B can be
set to communicate at four different data rates, including 115.2 kbps, 57.6 kbps and
19.2 kbps with 9.6 kbps being the power-on default. The various control functions of
the DS2480B are optimized for MicroLAN 1-Wire networks and support the special
needs of all current 1-Wire devices including the crypto iButton, EPROM-based add-
only memories, EEPROM devices and 1-Wire thermometers. The DS2480B is the
integrated circuit inside the 9097U and DS1411 serial port adapters. The DS2480B is
controlled by a variety of commands but we won’t discuss programming the DS2480
directly. Rather, we will discuss using the 1-Wire API and allowing it to handle all of
the low-level commands to the DS2480B.

The parallel or printer port
The parallel port, often called the printer port, can also be used to interface with the
1-Wire bus. The printer port uses a DB-25 male connector on the PC. Dallas
Semiconductor makes a device for connecting to the printer port, the DS1410E.

4 DS2480B 1-Wire Line Driver with Load Sensor data sheet – http://pdfserv.maxim-ic.com/
arpdf/DS2480B.pdf

376

Designing Embedded Internet Devices

The DS1410E parallel port adapter

The DS1410E is a port adapter that has a female DB-25 connector on one side and a
male DB-25 connector on the other side. It connects between the parallel port on a
computer and the printer cable, and can co-exist with the printer. In the center of this
adapter are two iButton retaining clips. You can connect either iButtons or iButton
cables into these retaining clips. The intended purpose of the DS1410E is a little
different than our previous discussions. It is primarily intended for applications such
as software authorization. An iButton like the DS1994 (clock plus memory) can be
supplied as an authorization kit with commercial software that is otherwise unrelated
to 1-Wire. The timer in the iButton can be preprogrammed to meter out a specified
number of days and the memory in the iButton can hold software authorization codes that
match those in the software.

Figure 10-21: DB-25 male, female, pinout

Figure 10-22:
Parallel port iButton holder

This isn’t our application, but that’s why they make the DS1410E. We’re interested in
this because it provides one more way to access the 1-Wire bus. The DS1410E
supports the strong pull-up required by temperature and EEPROM devices, and it
contains active circuitry inside it that manages the timing and some electrical details
dealing with the fact that it’s sharing the same bus with the printer. The Dallas

377

1-Wire Basics for TINI

Semiconductor 1-Wire Java API supports the DS1410E indirectly by making use of
low-level drivers in the TMEX software package.

PC universal serial bus, or USB
The universal serial bus, USB, is found on most computers these days. At the time of
this writing, Dallas Semiconductor doesn’t offer any ready-made USB port adapter.
They do, however, offer the DS2490, an integrated circuit that performs USB
protocol to 1-Wire bus protocol conversion.

Figure 10-23:
USB port connectors and pinout

Let’s take a brief look at the DS2490 USB-to-1-Wire adapter bridge chip.

VD

NC

XI

XO

NC

VPP

NC

1-wire

SUSOb

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

PMOD

NC

VB

D-

D+

GND

NC

Figure 10-24:
DS2490 chip and pinout table

The DS2490 supports capabilities that allow access to all 1-Wire devices:

1. It supports the 12V programming voltage required to program EPROM 1-
Wire devices.

2. It supports the 5V strong pull-up required by thermometer and EEPROM 1-
Wire devices.

3. It handles all the protocol conversion.

This capability comes with requirements though. The DS2490 can’t handle all this
with power from the USB bus, so for some of that it requires an additional power

378

Designing Embedded Internet Devices

supply. To handle some of the timing, it must have an external time-base attached to
it in the form of a 12-MHz clock. Given the popularity of the USB bus, a ready-made
adapter will be most likely available in the future.

We’ve talked about the various ports on the PC, and various adapters that connect
those ports to the bus. Now let’s take a very brief look at what’s available to connect
between the adapters and a circuit board with 1-Wire electronics on it: cables and
connectors.

Cables and connectors
For short 1-Wire runs (less than 10 feet) and very simple 1-Wire networks, four-wire
telephone cable will work acceptably. A disadvantage of phone cable (not twisted pair)
is that it lacks the noise rejection properties of twisted pair-cables. For that reason,
category 5 twisted-pair cable (used for 100base-T networks) is recommended for most
1-Wire applications. This is connected to a bus adapter and to circuit boards, usually
using an RJ11 modular phone jack and plug.

Figure 10-25: Cat 5 cable connecting to modular plug, with pinout

1 Blue - Regulated +5VDC (<50ma)
2 Yellow - Power return
3 Green - 1-wire HOT
4 Red - 1-wire return
5 Black No connection -
6 White - Unregulated + supply (<500ma)

1
2
3
4
5
6

Pre-made iButton cables

During our discussion of port adapters, we mentioned that some of them have iButton
retaining clips as their 1-Wire interface (DS1411, DS1413, DS1410E) and we mentioned
something called iButton cables. These are the DS1402X MicroLAN cables. They
come in a variety of lengths and a variety of different flavors. Some of the more
relevant ones are shown below. The significance of these is that some have an RJ11
plug on one end and an iButton interface on the other, so they can be plugged into
the iButton retaining clips in the port adapters that are meant for iButtons.

379

1-Wire Basics for TINI

DS9098 iButton receptacle. This is a metal iButton receptacle that can be soldered
onto a PC board. It can also be used to hold iButton cables.

Figure 10-26. Pre-made iButton cables

Figure 10-27:
DS9098 iButton receptacle

Figure 10-28: DS9094 iButton retaining clip

DS9094 iButton retaining clip. This is a plastic and metal surface-mount or through-
hole iButton holder that can be soldered onto a circuit board.

380

Designing Embedded Internet Devices

DS9092R iButton port. This is basically an empty iButton container with little tabs
on it that you can solder to. In effect, you can solder wires to this and make your own
iButton cable, or your own iButton-like devices.

DS1401 iButton front panel holder. This is a strip with four or 24 iButton holders all
interconnected on a 1-Wire bus. You can put an iButton cable into one of them and
put iButtons in the others. It’s a way of mating an iButton cable to multiple devices.

Figure 10-29:
DS9092R iButton port

DS9092R Tabbed MicroCan

Figure 10-30: DS1401 iButton front panel holder

The 1-Wire Java API
Throughout the previous discussion we’ve made mention of the 1-Wire Java API. In
this section we will be looking at this API and a number of examples of how to use it.

The 1-Wire Java API, TMEX drivers, and these mysterious
things called port adapters
Before we go into the details of what’s inside the Java API, we need to talk a little
about how the API talks to the 1-Wire bus. The API itself is actually one piece of a
very interrelated, three-piece puzzle.

1. The Java API provides high-level control over the MicroLAN and the 1-Wire
devices found on it. It can be used alone to drive the 1-Wire bus provided you

381

1-Wire Basics for TINI

are using a port adapter based on a DS2480 Serial 1-Wire line driver. The
DS2480 takes timing-independent, byte-based commands from the serial port
and formats them into proper 1-Wire timing. The Java API relies on that
formatting from either the DS2480 or an additional low-level device driver.
Examples of port adapters that contain the DS2480 are the DS1411 and the
DS9097U-09.

2. The Touch Memory Exchange, or TMEX, software provides a standalone
Windows-based utility for examining devices on a 1-Wire net connected to a
personal computer. There are three drivers that come as part of the TMEX
software: IB10E32.DLL, IB97E32.DLL, and the IB97U32.DLL. These
drivers provide the TMEX Windows-based utility with their interface with
the 1-Wire bus. They also can be used by the Java API to provide low-level
access to the 1-Wire bus. Which driver Java uses depends on which port
adapter you’re using.

• IB10E32.DLL provides low-level control over the PC parallel printer
port, normally referred to as LPT1, and subsequent communication
with the 1-Wire bus through the use of a DS1410E parallel port
adapter.

• IB97E32.DLL provides low-level control over the PC serial ports,
such as COM1, and subsequent communication with the 1-Wire bus
through the use of serial port adapters such as the DS1413 and
DS9097E. Note, these two port adapters do not contain active
circuitry in the form of the DS2480 serial line driver chip. They are
passive, and this driver is intended to work with that in mind.

• IB97U32.DLL provides low-level control over the PC serial ports,
such as COM1, and subsequent communication with the 1-Wire bus
through the use of serial port adapters such as the DS1411 and
DS9097U-09. These port adapters have the DS2480 serial line driver
chip in them, taking care of the timeslot generation, and this driver takes
this into account. If this driver is installed on your machine, the Java API
will use it when trying to communicate with DS2480-based devices. If it
is not installed, it will fall back to driving the serial port itself.

3. The port adapters themselves provide the electromechanical interface to the
communication ports on the PC. As we’ve noted above, some have active
circuitry in them in the form of the DS2480 that generates timing. These
devices, the DS1411 and DS9097U-09, don’t need the TMEX drivers and
can be used with the Java API alone. Other devices, such as the DS1413,
DS9097E, and DS1410E, don’t have the DS2480 and need the help of a
native driver.

382

Designing Embedded Internet Devices

Below is a chart that summarizes the port adapters and the drivers that support them.

Table 10-11: Port adapter, driver summary

Hardware Port Supported by TMEX Supported Directly Comments
Adapter Port Adapter By 1-Wire API

Driver Name (Adapter Name)

DS1410E Yes No Java programs using the
{DS1410E}, 1-Wire API must use the
IB10E32.DLL TMEX driver {DS1410E}

DS1411 Yes Yes, DS9097U Java Programs using the
{DS9097U}, 1-Wire API can use
IB97U32.DLL either the TMEX driver

or the API’s own driver.

DS1413 Yes No Java programs using the
{DS9097E}, 1-Wire API must use the
IB97E32.DLL TMEX driver {DS9097E}

DS9097U Yes Java Programs using the
{DS9097U}, 1-Wire API can use
IB97U32.DLL Yes, DS9097U either the TMEX driver

or the API’s own driver.

So, how your software deals with low-level communications to the 1-Wire bus is
actually a function of the port adapter that you are using and what you have installed
on your computer. Here we have to bring up a word of caution: discussions of how
the 1-Wire bus is being controlled often involve the phrase “port adapter” in different
contexts with slightly different meanings. Sometimes “port adapter” means a piece of
hardware that you connect on your computer and then connect the 1-Wire bus to.
Other times, it means a Java software object in a program. We’ll try to put things in
the proper perspective as we go and will touch upon this issue again, as needed, as
we go through examples later. Now, let’s look at the 1-Wire Java API. We’ll start with
a summary of the packages and classes.

Example: finding all 1-Wire devices on a specific port
The first example we’ll start with is a Java program that communicates with the
1-Wire bus and retrieves the 64-bit ROM ID of all the devices it finds on the bus.
Let’s take a high-level look at how we’ll do it.

1. Read the port adapter to be used on the PC and the communication port it is to
be connected to as command line arguments.

2. Create a port adapter object, using the DSPortAdapter class, and the OneWire
AccessProvider class.

383

1-Wire Basics for TINI

3. Create an Enumeration of device containers, each an instance of the
OneWireContainer class.

4. Loop over each element in the enumeration and for each element, create a
OneWireContainer object.

5. Use methods in the OneWireContainer class to grab the ROM ID and device
description. Print them.

6. Done!

Looking at this flow, four classes are interesting: DSPortAdapter,
OneWireAccessProvider, Enumeration, and OneWireDeviceContainer. These
classes are going to be a large part of many of our programs. Let’s talk about each
one, and then we’ll look at the program and see it run.

The DSPortAdapter class
The DSPortAdapter class is an abstract class found in the Java 1-Wire API. As an
abstract class, it can only be subclassed and can’t be instantiated. For instance, you
can’t do the following:
DSPortAdapter myAdapter = new DSPortAdapter();

You’ll get a compiler error. You can however, declare DSPortAdapter objects in the
following manner:
DSPortAdapter myAdapter = null;

Figure 10-31: 1-Wire API packages and classes

com .dalsemi .onewire java.lang

Object ArrayUtils

BitPort

CommitException

BytePort

DataPort

Clock
EventObject

Debug

I2CPort

Security

ExternalInterrupt

TINIOS

Exception

ExternalInterruptException

IllegalAddressException

ExternalInterruptEvent

Throwable

384

Designing Embedded Internet Devices

Then, you can get access to the DSPortAdapter derivatives by using the
OneWireAccessProvider class in the following manner:
myAdapter = OneWireAccessProvider.getPortAdapter(adapter_name, port_name);

The DSPortAdapter class has a few abstract methods—that is, methods that are not
implemented and need to be implemented somewhere else—and many methods that
are implemented. Some of the most useful ones are listed below. There are many
others, and some that are similar to these, but take different arguments. Refer to the
actual API documentation for the complete list.

Port and Port Adapter Related Methods

• public abstract boolean adapterDetected()

• public abstract String getAdapterName()

• public abstract Enumeration getPortNames()

• public abstract String getPortName()

• public abstract boolean selectPort(String port_name)

• public abstract void freePort()

Device Container Related Methods

• public Enumeration getAllDeviceContainers()

• public OneWireContainer getFirstDeviceContainer()

• public OneWireContainer getNextDeviceContainer()

• public OneWireContainer getDeviceContainer(String)

Search Related Methods

• public abstract boolean findFirstDevice()

• public abstract boolean findNextDevice()

• public String getAddressAsString()

Device Family Related Methods

• public void targetAllFamilies()

• public void targetFamily(int family)

The OneWireAccessProvider class
The OneWireAccessProvider class provides the object creation for the abstract
DSPortAdapter class. It also provides several useful methods.

• public static Enumeration enumerateAllAdapters()

385

1-Wire Basics for TINI

• public static DSPortAdapter getAdapter(String adapter, String
port)

• public static DSPortAdapter getDefaultAdapter()

The Enumeration class
The Enumeration class isn’t strictly a 1-Wire thing, it’s also a Java thing. Instances of
the Enumeration class represent a series of objects that can be sequenced through.
Two useful methods:

• public boolean hasMoreElements()

• public Object nextElement()

The OneWireContainer class
Instances of the OneWireContainer class, OneWireContainer objects, represent
specific devices on the 1-Wire bus. They can be thought of as encapsulating the
specific port adapter being used, the 1-Wire device network address, and the methods
used for dealing with the 1-Wire device. There are methods in this class that are
applicable to any device.

• public String getName()

• public String getDescription()

• public String getAddressAsString()

• public boolean isPresent()

The OneWireContainer class has numerous subclasses, such as the
OneWireContainer10 class that deals specifically with 1-Wire devices that have a
family code (the first 8 bits of the ROM ID) of 10h. Devices in this family are all
thermometer devices. The OneWireContainer10 class extends the
OneWireContainer class and adds many methods that are specifically related to
temperature measurement.

We’ve seen a general description of a program that will take in two command line
parameters, the adapter name and the port name, and return the ROM ID codes of any
1-Wire devices on the bus as well as a description of those devices. We’ve just looked
at the 1-Wire API classes that will be used in the program. Let’s now go through the
program. First, we’ll present the entire program, then go though it line by line.

Listing 10-1: ROM_ID.java

import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;
import java.io.*;

386

Designing Embedded Internet Devices

import java.util.*;

public class ROM_ID {
public static void main (String[] args) {

String adapter_name = “”;
String port_name = “”;
DSPortAdapter myPortAdapter = null;

// Fetch the command line parameters if given
// adapter_name should be like {DS9097U} or DS9097U or

TINIExternalAdapter
if (args.length>0) { adapter_name = args[0]; }

// port_name should be like COM1, LPT1, /dev/ttyS0, or serial1
if (args.length>1) { port_name = args[1]; }

// Guess at defaults if the user didn’t specify
// Each operating system & platform is a little different.
if (adapter_name.length()<1) {

if (System.getProperty(“os.name”).indexOf(“slush”)!=-1) {
 adapter_name = “TINIExternalAdapter”;

}
if (System.getProperty(“os.name”).indexOf(“Linux”)!=-1) {

 adapter_name = “DS9097U”;
}
if (System.getProperty(“os.name”).indexOf(“Windows”)!=-1) {

 adapter_name = “{DS9097U}”;
}

}
if (port_name.length()<1) {

if (System.getProperty(“os.name”).indexOf(“slush”)!=-1) {
 port_name = “serial1”;

}
if (System.getProperty(“os.name”).indexOf(“Linux”)!=-1) {

 port_name = “/dev/ttyS0”;
}
if (System.getProperty(“os.name”).indexOf(“Windows”)!=-1) {

 port_name = “COM1”;
}

 }

 System.out.println(“Looking for “ + adapter_name + “ on “ + port_name);

try {
 myPortAdapter =

 OneWireAccessProvider.getAdapter(adapter_name, port_name);
 System.out.println(“Found it!”);

 }
 catch (Exception e) {

System.out.println(e);

387

1-Wire Basics for TINI

System.exit(0);
 }

myPortAdapter.targetAllFamilies();

try {
myPortAdapter.beginExclusive(true);

Enumeration myContainers = myPortAdapter.getAllDeviceContainers();

while (myContainers.hasMoreElements()) {
OneWireContainer singleContainer =

(OneWireContainer)myContainers.nextElement();

System.out.println(“\nROM ID: “ +
singleContainer.getAddressAsString());

System.out.println(“Device Name: “ + singleContainer.getName());
System.out.println(“Alternate Name: “ +

singleContainer.getAlternateNames());

System.out.println(“Description: \n” +
singleContainer.getDescription() + “\n”);

}
}

 catch (Exception e) {
System.out.println(e);
System.exit(0);

}
}

}

First, we need to import the necessary libraries, and declare our class and the main()
method.

import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;
import java.io.*;
import java.util.*;

public class ROM_ID {
public static void main (String[] args) {

Next, we are going to declare some objects. Adapter_name and port_name are String
objects that will represent the software port adapter we are using and the PC
communication port we plan to connect to the 1-Wire bus, respectively. The
DSPortAdapter, myPortAdapter, will be the object that represents our port adapter.

String adapter_name = null;

388

Designing Embedded Internet Devices

String port_name = null;
DSPortAdapter myPortAdapter = null;

The command line arguments are placed into our String objects. If no command line
parameters are specified, then this block selects acceptable values and also shows the
syntax. If you specify a PortAdapter name enclosed in curly braces then those are
supported by the TMEX software; those not are those supported by the Java 1-Wire
API directly. Note that there is no version of the native 1-wire PortAdapter for Linux
so we need to use the Java 1-Wire API.

if (args.length>0) { adapter_name = args[0]; }
 // port_name should be like COM1, LPT1, /dev/ttyS0, or serial1

if (args.length>1) { port_name = args[1]; }
 if (adapter_name.length()<1) {
 if (System.getProperty(“os.name”).indexOf(“slush”)!=-1) {
 adapter_name = “TINIExternalAdapter”;
 }
 if (System.getProperty(“os.name”).indexOf(“Linux”)!=-1) {
 adapter_name = “DS9097U”;
 }
 if (System.getProperty(“os.name”).indexOf(“Windows”)!=-1) {
 adapter_name = “{DS9097U}”;
 }
 }
 if (port_name.length()<1) {
 if (System.getProperty(“os.name”).indexOf(“slush”)!=-1) {
 port_name = “serial1”;
 }
 if (System.getProperty(“os.name”).indexOf(“Linux”)!=-1) {
 port_name = “/dev/ttyS0”;
 }
 if (System.getProperty(“os.name”).indexOf(“Windows”)!=-1) {
 port_name = “COM1”;
 }
 }
 System.out.println(“Looking for “ + adapter_name + “ on “ + port_name);

Next, we need to set our DSPortAdapter object, myPortAdapter, to the
DSPortAdapter returned by the OneWireAccessProvider.getAdapter() method. It
takes our strings as arguments. Since this method throws the OneWireIOException
and the OneWireException, we must either catch or specify these. We will catch
these exceptions by enclosing this in a try/catch block.

try {
 myPortAdapter = OneWireAccessProvider.getAdapter(adapter_name,

port_name);
} catch (Exception e) {

389

1-Wire Basics for TINI

System.out.println(e);
System.exit(0);

}

We are interested in any 1-Wire device, so we must establish the fact that our search
ROM process should look for all device families. This is done with the
targetAllFamilies() method of the DSPortAdapter class.

myPortAdapter.targetAllFamilies();

The next section of code starts with the beginExclusive() method of the
DSportAdapter class. This establishes the fact that the current program thread will
get exclusive use of the 1-Wire bus to communicate with an iButton or 1-Wire
Device. Following this, we create an Enumeration object, myContainers, and
initialize it to contain all of the device container objects that can be found on the 1-
Wire bus. These objects are found using the getAllDeviceContainers() method of
the DSPortAdapter class. This method, and the beginExclusive() method both
throw exceptions that must be caught or specified. We will catch them by putting
them inside a try/catch block. Since the myContainers Enumeration is used
throughout the rest of the program, the rest of the program must also be included in
the same try/catch block, since they are only valid inside the block in which they
were created.

try {
myPortAdapter.beginExclusive(true);
Enumeration myContainers = myPortAdapter.getAllDeviceContainers();

Next, we will loop through the Enumeration, once for each element, and create a
single OneWireContainer object for each element. Then, we will use a series of
methods to get at specific information about the OneWireContainer object. Since
each OneWireContainer object basically represents a single 1-Wire device on the
bus, that equates to getting information about the individual devices on the bus.

while (myContainers.hasMoreElements()) {
OneWireContainer singleContainer =

(OneWireContainer)myContainers.nextElement();

System.out.println(“\nROM ID: “ +
singleContainer.getAddressAsString());

System.out.println(“Device Name: “ +
singleContainer.getName());

System.out.println(“Alternate Name: “ +
singleContainer.getAlternateNames());

System.out.println(“Description: \n” +
singleContainer.getDescription() + “\n”);

}

390

Designing Embedded Internet Devices

Finally, we take care of any exceptions by catching them, printing them out, and
exiting the program.

} catch (Exception e) {
System.out.println(e);
System.exit(0);

}
}

}

Earlier, we discussed the various Dallas Semiconductor components used to connect
PC communications ports to the 1-Wire bus, such as the DS1410E, DS1413, and the
DS9097U. We also mentioned that the Java API supports some of these directly, and
some through the use of drivers found in the TMEX software (IB10E32.DLL,
IB97E32.DLL, and IB97U32.DLL). In this program demo, we have all the drivers
installed and the Java 1-Wire API. We’re going to communicate to the 1-Wire bus
through the parallel port (LPT1) and the serial port (COM1). You may have different
port names on your computer, but these are the ones that will be most commonly
used. We also have on hand a DS1410E to connect the 1-Wire bus to the parallel port,
and DS1411, DS1413, and some variety of DS9097U serial port adapters connect the
COM1 serial port to the 1-Wire bus. Let’s start by querying the DS1410E connected
to the LPT1 port. This device has spots for two iButtons, both of which are currently
empty. The software “port adapter name” for this is the {DS1410E}. The curly
brackets ({}) around the portAdapter name tells the 1-Wire API to use the TMEX
native 1-Wire driver and the lack of curly braces means to the Java API 1-Wire
drivers.

Note: We don’t show the compile command-line options (like CLASSPATH, etc.) here
because they might be confusing if you don’t put your files in the same folder names
that we did. If you use the CDROM, the build.bat will compile the code for you.
C:\> javac src\ROM_ID.java –d bin
C:\> cd bin
C:\> java ROM_ID {DS1410E} LPT1

ROM ID: 280000001B2BB881
Device Name: DS1990A
Alternate Name: DS2401
Description:
64 bit unique serial number

The DS1410E contains a DS1990A 64-bit silicon serial number embedded within it,
and our search has picked up that device. Suppose we were to put a temperature
iButton into one of the DS1410E iButton clips and run the program:
C:\> java ROM_ID {DS1410E} LPT1

ROM ID: F40000004B212B10

391

1-Wire Basics for TINI

Device Name: DS1920
Alternate Name: DS1820
Description:
Digital thermometer measures temperatures from -55C to 100C in typi-
cally 0.2 seconds. +/- 0.5C Accuracy between 0C and 70C. 0.5C standard
resolution, higher resolution through interpolation.Contains high and
low temperature set points for generation of alarm.

ROM ID: 280000001B2BB881
Device Name: DS1990A
Alternate Name: DS2401
Description:
64 bit unique serial number

It has now found the iButton placed in the DS1410E. Let’s move on and try using a
DS1411 serial port adapter in COM1. It can hold one iButton. Let’s put a different
temperature iButton in it and try running the program. The DS1411 can be interfaced
with the TMEX driver or the driver found in the 1-Wire API. Let’s try the TMEX
driver first; the syntax for that port adapter is {DS9097U}.
C:\> java ROM_ID {DS9097U} COM1

ROM ID: EF0000004B224210
Device Name: DS1920
Alternate Name: DS1820
Description:
Digital thermometer measures temperatures from -55C to 100C in typi-
cally 0.2 seconds. +/- 0.5C Accuracy between 0C and 70C. 0.5C standard
resolution, higher resolution through interpolation.Contains high and
low temperature set points forgeneration of alarm.

ROM ID: 8B00000293A1C009
Device Name: DS1982
Alternate Name: DS2502
Description:
1024 bit Electrically Programmable Read Only Memory (EPROM) parti-
tioned into four 256 bit pages.Each memory page can be permanently
write-protected to prevent tampering. Architecture allows software to
patch data by supersending a used page in favor of a newly programmed
page.

The temperature iButton was found, as well as a DS1982 EPROM device. The
EPROM is embedded in the DS1411 to act as a user-programmable data space. Let’s
try running it using the Java 1-Wire API driver. The syntax for specifying that port
adapter is DS9097U.
C:\> java ROM_ID DS9097U COM1

ROM ID: EF0000004B224210
Device Name: DS1920
Alternate Name: DS1820
Description:

392

Designing Embedded Internet Devices

Digital thermometer measures temperatures from -55C to 100C in typi-
cally 0.2 seconds. +/- 0.5C Accuracy between 0C and 70C. 0.5C standard
resolution, higher resolution through interpolation.Contains high and
low temperature set points forgeneration of alarm.

ROM ID: 8B00000293A1C009
Device Name: DS1982
Alternate Name: DS2502
Description:
1024 bit Electrically Programmable Read Only Memory (EPROM) parti-
tioned into four 256 bit pages.Each memory page can be permanently
write-protected to prevent tampering. Architecture allows software to
patch data by supersending a used page in favor of a newly programmed
page.

Once again, it found the iButton and the embedded memory. Let’s try using the DS1413
serial port adapter. The syntax for referring to its software port adapter is {DS9097E}.
We’ll put the same temperature iButton that we used in the DS1411 into it.
C:\> java ROM_ID {DS9097E} COM1

ROM ID: EF0000004B224210
Device Name: DS1920
Alternate Name: DS1820
Description:
Digital thermometer measures temperatures from -55C to 100C in typi-
cally 0.2 seconds. +/- 0.5C Accuracy between 0C and 70C. 0.5C standard
resolution, higher resolution through interpolation.Contains high and
low temperature set points forgeneration of alarm.

The temperature iButton was found without any other devices. The DS1413 doesn’t
contain any embedded 1-Wire devices in it for ID or memory storage. For the sake of
argument, what do you think would happen if we tried to use the wrong software port
adapter name when trying to communicate with it? Let’s try…
C:\> java ROM_ID {DS9097U} COM1
com.dalsemi.onewire.OneWireException: 1-Wire Net not available

It didn’t work. When we specify the {DS9097U} port adapter name, we’re telling the
Java program to use the TMEX driver and look for a port adapter on COM1 that uses
a DS2480 serial line driver for communication. That means it looks for a DS9097U
or a DS1411.

Before we leave this example program, let’s try one more thing. We have a DS9097U
Universal COM Port Adapter, and a small circuit board with four DS2406 1-Wire
switches on it. Connecting the two, we have a 6” piece of telephone wire. The
DS9097U port adapter can be accessed with the port adapter name of {DS9097U},
using the TMEX driver, or DS9097U, using the Java 1-Wire API. Let’s use the Java
1-Wire version.

393

1-Wire Basics for TINI

C:\> java ROM_ID DS9097U COM1

ROM ID: 9E00000017844012
Device Name: DS2406
Alternate Name: Dual Addressable Switch, DS2407
Description:
1-Wire Dual Addressable Switch. PIO pin channel A sink capability of
typical 50mA at 0.4V with soft turn-on; optional channel B typical 10
mA at 0.4V. 1024 bits of Electrically Programmable Read Only Memory
(EPROM) partitioned into four 256 bit pages. 7 bytes of user-program-
mable status memory to control the device.

Figure 10-32: Photo of Dallas Semiconductor LED board with DS9097U COM port adapter

Figure 10-33: Schematic of Dallas Semiconductor LED board with DS9097U COM port adapter

394

Designing Embedded Internet Devices

ROM ID: 7F00000017841A12
Device Name: DS2406
Alternate Name: Dual Addressable Switch, DS2407
Description:
1-Wire Dual Addressable Switch. PIO pin channel A sink capability of
typical 50mA at 0.4V with soft turn-on; optional channel B typical 10
mA at 0.4V. 1024 bits of Electrically Programmable Read Only Memory
(EPROM) partitioned into four 256 bit pages. 7 bytes of user-program-
mable status memory to control the device.

ROM ID: 0200000017461E12
Device Name: DS2406
Alternate Name: Dual Addressable Switch, DS2407
Description:
1-Wire Dual Addressable Switch. PIO pin channel A sink capability of
typical 50mA at 0.4V with soft turn-on; optional channel B typical 10
mA at 0.4V. 1024 bits of Electrically Programmable Read Only Memory
(EPROM) partitioned into four 256 bit pages. 7 bytes of user-program-
mable status memory to control the device.

ROM ID: 9200000017473B12
Device Name: DS2406
Alternate Name: Dual Addressable Switch, DS2407
Description:
1-Wire Dual Addressable Switch. PIO pin channel A sink capability of
typical 50mA at 0.4V with soft turn-on; optional channel B typical 10
mA at 0.4V. 1024 bits of Electrically Programmable Read Only Memory
(EPROM) partitioned into four 256 bit pages. 7 bytes of user-program-
mable status memory to control the device.

ROM ID: D1000001B934D509
Device Name: DS1982
Alternate Name: DS2502
Description:
1024 bit Electrically Programmable Read Only Memory (EPROM) parti-
tioned into four 256 bit pages.Each memory page can be permanently
write-protected to prevent tampering. Architecture allows software to
patch data by supersending a used page in favor of a newly programmed
page.

It found four DS2406 devices and a DS1982 EPROM memory device. The four
DS2406 devices correspond to the devices on the little circuit board and the DS1892
is embedded in the DS9097U itself.

Example: Finding devices by family on a specific port
What if, instead of finding all 1-Wire devices on a specified port, I only wanted to
find devices corresponding to a particular device family? The solution to this is
simple. In the previous program, we have the line:

myPortAdapter.targetAllFamilies();

395

1-Wire Basics for TINI

Replace it with
myPortAdapter.targetFamily(familyInteger);

where familyInteger is an integer representing the family code of the devices we
are interested in finding. In the previous example run, we used a DS9097U on COM1
that was connected to a little circuit board that had four switches on it. We saw the
four switches in the program output, but we also saw a DS2502 EPROM that was
embedded in the DS9097U for identification purposes. What if we were only
interested in the switches? The ROM ID code of each switch begins with 12h. That
is, 12 hex is in the least-significant 8 bits of the ROM ID code, which when printed
out, are to the right. Let’s make the following change:

myPortAdapter.targetFamily(0x12);

By preceding our number with 0x, we are telling Java that the number is in hex. We
could also use the line:

myPortAdapter.targetFamily(18);

C:\> java ROM_ID DS9097U COM1

ROM ID: 9E00000017844012
Device Name: DS2406
Alternate Name: Dual Addressable Switch, DS2407
Description:
1-Wire Dual Addressable Switch. PIO pin channel A sink capability of
typical 50mA at 0.4V with soft turn-on; optional channel B typical 10
mA at 0.4V. 1024 bits of Electrically Programmable Read Only Memory
(EPROM) partitioned into four 256 bit pages. 7 bytes of user-program-
mable status memory to control the device.

ROM ID: 7F00000017841A12
Device Name: DS2406
Alternate Name: Dual Addressable Switch, DS2407
Description:
1-Wire Dual Addressable Switch. PIO pin channel A sink capability of
typical 50mA at 0.4V with soft turn-on; optional channel B typical 10
mA at 0.4V. 1024 bits of Electrically Programmable Read Only Memory
(EPROM) partitioned into four 256 bit pages. 7 bytes of user-program-
mable status memory to control the device.

ROM ID: 0200000017461E12
Device Name: DS2406
Alternate Name: Dual Addressable Switch, DS2407
Description:
1-Wire Dual Addressable Switch. PIO pin channel A sink capability of
typical 50mA at 0.4V with soft turn-on; optional channel B typical 10
mA at 0.4V. 1024 bits of Electrically Programmable Read Only Memory
(EPROM) partitioned into four 256 bit pages. 7 bytes of user-program-
mable status memory to control the device.

396

Designing Embedded Internet Devices

ROM ID: 9200000017473B12
Device Name: DS2406
Alternate Name: Dual Addressable Switch, DS2407
Description:
1-Wire Dual Addressable Switch. PIO pin channel A sink capability of
typical 50mA at 0.4V with soft turn-on; optional channel B typical 10
mA at 0.4V. 1024 bits of Electrically Programmable Read Only Memory
(EPROM) partitioned into four 256 bit pages. 7 bytes of user-program-

mable status memory to control the device.

By using the targetFamily() method, we have found only the DS2407 switch devices.

Example: Identifying all software port adapters present
In our previous example, we entered the name of the adapter type and communication
port we wanted to use. What if we didn’t want to enter this information? What if,
instead, we wanted to look to see which port adapters were currently supported on the
computer? What if you didn’t happen to know the syntax of the text string used for
the adapter name? The following simple example shows how to obtain a list of all the
software port adapters installed on a computer. We’ll show the program in its entirety
first, and then go through it bit by bit.

Listing 10-2: PortAdapters.java

import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import java.io.*;
import java.util.*;

public class PortAdapters {

public static void main (String[] args) {
DSPortAdapter singleAdapter = null;
Enumeration myAdapters = null;
Enumeration myPorts = null;

myAdapters = OneWireAccessProvider.enumerateAllAdapters();
while (myAdapters.hasMoreElements()) {

singleAdapter = (DSPortAdapter)myAdapters.nextElement();
System.out.print(“PortAdapter = “ +singleAdapter.getAdapterName());

myPorts = singleAdapter.getPortNames();
 System.out.print(“; CommPorts = “);

while (myPorts.hasMoreElements()) {
System.out.print(myPorts.nextElement() + “ “);

}
System.out.println();

}
}

}

397

1-Wire Basics for TINI

The first section imports the necessary class libraries.
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;

import java.io.*;
import java.util.*;

The next section is the class declaration, the main() method declaration, and two
object declarations. We establish an Enumeration object that contains all of the
DSPortAdapter objects, and a single DSPortadapter object that is used in an
iterative loop to represent a single member of the Enumeration.
public class PortAdapters {

public static void main (String[] args) {
DSPortAdapter singleAdapter = null;
Enumeration myAdapters = null;
Enumeration myPorts = null;

Having declared the Enumeration myAdapters, we’re now going to set it to the return
values of the OneWireAccessProvider.enumerateAllAdapters() method. That
method returns an enumeration of DSPortAdapter objects, one for each software
port adapter found. Then, we loop through the entire Enumeration, once for each
object in the Enumeration. Each time, we set the value of singleAdapter to the next
element in the Enumeration of DSPortAdapters. We then use the getAdapterName()
method of the DSPortadapter class to return a string value representing the name of
the software adapter represented by that object.

myAdapters = OneWireAccessProvider.enumerateAllAdapters();
while (myAdapters.hasMoreElements()) {

singleAdapter = (DSPortAdapter)myAdapters.nextElement();
System.out.print(“PortAdapter = “ +singleAdapter.getAdapterName());

myPorts = singleAdapter.getPortNames();
 System.out.print(“; CommPorts = “);

while (myPorts.hasMoreElements()) {
System.out.print(myPorts.nextElement() + “ “);

}
System.out.println();

}
}

The system this program is being demonstrated on has the TMEX software loaded, as
well as the Java 1-Wire API.
C:\> java PortAdapters

PortAdapter = {DS9097E}; CommPorts = COM0 COM1 COM2 COM3 COM4 COM5
COM6 COM7 COM
8 COM9 COM10 COM11 COM12 COM13 COM14 COM15
PortAdapter = {DS1410E}; CommPorts = LPT0 LPT1 LPT2 LPT3 LPT4 LPT5
LPT6 LPT7 LPT

398

Designing Embedded Internet Devices

8 LPT9 LPT10 LPT11 LPT12 LPT13 LPT14 LPT15
PortAdapter = {DS9097U}; CommPorts = COM0 COM1 COM2 COM3 COM4 COM5
COM6 COM7 COM
8 COM9 COM10 COM11 COM12 COM13 COM14 COM15
PortAdapter = DS9097U; CommPorts = COM1 COM2 COM3 COM4

And on Linux

PortAdapter = DS9097U; CommPorts = /dev/ttyS0 /dev/ttyS1 /dev/ttyS2 /
dev/ttyS3

The first three entries are software port adapter names coming from the TMEX
software. The last one comes from the Java 1-Wire API.

Example: Finding the default adapter
The OneWireAccessProvider class has a getDefaultAdapter() method. This
method has an order of precedence:

1. If the TMEX software is installed, it sees what that package has installed as its
default, and tries to use that—i.e., either the {DS1410E}, {DS9097E}, or the
{DS909U} as the adapter name.

2. If the TMEX software is not installed, it tries to use the DS9097U as the
adapter name.

It then tries to establish communications over the bus with a compatible hardware
port adapter. If it doesn’t sense one, it throws an exception. If it does find one, it
returns the port adapter name. There is only one default adapter in the TMEX
software, and it can be set with the “1-Wire Net Port Selection” utility
(SetPer32.exe), that comes with the TMEX software.

Figure 10-34: TMEX default port adapter screen capture

399

1-Wire Basics for TINI

As the image shows, the default adapter on the demo machine is the DS1410E, which
translates to a port adapter name of {DS1410E}. The following is a simple program
that uses the getDefaultAdapter() method to see what the default software adapter
is and whether or not its corresponding hardware adapter is present on the bus. It
returns the name of the adapter if it is present and prints an exception if it is not.

Listing 10-3: DefaultAdapter.java

import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import java.io.*;
import java.util.*;

public class DefaultAdapter {

public static void main (String[] args) {
DSPortAdapter myDefaultAdapter = null;

 Enumeration myPorts = null;

try {
 myDefaultAdapter =

(DSPortAdapter)OneWireAccessProvider.getDefaultAdapter();
System.out.println(myDefaultAdapter.getAdapterName());

 myPorts = myDefaultAdapter.getPortNames();
while (myPorts.hasMoreElements()) {

System.out.println(myPorts.nextElement());
}

} catch(Exception e) {
System.out.println(e);

}
}

}

C:\> java DefaultAdapter
{DS1410E}LPT0
LPT1
LPT2
LPT3
LPT4
LPT5
LPT6
LPT7
LPT8
LPT9
LPT10

400

Designing Embedded Internet Devices

LPT11
LPT12
LPT13
LPT14
LPT15

In reality, we only have an LPT0 port on the machine where we ran this, but the
program still found LPT1 through LPT15. The getPortNames() method actually
retrieves a list of the platform-appropriate port names for this port adapter. It doesn’t,
however, guarantee that your machine actually has all of those ports. If we remove
the DS1410E from the parallel port on the computer and re-run this:
C:\>java DefaultAdapter
com.dalsemi.onewire.OneWireException: 1-Wire Net not available

Example: Finding all 1-Wire devices on any port
So far, we’ve presented programs that accept a user-specified port adapter name and
port and identify 1-Wire devices on that bus, and we’ve presented programs that
examine what port adapters are supported by the software currently loaded on the
system and what the default port adapter might be. An interesting combination of all
these concepts would be a program that looked at all port adapters for all devices and
printed out information on all 1-Wire devices it finds. It turns out that one of the
example programs distributed with the Java 1-Wire API does exactly that. The program
is freely distributed by Dallas Semiconductor and is already commented fairly well, so
we will only show its use here. The program is called FindiButtonsconsole.java. In
preparation for running it, we’ve placed the DS1410E back on the LPT1 parallel printer
port with a temperature iButton in it (DS1920). We’ve also placed a DS1413 on COM1
with another temperature iButton in it.
C:\>java FindiButtonsConsole

FindiButtonsConsole Java console application: Version 2.00

Adapter/Port iButton Type and ID Description
--
{DS9097E}/COM1 DS1920 EF0000004B224210 Digital thermometer measu...
{DS1410E}/LPT1 DS1920 F40000004B212B10 Digital thermometer measu...
{DS1410E}/LPT1 DS1990A 280000001B2BB881 64 bit unique serial numb...

An interesting thing happens if we replace the DS1413 iButton COM port adapter
with a DS1411, and put the same temperature iButton in it:
C:\>java FindiButtonsConsole

FindiButtonsConsole Java console application: Version 2.00

Adapter/Port iButton Type and ID Description
--

401

1-Wire Basics for TINI

{DS1410E}/LPT1 DS1920 F40000004B212B10 Digital thermometer measu...
{DS1410E}/LPT1 DS1990A 280000001B2BB881 64 bit unique serial numb...
{DS9097U}/COM1 DS1920 EF0000004B224210 Digital thermometer measu...
{DS9097U}/COM1 DS1982 8B00000293A1C009 1024 bit Electrically Pro...
DS9097U/COM1 DS1920 EF0000004B224210 Digital thermometer measu...
DS9097U/COM1 DS1982 8B00000293A1C009 1024 bit Electrically Pro...

Notice how it finds the temperature iButton (DS1920) and the 1024 bit EPROM
(DS1982) in the DS1411 port adapter? Notice how it finds them twice? This
happens because this program examines all the various software port adapter names
supported by the system and then looks at each to see if a compatible hardware
adapter is present. Since Java supports the DS1411 COM port adapter indirectly
through the use of a driver supplied with the TMEX software, and directly through a
driver in the Java 1-Wire API itself, it is listed twice as both avenues are explored by
this program.

Example: Controlling the DS2405 addressable switch
So far our examples have dealt with basic concepts involving the PC ports, the
software port adapters that support communications over them, and the hardware port
adapters that work with the software to drive the 1-Wire bus. Now, we’re going to
shift gears and concentrate more on 1-Wire devices that we want to control. The
following examples assume that we are relying solely on the DS9097U port adapter
in the Java 1-Wire API. We will make use of both the DS1411 COM port adapter, for
use with iButtons, and the DS9097U-09 Universal COM Port Adapter, for use with
non-iButton type devices. We are going to start by looking at a program to turn on an
LED using a DS2405 Addressable Switch5.

Figure 10-35:
Schematic of DS2405, LED and resistor

5 DS2405 Addressable Switch data sheet – http://pdfserv.maxim-ic.com/arpdf/DS2405.pdf

402

Designing Embedded Internet Devices

We’ll start by making a Java class that takes a parameter that turns an LED on or off.
Then we’ll present a program that acts as an HTTP server and allows you to control
the LED with a web browser. Let’s take a high-level look at the 1-Wire API as it
relates to the DS2405.

The OneWireContainer05 class
The OneWireContainer05 class represents devices in the 05(hex) family, which are
single addressable switches. There are numerous methods completely documented in
the 1-Wire API Javadocs, but the methods we’ll be using, for review, are:

• public String getAddressAsString()

• public byte[] readDevice()

• public boolean getLatchState(int channel, byte[] state)

• public void setLevel(int channel, byte[] state)

• public void writeDevice(byte[] state)

• public void setLatchState(int channel, boolean latchState,

boolean doSmart, byte[] state)

An important consideration when using the DS2405 is that it has an internal latch that
holds the value of what we set the switch to do, and a level sensor so we can
determine what the switch is really doing. This allows you to use the DS2405 as a
simple sensor, and it also allows you to check for faults such as the output shorted to
power or ground. However, the polarity of the internal latch and the level sensor are
opposite. By setting the internal latch to true, we are telling the DS2405 to make the
PIO pin logic zero. By setting the latch to false, we are telling the DS2405 to let the
PIO pin float (since there’s no positive voltage supply on the DS2405, it can’t drive
the PIO pin high). But if the PIO pin is at logic level zero, and we sense its level, the
level will come back false. If its value is above a threshold of 2.2 volts, it will come
back true. To reiterate the point: setting the latch and reading the level have what can
be considered opposite polarities.

Our Switch class will consist of the following:

1. an overloaded constructor which can take no arguments, the port adapter and
port, or the specific ROM ID of an individual device and port adapter and port
names.

2. turnOn() and turnOff() methods, which take no arguments and do exactly
as their name implies, turn our switch on and off. In this context, we’re
assuming that the DS2405 is controlling a small LED being pulled high by a
resistor, as shown in Figure 10-35.

403

1-Wire Basics for TINI

3. a main() method that takes a command line parameter of “on” or “off” and
adjusts the switch accordingly.

The program is presented in its entirety below, then explained piece by piece.

Listing 10-4: Switch.java

import java.util.*;
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;

public class Switch {

DSPortAdapter adapter;
String ROM_ID;
byte[] state;
boolean latchState;
boolean level;

 static int speed=0;

 // Use container types rather then specific container numbers
SwitchContainer container;

 OneWireContainer owc;

public Switch() {
try {

 // get the default adapter
adapter = (DSPortAdapter)OneWireAccessProvider.getDefaultAdapter();

 Init(“”);
}

 catch(Exception e) {
 System.out.println(e);
 }

}

public Switch(String PAadapt, String Port) {
try {
 adapter=(DSPortAdapter)OneWireAccessProvider.getAdapter(PAadapt,Port);

Init(“”);
}

 catch(Exception e) {
 System.out.println(e);
 }

}

public Switch(String ROM, String PAadapt, String Port) {
try {
 adapter=(DSPortAdapter)OneWireAccessProvider.getAdapter(PAadapt,Port);

 Init(ROM);

404

Designing Embedded Internet Devices

}
 catch(Exception e) {
 System.out.println(e);
 }

}

public void Init(String ROM) {
 // Get both DS2405 and DS2406 devices since they both are switches
 byte[] targetfamlies = { 0x05, 0x12 };

try {
 adapter.beginExclusive(true);
 adapter.reset();

adapter.targetFamily(targetfamlies);

 if (ROM.length()<1) {
 owc = adapter.getFirstDeviceContainer();
 }
 else
 {
 container = (OneWireContainer12)adapter.getDeviceContainer(ROM);
 }

 // cast it to a switchContainer
 container = (SwitchContainer)owc;

 // get its ROM_ID
 ROM_ID = owc.getAddressAsString();

 // shouldn’t the container object know the adapter object?
 owc.setupContainer(adapter, ROM_ID);
 state = container.readDevice();
 latchState = container.getLatchState(0, state);
 level = container.getLevel(0, state);

 adapter.setSpeed(speed);
}

 catch(Exception e) {
 System.out.println(e);
 }

}

public void turnOn() {
try {

state = container.readDevice();
latchState = container.getLatchState(0, state);
level = container.getLevel(0, state);
if ((level == true) && (latchState == false)) {

container.setLatchState(0, true, false, state);
container.writeDevice(state);

405

1-Wire Basics for TINI

}
}

 catch (Exception e) {
 System.out.println(e);
 }

}

public void turnOff() {
try {

state = container.readDevice();
latchState = container.getLatchState(0, state);
level = container.getLevel(0, state);
if ((level == false) && (latchState == true)) {

container.setLatchState(0, false, false, state);
container.writeDevice(state);

}
}

 catch (Exception e) {
 System.out.println(e);
 }

}

public void toggle() {
try {

state = container.readDevice();
level = container.getLevel(0, state);

 // since the level is the opposite of the latchstate,
 // set the new latchstate to the existing level

container.setLatchState(0, level, false, state);
 container.writeDevice(state);

}
 catch (Exception e) {
 System.out.println(e);
 }

}

public void blink() {
 for(int i=0; i<10; i++) {

 try {
state = container.readDevice();
level = container.getLevel(0, state);

 // since the level is the opposite of the latchstate,
 // set the new latchstate to the existing level

container.setLatchState(0, true, false, state);
 container.writeDevice(state);

container.setLatchState(0, false, false, state);
 container.writeDevice(state);

 }
 catch (Exception e) {
 System.out.println(e);

406

Designing Embedded Internet Devices

 }
 }

}

public void update() {
try {

state = container.readDevice();
latchState = container.getLatchState(0, state);
level = container.getLevel(0, state);

} catch (Exception e) {}
}

public static void main(String args[]) {

String inputCommand = (args.length>0) ? args[0] : “flip”;
speed = Integer.valueOf((args.length>1) ? args[1] : “0”).intValue();

Switch blinker = new Switch();

if (inputCommand.equalsIgnoreCase(“on”)) {
System.out.println(“Turn on switch.”);

 blinker.turnOn();
} else if (inputCommand.equalsIgnoreCase(“off”)) {

System.out.println(“Turn off switch.”);
 blinker.turnOff();

} else if (inputCommand.equalsIgnoreCase(“blink”)) {
System.out.println(“Blinking.”);
blinker.blink();

 } else if (inputCommand.equalsIgnoreCase(“flip”)) {
System.out.println(“Toggling switch.”);
blinker.toggle();

 } else {
System.out.println(“Invalid option. “);
System.exit(0);

 }

System.out.println(“Device ROM ID: “ + blinker.ROM_ID);
System.out.println(“Device Latch State: “ + blinker.latchState);
System.out.println(“Device Level: “ + blinker.level);

}
}

The program begins with the normal import statements and class declaration. We
follow that by declaring all of our data members. These are the data items that each
switch object contains. The member called adapter is the DSPortAdapter object
we’re using to communicate with the 1-Wire bus, as in DS9097U or {DS9097U}, etc.
ROM_ID is the device-unique ID code. The byte array called state is actually an
array with only a single element of type byte that contains information necessary for
the device to maintain its state. The boolean flag latchState is the setting of the

407

1-Wire Basics for TINI

device’s internal latch as of the last time the state byte was read, while level is the
last sensed value of the PIO pin as of the last time the state byte was read. The
OneWireContainer05 object called container is the object we’re using to represent,
or encapsulate, our switch.
import java.util.*;
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;

public class Switch {
DSPortAdapter adapter;
String ROM_ID;
byte[] state;
boolean latchState;
boolean level;
OneWireContainer05 container;

 static int speed=0;

The first constructor takes no arguments. It attempts to use the default port adapter
and then call the Init() method that attempts to find the first DS2405 on the 1-Wire
bus to be identified. We use the Init() method call in the constructor because this
block of code is common for all of the constructors. Most of this is creating the data
members that were previously declared, but a couple of the actions are responsible
for other functions. The targetFamily(targetfamlies) is actually telling the 1-
Wire bus that we are going to limit the underlying 1-Wire bus searches (Search ROM
passes) to devices with a family code of 0x05 and 0x12 (these are both switch family
codes). Note that the byte array targetfamlies is defined as { 0x05, 0x12 }. You can
place as many families in this array as you want. The setupContainer() method
provides the container object with the adapter we’re communicating over and the
ROM_ID of the device we’re communicating with. Since several of the methods
throw exceptions, we enclose them in a try/catch block.

public Switch() {
try {

 // get the default adapter
adapter = (DSPortAdapter)OneWireAccessProvider.getDefaultAdapter();

 Init(“”);
}

 catch(Exception e) {
 System.out.println(e);
 }

}

public void Init(String ROM) {
 // Get both DS2405 and DS2406 devices since they both are switches
 byte[] targetfamlies = { 0x05, 0x12 };

408

Designing Embedded Internet Devices

try {
 adapter.beginExclusive(true);
 adapter.reset();

adapter.targetFamily(targetfamlies);

 if (ROM.length()<1) {
 owc = adapter.getFirstDeviceContainer();
 }
 else
 {
 container = (OneWireContainer12)adapter.getDeviceContainer(ROM);
 }

 // cast it to a switchContainer
 container = (SwitchContainer)owc;

 // get its ROM_ID
 ROM_ID = owc.getAddressAsString();

 // shouldn’t the container object know the adapter object?
 owc.setupContainer(adapter, ROM_ID);
 state = container.readDevice();
 latchState = container.getLatchState(0, state);
 level = container.getLevel(0, state);

 adapter.setSpeed(speed);
}

 catch(Exception e) {
 System.out.println(e);
 }

}

The second constructor is almost identical to the first, except this one takes a specific
port adapter and port as arguments, as opposed to using the defaults.
public Switch(String PAadapt, String Port) {

try {

adapter=(DSPortAdapter)OneWireAccessProvider.getAdapter(PAadapt,Port);
Init(“”);

}
catch(Exception e) {

System.out.println(e);
 }

}

The third and final constructor allows you to specify all the specifics: port adapter,
port name, and the ROM ID of the device you are interested in.
public Switch(String ROM, String PAadapt, String Port) {

try {

adapter=(DSPortAdapter)OneWireAccessProvider.getAdapter(PAadapt,Port);
Init(ROM);

409

1-Wire Basics for TINI

}
catch(Exception e) {

System.out.println(e);
 }
}

The turnOn() method illustrates how to communicate with the DS2405. To use any
of the methods, such as getLatchState, or getLevel, you have to know the state of
the device, determined by using the readDevice() method. The state byte array
returned by that method can then be supplied to the other methods that parse it.

public void turnOn() {
try {

this.state = (this.container).readDevice();

The latchState and level are determined by the getLatchState and getLevel
methods. The “0” in each one of them corresponds to the channel number. These
methods are designed to be compatible with other switch devices, such as the
DS2407 that has two switches, and hence two channels inside it. The DS2405 only
has one channel and the channel number will always be 0 for it.
this.latchState = (this.container).getLatchState(0, this.state);
this.level = (this.container).getLevel(0, state);

Before turning the switch on, we actually check to see that it is off. If it is off, we
then set the latch state to true, indicating that we want it to drive the PIO pin to logic
zero, thereby turning on our LED. Doing this involves using the setLatchState()
method to write our changes to the state array, then sending that array to the device
with the writeDevice() method. Again, the setLatchState() method is designed to
be compatible with other switch devices that have more capabilities. The third
argument is the doSmart flag. It refers to a capability (smart sensing) that the DS2405
does not have and will always be false for the DS2405.

if ((this.level == true) && (this.latchState == false)) {
(this.container).setLatchState(0, true, false, this.state);
(this.container).writeDevice(this.state);

}
} catch (Exception e) {System.out.println(e);}

}

The turnOff() method proceeds in the same fashion as the turnOn() method.
public void turnOff() {

try {
this.state = (this.container).readDevice();
this.latchState = (this.container).getLatchState(0, this.state);
this.level = (this.container).getLevel(0, this.state);
if ((this.level == false) && (this.latchState == true)) {

(this.container).setLatchState(0, false, false, this.state);
(this.container).writeDevice(this.state);

}

410

Designing Embedded Internet Devices

} catch (Exception e) {System.out.println(e);}
}

The update() method reads the device state and then supplies that to the
getLatchState() and getLevel() methods so that the latchState and level data
members can be updated. This is useful for looking at activity on the output of the
switch that might be caused by a source other than our program.

public void update() {
try {

this.state = (this.container).readDevice();
this.latchState = (this.container).getLatchState(0, this.state);
this.level = (this.container).getLevel(0, this.state);

} catch (Exception e) {}
}

The main() method is straightforward. It creates a switch object called blinker,
using the version of the constructor that takes no arguments, then looks at the
command line. If we entered an “on,” it turns the switch on. If we enter an “off,” it
turns the switch off. If we didn’t enter anything then it calls the toggle() method to
invert the state of the switch. If we entered blink then it turns the switch on and off
ten times. Also note that, using the second argument, it is possible to set the speed of
the 1-Wire communication. It then prints out the ROM ID, latch state, and level.

public static void main(String args[]) {

String inputCommand = (args.length>0) ? args[0] : “flip”;
 speed = Integer.valueOf((args.length>1) ? args[1] : “0”).intValue();

Switch blinker = new Switch();

if (inputCommand.equalsIgnoreCase(“on”)) {
 System.out.println(“Turn on switch.”);

blinker.turnOn();
} else if (inputCommand.equalsIgnoreCase(“off”)) {

 System.out.println(“Turn off switch.”);
 blinker.turnOff();
} else if (inputCommand.equalsIgnoreCase(“blink”)) {

 System.out.println(“Blinking.”);
 blinker.blink();

} else if (inputCommand.equalsIgnoreCase(“flip”)) {
 System.out.println(“Toggling switch.”);
 blinker.toggle();
 } else {
 System.out.println(“Invalid option. “);
 System.exit(0);
 }

System.out.println(“Device ROM ID: “ + blinker.ROM_ID);
System.out.println(“Device Latch State: “ + blinker.latchState);

411

1-Wire Basics for TINI

System.out.println(“Device Level: “ + blinker.level);
}

}

The following sample output was performed with a DS9097U attached to COM1,
which was attached to a small circuit board with the DS2405, an LED, and resistor
via a cat 5 1-Wire bus cable.
C:\> java Switch on
Device ROM ID: 9A0000000C152305
Device Latch State: true
Device Level: false

C:\> java Switch off
Device ROM ID: 9A0000000C152305
Device Latch State: false
Device Level: true

You will have to take our word for it that the light did, in fact, turn on and then turn
off. It really did, honest.

Example: Measuring temperature with a DS1920
temperature iButton
Let’s now go through a similar exercise making a Java class that will return the
temperature measured from a DS1920 temperature iButton. As with the switch
example, we’ll make a simple, reusable class that provides a basic thermometer
object, with methods that return the current temperature. We’ll start by looking at the
relevant class in the 1-Wire API, the OneWireContainer10 class.

The OneWireContainer10 class
The OneWireContainer10 class represents and encapsulates devices with a family
code of 10h. These are thermometer devices such as the DS1820 and DS1820. We’re
not going to list all of the methods here, as they can be completely explored in the
Javadocs that come with the API, but we will look at some of the more important
methods. Some of the methods come from classes that we’ve already seen, but we’re
going to list them here for review.

Class OneWireAccessProvider

• public static DSPortAdapter getDefaultAdapter()

• public static DSPortAdapter getAdapter(String port_adapter,

String port)

Class DSPortAdapter

• public abstract boolean beginExclusive(boolean blocking)

• public abstract int reset()

412

Designing Embedded Internet Devices

• public OneWireContainer getFirstDeviceContainer()

• public abstract void endExclusive()

• public void targetFamily(int family)

Class OneWireContainer10

• public String getAddressAsString()

• public byte[] readDevice()

• public void doTemperatureConvert(byte[] state)

• public double getTemperature(byte[] state)

• public static double convertToFahrenheit(double celciusT)

• public void writeDevice(byte[] state)

Our thermometer class will consist of the following:

1. An overloaded constructor, thermometer(), that can take anywhere from zero
to three arguments, depending on how specific you want to be when creating
the object.

2. A measureT() method that causes the DS1920 thermometer iButton to make a
measurement and place the temperature in both Celsius and Fahrenheit into
the object’s data members.

3. A main() method that provides us with a way of testing our class. We’ll use it
to create a couple of thermometer objects, on different computer I/O ports,
and print the results.

The complete program is presented below, then presented in dissected and explained
fashion, followed by a sample run of the program.

Listing 10-5: Thermometer.java

import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;
import java.io.*;

public class Thermometer {

 // also get ALL thermometers not just container 10

DSPortAdapter adapter;
OneWireContainer10 container;

byte[] state;
String ROM_ID;
double degC;
double degF;

413

1-Wire Basics for TINI

public Thermometer() {
try {

adapter = (DSPortAdapter)OneWireAccessProvider.getDefaultAdapter();
Init(“”);

} catch (Exception e) {
System.out.println(“problem in constructor”);
System.out.println(e);

}
}

public Thermometer(String PAadapt, String Port) {
try {

adapter = (DSPortAdapter)OneWireAccessProvider.getAdapter(PAadapt,Port);
Init(“”);

} catch (Exception e) {
System.out.println(“problem in constructor”);
System.out.println(e);

}
}

public Thermometer(String ROM, String PAadapt, String Port) {
try {

adapter = (DSPortAdapter)OneWireAccessProvider.getAdapter(PAadapt, Port);
Init(ROM);

} catch (Exception e) {
System.out.println(“problem in constructor”);
System.out.println(e);

}
}

 public void Init(String ROM) {

 try {
adapter.beginExclusive(true);
adapter.reset();
adapter.targetFamily(0x10);

 // If we specified a specific device, get it else get the first one
 if (ROM.length()<1) {
 container =

(OneWireContainer10)adapter.getFirstDeviceContainer();
 }
 else {
 container =

(OneWireContainer10)adapter.getDeviceContainer(ROM);
 }

 // cast the generic container into a TemperatureContainer
ROM_ID= container.getAddressAsString();

414

Designing Embedded Internet Devices

state = container.readDevice();
container.doTemperatureConvert(state);
degC = container.getTemperature(state);
degF = container.convertToFahrenheit(degC);
adapter.endExclusive();

} catch (Exception e) {
System.out.println(“problem in constructor”);
System.out.println(e);

}
 }

public void measureT() {
try {

adapter.beginExclusive(true);
adapter.reset();
state = container.readDevice();
container.doTemperatureConvert(state);
degC = container.getTemperature(state);
degF = container.convertToFahrenheit(degC);
container.writeDevice(state);
adapter.endExclusive();

} catch(Exception e) {
System.out.println(“problem in measure”);
System.out.println(e);

}
}

public static void main (String[] args) {
 Thermometer myTherm;

 // port_name should be like: COM1, LPT1, /dev/ttyS0, or serial1
 // portAdapter should be like: {DS1410E}, DS9097U, TINIExternalAdapter

 if (args.length==2) {
 myTherm = new Thermometer(args[0], args[1]);
 }
 else {
 myTherm = new Thermometer();
 }

 // Read the temp sensor
 myTherm.measureT();

 // Display what we know (temoerature) in C and F
System.out.println(“The device ROM ID: “ + myTherm.ROM_ID);
System.out.println(“The measured temperature: “ + myTherm.degC

+ “ Deg C” + “, or “ + myTherm.degF + “ Deg F”);

}
}

415

1-Wire Basics for TINI

Our Java program starts with the class declaration and the declaration of object data
members, or instance variables. There is a port adapter that represents the
communication interface, a OneWireContainer10 object, that represents the
individual device, and an 8-element array of bytes called state that holds the current
information on the raw sensor data before it’s been parsed into an actual temperature
reading. A string containing the ROM_ID and two doubles, each holding the last
measured temperature is also present.
public class Thermometer {

DSPortAdapter adapter;
OneWireContainer10 container;
byte[] state;
String ROM_ID;
double degC;
double degF;

Next, there is the first of three constructors. As with the Switch program, each
constructor calls the Init() method, which takes care of all the things that are
common to each constructor. It attempts to use the default port adapter and attempts
to find the first 1-Wire device with a family code of 10h to be identified. Most of this
is creating the data members that were previously declared, but a couple of the
actions are responsible for other functions. The targetFamily(10) is actually telling
the 1-Wire bus that we’re going to limit the underlying 1-Wire bus searches (Search
ROM passes) to devices with a family code of 10h. The beginExclusive() method
and the reset() method prepares the 1-Wire bus and prevent other possible 1-Wire
threads from interrupting the current communication. This seems to be particularly
important when communicating via the DS1410E parallel port adapter. When using
the COM port adapters, it doesn’t seem as important. After completing those
methods, we create objects that were declared earlier, in a similar fashion to our
switch example. First, we read the state array from the device with readDevice(),
then we pass that array to a temperature conversion method,
doTemperatureConvert(). After the conversion is complete, we can read the actual
temperature using the getTemperature() method. That temperature is in Celsius,
and can be converted to Fahrenheit with the convertToFarhenheit() method.
Lastly, we release the 1-Wire bus from the exclusive control with the
endExclusive() method. Those steps form the pattern for all of our temperature
measurement. Since several of the methods throw exceptions, we enclosed the code
in a try/catch block.

public Thermometer() {
try {

adapter = (DSPortAdapter)OneWireAccessProvider.getDefaultAdapter();
Init(“”);

} catch (Exception e) {

416

Designing Embedded Internet Devices

System.out.println(“problem in constructor”);
System.out.println(e);

}
}

 public void Init(String ROM) {

 try {
adapter.beginExclusive(true);
adapter.reset();
adapter.targetFamily(0x10);

 // If we specified a specific device, get it else get the first one
 if (ROM.length()<1) {
 container =

(OneWireContainer10)adapter.getFirstDeviceContainer();
 }
 else {
 container =

(OneWireContainer10)adapter.getDeviceContainer(ROM);
 }

 // cast the generic container into a TemperatureContainer
ROM_ID= container.getAddressAsString();
state = container.readDevice();
container.doTemperatureConvert(state);
degC = container.getTemperature(state);
degF = container.convertToFahrenheit(degC);
adapter.endExclusive();

} catch (Exception e) {
System.out.println(“problem in constructor”);
System.out.println(e);

}
 }

The second constructor is similar to the first, except that it accepts a specific port
adapter name and port as arguments.

public Thermometer(String PAadapt, String Port) {
try {

adapter = (DSPortAdapter)OneWireAccessProvider.getAdapter(PAadapt,Port);
Init(“”);

} catch (Exception e) {
System.out.println(“problem in constructor”);
System.out.println(e);

}
}

The third and final constructor takes the port adapter, port name, and ROM ID of a
specific device as arguments.

417

1-Wire Basics for TINI

public Thermometer(String ROM, String PAadapt, String Port) {
try {

adapter =
(DSPortAdapter)OneWireAccessProvider.getAdapter(PAadapt, Port);
Init(ROM);

} catch (Exception e) {
System.out.println(“problem in constructor”);
System.out.println(e);

}
}

Each of our constructors performs a temperature measurement that initializes the
data members. Subsequent temperature measurements require a repeat of the
temperature measurement process. That’s what the measureT() method does. It
grabs exclusive control of the 1-Wire bus, reads the state, converts it to a
temperature, gets the temperature, converts it to Fahrenheit, returns control. Any
time we need an updated temperature, we simply invoke this method and read the
temperatures from the instance variables, degC and degF.

public void measureT() {
try {

adapter.beginExclusive(true);
adapter.reset();
state = container.readDevice();
container.doTemperatureConvert(state);
degC = container.getTemperature(state);
degF = container.convertToFahrenheit(degC);
container.writeDevice(state);
adapter.endExclusive();

} catch(Exception e) {
System.out.println(“problem in measure”);
System.out.println(e);

}
}

The main() method tests our thermometer class. The first thing it does is examine the
command line arguments. If there are two arguments, then it assumes we specified a
PortAdapter and CommPort to access and it calls that constructor. If we didn’t supply
any arguments, then it uses the constructor that gets the default PortAdapter.

public static void main (String[] args) {
 Thermometer myTherm;

 // port_name should be like: COM1, LPT1, /dev/ttyS0, or serial1
 // portAdapter should be like: {DS1410E}, DS9097U, TINIExternalAdapter

 if (args.length==2) {
 myTherm = new Thermometer(args[0], args[1]);
 }
 else {
 myTherm = new Thermometer();

418

Designing Embedded Internet Devices

 }

 // Read the temp sensor
 myTherm.measureT();

 // Display what we know (temoerature) in C and F
System.out.println(“The device ROM ID: “ + myTherm.ROM_ID);
System.out.println(“The measured temperature: “ + myTherm.degC

+ “ Deg C”+ “, or “ + myTherm.degF + “ Deg F”);
}

}

This sample program doesn’t make use of all the features of the DS1920 temperature
iButton, by any stretch of the imagination, but it illustrates the highlights of how to
talk to the device using the OneWireContainer10 class. A sample run is below.

Note: We don’t show the compile command-line options (like CLASSPATH, etc.) here
because they might be confusing if you don’t put your files in the same folder names
that we did. If you use the CDROM, the build.bat will compile the code for you.
C:\> java Thermometer
The device ROM ID: D40000004B996410
The measured temperature: 24.0 Deg C, or 75.2 Deg F

The device ROM ID: 700000004B8F1010
The measured temperature: 24.5 Deg C, or 76.1 Deg F

C:\> java Thermometer DS9097U COM1
The device ROM ID: D40000004B996410
The measured temperature: 21.5 Deg C, or 70.7 Deg F

The arguments are just a little different for Linux:
$ java Thermometer DS9097U /dev/ttyS0
The device ROM ID: D40000004B996410
The measured temperature: 22.0 Deg C, or 71.6 Deg F

The preceding sections have discussed how the 1-Wire bus works, how to interface a
PC to the 1-Wire bus, and how to use the Java 1-Wire API to communicate with 1-
Wire devices. The next section is going to examine how to use TINI to communicate
with the 1-Wire bus.

How TINI Communicates with the 1-Wire Bus
Our discussion of how the PC communicates with the 1-Wire bus involved a lot of talk
about the different ports on the PC, hardware adapters that connected the 1-Wire bus to
those ports, and the various different software drivers used by Java to communicate
with the hardware adapters. Life is much simpler when discussing TINI. TINI comes
with a 1-Wire bus that’s ready for you to connect to, and it has an associated Java API
that contains classes that allow you to communicate with that bus. This API, the TINI
API, is closely related to, and sometimes draws upon, the 1-Wire API.

419

1-Wire Basics for TINI

There are actually two 1-Wire buses on TINI—an external 1-Wire bus and an internal
1-Wire bus. Let’s take a close look at each one, and then look at some examples.

The TINI external 1-Wire bus
The method by which TINI interfaces with the external 1-Wire bus is straightforward.
Pins 18 and 19 on the 80C390 microprocessor communicate directly with a DS2480
serial 1-Wire line driver. The DS2480 outputs a signal, OWIO, which is routed to pin
8 on the TINI edge card connector. That signal, OWIO, is a 1-Wire bus. That’s all
there is to it. The TINI E10/20 socketboard has an RJ11 modular jack on it for the
external 1-Wire bus. You plug a category-5 1-Wire cable into the jack and you are
ready to go. Also on the socketboard is an iButton connector (S2) and a jumper that
can be used to connect the bus to power or ground.

Figure 10-36: Schematic highlights of the DS2480 portion

Figure 10-37:
The modular jack and iButton clip

420

Designing Embedded Internet Devices

The TINI internal 1-Wire bus
The TINI stick has an internal 1-Wire bus, used for communication on the board
itself. It talks to U11, which is a DS2502 memory and Ethernet address chip. It also
controls the CPU status LED. The schematic shows that it also talks to an EEPROM,
labeled U9. The TINI board rev E has silk-screening for the device, showing where it
would be, but the board itself doesn’t appear to have traces for it. The internal 1-Wire
bus can be controlled through software just like the external one and it is routed off
the TINI board via pin 17 on the edge card connector. On the socketboard it connects
to a jumper, J4, and J11, which is a diagnostic port.

Figure 10-38: Portions of the schematic showing the internal 1-Wire bus

TINI port adapter objects
In our discussion of how to use a PC to communicate with the 1-Wire bus, we had
numerous choices as to what type of communication port to use, what type pf electrical
hardware adapter to use to connect that to the 1-Wire bus, and what type of software
driver to use with Java to communicate with the 1-Wire bus. With TINI, as we have
said, things are a little different. The software port adapter for the external 1-Wire bus
on TINI is called the TINIExternalAdapter, and its port name is serial1. Both of these
are fixed. If we are going to use the external 1-Wire bus on TINI, those are what we
will use and we don’t have to deal with choices or options and think about
compatibility. The situation is similar with the TINI internal 1-Wire bus. Its port adapter
name is TINIInternalAdapter and its port is called default. These are also both fixed.

421

1-Wire Basics for TINI

The TINI API
We’ve taken a brief look at how the TINI board talks to the 1-Wire bus. Now let’s
look at how to use the TINI API to talk to the 1-Wire bus. In general, most 1-Wire
programs that work on the PC will work on TINI. There are just a few things you
have to keep in mind when compiling them. Let’s start with a series of examples
dealing with the port adapters.

Example: A Java program for TINI that identifies port adapters
In our discussion above, we made note of the fact that the port adapters for the
internal and external 1-Wire buses on TINI are known and fixed. It is still a good first
exercise to see for ourselves the names of these ports. We can run the same program
(PortAdapters.java) on our TINI stick to see these names. Don’t forget to pass the
PortAdapter.class file through TINIConvertor to create PortAdapters.tini:

Let’s take a look at the program actually running on a TINI.
C:\> javac -bootclasspath %TINI_HOME%2d\bin\tiniclasses.jar

-d bin src\PortAdapters.java
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\PortAdapters.tini
-d %TINI_HOME%\bin\tini.db

FTP PortAdapters.tini to your TINI, and then run the program:
TINI /> java PortAdapters.tini
PortAdapter = TINIExternalAdapter; CommPorts = serial1
PortAdapter = TINIInternalAdapter; CommPorts = default

TINI />

There’s nothing surprising about the results of this program, or how it works, but
since port adapter objects are the foundation for communication with the 1-Wire bus,
it’s important to understand them. With that in mind, we’re going to continue to look
at a few simple programs that illustrate how to set up communications with the TINI
1-Wire buses. The first illustrates the default port adapter on TINI.

Example: Determining the default port on TINI
Even though our external and internal 1-Wire buses on TINI have fixed port adapters
and ports, there is still a default port adapter. Again, we can use a previously written
program to illustrate this. Compile DefaultAdapter.java and run it on your TINI
stick to see these names. Don’t forget to pass the .class file through
BuildDependency to create the .tini file.

422

Designing Embedded Internet Devices

C:\> javac -bootclasspath %TINI_HOME%2d\bin\tiniclasses.jar
-d bin src\DefaultAdapter.java

C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency
-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\PortAdapters.tini
-d %TINI_HOME%\bin\tini.db

FTP PortAdapters.tini to your TINI, and then run the program:
TINI /> java DefaultAdapter.tini
TINIExternalAdapter
serial1
TINI />

What this tells us is that the default port for TINI is the TINIExternalAdapter, on port
serial1, which is on the external 1-Wire bus. Next, let’s take a look at a simple
program that looks at the 1-Wire bus on TINI and determines the ROM ID for every
1-Wire device present.

Example: Determining the ROM ID for all 1-Wire devices attached to TINI
We’ve already looked at a similar program for doing this on the PC, and we could
actually use that program here just as well, but we’re going to review this a little
because it provides us an example of the different ways of declaring and creating
DSPortAdapter objects for TINI. If you like, you can pass the ROM_ID.class through
TINIConvertor. Or better yet, BuildDependency and –add all of the
OneWireContainer types (ie: OneWireContainer10 or Thermometers to get all
temperature sensors) that you know you have connected. Then try running ROM_ID
on your TINI. You will need to properly specify the PortAdapter and CommPort for
TINI.
TINI /> java ROM_ID.tini TINIExternalAdapter serial1
or
TINI /> java ROM_ID.tini TINIInternalAdapter default

This clearly shows how you can write Java programs that use the 1-Wire API that will
compile and run on both your PC and TINI with no modification. You can simplify
your Java quite a bit if you only intend to run your programs on a TINI. This will also
help save valuable memory space for other functions. A specialized version of
ROM_ID (called TINIROM_ID) program is presented below in its entirety, then
explained. Also a sample output is shown.

Listing 10-8: TINIROM_ID.java

import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;

423

1-Wire Basics for TINI

import java.io.*;
import java.util.*;

public class TINIROM_ID {
public static void main (String[] args) {

DSPortAdapter singleAdapter = null;
OneWireContainer singleContainer = null;
String singlePort = null;
Enumeration myAdapters = null;
Enumeration myPorts = null;
Enumeration myContainers = null;
myAdapters = OneWireAccessProvider.enumerateAllAdapters();
while (myAdapters.hasMoreElements()) {

singleAdapter = (DSPortAdapter)myAdapters.nextElement();
System.out.println(“Adapter Name: “ + singleAdapter.getAdapterName());
myPorts = singleAdapter.getPortNames();
while (myPorts.hasMoreElements()) {

singlePort = (String)myPorts.nextElement();
System.out.println(“Port Name: “ + singlePort);
try {

singleAdapter.selectPort(singlePort);
singleAdapter.targetAllFamilies();
myContainers = singleAdapter.getAllDeviceContainers();
while (myContainers.hasMoreElements()) {

singleContainer =
(OneWireContainer)myContainers.nextElement();

System.out.println(“ROM ID: “ +
singleContainer.getAddressAsString());

}
singleAdapter.freePort();

} catch (Exception e) {}
}

System.out.println();
}

}
}

Our program begins with the usual import statements, class declaration, and main()
method declaration. We declare a number of objects: a DSPortAdapter, a
OneWireContainer, and three Enumerations. We’re going to grab an Enumeration of
all the adapters present, then grab an Enumeration of all ports on the adapter, then
grab an Enumeration of all device containers present on that adapter/port pair.
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;
import java.io.*;
import java.util.*;

424

Designing Embedded Internet Devices

public class TINIROM_ID {
public static void main (String[] args) {

DSPortAdapter singleAdapter = null;
OneWireContainer singleContainer = null;
String singlePort = null;
Enumeration myAdapters = null;
Enumeration myPorts = null;
Enumeration myContainers = null;

Here, we’re creating the Enumeration of port adapters, and iterating over each
element in that Enumeration. For each one, we print out its name.

myAdapters = OneWireAccessProvider.enumerateAllAdapters();
while (myAdapters.hasMoreElements()) {

singleAdapter = (DSPortAdapter)myAdapters.nextElement();
System.out.println(“Adapter Name: “ +
singleAdapter.getAdapterName());

Here, we’re creating the Enumeration of port names relevant to the particular port
adapter in question. We iterate over this Enumeration and print out the name for each.

myPorts = singleAdapter.getPortNames();
while (myPorts.hasMoreElements()) {

singlePort = (String)myPorts.nextElement();
System.out.println(“Port Name: “ + singlePort);

Now, we select the given port, tell the 1-Wire bus that any search ROM should
include all device families, and create an Enumeration of device containers
corresponding to all the devices found on the bus. For each device container, we
access its ROM ID and print it.

try {
singleAdapter.selectPort(singlePort);
singleAdapter.targetAllFamilies();
myContainers = singleAdapter.getAllDeviceContainers();
while (myContainers.hasMoreElements()) {

singleContainer = (OneWireContainer)myContainers.nextElement();
System.out.println(“ROM ID: “ +

singleContainer.getAddressAsString());
}
singleAdapter.freePort();

} catch (Exception e) {}
}

System.out.println();
}

}
}

A sample run of this program on TINI looks like this:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\TINIROM_ID.java

425

1-Wire Basics for TINI

C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency
-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\TINIROM_ID.tini
-d %TINI_HOME%\bin\tini.db

FTP the ROM_ID.tini to your TINI, and then run the program:
TINI /> java TINIROM_ID.tini
Adapter Name: TINIExternalAdapter
Port Name: serial1
ROM ID: EF0000004B224210
ROM ID: 9A0000000C152305

Adapter Name: TINIInternalAdapter
Port Name: default
ROM ID: D45E70005C8FAA89

TINI />

The program above can be compiled and run unmodified on a PC. There’s nothing
TINI-specific about it. Our next example is a modified version of this that is TINI-
specific. Its purpose is to show us how to access the TINIExternalPortAdapter and
TINIInternalPortAdapter objects.

Example: Another way of determining the ROM ID for all
1-Wire devices attached to TINI
The program below performs the same function on TINI as our previous example, but
uses TINI-specific objects. We start with the program intact, then dissect it, and show
a sample run of the program.

Listing 10-9: TINIROM_ID2.java

import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;
import java.io.*;
import java.util.*;

public class TINIROM_ID2 {
public static void main (String[] args) {

DSPortAdapter myTINIExternal = null;
DSPortAdapter myTINIInternal = null;
OneWireContainer singleContainer = null;
Enumeration myContainers = null;
try {

426

Designing Embedded Internet Devices

myTINIExternal =
OneWireAccessProvider.getAdapter(“TINIExternalAdapter”,

“serial1”);
myTINIExternal.targetAllFamilies();
myContainers = myTINIExternal.getAllDeviceContainers();
System.out.println(“Adapter: “ +

myTINIExternal.getAdapterName());
System.out.println(“Port: “ + myTINIExternal.getPortName());
while (myContainers.hasMoreElements()) {

singleContainer =
(OneWireContainer)myContainers.nextElement();

System.out.println(“ROM ID: “ +
singleContainer.getAddressAsString());

}
System.out.println();
myTINIInternal =

OneWireAccessProvider.getAdapter(“TINIInternalAdapter”,
“default”);

myTINIInternal.targetAllFamilies();
myContainers = myTINIInternal.getAllDeviceContainers();
System.out.println(“Adapter: “ +

myTINIInternal.getAdapterName());
System.out.println(“Port: “ + myTINIInternal.getPortName());
while (myContainers.hasMoreElements()) {

singleContainer =
(OneWireContainer)myContainers.nextElement();

System.out.println(“ROM ID: “ +
 singleContainer.getAddressAsString());

}
} catch (Exception e) {

System.out.println(e);
System.exit(0);

}
System.out.println();

}
}

We start with the normal import statements, class declaration, and main() method
declaration. We also declare some objects: DSPortAdapter objects representing our
TINI external and internal 1-Wire buses, a single OneWireContainer object and an
Enumeration of containers. We’re going to create each one of the port adapters, then
create an Enumeration of device containers representing the devices found on each
one.
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;
import java.io.*;

427

1-Wire Basics for TINI

import java.util.*;

public class TINIROM_ID2 {
public static void main (String[] args) {

DSPortAdapter myTINIExternal = null;
DSPortAdapter myTINIInternal = null;
OneWireContainer singleContainer = null;
Enumeration myContainers = null;

Here we are creating our DSPortAdapter object representing the TINI external 1-
Wire bus. In contrast to the previous program, we are now specifying the port adapter
and port names. We’re then telling the 1-Wire bus to include all device families in any
search ROM process. As before, we then create an Enumeration of all device
containers found and print out all the ROM ID for the corresponding devices.
do search the bus for all device families

try {
myTINIExternal =

OneWireAccessProvider.getAdapter(“TINIExternalAdapter”,
“serial1”);

myTINIExternal.targetAllFamilies();
myContainers = myTINIExternal.getAllDeviceContainers();
System.out.println(“Adapter: “ + myTINIExternal.getAdapterName());
System.out.println(“Port: “ + myTINIExternal.getPortName());
while (myContainers.hasMoreElements()) {

singleContainer =
(OneWireContainer)myContainers.nextElement();

System.out.println(“ROM ID: “ +
singleContainer.getAddressAsString());

}
System.out.println();

Now, we repeat the process for the TINI internal 1-Wire bus.
myTINIInternal =

OneWireAccessProvider.getAdapter(“TINIInternalAdapter”,
“default”);

myTINIInternal.targetAllFamilies();
myContainers = myTINIInternal.getAllDeviceContainers();
System.out.println(“Adapter: “ +

myTINIInternal.getAdapterName());
System.out.println(“Port: “ + myTINIInternal.getPortName());
while (myContainers.hasMoreElements()) {

singleContainer =
(OneWireContainer)myContainers.nextElement();

System.out.println(“ROM ID: “ +
singleContainer.getAddressAsString());

}
} catch (Exception e) {

428

Designing Embedded Internet Devices

System.out.println(e);
System.exit(0);

}
System.out.println();

}
}

When executed on a TINI, the program produces the following output:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d bin src\TINIROM_ID2.java
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\TINIROM_ID.tini
-d %TINI_HOME%\bin\tini.db

FTP the ROM_ID.tini to your TINI, and then run the program:
TINI /> java ROM_ID2.tini
Adapter: TINIExternalAdapter
Port: serial1
ROM ID: EF0000004B224210
ROM ID: 9A0000000C152305

Adapter: TINIInternalAdapter
Port: default
ROM ID: D45E70005C8FAA89

This is the same result as before, just a different way of getting to it. It’s important to
note that this program will only work on TINI because it uses TINI specific objects.
Additionally, since the TINIExternalAdapter and TINIInternalAdapter only have
one port each, we don’t need to go through the process of selecting the port as we did
before.

Our last example of this takes it a step further.

Example: Yet another way of determining the ROM ID for all
1-Wire devices attached to TINI
Below is one more example of how to do the same thing.

Listing 10-10: TINIROM_ID3.java

import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;
import java.io.*;
import java.util.*;

429

1-Wire Basics for TINI

public class TINIROM_ID3 {
public static void main (String[] args) {

DSPortAdapter myTINIExternal = null;
DSPortAdapter myTINIInternal = null;
OneWireContainer singleContainer = null;
Enumeration myContainers = null;
try {

myTINIExternal = new TINIExternalAdapter();
myTINIExternal.targetAllFamilies();
myContainers = myTINIExternal.getAllDeviceContainers();
System.out.println(“Adapter: “ +

myTINIExternal.getAdapterName());
while (myContainers.hasMoreElements()) {

singleContainer =
(OneWireContainer)myContainers.nextElement();

System.out.println(“ROM ID: “ +
singleContainer.getAddressAsString());

}
System.out.println();
myTINIInternal = new TINIInternalAdapter();
myTINIInternal.targetAllFamilies();
myContainers = myTINIInternal.getAllDeviceContainers();
System.out.println(“Adapter: “ +

myTINIInternal.getAdapterName());
while (myContainers.hasMoreElements()) {

singleContainer =
(OneWireContainer)myContainers.nextElement();

System.out.println(“ROM ID: “ +
singleContainer.getAddressAsString());

}
} catch (Exception e) {

System.out.println(e);
System.exit(0);

}
System.out.println();

}
}

The only thing that differs in this program is the manner in which we create the
DSPortAdapter objects. This time, instead of using OneWireAccessProvider
methods to create our object for us, we are going to use the following:

myTINIExternal = new TINIExternalAdapter();

myTINIInternal = new TINIInternalAdapter();

These constructors directly create TINIExternalAdapter and TINIInternalAdapter
objects that are subclasses of the DSPortAdapter class. The only other difference is with
respect to the ports. In the previous example, we specified a port for each adapter, which
had the effect of selecting a port. That allowed us to use the getPortName() method. In

430

Designing Embedded Internet Devices

this example, we haven’t specified or “selected” a port, and therefore aren’t able to
retrieve port names in the same fashion.

While this discussion has focused on some differences between how the 1-Wire bus
is accessed on TINI vs. the PC, most programs that run on the PC can be run on TINI
without changes. The key is compilation. Our next examples illustrate this.

Example: Controlling a DS2405 addressable switch from TINI
Previously, we made a self-contained Java class called switch that we accessed from the
PC. This same class can be compiled and loaded onto TINI in the form of a .tini file
and executed under Slush. We don’t have to modify the source code, but we do have to
take a few things into consideration during compilation. These things were discussed in
detail in Chapter 7 but we will review them here. The following is a listing of the
commands used to compile the program for TINI. Carriage returns have been inserted
into some of the command lines for readability. These commands are stored in a .bat
file and executed as a script.
C:\> javac-d bin src\Switch.java
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\Switch.tini
-d %TINI_HOME%\bin\tini.db
-add OneWireContainer05

Let’s take the same small circuit board, featuring an LED and a 2504 addressable
switch, used in our previous switch example, and attach it to the 1-Wire bus on TINI.
When this program is loaded onto a TINI module via FTP and executed via a Telnet
session on TINI under the Slush operating system, the following results:
TINI /> java Switch.tini on
Device ROM ID: 9A0000000C152305
Device Latch State: true
Device Level: false
TINI /> java Switch.tini off
Device ROM ID: 9A0000000C152305
Device Latch State: false
Device Level: true

The program functions exactly as before.

Example: Using a temperature iButton with TINI
Previously we saw how a temperature iButton could be accessed on a PC. That same
program can be used on a TINI module. Our iButton is placed on a small circuit
board using an iButton clip and the board is connected to a TINI socket with cat 5
cable and RJ11 connectors. When we previously used the Thermometer.java example,

431

1-Wire Basics for TINI

we were illustrating the use of the parallel port and the COM ports on the PC. As we
previously mentioned, we can pass two parameters to the program to indicate which
PortAdapter and which CommPort to use. If no parameters are given, then the program
uses the default PortAdapter and the default CommPort. As we saw from running the
DefaultAdapter program, the default TINI 1-Wire portAdapter is TINIExternalAdapter
and the default communication port is serial1. We can compile Thermometer.java,
run the class file through BuildDependency and then run Thermometer.tini on our
TINI stick with results similar to those from the previous run.

Don’t forget that this program needs to be converted to a TINI program, a .tini file,
using the methodology outlined above. The commands used are:
C:\> javac -d bin src\Thermometer.java
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI_001.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\Thermometer.tini
-d %TINI_HOME%\bin\tini.db
-add OneWireContainer10

TINI /> java Thermometer.tini
The devices ROM ID: EF0000004B224210
The measured temperature: 23.5 Deg C, or 74.3 Deg F
TINI />

Summary
This chapter has given you a good introduction to the 1-Wire bus and writing Java
programs to talk to 1-Wire devices. We will be using what we have learned in this
chapter in the remaining sections of this book, so if there are parts that were not clear,
go back and reread them. If necessary, consult the following references and the data
sheets for the specific 1-Wire devices you need to communicate with.

References
1. Tech Brief1: 1-Wire Net Design Guide,

http://www.maxim-ic.com/1st_pages/tb1.htm

2. Understanding and Using Cyclic Redundancy Checks with Dallas
Semiconductor iButton Products,
http://pdfserv.maxim-ic.com/arpdf/AppNotes/app27.pdf

3. Reading and Writing iButtons via Serial Interfaces,
http://pdfserv.maxim-ic.com/arpdf/AppNotes/app74.pdf

4. Dallas Semiconductor / Maxim Semiconductor 1-wire devices,
http://dbserv.maxim-ic.com/1-Wire.cfm

[This is a blank page.]

11CHAPTER

The I2C Bus

433

Philips developed the I2C (Inter-IC) bus in the early 1980s for mass-produced items
such as televisions and audio equipment. The I2C bus is a bidirectional, two-wire
serial bus that provides a communication link between multiple integrated circuits
(ICs) in a system. I2C has become a generally accepted industry standard for
embedded applications and has been adopted by many IC manufacturers. All devices
that are compatible with the I2C bus include an on-chip interface that allows them to
communicate directly with each other on the bus. The I2C bus supports three data
transfer speeds: standard, fast-mode, and high-speed mode. All data transfer speeds
modes are backward compatible. Each device on the I2C bus has a unique address and
can operate as either a transmitter or receiver depending on its function.

What Is the I2C bus?
I2C, or Inter Integrated Circuit, is a bus protocol developed by Philips Semiconductor
for communication between integrated circuits. A document describing the complete
bus protocol standard is freely available for download from the Philips website1, but the
protocol itself is patented and the integrated circuits that make use of it are subject to a
sort of licensing agreement with Philips. I2C is primarily used in embedded applications
where a microcontroller communicates with and controls a variety of peripheral devices.
Digital potentiometers, EEPROMS, A/D converters, phase-locked loop synthesizers,
microcontrollers and audio/video products are all good examples of products that use I2C.
Some of the most salient features of the bus are found in the following list:

• The I2C bus consists of two signals: the serial clock (SCL) and a serial data
line (SDA).

• The bus is bidirectional and makes use of pull-up resistors. I2C devices either
pull the bus to logic low, or allow the bus pull-up to pull it high.

1 Philips Semiconductors I2C-bus – http://www-us.semiconductors.philips.com/i2c/

434

Designing Embedded Internet Devices

• The bus has three speed modes, a standard mode (<100 kHz), a fast mode (100
kHz – 400 kHz) and a high-speed mode (400 kHz – 3.4 MHz).

• Data transfer is based on 8-bit words.

• Every device on the bus has a unique address, which is either 7 bits or 10 bits wide.

• The bus is based on a master/slave device relationship. Devices can be one or
the other or switch back and forth. The bus can have more than one master and
features a process called “arbitration” to resolve conflicts when multiple
devices try to control the bus at once.

• The number of devices on the I2C bus is limited by the capacitance of the bus,
which must be less than 400 pF.

The I2C Bus in More Detail
We’ve outlined the general characteristics of the I2C bus, so let’s take a look at how it
all works in more detail.

The master/slave concept in I2C
In the Dallas Semiconductor 1-Wire bus protocol, there can be only one master on the
bus, and every other device is a slave. In I2C, things are more complicated. Devices
can be masters sometimes, slaves sometimes, and sometimes there can be multiple
masters trying to control the bus at the same time. The best way to delve into this is
to introduce some basic terminology from the I2C specification. It is important to note
that these definitions relate to the I2C bus, and if we use the same words in the
context of discussing a different bus protocol, they have slightly different meanings.

Table 11-1: Definition of some basic I2C terms

 Term Description

Transmitter The device which sends data to the bus.
Receiver The device which receives data from the bus.
Master The device which initiates a transfer, generates

clock signals, and terminates a transfer.
Slave The device addressed by the master.
Multi-master More than one master can attempt to control

the bus at the same time without corrupting the
message.

Arbitration Procedure to ensure that, if more than one master
simultaneously tries to control the bus, only one is
allowed to do so and the winning message is not
corrupted.

Synchronization Procedure to synchronize the clock signals of two
or more devices.

Source: The I2C Bus Specification, Version 2.1, page 7.

435

The I2C Bus

The most interesting feature is the multimaster concept in which several I2C devices may
try to be a master at the same time. The I2C protocol handles this through “synchroniza-
tion” and “arbitration.” Synchronization is the process by which masters all use the same
clock. It relies on the fact that the clock line (SCL) is pulled high by a pull-up resistor.
The result is that the SCL line value is the wired-AND of all the SCL connections from
the various I2C devices on the bus. Masters generate their own clock during data transfers.
If two or more masters attempt a data transfer at the same time, they will all attempt to put
their own clock on the SCL line. Each “would-be” master generating a clock is going to
try to pull the clock line low for a period of time (the low period) and then let the bus be
pulled high for a period of time (the high period). They each have internal timers metering
out these periods of time. Different devices may have slightly different times for the low
periods and high periods. The first clock to go from high to low “resets” the clock-
generating circuitry of all the other “would-be” masters and starts them all counting out
their low period. The device with the longest period will still be holding the SCL line low
when all the other devices have released it to go high. That device will determine the low
period of the SCL line.

When the last device releases the SCL line and it goes from low to high, all the
devices now start counting out their high period. The first device to pull the SCL line
from high to low causes the entire process to be repeated. The resulting waveform on
the SCL line is what is called the synchronized clock. It has a low period equal to the
longest low period of all the “would-be” masters and a high period equal to the
shortest high period of all the “would-be” masters.

The process of arbitration is very similar. The synchronization process has not
determined which device is the master—it has only determined which device has
defined a clock they can all agree upon. The SDA (serial data) line is also a wired-
AND, this time of all the individual SDA values. As each would-be master is
participating in generating the clock, it is also putting data (in the form of individual
bits) on the SDA line. If one device puts out a logic 1 while another device outputs a
logic 0, the logic 1 is eliminated by the wired AND. Any device whose bit is
eliminated by a wired AND loses the arbitration and will not become the master
during this data transfer. So the last device to put out a logic 1 on the SDA line wins
the arbitration and takes command of the bus, which means it completes the data
transfer that’s already been started.

The I2C data format
There are a number of different elements that make up the bit format on the I2C bus.
These are:

• The start condition

• The address

436

Designing Embedded Internet Devices

• The read/write bit

• The acknowledge or not acknowledge bit

• The data

• The stop condition

The start condition
The start condition indicates the beginning of communication by a master. It occurs
when the master pulls the data line (SDA) from high to low while the clock is high.
The start condition always comes from the master.

The address
The address consists of a series of bits (7 bits in the examples we’ll discuss) and each
bit must be valid before the rising edge of the clock and be held valid until after the
falling edge of the clock. The address bits always come from the master.

The read/write bit
The read/write bit occurs immediately after the address bits. Like the address bits, it
must be valid before the clock goes high and held valid until the clock goes low. The
read/write bit always comes from the master.

Table 11-2: Table showing meaning of the read/write bit

Mode Read/Write Bit Value
 Read 1
 Write 0

The acknowledge bit
The acknowledge bit is used by both the master and slave to indicate continued
responses to communication. Like the address and R/W bits, it must “overlap” the
clock. Its exact use will be illustrated in more detail when we take a detailed look at
the communications between master and slave. Both the master and slaves can
produce an acknowledge bit.

Data bits
Data occurs in 8-bit chunks and after each chunk an acknowledge bit is issued. Data
must overlap clock in the same fashion as the address, R/W and acknowledge bits.

The stop condition
The stop condition ends the communication and indicates that the bus is free. To
generate a stop condition, the master lets the bus be pulled high while the clock is
high. The stop condition is always generated by the master.

437

The I2C Bus

The data format for basic I2C communication using 7-bit addressing comes in three
very similar configurations, corresponding to three possible actions:

• Master writing to slave. The process of the bus master writing to a receiving
slave device proceeds as follows:

a) The master issues a start condition.

b) The master writes the 7-bit address to the bus.

c) The master issues 1-bit R/W indicator (0 for write).

d) The slave issues an acknowledge bit (logic 1).

e) The master issues 8-bit data chunks, each followed by a 1-bit
acknowledge from the slave.

f) This continues until the master issues a stop condition.

• Master reading from slave. The process of the bus master reading from the
slave proceeds much like that of writing to the slave.

a) The master issues a start condition.

b) The master writes the 7-bit address to the bus.

c) The master issues a read/write bit (1 for read).

Figure 11-1: Diagram showing start, stop, and data with respect to clock

Copyright 2001,
Philips Semiconductor.
Used with Permission.

438

Designing Embedded Internet Devices

d) The slave issues an acknowledge bit (logic 1).

e) The slave outputs 8-bit data chunks, each of which is acknowledged by
the master with an acknowledge bit (logic 1).

f) When the master is done reading, it will output a “not acknowledge”
(logic 0).

g) Followed by the stop condition.

• Master doing one, then doing the other. When the master both reads from and
writes to a slave, the result is what is referred to as the combined format. Like
the name implies, it’s basically a combination of the two previous examples. If
we were to first write, then read, our process would be:

a) Master issues a start condition.

b) Master writes the 7-bit address, followed by a read/write bit (0 for write).

c) The slave issues an acknowledge bit (logic 1).

Figure 11-2: I2C Write

a) start condition b) slave address c) R/W d) acknowledge
from slave

e) data to port f) stop
 condition

SCL

SDA

S 0 1 0 0 A2 A1 A0 0 A P A

1 2 3 4 5 6 7 8

DATA

Figure 11-3: I2C Read

S 0 1 0 0 A2 A1 A0 1 1 P A

1 2 3 4 5 6 7 8

a) start condition b) slave address c) R/W d) acknowledge
from slave

e) data
 to port

g) stop
 condition

SCL

SDA

f) NOT
 acknowledge
 from slave

DATA

439

The I2C Bus

d) Master writes 8-bit chunks, and after each chunk, the slave issues an
acknowledge bit (logic 1).

e) When the master is done writing, and now wants to read, it reissues the
start condition, reissues the address, and asserts the read bit (logic 1).

f) The slave will respond with an acknowledge bit (logic 1) followed by 8-
bit data chunks. After each 8 bits of data, the master will issue an
acknowledge bit (logic 1). When the master is done reading, it will issue a
“not acknowledge” (logic 0) and a stop condition.

A few words about addressing
We have mentioned earlier that devices on the bus have a unique address. This has a
somewhat different meaning than the “addresses” discussed in the section on the 1-
Wire bus protocol. An I2C product such as the SAA10642, which is an I2C
compatible seven-segment LED display driver, has a 7-bit address, 5 bits of which are
the same for all SAA1064 devices and 2 of which are user configurable. Thus, there
are 5 fixed and two programmable bits, respectively. Since two are programmable,
you can have 22 or four SAA1064 devices on a single I2C bus. Other device types
may have more or less fixed and programmable address bits (still adding up to
seven). On the SAA1064, the 2 configurable bits are controlled by assigning a
voltage to an external pin.

A typical I2C bus configuration
The most basic type of bus configuration for I2C is shown in Figure 11-4.

2 SAA1064 Data Sheet – http://www.semiconductors.philips.com/pip/saa1064t

Figure 11-4: Drawing illustrating the basic I2C bus configuration

Copyright 2001,
Philips Semiconductor.
Used with Permission.

440

Designing Embedded Internet Devices

Extensions to the basic concept
The I2C protocol has many more features and extensions than described here, such as
faster speeds, 10-bit addressing, and multivoltage pull-up configurations. We’re not
going to elaborate on them here. The best source for the complete story on I2C is the
Philips I2C specification available on the Philips web site.

How TINI Does I2C
This next section examines how TINI communicates with devices over the I2C bus. We’ll
talk first about the hardware involved and then discuss the I2Cport class in the TINI API.

TINI and I2C: Hardware
There are a couple of ways in which TINI can generate the I2C data (SDA) and clock
(SCL) signals. The primary way is through the direct use of two specific pins on one
of the microcontroller data ports. But TINI is also capable of generating I2C signals
through memory-mapped I/O, where one bit of a specific memory location is used to
generate SDA, and one bit from another memory location is used to generate SCL.

Direct use of microcontroller port pins for I2C
The simplest way to access I2C with TINI is through the use of Port #5, bit0 and bit1.
These are often referred to as P5.0 and P5.1. These pins don’t always use the I2C
protocol. In fact, they are actually designed to communicate using the CAN bus
protocol. But, when used in conjunction with the I2Cport class found in the TINI
API, they act as an I2C bus. These correspond to pins 21 and 20 on the TINI
microcontroller and pins 10 (labeled CTX) and 11 (labeled CRX) on the TINI edge
card connector. The CAN ports, such as Port 5 on the microcontroller, already have
weak pull-ups built into them, so when using them to communicate I2C we haven’t
found the need to put pull-ups on the SDA and SCL lines. If you experiment with
TINI and I2C and you find that the bus isn’t being pulled high, your application may
benefit from a stronger pull-up on the bus (20kΩ resistors to Vcc will do nicely).

Figure 11-5: Drawing highlighting
port 5 on the TINI microcontroller

441

The I2C Bus

Memory-mapped driver for I2C
Another way to access I2C with TINI is through a memory-mapped driver. The circuit
in the figure below shows the necessary hardware for this. The circuit uses a
74ACT138 address decoder to select the logic chips when the CPU is reading or
writing I2C information. This is connected in the exact same manner as the address
decoder we used in Chapter 8 for connecting other memory-mapped devices. The
74ACT244 input buffer is only enabled on data reads and the 74ACT753 latch is
wired so it is enabled on data writes. These two chips are connected so that we have a
bidirectional data flow between the data bus and the I2C bus and so that the input
buffer reads the data on the outputs of the latch. This is necessary so we can make
this a bi-directional bus and we can read data from I2C slave devices.

Figure 11-6:
Drawing of edge card connector

Figure 11-7: Memory-mapped I2C driver

442

Designing Embedded Internet Devices

TINI and I2C: Software
The TINI API contains a java class, I2CPort, which can be used to generate the
proper I2C signals. The I2CPort class has an overloaded constructor which provides
for two ways of constructing I2CPort objects. These correspond to the two ways of
generating I2C signals with TINI: directly using P5.0 and P5.1 or through memory-
mapped I/O. For direct use of P5.0 and P5.1 the I2Cport constructor takes no
arguments. For memory-mapped I2C drivers, the constructor requires that you pass
the address of the address decoder and a mask that tells the API which data line is to
drive the SCL line and which data line is to drive the SDA line. Below is a list of the
methods that we will use to talk I2C on TINI.

• public void setAddress(byte address)

• public void setClockDelay(byte delay)

• public int write(byte[] dataArray, int offset, int length)

• public int read(byte[] dataArray, int offset, int length)

setAddress()

The setAddress() method accepts a byte representing the address of the I2C device
we are communicating with. It’s important to note that the address we provide is the
7-bit device address right justified. So, the 7 bits of our address make up the 7 least
significant digits of this byte, and the most significant bit is a 0. This is somewhat
different than the address byte that actually gets sent out on the I2C bus. That byte
will be left justified (dropping the most significant bit which is 0) and the least
significant bit will be the read/write bit. The conversion between the 7-bit address we
provide the setAddress() method and the actual address byte sent on the I2C bus is
done for us by the I2CPort class.

setClockDelay()

The setClockDelay() method is used to modify the frequency of the SCL line. It
accepts a byte as an argument, representing an additional increment of delay between
all edges. When using the P5.0 and P5.1 pins for access to I2C, our frequency is said
to vary between 2.5 kbits/sec and 250 kbits/second. The documentation
accompanying the API notes that each increment of clock delay byte adds .109 µsec
between the clock edges. So a larger value as an argument to the setClockDelay()
method leads to a slower clock, and vice versa. Dallas Semiconductor, in their TINI
news group, has provided the following relationship between the clock period and the
clock delay argument:

SCL period = (1µs + .109µs * clock delay)*4

Experimentally, we’ve noticed that the relationship is more like this:

SCL period = clock delay*1.25 µs + 5 µs

443

The I2C Bus

This was derived from testing clock delay values of 2, 4, 8, 12, 14, 24, and 127. It
should also be noted that the value in our test circuit (presented at the end of this
section) worked for all of those values. The discrepancy between the clock period
that we see and what TINI should be producing according to the documentation may
have to do with the specifics of our setup.

write()

The write() method writes an array of bytes to the slave device currently being
addressed. It takes the byte array as an argument, along with an offset and a length.
The offset indicates where in the array you wish to begin the write and the length
indicates how many bytes after the offset you wish to write. It’s important to note that
when constructing the array, you should not put the address byte into the array. The
addressing is handled by the setAddress() method. The method returns a 0 if it
received an acknowledge from the slave and a –1 if it didn’t.

read()

The read() method behaves very much like the write() method. It reads data from
the currently addressed slave and places it into an array. It takes the byte array as an
argument, along with an offset and a length. The offset indicates where in the array
you wish to begin placing the data and the length indicates how many bytes after the
offset you wish to put there. The TINI 1.02 API notes that the method returns the
number of bytes read on success, or –1 if it fails to receive an acknowledge from the
slave. This appears to be a typo in the Javadocs. It actually returns 0 on success, like
the write() method.

The process of connecting TINI to an I2C device and communicating is best
illustrated with an example. For our example, we’re going to connect an I2C-
compatible 7-segment LED driver to TINI. We’ll make a generic Java class that
allows us to display digits, then use that class with one of our earlier example classes,
Thermometer, to create a standalone TINI digital thermometer. This and all of the
examples in this chapter will use the microprocessor ports pins for I2C
communication. If you wish to use memory-mapped I2C then you simply need to use
an alternate form of the constructor. Here are the two different forms of constructors:

• For Microcontroller Port driven I2C, use the following constructor:
LEDPort = new I2CPort();

This simply creates and returns a new I2CPort.

• For memory-mapped I2C following the schematic shown above, use the
following constructor:
LEDPort = new I2CPort(0x0080001C, (byte)0x1, 0x0080001C,

(byte)0x2);

444

Designing Embedded Internet Devices

This creates and returns a new I2CPort based on a memory-mapped driver.
The address decoder is wired to decode the line driver and latch at 0x80001C
in TINI memory and designates data lines D0 to drive SCL and D1 to drive
SDA.

Example: Using TINI and I2C to drive a 7-segment LED display
We’ve chosen this as an example because it’s easy to do, while illustrating all of the
features key to understanding the TINI to I2C communication link. This example also
shows an alternative way to implement an LED display from what we discussed in
Chapter 8. We’ll start with a quick discussion of the I2C-compatible 7-segment LED
driver, the Philips SAA1064.

The SAA1064 is available in a 24-pin DIP package. It provides two 8-bit busses that
can each handle one or two 7-segment LED displays. If they each are handling two
displays, they are to be multiplexed. For simplicity, we’re going to make a
nonmultiplexed display in which each 8-bit bus drives a single 7-segment display.
You can build the 4-digit display by following the schematic provided in the
SAA1064 datasheet. The device pinout and descriptions of the pins are shown in
Figure 11-8.

Figure 11-8:
SAA1064 pinout

SAA1064

1

2

3

4

5

6

7

8

9

10

11

12 13

24

23

22

21

20

19

18

17

16

15

14

Vcc

SCL

SDA

P16

P15

P14

P13

P12

P11

P10

P9

MX2

Vee

ADR

Cext

P8

P7

P6

P5

P4

P3

P2

P1

MX1

SAA1064 Data Sheet, dated feb 1991, page 4

ADR (pin 1) – This pin is used to configure the programmable address bits
of each device. The two least significant bits of the 7-bit address of the
SAA1064 are determined by the voltage applied to the ADR pin.

445

The I2C Bus

Table 11-3: Table of ADR values

ADR Pin Value A1 A0

V
ee

 to (3/16)V
cc

0 0

(5/16)V
cc

to (7/16) V
cc

0 1

(9/16)Vcc to (11/16) Vcc 1 0

(13/16)V
cc

to V
cc

1 1

Note: 7 Bit Slave Address = 0 1 1 1 0 A1 A0
Source: Excerpt from SAA1064 Data Sheet,
dated Feb 1991, page 9

CEXT (pin 2) – This pin can be used to control the frequency at which we
multiplex between two pairs of 7-segment displays. We won’t be using this
feature and will simply ground this pin.

P8-P1 (pins 3-10) – These pins are the data bus for one of the two data ports
on the device. They each drive one segment of the 7-segment displays. They
are designed to sink current, so the 7-segment displays need to be common
anode. P9 is the MSB, P1 is the LSB.

MX1 (pin 11), MX2(pin 14) – These output pins can be used to power the
anode of the LED displays, or to control transistors used to power them. They
are switching outputs that switch at the frequency of the multiplexing
oscillator. We will not be using them and will leave them unconnected.

Vee (pin 12) – This is the chip ground.

Vcc (pin 13) – This is the chip power. We will set it to 5V, but it has
a maximum of 18V.

P9-P16 (pins 15-22) – These pins are the data bus for the second of the two
data ports on the device. They each will drive one segment of the 7-segment
displays. They are designed to sink current, so the
7-segment displays need to be common anode. P16 is the MSB, P9 is the
LSB.

SDA (pins 23) – This is the I2C data line.

SCL (pins 24) – This is the I2C clock line.

We will connect each of the two data buses on the SAA1064 to a single common
anode 7-segment display. Then we will connect the SDA line to TINI pin 11 (CRX)
and the SCL line to TINI pin 10 (CTX). Since there are weak pull-ups in the TINI
microcontroller on those pins, we’re not going to put additional pull-ups on these
lines. The schematic for this is shown in Figure 11-9.

446

Designing Embedded Internet Devices

dp

a

b

g

c

d

e

f
f b g c d e a

Byte format:
LED segments correspond to

these bit positions.

dp

Figure 11-9: Schematic of the I2C LED

Figure 11-10: LED segments

447

The I2C Bus

For reference, a table and figure showing the mapping between bits on the data bus
and the character that is displayed by those bits is also presented.

Table 11-4: Data bits to character displayed

Display Character Output Bus Output Bus
(bits) (hex)

0 11101101 ED
1 00101000 28
2 10110101 B5
3 10111100 BC
4 01111000 78
5 11011100 DC
6 11011101 DD
7 10101000 A8
8 11111101 FD
9 11111100 FC
U 01101101 6D
F 11010001 D1

The next thing we need to consider is how to talk to the SAA1064.

SAA1064 data format
The process of displaying digits with the SAA1064 LED display driver is simple: you
send it an array of data containing the commands and data. The array is seven bytes long,
and the format is illustrated in the chart shown in Table 11-5.

Table 11-5: Chart showing SAA1064 data format

Data Byte Byte Purpose Byte Contents

1 Slave Address 0 1 1 1 0 A1 A0 Read/Write
2 Instruction Byte 0 0 0 0 0 SC SB SA
3 Control Byte X C6 C5 C4 C3 C2 C1 C0
4 Digit 1 Data D7 D6 D5 D6 D3 D2 D1 D0
5 Digit 2 Data D7 D6 D5 D6 D3 D2 D1 D0
6 Digit 3 Data D7 D6 D5 D6 D3 D2 D1 D0
7 Digit 4 Data D7 D6 D5 D6 D3 D2 D1 D0

A1, A0 = configurable address bits.
SC, SB, SA = subaddress bits that are set to 0 for our purposes.
X = don’t care (set to 0).
C6 – C0 are further explained in the text.
Source: Excerpt from the SAA1064 Data Sheet, dated Feb 1991, page 5.

448

Designing Embedded Internet Devices

The slave address
The slave address is seven bits long, with the most significant five bits fixed at 01110.
The remaining two bits are programmable, based on the value of the ADR pin. We
will tie our ADR pin low, which means the least significant two bits of our 7-bit
address will be 00. Our 7-bit address makes up the “upper” seven bits of the first 8-
bit byte in the data array that we send to the SAA1064. The eighth bit, the least
significant bit of that byte, is the read/write bit. Since our data array will be written to
the SAA1064, the read/write bit will be set to 0. Our slave address is 0111000, and
the first data byte in our data array is 01110000, or 0x70.

The instruction byte
The instruction byte contains three subaddress bits, SC, SB, SA, which can be used to
control where in the SAA1064 our data array gets written. We’re not going to be
making use of this feature, and all of our subaddressing bits are going to be set to
zero. The second byte in the data array that we’re going to send to the SAA1064
becomes 00000000.

The control byte
The control byte consists of an unused bit, which is the most significant bit of this
byte, and seven control bits. The meaning of the seven control bits is shown below.
Our control byte will be 0x26, or 00100110, which, from the table below, means that
we are in static mode as opposed to multiplexed, sinking a current of 3 mA in each
segment of the display.

Table 11-6: Chart showing SAA1064 control bytes

Bit Within Bit Meaning
Control Byte

C0 0 = static mode, constant display of digits 1 & 2
1 = dynamic mode, digits 1 & 3 alternating with 2 & 4

C1 0 = digits 1 & 3 blanked
1 = digits 1 & 3 not blanked

C2 0 = digits 2 & 4 blanked
1 = digits 2 & 4 not blanked

C3 0 = normal operation
1 = test mode, all segments lit

C4 0 = add no current
1 = add 3 mA to the segment drive

C5 0 = add no current
1 = add 6 mA to the segment drive

C6 0 = add no current
1 = add 12 mA to the segment drive

Source: Excerpt from SAA1064 Datasheet, dated Feb. 1991, page 6.

449

The I2C Bus

Data bytes
The four data bytes each represent one of the four possible 7-segment LED displays
that we can control with the SAA1064. Since we aren’t using it in the dynamic, or
multiplexed, mode, we are only concerned with two of the digits. In the static, two-
digit mode, we only need to be concerned with the contents of the first two bytes.
The last two bytes we set to 0x00. The coding that relates how the individual bits map
into illuminated segments is specific to the individual design. Our encoding is
illustrated in Table 11-4.

With that as background, if we wanted to display the number “38” on our system, we
would write the following data array to the device: 0x70, 0x00, 0x26, 0xBC, 0xFD,
0x00, 0x00. Let’s take a look at a generic Java class called Digits that takes in an
integer and displays it on an SAA1064 controlled by TINI. We’ll present the whole
program, then study it in detail. It should be noted that making I2C work with TINI is
actually quite simple, but it requires attention to detail. The I2Cport class handles
some of the low-level details for us, which is a good thing. But it also means that the
device address and the data array that we send the device have two different contexts.
There’s the address and data array that we use in our Java program, and then there’s
the address byte and the data array that gets transmitted on the I2C bus itself. They’re
not the same.

Our Digits class is designed to take in a two-digit number and display it on two 7-
segment LED displays. If the number is less than 0, it displays “UF” for “underflow”
and if the number is more than 99, it displays “OF” for “overflow.” The class has a
method to display a byte, and a method to turn the digits off. It has a main() method
that acts as a test, displaying all of the digits.

Listing 11-1: Digits.java

import com.dalsemi.system.*;
import java.io.*;

public class Digits {

 private static byte LETTER_U = (byte) 0x6D;
 private static byte LETTER_F = (byte) 0xD1;
 private static byte LETTER_O = (byte) 0xED;
 private static byte BLANK = 0x00;

byte[] data = new byte[6];
I2CPort LEDPort;

public Digits() {
LEDPort = new I2CPort();
LEDPort.setAddress((byte)0x38);

450

Designing Embedded Internet Devices

LEDPort.setClockDelay((byte)0x7F);
data[0] = 0x00; // instruction byte
data[1] = 0x26; // control byte
data[2] = 0x00; // digit 1 data
data[3] = 0x00; // digit 2 data
data[4] = 0x00; // digit 3 data
data[5] = 0x00; // digit 4 data

}

public byte getBits(byte displayChar) {
switch (displayChar) {

case 1: return (byte)(0x28);
case 2: return (byte)(0xB5);
case 3: return (byte)(0xBC);
case 4: return (byte)(0x78);
case 5: return (byte)(0xDC);
case 6: return (byte)(0xDD);
case 7: return (byte)(0xA8);
case 8: return (byte)(0xFD);
case 9: return (byte)(0xFC);
case 0: return (byte)(0xED);
default: return (byte)(0);

}
}

public void setValue(byte displayValue) {
byte char1, char2;
int i;
if (displayValue < 0) {

 // Underflow (UF)
char1 = LETTER_U;
char2 = LETTER_F;

}
 else if (displayValue > 99) {
 // Overflow (OF)

char1 = LETTER_O;
char2 = LETTER_F;

}
 else {

char2 = getBits((byte)(displayValue%10));
char1 = getBits((byte)(((displayValue-(displayValue%10))/10)));

}
this.data[2] = char1;
this.data[3] = char2;
try {

i = this.LEDPort.write(data, 0, 6);
 System.out.print(“Stat: “ + i);

} catch (Exception e) {System.out.println(e);}
}

451

The I2C Bus

public void turnOff() {
int i;
this.data[2] = BLANK;
this.data[3] = BLANK;
try {

i = this.LEDPort.write(data, 0, 6);
} catch (Exception e) {System.out.println(e);}

}

public static void main(String[] args) {
Digits displayChars = new Digits();

for (int i=-5; i<105; i++) {
System.out.print(“N: “ + i + “ “);
displayChars.setValue((byte)i);
try {

Thread.sleep(500);
} catch(Exception e){}

}
displayChars.turnOff();

}
}

The program begins with a couple of import statements, gaining access to the
necessary Java class libraries.
import com.dalsemi.system.*;
import java.io.*;

Shown below is our class and data member declarations. The byte array data is only
six bytes long. In our discussion of the SAA1064 we noted that the data array that
gets sent to the device is seven bytes long. The difference comes from the fact that, in
the I2Cport class, we don’t have to explicitly put the address byte in the data array.
Instead, we use the setAddress() method to set the address, and the class handles
the details of putting the address into the data array. LEDPort is a I2CPort object that
will give us access to the I2CPort methods.
public class Digits {

 private static byte LETTER_U = (byte) 0x6D;
 private static byte LETTER_F = (byte) 0xD1;
 private static byte LETTER_O = (byte) 0xED;
 private static byte BLANK = 0x00;

byte[] data = new byte[6];
I2CPort LEDPort;

Following is our constructor. It creates an I2CPort object, sets its device address, the
clock delay, and initializes its data array. Here, we run into one source of confusion:
the address. The actual device address is seven bits, and in our case it will be

452

Designing Embedded Internet Devices

0111000. The data field called slaveAddress in the I2CPort class, which is set by
the setAddress() method, is a byte. Our 7-bit address is right justified. That is, they
give it a leading zero, turning 0111000 into 00111000, or 0x38. When that address
actually gets written out on the bus, it won’t appear as 0x38. The I2CPort class
extracts the actual 7-bit address from the byte, left justifies it, and makes the least
significant bit the read/write bit, which in our case (writing), will be a 0. So, on the
I2C bus itself, the address byte will turn out to be 01110000, or 0x70. With respect to
the clock delay, the value of 0x7F represents the slowest possible clock.
Theoretically, the clock can vary between 2.5 kbits/sec and 250 kbits/sec. When
measured with a scope, this example had a clock speed of 6 kbits/sec. In practice,
with this example, this value hasn’t proven to be critical. Experimentally, any value
larger than 1 worked.

public Digits() {
LEDPort = new I2CPort();
LEDPort.setAddress((byte)0x38);
LEDPort.setClockDelay((byte)0x7F);
data[0] = 0x00; // instruction byte
data[1] = 0x26; // control byte
data[2] = 0x00; // digit 1 data
data[3] = 0x00; // digit 2 data
data[4] = 0x00; // digit 3 data
data[5] = 0x00; // digit 4 data

}

The getBits() method takes a single digit between 0 and 9 and returns the 7-
segment encoding for that digit. A bit value of “1” means that segment “a” will be
illuminated. Refer to Table 11-4.

public byte getBits(byte displayChar) {
switch (displayChar) {

case 1: return (byte)(0x28);
case 2: return (byte)(0xB5);
case 3: return (byte)(0xBC);
case 4: return (byte)(0x78);
case 5: return (byte)(0xDC);
case 6: return (byte)(0xDD);
case 7: return (byte)(0xA8);
case 8: return (byte)(0xFD);
case 9: return (byte)(0xFC);
case 0: return (byte)(0xED);
default: return (byte)(0);

}
}

The setValue() method takes in a byte that represents the 2-digit number we want to
display, extracts the two digits from it, gets the bit encoding from the getBits()

453

The I2C Bus

method, and writes the data to the SAA1064 using the write() method of the
I2CPort class. If the number is less than zero, it puts “UF” into the variables that will
be displayed. If it’s greater than 99, it puts “0F” into them. If between the two, it
converts a number into two digits.

public void setValue(byte displayValue) {
byte char1, char2;
int i;
if (displayValue < 0) {

 // Underflow (UF)
char1 = LETTER_U;
char2 = LETTER_F;

}
 else if (displayValue > 99) {
 // Overflow (OF)

char1 = LETTER_O;
char2 = LETTER_F;

}
 else {

char2 = getBits((byte)(displayValue%10));
char1 = getBits((byte)(((displayValue-(displayValue%10))/10)));

}

We’ve established what characters to display, so we place them into the third and fourth
byte positions in the data array. The data array is passed to the write() method with
an offset of 0 and a length of six. The 0 offset indicates start with the 0 element in the
array. The method returns an integer: 0 if the write functioned properly, and –1 if
there was no Acknowledge bit sent from the slave.

this.data[2] = char1;
this.data[3] = char2;
try {

i = this.LEDPort.write(data, 0, 6);
 System.out.print(“Stat: “ + i);

} catch (Exception e) {System.out.println(e);}
}

The turnOff() method turns off all segments in both displays. We do this by setting
all bits to 0 in both data bytes. Note that we’re not telling them to write the digit 0,
we’re telling the SAA1064 to put 0s on all 8 bits of both data buses.

public void turnOff() {
int i;
this.data[2] = BLANK;
this.data[3] = BLANK;
try {

i = this.LEDPort.write(data, 0, 6);
} catch (Exception e) {System.out.println(e);}

}

454

Designing Embedded Internet Devices

The main() method tests the functionality of the Digit class. It simply counts up
from –5 to 100. In doing so, it exercises all segments in both digits and tests for the
correct encoding of all the numbers plus the “UF” (underflow) and “OF” (overflow)
cases.

public static void main(String[] args) {
Digits displayChars = new Digits();
for (int i=-5; i<101; i++) {

displayChars.setValue((byte)i);
try {

Thread.sleep(500);
} catch(Exception e){}

}
displayChars.turnOff();

}
}

If you compile this into Digits.tini, then you will need to send it to TINI using
FTP and execute it under the Slush operating system. If you compile it into
Digits.tbin, then you would load it into TINI with JavaKit. This program provides
no output to the screen, unless there is an exception. The commands used to compile
this program into a .tini file are shown below.
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-classpath %TINI_HOME%\bin\owapi_dependencies_TINI.jar;.
-d bin src\Digits.java

C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency
-p %TINI_HOME%\bin\owapi_dependencies_TINI_001.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin
-d %TINI_HOME%\bin\tini.db

Figure 11-11:
LED display in action

Chapter 7 as well as the thermometer example at the end of Chapter 10 has a discussion
of what some of these options mean. Command options have been shown on separate
lines for readability. In practice, they need to be on the same line.

455

The I2C Bus

Example: A TINI digital thermometer
The Digits class can be used in conjunction with the Thermometer class from an earlier
example to make a simple thermometer that uses TINI, a DS1920 temperature iButton or a
DS1820 1-Wire thermometer, and the SAA1064 display driver. Simply implement the
previous example, and connect a thermometer iButton or 1-Wire device to TINI via the
1-Wire bus. We’ll call the new class LEDTherm.

Listing 11-2: LEDTherm.java

import java.io.*;
public class LEDTherm {

public static void main (String[] args) {
Thermometer therm = new Thermometer();
Digits LEDs = new Digits();
while (true) {
try {

therm.measureT();
LEDs.setValue((byte)(therm.degF));
Thread.sleep(1000);
} catch(Exception e) {System.out.println(e);}

}
}

}

C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-classpath %TINI_HOME%\bin\owapi_dependencies_TINI.jar;.
-d ..\bin Digits.java

C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI_001.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin
-d %TINI_HOME%\bin\tini.db

When you run the program on your TINI you can watch the LED digits display the
temperature.

Example: Extending TINI’s parallel I/O
In the previous two examples we were writing to an I2C device. We could read back a
status byte from the SA1064 LED driver, but this is not particularly interesting. This
status byte contains a single 1-bit field that indicates that there was a power failure
since the last time you read the status byte. A more interesting example is using a
Philips PCF85743, remote 8-bit I/O expander, for adding 8-bit parallel I/O to your
TINI.

456

Designing Embedded Internet Devices

Listing 11-3: Parallel_IO.java

You can connect the switches and LEDs to any of the pins that you like. For the
example Java program listed here, switches are connected to P0–P3 and LEDs are
connected to P4–P7.
import com.dalsemi.system.*;
import java.io.*;

public class Parallel_IO {

byte[] data = new byte[1];
I2CPort PioPort;

public Parallel_IO() {
PioPort = new I2CPort();
PioPort.setAddress((byte)0x27);
PioPort.setClockDelay((byte)0x7F);

 data[0] = 0x00;
}

 private static char[] hexChars =
 { ‘0’,’1',’2',’3',’4',’5',’6',’7',’8',’9',’A’,’B’,’C’,’D’,’E’,’F’ };

3 PCF8574 datasheet – http://www.semiconductors.philips.com/pip/pcf8574p

Figure 11-12: I2C 8-bit parallel I/O schematic

457

The I2C Bus

 public static String toHex(byte data)
 {
 StringBuffer output = new StringBuffer();
 int firstNibble, secondNibble;

 firstNibble = (data >> 4) & 0x0F;
 secondNibble = data & 0x0F;
 output.append(hexChars[firstNibble]);
 output.append(hexChars[secondNibble]);

 return output.toString();
 }

 public void Blinky() {
 int stat=0;

 for (int i=1; i<10; i++) {
System.out.print(“Write: “ + i);

try {
 data[0] = (byte)(0x1A);
 stat = PioPort.write(data, 0, 1);
 System.out.print(“ [“ + toHex(data[0]) + “ “ + stat + “]”);

TINIOS.sleepProcess(250);

 data[0] = (byte)(0x2A);
 stat = PioPort.write(data, 0, 1);
 System.out.print(“ [“ + toHex(data[0]) + “ “ + stat + “]”);

TINIOS.sleepProcess(250);

 data[0] = (byte)(0x4A);
 stat = PioPort.write(data, 0, 1);
 System.out.print(“ [“ + toHex(data[0]) + “ “ + stat + “]”);

TINIOS.sleepProcess(250);

 System.out.println();
}

 catch(Exception e){
 System.out.println(“Error in I2C write...”);
 System.out.println(e);
 }

}

 for (int i=1; i<10; i++) {
 System.out.println(i);

 try {
 data[0] = (byte)(0x00);

458

Designing Embedded Internet Devices

 System.out.print(“read: “ + i);
 stat = PioPort.read(data, 0,1);
 System.out.println(“ [“ + toHex(data[0]) + “ “ + stat + “]”);
 TINIOS.sleepProcess(250);

 }
 catch(Exception e) {
 System.out.println(“Error in I2C read...”);
 System.out.println(e);
 }
 }

 }

public static void main(String[] args) {
Parallel_IO myPio = new Parallel_IO();

 myPio.Blinky();
}

}

As with previous programs, the first few lines declare a data buffer for storing the
data to be sent to, or received from, the I2C device, in this case a single byte. We have
also created a single constructor that creates a new I2CPort object and assigns the
address and clock delay.
import com.dalsemi.system.*;
import java.io.*;

public class Parallel_IO {

byte[] data = new byte[1];
I2CPort PioPort;

public Parallel_IO() {
PioPort = new I2CPort();
PioPort.setAddress((byte)0x27);
PioPort.setClockDelay((byte)0x7F);

 data[0] = 0x00;
}

We also have a toHex() method for displaying the contents read from, or written to,
the I2C device. This is entirely for our convenience, so we don’t have to read decimal
and determine if the output is proper. Then we have the bulk of the class in the
blinky() method.

try {
 data[0] = (byte)(0x1A);
 stat = PioPort.write(data, 0, 1);
 System.out.print(“ [“ + toHex(data[0]) + “ “ + stat + “]”);

TINIOS.sleepProcess(250);

459

The I2C Bus

...

 System.out.println();
}

 catch(Exception e){
 System.out.println(“Error in I2C write...”);
 System.out.println(e);
 }

 for (int i=1; i<10; i++) {
 System.out.println(i);

 try {
 data[0] = (byte)(0x00);
 System.out.print(“read: “ + i);
 stat = PioPort.read(data, 0,1);
 System.out.println(“ [“ + toHex(data[0]) + “ “ + stat + “]”);
 TINIOS.sleepProcess(250);

 }
 catch(Exception e) {
 System.out.println(“Error in I2C read...”);
 System.out.println(e);
 }
 }

The blinky() method does two things. First it writes various bytes to the PCF8574
to turn on and off some of the LEDs. Then it reads from the PCF8574 and displays
the results of the various switch settings. We have liberally filled this program with
lots of print statements so we can see what’s happening along the way.

Compile the program and run it on TINI and watch the results.
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-classpath %TINI_HOME%\bin\owapi_dependencies_TINI.jar;.
-d bin src\Parallel_IO.java

C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency
-p %TINI_HOME%\bin\owapi_dependencies_TINI_001.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin
-d %TINI_HOME%\bin\tini.db

This next example is a slight extension of the last one. Instead of reading or writing
from the same device, we will be reading inputs from one PC8574 and writing
outputs to a second one. This will also demonstrate connecting several devices to an
I2C bus at the same time. We will be using the first remote 8-bit I/O expander to read
the position of eight push buttons and then writing this value to the second I/O

460

Designing Embedded Internet Devices

expander to turn on or off eight LEDs. We will also use the interrupt feature of the
first PCF8574 to trigger an external interrupt on a TINI stick when any of the buttons
is pressed.

Listing 11-04: InOut.java

import java.util.TooManyListenersException;
import com.dalsemi.system.*;
import java.io.*;

class InOut implements ExternalInterruptEventListener {

 int i;
 byte[] data = new byte[1];

 I2CPort PioPort_I;
 I2CPort PioPort_O;

 private static char[] hexChars =
 { ‘0’,’1',’2',’3',’4',’5',’6',’7',’8',’9',’A’,’B’,’C’,’D’,’E’,’F’ };

 public static String toHex(int data)
 {
 StringBuffer output = new StringBuffer();
 int firstNibble, secondNibble;

 firstNibble = (data >> 4) & 0x0F;
 secondNibble = data & 0x0F;
 output.append(hexChars[firstNibble]);
 output.append(hexChars[secondNibble]);
 return output.toString();
 }

 public void init() throws TooManyListenersException
 {
 int stat=0;

 // This is the signal to which we will add an event listener
 ExternalInterrupt myInterrupt = new ExternalInterrupt();
 // Add the event listener
 myInterrupt.addEventListener(this);

 // Set this to EDGE triggering
 try {
 myInterrupt.setTrigger(true, this);
 }
 catch (Exception e){
 System.out.println(e);
 }

461

The I2C Bus

// Set the addresses and clock delay
PioPort_I = new I2CPort();
PioPort_I.setAddress((byte)0x21);
PioPort_I.setClockDelay((byte)0x7F);

PioPort_O = new I2CPort();
PioPort_O.setAddress((byte)0x22);
PioPort_O.setClockDelay((byte)0x7F);

 // Set all outputs low
 try {
 data[0] = (byte)(0x00);
 stat = PioPort_I.write(data, 0,1);
 stat = PioPort_O.write(data, 0, 1);
 }
 catch (Exception e) {
 System.out.println(e);
 }

 }

 public void externalInterruptEvent(ExternalInterruptEvent ev)
 {
 int stat = 0;

 System.out.println(“Interrupt Caught: “ + ++i);

 try {
// Fetch the Input states
data[0] = (byte)(0x00);
stat = PioPort_I.read(data, 0,1);
System.out.println(“Read [“ + toHex(data[0]) + “ “ + stat + “]”);

// Write the states to the Outputs on the other device
stat = PioPort_O.write(data, 0, 1);
System.out.println(“Write [“ + toHex(data[0]) + “ “ + stat + “]”);

// Reset inputs
data[0] = (byte)0x00;
stat = PioPort_I.write(data, 0,1);
System.out.println(“Reset [“ + toHex(data[0]) + “ “ + stat + “]”);

 }
 catch (Exception e) {
 System.out.println(e);
 }

 // Die after 10 pushes
 if (i > 9) { System.exit(0); }
 }

462

Designing Embedded Internet Devices

 public static void main(String[] args) throws TooManyListenersException
 {
 // Start up the InterruptListender
 InOut interrupt = new InOut();
 // Initialize everything
 interrupt.init();

 // Hang out for awhile
 while (true) {
 // do nothing
 }
 }
}

Figure 11-13: I2C 8-bit dual parallel I/O schematic

463

The I2C Bus

The program for this schematic is a slight modification of the previous, combined
with what we learned in Chapter 8 for setting up an
ExternalInterruptEventListener. We will spend much less time going through
this program, as it’s very much like the program from Chapter 8, ExtInt.java.

We have created the init() method to create the ExternalInterrupt object and set
the EventListener. We also needed to set the interrupt triggering to “edge triggering”
so we can catch which button was pressed when we trigger an interrupt. Edge
triggering will trigger an interrupt every time the button changes state. This is in
contrast to “level triggering,” the other form of interrupt trigger, where the
ExternalInterruptEventListener is called continually until the button is released.
In this method we also create two I2CPort objects, one for each of the I2C devices,
and we initialize them to all bits off.
 public void init() throws TooManyListenersException
 {
 int stat=0;

 // This is the signal to which we will add an event listener
 ExternalInterrupt myInterrupt = new ExternalInterrupt();
 // Add the event listener
 myInterrupt.addEventListener(this);

 // Set this to EDGE triggering
 try {
 myInterrupt.setTrigger(true, this);
 }
 catch (Exception e){
 System.out.println(e);
 }

// Set the addresses and clock delay
PioPort_I = new I2CPort();
PioPort_I.setAddress((byte)0x21);
PioPort_I.setClockDelay((byte)0x7F);

PioPort_O = new I2CPort();
PioPort_O.setAddress((byte)0x22);
PioPort_O.setClockDelay((byte)0x7F);

 // Set all outputs low
 try {
 data[0] = (byte)(0x00);
 stat = PioPort_I.write(data, 0,1);
 stat = PioPort_O.write(data, 0, 1);
 }
 catch (Exception e) {
 System.out.println(e);

464

Designing Embedded Internet Devices

 }
 }

The last thing before our main starts the whole thing running is the
externalInterruptEvent() method. Each time the first PCF8574 fires an interrupt,
this method is called. In this method we read the byte from the input device and write
this to the output device to turn on or off the corresponding LEDs to match the
buttons pushed. As with the previous example, this program is quite verbose so we
can see what is going on in case the LEDs don’t work as expected.
 public void externalInterruptEvent(ExternalInterruptEvent ev)
 {
 int stat = 0;

 System.out.println(“Interrupt Caught: “ + ++i);

 try {
 // Fetch the Input states
 data[0] = (byte)(0x00);
 stat = PioPort_I.read(data, 0,1);
 System.out.println(“Read [“ + toHex(data[0]) + “ “ +

 stat + “]”);

 // Write the states to the Outputs on the other device
 stat = PioPort_O.write(data, 0, 1);
 System.out.println(“Write [“ + toHex(data[0]) + “ “ +

 stat + “]”);

 // Reset inputs
 data[0] = (byte)0x00;
 stat = PioPort_I.write(data, 0,1);
 System.out.println(“Reset [“ + toHex(data[0]) + “ “ +

 stat + “]”);
 }
 catch (Exception e) {
 System.out.println(e);
 }

 // Die after 10 pushes
 if (i > 9) { System.exit(0); }
 }

To compile this:
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-classpath %TINI_HOME%\bin\owapi_dependencies_TINI.jar;.
-d bin src\InOut.java

C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency
-p %TINI_HOME%\bin\owapi_dependencies_TINI_001.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt

465

The I2C Bus

-o bin
-d %TINI_HOME%\bin\tini.db

After you compile this and FTP it to your TINI, give it a test run. If you see lots of
-1s printed in the output, this is probably because there is something not quite right
with the way you have connected your I2C bus or devices, so check the schematics
again. While it’s hard to show the LEDs lighting, the screen output looks like this:
Interrupt Caught: 1
Read [01 0]
Write [01 0]
Reset [00 0]
Interrupt Caught: 2
Read [00 0]
Write [00 0]
Reset [00 0]
...
Interrupt Caught: 6
Read [81 0]
Write [81 0]
Reset [00 0]
Interrupt Caught: 7
Read [00 0]
Write [00 0]
Reset [00 0]
...
Interrupt Caught: 10
Read [80 0]
Write [80 0]
Reset [00 0]

Here you can see that we press the first button (01), then both the first and last button
(81 is button 8 and button 1), then just the last button (80). Notice that each interrupt
is followed with another that reads 00. This is the button release (it’s changing state
on the device and so it triggers another interrupt).

All of the examples in this chapter have used the microprocessor port driver for I2C
communication. If you wish to use memory-mapped I2C then you simply need to use
an alternate form of the constructor given in the discussion of the API. The rest of
the example programs do not need any further modification.

Summary
The section has provided a very brief look at the I2C bus protocol and how to use it
with TINI. There are a number of aspects of I2C and TINI that we have not attempted
to cover here. The Dallas Semiconductor TINI archives are a rich source of information,
in a question-and-answer format, for those interested in more information. Additionally,
the Philips web site provides the complete I2C specification, free of charge.

466

Designing Embedded Internet Devices

References
1. Philips Semiconductors, About the I2C-bus,

http://www-us.semiconductors.philips.com/i2c/facts/

2. Philips Semiconductors, I2C Bus Specification,
http://www-us.semiconductors.philips.com/acrobat/various/
I2C_BUS_SPECIFICATION_3.pdf

3. I2C FAQ,
http://perso.club-internet.fr/mbouget/i2c-faq.html

4. The I2C-bus and how to use it (including specification),
http://www.semiconductors.philips.com/acrobat/various/
I2C_BUS_SPECIFICATION_1995.pdf

12CHAPTER

Controller Area Network

467

The TINI microcontroller and the TINI API support dual Controller Area Network
(CAN) interfaces. CAN is a popular network for communicating between sensors and
controllers in automotive and industrial applications. In this chapter we will discuss
some of the details in the CAN specification and get you started using TINI as both a
CAN controller and a CAN sensor interface.

What Is the CAN Bus?
General overview
The Controller Area Network (CAN) is a serial bus system that was developed in the
late 1980s for automotive applications by Robert Bosch GmbH, Germany. CAN was
developed to support distributed control systems in automobiles and has also been
implemented fairly widely in industrial control systems as well.

CAN bus
Bus

Terminator

Can
Device

Can
Device

Can
Device

Can
Device

Figure 12-1: A CAN bus

468

Designing Embedded Internet Devices

CAN uses bit-serial transmission at rates up to 1 megabit/second in twisted-pair
cabling. Messages are passed between nodes on a CAN bus using a message
identifier. CAN is similar to I2C, which was discussed in the previous chapter, with a
few significant differences. The primary differences are the signaling and the method
of identifying devices and data. CAN uses differential signaling on two wires rather
than the clock and data lines that I2C uses. With CAN the data has the identification,
where in I2C the devices have the identification. This identifier does not indicate the
transmitting or receiving device but rather identifies the content of the message (for
instance, temperature or shaft position). All nodes on a CAN bus receive all of the
messages and check the message identifier to determine if that particular message is
of interest. The identifier also determines the message priority. Lower numerical
values have a higher priority on the CAN bus.

The CAN specification is available from the Bosch CAN Literature1 web page.
Additionally, CAN has been standardized by the International Standards
Organization in ISO 11989 (Controller area network for high-speed communication)
and ISO 11519 (Low-speed controller area network). The Bosch CAN specification
only defines the Data Link and Physical Layers (using the OSI reference model).
Additional layers are defined in one of several higher-level protocols that use CAN
for the Data Link layer. A few of these higher-layer protocols will be mentioned soon.
The details of CAN are essentially transmission media independent, but the ISO
specifications have defined the Physical layer, including cabling and connectors.

CAN versions
The Bosch CAN specification has been revised over the years from version 1.0 to the
current version of 2.0. Version 1.0 and 1.2 defined CAN with an 11-bit message
identification. Version 2.0 has allowed an 18-bit message ID extension allowing for
an effective 29-bit message ID. To keep new CAN devices compatible with older
implementations, the CAN 2.0 specification is defined in two parts, 2.0A and 2.0B.
In CAN 2.0A, the message format is consistent with older versions of CAN that use
only an 11-bit message ID. In CAN 2.0B the 18-bit message ID extension is allowed.
CAN 2.0B can then be implemented in either the passive or active mode. In the
passive mode, the CAN controller will transmit only messages with 11-bit message
IDs and will receive message frames with the standard 11-bit and the extended 29-bit
ID. In this way it can be compatible with both older and newer CAN devices. In the
active mode the CAN controller receives and transmits messages with both 11-bit and
29-bit message IDs. CAN version 1.0, 1.2 and 2.0A are called “standard CAN”
because they all use an 11-bit message ID. CAN 2.0 B is called “Extended CAN” as
it uses the extended 29-bit message ID.

1 CAN Literature – http://www.can.bosch.com/content/Literature.html

469

Controller Area Network

7 - Application Layer

6 – Presentation Layer

5 – Session Layer

4 – Transport Layer

3 – Network Layer

2 – Data Link Layer

1 – Physical Layer

Implemented in
higher - level

CAN protocols

Bosch CAN

ISO CAN

Figure 12-2: CAN protocol layers

The CAN Bus in More Detail
As mentioned already, CAN messages contain a message identifier to indicate the
contents of the message rather than using device addresses. This makes the CAN bus a
multimaster bus, that uses multicast communication. As a multimaster bus, any device
can determine that the bus is available for transmission of a message. If several devices
start transmitting at the same time, then the message priority is used to determine which
device gets to complete transmission. CAN is also a multicast form of communication
because the messages are transmitted on the bus to all devices. Any device on the bus
may determine that the message it received is of interest and act on that message. The
benefit of being both multimaster and multicast is that new devices can be added to the
bus without reconfiguring any of the existing devices. The diagram below shows
multiple devices using a common CAN bus to send messages. Only the devices that are
interested in the data they receive (determined by the message identifier) need to
actually process and act on the message.

Now let’s examine some of the details on how the CAN bus is implemented.

Bus states
The CAN bus has two states, one representing a logical 1,
called the recessive state, and the other representing a
logical 0, called the dominant state. When the bus is idle
(no message traffic) the bus is in the recessive state. A
device communicating on the bus will pull the bus to the dominant state.

Dominant = Logic 0

Recessive = Logic 1

470

Designing Embedded Internet Devices

CAN bus

Temp
Sensor

Cooling
Fan

Control
Valve

Pressure
Sensor

Temperature
Message

Pressure
 Message

Heater
Control

 Figure 12-3: CAN bus messages

CAN controllers are connected to the CAN bus through a transceiver. The Bosch
CAN specification does not specify a bus media but common implementations
include twisted-pair and optical media. The diagram below shows a typical
connection to a twisted-pair cable. In this case the CAN controller is our TINI
microcontroller and the CAN transceiver is the Philips PCA82C250 (or compatible).
The CAN transceiver puts the data on the twisted pair using differential voltage
(balanced line) signaling for noise immunity.

Figure 12-4: CAN bus signaling

CAN
transceiver

Micro -
controller TINI CPU

80C390

R T

CAN_H CAN_L

CAN
controller

471

Controller Area Network

Like I2C devices, CAN devices are connected to the CAN bus in a wired-AND
configuration. This means that it is possible for multiple devices to change the bus
state to a dominant state without adverse effects. Exactly which device and how to
handle multiple devices acting as masters will be discussed in the section on
arbitration.

In the case of twisted-pair bus wiring, the transceiver converts the microcontroller
CAN-transmit and CAN-receive signals into differential voltages. A typical CAN
transceiver for twisted pair will hold the CAN_L (CAN Low) and CAN_H (CAN
High) lines at 2.5 volts in the recessive state. To signal a dominant state on the
CAN bus, the transceiver will pull CAN_H to 3.5 volts and CAN_L to 1.5 volts
(note that CAN_H is higher than CAN_L, hence the names high and low) as shown
in the following diagram.

Figure 12-5: Differential signaling

1

2

3

4

0

CAN_L
1.5 volts

CAN_H
3.5 volts

The receiving transceiver will invert CAN_L and add that to the CAN_H signal to
recover the CAN signal. In doing this, any noise induced on the line will be cancelled
out.

Message coding
CAN bus signals are encoded on twisted-pair wiring using non-return-to-zero (NRZ)
bit encoding. NRZ encoding is a two-level signaling mechanism used to transmit
data. Using NRZ encoding, one bit of data is transmitted per clock cycle. The
significance of NRZ is more easily seen when compared to return-to-zero (RZ)
encoding. With RZ encoding, the signal returns to the low state after each bit is
transmitted. With NRZ encoding it does not. If two or more high value bits are
transmitted, the voltage stays at the level.

472

Designing Embedded Internet Devices

Frames
Now that we know how signals are put on the CAN bus, let’s examine how data
packets are sent on the bus. The data packets are called “frames” on a CAN network.
A frame is the message that is transmitted between nodes. It contains a message
identification, necessary protocol information, data, a header and footer. The CAN
specification allows for several types of frames for different purposes.

• Data Frame – Data sent from the transmitting device to one or more receiving
devices.

• Remote Frame – A request for a specific type of data.

• Error Frame – Sent when any unit detects an error on the CAN bus.

• Overload Frame – Used by a device to delay further frames so it can have
additional time to process the data it has received.

• Interframe space – Used to separate data or remote frames.

In addition to these types of frames, two formats are possible depending on the CAN
version being used: Standard CAN format following the Bosch 2.0A specification
and Extended CAN format following the Bosch 2.0B specification.

We will examine the data frame in detail. If you need more information on the other
frame types you should consult the Bosch CAN specification. The following diagram
shows the various fields and bits in a CAN 2.0A standard data frame.

Figure 12-6: NRZ bit encoding

0 1 1 1 1 0 0 1 0 1 0

+V

0

+V

0

(RZ) Return -to -zero

(NRZ) Non-return -to -zero

0 1 1 1 1 0 0 1 0 1 0

473

Controller Area Network

Before a CAN node can start transmission of a data frame, it watches the bus for
completion of any existing CAN frames. Once the bus is idle any node can begin
transmission. The fields of a standard data frame are:

• Start Of Frame – The start of a frame is indicated when any node pulls the bus
(low) dominant (logic “0”) for 1 bit time (the duration of a bit time is
explained later).

• Arbitration Field – The arbitration field is a 12-bit field consisting of an 11-bit
Identifier and a single Remote Transmission Request bit (RTR bit).

o Identifier – Is the message identifier, transmitted most significant bit
first. The 7 most significant bits cannot be all recessive (logic 1).

o RTR bit – Is dominant in a data frame and recessive in a remote
frame.

• Control Field – The control field is six bits.

o Reserved bits – The first two bits are reserved for future expansion.
Set to the dominant state.

o Data Length Code – The last four bits form a binary number (MSB is
transmitted first) that indicates the number of bytes in the data field.
Can have the value of 0 through 8.

• Data Field – These are the bytes of data to be transmitted. There can be 0
through 8 bytes, each transmitted most significant bit first.

Figure 12-7: Standard data frame

Start of
Frame

Identifier

Arbitration Field

RTR
bit

Control Field Data Field
CRC
Field

ACK
Field

End of
Frame

Reserved
bits

Data Length
Code

CRC
Sequence

CRC
delimiter

ACK
Slot

ACK
Delimiter

Data Frame

474

Designing Embedded Internet Devices

• CRC Field – The Cyclic Redundancy Check field includes the CRC sequence
and the CRC delimiter bit.

o CRC Sequence – The CRC sequence is a 15-bit CRC code. The CRC
polynomial used is X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1
The CRC sequence includes all bits including the Start of Frame bit,
the arbitration field, the control field and through the end of the data
field.

o CRC delimiter – The CRC delimiter is a recessive (logic 1) bit.

• ACK field – The Acknowledge (ACK) field is two bits that include an ac-
knowledge slot and an acknowledge delimiter. During these two bits the
transmitter sends two recessive bits. Any receiving device that has correctly
received the frame will overwrite this bit with a dominant bit.

o ACK slot – The ACK slot is the time slot for other devices to
acknowledge the receipt of the frame by writing a dominant bit.

o ACK delimiter – The ACK delimiter is a recessive bit. Note that by
having the CRC delimiter and the AC delimiter be recessive, the ACK
slot will always be surrounded by recessive bits.

• End Of Frame – The end of the frame is marked with seven recessive bits.

A CAN node transmits a data frame to any and all interested receivers whenever
necessary by simply transmitting a message on the bus. This can be either some
prearranged event, like the closure of a switch contact, or periodically based on some
internal timer. Alternately, a receiving node can specifically request a data frame of a
particular type be sent out on the bus by issuing a Remote Frame with the message
identifier that matches the data frame that it is interested in.

A remote frame is formatted like a data frame but with three differences:

• The RTR bit is recessive to indicate this is a remote frame, not a data frame.

• There is NO data field.

• The data length code in the control field is ignored (it may not be set to 0, it
may be the length of the data frame that is being requested).

Extended CAN Version 2.0B adds an 18-bit extension on the message identifier while
maintaining 100% backward compatibility with standard CAN (CAN 2.0A and
previous versions). Recall that there are two types of CAN 2.0A controllers:

• Ones that can transmit and receive only version 2.0A messages (11-bit mes-
sage ID) and will issue an error on receiving a 2.0B message format.

475

Controller Area Network

• Ones that can transmit and receive 2.0A messages (11-bit message ID) and
will acknowledge 20.B messages (29-bit message ID) and ignore them.

So, it is possible for CAN 20.B controllers to work on a 2.0A CAN bus but there is a
possibility that the reverse will not work depending on the capability of the 2.0A
devices.

The differences between the standard format and the extended format are entirely in
the arbitration field of a data frame (and remote frame). The following diagram shows
the various fields and bits in a CAN 2.0B extended data frame.

Figure 12-8: Extended data frame

18 bit
extended

ID

RTR
bit

R1

R0

Start of
Frame

11-bit Identifier

Arbitration Field Control Field Data Field

Data Length
Code

R1

R0

Start of
Frame

11-bit Identifier

Arbitration Field

Control Field

Data Length
Code

IDE

SRR

Extended ID

RTR
bit

With the extended CAN frame message ID, essentially 20 bits are inserted after the
11-bit message ID in the arbitration field. Notice that the first two bits of the control
field in standard CAN format were reserved and set to the dominant state. Extended
CAN uses these reserved bits to indicate that this message is using an extended ID
frame format. The new bits introduced for the extended format are:

• SRR bit – Substitute Remote Request bit. This bit is set to recessive (logic 1).

• IDE bit – Extended Identification bit. This bit is set to recessive.

• 18-bit extended identification – These are the additional 18 bits that make up
the 29-bit message identifier in the extended format.

476

Designing Embedded Internet Devices

What this means is that if a receiving CAN node notices what it thinks are the two
reserved bits to be recessive, then it knows that this frame is really an extended frame
(so those bits then become the SRR and IDE bits). Also note that with the SRR (R0)
and IDE (R1) bits set to recessive, standard format frames are given priority over
extended format frames. We will discuss message priority in the next section.

CAN devices can also transmit error frames when errors are detected, overload frames when
a receiver requires additional time, or an interspace frame to separate sequential data or
remote frames. Details of these frames can be found in the Bosch CAN specification.

Priority and arbitration
When two or more CAN devices attempt to transmit at the same time, the collision
will be detected and resolved using Carrier Sense Multiple Access with Arbitration
on Message Priority (CSMA/AMP) protocol. What this means is that the message
with the highest priority will be transmitted while all messages of a lower priority
will stop. The priority of a message is determined by the message ID; lower numbers
have a higher priority. Here is how this works. Recall that all CAN devices are
connected to the bus in a wired-AND configuration and that the recessive state of the
CAN bus is a logic 1. Each node will transmit its 11-bit identifier on the bus, one bit
at a time starting with the most significant bit. While transmitting, the CAN node will
monitor the bus state to determine if it has successfully driven the bus to the proper
value. If one device is trying to write a logical 1 (recessive) while another is trying to
write a logical 0 (dominant) then the dominant state will have priority. The device(s)
writing the logical 1 will abort transmission until the bus goes idle again. This will
continue on each bit until the device with the lowest ID (the highest priority) is the
only device left transmitting on the bus.

For example, consider three CAN devices each trying to transmit messages:

• Device 1 – address 433 (decimal or 00110110001 binary)

• Device 2 – address 154 (00010011010)

• Device 3 – address 187 (00010111011)

Assuming all three see the bus is idle and begin transmitting at the same time, this is
how the arbitration works out.

All three devices will drive the bus to a dominant state for the start-of-frame (SOF)
and the two most significant bits of each message identifier. Each device will monitor
the bus and determine success. When they write bit 8 of the message ID, the device
writing message ID 433 will notice that the bus is in the dominant state when it was
trying to let it be recessive, so it will assume a collision and give up for now. The
remaining devices will continue writing bits until bit 5, then the device writing
message ID 187 will notice a collision and abort transmission. This leaves the device

477

Controller Area Network

writing message ID 154 remaining. It will continue writing bits on the bus until
complete or an error is detected. Notice that this method of arbitration will always
cause the lowest numerical value message ID to have priority. This same method of
bit-wise arbitration and prioritization applies to the 18-bit extension in the extended
format as well.

Error detection and handling
CAN devices implement multiple error-detection schemes. As previously mentioned,
message frames contain a CRC value for verifying the validity of the data received. If
a receiver determines an error as a result of examining a frame and its CRC, then it
does not acknowledge receipt of the message. If no device acknowledges a message
frame, then the transmitter knows that there was an error in transmission.

Each transmitter also performs a frame check while transmitting a message. If a
transmitter detects a dominant bus state for any of these bits, then the transmitter
aborts and generates a frame error:

• CRC delimiter
• Acknowledge delimiter
• End of frame
• Interframe space

Figure 12-9. Device arbitration example.

Bus
Idle

SOF

10 9 8 9 6 5 5 4 3 1 0

RTR 11-bit ID

433

154

187

First
Collision

Second
Collision

478

Designing Embedded Internet Devices

1 Bit Time

Synchronization
Segment

1 time quantum

Propagation
Segment

1…8 time quanta

Phase Buffer
Segment 1

1...8 time quanta

Phase Buffer
Segment 2

1…8 time quanta

Sample Point

Each transmitter also performs bit monitoring except when checking the arbitration
field. If it detects the wrong bit on the bus (different from what it was trying to
transmit) then it aborts transmission and generates an error frame. After generating an
error frame, a CAN device tries to transmit the message frame again.

Synchronization and bit stuffing
With CAN, the data transmission is synchronous. Each node has its own internal
clock (oscillator) but it needs to synchronize itself with the data on the bus. Each
node is hard synchronized at the beginning of each message by the falling edge of the
start-of-frame bit. Additionally, each CAN node is resynchronized on each recessive-
dominant falling edge in a message. Bit stuffing allows for the CAN devices on a bus
to resynchronize with the data in the event that the data being transmitted contains
long consecutive runs of the same value. What happens is that a CAN transmitter will
detect five consecutive bits of any single value and insert one bit of the opposite
polarity. The CAN receiver will do the opposite; whenever it sees five consecutive
bits of the same value it will remove the next bit from the message frame. Bit stuffing
ensures that there are enough recessive-dominant falling edges in the data stream to
keep the other nodes on the bus in synchronization.

Bit timing
The bit rate of data transmission on the CAN bus is the number of bits per second
that are transmitted. The nominal bit time is the time required to put one bit on the
bus (1/bit rate). A CAN controller can have this bit time programmed to various times
for different bitrates. The CAN specification partitions this bit time into four time
segments. Each of these time segments is an integer number of time quanta long (the
exact number varies depending on the bitrate). A time quantum is a unit of time that
is derived from the transmitter clock frequency (the CAN controller CPU oscillator).
A time quantum is some fraction of the transmitter clock as determined by a bit rate
prescaler. Each bit has a minimum of eight time quanta and a maximum of 25. The
four segments of a bit time are shown below:

Figure 12-10: Bit time

479

Controller Area Network

• Synchronization Segment – This is the time required to synchronize each node
to the bus. This segment is always 1 time quantum.

• Propagation Segment – This is the part of a bit that is used to compensate for
the physical delay on the network. This segment can vary from 1 to 8 time
quanta.

• Phase Buffer Segment 1 – This is used to compensate for edge phase errors
before the sample point. This part of the bit time can vary from 1 to 8 time
quanta.

• Phase Buffer Segment 2 – This is used to compensate for edge phase errors
after the sample point. This part of the bit time can vary from 1 to 8 time quanta.
Phase Buffer Segment 2 is less than or equal to Phase Buffer Segment 1.

The sample point between the phase buffer segments is the point in time when the
CAN node samples the bus and interprets the value of that particular bit.

The bit time and therefore the bit rate is determined by programming the width of the
time quantum and the number of time quanta in the various segments.

It may be necessary to resynchronize the CAN receiver clock based on a recessive to
dominant falling edge. To do this, the phase buffer segment 1 may be lengthened or
the phase buffer segment 2 may be shortened. The amount of shortening or
lengthening is called the resynchronization jump width and is programmable and
must be greater than 0 and less than or equal to the smaller of either 4 time quanta or
Phase Buffer Segment 1.

All of this gets a bit confusing, so perhaps an example will help. Actually, we need an
example as we will need to figure out these segment values when programming TINI.
We will use some information specific to TINI and we will revisit this topic again
when we start programming. The TINI microcontroller has an 18.432-MHz clock.
This is the clock that the CAN controller that is built into the Dallas Semiconductor’s
80C360 CPU uses. Let’s assume we are interested in transmitting data on the CAN
bus at 125,000 bits/second. How long is a time quantum and how many time quanta
would we need to program the various segments to?

First we find the desired bit rate:

bit time = 1/bit rate = 1/125000 bps (bits per second) = 8 µs (microseconds)

Then we find the clock time of the CPU:

clock time = 1/clock frequency = 1/18.432 MHz = 0.05425 µs

Since the time quantum is an integer multiple of the clock time, we need to find some
bit rate prescaler to give us a reasonable value. We could pick a time quantum equal

480

Designing Embedded Internet Devices

to the clock time but we would need 147 time quanta to make up a bit and that
wouldn’t do at all since a bit time has a maximum of 25 time quanta. The idea in
picking a reasonable bit rate prescaler is in finding one that results in a bit time that
is between 8 and 25 time quanta in length. Let’s pick 7 (I know that will work, but
you can try others if you like).

bit rate prescaler = 7

Then we compute a time quantum:

time quantum = bit rate prescaler / clock = 7 / 18.432 MHz = 0.379 µs

Once we have a time quantum, we need to figure out how many of them are needed
to make a bit time:

N time quanta = bit time / time quanta = 8 µs / 0.379 µs = 21.108

But since we need to use integer multiples of time quanta, we will need 21 time quanta to
make a bit. That is good as it is ≥ 8 and ≤ 25 and that’s what we need. Now we allocate
these 21 time quanta using the requirements of the bit time:

Synchronization is always 1 time quantum.
Propagation Segment can vary from 1 to 8 time quanta.
Phase Buffer Segment 1 can vary from 1 to 8 time quanta.
Phase Buffer Segment 2 can vary from 1 to 8 time quanta and is < Phase Buffer
Segment 1.

Let’s pick these, although there are a number of possibilities that all add up to 21 that
will work:

Synchronization = 1
Propagation Segment = 5
Phase Buffer Segment 1 = 8
Phase Buffer Segment 2 = 7

The exact allocation of time quanta to the various segments may vary a bit. In reality,
on TINI the Synchronization, Propagation Segment and Phase Buffer Segment 1 are
treated as a single unit that can vary from 2 to 16.

All that’s left is to pick a synchronization jump width. This is not calculated, just
picked; 1 or 2 is a good number. It needs to be ≥ 1 and ≤ the smaller of (4, Phase
Buffer Segment 1).

So, how good are these numbers? Let’s find the error.

Actual bit time = 21 time quanta x 0.379 µs = 7.959 µs (we needed 8 µs)

Actual bit rate = 1 / Actual bit time = 1/ 7.959 µs = 125,644 bits/second.

481

Controller Area Network

Bit rate error = (Actual Bit Rate – Desired Bit Rate) / Desired Bit Rate
= (125644 - 125000)/125000 = 0.5%

OK, 0.5% error, not bad. Actually that’s the limit as the CAN specification lists that
this needs to be within 0.5% tolerance.

You can work through other transmission speeds using a similar methodology. Note
that with some clock speeds you cannot get less than 0.5% error so you will need to
use some other speed or use a different clock. This is the case with TINI. With its
18.432-MHz clock, you cannot get 1-Mbit CAN communication. The Bosch
document “The Configuration of the CAN Bit Timing”2 may also prove to be helpful.

Physical layers and media
That about does it for the inner workings of CAN. One last topic we need to examine
is the hardware needed for a proper CAN bus implementation. We will do this with a
simple CAN bus like the one shown here, where we will be using TINI as a CAN
sensor (transmitter) and as a CAN actuator (receiver).

The Bosch specification does not include any physical layer details like the media,
connectors, pinout, etc. It is possible to implement the CAN protocol on a variety of
media like twisted-pair wires, optical fiber or even power lines. The ISO specification
does provide details for implementing CAN on twisted pair.

The number of devices on a CAN network is theoretically unlimited (remember, that
message ID is an ID on the data, not the device, so multiple nodes can be sending
messages using the same message ID, which will not limit the network size). The real
limit, however, is the signal drive capability of the transmitter, which limits the
practical number of nodes to around 30–90 depending on the devices.

The CAN network cable length is dependent on the data rate and the media; 1 Mbit/
second is guaranteed by the CAN specification if you are using twisted-pair cabling
(like CAT 3 or better network cable) under 40 meters in length. Some typical CAN
bus maximum lengths are listed in Table 12-1.

Table 12-1: CAN bus length

Data Rate Maximum Length

1 Mbps 40 meters
500 Kbps 100 meters
250 Kbps 200 meters
125 Kbps 500 meters
10 Kbps 6 kilometers

2 The Configuration of the CAN Bit Timing – http://www.can.bosch.com/docu/
CiA99Paper.pdf

482

Designing Embedded Internet Devices

The ISO specification also specified terminating resistors of 120 Ω on each end of the
CAN bus to cut down on reflections, which can increase the error rate on the bus, but
these are often unnecessary at low data rates (< 125 kbps).

Pin 1 unused
Pin 2 CAN_L
Pin 3 Ground
Pin 4 unused
Pin 5 Shield
Pin 6 Ground
Pin 7 CAN_H
Pin 8 reserved
Pin 9 Power

1

2

3

4

5

6

7

8

9

1

2

3
4

5 1 2

3 4

Pin 1 Shield
Pin 2 Power
Pin 3 Ground
Pin 4 CAN_H
Pin 5 CAN_L

Pin 1 Power
Pin 2 Ground
Pin 3 CAN_H
Pin 4 CAN_L

5 pin MINI quick
disconnect

4 pin MICRO quick
disconnect

9 pin D
subminiature

Figure 12-11: Some common CAN connectors

There is no standard for the CAN connector. Each higher layer protocol (we talk
about them in the next section) defines its own. Some common connectors include
the 9-pin D-subminiature connector (like what is common on PC serial ports), the 5-
pin mini quick disconnect, the 4-pin micro quick disconnect (or quick change) and
screw-terminals.

Higher-layer protocols
So far we have only talked about the lower-layer details of CAN. For CAN to be used
in any complex applications, it is necessary to work with one of a number of higher-
layer protocol details such as:

• Message ID assignment

• Network management

• Message ID meaning

• Method of exchanging data (assigning meaning to data)

While we won’t go into any detail on higher-layer protocols, as the TINI API
does not implement any, there are a few popular protocols based on CAN, listed
in Table 12-2.

483

Controller Area Network

Table 12-2: Higher-layer protocols

SDS SDS = Smart Distributed System. Developed by Honeywell for
industrial automation systems.
http://content.honeywell.com/sensing/prodinfo/sds/

DeviceNet Developed by Allen Bradley for industrial control devices. Now the
responsibility of the OpenDeviceNetVendors Association (ODVA).
http://www.odva.org/

CAL CAL = CAN Application Layer. CAL is an application-independent
standard application layer developed by the CAN-in-Automation
(CiA) users group.
http://www.can-cia.de/

CANOpen CANopen uses the CAN protocol for communication but builds
on this by adding standardized communication mechanisms and
device functionality.
http://www.can-cia.de/

How TINI Does CAN
The TINI hardware and TINI API effectively implement CAN 2.0B. In fact the TINI
CPU, the 80C390, has two on-board CAN controllers, allowing the possibility for
TINI to be used on two separate CAN networks or as a smart bridge connecting two
CAN networks.

First we will look at how the TINI CPU supports CAN, and then we will discuss the
necessary hardware to support CAN on the TINI stick. We’ll examine the TINI API and
the CAN classes before we end this chapter with a few examples.

80C390 CAN controllers
The DS80C3903 microcontroller incorporates two CAN controllers that are compliant
with the CAN 2.0B specification. These CAN controllers support both 11-bit
standard or 29-bit extended message identifiers and support 15 message centers for
each controller. Global controls and status registers in each CAN unit allow the
microcontroller to evaluate error messages, generate interrupts, locate and validate
new data, establish the CAN Bus timing, establish identification mask bits, and verify
the source of individual messages. The specifics of the CAN controller are discussed
in the DS80C390 datasheet and the DS80C390 User’s Guide Supplement4.

3 80C390 Datasheet – http://pdfserv.maxim-ic.com/arpdf/DS80C390.pdf
4 90C390 User’s Guide Supplement – http://pdfserv.maxim-ic.com/arpdf/Design/

80c390_userguide.pdf

484

Designing Embedded Internet Devices

Message centers
Each CAN controller evaluates CAN bus activity and determines if an incoming
message should be loaded into one of the 15 message centers. A message center is an
internal SRAM segment that is used for storing incoming and outgoing CAN
message frames. All CAN data is sent and received through one of these message
centers.

The first 14 of the 15 message centers are programmable in either transmit or receive
modes. All message centers support media arbitration fields for incoming message
verification. Acceptance of an incoming message is determined by comparing the
message ID field to an arbitration value assigned to each message center. If the bits
match the arbitration value, then the message is placed in the message center. If the
bits don’t match or there is an error, then the message is simply discarded. Each
message center also supports an optional bit-masking feature that restricts arbitration
to specific bits. Each incoming message is tested to the arbitration value (and subject
to the bit mask if enabled) in each message center in sequence, 1-15. The first
message center that passes the test will receive the message. Message centers 1-14
use a common bit mask and unique arbitration values.

Each message center can establish direction, identification mode (standard or
extended), data field size, data status, automatic remote frame request and
acknowledgment, and perform masked or nonmasked identification acceptance
testing. The first 14 message centers can support four different operations:

• Transmitting a data message

• Receiving a data message

• Transmitting a remote frame

• Receiving a remote framer request

The 15th message center is receive only. It has a buffered FIFO arrangement so that
up to two messages can be received without being lost. The first message received by
message center 15 is stored in the message center. If the next message is received
before the previous message has been read by the microcontroller then the second
message received is buffered. Once the first message received is read, then the second
message is automatically moved to the message center. Message center 15 also has its
own bit mask rather than using the global bit mask.

TINI CAN hardware
The two CAN controllers on the TINI stick are called CAN0 and CAN1. They are
identical except they use different pins on the CPU chip.

485

Controller Area Network

CAN0
CAN0 uses pins 20 (CAN0 receive) and 21 (CAN0 transmit) of the 80C390 and pins
10 (CAN0 transmit) and 11 (CAN0 receive) of the TINI SIMM connector. The Dallas
Semiconductor E10 and E20 socketboards have areas for the CAN transceiver,
terminator and connector header.

Figure 12-12: The CAN ports on the 80C390 CPU

Figure 12-13: CAN0

486

Designing Embedded Internet Devices

You will need a CAN transceiver for each of CAN0 and CAN1 if you intend to use
both CAN ports. Dallas Semiconductor specifies the Philips PCA82C250 CAN
controller5 interface. Texas Instruments offers the Unitrode UC5350 Can Transceiver6

and has declared it “pin compatible with PCA82C250 and DeviceNet, SDS.” The
schematic (Figure 12-13) shows an optional CAN bus terminator (a 120Ω resistor) that
can be included on the bus with a jumper.

Figure 12-14:
CAN0 on socketboard

Figure 12-15:
CAN1 on Protoboard

5 PCA82C250 datasheet – http://www.semiconductors.philips.com/pip/PCA82C250U/N4
6 UC5350 datasheet – http://focus.ti.com/docs/prod/folders/print/uc5350.html

CAN1
CAN1 uses pins 18 (CAN1 transmit) and 19 (CAN1 receive) of the 80C390 and pins
14 (CAN1 transmit) and 15 (CAN1 receive) of the TINI SIMM connector. CAN1
shares the same CPU pins as serial1 and the 1-Wire port. To use CAN1 you will need
to disable the 1-Wire port by tying the EN2480 pin on the SIMM (pin 26 on the 72
pin SIM) to ground.

487

Controller Area Network

The CAN classes
Dallas Semiconductor provides several classes in the TINI API for low-level
configuration of the CAN controllers and access to CAN message frame data. The
three classes of interest are: com.dalsemi.comm.CanBus,
com.dalsemi.comm.CanFrame and com.dalsemi.comm.CanBusException. Shown
here is a diagram of the com.dalsemi.comm package.

Figure 12-16: CAN API

javax.comm

com .dalsemi .com java.lang

CanBus

CanFrame

InternalComPortLCDPort

java.io
DebugOutputStream

LCDOutputStream

SerialOutputStream

NullOutputStream

SerialInputStream

NullInputStream

CommPort

SerialPort
TINISerialPort

CanBusException

Object

Throwable

Exception

CommDriver TINICommDriver

OutputStream

InputStream

CanBus
The com.dalsemi.comm.CanBus class provides methods for configuring the CAN
controllers, sending and receiving CAN messages, and configuration of the CAN
message centers. Some of the classes we will need to use:

CanFrame
Data frames are sent and received as CanFrame class. Instances of this class contain
all of the components of a CAN frame (message ID and data) as well as an indication
of the ID length (extended or standard), the data length (number of bytes), which
message center received the frame and if this is a Remote Frame Request or a Data
Frame.

488

Designing Embedded Internet Devices

CanBusException
All CanBus operations throw a CanBusException. Typically this is an error on the bus
(like no Acknowledgement received) or an error in configuring the CanBus.

Here is a rough outline of a CAN program operation:

• Select and reset the CAN controller

• Set the CAN controller operating parameters

• Enable the CAN controller

• Configure the message centers

• Create frame objects

• Stuff data into frames

• Send frames

• Listen for incoming frames

• Read frame data and take action

• Loop

• Close CAN controller

Another word on bit timing
TINI allows for direct access to the CAN controller time segments. The
synchronization segment is always 1 time quantum so this is not programmable; TINI
combines the propagation segment and the phase buffer 1 segment and calls this
TSEG1 (time segment 1) and leaves phase buffer 2 segment programmable as
TSEG2. This means that the CAN baud rate is:

)211(

432.18

TSEGTSEGprescalerratebaud

MHz
ratebaud

++⋅
=

Figure 12-17: Bit timing

1 Bit Time

SYNCH
1 time quantum

TSEG1
2...16 time quanta

TSEG 2
1…8 time quanta

Sample Point

489

Controller Area Network

To set TINI to a particular baud rate (let’s say 50 kbps) you would use the following
methods:

setBaudRatePrescaler(41);
setTSEG1(5);
setTSEG2(3);
setSynchronizationJumpWidth(1);

Some of the convenient possible baud rates are shown in Table 12-3.

Table 12-3: TINI CAN Baud Rates

Baud Rate Prescaler Time Quanta TSEG1 TSEG2 Actual Baud Rate
(bits per µ(s) Baud Rate Error (%)
second) (bits per

second)

10,000 bps 123 6.673 9 5 9,990 0.1%
20,000 71 3.851 5 7 19,969 0.15%
50,000 41 2.224 3 5 49,951 0.1%

125,000 7 0.3798 13 7 125,387 0.3%
250,000 4 0.217 9 8 256,000 2.4%
500,000 2 0.108 11 6 512,000 2.4%

1,000,000 1 0.0542 11 6 1,024,000 2.4%
11 7 970,010 2.9%

Notice that at the common baud rates above 125,000 bits per second, the error is
greater than 0.5%. This means that this will not work with standard CAN devices at
these speeds. If you are only using TINI CAN devices (like multiple TINI modules
talking using CAN) then you can use any baud rate that you like, including 512,000
bits per second. To get TINI CAN to run at standard speeds greater than 125,000
kbps, you will need to change the TINI crystal oscillator. 18.0 MHz is common and is
also convenient for these speeds, as shown in Table 12-4.

Table 12-4: Modified TINI CAN baud rates

Baud Rate Prescaler Time Quanta TSEG1 TSEG2 Actual Baud Rate
(bits per µ(s) Baud Rate Error (%)
second) (bits per

second)

125,000 8 0.444 11 6 125,000 0
500,000 4 0.222 11 6 250,000 0

1,000,000 1 0.055 11 6 1,000,000 0

490

Designing Embedded Internet Devices

Notice that an 18.0-MHz clock is very convenient for CAN timing. By keeping the
sum of all the bit time segments equal to 18, then the actual baud rates are simply the
inverse of the baudrate prescaler, which reduces the error from the clock to zero:

prescalerratebaud

MHz

TSEGTSEGprescalerratebaud

MHz
ratebaud

1

)211(

432.18 =
++⋅

=

However, changing the TINI clock to a clock that is 2.3% slower will change other
things in TINI that use the crystal oscillator, like the serial ports and the sleep times.
You will need to compensate for this.

A CAN bus monitor
This is a very simple demonstration on communicating using a CAN bus. We simply
connect two TINIs as CAN devices using a short length of twisted-pair wire. We will
be running a simple CAN activity monitor on one TINI and a simple CAN message
sender on the other. This is just to get our feet wet with the TINI CAN API. The
program is well commented, so there is not much need to explain it line by line. But
there are a few things that are worth noting:

• The CAN bus controller needs to be configured before the
enableController() method is invoked. Any changes to the CAN controller
(like timing parameters) after it has been enabled will be ignored.

• The CAN message ID global mask needs to be set (set11BitGlobalIDMask
or set28BitGlobalIDMask) and enabled
(setMessageCenterMessageIDMaskEnable) for each message center or each
CAN message center you wish to use needs to be configured to use an
arbitration ID (set29BitMessageCenterArbitrationID or
set11BitMessageCenterArbitrationID).

CAN bus

TINI

Bus
Terminator

TINI

CAN Frame
Monitor

CAN Test Data
Sender

Figure 12-18: A TINI CAN network

491

Controller Area Network

Listing 12-1: CanBusViewer7

import com.dalsemi.comm.*;
import com.dalsemi.system.*;

public class CanBusViewer {

 static CanBus myCanBus;
 static int KILL_ID=0x666;

 // utility method for making the output look nice
 static String justifytext(String str, int dir, int width) {
 String padding = “ “;
 if (dir<0) { // left
 str = str + padding.substring(0,width);
 }
 if (dir>0) { // right
 str = padding.substring(0,width-str.length()) + str;
 }
 return(str.substring(0,width));
 }

 static void main(String args[])
 {
 System.out.println(“CAN Bus Viewer”);
 System.out.println(“Configuring CANBUS0 for receiving.”);
 try {

// Create a new CanBus object
myCanBus = new CanBus(CanBus.CANBUS0);

// Set up the CANBUS speed (125 Kbps)
myCanBus.setBaudRatePrescaler(7);
myCanBus.setTSEG1(13);
myCanBus.setTSEG2(7);
myCanBus.setSynchronizationJumpWidth(1);

myCanBus.enableController();

System.out.println(“Enabling Message Center 1.”);
myCanBus.setMessageCenterRXMode(1);
myCanBus.setMessageCenterRXMode(2);
myCanBus.setMessageCenterRXMode(3);
myCanBus.setMessageCenterRXMode(4);

System.out.println(“Setting up filtering.”);

7 The ByteUtils class used in the program is provided in Appendix B. The class provides a
number of methods that are handy for dealing with bytes. Here we use the toHexString() method.

492

Designing Embedded Internet Devices

// filtering
myCanBus.setMessageCenterMessageIDMaskEnable(1, false);
myCanBus.setMessageCenterMessageIDMaskEnable(2, false);
myCanBus.setMessageCenterMessageIDMaskEnable(3, true);
myCanBus.setMessageCenterMessageIDMaskEnable(4, true);

// Look for all addresses
myCanBus.set11BitGlobalIDMask(0xFFFFFFFF);
myCanBus.set29BitGlobalIDMask(0xFFFFFFFF);

// need this so that MC1 will look for 29 bit addresses
myCanBus.set11BitMessageCenterArbitrationID(1, 0x00);
myCanBus.set11BitMessageCenterArbitrationID(2, 0x222);
myCanBus.set29BitMessageCenterArbitrationID(3, 0x01432520);
myCanBus.set11BitMessageCenterArbitrationID(4, 0x00);

// Enable Message Centers
myCanBus.enableMessageCenter(1);
myCanBus.enableMessageCenter(2);
myCanBus.enableMessageCenter(3);
myCanBus.enableMessageCenter(4);

 }
 catch(Exception e) {
 System.out.println(e);
 }

System.out.println(“Monitoring CANBUS0”);
CanFrame myFrame = new CanFrame();

byte[] data = new byte[8];
boolean done=false; // loop till done
int loops=0; // loops done so far
int maxloops=20; // max loops allowed

while(!done) {
 loops++;

 try {
 myCanBus.receive(myFrame);
 }
 catch (Exception e) {
 System.out.println(e);
 }

 if (myFrame.getID()==0) {
 loops—;
 continue;
 }

System.out.print(“Frame “);
System.out.print(justifytext(Integer.toString(loops)+”,” , 1, 3));

493

Controller Area Network

System.out.print(“ ID 0x”);
System.out.print(

justifytext(Integer.toHexString(myFrame.getID())+”,”,-1,8));
if (myFrame.getExtendedID()) {

 System.out.print(“ extended”);
} else {

 System.out.print(“ standard”);
}
System.out.print(“, MC “ + myFrame.getMessageCenter());
if (myFrame.getRemoteFrameRequest()) {

 System.out.print(“, Remote Frame Request”);
}
System.out.print(“ “);

if (myFrame.getID()==KILL_ID) {
 System.out.print(“, kill frame”);
 done=true;

}
 else {
 System.out.print(“, “ + myFrame.getLength());
 System.out.print(“ bytes: “);
 System.out.print(ByteUtils.toHexString(myFrame.getData(),
 0, myFrame.getLength(), ‘ ‘));

}

System.out.println();

if (loops>=maxloops) done=true;
 }

 try {
myCanBus.close();

 }
 catch(Exception e) {

System.out.println(“Error in closing...”);
System.out.println(e);

 }

 System.exit(0);
 }
}

You can compile and run CanBusViewer.tini on the TINI controller that will be the
receiver for our simple CAN test (it doesn’t matter which of the two TINIs).

Notice how to set the CAN speed for this device:
myCanBus.setBaudRatePrescaler(7);
myCanBus.setTSEG1(13);
myCanBus.setTSEG2(7);
myCanBus.setSynchronizationJumpWidth(1);

494

Designing Embedded Internet Devices

The device that is sending frames will need to use the same settings. To change the
speed at which your CAN bus monitor (and any TINI CAN device) communicates,
you will need to set these values as a set. Refer to Table 12-3 for different baud rates
(the Synchronization Jump Width will be 1 for all of these speeds). After the baud
rate is set we can enable the CAN controller:
myCanBus.enableController();

We enable the global masks to let the CAN processor accept all 11-bit and all 29-bit
message IDs:
myCanBus.set11BitGlobalIDMask(0xFFFF);
myCanBus.set29BitGlobalIDMask(0xFFFFFFFF);

We then configure four message centers for receiving frames. First, each is set in the
receive (RX) mode. Then different filters are configured. Finally, each message
center is enabled. All changes in the arbitration ID and mask enable must be done
when the message center is not enabled.

Here message center 1 is configured so that an incoming frame ID must be an 11-bit
ID frame and match an arbitration ID of 0x00. Message masking is disabled so the
frame ID must match the arbitration ID.
myCanBus.setMessageCenterRXMode(1);
myCanBus.setMessageCenterMessageIDMaskEnable(1, false);
myCanBus.set11BitMessageCenterArbitrationID(1, 0x00);
myCanBus.enableMessageCenter(1);

Here message center 2 is configured so that an incoming frame ID must be an 11-bit
ID frame and match an arbitration ID 0x22.
myCanBus.setMessageCenterRXMode(2);
myCanBus.setMessageCenterMessageIDMaskEnable(2, false);
myCanBus.set11BitMessageCenterArbitrationID(2, 0x222);
myCanBus.enableMessageCenter(2);

Here message center 3 is configured so that an incoming frame ID must be a 29-bit
ID frame and match the arbitration ID of 0x01432520. But, since masking is enabled
and the global mask is set to 0xFFFFFFFF (match all bits), then this message center
will receive all 29-bit ID frames (regardless of the arbitration ID).
myCanBus.setMessageCenterRXMode(3);
myCanBus.setMessageCenterMessageIDMaskEnable(3, true);
myCanBus.set29BitMessageCenterArbitrationID(3, 0x01432520);
myCanBus.enableMessageCenter(3);

Here message center 4 is configured so that an incoming frame ID must be an 11-bit
ID frame and match the arbitration ID of 0x000. But, since masking is enabled and
the global mask is set to 0x0FFF (match all bits), then this message center will
receive all 29-bit ID frames (regardless of the arbitration ID).

495

Controller Area Network

myCanBus.setMessageCenterRXMode(4);
myCanBus.setMessageCenterMessageIDMaskEnable(4, true);
myCanBus.set11BitMessageCenterArbitrationID(4, 0x00);
myCanBus.enableMessageCenter(4);

Incoming frames are processed in a loop. Each frame is received with:
myCanBus.receive(myFrame);

We then take apart the frame using various methods in the CanFrame class and
display this information so we can see what is going on.

Compile CanBusViewer.java:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar -d ..\bin
CanBusViewer.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\CanBusViewer.tini
-d %TINI_HOME%\bin\tini.db

Once this program is up and running on TINI, then next we need to send data out to
the CAN bus. We will use the next simple program to do just that. The data sent is
nothing meaningful (except that the first byte indicates the number of the frame, so
we can see which frames made it to the CAN monitor program), and we use a
number of different methods for sending CAN frames so we can see how they work
and what the differences are.

The program is rather obvious in what it does, but there are a few things here we
should also note.

• We try 10 methods or variations on methods from the
com.dalsemi.comm.CanBus class to send frames on the CAN bus. Some will
be successful and some will not. You should carefully examine the program
and the program output so that you see which CAN frames were generated
with which methods.

• Each test is in its own try/catch block so we can see the error messages from
each attempt and all 10 tests will be executed even if previous methods
throw an exception.

Listing 12-2: CanSendTest

import com.dalsemi.comm.*;
import com.dalsemi.system.*;

496

Designing Embedded Internet Devices

public class CanSendTest {

// We store our CAN messages is the data array
static CanBus myCanBus;
static CanFrame myFrame1 = new CanFrame();
static int delay = 100;

 static void main(String args[])
 {
 System.out.println(“CAN SendTest”);
 try {

// Create a new CanBus object
myCanBus = new CanBus(CanBus.CANBUS0);

// Set up the CANBUS speed (125 Kbps)
myCanBus.setBaudRatePrescaler(7);
myCanBus.setTSEG1(13);
myCanBus.setTSEG2(7);
myCanBus.setSynchronizationJumpWidth(1);
myCanBus.setTransmitQueueLimit(1);
myCanBus.enableController();

// Set up messagecenter 1
myCanBus.setMessageCenterTXMode(1);
myCanBus.enableMessageCenter(1);

 }
 catch(Exception e) {
 System.out.println(e);
 }

 // just some data for a frame to send
 byte[] data= { 0x00,0x03,0x01,0x04,0x01,0x05,0x09,0x02 };

 try {
System.out.println(“ 1: sendDataFrame, standard, ID 0x0432”);
data[0] = (byte) 0x01;
myCanBus.sendDataFrame(0x0432, false, data);

 }
 catch(Exception e) { System.out.println(e); }
 TINIOS.sleepProcess(delay);

 try {
System.out.println(“ 2: sendDataFrame, extended, ID 0x01432520”);
data[0] = (byte) 0x02;
myCanBus.sendDataFrame(0x01432520, true, data);

 }
 catch(Exception e) { System.out.println(e); }
 TINIOS.sleepProcess(delay);

497

Controller Area Network

 try {
System.out.println(“ 3: sendFrame, standard, ID 0x0543”);
data[0] = (byte) 0x03;
myFrame1.setData(data);
myFrame1.setLength(8);
myFrame1.setID(0x0543);
myFrame1.setMessageCenter(1);
myFrame1.setRemoteFrameRequest(false);
myFrame1.setExtendedID(false);
myCanBus.sendFrame(myFrame1);

 }
 catch(Exception e) { System.out.println(e); }
 TINIOS.sleepProcess(delay);

 try {
System.out.println(“ 4: sendFrame, standard, fewer bytes, ID 0x0543”);
data[0] = (byte) 0x04;
myFrame1.setData(data);
myFrame1.setLength(4);
myCanBus.sendFrame(myFrame1);

}
catch(Exception e) { System.out.println(e); }
TINIOS.sleepProcess(delay);

try {
System.out.println(“ 5: sendFrame, extended, ID 0x01543210”);
data[0] = (byte) 0x05;
myFrame1.setData(data);
myFrame1.setLength(8);
myFrame1.setID(0x01543210);
myFrame1.setExtendedID(true);
myCanBus.sendFrame(myFrame1);

 }
 catch(Exception e) { System.out.println(e); }
 TINIOS.sleepProcess(delay);

 try {
System.out.println(“ 6: sendRemoteFrameRequest, standard, ID 0x123”);
data[0] = (byte) 0x06;
myCanBus.sendRemoteFrameRequest(0x0123, false, data);

 }
 catch(Exception e) { System.out.println(e); }
 TINIOS.sleepProcess(delay);

 try {
System.out.println(“ 7: sendFrame, RTR, standard, ID 0x0543”);
data[0] = (byte) 0x07;
myFrame1.setData(data);
myFrame1.setLength(8);
myFrame1.setID(0x0543);

498

Designing Embedded Internet Devices

myFrame1.setMessageCenter(1);
myFrame1.setRemoteFrameRequest(true);
myFrame1.setExtendedID(false);
myCanBus.sendFrame(myFrame1);

 }
 catch(Exception e) { System.out.println(e); }
 TINIOS.sleepProcess(delay);

 try {
System.out.println(“ 8: sendDataFrame, standard, ID 0x0432”);
data[0] = (byte) 0x08;
myCanBus.sendDataFrame(0x0432, false, data);

 }
 catch(Exception e) { System.out.println(e); }
 TINIOS.sleepProcess(delay);

 try {
System.out.println(“ 9: autoAnswerRemoteFrameRequest,

standard, ID 0x0111”);
data[0] = (byte) 0x09;
myCanBus.autoAnswerRemoteFrameRequest(1, 0x0111, data);

 }
 catch(Exception e) { System.out.println(e); }
 TINIOS.sleepProcess(delay);

 try {
System.out.println(“10: sendDataFrame, standard, ID 0x0222”);
data[0] = (byte) 0x10;
myCanBus.sendDataFrame(0x0222, false, data);

 }
 catch(Exception e) { System.out.println(e); }
 TINIOS.sleepProcess(delay);

 try {
 myCanBus.close();
 }
 catch(Exception e) { System.out.println(e); }

 System.exit(0);
 }

}

Compile this program:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar -d ..\bin
CanSendTest.java
C:\> cd ..

499

Controller Area Network

C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency
-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\CanSendTest.tini
-d %TINI_HOME%\bin\tini.db

FTP CanSendTest.tini to your other TINI in our simple CAN network and run it.
Examine the output of these two programs (remember to start running
CanBusViewer.tini before you start running CanSendTest.tini or you might miss
a few frames). In this case there are a few differences between the versions of the
TINI API.

This is the output of CanSendTest running TINI API 1.02d
TINI1 /> java CanSendTest.tini
CAN SendTest
 1: sendDataFrame, standard, ID 0x0432
 2: sendDataFrame, extended, ID 0x01432520
 3: sendFrame, standard, ID 0x0543
 4: sendFrame, standard, fewer bytes, ID 0x0543
 5: sendFrame, extended, ID 0x01543210
 6: sendRemoteFrameRequest, standard, ID 0x123

com.dalsemi.comm.CanBusException: failed in send -920933632
 7: sendFrame, RTR, standard, ID 0x0543

com.dalsemi.comm.CanBusException: failed in send -920933888
 8: sendDataFrame, standard, ID 0x0432
 9: autoAnswerRemoteFrameRequest, standard, ID 0x0111

com.dalsemi.comm.CanBusException: Don’t use
CanBus:autoAnswerRemoteFrameRequest()

10: sendDataFrame, standard, ID 0x0222

Note at this point that we got an exception when using the following methods:
myCanBus.autoAnswerRemoteFrameRequest(1, 0x0111, data);

myCanBus.sendRemoteFrameRequest(0x0123, false, data);

myFrame1.setRemoteFrameRequest(true);
myCanBus.sendFrame(myFrame1);

Apparently these methods (anything to do with Remove Frame Requests) have not
been implemented in this version of the API.

Now let’s look at what the CanBusViewer.tini program received:
TINI2 /> java CanBusViewer.tini
CAN Bus Viewer
Configuring CANBUS0 for receiving.
Enabling Message Center 1.
Setting up filtering.

500

Designing Embedded Internet Devices

Monitoring CANBUS0
Frame 1, ID 0x432, standard, MC 4 , 8 bytes: 01 03 01 04 01 05 09 02
Frame 2, ID 0x1432520, extended, MC 3 , 8 bytes: 02 03 01 04 01 05 09 02
Frame 3, ID 0x543, standard, MC 4 , 8 bytes: 03 03 01 04 01 05 09 02
Frame 4, ID 0x543, standard, MC 4 , 4 bytes: 04 03 01 04
Frame 5, ID 0x1543210, extended, MC 3 , 8 bytes: 05 03 01 04 01 05 09 02
Frame 6, ID 0x432, standard, MC 4 , 8 bytes: 08 03 01 04 01 05 09 02
Frame 7, ID 0x222, standard, MC 2 , 8 bytes: 10 03 01 04 01 05 09 02

Isn’t that interesting! Our CAN test program sent 10 frames but our CAN monitor
only received 7 CAN frames. This is where the first byte in the data field comes in
handy. That byte corresponds to the number of the frame that was sent so we can see
which methods worked and which didn’t. To get the most benefit from this example,
you should examine the output of the CanSenTest program and compare this with the
output of the CanBusViewer program. Then go and find the section of code that
generated each frame in the CanSendTest program. Each frame was sent with a
slightly different method or different frame ID, so you can see how they appear on
the CAN bus and how the message centers filter the frames.

It is also worth noting two errors you are likely to see and what they mean
(particularly if you are NOT sending extended ID message frames and you are NOT
sending remote frame requests).

• If the receiver is not listening (as in there are no receivers) or the CAN bus is
not connected properly, you will get an exception indicating there was
NO_ACKNOWLEDGEMENT
com.dalsemi.comm.CanBusException: Send Failed: No Ack

• If the CAN transceiver is not connected properly to TINI or is not powered
then you will see an exception indicating that the CAN controller noticed that
the CAN bus was in a state other than what it expected:
com.dalsemi.comm.CanBusException: Send Failed: Bit Zero

Another CAN example
In this example, we will send real (meaningful) data across the CAN bus. We will be
connecting 1-Wire devices (a temp sensor and a switch) to each TINI so we need to
use CAN0 on both modules (recall that CAN1 uses the same CPU and SIMM pins as
the 1-Wire bus so we can’t access 1-Wire and CAN1 at the same time).

See Figure 12-19. What we will do is connect a 1-Wire thermometer (DS1820) to one
TINI and send that temperature in a CAN message to another TINI. On that other
TINI we will examine the temperature, compare it to some limit value and turn on or
off a 1-Wire switch (a DS2406) that controls some external device (in this case an
LED, but it could be all sorts of meaningful things).

501

Controller Area Network

A common circuit was used for both TINIs, containing a DS2401 (silicon serial
number), a DS1820 (thermometer) and a DS2406 (switch) connected to an LED. This
is the same board that was used in the 1-Wire chapter. By using the same board on
both TINIs we could send data either direction.

CAN bus

1-wire
bus

Serial
Number

Temperature
Sensor

TINI

1-wire
bus

Serial
Number

Switch

TINI

Bus
Terminator

Figure 12-19: TINI CAN sensor and actuator

Figure 12-20: TINI CAN Sensor and Actuator 1-Wire devices

502

Designing Embedded Internet Devices

A schematic for this is shown below.

Figure 12-21: TINI CAN Sensor and Actuator schematic

The original thought behind this was that we could send temperature frames from
TINI1 to TINI2 and we would use the serial numbers on each TINI as a means of
identification using Remote Frame Requests. Lacking a functioning API for
successful Remote Frame Requests, we abandon that idea but continued on with
sending temperature in a data frame.

Listed below are both the sending (CanTempSensor) and receiving
(CanTempControl) programs. They are very similar to the previous two programs
with the addition of the 1-Wire classes Switch and Thermometer that were
introduced in Chapter 10 and a helper library called ByteUtils8 for converting various
data types to byte arrays and back again so we can send them over a CAN network in
data frames.

Listing 12-3: CanTempSensor

import com.dalsemi.comm.*;
import com.dalsemi.system.*;

public class CanTempSensor {

static CanBus myCanBus;
static boolean gotone = false;

8 The ByteUtils class used in the program is provided in Appendix B, on the CD-ROM.

503

Controller Area Network

static CanFrame myFrame = new CanFrame();
static CanFrame myKillFrame = new CanFrame();

static int TEMP_ID = 0x432;
static int SWITCH_ID = 0x123;
static int KILL_ID = 0x666;

static byte[] buffer = { 0,0,0,0,0,0,0,0 };

static TemperatureFrame myTempFrame;
static SerialNumberFrame mySerialNumberFrame;

static void main(String args[])
{

 System.out.println(“CanTempSensor”);

 try {
// Create a new CanBus object
myCanBus = new CanBus(CanBus.CANBUS0);
myCanBus.resetController();

// Set up the CANBUS speed (125 Kbps)
myCanBus.setBaudRatePrescaler(7);
myCanBus.setTSEG1(13);
myCanBus.setTSEG2(7);
myCanBus.setSynchronizationJumpWidth(1);

// Connect the CabBus controller to the CanBus
myCanBus.enableController();

// Set up messagecenter 1
//myCanBus.setMessageCenterRXMode(1);
myCanBus.setMessageCenterTXMode(10);

// No filtering
//myCanBus.setMessageCenterMessageIDMaskEnable(1, true);
//myCanBus.setMessageCenterMessageIDMaskEnable(10, true);
// Look for all addresses
myCanBus.set11BitGlobalIDMask(0xFFFFFFFF);

//Enable the MC
//myCanBus.enableMessageCenter(1);
myCanBus.enableMessageCenter(10);

 }
 catch(Exception e) {

System.out.println(“Error in configuring CANBus”);
System.out.println(e);

 }

504

Designing Embedded Internet Devices

 System.out.println(“Finding 1-wire devices...”);

 // Configure a TemperatureFrame using a DS 1820 temp sensor
 myTempFrame = new TemperatureFrame(TEMP_ID);
 System.out.println(“Temp sensor: “ + myTempFrame.temperature.ROM_ID);

 // Snooze for 5 secs to give the receiver time to get started
 TINIOS.sleepProcess(3000);

 // Send 10 frames on the canbus

 for(int i=0; i<10; i++){
System.out.print(“Sending frame “ + i + “: “);

// read temp and stuff into frame
myTempFrame.updateTemperature();
System.out.println(myTempFrame.temperature.degC + “ C”);

 try {
// Send the frame out to the bus
//myCanBus.sendFrame(myTempFrame);
myCanBus.sendDataFrame(TEMP_ID, false, myTempFrame.data);

 }
 catch (Exception e) { System.out.println(e); }

 TINIOS.sleepProcess(2000);

 }

 try {
// Send out a kill frame
System.out.println(“Sending Kill Frame”);
myKillFrame.setID(KILL_ID);
myCanBus.sendFrame(myKillFrame);

myCanBus.close();
 }
 catch(Exception e) { System.out.println(e); }

 System.exit(0);
 }

}

Compile this:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar -d ..\bin
CanTempSensor.java

505

Controller Area Network

C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\CanTempSensor.tini
-d %TINI_HOME%\bin\tini.db

Listing 12-4: CanTempMonitor

import com.dalsemi.comm.*;
import com.dalsemi.system.*;

public class CanTempControl {

static CanBus myCanBus;
static CanFrame myFrame = new CanFrame();
static CanFrame myKillFrame = new CanFrame();

static int TEMP_ID = 0x432;
static int SWITCH_ID = 0x123;
static int KILL_ID = 0x666;

static byte[] buffer = { 0,0,0,0,0,0,0,0 };

static TemperatureFrame myTempFrame;
static SerialNumberFrame mySerialNumberFrame;

static void main(String args[])
{

System.out.println(“CanTempControl”);

try {
 // Create a new CanBus object

myCanBus = new CanBus(CanBus.CANBUS0);

// Set up the CANBUS speed (125 Kbps)
myCanBus.setBaudRatePrescaler(7);
myCanBus.setTSEG1(13);
myCanBus.setTSEG2(7);
myCanBus.setSynchronizationJumpWidth(1);

// Connect the CabBus controller to the CanBus
myCanBus.enableController();

// Set up messagecenter 1
myCanBus.setMessageCenterRXMode(1);
//myCanBus.setMessageCenterTXMode(10);

506

Designing Embedded Internet Devices

// No filtering
myCanBus.setMessageCenterMessageIDMaskEnable(1, true);

// Look for all addresses
myCanBus.set11BitGlobalIDMask(0xFFFFFFFF);

//Enable the MC
myCanBus.enableMessageCenter(1);

 }
 catch(Exception e) {

System.out.println(“Error in configuring CANBus”);
System.out.println(e);

 }

System.out.println(“Finding 1-wire devices...”);

// Configure a TemperatureFrame using a DS 1820 temp sensor
Switch mySwitch = new Switch();
System.out.println(“Switch: “ + mySwitch.ROM_ID);
mySwitch.turnOff();

myTempFrame = new TemperatureFrame();

// Send 10 frames on the canbus
System.out.println(“Listening...”);

boolean done=false;
int n=0;
while(done==false){

 try {
 // Check for incomming frames
 myCanBus.receive(myFrame);
 }
 catch (Exception e) { System.out.println(e); }

 if (myFrame.getID()==TEMP_ID) {
 System.out.print(“Received frame “ + n++ + “: “);

myTempFrame.setData(myFrame.getData());
System.out.print(myTempFrame.getTemperature() +

“ deg C”);
 if (myTempFrame.getTemperature()>= 30.0) {

mySwitch.turnOn();
System.out.print(“ switch ON”);

 }
 else {
 mySwitch.turnOff();
 }
 System.out.println();

507

Controller Area Network

 } else
 if (myFrame.getID()==KILL_ID) {

System.out.println(“Received a KillFrame, exiting...”);
done = true;

 }

 TINIOS.sleepProcess(2000);

 }

 try {
 myCanBus.close();
 mySwitch.turnOff();
 }
 catch (Exception e) { System.out.println(e); }

 System.exit(0);
 }

}

Compile this:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar
 -d ..\bin CanTempControl.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\CanTempControl.tini
-d %TINI_HOME%\bin\tini.db

Notice that we have also defined a message frame called a KillFrame. This is an
empty data frame that has the message ID of 0x666. The CanTempSensor sends this
frame when it is done. When the CanTempControl program, sees this frame, it knows
to perform an orderly exit.

FTP these two programs to your TINIs in your CAN network. Run the
CanTempControl.tini first and then start CanTempSensor.tini on the other TINI.
The output of each is shown below.
TINI1 /> java CanTempSensor.tini
CanTempSensor
Finding 1-wire devices...
Temp sensor: 700000004B8F1010
Sending frame 0: 27.5 C
Sending frame 1: 27.5 C
Sending frame 2: 29.0 C
Sending frame 3: 31.0 C

508

Designing Embedded Internet Devices

Sending frame 4: 31.5 C
Sending frame 5: 29.5 C
Sending frame 6: 28.5 C
Sending frame 7: 29.5 C
Sending frame 8: 30.5 C
Sending frame 9: 30.0 C
Sending Kill Frame

TINI2 /> java CanTempControl.tini
CanTempControl
Finding 1-wire devices...
Switch: CB00000017006112
Listening...
Received frame 0: 27.5 deg C
Received frame 1: 27.5 deg C
Received frame 2: 29.0 deg C
Received frame 3: 31.0 deg C switch ON
Received frame 4: 31.5 deg C switch ON
Received frame 5: 29.5 deg C
Received frame 6: 28.5 deg C
Received frame 7: 29.5 deg C
Received frame 8: 30.5 deg C switch ON
Received frame 9: 30.0 deg C switch ON
Received a KillFrame, exiting...

You can also watch the LED on the CanTempControl end and see that it does indeed
turn on and off depending on the value of the temperature received. We added a 2-
second delay between the sent data frames so there is enough time to actually cause a
temperature change.

Summary
In this chapter we have discussed the details of the Controller Area Network. We have
seen how to configure TINI to talk and listen to CAN data frames and we have
implemented a CAN sensor device (CanTempSensor) and a CAN actuator
(CanTempControl). To be compatible with most available CAN sensors, you will need
to implement some of the higher-layer protocol that these devices use.

References
1. A list of devices that use CAN,

http://www.omegas.co.uk/CAN/devices.htm

2. MicroCAN Project,
http://www.emicros.com/microcan/

3. CAN links,
http://www.chipcenter.com/circuitcellar/september99/C99r7.htm

509

Controller Area Network

4. CAN monitor,
http://www.precisielandbouw.nl/project/tini/CanMonitor.html

5. CAN Products List,
http://www.synergetic.com/catalog/can/

6. Caraca,
http://caraca.sourceforge.net/

7. CAN Specification,
http://www.infineon.com/us/micro/can/can2spec.pdf

8. CAN Protocol Introduction,
http://www.infineon.com/cmc_upload/migrated_files/document_files/
Application_Notes/CANPRES.pdf

9. Controller Area Network Basics,
http://www.microchip.com/Download/appnote/category/analog/can/
00713a.pdf

10. On-line Training Class – Introduction to CAN, Controller Area Network,
http://www.esacademy.com/faq/classes/CANIntro/

11. Home Automation Posts Concerning CAN,
http://ha.ro.nu/hypermail/index.html#51

12. The CAN Protocol,
http://www.kvaser.com/can/protocol/index.htm

13. CAN-based Higher Layer Protocols and Profiles,
http://www.ixxat.de/deutsch/knowhow/artikel/pdf/icc97.pdf

14. Motorola Semiconductor Application Note, AN1798
CAN Bit Timing Requirements,
http://e-www.motorola.com/brdata/PDFDB/docs/AN1798.pdf

[This is a blank page.]

13CHAPTER

Connecting TINI to an IP Network

511

In this chapter, we will examine various aspects of TCP/IP networking with TINI,
with a special emphasis on using a modem to connect TINI to the Internet via PPP.
We’ll begin with a very basic discussion on how to construct an IP network
consisting of a TINI and a PC, then work our way up to using TINI with a modem.
We will do examples in which a TINI dials out to an ISP, and behaves as a PPP client
on the Internet, as well as examples in which we use a PC to dial into a TINI, with
the TINI acting as a PPP server. Throughout this chapter, we will be assuming that
the primary Java application running on TINI is slush. If you aren’t familiar with
basic networking concepts, now would be a good time to review Chapter 2.
Reviewing the discussion of RS232 in Chapter 9 may also be helpful.

The ipconfig Command
The first step in putting a TINI stick on an IP network is to configure it with an IP
address. The IP address, and a variety of other network parameters, are set up using
the slush command, ipconfig. Let’s take a look at the command, and its command line
parameters.

The command is issued: ipconfig <options> where the options are as follows.

-a XX.XX.XX.XX

Sets the IP address of your TINI stick. You must use the –a option with the –m
option, which sets the subnet mask. For example,

ipconfig –a 192.168.0.5 –m 255.255.255.0

-n domain_name

Allows you to set the domain name of the network on which this stick will reside,
for example,

512

Designing Embedded Internet Devices

ipconfig –n stick.net.

-m XX.XX.XX.XX

Sets the subnet mask. This must be used with the –a option, for example,

ipconfig –a 192.168.0.5 –m 255.255.255.0

-g XX.XX.XX.XX

Sets the IP address of the gateway on your TINI network. A gateway, in this
context, is a machine with two network interfaces capable of performing IP
forwarding or routing between the two interfaces. For example, one network
interface on the gateway could be connected to a local network (containing
several TINI sticks) and the other could be attached to the Internet. The gateway,
in this case, would forward data from your local TINI network to the Internet.
Data destined for an address not on the local network is sent to the gateway,
which is sent out to the Internet. The gateway IP address must be on the same
subnet as the TINI’s IP address. For instance, if we stick with the example above,
and our TINI has an IP address of 192.168.0.5 with a subnet mask of
255.255.255.0, our gateway must be on the 192.168.0.X subnet. Thus, we could
make our gateway, 192.168.0.3

ipconfig –g 192.168.0.3

This tells our stick that, on its local network, the machine at 192.168.0.3 is the
device acting as gateway.

-p XX.XX.XX.XX

Sets the IP address of the primary dynamic name service (DNS) that your TINI
will use. The DNS translates textual domain names into IP addresses. For
instance, if you attempt to run the command ftp dalsemi.com on TINI, there must
be a DNS query performed that will translate dalsemi.com into an IP address.

ipconfig –p 192.168.20.80

This tells our stick that the machine at 192.168.20.80 is its primary DNS server.
Note that it could only get to this machine if there were a gateway on the local
network that provided access to the network on which 192.168.20.80 resides.

-s XX.XX.XX.XX

Sets the IP address of the secondary dynamic name system (DNS) that your TINI
will use. If the primary DNS does not respond to a query, the secondary DNS
will be queried.

ipconfig –p 192.168.20.88

513

Connecting TINI to an IP Network

-t dns_timeout

Sets the timeout, in milliseconds, for DNS queries. A value of 5000 translates
into 5 seconds, and establishes that TINI will wait 5 seconds after making a DNS
query before timing out, and giving up in the query. A value of 0 establishes a
backoff and retry protocol, that makes a second attempt after 2 seconds, then
waits 4 seconds and tries again, then waits 8 seconds and tries again, then tries
after 16 more seconds, before it gives up. For example,

ipconfig –t 5000

-d

Tells TINI to use dynamic host configuration protocol (DHCP) to obtain a
temporary, server assigned, IP address.

ipconfig –d

-r

Tells TINI to release the temporary, server assigned, IP address obtained via
dynamic host configuration protocol, and the –d option.

ipconfig –r

-x

Shows all of the current IP settings.
ipconfig –x

-h XX.XX.XX.XX

Sets the IP address of the mail host for use with the sendmail slush command.
This must be an address on the local network, or an address that can be reached
via a gateway on the network. For example,

ipconfig –h 192.168.0.12

-C

Commits the current network settings to flash memory. The network settings are
stored in the heap, which is in RAM. The RAM is nonvolatile, so your settings are
still stored on power down. However, there are times when you may want to clear
the heap, which can clear your network settings. Committing them to flash memory
allows you clear the heap and have TINI restore your settings on reboot. If, upon
reboot, you have settings in flash and on the heap that are different, the settings in
flash are written over those in the heap. You can only use the –C option once, and
then you have to erase bank 7 of the flash before you can use it again. That is, once
you’ve written settings to the flash, they have to be erased before you can write
different settings. You do this by reloading tini.tbin and slush.tbin.

ipconfig –C

514

Designing Embedded Internet Devices

-D

De-commits the settings previously committed to flash by the –C option. If you
commit your settings to flash, they will be restored at boot time, overwriting
whatever settings you may have previously had on the heap. If you no longer
want those settings restored at boot time, you use the –D option. After using –D,
your settings will stored on the heap, and the values stored in flash will be
ignored. Any previously committed data in flash remains there, so you still have
to erase the settings in flash if you want to use the –C option again.

ipconfig -D

-f

Don’t prompt for confirmation. Many of the ipconfig options will cause the FTP
and Telnet servers to be shut down and restarted. In these cases, there will be a
prompt asking you if this is OK. The –f option suppresses this prompt.

You must have admin privileges to use the ipconfig command, and as noted above, it
will often shut down the FTP and Telnet servers and restart them.

Other relevant network commands
In addition to the ipconfig command, there are a variety of other slush commands
that are network related that we will make use of in this chapter. These are netstat,
downserver, startserver, arp, hostname, nslookup, ping, ppp, sendmail,

and ftp. Refer to Table 7-4 for more details on these commands.

A simple TINI network
Let’s take what we’ve learned about the ipconfig command and construct a simple TINI
network. We will connect a TINI stick to a PC running Windows 981, via Ethernet.

1 Windows, Windows 98, Windows 2000, Windows XP, and Windows NT are registered
trademarks of Microsoft Corp.

Figure 13-1: A simple TINI IP network

Personal
Computer

Cross-Over
Ethernet Cable

TINI SIMM

Socket
Board

Straight-Through
RS232 Cable

515

Connecting TINI to an IP Network

In the network shown above, we have several elements.

1. A TINI stick, in a socketboard that provides an RJ45 connector to the Ethernet
port, an RS232 DB-9 connector to serial0, and a DTR jumper that is closed.

2. A serial cable, DB9 female on one end and male on the other. This cable must
be a straight-through cable, as we’re connecting a DCE to a DTE.

3. An Ethernet cable. This cable must be a crossover cable.

4. A PC. In this example, we’re going to be running Windows 98. The PC could
be running Linux, Windows 2000, NT, etc. The PC must have an Ethernet
network interface card.

We’ll assume that JavaKit has been installed on the PC. The next thing to do with the
PC is to assign an IP address to its Ethernet interface. We’ll use 192.168.0.2, with a
netmask of 255.255.255.0. To set this up on Windows 98, go to the Control Panel,
click on Network.

Figure 13-2:
Configuring the network settings on your PC dial-up adapter

516

Designing Embedded Internet Devices

In our specific case, we have a Linksys2 LNEPCI II PCI Ethernet Adapter. You might
have a different product, but that doesn’t matter. It’s listed twice under the installed
components. Select the one that references TCP/IP, as shown (by left clicking), and
then left click on Properties. Left click on the IP address tab. Fill in the data as shown.

2 LNEPCI II is a registered trademark of the Linksys Corp.

Figure 13-3: Setting the TCP/IP properties

Right click on OK, twice to get rid of both pop-up windows. That’s how to set up the
IP address of the Ethernet network address card. The process is similar for Windows
systems other than Windows98. WindowsNT users need to select the “Network”
control panel, click on the “Protocols” tab, and double-click on the “TCP/IP protocol”
to view its properties. Then click on the “IP Address” tab in the properties window
and set the IP address and subnet mask. Windows 2000 users need to click on the
“Start” button, “Settings,” then “Network and Dial-Up Connections.” Then double-
click on “Internet Protocol (TCP/IP)” to view its properties and set the IP address and
subnet mask. WindowsXP users need to click on “Control Panel,” then double-click
on “Network Connections,” then double-click on “Local Area Connection.” In the
“General” tab, click on “Internet Protocol (TCP/IP),” then click on “Properties” and

517

Connecting TINI to an IP Network

set the IP address and subnet mask. Our PC will be at 192.168.0.2. Let’s put our TINI
at 192.168.0.5, and give it a host name of drosera3. To get our PC to recognize our
TINI by it’s host name, we need to create a HOSTS file in the WINDOWS directory. There
is a sample file called HOSTS.SAM in the WINDOWS directory. It can be edited in
Notepad (or any other ASCII editor that you like) and the comments in the header of
the file will explain the format. Our file will look like this:
#
#Win98 HOSTS file for the
#simple TINI network.
127.0.0.1 localhost
192.168.0.5 drosera

Save this file as HOSTS (drop the .sam file extension) in the Windows directory. The
process is similar for Windows systems other than Windows98. For WindowsNT/
2000/XP Pro, the HOSTS file needs to be placed in
c:\winnt\system32\drivers\etc. For WindowsXP Home, the HOSTS file needs to
be placed in c:\WINDOWS\system32\drivers\etc. This file isn’t necessary for our
network to work. It merely allows us to refer to our TINI by its hostname on the PC
as opposed to an IP address. Now that we have the PC set up, we need to assign an IP
address to the TINI stick. Plug the serial cable into the PC and into the TINI
socketboard and run JavaKit. Reset the TINI, and type E to execute slush.

Login as root. We know the IP address we want, and the subnet mask, so we can run
the ipconfig command.
ipconfig –a 192.168.0.5 –m 255.255.255.0

That’s all there is to it. The servers in TINI are restarted and, provided we have our
Ethernet cable in place, we can ping and FTP from TINI to the PC, referring to it as
192.168.0.2. From the PC, we can Telnet, ping, and FTP to TINI, referring to it as
either drosera or 192.168.0.5.

A slightly more elaborate TINI network
Suppose we have a bunch of TINI sticks that we want to network together with a PC
via Ethernet?

To make this network, we need to use an Ethernet hub, which is a device that
connects multiple Ethernet devices into a star network configuration. Each of our
TINI sticks and the PC must connect to the hub via a straight-through cable as
opposed to the crossover cable that we used in the previous section. Assign each
of the TINI sticks a different IP address on the 192.168.0.xxx subnet, and give them
each a host name. Put the host name in the HOSTS file that we created in the
previous section. One by one, take each TINI stick and connect it to the PC via the

3 Drosera is the scientific name for the Sundew, a carnivorous plant.

518

Designing Embedded Internet Devices

straight-through serial cable, run JavaKit, and assign the IP address with ipconfig. We
now have a network of TINIs. They can refer to each other and the PC by IP address,
and the PC can refer to them by host name, or IP address. If the PC had a second
network interface to the Internet, we could configure it to act as a gateway. We could
then go back to each TINI stick and use the ipconfig command to assign the IP
address of the PC as the gateway for each TINI. We’re going to forego the discussion
of how to configure a PC to act as a gateway to the Internet in this fashion, in favor of
discussing how to connect a TINI to an Internet gateway via a modem.

The TINI networking classes
Before we leave this section it’s worth noting that, in Chapter 7, we took a detailed
look at the Java API for TINI, including the networking classes. These classes give us
all the tools necessary to serve http requests, perform DNS requests, receive
dynamically assigned IP addresses through DHCP, implement ping, and among other
things, communicate via PPP. Refer to Chapter 7, Figure 7-16, for more details on the
TINI networking classes. PPP, the point-to-point protocol, is our next topic.

Using PPP
In this section, we will look at how to communicate with a TINI stick via PPP. We’re
going to do this by connecting a modem to TINI serial0, then executing a Java
application under Slush that communicates with the modem and forms a PPP

Figure 13-4: Multiple TINIs with a PC on an Ethernet hub

Personal
Computer

Straight-Through
Ethernet Cables

TINI SIMM

Socket
Board

TINI SIMM

Socket
Board

Hub/Router

519

Connecting TINI to an IP Network

connection between the TINI and another modem-connected computer. The second
computer could be an Internet Service Provider (ISP) called by the TINI, in which
case the TINI would be acting as a PPP client on the Internet. The Telnet and FTP
servers running on the stick will now be visible to the Internet, and applications
running on the TINI stick can serve web data directly to the Internet, making the
TINI stick truly web enabled. Alternatively, the second computer could be a laptop or
desktop PC that calls the TINI stick. Here, we’re not putting the stick on the Internet,
but rather, we’re treating it as a PPP server and logging into it remotely.

Figure 13-5: Our configuration for testing TINI as a PPP client

Personal
Computer

Cross-Over
Ethernet Cable

TINI SIMM

Socket
Board

Modem

Special Cross-Over
RS232 Cable

We will consider both cases in detail, first by making our own PPP client and PPP
server programs, and then by using the optional slush command ppp. We’ll start by
taking a look at how the TINI API does PPP.

Figure 13-6: Our configuration for testing TINI as a PPP server

Personal
Computer

Cross-Over
Ethernet Cable

TINI SIMM

Socket
Board

Modem

 Special Cross-Over
Cable

 Cell Phone

 Cell Phone Data Cable Straight-Through
RS232 Cable

520

Designing Embedded Internet Devices

How TINI does PPP
The TINI API handles PPP connections via the PPP, PPPEventListener, and
PPPEvent classes in the com.dalsemi.tininet.ppp package. The PPP acts as a layer
between the IP network layer and the physical interface. To communicate via PPP, an
application must create a PPP object and pass a serial port object to it, telling it which
port to use for communication. Table 13-1 illustrates some of the PPP methods (the
ones we’ll be making use of). The TINI API has more complete information.

Table 13-1: The PPP Related methods used in our upcoming examples

Method in the PPP class Purpose of method

setAuthenticate(boolean var) In the case of establishing a server, when true, the
calling party will be required to authenticate with
a username and password.

setLocalAddress(byte[] ip) Sets the local IP address.

setRemoteAddress(byte[] ip) Sets the remote IP address.

addEventListener (PPPEventListener el) Add the PPPEventListener to the specified PPP
object.

setDefaultInterface(boolean var) Establishes PPP as the default interface if
argument is true.

setACCM(int num) Gets the Asynchronous Control Character Map
(ACCM).

setPassive(boolean var) Establishes whether a STOPPED event is
generated when Line Control Protocol negotiations
time out. True means no stopped event is generated.

open() Opens a PPP connection.

up() Called when the serial port is ready for PPP data.

addInterface(string str) Adds the PPP interface to the interface table
under the name specified.

getPeerID() During authentication, retrieves the username
input by the calling party.

getPeerPassword() During authentication, retrieves the password
input by the calling party.

down() Called when the serial port is no longer ready for
PPP data.

close() Closes the PPP connection.

The application must also listen for PPPEvents, via a PPPEventListener. The
PPPEventListener class is an interface that we need to provide an implementation for.
The TINI API for PPPEventListener describes its functionality in terms of a finite
state machine (FSM). That is, during PPP operation, there are a fixed number of
internal states that our PPPEventListener can be in. As changes occur in the PPP
connection, PPPEvents are generated, and we move from state to state based on what

521

Connecting TINI to an IP Network

state we’re in and what event we see. There are six states in our FSM. These states, for
the most part, map directly into the five events that our event listener is responsible for
handling.

Table 13-2: The five possible PPPEvents

Event Cause

STARTING Generated when a open() is called.

AUTHENTICATION_REQUEST Generated when up() is called with
setAuthenticate(true).

UP Generated when up() is called with
setAuthenticate(false), or, when
authenticate(true) is called.

STOPPED Generated when there has been a link
negotiation error, a remote termination, or
authenticate(false) has been called.

CLOSED Generated when the close() method is called.

The six states of the PPPEventListener FSM

INIT

We move to this state upon creation of a PPP object, i.e. pppObject = new
ppp();

START

We move to the START state when the owner of our PPP object calls the open()
method. During this state, the event listener must call the up() method and
provide, as an argument, the serial port we wish to use for our PPP connection.

AUTH

We move from the START state to the AUTH state after the owner of the PPP
object calls the up() method. During this state, the event listener must perform
authentication on a user name and password. This state is only part of the PPP
connection process if user authentication is required. Authentication is
established as part of the connection process by calling the setAuthenticate()
method with an argument of true. We will see examples both with and without
authenticate in this fashion. Authentication is accomplished by calling the
getPeerID() and getPeerPassword() method, then comparing the returned
values to those values stored in the password file. If the values match, the
authenticate() method is called with an argument of false. It’s the
authenticate() method that will determine which state we go to next.

522

Designing Embedded Internet Devices

up(), setAuthenticate(true)

Init

Auth

up(), setAuthenticate(false) Start

Stopped

Up

Closed

authenticate(true)

authenticate(false)close()

close()

open()

open()

link error

remote
termination

PPP pppObj = new PPP()

STOPPED

To get to the STOPPED state, something such as a link negotiation error, remote
termination, or an authentication failure has occurred. During this state, the event
listener must call the close() method and print out any diagnostic messages that
are desired.

UP

We get to the UP state when authentication has succeeded (authenticate(true)
was called). During this state, the event listener is responsible for calling the
addInterface() method, with the interface name to be added as an argument. If
authentication wasn’t required, we get here from the START state.

CLOSED

We get to the CLOSED state when a close() method is called. During this state,
the event listener is responsible for calling the down() and removeInterface()
methods.

This state machine is best understood by looking at it graphically.

Figure 13-7: The PPPEventListener Finite State Machine

523

Connecting TINI to an IP Network

So, putting it all together, the various methods in the PPP class cause events to be
generated. The PPPEventListener listens for these events, and uses them as a basis
for defining what state our PPP connection is in. The response to an event will
involve invoking additional PPP methods, which in turn, may cause an event, causing
us to change state. The state we’re currently in is a function of the most recent event
that occurred, and that event was a function of the previous state we were in. The
finite state machine allows us to envision this fairly complicated process in a simple
way. The best way to learn about this is with some example code, but before we can
move on to that, we have to address the somewhat troublesome subject of cables and
modems.

The physical interface (cabling and modems)
Sometimes the devil is in the details, and in the case of TINI PPP connectivity, the
devil has a lot of places to hide. One such place is the physical interface: the modem
and modem cable.

Cables
One way or another, to connect a modem to a TINI stick you’re going to have to use
some kind of RS232-style cable. Some key things to keep in mind:

• Both the TINI serial0 and the modem have RS232 ports that behave as data
communications equipment (DCE), so you have to use a cross-over cable
(otherwise known as a null modem cable). This is in contrast to the type of
modem cable you use between a PC and a modem, and between a PC and TINI
when using JavaKit. Since the PC acts as data terminal equipment (DTE) in these
instances, the cable needs to be straight-through.

• Modems may require signals that the TINI doesn’t support. Specifically, the TINI
stick only uses TX and RX on serial0. Many modems require a logic “1” on DTR
and RTS. Without this, you may get outright failure or very erratic behavior from
the modem.

• The DTR signal can reset the TINI stick if you connect it. So if you tie the DTR to
logic “1” to make the modem work, you need to keep that logic “1” from the
TINI stick’s DTR line by removing the DTR jumper, or by not connecting it all
the way through to the TINI DB9 connector.

Figure 13-8a shows a cable we made by cutting a straight-through RS232 cable in
half, splicing in a 9V battery, and reconnecting it to be cross-over. This is not an
elegant solution, but it works well for experimentation. No matter how you choose to
construct it, it will need to implement the functionality shown. Chapter 9 has
additional information on RS232.

524

Designing Embedded Internet Devices

Figure 13-8b shows a different version of a special cross-over cable. This one
connects the modem signal on the CTS line to the RTS pin and the modem signal on
the DSR to the DTR pin. This type of connector works if your modem sends
traditional status signals on the CTS and DSR lines. This may not work if you are
using a wireless modem or a wireless device with a built-in modem. You will need to
do a little experimentation. This cable worked well with the external modems we
used, but it did not work with the cell phone that we were using as a modem.

Modem AT commands/HyperTerminal
Modem control is handled by sending the modem a series of commands through the
serial cable. For many years Hayes was the standard in modems. As the number of
modem manufacturers grew, most manufacturers adhered to a somewhat loosely
defined standard set of commands that was originally determined by Hayes. These
are now called the AT commands. Below is a table of commonly used AT commands
and their meaning.

Table 3-3: Some Basic AT commands

AT Command Meaning

A Answer incoming call.

DTnnnnnnnnnn Dial the phone number with tone dialing

Figure 13-8a: A special crossover modem cable for use with a TINI

Figure 13-8b: Another special crossover modem cable for use with a TINI

DCE

Modified Serial Cable

DCE
RD
TD
CTS
RTS
DTR
DSR
DCD

Ground

Modem

TD
RD

CTS
RTS
DTR
DSR
DCD

RI
Ground

TINI SIMM

Socket
Board RI

9V

DCE

Modified Serial Cable

DCE
RD
TD
CTS
RTS
DTR
DSR
DCD

Ground

Modem

 TD
 RD
CTS
RTS
DTR
DSR
DCD

RI
Ground

TINI

Socket
Board RI

8
 7

2
 3

5

3
 2

4
 6

5

525

Connecting TINI to an IP Network

&D0 DTR assumed on. Useful if your modem needs
to see a DTR, and you can’t supply it from the
computer.

E0 Disable echoing of commands (E1 = enable).

&F Load factory profile.

&K0 Disable flow control.

Ln, where n = 0-3 Set speaker volume (0=lowest).

Mn where n=0-3 Speaker always off, speaker on until carrier
detected, speaker always on, speaker on only
during answering.

Q0 Enable responses to computer (Q1 = disable).

V1 Enable verbose responses (V0=terse, numeric
responses).

X0 Report OK, CONNECT, RING, NO CARRIER,
ERROR, and NO ANSWER.

X1 Report all X0 messages, plus CONNECT speed.

X2 Report all X1 messages, plus NO DIALTONE.

X3 Report all X2 messages, plus BUSY.

X4 Report all messages.

The syntax associated with AT commands can be summarized as follows:

• Commands from the table are preceded by “AT” and followed by a carriage
return “\r”.

• Multiple commands can be strung together on one line, up to forty characters.
The downside of this is that if something goes wrong and the command line is
rejected, you won’t know which command caused the problem. That’s why it’s
common to see one or two commands per line.

There are a great many more AT commands than those shown above. If you’re not
familiar with AT commands, the best way to learn about them is to experiment.
Windows environments have a terminal-emulating program called HyperTerminal
that allows you to issue commands directly to your modem. The following discussion
assumes that you have a modem attached to your PC via a COM port. Click on the
HyperTerminal icon to run it (HyperTerminal can usually be found in the Windows
menus in Programs…Accessories… Communications…HyperTerminal). A popup
window will appear asking you for a connection name. Put in anything you want, and
click OK.

526

Designing Embedded Internet Devices

Another popup window will appear. Select the COM port that your modem is
connected to.

Figure 13-9:
Starting HyperTerminal

Figure 13-10:
Selecting the COM port

in HyperTerminal

527

Connecting TINI to an IP Network

In the next window that pops up, configure the port as shown.

Figure 13-11: Configuring the COM port for HyperTerminal

You can now type AT commands directly to your modem and watch the result. This
can be useful in debugging modem problems. You can take the modem that you plan
to connect to the TINI, connect it to your PC via a straight-through cable, and then
use HyperTerminal to test the series of AT commands that you plan to use when it’s
connected to the TINI stick. This way you eliminate as many problems with the
modem as possible before you connect it to the TINI stick. If you are using Linux,
minicom can be used to try your modem commands as well.

Once you have a set of AT commands that works well with your modem (such as the
set of commands with which you will dial into an ISP), you can see if the modem
works the same way when connected to the TINI stick. To help with this step, we
wrote up a simple Modem class and test program, ModemDialTest.

528

Designing Embedded Internet Devices

Getting TINI to talk to a modem: The Modem class
In the previous section we discussed ways of testing modem dialing strings using a
terminal emulator on a PC. Now we’re going to connect the modem to a TINI stick
through our special cross-over cable (Figure 13-8) and send it AT commands. We
will use three classes: Modem, ModemATTest, and ModemDialTest. The Modem class
contains utilities for opening a serial port, sending AT commands to a modem and
printing out the response, calling an ISP and waiting for the CONNECT response,
and answering an incoming call. We’ll present the program in its entirety first, then
go through it in detail ModemATTest, ModemDialTest are programs that test our
Modem class.

Listing 13-1: Modem.java

import java.io.*;
import javax.comm.*;

public class Modem {

 SerialPort serialPort = null;

 public boolean openSerialPort(String port) {
 boolean flag = true;
 try {

Figure 13-12: AT commands in HyperTerminal

529

Connecting TINI to an IP Network

CommPortIdentifier portId = CommPortIdentifier.getPortIdentifier(port);
serialPort = (SerialPort)portId.open(“ppp0”, 0);
serialPort.setSerialPortParams(19200,

 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);

serialPort.setFlowControlMode(serialPort.FLOWCONTROL_NONE);
 } catch(Exception e) {

System.out.println(e);
System.out.println(“We failed to open the port”);

 flag = false;
 }
 return flag;
 }

 public String sendCommand(String command) {
 String modemResponse = “”;
 try {

InputStream inputStream = serialPort.getInputStream();
OutputStream outputStream = serialPort.getOutputStream();
System.out.println(“Sending: “ + command);
System.out.println(“Receiving: “);
outputStream.write((command+’\r’).getBytes());
Thread.sleep(500);
int bytesToGet = inputStream.available();
if (bytesToGet > 0) {
byte[] readBuffer = new byte[bytesToGet];
int bytesToPrint = inputStream.read(readBuffer, 0, bytesToGet);
modemResponse = new String(readBuffer, 0, bytesToPrint);
System.out.println(modemResponse);

 }
 } catch(Exception e) {}
 return modemResponse;
 }

 public boolean dial(String[] atCommands) {
String atCommand = “”;
String modemMessage;
int bytesToGet;
int n=0;
boolean flag = true;
try {

InputStream inputStream = serialPort.getInputStream();
for (int i=0; i<atCommands.length; i++) {

 sendCommand(atCommands[i]);
}
boolean notConnected = true;
modemMessage = “”;
while ((n<180) && (notConnected)) {
try {Thread.sleep(500);} catch(Exception e) {}

530

Designing Embedded Internet Devices

bytesToGet = inputStream.available();
if (bytesToGet > 0) {

byte[] readBuffer = new byte[bytesToGet];
int bytesToPrint = inputStream.read(readBuffer, 0, bytesToGet);
modemMessage = modemMessage + (new String(readBuffer, 0,

bytesToPrint));
if (modemMessage.indexOf(“CONNECT”) != -1) {
notConnected = false;
System.out.println(modemMessage);

 }
 }
 n++;
 }
 } catch (IOException e) {

System.out.println(e);
flag = false;

 }
 return flag;
 }

 public boolean answer() {
String atCommand = null;
String modemMessage;
boolean flag = true;
int n=0;
int m=0;
int bytesToGet=0;
try {

InputStream inputStream = serialPort.getInputStream();
atCommand = “AT”;
sendCommand(atCommand);
modemMessage = “”;
System.out.println(“Wait for 3 rings”);
while (n<3) {
bytesToGet = inputStream.available();
if (bytesToGet > 0) {

byte[] readBuffer = new byte[bytesToGet];
int bytesToPrint = inputStream.read(readBuffer, 0, bytesToGet);
modemMessage = modemMessage + (new String(readBuffer, 0,

bytesToPrint));
if (modemMessage.indexOf(“RING”) != -1) {
n++;
System.out.println(modemMessage);
modemMessage = “”;

 }
 }
 }

atCommand = “ATA”;
sendCommand(atCommand);
boolean notConnected = true;

531

Connecting TINI to an IP Network

modemMessage = “”;
System.out.println(“Wait for CONNECT”);
while ((m<180) & (notConnected)) {

try {Thread.sleep(500);} catch(Exception e) {}
bytesToGet = inputStream.available();
if (bytesToGet > 0) {
byte[] readBuffer = new byte[bytesToGet];
int bytesToPrint = inputStream.read(readBuffer, 0, bytesToGet);
modemMessage = modemMessage + (new String(readBuffer, 0,

bytesToPrint));
if (modemMessage.indexOf(“CONNECT”) != -1) {

notConnected = false;
System.out.println(modemMessage);

 }
 }
 m++;
 }
 } catch (IOException e) {

System.out.println(e);
flag = false;

 }
 return flag;
 }
}

We start out by importing the necessary Java class libraries. No TINI specific
libraries are used in the Modem class. We also make our class declaration, and declare
our member variable serialPort.
import java.io.*;
import javax.comm.*;

public class Modem {
 SerialPort serialPort = null;

The openSerialPort() method takes the name of the port we wish to open as an
argument and returns a Boolean representing whether this operation succeeded. Note
that we set the port for 8 databits, 1 stop bit, no parity bit, and no flow control. Since
we will be using this later for establishing PPP connections, we supplied “ppp0” as
the application name assigned to the port in the open() method.

 public boolean openSerialPort(String port) {
 boolean flag = true;
 try {

CommPortIdentifier portId = CommPortIdentifier.getPortIdentifier(port);
serialPort = (SerialPort)portId.open(“ppp0”, 0);
serialPort.setSerialPortParams(19200,

 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);

532

Designing Embedded Internet Devices

serialPort.setFlowControlMode(serialPort.FLOWCONTROL_NONE);
 } catch(Exception e) {

System.out.println(e);
System.out.println(“We failed to open the port”);
flag = false;

 }
 return flag;
 }

The sendCommand() method takes a string representing an AT command and sends it
to the port, then prints and returns the response. One thing to note here is that before
we send the AT command to the port, we append a carriage return “\r” to the string.
This is required syntax and by placing it here it keeps us from having to deal with it
later. The half-second delay we introduce next may or may not be necessary,
depending on your modem. Without it, we found that we sometimes didn’t read the
entire response back from the modem, as if we tried to read it before the modem was
ready. The sendCommand() method is fairly generic.
 public String sendCommand(String command) {
 String modemResponse = “”;
 try {

InputStream inputStream = serialPort.getInputStream();
OutputStream outputStream = serialPort.getOutputStream();
System.out.println(“Sending: “ + command);
System.out.println(“Receiving: “);
outputStream.write((command+’\r’).getBytes());
Thread.sleep(500);
int bytesToGet = inputStream.available();
if (bytesToGet > 0) {
byte[] readBuffer = new byte[bytesToGet];
int bytesToPrint = inputStream.read(readBuffer, 0, bytesToGet);
modemResponse = new String(readBuffer, 0, bytesToPrint);
System.out.println(modemResponse);

 }
 } catch(Exception e) {}
 return modemResponse;
 }

The dial() method takes as its argument an array of strings representing the series of
AT commands required to connect to an ISP. It uses the sendCommand() method to send
the AT commands, then waits for the word CONNECT to be in the response after it has
sent the last AT command in the sequence. It returns true if we succeed in connecting,
false if something goes wrong. The method will wait 90 seconds for the CONNECT,
then it will give up. The timeout is implemented in half-second increments, by looping
180 times. The method prints out the CONNECT if it receives it.
public boolean dial(String[] atCommands) {

String atCommand = “”;
String modemMessage;

533

Connecting TINI to an IP Network

int bytesToGet;
int n=0;
boolean flag = true;
try {

InputStream inputStream = serialPort.getInputStream();
for (int i=0; i<atCommands.length; i++) {

 sendCommand(atCommands[i]);
}
boolean notConnected = true;
modemMessage = “”;
while ((n<180) && (notConnected)) {
try {Thread.sleep(500);} catch(Exception e) {}
bytesToGet = inputStream.available();
if (bytesToGet > 0) {

byte[] readBuffer = new byte[bytesToGet];
int bytesToPrint = inputStream.read(readBuffer, 0, bytesToGet);
modemMessage = modemMessage + (new String(readBuffer, 0,

bytesToPrint));
if (modemMessage.indexOf(“CONNECT”) != -1) {

 notConnected = false;
 System.out.println(modemMessage);
 }
 }
 n++;
 }
 } catch (IOException e) {

System.out.println(e);
flag = false;

 }
 return flag;
 }

The answer() method waits for an incoming call by looking for the RING response
from the modem three times. When it sees it, it uses the sendCommand() method to
instruct the modem to answer via the ATA command. Then it waits 90 seconds for the
CONNECT to appear before giving up. The issue of answering an incoming call and
then forming a connection has proven to be the most problematic of this entire
chapter. It can take a lot of modem experimentation to get this to work; from modem
to modem, the required trick seems to vary.
public boolean answer() {

String atCommand = null;
String modemMessage;
boolean flag = true;
int n=0;
int m=0;
int bytesToGet=0;
try {

InputStream inputStream = serialPort.getInputStream();
atCommand = “AT”;

534

Designing Embedded Internet Devices

sendCommand(atCommand);
modemMessage = “”;
System.out.println(“Wait for 3 rings”);
while (n<3) {

bytesToGet = inputStream.available();
if (bytesToGet > 0) {
byte[] readBuffer = new byte[bytesToGet];
int bytesToPrint = inputStream.read(readBuffer, 0, bytesToGet);
modemMessage = modemMessage + (new String(readBuffer, 0,

bytesToPrint));
if (modemMessage.indexOf(“RING”) != -1) {

n++;
System.out.println(modemMessage);
modemMessage = “”;

 }
 }
 }

atCommand = “ATA”;
sendCommand(atCommand);
boolean notConnected = true;
modemMessage = “”;
System.out.println(“Wait for CONNECT”);
while ((m<180) && (notConnected)) {

try {Thread.sleep(500);} catch(Exception e) {}
bytesToGet = inputStream.available();
if (bytesToGet > 0) {
byte[] readBuffer = new byte[bytesToGet];
int bytesToPrint = inputStream.read(readBuffer, 0, bytesToGet);

 modemMessage = modemMessage + (new String(readBuffer, 0,
bytesToPrint));

 if (modemMessage.indexOf(“CONNECT”) != -1) {
notConnected = false;
System.out.println(modemMessage);

 }
 }
 m++;
 }
 } catch (IOException e) {

System.out.println(e);
flag = false;

 }
 return flag;
 }
}

Our first goal with the Modem class is to see that we can get a TINI stick to send AT
commands to a modem. We’ll test this out by using the Modem class to send AT
commands to an external modem from a TINI via our special cross-over cable
(Figure 13-8). The programs we will use are ModemATTest and ModemDialTest. They
use the Modem class. Let’s take a look at ModemATTest.

535

Connecting TINI to an IP Network

Testing the Modem class: The ModemATTest
The ModemATTest class uses the Modem class to send AT commands to a modem. It
takes the serial port to open as the first command line argument, then AT commands
after that.

Listing 13-2: ModemATTest.java

import java.io.*;
import javax.comm.*;

public class ModemATTest {

 public static void main(String[] args) {
Modem external = new Modem();
external.openSerialPort(args[0]);
for (int i=1; i<args.length; i++) {

 external.sendCommand(args[i]);
 }
 }
}

For this example, we’re using a TINI connected to a PC via Ethernet, and we’ve
connected the TINI to an external modem via the specially made cross-over cable. To
compile the program, create a separate src folder and place the ModemATTest.java
in it, as well as Modem.java. Make a bin folder in the same directory. Then type the
following:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin ModemATTest.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\ModemATTest.tini
-d %TINI_HOME%\bin\tini.db

As we’ve done in previous examples, some of the command line arguments for the
java command have been shown on a separate line. Everything after java should be
entered on the same line. Transfer the .tini file to your TINI stick via FTP, and via
Telnet attempt the following:
TINI /> java ModemATTest.tini serial0 AT ATM1L0 ATE0 AT ATE1 AT

Sending: AT
Receiving:
AT
OK

536

Designing Embedded Internet Devices

Sending: ATM1L0
Receiving:
ATM1L0
OK

Sending: ATE0
Receiving:
ATE0
OK

Sending: AT
Receiving:

OK

Sending: ATE1
Receiving:

OK

Sending: AT
Receiving:
AT
OK

What did we just do? Entering AT by itself does nothing, but will inspire the modem
to respond with an OK. Entering M1L0 tells the speaker to stay on until the carrier is
detected and makes the volume low. The commands E0 and E1 allow you to turn off
or turn on the echoing of commands in the response. If this didn’t work, you may
want to double check the cable or connect the modem to the PC with a straight-
through cable and try the same command sequences in a terminal emulator (since this
program is not TINI specific and does not use any TINI classes it will run fine on
your PC from either Windows or Linux—just remember to specify the proper serial
port for your operating system). If it did work, then we’re ready to move on to the
next step.

A Modem Dialing Test: The ModemDialTest class
The ModemDialTest class uses the dial() method of the Modem class to dial out to
an ISP. It exits after receiving the CONNECT message from the modem. You need to
put the phone number of your own ISP where you see 5555555555. The program
takes as arguments the serial port you plan on using for the connection, and a series
of strings representing the AT commands in your dialing string. The program is very
similar to our previous example, ModemATTest, with the addition of code that waits
for the CONNECT.

537

Connecting TINI to an IP Network

Listing 13-3: ModemDialTest.java

import java.io.*;
import javax.comm.*;

public class ModemDialTest {

 public static void main(String[] args) {
Modem external = new Modem();
String[] dialString=new String[(args.length)-1];
external.openSerialPort(args[0]);
for (int i=0;i<(args.length)-1; i++) {

 dialString[i]=args[i+1];
 }
 external.dial(dialString);
 }
}

We’re still using a TINI connected to a PC via Ethernet, and we’ve connected the
TINI to an external modem via the specially made crossover cable. To compile the
program, create a separate folder and place the ModemDialTest.java in it, as well as
Modem.java. Make a bin folder in the same directory. Then type the following:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin ModemDialTest.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\ModemDialTest.tini
-d %TINI_HOME%\bin\tini.db

As we’ve done in previous examples, some of the command line arguments for the
java command have been shown on a separate line. Everything after java should be
entered on the same line. Transfer the .tini file to your TINI stick via FTP, and via
Telnet attempt the following:
TINI /> java ModemDialTest.tini serial0 AT ATM1L0 ATDT5555555555
Sending: AT
Receiving:

Sending: ATM1L0
Receiving:
AT
OK
ATM1L0
OK

538

Designing Embedded Internet Devices

Sending: ATDT5555555555
Receiving:
ATDT5555555555

CONNECT 48000

PROTOCOL:LAPM

Once again, for the example, we’ve pasted over the actual phone number we used with
the 5555555555. You need to put the phone number of your ISP in your dialing string
on the command line. If this worked, and you get results similar to the above in that the
CONNECT was received, then we’re ready to move on to considering the PPP client
connection. If this didn’t work, you need to determine whether it’s a problem with the
AT commands you’re sending to the modem, or something related to the cable, etc. The
AT command string can be debugged by putting the modem back on the PC and trying
the same commands in a terminal emulator. If they don’t work, consider commands
such as &F (restore factory defaults), &K0 (disable flow control), X4(provide all
responses), and E0 (turn off command echoing). If the command string works on PC
but not on the TINI, then you need to double check the cable.

Example: Dialing out to an ISP (TINI as a PPP Client)
In the previous sections, we looked at ways of getting the TINI stick talking with a
modem. Now it’s time to focus our attention on actually implementing a PPP connection
on a TINI. We’ll start this by making a PPP client program. In this context, a client means
that we’ll be dialing out to an ISP and receiving a server assigned IP address from them. It
is important to note that the ISP is going to want us to supply a username and password,
and that the TINI PPP API supports only Password Authentication Protocol (PAP) for
this. Your ISP will have to support PAP, or this won’t work. In our earlier discussion of the
PPP API, we noted that to handle PPP connections, we have to provide an
implementation of the PPPEventListener. This will be the bulk of our PPP client
program.

The PPPClient class

To make the TINI stick act as a PPP client, dialing out to an ISP to establish a PPP
connection, we will make a program that dials out to the ISP, creates a PPP object, and
implements the PPPEventListener. This class is called PPPClient. We’ll show it in its
entirety below, and then work our way through it.

Listing 13-4: PPPClient.java

import java.io.*;
import javax.comm.*;
import com.dalsemi.tininet.ppp.*;

539

Connecting TINI to an IP Network

public class PPPClient implements PPPEventListener {

static SerialPort serialPort = null;
static PPP ppp;

 public void pppEvent (PPPEvent e) {

 switch(e.getEventType()) {
case PPPEvent.STARTING:

System.out.println(“PPP sent the STARTING event!”);
ppp.up(serialPort);

break;

case PPPEvent.UP:
System.out.println(“PPP sent the UP event!”);
ppp.addInterface(“ppp0”);

break;

case PPPEvent.AUTHENTICATION_REQUEST:
//We don’t have to do anything here, because
//We’re dialing out TO a server.

break;

case PPPEvent.STOPPED:
System.out.println(“Calling ppp.close()”);
ppp.close();

break;

case PPPEvent.CLOSED:
System.out.println(“PPP sent the CLOSED event!”);
ppp.down();
ppp.removeEventListener(this);
serialPort.close();
System.exit(0);

break;

default:
System.out.println(“Some other ppp event happened”);

break;
 }

 }

 public static void main(String[] args) {
String[] dialString=new String[(args.length)-2];
for (int i=0;i<(args.length)-2; i++) {

 dialString[i]=args[i+2];
}

540

Designing Embedded Internet Devices

Modem external = new Modem();
external.openSerialPort(“serial0”);
serialPort = external.serialPort;
PPPClient ourListener = new PPPClient();
ppp = new PPP();
byte[] localAddress = new byte[] {0, 0, 0, 0};
byte[] remoteAddress = new byte[] {0, 0, 0, 0};
try {

ppp.addEventListener(ourListener);
ppp.setLocalAddress(localAddress);
ppp.setRemoteAddress(remoteAddress);
ppp.setACCM(0x00000000);
ppp.setAuthenticate(false);
ppp.setUsername(args[0]);
ppp.setPassword(args[1]);
ppp.setDefaultInterface(true);

 } catch(Exception e) {
System.out.println(e);
System.out.println(“The ppp methods failed”);
serialPort.close();
System.exit(0);

 }
 if (external.dial(dialString)) {

ppp.open();
 } else {

System.out.println(“The dialer failed!”);
serialPort.close();
System.exit(0);

 }

 while(true) {
 //run forever...
 }
 }
}

We start by importing the necessary java classes. We now are using classes specific to
TINI: com.dalsemi.tininet.ppp.* We declare our class, and our member variables. We
only have two variables, a SerialPort object and a PPP object.
import java.io.*;
import javax.comm.*;
import com.dalsemi.tininet.ppp.*;

public class PPPClient implements PPPEventListener {

static SerialPort serialPort = null;
static PPP ppp;

541

Connecting TINI to an IP Network

The pppEvent() method is required for the implementation of pppEventListener. It
takes a PPPEvent as an argument. The method itself consists simply of a switch statement
that implements the PPP finite state machine that we discussed earlier in this chapter.
Each possible PPPEvent is handled by a case in the switch statement, and each of these
corresponds to a state in our FSM. Note that we don’t do anything in the
AUTHENTICATION_REQUEST state because as a client, we’re not going to be
requesting authentication. The PPP server we’re calling will request it of us. So we don’t
need to worry about this case.
 public void pppEvent (PPPEvent e) {

 switch(e.getEventType()) {
case PPPEvent.STARTING:

System.out.println(“PPP sent the STARTING event!”);
ppp.up(serialPort);

break;

case PPPEvent.UP:
System.out.println(“PPP sent the UP event!”);
ppp.addInterface(“ppp0”);

break;

case PPPEvent.AUTHENTICATION_REQUEST:
//We don’t have to do anything here, because
//We’re dialing out TO a server.

break;

case PPPEvent.STOPPED:
System.out.println(“Calling ppp.close()”);
ppp.close();

break;

case PPPEvent.CLOSED:
System.out.println(“PPP sent the CLOSED event!”);
ppp.down();
ppp.removeEventListener(this);
serialPort.close();
System.exit(0);

 break;

 default:
 System.out.println(“Some other ppp event happened”);
 break;
 }

 }

The only other method in this class is the main() method. Our program takes the
username, password, and AT command strings as arguments. We start by creating a

542

Designing Embedded Internet Devices

Modem object and a serialPort object. Then we create a PPPClient object, to act as a
pppEventListener.
 public static void main(String[] args) {

String[] dialString=new String[(args.length)-2];
for (int i=0;i<(args.length)-2; i++) {

 dialString[i]=args[i+2];
}
Modem external = new Modem();
external.openSerialPort(“serial0”);
serialPort = external.serialPort;
PPPClient ourListener = new PPPClient();

When we create the PPP object, the pppEventListener FSM is in the INIT state. We
create two byte arrays that hold the local and remote IP addresses. The remote
machine we are calling will provide those addresses.

ppp = new PPP();
byte[] localAddress = new byte[] {0, 0, 0, 0};
byte[] remoteAddress = new byte[] {0, 0, 0, 0};

This next section sets up parameters required to form a PPP connection. We add the
event listener, and supply the username and password (stored in the first two
command line arguments). These are the username and password used to login to the
account we are dialing. We set authentication to false, meaning we don’t require the
ISP to supply a username and password. It also means that we won’t go to the
AUTHENTICATION_REQUEST state. Finally, we set the default interface to true,
which means that our PPP interface will be the default IP interface on TINI.
 try {

ppp.addEventListener(ourListener);
ppp.setLocalAddress(localAddress);
ppp.setRemoteAddress(remoteAddress);
ppp.setACCM(0x00000000);
ppp.setAuthenticate(false);
ppp.setUsername(args[0]);
ppp.setPassword(args[1]);
ppp.setDefaultInterface(true);

 } catch(Exception e) {
System.out.println(e);
System.out.println(“The ppp methods failed”);
serialPort.close();
System.exit(0);

 }

Having set up the PPP parameters, we send the dial string of AT commands to the modem
and wait for it to succeed. If it fails, we print some stuff, close the port, and exit. It if
succeeds, we call the open() method and that will send us out of the INIT state in the
pppEventListener FSM and starts the whole PPP connection process rolling.

543

Connecting TINI to an IP Network

 if (external.dial(dialString)) {
ppp.open();

 } else {
System.out.println(“The dialer failed!”);
serialPort.close();
System.exit(0);

 }

 while(true) {
//run forever...

 }
 }

Once the connection is established, this program loops forever. If you’re in a Telnet
window, simply form a connection right over the top of this or close that Telnet
window and open another one. In this new Telnet window, you can now access the
Internet with FTP and ping. We’ve found that ping is sometimes unsuccessful in
finding its IP target, when FTP works. You can run applications under Slush that
communicate with the Internet and they will use the interface established by
PPPClient. To stop PPPClient, you need to use the kill command. Let’s try running
it.

Again, use a TINI connected to a PC via Ethernet. Connect the TINI to a modem via
the specially made cross-over cable. To compile the program, create a separate folder
and place PPPClient.java in it, as well as Modem.java. Make a bin folder in the
same directory. Then type the following:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin PPPClient.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\PPPClient.tini
-d %TINI_HOME%\bin\tini.db

As we’ve done in previous examples, some of the command line arguments for the
java command have been shown on a separate line. Everything after java should be
entered on the same line. Transfer the .tini file to your TINI stick via FTP, and via
Telnet attempt the following as the root user:
TINI /> downserver -s
Warning: This will disconnect users on specified servers.

OK to proceed? (Y/N): y
[Wed Feb 20 00:13:05 GMT 2002] Message from System: Serial server
stopped.

544

Designing Embedded Internet Devices

TINI /> java PPPClient.tini <username> <password> AT ATM1L0
ATDT5555555555
Dialing ...
Sending: AT
Receiving:

Sending: ATM1L0
Receiving:
AT
OK
ATM1L0
OK

Sending: ATDT5555555555
Receiving:
ATDT5555555555

CONNECT 48000

PROTOCOL:LAPM

PPP sent the STARTING event!
PPP sent the UP event!

Once you see the notice about the UP event, you have a connection. You can log in to
the TINI stick with another Telnet session and try the following:
TINI /> ps
3 processes
1: Java GC (Owner root)
2: init (Owner root)
31: PPPClient.tini (Owner root)

TINI /> ipconfig -x
Interface 0 is active.
Name : eth0
Type : Ethernet
IP Address : 192.168.0.5
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0

Interface 1 is active.
Name : lo
Type : Local Loopback
IP Address : 127.0.0.1
Subnet Mask : 255.0.0.0
Gateway : 0.0.0.0

Interface 2 is active.
Name : ppp0 (default)

545

Connecting TINI to an IP Network

Type : Point-to-Point Protocol
IP Address : xxx.xxx.xx.xxx
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0

Interface 3 is not active.
TINI />

There are several things to note about what we’ve just done. To start with, we need to
be the root user to do this, and we always need to start by shutting down the serial
server with the downserver –s command, or, disable the server by modifying the
etc/.startup file, with the line setenv SerialServer disable. In the examples
shown above, we’ve removed the real phone numbers, usernames, passwords, and IP
addresses used. You need to use your own phone number, username, and password.
(The username and password required by your ISP, not the ones you use on TINI.)
Upon executing ipconfig –x you will see that a new interface is now active and is
the default. It’s ppp0, the interface we just added. The IP address shown for that (X’d
out in this case) will actually be the IP address given to you by your ISP. You can go
further with the ipconfig command and input a DNS IP address (provided by your
ISP), and a mail host for the sendmail command (also provided by your ISP). To stop
the PPPClient, you will have to use the kill command, and kill the PPPClient process.

What if things didn’t work for you? There are a number of things that can go wrong.
You should power cycle the modem before running the program, make sure that any
processes from previous PPPClient attempts are killed, always shut down the serial
server (or disable it), and make sure your ISP supports PAP. You may also want to
double check to see that the connection preferences of your ISP wants (data bits,
parity, stop bits, flow control) match those being set in the program. With respect to
compilation and TINIconvertor, always use a separate directory in which the only
java files are PPPClient.java and Modem.java. Beyond this, if you’ve tested the
dialing string with the previous examples but the PPP still doesn’t work, consider
browsing the TINI archives on the web. There is a wealth of information about PPP
out there. If everything above worked, but when you did the ipconfig –x you did
NOT see the ppp0 interface, try the last resort: clear the heap, reload the TINI
firmware (tini.tbin, slush.tbin) and try again.

Example: Dialing into TINI from a PC (TINI as a PPP Server)
The previous example discussed how to make the TINI behave as a PPP client, where
by client we mean dialing out to an ISP. Now, we’re going to make the TINI behave as
a PPP server, where by server we mean answering a call placed by a PC dialing into the
TINI. We are going to connect a cell phone acting as a modem to the TINI, then call the
cell phone modem using our PC with a second modem and the house phone line. This

546

Designing Embedded Internet Devices

proceeds very much like the previous example, but getting the modem to answer and
form a connection can be finicky. So, we’ll start by testing the process of answering an
incoming call before messing with PPP. We used a Motorola, StarTAC4, model
ST7868W, and its associated data connectivity kit (a package of stuff that allows you to
use it as a modem). When connecting the cell phone to the TINI, we needed to put the
specially modified crossover cable between the TINI and the cell phone data
connectivity cable. Note that of the two cables shown in Figure 13-8a and
13-8b, only the one that had the fixed voltage spliced into it (13-8a) worked properly
with the cell phone. Your cell phone may be different.

A Modem Call Answering Test: The ModemAnswerTest class
The ModemAnswerTest class uses the answer() method from the Modem class to
answer an incoming call. It exits immediately upon receiving the incoming call.

Listing 13-5: ModemAnswerTest.java

import java.io.*;
import javax.comm.*;

public class ModemAnswerTest {

 public static void main(String[] args) {
Modem external = new Modem();
external.openSerialPort(args[0]);
external.answer();

 }
}

The program takes a single command line argument, the name of the serial port you
wish to use. It can be run on a PC or a TINI. We’ll try this out using a cell phone and
its associated data connectivity kit, which consists of a special serial cable that has a
female DB9 connector on one end and a special connector on the other that mates
with the phone. The trick: the phone we used needs to be put into the Incoming
Data Only mode before it will answer under AT command control. The Incoming
Data Only mode is selected under Phone Options/Data Setup selector from the
keypad of the phone. The Data Setup choice will only show up in the menu if the
special data connectivity cable is attached, and plugged into a computer. In the case
of TINI, if we plug the data connectivity cable into our special cable, the phone
instantly realizes the cable is connected. Then, from the keypad, you can select Phone
Options, and Data Setup will be one of the choices. You can then change it to
Incoming Data Only. If you connect the cell phone to a PC, however, the Data Setup
option may only appear in the menu after you send the modem an AT command. The

4 StarTAC is a registered trademark of the Motorola Corp.

547

Connecting TINI to an IP Network

difference has to do with the special cable we’re using when we connect it to a TINI.
Other phones will most likely have their own quirks.

Let’s connect the phone to a TINI, using the special crossover cable that we made for
TINI and the data connectivity cable for the cell phone. Then, we’ll dial the cell
phone number from the modem in our PC. The object of this exercise is to see
whether or not we can get the cell phone to see an incoming call, answer it, and see a
CONNECT response from the modem.

To compile the program, create a separate folder and place ModemAnswerTest.java
in it, as well as Modem.java. Make a bin folder in the same directory. Then type the
following:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin ModemAnswerTest.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\ModemAnswerTest.tini
-d %TINI_HOME%\bin\tini.db

As we’ve done in previous examples, some of the command line arguments for the
Java command have been shown on a separate line. Everything after java should be
entered on the same line. Transfer the .tini file to your TINI stick via FTP, and via
Telnet attempt the following as the root user. Once you run the program on the TINI,
immediately bring up a Windows Dialup window and call the cell phone.
TINI /> downserver -s
Warning: This will disconnect users on specified servers.

OK to proceed? (Y/N): y
[Wed Feb 13 02:46:11 GMT 2002] Message from System: Serial server
stopped.

TINI /> java ModemAnswerTest.tini serial0
Sending: AT
Receiving:
AT
OK

Wait for 3 rings

RING

RING

548

Designing Embedded Internet Devices

RING

Sending: ATA
Receiving:
ATA
Wait for CONNECT

CONNECT

TINI />

It worked. When we dialed out from the PC, the cell phone saw the incoming call,
answered it on the third ring, and waited for the CONNECT, then exited. We used the
same dial-up setting that we used when we call our ISP: 8 data bits, No parity, 1 stop
bit, no flow control. It should be noted that this is somewhat specific to this exact
exercise. If you are using a different cell phone, or perhaps an external modem
instead of a cell phone, your experience may be a bit different and there might be
different or additional AT commands that you may need to do to get your phone or
modem to answer and spot the CONNECT. Consult the documentation on your
phone, and check out the Internet—specifically, the TINI archives. You may also
want to search the Internet for information on your specific phone or modem.

Once you get this step to work, you’re ready to add PPP connectivity to this.

The PPPServer class
To make the TINI stick act as a PPP server, waiting for an incoming call and
establishing a PPP connection, we will make a program that answers incoming calls,
creates a PPP object, and implements the PPPEventListener. This class is called
PPPServer. We’ll show it in its entirety below, and then work our way through it. It’s
very similar to our previous example, PPPClient.

Listing 13-6: PPPServer.java

import java.io.*;
import javax.comm.*;
import com.dalsemi.tininet.ppp.*;

public class PPPServer implements PPPEventListener {
static SerialPort serialPort = null;
static PPP ppp;

 public void pppEvent (PPPEvent e) {
 switch(e.getEventType()) {

case PPPEvent.STARTING:
System.out.println(“PPP sent the STARTING event!”);
ppp.up(serialPort);

break;

549

Connecting TINI to an IP Network

case PPPEvent.UP:
System.out.println(“PPP sent the UP event!”);
ppp.addInterface(“ppp0”);

break;

case PPPEvent.AUTHENTICATION_REQUEST:
//We don’t have to do anything here, because
//We’re dialing out TO a server.

break;

case PPPEvent.STOPPED:
System.out.println(“PPP sent the STOPPED event!”);
ppp.close();

break;

case PPPEvent.CLOSED:
System.out.println(“PPP sent the CLOSED event!”);
ppp.down();
ppp.removeEventListener(this);
serialPort.close();
System.exit(0);

break;

default:
break;

 }
 }

 public static void main(String[] args) {
Modem external = new Modem();
external.openSerialPort(“serial0”);
serialPort = external.serialPort;
PPPServer ourListener = new PPPServer();
ppp = new PPP();
byte[] localAddress = new byte[] {(byte)192, (byte)168, (byte)10, (byte)9};
byte[] remoteAddress = new byte[] {(byte)192, (byte)168, (byte)10, (byte)12};
try {

ppp.close();
ppp.addEventListener(ourListener);
ppp.setLocalAddress(localAddress);
ppp.setRemoteAddress(remoteAddress);
ppp.setACCM(0x00000000);
ppp.setAuthenticate(false);
ppp.setDefaultInterface(true);

 } catch(Exception e) {
System.out.println(e);
System.out.println(“The ppp methods failed”);
serialPort.close();
System.exit(0);

 }

550

Designing Embedded Internet Devices

if (external.answer()) {
ppp.open();

 } else {
System.out.println(“The dialer failed!”);
serialPort.close();
System.exit(0);

 }
while(true) {

//run forever...
 }
 }
}

We first import the necessary libraries, one of which is TINI specific. We also declare
our class, and declare two member variables, serialPort and ppp.
import java.io.*;
import javax.comm.*;
import com.dalsemi.tininet.ppp.*;

public class PPPServer implements PPPEventListener {
static SerialPort serialPort = null;
static PPP ppp;

Next, we have the pppEvent() method, which is required for imlementation of the
PPPEventListener. There is no difference between this and the version we used in
PPPClient. It takes a pppEvent() as an argument. The method itself consists simply
of a switch statement that implements the PPP finite state machine that we discussed
earlier in this chapter. Each possible pppEvent() is handled by a case in the switch
statement, and each of these corresponds to a state in our FSM. Note, again, that we
don’t do anything in the AUTHENTICATION_REQUEST state. As a server, this
means that whoever calls in gets logged in without any kind of username or password
authentication! This isn’t good, and we’re going to fix this in the next example, but
for now we’re keeping it simple.
 public void pppEvent (PPPEvent e) {
 switch(e.getEventType()) {

case PPPEvent.STARTING:
System.out.println(“PPP sent the STARTING event!”);
ppp.up(serialPort);

break;

case PPPEvent.UP:
System.out.println(“PPP sent the UP event!”);
ppp.addInterface(“ppp0”);

break;

case PPPEvent.AUTHENTICATION_REQUEST:
//We don’t have to do anything here, because
//We’re dialing out TO a server.

551

Connecting TINI to an IP Network

break;

case PPPEvent.STOPPED:
System.out.println(“PPP sent the STOPPED event!”);
ppp.close();

break;

case PPPEvent.CLOSED:
System.out.println(“PPP sent the CLOSED event!”);
ppp.down();
ppp.removeEventListener(this);
serialPort.close();
System.exit(0);

break;

default:
break;

 }
 }

Finally, we have our main() method. It takes no arguments. We start by creating a
Modem object, opening a serial port, and creating our event listener.
 public static void main(String[] args) {

Modem external = new Modem();
external.openSerialPort(“serial0”);
serialPort = external.serialPort;
PPPServer ourListener = new PPPServer();

Next, we create our PPP object, which starts the PPP connection process. We now
have to set values for the local and remote IP address for their respective PPP
interfaces because we are now the server, and the client calling in will be expecting
us to assign one. We made up these numbers. If you choose to insert different ones,
make sure they are on a different network than any other interfaces your TINI or PC
may have.

ppp = new PPP();
byte[] localAddress = new byte[] {(byte)192, (byte)168, (byte)10, (byte)9};
byte[] remoteAddress = new byte[] {(byte)192, (byte)168, (byte)10, (byte)12};

We now add our event listener, set up a bunch of PPP connection parameters, and set
PPP as our default interface. We also leave the setAuthenticate() method set to
false, because we aren’t doing any authentication on the client calling in.
 try {

ppp.addEventListener(ourListener);
ppp.setLocalAddress(localAddress);
ppp.setRemoteAddress(remoteAddress);
ppp.setACCM(0x00000000);
ppp.setAuthenticate(false);

552

Designing Embedded Internet Devices

ppp.setDefaultInterface(true);
 } catch(Exception e) {

System.out.println(e);
System.out.println(“The ppp methods failed”);
serialPort.close();
System.exit(0);

 }

We call the answer method from the Modem class. It will wait for three rings, answer
the call, then wait for the CONNECT. If the CONNECT comes, it will call the open()
method, which starts us moving through the PPP FSM.
 if (external.answer()) {

ppp.open();
 } else {

System.out.println(“The dialer failed!”);
serialPort.close();
System.exit(0);

 }
 while(true) {

//run forever...
 }
 }
}

Once the connection is established, this program loops forever. If you’re in a Telnet window,
simply form a connection right over the top of this or close that Telnet window and open
another one. In this new Telnet window, you can now access the client with ftp and ping.
You can run applications under Slush that communicate with the client and they will use the
IP interface established by PPPServer. To stop PPPServer, you will need to use the kill
command. Let’s try running it.

Again, use a TINI connected to a PC via Ethernet. Connect the TINI to a modem (a
cell phone in our case) via the specially made crossover cable and the cell phone’s
data connectivity cable. To compile the program, create a separate folder and place
PPPServer.java in it, as well as Modem.java. Make a bin folder in the same
directory. Then type the following:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin PPPServer.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\PPPServer.tini
-d %TINI_HOME%\bin\tini.db

553

Connecting TINI to an IP Network

As we’ve done in previous examples, some of the command line arguments for the
java command have been shown on a separate line. Everything after java should be
entered on the same line. Transfer the .tini file to your TINI stick via FTP, and via
telnet attempt the following as the root user:
TINI /> downserver -s
Warning: This will disconnect users on specified servers.

OK to proceed? (Y/N): y
[Wed Feb 13 03:56:21 GMT 2002] Message from System: Serial server
stopped.

TINI /> java PPPServer.tini
Sending: AT
Receiving:
AT
OK

Wait for 3 rings

RING

RING

RING

Sending: ATA
Receiving:
ATA
Wait for CONNECT

CONNECT

PPP sent the STARTING event!
PPP sent the UP event!

Then, log into the same TINI via telnet either right on top of the current process, or in
a different window. Run ipconfig –x:
TINI /> ipconfig -x
Interface 0 is active.
Name : eth0
Type : Ethernet
IP Address : 192.168.0.5
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0

Interface 1 is active.
Name : lo
Type : Local Loopback

554

Designing Embedded Internet Devices

IP Address : 127.0.0.1
Subnet Mask : 255.0.0.0
Gateway : 0.0.0.0

Interface 2 is active.
Name : ppp0 (default)
Type : Point-to-Point Protocol
IP Address : 198.168.10.9
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0

Interface 3 is not active.

It worked! You have a PPP connection with the PC, the TINI on 192.168.10.9 and
the PC on 192.168.10.12. You can now log into the TINI using Telnet and FTP by
referring to it as 192.168.10.9 and you will connect over the PPP interface, and if you
refer to the TINI as 192.168.0.5, you will connect over the Ethernet interface.

The same comments we made about PPPClient apply here. We need to be the root
user to do this, and we always need to start by shutting down the serial server with
the downserver –s command, or, disable the server by modifying the etc/.startup
file, with the line setenv SerialServer disable. To stop the PPPServer, you will
have to use the kill command, and kill the PPPServer process.

And if things didn’t work for you? There are a number of things that can go wrong.
You should power cycle the modem before running the program, make sure that any
processes from previous PPPClient or PPPServer attempts are killed, and always
shut down the serial server (or disable it). You may also want to double check to see
that the connection preferences of your PC dial up adapter (data bits, parity, stop bits,
flow control) match those being set in the program. With respect to compilation and
TINIconvertor, always use a separate directory in which the only java files are
PPPServer.java and Modem.java. Beyond this, if you’ve tested the modem answering
process with the previous examples, but the PPP still doesn’t work, consider
browsing the TINI archives on the web. There is a wealth of information about PPP
out there. If everything above worked, but when you did the ipconfig –x you did
not see the ppp0 interface, try the last resort: clear the heap, reload the TINI firmware
(tini.tbin, slush.tbin) and try again.

Example: Dialing into TINI from a PC (With Authentication)
The previous example involved making a TINI act as a PPP server that can be called
and logged into remotely from a PC. For simplicity, we omitted user authentication.
Anybody can call into TINI and start up a PPP connection. That’s a great big
weakness. So, we’re going to redo the example adding user authentication. There are
really only two changes to the program. We have to add some code that takes a user
name and a password from the client requesting a connection and compare them

555

Connecting TINI to an IP Network

against the data stored in the TINI password file. We need to then execute this code
when the AUTHENTICATION_REQUEST event occurs (that is, during the AUTH
state). Last, we need to add the setAuthenticate(true) method to main(). We’re
going to present the whole program below, then look at the portions that differ from
the previous example.

Listing 13-7: PPPServerWA.java

import java.io.*;
import javax.comm.*;
import com.dalsemi.tininet.ppp.*;

public class PPPServerWA implements PPPEventListener {
static SerialPort serialPort = null;
static PPP ppp;

public void pppEvent (PPPEvent e) {
 switch(e.getEventType()) {

case PPPEvent.STARTING:
System.out.println(“PPP sent the STARTING event!”);
ppp.up(serialPort);

break;

case PPPEvent.UP:
System.out.println(“PPP sent the UP event!”);
ppp.addInterface(“ppp0”);

break;

case PPPEvent.AUTHENTICATION_REQUEST:
System.out.println(“PPP sent the AUTHENTICATION_REQUEST event!”);
String userName = ppp.getPeerID();
String password = ppp.getPeerPassword();
if (validateLogin(userName, password)) {

ppp.authenticate(true);
System.out.println(“Login Validation has succeeded”);

} else {
ppp.authenticate(false);
System.out.println(“Login Validation has failed”);

}
break;

case PPPEvent.STOPPED:
System.out.println(“PPP sent the STOPPED event!”);
ppp.close();

break;

case PPPEvent.CLOSED:
System.out.println(“PPP sent the CLOSED event!”);
ppp.down();

556

Designing Embedded Internet Devices

ppp.removeEventListener(this);
serialPort.close();
System.exit(0);

break;

default:
break;

 }
 }

 public boolean validateLogin(String user, String passwd) {
String inputLine;
boolean flag=true;
byte[] hashFromFile = new byte[20];
ParsePasswdLine pwl = new ParsePasswdLine();
try {

BufferedReader passwdFileLines = new BufferedReader(
 new FileReader(“/etc/passwd”));

while ((inputLine = passwdFileLines.readLine()) != null) {
 pwl.parse(inputLine);
 if ((pwl.userName).equals(user)) {

hashFromFile = pwl.passwdHash;
byte[] testHash = com.dalsemi.system.Security

 .hashMessage((user + “:” + passwd).getBytes());
 for (int i=0; i<20;i++) {
 if (testHash[i]!=hashFromFile[i]) {
 return false;
 }
 }
 return true;
 }
 }
 }
 catch (Exception e) {

System.out.println(e);
return false;

 }
 return false;
 }

 public static void main(String[] args) {
Modem external = new Modem();
external.openSerialPort(“serial0”);
serialPort = external.serialPort;
PPPServerWA ourListener = new PPPServerWA();
ppp = new PPP();
byte[] localAddress = new byte[] {(byte)192,(byte)168,(byte)10,(byte)9};
byte[] remoteAddress = new byte[]{(byte)192,(byte)168,(byte)10,(byte)12};

 try {

557

Connecting TINI to an IP Network

ppp.close();
ppp.addEventListener(ourListener);
ppp.setLocalAddress(localAddress);
ppp.setRemoteAddress(remoteAddress);
ppp.setACCM(0x00000000);
ppp.setAuthenticate(true);
ppp.setDefaultInterface(true);
ppp.setPassive(true);

 } catch(Exception e) {
System.out.println(e);
System.out.println(“The ppp methods failed”);
serialPort.close();
System.exit(0);

 }
 if (external.answer()) {

ppp.open();
 } else {

System.out.println(“The answer has failed!”);
serialPort.close();
System.exit(0);

 }
 while(true) {

//run forever...
 }
 }
}

The first change we see is in the AUTHENTICATION_REQUEST case. We use the
getPeerID() and the getPeerPassword() methods to grab the username and
password entered by the client requesting a PPP connection. Then we pass those to a
method called validateLogin(). If that method returns true, we use the
authenticate(true) method to move us into the UP state. Else, we use
authenticate(false) to move to the STOPPED state.
 case PPPEvent.AUTHENTICATION_REQUEST:

System.out.println(“PPP sent the AUTHENTICATION_REQUEST event!”);
String userName = ppp.getPeerID();
String password = ppp.getPeerPassword();
if (validateLogin(userName, password)) {

ppp.authenticate(true);
System.out.println(“Login Validation has succeeded”);

} else {
ppp.authenticate(false);
System.out.println(“Login Validation has failed”);

}
 break;

The validateLogin() method takes the username/password and compares it to what
is found in the TINI password file. We make use of a utility class,
ParsePasswordLine, which is stored in a separate file in the same directory. The

558

Designing Embedded Internet Devices

ParsePasswordLine class has two member variables, the user name and the 20 bit
hash associated with that user name. We read in the contents of the password file, line
by line, and as we do, we parse the line and separate out the username and 20 bit hash
(via the ParsePasswordLine class). If the client’s user name matches a name in the
file, we create a string consisting of the username, a colon, and the password the
client entered. We compute the SHA-1 hash of that string. We compare that hash,
with the hash retrieved from the password file, byte for byte. If they match, the client
gets logged.
 public boolean validateLogin(String user, String passwd) {

String inputLine;
boolean flag=true;
byte[] hashFromFile = new byte[20];
ParsePasswdLine pwl = new ParsePasswdLine();
try {

BufferedReader passwdFileLines = new BufferedReader(
 new FileReader(“/etc/passwd”));

while ((inputLine = passwdFileLines.readLine()) != null) {
pwl.parse(inputLine);
if ((pwl.userName).equals(user)) {

 hashFromFile = pwl.passwdHash;
 byte[] testHash = com.dalsemi.system.Security
 .hashMessage((user + “:” + passwd).getBytes());
 for (int i=0; i<20;i++) {
 if (testHash[i]!=hashFromFile[i]) {
 return false;
 }
 }
 return true;
 }
 }
 }
 catch (Exception e) {

System.out.println(e);
return false;

 }
 return false;
 }

The ParsePasswordLine class has one method, parse(), which takes a string and
grabs the first two colon separated fields. The second field is treated as hex bytes, and
put into a byte array.
import java.io.*;
import com.dalsemi.system.*;
public class ParsePasswdLine {

String userName;
byte[] passwdHash = new byte[20];

559

Connecting TINI to an IP Network

 public void parse(String passwdLine) {
int firstField = passwdLine.indexOf(‘:’, 0);
int secondField = passwdLine.indexOf(‘:’, firstField+1);
userName = passwdLine.substring(0, firstField);
String passwdHashStr = passwdLine.substring(firstField+1, secondField);
int n=0;
int i=0;
String str = “”;
while (n<39) {
str = passwdHashStr.substring(n,n+2);
passwdHash[i] = (byte)Short.parseShort(str, 16);
i++;
n=n+2;

 }
 }
}

Like the previous example, use a TINI connected to a PC via Ethernet. Connect the
TINI to a modem (a cell phone in our case) via the specially made crossover cable
and the cell phone’s data connectivity cable. To compile the program, create a
separate folder and place PPPserverWA.java in it, as well as Modem.java, and
ParsePasswordLine.java. Make a bin folder in the same directory. Then type the
following:
C:\> cd src
C:\> javac -bootclasspath %TINI_HOME%\bin\tiniclasses.jar

-d ..\bin PPPServerWA.java
C:\> cd ..
C:\> java -classpath %TINI_HOME%\bin\tini.jar;. BuildDependency

-p %TINI_HOME%\bin\owapi_dependencies_TINI.jar
-f bin
-x %TINI_HOME%\bin\owapi_dep.txt
-o bin\PPPServerWA.tini
-d %TINI_HOME%\bin\tini.db

As we’ve done in previous examples, some of the command line arguments for the
java command have been shown on a separate line. Everything after java should be
entered on the same line. Transfer the .tini file to your TINI stick via FTP, and via
telnet attempt the following as the root user:
TINI /> downserver -s
Warning: This will disconnect users on specified servers.

OK to proceed? (Y/N): y
[Wed Feb 13 08:52:58 GMT 2002] Message from System: Serial server
stopped.

TINI /> java PPPServerWA.tini
Sending: AT
Receiving:

560

Designing Embedded Internet Devices

AT
OK

Wait for 3 rings

RING

RING

RING

Sending: ATA
Receiving:
ATA
Wait for CONNECT

CONNECT

PPP sent the STARTING event!
PPP sent the AUTHENTICATION_REQUEST event!
Login Validation has succeeded
PPP sent the UP event!

Then, log into the same TINI via Telnet either right on top of the current process, or
in a different window. Run ipconfig –x:
TINI /> ipconfig -x
Interface 0 is active.
Name : eth0
Type : Ethernet
IP Address : 192.168.0.5
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0

Interface 1 is active.
Name : lo
Type : Local Loopback
IP Address : 127.0.0.1
Subnet Mask : 255.0.0.0
Gateway : 0.0.0.0

Interface 2 is active.
Name : ppp0 (default)
Type : Point-to-Point Protocol
IP Address : 192.168.10.9
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0

Interface 3 is not active.

561

Connecting TINI to an IP Network

Success! As in the previous example, we now have a PPP connection between the
TINI stick and a PC, with the stick acting as a server. This time, the PPP process
checked to see if we entered a valid user name and password when dialing in form
the PC. If this didn’t work for you, refer to comments at the end of the previous
example.

Rebuilding Slush to include PPP
The Optional Slush Command ppp
In the TINI software distribution, tini1_102b.tgz (or whichever version you’re
using), there is a file called OptionalSlushCommandsSrc.jar. If you unzip that file,
you will find that it contains many files, among them, PPPCommand.java. It will
unzip into a directory structure based on .\com\dalsemi\slush\command. The
mechanics of taking an optional slush command like this and building it into slush is
a topic that was discussed in Chapter 7. What we’re going to discuss here is what the
PPPCommand class does for us, and what we have to do to make it work.

The PPPCommand class inserts a command called ppp into slush. The ppp command
has the following options:

-a XX.XX.XX.XX

Sets the IP address of the TINI stick ppp interface. This gets used when you are
using the ppp command to set up the stick as a PPP server, waiting for an
incoming call from another computer. The IP address of the remote computer’s
PPP interface will be set with the –r option. You will also be using the –x and –s
options with this.

-c

This closes the PPP connection. In our previous examples, we started the
PPPClient or PPPServer application and it ran until you killed it. But, if you
establish a ppp connection with the ppp command in slush, you can close the
connection cleanly by typing ppp –c. This only works if you started the
connection with the ppp command in slush. If you form the PPP connection using
one of the previous examples, and you use ppp –c, nothing happens.

-p password

This sets the login password in cases when you are using the TINI stick as a PPP
client, dialing into a PPP server. It gets used in conjunction with the –x, -d, and –u
options. For instance if you have a dialup account at an ISP and you are trying to
form a connection to it with a TINI stick, you would use this option and enter the
account login password that you use with the ISP.

-r XX.XX.XX.XX

562

Designing Embedded Internet Devices

Sets the IP address of the remote ppp interface in cases when you are using the
ppp command to set up the stick as a PPP server, waiting for an incoming call
from another computer. The IP address of the TINI stick’s PPP interface will be
set with the –a option. You will also be using the –x and –s options with this.

-u username

This sets the login username in cases when you are using the TINI stick as a PPP
client, dialing into a PPP server. It gets used in conjunction with the –x, -d, and –
p options. For instance if you have a dialup account at an ISP and you are trying
to form a connection to it with a TINI stick, you would use this option and enter
the account login ID that you use with the ISP.

-s

This is the start server option. You use this when you want the TINI to act as a
PPP server and await an incoming phone call from another computer. You use it
in conjunction with the –x, -a, and –r options.

-d

This is the dial up a server option. You use this when you want the TINI to act as
a PPP client and call a PPP server such as an ISP. You use it in conjunction with
the –x, -p, and –u options.

-x serial_port_number

This defines which serial port you want to use for the PPP connection. This gets
used whenever you are forming a PPP connection. Oddly, it doesn’t seem to be
documented.

Usage Examples

Suppose you want to form a PPP connection with an ISP. You have a login
account with a name (rosie) and a password (dalmation). You want to use serial0.

ppp –x 0 –d –u rosie –p dalmation

The –x 0 is for serial0, the –d for dialup, the –u and –p for username and
password.

Suppose you want to form a PPP connection with your laptop. You want to use
serial0. You will type the following on TINI:

ppp –x 0 –s –a 207.168.0.5 –r 130.130.132.10

The –x 0 is for serial0, the –s for start server, the –a and –r are the IP addresses
of the PPP interfaces on the TINI and the laptop, respectively. If the TINI has an
IP address defined for the Ethernet interface, the PPP interface should have an IP
address on a different network. The same is true for the laptop. For instance, if

563

Connecting TINI to an IP Network

you TINI eth0 at 192.168.0.5, and the laptop eth0 at 192.168.0.2, you can’t put
their ppp IP addresses on the 192.168.0.x network. You get the ppp.UP event, and
the interface will be present, but nothing can communicate. You can, however,
put them at 192.168.10.x such as 192.168.10.9 and 192.168.10.12, respectively.
If both are stand alone, with no other interfaces, you can pretty much use any
numbers you want. The command, above, will be entered on the TINI. The TINI
will wait for an incoming call from the laptop. On the laptop, it will be just like
you are calling an ISP. (You have to have a userID and password setup on TINI,
because authentication will be performed.)

The PPPCommand.java code
The PPPCommmand.java code provides an implementation for the Slushcommand
and PPPEventListener interfaces. The code can be broken down into roughly three
categories.

1. Code that implements the SlushCommand interface for the command ppp and
its command line parameters.

2. Code that implements the PPPEventListener, implementing the FSM that we
discussed earlier.

3. Misc utility methods.

• closePPP()

• closeSerialPort()

• openSerialPort()

• createIPFromString()

• waitForCall()

• waitFor()

• ATCommand()

• login()

• an inner class called ModemCommand()

We’re not going to dive into the details of the code itself, beyond identifying some
slight modifications we had to make in our experiments to get it to work. There are
four changes you have to make in order to use the ppp command.

1. Early in the PPPCommand.java file there is an inner class called
ModemCommand. A ModemCommand object called dialSequence is later created.
You must modify this to contain the phone number of your ISP. We also
found that it’s helpful to increase the timeout value from 30 to 60.

564

Designing Embedded Internet Devices

2. In the execute() method, where the program decides whether or not to call a
server, you must add the line ppp.setDefaultInterface(true); right after
the line ppp.setPassword(password);

3. In the waitForCall() method, after the first waitFor(“RING”, null, 0);
line, add two more just like it.

4. In the waitForCall() method, in the line

 if (!atCommand(new ModemCommand(“ATA\r”, “CONNECT”, 25)))

 change the timeout value of 25, to 120.

With those changes, rebuild Slush to include the PPPCommand class, so the command
ppp is implemented. Detailed instructions for this are in Chapter 7.

TINI as a PPP client using the Slush command ppp
We’re now going to assume that you’ve succeeded in making the changes to Slush
described in the previous section, and that you’ve succeeded at getting the PPPClient
program to work on a TINI. So we know we’ve got a cable that works with your
modem, and dialing strings that work, etc. Connect a modem to TINI serial0, Telnet
into the TINI via Ethernet, and do the following commands. Be sure to substitute
your username and password, where you see the words username and password in the
results below. (These are the username and password required by your ISP)
TINI /> downserver -s
Warning: This will disconnect users on specified servers.

OK to proceed? (Y/N): y
[Wed Feb 13 09:12:01 GMT 2002] Message from System: Serial server
stopped.

TINI /> ppp -d -x 0 -u username –p password
PPP connection established

TINI /> ipconfig -x
Interface 0 is active.
Name : eth0
Type : Ethernet
IP Address : 192.168.0.5
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0

Interface 1 is active.
Name : lo
Type : Local Loopback
IP Address : 127.0.0.1
Subnet Mask : 255.0.0.0
Gateway : 0.0.0.0

565

Connecting TINI to an IP Network

Interface 2 is active.
Name : ppp0 (default)
Type : Point-to-Point Protocol
IP Address : xxx.xxx.xx.xxx
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0

Interface 3 is not active.

TINI /> ppp -c

PPP connection closed

It pays to use a modem that has a speaker, because that will give you some feedback as to
where you are in the dialing process. There can be a long pause (~1 minute) between issuing
the command and getting the PPP connection established message. Where you see
xxx.xxx.xx.xxx in the results, your server assigned IP address will appear. The ppp –c
command is used to shut down the PPP connection. We only showed this here because you
need to shut down the connection before we open it again, which is what we’re going to do
in the next section.

TINI as a PPP server using the slush command ppp
We’re now going to assume that you’ve succeeded in making the changes to slush
described in the previous section, and that you’ve succeeded at getting the PPPServer
program to work on a TINI. So we know we’ve got a cable that works with your
modem, and dialing strings that work, etc. Connect a modem (such as the cell phone)
to TINI serial0, Telnet into the TINI via Ethernet as root, and do the following
commands. Then, from a PC connected to a second modem, call the modem
connected to the TINI. Enter a username and password valid for the TINI you are
using.
TINI /> ppp -s -x 0 -a 192.168.10.9 -r 192.168.10.12
PPP connection established

TINI /> ipconfig -x
Interface 0 is active.
Name : eth0
Type : Ethernet
IP Address : 192.168.0.5
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0

Interface 1 is active.
Name : lo
Type : Local Loopback
IP Address : 127.0.0.1
Subnet Mask : 255.0.0.0
Gateway : 0.0.0.0

Interface 2 is active.

566

Designing Embedded Internet Devices

Name : ppp0 (default)
Type : Point-to-Point Protocol
IP Address : 192.168.10.9
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0

Interface 3 is not active.

We now have a PPP connection between the TINI and the PC. You can Telnet and
FTP over either the Ethernet interface and/or PPP interface. Applications running
under Slush can use either also. You don’t have to use the IP addresses shown, just
make sure the Ethernet addresses and the PPP addresses are on different networks.

Summary
This chapter has examined TINI IP networking, with an emphasis on PPP. We looked
at the ipconfig command in detail, and examined how TINI does PPP. Ways of
making TINI behave as a PPP client to the Internet or a PPP server to a PC were
presented. Examples included standalone applications, as well as implementing the
optional ppp command in slush. The ppp command is a convenient, more
sophisticated way of achieving PPP connectivity than some of the simpler examples
shown. But the process of getting the cable, modem, and PPP software to work
together can be difficult, and it pays to take an incremental approach:

1. Learn how to use AT commands with your modem by connecting it to a PC
(via a straight-through cable) and talking to it with a terminal emulator.

2. Learn how to get a TINI to properly talk to a modem by using the proven AT
commands and a specially made crossover cable. Be mindful that DTR resets
the TINI, but may be needed by the modem (as well as RTS).

3. Try dialing out to an ISP, with TINI acting as a PPP client. Remember, the ISP
must support PAP (Password Authentication Protocol).

4. Try dialing into TINI from a PC, with TINI acting as a PPP server. This
requires two modems and two phone lines. We used a cell phone, with a
special accessory cable that allows it to be used as an RS232 modem. Remem-
ber, cell phones and modem may have varied requirements with respect to
answering calls.

5. Implement the optional command ppp, by making the modifications described
in this chapter, and then following the instructions in Chapter 7 on modifying
Slush.

Common problems include the cable (not crossover, not providing DTR and RTS to
the modem), failure to shut down the serial server before starting PPP, failure to get
rid of old processes/connections before starting up new ones, mixing up java files

567

Connecting TINI to an IP Network

during compilation (keep everybody separate), and having an incorrect modem setup.
If you run across something that defies explanation, specifically, the case when you
receive the UP event but the ppp0 interface never shows up after an ipconfig: clear
the heap, goto JavaKit and fill the flash full of 0’s, and reload the firmware. Last but
not least, always be watching the TINI message archives. If you’re having trouble,
someone else has probably had the same problem and fixed it.

References
1. Modem AT commands fall under TIA/EIA/IS707-A.3. Wireless enhance-

ments to the command set are covered by ITU-T
recommendation V.250. For more AT command information, visit
www.modem.com. For information about cell phones as modems, visit http://
www.shorecom.com/wirelessly.html

[This is a blank page.]

14CHAPTER

A Few Final Thoughts

569

Recent advances in computers and networking technology have spurred tremendous
interest in the development of computer-controlled devices, smart appliances, and so
called web-enabled devices: electronic devices that communicate directly with the
Internet. We hope this book has helped jump start you on the development of your
own web-enabled devices using commercially available electronics.

Using a generic, Java-programmable network interface with a wide variety of inter-
face busses, you can now make just about any device a network device. In this
chapter we will briefly comment on the future of TINI and some of the many possi-
bilities for connecting devices using TINI as the network controller.

The Future of TINI
During the early development of this book, Maxim Integrated Products Inc.1 pur-
chased Dallas Semiconductor. Before this purchase, Dallas had big plans for future
versions of TINI. All indications are that these plans will continue to develop into
new TINI products. Look for continued improvements to TINI in the coming months
and years. By the time you read this book Dallas Semiconductor will have released
the TINI software version 1.1, which will include several significant improvements.

• Dynamic class loading.

• Object serialization.

• Reflection.

• IPv6.

• Prioritized processes and threads.

1 Maxim – http://www.maxim-ic.com/

570

Designing Embedded Internet Devices

• Stack traces.

• Support for mountable file systems.

Dallas Semiconductor has also announced2 and released a preliminary datasheet for
the DS80C4003 Network Microcontroller that is expected to replace the 80C390
microcontroller on a future TINI version. The 80C400 will be an integrated CPU, 1-
wire interface and 10/100 Ethernet interface. It will support the following features:

• Flat 16-MB address space.

• CAN 2.0B controller.

• Three full-duplex serial ports.

• Eight bidirectional 8-bit ports.

• Support for IPv4 and IPv6.

• Clock rates up to 50 MHz.

• 16 total interrupt sources with 6 external interrupts.

• Programmable IrDA clock.

• Advanced power management.

Dallas Semiconductor is clearly on the right road to reducing the chip count of the
TINI chipset for reduced cost, size and power on future versions of TINI.

Connecting Your Device
There are many visions of the networked future, with everything connected to and
controllable through the Internet. Some fanciful visions include refrigerators that will
track your home food inventory and automatically reorder your groceries as you
consume them. Other visionaries dream of the days when all of your home appliances
(like your dishwasher and clothes washer) will be networked and will automatically
send email to the proper service technician when the appliance determines that it
needs maintenance.

While these (and other visions) are certainly possible, the value of these services
seems questionable, particularly after considering the added cost to add a network
capability to a low-cost appliance and the added cost of providing a network connec-
tion and the monthly monitoring service.

2 Dallas Semiconductor Re-Engineers Its Microcontrollers For Network Computing,
March 20, 2001 – http://dbserv.maxim-ic.com/view_press_release.cfm?release_id=284

3 80C400 product datasheet (preview) – http://www.dalsemi.com/TINI/ds80c400.pdf

571

A Few Final Thoughts

Why internet-enable anything?
While the need to network everything seems questionable, there is plenty of reason
for connecting certain devices to either a LAN or the Internet. One of the more
compelling reasons is that an embedded controller no longer needs a display or
hardware user interface. A standard web browser can become the standard user
interface (everyone has one of those, right?) for your device. The user requires no
new software to monitor and interact with your hardware and you can reduce the cost
of your design by eliminating the need for user interface hardware (keyboard, display,
etc). Another benefit is that the Internet provides a way for you to collect operational
data about your device and learn how and when your customers use it and what
features they use or don’t use. This also provides a way for you to add features or
correct problems in the software remotely.

So, why use the Internet? Why not use one of the many other available network
technologies? First and foremost, the Internet (and Ethernet) has become very
common and so connectivity (routers, hubs, network interface cards, cables) is
cheaper than with most proprietary communications schemes. Most office buildings
have full network connectivity (even if it’s just a LAN) and many houses are now
being fully wired for Ethernet. This existing network can now be the basis of home or
office automation and monitoring tasks previously done with other wired networks.
Worldwide connectivity via the Internet is everywhere (almost). By taking advantage
of this, you can monitor and upgrade your devices over great distances almost as
easily as if they were in the same room. The Internet also provides an easy means for
distributing some of the processing load to other computers. By using a standard
network and a TINI (which provides access to this network almost for free), you
might monitor a collection of weather or environmental sensors, for example, distrib-
uted all over the world. While TINI is well suited for the task of monitoring sensors
and reporting data over the network, a networked TINI could then retrieve additional
weather-related information from publicly accessible weather servers. Additionally,
data that may be too computationally intensive, such as the time of sunrise or the
phase of the moon, could be calculated and retrieved from a computer on the network
that is more suited to the task.

Possibilities
Throughout this book we have discussed and demonstrated the many interfaces
available to you for controlling hardware and reading sensors—from I2C, CAN, 1-
Wire, parallel IO, and serial ports.

We have also discussed and demonstrated the many ways TINI offers to connect to
your LAN and the Internet: 10 base-T, RS-232 serial connection, and PPP
connections.

572

Designing Embedded Internet Devices

Personal
Computer

Socket
Board

TINI SIMM

Serial Cable

1-wire bus

1-wire
devices

1-wire bus

1-wire
devices

Dual
Serial
Ports

CAN bus

I²C bus

Parallel
I/O

Figure 14-2: TINI network connections

Hub/Router
Connection to
Internet / WAN

Socket
Board

TINI SIMM

Modem

Personal Computer
Gateway

Hub/Router

 Cell Phone

Connection to LAN

Modem

Global
Information

Infrastructure

Figure 14-1: TINI interfaces

573

A Few Final Thoughts

Using TINI as the base of your next embedded hardware design provides you with all
of the tools to network enable just about anything (sensible or not). Here are just of
few of the limitless possibilities of devices you can embed with TINI to make a
remote networked device:

• Instrumentation and laboratory processes.

• Remote monitoring of manufacturing facilities, office buildings.

• Home or office alarm systems.

• Monitoring of distributed events (weather stations, remote seismic stations,
environmental monitoring).

• Even networking your coffee pot (as silly as this may seem at first, this is little
more than a scaled-back implementation of remote monitoring and control of
things like manufacturing processes).

Figure 14-3: TINI networked coffee pot

1-wire bus

DS1820
1-wire Temperature

Sensor

DS2405
1-wire Addressable

Switch

Socket
Board

TINI

Hub/Router

Connection to
Internet / WAN

Coffee pot

What’s Been Done with TINI
A number of talented developers have produced a very interesting and varied array of
applications using TINI. Here is a sampling of some of the hardware and software
development using TINI.

574

Designing Embedded Internet Devices

TINI Ethernet MP3 Player4

The MP3elf is an Ethernet-connected MP3 player that receives an MP3 stream from a
local area network server and delivers it to amplified speakers or a hi-fi system. The
MP3elf hardware is based on the STA013 MP3 decoder chip (from
STMicroelectronics) and a TINI single-board Java computer.

TINI CAN Monitor5

TINI is used in a prototype system that is able to establish an on-line connection
between agricultural equipment with CAN sensors (that senses monitor equipment
operating conditions) and a TCP/IP-based network for data analysis.

Servertec Web Server for TINI6

The Servertec Internet Server is a Web Server designed to run on TINI. Using this
server, developers can easily create web-based applications that interact with a wide
range of devices to control lighting, heating/cooling units, door entry, refrigeration,
medical testers, monetary transactions, appliances and vending machines.

X10 Libraries for TINI7

Jesse Peterson has developed a Java library that can control both the CM11A and
CM17A X10 controllers. This allows you to control X10-enabled devices from Java
programs running on TINI.

TINI WAP Server8

The lightweight server allows any WAP-enabled PDA or cell phone to be served with
WML and WMLScript based applications from a TINI embedded device. This server
includes full image support to send WBMP and PNG graphics to the wireless
browser.

TINI Beer Keg9

The device demonstrates the use of TINI for remote monitoring the status of an office
beer keg (temperature and volume remaining).

4 TINI Ethernet MP3 Player – http://mp3elf.net/
5 TINI CAN Monitor – http://www.precisielandbouw.nl/project/tini/CanMonitor.html
6 Servertec Web Server for TINI – http://www.servertec.com/products/tini_iws/tini_iws.html
7 X10 Libraries for TINI – http://www.jpeterson.com/rnd/
8 TINI WAP server – http://www.sysgen.co.uk/Products/TINIwap/tiniwap.html
9 TINI Beer Keg – http://www.dolske.net/hacks/beer/

575

A Few Final Thoughts

TINI Drink machine10

TINI monitors the drink machine in the Rochester Institute of Technology Computer
Science building. This uses 1-Wire devices that include switches and a temperature
sensor for each slot.

Toasty11

TINI is the heart of a true Internet appliance, a toaster that collects weather forecasts
and burns that forecast onto a piece of bread.

* * * * * * * * * * * * * * *

In the early 90s, when most people were just becoming aware of the Internet, there
were a few university labs experimenting with connecting hardware to the Internet.
The webcam was born. Nowadays, just about everybody has an Internet connection at
home, and at work, our photocopiers, laser printers, and lab instruments are all IP
addressable on a LAN. Web browsers are an integral part of how we access
information. Do you have some project idea that you would like to put on the
Internet? Are you ready to build the better Internet mousetrap? We hope this book
will give you a good start, by introducing how to build Internet-enabled devices via
an inexpensive, ready-made, Java-powered microcontroller.

References
1. Warren Webb,

Ethernet Invades Embedded Space,
EDN, September 11, 1998, pg 71-80

2. Warren Webb,
Embed The Web for Fun and Profit,
EDN, March 18, 1999, pg 57-68

3. Warren Webb,
Designing Web Appliances on a Shoestring,
EDN, April 13, 2000, pg 89-96

4. NS Manju Nath,
Low-Cost Techniques bring Internet Connectivity to Embedded Devices,
EDN, November 11, 1999, pg 159-166

5. Dan Strassberg,
www.your_instrument.com,
EDN, September 2, 1999, 101-108

10 TINI Drink Machine – http://www.csh.rit.edu/projects/drink/
11 Toasty – http://www.dancing-man.com/robin/webhome/report2.htm

576

Designing Embedded Internet Devices

6. Richard A Quinnell,
Web Servers in Embedded Systems Enhance User Interaction,
EDN, April 10, 1997

7. Nicholas Cravotta,
Managing Internet Enabled Devices,
EDN, September 20, 1001, pg 48-60

8. Bill Travis,
Sensors Smarten Up,
EDN, March 8, 1999, pg 76-86.

Index

577

Numbers
10/100 BASE-T, 6
 cable, 11-13
10BASE-T, 6
1-Wire

CLASSPATH, 117-119
libraries, 117-126
hardware, 119-120
program, 120-126
defined, 345
devices, 369-370
bus protocol, 349
reset, 350
communication details, 350-353
bus commands, 353-359
connecting PC to, 370-379
how TINI communicates with, 418-431
finding all devices, 400
memory mapped driver, 441

1-Wire Java API, 380-393
1-Wire Net, 102, 345-431

A
address, Ethernet, 13-14
address decoder (on TINI), 256-259
address space, (see TINI, address space)
address, Internet, 14
API, 25, 185-190
AT commands, 524
authentication, user with PPP server, 554-561

B
BAT files (for compiling), 232-234
binding

To port number, 59
bridge, 8
broadband connection, 8, 9

BuildDependency, 209
buttons, adding to TINI, 273-280
ByteUtils.java listing, B-1 – B-10

(on CD-ROM)

C
cable categories, 11
cabling,

PPP, 523
serial, 105-106, 112
network, 11-13

CAN bus
Definitions, 467
Versions, 468
Frames, 472
Implementation, 469-482
How TINI does, 163, 483-500
Hardware, 484-486
Classes, 487
Bit timing, 478, 488
Bus monitor, 490-500
Physical Layer, 481

CAN interface, 158
CAT-3 cable, 11
CAT-5 cable, 11
CE0-3 signal name, 131
CIDR, 16
Class A, 14-15
Class B, 15
Class D, 14
Class E, 14
classes

Java, 37
Network, 14

classful routing, 14
CLASSPATH, 32, 35, 85, 107-108, 109,

118, 119

578

Designing Embedded Internet Devices

client/server relationship, 20-21
connecting to Internet, 8-10
connection, dial-up, 9
constructor, 37
Controller Area Network (see CAN bus)
CPURST signal name, 130, 131, 136,

146-147
CRC, 359-362
CTX signal name, 131, 440, 485
CRX signal name, 131, 440, 485
crossover cable, 6, 12, 524
Controller Area Network

(see CAN bus)

D
D9, connector, 302
D25, connector, 302
data bus buffer, 255
data communication equipment, (DCE),

300
data terminal equipment, (DTE), 300
DHCP, 17
DNS, 14
domain names, 14
DOS batch files, 232
DOS command window, 236
DS1315 real time clock, 151-152
DS1321, 144-146
DS1820 1-Wire thermometer, 500
DS1920 thermometer, 366-369, 411-418,

455
DS2401 silicon serial number, 120, 501
DS2405 addressable switch, 362-365,

401-411
DS2406 1-Wire switch, 500
DS2480, 149-150, 375
DS80C390, 127, 133
DTR232 signal name, 131. 150-151,

160-161, 307

E
E10/E20 socket board, 158-172
EN2480 signal name, 131. 149-150
encapsulation, 18
error handling, 52-54

Ethernet, 5, 514-518
Address, 13-14
Controller (on TINI), 156

Example programs,
BitPortTest.java, 148

Button.java, 277
ByteExample.java, 335

CanBusViewer.java, 491
CanSendTest.java, 495
CanTempSensor.java, 502
CanTempMonitor.java, 505
CatchCustomException.java, 57
CountingThreads.java, 75
CustomException.java, 55
DefaultAdapter.java, 399
Digits.java, 449
DsLCDporttest.java, 261
ExtIntDemo.java, 274
FinallyExample.java, 58
FindDevices.java, 120
FruitTree.java. 45
HelloWorld.java, 27, 114
HttpImprovedServer.java, 67
HttpSocketClient.java, 60
HttpSocketServer.java, 63
HttpThread.java, 77
HttpURLClient.java, 73
IndependentCounting.java, 82
InOut.java, 460
Keypad.java, 282
LCDhello.java, 263
LCDFont.java, 265
LCDport.java, 266
LEDPort.java, 287
LEDTherm.java, 455
MeterReader.java, 318
Modem.java, 528
ModemAnswerTest.java, 546
ModemATTest.java, 535
ModemDialTest.java, 537
MyLCD.java, 271
MyLED.java, 293
MyKeypad.java, 284
pollButton.java, 279
pollKeypad.java, 283

579

Index

PortAdapters.java, 396
PortLister.java, 33
PPPClient.java, 538
PPPServer.java, 548
PPPServerWA.java, 555
OverRidden.java, 50
OwrCommand.java, 227
ParallelIO.java, 339
Parallel_IO.java, 456
PsSpeed.java, 341
ReadWriteClock.java, 153
ROM_ID.java, 385
SerialLoopTest.java, 86, 314
SerialPorts.java, 323
SpecifiedException.java, 54
SpecifyCustomException.java, 58
Switch.java, 403
Thermometer.java, 412
TiniROM_ID.java, 422
TiniROM_ID2.java, 425
TiniROM_ID3.java, 428
TiniWebStat.java, 211
Tree.java, 43
UniDump.java, 247
WatchDogDemo.java, 137

exception handling, 51-58
EXTINT signal name, 131, 168, 273,

276

F
flash ROM, 141-142
FTP, 20

Using, 235-236
Finally keyword, 58

G
gateway, 8
GNUmake, 237

H
hardware, network, 5
HTTP, 20
HTTP server, 60-73
hub, 7, 8
HyperTerminal, 180-181, 525

I
I2C, 157, 433-466

Addressing, 439
Data format, 435-439
Definitions, 434-435
How TINI does, 157, 440
Master/slave concept in, 434
Memory-mapped driver for, 441
TINI software for, 442

iButton, 149, 348, 430
inheritance, 41-51
instance, 37
interface (in Java), 82
Internet address, 14
Internet connectivity, rationale behind,

571
Internet Protocol, 14, 511
Interrupt selection circuitry, 168
INTOW signal name, 131, 147-149,

420
I/O circuits, C-1 (on CD-ROM)
IP address, 14, 516
IP network, 511
Ipconfig, slush command, 511-514

J
Java Development Kit, 25-30

Installing, 25-30
Java Runtime Environment, 25
Java, 25, 37-59

Classes, 206
Methods, 206
references, 4

Javakit,
loading and running, 109
loading firmware with, 113
description, 177-179
DTR error, 184

javax.comm., 30-36
JDK (see Java Development Kit)
Jedit, 240-241
JRE (see Java Runtime Environment)

K
keypad, adding to TINI, 280-286

580

Designing Embedded Internet Devices

L
LAN (see Local Area Network)
LCD display, adding to TINI, 260-272
LED display, adding to TINI, 286-294
LED status lights on TINI, 157
local area network, 5, 6

M
MAC address, 13-14
makefiles (for compiling), 238-240
MAN (see Metropolitan Area Network)
memory map, (see TINI, memory map)
memory mapped devices, 255-260
method, defined, 37
metropolitan area network, 5
MicroCans, 349
microcontrollers, (see network-enabled

microcontrollers)
MicroLAN (see 1-Wire Net)
minicom, using, 180-181
Modem class, 528

testing, 535-537
modem connection, 528

N
network address, 7, 13-17
network classes, 14-15
network communication, 17-21
network devices, 93
network hardware, 5
network hub, 7
network interface card, 6, 9
network programming, 59
network-enabled microcontrollers, table of,

93-98
NIC (see network interface card)

O
object, 37
object-oriented programming, 39-40
One-Wire (see 1-Wire)
OOP diagrams, 39-40
Open Systems Interconnection, 18
OSI, 18
OWIO signal name, 131, 149-150, 419

P
package diagrams for TINI API, 185-190
parallel communication software, 334-337
parallel device example, 337-344
parallel ports, 331-344
PCE0-3 signal name, 131, 257
PCA82C250, 485
PCF8574 remote 8-bit I/O expander, 455
pinout, TINI, A-6 – A-7 (on CD-ROM)
point-to-point protocol, 9
port adapter, 381-396
port (TCP/IP), 21

assignments, 22
ports (CPU), 134-136
power supply, on TINI, 164
PPP

TINI as client, 538
TINI as server, 545

ppp command in slush, 561-566
PPP connection, 9, 518-520

physical interface, 523
PPPCommand class, 561
PPPEvents, 520, 521
PPPServer class, 548
prerequisites, 4
protocol stack, 18
protocols, 18-19, 21

R
Real time clock, 151-152
real-time clock demo program, 153
repeater, 8
RJ-11 cable, 12
RJ-45 connector, 11, 162, 304
router, 8
RS232 interface (also see “serial port” and

“TINI, serial port”, 150, 295
RX232 signal name, 131, 150-151, 307
rxtx, 35

S
SAA1064 LED display driver, 447
SCL signal name, 440
SDA signal name, 440
SDK (see Software Development Kit)

581

Index

serial cables/connectors, 300-305
serial communication software (API), 311
serial line voltages, 298-299
serial port,

baud rate divisor, 330-331
cable wiring, 303
connector pinout, 302
general, 295
java access, 30-36
loopback test, 85-91
on PC, 85-91,
TINI (serial0-3), 295-331

serial server, TINI, 204, 308
server, 21

reading/writing to, 63, 67
silver satin, 11
slush, 113, 190, 204

Adding commands, 226-232
commands, 193-199
files and environment, 199-204
modifying, 219-232
recompiling, 219-223, 561
starting, 191-193

SMTP, 20
socket, 21

reading/writing to, 60
socket board, E10/E20,

CAN interface, 163
DTR reset enable, 160-161
ethernet interface, 162-163
external 1-Wire interface, 162
external interrupt selection circuitry,

168
flash, additional, 164-166
flash, over ride, 166
internal 1-Wire interface, 169
LCD interface, 172
parallel IO, 169-172
regulated power supply, 164
serial2, serial3, 167-168
serial interface, 160-161

socket boards, other
Vinculum Technologies, 173
Systronix, 174
making your own, 175

Software Development Kit, 25
subclass, Java, 42
subnetwork, 16-17
superclass, Java, 42
switch, 8
Systronix, 174, 254

T
TCP/IP, 9, 17-18, 516

layers, 19
protocol stack, 59

Telnet, 20
terminal connection, 180
Thermochron, 349
threads, 74-84, 205
throwing, exception, 52
TINI

120-volt AC sensor for, C-4 (on CD-ROM)
120 VAC switching for, C-8 (on CD-ROM)
adding

buttons, 273-280
Flash memory to, 251
Keypad, 280
LCD display, 260
LED display, 286-294
memory, 245-251
memory-mapped devices, 255
SIMM connector, 253-254

address space, 139-140
address decoder, 256-260
API, 185, 421-425
CAN (controller area network), 163,

483
CLASSPATH, 107-109
components, 130, A-1 (on CD-ROM)
CPU pinout, 133-136
CPU Reset, 146
datasheets, A-5 (on CD-ROM)
external 1-Wire bus, 419
external 1-Wire I/O, 149
external interrupt, 168
firmware, 182-185
flash ROM, 141-143
flash override, 166
future of, 569-570

582

Designing Embedded Internet Devices

general specifications, 101, 127-130
hardware, 127-176
I/O, 295-344
internal 1-Wire bus, 147, 420
I2C interface, 157-158, 440
LED status lights, 157
LED indicator, C-5 (on CD-ROM)
libraries, 107-109
loader, 180-182
memory map, 140
memory, 205
network, 514, 518, 572
networking classes, 518
nonvolatile RAM, 144
optically isolated voltage input, C-2

(on CD-ROM)
optically isolated output, C-8

(on CD-ROM)
parallel ports, 169-172, 332-333
pinout, A-6 – A-7 (on CD-ROM)
port adapter objects, 420
position sensing circuit, C-3
power supply, 164
PPP, 520
programming, 114, 204-232
RAM nonvolatizer, 144
real-time clock, 151
relay control, C-6 (on CD-ROM)
serial ports, 150-151, 305-311
SIMM, 102, 130-132
socket accessories, 173-175
socket boards, 103-105
solid-state relay, C-7 (on CD-ROM)

static RAM, 143-144
stick, 129-130
switch input, C-1 (on CD-ROM)
third-party software, 241-243
UART, 167
versions, 128 A-1 (on CD-ROM)
watchdog timer, 137

TINIConvertor, 208-209
TINI microcontroller board, 98
TMEX, 381
twisted pair cable, 11
TX232 signal name, 131, 150-151, 307

U
UART, 296
UDP, 19
uplink port, 7
URL

objects, 73
class, 73

USB, 377
user authentication, 554-561
utilities, 232-237

V
Vinculum Technologies, 173, 254

W
WAN (see Wide area network)
watchdog timer, 137
Web server, java, 60-73, 211-218
Wired AND, 1-wire, 347
wide area network, 5

	Table of Contents
	Acknowledgments
	Dedication
	What’s on the CD-ROM?
	1 Introduction
	Why should you read this book?
	What this book will do for you
	How this book is laid out
	How to get the most out of this book
	What you should already know

	2 Computer Networks
	Network Hardware
	Network Addresses
	Network Communication
	Ports and Sockets

	3 Java Essentials for Embedded Networked Devices
	The Java Development Kit
	Serial Port Communications
	Significant Topics for Review in the Java Language

	4 Overview of Embedded Networked Devices
	5 Getting Started with TINI
	What Is TINI?
	Getting Started
	TINI libraries, utilities, TINI 1-Wire libraries
	1-Wire Libraries

	6 The TINI Hardware
	What is TINI?
	The Various Components of the TINI Stick
	The Memory
	The E10/E20 Socket Board
	Other TINI socket accessories

	7 The TINI Software
	JavaKit
	The TINI Loader
	The TINI Firmware
	The TINI API3
	Slush, the TINI Operating System Shell
	Programming TINI
	Other Tools to Make Life Simpler
	Other TINI Software

	8 Enhancing TINI
	Adding 512 kbytes on the SIMM
	Adding 512 kbytes Flash Memory
	Adding a SIMM Connector
	Adding Memory-mapped Devices

	9 TINI Serial and Parallel I/O
	Serial Ports
	Parallel Ports

	10 1-Wire Basics for TINI
	What Is the 1-Wire Bus?
	How the 1-Wire Bus Works
	The 1-Wire Bus Protocol
	1-Wire Bus Commands
	Cyclic Redundancy Check (CRC)
	1-Wire Device Example: the DS2405 Addressable Switch
	1-Wire Device Example: the DS1920 Thermometer iButton
	Connecting a PC to the 1-Wire Bus
	The 1-Wire Java API
	How TINI Communicates with the 1-Wire Bus

	11 The I2C Bus
	What Is the I2C bus?
	The I2C Bus in More Detail
	How TINI Does I2C

	12 Controller Area Network
	What Is the CAN Bus?
	The CAN Bus in More Detail
	How TINI Does CAN

	13 Connecting TINI to an IP Network
	The ipconfig Command
	Using PPP

	14 A Few Final Thoughts
	The Future of TINI
	Connecting Your Device
	What’s Been Done with TINI

	Index

