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ix

This book is intended to survey the most important computer algorithms in use today, 
and to teach fundamental techniques to the growing number of people in need of 
knowing them.  It is intended for use as a textbook for a second course in computer 

science, after students have acquired basic programming skills and familiarity with computer 
systems. The book also may be useful for self-study or as a reference for people engaged in 
the development of computer systems or applications programs, since it contains implemen-
tations of useful algorithms and detailed information on performance characteristics and 
clients. The broad perspective taken makes the book an appropriate introduction to the field.

the study of algorithms and data structures is fundamental to any computer-
science curriculum, but it is not just for programmers and computer-science students. Every-
one who uses a computer wants it to run faster or to solve larger problems. The algorithms 
in this book represent a body of knowledge developed over the last 50 years that has become 
indispensable.  From N-body simulation problems in physics to genetic-sequencing problems 
in molecular biology, the basic methods described here have become essential in scientific 
research; from architectural modeling systems to aircraft simulation, they have become es-
sential tools in engineering; and from database systems to internet search engines, they have 
become essential parts of modern software systems. And these are but a few examples—as the 
scope of computer applications continues to grow, so grows the impact of the basic methods 
covered here.

In Chapter 1, we develop our fundamental approach to studying algorithms, includ-
ing coverage of data types for stacks, queues, and other low-level abstractions that we use 
throughout the book. In Chapters 2 and 3, we survey fundamental algorithms for sorting and 
searching; and in Chapters 4 and 5, we cover algorithms for processing graphs and strings. 
Chapter 6 is an overview placing the rest of the material in the book in a larger context.

PREFACE
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x

Distinctive features The orientation of the book is to study algorithms likely to be of 
practical use. The book teaches a broad variety of algorithms and data structures and pro-
vides sufficient information about them that readers can confidently implement, debug, and 
put them to work in any computational environment. The approach involves:

Algorithms  Our descriptions of algorithms are based on complete implementations and on 
a discussion of the operations of these programs on a consistent set of examples. Instead of 
presenting pseudo-code, we work with real code, so that the programs can quickly be put to 
practical use. Our programs are written in Java, but in a style such that most of our code can 
be reused to develop implementations in other modern programming languages.

Data types  We use a modern programming style based on data abstraction, so that algo-
rithms and their data structures are encapsulated together.

Applications  Each chapter has a detailed description of applications where the algorithms 
described play a critical role. These range from applications in physics and molecular biology, 
to engineering computers and systems, to familiar tasks such as data compression and search-
ing on the web.

A scientific approach  We emphasize developing mathematical models for describing the 
performance of algorithms, using the models to develop hypotheses about performance, and 
then testing the hypotheses by running the algorithms in realistic contexts.

Breadth of coverage  We cover basic abstract data types, sorting algorithms, searching al-
gorithms, graph processing, and string processing. We keep the material in algorithmic con-
text, describing data structures, algorithm design paradigms, reduction, and problem-solving 
models. We cover classic methods that have been taught since the 1960s and new methods 
that have been invented in recent years.

Our primary goal is to introduce the most important algorithms in use today to as wide an 
audience as possible. These algorithms are generally ingenious creations that, remarkably, can 
each be expressed in just a dozen or two lines of code. As a group, they represent problem-
solving power of amazing scope. They have enabled the construction of computational ar-
tifacts, the solution of scientific problems, and the development of commercial applications 
that would not have been feasible without them.
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Booksite An important feature of the book is its relationship to the booksite 
algs4.cs.princeton.edu. This site is freely available and contains an extensive amount of 
material about algorithms and data structures, for teachers, students, and practitioners, in-
cluding:

An online synopsis  The text is summarized in the booksite to give it the same overall struc-
ture as the book, but linked so as to provide easy navigation through the material.

Full implementations  All code in the book is available on the booksite, in a form suitable for 
program development. Many other implementations are also available, including advanced 
implementations and improvements described in the book, answers to selected exercises, and 
client code for various applications. The emphasis is on testing algorithms in the context of 
meaningful applications. 

Exercises and answers  The booksite expands on the exercises in the book by adding drill 
exercises (with answers available with a click), a wide variety of examples illustrating the 
reach of the material, programming exercises with code solutions, and challenging problems.

Dynamic visualizations  Dynamic simulations are impossible in a printed book, but the 
website is replete with implementations that use a graphics class to present compelling visual 
demonstrations of algorithm applications.

Course materials  A complete set of lecture slides is tied directly to the material in the book 
and on the booksite. A full selection of programming assignments, with check lists, test data, 
and preparatory material, is also included.

Online course  A full set of lecture videos and self-assessment materials provide opportuni-
ties for students to learn or review the material on their own and for instructors to replace or 
supplement their lectures.

Links to related material  Hundreds of links lead students to background information about 
applications and to resources for studying algorithms.

Our goal in creating this material was to provide a complementary approach to the ideas. 
Generally, you should read the book when learning specific algorithms for the first time or 
when trying to get a global picture, and you should use the booksite as a reference when pro-
gramming or as a starting point when searching for more detail while online.
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Use in the curriculum The book is intended as a textbook in a second course in com-
puter science.  It provides full coverage of core material and is an excellent vehicle for stu-
dents to gain experience and maturity in programming, quantitative reasoning, and problem-
solving. Typically, one course in computer science will suffice as a prerequisite—the book is 
intended for anyone conversant with a modern programming language and with the basic 
features of modern computer systems.

The algorithms and data structures are expressed in Java, but in a style accessible to 
people fluent in other modern languages. We embrace modern Java abstractions (including 
generics) but resist dependence upon esoteric features of the language.

Most of the mathematical material supporting the analytic results is self-contained (or 
is labeled as beyond the scope of this book), so little specific preparation in mathematics is 
required for the bulk of the book, although mathematical maturity is definitely helpful. Ap-
plications are drawn from introductory material in the sciences, again self-contained.

The material covered is a fundamental background for any student intending to major 
in computer science, electrical engineering, or operations research, and is valuable for any 
student with interests in science, mathematics, or engineering.

Context The book is intended to follow our introductory text, An Introduction to Pro-
gramming in Java: An Interdisciplinary Approach, which is a broad introduction to the field. 
Together, these two books can support a two- or three-semester introduction to computer sci-
ence that will give any student the requisite background to successfully address computation 
in any chosen field of study in science, engineering, or the social sciences.

The starting point for much of the material in the book was the Sedgewick series of Al-
gorithms books. In spirit, this book is closest to the first and second editions of that book, but 
this text benefits from decades of experience teaching and learning that material. Sedgewick’s 
current Algorithms in C/C++/Java, Third Edition is more appropriate as a reference or a text 
for an advanced course; this book is specifically designed to be a textbook for a one-semester 
course for first- or second-year college students and as a modern introduction to the basics 
and a reference for use by working programmers.
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Pairwise connections between items play a critical role in a vast array of compu-
tational applications. The relationships implied by these connections lead im-
mediately to a host of natural questions: Is there a way to connect one item to 

another by following the connections? How many other items are connected to a given 
item? What is the shortest chain of connections between this item and this other item?

To model such situations, we use abstract mathematical objects called graphs. In this 
chapter, we examine basic properties of graphs in detail, setting the stage for us to study 
a variety of algorithms that are useful for answering questions of the type just posed. 
These algorithms serve as the basis for attacking problems in important applications 
whose solution we could not even contemplate without good algorithmic technology.

Graph theory, a major branch of mathematics, has been studied intensively for hun-
dreds of years. Many important and useful properties of graphs have been discovered, 
many important algorithms have been developed, and many difficult problems are still 
actively being studied. In this chapter, we introduce a variety of fundamental graph 
algorithms that are important in diverse applications.

Like so many of the other problem domains that we have studied, the algorithmic in-
vestigation of graphs is relatively recent. Although a few of the fundamental algorithms 
are centuries old, the majority of the interesting ones have been discovered within the 
last several decades and have benefited from the emergence of the algorithmic technol-
ogy that we have been studying. Even the simplest graph algorithms lead to useful com-
puter programs, and the nontrivial algorithms that we examine are among the most 
elegant and interesting algorithms known.

To illustrate the diversity of applications that involve graph processing, we begin our 
exploration of algorithms in this fertile area by introducing several examples.

515
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Maps  A person who is planning a trip may need to answer questions such as “What is 
the shortest route from Providence to Princeton?” A seasoned traveler who has experi-
enced traffic delays on the shortest route may ask the question “What is the fastest way 
to get from Providence to Princeton?” To answer such questions, we process informa-
tion about connections (roads) between items (intersections).

Web content  When we browse the web, we encounter pages that contain references 
(links) to other pages and we move from page to page by clicking on the links. The 
entire web is a graph, where the items are pages and the connections are links. Graph-
processing algorithms are essential components of the search engines that help us lo-
cate information on the web.

Circuits  An electric circuit comprises devices such as transistors, resistors, and ca-
pacitors that are intricately wired together. We use computers to control machines that 
make circuits and to check that the circuits perform desired functions. We need to an-
swer simple questions such as “Is a short-circuit present?” as well as complicated ques-
tions such as “Can we lay out this circuit on a chip without making any wires cross?” 
The answer to the first question depends on only the properties of the connections 
(wires), whereas the answer to the second question requires detailed information about 
the wires, the devices that those wires connect, and the physical constraints of the chip.

Schedules  A manufacturing process requires a variety of jobs to be performed, under 
a set of constraints that specify that certain jobs cannot be started until certain other 
jobs have been completed. How do we schedule the jobs such that we both respect the 
given constraints and complete the whole process in the least amount of time?

Commerce  Retailers and financial institutions track buy/sell orders in a market. A 
connection in this situation represents the transfer of cash and goods between an in-
stitution and a customer. Knowledge of the nature of the connection structure in this 
instance may enhance our understanding of the nature of the market.

Matching  Students apply for positions in selective institutions such as social clubs, 
universities, or medical schools. Items correspond to the students and the institutions; 
connections correspond to the applications. We want to discover methods for matching 
interested students with available positions.

Computer networks  A computer network consists of interconnected sites that send, 
forward, and receive messages of various types. We are interested in knowing about the 
nature of the interconnection structure because we want to lay wires and build switches 
that can handle the traffic efficiently.  

516 Chapter 4 n graphs



ptg12441863

Software  A compiler builds graphs to represent relationships among modules in a 
large software system. The items are the various classes or modules that comprise the 
system; connections are associated either with the possibility that a method in one class 
might call another (static analysis) or with actual calls while the system is in operation 
(dynamic analysis). We need to analyze the graph to determine how best to allocate 
resources to the program most efficiently.

Social networks  When you use a social network, you build explicit connections with 
your friends. Items correspond to people; connections are to friends or followers. Un-
derstanding the properties of these networks is a modern graph-processing application 
of intense interest not just to companies that support such networks, but also in poli-
tics, diplomacy, entertainment, education, marketing, and many other domains.

These examples indicate the range of applications for which graphs are the ap-
propriate abstraction and also the range of computational problems that we might 
encounter when we work with graphs. Thousands of such problems have been studied, 
but many problems can be addressed in the context of one of several basic graph mod-
els—we will study the most important 
ones in this chapter. In practical appli-
cations, it is common for the volume of 
data involved to be truly huge, so that 
efficient algorithms make the difference 
between whether or not a solution is at 
all feasible.

To organize the presentation, we 
progress through the four most impor-
tant types of graph models: undirected 
graphs (with simple connections), di-
graphs (where the direction of each con-
nection is significant), edge-weighted 
graphs (where each connection has an 
associated weight), and edge-weighted 
digraphs (where each connection has 
both a direction and a weight).

application item connection

map intersection road

web content page link

circuit device wire

schedule job constraint

commerce customer transaction

matching student application

computer network site connection

software method call

social network person friendship

typical graph applications

517Chapter 4 n graphs
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4.1 UnDireCteD grAPhS

Our stARting point is the study of graph models where edges are nothing more than 
connections between vertices. We use the term undirected graph in contexts where we 
need to distinguish this model from other models (such as the title of this section), but, 
since this is the simplest model, we start with the following definition: 

Definition. A graph is a set of vertices and a collection of edges that each connect a 
pair of vertices.

Vertex names are not important to the definition, but we need a way 
to refer to vertices. By convention, we use the names 0 through V1 
for the vertices in a V-vertex graph. The main reason that we choose 
this system is to make it easy to write code that efficiently accesses in-
formation corresponding to each vertex, using array indexing. It is not 
difficult to use a symbol table to establish a 1-1 mapping to associate 
V arbitrary vertex names with the V integers between 0 and V1 (see 
page 548), so the convenience of using indices as vertex names comes 
without loss of generality (and without much loss of efficiency). We 
use the notation v-w to refer to an edge that connects v and w; the nota-
tion w-v is an alternate way to refer to the same edge. 

We draw a graph with circles for the vertices and lines connecting 
them for the edges. A drawing gives us intuition about the structure of 
the graph; but this intuition can be misleading, because the graph is 
defined independently of the drawing. For example, the two drawings 

at left represent the same graph, because the graph is nothing more than its (unor-
dered) set of vertices and its (unordered) collection  of edges (vertex pairs).

Anomalies  Our definition allows two simple anomalies:
n	 A self-loop is an edge that connects a vertex to itself. 
n	 Two edges that connect the same pair of vertices are parallel.

Mathematicians sometimes refer to graphs with parallel edges 
as multigraphs and graphs with no parallel edges or self-loops as 
simple graphs. Typically, our implementations allow self-loops and 
parallel edges (because they arise in applications), but we do not include them in ex-
amples. Thus, we can refer to every edge just by naming the two vertices it connects.

Two drawings of the same graph

Anomalies

parallel
edges

self-loop

518
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Glossary A substantial amount of nomenclature is associated with graphs. Most of 
the terms have straightforward definitions, and, for reference, we consider them in one 
place: here.

When there is an edge connecting two vertices, we say that the vertices are adjacent 
to one another and that the edge is incident to both vertices. The degree of a vertex is the 
number of edges incident to it. A subgraph is a subset of a graph’s edges (and associated 
vertices) that constitutes a graph. Many computational tasks 
involve identifying subgraphs of various types. Of particular 
interest are edges that take us through a sequence of vertices 
in a graph.

Definition. A path in a graph is a sequence of vertices 
connected by edges. A simple path is one with no repeated 
vertices. A cycle is a path with at least one edge whose first 
and last vertices are the same. A simple cycle is a cycle with 
no repeated edges or vertices (except the requisite repeti-
tion of the first and last vertices). The length of a path or 
a cycle is its number of edges.

Most often, we work with simple cycles and simple paths and 
drop the simple modifer; when we want to allow repeated ver-
tices, we refer to general paths and cycles. We say that one vertex is connected to another 
if there exists a path that contains both of them. We use notation like u-v-w-x to repre-
sent a path from u to x and u-v-w-x-u to represent a cycle from u to v to w to x and back 
to u again. Several of the algorithms that we consider find paths and cycles. Moreover, 
paths and cycles lead us to consider the structural properties of a graph as a whole:

Definition. A graph is connected if there is a path from every vertex to every other 
vertex in the graph. A graph that is not connected consists of a set of connected com-
ponents, which are maximal connected subgraphs. 

Intuitively, if the vertices were physical objects, such as knots or beads, and the edges 
were physical connections, such as strings or wires, a connected graph would stay in 
one piece if picked up by any vertex, and a graph that is not connected comprises two or 
more such pieces. Generally, processing a graph necessitates processing the connected 
components one at a time.

Anatomy of a graph

cycle of
length 5

vertex

vertex of
degree 3

edge

path of
length 4

connected
components

5194.1 n Undirected Graphs
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An acyclic graph is a graph with no cycles. Several of 
the algorithms that we consider are concerned with find-
ing acyclic subgraphs of a given graph that satisfy certain 
properties. We need additional terminology to refer to 
these structures:

Definition. A tree is an acyclic connected graph. A dis-
joint set of trees is called a forest. A spanning tree of a 
connected graph is a subgraph that contains all of that 
graph’s vertices and is a single tree. A spanning forest of 
a graph is the union of spanning trees of its connected 
components. 

This definition of tree is quite general: with suitable refine-
ments it embraces the trees that we typically use to model pro-
gram behavior (function-call hierarchies) and data structures 
(BSTs, 2-3 trees, and so forth). Mathematical properties of 
trees are well-studied and intuitive, so we state them without 
proof. For example, a graph G with V vertices is a tree if and 
only if it satisfies any of the following five conditions: 

n	 G has V1 edges and no cycles. 
n	 G has V1 edges and is connected. 
n	 G is connected, but removing any edge disconnects it.
n	 G is acyclic, but adding any edge creates a cycle. 
n	 Exactly one simple path connects each pair of vertices in G. 

Several of the algorithms that we consider find spanning trees and forests, and these 
properties play an important role in their analysis and implementation.

The density of a graph is the propor-
tion of possible pairs of vertices that are 
connected by edges. A sparse graph has 
relatively few of the possible edges pres-
ent; a dense graph has relatively few of 
the possible edges missing. Generally, 
we think of a graph as being sparse if 
its number of different edges is within 
a small constant factor of V and as be-
ing dense otherwise. This rule of thumb 

A tree

acyclic

18 vertices
17 edges

connected

A spanning forest

sparse  (E = 200) dense  (E = 1000)

Two graphs (V = 50)

520 Chapter 4 n graphs
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leaves a gray area (when the number of edges is, say, ~ c V3/2) but the distinction be-
tween sparse and dense is typically very clear in applications. The applications that we 
consider nearly always involve sparse graphs.

A bipartite graph is a graph whose vertices we can divide into two sets 
such that all edges connect a vertex in one set with a vertex in the other 
set. The figure at right gives an example of a bipartite graph, where one 
set of vertices is colored red and the other set of vertices is colored black. 
Bipartite graphs arise in a natural way in many situations, one of which 
we will consider in detail at the end of this section. 

With these preparations, we are ready to move on to consider graph-processing 
algorithms. We begin by considering an API and implementation for a graph data type, 
then we consider classic algorithms for searching graphs and for identifying connected 
components. To conclude the section, we consider real-world applications where vertex 
names need not be integers and graphs may have huge numbers of vertices and edges.

A bipartite graph

5214.1 n Undirected Graphs
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Undirected graph data type Our starting point for developing graph-process-
ing algorithms is an API that defines the fundamental graph operations. This scheme 
allows us to address graph-processing tasks ranging from elementary maintenance op-
erations to sophisticated solutions of difficult problems.

public class Graph

Graph(int V) create a V-vertex graph with no edges
Graph(In in) read a graph from input stream in

int V() number of vertices
int E() number of edges

void addEdge(int v, int w) add edge v-w to this graph
Iterable<Integer> adj(int v) vertices adjacent to v

String toString() string representation

apI for an undirected graph

This API contains two constructors, methods to return the number of vertices and 
edges, a method to add an edge, a toString() method, and a method adj() that al-
lows client code to iterate through the vertices adjacent to a given vertex (the order of 
iteration is not specified). Remarkably, we can build all of the algorithms that we con-
sider in this section on the basic abstraction embodied in adj().

The second constructor assumes an input format consisting of 2E + 2 integer values: 
V, then E, then E pairs of values between 0 and V1, each pair denoting an edge. As 
examples, we use the two graphs tinyG.txt and mediumG.txt that are depicted below. 

Several examples of Graph client code are shown in the table on the facing page. 

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1263 additional lines)

mediumG.txt
V

E
V

E

522 Chapter 4 n graphs
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task                     implementation   

compute the degree of v

public static int degree(Graph G, int v) 
{ 
   int degree = 0; 
   for (int w : G.adj(v)) degree++; 
   return degree; 
}

compute maximum degree

public static int maxDegree(Graph G) 
{
   int max = 0; 
   for (int v = 0; v < G.V(); v++)
      if (degree(G, v) > max)
         max = degree(G, v); 
   return max;
}

compute average degree 
public static double averageDegree(Graph G) 
{  return 2.0 * G.E() / G.V();  }

count self-loops

public static int numberOfSelfLoops(Graph G) 
{
   int count = 0;
   for (int v = 0; v < G.V(); v++)
      for (int w : G.adj(v)) 
         if (v == w) count++; 
   return count/2;   // each edge counted twice   
}

string representation of the 
graph’s adjacency lists

(instance method in Graph)

public String toString()
{
   String s = V + " vertices, " + E + " edges\n";
   for (int v = 0; v < V; v++)
   {
      s += v + ": ";
      for (int w : this.adj(v))
         s += w + " ";
      s += "\n";
   }
   return s;
}

typical graph-processing code 
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Representation alternatives  The next decision that we face in graph processing is 
which graph representation (data structure) to use to implement this API. We have two 
basic requirements: 

n	 We must have the space to accommodate the types of graphs that we are likely to 
encounter in applications. 

n	 We want to develop time-efficient implementations of Graph instance meth-
ods—the basic methods that we need to develop graph-processing clients.

These requirements are a bit vague, but they 
are still helpful in choosing among the three 
data structures that immediately suggest 
themselves for representing graphs:

n	 An adjacency matrix, where we main-
tain a V-by-V boolean array, with the 
entry in row v and column w defined to 
be true if there is an edge in the graph 
that connects vertex v and vertex w, and 
to be false otherwise. This representa-
tion fails on the first count—graphs 
with millions of vertices are common 
and the space cost for the V 2 boolean 
values needed is prohibitive. 

n	 An array of edges, using an Edge class 
with two instance variables of type int. 
This direct representation is simple, 
but it fails on the second count—
implementing adj() would involve 
examining all the edges in the graph.

n	 An array of adjacency lists, where we 
maintain a vertex-indexed array of lists 
of the vertices adjacent to each vertex. 
This data structure satisfies both re-
quirements for typical applications and 
is the one that we will use throughout 
this chapter.

Beyond these performance objectives, a detailed examination reveals other consider-
ations that can be important in some applications. For example, allowing parallel edges 
precludes the use of an adjacency matrix, since the adjacency matrix has no way to 
represent them.

adj[]

0

1

2

3

4

5

6

7

8

9

10

11

12

5 4

0 4

9 12

11 9

0

0

8

7

9

5 6 3

3 4 0

11 10 12

6 2 1 5

Adjacency-lists representation (undirected graph)

Bag objects

representations
of the same edge

524 Chapter 4 n graphs



ptg12441863

Adjacency-lists data structure  The standard graph representation for graphs that are 
not dense is called the adjacency-lists data structure, where we keep track of all the 
vertices adjacent to each vertex on a linked list that is associated with that vertex. We 
maintain an array of lists so that, given a vertex, we can immediately access its list. To 
implement lists, we use our Bag ADT from Section 1.3 with a linked-list implementa-
tion, so that we can add new edges in constant time and iterate through adjacent verti-
ces in constant time per adjacent vertex. The Graph implementation on page 526 is based 
on this approach, and the figure on the facing page depicts the data structures built by 
this code for tinyG.txt. To add an edge connecting v and w, we add w to v’s adjacency 
list and v to w’s adjacency list. Thus, each edge appears twice in the data structure. This 
Graph implementation achieves the following performance characteristics:

n	 Space usage proportional to V + E 
n	 Constant time to add an edge
n	 Time proportional to the degree of v to iterate through vertices adjacent to v 

(constant time per adjacent vertex processed)
These characteristics are optimal for this set of operations, which suffice for the graph-
processing applications that we consider. Parallel edges and self-loops are allowed (we 
do not check for them). Note : It is important to realize that the order in which edges 
are added to the graph determines the order in which vertices appear in the array of 
adjacency lists built by Graph. Many different ar-
rays of adjacency lists can represent the same graph. 
When using the constructor that reads edges from 
an input stream, this means that the input format 
and the order in which edges are specified in the 
file determine the order in which vertices appear 
in the array of adjacency lists built by Graph. Since 
our algorithms use adj() and process all adjacent 
vertices without regard to the order in which they 
appear in the lists, this difference does not affect 
their correctness, but it is important to bear it in 
mind when debugging or following traces. To fa-
cilitate these activities, we assume that Graph has a 
test client that reads a graph from the input stream 
named as command-line argument and then prints 
it (relying on the toString() implementation on 
page 523) to show the order in which vertices ap-
pear in adjacency lists, which is the order in which 
algorithms process them (see Exercise 4.1.7).

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

% java Graph tinyG.txt
13 vertices, 13 edges
0: 6 2 1 5 
1: 0 
2: 0 
3: 5 4 
4: 5 6 3 
5: 3 4 0 
6: 0 4 
7: 8 
8: 7 
9: 11 10 12 
10: 9
11: 9 12 
12: 11 9 

tinyG.txt

Output for list-of-edges input

V
E

first adjacent
vertex in input

is last on list

second
representation

of each edge
appears in red
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graph data type

public class Graph 
{ 
   private final int V;          // number of vertices 
   private int E;                // number of edges 
   private Bag<Integer>[] adj;   // adjacency lists

   public Graph(int V) 
   { 
      this.V = V; this.E = 0; 
      adj = (Bag<Integer>[]) new Bag[V];      // Create array of lists. 
      for (int v = 0; v < V; v++)             // Initialize all lists  
         adj[v] = new Bag<Integer>();         //   to empty.  
   }

   public Graph(In in) 
   { 
      this(in.readInt());          // Read V and construct this graph. 
      int E = in.readInt();        // Read E. 
      for (int i = 0; i < E; i++) 
      {  // Add an edge. 
         int v = in.readInt();     // Read a vertex, 
         int w = in.readInt();        // read another vertex, 
         addEdge(v, w);               // and add edge connecting them. 
      } 
   }

   public int V()  {  return V;  } 
   public int E()  {  return E;  }

   public void addEdge(int v, int w) 
   { 
      adj[v].add(w);                          // Add w to v’s list. 
      adj[w].add(v);                          // Add v to w’s list. 
      E++; 
   }

   public Iterable<Integer> adj(int v) 
   {  return adj[v];  }

}

This Graph implementation maintains a vertex-indexed array of lists of integers. Every edge appears 
twice: if an edge connects v and w, then w appears in v’s list and v appears in w’s list. The second con-
structor reads a graph from an input stream, in the format V followed by E followed by a list of pairs 
of int values between 0 and V1. See page 523 for toString().
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It is certainly reasonable to contemplate other operations that might be useful in 
applications, and to consider methods for

n	 Adding a vertex
n	 Deleting a vertex

One way to handle such operations is to expand the API and use a symbol table (ST) 
instead of a vertex-indexed array (with this change we also do not need our convention 
that vertex names be integer indices). We might also consider methods for

n	 Deleting an edge
n	 Checking whether the graph contains the edge v-w

To implement these two operations (and disallow parallel edges) we might use a SET 
instead of a Bag for adjacency lists. We refer to this alternative as an adjacency set repre-
sentation. We do not use either of these two alternatives in this book for several reasons:

n	 Our clients do not need to add vertices, delete vertices and edges, or check 
whether an edge exists.

n	 When clients do need these operations, they typically are invoked infrequently 
or for short adjacency lists, so an easy option is to use a brute-force implementa-
tion that iterates through an adjacency list.

n	 The SET and ST representations slightly complicate algorithm implementation 
code, diverting attention from the algorithms themselves.

n	 A performance penalty of log V is involved in some situations.
It is not difficult to adapt our algorithms to accommodate other designs (for example 
disallowing parallel edges or self-loops) without undue performance penalties. The 
table below summarizes performance characteristics of the alternatives that we have 
mentioned. Typical applications process huge sparse graphs, so we use the adjacency-
lists representation throughout. 

underlying 
data structure space add edge v-w check whether w is 

adjacent to v
iterate through vertices 

adjacent to v

list of edges E 1 E E

adjacency matrix V 2 1 1 V

adjacency lists E  V 1 degree(v) degree(v)

adjacency sets E  V log V log V degree(v)

order-of-growth performance for typical Graph implementations
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Design pattern for graph processing  Since we consider a large number of graph-pro-
cessing algorithms, our initial design goal is to decouple our implementations from the 
graph representation. To do so, we develop, for each given task, a task-specific class so 
that clients can create objects to perform the task. Generally, the constructor does some 
preprocessing to build data structures so as to efficiently respond to client queries. A 
typical client program builds a graph, passes that graph to an algorithm implementa-
tion class (as argument to a constructor), and then calls client query methods to learn 
various properties of the graph. As a warmup, consider this API:

public class Search

Search(Graph G, int s) find vertices connected to a source vertex s
boolean marked(int v) is v connected to s?

int count() how many vertices are connected to s?

graph-processing apI (warmup)

We use the term source to distinguish the vertex provided as argument to the construc-
tor from the other vertices in the graph. In this API, the job of the constructor is to find 
the vertices in the graph that are connected to the source. Then client code calls the in-
stance methods marked() and count() to learn characteristics of the graph. The name 
marked() refers to an approach used by the basic algorithms that we consider through-
out this chapter: they follow paths from the source to other vertices in the graph, mark-
ing each vertex encountered. The example client TestSearch shown on the facing page 
takes an input stream name and a source vertex number from the command line, reads 
a graph from the input stream (using the second Graph constructor), builds a Search 
object for the given graph and source, and uses marked() to print the vertices in that 
graph that are connected to the source. It also calls count() and prints whether or not 
the graph is connected (the graph is connected if and only if the search marked all of 
its vertices).
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We have already seen one way to implement the Search API: the union-find algo-
rithms of Chapter 1. The constructor can build a UF object, do a union() operation 
for each of the graph’s edges, and implement marked(v) by calling connected(s, v). 
Implementing count() requires using a weighted UF implementation and extending 
its API to use a count() method that returns wt[find(v)] (see Exercise 4.1.8). This 
implementation is simple and efficient, but the implementation that we consider next 
is even simpler and more efficient. It is based on depth-first search, a fundamental recur-
sive method that follows the graph’s edges to find the vertices connected to the source. 
Depth-first search is the basis for several of the graph-processing algorithms that we 
consider throughout this chapter. 

public class TestSearch 
{ 
   public static void main(String[] args) 
   { 
      Graph G = new Graph(new In(args[0])); 
      int s = Integer.parseInt(args[1]); 
      Search search = new Search(G, s);

      for (int v = 0; v < G.V(); v++) 
         if (search.marked(v))  
            StdOut.print(v + " "); 
      StdOut.println();

      if (search.count() != G.V()) 
         StdOut.print("NOT "); 
      StdOut.println("connected"); 
   } 
}

Sample graph-processing client (warmup)

% java TestSearch tinyG.txt 0 
0 1 2 3 4 5 6 
NOT connected

% java TestSearch tinyG.txt 9 
9 10 11 12 
NOT connected

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1263 additional lines)

mediumG.txt
V

E
V

E

5294.1 n Undirected Graphs



ptg12441863

Depth-first search We often learn properties of a graph by systematically examin-
ing each of its vertices and each of its edges. Determining some simple graph proper-
ties—for example, computing the degrees of all the vertices—is easy if we just exam-
ine each edge (in any order whatever). But many other graph properties are related to 
paths, so a natural way to learn them is to move from vertex to vertex along the graph’s 

edges. Nearly all of the graph-processing algorithms 
that we consider use this same basic abstract model, 
albeit with various different strategies. The simplest 
is a classic method that we now consider. 

Searching in a maze  It is instructive to think 
about the process of searching through a graph in 
terms of an equivalent problem that has a long and 
distinguished history—finding our way through a 
maze that consists of passages connected by inter-
sections. Some mazes can be handled with a simple 
rule, but most mazes require a more sophisticated 
strategy. Using the terminology maze instead of 
graph, passage instead of edge, and intersection in-
stead of vertex is making mere semantic distinc-
tions, but, for the moment, doing so will help to 

give us an intuitive feel for the problem. One trick for exploring 
a maze without getting lost that has been known since antiquity 
(dating back at least to the legend of Theseus and the Minotaur) is 
known as Tremaux exploration. To explore all passages in a maze:

n	 Take any unmarked passage, unrolling a string behind you.
n	 Mark all intersections and passages when you first visit 

them.
n	 Retrace steps (using the string) when approaching a marked 

intersection. 
n	 Retrace steps when no unvisited options remain at an inter-

section encountered while retracing steps.
The string guarantees that you can always find a way out and the 
marks guarantee that you avoid visiting any passage or intersection twice. Knowing 
that you have explored the whole maze demands a more complicated argument that is 
better approached in the context of graph search. Tremaux exploration is an intuitive 
starting point, but it differs in subtle ways from exploring a graph, so we now move on 
to searching in graphs.

graph

maze

Equivalent models of a maze

vertex edge

intersection

passage

Tremaux exploration
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Warmup  The classic recursive method for 
searching in a connected graph (visiting all 
of its vertices and edges) mimics Tremaux 
maze exploration but is even simpler to de-
scribe. To search a graph, invoke a recursive 
method that visits vertices. To visit a vertex:

n	 Mark it as having been visited.
n	 Visit (recursively) all the vertices that 

are adjacent to it and that have not 
yet been marked. 

This method is called depth-first search
(DFS). An implementation of our Search 
API using this method is shown at right. 
It maintains an array of boolean val-
ues to mark all of the vertices that are 
connected to the source. The recursive 
method marks the given vertex and calls 
itself for any unmarked vertices on its 
adjacency list. If the graph is connect-
ed, every adjacency-list entry is checked. 

proposition A. DFS marks all the vertices connected to a 
given source in time proportional to the sum of their degrees.

proof: First, we prove that the algorithm marks all the verti-
ces connected to the source s (and no others). Every marked 
vertex is connected to s, since the algorithm finds vertices 
only by following edges. Now, suppose that some unmarked 
vertex w is connected to s. Since s itself is marked, any path 
from s to w must have at least one edge from the set of marked 
vertices to the set of unmarked vertices, say v-x. But the al-
gorithm would have discovered x after marking v, so no such 
edge can exist, a contradiction. The time bound follows be-
cause marking ensures that each vertex is visited once (taking 
time proportional to its degree to check marks).

public class DepthFirstSearch 
{ 
   private boolean[] marked; 
   private int count;

   public DepthFirstSearch(Graph G, int s) 
   {   
      marked = new boolean[G.V()]; 
      dfs(G, s); 
   }

   private void dfs(Graph G, int v) 
   { 
      marked[v] = true; 
      count++; 
      for (int w : G.adj(v)) 
         if (!marked[w]) dfs(G, w); 
   }

   public boolean marked(int w) 
   {  return marked[w];  }

   public int count() 
   {  return count;  }

}

Depth-first search

set of
unmarked

vertices

no such edge
can exist

source

v

s

set of marked
vertices

w

x
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One-way passages  The method call–return mechanism in the program corresponds 
to the string in the maze: when we have processed all the edges incident to a vertex 
(explored all the passages leaving an intersection), we “return” (in both senses of the 
word). To draw a proper correspondence with Tremaux exploration of a maze, we need 
to imagine a maze constructed entirely of one-way passages (one in each direction).

In the same way that we encounter each passage 
in the maze twice (once in each direction), we 
encounter each edge in the graph twice (once at 
each of its vertices). In Tremaux exploration, we 
either explore a passage for the first time or re-
turn along it from a marked vertex; in DFS of 
an undirected graph, we either do a recursive 
call when we encounter an edge v-w (if w is not 
marked) or skip the edge (if w is marked). The 
second time that we encounter the edge, in the 
opposite orientation w-v, we always ignore it, 
because the destination vertex v has certainly al-
ready been visited (the first time that we encoun-
tered the edge).

Tracing DFS  As usual, one good way to under-
stand an algorithm is to trace its behavior on a 
small example. This is particularly true of depth-
first search. The first thing to bear in mind when 
doing a trace is that the order in which edges 
are examined and vertices visited depends upon 
the representation, not just the graph or the al-
gorithm. Since DFS only examines vertices con-
nected to the source, we use the small connected 
graph depicted at left as an example for traces. 
In this example, vertex 2 is the first vertex visited 

after 0 because it happens to be first on 0’s adjacency list. The second thing to bear in 
mind when doing a trace is that, as mentioned above, DFS traverses each edge in the 
graph twice, always finding a marked vertex the second time. One effect of this obser-
vation is that tracing a DFS takes twice as long as you might think! Our example graph 
has only eight edges, but we need to trace the action of the algorithm on the 16 entries 
on the adjacency lists.

adj[]

0

1

2

3

4

5

2 1 5

0 2

5 4 2

3 2

3 0

0 1 3 4

6 
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

tinyCG.txt standard drawing

drawing with both edges

adjacency lists

A connected undirected graph

V
E
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Detailed trace of depth-first search  The figure at right shows the contents of the data 
structures just after each vertex is marked for our small example, with source 0. The 
search begins when the constructor calls the 
recursive dfs() to mark and visit vertex 0 
and proceeds as follows:

n	 Since 2 is first on 0’s adjacency list 
and is unmarked, dfs() recursively 
calls itself to mark and visit 2 (in ef-
fect, the system puts 0 and the current 
position on 0’s adjacency list on a 
stack). 

n	 Now, 0 is first on 2’s adjacency list 
and is marked, so dfs() skips it. 
Then, since 1 is next on 2’s adjacency 
list and is unmarked, dfs() recur-
sively calls itself to mark and visit 1. 

n	 Visiting 1 is different: since both ver-
tices on its list (0 and 2) are already 
marked, no recursive calls are needed, 
and dfs() returns from the recursive 
call  dfs(1). The next edge examined 
is 2-3 (since 3 is the vertex after 1 on 
2’s adjacency list), so dfs() recur-
sively calls itself to mark and visit 3. 

n	 Vertex 5 is first on 3’s adjacency list 
and is unmarked, so dfs() recursively 
calls itself to mark and visit 5. 

n	 Both vertices on 5’s list (3 and 0) are 
already marked, so no recursive calls 
are needed, 

n	 Vertex 4 is next on 3’s adjacency list 
and is unmarked, so dfs() recursively 
calls itself to mark and visit 4, the last 
vertex to be marked.

n	 After 4 is marked, dfs() needs to 
check the vertices on its list, then the 
remaining vertices on 3’s list, then 2’s list, then 0’s list, but no more recursive 
calls happen because all vertices are marked.

Trace of depth-�rst search to �nd vertices connected to 0

marked[]

  0  T    
  1   
  2  
  3  
  4  
  5  

  0  T
  1   
  2  T
  3  
  4  
  5 

  0  T
  1  T
  2  T
  3  
  4  
  5 

  0  T
  1  T
  2  T
  3  T
  4  
  5 

  0  T
  1  T
  2  T
 3  T
  4  
  5  T

  0  T
  1  T
  2  T
 3  T
  4  T
5  T

dfs(0)

  dfs(2)
    check 0

    dfs(1)
      check 0
      check 2
    1 done

    dfs(3)

      dfs(5)
        check 3
        check 0
      5 done

      dfs(4)
        check 3
        check 2
      4 done
      check 2
    3 done
    check 4
  2 done
  check 1
  check 5
0 done 

0  2 1 5 
1  0 2 
2  0 1 3 4 
3  5 4 2 
4  3 2 
5  3 0

0  2 1 5 
1  0 2 
2  0 1 3 4 
3  5 4 2 
4  3 2 
5  3 0

0  2 1 5 
1  0 2 
2  0 1 3 4 
3  5 4 2 
4  3 2 
5  3 0

0  2 1 5 
1  0 2 
2  0 1 3 4 
3  5 4 2 
4  3 2 
5  3 0

0  2 1 5 
1  0 2 
2  0 1 3 4
3  5 4 2 
4  3 2 
5  3 0

 adj[]

0  2 1 5 
1  0 2 
2  0 1 3 4 
3  5 4 2 
4  3 2 
5  3 0
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This basic recursive scheme is just a start—depth-first search is effective for many 
graph-processing tasks. For example, in this section, we consider the use of depth-first 
search to address a problem that we first posed in Chapter 1:

Connectivity  Given a graph, support queries of the form Are two given vertices 
connected ? and How many connected components does the graph have ?

This problem is easily solved within our standard graph-processing design pattern, and 
we will compare and contrast this solution with the union-find algorithms that we 
considered in Section 1.5. 

The question “Are two given vertices connected?” is equivalent to the question “Is 
there a path connecting two given vertices?” and might be named the path detection 
problem. However, the union-find data structures that we considered in Section 1.5 do 
not address the problems of finding such a path. Depth-first search is the first of several 
approaches that we consider to solve this problem, as well:

Single-source paths  Given a graph and a source vertex s, support queries of the 
form Is there a path from s to a given target vertex v? If so, find such a path.

DFS is deceptively simple because it is based on a familiar concept and is so easy to 
implement; in fact, it is a subtle and powerful algorithm that researchers have learned 
to put to use to solve numerous difficult problems. These two are the first of several that 
we will consider.
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Finding paths The single-source paths problem is fundamental to graph process-
ing. In accordance with our standard design pattern, we use the following API:

public class Paths

Paths(Graph G, int s) find paths in G from source s
boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

apI for paths implementations

The constructor takes a source vertex s as 
argument and computes paths from s to 
each vertex connected to s. After creating 
a Paths object for a source s, the client can 
use the instance method pathTo() to iter-
ate through the vertices on a path from s to 
any vertex connected to s. For the moment, 
we accept any path; later, we shall develop 
implementations that find paths having 
certain properties. The test client at right 
takes a graph from the input stream and a 
source from the command line and prints 
a path from the source to each vertex con-
nected to it.

Implementation  Algorithm 4.1 on page 536 is a DFS-based implementation of Paths 
that extends the DepthFirstSearch warmup on page 531 by adding as  an instance vari-
able an array edgeTo[] of int values that serves the purpose of the ball of string in 
Tremaux exploration: it gives a way to find a path back to s for every vertex connected 
to s. Instead of just keeping track of the path from the current vertex back to the start, 

we remember a path from each vertex to the 
start. To accomplish this, we remember the edge 
v-w that takes us to each vertex w for the first 
time, by setting edgeTo[w] to v. In other words, 
v-w is the last edge on the known path from s 
to w. The result of the search is a tree rooted at 
the source; edgeTo[] is a parent-link represen-
tation of that tree. A small example is drawn to 

public static void main(String[] args) 
{ 
   Graph G = new Graph(new In(args[0])); 
   int s = Integer.parseInt(args[1]); 
   Paths search = new Paths(G, s); 
   for (int v = 0; v < G.V(); v++) 
   { 
      StdOut.print(s + " to " + v + ": "); 
      if (search.hasPathTo(v)) 
         for (int x : search.pathTo(v)) 
            if (x == s) StdOut.print(x); 
            else StdOut.print("-" + x); 
      StdOut.println(); 
   } 
}

test client for paths implementations

% java Paths tinyCG.txt 0 
0 to 0: 0 
0 to 1: 0-2-1 
0 to 2: 0-2 
0 to 3: 0-2-3 
0 to 4: 0-2-3-4 
0 to 5: 0-2-3-5
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aLgorIthM 4.1 Depth-first search to find paths in a graph

public class DepthFirstPaths
{ 
   private boolean[] marked; // Has dfs() been called for this vertex? 
   private int[] edgeTo;     // last vertex on known path to this vertex 
   private final int s;      // source

   public DepthFirstPaths(Graph G, int s) 
   { 
      marked = new boolean[G.V()]; 
      edgeTo = new int[G.V()]; 
      this.s = s; 
      dfs(G, s); 
   }

   private void dfs(Graph G, int v) 
   { 
      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
         { 
            edgeTo[w] = v; 
            dfs(G, w); 
         } 
   }

   public boolean hasPathTo(int v) 
   {  return marked[v];  }

   public Iterable<Integer> pathTo(int v) 
   { 
      if (!hasPathTo(v)) return null; 
      Stack<Integer> path = new Stack<Integer>(); 
      for (int x = v; x != s; x = edgeTo[x]) 
         path.push(x); 
      path.push(s); 
      return path; 
   } 
}

This Graph client uses depth-first search to find paths to all the vertices in a graph that are connected 
to a given start vertex s. Code from DepthFirstSearch (page 531) is printed in gray. To save known 
paths to each vertex, this code maintains a vertex-indexed array edgeTo[] such that edgeTo[w] = v 
means that v-w was the edge used to access w for the first time. The edgeTo[] array is a parent-link 
representation of a tree rooted at s that contains all the vertices connected to s.

Trace of  pathTo(5) computation

edgeTo[]
  0    
  1  2
  2  0
  3  2
  4  3
  5  3
  

5   5
3   3 5
2   2 3 5
0   0 2 3 5

x  path
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the right of the code  in Algorithm 4.1. To recover 
the path from s to any vertex v, the pathTo() method 
in Algorithm 4.1 uses a variable x to travel up the 
tree, setting x to edgeTo[x], just as we did for union-
find in Section 1.5, putting each vertex encountered 
onto a stack until reaching s. Returning the stack to 
the client as an Iterable enables the client to follow 
the path from s to v. 

Detailed trace  The figure at right shows the con-
tents of edgeTo[] just after each vertex is marked 
for our example, with source 0. The contents of 
marked[] and adj[] are the same as in the trace of 
DepthFirstSearch on page 533, as is the detailed de-
scription of the recursive calls and the edges checked, 
so these aspects of the trace are omitted. The depth-
first search adds the edges 0-2, 2-1, 2-3, 3-5, and 
3-4 to edgeTo[], in that order. These edges form a 
tree rooted at the source and provide the information 
needed for pathTo() to provide for the client the path 
from 0 to 1, 2, 3, 4, or 5, as just described.

The constructor in DepthFirstPaths differs only 
in a few assignment statements from the constructor 
in DepthFirstSearch, so Proposition A on page 531 
applies. In addition, we have:

proposition A (continued). DFS allows us to pro-
vide clients with a path from a given source to any 
marked vertex in time proportional its length. 

proof: By induction on the number of verti-
ces visited, it follows that the edgeTo[] array in 
DepthFirstPaths represents a tree rooted at the 
source. The pathTo() method builds the path in 
time proportional to its length. 

Trace of depth-�rst search to �nd all paths from 0

edgeTo[]

  0      
  1   
  2  
  3  
  4  
  5  

  0  
  1   
  2  0
  3  
  4  
  5  

  0  
  1  2
  2  0
  3  
  4  
  5  

  0  
  1  2
  2  0
  3  2
  4  
  5  

  0  
  1  2
  2  0
  3  2
  4  
  5  3

  0  
  1  2
  2  0
  3  2
  4  3
 5  3

dfs(0)

  dfs(2)
    check 0

    dfs(1)
      check 0
      check 2
    1 done

    dfs(3)

      dfs(5)
        check 3
        check 0
      5 done

      dfs(4)
        check 3
        check 2
      4 done
      check 2
    3 done
    check 4
  2 done
  check 1
  check 5
0 done 

  0  
  1  2
  2  0
  3  2
  4  3
 5  3
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Breadth-first search The paths discovered by depth-first search depend not just 
on the graph, but also on the representation and the nature of the recursion. Naturally, 
we are often interested in solving the following problem:

Single-source shortest paths  Given a graph and a source vertex s, support que-
ries of the form Is there a path from s to a given target vertex v? If so, find a shortest
such path (one with a minimal number of edges).

The classical method for accomplishing this task, called breadth-first search (BFS ), is 
also the basis of numerous algorithms for processing graphs, so we consider it in detail 
in this section. DFS offers us little assistance in solving this problem, because the order 

in which it takes us through the graph has no relationship to the goal of find-
ing shortest paths. In contrast, BFS is based on this goal. To find a shortest path 
from s to v, we start at s and check for v among all the vertices that we can 
reach by following one edge, then we check for v among all the vertices that we 
can reach from s by following two edges, and so forth. DFS is analogous to one 
person exploring a maze. BFS is analogous to a group of searchers exploring by 
fanning out in all directions, each unrolling his or her own ball of string. When 
more than one passage needs to be explored, we imagine that the searchers 
split up to expore all of them; when two groups of searchers meet up, they join 
forces (using the ball of string held by the one getting there first).

In a program, when we come to a point during a graph search where we 
have more than one edge to traverse, we choose one and save the others to be 
explored later. In DFS, we use a pushdown stack (that is managed by the sys-
tem to support the recursive search method) for this purpose. Using the LIFO 
rule that characterizes the pushdown stack corresponds to exploring passages 
that are close by in a maze. We choose, of the passages yet to be explored, 
the one that was most recently encountered. In BFS, we want to explore the 

vertices in order of their distance from the source. It turns out that this order is easily 
arranged: use a (FIFO) queue instead of a (LIFO) stack. We choose, of the passages yet 
to be explored, the one that was least recently encountered.

Implementation  Algorithm 4.2 on page 540 is an implementation of BFS. It is based 
on maintaining a queue of all vertices that have been marked but whose adjacency lists 
have not been checked. We put the source vertex on the queue, then perform the fol-
lowing steps until the queue is empty: 

n	 Remove the next vertex v from the queue. 
n	 Put onto the queue all unmarked vertices that are adjacent to v and mark them.

Breadth-�rst
maze exploration
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The bfs() method in Algorithm 4.2 is not re-
cursive. Instead of the implicit stack provided by 
recursion, it uses an explicit queue. The product of 
the search, as for DFS, is an array edgeTo[], a par-
ent-link representation of a tree rooted at s, which 
defines the shortest paths from s to every 
vertex that is connected to s. The paths 
can be constructed for the client using the 
same pathTo() implementation that we 
used for DFS in Algorithm 4.1.

The figure at right shows the step-by-
step development of BFS on our sample 
graph, showing the contents of the data 
structures at the beginning of each it-
eration of the loop. Vertex 0 is put on the 
queue, then the loop completes the search 
as follows:

n	 Removes 0 from the queue and puts 
its adjacent vertices 2, 1, and 5 on 
the queue, marking each and setting 
the edgeTo[] entry for each to 0.

n	 Removes 2 from the queue, checks 
its adjacent vertices 0 and 1, which 
are marked, and puts its adjacent 
vertices 3 and 4 on the queue, mark-
ing each and setting the edgeTo[] 
entry for each to 2.

n	 Removes 1 from the queue and 
checks its adjacent vertices 0 and 2, 
which are marked.

n	 Removes 5 from the queue and 
checks its adjacent vertices 3 and 0, 
which are marked.

n	 Removes 3 from the queue and 
checks its adjacent vertices 5, 4, 
and 2, which are marked.

n	 Removes 4 from the queue and 
checks its adjacent vertices 3 and 2, which are marked.

Trace of breadth-�rst search to �nd all paths from 0
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Outcome of breadth-�rst search to �nd all paths from 0

edgeTo[]
  0    
  1  0
  2  0
  3  2
  4  2
  5  0
  

5394.1 n Undirected Graphs



ptg12441863

aLgorIthM 4.2 Breadth-first search to find paths in a graph

public class BreadthFirstPaths

{ 
   private boolean[] marked; // Is a shortest path to this vertex known? 
   private int[] edgeTo;     // last vertex on known path to this vertex 
   private final int s;      // source

   public BreadthFirstPaths(Graph G, int s) 
   { 
      marked = new boolean[G.V()]; 
      edgeTo = new int[G.V()]; 
      this.s = s; 
      bfs(G, s); 
   }

   private void bfs(Graph G, int s) 
   { 
      Queue<Integer> queue = new Queue<Integer>(); 
      marked[s] = true;          // Mark the source 
      queue.enqueue(s);          //   and put it on the queue. 
      while (!queue.isEmpty()) 
      { 
         int v = queue.dequeue(); // Remove next vertex from the queue. 
         for (int w : G.adj(v)) 
            if (!marked[w])       // For every unmarked adjacent vertex, 
            { 
               edgeTo[w] = v;     //   save last edge on a shortest path, 
               marked[w] = true;  //   mark it because path is known, 
               queue.enqueue(w);  //   and add it to the queue. 
            } 
      } 
   }

   public boolean hasPathTo(int v) 
   {  return marked[v];  }

   public Iterable<Integer> pathTo(int v) 
   // Same as for DFS (see page 536).

}

This Graph client uses breadth-first search to find paths in a graph with the fewest number of edges 
from the source s given in the constructor. The bfs() method marks all vertices connected to s, so 
clients can use hasPathTo() to determine whether a given vertex v is connected to s and pathTo() to 
get a path from s to v with the property that no other such path from s to v has fewer edges. 
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For this example, the edgeTo[] array is complete after the second step. As with DFS, 
once all vertices have been marked, the rest of the computation is just checking edges to 
vertices that have already been marked.

proposition b. For any vertex v reachable from s, BFS computes a shortest path 
from s to v (no path from s to v has fewer edges).

proof: It is easy to prove by induction that the queue always consists of zero or 
more vertices of distance k from the source, followed by zero or more vertices of 
distance k1 from the source, for some integer k, starting with k equal to 0. This 
property implies, in particular, that vertices enter and leave the queue in order of 
their distance from s. When a vertex v enters the queue, no shorter path to v will 
be found before it comes off the queue, and no path to v that is discovered after it 
comes off the queue can be shorter than v’s tree path length. 

proposition b (continued). BFS takes time proportional to VE in the worst case.

proof: As for Proposition A (page 531), BFS marks all the vertices connected to s 
in time proportional to the sum of their degrees. If the graph is connected, this sum 
equals the sum of the degrees of all the vertices, or 2E. Initialzing the marked[] and 
edgeTo[] arrays takes time proportional to V. 

Note that we can also use BFS to implement the Search API that we implemented with 
DFS, since the solution depends on only the ability of the search to examine every ver-
tex and edge connected to the source. 

As implied at the outset, DFS and BFS are the first of several instances that we will 
examine of a general approach to searching graphs. We put the source vertex on the 
data structure, then perform the following steps until the data structure is empty: 

n	 Take the next unmarked vertex v from the data structure and mark it. 
n	 Put onto the data structure all unmarked 

vertices that are adjacent to v.
The algorithms differ only in the rule used to 
take the next vertex from the data structure 
(least recently added for BFS, most recently add-
ed for DFS). This difference leads to completely 
different views of the graph, even though all the 

% java BreadthFirstPaths tinyCG.txt 0 
0 to 0: 0 
0 to 1: 0-1 
0 to 2: 0-2 
0 to 3: 0-2-3 
0 to 4: 0-2-4 
0 to 5: 0-5
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vertices and edges connected to the 
source are examined no matter what 
rule is used. Our implementations of 
BFS and DFS gain efficiency over the 
general approach by eagerly marking 
vertices as they are added to the data 
structure (BFS) and lazily adding un-
marked vertices to the data structure 
(DFS).

The diagrams on either side of 
this page, which show the progress of 
DFS and BFS for our sample graph 
mediumG.txt, make plain the differ-
ences between the paths that are dis-
covered by the two approaches.DFS 
wends its way through the graph, stor-
ing on the stack the points where other 
paths branch off; BFS sweeps through 
the graph, using a queue to remember 
the frontier of visited places. DFS ex-
plores the graph by looking for new 
vertices far away from the start point, 
taking closer vertices only when dead 
ends are encountered; BFS completely 
covers the area close to the starting 
point, moving farther away only when 
everything nearby has been examined. 
DFS paths tend to be long and wind-
ing; BFS paths are short and direct. 
Depending upon the application, one 
property or the other may be desirable 
(or properties of paths may be imma-
terial). In Section 4.4, we will be con-
sidering other implementations of the 
Paths API that find paths having other 
specified properties.

BFS for shortest paths (250 vertices)

20%

40%

60%

80%

100%

DFS for paths (250 vertices)

20%

40%

60%

80%

100%
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Connected components Our next direct application of depth-first search is to 
find the connected components of a graph. Recall from Section 1.5 (see page 216) that “is 
connected to” is an equivalence relation that divides the vertices into equivalence classes
(the connected components). For this common graph-processing task, we define the 
following API:

public class CC

CC(Graph G) preprocessing constructor
boolean connected(int v, int w) are v and w connected?

int count() number of connected components

int id(int v)
component identifier for v 
( between 0 and count()-1 )

apI for connected components

The id() method is for client use in indexing an array by component, as in the test cli-
ent below, which reads a graph and then prints its number of connected components 
and then the vertices in each component, one component per line. To do so, it builds 
an array of Queue objects, then uses each vertex’s component identifier as an index 
into this array, to add the vertex to the appropriate Queue. This client is a model for 
the typical situation where we want 
to independently process connected 
components. 

Implementation  The implemen-
tation CC (Algorithm 4.3 on the 
next page) uses our marked[] array 
to find a vertex to serve as the start-
ing point for a depth-first search in 
each component. The first call to 
the recursive DFS is for vertex 0—
it marks all vertices connected to 0. 
Then the for loop in the constructor 
looks for an unmarked vertex and 
calls the recursive dfs() to mark 
all vertices connected to that ver-
tex. Moreover, it maintains a vertex-
indexed array id[] that associates 
the same int value to every vertex 

public static void main(String[] args) 
{ 
   Graph G = new Graph(new In(args[0])); 
   CC cc = new CC(G);

   int M = cc.count(); 
   StdOut.println(M + " components");

   Queue<Integer>[] components; 
   components = (Queue<Integer>[]) new Queue[M]; 
   for (int i = 0; i < M; i++) 
      components[i] = new Queue<Integer>(); 
   for (int v = 0; v < G.V(); v++) 
      components[cc.id(v)].enqueue(v); 
   for (int i = 0; i < M; i++) 
   { 
      for (int v: components[i]) 
         StdOut.print(v + " "); 
      StdOut.println(); 
   } 
}

test client for connected components apI
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aLgorIthM 4.3 Depth-first search to find connected components in a graph

public class CC
{ 
   private boolean[] marked; 
   private int[] id; 
   private int count;

   public CC(Graph G) 
   { 
      marked = new boolean[G.V()]; 
      id = new int[G.V()]; 
      for (int s = 0; s < G.V(); s++) 
         if (!marked[s]) 
         {   
             dfs(G, s); 
             count++; 
         } 
   }

   private void dfs(Graph G, int v) 
   { 
      marked[v] = true; 
      id[v] = count; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
             dfs(G, w); 
   }

   public boolean connected(int v, int w) 
   {  return id[v] == id[w];  }

   public int id(int v) 
   {  return id[v];  }

   public int count() 
   {  return count;  }

}

This Graph client provides its clients with the ability to independently process a graph’s connected 
components.  Code from DepthFirstSearch (page 531) is left in gray.  The computation is based on 
a vertex-indexed array id[] such that id[v] is set to i if v is in the ith connected component pro-
cessed. The constructor finds an unmarked vertex and calls the recursive dfs() to mark and identify 
all the vertices connected to it, continuing until all vertices have been marked and identified.  Imple-
mentations of the instance methods connected(), id(), and count() are immediate.

% java Graph tinyG.txt 
13 vertices, 13 edges 
0: 6 2 1 5  
1: 0  
2: 0  
3: 5 4  
4: 5 6 3  
5: 3 4 0  
6: 0 4  
7: 8  
8: 7  
9: 11 10 12  
10: 9  
11: 9 12  
12: 11 9  

% java CC tinyG.txt 
3 components 
0 1 2 3 4 5 6  
7 8 
9 10 11 12
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                 count         marked[]                      id[]
                       0 1 2 3 4 5 6 7 8 9 101112   0 1 2 3 4 5 6 7 8 9 101112

dfs(0)             0   T                           0                         
  dfs(6)           0   T           T               0           0             
    check 0
    dfs(4)         0   T       T   T               0       0   0             
      dfs(5)       0   T       T T T               0       0 0 0             
        dfs(3)     0   T     T T T T               0     0 0 0 0             
          check 5
          check 4
        3 done
        check 4
        check 0
      5 done
      check 6
      check 3
    4 done
  6 done
  dfs(2)           0   T   T T T T T               0   0 0 0 0 0             
    check 0
  2 done
  dfs(1)           0   T T T T T T T               0 0 0 0 0 0 0             
    check 0
  1 done
  check 5
0 done
dfs(7)             1   T T T T T T T T             0 0 0 0 0 0 0 1           
  dfs(8)           1   T T T T T T T T T           0 0 0 0 0 0 0 1 1         
    check 7
  8 done
7 done
dfs(9)             2   T T T T T T T T T T         0 0 0 0 0 0 0 1 1 2       
  dfs(11)          2   T T T T T T T T T T   T     0 0 0 0 0 0 0 1 1 2   2   
    check 9
    dfs(12)        2   T T T T T T T T T T   T T   0 0 0 0 0 0 0 1 1 2   2 2
      check 11
      check 9
    12 done
  11 done
  dfs(10)          2   T T T T T T T T T T T T T   0 0 0 0 0 0 0 1 1 2 2 2 2 
    check 9
  10 done
  check 12
9 done

Trace of depth-�rst search to �nd connected components

tinyG.txt
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in each component. This array makes the implementation of connected() simple, in 
precisely the same manner as connected() in Section 1.5 (just check if identifiers are 
equal). In this case, the identifier 0 is assigned to all the vertices in the first component 
processed, 1 is assigned to all the vertices in the second component processed, and so 
forth, so that the identifiers are all between 0 and count()-1, as specified in the API. 
This convention enables the use of component-indexed arrays, as in the test client on 
page 543.

proposition c. DFS uses preprocessing time and space proportional to VE to 
support constant-time connectivity queries in a graph.

proof: Immediate from the code. Each adjacency-list entry is examined exactly 
once, and there are 2E such entries (two for each edge); initialzing the marked[] 
and id[] arrays takes time proportional to V. Instance methods examine or return 
one or two instance variables.

Union-find  How does the DFS-based solution for graph connectivity in CC compare 
with the union-find approach of Chapter 1? In theory, DFS is faster than union-find 
because it provides a constant-time guarantee, which union-find does not; in practice, 
this difference is negligible, and union-find is faster because it does not have to build 
a full representation of the graph. More important, union-find is an online algorithm 
(we can check whether two vertices are connected in near-constant time at any point, 
even while adding edges), whereas the DFS solution must first preprocess the graph. 
Therefore, for example, we prefer union-find when determining connectivity is our 
only task or when we have a large number of queries intermixed with edge insertions 
but may find the DFS solution more appropriate for use in a graph ADT because it 
makes efficient use of existing infrastructure. 

The problems that we have solved with DFS are fundamental. It is a simple ap-
proach, and recursion provides us a way to reason about the computation and develop 
compact solutions to graph-processing problems. Two additional examples, for solving 
the following problems, are given in the table on the facing page. 

Cycle detection  Support this query: Is a given graph acylic ?

Two-colorability  Support this query: Can the vertices of a given graph be assigned 
one of two colors in such a way that no edge connects vertices of the same color ? 
which is equivalent to this question: Is the graph bipartite ?

As usual with DFS, the simple code masks a more sophisticated computation, so study-
ing these examples, tracing their behavior on small sample graphs, and extending them 
to provide a cycle or a coloring, respectively, are worthwhile (and left for exercises).
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task                     implementation

is G acyclic?
(assumes 

no self-loops or 
parallel edges)

public class Cycle
{ 
   private boolean[] marked; 
   private boolean hasCycle;

   public Cycle(Graph G) 
   { 
      marked = new boolean[G.V()]; 
      for (int s = 0; s < G.V(); s++) 
         if (!marked[s]) 
            dfs(G, s, s); 
   }

   private void dfs(Graph G, int v, int u) 
   { 
      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
             dfs(G, w, v); 
         else if (w != u) hasCycle = true; 
   }
   
   public boolean hasCycle() 
   {  return hasCycle;  }
}

is G bipartite?
(two-colorable)

public class TwoColor
{ 
   private boolean[] marked; 
   private boolean[] color; 
   private boolean isTwoColorable = true;

   public TwoColor(Graph G) 
   { 
      marked = new boolean[G.V()]; 
      color = new boolean[G.V()]; 
      for (int s = 0; s < G.V(); s++) 
         if (!marked[s]) 
             dfs(G, s); 
   }

   private void dfs(Graph G, int v) 
   {       
      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
         { 
             color[w] = !color[v]; 
             dfs(G, w); 
         } 
         else if (color[w] == color[v]) isTwoColorable = false; 
   }

  public boolean isBipartite() 
   {  return isTwoColorable;  }

}

More examples of graph processing with DFS 
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Symbol graphs Typical applications involve processing graphs defined in files or 
on web pages, using strings, not integer indices, to define and refer to vertices. To ac-
commodate such applications, we define an input format with the following properties:

n	 Vertex names are strings.
n	 A specified delimiter separates vertex names (to allow for the possibility of 

spaces in names).
n	 Each line represents a set of edges, connecting the first vertex name on the line 

to each of the other vertices named on the line.
n	 The number of vertices V and the number of edges E are both implicitly defined.

Shown below is a small example, the file routes.txt, which represents a model for a 
small transportation system where vertices are U.S. airport codes and edges connecting 
them are airline routes between the vertices. The file is simply a list of edges. Shown 

on the facing page is a larger example, taken from the 
file movies.txt, from the Internet Movie Database 
(IMDB), that we introduced in Section 3.5. Recall 
that this file consists of lines listing a movie name fol-
lowed by a list of the performers in the movie. In the 
context of graph processing, we can view it as defining 
a graph with movies and performers as vertices and 
each line defining the adjacency list of edges connect-
ing each movie to its performers. Note that the graph 
is a bipartite graph—there are no edges connecting 
performers to performers or movies to movies.

API  The following API defines a Graph client that al-
lows us to immediately use our graph-processing rou-
tines for graphs defined by such files:

public class SymbolGraph

SymbolGraph(String filename,  
                   String delim)

build graph specified in 
filename using delim to 
separate vertex names

boolean contains(String key) is key a vertex?
int index(String key) index associated with key

String name(int v) key associated with index v
Graph G() underlying Graph

apI for graphs with symbolic vertex names

Symbol graph example (list of edges)

JFK

ATL

MCO

DFW
HOU

DEN

LAS

PHXLAX

ORD

JFK MCO
ORD DEN
ORD HOU
DFW PHX
JFK ATL
ORD DFW
ORD PHX
ATL HOU
DEN PHX
PHX LAX
JFK ORD
DEN LAS
DFW HOU
ORD ATL
LAS LAX
ATL MCO
HOU MCO

  LAS PHX  

routes.txt

V and E 
not explicitly

specified

" "
delimiter
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Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielgud

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

performer
vertex

movie
vertex

Symbol graph example (adjacency lists)

...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/... /Geppi, Cindy/Hershey, Barbara...
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/.../Winslet, Kate/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/.../Bancroft, Anne/...
To Catch a Thief (1955)/París, Manuel/.../Grant, Cary/.../Kelly, Grace/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/.../ Tucci, Maria...
...
  

movies.txt

V and E 
not explicitly

specified

performersmovie

"/" delimiter
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This API provides a construc-
tor to read and build the graph 
and client methods name() and 
index() for translating vertex 
names between the strings on 
the input stream and the inte-
ger indices used by our graph-
processing methods. 

Test client  The test client at 
left builds a graph from the 
file named as the first com-
mand-line argument (using 
the delimiter as specified by 
the second command-line ar-

gument) and then takes queries from standard input. 
The user specifies a vertex name and gets the list of 
vertices adjacent to that vertex. This client immedi-
ately provides the useful inverted index functional-
ity that we considered in Section 3.5. In the case of 
routes.txt, you can type an airport code to find the 
direct flights from that airport, information that is 
not directly available in the data file. In the case of 
movies.txt, you can type the name of a performer 
to see the list of the movies in the database in which 
that performer appeared, or you can type the name 
of a movie to see the list of performers that appear 
in that movie. Typing a movie name and getting its 
cast is not much more than regurgitating the corre-
sponding line in the input file, but typing the name 
of a performer and getting the list of movies in which 
that performer has appeared is inverting the index. 
Even though the database is built around connect-
ing movies to performers, the bipartite graph model 
embraces the idea that it also connects performers 
to movies. The bipartite graph model automatically 
serves as an inverted index and also provides the basis 
for more sophisticated processing, as we will see.

% java SymbolGraph routes.txt " " 
JFK 
   ORD 
   ATL 
   MCO 
LAX 
   LAS 
   PHX

public static void main(String[] args) 
{ 
   String filename = args[0]; 
   String delim = args[1]; 
   SymbolGraph sg = new SymbolGraph(filename, delim);

   Graph G = sg.G();

   while (StdIn.hasNextLine()) 
   { 
      String source = StdIn.readLine(); 
      for (int v : G.adj(sg.index(source))) 
         StdOut.println("   " + sg.name(v)); 
   } 
}

test client for symbol graph apI

% java SymbolGraph movies.txt "/" 
Tin Men (1987) 
   Hershey, Barbara 
   Geppi, Cindy 
   ...  
   Blumenfeld, Alan 
   DeBoy, David 
Bacon, Kevin 
   Woodsman, The (2004) 
   Wild Things (1998) 
   ...  
   Apollo 13 (1995) 
   Animal House (1978)
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This approach is clearly effective for any of the graph-processing methods that 
we consider: any client can use index() when it wants to convert a vertex name to an 
index for use in graph processing and name() when it wants to convert an index from 
graph processing into a name for use in the context of the application. 

Implementation  A full SymbolGraph implementation is given on page 552. It builds 
three data structures:

n	 A symbol table st with String keys (vertex names) and int values (indices)
n	 An array keys[] that serves as an inverted index, giving the vertex name associ-

ated with each integer index
n	 A Graph G built using the indices to refer to vertices

SymbolGraph uses two passes through the data to build these data structures, pri-
marily because the number of vertices V is needed to build the Graph. In typical real-
world applications, keeping the value of V and E in the graph definition file (as in our 
Graph constructor at the beginning of this section) is somewhat inconvenient—with 
SymbolGraph, we can maintain files such as routes.txt or movies.txt by adding or 
deleting entries without regard to the number of different names involved.

Symbol graph data structures

key value

undirected graphsymbol table inverted index

JFK
MCO
ORD
DEN
HOU
DFW
PHX
ATL
LAX
LAS

JFK

MCO

ORD

DEN

HOU

DFW

PHX

ATL

LAX

LAS

0
1
2
3
4
5
6
7
8
9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

9 6

2 7 1

4 7 0

9 6 2

4 2 6

6 8 3

9 8 3 2 5

7 0 6 5 4 3

1 2 4 0

1 5 7 2

ST<String, Integer> st String[] keys Graph G

JFK

ATL

MCO

DFW
HOU

DEN

LAS

PHXLAX

ORD

Bag[] adj

int V 10
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Symbol graph data type

public class SymbolGraph 
{ 
   private ST<String, Integer> st;              // String -> index 
   private String[] keys;                       // index -> String 
   private Graph G;                             // the graph

   public SymbolGraph(String stream, String sp) 
   { 
      st = new ST<String, Integer>(); 
      In in = new In(stream);                   // First pass 
      while (in.hasNextLine())                  //   builds the index 
      { 
         String[] a = in.readLine().split(sp);  //   by reading strings 
         for (int i = 0; i < a.length; i++)     //   to associate each 
            if (!st.contains(a[i]))             //   distinct string 
               st.put(a[i], st.size());         //   with an index. 
      } 
      keys = new String[st.size()];             // Inverted index 
      for (String name : st.keys())             //   to get string keys 
         keys[st.get(name)] = name;             //   is an array.

      G = new Graph(st.size()); 
      in = new In(stream);                      // Second pass 
      while (in.hasNextLine())                  //   builds the graph 
      {                                   
         String[] a = in.readLine().split(sp);  //   by connecting the 
         int v = st.get(a[0]);                  //   first vertex 
         for (int i = 1; i < a.length; i++)     //   on each line 
             G.addEdge(v, st.get(a[i]));        //   to all the others. 
      } 
   }

   public boolean contains(String s) {  return st.contains(s);  } 
   public int index(String s)        {  return st.get(s);  } 
   public String name(int v)         {  return keys[v];  } 
   public Graph G()                  {  return G;  } 
}

This Graph client allows clients to define graphs with String vertex names instead of integer indices. 
It maintains instance variables st (a symbol table that maps names to indices), keys (an array that 
maps indices to names), and G (a graph, with integer vertex names).  To build these data structures, 
it makes two passes through the graph definition (each line has a string and a list of adjacent strings, 
separated by the delimiter sp).
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Degrees of separation  One of the classic applications of graph processing is to find 
the degree of separation between two individuals in a social network. To fix ideas, we 
discuss this application in terms of a recently popularized pastime known as the Kevin 
Bacon game, which uses the movie-performer graph that we just considered. Kevin Ba-
con is a prolific actor who has appeared in many movies. We assign every performer a 
Kevin Bacon number as follows: Bacon himself is 0, any performer who has been in the 
same cast as Bacon has a Kevin Bacon number of 1, any other performer (except Bacon) 
who has been in the same cast as a performer whose number is 1 has a Kevin Bacon 
number of 2, and so forth. For example, Meryl Streep has a Kevin Bacon number of 1 
because she appeared in The River Wild with Kevin Bacon. Nicole Kidman’s number is 
2: although she did not appear in any movie with Kevin Bacon, she was in Days of Thun-
der with Tom Cruise, and Cruise appeared in A Few Good Men with Kevin Bacon. Given 
the name of a performer, the simplest version of the game is to find some alternating se-
quence of movies and performers that leads back to Kevin Bacon. For example, a movie 
buff might know that Tom Hanks was in Joe Versus the Volcano with Lloyd Bridges, 
who was in High Noon with 
Grace Kelly, who was in Dial 
M for Murder with Patrick 
Allen, who was in The Eagle 
Has Landed with Donald 
Sutherland, who was in 
Animal House with Kevin 
Bacon. But this knowledge 
does not suffice to establish 
Tom Hanks’s Bacon number 
(it is actually 1 because he 
was in Apollo 13 with Kevin 
Bacon). You can see that the 
Kevin Bacon number has to 
be defined by counting the movies in the shortest such sequence, so it is hard to be sure 
whether someone wins the game without using a computer. Of course, as illustrated in 
the SymbolGraph client DegreesOfSeparation on page 555, BreadthFirstPaths is the 
program we need to find a shortest path that establishes the Kevin Bacon number of 
any performer in movies.txt. This program takes a source vertex from the command 
line, then takes queries from standard input and prints a shortest path from the source 
to the query vertex. Since the graph associated with movies.txt is bipartite, all paths 
alternate between movies and performers, and the printed path is a “proof” that the 
path is valid (but not a proof that it is the shortest such path—you need to educate your 

% java DegreesOfSeparation movies.txt "/" "Bacon, Kevin" 
Kidman, Nicole 
   Bacon, Kevin 
   Woodsman, The (2004) 
   Grier, David Alan 
   Bewitched (2005) 
   Kidman, Nicole 
Grant, Cary 
   Bacon, Kevin 
   Planes, Trains & Automobiles (1987) 
   Martin, Steve (I) 
   Dead Men Don’t Wear Plaid (1982) 
   Grant, Cary
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friends about Proposition B for that). DegreesOfSeparation also finds shortest paths 
in graphs that are not bipartite: for example, it finds a way to get from one airport to 
another in routes.txt using the fewest connections.

You might enjoy using DegreesOfSeparation to answer some entertaining ques-
tions about the movie business. For example, you can find separations between mov-
ies, not just performers. More important, the concept of separation has been widely 
studied in many other contexts. For example, mathematicians play this same game with 
the graph defined by paper co-authorship and their connection to P. Erdös, a prolific 
20th-century mathematician. Similarly, everyone in New Jersey seems to have a Bruce 
Springsteen number of 2, because everyone in the state seems to know someone who 
claims to know Bruce. To play the Erdös game, you would need a database of all math-
ematical papers; playing the Springsteen game is a bit more challenging. On a more 
serious note, degrees of separation play a crucial role in the design of computer and 
communications networks, and in our understanding of natural networks in all fields 
of science.

% java DegreesOfSeparation movies.txt "/" "Animal House (1978)"  
Titanic (1997) 
   Animal House (1978) 
   Allen, Karen (I) 
   Raiders of the Lost Ark (1981) 
   Taylor, Rocky (I) 
   Titanic (1997) 
To Catch a Thief (1955) 
   Animal House (1978) 
   Vernon, John (I) 
   Topaz (1969) 
   Hitchcock, Alfred (I) 
   To Catch a Thief (1955)
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Degrees of separation

public class DegreesOfSeparation 
{ 
   public static void main(String[] args) 
   { 
      SymbolGraph sg = new SymbolGraph(args[0], args[1]);

      Graph G = sg.G();

      String source = args[2]; 
      if (!sg.contains(source)) 
      {  StdOut.println(source + " not in database."); return;  }

      int s = sg.index(source); 
      BreadthFirstPaths bfs = new BreadthFirstPaths(G, s);

      while (!StdIn.isEmpty()) 
      { 
         String sink = StdIn.readLine(); 
         if (sg.contains(sink)) 
         { 
            int t = sg.index(sink); 
            if (bfs.hasPathTo(t)) 
               for (int v : bfs.pathTo(t)) 
                  StdOut.println("   " + sg.name(v)); 
            else StdOut.println("Not connected"); 
         }   
         else StdOut.println("Not in database."); 
      } 
   } 
}

This SymbolGraph and BreadthFirstPaths client finds shortest paths in graphs. For movies.txt, it 
plays the Kevin Bacon game. 

% java DegreesOfSeparation routes.txt " " JFK 
LAS 
   JFK 
   ORD 
   PHX 
   LAS 
DFW 
   JFK 
   ORD 
   DFW
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Summary In this section, we have introduced several basic concepts that we will 
expand upon and further develop throughout the rest of this chapter:

n	 Graph nomenclature
n	 A graph representation that enables processing of huge sparse graphs
n	 A design pattern for graph processing, where we implement algorithms by devel-

oping clients that preprocess the graph in the constructor, building data struc-
tures that can efficiently support client queries about the graph

n	 Depth-first search and breadth-first search
n	 A class providing the capability to use symbolic vertex names

The table below summarizes the implementations of graph algorithms that we have 
considered. These algorithms are a proper introduction to graph processing, since vari-
ants on their code will resurface as we consider more complicated types of graphs and 
applications, and (consequently) more difficult graph-processing problems. The same 
questions involving connections and paths among vertices become much more difficult 
when we add direction and then weights to graph edges, but the same approaches are 
effective in addressing them and serve as a starting point for addressing more difficult 
problems.

problem solution reference

single-source connectivity DepthFirstSearch page 531

single-source paths DepthFirstPaths page 536

single-source shortest paths BreadthFirstPaths page 540

connectivity CC page 544

cycle detection Cycle page 547

two-colorability (bipartiteness) TwoColor page 547

(Undirected) graph-processing problems addressed in this section
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Q&A

Q.  Why not jam all of the algorithms into Graph.java?

A.  Yes, we might just add query methods (and whatever private fields and methods 
each might need) to the basic Graph ADT definition. While this approach has some of 
the virtues of data abstraction that we have embraced, it also has some serious draw-
backs, because the world of graph processing is significantly more expansive than the 
kinds of basic data structures treated in Section 1.3. Chief among these drawbacks are 
the following: 

n		 There are many more graph-processing operations to implement than we can 
accurately define in a single API. 

n	 Simple graph-processing tasks have to use the same API needed by complicated 
tasks. 

n	 One method can access a field intended for use by another method, contrary to 
encapsulation principles that we would like to follow. 

This situation is not unusual: APIs of this kind have come to be known as wide inter-
faces (see page 97). In a chapter filled with graph-processing algorithms, an API of this 
sort would be wide indeed.

Q.  Does SymbolGraph really need two passes?

A. No. You could pay an extra log V factor and support adj() directly as an ST instead 
of a Bag. We have an implementation along these lines in our book An Introduction to 
Programming in Java: An Interdisciplinary Approach.
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ExErcisEs

4.1.1 What is the maximum number of edges in a graph with V vertices and no parallel 
edges? What is the minimum number of edges in a graph with V vertices, none of which 
are isolated (have degree 0)?

4.1.2 Draw, in the style of the figure in the text (page 524), the 
adjacency lists built by Graph’s input stream constructor for the 
file tinyGex2.txt depicted at left. 

4.1.3  Create a copy constructor for Graph that takes as input a 
graph G and creates and initializes a new copy of the graph. Any 
changes a client makes to G should not affect the newly created 
graph. 

4.1.4 Add a method hasEdge() to Graph which takes two int 
arguments v and w and returns true if the graph has an edge v-w, 
false otherwise. 

4.1.5 Modify Graph to disallow parallel edges and self-loops. 

4.1.6 Consider the four-vertex graph with edges 0-1, 1-2, 2-3, 
and 3-0.  Draw an array of adjacency-lists that could not have been 

built calling addEdge() for these edges no matter what order. 

4.1.7 Develop a test client for Graph that reads a graph from the input stream named 
as command-line argument and then prints it, relying on toString().

4.1.8 Develop an implementation for the Search API on page 528 that uses UF, as de-
scribed in the text.

4.1.9 Show, in the style of the figure on page 533,  a detailed trace of the call dfs(0) for 
the graph built by Graph’s input stream constructor for the file tinyGex2.txt (see  Ex-
ercise 4.1.2). Also, draw the tree represented by edgeTo[].

4.1.10 Prove that every connected graph has a vertex whose removal (including all 
incident edges) will not disconnect the graph, and write a DFS method that finds such 
a vertex. Hint : Consider a vertex whose adjacent vertices are all marked. 

4.1.11 Draw the tree represented by edgeTo[] after the call bfs(G, 0) in Algorithm 
4.2 for the graph built by Graph’s input stream constructor for the file tinyGex2.txt 
(see  Exercise 4.1.2).

12
16
 8  4
 2  3
 1 11
 0  6
 3  6
10  3
 7 11
 7  8
11  8
 2  0
 6  2
 5  2
 5 10
 5  0
 8  1
 4  1

tinyGex2.txt
V

E
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4.1.12 What does the BFS tree tell us about the 
distance from v to  w when neither is at the root?

4.1.13 Add a distTo() method to the 
BreadthFirstPaths API and implementation, 
which returns the number of edges on the shortest 
path from the source to a given vertex. A distTo() 
query should run in constant time.

4.1.14 Suppose you use a stack instead of a queue 
when running breadth-first search. Does it still 
compute shortest paths?

4.1.15 Modify the input stream constructor for 
Graph to also allow adjacency lists from standard 
input (in a manner similar to SymbolGraph), as in 
the example tinyGadj.txt shown at right. After 
the number of vertices and edges, each line con-
tains a vertex and its list of adjacent vertices.

4.1.16 The eccentricity of a vertex v is the length of the shortest path from that vertex 
to the furthest vertex from v. The diameter of a graph is the maximum eccentricity of 
any vertex. The radius of a graph is the smallest eccentricity of any vertex. A center is a 
vertex whose eccentricity is the radius. Implement the following API:

public class GraphProperties

GraphProperties(Graph G) constructor (exception if G not connected)
int diameter() diameter of G
int radius() radius of G
int center() a center of G

4.1.17 The Wiener index of a graph is the sum of the lengths of the shortest paths be-
tween all pairs of vertices. Mathematical chemists use this quantity to analyze molecular 
graphs, where vertices correspond to atoms and edges correspond to chemical bonds. 
Add a method wiener() to GraphProperties that returns the Wiener index of a graph.

same lists as for 
list-of-edges input

but order within lists
is different

13
13
0 1 2 5 6
3 4 5
4 5 6
7 8
9 10 11 12
11 12

% java Graph tinyGadj.txt
13 vertices, 13 edges
0: 6 5 2 1 
1: 0 
2: 0 
3: 5 4 
4: 6 5 3 
5: 4 3 0 
6: 4 0 
7: 8 
8: 7 
9: 12 11 10 
10: 9
11: 12 9 
12: 11 9 

tinyGadj.txt
V

E

list order
is reversed
from input

second
representation

of each edge
appears in red

Output for adjacency-lists input format
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4.1.18 The girth of a graph is the length of its shortest cycle. If a graph is acyclic, then 
its girth is infinite. Add a method girth() to GraphProperties that returns the girth 
of the graph. Hint : Run BFS from each vertex. The shortest cycle containing s is an edge 
between s and some vertex v concatenated with a shortest path between s and v (that 
doesn’t use the edge s-v).

4.1.19 Show, in the style of the figure on page 545, a detailed trace of CC for finding the 
connected components in the graph built by Graph’s input stream constructor for the 
file tinyGex2.txt (see Exercise 4.1.2).

4.1.20 Show, in the style of the figures in this section, a detailed trace of Cycle for 
finding a cycle in the graph built by Graph’s input stream constructor for the file 
tinyGex2.txt (see Exercise 4.1.2). What is the order of growth of the running time 
of the Cycle constructor, in the worst case?

4.1.21 Show, in the style of the figures in this section, a detailed trace of TwoColor for 
finding a two-coloring of the graph built by Graph’s input stream constructor for the 
file tinyGex2.txt (see Exercise 4.1.2). What is the order of growth of the running 
time of the TwoColor constructor, in the worst case?

4.1.22 Run SymbolGraph with movies.txt to find the Kevin Bacon number of this 
year’s Oscar nominees.

4.1.23  Write a program BaconHistogram that prints a histogram of Kevin Bacon 
numbers, indicating how many performers from movies.txt have a Bacon number of 
0, 1, 2, 3, ... . Include a category for those who have an infinite number (not connected 
to Kevin Bacon).

4.1.24 Compute the number of connected components in movies.txt, the size of the 
largest component, and the number of components of size less than 10. Find the eccen-
tricity, diameter, radius, a center, and the girth of the largest component in the graph. 
Does it contain Kevin Bacon?

4.1.25 Modify DegreesOfSeparation to take an int value y as a command-line argu-
ment and ignore movies that are more than y years old.

4.1.26 Write a SymbolGraph client like DegreesOfSeparation that uses depth-first 
search instead of breadth-first search to find paths connecting two performers, produc-
ing output like that shown on the facing page.

ExErcisEs (continued)

560 Chapter 4 n graphs



ptg12441863

4.1.27 Determine the amount of memory used by Graph to represent a graph with V
vertices and E edges, using the memory-cost model of Section 1.4.

4.1.28 Two graphs are isomorphic if there is a way to rename the vertices of one to make 
it identical to the other. Draw all the nonisomorphic graphs with two, three, four, and 
five vertices.

4.1.29 Modify Cycle so that it works even if the graph contains self-loops and parallel 
edges.

% java DegreesOfSeparationDFS movies.txt "/" "Bacon, Kevin" 
Kidman, Nicole 
   Bacon, Kevin 
   Woodsman, The (2004) 
   Sedgwick, Kyra 
   Something to Talk About (1995) 
   Gillan, Lisa Roberts 
   Runaway Bride (1999) 
   Schertler, Jean 
   ... [1782 movies ] (!) 
   Eskelson, Dana 
   Interpreter, The (2005) 
   Silver, Tracey (II) 
   Copycat (1995) 
   Chua, Jeni 
   Metro (1997) 
   Ejogo, Carmen 
   Avengers, The (1998) 
   Atkins, Eileen 
   Hours, The (2002) 
   Kidman, Nicole
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crEAtivE problEms

4.1.30  Eulerian and Hamiltonian cycles. Consider the graphs defined by the following 
four sets of edges:

0-1 0-2 0-3 1-3 1-4 2-5 2-9 3-6 4-7 4-8 5-8 5-9 6-7 6-9 7-8   
0-1 0-2 0-3 1-3 0-3 2-5 5-6 3-6 4-7 4-8 5-8 5-9 6-7 6-9 8-8   
0-1 1-2 1-3 0-3 0-4 2-5 2-9 3-6 4-7 4-8 5-8 5-9 6-7 6-9 7-8   
4-1 7-9 6-2 7-3 5-0 0-2 0-8 1-6 3-9 6-3 2-8 1-5 9-8 4-5 4-7 

Which of these graphs have Euler cycles (cycles that visit each edge exactly once)? 
Which of them have Hamilton cycles (cycles that visit each vertex exactly once)? De-
velop a linear-time DFS-based algorithm to determine whether a graph has an Euler 
cycle (and if so find one).  

4.1.31  Graph enumeration. How many different undirected graphs are there with V
vertices and E edges (and no parallel edges)? 

4.1.32  Parallel edge detection. Devise a linear-time algorithm to count the parallel 
edges in a graph.

4.1.33  Odd cycles. Prove that a graph is two-colorable (bipartite) if and only if it con-
tains no odd-length cycle. 

4.1.34  Symbol graph. Implement a one-pass SymbolGraph (it need not be a Graph 
client). Your implementation may pay an extra log V factor for graph operations, for 
symbol-table lookups.

4.1.35  Biconnectedness. A graph is biconnected if every pair of vertices is connected 
by two disjoint paths. An articulation point in a connected graph is a vertex that would 
disconnect the graph if it (and its incident edges) were removed. Prove that any graph 
with no articulation points is biconnected. Hint : Given a pair of vertices s and t and a 
path  connecting them, use the fact that none of the vertices on the path are  articulation 
points to construct two disjoint paths connecting s and t. 

4.1.36  Two-edge connectivity. A bridge in a graph is an edge that, if removed, would 
increase the number of connected components. A graph that has no bridges is said to 
be two-edge connected.  Develop a linear-time DFS-based algorithm for determining 
whether a given graph is edge connected.
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4.1.37  Euclidean graphs. Design and implement an API EuclideanGraph for graphs 
whose vertices are points in the plane that include coordinates. Include a method 
show() that uses StdDraw to draw the graph.

4.1.38  Image processing. Implement the flood fill operation on the implicit graph de-
fined by connecting adjacent points that have the same color in an image. Hint : Avoid 
an explicit stack.
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ExpErimENts

4.1.39  Random graphs. Write a program ErdosRenyiGraph that takes integer values 
V and E from the command line and builds a graph by generating E random pairs of in-
tegers between 0 and V1. Note: This generator produces self-loops and parallel edges.

4.1.40  Random simple graphs. Write a program RandomSimpleGraph that takes inte-
ger values V and E from the command line and produces, with equal likelihood, each of 
the possible simple graphs with V vertices and E edges.  

4.1.41  Random sparse graphs. Write a program RandomSparseGraph to generate ran-
dom sparse graphs for a well-chosen set of values of V and E such that you can use it to 
run meaningful empirical tests on graphs drawn from the Erdös-Renyi model.

4.1.42  Random Euclidean graphs. Write a EuclideanGraph client (see Exercise 
4.1.37) RandomEuclideanGraph that produces random graphs by generating V random 
points in the unit square (x and y-coordinates between 0 and 1), then connecting each 
point with all points that are within a circle of radius d centered at that point. Note : 
The graph will almost certainly be connected if d is larger than the threshold value
 ln V/( V) and almost certainly disconnected if d is smaller than that value.

4.1.43  Random grid graphs. Write a EuclideanGraph client RandomGridGraph that 
generates random graphs by connecting vertices arranged in a  V-by- V grid to their 
neighbors (see Exercise 1.5.18). Augment your program to add R extra random edges. 
For large R, shrink the grid so that the total number of edges remains about 2V. Add 
an option such that an extra edge goes from a vertex s to a vertex t with probability 
inversely proportional to the Euclidean distance between s and t.

4.1.44  Real-world graphs. Find a large weighted graph on the web—perhaps a map 
with distances, telephone connections with costs, or an airline rate schedule. Write a 
program RandomRealGraph that builds a graph by choosing V vertices at random and 
E edges at random from the subgraph induced by those vertices.

4.1.45  Random interval graphs. Consider a collection of V intervals on the real line 
(pairs of real numbers). Such a collection defines an interval graph with one vertex cor-
responding to each interval, with edges between vertices if the corresponding intervals 
intersect (have any points in common). Write a program that generates V random in-
tervals in the unit interval, all of length d, then builds the corresponding interval graph. 
Hint: Use a BST.
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4.1.46  Random transportation graphs. One way to define a transportation system is 
with a set of sequences of vertices, each sequence defining a path connecting the ver-
tices. For example, the sequence 0-9-3-2 defines the edges 0-9, 9-3, and 3-2. Write a 
EuclideanGraph client RandomTransportation that builds a graph from an input file 
consisting of one sequence per line, using symbolic names. Develop input suitable to al-
low you to use your program to build a graph corresponding to the Paris Métro system.

Testing all algorithms and studying all parameters against all graph models is unrealistic. 
For each problem listed below, write a client that addresses the problem for any given input 
graph, then choose among the generators above to run experiments for that graph model. 
Use your judgment in selecting experiments, perhaps in response to results of previous 
experiments. Write a narrative explaining your results and any conclusions that might be 
drawn.

4.1.47  Path lengths in DFS. Run experiments to determine empirically the probability 
that DepthFirstPaths finds a path between two randomly chosen vertices and to cal-
culate the average length of the paths found, for various graph models.

4.1.48  Path lengths in BFS. Run experiments to determine empirically the probability 
that BreadthFirstPaths finds a path between two randomly chosen vertices and to 
calculate the average length of the paths found, for various graph models.

4.1.49  Connected components. Run experiments to determine empirically the distri-
bution of the number of components in random graphs of various types, by generating 
large numbers of graphs and drawing a histogram.

4.1.50  Two-colorable. Most graphs are not two-colorable, and DFS tends to discov-
er that fact quickly. Run empirical tests to study the number of edges examined by 
TwoColor, for various graph models.
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4.2 DireCteD grAPhS

In directed graphs, edges are one-way: the pair of vertices that defines each edge is 
an ordered pair that specifies a one-way adjacency. Many applications (for example, 
graphs that represent the web, scheduling constraints, or telephone calls) are naturally 

expressed in terms of directed graphs. The 
one-way restriction is natural, easy to en-
force in our implementations, and seems in-
nocuous; but it implies added combinatori-
al structure that has profound implications 
for our algorithms and makes working with 
directed graphs quite different from work-
ing with undirected graphs. In this section, 
we consider classic algorithms for exploring 
and processing directed graphs. 

Glossary Our definitions for directed 
graphs are nearly identical to those for un-
directed graphs (as are some of the algo-
rithms and programs that we use), but they 

are worth restating. The slight differences in the wording to account for edge directions 
imply structural properties that will be the focus of this section.

Definition. A directed graph (or digraph) is a set of vertices and a collection of di-
rected edges. Each directed edge connects an ordered pair of vertices.

We say that a directed edge points from the first vertex in the pair and points to the 
second vertex in the pair. The outdegree of a vertex in a digraph is the number of edges 
pointing from it; the indegree of a vertex is the number of edges pointing to it. We drop 
the modifier directed when referring to edges in digraphs when the distinction is obvi-
ous in context. The first vertex in a directed edge is called its tail ; the second vertex is 
called its head. We draw directed edges as arrows pointing from tail to head. We use the 
notation v->w to refer to an edge that points from v to w in a digraph. As with undi-
rected graphs, our code handles parallel edges and self-loops, but they are not present 
in examples and we generally ignore them in the text. Ignoring anomalies, there are 

application vertex edge

food web species predator-prey

internet content page hyperlink

program module external reference

cellphone phone call

scholarship paper citation

financial stock transaction

internet machine connection

typical digraph applications
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four different ways in which two vertices might be related in a digraph: no edge; an edge 
v->w from v to w; an edge w->v from w to v; or two edges v->w and w->v, which indicate 
connections in both directions. 

Definition. A directed path in a digraph is a sequence of vertices in which there is 
a (directed) edge pointing from each vertex in the sequence to its successor in the 
sequence. A directed cycle is a directed path with at least one edge whose first and 
last vertices are the same. A simple path is a path with no repeated vertices. A simple 
cycle is a cycle with no repeated edges or vertices (except the requisite repetition 
of the first and last vertices). The length of a path or a cycle is its number of edges.

As for undirected graphs, we assume that directed paths 
are simple unless we specifically relax this assumption by 
referring to specific repeated vertices (as in our definition 
of directed cycle) or to general directed paths. We say that 
a vertex w is reachable from a vertex v if there is a directed 
path from v to w. Also, we adopt the convention that each 
vertex is reachable from itself. Except for this case, the fact 
that w is reachable from v in a digraph indicates nothing 
about whether v is reachable from w. This distinction is 
obvious, but critical, as we shall see.

Understanding the algorithms in this section requires an appreciation of the dis-
tinction between reachability in digraphs and connectivity in undirected graphs. De-
veloping such an appreciation is more complicated than you might think. For example, 

although you are likely to be able to tell at a glance 
whether two vertices in a small undirected graph are 
connected, a directed path in a digraph is not so easy 
to spot, as indicated in the example at left. Processing 
digraphs is akin to traveling around in a city where 
all the streets are one-way, with the directions not 
necessarily assigned in any uniform pattern. Getting 
from one point to another in such a situation could 
be a challenge indeed. Counter to this intuition is 
the fact that the standard data structure that we use 
for representing digraphs is simpler than the corre-
sponding representation for undirected graphs!Is w reachable from v in this digraph?

v

w

Anatomy of a digraph

directed
cycle of
length 3

vertex

vertex of
indegree 3 and 

outdegree 2

directed
edge

directed
path of
length 4
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Digraph data type The API below and the class Digraph shown on the facing 
page are virtually identical to those for Graph (page 526).

public class Digraph

Digraph(int V) create a V-vertex digraph with no edges
Digraph(In in) read a digraph from input stream in

int V() number of vertices
int E() number of edges

void addEdge(int v, int w) add edge v->w to this digraph

Iterable<Integer> adj(int v)
vertices connected to v by edges 
pointing from v

Digraph reverse() reverse of this digraph
String toString() string representation

apI for a digraph

Representation  We use the adjacency-lists representation, where an edge v->w is rep-
resented as a list node containing w in the linked list corresponding to v. This represen-
tation is essentially the same as for undirected graphs but is even more straightforward 
because each edge occurs just once, as shown on the facing page.

Input format  The code for the constructor that takes a digraph from an input stream 
is identical to the corresponding constructor in Graph—the input format is the same, 
but all edges are interpreted to be directed edges. In the list-of-edges format, a pair v w 
is interpreted as an edge v->w. 

Reversing a digraph  Digraph also adds to the API a method reverse() which re-
turns a copy of the digraph, with all edges reversed. This method is sometimes needed 
in digraph processing because it allows clients to find the edges that point to each ver-
tex, while adj() gives just vertices connected by edges that point from each vertex.

Symbolic names  It is also a simple matter to allow clients to use symbolic names in 
digraph applications. To implement a class SymbolDigraph like SymbolGraph on page 
552, replace Graph by Digraph everywhere.

It is worthwhile to take the time to consider carefully the difference, by comparing 
code and the figure at right with their counterparts for undirected graphs on page 524
and page 526. In the adjacency-lists representation of an undirected graph, we know that 
if v is on w’s list, then w will be on v’s list; the adjacency-lists representation of a di-
graph has no such symmetry. This difference has profound implications in processing 
digraphs.
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Directed graph (digraph) data type

public class Digraph
{ 
   private final int V; 
   private int E; 
   private Bag<Integer>[] adj;

   public Digraph(int V) 
   { 
      this.V = V; 
      this.E = 0; 
      adj = (Bag<Integer>[]) new Bag[V]; 
      for (int v = 0; v < V; v++)  
         adj[v] = new Bag<Integer>(); 
   }

   public int V()  {  return V;  } 
   public int E()  {  return E;  }

   public void addEdge(int v, int w) 
   { 
      adj[v].add(w); 
      E++; 
   }

   public Iterable<Integer> adj(int v) 
   {  return adj[v];  }

   public Digraph reverse() 
   { 
      Digraph R = new Digraph(V); 
      for (int v = 0; v < V; v++) 
         for (int w : adj(v)) 
            R.addEdge(w, v); 
      return R; 
   }
}

This Digraph data type is identical to Graph (page 526) 
except that addEdge() only calls add() once, and it has an 
instance method reverse() that returns a copy with all 
its edges reversed. Since the code is easily derived from the 
corresponding code for Graph, we omit the toString() 
method (see the table on page 523) and the input stream 
constructor (see page 526).

adj[]

0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

Digraph input format and 
adjacency-lists representation

13
22
 4  2
 2  3
 3  2
 6  0
 0  1
 2  0
11 12
12  9
 9 10
 9 11
 7  9
10 12
11  4
 4  3
 3  5
 6  8
 8  6
 5  4
 0  5
 6  4
 6  9
 7  6

tinyDG.txt
V

E
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Reachability in digraphs Our first graph-processing algorithm for undirected 
graphs was DepthFirstSearch on page 531, which solves the single-source connectivity 
problem, allowing clients to determine which vertices are connected to a given source. 
The identical code with Graph changed to Digraph solves the analogous problem for 
digraphs:

Single-source reachability  Given a digraph and a source vertex s, support que-
ries of the form Is there a directed path from s to a given target vertex v? 

DirectedDFS on the facing page is a slight embellishment of DepthFirstSearch that 
implements the following API:

public class DirectedDFS

DirectedDFS(Digraph G, int s)
find vertices in G that are 
reachable from s

DirectedDFS(Digraph G, 
        Iterable<Integer> sources)

find vertices in G that are 
reachable from sources

boolean marked(int v) is v reachable?

apI for reachability in digraphs

By adding a second constructor that takes a list of vertices, this API supports for clients 
the following generalization of the problem:

Multiple-source reachability  Given a digraph and a set of source vertices, sup-
port queries of the form Is there a directed path from some vertex in the set to a 
given target vertex v?

This problem arises in the solution of a classic string-processing problem that we con-
sider in Section 5.4.

DirectedDFS uses our standard graph-processing paradigm and a standard recur-
sive depth-first search to solve these problems. It calls the recursive dfs() for each 
source, which marks every vertex encountered.

proposition D. DFS marks all the vertices in a digraph reachable from a given set of 
sources in time proportional to the sum of the outdegrees of the vertices marked.

proof: Same as Proposition A on page 531. 

A trace of the operation of this algorithm for our sample digraph appears on page 572. 
This trace is somewhat simpler than the corresponding trace for undirected graphs, 
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aLgorIthM 4.4 reachability in digraphs

public class DirectedDFS 
{ 
   private boolean[] marked;

   public DirectedDFS(Digraph G, int s) 
   { 
      marked = new boolean[G.V()]; 
      dfs(G, s); 
   }

   public DirectedDFS(Digraph G, Iterable<Integer> sources) 
   { 
      marked = new boolean[G.V()]; 
      for (int s : sources) 
         if (!marked[s]) dfs(G, s); 
   }

   private void dfs(Digraph G, int v) 
   { 
      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (!marked[w]) dfs(G, w); 
   }

   public boolean marked(int v) 
   {  return marked[v];  }

   public static void main(String[] args) 
   { 
      Digraph G = new Digraph(new In(args[0]));

      Bag<Integer> sources = new Bag<Integer>(); 
      for (int i = 1; i < args.length; i++) 
         sources.add(Integer.parseInt(args[i]));

      DirectedDFS reachable = new DirectedDFS(G, sources);

      for (int v = 0; v < G.V(); v++) 
         if (reachable.marked(v)) StdOut.print(v + " "); 
      StdOut.println(); 
   }

}

This implementation of depth-first search provides clients the ability to test which vertices are reach-
able from a given vertex or a given set of vertices. 

% java DirectedDFS tinyDG.txt 1 
1 

% java DirectedDFS tinyDG.txt 2 
0 1 2 3 4 5 

% java DirectedDFS tinyDG.txt 1 2 6 
0 1 2 3 4 5 6 8 9 10 11 12
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Trace of depth-�rst search to �nd vertices reachable from vertex 0 in a digraph

marked[]
  0  T    
  1   
  2  
  3  
  4  
  5  
  .
  .
  .  

  0  T    
  1   
  2  
  3  
  4  
  5  T  
  .
  .
  .  

  0  T     
  1   
  2  
  3  
  4  T  
  5  T  
  .
  .
  .  

  0  T    
  1   
  2  
  3  T  
  4  T  
  5  T  
  .
  .
  .  

  0  T    
  1   
  2  T
  3  T  
  4  T  
  5  T  
  .
  .
  .  

  0  T    
  1  T
  2  T
  3  T  
  4  T  
  5  T  
  .
  .
  .  

adj[]
  0  5 1 
  1   
  2  0 3  
  3  5 2
  4  3 2
  5  4
 .

  .
  .  

  0  5 1 
  1   
  2  0 3  
  3  5 2
  4  3 2
  5  4
 .

  .
  .  

  0  5 1 
  1   
  2  0 3  
  3  5 2
  4  3 2
  5  4
 .

  .
  .  

  0  5 1 
  1   
  2  0 3  
  3  5 2
  4  3 2
  5  4
 .

  .
  .  

  0  5 1 
  1   
  2  0 3  
  3  5 2
  4  3 2
  5  4
 .

  .
  .  

  0  5 1 
  1   
  2  0 3  
  3  5 2
  4  3     
  5  4
 .

  .
  .  

dfs(0)

  dfs(5)

    dfs(4)

      dfs(3)
        check 5

        dfs(2)
          check 0
          check 3
        2 done
      3 done
      check 2
    4 done
  5 done

  dfs(1)
  1 done
0 done
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because DFS is fundamentally a digraph-processing algorithm, with one representation 
of each edge. Following this trace is a worthwhile way to help cement your understand-
ing of depth-first search in digraphs.

Mark-and-sweep garbage collection  An im-
portant application of multiple-source reach-
ability is found in typical memory-management 
systems, including many implementations of 
Java. A digraph where each vertex represents 
an object and each edge represents a reference 
to an object is an appropriate model for the 
memory usage of a running Java program. At 
any point in the execution of a program, certain 
objects are known to be directly accessible, and 
any object not reachable from that set of objects 
can be returned to available memory. A mark-
and-sweep garbage collection strategy reserves 
one bit per object for the purpose of garbage 
collection, then periodically marks the set of 
potentially accessible objects by running a di-
graph reachability algorithm like DirectedDFS 
and sweeps through all objects, collecting the 
unmarked ones for use for new objects.

Finding paths in digraphs  DepthFirstPaths (Algorithm 4.1 on page 536) and 
BreadthFirstPaths (Algorithm 4.2 on page 540) are also fundamentally digraph-
processing algorithms. Again, the identical APIs and code (with Graph changed to 
Digraph) effectively solve the following problems:

Single-source directed paths  Given a digraph and a source vertex s, support 
queries of the form Is there a directed path from s to a given target vertex v? If so, 
find such a path. 

Single-source shortest directed paths  Given a digraph and a source vertex s, 
support queries of the form Is there a directed path from s to a given target vertex 
v? If so, find a shortest such path (one with a minimal number of edges).

On the booksite and in the exercises at the end of this section, we refer to these solu-
tions as DepthFirstDirectedPaths and BreadthFirstDirectedPaths, respectively. 

Garbage collection scenario

directly
 accessible

objects

potentially
 accessible

objects

objects
 available

for collection
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Cycles and DAGs Directed cycles are of partic-
ular importance in applications that involve process-
ing digraphs. Identifying directed cycles in a typical 
digraph can be a challenge without the help of a 
computer, as shown at right. In principle, a digraph 
might have a huge number of cycles; in practice, we 
typically focus on a small number of them, or simply 
are interested in knowing that none are present.

To motivate the study of the role of directed cycles 
in digraph processing we consider, as a running ex-
ample, the following prototypical application where 
digraph models arise directly: 

Scheduling problems  A widely applicable problem-solving model has to do with ar-
ranging for the completion of a set of jobs, under a set of constraints, by specifying 
when and how the jobs are to be performed. Constraints might involve functions of 
the time taken or other resources consumed by the jobs. The most important type of 
constraints is precedence constraints, which specify that certain jobs must be performed 
before certain others. Different types of additional constraints lead to many different 
types of scheduling problems, of varying difficulty. Literally thousands of different 
problems have been studied, and researchers still seek better algorithms for many of 
them. As an example, consider a college student planning a course schedule, under 
the constraint that certain courses are prerequisite for certain other courses, as in the 
example below. 

Does this digraph have a directed cycle?

A precedence-constrained scheduling problem

Algorithms

Databases

Scienti�c Computing

Theoretical CS

Introduction to CS

Advanced Programming

Computational Biology

Arti�cial Intelligence

CalculusLinear Algebra

Robotics

Machine Learning Neural Networks
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If we further assume that the student can take only one course at a time, we have an 
instance of the following problem:

Precedence-constrained scheduling  Given a set of jobs to be completed, with 
precedence constraints that specify that certain jobs have to be completed before 
certain other jobs are begun, how can we schedule the jobs such that they are all 
completed while still respecting the constraints?

For any such problem, a digraph model is immediate, with 
vertices corresponding to jobs and directed edges cor-
responding to precedence constraints. For economy, we 
switch the example to our standard model with vertices 
labeled as integers, as shown at left. In digraphs, prece-
dence-constrained schedul-
ing amounts to the following 
fundamental problem: 

Topological sort  Given a digraph, put the vertices in 
order such that all its directed edges point from a ver-
tex earlier in the order to a vertex later in the order (or 
report that doing so is not possible). 

A topological order for our example model is shown at 
right. All edges point down, so it clearly represents a so-
lution to the precedence-constrained scheduling prob-
lem that this digraph models: the student can satisfy all 
course prerequisites by taking the courses in this order. 
This application is typical—some other representative 
applications are listed in the table below.

Standard digraph model

Topological sort

edges all
point down

prerequisites
all satisfied

Calculus

Linear Algebra

Introduction to CS

Advanced Programming

Algorithms

Theoretical CS

Arti�cial Intelligence

Robotics

Machine Learning

Neural Networks

Databases

Scienti�c Computing

Computational Biology

application vertex edge

job schedule job precedence constraint

course schedule course prerequisite

inheritance Java class extends

spreadsheet cell formula

symbolic links file name link

typical topological-sort applications
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Cycles in digraphs  If job x must be completed before job y, job y before job z, and 
job z before job x, then someone has made a mistake, because those three constraints 
cannot all be satisfied. In general, if a precedence-constrained scheduling problem has 
a directed cycle, then there is no feasible solution. To check for such errors, we need to 
be able to solve the following problem:

Directed cycle detection  Does a given digraph have a directed cycle? If so, find 
the vertices on some such cycle, in order from some vertex back to itself.

A graph may have an exponential number of cycles (see Exercise 4.2.11) so we only ask 
for one cycle, not all of them. For job scheduling and many other applications it is re-
quired that no directed cycle exists, so digraphs where they are absent play a special role:

Definition. A directed acyclic graph (DAG) is a digraph with no directed cycles.

Solving the directed cycle detection problem thus answers the following question: Is a 
given digraph a DAG ? Developing a depth-first-search-based solution to this problem 
is not difficult, based on the fact that the recursive call stack maintained by the system 
represents the “current” directed path under consideration (like the string back to the 
entrance in Tremaux maze exploration). If we ever find a directed edge v->w to a vertex 
w that is on that stack, we have found a cycle, since the stack is evidence of a directed 
path from w to v, and the edge v->w completes the cycle. Moreover, the absence of any 
such back edges implies that the graph is acyclic. DirectedCycle on the facing page 
uses this idea to implement the following API:

public class DirectedCycle

DirectedCycle(Digraph G) cycle-finding constructor
boolean hasCycle() does G have a directed cycle?

Iterable<Integer> cycle() vertices on a cycle (if one exists)

apI for directed cycles in digraphs

Finding a directed cycle in a digraph

dfs(0)
  dfs(5)
    dfs(4)
      dfs(3)
        check 5

  marked[]        edgeTo[]            onStack[]
0 1 2 3 4 5 ...   0 1 2 3 4 5 ...   0 1 2 3 4 5 ... 

1 0 0 0 0 0       - - - - - 0       1 0 0 0 0 0 
1 0 0 0 0 1       - - - - 5 0       1 0 0 0 0 1 
1 0 0 0 1 1       - - - 4 5 0       1 0 0 0 1 1 
1 0 0 1 1 1       - - - 4 5 0       1 0 0 1 1 1 
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Finding a directed cycle

public class DirectedCycle
{ 
   private boolean[] marked; 
   private int[] edgeTo; 
   private Stack<Integer> cycle;   // vertices on a cycle (if one exists) 
   private boolean[] onStack;      // vertices on recursive call stack 

   public DirectedCycle(Digraph G) 
   { 
      onStack = new boolean[G.V()]; 
      edgeTo  = new int[G.V()]; 
      marked  = new boolean[G.V()]; 
      for (int v = 0; v < G.V(); v++) 
         if (!marked[v]) dfs(G, v); 
   } 
   private void dfs(Digraph G, int v) 
   { 
      onStack[v] = true; 
      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (this.hasCycle()) return; 
         else if (!marked[w]) 
         {  edgeTo[w] = v; dfs(G, w);  } 
         else if (onStack[w]) 
         { 
            cycle = new Stack<Integer>(); 
            for (int x = v; x != w; x = edgeTo[x]) 
               cycle.push(x); 
            cycle.push(w);  
            cycle.push(v); 
         } 
      onStack[v] = false; 
   }

   public boolean hasCycle() 
   {  return cycle != null;  }

   public Iterable<Integer> cycle() 
   {  return cycle;  } 
}

This class adds to our standard recursive dfs() a boolean array onStack[] to keep track of the verti-
ces for which the recursive call has not completed. When it finds an edge v->w to a vertex w that is on 
the stack, it has discovered a directed cycle, which it can recover by following edgeTo[] links. 

Trace of cycle computation

edgeTo[]
  0    
  1  
  2  
  3  4
  4  5
  5  0
  

3  5  3   3
3  5  4   4 3
3  5  5   4 3
3  5  5   5 4 3
3  5  5   3 5 4 3

v  w  x  cycle
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When executing dfs(G, v), we have followed a directed path from the source to v. To 
keep track of this path, DirectedCycle maintains a vertex-indexed array onStack[] 
that marks the vertices on the recursive call stack (by setting onStack[v] to true 
on entry to dfs(G, v) and to false on exit). DirectedCycle also maintains an 
edgeTo[] array so that it can return the cycle when it is detected, in the same way as 
DepthFirstPaths (page 536) and BreadthFirstPaths (page 540) return paths.

Depth-first orders and topological sort  Precedence-constrained scheduling amounts 
to computing a topological order for the vertices of a DAG, as in this API:

public class Topological

Topological(Digraph G) topological-sorting constructor
boolean isDAG() is G a DAG?

Iterable<Integer> order() vertices in topological order

apI for topological sorting

proposition E. A digraph has a topological order if and only if it is a DAG.

proof: If the digraph has a directed cycle, it has no topological order. Conversely, 
the algorithm that we are about to examine computes a topological order for any 
given DAG.

Remarkably, it turns out that we have already seen an algorithm for topological sort: a 
one-line addition to our standard recursive DFS does the job! To convince you of this 
fact, we begin with the class DepthFirstOrder on page 580. It is based on the idea that 
depth-first search visits each vertex exactly once. If we save the vertex given as argument 
to the recursive dfs() in a data structure, then iterate through that data structure, we 
see all the graph vertices, in order determined by the nature of the data structure and 
by whether we do the save before or after the recursive calls. Three vertex orderings are 
of interest in typical applications:

n	 Preorder : Put the vertex on a queue before the recursive calls.
n	 Postorder : Put the vertex on a queue after the recursive calls.
n	 Reverse postorder : Put the vertex on a stack after the recursive calls.

A trace of DepthFirstOrder for our sample DAG is given on the facing page. It is simple 
to implement and supports pre(), post(), and reversePost() methods that are use-
ful for advanced graph-processing algorithms. For example, order() in Topological 
consists of a call on reversePost().
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dfs(0)
  dfs(5)
    dfs(4)
    4 done
  5 done
  dfs(1)
  1 done
  dfs(6)
    dfs(9)
      dfs(11)
        dfs(12)
        12 done
      11 done
      dfs(10)
      10 done
      check 12
    9 done
    check 4
  6 done
0 done
check 1
dfs(2)
  check 0
  dfs(3)
    check 5
  3 done
2 done
check 3
check 4
check 5
check 6
dfs(7)
  check 6
7 done
dfs(8)
  check 7
8 done
check 9
check 10
check 11
check 12

Computing depth-�rst orders in a digraph (preorder, postorder, and reverse postorder)

0
0 5
0 5 4

0 5 4 1

0 5 4 1 6
0 5 4 1 6 9
0 5 4 1 6 9 11
0 5 4 1 6 9 11 12

0 5 4 1 6 9 11 12 10

0 5 4 1 6 9 11 12 10 2

0 5 4 1 6 9 11 12 10 2 3

0 5 4 1 6 9 11 12 10 2 3 7

0 5 4 1 6 9 11 12 10 2 3 7 8

4
4 5

4 5 1

4 5 1 12
4 5 1 12 11

4 5 1 12 11 10

4 5 1 12 11 10 9

4 5 1 12 11 10 9 6
4 5 1 12 11 10 9 6 0

4 5 1 12 11 10 9 6 0 3
4 5 1 12 11 10 9 6 0 3 2

4 5 1 12 11 10 9 6 0 3 2 7

4 5 1 12 11 10 9 6 0 3 2 7 8

4
5 4

1 5 4

12 1 5 4
11 12 1 5 4

10 11 12 1 5 4

9 10 11 12 1 5 4

6 9 10 11 12 1 5 4
0 6 9 10 11 12 1 5 4

3 0 6 9 10 11 12 1 5 4
2 3 0 6 9 10 11 12 1 5 4

7 2 3 0 6 9 10 11 12 1 5 4

8 7 2 3 0 6 9 10 11 12 1 5 4

pre post reversePost

reverse
postorder

postorder
is order

in which
vertices

are done

preorder
is order of
dfs() calls

queue queue stack
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Depth-first search vertex ordering in a digraph

public class DepthFirstOrder
{ 
   private boolean[] marked;     

   private Queue<Integer> pre;          // vertices in preorder 
   private Queue<Integer> post;         // vertices in postorder 
   private Stack<Integer> reversePost;  // vertices in reverse postorder

   public DepthFirstOrder(Digraph G) 
   { 
      pre           = new Queue<Integer>(); 
      post          = new Queue<Integer>(); 
      reversePost   = new Stack<Integer>(); 
      marked  = new boolean[G.V()];

      for (int v = 0; v < G.V(); v++) 
         if (!marked[v]) dfs(G, v); 
   }

   private void dfs(Digraph G, int v) 
   { 
      pre.enqueue(v);

      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
            dfs(G, w);

      post.enqueue(v); 
      reversePost.push(v); 
   }

   public Iterable<Integer> pre()  
   {  return pre;  } 
   public Iterable<Integer> post() 
   {  return post;  } 
   public Iterable<Integer> reversePost() 
   {  return reversePost;  }

}

This class enables clients to iterate through the vertices in various orders defined by depth-first search. 
This ability is very useful in the development of advanced digraph-processing algorithms, because the 
recursive nature of the search enables us to prove properties of the computation (see, for example, 
Proposition F). 
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aLgorIthM 4.5 topological sort

public class Topological 
{ 
   private Iterable<Integer> order;       // topological order

   public Topological(Digraph G) 
   { 
      DirectedCycle cyclefinder = new DirectedCycle(G); 
      if (!cyclefinder.hasCycle()) 
      { 
         DepthFirstOrder dfs = new DepthFirstOrder(G); 
         order = dfs.reversePost(); 
      } 
   }

   public Iterable<Integer> order()  
   {  return order;  }

   public boolean isDAG()  
   {  return order != null;  }

   public static void main(String[] args) 
   { 
      String filename = args[0]; 
      String separator = args[1]; 
      SymbolDigraph sg = new SymbolDigraph(filename, separator);

      Topological top = new Topological(sg.G());

      for (int v : top.order()) 
         StdOut.println(sg.name(v)); 
   }

}

This DepthFirstOrder and DirectedCycle client returns a topological order for a DAG. The test 
client solves the precedence-constrained scheduling problem for a SymbolDigraph. The instance 
method order() returns null if the given digraph is not a DAG and an iterator giving the vertices in 
topological order otherwise. The code for SymbolDigraph is omitted because it is precisely the same 
as for SymbolGraph (page 552), with Digraph replacing Graph everywhere.
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proposition F. Reverse postorder in a DAG is a topological sort.

proof: Consider any edge v->w. One of the following three cases must hold when 
dfs(v) is called (see the diagram on page 583):

n	 dfs(w) has already been called and has returned (w is marked).
n	 dfs(w) has not yet been called (w is unmarked), so v->w will cause dfs(w) to 

be called (and return), either directly or indirectly,  before dfs(v) returns.
n	 dfs(w) has been called and has not yet returned when dfs(v) is called. The 

key to the proof is that this case is impossible in a DAG, because the recursive 
call chain implies a path from w to v and v->w would complete a directed 
cycle.

In the two possible cases, dfs(w) is done before dfs(v), so w appears before v in 
postorder and after v in reverse postorder. Thus, each edge v->w points from a ver-
tex earlier in the order to a vertex later in the order, as desired. 

% more jobs.txt 
Algorithms/Theoretical CS/Databases/Scientific Computing 
Introduction to CS/Advanced Programming/Algorithms 
Advanced Programming/Scientific Computing 
Scientific Computing/Computational Biology 
Theoretical CS/Computational Biology/Artificial Intelligence 
Linear Algebra/Theoretical CS 
Calculus/Linear Algebra 
Artificial Intelligence/Neural Networks/Robotics/Machine Learning 
Machine Learning/Neural Networks 

% java Topological jobs.txt "/" 
Calculus 
Linear Algebra 
Introduction to CS 
Advanced Programming 
Algorithms 
Theoretical CS 
Artificial Intelligence 
Robotics 
Machine Learning 
Neural Networks 
Databases 
Scientific Computing 
Computational Biology
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Topological (Algorithm 4.5 on page 581) is
an  implementation that uses depth-first search to 
topologically sort a DAG. A trace is given at right.

proposition G. With DFS, we can topologically 
sort a DAG in time proportional to VE.

proof: Immediate from the code. It uses one 
depth-first search to ensure that the graph has 
no directed cycles, and another to do the re-
verse postorder ordering. Both involve examin-
ing all the edges and all the vertices, and thus 
take time proportional to VE.

Despite the simplicity of this algorithm, it escaped 
attention for many years, in favor of a more intui-
tive algorithm based on maintaining a queue of 
vertices of indegree 0 (see Exercise 4.2.39).

In practice, topological sorting and cycle detec-
tion go hand in hand, with cycle detection play-
ing the role of a debugging tool. For example, in 
a job-scheduling application, a directed cycle in 
the underlying digraph represents a mistake that 
must be corrected, no matter how the schedule was 
formulated. Thus, a job-scheduling application is 
typically a three-step process:

n	 Specify the tasks and precedence constraints.
n	 Make sure that a feasible solution exists, by 

detecting and removing cycles in the under-
lying digraph until none exist.

n	 Solve the scheduling problem, using topo-
logical sort. 

Similarly, any changes in the schedule can be 
checked for cycles (using DirectedCycle), then a 
new schedule computed (using Topological). 

dfs(0)
  dfs(5)
    dfs(4)
    4 done
  5 done
  dfs(1)
  1 done
  dfs(6)
    dfs(9)
      dfs(11)
        dfs(12)
        12 done
      11 done
      dfs(10)
      10 done
      check 12
    9 done
    check 4
  6 done
0 done
check 1
dfs(2)
  check 0
  dfs(3)
    check 5
  3 done
2 done
check 3
check 4
check 5
check 6
dfs(7)
  check 6
7 done
dfs(8)
  check 7
8 done
check 9
check 10
check 11
check 12

Reverse postorder in a DAG is a topological sort

all edges point up;
turn upside down

for a topological sort

reverse postorder
is reverse of order
in which vertices

are done (read up)

dfs(6) for 7’s marked
neighbor 6 was done

before dfs(7) is done
so 7->6 points up 

dfs(5) for 0’s unmarked
neighbor 5 is done

before dfs(0) is done
so 0->5 points up 
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Strong connectivity in digraphs We have been careful to maintain a distinction 
between reachability in digraphs and connectivity in undirected graphs. In an undirect-

ed graph, two vertices v and w are connected if there is a path connecting 
them—we can use that path to get from v to w or to get from w to v. In 
a digraph, by contrast, a vertex w is reachable from a vertex v if there is 
a directed path from v to w, but there may or may not be a directed path 
back to v from w. To complete our study of digraphs, we consider the 
natural analog of connectivity in undirected graphs.

Definition. Two vertices v and w are strongly connected if they are 
mutually reachable: that is, if there is a directed path from v to w 
and a directed path from w to v. A digraph is strongly connected if all 
its vertices are strongly connected to one another.

Several examples of strongly connected graphs are given in the figure 
at left. As you can see from the examples, cycles play an important role 
in understanding strong connectivity. Indeed, recalling that a general 
directed cycle is a directed cycle that may have repeated vertices, it is easy 
to see that two vertices are strongly connected if and only if there exists a 
general directed cycle that contains them both. (Proof : compose the paths 
from v to w and from w to v.) 

Strong components  Like connectivity in undirected graphs, strong connectivity in di-
graphs is an equivalence relation on the set of vertices, as it has the following properties:

n	 Reflexive : Every vertex v is strongly connected to itself.
n	 Symmetric : If v is strongly connected to w, then w is strongly connected to v.
n	 Transitive : If v is strongly connected to w and w is strongly connected to x, then v 

is also strongly connected to x.
As an equivalence relation, strong connectivity partitions the vertices into equivalence 
classes. The equivalence classes are maximal subsets 
of vertices that are strongly connected to one anoth-
er, with each vertex in exactly one subset. We refer 
to these subsets as strongly connected components, 
or strong components for short. Our sample digraph 
tinyDG.txt has five strong components, as shown 
in the diagram at right. A digraph with V vertices 
has between 1 and V strong components—a strongly 

Strongly connected digraphs

A digraph and its strong components
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connected digraph has 1 strong component and a DAG has V strong components. 
Note that the strong components are defined in terms of the vertices, not the edges. 
Some edges connect two vertices in the same strong component; some other edges con-
nect vertices in different strong components. The latter are not found on any directed 
cycle. Just as identifying connected components is typically important in processing 
undirected graphs, identifying strong components is typically important in processing 
digraphs. 

Examples of applications  Strong connectivity is  a useful abstraction in understanding 
the structure of a digraph, highlighting interrelated 
sets of vertices (strong components). For example, 
strong components can help textbook authors de-
cide which topics should be grouped together and 
software developers decide how to organize pro-
gram modules. The figure below shows an example 
from ecology. It illustrates a digraph that models 
the food web connecting living organisms, where 
vertices represent species and an edge from one 
vertex to another indicates that an organism of the 
species indicated by the point to vertex consumes 
organisms of the species indicated by the point 
from vertex for food. Scientific studies on such digraphs (with carefully chosen sets of 
species and carefully documented relationships) play an important role in helping ecol-
ogists answer basic questions about ecological systems. Strong components in such di-

graphs can help ecologists understand energy 
flow in the food web. The figure on page 591 
shows a digraph model of web content, where 
vertices represent pages and edges represent 
hyperlinks from one page to another. Strong 
components in such a digraph can help net-
work engineers partition the huge number of 
pages on the web into more manageable sizes 
for processing. Further properties of these ap-
plications and other examples are addressed in 
the exercises and on the booksite. 

Small subset of food web digraph

grass

algae

mosquito

slug

ant

fox

worm

frog salamander

shrew

snake �sh

egret

application vertex edge

web page hyperlink

textbook topic reference

software module call

food web organism predator-prey 
relationship

typical strong-component applications
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Accordingly, we need the following API, the analog for digraphs of CC (page 543):

public class SCC

SCC(Digraph G) preprocessing constructor
boolean stronglyConnected(int v, int w) are v and w strongly connected?

int count() number of strong components

int id(int v)
component identifier for v 
( between 0 and count()-1 )

apI for strong components

A quadratic algorithm to compute strong components is not difficult to develop (see 
Exercise 4.2.31), but (as usual) quadratic time and space requirements are prohibitive   
for huge digraphs that arise in practical applications like the ones just described.

Kosaraju–Sharir algorithm  We saw in CC (Algorithm 4.3 on page 544) that comput-
ing connected components in undirected graphs is a simple application of depth-first 
search. How can we efficiently compute strong components in digraphs? Remarkably, 
the implementation KosarajuSharirSCC on the facing page does the job with just a 
few lines of code added to CC, as follows:

n	 Given a digraph G, use DepthFirstOrder to compute the reverse postorder of 
its reverse digraph, G R.

n	 Run standard DFS on G, but consider the unmarked vertices in the order just 
computed instead of the standard numerical order. 

n	 All vertices visited on a call to the recursive dfs() from the constructor are a 
strong component (!), so identify them as such, in the same manner as in CC.

The Kosaraju–Sharir algorithm is an extreme example of a method that is easy to code 
but difficult to understand. To persuade yourself that the algorithm is correct, start by 
considering the kernel DAG (or condensation digraph) associated with each digraph, 
formed by collapsing all the vertices in each strong component to a single vertex (and 
removing any self-loops). The result must be a DAG because any directed cycle would 
imply a larger strong component. The kernel DAG for 
the digraph on page 584 has five vertices and seven 
edges, as shown at right (note the possibility of parallel 
edges). Since the kernel DAG is a DAG, its vertices can 
be placed in (reverse) topological order, as shown in 
the diagram at the top of page 588. This ordering is the 
key to understanding the Kosaraju–Sharir algorithm. Kernel DAG
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aLgorIthM 4.6 kosaraju–Sharir algorithm for computing strong components

public class KosarajuSharirSCC
{ 
   private boolean[] marked;   // reached vertices 
   private int[] id;           // component identifiers 
   private int count;          // number of strong components

   public KosarajuSharirSCC(Digraph G) 
   { 
      marked = new boolean[G.V()]; 
      id = new int[G.V()]; 
      DepthFirstOrder order = new DepthFirstOrder(G.reverse()); 
      for (int s : order.reversePost()) 
        if (!marked[s]) 

         {  dfs(G, s); count++;  }

   }

   private void dfs(Digraph G, int v) 
   { 
      marked[v] = true; 
      id[v] = count; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
             dfs(G, w); 
   }

   public boolean stronglyConnected(int v, int w) 
   {  return id[v] == id[w];  }

   public int id(int v) 
   {  return id[v];  }

   public int count() 
   {  return count;  }

}

This implementation differs from CC (Algorithm 4.3) only in the highlighted code (and in the im-
plementation of main() where we use the code on page 543, with Graph changed to Digraph, CC 
changed to KosarajuSharirSCC, and “components” changed to “strong components”). To find 
strong components, it does a depth-first search in the reverse digraph to produce a vertex order (re-
verse postorder of that search) for use in a depth-first search of the given digraph.  

% java KosarajuSharirSCC tinyDG.txt 
5 strong components 
1 
0 2 3 4 5  
9 10 11 12 
6 8 
7
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The Kosaraju-Sharir algorithm identifies the 
strong components in reverse topological order of 
the kernel DAG. It begins by finding a vertex that 
is in a sink component of the kernel DAG. When it 
runs DFS from that vertex, it visits precisely the ver-
tices in that component. The DFS marks those ver-
tices, effectively removing them from the digraph. 
Next, it finds a vertex that is in a sink component in 
the remaining kernel DAG, visits precisely the vertices in that component, and so forth.

The postorder of G R enables us to examine the strong components in the desired 
order. The first vertex in a reverse postorder of G is in a source component of the kernel 
DAG; the first vertex in a reverse postorder of the reverse digraph G R is in a sink com-
ponent of the kernel DAG (see Exercise 4.2.16). More generally, the following lemma 
relates the reverse postorder of G R to the strong components, based on edges in the ker-
nel DAG: it is the key to establishing the correctness of the Kosaraju–Sharir algorithm.

postorder lemma. Let C be a strong component in a digraph G and let v be any 
vertex not in C. If there is an edge e pointing from any vertex in C to v, then vertex 
v appears before every vertex in C in the reverse postorder of G R.

proof: See Exercise 4.2.15.

proposition H. The Kosaraju–Sharir algorithm identifies the strong components 
of a digraph G.

proof: By induction on the number of strong components identified in the DFS 
of G. After the algorithm has identified the first i components, we assume (by our 
inductive hypothesis) that the vertices in the first i components are marked and 
the vertices in the remaining components are unmarked. Let s be the unmarked 
vertex that appears first in the reverse postorder of G R. Then, the constructor call 
dfs(G, s) will visit every vertex in the strong component containing s (which we 
refer to as component i+1) and only those vertices because:

n	 Vertices in the first i components will not be visited (because they are al-
ready marked).

n	 Vertices in component i+1 are not yet marked and are reachable from s us-
ing only other vertices in component i+1 (so will be visited and marked).

n	 Vertices in components after i+1 will not be visited (or marked): Consider 
(for the sake of contradiction) the first such vertex v that is visited. Let e be 
an edge that goes from a vertex in component i+1 to v. By the postorder 
lemma, v appears in the reverse postorder before every vertex in component 
i+1 (including s). This contradicts the definition of s. 

Kernel DAG in reverse topological order

first vertex is a sink 
(has no edges pointing from it)
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dfs(1)
1 done
dfs(0)
  dfs(5)
    dfs(4)
      dfs(3)
        check 5
        dfs(2)
          check 0
          check 3
        2 done
      3 done
      check 2
    4 done
  5 done
  check 1
0 done
check 2
check 4
check 5
check 3
dfs(11)
  check 4
  dfs(12)
    dfs(9)
      check 11
      dfs(10)
        check 12
      10 done
    9 done
  12 done
11 done
check 9
check 12
check 10
dfs(6)
  check 9
  check 4
  dfs(8)
    check 6
  8 done
  check 0
6 done
dfs(7)
  check 6
  check 9
7 done
check 8
    

Kosaraju-Sharir algorithm for �nding strong components in a digraph

check unmarked vertices in the order

0 1 2 3 4 5 6 7 8 9 10 11 12

dfs(0)
  dfs(6)
    dfs(8)
      check 6
    8 done
    dfs(7)
    7 done
  6 done
  dfs(2)
    dfs(4)
      dfs(11)
        dfs(9)
          dfs(12)
            check 11
            dfs(10)
              check 9
            10 done
          12 done
          check 7
          check 6
        9 done
      11 done
      check 6
      dfs(5)
        dfs(3)
          check 4
          check 2
        3 done
        check 0
      5 done
    4 done
    check 3
  2 done
0 done
dfs(1)
  check 0
1 done
check 2
check 3
check 4
check 5
check 6
check 7
check 8
check 9
check 10
check 11
check 12

strong 
components

reverse
postorder

for use
in second
dfs()

(read up)

 DFS in reverse digraph GR

check unmarked vertices in the order

1 0 2 4 5 3 11 9 12 10 6 7 8

 DFS in original digraph G
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A trace of the algorithm for tinyDG.txt is shown on the preceding page. To the right 
of each DFS trace is a drawing of the digraph, with vertices appearing in the order they 
are done. Thus, reading up the reverse digraph drawing on the left gives the reverse 
postorder in G R, the order in which unmarked vertices are checked in the DFS of G. 
As you can see from the diagram, the second DFS calls dfs(1) (which marks vertex 1)  
then calls dfs(0) (which marks 0, 5, 4, 3, and 2), then checks 2, 4, 5, and 3, then calls 
dfs(11) (which marks 11, 12, 9, and 10), then checks 9, 12, and 10, then calls dfs(6) 
(which marks 6 and 8), and finally dfs(7), which marks 7. 

A larger example, a very small subset of a digraph model of the web, is shown on the 
facing page.

The Kosaraju–Sharir algorithm solves the following analog of the connectivity 
problem for undirected graphs that we first posed in Chapter 1 and reintroduced in 
Section 4.1 (page 534):

Strong connectivity  Given a digraph, support queries of the form: Are two given 
vertices strongly connected ? and How many strong components does the digraph 
have ?

That we can solve this problem in digraphs as efficiently as the corresponding con-
nectivity problem in undirected graphs was an open research problem for some time 
(resolved by R. E. Tarjan in the early 1970s). That such a simple solution is now avail-
able is quite surprising.

proposition i. The Kosaraju–Sharir algorithm uses preprocessing time and space 
proportional to VE to support constant-time strong connectivity queries in a 
digraph.

proof: The algorithm computes the reverse of the digraph and does two depth-first 
searches. Each of these three steps takes time proportional to VE. The reverse copy 
of the digraph uses space proportional to VE. 
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2

19 33

25

8

How many strong components are there in this digraph?
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Reachability revisited  With CC for undirected 
graphs, we can infer from the fact that two vertices 
v and w are connected that there is a path from v 
to w and a path (the same one) from w to v. With 
KosarajuSharirSCC, we can infer from the fact that 
v and w are strongly connected that there is a path 
from v to w and a path (a different one) from w to v. 
But what about pairs of vertices that are not strongly 
connected? There may be a path from v to w or a 
path from w to v or neither, but not both. 

All-pairs reachability  Given a digraph, support 
queries of the form Is there a directed path from a 
given vertex v to another given vertex w?

For undirected graphs, the corresponding problem 
is equivalent to the connectivity problem; for di-
graphs, it is quite different from the strong connec-
tivity problem. Our CC implementation uses linear 
preprocessing time to support constant-time an-
swers to such queries for undirected graphs. Can we 
achieve this performance for digraphs? This seem-
ingly innocuous question has confounded experts 
for decades. To better understand the challenge, 

consider the diagram at left, which illustrates the following fundamental concept:

Definition. The transitive closure of a digraph G is another digraph with the same 
set of vertices, but with an edge from v to w in the transitive closure if and only if w 
is reachable from v in G. 

By convention, every vertex is reachable from itself, so the transitive closure has V self-
loops. Our sample digraph has just 22 directed edges, but its transitive closure has 108 
out of a possible 169 directed edges. Generally, the transitive closure of a digraph has 
many more edges than the digraph itself, and it is not at all unusual for a sparse graph 
to have a dense transitive closure. For example, the transitive closure of a V-vertex di-
rected cycle, which has V directed edges, is a complete digraph with V2 directed edges. 
Since transitive closures are typically dense, we normally represent them with a matrix 
of boolean values, where the entry in row v and column w is true if and only if w is 

Transitive closure

   0  1  2  3  4  5  6  7  8  9 10 11 12

0  T  T  T  T  T  T  

1     T

2  T  T  T  T  T  T

3  T  T  T  T  T  T

4  T  T  T  T  T  T

5  T  T  T  T  T  T

6  T  T  T  T  T  T  T     T  T  T  T  T

7  T  T  T  T  T  T  T  T  T  T  T  T  T

8  T  T  T  T  T  T  T     T  T  T  T  T

9  T  T  T  T  T  T           T  T  T  T

10 T  T  T  T  T  T           T  T  T  T

11 T  T  T  T  T  T           T  T  T  T

12 T  T  T  T  T  T           T  T  T  T 

 self-loop
(gray)

12 is
 reachable

from  6

original edge
(red)
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reachable from v. Instead of explicitly computing the transitive closure, we use depth-
first search to implement the following API:

public class TransitiveClosure

TransitiveClosure(Digraph G) preprocessing constructor
boolean reachable(int v, int w) is w reachable from v?

apI for all-pairs reachability

The code below is a straightforward implementation that uses DirectedDFS (Algo-
rithm 4.4). This solution is ideal for small or dense digraphs, but it is not a solution 
for the large digraphs we might encounter in practice because the constructor uses space 
proportional to V2 and time proportional to V (VE): each of the V DirectedDFS ob-
jects takes space proportional to V (they all have marked[] arrays of size V and exam-
ine E edges to compute the marks). Essentially, TransitiveClosure computes and 
stores the transitive closure of G, to support constant-time queries—row v in the tran-
sitive closure matrix is the marked[] array for the vth entry in the DirectedDFS[] 
in TransitiveClosure. Can we support constant-time queries with substantially less 
preprocessing time and substantially less space? A general solution that achieves con-
stant-time queries with substantially less than quadratic space is an unsolved research 
problem, with important practical implications: for example, until it is solved, we can-
not hope to have a practical solution to the all-pairs reachability problem for a giant 
digraph such as the web graph.

public class TransitiveClosure 
{ 
   private DirectedDFS[] all; 
   TransitiveClosure(Digraph G) 
   { 
      all = new DirectedDFS[G.V()]; 
      for (int v = 0; v < G.V(); v++) 
         all[v] = new DirectedDFS(G, v); 
   }

   boolean reachable(int v, int w) 
   {  return all[v].marked(w);  }

}

all-pairs reachability
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Summary In this section, we have introduced directed edges and digraphs, empha-
sizing the relationship between digraph processing and corresponding problems for 
undirected graphs, as summarized in the following list of topics:

n	 Digraph nomenclature
n	 The idea that the representation and approach are essentially the same as for 

undirected graphs, but some digraph problems are more complicated
n	 Cycles, DAGs, topological sort, and precedence-constrainted scheduling
n	 Reachability, paths, and strong connectivity in digraphs

The table below summarizes the implementations of digraph algorithms that we have 
considered (all but one of the algorithms are based on depth-first search). The prob-
lems addressed are all simply stated, but the solutions that we have considered range 
from easy adaptations of corresponding algorithms for undirected graphs to an inge-
nious and surprising solution. These algorithms are a starting point for several of the 
more complicated algorithms that we consider in Section 4.4, when we consider edge-
weighted digraphs. 

problem solution reference

single- and multiple-source reachability DirectedDFS page 571

single-source directed paths DepthFirstDirectedPaths page 573

single-source shortest directed paths BreadthFirstDirectedPaths page 573

directed cycle detection DirectedCycle page 577

depth-first vertex orders DepthFirstOrder page 580

precedence-constrained scheduling Topological page 581

topological sort Topological page 581

strong connectivity KosarajuSharirSCC page 587

all-pairs reachability TransitiveClosure page 593

Digraph-processing problems addressed in this section
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Q&A

Q. Is a self-loop a cycle?

A. Yes, but no self-loop is needed for a vertex to be reachable from itself.
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ExErcisEs

4.2.1 What is the maximum number of edges in a digraph with V vertices and no paral-
lel edges? What is the minimum number of edges in a digraph with V vertices, none of 

which are isolated?

4.2.2 Draw,  in the style of the figure in the text (page 524), the 
adjacency lists built by Digraph’s input stream constructor for the 
file tinyDGex2.txt depicted at left. 

4.2.3  Create a copy constructor for Digraph that takes as input 
a digraph G and creates and initializes a new copy of the digraph. 
Any changes a client makes to G should not affect the newly created 
digraph. 

4.2.4 Add a method hasEdge() to Digraph which takes two int 
arguments v and w and returns true if the graph has an edge v->w, 
false otherwise. 

4.2.5 Modify Digraph to disallow parallel edges and self-loops. 

4.2.6 Develop a test client for Digraph.

4.2.7 The indegree of a vertex in a digraph is the number of directed edges that point to 
that vertex. The outdegree of a vertex in a digraph is the number of directed edges that 
emanate from that vertex. No vertex is reachable from a vertex of outdegree 0, which is 
called a sink; a vertex of indegree 0, which is called a source, is not reachable from any 
other vertex. A digraph where self-loops are allowed and every vertex has outdegree 1 
is called a map (a function from the set of integers from 0 to V–1 onto itself). Write a 
program Degrees.java that implements the following API:

public class Degrees

Degrees(Digraph G) constructor
int indegree(int v) indegree of v
int outdegree(int v) outdegree of v

Iterable<Integer> sources() sources
Iterable<Integer> sinks() sinks

boolean isMap() is G a map?

12
16
 8  4
 2  3
 0  5
 0  6
 3  6
10  3
 7 11
 7  8
11  8
 2  0
 6  2
 5  2
 5 10
 3 10
 8  1
 4  1

tinyDGex2.txt
V

E
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4.2.8 Draw all the nonisomorphic DAGs with two, three, four, and five vertices (see 
Exercise 4.1.28).

4.2.9 Write a method that checks whether a given permutation of a DAG’s vertices is a 
topological order of that DAG.

4.2.10 Given a DAG, does there exist a topological order that cannot result from apply-
ing a DFS-based algorithm, no matter in what order the vertices adjacent to each vertex 
are chosen? Prove your answer.

4.2.11 Describe a family of sparse digraphs whose number of directed cycles grows 
exponentially in the number of vertices.

4.2.12 Prove that the strong components in GR are the same as in G. 

4.2.13 Prove that two vertices in a digraph G are in the same strong component if and 
only if there is a directed cycle (not necessarily simple) containing both of them.

4.2.14 Let C be a strong component in a digraph G and let v be any vertex not in C. 
Prove that if there is an edge e pointing from v to any vertex in C, then vertex v appears 
before every vertex in C in the reverse postorder of G .

Solution : If v is visited before every vertex in C, then every vertex in C will be visited and 
finished before v finishes (because every vertex in C is reachable from v via edge e). If 
some vertex in C is visited before v, then all vertices in C will be visited and finished be-
fore v is visited (because v is not reachable from any vertex in C—if it were, such a path 
when combined with edge e would be part of a directed cycle, implying that v is in C).

4.2.15 Let C be a strong component in a digraph G and let v be any vertex not in C. 
Prove that if there is an edge e pointing from any vertex in C to v, then vertex v appears 
before every vertex in C in the reverse postorder of G R.

Solution : Apply Exercise 4.2.14 to GR.

4.2.16 Given a digraph G, prove that the first vertex in the reverse postorder of G is in 
a strong component that is a source of G’s kernel DAG. Then, prove that the first vertex 
in the reverse postorder of GR is in a strong component that is a sink of G’s kernel DAG. 
Hint : Apply Exercises 4.2.14 and 4.2.15.
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4.2.17 How many strong components are there in the digraph on page 591?

4.2.18 What are the strong components of a DAG?

4.2.19 What happens if you run the Kosaraju–Sharir algorithm on a DAG?

4.2.20 True or false: The reverse postorder of a digraph’s reverse is the same as the 
postorder of the digraph.

4.2.21 True or false: If we consider the vertices of a digraph G (or its reverse GR) in 
postorder, then vertices in the same strong component will be consecutive in that order.

Solution : False. In tinyDG.txt, vertices 6 and 8 form a strong component, but they are 
not consecutive in the postorder of GR. 

4.2.22 True or false: If we modify the Kosaraju–Sharir algorithm to run the first depth-
first search in the digraph G (instead of the reverse digraph GR) and the second depth-
first search in GR (instead of G), then it will still find the strong components.

4.2.23 True or false: If we modify the Kosaraju–Sharir algorithm to replace the second 
depth-first search with breadth-first search, then it will still find the strong components.

4.2.24 Compute the memory usage of a Digraph with V vertices and E edges, under 
the memory cost model of Section 1.4. 

4.2.25 How many edges are there in the transitive closure of a digraph that is a simple 
directed path with V vertices and V–1 edges?

4.2.26 Give the transitive closure of the digraph with ten vertices and these edges:

3->7 1->4 7->8 0->5 5->2 3->8 2->9 0->6 4->9 2->6 6->4

ExErcisEs (continued)
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crEAtivE problEms

4.2.27  Topological sort and BFS. Explain why the following algorithm does not neces-
sarily produce a topological order: Run BFS, and label the vertices by increasing dis-
tance to their respective source.

4.2.28  Directed Eulerian cycle. A directed Eulerian cycle is a directed cycle that con-
tains each edge exactly once. Write a Digraph client DirectedEulerianCycle that 
finds a directed Eulerian cycle or reports that no such cycle exists. Hint : Prove that a 
digraph G has a directed Eulerian cycle if and only if G is strongly connected and each 
vertex has its indegree equal to its outdegree.

4.2.29  LCA in a DAG. Given a DAG and two vertices v and w, develop an algorithm 
to find a lowest common ancestor (LCA) of v and w. In a tree, the LCA of v and w is the 
(unique) vertex farthest from the root that is an ancestor of both v and w. In a DAG, an 
LCA of v and w is an ancestor of v and w that has no descendants that are also ances-
tors of v and w. Computing an LCA is useful in multiple inheritance in programming 
languages, analysis of genealogical data (find degree of inbreeding in a pedigree graph), 
and other applications. Hint : Define the height of a vertex v in a DAG to be the length 
of the longest direct path from a source (vertex with indegree 0) to v. Among vertices 
that are ancestors of both v and w, the one with the greatest height is an LCA of v and w.

4.2.30  Shortest ancestral path. Given a DAG and two vertices v and w, find a shortest 
ancestral path between v and w. An ancestral path between v and w is a common ances-
tor x along with a shortest directed path from v to x and a shortest directed path from 
w to x. A shortest ancestral path is the ancestral path whose total length is minimized. 
Warmup: Find a DAG where the shortest ancestral path goes to a common ancestor x 
that is not an LCA. Hint: Run BFS twice, once from v and once from w.

4.2.31  Strong component. Describe a linear-time algorithm for computing the strong 
component containing a given vertex v. On the basis of that algorithm, describe a sim-
ple quadratic-time algorithm for computing the strong components of a digraph. 

4.2.32  Hamiltonian path in DAGs. Given a DAG, design a linear-time algorithm to 
determine whether there is a directed path that visits each vertex exactly once. 
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4.2.33  Unique topological ordering. Design an algorithm to determine whether a DAG 
has a unique topological ordering. Hint : A DAG has a unique topological ordering 
if and only if there is a directed edge between each pair of consecutive vertices in a 
topological order (i.e., the digraph has a Hamiltonian path). If the DAG has multiple 
topological orderings, then a second topological order can be obtained by swapping any 
pair of consecutive and nonadjacent vertices.

4.2.34  2-satisfiability. Given a boolean formula in conjunctive normal form with M
clauses and N variables such that each clause has exactly two literals (where a literal is 
either a variable or its negation), find a satisfying assignment (if one exists). Hint : Form 
the implication digraph with 2N vertices (one per literal). For each clause x + y, include 
edges from y' to x and from x' to y. Claim: The formula is satisfiable if and only if no 
literal x is in the same strong component as its negation x'. Moreover, a topological sort 
of the kernel DAG (contract each strong component to a single vertex) yields a satisfying 
assignment. 

4.2.35  Digraph enumeration. Show that the number of different V-vertex digraphs 
with no parallel edges is 2V 2 .  (How many digraphs are there that contain V vertices and 
E  edges?) Then compute an upper bound on the percentage of 20-vertex digraphs that 
could ever be examined by any computer, under the  assumptions that every electron 
in the universe examines a digraph every nanosecond, that the universe has fewer than 
1080 electrons, and that the age of the universe will be less than 1020 years.

4.2.36  DAG enumeration. Give a formula for the number of V-vertex DAGs with E  
edges.

4.2.37  Arithmetic expressions. Write a class that evaluates DAGs that rep-
resent arithmetic expressions. Use a vertex-indexed array to hold values cor-
responding to each vertex. Assume that values corresponding to leaves (ver-
tex with outdegree 0) have been established. Describe a family of arithmetic 
expressions with the property that the size of the expression tree is exponentially 
larger than the size of the corresponding DAG (so the running time of your pro-
gram for the DAG is proportional to the logarithm of the running time for the tree). 

crEAtivE problEms (continued)
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4.2.38  Euclidean digraphs. Modify your solution to Exercise 4.1.37 to create an API 
EuclideanDigraph for digraphs whose vertices are points in the plane, so that you can 
work with graphical representations.

4.2.39  Queue-based topological sort. Develop a topological sort implementation that 
maintains a vertex-indexed array that keeps track of the indegree of each vertex. Initial-
ize the array and a queue of sources in a single pass through all the edges, as in Exercise 
4.2.7. Then, perform the following operations until the source queue is empty: 

n	 Remove a source from the queue and label it. 
n	 Decrement the entries in the indegree array corresponding to the destination 

vertex of each of the removed vertex’s edges. 
n		 If decrementing any entry causes it to become 0, insert the corresponding vertex 

onto the source queue.

4.2.40  Shortest directed cycle. Given a digraph, design an algorithm to find a directed 
cycle with the minimum number of edges (or report that the graph is acyclic). The run-
ning time of your algorithm should be proportional to E V in the worst case.

4.2.41  Odd-length directed cycle. Design a linear-time algorithm to determine wheth-
er a digraph has an odd-length directed cycle.

4.2.42  Reachable vertex in a DAG. Design a linear-time algorithm to determine 
whether a DAG has a vertex that is reachable from every other vertex.

4.2.43  Reachable vertex in a digraph. Design a linear-time algorithm to determine 
whether a digraph has a vertex that is reachable from every other vertex.

4.2.44  Web crawler. Write a program that uses breadth-first search to crawl the web 
digraph, starting from a given web page. Do not explicitly build the web digraph.
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ExpErimENts

4.2.45  Random digraphs. Write a program ErdosRenyiDigraph that takes integer 
values V and E from the command line and builds a digraph by generating E random 
pairs of integers between 0 andV1. Note: This generator produces self-loops and par-
allel edges.

4.2.46  Random simple digraphs. Write a program RandomDigraph that takes integer 
values V and E from the command line and produces, with equal likelihood, each of the 
possible simple digraphs with V vertices and E edges.  

4.2.47  Random sparse digraphs. Modify your solution to Exercise 4.1.41 to create 
a program RandomSparseDigraph that generates random sparse digraphs for a well-
chosen set of values  of V and E that you can use it to run meaningful empirical tests.

4.2.48  Random Euclidean digraphs. Modify your solution to Exercise 4.1.42 to create 
a EuclideanDigraph client RandomEuclideanDigraph that assigns a random direc-
tion to each edge.

4.2.49  Random grid digraphs. Modify your solution to Exercise 4.1.43 to create a 
EuclideanDiGraph client RandomGridDigraph that assigns a random direction to each 
edge.

4.2.50  Real-world digraphs. Find a large digraph somewhere online—perhaps a   
transaction graph in some online system, or a digraph defined by links on web pages. 
Write a program RandomRealDigraph that builds a graph by choosing V vertices at 
random and E directed edges at random from the subgraph induced by those vertices.

4.2.51  Real-world DAG. Find a large DAG somewhere online—perhaps one defined 
by class-definition dependencies in a large software system, or by directory links in a 
large file system. Write a program RandomRealDAG that builds a graph by choosing V
vertices at random and E directed edges at random from the subgraph induced by those 
vertices.
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Testing all algorithms and studying all parameters against all graph models is unrealistic. 
For each problem listed below, write a client that addresses the problem for any given input 
graph, then choose among the generators above to run experiments for that graph model. 
Use your judgment in selecting experiments, perhaps in response to results of previous 
experiments. Write a narrative explaining your results and any conclusions that might be 
drawn.

4.2.52  Reachability. Run experiments to determine empirically the average number of 
vertices that are reachable from a randomly chosen vertex, for various digraph models.

4.2.53  Path lengths in DFS. Run experiments to determine empirically the probability 
that  DepthFirstDirectedPaths finds a path between two randomly chosen vertices 
and to calculate the average length of the paths found, for various random digraph 
models.

4.2.54  Path lengths in BFS. Run experiments to determine empirically the probability 
that  BreadthFirstDirectedPaths finds a path between two randomly chosen verti-
ces and to calculate the average length of the paths found, for various random digraph 
models.

4.2.55  Strong components. Run experiments to determine empirically the distribu-
tion of the number of strong components in random digraphs of various types, by 
generating large numbers of digraphs and drawing a histogram.
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4.3 MiniMUM SPAnning treeS

An edge-weighted graph is a graph model where we associate weights or costs with each 
edge. Such graphs are natural models for many applications. In an airline map where 
edges represent flight routes, these weights might represent distances or fares. In an 
electric circuit where edges represent wires, the weights might represent the length of 
the wire, its cost, or the time that it takes a signal to propagate through it. Minimizing 
cost is naturally of interest in such situations. In this section, we consider undirected
edge-weighted graph models and examine algorithms for one such problem:

Minimum spanning tree  Given an undirected edge-
weighted graph, find an MST.

Definition. Recall that a spanning tree of a graph is a 
connected subgraph with no cycles that includes all 
the vertices. A minimum spanning tree (MST) of an 
edge-weighted graph is a spanning tree whose weight 
(the sum of the weights of its edges) is no larger than 
the weight of any other spanning tree.

In this section, we examine two classical algorithms for 
computing MSTs: Prim’s algorithm and Kruskal’s algorithm. 
These algorithms are easy to understand and not difficult 
to implement. They are among the oldest and most well-

known algorithms in this book, and they also take 
good advantage of modern data structures. Since 
MSTs have numerous important applications, al-
gorithms to solve the problem have been studied at 
least since the 1920s, at first in the context of power 
distribution networks, later in the context of tele-
phone networks. MST algorithms are now impor-
tant in the design of many types of networks (com-
munication, electrical, hydraulic, computer, road, 
rail, air, and many others) and also in the study of 
biological, chemical, and physical networks that are 
found in nature. 

8
16
4 5  0.35 
4 7  0.37 
5 7  0.28 
0 7  0.16
1 5  0.32 
0 4  0.38
2 3  0.17
1 7  0.19 
0 2  0.26 
1 2  0.36 
1 3  0.29 
2 7  0.34
6 2  0.40 
3 6  0.52
6 0  0.58
6 4  0.93 

non-MST edge
(gray)

MST edge
(black)

An edge-weighted graph and its MST

tinyEWG.txt
V

E

application vertex edge

circuit component wire

airline airport flight route

power 
distribution power plant transmission 

lines

image 
analysis feature proximity 

relationship

typical MSt applications
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Assumptions  Various anomalous situations, which are generally easy to handle, can 
arise when computing minimum spanning trees. To streamline the presentation, we 
adopt the following conventions:

n	 The graph is connected. The spanning-tree condition in 
our definition implies that the graph must be connected 
for an MST to exist. Another way to pose the problem, 
recalling basic properties of trees from Section 4.1, is 
to find a minimal-weight set of V1 edges that connect 
the graph. If a graph is not connected, we can adapt our 
algorithms to compute the MSTs of each of its con-
nected components, collectively known as a minimum 
spanning forest (see Exercise 4.3.22).

n	 The edge weights are not necessarily distances. Geometric 
intuition is sometimes beneficial in understanding al-
gorithms, so we use examples where vertices are points 
in the plane and weights are distances, such as the graph 
on the facing page. But it is important to remember that 
the weights might represent time or cost or an entirely 
different variable and do not need to be proportional to 
a distance at all. 

n	 The edge weights may be zero or negative. If the edge 
weights are all positive, it suffices to define an MST as 
a subgraph with minimal total weight that connects all 
the vertices, as such a subgraph must form a spanning 
tree. The spanning-tree condition in the definition is 
included so that it applies to graphs that may have zero 
or negative edge weights.

n	 The edge weights are all different. If edges can have equal 
weights, the minimum spanning tree may not be unique 
(see Exercise 4.3.2). The possibility of multiple MSTs 
complicates the correctness proofs of some of our algo-
rithms, so we rule out that possibility in the presenta-
tion. It turns out that this assumption is not restrictive 
because our algorithms work without modification in 
the presence of equal weights.

In summary, we assume throughout the presentation that our 
job is to find the MST of a connected edge-weighted graph 
with arbitrary (but distinct) weights.

weights need not be 
proportional to distance

4 6  0.62
5 6  0.88
1 5  0.02
0 4  0.64
1 6  0.90
0 2  0.22
1 2  0.50
1 3  0.97
2 6  0.17

no MST if graph is not connected
4 5  0.61
4 6  0.62
5 6  0.88
1 5  0.11
2 3  0.35
0 3  0.6
1 6  0.10
0 2  0.22

can independently compute 
MSTs of components

Various MST anomalies

weights can be 0 or negative

4 6  0.62
5 6  0.88
1 5  0.02
0 4 -0.99
1 6  0
0 2  0.22   
1 2  0.50
1 3  0.97
2 6  0.17

MST may not be unique
when weights have equal values

1 2  1.00
1 3  0.50
2 4  1.00
3 4  0.50

1 2  1.00
1 3  0.50
2 4  1.00
3 4  0.50
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Underlying principles To begin, we recall from Sec-
tion 4.1 two of the defining properties of a tree: 

n	 Adding an edge that connects two vertices in a tree 
creates a unique cycle.

n	 Removing an edge from a tree breaks it into two 
separate subtrees.

These properties are the basis for proving a fundamental 
property of MSTs that leads to the MST algorithms that we 
consider in this section.

Cut property  This property, which we refer to as the cut 
property, has to do with identifying edges that must be in the 
MST of a given edge-weighted graph, by dividing vertices 
into two sets and examining edges that cross the division.

Definition. A cut of a graph is a partition of its vertices into two nonempty disjoint 
sets. A crossing edge of a cut is an edge that connects a vertex in one set with a vertex 
in the other.

Typically, we specify a cut by specifying a set of vertices, leaving implicit the assumption 
that the cut comprises the given vertex set and its complement, so that a crossing edge 
is an edge from a vertex in the set to a vertex not in the set. In figures, we draw vertices 
on one side of the cut in gray and vertices on the other side in white.

proposition J. (cut property) Given any cut in an edge- 
weighted graph, the crossing edge of minimum weight is in 
the MST of the graph.

proof: Let e be the crossing edge of minimum weight and 
let T be the MST. The proof is by contradiction: Suppose 
that T does not contain e. Now consider the graph formed 
by adding e to T. This graph has a cycle that contains e, and 
that cycle must contain at least one other crossing edge—
say, f, which has higher weight than e (since e is minimal and 
all edge weights are different). We can get a spanning tree of 
strictly lower weight by deleting f and adding e, contradict-
ing the assumed minimality of T.

Cut property

minimum-weight crossing edge
 must be in the MST

crossing edges separating
gray from white vertices

are drawn in red

e

f

Basic properties of a tree

adding an edge
creates a cycle

removing an edge
breaks tree into two parts
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Under our assumption that edge weights 
are distinct, every connected graph has a 
unique MST (see Exercise 4.3.3); and the 
cut property says that the lightest crossing 
edge for every cut must be in the MST. 

The figure to the left of Proposition J il-
lustrates the cut property. Note that there is 

no requirement that the minimal edge be the only MST edge connect-
ing the two sets; indeed, for typical cuts there are several MST edges 
that connect a vertex in one set with a vertex in the other, as illustrated 
in the figure above. 

Greedy algorithm  The cut property is the basis for the algorithms 
that we consider for the MST problem. Specifically, they are special 
cases of a general paradigm known as the greedy algorithm: apply the 
cut property to accept an edge as an MST edge, continuing until find-
ing all of the MST edges. Our algorithms differ in their approaches 
to maintaining cuts and identifying the crossing edge of minimum 
weight, but are special cases of the following:

proposition k.   (Greedy mst algorithm) The following method 
colors black all edges in the the MST of any connected edge-
weighted graph with V vertices: starting with all edges colored 
gray, find a cut with no black edges, color its minimum-weight 
edge black, and continue until V1 edges have been colored black. 

proof: For simplicity, we assume in the discussion that the edge 
weights are all different, though the proposition is still true when 
that is not the case (see Exercise 4.3.5). By the cut property, any 
edge that is colored black is in the MST. If fewer than V1 edges 
are black, a cut with no black edges exists (recall that we assume 
the graph to be connected). Once V1 edges are black, the black 
edges form a spanning tree. 

The diagram at right is a typical trace of the greedy algorithm. Each 
drawing depicts a cut and identifies the minimum-weight edge in the 
cut (thick red) that is added to the MST by the algorithm.

A cut with two MST edges

Greedy MST algorithm

in MST

minimum
edge in cut
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Edge-weighted graph data type How should we represent edge-weighted 
graphs? Perhaps the simplest way to proceed is to extend the basic graph representa-
tions from Section 4.1: in the adjacency-matrix representation, the matrix can contain 
edge weights rather than boolean values; in the adjacency-lists representation, we can 
define a node that contains both a vertex and a weight field to put in the adjacency lists. 
(As usual, we focus on sparse graphs and leave the adjacency-matrix representation for 
exercises.) This classic approach is appealing, but we will use a different method that is 
not much more complicated, will make our programs useful in more general settings, 
and needs a slightly more general API, which allows us to process Edge objects:

public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) initializing constructor
double weight() weight of this edge

int either() either of this edge’s vertices
int other(int v) the other vertex
int compareTo(Edge that) compare this edge to that 

String toString() string representation

apI for a weighted edge

The either() and other() methods for accessing the edge’s vertices may be a bit puz-
zling at first—the need for them will become plain when we examine client code. You can 
find an implementation of Edge on page 610. It is the basis for this EdgeWeightedGraph 
API, which refers to Edge objects in a natural manner:

public class EdgeWeightedGraph

EdgeWeightedGraph(int V) create an empty V-vertex graph
EdgeWeightedGraph(In in) read graph from input stream

int V() number of vertices
int E() number of edges

void addEdge(Edge e) add edge e to this graph
Iterable<Edge> adj(int v) edges incident to v
Iterable<Edge> edges() all of this graph’s edges

String toString() string representation

apI for an edge-weighted graph
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This API is very similar to the API for Graph (page 522). The two 
important differences are that it is based on Edge and that it adds the edges() method 
at right, which provides clients with the ability to iterate through all the graph’s edges 
(ignoring any self-loops). The rest of the implementation of EdgeWeightedGraph on 
page 611 is quite similar to the unweighted 
undirected graph implementation of Section 
4.1, but instead of the adjacency lists of integers 
used in Graph, it uses adjacency lists of Edge 
objects.

The figure at the bottom of this page shows 
the edge-weighted graph representation that 
EdgeWeightedGraph builds from the sample 
file tinyEWG.txt, showing the contents of each 
Bag as a linked list to reflect the standard imple-
mentation of Section 1.3. To reduce clutter in the figure, we show each Edge as a pair 
of int values and a double value. The actual data structure is a linked list of links to 
objects containing those values. In particular, although there are two references to each 
Edge (one in the list for each vertex), there is only one Edge object corresponding to 
each graph edge. In the figure, the edges appear in each list in reverse order of the order 
they are processed, because of the stack-like nature of the standard linked-list imple-
mentation. As in Graph, by using a Bag we are making clear that our client code makes 
no assumptions about the order of objects in the lists.

Edge-weighted graph representation

adj[]

0

1

2

3

4

5

6

7

6 0 .58 0 2 .26 0 4 .38 0 7 .16 Bag
objects

8
16
4 5  0.35 
4 7  0.37 
5 7  0.28 
0 7  0.16
1 5  0.32 
0 4  0.38
2 3  0.17
1 7  0.19 
0 2  0.26 
1 2  0.36 
1 3  0.29 
2 7  0.34
6 2  0.40 
3 6  0.52
6 0  0.58
6 4  0.93 

1 3 .29 1 2 .36 1 7 .19 1 5 .32

6 2 .40 2 7 .34 1 2 .36 0 2 .26 2 3 .17

3 6 .52 1 3 .29 2 3 .17

6 4 .93 0 4 .38 4 7 .37 4 5 .35

1 5 .32 5 7 .28 4 5 .35

6 4 .93 6 0 .58 3 6 .52 6 2 .40

2 7 .34 1 7 .19 0 7 .16 5 7 .28 4 7 .37

references to the 
same Edge object

tinyEWG.txt
V

E

public Iterable<Edge> edges() 
{ 
   Bag<Edge> b = new Bag<Edge>(); 
   for (int v = 0; v < V; v++) 
      for (Edge e : adj[v]) 
         if (e.other(v) > v) b.add(e); 
   return b; 
}

gathering all the edges in an edge-weighted graph
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Weighted edge data type

public class Edge implements Comparable<Edge> 
{ 
   private final int v;                       // one vertex 
   private final int w;                       // the other vertex 
   private final double weight;               // edge weight

   public Edge(int v, int w, double weight) 
   { 
      this.v = v; 
      this.w = w; 
      this.weight = weight; 
   }

   public double weight() 
   {  return weight;  }

   public int either() 
   {  return v;  }

   public int other(int vertex) 
   { 
      if      (vertex == v) return w; 
      else if (vertex == w) return v; 
      else throw new RuntimeException("Inconsistent edge");

   }

   public int compareTo(Edge that) 
   { 
      if      (this.weight() < that.weight()) return -1; 
      else if (this.weight() > that.weight()) return +1; 
      else                                    return  0; 
   }

   public String toString() 
   {  return String.format("%d-%d %.5f", v, w, weight);  }

}

This data type provides the methods either() and other() so that a client can use other(v) to find 
the other vertex when it knows v. When neither vertex is known, a client can use the idiomatic code 
int v = e.either(), w = e.other(v); to access an Edge e’s two vertices.
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edge-weighted graph data type

public class EdgeWeightedGraph 
{ 
   private final int V;               // number of vertices 
   private int E;                     // number of edges 
   private Bag<Edge>[] adj;           // adjacency lists

   public EdgeWeightedGraph(int V) 
   { 
      this.V = V; 
      this.E = 0; 
      adj = (Bag<Edge>[]) new Bag[V]; 
      for (int v = 0; v < V; v++)  
         adj[v] = new Bag<Edge>(); 
   }

   public EdgeWeightedGraph(In in) 
   // See Exercise 4.3.9.

   public int V() {  return V;  } 
   public int E() {  return E;  }

   public void addEdge(Edge e) 
   { 
      int v = e.either(), w = e.other(v); 
      adj[v].add(e); 
      adj[w].add(e); 
      E++; 
   }

   public Iterable<Edge> adj(int v) 
   {  return adj[v];  }

   public Iterable<Edge> edges() 
   // See page 609.

}

This implementation maintains a vertex-indexed array of lists of edges. As with Graph (see page 526), 
every edge appears twice: if an edge connects v and w, it appears both in v’s list and in w’s list. The 
edges() method puts all the edges in a Bag (see page 609). The toString() implementation is left as 
an exercise. 
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Comparing edges by weight  The API specifies that the Edge class must implement the 
Comparable interface and include a compareTo() implementation. The natural order-
ing for edges in an edge-weighted graph is by weight. Accordingly, the implementation 
of compareTo() is straightforward. 

Parallel edges  As with our undirected-graph implementations, we allow paral-
lel edges. Alternatively, we could develop a more complicated implementation of 
EdgeWeightedGraph that disallows them, perhaps keeping the minimum-weight edge 
from a set of parallel edges. 

Self-loops  We allow self-loops. However, our edges() implementation in 
EdgeWeightedGraph does not include self-loops even though they might be present 
in the input or in the data structure. This omission has no effect on our MST algo-
rithms because no MST contains a self-loop. When working with an application where 
self-loops are significant, you may need to modify our code as appropriate for the 
application.

Our choice to use explicit Edge objects leads to clear and compact client code, as you 
will see. It carries a small price: each adjacency-list node has a reference to an Edge ob-
ject, with redundant information (all the nodes on v’s adjacency list have a v). We also 
pay object overhead cost. Although we have only one copy of each Edge, we do have two 
references to each Edge object. An alternative and widely used approach is to keep two 
list nodes corresponding to each edge, just as in Graph, each with a vertex and the edge 
weight in each list node. This alternative also carries a price—two nodes, including two 
copies of the weight for each edge.
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MST API and test client As usual, for graph processing, we define an API where 
the constructor takes an edge-weighted graph as argument and supports client query 
methods that return the MST and its weight. How should we represent the MST itself? 
The MST of a graph G is a subgraph of G that is also a tree, so we have numerous op-
tions. Chief among them are 

n	 A list of edges
n	 An edge-weighted graph
n	 A vertex-indexed array with parent links

To give clients and our implementations as much flexibility as possible in choosing 
among these alternatives for various applications, we adopt the following API:

 public class MST

MST(EdgeWeightedGraph G) constructor
Iterable<Edge> edges() all of the MST edges

double weight() weight of MST

apI for MSt implementations

Test client  As usual, we create sample graphs and develop a test client for use in test-
ing our implementations. A sample client is shown below. It reads edges from the input 
stream, builds an edge-weighted graph, computes the MST of that graph, prints the 
MST edges, and prints the total weight of the MST. 

public static void main(String[] args) 
{ 
   In in = new In(args[0]); 
   EdgeWeightedGraph G; 
   G = new EdgeWeightedGraph(in);

   MST mst = new MST(G); 
   for (Edge e : mst.edges()) 
      StdOut.println(e); 
   StdOut.printf("%.5f\n", mst.weight()); 
}

MST test client
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Test data  You can find the file tinyEWG.txt on the booksite, which de-
fines the small sample graph on page 604 that we use for detailed traces of MST
algorithms. You can also find on the booksite the file mediumEWG.txt, which defines 
the weighted graph with 250 vertices that is drawn on bottom of the the facing page. 
It is an example of a Euclidean graph, whose vertices are points in the plane and whose 
edges are lines connecting them with weights equal to their Euclidean distances. Such 
graphs are useful for gaining insight into the behavior of MST algorithms, and they 
also model many of the typical practical problems we 
have mentioned, such as road maps or electric circuits. 
You can also find on the booksite a larger example 
largeEWG.txt that defines a Euclidean graph with 
1 million vertices. Our goal is to be able to find the 
MST of such a graph in a reasonable amount of time. 

% more tinyEWG.txt 
8 16 
4 5 .35 
4 7 .37 
5 7 .28 
0 7 .16 
1 5 .32 
0 4 .38 
2 3 .17 
1 7 .19 
0 2 .26 
1 2 .36 
1 3 .29 
2 7 .34 
6 2 .40 
3 6 .52 
6 0 .58 
6 4 .93

% java MST tinyEWG.txt 
0-7 0.16000 
2-3 0.17000 
1-7 0.19000 
0-2 0.26000 
5-7 0.28000 
4-5 0.35000 
6-2 0.40000 
1.81000
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A 250-vertex Euclidean graph (with 1,273 edges) and its MST

MSTgraph

% more mediumEWG.txt 
250 1273 
244 246 0.11712 
239 240 0.10616 
238 245 0.06142 
235 238 0.07048 
233 240 0.07634 
232 248 0.10223 
231 248 0.10699 
229 249 0.10098 
228 241 0.01473 
226 231 0.07638 
... [1263 more edges ] 

% java MST mediumEWG.txt 
  0 225 0.02383 
 49 225 0.03314 
 44  49 0.02107 
 44 204 0.01774 
 49  97 0.03121 
202 204 0.04207 
176 202 0.04299 
176 191 0.02089 
 68 176 0.04396 
 58  68 0.04795 
... [239 more edges ]  
10.46351
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Prim’s algorithm Our first MST method, known as Prim’s algorithm, is to attach 
a new edge to a single growing tree at each step. Start with any vertex as a single-ver-
tex tree; then add V1 edges to it, always taking next (coloring black) the minimum-

weight edge that connects a vertex on the tree to a vertex not yet 
on the tree (a crossing edge for the cut defined by tree vertices). 

proposition l. Prim’s algorithm computes the MST of any 
connected edge-weighted graph.

proof: Immediate from Proposition K. The growing tree 
defines a cut with no black edges; the algorithm takes the 
crossing edge of minimal weight, so it is successively coloring 
edges black in accordance with the greedy algorithm.

The one-sentence description of Prim’s algorithm just given 
leaves unanswered a key question: How do we (efficiently) find 

the crossing edge of minimal weight? Several methods have been proposed—we will 
discuss some of them after we have developed a full solution based on a particularly 
simple approach.

Data structures  We implement Prim’s algorithm with the aid of a few simple and 
familiar data structures. In particular, we represent the vertices on the tree, the edges on 
the tree, and the crossing edges, as follows:

n	 Vertices on the tree : We use a vertex-indexed boolean array marked[], where 
marked[v] is true if v is on the tree.

n	 Edges in the tree : We use one of two data structures: either a queue mst to collect 
edges in the MST or a vertex-indexed array edgeTo[] of Edge objects, where 
edgeTo[v] is the Edge that connects v to the tree. 

n	 Crossing edges : We use a MinPQ<Edge> priority queue that compares edges by 
weight (see page 610).

These data structures allow us to directly answer the basic question “Which is the min-
imal-weight crossing edge?”

Maintaining the set of crossing edges  Each time that we add an edge to the tree, we 
also add a vertex to the tree. To maintain the set of crossing edges, we need to add to 
the priority queue all edges from that vertex to any non-tree vertex (using marked[] to 
identify such edges). But we must do more: any edge connecting the vertex just added 
to a tree vertex that is already on the priority queue now becomes ineligible (it is no 
longer a crossing edge because it connects two tree vertices). An eager implementation 

Prim’s MST algorithm

minimum-weight
crossing edge

must be on MST
tree edge

(thick black)

crossing edge (red)
ineligible

edge (gray)
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of Prim’s algorithm would remove such edges from 
the priority queue; we first consider a simpler lazy
implementation of the algorithm where we leave 
such edges on the priority queue, deferring the eli-
gibility test to when we remove them.

The figure at right is a trace for our small sam-
ple graph tinyEWG.txt. Each drawing depicts the 
graph and the priority queue just after a vertex is 
visited (added to the tree and the edges in its ad-
jacency list processed). The contents of the prior-
ity queue are shown in order on the side, with new 
edges marked with asterisks. The algorithm builds 
the MST as follows:

n	 Adds 0 to the MST and all edges in its adja-
cency list to the priority queue.

n	 Adds 7 and 0-7 to the MST and all edges in 
its adjacency list to the priority queue.

n	 Adds 1 and 1-7 to the MST and all edges in 
its adjacency list to the priority queue.

n	 Adds 2 and 0-2 to the MST and edges 2-3 
and 6-2 to the priority queue. Edges 2-7 and 
1-2 become ineligible. 

n	 Adds 3 and 2-3 to the MST and edge 3-6 to 
the priority queue. Edge 1-3 becomes ineli-
gible. 

n	 Adds 5 and 5-7 to the MST and edge 4-5 to 
the priority queue. Edge 1-5 becomes ineli-
gible.

n	 Removes ineligible edges 1-3, 1-5, and 2-7 
from the priority queue.

n	 Adds 4 and 4-5 to the MST and edge 6-4 
to the priority queue. Edges 4-7 and 0-4 
become ineligible.

n	 Removes ineligible edges 1-2, 4-7, and 0-4 
from the priority queue.

n	 Adds 6 and 6-2 to the MST. The other edges 
incident to 6 become ineligible.

Trace of Prim’s algorithm (lazy version)

  3-6 0.52 
  6-0 0.58 
  6-4 0.93 

* 0-7 0.16
* 0-2 0.26 
* 0-4 0.38 
* 6-0 0.58

* 1-7 0.19 
  0-2 0.26 
* 5-7 0.28 
* 2-7 0.34 
* 4-7 0.37 
  0-4 0.38 
  6-0 0.58

  0-2 0.26 
  5-7 0.28 
* 1-3 0.29 
* 1-5 0.32 
  2-7 0.34 
* 1-2 0.36 
  4-7 0.37 
  0-4 0.38 
  6-0 0.58 

* 2-3 0.17 
  5-7 0.28 
  1-3 0.29 
  1-5 0.32 
  2-7 0.34
  1-2 0.36
  4-7 0.37 
  0-4 0.38 
* 6-2 0.40 
  6-0 0.58 
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  2-7 0.34
  1-2 0.36
  4-7 0.37 
  0-4 0.38 
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  6-0 0.58 

  1-3 0.29
  1-5 0.32 
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* 4-5 0.35  
  1-2 0.36
  4-7 0.37 
  0-4 0.38 
  6-2 0.40 
  3-6 0.52 
  6-0 0.58 

  1-2 0.36 
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After having added V vertices (and V1 edges), the MST is complete. The remaining 
edges on the priority queue are ineligible, so we need not examine them again.

Implementation  With these preparations, implementing Prim’s algorithm is straight-
forward, as shown in the implementation LazyPrimMST on the facing page. As with our 
depth-first search and breadth-first search implementations in the previous two sec-
tions, it computes the MST in the constructor so that client methods can learn proper-
ties of the MST with query methods. We use a private method visit() that puts a ver-
tex on the tree, by marking it as visited and then putting all of its incident edges that are 
not ineligible onto the priority queue, thus ensuring that the priority queue contains 
the crossing edges from tree vertices to non-tree vertices (perhaps also some ineligible 
edges). The inner loop is a rendition in code of the one-sentence description of the al-
gorithm: we take an edge from the priority queue and (if it is not ineligible) add it to the 
tree, and also add to the tree the new vertex that it leads to, updating the set of crossing 
edges by calling visit() with that vertex as argument. The weight() method requires 
iterating through the tree edges to add up the edge weights (lazy approach) or keeping 
a running total in an instance variable (eager approach) and is left as Exercise 4.3.31.

Running time  How fast is Prim’s algorithm? This question is not difficult to answer, 
given our knowledge of the behavior characteristics of priority queues:

proposition m. The lazy version of Prim’s algorithm uses space proportional to E
and time proportional to E log E (in the worst case) to compute the MST of a con-
nected edge-weighted graph with E edges and V vertices.

proof: The bottleneck in the algorithm is the number of edge-weight comparisons 
in the priority-queue methods insert() and delMin(). The number of edges on 
the priority queue is at most E, which gives the space bound. In the worst case, 
the cost of an insertion is ~lg E and the cost to delete the minimum is ~2 lg E (see 
Proposition Q in Chapter 2). Since at most E edges are inserted and at most E are 
deleted, the time bound follows.

In practice, the upper bound on the running time is a bit conservative because the 
number of edges on the priority queue is typically much less than E. The existence of 
such a simple, efficient, and useful algorithm for such a challenging task is quite re-
markable. Next, we briefly discuss some improvements. As usual, detailed evaluation of 
such improvements in performance-critical applications is a job for experts.
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lazy version of Prim’s MSt algorithm

public class LazyPrimMST 
{ 
   private boolean[] marked;          // MST vertices 
   private Queue<Edge> mst;           // MST edges 
  private MinPQ<Edge> pq;            // crossing (and ineligible) edges

   public LazyPrimMST(EdgeWeightedGraph G) 
   {   
      pq = new MinPQ<Edge>(); 
      marked = new boolean[G.V()]; 
      mst = new Queue<Edge>();

      visit(G, 0);   // assumes G is connected (see Exercise 4.3.22) 
      while (!pq.isEmpty()) 
      {  
         Edge e = pq.delMin();                  // Get lowest-weight 
         int v = e.either(), w = e.other(v);    //    edge from pq. 
         if (marked[v] && marked[w]) continue;  // Skip if ineligible. 
         mst.enqueue(e);                        // Add edge to tree. 
         if (!marked[v]) visit(G, v);           // Add vertex to tree 
         if (!marked[w]) visit(G, w);           //   (either v or w). 
      } 
   }

   private void visit(EdgeWeightedGraph G, int v) 
   {  // Mark v and add to pq all edges from v to unmarked vertices. 
      marked[v] = true; 
      for (Edge e : G.adj(v)) 
         if (!marked[e.other(v)]) pq.insert(e); 
   }

   public Iterable<Edge> edges() 
   {  return mst;  }

   public double weight()   // See Exercise 4.3.31.

}

This implementation of Prim’s algorithm uses a priority queue to hold crossing edges, a vertex-in-
dexed array to mark tree vertices, and a queue to hold MST edges. This implementation is a lazy ap-
proach where we leave ineligible edges in the priority queue. 
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Eager version of Prim’s algorithm To improve the LazyPrimMST, we might try 
to delete ineligible edges from the priority queue, so that the priority queue contains 
only the crossing edges between tree vertices and non-tree vertices. But we can elimi-
nate even more edges. The key is to note that our only interest is in the minimal edge 

from each non-tree vertex to a tree vertex. When we add a vertex 
v to the tree, the only possible change with respect to each non-
tree vertex w is that adding v brings w closer than before to the 
tree. In short, we do not need to keep on the priority queue all
of the edges from w to tree vertices—we just need to keep track 
of the minimum-weight edge and check whether the addition of 
v to the tree necessitates that we update that minimum (because 
of an edge v-w that has lower weight), which we can do as we 
process each edge in v’s adjacency list. In other words, we main-

tain on the priority queue just one edge for each non-tree vertex w : the lightest edge that 
connects it to the tree. Any heavier edge connecting w to the tree will become ineligible 
at some point, so there is no need to keep it on the priority queue.

PrimMST (Algorithm 4.7 on page 622) implements Prim’s algorithm using our 
index priority queue data type from Section 2.4 (see page 320). It replaces the data
structure mst[] in LazyPrimMST by two vertex-indexed arrays edgeTo[] and distTo[], 
which have the following properties:

n	 If v is not on the tree but has at least one edge connecting it to the tree, then 
edgeTo[v] is the lightest edge connecting v to the tree, and distTo[v] is the 
weight of that edge.

n	 All such vertices v are maintained on the index priority queue, as an index v as-
sociated with the weight of edgeTo[v].

The key implications of these properties is that the minimum key on the priority queue 
is the weight of the minimal-weight crossing edge, and its associated vertex v is the next 
to add to the tree. To maintain the data structures, PrimMST takes a vertex v from the 
priority queue, then checks each edge v-w on its adjacency list. If w is marked, the edge 
is ineligible; if it is not on the priority queue or its weight is lower than the current 
best-known edgeTo[w], the code updates the data structures to establish v-w as the 
best-known way to connect w to the tree. 

The figure on the facing page is a trace of PrimMST for our small sample graph 
tinyEWG.txt. The contents of the edgeTo[] and distTo[] arrays are depicted af-
ter each vertex is added to the MST, color-coded to depict the MST vertices (index 
in black), the non-MST vertices (index in gray), the MST edges (in black), and the 
priority-queue index/value pairs (in red). In the drawings, the lightest edge connecting 
each non-MST vertex to an MST vertex is drawn in red. The algorithm adds edges to 

w

v

connecting v 
to the tree

brings w
closer to the tree
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the MST in the same order as the lazy version; 
the difference is in the priority-queue opera-
tions. It builds the MST as follows:

n	 Adds 0 to the MST and all edges in its 
adjacency list to the priority queue, 
since each such edge is the best (only) 
known connection between a tree ver-
tex and a non-tree vertex.

n	 Adds 7 and 0-7 to the MST, replaces 
0-4 with 4-7 as the lighest edge from 
a tree vertex to 4, adds 1-7 and 5-7 to 
the priority queue. Edge 2-7 does not 
affect the priority queue because its 
weights is not less than the weight of 
the known connection from the MST 
to 2.

n	 Adds 1 and 1-7 to the MST and 1-3 to 
the priority queue.

n	 Adds 2 and 0-2 to the MST, replaces 
6-0 with 2-6 as the lightest edge from 
a tree vertex to 6, and replaces 1-3 with 
2-3 as the lightest edge from a tree 
vertex to 3. 

n	 Adds 3 and 2-3 to the MST. 
n	 Adds 5 and 5-7 to the MST and re-

places 4-7 with 4-5 as the lightest edge 
from a tree vertex to 4.

n	 Adds 4 and 4-5 to the MST.
n	 Adds 6 and 6-2 to the MST.

After having added V1 edges, the MST is 
complete and the priority queue is empty.

Trace of Prim’s algorithm (eager version)
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aLgorIthM 4.7 Prim’s MSt algorithm (eager version)

public class PrimMST 
{ 
   private Edge[] edgeTo;          // shortest edge from tree vertex 
   private double[] distTo;        // distTo[w] = edgeTo[w].weight() 
   private boolean[] marked;       // true if v on tree 
   private IndexMinPQ<Double> pq;  // eligible crossing edges

   public PrimMST(EdgeWeightedGraph G) 
   { 
      edgeTo = new Edge[G.V()]; 
      distTo = new double[G.V()]; 
      marked = new boolean[G.V()]; 
      for (int v = 0; v < G.V(); v++) 
         distTo[v] = Double.POSITIVE_INFINITY; 
      pq = new IndexMinPQ<Double>(G.V());

      distTo[0] = 0.0; 
      pq.insert(0, 0.0);              // Initialize pq with 0, weight 0. 
      while (!pq.isEmpty()) 
         visit(G, pq.delMin());       // Add closest vertex to tree. 
   }

   private void visit(EdgeWeightedGraph G, int v) 
   {  // Add v to tree; update data structures. 
      marked[v] = true; 
      for (Edge e : G.adj(v)) 
      { 
         int w = e.other(v); 
         if (marked[w]) continue;     // v-w is ineligible. 
         if (e.weight() < distTo[w]) 
         {  // Edge e is new best connection from tree to w. 
            edgeTo[w] = e;  
            distTo[w] = e.weight();  
            if (pq.contains(w)) pq.changeKey(w, distTo[w]); 
            else                pq.insert(w, distTo[w]); 
         } 
      } 
   }

   public Iterable<Edge> edges()    // See Exercise 4.3.21. 
   public double weight()           // See Exercise 4.3.31.
}

This implementation of Prim’s algorithm keeps eligible crossing edges on an index priority queue. 
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Prim’s algorithm (250 vertices)
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an essentially identical argument as in the proof of Proposi-
tion M proves that the eager version of Prim’s algorithm finds the 
MST of a connected edge-weighted graph in time proportional to 
E log V and extra space proportional to V. 

proposition N. The eager version of Prim’s algorithm uses ex-
tra space proportional to V and time proportional to E log V
(in the worst case) to compute the MST of a connected edge-
weighted graph with E edges and V vertices.

proof: The number of vertices on the priority queue is at most 
V, and there are three vertex-indexed arrays, which implies the 
space bound. The algorithm uses V insert operations, V delete 
the minimum operations, and (in the worst case) E change pri-
ority operations. These counts, coupled with the fact that our 
heap-based implementation of the index priority queue imple-
ments all these operations in time proportional to log V (see 
page 321), imply the time bound.

For the huge sparse graphs that are typical in practice, there is no 
asymptotic difference in the time bound (because lg E ~ lg V for 
sparse graphs); the space bound is a constant-factor (but signifi-
cant) improvement. Further analysis and experimentation are best 
left for experts facing performance-critical applications, where 
many factors come into play, including the implementations of 
MinPQ and IndexMinPQ, the graph representation, properties of 
the application’s graph model, and so forth. As usual, such im-
provements need to be carefully considered, as the increased code 
complexity is only justified for applications where constant-factor 
performance gains are important, and might even be counterpro-
ductive on complex modern systems. 

The diagram at right shows Prim’s algorithm in operation on 
our 250-vertex Euclidean graph mediumEWG.txt. It is a fascinating 
dynamic process (see also Exercise 4.3.27). Most often the tree 
grows by connecting a new vertex to the vertex just added. When 
reaching an area with no nearby non-tree vertices, the growth 
starts from another part of the tree. 
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Kruskal’s algorithm The second MST algorithm 
that we consider in detail is to process the edges in order of 
their weight values (smallest to largest), taking for the MST 
(coloring black) each edge that does not form a cycle with 
edges previously added, stopping after adding V1 edges. 
The black edges form a forest of trees that evolves gradu-
ally into a single tree, the MST. This method is known as 
Kruskal’s algorithm:

proposition o. Kruskal’s algorithm computes the 
MST of any connected edge-weighted graph.

proof: Immediate from Proposition K. If the next 
edge to be considered does not form a cycle with black 
edges, it crosses a cut defined by the set of vertices 
connected to one of the edge’s vertices by black edges 
(and its complement). Since the edge does not create a 
cycle, it is the only crossing edge seen so far, and since 
we consider the edges in sorted order, it is a crossing 
edge of minimum weight. Thus, the algorithm is suc-
cessively taking a minimal-weight crossing edge, in ac-
cordance with the greedy algorithm. 

Prim’s algorithm builds the MST one edge at a time, finding 
a new edge to attach to a single growing tree at each step. 
Kruskal’s algorithm also builds the MST one edge at a time; 
but, by contrast, it finds an edge that connects two trees in a 
forest of growing trees. We start with a degenerate forest of 
V single-vertex trees and perform the operation of combin-
ing two trees (using the lightest edge possible) until there is 
just one tree left: the MST.

The figure at left shows a step-by-step example of the 
operation of Kruskal’s algorithm on tinyEWG.txt. The five 
lowest-weight edges in the graph are taken for the MST, 
then 1-3, 1-5, and 2-7 are determined to be ineligible be-
fore 4-5 is taken for the MST, and finally 1-2, 4-7, and 0-4 
are determined to be ineligible and 6-2 is taken for the MST. Trace of Kruskal’s algorithm

0-7 0.16
2-3 0.17
1-7 0.19 
0-2 0.26 
5-7 0.28 
1-3 0.29 
1-5 0.32 
2-7 0.34
4-5 0.35 
1-2 0.36 
4-7 0.37 
0-4 0.38
6-2 0.40 
3-6 0.52
6-0 0.58
6-4 0.93 

obsolete
edge

(gray)

gray vertices are a cut
defined by the vertices

connected to one of
the red edge’s vertices

next MST edge is red

MST edge
(black)

graph edges
sorted

by weight
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Kruskal’s algorithm is also not difficult to implement, given the basic algorithmic 
tools that we have considered in this book: we use a priority queue (Section 2.4) to 
consider the edges in order by weight, a union-find data structure (Section 1.5) to 
identify those that cause cycles, and a queue (Section 1.3) to collect the MST edges. 
Algorithm 4.8 is an implementation along these lines. Note that collecting the MST 
edges in a Queue means that when a client iterates through the edges it gets them in 
increasing order of their weight. The weight() method requires iterating through the 
queue to add the edge weights (or keeping a running total in an instance variable) and 
is left as an exercise (see Exercise 4.3.31).

Analyzing the running time of Kruskal’s algorithm is a simple matter because we 
know the running times of its basic operations.

proposition N (continued). Kruskal’s algorithm uses space proportional to E and 
time proportional to E log E (in the worst case) to compute the MST of an edge-
weighted connected graph with E edges and V vertices.

proof: The implementation uses the priority-queue constructor that initializes the 
priority queue with all the edges, at a cost of at most E compares (see Section 2.4). 
After the priority queue is built, the argument is the same as for Prim’s algorithm. 
The number of edges on the priority queue is at most E, which gives the space 
bound, and the cost per operation is at most 2 lg E compares, which gives the time 
bound. Kruskal’s algorithm also performs up to E connected() and V union() 
operations, but that cost does not contribute to the E log E order of growth of the 
total running time (see Section 1.5).

As with Prim’s algorithm the cost bound is conservative, since the algorithm terminates 
after finding the V1 MST edges. The order of growth of the actual cost is E + E0 log E, 
where E0 is the number of edges whose weight is less than the weight of the MST edge 
with the highest weight. Despite this advantage, Kruskal’s algorithm is generally slower 
than Prim’s algorithm because it has to do a connected() operation for each edge, in 
addition to the priority-queue operations that both algorithms do for each edge pro-
cessed (see Exercise 4.3.39).
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The figure at left illustrates the algorithm’s dynamic characteris-
tics on the larger example mediumEWG.txt. The fact that the edges 
are added to the forest in order of their length is quite apparent. 

Kruskal’s algorithm (250 vertices)

20%

40%

60%

80%

MST
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aLgorIthM 4.8 kruskal’s MSt algorithm

public class KruskalMST 
{ 
   private Queue<Edge> mst;

   public KruskalMST(EdgeWeightedGraph G) 
   { 
      mst = new Queue<Edge>(); 
      MinPQ<Edge> pq = new MinPQ<Edge>(); 
      for (Edge e : G.edges()) 
         pq.insert(e); 
      UF uf = new UF(G.V());

      while (!pq.isEmpty() && mst.size() < G.V()-1) 
      { 
         Edge e = pq.delMin();               // Get min weight edge on pq 
         int v = e.either(), w = e.other(v); //   and its vertices. 
         if (uf.connected(v, w)) continue;   // Ignore ineligible edges. 
         uf.union(v, w);                     // Merge components. 
         mst.enqueue(e);                     // Add edge to mst. 
      } 
   }

   public Iterable<Edge> edges() 
   {  return mst;  }

   public double weight()           // See Exercise 4.3.31.

}

This implementation of Kruskal’s algorithm uses a queue to hold MST edges, a priority queue to hold 
edges not yet examined, and a union-find data structure for identifying ineligible edges. The MST 
edges are returned to the client in increasing order of their weights. The weight() method is left as 
an exercise.

% java KruskalMST tinyEWG.txt 
0-7 0.16000 
2-3 0.17000 
1-7 0.19000 
0-2 0.26000 
5-7 0.28000 
4-5 0.35000 
6-2 0.40000 
1.8100
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Perspective The MST problem is one of the most heavily studied problems that 
we encounter in this book. Basic approaches to solving it were invented long before 
the development of modern data structures and modern techniques for analyzing the 
performance of algorithms, at a time when finding the MST of a graph that contained, 
say, thousands of edges was a daunting task. The MST algorithms that we have consid-
ered differ from these old ones essentially in their use and implementation of modern 
algorithms and data structures for basic tasks, which (coupled with modern comput-
ing power) makes it possible for us to compute MSTs with millions or even billions of 
edges.

Historical notes  An MST imple-
mentation for dense graphs (see Ex-
ercise 4.3.29) was first presented by 
R. Prim in 1961 and, independently, 
by E. W. Dijkstra soon thereafter. It 
is usually referred to as Prim’s algo-
rithm, although Dijkstra’s presenta-
tion was more general. But the basic 
idea was also presented by V. Jarnik 
in 1939, so some authors refer to the 
method as Jarnik’s algorithm, thus 
characterizing Prim’s (or Dijkstra’s) 
role as finding an efficient imple-
mentation of the algorithm for dense 
graphs. As the priority-queue ADT 
came into use in the early 1970s, its 
application to finding MSTs of sparse 
graphs was straightforward; the fact that MSTs of sparse graphs could be computed in 
time proportional to E log E became widely known without attribution to any particu-
lar researcher. In 1984, M. L. Fredman and R. E. Tarjan developed the Fibonacci heap
data structure, which improves the theoretical bound on the order of growth of the 
running time of Prim’s algorithm to E + V log V. J. Kruskal presented his algorithm 
in 1956, but, again, the relevant ADT implementations were not carefully studied for 
many years. Other interesting historical notes are that Kruskal’s paper mentioned a ver-
sion of Prim’s algorithm and that a 1926 (!) paper by O. Boruvka mentioned both ap-
proaches. Boruvka’s paper addressed a power-distribution application and introduced 
yet another method that is easily implemented with modern data structures (see Exer-
cise 4.3.43 and Exercise 4.3.44). The method was rediscovered by M. Sollin in 1961; 

algorithm

worst-case order of growth for 
V vertices and E edges

space time

lazy Prim E E log E

eager Prim V E log V

Kruskal E E log E

Fredman-Tarjan V E + V log V

Chazelle V
very, very nearly, 
but not quite E

impossible ? V E ?

performance characteristics of MSt algorithms
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it later attracted attention as the basis for MST algorithms with efficient asymptotic 
performance and as the basis for parallel MST algorithms.

A linear-time algorithm? On the one hand, no theoretical results have been developed 
that deny the existence of an MST algorithm that is guaranteed to run in linear time 
for all graphs. On the other hand, the goal of developing algorithms for computing 
the MST of sparse graphs in linear time remains elusive. Since the 1970s the appli-
cability of the union-find abstraction to Kruskal’s algorithm and the applicability of 
the priority-queue abstraction to Prim’s algorithm have been prime motivations for 
many researchers to seek better implementations of those ADTs. Many researchers have 
concentrated on finding efficient priority-queue implementations as the key to find-
ing efficient MST algorithms for sparse graphs; many other researchers have studied 
variations of Boruvka’s algorithm as the basis for nearly linear-time MST algorithms 
for sparse graphs. Such research still holds the potential to lead us eventually to a prac-
tical linear-time MST algorithm and has even shown the existence of a randomized 
linear-time algorithm. Also, researchers are getting quite close to the linear-time goal: 
B. Chazelle exhibited an algorithm in 1997 that certainly could never be distinguished 
from a linear-time algorithm in any conceivable practical situation (even though it is 
provably nonlinear), but is so complicated that no one would use it in practice. While 
the algorithms that have emerged from such research are generally quite complicated, 
simplified versions of some of them may yet be shown to be useful in practice. In the 
meantime, we can use the basic algorithms that we have considered here to compute 
the MST in linear time in most practical situations, perhaps paying an extra factor of 
log V for some sparse graphs.

In summary, we can consider the MST problem to be “solved’’ for practical purposes. 
For most graphs, the cost of finding the MST is only slightly higher than the cost of 
extracting the graph’s edges. This rule holds except for huge graphs that are extremely 
sparse, but the available performance improvement over the best-known algorithms 
even in this case is a small constant factor, perhaps a factor of 10 at best. These conclu-
sions are borne out for many graph models, and practitioners have been using Prim’s 
and Kruskal’s algorithms to find MSTs in huge graphs for decades.
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Q&A

Q. Do Prim’s and Kruskal’s algorithms work for directed graphs?

A. No, not at all. That is a more difficult graph-processing problem known as the mini-
mum cost arborescence problem.
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ExErcisEs

4.3.1 Prove that you can rescale the weights by adding a positive constant to all of 
them or by multiplying them all by a positive constant without affecting the MST.

4.3.2 Draw all of the MSTs of the graph depicted at right (all edge weights are 
equal).

4.3.3 Show that if a graph’s edges all have distinct weights, the MST is unique.

4.3.4 Consider the assertion that an edge-weighted graph has a unique MST only if its 
edge weights are distinct. Give a proof or a counterexample.

4.3.5 Show that the greedy algorithm is valid even when edge weights are not distinct.

4.3.6 Give the MST of the weighted graph obtained by deleting vertex 7 from 
tinyEWG.txt (see page 604).

4.3.7 How would you find a maximum spanning tree of an edge-weighted graph?

4.3.8 Prove the following, known as the cycle property: Given any cycle in an edge-
weighted graph (all edge weights distinct), the edge of maximum weight in the cycle 
does not belong to the MST of the graph.

4.3.9 Implement the constructor for EdgeWeightedGraph that reads an edge-weighted 
graph from the input stream, by suitably modifying the constructor from Graph (see 
page 526).

4.3.10 Develop an EdgeWeightedGraph implementation for dense graphs that uses an 
adjacency-matrix (two-dimensional array of weights) representation. Disallow parallel 
edges.

4.3.11 Determine the amount of memory used by EdgeWeightedGraph to represent a 
graph with V vertices and E edges, using the memory-cost model of Section 1.4.

4.3.12 Suppose that a graph has distinct edge weights. Does its lightest edge have to 
belong to the MST? Can its heaviest edge belong to the MST? Does a min-weight edge 
on every cycle have to belong to the MST? Prove your answer to each question or give 
a counterexample.

4.3.13 Give a counterexample that shows why the following strategy does not neces-
sarily find the MST: ‘Start with any vertex as a single-vertex MST, then add V-1 edges 

3 4 5

6 7 8

1 2

6314.3 n Minimum Spanning Trees



ptg12441863

to it, always taking next a min-weight edge incident to the vertex most recently added 
to the MST.’

4.3.14 Given an MST for an edge-weighted graph G, suppose that an edge in G that 
does not disconnect G is deleted. Describe how to find an MST of the new graph in time 
proportional to E.

4.3.15 Given an MST for an edge-weighted graph G and a new edge e with weight w, 
describe how to find an MST of the new graph in time proportional to V.

4.3.16 Given an MST for an edge-weighted graph G and a new edge e, write a program 
that determines the range of weights for which e is in an MST.

4.3.17 Implement toString() for EdgeWeightedGraph.

4.3.18 Give traces that show the process of computing the MST of the graph defined 
in Exercise 4.3.6 with the lazy version of Prim’s algorithm, the eager version of Prim’s 
algorithm, and Kruskal’s algorithm.

4.3.19 Suppose that you implement PrimMST but instead of using a priority queue to 
find the next vertex to add to the tree, you scan through all V entries in the distTo[] 
array to find the non-tree vertex with the smallest weight. What would be the order of 
growth of the running time for graphs with V vertices and E edges? When would this 
method be appropriate, if ever? Defend your answer.

4.3.20 True or false: At any point during the execution of Kruskal’s algorithm, each 
vertex is closer to some vertex in its subtree than to any vertex not in its subtree. Prove 
your answer.

4.3.21 Provide an implementation of edges() for PrimMST (page 622).

Solution :

public Iterable<Edge> edges() 
{ 
   Queue<Edge> mst = new Queue<Edge>(); 
   for (int v = 1; v < edgeTo.length; v++) 
      mst.enqueue(edgeTo[v]); 
   return mst; 
}

ExErcisEs (continued)
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crEAtivE problEms

4.3.22  Minimum spanning forest. Develop versions of Prim’s and Kruskal’s algorithms 
that compute the minimum spanning forest of an edge-weighted graph that is not nec-
essarily connected. Use the connected-components API of Section 4.1 and find MSTs 
in each component.

4.3.23  Vyssotsky’s algorithm. Develop an implementation that computes the MST by 
applying the cycle property (see Exercise 4.3.8) repeatedly: Add edges one at a time to 
a putative tree, deleting a maximum-weight edge on the cycle if one is formed. Note : 
This method has received less attention than the others that we consider because of the 
comparative difficulty of maintaining a data structure that supports efficient imple-
mentation of the “delete the maximum-weight edge on the cycle’’ operation.

4.3.24  Reverse-delete algorithm. Develop an implementation that computes the MST 
as follows: Start with a graph containing all of the edges. Then repeatedly go through 
the edges in decreasing order of weight. For each edge, check if deleting that edge will 
disconnect the graph; if not, delete it. Prove that this algorithm computes the MST. 
What is the order of growth of the number of edge-weight compares performed by your 
implementation?

4.3.25  Worst-case generator. Develop a reasonable generator for edge-weighted graphs 
with V vertices and E edges such that the running time of the lazy version of Prim’s al-
gorithm is nonlinear. Answer the same question for the eager version.

4.3.26  Critical edges. An MST edge whose deletion from the graph would cause the 
MST weight to increase is called a critical edge. Show how to find all critical edges in a 
graph in time proportional to E log E . Note : This question assumes that edge weights 
are not necessarily distinct (otherwise all edges in the MST are critical).

4.3.27  Animations. Write a client program that does dynamic graphical animations 
of MST algorithms. Run your program for mediumEWG.txt to produce images like the 
figures on page 621 and page 624.

4.3.28  Space-efficient data structures. Develop an implementation of the lazy ver-
sion of Prim’s algorithm that saves space by using lower-level data structures for 
EdgeWeightedGraph and for MinPQ instead of Bag and Edge. Estimate the amount of 
memory saved as a function of V and E, using the memory-cost model of Section 1.4 
(see Exercise 4.3.11).
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4.3.29  Dense graphs. Develop an implementation of Prim’s algorithm that uses an 
eager approach (but not a priority queue) and computes the MST using V 2 edge-weight 
comparisons. 

4.3.30  Euclidean weighted graphs. Modify your solution to Exercise 4.1.37 to cre-
ate an API EuclideanEdgeWeightedGraph for graphs whose vertices are points in the 
plane, so that you can work with graphical representations.

4.3.31  MST weights. Develop implementations of weight() for LazyPrimMST, 
PrimMST, and KruskalMST, using a lazy strategy that iterates through the MST edges 
when the client calls weight(). Then develop alternate implementations that use an 
eager strategy that maintains a running total as the MST is computed.

4.3.32  Specified set. Given a connected edge-weighted graph G and a specified set of 
edges S (having no cycles), describe a way to find a minimum-weight spanning tree of 
G among those spanning trees that contain all the edges in S.

4.3.33  Certification. Write an MST and EdgeWeightedGraph client check() that uses 
the following cut optimality conditions implied by Proposition J to verify that a pro-
posed set of edges is in fact an MST: A set of edges is an MST if it is a spanning tree and 
every edge is a minimum-weight edge in the cut defined by removing that edge from 
the tree. What is the order of growth of the running time of your method?

crEAtivE problEms (continued)
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ExpErimENts

4.3.34  Random sparse edge-weighted graphs. Write a random-sparse-edge-weighted-
graph generator based on your solution to Exercise 4.1.41. To assign edge weights, 
define a random-edge-weighted graph ADT and write two implementations: one that 
generates uniformly distributed weights, another that generates weights according to a 
Gaussian distribution. Write client programs to generate sparse random edge-weighted 
graphs for both weight distributions with a well-chosen set of values of V and E so that 
you can use them to run empirical tests on graphs drawn from various distributions of 
edge weights.

4.3.35  Random Euclidean edge-weighted graphs. Modify your solution to Exercise 
4.1.42 to assign the distance between vertices as each edge’s weight.

4.3.36  Random grid edge-weighted graphs. Modify your solution to Exercise 4.1.43 to 
assign a random weight (between 0 and 1) to each edge.

4.3.37  Real edge-weighted graphs. Find a large weighted graph somewhere online—
perhaps a map with distances, telephone connections with costs, or an airline rate 
schedule. Write a program RandomRealEdgeWeightedGraph that builds a weighted 
graph by choosing V vertices at random and E weighted edges at random from the 
subgraph induced by those vertices.

Testing all algorithms and studying all parameters against all graph models is unrealistic. 
For each problem listed below, write a client that addresses the problem for any given input 
graph, then choose among the generators above to run experiments for that graph model. 
Use your judgment in selecting experiments, perhaps in response to results of previous 
experiments. Write a narrative explaining your results and any conclusions that might be 
drawn.

4.3.38  Cost of laziness. Run empirical studies to compare the performance of the lazy 
version of Prim’s algorithm with the eager version, for various types of graphs.

4.3.39  Prim versus Kruskal. Run empirical studies to compare the performance of the 
lazy and eager versions of Prim’s algorithm with Kruskal’s algorithm.

4.3.40  Reduced overhead. Run empirical studies to determine the effect of using 
primitive types instead of Edge values in EdgeWeightedGraph, as described in Exer-
cise 4.3.28.
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4.3.41  Heaviest MST edge. Run empirical studies to analyze the weight of the heaviest 
edge in the MST and the number of graph edges that are not heavier than that one.

4.3.42  Partitioning. Develop an implementation based on integrating Kruskal’s al-
gorithm with quicksort partitioning (instead of using a priority queue) so as to check 
MST membership of each edge as soon as all smaller edges have been checked.

4.3.43  Boruvka’s algorithm. Develop an implementation of Boruvka’s algorithm: 
Build an MST by adding edges to a growing forest of trees, as in Kruskal’s algorithm, 
but in stages. At each stage, find the minimum-weight edge that connects each tree to a 
different one, then add all such edges to the MST. Assume that the edge weights are all 
different, to avoid cycles. Hint : Maintain a vertex-indexed array to identify the edge that 
connects each tree to its nearest neighbor, and use the union-find data structure. 

4.3.44  Improved Boruvka. Develop an implementation of Boruvka’s algorithm that 
uses doubly-linked circular lists to represent MST subtrees so that subtrees can be 
merged and renamed in time bounded by E during each stage (and the union-find data 
type is therefore not needed).

4.3.45  External MST. Describe how you would find the MST of a graph so large that 
only V edges can fit into main memory at once.

4.3.46  Johnson’s algorithm. Develop a priority-queue implementation that uses a d-
way heap (see Exercise 2.4.41). Find the best value of d for various weighted graph 
models.

ExpErimENts (continued)
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4.4 ShorteSt PAthS

Perhaps the most intuitive graph-processing problem is one that you encounter 
regularly, when using a map application or a navigation system to get directions from 
one place to another. A graph model is immediate: vertices correspond to intersections 
and edges correspond to roads, with weights on the edges that model the cost, perhaps 
distance or travel time. The possibility of one-way roads means that we will need to 
consider edge-weighted digraphs. In this model, the problem is easy to formulate:

Find a lowest-cost way to get from one vertex to another. 

Beyond direct applications of this sort, the shortest-paths model is appropriate for a 
range of other problems, some of which do not seem to be at all related to graph pro-
cessing. As one example, we shall consider the arbitrage problem from computational 
finance at the end of this section.

We adopt a general model where 
we work with edge-weighted digraphs 
(combining the models of Section 
4.2 and Section 4.3). In Section 
4.2 we wished to know whether it is 
possible to get from one vertex to an-
other; in this section, we take weights 
into consideration, as we did for un-
directed edge-weighted graphs in 
Section 4.3. Every directed path in 

an edge-weighted digraph has an associated path weight, 
the value of which is the sum of the weights of that path’s 
edges. This essential measure allows us to formulate such 
problems as “find the lowest-weight directed path from 
one vertex to another,’’ the topic of this section. The fig-
ure at left shows an example. 

Definition. A shortest path from vertex s to vertex t 
in an edge-weighted digraph is a directed path from 
s to t with the property that no other such path has a 
lower weight.

An edge-weighted digraph and a shortest path

4->5  0.35 
5->4  0.35 
4->7  0.37 
5->7  0.28 
7->5  0.28 
5->1  0.32 
0->4  0.38
0->2  0.26 
7->3  0.39 
1->3  0.29 
2->7  0.34
6->2  0.40 
3->6  0.52
6->0  0.58
6->4  0.93 

0->2  0.26
2->7  0.34
7->3  0.39
3->6  0.52 

edge-weighted digraph

shortest path from 0 to 6

application vertex edge

map intersection road

network router connection

schedule job precedence constraint

arbitrage currency exchange rate

typical shortest-paths applications
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Thus, in this section, we consider classic algorithms for the following problem:

Single-source shortest paths  Given an edge-weighted digraph and a source ver-
tex s, support queries of the form Is there a directed path from s to a given target 
vertex t? If so, find a shortest such path (one whose total weight is minimal).

The plan of the section is to cover the following list of topics:
n	 Our APIs and implementations for edge-weighted digraphs, and a single-source 

shortest-paths API
n	 The classic Dijkstra’s algorithm for the problem when weights are nonnegative
n	 A faster algorithm for acyclic edge-weighted digraphs (edge-weighted DAGs) 

that works even when edge weights can be negative
n	 The classic Bellman-Ford algorithm for use in the general case, when cycles may 

be present, edge weights may be negative, and we need algorithms for finding 
negative-weight cycles and shortest paths in edge-weighted digraphs with no 
such cycles 

In the context of the algorithms, we also consider applications. 

Properties of shortest paths The basic definition of the shortest-paths problem   
is succinct, but its brevity masks several points worth examining before we begin to 
formulate algorithms and data structures for solving it:

n	 Paths are directed. A shortest path must respect the direction of its edges. 
n	 The weights are not necessarily distances. Geometric intuition can be helpful in 

understanding algorithms, so we use examples where vertices are points in the 
plane and weights are Euclidean distances, such as the digraph on the facing 
page. But the weights might represent time or cost or an entirely different vari-
able and do not need to be proportional to a distance at all. We are emphasizing 
this point by using mixed-metaphor terminology where we refer to a shortest
path of minimal weight or cost. 

n	 Not all vertices need be reachable. If t is not reachable from s, there is no path at 
all, and therefore there is no shortest path from s to t. For simplicity, our small 
running example is strongly connected (every vertex is reachable from every 
other vertex).

n	 Negative weights introduce complications. For the moment, we assume that edge 
weights are positive (or zero). The surprising impact of negative weights is a 
major focus of the last part of this section.

n	 Shortest paths are normally simple. Our algorithms ignore zero-weight edges that 
form cycles, so that the shortest paths they find have no cycles. 

n	 Shortest paths are not necessarily unique. There may be multiple paths of the low-
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est weight from one vertex to another; we are content 
to find any one of them.
n	 Parallel edges and self-loops may be present. Only the 

lowest-weight among a set of parallel edges will play 
a role, and no shortest path contains a self-loop (ex-
cept possibly one of zero weight, which we ignore). 
In the text, we implicitly assume that parallel edges 
are not present for convenience in using the notation 
v->w to refer unambiguously to the edge from v to w, 
but our code handles them without difficulty.

Shortest-paths tree We focus on the single-source 
shortest-paths problem, where we are given a source ver-
tex s. The result of the computation is a tree known as 
the shortest-paths tree (SPT), which gives a shortest path 
from s to every vertex reachable from s.

Definition. Given an edge-weighted digraph and 
a designated source vertex s, a shortest-paths tree 
for vertex s is a subgraph containing s and all the 
vertices reachable from s that forms a directed tree 
rooted at s such that every tree path is a shortest 
path in the digraph.

Such a tree always exists: in general there may be two 
paths of the same length connecting s to a vertex; if that 
is the case, we can delete the final edge on one of them, 
continuing until we have only 
one path connecting the source 
to each vertex (a rooted tree). 
By building a shortest-paths 
tree, we can provide clients 
with the shortest path from 
s to any vertex in the graph, 
using a parent-link represen-
tation, in precisely the same 
manner as for paths in graphs 
in Section 4.1. 

Shortest-paths trees

0 6->0
1 null
2 6->2
3 1->3
4 6->4
5 7->5
6 3->6
7 2->7  0 6->0

1 5->1
2 null
3 7->3
4 5->4
5 7->5
6 3->6
7 2->7  

0 null
1 5->1
2 0->2
3 7->3
4 0->4
5 4->5
6 3->6
7 2->7  

0 6->0
1 5->1
2 6->2
3 null
4 6->4
5 7->5
6 3->6
7 2->7  0 6->0

1 5->1
2 6->2
3 7->3
4 null
5 4->5
6 3->6
7 4->7  0 6->1

1 5->1
2 6->2
3 1->3
4 5->4
5 null
6 3->6
7 5->7  0 6->0

1 5->1
2 6->2
3 7->3
4 6->4
5 7->5
6 null
7 2->7  0 6->0

1 5->1
2 6->2
3 7->3
4 5->4
5 7->5
6 3->6
7 null  

parent-edge array
representation

source

An SPT with 250 vertices

source

edges point away
from the source
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Edge-weighted digraph data types Our data type for directed edges is sim-
pler than for undirected edges because we follow directed edges in just one direction. 
Instead of the either() and other() methods in Edge, we have from() and to() 
methods:

public class DirectedEdge

DirectedEdge(int v, int w, double weight)

double weight() weight of this edge
int from() vertex this edge points from
int to() vertex this edge points to

String toString() string representation

Weighted directed-edge apI

As with our transition from Graph to EdgeWeightedGraph from Section 4.1 to Sec-
tion 4.3, we include an edges() method and use DirectedEdge instead of integers:

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) empty V-vertex digraph
EdgeWeightedDigraph(In in) construct from in 

int V() number of vertices
int E() number of edges

void addEdge(DirectedEdge e) add e to this digraph
Iterable<DirectedEdge> adj(int v) edges pointing from v
Iterable<DirectedEdge> edges() all edges in this digraph

String toString() string representation

edge-weighted digraph apI

You can find implementations of these two APIs on the following two pages. These are 
natural extensions of the implementations of Section 4.2 and Section 4.3. Instead of 
the adjacency lists of integers used in Digraph, we have adjacency lists of DirectedEdge 
objects in EdgeWeightedDigraph. As with the transition from Graph to Digraph from 
Section 4.1 to Section 4.2, the transition from EdgeWeightedGraph in Section 4.3 to 
EdgeWeightedDigraph in this section simplifies the code, since each edge appears only 
once in the data structure. 
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Directed weighted edge data type

public class DirectedEdge 
{ 
   private final int v;                       // edge tail 
   private final int w;                       // edge head 
   private final double weight;               // edge weight

   public DirectedEdge(int v, int w, double weight) 
   { 
      this.v = v; 
      this.w = w; 
      this.weight = weight; 
   }

   public double weight() 
   {  return weight;  }

   public int from() 
   {  return v;  }

   public int to() 
   {  return w;  }

   public String toString() 
   {  return String.format("%d->%d %.2f", v, w, weight);  }  

}

This DirectedEdge implementation is simpler than the undirected weighted Edge implementation 
of Section 4.3 (see page 610) because the two vertices are distinguished. Our clients use the idiomatic 
code int v = e.to(), w = e.from(); to access a DirectedEdge e’s two vertices.
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edge-weighted digraph data type

public class EdgeWeightedDigraph
{ 
   private final int V;               // number of vertices 
   private int E;                     // number of edges 
   private Bag<DirectedEdge>[] adj;   // adjacency lists

   public EdgeWeightedDigraph(int V) 
   { 
      this.V = V; 
      this.E = 0; 
      adj = (Bag<DirectedEdge>[]) new Bag[V]; 
      for (int v = 0; v < V; v++)  
         adj[v] = new Bag<DirectedEdge>(); 
   }

   public EdgeWeightedDigraph(In in) 
   // See Exercise 4.4.2.

   public int V() {  return V;  } 
   public int E() {  return E;  }

   public void addEdge(DirectedEdge e) 
   { 
      adj[e.from()].add(e); 
      E++; 
   }

   public Iterable<DirectedEdge> adj(int v) 
   {  return adj[v];  }

   public Iterable<DirectedEdge> edges() 
   { 
      Bag<DirectedEdge> bag = new Bag<DirectedEdge>(); 
      for (int v = 0; v < V; v++) 
         for (DirectedEdge e : adj[v]) 
            bag.add(e); 
      return bag; 
   }

}

This EdgeWeightedDigraph implementation is an amalgam of EdgeWeightedGraph and Digraph 
that maintains a vertex-indexed array of bags of DirectedEdge objects. As with Digraph, every 
edge appears just once: if an edge connects v to w, it appears in v’s adjacency list.  Self-loops and 
parallel edges are allowed. The toString() implementation is left as Exercise 4.4.2.
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The figure above shows the data structure that EdgeWeightedDigraph builds to rep-
resent the digraph defined by the edges at left when they are added in the order they 
appear. As usual, we use Bag to represent adjacency lists and depict them as linked lists, 
the standard representation. As with the unweighted digraphs of Section 4.2, only one 
representation of each edge appears in the data structure.

Shortest-paths API  For shortest paths, we use the same design paradigm as for the 
DepthFirstPaths and BreadthFirstPaths APIs in Section 4.1. Our algorithms im-
plement the following API to provide clients with shortest paths and their lengths:

public class SP

SP(EdgeWeightedDigraph G, int s) constructor

double distTo(int v)
distance from s 
to v, ∞ if no path

boolean hasPathTo(int v) path from s to v?

Iterable<DirectedEdge> pathTo(int v)
path from s to v, 
null if none

apI for shortest-paths implementations

The constructor builds a shortest-paths tree and computes shortest-paths distances; the 
client query methods use these data structures to provide distances and iterable paths 
to the client.

Edge-weighted digraph representation

adj[]

0

1

2

3

4

5

6

7

0 2 .26 0 4 .38

Bag objects

reference to a
DirectedEdge

object

8
15
4 5  0.35 
5 4  0.35 
4 7  0.37 
5 7  0.28 
7 5  0.28 
5 1  0.32 
0 4  0.38
0 2  0.26 
7 3  0.39 
1 3  0.29 
2 7  0.34
6 2  0.40 
3 6  0.52
6 0  0.58
6 4  0.93

1 3 .29

2 7 .34

3 6 .52

4 7 .37 4 5 .35

5 1 .32 5 7 .28 5 4 .35

6 4 .93 6 0 .58 6 2 .40

7 3 .39 7 5 .28

tinyEWD.txt
V

E

644 Chapter 4 n graphs



ptg12441863

Test client  A sample client is shown below. It takes an input stream and source vertex 
index as command-line arguments, reads the edge-weighted digraph from the input 
stream, computes the SPT of that digraph for the source, and prints the shortest path 
from the source to each of the other 
vertices. We assume that all of our 
shortest-paths implementations in-
clude this test client. Our examples 
use the file tinyEWD.txt shown on 
the facing page, which defines the 
edges and weights that are used in 
the small sample digraph that we 
use for detailed traces of shortest-
paths algorithms. It uses the same 
file format that we used for MST al-
gorithms: the number of vertices V 
and the number of edges E followed 
by E lines, each with two vertex in-
dices and a weight. You can also find 
on the booksite files that define sev-
eral larger edge-weighted digraphs, 
including the file mediumEWD.txt which defines the 250-vertex graph drawn on page 
640. In the drawing of the graph, every line represents edges in both directions, so this 
file has twice as many lines as the corresponding file mediumEWG.txt that we examined 
for MSTs. In the drawing of the SPT, each line represents a directed edge pointing away 
from the source.

public static void main(String[] args) 
{ 
   EdgeWeightedDigraph G;  
   G = new EdgeWeightedDigraph(new In(args[0])); 
   int s = Integer.parseInt(args[1]); 
   SP sp = new SP(G, s);

   for (int t = 0; t < G.V(); t++) 
   { 
      StdOut.print(s + " to " + t); 
      StdOut.printf(" (%4.2f): ", sp.distTo(t)); 
      if (sp.hasPathTo(t)) 
         for (DirectedEdge e : sp.pathTo(t)) 
            StdOut.print(e + "   "); 
      StdOut.println(); 
   } 
}

Shortest paths test client

% java SP tinyEWD.txt 0 
0 to 0 (0.00): 
0 to 1 (1.05): 0->4 0.38  4->5 0.35  5->1 0.32 
0 to 2 (0.26): 0->2 0.26 
0 to 3 (0.99): 0->2 0.26  2->7 0.34  7->3 0.39 
0 to 4 (0.38): 0->4 0.38 
0 to 5 (0.73): 0->4 0.38  4->5 0.35  
0 to 6 (1.51): 0->2 0.26  2->7 0.34  7->3 0.39  3->6 0.52 
0 to 7 (0.60): 0->2 0.26  2->7 0.34
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Data structures for shortest paths  The data structures that we need to represent 
shortest paths are straightforward:

n	 Edges on the shortest-paths tree : As for DFS, BFS, and Prim’s algorithm, we use a 
parent-edge representation in the form of a vertex-indexed array edgeTo[] of 
DirectedEdge objects, where edgeTo[v] is the edge that connects v to its parent 
in the tree (the last edge on a shortest path from s to v).

n	 Distance to the source : We use a vertex-indexed array distTo[] such that 
distTo[v] is the length of the shortest known path from s to v.

By convention, edgeTo[s] is null and distTo[s] is 0. We also adopt the con-
vention that distances to vertices that are not reachable from the source are all 
Double.POSITIVE_INFINITY. As usual, we will develop data types that build these 
data structures in the constructor and 
then support instance methods that use 
them to support client queries for short-
est paths and shortest-path distances. 

Edge relaxation  Our shortest-paths 
implementations are based on a sim-
ple operation known as relaxation. We 
start knowing only the graph’s edges 
and weights, with the distTo[] en-
try for the source initialized to 0 and all of the other distTo[] entries initialized to 
Double.POSITIVE_INFINITY.  As an algorithm proceeds, it gathers information about 
the shortest paths that connect the source to each vertex encountered in our edgeTo[] 
and distTo[] data structures. By updating this information when we encounter edges, 
we can make new inferences about shortest paths. Specifically, we use edge relaxation, 
defined as follows: to relax an edge v->w means to test whether the best known way 
from s to w is to go from s to v, then take the edge from v to w, and, if so, update our 
data structures to indicate that 
to be the case. The code at the 
right implements this opera-
tion. The best known distance 
to w through v is the sum of 
distTo[v] and e.weight()—
if that value is not smaller than 
distTo[w], we say the edge is 
ineligible, and we ignore it; if it 
is smaller, we update the data 

Shortest-paths data structures

    edgeTo[]    distTo[]
 0    null        0
 1    5->1 0.32   1.05
 2    0->2 0.26   0.26
 3    7->3 0.39   0.99
 4    0->4 0.38   0.38
 5    4->5 0.35   0.73
 6    3->6 0.52   1.51
 7    2->7 0.34   0.60

private void relax(DirectedEdge e)
{ 
   int v = e.from(), w = e.to(); 
   if (distTo[w] > distTo[v] + e.weight()) 
   { 
       distTo[w] = distTo[v] + e.weight(); 
       edgeTo[w] = e; 
   } 
}

edge relaxation
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structures. The figure at the bottom of this page illustrates the two possible outcomes of 
an edge-relaxation operation. Either the edge is ineligible (as in the example at left) and 
no changes are made, or the edge v->w leads to a shorter path to w (as in the example 
at right) and we update edgeTo[w] and distTo[w] (which might render some other 
edges ineligible and might create some new eligible edges). The term relaxation follows 
from the idea of a rubber band stretched tight on a path connecting two vertices: relax-
ing an edge is akin to relaxing the tension on the rubber band along a shorter path, if 
possible. We say that an edge e can be successfully relaxed if relax(e) would change the 
values of distTo[e.to()] and edgeTo[e.to()]. 

Edge relaxation (two cases)

v->w is ineligible v->w is eligible     

s

v

w
black edges

are in edgeTo[]

s

w

s

v

w

no longer in SPT

no changes

s

w

edgeTo[w]

distTo[v]

distTo[w]

weight of v->w is 1.3
v

v

3.1

3.3

3.1

3.1

7.2

4.4
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Vertex relaxation  All of our implementations 
actually relax all the edges pointing from a given 
vertex as shown in the (overloaded) implementa-
tion of relax() below. Note that any edge v->w  
from a vertex whose distTo[v] entry is finite to 
a vertex whose distTo[w] entry is infinite is eli-
gible and will be added to edgeTo[w] if relaxed. In 
particular, some edge leaving the source is the first 
to be added to edgeTo[]. Our algorithms choose 
vertices judiciously, so that each vertex relaxation 
finds a shorter path than the best known so far to 
some vertex, incrementally progressing toward the 
goal of finding shortest paths to every vertex. Vertex relaxation

s

v

s

still ineligiblev

now ineligible

before

after

private void relax(EdgeWeightedDigraph G, int v)
{ 
   for (DirectedEdge e : G.adj(v)) 
   { 
      int w = e.to(); 
      if (distTo[w] > distTo[v] + e.weight()) 
      { 
         distTo[w] = distTo[v] + e.weight(); 
         edgeTo[w] = e; 
      } 
   } 
}

Vertex relaxation

648 Chapter 4 n graphs



ptg12441863

Client query methods  In a manner similar to our implementations for pathfinding 
APIs in Section 4.1 (and Exercise 4.1.13), the edgeTo[] and distTo[] data struc-
tures directly support the pathTo(), hasPathTo(),  and distTo() client query meth-
ods, as shown below. This code is included in all of our shortest-paths implementa-
tions. As we have noted already, distTo[v] is only meaningful when v is reachable 
from s and we adopt the convention that distTo() should return infinity for vertices 
that are not reachable from s. To implement this convention, we initialize all distTo[] 
entries to Double.POSITIVE_INFINITY and distTo[s] to 0; then our shortest-paths 
implementations will set distTo[v] to a finite value for all vertices v that are reachable 
from the source. Thus, we can dispense with the marked[] array that we normally use 
to mark reachable vertices in a graph search and implement hasPathTo(v) by testing 
whether distTo[v] equals Double.POSITIVE_INFINITY. For pathTo(), we use the 
convention that pathTo(v) returns null if v is 
not reachable from the source and a path with 
no edges if v is the source. For reachable vertices, 
we travel up the tree, pushing the edges that we 
find on a stack, in the same manner as we did 
for DepthFirstPaths and BreadthFirstPaths. 
The figure at right shows the discovery of the 
path 0->2->7->3->6 for our example. 

Trace of  pathTo() computation

 v  edgeTo[]
 0     null

 1    5->1
 2    0->2
 3    7->3
 4    0->4
 5    4->5
 6    3->6
 7    2->7

3->6    
7->3   3->6
2->7   7->3 3->6
0->2   2->7 7->3 3->6
       0->2 2->7 7->3 3->6

e     path
pathTo(6)

SPT

null

public double distTo(int v) 
{   return distTo[v];   }

public boolean hasPathTo(int v) 
{   return distTo[v] < Double.POSITIVE_INFINITY;  }

public Iterable<DirectedEdge> pathTo(int v) 
{ 
   if (!hasPathTo(v)) return null; 
   Stack<DirectedEdge> path = new Stack<DirectedEdge>(); 
   for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) 
      path.push(e); 
   return path; 
}

Client query methods for shortest paths
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Theoretical basis for shortest-paths algorithms Edge relaxation is an easy-
to-implement fundamental operation that provides a practical basis for our shortest-
paths implementations. It also provides a theoretical basis for understanding the algo-
rithms and an opportunity for us to do our algorithm correctness proofs at the outset. 

Optimality conditions  The following proposition shows an equivalence between the 
global condition that the distances are shortest-paths distances, and the local condition 
that we test to relax an edge. 

proposition p. (shortest-paths optimality conditions) Let G be an edge-weighted 
digraph, with s a source vertex in G and distTo[] a vertex-indexed array of path 
lengths in G such that, for all v reachable from s, the value of distTo[v] is the 
length of some path from s to v with distTo[v] equal to infinity for all v not reach-
able from s. These values are the lengths of shortest paths if and only if they satisfy 
distTo[w] <= distTo[v] + e.weight() for each edge e from v to w (or, in 
other words, no edge is eligible).

proof: Suppose that distTo[w] is the length of a shortest path from s to w. If 
distTo[w] > distTo[v] + e.weight() for some edge e from v to w, then e 
would give a path from s to w (through v) of length less than distTo[w], a contra-
diction. Thus the optimality conditions are necessary.

To prove that the optimality conditions are sufficient, suppose that w is reach-
able from s and that s = v0->v1->v2...->vk = w is a shortest path from s to 
w, of weight OPTsw. For i from 1 to k, denote the edge from vi-1 to vi by ei. By the 
optimality conditions, we have the following sequence of inequalities:

distTo[w] = distTo[vk]  <= distTo[vk-1] + ek.weight() 
            distTo[vk-1] <= distTo[vk-2] + ek-1.weight() 
            ... 
            distTo[v2]  <= distTo[v1]  + e2.weight() 
            distTo[v1]  <= distTo[s]   + e1.weight()

Collapsing these inequalities and eliminating distTo[s] = 0.0, we have

distTo[w] <= e1.weight() + ... + ek.weight() = OPTsw.

Now, distTo[w] is the length of some path from s to w, so it cannot be smaller than 
the length of a shortest path. Thus, we have shown that

OPTsw <= distTo[w] <=  OPTsw

and equality must hold.
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Certification  An important practical consequence of Proposition P is its applicabil-
ity to certification. However an algorithm computes distTo[], we can check whether it 
contains shortest-path lengths in a single pass through the edges of the graph, checking 
whether the optimality conditions are satisfied. Shortest-paths algorithms can be com-
plicated, and this ability to efficiently test their outcome is crucial. We include a method 
check() in our implementations on the booksite for this purpose. This method also 
checks that edgeTo[] specifies paths from the source and is consistent with distTo[].

Generic algorithm  The optimality conditions lead immediately to a generic algo-
rithm that encompasses all of the shortest-paths algorithms that we consider. For the 
moment, we restrict attention to nonnegative weights.

proposition Q. (Generic shortest-paths algorithm) Initialize distTo[s] to 0 and 
all other distTo[] values to infinity, and proceed as follows: 

Relax any edge in G, continuing until no edge is eligible.
For all vertices w reachable from s, the value of distTo[w] after this computation 
is the length of a shortest path from s to w (and edgeTo[w] is the last edge on such 
a path).

proof: Relaxing an edge v->w always sets distTo[w] to the length of some path 
from s (and edgeTo[w] to the last edge on that path). For any vertex w reachable 
from s, some edge on the shortest path to w is eligible as long as distTo[w] remains 
infinite, so the algorithm continues until the distTo[] value of each vertex reach-
able from s is the length of some path to that vertex. For any vertex v for which the 
shortest path is well-defined, throughout the algorithm distTo[v] is the length of 
some simple path from s to v and is strictly monotonically decreasing. Thus, it can 
decrease at most a finite number of times (once for each simple path from s to v). 
When no edge is eligible, Proposition P applies.

The key reason for considering the optimality conditions and the generic algorithm 
is that the generic algorithm does not specify in which order the edges are to be relaxed. 
Thus, all that we need to do to prove that any algorithm computes shortest paths is to 
prove that it relaxes edges until no edge is eligible.
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Dijkstra’s algorithm In Section 4.3, we discussed Prim’s algorithm for finding 
the minimum spanning tree (MST) of an edge-weighted undirected graph: we build 
the MST by attaching a new edge to a single growing tree at each step. Dijkstra’s algo-
rithm is an analogous scheme to compute an SPT. We begin by initializing dist[s] to 
0 and all other distTo[] entries to positive infinity, then we relax and add to the tree a 
non-tree vertex with the lowest distTo[] value, continuing until all vertices are on the tree 
or no non-tree vertex has a finite distTo[] value.

proposition r. Dijkstra’s algorithm solves the single-source shortest-paths prob-
lem in edge-weighted digraphs with nonnegative weights.

proof: If v is reachable from the source, every edge v->w is relaxed exactly once, 
when v is relaxed, leaving distTo[w] <= distTo[v] + e.weight(). This in-
equality holds until the algorithm completes, since distTo[w] can only decrease 
(any relaxation can only decrease a distTo[] value) and distTo[v] never changes 
(because edge weights are nonnegative and we choose the lowest distTo[] value 
at each step, no subsequent relaxation can set any distTo[] entry to a lower value 
than distTo[v]). Thus, after all vertices reachable from s have been added to the 
tree, the shortest-paths optimality conditions hold, and Proposition P applies.

Data structures  To implement Dijkstra’s algorithm we add to our distTo[] and 
edgeTo[] data structures an index priority queue pq to keep track of vertices that are 
candidates for being the next to be relaxed. Recall that an IndexMinPQ allows us to as-
sociate indices with keys (priorities) and to remove and return the index corresponding 

to the lowest key. For this application, we always associ-
ate a vertex v with distTo[v], and we have a direct and 
immediate implementation of Dijkstra’s algorithm as 
stated. Moreover, it is immediate by induction that the 
edgeTo[] entries corresponding to reachable vertices 
form a tree, the SPT. 

Alternative viewpoint  Another way to understand 
the dynamics of the algorithm derives from the proof, 
diagrammed at left: we have the invariant that distTo[] 
entries for tree vertices are shortest-paths distances and 
for each vertex w on the priority queue, distTo[w] is 
the weight of a shortest path from s to w that uses only 

Dijkstra’s shortest-paths algorithm

s

wv

crossing edge
on shortest path from s

having just one crossing edge
must be on SPT

tree edge
(black)

crossing edge
(red)
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intermediate vertices in the tree and ends in the 
crossing edge edgeTo[w]. The distTo[] entry for 
the vertex with the smallest priority is a shortest-
path weight, not smaller than the shortest-path 
weight to any vertex already relaxed, and not larger 
than the shortest-path weight to any vertex not yet 
relaxed. That vertex is next to be relaxed. Reachable 
vertices are relaxed in order of the weight of their 
shortest path from s. 

The figure at right is a trace for our small sample 
graph tinyEWD.txt. For this example, the algo-
rithm builds the SPT as follows:

n	 Adds 0 to the tree and its adjacent vertices 2 
and 4 to the priority queue. 

n	 Removes 2 from the priority queue, adds 
0->2 to the tree, and adds 7 to the priority 
queue.

n	 Removes 4 from the priority queue, adds 
0->4 to the tree, and adds 5 to the priority 
queue. Edge 4->7 is ineligible.

n	 Removes 7 from the priority queue, adds 
2->7 to the tree, and adds 3 to the priority 
queue. Edge 7->5 is ineligible. 

n	 Removes 5 from the priority queue, adds 
4->5 to the tree, and adds 1 to the priority 
queue. Edge 5->7 is ineligible.

n	 Removes 3 from the priority queue, adds 
7->3 to the tree, and adds 6 to the priority 
queue.

n	 Removes 1 from the priority queue and adds 
5->1 to the tree. Edge 1->3  is ineligible. 

n	 Removes 6 from the priority queue and adds 
3->6 to the tree. 

Vertices are added to the SPT in increasing order of 
their distance from the source, as indicated by the 
red arrows at the right edge of the diagram.

Trace of Dijkstra’s algorithm

0   
 1  5->1 0.32
 2  0->2 0.26
 3  7->3 0.39
 4  0->4 0.38
 5  4->5 0.35
6  3->6 0.52

 7  2->7 0.34 

0   
 1  5->1 0.32
 2  0->2 0.26
 3  7->3 0.39
 4  0->4 0.38
 5  4->5 0.35
6  3->6 0.52   

 7  2->7 0.34 

0   
1  5->1 0.32 

 2  0->2 0.26
 3  7->3 0.39
 4  0->4 0.38
 5  4->5 0.35
6   
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The implementation of Dijkstra’s algorithm in DijkstraSP (Algorithm 4.9) is a ren-
dition in code of the one-sentence description of the algorithm, enabled by adding one 
statement to relax() to handle two cases: either the to() vertex on an edge is not yet 
on the priority queue, in which case we use insert() to add it to the priority queue, or 
it is already on the priority queue and its priority lowered, in which case changeKey() 
does so.

proposition r (continued). Dijkstra’s algorithm uses extra space proportional to 
V and time proportional to E log V (in the worst case) to solve the single-source 
shortest paths problem in an edge-weighted digraph with E edges and V vertices.

proof: Same as for Prim’s algorithm (see Proposition N).

As we have indicated, another way to think about Dijkstra’s algorithm is to 
compare it to Prim’s MST algorithm from Section 4.3 (see page 622). Both algorithms 
build a rooted tree by adding an edge to a growing tree: Prim’s adds next the non-tree 
vertex that is closest to the tree; Dijkstra’s adds next the non-tree vertex that is closest 
to the source. The marked[] array is not needed, because the condition !marked[w] 
is equivalent to the condition that distTo[w] is infinite. In other words, switching to 
undirected graphs and edges and omitting the references to distTo[v] in the relax() 
code in Algorithm 4.9 gives an implementation of Algorithm 4.7, the eager version 
of Prim’s algorithm (!). Also, a lazy version of Dijkstra’s algorithm along the lines of 
LazyPrimMST (page 619) is not difficult to develop. 

Variants  Our implementation of Dijkstra’s algorithm, with suitable modifications, is 
effective for solving other versions of the problem, such as the following:

Single-source shortest paths in undirected graphs  Given an edge-weighted un-
directed graph and a source vertex s, support queries of the form Is there a path 
from s to a given target vertex v? If so, find a shortest such path (one whose total 
weight is minimal).

The solution to this problem is immediate if we view the undirected graph as a digraph. 
That is, given an undirected graph, build an edge-weighted digraph with the same ver-
tices and with two directed edges (one in each direction) corresponding to each edge 
in the graph. There is a one-to-one correspondence between paths in the digraph and 
paths in the graph, and the costs of the paths are the same—the shortest-paths prob-
lems are equivalent.
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aLgorIthM 4.9 Dijkstra’s shortest-paths algorithm

public class DijkstraSP 
{ 
   private DirectedEdge[] edgeTo; 
   private double[] distTo; 
   private IndexMinPQ<Double> pq;

   public DijkstraSP(EdgeWeightedDigraph G, int s) 
   { 
      edgeTo = new DirectedEdge[G.V()]; 
      distTo = new double[G.V()]; 
      pq = new IndexMinPQ<Double>(G.V());

      for (int v = 0; v < G.V(); v++) 
         distTo[v] = Double.POSITIVE_INFINITY; 
      distTo[s] = 0.0;

      pq.insert(s, 0.0); 
      while (!pq.isEmpty()) 
         relax(G, pq.delMin()) 
   }

   private void relax(EdgeWeightedDigraph G, int v) 
   { 
      for (DirectedEdge e : G.adj(v)) 
      { 
         int w = e.to(); 
         if (distTo[w] > distTo[v] + e.weight()) 
         { 
            distTo[w] = distTo[v] + e.weight(); 
            edgeTo[w] = e; 
            if (pq.contains(w)) pq.changeKey(w, distTo[w]); 
            else                pq.insert(w, distTo[w]); 
         } 
      } 
  }

   public double distTo(int v)           // standard client query methods 
   public boolean hasPathTo(int v)       //   for SPT implementatations 
   public Iterable<Edge> pathTo(int v)   //   (See page 649.)
}

This implementation of Dijkstra’s algorithm grows the SPT by adding an edge at a time, always 
choosing the edge from a tree vertex to a non-tree vertex whose destination w is closest to s. 
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Source-sink shortest paths  Given an edge-weighted digraph, a source vertex s,  
and a target vertex t, find the shortest path from s to t.

To solve this problem, use Dijkstra’s algorithm, but terminate the search as soon as t 
comes off the priority queue.

All-pairs shortest paths  Given an edge-weighted digraph, support queries of the 
form Given a source vertex s and a target vertex t, is there a path from s to t?  If so, 
find a shortest such path (one whose total weight is minimal).

The surprisingly compact implementation at left below solves the all-pairs shortest 
paths problem, using time and space proportional to E V log V. It builds an array of 
DijkstraSP objects, one for each vertex as the source. To answer a client query, it uses 
the source to access the corresponding single-source shortest-paths object and then 
passes the target as argument to the query.

Shortest paths in Euclidean graphs  Solve the single-source, source-sink, and 
all-pairs shortest-paths problems in graphs where vertices are points in the plane 
and edge weights are proportional to Euclidean distances between vertices.

A simple modification considerably speeds up Dijkstra’s algorithm in this case (see 
Exercise 4.4.27).

The figures on the faCING page show the emergence of the SPT as computed by Di-
jkstra’s algorithm for the Euclidean graph defined by our test file mediumEWD.txt (see 

page 645) for several different sources. Re-
call that line segments in this graph rep-
resent directed edges in both directions. 
Again, these figures illustrate a fascinat-
ing dynamic process.

Next, we consider shortest-paths algo-
rithms for acyclic edge-weighted graphs, 
where we can solve the problem in linear 
time (faster than Dijkstra’s algorithm) 
and then for edge-weighted digraphs 
with negative weights, where Dijkstra’s 
algorithm does not apply.

public class DijkstraAllPairsSP 
{ 
   private DijkstraSP[] all;

   DijkstraAllPairsSP(EdgeWeightedDigraph G) 
   { 
      all = new DijkstraSP[G.V()] 
      for (int v = 0; v < G.V(); v++) 
         all[v] = new DijkstraSP(G, v); 
   }

   Iterable<DirectedEdge> path(int s, int t) 
   {  return all[s].pathTo(t);  }

   double dist(int s, int t) 
   {  return all[s].distTo(t);  }

}

all-pairs shortest paths
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Dijkstra’s algorithm (250 vertices, various sources)
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Acyclic edge-weighted digraphs For many natural applications, edge-weighted 
digraphs are known to have no directed cycles. For economy, we use the equivalent 
term edge-weighted DAG to refer to an acyclic edge-weighted digraph. We now consider 
an algorithm for finding shortest paths that is simpler and faster than Dijkstra’s algo-
rithm for edge-weighted DAGs. Specifically, it

n	 Solves the single-source problem in linear time 
n	 Handles negative edge weights
n	 Solves related problems, such as finding longest paths.

These algorithms are straightforward extensions to the algorithm for topological sort 
in DAGs that we considered in Section 4.2. 

Specifically, vertex relaxation, in combi-
nation with topological sorting, immedi-
ately presents a solution to the single-source 
shortest-paths problem for edge-weighted 
DAGs. We initialize distTo[s] to 0 and all 
other distTo[] values to infinity, then relax 
the vertices, one by one, taking the vertices 
in topological order. An argument similar 
to (but simpler than) the argument that we 
used  for Dijkstra’s algorithm on page 652 es-
tablishes the effectiveness of this method:

proposition s. By relaxing vertices in topological order, we can solve the single-
source shortest-paths problem for edge-weighted DAGs in time proportional to 
E + V.

proof: Every edge v->w is relaxed exactly once, when v is relaxed, leaving 
distTo[w] <= distTo[v] + e.weight(). This inequality holds until the algo-
rithm completes, since distTo[v] never changes (because of the topological or-
der, no edge pointing to v will be processed after v is relaxed) and distTo[w] can 
only decrease (any relaxation can only decrease a distTo[] value). Thus, after all 
vertices reachable from s have been added to the tree, the shortest-paths optimal-
ity conditions hold, and Proposition Q applies. The time bound is immediate: 
Proposition G on page 583 tells us that the topological sort takes time proportional 
to E + V, and  the second relaxation pass completes the job by relaxing each edge 
once, again in time proportional to E + V.

An acyclic edge-weighted digraph with an SPT

8
13
5 4  0.35 
4 7  0.37 
5 7  0.28 
5 1  0.32 
4 0  0.38
0 2  0.26 
3 7  0.39 
1 3  0.29 
7 2  0.34
6 2  0.40 
3 6  0.52
6 0  0.58
6 4  0.93 

tinyEWDAG.txt
V

E
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The figure at right is a trace for a sample acyclic 
edge-weighted digraph tinyEWDAG.txt. For this exam-
ple, the algorithm builds the shortest-paths tree from 
vertex 5 as follows:

n	 Does a DFS to discover the topological order 
5 1 3 6 4 7 0 2.

n	 Adds to the tree 5 and all edges leaving it.
n	 Adds to the tree 1 and 1->3.
n	 Adds to the tree 3 and 3->6, but not 3->7, which 

is ineligible.
n	 Adds to the tree 6 and edges 6->2 and 6->0, but 

not 6->4, which is ineligible.
n	 Adds to the tree 4 and 4->0, but not 4->7, which 

is ineligible. Edge 6->0 becomes ineligible.
n	 Adds to the tree 7 and 7->2. Edge 6->2 becomes 

ineligible.
n	 Adds 0 to the tree, but not its incident edge 0->2, 

which is ineligible.
n	 Adds 2 to the tree.

The addition of 2 to the tree is not depicted; the last 
vertex in a topological sort has no edges leaving it.

The implementation, shown in Algorithm 4.10, 
is a straightforward application of code we have al-
ready considered. It assumes that Topological has 
overloaded methods for the topological sort, using the   
EdgeWeightedDigraph and DirectedEdge APIs of this 
section (see Exercise 4.4.12). Note that our boolean 
array marked[] is not needed in this implementation: 
since we are processing vertices in an acyclic digraph 
in topological order, we never re-encounter a vertex 
that we have already relaxed. Algorithm 4.10 could 
hardly be more efficient: after the topological sort, the 
constructor scans the graph, relaxing each edge exactly 
once. It is the method of choice for finding shortest 
paths in edge-weighted graphs that are known to be 
acyclic.

Proposition S is significant because it pro-
vides a concrete example where the absence of cycles Trace for shortest paths in an edge-weighted DAG 

gray:
ineligible

red: add to tree

thick black: on tree

topological sort
        5 1 3 6 4 7 0 2   edgeTo[]

0   
 1   5->1   
2
3   
 4   5->4
 5   
 6   
 7   5->7  

0   
 1   5->1   
2
 3   1->3
 4   5->4
 5   
 6   
 7   5->7  

0   
 1   5->1   
2
 3   1->3
 4   5->4
 5   
 6   3->6
 7   5->7  

 0   6->0 
 1   5->1   
 2   6->2
 3   1->3
 4   5->4
 5   
 6   3->6
 7   5->7  

 0   4->0 
 1   5->1   
 2   6->2
 3   1->3
 4   5->4
 5   
 6   3->6
 7   5->7  

 0   4->0 
 1   5->1   
 2   7->2
 3   1->3
 4   5->4
 5   
 6   3->6
 7   5->7  

 0   4->0 
 1   5->1   
 2   7->2
 3   1->3
 4   5->4
 5   
 6   3->6
 7   5->7  
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aLgorIthM 4.10 Shortest paths in edge-weighted DAgs

public class AcyclicSP 
{ 
   private DirectedEdge[] edgeTo; 
   private double[] distTo;

   public AcyclicSP(EdgeWeightedDigraph G, int s) 
   { 
      edgeTo = new DirectedEdge[G.V()]; 
      distTo = new double[G.V()];

      for (int v = 0; v < G.V(); v++) 
         distTo[v] = Double.POSITIVE_INFINITY; 
      distTo[s] = 0.0;

      Topological top = new Topological(G);

      for (int v : top.order()) 
         relax(G, v); 
   }

   private void relax(EdgeWeightedDigraph G, int v) 
   // See page 648.

   public double distTo(int v)          // standard client query methods 
   public boolean hasPathTo(int v)      // for SPT implementatations 
   public Iterable<DirectedEdge> pathTo(int v)  //   (See page 649.) 
}

This shortest-paths algorithm for edge-weighted DAGs uses a topological sort (Algorithm 4.5, 
adapted to use EdgeWeightedDigraph and DirectedEdge) to enable it to relax the vertices in topo-
logical order, which is all that is needed to compute shortest paths.

% java AcyclicSP tinyEWDAG.txt 5 
5 to 0 (0.73): 5->4 0.35  4->0 0.38  
5 to 1 (0.32): 5->1 0.32 
5 to 2 (0.62): 5->7 0.28  7->2 0.34 
5 to 3 (0.62): 5->1 0.32  1->3 0.29 
5 to 4 (0.35): 5->4 0.35 
5 to 5 (0.00): 
5 to 6 (1.13): 5->1 0.32  1->3 0.29  3->6 0.52 
5 to 7 (0.28): 5->7 0.28
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considerably simplifies a problem. For shortest paths, the topological-sort-based meth-
od is faster than Dijkstra’s algorithm by a factor proportional to the cost of the priority-
queue operations in Dijkstra’s algorithm. Moreover, the proof of Proposition S does 
not depend on the edge weights being nonnegative, so we can remove that restriction 
for edge-weighted DAGs. Next, we consider implications of this ability to allow nega-
tive edge weights, by considering the use of the shortest-paths model to solve two other 
problems, one of which seems at first blush to be quite removed from graph processing.

Longest paths  Consider the problem of finding the longest path in an edge-weighted 
DAG with edge weights that may be positive or negative. 

Single-source longest paths in edge-weighted DAGs  Given an edge-weighted 
DAG (with negative weights allowed) and a source vertex s, support queries of the 
form: Is there a directed path from s to a given target vertex v? If so, find a longest
such path (one whose total weight is maximal).

The algorithm just considered provides a quick solution to this problem:

proposition t. We can solve the longest-paths problem in edge-weighted DAGs in   
time proportional to E + V.

proof: Given a longest-paths problem, create a copy of the given edge-weighted 
DAG that is identical to the original, except that all edge weights are negated. Then 
the shortest path in this copy is the longest path in the original. To transform the 
solution of the shortest-paths problem to a solution of the longest-paths problem, 
negate the weights in the solution. The running time follows immediately from 
Proposition S.

Using this transformation to develop a class AcyclicLP that finds longest paths in 
edge-weighted DAGs is straightforward. An even simpler way to implement such a 
class is to copy AcyclicSP, then switch the distTo[] initialization to Double.NEGA-
TIVE_INFINITY and switch the sense of the inequality in relax(). Either way, we get 
an efficient solution to the longest-paths problem in edge-weighted DAGs. This result is 
to be compared with the fact that the best known algorithm for finding longest simple 
paths in general edge-weighted digraphs (where edge weights may be negative) requires 
exponential time in the worst case (see Chapter 6)! The possibility of cycles seems to 
make the problem exponentially more difficult.
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The figure at right is a trace of the process 
of finding longest paths in our sample edge-
weighted DAG tinyEWDAG.txt, for comparison 
with the shortest-paths trace for the same DAG 
on page 659. For this example, the algorithm 
builds the longest-paths tree (LPT) from vertex 
5 as follows:

n	 Does a DFS to discover the topological 
order 5 1 3 6 4 7 0 2.

n	 Adds to the tree 5 and all edges leaving it.
n	 Adds to the tree 1 and 1->3.
n	 Adds to the tree 3 and edges 3->6 and 

3->7. Edge 5->7 becomes ineligible.
n	 Adds to the tree 6 and edges 6->2, 6->4, 

and 6->0.
n	 Adds to the tree 4 and edges 4->0 and 

4->7. Edges 6->0 and 3->7 become ineli-
gible.

n	 Adds to the tree 7 and 7->2. Edge 6->2 
becomes ineligible

n	 Adds 0 to the tree, but not 0->2, which is 
ineligible.

n	 Adds 2 to the tree (not depicted).
The longest-paths algorithm processes the verti-
ces in the same order as the shortest-paths algo-
rithm but produces a completely different result.

now ineligible

Trace for longest paths in an acyclic network  

topological sort
        5 1 3 6 4 7 0 2    edgeTo[]

0   
 1   5->1   
2
3   
 4   5->4
 5   
 6   
 7   5->7  

0   
 1   5->1   
2
 3   1->3
 4   5->4
 5   
 6   
 7   5->7  

0   
 1   5->1   
2
 3   1->3
 4   5->4
 5   
 6   3->6
 7   3->7  

 0   6->0 
 1   5->1   
 2   6->2
 3   1->3
 4   6->4
 5   
 6   3->6
 7   3->7  

 0   4->0 
 1   5->1   
 2   6->2
 3   1->3
 4   6->4
 5   
 6   3->6
 7   4->7  

 0   4->0 
 1   5->1   
 2   7->2
 3   1->3
 4   6->4
 5   
 6   3->6
 7   4->7  

 0   4->0 
 1   5->1   
 2   7->2
 3   1->3
 4   6->4
 5   
 6   3->6
 7   4->7  
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Parallel job scheduling  As an example application, we revisit the class of scheduling
problems that we first considered in Section 4.2 (page 574). Specifically, consider the 
following scheduling problem (differences from the problem on page 575 are italicized):

Parallel precedence-constrained scheduling  Given a set of jobs of specified du-
ration to be completed, with precedence constraints that specify that certain jobs 
have to be completed before certain other jobs are begun, how can we schedule 
the jobs on identical processors (as many as needed ) such that they are all com-
pleted in the minimum amount of time while still respecting the constraints?

Implicit in the model of Section 4.2 is a single processor: we schedule the jobs in to-
pological order and the total time required is the total duration of the jobs. Now, we 
assume that we have sufficient processors to perform as many jobs as possible, limited 
only by precedence constraints. Again, thousands or even millions of jobs might be 
involved, so we require an efficient algorithm. Remarkably, a linear-
time algorithm is available—an approach known as the critical path 
method demonstrates that the problem is equivalent to a longest-
paths problem in an edge-weighted DAG. This method has been used 
successfully in countless industrial applications.

We focus on the earliest possible time that we can schedule each 
job, assuming that any available processor can handle the job for its 
duration. For example, consider the problem instance specified in 
the table at right. The solution below shows that 173.0 is the mini-
mum possible completion time for any schedule for this problem: the 
schedule satisfies all the constraints, and no schedule can complete 
before time 173.0 because of the job sequence 0->9->6->8->2. This 
sequence is known as a critical path for this problem. Every sequence 
of jobs, each constrained to follow the job just preceding it in the se-
quence, represents a lower bound on the length of the schedule. If we define the length 
of such a sequence to be its earliest possible completion time (total of the durations of 
its jobs), the longest sequence is known as a critical path because any delay in the start-
ing time of any job delays the best achievable completion time of the entire project.

A job-scheduling problem

0    41.0    1  7  9

 1    51.0    2 

 2    50.0    

 3    36.0    

 4    38.0    

 5    45.0    

 6    21.0    3  8

 7    32.0    3  8

 8    32.0    2

 9    29.0    4  6

job duration must complete
before

Parallel job-scheduling solution

0

4

3

5

9

7

6 8 2

1

41 700 91 123 173
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Definition. The critical path method for parallel scheduling is to proceed as follows: 
Create an edge-weighted DAG with a source s, a sink t, and two vertices for each 
job (a start vertex and an end vertex). For each job, add an edge from its start vertex 
to its end vertex with weight equal to its duration. For each precedence constraint 
v->w, add a zero-weight edge from the end vertex corresponding to v to the begin-
ning vertex corresponding to w. Also add zero-weight edges from the source to each 
job’s start vertex and from each job’s end vertex to the sink. Now, schedule each job 
at the time given by the length of its longest path from the source. 

The figure at the top of this page depicts this correspondence for our sample problem, 
and the figure at the bottom of the page gives the longest-paths solution. As specified, 
the graph has three edges for each job (zero-weight edges from the source to the start 
and from the finish to the sink, and an edge from start to finish) and one edge for each 
precedence constraint. The class CPM on the facing page is a straightforward implemen-
tation of the critical path method. It transforms any instance of the job-scheduling 
problem into an instance of the longest-paths problem in an edge-weighted DAG, uses 
AcyclicLP to solve it, then prints the job start times and schedule finish time. 

Edge-weighted DAG representation of job scheduling

41
0 0

51
1 1

50
2 2

36
3 3

38
4 4

45
5 5

21
6 6

32
7 7

32
8 8
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9 9
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Longest-paths solution to job-scheduling example
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Critical path method for parallel precedence-constrained job scheduling

public class CPM 
{ 
   public static void main(String[] args) 
   { 
      int N = StdIn.readInt(); StdIn.readLine(); 
      EdgeWeightedDigraph G; 
      G = new EdgeWeightedDigraph(2*N+2);

      int s = 2*N, t = 2*N+1; 
      for (int i = 0; i < N; i++) 
      { 
         String[] a = StdIn.readLine().split("\\s+"); 
         double duration = Double.parseDouble(a[0]); 
         G.addEdge(new DirectedEdge(i, i+N, duration)); 
         G.addEdge(new DirectedEdge(s, i, 0.0)); 
         G.addEdge(new DirectedEdge(i+N, t, 0.0)); 
         for (int j = 1; j < a.length; j++) 
         { 
            int successor = Integer.parseInt(a[j]); 
            G.addEdge(new DirectedEdge(i+N, successor, 0.0)); 
         } 
      }

      AcyclicLP lp = new AcyclicLP(G, s);

      StdOut.println("Start times:"); 
      for (int i = 0; i < N; i++) 
         StdOut.printf("%4d: %5.1f\n", i, lp.distTo(i)); 
      StdOut.printf("Finish time: %5.1f\n", lp.distTo(t)); 
  }

}

This implementation of the critical path method for job scheduling 
reduces the problem directly to the longest-paths problem in edge-
weighted DAGs. It builds an edge-weighted digraph (which must be 
a DAG) from the job-scheduling problem specification, as prescribed 
by the critical path method, then uses AcyclicLP (see Proposition T) 
to find the longest-paths tree and to print the longest-paths lengths, 
which are precisely the start times for each job.

% java CPM < jobsPC.txt 
Start times: 
   0:   0.0 
   1:  41.0 
   2: 123.0 
   3:  91.0 
   4:  70.0 
   5:   0.0 
   6:  70.0 
   7:  41.0 
   8:  91.0 
   9:  41.0 
Finish time: 173.0

% more jobsPC.txt 
10 
41.0  1 7 9 
51.0  2 
50.0 
36.0 
38.0 
45.0 
21.0  3 8 
32.0  3 8 
32.0  2 
29.0  4 6
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proposition U. The critical path method solves the parallel precedence-
constrained scheduling problem in linear time.

proof: Why does the CPM approach work? The correctness of the algo-
rithm rests on two facts. First, every path in the DAG is a sequence of job 
starts and job finishes, separated by zero-weight precedence constraints—
the length of any path from the source s to any vertex v in the graph is a 
lower bound on the start/finish time represented by v, because we could 
not do better than scheduling those jobs one after another on the same ma-
chine. In particular, the length of the longest path from s to the sink t is a 
lower bound on the finish time of all the jobs. Second, all the start and finish 
times implied by longest paths are feasible—every job starts after the finish 
of all the jobs where it appears as a successor in a precedence constraint, 
because the start time is the length of the longest path from the source to it. 
In particular, the length of the longest path from s to t is an upper bound 
on the finish time of all the jobs. The linear-time performance is immediate   
from Proposition T.

Parallel job scheduling with relative deadlines  Conventional deadlines are 
relative to the start time of the first job. Suppose that we allow an additional 
type of constraint in the job-scheduling problem to specify 
that a job must begin before a specified amount of time has 
elapsed, relative to the start time of another job. Such con-
straints are commonly needed in time-critical manufactur-
ing processes and in many other applications, but they can 
make the job-scheduling problem considerably more diffi-
cult to solve. For example, as shown at left, suppose that we 
need to add a constraint to our example that job 2 must start 
no later than 12 time units after job 4 starts. This deadline is actually a constraint 
on the start time of job 4: it must be no earlier than 12 time units before the start 
time of job 2. In our example, there is room in the schedule to meet the deadline: 
we can move the start time of job 4 to 111, 12 time units before the scheduled 
start time of job 2. Note that, if job 4 were a long job, this change would increase 
the finish time of the whole schedule. Similarly, if we add to the schedule a dead-
line that job 2 must start no later than 70 time units after job 7 starts, there is 
room in the schedule to change the start time of job 7 to 53, without having to 
reschedule jobs 3 and 8. But if we add a deadline that job 4 must start no later 

Added deadlines
for job scheduling

2    12.0    4
 2    70.0    7
 4    80.0    0

job time
relative

to

Relative deadlines
in job scheduling

0     0.0
 1    41.0
 2   123.0
 3    91.0
 4    70.0
 5     0.0
 6    70.0
 7    41.0
 8    91.0
 9    41.0 

job

0     0.0
 1    41.0
 2   123.0
 3    91.0
4   111.0
 5     0.0
 6    70.0
 7    41.0
 8    91.0
 9    41.0 

job start

start

start

0     0.0
 1    41.0
 2   123.0
 3    91.0
 4   111.0
 5     0.0
 6    70.0
7    53.0

 8    91.0
 9    41.0 

job

infeasible!

original

2 by 12.0 after 4

2 by 70.0 after 7

4 by  80.0 after 0
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than 80 time units after job 0, the schedule becomes infeasible: the constraints that 4 
must start no more than 80 time units after job 0 and that job 2 must start no more 
than 12 units after job 4 imply that job 2 must start no more than 92 time units after job 
0, but job 2 must start at least 123 time units after job 0 because of the chain 0 (41 time 
units) precedes 9 (29 time units) precedes 6 (21 time units) precedes 8 (32 time units) 
precedes 2. Adding more deadlines of course multiplies the possibilities and turns an 
easy problem into a difficult one.

proposition v. Parallel job scheduling with relative deadlines is a shortest-paths 
problem in edge-weighted digraphs (with cycles and negative weights allowed).

proof: Use the same construction as in Proposition U, adding an edge for each 
deadline: if job v has to start within d time units of the start of job w, add an edge 
from v to w with negative weight d. Then convert to a shortest-paths problem by 
negating all the weights in the digraph. The proof of correctness applies, provided 
that the schedule is feasible. Determining whether a schedule is feasible is part of the 
computational burden, as you will see.

This example illustrates that negative weights can play a critical role in practical ap-
plication models. It says that if we can find an efficient solution to the shortest-paths 
problem with negative weights, then we can find an efficient solution to the parallel job 
scheduling problem with relative deadlines. Neither of the algorithms we have consid-
ered can do the job: Dijkstra’s algorithm requires that weights be positive (or zero), and 
Algorithm 4.10 requires that the digraph be acyclic. Next, we consider the problem of 
coping with negative edge weights in digraphs that are not necessarily acyclic.

zero-weight 
edge from each

job finish

zero-weight 
edge to each

job start

Edge-weighted digraph representation of parallel precedence-constrained scheduling with relative deadlines

41
0 0

51
1 1

50
2 2

36
3 3

38

-12

-70

-80

4 4

45
5 5

21
6 6

32
7 7

32
8 8

29 
9 9

deadline

s

t
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Shortest paths in general edge-weighted digraphs Our job-scheduling-
with-deadlines example just discussed demonstrates that negative weights are not 
merely a mathematical curiosity; on the contrary, they significantly extend the applica-
bility of the shortest-paths problem as a problem-solving model. Accordingly we now 
consider algorithms for edge-weighted digraphs that may have both cycles and negative 

weights. Before doing so, we consider some ba-
sic properties of such digraphs to reset our in-
tuition about shortest paths. The figure at left is 
a small example that illustrates the effects of in-
troducing negative weights on a digraph’s short-
est paths. Perhaps the most important effect is 
that when negative weights are present, low-
weight shortest paths tend to have more edges 
than higher-weight paths. For positive weights, 
our emphasis was on looking for shortcuts; but 
when negative weights are present, we seek de-
tours that use negative-weight edges. This effect 
turns our intuition in seeking “short’’ paths into 
a liability in understanding the algorithms, so 
we need to suppress that line of intuition and 
consider the problem on a basic abstract level.

Strawman I  The first idea that suggests itself is 
to find the smallest (most negative) edge weight, 
then to add the absolute value of that number 
to all the edge weights to transform the digraph 
into one with no negative weights. This naive 
approach does not work at all, because shortest 

paths in the new digraph bear little relation to shortest paths in the old one. The more 
edges a path has, the more it is penalized by this transformation (see Exercise 4.4.14).

Strawman II  The second idea that suggests itself is to try to adapt Dijkstra’s algorithm 
in some way. The fundamental difficulty with this approach is that the algorithm de-
pends on examining vertices in increasing order of their distance from the source. The 
proof in Proposition R that the algorithm is correct assumes that adding an edge to a 
path makes that path longer. But any edge with negative weight makes the path shorter, 
so that assumption is unfounded (see Exercise 4.4.14). 

Negative cycles  When we consider digraphs that could have negative edge weights, 
the concept of a shortest path is meaningless if there is a cycle in the digraph that 

An edge-weighted digraph with negative weights

8
15
4->5  0.35 
5->4  0.35 
4->7  0.37 
5->7  0.28 
7->5  0.28 
5->1  0.32 
0->4  0.38
0->2  0.26 
7->3  0.39 
1->3  0.29 
2->7  0.34
6->2 -1.20 
3->6  0.52
6->0 -1.40
6->4 -1.25 

tinyEWDn.txt

shortest-paths tree from 0    edgeTo[] distTo[]
0    
 1   5->1     0.93
 2   0->2     0.26
 3   7->3     0.99
 4   6->4     0.26  
 5   4->5     0.61  
 6   3->6     1.51 
 7   2->7     0.60   

negative weights
are dashed lines

V
E
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has negative weight. For example, consid-
er the digraph at left, which is identical to 
our first example except that edge 5->4 has 
weight -.66. Then, the weight of the cycle 
4->7->5->4 is
       .37 + .28 - .66 = -.01 

We can spin around that cycle to generate 
arbitrarily short paths! Note that it is not 
necessary for all the edges on a directed cy-
cle to be of negative weight; what matters is 
the sum of the edge weights. 

Definition. A negative cycle in an edge-
weighted digraph is a directed cycle whose 
total weight (sum of the weights of its 
edges) is negative.

Now, suppose that some vertex on a path from s to a 
reachable vertex v is also on a negative cycle. In this case, 
the existence of a shortest path from s to v would be a 
contradiction, because we could use the cycle to construct 
a path with weight lower than any given value. In other 
words, shortest paths can be an ill-posed problem if nega-
tive cycles are present.

proposition W. There exists a shortest path from s 
to v in an edge-weighted digraph if and only if there 
exists at least one directed path from s to v and no 
vertex on any directed path from s to v is on a nega-
tive cycle. 

proof: See discussion above and Exercise 4.4.29.

Note that the requirement that shortest paths have no 
vertices on negative cycles implies that shortest paths are 
simple and that we can compute a shortest-paths tree for 
such vertices, as we have done for positive edge weights. 

An edge-weighted digraph with a negative cycle

8
15
4 5  0.35 
5 4 -0.66 
4 7  0.37 
5 7  0.28 
7 5  0.28 
5 1  0.32 
0 4  0.38
0 2  0.26 
7 3  0.39 
1 3  0.29 
2 7  0.34
6 2  0.40 
3 6  0.52
6 0  0.58
6 4  0.93 

0->4->7->5->4->7->5...->1->3->6 
shortest path from 0 to 6

tinyEWDnc.txt
V

E

Shortest-paths possibilities

red outline: no shortest path from s exists

black outline: 
shortest path
 from s exists

white: reachable from s

gray: not reachable from s

s

negative cycle
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Strawman III  Whether or not there are negative cycles, there exists a shortest simple
path connecting the source to each vertex reachable from the source. Why not define 
shortest paths so that we seek such paths? Unfortunately, the best known algorithm for 
solving this problem takes exponential time in the worst case (see Chapter 6). Gener-
ally, we consider such problems “too difficult to solve” and study simpler versions. 

Thus, a well-posed and tractable version of the shortest paths problem in edge-
weighted digraphs is to require algorithms to

n	 Assign a shortest-path weight of ∞ to vertices that are not reachable from the 
source

n	 Assign a shortest-path weight of ∞ to vertices that are on a path from the 
source that has a vertex that is on a negative cycle

n	 Compute the shortest-path weight (and tree) for all other vertices
Throughout this section, we have been placing restrictions on the shortest-paths prob-
lem so that we can develop algorithms to solve it. First, we disallowed negative weights, 
then we disallowed directed cycles. We now adopt these less stringent restrictions and 
focus on the following problems in general digraphs:

Negative cycle detection  Does a given edge-weighted digraph have a negative 
cycle? If it does, find one such cycle.

Single-source shortest paths when negative cycles are not reachable  Given an 
edge-weighted digraph and a source s with no negative cycles reachable from s, 
support queries of the form Is there a directed path from s to a given target vertex v? 
If so, find a shortest such path (one whose total weight is minimal).

To summarize: while shortest paths in digraphs with negative cycles is an ill-posed 
problem and we cannot efficiently solve the problem of finding simple shortest paths 
in  such digraphs, we can identify negative cycles in practical situations. For example, 
in a job-scheduling-with-deadlines problem, we might expect negative cycles to be 
relatively rare: constraints and deadlines derive from logical real-world constraints, so 
any negative cycles are likely to stem from an error in the problem statement. Finding 
negative cycles, correcting errors, and then finding the schedule in a problem with no 
negative cycles is a reasonable way to proceed. In other cases, finding a negative cycle is 
the goal of the computation. The following approach, developed by R. Bellman and L. 
Ford in the late 1950s, provides a simple and effective basis for attacking both of these 
problems and is also effective for digraphs with positive weights:
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proposition x. (bellman-Ford algorithm) The following method solves the single-
source shortest-paths problem from a given source s for any edge-weighted di-
graph with V vertices and no negative cycles reachable from s: Initialize distTo[s] 
to 0 and all other distTo[] values to infinity. Then, considering the digraph’s edges 
in any order, relax all edges. Make V such passes.

proof: For any vertex t that is reachable from s consider a specific shortest path 
from s to t: v0->v1->...->vk, where v0 is s and vk is t. Since there are no negative 
cycles, such a path exists and k can be no larger than V1. We show by induction 
on i that after the ith pass the algorithm computes a shortest path from s to vi. The 
base case (i = 0) is trivial. Assuming the claim to be true for i, v0->v1->...->vi is 
a shortest path from s to vi, and distTo[vi] is its length. Now, we relax every edge 
in the ith pass, including vi->vi+1, so distTo[vi+1] is no greater than distTo[vi] 
plus the weight of vi->vi+1.  Now, after the ith pass, distTo[vi+1] must be equal 
to distTo[vi] plus the weight of vi->vi+1. It cannot be greater because we relax 
every edge in the ith pass, in particular vi->vi+1, and it cannot be less because that 
is the length of v0->v1->...->vi+1, a shortest path. Thus the algorithm computes a 
shortest path from s to vi+1 after the (i+1)st pass. 

proposition W (continued). The Bellman-Ford algorithm takes time proportional 
to EV and extra space proportional to V.

proof: Each of the V passes relaxes E edges.

This method is very general, since it does not specify the order in which the edges are 
relaxed. We now restrict attention to a less general method where we always relax all 
the edges leaving any vertex (in any order). The following code exhibits the simplicity 
of the approach:

for (int pass = 0; pass < G.V(); pass++) 
   for (v = 0; v < G.V(); v++) 
      for (DirectedEdge e : G.adj(v)) 
         relax(e);

We do not consider this version in detail because it always relaxes VE edges, and a 
simple modification makes the algorithm much more efficient for typical applications.
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Queue-based Bellman-Ford  Specifically, we 
can easily determine a priori that numerous 
edges are not going to lead to a successful 
relaxation in any given pass: the only edges 
that could lead to a change in distTo[] are 
those leaving a vertex whose distTo[] value 
changed in the previous pass. To keep track of 
such vertices, we use a FIFO queue. The op-
eration of the algorithm for our standard ex-
ample with positive weights is shown at right. 
Shown at the left of the figure are the queue 
entries for each pass (in red), followed by the 
queue entries for the next pass (in black). We 
start with the source on the queue and then 
compute the SPT as follows:

n	 Relax 1->3 and put 3 on the queue.
n	 Relax 3->6 and put 6 on the queue.
n	 Relax 6->4, 6->0, and 6->2 and put 4, 

0, and 2 on the queue.
n	 Relax 4->7 and 4->5 and put 7 and 5 on 

the queue. Then relax 0->4 and 0->2, 
which are ineligible. Then relax 2->7 
(and recolor 4->7).

n	 Relax 7->5 (and recolor 4->5) but do 
not put 5 on the queue (it is already 
there). Then relax 7->3, which is ineli-
gible. Then relax 5->1,  5->4, and 5->7, 
which are ineligible, leaving the queue 
empty. 

Implementation  Implementing the Bell-
man-Ford algorithm along these lines requires 
remarkably little code, as shown in Algo-
rithm 4.11. It is based on two additional data 
structures:

n	 A queue queue of vertices to be relaxed
n	 A vertex-indexed boolean array onQ[] 

that indicates which vertices are on the 
queue, to avoid duplicates

Trace of the Bellman-Ford algorithm

source

queue vertices for
each phase are in red

recolored edge

red: this pass

black: next pass

   edgeTo[]
0            

 1         
 2   
 3   1->3  
4    

 5    
 6    
 7    

 1
 3

   edgeTo[]
0            

 1         
 2   
3   1->3  
4    

 5    
6   3->6     

 7    

 3
 6

   edgeTo[]
0   6->0   

 1         
2   6->2  
3   1->3  

 4   6->4     
 5    
 6   3->6     
 7    

 6
 4
 0
 2

   edgeTo[]
0   6->0  

 1        
 2   6->2 
 3   1->3 
 4   6->4    
5   4->5    

 6   3->6 
 7   2->7      

 4
0
2
 7
 5     

   edgeTo[]
0   6->0  

 1        
 2   6->2  
 3   1->3 
 4   6->4   
5   7->5     

 6   3->6    
7   2->7     

 7
5     
      

   edgeTo[]
0   6->0   

 1        
 2   6->2 
 3   1->3
 4   6->4   
 5   7->5    
 6   3->6   
 7   2->7     

queue
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We start by putting the source s on the queue, then enter a loop where we take a vertex 
off the queue and relax it. To add vertices to the queue, we augment our relax() imple-
mentation from page 648 to put the vertex pointed to by any edge that successfully
relaxes onto the queue, as shown in the code below. The data structures ensure that

n	 Only one copy of each vertex 
appears on the queue

n	 Every vertex whose edgeTo[] 
and distTo[] values change in 
some pass is processed in the 
next pass

To complete the implementation, we 
need to ensure that the algorithm ter-
minates after V passes. One way to 
achieve this end is to explicitly keep 
track of the passes. Our implemen-
tation BellmanFordSP (Algorithm 
4.11) uses a different approach that 
we will consider in detail on page 
677: it checks for negative cycles in
the subset of digraph edges in 
edgeTo[] and terminates if it finds 
one. 

proposition Y. The queue-based implementation of the Bellman-Ford algorithm 
solves the single-source shortest-paths problem from a given source s (or finds a 
negative cycle reachable from s) for any edge-weighted digraph with E edges and V
vertices, in time proportional to EV and extra space proportional to V, in the worst 
case.

proof: If there is no negative cycle reachable from s, the algorithm terminates after 
relaxations corresponding to the (V–1)st pass of the generic algorithm described in 
Proposition X (since all shortest paths have fewer than V edges). If there does exist 
a negative cycle reachable from s, the queue never empties (see Exercise 4.4.46). 
If any edge is relaxed during the Vth pass of the generic algorithm described in 
Proposition X, then the edgeTo[] array has a directed cycle and any such cycle is 
a negative cycle (see Exercise 4.4.47). In the worst case, the algorithm mimics the 
generic algorithm and relaxes all E edges in each of V passes.

private void relax(EdgeWeightedDigraph G, int v)
{ 
   for (DirectedEdge e : G.adj(v) 
   { 
      int w = e.to(); 
      if (distTo[w] > distTo[v] + e.weight()) 
      { 
         distTo[w] = distTo[v] + e.weight(); 
         edgeTo[w] = e; 
         if (!onQ[w]) 
         { 
            queue.enqueue(w); 
            onQ[w] = true; 
         } 
      } 
      if (cost++ % G.V() == 0) 
         findNegativeCycle(); 
   }
}

relaxation for Bellman-Ford
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aLgorIthM 4.11 Bellman-Ford algorithm (queue-based)

public class BellmanFordSP 
{ 
   private double[] distTo;               // length of path to v 
   private DirectedEdge[] edgeTo;         // last edge on path to v 
   private boolean[] onQ;                 // Is this vertex on the queue? 
   private Queue<Integer> queue;          // vertices being relaxed 
   private int cost;                      // number of calls to relax() 
   private Iterable<DirectedEdge> cycle;  // negative cycle in edgeTo[]?

   public BellmanFordSP(EdgeWeightedDigraph G, int s) 
   { 
     distTo = new double[G.V()]; 
      edgeTo = new DirectedEdge[G.V()]; 
     onQ = new boolean[G.V()]; 
      queue = new Queue<Integer>(); 
      for (int v = 0; v < G.V(); v++) 
         distTo[v] = Double.POSITIVE_INFINITY; 
      distTo[s] = 0.0; 
      queue.enqueue(s); 
      onQ[s] = true; 
      while (!queue.isEmpty() && !hasNegativeCycle()) 
      { 
         int v = queue.dequeue(); 
         onQ[v] = false; 
         relax(G, v); 
      } 
   }

   private void relax(EdgeWeightedDigraph G, int v) 
   // See page 673.

   public double distTo(int v)          // standard client query methods 
   public boolean hasPathTo(int v)      //   for SPT implementatations 
   public Iterable<Edge> pathTo(int v)  //   (See page 649.)

   private void findNegativeCycle() 
   public boolean hasNegativeCycle() 
   public Iterable<DirectedEdge> negativeCycle() 
   // See page 677.
}

This implementation of the Bellman-Ford algorithm uses a version of relax() that puts vertices 
pointed to by edges that successfully relax on a FIFO queue (avoiding duplicates) and periodically 
checks for a negative cycle in edgeTo[] (see text).
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The queue-based Bellman-Ford algorithm is an effective and 
efficient method for solving the shortest-paths problem that is 
widely used in practice, even for the case when edge weights 
are positive. For example, as shown in the diagram at right, our 
250-vertex example is complete in 14 passes and requires fewer 
path-length compares than Dijkstra’s algorithm for the same 
problem. 

Negative weights  The example on the next page traces the 
progress of the Bellman-Ford algorithm in a digraph with nega-
tive weights. We start with the source s on queue and then com-
pute the SPT as follows:

n	 Relax 0->2 and 0->4 and put 2 and 4 on the queue.
n	 Relax 2->7 and put 7 on the queue. Then relax 4->5 and 

put 5 on the queue. Then relax 4->7, which is ineligible.
n	 Relax 7->3 and 5->1 and put 3 and 1 on the queue. Then 

relax 5->4 and 5->7, which are ineligible.
n	 Relax 3->6 and put 6 on the queue. Then relax 1->3, 

which is ineligible. 
n	 Relax 6->4 and put 4 on the queue. This negative-weight 

edge gives a shorter path to 4, so its edges must be relaxed 
again (they were first relaxed in pass 2). The distances 
to 5 and to 1 are no longer valid but will be corrected in 
later passes.

n	 Relax 4->5 and put 5 on the queue. Then relax 4->7, 
which is still ineligible.

n	 Relax 5->1 and put 1 on the queue. Then relax 5->4 and 
5->7, which are both still ineligible.

n	 Relax 1->3, which is still ineligible, leaving the queue 
empty.

The shortest-paths tree for this example is a single long path 
from 0 to 1. The edges from 4, 5, and 1 are all relaxed twice for 
this example. Rereading the proof of Proposition X in the con-
text of this example is a good way to better understand it.

Bellman-Ford (250 vertices)

4

7

10

13

SPT

vertices on queue in red

 passes
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Trace of the Bellman-Ford algorithm (negative weights)  

source

   edgeTo[] distTo[]
0 
 1             
 2   0->2     0.26
 3
 4   0->4     0.38
 5   4->5     0.73
 6    
 7   2->7     0.60

 2
4
 7
 5

   edgeTo[] distTo[]
0 
 1   5->1     1.05
 2   0->2     0.26
 3   7->3     0.99
 4   0->4     0.38
5   4->5     0.73
 6    
 7   2->7     0.60

 7
5
 3
 1

   edgeTo[] distTo[]
0  
1   5->1     1.05
 2   0->2     0.26
 3   7->3     0.99
 4   0->4     0.38
 5   4->5     0.73
6   3->6     1.51
 7   2->7     0.60

 3
1
 6    

   edgeTo[] distTo[]
0   
 1   5->1     1.05
 2   0->2     0.26
 3   7->3     0.99
 4   6->4     0.26
5   4->5     0.73  
 6   3->6     1.51
 7   2->7     0.60

 6
 4
      

   edgeTo[] distTo[]
0  
1   5->1     1.05            
 2   0->2     0.26
 3   7->3     0.99
 4   6->4     0.26
 5   4->5     0.61         
 6   3->6     1.51   
 7   2->7     0.60    

 4
 5
      

   edgeTo[] distTo[]
0 
 1   5->1     0.93
 2   0->2     0.26
 3   7->3     0.99
 4   6->4     0.26
 5   4->5     0.61
 6   3->6     1.51   
 7   2->7     0.60    

 5
 1
      

4->5  0.35 
5->4  0.35 
4->7  0.37 
5->7  0.28 
7->5  0.28 
5->1  0.32 
0->4  0.38
0->2  0.26 
7->3  0.39 
1->3  0.29 
2->7  0.34
6->2 -1.20 
3->6  0.52
6->0 -1.40
6->4 -1.25 

tinyEWDn.txt

no longer eligible!

queue
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Negative cycle detection  Our implementation BellmanFordSP checks for negative 
cycles to avoid an infinite loop. We can apply the code that does this check to provide 
clients with the capability to check for and extract negative cycles, as well. We do so by 
adding the following methods to the SP API on page 644:

boolean hasNegativeCycle() has a negative cycle?

Iterable<DirectedEdge> negativeCycle()
a negative cycle 
(null if no negative cycles)

Shortest -paths apI extensions for handling negative cycles

Implementing these methods is not difficult, as shown in the code below. After running 
the constructor in BellmanFordSP, the proof of Proposition Y tells us that the digraph 
has a negative cycle reachable from the source if and only if the queue is nonempty after 
the Vth pass through all the edges. Moreover, the subgraph of edges in our edgeTo[] 
array must contain a negative cycle. Accordingly, to implement negativeCycle() we 
build an edge-weighted digraph from the edges in edgeTo[] and look for a cycle in 
that digraph. To find the cycle, we use a version of DirectedCycle from Section 4.2, 
adapted to work for edge-weighted digraphs (see Exercise 4.4.12). We amortize the 
cost of this check by

n	 Adding an instance variable cycle and a private method findNegativeCycle() 
that sets cycle to an iterator for 
the edges of a negative cycle if one 
is found (and to null if none is 
found)

n	 Calling findNegativeCycle() 
after every V edge relaxations

This approach ensures that the loop in 
the constructor terminates. Moreover, 
clients can call hasNegativeCycle() 
to learn whether there is a negative 
cycle reachable from the source and 
negativeCycle() to get one such cycle. 
Adding the capability to detect any neg-
ative cycle in the digraph is also a simple 
extension (see Exercise 4.4.43). 

private void findNegativeCycle() 
{ 
   int V = edgeTo.length; 
   EdgeWeightedDigraph spt; 
   spt = new EdgeWeightedDigraph(V); 
   for (int v = 0; v < V; v++) 
      if (edgeTo[v] != null) 
         spt.addEdge(edgeTo[v]);

   EdgeWeightedCycleFinder cf; 
   cf = new EdgeWeightedCycleFinder(spt);

   cycle = cf.cycle(); 
}

public boolean hasNegativeCycle() 
{  return cycle != null;  }

public Iterable<DirectedEdge> negativeCycle() 
{  return cycle;  }

negative cycle detection methods for Bellman-Ford algorithm
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The example below traces the progress of the Bellman-Ford algorithm in a digraph 
with a negative cycle. Passes 0 (not shown) and 1 are the same as for tinyEWDn.txt. In 
pass 2, after relaxing 7->3 and 5->1 and putting 3 and 1 on queue, it relaxes the neg-
ative-weight edge 5->4. This relaxation sets edgeTo[4] to 5->4, which cuts off vertex 
4 from the source 0 in edgeTo[], therby creating a cycle 4->5->4. From that point on, 
the algorithm spins through the cycle, lowering the distances to all the vertices touched, 
until finishing when the cycle is detected, with the queue not empty. The cycle is in 
the edgeTo[] array, for discovery by findNegativeCycle(). Using the cycle detection 
strategy described on the previous page, the algorithm terminates when vertex 6 is re-
laxed during pass 4.

Trace of the Bellman-Ford algorithm (negative cycle)  

source

   edgeTo[] distTo[]
0 
 1             
 2   0->2     0.26
 3
 4   0->4     0.38
 5   4->5     0.73
 6    
 7   2->7     0.60

 2
4
 7
 5

   edgeTo[] distTo[]
0 
 1   5->1     1.05
 2   0->2     0.26
 3   7->3     0.99
4   5->4     0.07
5   4->5     0.73
 6    
 7   2->7     0.60

 7
5
 3
 1
 4

   edgeTo[] distTo[]
0   
1   5->1     1.05
 2   0->2     0.26
 3   7->3     0.99
 4   5->4     0.07
 5   4->5     0.42
6   3->6     1.51
 7   4->7     0.44

 3
1
4
 6
 7
 5

   edgeTo[] distTo[]
0 
 1   5->1     0.74
 2   0->2     0.26
 3   7->3     0.83
 4   5->4    -0.24
 5   4->5     0.42  
 6   3->6     1.51
 7   4->7     0.44

 6
 7
 5
 3
 1
 4
      

tinyEWDnc.txt

length of
0->4->5->4

length of
0->4->5->4->5->4

4->5  0.35 
5->4 -0.66 
4->7  0.37 
5->7  0.28 
7->5  0.28 
5->1  0.32 
0->4  0.38
0->2  0.26 
7->3  0.39 
1->3  0.29 
2->7  0.34
6->2  0.40 
3->6  0.52
6->0  0.58
6->4  0.93 

. . .

queue
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Arbitrage  Consider a market for financial transactions that is based on trading com-
modities. You can find a familiar example in tables that show conversion rates among 
currencies, such as the one in our sample file rates.txt shown here. The first line in 
the file is the number V of currencies; 
then the file has one line per currency, 
giving its name followed by the conver-
sion rates to the other currencies. For 
brevity, this example includes just five 
of the hundreds of currencies that are 
traded on modern markets: U.S. dol-
lars (USD), Euros (EUR), British pounds 
(GBP), Swiss francs (CHF), and Cana-
dian dollars (CAD). The tth number on line s represents a conversion rate: the number 
of units of the currency named on row t that can be bought with 1 unit of the currency 
named on row s. For example, our table says that 1,000 U.S. dollars will buy 741 euros. 
This table is equivalent to a complete edge-weighted digraph with a vertex corresponding 
to each currency and an edge corresponding to each conversion rate. An edge s->t with 
weight x corresponds to a conversion from s to t at exchange rate x. Paths in the di-
graph specify multistep conversions. For example, com-
bining the conversion just mentioned with an edge t->u 
with weight y gives a path s->t->u that represents a way 
to convert 1 unit of currency s into xy units of currency 
u. For example, we might buy 1,012.206 = 741 × 1.366 
Canadian dollars with our euros. Note that this gives a 
better rate than directly converting from U.S. dollars to 
Canadian dollars. You might expect xy to be equal to the 
weight of s->u in all such cases, but such tables repre-
sent a complex financial system where such consistency 
cannot be guaranteed. Thus, finding the path from s to 
u such that the product of the weights is maximal is cer-
tainly of interest. Even more interesting is a case where 
the product of the edge weights in a directed cycle is 
greater than 1. In our example, suppose that the weight 
of u->s is z and xyz > 1. Then cycle s->t->u->s gives a way to convert 1 unit of 
currency s into more than 1 unit (xyz) of currency s. In other words, we can make a 
100(xyz - 1) percent profit by converting from s to t to u back to s. For example, if 
we convert our 1,012.206 Canadian dollars back to US dollars, we get 1,012.206 × .995 
= 1,007.14497 dollars, a 7.14497-dollar profit. That might not seem like much, but a 

% more rates.txt 
5 
USD  1      0.741  0.657  1.061  1.005 
EUR  1.349  1      0.888  1.433  1.366
GBP  1.521  1.126  1      1.614  1.538 
CHF  0.942  0.698  0.619  1      0.953 
CAD  0.995  0.732  0.650  1.049  1    

An arbitrage opportunity

USD

0.
74
1 1.

34
9
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1.126

0.
61
9

1.
61
4

1.049
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1.005
0.995

0.
65
0

1.
53
8

0.
73
2

1.
36
6

0.657

1.5211.061

0.942

1.433

0.698

EUR

GBP

CHFCAD

0.741 * 1.366 * .995 = 1.00714497
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Arbitrage in currency exchange

public class Arbitrage 
{ 
   public static void main(String[] args) 
   { 
      int V = StdIn.readInt(); 
      String[] name = new String[V]; 
      EdgeWeightedDigraph G = new EdgeWeightedDigraph(V); 
      for (int v = 0; v < V; v++)  
      { 
         name[v] = StdIn.readString(); 
         for (int w = 0; w < V; w++) 
         { 
            double rate = StdIn.readDouble(); 
            DirectedEdge e = new DirectedEdge(v, w, -Math.log(rate)); 
            G.addEdge(e); 
         } 
      }

      BellmanFordSP spt = new BellmanFordSP(G, 0); 
      if (spt.hasNegativeCycle()) 
      { 
         double stake = 1000.0; 
         for (DirectedEdge e : spt.negativeCycle()) 
         { 
            StdOut.printf("%10.5f %s ", stake, name[e.from()]); 
            stake *= Math.exp(-e.weight()); 
            StdOut.printf("= %10.5f %s\n", stake, name[e.to()]); 
         } 
      } 
      else StdOut.println("No arbitrage opportunity"); 
   } 
}

This BellmanFordSP client finds an arbitrage opportunity in a currency exchange table by construct-
ing a complete-graph representation of the exchange table and then using the Bellman-Ford algo-
rithm to find a negative cycle in the graph.

% java Arbitrage < rates.txt 
1000.00000 USD =  741.00000 EUR 
 741.00000 EUR = 1012.20600 CAD 
1012.20600 CAD = 1007.14497 USD
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currency trader might have 1 million dollars and be able to execute these transactions 
every minute, which would lead to profits of over $7,000 per minute, or $420,000 per 
hour! This situation is an example of an arbitrage opportunity that would allow traders 
to make unlimited profits were it not for forces outside the model, such as transaction 
fees or limitations on the size of transactions. Even with these forces, arbitrage is plenty 
profitable in the real world. What does this problem have to do with shortest paths? The 
answer to this question is remarkably simple:

proposition Z. The arbitrage problem is a negative-cycle-detection problem in 
edge-weighted digraphs.

proof: Replace each weight by its logarithm, negated. With this change, comput-
ing path weights by multiplying edge weights in the original problem corresponds 
to adding them in the transformed problem. Specifically, any product w1w2 . . . wk

corresponds to a sum ln(w1)  ln(w2)  . . .  ln(wk). The transformed edge 
weights might be negative or positive, a path from v to w gives a way of converting 
from currency v to currency w, and any negative cycle is an arbitrage opportunity.

In our example, where all transactions are possible, the digraph is a complete graph, so 
any negative cycle is reachable from any vertex. In general commodity exchanges, some 
edges may be absent, so the one-argument constructor described in Exercise 4.4.43 is 
needed. No efficient algorithm for finding the best arbi-
trage opportunity (the most negative cycle in a digraph) 
is known (and the graph does not have to be very big 
for this computational burden to be overwhelming), but 
the fastest algorithm to find any arbitrage opportunity 
is crucial—a trader with that algorithm is likely to sys-
tematically wipe out numerous opportunities before the 
second-fastest algorithm finds any.

The transformation in the proof of Proposition Z
is useful even in the absence of arbitrage, because it re-
duces currency conversion to a shortest-paths problem. 
Since the logarithm function is monotonic (and we ne-
gated the logarithms), the product is maximized precisely 
when the sum is minimized. The edge weights might be 
negative or positive, and a shortest path from v to w gives 
a best way of converting from currency v to currency w. 

A negative cycle that represents
an arbitrage opportunity

USD

.2
99
8 -.

29
99

.1188

-.1187

.4
79
7

-.
47
87

-.0478

.0481

-.0080
.0050

.4
30
8

-.
43
05

.3
12
0

-.
31
19

.4201

-.4914-.0592

.0598

-.3598
.3595

EUR

GBP

CHFCAD

replace each
weight w

with �ln(w)

.2998 - .3119 + .0050 = -.0071

-ln(.741) -ln(1.366) -ln(.995)
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Perspective The table below summarizes the important characteristics of the 
shortest-paths algorithms that we have considered in this section. The first reason to 
choose among the algorithms has to do with basic properties of the digraph at hand. 
Does it have negative weights? Does it have cycles? Does it have negative cycles? Be-
yond these basic characteristics, the characteristics of edge-weighted digraphs can vary 
widely, so choosing among the algorithms requires some experimentation when more 
than one can apply.

algorithm restriction

path length compares 
(order of growth) extra 

space sweet spot

typical worst case

Dijkstra (eager) positive edge 
weights E log V E log V V

worst-case 
guarantee

topological sort edge-weighted 
DAGs E + V E + V V optimal for acyclic

Bellman-Ford 
(queue-based)

no negative 
cycles E + V VE V widely applicable

performance characteristics of shortest-paths algorithms

Historical notes  Shortest-paths problems have been intensively studied and widely 
used since the 1950s. The history of Dijkstra’s algorithm for computing shortest paths 
is similar (and related) to the history of Prim’s algorithm for computing the MST. The 
name Dijkstra’s algorithm is commonly used to refer both to the abstract method of 
building an SPT by adding vertices in order of their distance from the source and to 
its implementation as the optimal algorithm for the adjacency-matrix representation, 
because E. W. Dijkstra presented both in his 1959 paper (and also showed that the same 
approach could compute the MST). Performance improvements for sparse graphs are 
dependent on later improvements in priority-queue implementations that are not spe-
cific to the shortest-paths problem. Improved performance of Dijkstra’s algorithm is one 
of the most important applications of that technology (for example, with a data struc-
ture known as a Fibonacci heap, the worst-case bound can be reduced to E + V  log V).
The Bellman-Ford algorithm has proven to be useful in practice and has found wide 
application, particularly for general edge-weighted digraphs. While the running time of 
the Bellman-Ford algorithm is likely to be linear for typical applications, its worst-case 
running time is VE. The development of a worst-case linear-time shortest-paths algo-
rithm for sparse graphs remains an open problem. The basic Bellman-Ford algorithm 

682 Chapter 4 n graphs



ptg12441863

was developed in the 1950s by L. Ford and R. Bellman; despite the dramatic strides in 
performance that we have seen for many other graph problems, we have not yet seen 
algorithms with better worst-case performance for digraphs with negative edge weights 
(but no negative cycles).
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Q&A

Q. Why define separate data types for undirected graphs, directed graphs, edge-weight-
ed undirected graphs, and edge-weighted digraphs? 

A. We do so both for clarity in client code and for simpler and more efficient imple-
mentation code in unweighted graphs. In applications or systems where all types of 
graphs are to be processed, it is a textbook exercise in software engineering to define an 
ADT from which ADTs can be derived for Graph, the unweighted undirected graphs of 
Section 4.1; Digraph, the unweighted digraphs of Section 4.2; EdgeWeightedGraph, 
the edge-weighted undirected graphs of Section 4.3; or EdgeWeightedDigraph, the 
edge-weighted directed graphs of this section.

Q. How can we find shortest paths in undirected (edge-weighted) graphs?

A. For positive edge weights, Dijkstra’s algorithm does the job. We just build an 
EdgeWeightedDigraph corresponding to the given EdgeWeightedGraph (by adding 
two directed edges corresponding to each undirected edge, one in each direction) and 
then run Dijkstra’s algorithm. If edge weights can be negative, efficient algorithms are 
available, but they are more complicated than the Bellman-Ford algorithm.
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ExErcisEs

4.4.1 True or false: Adding a constant to every edge weight does not change the solu-
tion to the single-source shortest-paths problem.

4.4.2 Provide implementations of the constructor EdgeWeightedDigraph(In in)   

and the method toString() for EdgeWeightedDigraph.

4.4.3 Develop an implementation of EdgeWeightedDigraph for dense graphs that 
uses an adjacency-matrix (two-dimensional array of weights) representation (see Ex-
ercise 4.3.9). Ignore parallel edges.

4.4.4 Draw the (unique) SPT for source 0 of the edge-weighted digraph obtained by 
deleting vertex 7 from tinyEWD.txt (see page 644), and give the parent-link represen-
tation of the SPT. Answer the question for the same graph with all edge reversed.

4.4.5 Change the direction of edge 0->2 in tinyEWD.txt (see page 644). Draw two differ-
ent SPTs that are rooted at 2 for this modified edge-weighted digraph.

4.4.6 Give a trace that shows the process of computing the SPT of the digraph defined 
in Exercise 4.4.5 with the eager version of Dijkstra’s algorithm.

4.4.7 Develop a version of DijkstraSP that supports a client method that returns a 
second shortest path from s to t in an edge-weighted digraph (and returns null if there 
is only one shortest path from s to t).

4.4.8 The diameter of a digraph is the length of the maximum-length shortest path 
connecting two vertices. Write a DijkstraSP client that finds the diameter of a given 
EdgeWeightedDigraph that has nonnegative weights.

4.4.9 The table below, from an old published road map, purports to give the length of 
the shortest routes connecting the cities. It contains an error. Correct the table. Also, add 
a table that shows how to achieve the shortest routes.

Providence Westerly New London Norwich

Providence - 53 54 48

Westerly 53 - 18 101

New London 54 18 - 12

Norwich 48 101 12 -
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4.4.10 Consider the edges in the digraph defined in Exercise 4.4.4 to be undirected 
edges such that each edge corresponds to equal-weight edges in both directions in the 
edge-weighted digraph. Answer Exercise 4.4.6 for this corresponding edge-weighted 
digraph.

4.4.11 Use the memory-cost model of Section 1.4 to determine the amount of mem-
ory used by EdgeWeightedDigraph to represent a graph with V vertices and E edges.

4.4.12 Adapt the DirectedCycle and Topological classes from Section 4.2 to use 
the EdgeWeightedDigraph and DirectedEdge APIs of this section, thus implementing 
EdgeWeightedDirectedCycle and Topological classes.

4.4.13 Show, in the style of the trace in the text, the process of computing the SPT 
with Dijkstra’s algorithm for the digraph obtained by removing the edge 5->7 from 
tinyEWD.txt (see page 644). 

4.4.14 Show the paths that would be discovered by the two strawman approaches de-
scribed on page 668 for the example tinyEWDn.txt shown on that page.

4.4.15 What happens to Bellman-Ford if there is a negative cycle on the path from s to 
v and then you call pathTo(v)?

4.4.16 Suppose that we convert an EdgeWeightedGraph into an EdgeWeightedDigraph 
by creating two DirectedEdge objects in the EdgeWeightedDigraph (one in each di-
rection) for each Edge in the EdgeWeightedGraph (as described for Dijkstra’s algorithm 
in the Q&A on page 684) and then use the Bellman-Ford algorithm. Explain why this ap-
proach fails spectacularly.

4.4.17 What happens if you allow a vertex to be enqueued more than once in the same 
pass in the Bellman-Ford algorithm? 

Answer : The running time of the algorithm can go exponential. For example, consider 
what happens for the complete edge-weighted digraph whose edge weights are all -1.

4.4.18 Write a CPM client that prints all critical paths.

4.4.19 Find the lowest-weight cycle (best arbitrage opportunity) in the example shown 
in the text.

ExErcisEs (continued)
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4.4.20 Find a currency-conversion table online or in a newspaper. Use it to build an 
arbitrage table. Note : Avoid tables that are derived (calculated) from a few values and 
that therefore do not give sufficiently accurate conversion information to be interesting. 
Extra credit : Make a killing in the money-exchange market!

4.4.21 Show, in the style of the trace in the text, the process of computing the SPT with 
the Bellman-Ford algorithm for the edge-weighted digraph of Exercise 4.4.5.
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crEAtivE problEms

4.4.22  Vertex weights. Show that shortest-paths computations in digraphs with non-
negative weights on vertices (where the weight of a path is defined to be the sum of the 
weights of the vertices) can be handled by building an edge-weighted digraph that has 
weights on only the edges.

4.4.23  Source-sink shortest paths. Develop an API and implementation that use a ver-
sion of Dijkstra’s algorithm to solve the source-sink shortest path problem on edge-
weighted digraphs.

4.4.24  Multisource shortest paths. Develop an API and implementation that uses Di-
jkstra’s algorithm to solve the multisource shortest-paths problem on edge-weighted 
digraphs with positive edge weights: given a set of sources, find a shortest-paths forest 
that enables implementation of a method that returns to clients the shortest path from 
any source to each vertex. Hint : Add a dummy vertex with a zero-weight edge to each 
source, or initialize the priority queue with all sources, with their distTo[] entries set 
to 0.

4.4.25  Shortest path between two subsets.  Given a digraph with positive edge weights, 
and two distinguished subsets of vertices S and T, find a shortest path from any vertex 
in S to any vertex in T. Your algorithm should run in time proportional to E log V, in 
the worst case.

4.4.26  Single-source shortest paths in dense graphs. Develop a version of Dijkstra’s al-
gorithm that can find the SPT from a given vertex in a dense edge-weighted digraph in 
time proportional to V 2. Use an adjacency-matrix representation (see Exercise 4.4.3 
and Exercise 4.3.29).

4.4.27  Shortest paths in Euclidean graphs. Adapt our APIs to speed up Dijkstra’s algo-
rithm in the case where it is known that vertices are points in the plane.

4.4.28  Longest paths in DAGs. Develop an implementation AcyclicLP that can solve 
the longest-paths problem in edge-weighted DAGs, as described in Proposition T.

4.4.29  General optimality. Complete the proof of Proposition W by showing that if 
there exists a directed path from s to v and no vertex on any path from s to v is on a 
negative cycle, then there exists a shortest path from s to v. (Hint : See Proposition P.)

4.4.30  All-pairs shortest paths in digraphs without negative cycles. Articulate an API like 
the one implemented on page 656 for the all-pairs shortest-paths problem in graphs 
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with no negative cycles. Develop an implementation that runs a version of Bellman-
Ford to identify real-valued weights pi[v] such that for any edge v->w, the edge weight 
plus the difference between pi[v] and pi[w] is nonnegative. Then use these weights 
to reweight the graph, so that Dijkstra’s algorithm is effective for finding all shortest 
paths in the reweighted graph.

4.4.31  All-pairs shortest paths on a line. Given a weighted line graph (undirected con-
nected graph, all vertices of degree 2, except two endpoints which have degree 1), devise 
an algorithm that preprocesses the graph in linear time and can return the distance of 
the shortest path between any two vertices in constant time.

4.4.32  Parent-checking heuristic. Modify Bellman-Ford to visit a vertex v only if its 
SPT parent edgeTo[v] is not currently on the queue. This heuristic has been reported 
by Cherkassky, Goldberg, and Radzik to be useful in practice. Prove that it correctly 
computes shortest paths and that the worst-case running time is proportional to EV.

4.4.33  Shortest path in a grid. Given an N-by-N matrix of positive integers, find the 
shortest path from the (0, 0) entry to the (N1, N1) entry, where the length of the 
path is the sum of the integers in the path. Repeat the problem but assume you can only 
move right and down.

4.4.34  Monotonic shortest path. Given an edge-weighted digraph, find a monotonic
shortest path from s to every other vertex. A path is monotonic if the weight of its edges 
are either strictly increasing or strictly decreasing. Hint : Relax edges in ascending order 
and find a best path; then relax edges in descending order and find a best path.

4.4.35  Bitonic shortest path. Given an edge-weighted digraph, find a bitonic shortest 
path from s to every other vertex (if one exists). A path is bitonic if there is an inter-
mediate vertex v such that the weights of the edges on the path from s to v are strictly 
increasing and the weights of the edges on the path from v to t are strictly decreasing. 
The path should be simple (no repeated vertices).

4.4.36  Neighbors. Develop an SP client that finds all vertices within a given distance d
of a given vertex in a given edge-weighted digraph. The running time of your method 
should be proportional to the number of vertices and edges in the subgraph induced by 
those vertices and the edges incident to them, plus V (to initialize data structures).
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4.4.37  Critical edges. Develop an algorithm for finding an edge whose removal causes 
maximal increase in the shortest-paths length from one given vertex to another given 
vertex in a given edge-weighted digraph.

4.4.38  Sensitivity. Develop an SP client that performs a sensitivity analysis on the 
edge-weighted digraph’s edges with respect to a given pair of vertices s and t: Compute 
a V-by-V boolean matrix such that, for every v and w, the entry in row v and column 
w is true if v->w is an edge whose weight can be increased without the shortest-path 
length from v to w being increased and is false otherwise.

4.4.39  Lazy implementation of Dijkstra’s algorithm. Develop an implementation of the 
lazy version of Dijkstra’s algorithm that is described in the text.

4.4.40  Bottleneck SPT. Show that an MST of an undirected graph is equivalent to a 
bottleneck SPT of the graph: For every pair of vertices v and w, it gives the path connect-
ing them whose longest edge is as short as possible.

4.4.41  Bidirectional search. Develop a class for the source-sink shortest-paths prob-
lem that is based on code like Algorithm 4.9 but that initializes the priority queue with 
both the source and the sink. Doing so leads to the growth of an SPT from each vertex; 
your main task is to decide precisely what to do when the two SPTs collide.

4.4.42  Worst case (Dijkstra). Describe a family of graphs with V vertices and E edges 
for which the worst-case running time of Dijkstra’s algorithm is achieved.

4.4.43  Negative cycle detection. Suppose that we add a constructor to Algorithm 4.11 
that differs from the constructor given only in that it omits the second argument and 
that it initializes all distTo[] entries to 0. Show that, if a client uses that constructor, a 
client call to hasNegativeCycle() returns true if and only if the graph has a negative 
cycle (and negativeCycle() returns that cycle).

Answer : Consider a digraph formed from the original by adding a new source with an 
edge of weight 0 to all the other vertices. After one pass, all distTo[] entries are 0, and 
finding a negative cycle reachable from that source is the same as finding a negative 
cycle anywhere in the original graph.

4.4.44  Worst case (Bellman-Ford). Describe a family of graphs for which Algorithm 
4.11 takes time proportional to VE.

crEAtivE problEms (continued)
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4.4.45  Fast Bellman-Ford. Develop an algorithm that breaks the linearithmic running   
time barrier for the single-source shortest-paths problem in general edge-weighted di-
graphs for the special case where the weights are integers known to be bounded in 
absolute value by a constant.

4.4.46  Bellman-Ford queue never empties. Show that if there is a negative cycle reach-
able from the source in the queue-based implementation of the Bellman-Ford algo-
rithm, then the queue never empties.

4.4.47  Bellman-Ford negative cycle detection. Show that if any edge is relaxed during 
the Vth pass of the generic Bellman-Ford algorithm, then the edgeTo[] array has a 
directed cycle and any such cycle is a negative cycle.

4.4.48  Animate. Write a client program that does dynamic graphical animations of 
Dijkstra’s algorithm.
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ExpErimENts

4.4.49  Random sparse edge-weighted digraphs. Modify your solution to Exercise       
4.3.34 to assign a random direction to each edge.

4.4.50  Random Euclidean edge-weighted digraphs. Modify your solution to Exercise 
4.3.35 to assign a random direction to each edge.

4.4.51  Random grid edge-weighted digraphs. Modify your solution to Exercise 4.3.36 
to assign a random direction to each edge.

4.4.52  Negative weights I. Modify your random edge-weighted digraph generators 
to generate weights between x and y (where x and y are both between 1 and 1) by 
rescaling.

4.4.53  Negative weights II. Modify your random edge-weighted digraph generators to 
generate negative weights by negating a fixed percentage (whose value is supplied by the 
client) of the edge weights.

4.4.54  Negative weights III. Develop client programs that use your edge-weighted di-
graph generator to produce edge-weighted digraphs that have a large percentage of 
negative weights but have at most a few negative cycles, for as large a range of values of 
V and E as possible.
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Testing all algorithms and studying all parameters against all edge-weighted digraph mod-
els is unrealistic. For each problem listed below, write a client that addresses the problem 
for any given input digraph, then choose among the generators above to run experiments 
for that graph model. Use your judgment in selecting experiments, perhaps in response to 
results of previous experiments. Write a narrative explaining your results and any conclu-
sions that might be drawn.

4.4.55  Prediction. Estimate, to within a factor of 10, the largest graph with E = 10V
that your computer and programming system could handle if you were to use Dijkstra’s 
algorithm to compute all its shortest paths in 10 seconds.

4.4.56  Cost of laziness. Run empirical studies to compare the performance of the lazy 
version of Dijkstra’s algorithm with the eager version, for various edge-weighted di-
graph models.

4.4.57  Johnson’s algorithm. Develop a priority-queue implementation that uses a d-
way heap. Find the best value of d for various edge-weighted digraph models.

4.4.58  Arbitrage model. Develop a model for generating random arbitrage problems.
Your goal is to generate tables that are as similar as possible to the tables that you used 
in Exercise 4.4.20.

4.4.59  Parallel job-scheduling-with-deadlines model. Develop a model for generating 
random instances of the parallel job-scheduling-with-deadlines problem. Your goal is 
to generate nontrivial problems that are likely to be feasible.
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We communicate by exchanging strings of characters. Accordingly, numerous 
important and familiar applications are based on processing strings. In this 
chapter, we consider classic algorithms for addressing the underlying com-

putational challenges surrounding applications such as the following:

Information processing  When you search for web pages containing a given keyword, 
you are using a string-processing application. In the modern world, virtually all in-
formation is encoded as a sequence of strings, and the applications that process it are 
string-processing applications of crucial importance.

Genomics  Computational biologists work with a genetic code that reduces DNA to 
(very long) strings formed from four characters (A, C, T, and G). Vast databases giving 
codes describing all manner of living organisms have been developed in recent years, 
so that string processing is a cornerstone of modern research in computational biology.

Communications systems  When you send a text message or an email or download 
an ebook, you are transmitting a string from one place to another. Applications that 
process strings for this purpose were an original motivation for the development of 
string-processing algorithms.

Programming systems  Programs are strings. Compilers, interpreters, and other appli-
cations that convert programs into machine instructions are critical applications that 
use sophisticated string-processing techniques. Indeed, all written languages are ex-
pressed as strings, and another motivation for the development of string-processing 
algorithms was the theory of formal languages, the study of describing sets of strings. 

This list of a few significant examples illustrates the diversity and importance of string-
processing algorithms.
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The plan of this chapter is as follows: After addressing basic properties of strings, we 
revisit in Sections 5.1 and 5.2 the sorting and search ing APIs from Chapters 2 and 3. 
Algorithms that exploit special properties of string keys are faster and more flexible 
than the algorithms that we considered earlier. In Section 5.3 we consider algorithms 
for substring search, including a famous algorithm due to Knuth, Morris, and Pratt. 
In Section 5.4 we introduce regular expressions, the basis of the  pattern-matching
problem, a generalization of substring search, and a quintes sential search tool known 
as grep. These classic algorithms are based on the related con ceptual devices known as 
formal languages and finite automata. Section 5.5 is devoted to a central application: 
data compression, where we try to reduce the size of a string as much as possible.

Rules of the game For clarity and efficiency, our implementations are expressed 
in terms of the Java String class, but we intentionally use as few operations as possible 
from that class to make it easier to adapt our algorithms for use on other string-like 
types of data and to other programming languages. We introduced strings in detail in 
Section 1.2 but briefly review here their most important characteristics.

Characters  A String is a sequence of characters. Characters are of type char and can 
have one of 216 possible values. For many decades, programmers restricted attention to   
characters encoded in 7-bit ASCII (see page 815 for a conversion table) or 8-bit extended 
ASCII, but many modern applications call for 16-bit Unicode.

Immutability  String objects are immutable, so that we can use them in assignment 
statements and as arguments and return values from methods without having to worry 
about their values changing. 

Indexing  The operation that we perform most often is extract a specified character 
from a string that the charAt() method in Java’s String class provides. We expect 
charAt() to complete its work in constant time, as if the string were stored in a char[] 
array. As discussed in Chapter 1, this expectation is quite reasonable.

Length  In Java, the find the length of a string operation is implemented in the length() 
method in String. Again, we expect length() to complete its work in constant time, 
and again, this expectation is reasonable, although some care is needed in some pro-
gramming environments.

Substring  Java’s substring() method implements the extract a specified substring op-
eration. Its running time depends on the underlying representation. It takes constant time 
and space in typical Java 6 (and earlier) implementations but linear time and space in 
typical Java 7 implementations (see page 202). 
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Concatenation  In Java, the create 
a new string formed by appending one 
string to another operation is a built-
in operation (using the + operator) 
that takes time proportional to the 
length of the result. For example, we 
avoid forming a string by appending 
one character at a time because that is 
a quadratic process in Java. (Java has a 
StringBuilder class for that use.)

Character arrays  The Java String is decidedly not a primitive type. The standard 
implementation provides the operations just described to facilitate client program-
ming. By contrast, many of the algorithms that we consider can work with a low-level 
representation such as an array of char values, and many clients might prefer such a 
representation, because it consumes less space and takes less time. For several of the 
algorithms that we consider, the cost of converting from one representation to the other 
would be higher than the cost of running the algorithm. As indicated in the table below, 
the differences in code that processes the two representations are minor (substring() 
is more complicated and is omitted), so use of one representation or the other is no 
barrier to understanding the algorithm. 

Understanding the efficiency of these operations is a key ingredient in under-
standing the efficiency of several string-processing algorithms. Not all programming 
languages provide String implementations with these performance characteristics. 
For example, determining the length of a string take time proportional to the number 
of characters in the string in the widely used C programming language. Adapting the 
algorithms that we describe to such languages is always possible (implement an ADT 
like Java’s String), but also might present different challenges and opportunities. 

operation array of characters Java string

declare char[] a String s

indexed character access a[i] s.charAt(i)

length a.length s.length()

convert a = s.toCharArray(); s = new String(a);

two ways to represent strings in Java

Fundamental String  operations

0  1  2  3  4  5  6  7  8  9 10 11 12

A  T  T  A  C  K  A  T  D  A  W  N  s

s.charAt(3)

s.length()

s.substring(7, 11)
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We primarily use the String data type in the text, with liberal use of indexing and 
length and occasional use of substring extraction and concatenation. When appropri-
ate, we also provide on the booksite the corresponding code for char arrays. In perfor-
mance-critical applications, the primary consideration in choosing between the two for 
clients is often the cost of accessing a character (a[i] is likely to be much faster than 
s.charAt(i) in typical Java implementations).

Alphabets Some applications involve strings taken from a restricted alphabet. In 
such applications, it often makes sense to use an Alphabet class with the following API:

public class Alphabet

Alphabet(String s) create a new alphabet from chars in s

char toChar(int index) convert index to corresponding alphabet char

int toIndex(char c) convert c to an index between 0 and R–1
boolean contains(char c) is c in the alphabet?

int R() radix (number of characters in alphabet)
int lgR() number of bits to represent an index

int[] toIndices(String s) convert s to base-R integer
String toChars(int[] indices) convert base-R integer to string over this alphabet

alphabet apI

This API is based on a constructor that takes as argument an R-character string that 
specifies the alphabet and the toChar() and toIndex() methods for converting (in 
constant time) between string characters and int values between 0 and R-1. It also 
includes a contains() method for checking whether a given character is in the alpha-
bet, the methods R() and lgR() for finding the number of characters in the alphabet 
and the number of bits needed to represent them, and the methods toIndices() and 
toChars() for converting between strings of characters in the alphabet and int arrays. 
For convenience, we also include the built-in alphabets in the table at the top of the next 
page, which you can access with code such as Alphabet.UNICODE16. Implementing 
Alphabet is a straightforward exercise (see Exercise 5.1.12). We will examine a sample 
client on page 699. 

Character-indexed arrays  One of the most important reasons to use Alphabet is that 
many algorithms gain efficiency through the use of character-indexed arrays, where 
we associate information with each character that we can retrieve with a single array 
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name R() lgR() characters

BINARY 2 1 01

DNA 4 2 ACTG

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef 
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets

public class Count 
{ 
   public static void main(String[] args) 
   { 
      Alphabet alpha = new Alphabet(args[0]); 
      int R = alpha.R(); 
      int[] count = new int[R];

      String s = StdIn.readAll(); 
      int N = s.length(); 
      for (int i = 0; i < N;  i++) 
         if (alpha.contains(s.charAt(i))) 
           count[alpha.toIndex(s.charAt(i))]++;

      for (int c = 0; c < R; c++) 
         StdOut.println(alpha.toChar(c) 
                             + " " + count[c]);

   } 
}

typical Alphabet client

% more abra.txt 
ABRACADABRA!

% java Count ABCDR < abra.txt 
A 5 
B 2 
C 1 
D 1 
R 2
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access. With a Java String, we have to use an array of size 65,536; with Alphabet, we 
just need an array with one entry for each alphabet character. Some of the algorithms 
that we consider can produce huge numbers of such arrays, and in such cases, the space 
for arrays of size 65,536 can be prohibitive. As an example, consider the class Count at 
the bottom of the previous page, which takes a string of characters from the command 
line and prints a table of the frequency of occurrence of those characters that appear on 
standard input. The count[] array that holds the frequencies in Count is an example of 
a character-indexed array. This calculation may seem to you to be a bit frivolous; actu-
ally, it is the basis for a family of fast sorting methods that we will consider in Section 
5.1.

Numbers  As you can see from several of the standard Alphabet examples, we often 
represent numbers as strings. The method toIndices() converts any String over a 
given Alphabet into a base-R number represented as an int[] array with all values 
between 0 and R1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For 
example, if we know that the input consists only of characters from the alphabet, we 
could replace the inner loop in Count with the more compact code

   int[] a = alpha.toIndices(s); 
   for (int i = 0; i < N; i++) 
      count[a[i]]++;

In this context, we refer to R as the radix, the base of the number system. Several of the 
algorithms that we consider are often referred to as “radix” methods because they work 
with one digit at a time. 

% more pi.txt 
3141592653 
5897932384 
6264338327 
9502884197 
... [100,000 digits of pi]

% java Count 0123456789 < pi.txt 
0 9999 
1 10137 
2 9908 
3 10026 
4 9971 
5 10026 
6 10028 
7 10025 
8 9978 
9 9902
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Despite the advantages of using a data type such as Alphabet in string-processing 
algorithms (particularly for small alphabets), we do not develop our implementations 
in the book for strings taken from a general Alphabet because

n	 The preponderance of clients just use String
n	 Conversion to and from indices tends to fall in the inner loop and slow down 

implementations considerably
n	 The code is more complicated, and therefore more difficult to understand

Accordingly we use String, use the constant R = 256 in the code and R as a parameter 
in the analysis, and discuss performance for general alphabets when appropriate. You 
can find full Alphabet-based implementations on the booksite.
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5.1 String SortS

For many sorting applications, the keys that define the order are strings. In this 
section, we look at methods that take advantage of special properties of strings to de-
velop sorts for string keys that are more efficient than the general-purpose sorts that we 
considered in Chapter 2. 

We consider two fundamentally different approaches to string sorting. Both of them 
are venerable methods that have served programmers well for many decades.

The first approach examines the characters in the keys in a right-to-left order. Such 
methods are generally referred to as least-significant-digit (LSD) string sorts.  Use of 
the term digit instead of character traces back to the application of the same basic meth-
od to numbers of various types. Thinking of a string as a base-256 number, considering 
characters from right to left amounts to considering first the least significant digits. 
This approach is the method of choice for string-sorting applications where all the keys 
are the same length.

The second approach examines the characters in the keys in a left-to-right order, 
working with the most significant character first.  These methods are generally referred 
to as most-significant-digit (MSD) string sorts—we will consider two such methods 
in this section. MSD string sorts are attractive because they can get a sorting job done 
without necessarily examining all of the input characters.  MSD string sorts are similar 
to quicksort, because they partition the array to be sorted into independent pieces such 
that the sort is completed by recursively applying the same method to the subarrays. 
The difference is that MSD string sorts use just the first character of the sort key to 
do the partitioning, while quicksort uses comparisons that could involve examining 
the whole key. The first method that we consider creates a partition for each character 
value; the second always creates three partitions, for sort keys whose first character is 
less than, equal to, or greater than the partitioning key’s first character.

The number of characters in the alphabet is an important parameter when analyz-
ing string sorts. Though we focus on extended ASCII strings (R = 256), we will also 
consider strings taken from much smaller alphabets (such as genomic sequences) and 
from much larger alphabets (such as the 65,536-character Unicode alphabet that is an 
international standard for encoding natural languages).
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Key-indexed counting As a warmup, we consider a sim-
ple method for sorting that is effective whenever the keys are 
small integers. This method, known as key-indexed counting, is 
useful in its own right and is also the basis for  two of the three 
string sorts that we consider in this section.

Consider the following data-processing problem, which 
might be faced by a teacher maintaining grades for a class with 
students assigned to sections, which are numbered 1, 2, 3, and 
so forth. On some occasions, it is necessary to have the class 
listed by section. Since the section numbers are small integers, 
sorting by key-indexed counting is appropriate. To describe 
the method, we assume that the information is kept in an array 
a[] of items that each contain a name and a section number, 
that section numbers are integers between 0 and R-1, and that 

the code a[i].key() returns 
the section number for the in-
dicated student. The method 
breaks down into four steps, 
which we describe in turn.

Compute frequency counts  The first step is to count 
the frequency of occurrence of each key value, using 
an int array count[]. For each item, we use the key to 
access an entry in count[] and increment that entry. If 
the key value is r, we increment count[r+1]. (Why +1? 
The reason for that will become clear in the next step.) 
In the example at left, we first increment count[3] 
because Anderson is in section 2, then we increment 
count[4] twice because Brown and Davis are in sec-
tion 3, and so forth. Note that count[0] is always 0, 
and that count[1] is 0 in this example (no students are 
in section 0).

Computing frequency counts

                 count[]
               0 1 2 3 4 5
               0 0 0 0 0 0
Anderson  2    0 0 0 1 0 0
Brown     3    0 0 0 1 1 0
Davis     3    0 0 0 1 2 0
Garcia    4    0 0 0 1 2 1
Harris    1    0 0 1 1 2 1
Jackson   3    0 0 1 1 3 1
Johnson   4    0 0 1 1 3 2
Jones     3    0 0 1 1 4 2
Martin    1    0 0 2 1 4 2
Martinez  2    0 0 2 2 4 2
Miller    2    0 0 2 3 4 2
Moore     1    0 0 3 3 4 2
Robinson  2    0 0 3 4 4 2
Smith     4    0 0 3 4 4 3
Taylor    3    0 0 3 4 5 3
Thomas    4    0 0 3 4 5 4
Thompson  4    0 0 3 4 5 5
White     2    0 0 3 5 5 5
Williams  3    0 0 3 5 6 5
Wilson    4    0 0 3 5 6 6

for (i = 0; i < N; i++)
  count[a[i].key() + 1]++;

number of 3s

always 0

Anderson  2       Harris    1
Brown     3       Martin    1
Davis     3       Moore     1
Garcia    4       Anderson  2
Harris    1       Martinez  2
Jackson   3       Miller    2
Johnson   4       Robinson  2
Jones     3       White     2
Martin    1       Brown     3
Martinez  2       Davis     3
Miller    2       Jackson   3
Moore     1       Jones     3
Robinson  2       Taylor    3
Smith     4       Williams  3
Taylor    3       Garcia    4
Thomas    4       Johnson   4
Thompson  4       Smith     4
White     2       Thomas    4
Williams  3       Thompson  4
Wilson    4       Wilson    4

Typical candidate for key-indexed counting

input sorted result

keys are
small integers 

section (by section) name
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Transform counts to indices  Next, we use count[] 
to compute, for each key value, the starting index 
positions in the sorted order of items with that key. 
In our example, since there are three items with key 
1 and five items with key 2, then the items with key 
3 start at position 8 in the sorted array. In general, 
to get the starting index for items with any given key 
value we sum the frequency counts of smaller val-
ues. For each key value r, the sum of the counts for 
key values less than r+1 is equal to the sum of the 
counts for key values less than r plus count[r], so 
it is easy to proceed from left to right to transform 
count[] into an index table that we can use to sort 
the data.   

Distribute the data  With the 
count[] array transformed into 
an index table, we accomplish the 
actual sort by moving the items to 
an auxiliary array aux[]. We move 
each item to the position in aux[] 
indicated by the count[] entry cor-
responding to its key, and then in-
crement that entry to maintain the 
following invariant for count[]: 
for each key value r, count[r] is 
the index of the position in aux[] 
where the next item with key value 
r (if any) should be placed. This 
process produces a sorted result 
with one pass through the data, as 
illustrated at left. Note : In one of 
our applications, the fact that this 
implementation is stable is critical: 
items with equal keys are brought 
together but kept in the same rela-
tive order.

   
               
               
Anderson  2       Harris    1
Brown     3       Martin    1
Davis     3       Moore     1
Garcia    4       Anderson  2
Harris    1       Martinez  2
Jackson   3       Miller    2
Johnson   4       Robinson  2
Jones     3       White     2
Martin    1       Brown     3
Martinez  2       Davis     3
Miller    2       Jackson   3
Moore     1       Jones     3
Robinson  2       Taylor    3
Smith     4       Williams  3
Taylor    3       Garcia    4
Thomas    4       Johnson   4
Thompson  4       Smith     4
White     2       Thomas    4
Williams  3       Thompson  4
Wilson    4                                                                                                           Wilson    4

Distributing the data (records with key 3 highlighted)

  count[]
1  2  3  4
0  3  8 14
0  4  8 14
0  4  9 14
0  4 10 14
0  4 10 15
1  4 10 15
1  4 11 15
1  4 11 16
1  4 12 16
2  4 12 16
2  5 12 16
2  6 12 16
3  6 12 16
3  7 12 16
3  7 12 17
3  7 13 17
3  7 13 18
3  7 13 19
3  8 13 19
3  8 14 19
3  8 14 20
3  8 14 20

 i
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

aux[0]

aux[1]

aux[2]

aux[3]

aux[4]

aux[5]

aux[6]

aux[7]

aux[8]

aux[9]

aux[10]

aux[11]

aux[12]

aux[13]

aux[14]

aux[15]

aux[16]

aux[17]

aux[18]

aux[19]

for (int i = 0; i < N; i++)
   aux[count[a[i].key()]++] = a[i];

Transforming counts to start indices

number of keys less than 3
(start index of 3s in output)

for (int r = 0; r < R; r++)
   count[r+1] += count[r];

     count[]
0  1  2  3  4  5
0  0  3  5  6  6
0  0  3  5  6  6
0  0  3  5  6  6
0  0  3  8  6  6
0  0  3  8 14  6
0  0  3  8 14 20
0  0  3  8 14 20

always 0

 r
 0
 1
 2
 3
 4
 5
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Copy back  Since we accomplished the sort by moving the items to an auxiliary array, 
the last step is to copy the sorted result back to the original array. 

proposition A. Key-indexed counting uses 11N  4 R  1  array accesses to stably 
sort N items whose keys are integers between 0 and R  1.

proof: Immediate from the code. Initializing the arrays uses N  R  1 array ac-
cesses. The first loop increments a counter for each of the N items (3N array ac-
cesses); the second loop does R additions (3R array accesses); the third loop does 
N  counter increments and N data moves (5N array accesses); and the fourth loop 
does N  data moves (2N array accesses). Both moves preserve the relative order of 
equal keys.

Key-indexed counting is an extremely effective 
and often overlooked sorting method for applica-
tions where keys are small integers. Understand-
ing how it works is a first step toward under-
standing string sorting. Proposition A implies 
that key-indexed counting breaks through the 
N log N lower bound that we proved for sort-
ing. How does it manage to do so? Proposition 
I in SEction 2.2 is a lower bound on the number 
of compares needed (when data is accessed only 
through compareTo())—key-indexed counting 
does no compares (it accesses data only through 
key()). When R is within a constant factor of N, 
we have a linear-time sort.

int N = a.length;

[] aux = new String[N]; 
int[] count = new int[R+1];

// Compute frequency counts. 
for (int i = 0; i < N; i++) 
   count[a[i].key() + 1]++; 
// Transform counts to indices. 
for (int r = 0; r < R; r++) 
   count[r+1] += count[r]; 
// Distribute the records. 
for (int i = 0; i < N; i++) 
   aux[count[a[i].key()]++] = a[i]; 
// Copy back. 
for (int i = 0; i < N; i++) 
   a[i] = aux[i];

Key-indexed counting (a[i].key() is an int in [0, r)).

. . .... ...

count[R-1]

R-1 R-1 R-1

count[2]count[1]count[0]

aux[] R-12 21 ... 21 1 100

. . .

count[R-1]

R-1 R-1 R-1

count[2]count[1]count[0]

aux[] 2 21 1 10

. . .

count[R-1]count[2]count[1]count[0]

aux[]

Key-indexed counting (distribution phase)

before

during

after
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LSD string sort The first string-sorting method that we consider is known as least-
significant-digit first (LSD) string sort. Consider the following motivating application: 
Suppose that a highway engineer sets up a device that records 
the license plate numbers of all vehicles using a busy highway 
for a given period of time and wants to know the number of 
different vehicles that used the highway. As you know from 
Section 2.1, one easy way to solve this problem is to sort the 
numbers, then make a pass through to count the  different 
values, as in Dedup (page 490). License plates are a mixture 
of numbers and letters, so it is natural to represent them as 
strings. In the simplest situation (such as the California license 
plate examples at right) the strings all have the same number 
of characters. This situation is often found in sort applica-
tions—for example, telephone numbers, bank account num-
bers, and IP addresses are typically fixed-length strings.

Sorting such strings can be done with key-indexed count-
ing, as shown in Algorithm 5.1 (LSD) and the example be-
low it on the facing page. If the strings are each of length W, 
we sort the strings W times with key-indexed counting, using 
each of the positions as the key, proceeding from right to left. It is not easy, at first, to 
be convinced that the method produces a sorted array—in fact, it does not work at all 
unless the key-indexed count implementation is stable.  Keep this fact in mind and refer 
to the example when studying this proof of correctness :

proposition b. LSD string sort stably sorts fixed-length strings.

proof: This fact depends crucially on the key-indexed counting implementation 
being stable, as indicated in Proposition A. After sorting keys on their i trailing 
characters (in a stable manner), we know that any two keys appear in proper order 
in the array (considering just those characters) either because the first of their i 
trailing characters is different, in which case the sort on that character puts them 
in order, or because the first of their i trailing characters is the same, in which case 
they are in order because of stability (and by induction, for i-1).  

Another way to state the proof is to think about the future: if the characters that have 
not been examined for a pair of keys are identical, any difference between the keys is re-
stricted to the characters already examined, so the keys have been properly ordered and 
will remain so because of stability.  If, on the other hand, the characters that have not 

Typical  candidate for
LSD string sort

keys are all
the same length

4PGC938
2IYE230
3CIO720
1ICK750
1OHV845
4JZY524
1ICK750
3CIO720
1OHV845
1OHV845
2RLA629
2RLA629
3ATW723

input sorted result

1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
2IYE230
2RLA629
2RLA629
3ATW723
3CIO720
3CIO720
4JZY524
4PGC938
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4PGC938
2IYE230
3CIO720
1ICK750
1OHV845
4JZY524
1ICK750
3CIO720
1OHV845
1OHV845
2RLA629
2RLA629
3ATW723

2IYE230
3CIO720
1ICK750
1ICK750
3CIO720
3ATW723
4JZY524
1OHV845
1OHV845
1OHV845
4PGC938
2RLA629
2RLA629

3CIO720
3CIO720
3ATW723
4JZY524
2RLA629
2RLA629
2IYE230
4PGC938
1OHV845
1OHV845
1OHV845
1ICK750
1ICK750

2IYE230
4JZY524
2RLA629
2RLA629
3CIO720
3CIO720
3ATW723
1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
4PGC938

2RLA629
2RLA629
4PGC938
2IYE230
1ICK750
1ICK750
3CIO720
3CIO720
1OHV845
1OHV845
1OHV845
3ATW723
4JZY524

1ICK750
1ICK750
4PGC938
1OHV845
1OHV845
1OHV845
3CIO720
3CIO720
2RLA629
2RLA629
3ATW723
2IYE230
4JZY524

3ATW723
3CIO720
3CIO720
1ICK750
1ICK750
2IYE230
4JZY524
1OHV845
1OHV845
1OHV845
4PGC938
2RLA629
2RLA629

1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
2IYE230
2RLA629
2RLA629
3ATW723
3CIO720
3CIO720
4JZY524
4PGC938

1ICK750
1ICK750
1OHV845
1OHV845
1OHV845
2IYE230
2RLA629
2RLA629
3ATW723
3CIO720
3CIO720
4JZY524
4PGC938

input (W = 7) d = 6 d = 5 d = 4 d = 3 d = 2 d = 1 d = 0 output

aLgorIthM 5.1 lSD string sort

public class LSD 
{ 
   public static void sort(String[] a, int W) 
   {  // Sort a[] on leading W characters. 
      int N = a.length; 
      int R = 256; 
      String[] aux = new String[N];

      for (int d = W-1; d >= 0; d--) 
      { // Sort by key-indexed counting on dth char.

         int[] count = new int[R+1];     // Compute frequency counts. 
         for (int i = 0; i < N; i++) 
             count[a[i].charAt(d) + 1]++;

         for (int r = 0; r < R; r++)     // Transform counts to indices. 
            count[r+1] += count[r];

         for (int i = 0; i < N; i++)     // Distribute. 
            aux[count[a[i].charAt(d)]++] = a[i];

         for (int i = 0; i < N; i++)     // Copy back. 
            a[i] = aux[i]; 
        } 
    } 
}

To sort an array a[] of strings that each have exactly W characters, we do W key-indexed counting 
sorts: one for each character position, proceeding from right to left.
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been examined are different, the characters already examined do not matter, 
and a later pass will correctly order the pair based on the more significant 
differences.

LSD radix sorting is the method used by the old punched-card-sorting 
machines that were developed at the beginning of the 20th century and thus 
predated the use of computers in commercial data processing by several de-
cades.  Such machines had the capability of distributing a deck of punched 
cards among 10 bins, according to the pattern of holes punched in the select-
ed columns.  If a deck of cards had numbers punched in a particular set of 
columns, an operator could sort the cards by running them through the ma-
chine on the rightmost digit, then picking up and stacking the output decks 
in order, then running them through the machine on the next-to-rightmost 
digit, and so forth, until getting to the first digit.  The physical stacking of the 
cards is a stable process, which is mimicked by key-indexed counting sort. 
Not only was this version of LSD radix sorting important in commercial 
applications up through the 1970s, but it was also used by many cautious 
programmers (and students!), who would have to keep their programs on 
punched cards (one line per card) and would punch sequence numbers in 
the final few columns of a program deck so as to be able to put the deck back 
in order mechanically if it were accidentally dropped. This method is also a 
neat way to sort a deck of playing cards: deal them into thirteen piles (one for 
each value), pick up the piles in order, then deal into four piles (one for each 
suit). The (stable) dealing process keeps the cards in order within each suit, 
so picking up the piles in suit order yields a sorted deck.

In many string-sorting applications (even license plates, for some states), 
the keys are not all be the same length. It is possible to adapt LSD string sort 
to work for such applications, but we leave this task for exercises because 
we will next consider two other methods that are specifically designed for 
variable-length keys.

From a theoretical standpoint, LSD string sort is significant because it is a 
linear-time sort for typical applications.  No matter how large the value of N, 
it makes W passes through the data. Specifically:

Sorting a card deck with
LSD string sort

♠ A
♠ 2
♠ 3
♠ 4
♠ 5
♠ 6
♠ 7
♠ 8
♠ 9
♠10
♠ J
♠ Q
♠ K
♥ A
♥ 2
♥ 3
♥ 4
♥ 5
♥ 6
♥ 7
♥ 8
♥ 9
♥10
♥ J
♥ Q
♥ K
♦ A
♦ 2
♦ 3
♦ 4
♦ 5
♦ 6
♦ 7
♦ 8
♦ 9
♦10
♦ J
♦ Q
♦ K
♣ A
♣ 2
♣ 3
♣ 4
♣ 5
♣ 6
♣ 7
♣ 8
♣ 9
♣10
♣ J
♣ Q
♣ K

♣ J
♥ 6
♦ A
♥ A
♠ K
♥ J
♦ Q
♣ 6
♠ J
♣ A
♦ 9
♥ 9
♦ 8
♠ 9
♣ K
♦ 4
♠ 5
♣ Q
♥ 3
♠ 2
♣10
♣ 9
♥ 7
♣ 4
♥ 4
♦10
♠ A
♦ 5
♠ 3
♥ 8
♣ 2
♦ K
♠ 4
♣ 7
♥ Q
♦ J
♠ 6
♣ 3
♠ 7
♠ 8
♠10
♦ 3
♥10
♦ 7
♠ Q
♥ 2
♦ 2
♣ 5
♥ K
♥ 5
♦ 6
♣ 8

♦ A
♥ A
♣ A
♠ A
♠ 2
♣ 2
♥ 2
♦ 2
♥ 3
♠ 3
♣ 3
♦ 3
♦ 4
♣ 4
♥ 4
♠ 4
♠ 5
♦ 5
♣ 5
♥ 5
♥ 6
♣ 6
♠ 6
♦ 6
♥ 7
♣ 7
♠ 7
♦ 7
♦ 8
♥ 8
♠ 8
♣ 8
♦ 9
♥ 9
♠ 9
♣ 9
♣10
♦10
♠10
♥10
♣ J
♥ J
♠ J
♦ J
♦ Q
♣ Q
♥ Q
♠ Q
♠ K
♣ K
♦ K
♥ K
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proposition b (continued). LSD string sort uses ~7WN  3WR array accesses and 
extra space proportional to N  R to sort N items whose keys are W-character 
strings taken from an R-character alphabet.

proof: The method is W passes of key-indexed counting, except that the aux[] ar-
ray is initialized just once. The total is immediate from the code and Proposition A.

For typical applications, R is far smaller than N, so Proposition B implies that the to-
tal running time is proportional to WN. An input array of N strings that each have W
characters has a total of WN characters, so the running time of LSD string sort is linear
in the size of the input. 
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MSD string sort To implement a general-purpose string sort, where 
strings are not necessarily all the same length, we consider the characters 
in left-to-right order. We know that strings that start with a should appear 
before strings that start with b, and so forth. The natural way to implement 
this idea is a recursive method known as most-significant-digit-first (MSD) 
string sort. We use key-indexed counting to sort the strings according to 
their first character, then (recursively) sort the subarrays corresponding to 
each character (excluding the first character, which we know to be the same 
for each string in each subarray). Like quicksort, MSD string sort parti-
tions the array into subarrays that can be sorted independently to complete 
the job, but it partitions the array into one subarray for each possible value 
of the first character, instead of the two or three partitions in quicksort. 

End-of-string convention  We need to pay particular attention to reach-
ing the ends of strings in MSD string sort. For a proper sort, we need the 
subarray for strings whose 
characters have all been exam-
ined to appear as the first sub-
array, and we do not want to 
recursively sort this subarray. 
To facilitate these two parts of 
the computation we use a pri-
vate two-argument charAt() 
method to convert from an in-
dexed string character to an ar-
ray index that returns -1 if the 
specified character position is 
past the end of the string.  This 
convention means that we have 
R+1 different possible character 
values at each string position: 
-1 to signify end of string, 0 for 
the first alphabet character, 1 
for the second alphabet charac-
ter, and so forth. Then, we just 
add 1 to each returned value, to 
get a nonnegative int that we 
can use to index count[]. Since 

Overview of MSD string sort
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Sorting a card deck with
MSD string sort

♠ A
♠ 2
♠ 3
♠ 4
♠ 5
♠ 6
♠ 7
♠ 8
♠ 9
♠10
♠ J
♠ Q
♠ K
♥ A
♥ 2
♥ 3
♥ 4
♥ 5
♥ 6
♥ 7
♥ 8
♥ 9
♥10
♥ J
♥ Q
♥ K
♦ A
♦ 2
♦ 3
♦ 4
♦ 5
♦ 6
♦ 7
♦ 8
♦ 9
♦10
♦ J
♦ Q
♦ K
♣ A
♣ 2
♣ 3
♣ 4
♣ 5
♣ 6
♣ 7
♣ 8
♣ 9
♣10
♣ J
♣ Q
♣ K

♠ K
♠ J
♠ 9
♠ 5
♠ 2
♠ A
♠ 3
♠ 4
♠ 6
♠ 7
♠ 8
♠10
♠ Q
♥ 6
♥ A
♥ J
♥ 9
♥ 3
♥ 7
♥ 4
♥ 8
♥ Q
♥10
♥ 2
♥ K
♥ 5
♦ A
♦ Q
♦ 9
♦ 8
♦ 4
♦10
♦ 5
♦ K
♦ J
♦ 3
♦ 7
♦ 2
♦ 6
♣ J
♣ 6
♣ A
♣ K
♣ Q
♣10
♣ 9
♣ 4
♣ 2
♣ 7
♣ 3
♣ 5
♣ 8

♣ J
♥ 6
♦ A
♥ A
♠ K
♥ J
♦ Q
♣ 6
♠ J
♣ A
♦ 9
♥ 9
♦ 8
♠ 9
♣ K
♦ 4
♠ 5
♣ Q
♥ 3
♠ 2
♣10
♣ 9
♥ 7
♣ 4
♥ 4
♦10
♠ A
♦ 5
♠ 3
♥ 8
♣ 2
♦ K
♠ 4
♣ 7
♥ Q
♦ J
♠ 6
♣ 3
♠ 7
♠ 8
♠10
♦ 3
♥10
♦ 7
♠ Q
♥ 2
♦ 2
♣ 5
♥ K
♥ 5
♦ 6
♣ 8
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key-indexed counting already needs one extra position, we use the 
code int count[] = new int[R+2]; to create the array of fre-
quency counts (and set all of its values to 0). Note : Some languages, 
notably C and C++, have a built-in end-of-string convention, so 
our code needs to be adjusted accordingly for such languages.

With these preparations, the implementation of MSD string 
sort, in Algorithm 5.2, requires very little new code. We add a test 
to cutoff to insertion sort for small subarrays (using a specialized 
insertion sort that we will consider later), and we add a loop to 
key-indexed counting to do the recursive calls. As summarized in 
the table at the bottom of this page, the values in the count[] array 
(after serving to count the frequencies, transform counts to indices, 
and distribute the data) give us precisely the information that we 
need to (recursively) sort the subarrays corresponding to each character value. 

Specified alphabet  The cost of MSD string sort depends strongly on the number of 
possible characters in the alphabet. It is easy to modify our sort method to take an 
Alphabet as argument, to allow for improved efficiency in clients involving strings 
taken from relatively small alphabets. The following changes will do the job:

n	 Save the alphabet in an instance variable alpha in the constructor.
n	 Set R to alpha.R() in the constructor.
n	 Replace s.charAt(d) with alpha.toIndex(s.charAt(d)) in charAt().

Typical candidate for MSD string sort

various
key 

lengths

she
sells
seashells
by
the
seashore
the
shells
she
sells
are
surely
seashells

are
by
seashells
seashells
seashore
sells
sells
she
she
shells
surely
the
the

input sorted result

at completion 
of phase for 
dth character

value of count[r] is

r = 0 r = 1 r between 2 and R-1 r = R r = R+1

count 
frequencies 0 (not used)

number of 
strings of 
length d

number of strings whose 
dth character value is r-2

transform 
counts to 
indices

start index of subarray for 
strings of length d

start index of subarray for strings whose 
dth character value is r-1

not 
used

distribute

start index of subarray for strings 
whose dth character value is r

not 
used

1 + end index of subarray 
for strings of length d

1 + end index of subarray for strings 
whose dth character value is r-1

not 
used

Interpretation of count[] values during MSD string sort
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aLgorIthM 5.2 MSD string sort

public class MSD 
{ 
   private static int R = 256;        // radix 
   private static final int M = 15;   // cutoff for small subarrays 
   private static String[] aux;       // auxiliary array for distribution

   private static int charAt(String s, int d) 
   {  if (d < s.length()) return s.charAt(d); else return -1;  }

   public static void sort(String[] a) 
   { 
      int N = a.length; 
      aux = new String[N]; 
      sort(a, 0, N-1, 0); 
   }

   private static void sort(String[] a, int lo, int hi, int d) 
   {  // Sort from a[lo] to a[hi], starting at the dth character. 

      if (hi <= lo + M) 
      {  Insertion.sort(a, lo, hi, d); return;  }

      int[] count = new int[R+2];        // Compute frequency counts. 
      for (int i = lo; i <= hi; i++) 
         count[charAt(a[i], d) + 2]++;

      for (int r = 0; r < R+1; r++)      // Transform counts to indices. 
         count[r+1] += count[r];

      for (int i = lo; i <= hi; i++)     // Distribute.  
         aux[count[charAt(a[i], d) + 1]++] = a[i];

      for (int i = lo; i <= hi; i++)     // Copy back. 
         a[i] = aux[i - lo];

      // Recursively sort for each character value. 
      for (int r = 0; r < R; r++) 
         sort(a, lo + count[r], lo + count[r+1] - 1, d+1);

    }

}

To sort an array a[] of strings, we sort them on their first character using key-indexed counting, then 
(recursively) sort the subarrays corresponding to each first-character value.
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In our running examples, we use strings made up of lowercase letters. It is also easy to 
extend LSD string sort to provide this feature, but typically with much less impact on 
performance than for MSD string sort.

The code in Algorithm 5.2 is deceptively simple, masking a rather sophisticated 
computation. It is definitely worth your while to study the trace of the top level at 
the bottom of this page and the trace of recursive calls on the next page, to be sure 
that you understand the intricacies of the algorithm. This trace uses a cutoff-for-small-
subarrays threshold value (M) of 0, so that you can see the sort to completion for this 
small example. The strings in this example are taken from Alphabet.LOWERCASE, with 
R = 26; bear in mind that typical applications might use Alphabet.EXTENDED_ASCII, 
with R = 256, or Alphabet.UNICODE16, with R = 65536. For large alphabets, MSD 
string sort is so simple as to be dangerous—improperly used, it can consume outra-
geous amounts of time and space. Before considering performance characteristics in 
detail, we shall discuss three important issues (all of which we have considered before, 
in Chapter 2) that must be addressed in any application.

Small subarrays  The basic idea behind MSD string sort is quite effective: in typi-
cal applications, the strings will be in order after examining only a few characters in 
the key. Put another way, the method quickly divides the array to be sorted into small 

Trace of MSD string sort: top level of sort(a, 0, 13, 0)

0     0
1  a  0
2  b  1
3  c  2
4  d  2
5  e  2
6  f  2
7  g  2
8  h  2
9  i  2
10 j  2
11 k  2
12 l  2
13 m  2 
14 n  2
15 o  2
16 p  2
17 q  2
18 r  2
19 s  2
20 t 12
21 u 14
22 v 14 
23 w 14
24 x 14
25 y 14
26 z 14
27   14

0     0
1  a  0
2  b  1
3  c  1
4  d  0
5  e  0
6  f  0
7  g  0
8  h  0
9  i  0
10 j  0
11 k  0
12 l  0
13 m  0 
14 n  0
15 o  0
16 p  0
17 q  0
18 r  0
19 s  0
20 t 10
21 u  2
22 v  0 
23 w  0
24 x  0
25 y  0
26 z  0
27    0

0  0  0
1  a  1
2  b  2
3  c  2
4  d  2
5  e  2
6  f  2
7  g  2
8  h  2
9  i  2
10 j  2
11 k  2
12 l  2
13 m  2 
14 n  2
15 o  2
16 p  2
17 q  2
18 r  2
19 s 12
20 t 14
21 u 14
22 v 14 
23 w 14
24 x 14
25 y 14
26 z 14
27   14

sort(a, 0, 0, 1);
sort(a, 1, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 1, 1);
sort(a, 2, 11, 1);
sort(a, 12, 13, 1);
sort(a, 14, 13, 1);
sort(a, 14, 13, 1);
sort(a, 14, 13, 1);
sort(a, 14, 13, 1);
sort(a, 14, 13, 1);
sort(a, 14, 13, 1);
sort(a, 14, 13, 1);
sort(a, 14, 13, 1);
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of distribute phase
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subarrays. But this is a double-edged sword: we are certain to have to handle huge num-
bers of tiny subarrays, so we had better be sure that we handle them efficiently. Small 
subarrays are of critical importance in the performance of MSD string sort. We have seen 
this situation for other recursive sorts (quicksort and mergesort), but it is much more 
dramatic for MSD string sort. For example, suppose that you are sorting millions of 
ASCII strings (R = 256) that are all different, with no cutoff for small subarrays. Each 
string eventually finds its way to its own subarray, so you will sort millions of subarrays 
of size 1. But each such sort involves initializing the 258 entries of the count[] array 
to 0 and transforming them all to indices. This cost is likely to dominate the rest of the 
sort. With Unicode (R = 65536) the sort might be thousands of times slower. Indeed, 
many unsuspecting sort clients have seen their running times explode from minutes to 
hours on switching from ASCII to Unicode, for precisely this reason. Accordingly, the 
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Trace of recursive calls for MSD string sort (no cuto� for small subarrays, subarrays of size 0 and 1 omitted)

end of string
goes before any

char value

need to examine
every character
in equal keys

d

lo
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switch to insertion sort for small subarrays is a must for MSD string sort. To avoid 
the cost of reexamining characters that we know to be equal, we use the version of in-
sertion sort given at the top of the page, which takes an 
extra argument d and assumes that the first d characters 
of all the strings to be sorted are known to be equal. As 
with quicksort and mergesort, most of the benefit of this 
improvement is achieved with a small value of the cut-
off, but the savings here are much more dramatic. The 
diagram at right shows the results of experiments where 
using a cutoff to insertion sort for subarrays of size 10 
or less decreases the running time by a factor of 10 for a 
typical application.

Equal keys  A second pitfall for MSD string sort is that 
it can be relatively slow for subarrays containing large 
numbers of equal keys. If a substring occurs sufficiently 
often that the cutoff for small subarrays does not ap-
ply, then a recursive call is needed for every character 
in all of the equal keys. Moreover, key-indexed count-
ing is an inefficient way to determine that the charac-
ters are all equal: not only does each character need to 
be examined and each string moved, but all the counts 
have to be initialized, converted to indices, and so forth. 
Thus, the worst case for MSD string sorting is when all 
keys are equal. The same problem arises when large num-
bers of keys have long common prefixes, a situation often 
found in applications.

public static void sort(String[] a, int lo, int hi, int d) 
{  // Sort from a[lo] to a[hi], starting at the dth character.   
   for (int i = lo; i <= hi; i++) 
      for (int j = i; j > lo && less(a[j], a[j-1], d); j--) 
         exch(a, j, j-1); 
}

private static boolean less(String v, String w, int d) 
{ 
   for (int i = d; i < Math.min(v.length(), w.length()); i++) 
      if      (v.charAt(i) < w.charAt(i)) return true; 
      else if (v.charAt(i) > w.charAt(i)) return false; 
   return v.length() < w.length(); 
}

Insertion sort for strings whose first d characters are equal

E�ect of cuto�  for small subarrays
in MSD string sort
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Extra space  To do the partitioning, MSD uses two auxiliary arrays: the temporary 
array for distributing keys (aux[]) and the array that holds the counts that are trans-
formed into partition indices (count[]).  The aux[] array is of size N and can be cre-
ated outside the recursive sort() method. This extra space can be eliminated by sac-
rificing stability (see Exercise 5.1.17), but it is often not a major concern in practical 
applications of MSD string sort. Space for the count[] array, on the other hand, can be 
an important issue (because it cannot be created outside the recursive sort() method) 
as addressed in Proposition D below.

Random string model  To study the performance of MSD string sort, we use a random 
string model, where each string consists of (independently) random characters, with 
no bound on their length. Long equal keys are 
essentially ignored, because they are extremely 
unlikely. The behavior of MSD string sort in 
this model is similar to its behavior in a model 
where we consider random fixed-length keys 
and also to its performance for typical real 
data; in all three, MSD string sort tends to ex-
amine just a few characters at the beginning of 
each key, as we will see.

Performance  The running time of MSD 
string sort depends on the data. For compare-
based methods, we were primarily concerned 
with the order of the keys; for MSD string sort, 
the order of the keys is immaterial, but we are 
concerned with the values of the keys.

n	 For random inputs, MSD string sort 
examines just enough characters to distinguish among the keys, and the running 
time is sublinear in the number of characters in the data (it examines a small 
fraction of the input characters). 

n	 For nonrandom inputs, MSD string sort still could be sublinear but might need 
to examine more characters than in the random case, depending on the data. In 
particular, it has to examine all the characters in equal keys, so the running time 
is nearly linear in the number of characters in the data when significant num-
bers of equal keys are present.

n	 In the worst case, MSD string sort examines all the characters in the keys, so the 
running time is linear in the number of characters in the data (like LSD string 
sort). A worst-case input is one with all strings equal.

1EIO402
1HYL490
1ROZ572
2HXE734
2IYE230
2XOR846
3CDB573
3CVP720
3IGJ319
3KNA382
3TAV879
4CQP781
4QGI284
4YHV229

1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377

nonrandom
with duplicates
(nearly linear)

random
(sublinear)

worst case
(linear)

Characters examined by MSD string sort

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the
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Some applications involve distinct keys that are well-modeled by the random string 
model; others have significant numbers of equal keys or long common prefixes, so the 
sort time is closer to the worst case. Our license-plate-processing application, for ex-
ample, can fall anywhere between these extremes: if our engineer takes an hour of data 
from a busy interstate, there will not be many duplicates and the random model will 
apply; for a week’s worth of data on a local road, there will be numerous duplicates and 
performance will be closer to the worst case. 

proposition c. To sort N random strings from an R-character alphabet, MSD 
string sort examines about N log R N characters, on average.

proof sketch: We expect the subarrays to be all about the same size, so the recur-
rence CN = RCN/R + N approximately describes the performance, which leads to the 
stated result, generalizing our argument for quicksort in Chapter 2. Again, this 
description of the situation is not entirely accurate, because N/R  is not necessarily 
an integer, and the subarrays are the same size only on the average (and because 
the number of characters in real keys is finite).  These effects turn out to be less 
significant for MSD string sort than for standard quicksort, so the leading term of 
the running time is the solution to this recurrence. The detailed analysis that proves 
this fact is a classical example in the analysis of algorithms, first done by Knuth in 
the early 1970s. 

As food for thought and to indicate why the proof is beyond the scope of this book, 
note that key length does not play a role. Indeed, the random-string model allows key 
length to approach infinity. There is a nonzero probability that two keys will match for 
any specified number of characters, but this probability is so small as to not play a role 
in our performance estimates. 

As we have discussed, the number of characters examined is not the full story for 
MSD string sort. We also have to take into account the time and space required to count 
frequencies and turn the counts into indices.

proposition D. MSD string sort uses between 8N  3R and ~7wN  3WR array ac-
cesses to sort N strings taken from an R-character alphabet, where w is the average 
string length.

proof: Immediate from the code, Proposition A, and Proposition B. In the best 
case MSD sort uses just one pass; in the worst case, it performs like LSD string sort. 
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When N is small, the factor of R dominates. Though precise analysis of the total cost 
becomes difficult and complicated, you can estimate the effect of this cost just by con-
sidering small subarrays when keys are distinct. With no cutoff for small subarrays, 
each key appears in its own subarray, so NR array accesses are needed for just these 
subarrays. If we cut off to small subarrays of size M, we have about N/M subarrays of 
size M, so we are trading off NR/M array accesses with NM/4 compares, which tells us 
that we should choose M to be proportional to the square root of R.

proposition D (continued). To sort N strings taken from an R-character alphabet, 
the amount of space needed by MSD string sort is proportional to R times the 
length of the longest string (plus N ), in the worst case.

proof: The count[] array must be created within sort(), so the total amount of 
space needed is proportional to R times the depth of recursion (plus N for the aux-
iliary array). Precisely, the depth of the recursion is the length of the longest string 
that is a prefix of two or more of the strings to be sorted. 

As just discussed, equal keys cause the depth of the recursion to be proportional to the 
length of the keys. The immediate practical lesson to be drawn from Proposition D 
is that it is quite possible for MSD string sort to run out of time or space when sorting 
long strings taken from large alphabets, particularly if long equal keys are to be expect-
ed. For example, with Alphabet.UNICODE16 and more than M equal 1,000-character 
strings, MSD.sort() would require space for over 65 million counters!

The main challenge in getting maximum efficiency from MSD string sort on keys 
that are long strings is to deal with lack of randomness in the data. Typically, keys may 
have long stretches of equal data, or parts of them might fall in only a narrow range.   
For example, an information-processing application for student data might have keys 
that include graduation year (4 bytes, but one of four different values), state names 
(perhaps 10 bytes, but one of 50 different values), and gender (1 byte with one of two 
given values), as well as a person’s name (more similar to random strings, but probably 
not short, with nonuniform letter distributions, and with trailing blanks in a fixed-
length field). Restrictions like these lead to large numbers of empty subarrays during 
the MSD string sort. Next, we consider a graceful way to adapt to such situations.
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Three-way string quicksort We can also 
adapt quicksort to MSD string sorting by using 
3-way partitioning on the leading character of the 
keys, moving to the next character on only the mid-
dle subarray (keys with leading character equal to 
the partitioning character). This method is not diffi-
cult to implement, as you can see in Algorithm 5.3: 
we just add an argument to the recursive method 
in Algorithm 2.5 that keeps track of the current 
character, adapt the 3-way partitioning code to use 
that character, and appropriately modify the recur-
sive calls.

Although it does the computation in a different 
order, 3-way string quicksort amounts to sorting the 
array on the leading characters of the keys (using 
quicksort), then applying the method recursively on 
the remainder of the keys. For sorting strings, the 
method compares favorably with normal quicksort 
and with MSD string sort.  Indeed, it is a hybrid of 
these two algorithms.

Three-way string quicksort divides the array into 
only three parts, so it involves more data movement 
than MSD string sort when the number of nonempty partitions is large because it has to 

do a series of 3-way partitions 
to get the effect of the multiway 
partition.  On the other hand, 
MSD string sort can create 
large numbers of (empty) sub-
arrays, whereas 3-way string 
quicksort always has just three. 
Thus, 3-way string quicksort 
adapts well to handling equal 
keys, keys with long common 
prefixes, keys that fall into a 
small range, and small arrays—
all situations where MSD 
string sort runs slowly.  Of par-
ticular importance is that the 

Overview of 3-way string quicksort

<v
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<v
<v
<v
.
.
.
<v
<v
v
v
v
.
.
.
v
v

use first character value
to partition into “less,” “equal,”

and “greater” subarrays

recursively sort subarrays
(excluding first character

for “equal’ subarray)

v
v
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.
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>v
>v
>v
.
.
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Typical 3-way string quicksort candidate

duplicate
keys

edu.princeton.cs
com.apple
edu.princeton.cs
com.cnn
com.google
edu.uva.cs
edu.princeton.cs
edu.princeton.cs.www
edu.uva.cs
edu.uva.cs
edu.uva.cs
com.adobe
edu.princeton.ee

com.adobe
com.apple
com.cnn
com.google
edu.princeton.cs
edu.princeton.cs
edu.princeton.cs
edu.princeton.cs.www
edu.princeton.ee
edu.uva.cs
edu.uva.cs
edu.uva.cs
edu.uva.cs 

long
prefix
match

input sorted result
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aLgorIthM 5.3 three-way string quicksort

public class Quick3string 
{

   private static int charAt(String s, int d) 
   {  if (d < s.length()) return s.charAt(d); else return -1;  }

   public static void sort(String[] a) 
   {  sort(a, 0, a.length - 1, 0);  }

   private static void sort(String[] a, int lo, int hi, int d) 
   {  
      if (hi <= lo) return;

      int lt = lo, gt = hi; 
      int v = charAt(a[lo], d); 
      int i = lo + 1; 
      while (i <= gt) 
      { 
         int t = charAt(a[i], d); 
         if      (t < v) exch(a, lt++, i++); 
         else if (t > v) exch(a, i, gt--); 
         else            i++; 
      }

      // a[lo..lt-1] < v = a[lt..gt] < a[gt+1..hi]

      sort(a, lo, lt-1, d); 
      if (v >= 0) sort(a, lt, gt, d+1); 
      sort(a, gt+1, hi, d); 
   }

}

To sort an array a[] of strings, we 3-way partition them on their first character, then (recursively) sort 
the three resulting subarrays: the strings whose first character is less than the partitioning character, 
the strings whose first character is equal to the partitioning character (excluding their first character 
in the sort), and the strings whose first character is greater than the partitioning character.
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partitioning adapts to different kinds of structure in different parts of the key. Also, like 
quicksort, 3-way string quicksort does not use extra space (other than the implicit stack 
to support recursion), which is an important advantage over MSD string sort, which 
requires space for both frequency counts and an auxiliary array.  

The figure at the bottom of this page shows all of the recursive calls that  Quick3string 
makes for our example. Each subarray is sorted using precisely three recursive calls, ex-
cept when we skip the recursive call on reaching the ends of the (equal) string(s) in the 
middle subarray. 

As usual, in practice, it is worthwhile to consider various standard improvements to 
the implementation in Algorithm 5.3:

Small subarrays  In any recursive algorithm, we can gain efficiency by treating small 
subarrays differently. In this case, we use the insertion sort from page 715, which skips the 
characters that are known to be equal. The improvement due to this change is likely to 
be significant, though not nearly as important as for MSD string sort.

Restricted alphabet  To handle specialized alphabets, we could add an Alphabet 
argument alpha to each of the methods and replace s.charAt(d) with 
alpha.toIndex(s.charAt(d)) in charAt(). In this case, there is no benefit to doing 
so, and adding this code is likely to substantially slow the algorithm down because this 
code is in the inner loop.

Trace of recursive calls for 3-way string quicksort (no cuto� for small subarrays)
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Randomization  As with any quicksort, it is generally worthwhile to shuffle the array 
beforehand or to use a random paritioning item by swapping the first item with a ran-
dom one. The primary reason to do so is to protect against worst-case performance in 
the case that the array is already sorted or nearly sorted.

For string keys, standard quicksort and all the other sorts in Chapter 2 are actually 
MSD string sorts, because the compareTo() method in String accesses the charac-
ters in left-to-right order. That is, compareTo() accesses only the leading characters 
if they are different, the leading two characters if the first characters are the same and 
the second different, and so forth. For example, if the first characters of the strings are 
all different, the standard sorts will examine just those characters, thus automatically 
realizing some of the same performance gain that we seek in MSD string sorting. The 
essential idea behind 3-way quicksort is to take special action when the leading char-
acters are equal.  Indeed, one way to think of Algorithm 5.3 is as a way for standard 
quicksort to keep track of  leading characters that are known to be equal. In the small 
subarrays, where most of the compares in the sort are done, the strings are likely to have 
numerous equal leading characters. The standard algorithm has to scan over all those 
characters for each compare; the 3-way algorithm avoids doing so.

Performance  Consider a case where the string keys are long (and are all the same 
length, for simplicity), but most of the leading characters are equal. In such a situa-
tion, the running time of standard quicksort is proportional to the string length times
2N ln N, whereas the running time of 3-way string quicksort is proportional to N times 
the string length (to discover all the leading equal characters) plus 2N ln N character 
comparisons (to do the sort on the remaining short keys). That is, 3-way string quick-
sort requires up to a factor of 2 ln N fewer character compares than normal quicksort. 
It is not unusual for keys in practical sorting applications to have characteristics similar 
to this artificial example.
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proposition E. To sort an array of N random strings, 3-way string quicksort uses 
~ 2N ln N character compares, on the average.

proof: There are two instructive ways to understand this result. First, consider-
ing the method to be equivalent to quicksort partitioning on the leading char-
acter, then (recursively) using the same method on the subarrays, we should not 
be surprised that the total number of operations is about the same as for normal 
quicksort—but they are single-character compares, not full-key compares.  Second, 
considering the method as replacing key-indexed counting by quicksort, we expect 
that the N log R N running time from Proposition C should be multiplied by a fac-
tor of 2 ln R because it takes quicksort 2R ln R steps to sort R characters, as opposed 
to R steps for the same characters in the MSD string sort. We omit the full proof.

As emphasized on page 716, considering random strings is instructive, but more detailed 
analysis is needed to predict performance for practical situations. Researchers have 
studied this algorithm in depth and have proved that no algorithm can beat 3-way 
string quicksort (measured by number of character compares) by more than a constant 
factor, under very general assumptions. To appreciate its versatility, note that 3-way 
string quicksort has no direct dependencies on the size of the alphabet. 

Example: web logs  As an example where 3-way string quicksort shines, we can con-
sider a typical modern data-processing task. Suppose that you have built a website and 
want to analyze the traffic that it generates. You can have your system administrator 
supply you with a web log of all transactions on your site. Among the information asso-
ciated with a transaction is the domain name of the originating machine. For example, 
the file week.log.txt on the booksite is a log of one week’s transactions on our book-
site. Why does 3-way string quicksort do well on such a file? Because the sorted result is 
replete with long common prefixes that this method does not have to reexamine.
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Which string-sorting algorithm should I use? Naturally, we are interested 
in how the string-sorting methods that we have considered compare to the general-
purpose methods that we considered in Chapter 2. The following table summarizes 
the important characteristics of the string-sort algorithms that we have discussed in 
this section (the rows for quicksort, mergesort, and 3-way quicksort are included from 
Chapter 2, for comparison).

algorithm stable? inplace?

order of growth of 
typical number calls to charAt()

 to sort N strings 
from an R-character alphabet 

(average length w, max length W)
sweet spot

running time extra space

insertion sort 
for strings yes yes

between 
N and N 2

1 small arrays, 
arrays in order

quicksort no yes N log 2 N log N general-purpose 
when space is tight

mergesort yes no N log 2 N N
general-purpose 

stable sort

3-way quicksort no yes
between 

N and N log 2 N log N large numbers of 
equal keys

LSD string sort yes no NW N
short fixed-length 

strings

MSD string sort yes no between 
N and Nw N + WR random strings

3-way string 
quicksort no yes between 

N and Nw log R  W + log N
general-purpose, 
strings with long 
prefix matches

performance characteristics of string-sorting algorithms

As in Chapter 2, multiplying these growth rates by appropriate algorithm- and data-
dependent constants gives an effective way to predict running time.

As explored in the examples that we have already considered and in many other 
examples in the exercises, different specific situations call for different methods, with 
appropriate parameter settings. In the hands of an expert (maybe that’s you, by now), 
dramatic savings can be realized for certain situations.
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Q&A

Q. Does the Java system sort use one of these methods for String sorts?

A. No, but the standard implementation includes a fast string compare that makes 
standard sorts competitive with the methods considered here. 

Q. So, I should just use the system sort for String keys?

A. Probably yes in Java, though if you have huge numbers of strings or need an excep-
tionally fast sort, you may wish to switch to char arrays instead of String values and 
use a radix sort.

Q. What is explanation of the log2 N factors on the table in the previous page?

A. They reflect the idea that most of the comparisons for these algorithms wind up 
being between keys with a common prefix of length log N. Recent research has estab-
lished this fact for random strings with careful mathematical analysis (see booksite for 
reference).
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ExErcisEs

5.1.1 Develop a sort implementation that counts the number of different key values, 
then uses a symbol table to apply key-indexed counting to sort the array. (This method 
is not for use when the number of different key values is large.)

5.1.2 Give a trace for LSD string sort for the keys

 no is th ti fo al go pe to co to th ai of th pa

5.1.3 Give a trace for MSD string sort for the keys

 no is th ti fo al go pe to co to th ai of th pa

5.1.4 Give a trace for 3-way string quicksort for the keys

 no is th ti fo al go pe to co to th ai of th pa

5.1.5 Give a trace for MSD string sort for the keys

 now is the time for all good people to come to the aid of

5.1.6 Give a trace for 3-way string quicksort for the keys

 now is the time for all good people to come to the aid of

5.1.7 Develop an implementation of key-indexed counting that makes use of an array 
of Queue objects.

5.1.8 Give the number of characters examined by MSD string sort and 3-way string 
quicksort for a file of N keys a, aa, aaa, aaaa, aaaaa, . . . 

5.1.9 Develop an implementation of LSD string sort that works for variable-length 
strings.

5.1.10 What is the total number of characters examined by 3-way string quicksort 
when sorting N fixed-length strings (all of length W), in the worst case?
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crEAtivE problEms

5.1.11  Queue sort. Implement MSD string sorting using queues, as follows: Keep one 
queue for each bin. On a first pass through the items to be sorted, insert each item into 
the appropriate queue, according to its leading character value. Then, sort the sublists 
and stitch together all the queues to make a sorted whole. Note that this method does 
not involve keeping the count[] arrays within the recursive method.

5.1.12  Alphabet. Develop an implementation of the Alphabet API that is given on 
page 698 and use it to develop LSD and MSD sorts for general alphabets.

5.1.13  Hybrid sort. Investigate the idea of using standard MSD string sort for large ar-
rays, in order to get the advantage of multiway partitioning, and 3-way string quicksort 
for smaller arrays, in order to avoid the negative effects of large numbers of empty bins.

5.1.14  Array sort. Develop a method that uses 3-way string quicksort for keys that are 
arrays of int values.

5.1.15  Sublinear sort. Develop a sort implementation for int values that makes two 
passes through the array to do an LSD sort on the leading 16 bits of the keys, then does 
an insertion sort.

5.1.16  Linked-list sort. Develop a sort implementation that takes a linked list of nodes 
with String key values as argument and rearranges the nodes so that they appear in 
sorted order (returning a link to the node with the smallest key). Use 3-way string 
quicksort.

5.1.17  In-place key-indexed counting. Develop a version of key-indexed counting that 
uses only a constant amount of extra space. Prove that your version is stable or provide 
a counterexample.
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ExpErimENts

5.1.18  Random decimal keys. Write a static method randomDecimalKeys that takes 
int values N and W as arguments and returns an array of N string values that are each 
W-digit decimal numbers.

5.1.19  Random CA license plates. Write a static method randomPlatesCA that takes 
an int value N as argument and returns an array of N String values that represent CA 
license plates as in the examples in this section.

5.1.20  Random fixed-length words. Write a static method randomFixedLengthWords 
that takes int values N and W as arguments and returns an array of N string values that 
are each strings of W characters from the alphabet.

5.1.21  Random items. Write a static method randomItems that takes an int value N as 
argument and returns an array of N string values that are each strings of length between 
15 and 30 made up of three fields: a 4-character field with one of a set of 10 fixed strings; 
a 10-char field with one of a set of 50 fixed strings; a 1-character field with one of two 
given values; and a 15-byte field with random left-justified strings of letters equally 
likely to be 4 through 15 characters long. 

5.1.22  Timings. Compare the running times of MSD string sort and 3-way string 
quicksort, using various key generators. For fixed-length keys, include LSD string sort.

5.1.23  Array accesses. Compare the number of array accesses used by MSD string sort 
and 3-way string sort, using various key generators. For fixed-length keys, include LSD 
string sort.

5.1.24  Rightmost character accessed. Compare the position of the rightmost character 
accessed for MSD string sort and 3-way string quicksort, using various key generators.
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5.2 trieS

As with sorting, we can take advantage of properties of strings to develop search meth-
ods (symbol-table implementations) that can be more efficient than the general-pur-
pose methods of Chapter 3 for typical applications where search keys are strings.

Specifically, the methods that we consider in this section achieve the following per-
formance characteristics in typical applications, even for huge tables:

n	 Search hits take time proportional to the length of the search key.
n	 Search misses involve examining only a few characters.

On reflection, these performance characteristics are quite remarkable, one of the 
crowning achievements of algorithmic technology and a primary factor in enabling 
the development of the computational infrastructure we now enjoy that has made so 
much information instantly accessible. Moreover, we can extend the symbol-table API 
to include character-based operations defined for string keys (but not necessarily for 
all Comparable types of keys) that are powerful and quite useful in practice, as in the 
following API: 

     public class StringST<Value>

StringST() create a symbol table

void put(String key, Value val)
put key-value pair into the table 
(remove key if value is null)

Value get(String key)
value paired with key 
(null if key is absent)

void delete(String key) remove key (and its value)
boolean contains(String key) is there a value paired with key?
boolean isEmpty() is the table empty?
String longestPrefixOf(String s) the longest key that is a prefix of s

Iterable<String> keysWithPrefix(String s) all the keys having s as a prefix

Iterable<String> keysThatMatch(String s)
all the keys that match s 
(where . matches any character)

int size() number of key-value pairs

Iterable<String> keys() all the keys in the table

apI for a symbol table with string keys
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This API differs from the symbol-table API introduced in Chapter 3 in the follow-
ing aspects:

n	 We replace the generic type Key with the concrete type String.
n	 We add three new methods, longestPrefixOf(), keysWithPrefix() and 

keysThatMatch().
We retain the basic conventions of our symbol-table implementations in Chapter 3
(no duplicate or null keys and no null values). 

As we saw for sorting with string keys, it is often quite important to be able to work 
with strings from a specified alphabet. Simple and efficient implementations that are 
the method of choice for small alphabets turn out to be useless for large alphabets be-
cause they consume too much space. In such cases, it is certainly worthwhile to add a 
constructor that allows clients to specify the alphabet. We will consider the implemen-
tation of such a constructor later in this section but omit it from the API for now, in 
order to concentrate on string keys.

The following descriptions of the three new methods use the keys { she, sells, 
sea, shells, by, the, sea, shore } to give examples:

n	 longestPrefixOf() takes a string as argument and returns the longest 
key in the symbol table that is a prefix of that string. For the keys above, 
longestPrefixOf("shell") is she and longestPrefixOf("shellsort") is 
shells. 

n	 keysWithPrefix() takes a string as argument and returns all the keys 
in the symbol table having that string as prefix. For the keys above, 
keysWithPrefix("she") is she and shells, and keysWithPrefix("se") is 
sells and sea. 

n	 keysThatMatch() takes a string as argument and returns all the keys in the 
symbol table that match that string, in the sense that a period (.) in the argu-
ment string matches any character. For the keys above, keysThatMatch(".he") 
returns she and the, and keysThatMatch("s..") returns she and sea. 

We will consider in detail implementations and applications of these operations after 
we have seen the basic symbol-table methods. These particular operations are repre-
sentative of what is possible with string keys; we discuss several other possibilities in 
the exercises.

To focus on the main ideas, we concentrate on put(), get(), and the new methods; 
we assume (as in Chapter 3) default implementations of contains() and isEmpty(); 
and we leave implementations of size() and delete() for exercises. Since strings are 
Comparable, extending the API to also include the ordered operations defined in the 
ordered symbol-table API in Chapter 3 is possible (and worthwhile); we leave those 
implementations (which are generally straightforward) to exercises and booksite code.
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Tries In this section, we consider a search tree known as a trie, a data structure built 
from the characters of the string keys that allows us to use the characters of the search 
key to guide the search. The name “trie” is a bit of wordplay introduced by E. Fredkin in 
1960 because the data structure is used for retrieval, but we pronounce it “try” to avoid 
confusion with “tree.” We begin with a high-level description of the basic properties 
of tries, including search and insert algorithms, and then proceed to the details of the 
representation and Java implementation.

Basic properties  As with search trees, tries are data structures composed of nodes that 
contain links that are either null or references to other nodes. Each node is pointed to 
by just one other node, which is called its parent (except for one node, the root, which 
has no nodes pointing to it), and each node has R links, where R is the alphabet size. 
Often, tries have a substantial number of null links, so when we draw a trie, we typi-
cally omit null links. Although links point to nodes, we can view each link as point-
ing to a trie, the trie whose root is the referenced node. Each link corresponds to a 
character value—since each link points 
to exactly one node, we label each node 
with the character value corresponding 
to the link that points to it (except for 
the root, which has no link pointing to 
it). Each node also has a corresponding 
value, which may be null or the value as-
sociated with one of the string keys in 
the symbol table. Specifically, we store 
the value associated with each key in the 
node corresponding to its last character. 
It is very important to bear in mind the 
following fact: nodes with null values ex-
ist to facilitate search in the trie and do 
not correspond to keys. An example of a 
trie is shown at right.

Search in a trie  Finding the value as-
sociated with a given string key in a trie is a simple process, guided by the characters 
in the search key. Each node in the trie has a link corresponding to each possible string 
character. We start at the root, then follow the link associated with the first character in 
the key; from that node we follow the link associated with the second character in the 
key; from that node we follow the link associated with the third character in the key and 

Anatomy of a trie
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so forth, until reaching the last character of the key or a null link. At this point, one of 
the following three conditions holds (refer to the figure above for examples): 

n	 The value at the node corresponding to the last character in the key is not null 
(as in the searches for shells and she depicted at left above). This result is 
a search hit—the value associated with the key is the value in the node corre-
sponding to its last character.

n	 The value in the node corresponding to the last character in the key is null (as 
in the search for shell depicted at top right above). This result is a search miss:
the key is not in the table.

n	 The search terminated with a null link (as in the search for shore depicted at 
bottom right above). This result is also a search miss. 

In all cases, the search is accomplished just by examining nodes along a path from the 
root to another node in the trie.

Trie search examples
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Insertion into a trie  As with binary search trees, we insert by first doing a search: in 
a trie that means using the characters of the key to guide us down the trie until reach-
ing the last character of the key or a null link. At this point, one of the following two 
conditions holds: 

n	 We encountered a null link before reaching the last character of the key. In this 
case, there is no trie node corresponding to the last character in the key, so we 
need to create nodes for each of the characters in the key not yet encountered 
and set the value in the last one to the value to be associated with the key.

n	 We encountered the last character of the key before reaching a null link. In this 
case, we set that node’s value to the value to be associated with the key (whether 
or not that value is null), as usual with our associative array convention.

In all cases, we examine or create a node in the trie for each key character. The construc-
tion of the trie for our standard indexing client from Chapter 3 with the input

she sells sea shells by the sea shore

is shown on the facing page. 

Node representation  As mentioned at the outset, our trie diagrams do not quite cor-
respond to the data structures our programs will build, because we do not draw null 
links. Taking null links into account emphasizes the following important characteristics 
of tries:

n	 Every node has R links, one for each possible character.
n	 Characters and keys are implicitly stored in the data structure.

For example, the figure below depicts a trie for keys made up of lowercase letters, with 
each node having a value and 26 links. The first link points to a subtrie for keys begin-
ning with a, the second points to a subtrie for substrings beginning with b, and so forth. 

Trie representation (R = 26)
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Keys in the trie are implicitly represented by paths from the root that end at nodes with 
non-null values. For example, the string sea is associated with the value 2 in the trie 
because the 19th link in the root (which points to the trie for all keys that start with s) 
is not null and the 5th link in the node that link refers to (which points to the trie for 
all keys that start with se) is not null, and the first link in the node that link refers to 
(which points to the trie for all keys that starts with sea) has the value 2. Neither the 
string sea nor the characters s, e, and a are stored in the data structure. Indeed, the data 
structure contains no characters or strings, just links and values. Since the parameter R
plays such a critical role, we refer to a trie for an R-character alphabet as an R-way trie.

With these preparations, the symbol-table implementation TrieST on the facing 
page is straightforward. It uses recursive methods like those that we used for search 
trees in Chapter 3, based on a private Node class with instance variable val for client 
values and an array next[] of Node references. The methods are compact recursive 
implementations that are worthy of careful study. Next, we discuss implementations of 
the constructor that takes an Alphabet as argument and the methods size(), keys(), 
longestPrefixOf(), keysWithPrefix(), keysThatMatch(), and delete(). These 
are also easily understood recursive methods, each slightly more complicated than the 
last.

Size  As for the binary search trees of Chapter 3, three straightforward options are 
available for implementing size():

n	 An eager implementation where we maintain the number of keys in an instance 
variable N.

n	 A very eager implementation where we maintain the number of keys in a subtrie 
as a node instance variable that we update after the recursive calls in put() and 
delete(). 

n	 A lazy recursive implementation like 
the one at right. It traverses all of the 
nodes in the trie, counting the number 
having a non-null value.

As with binary search trees, the lazy im-
plementation is instructive but should be 
avoided because it can lead to performance 
problems for clients. The eager implementa-
tions are explored in the exercises.

public int size() 
{  return size(root);  }

private int size(Node x) 
{   
   if (x == null) return 0;

   int cnt = 0; 
   if (x.val != null) cnt++; 
   for (char c = 0; c < R; c++) 
      cnt += size(next[c]);

   return cnt; 
}

Lazy recursive size() for tries
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aLgorIthM 5.4 trie symbol table

public class TrieST<Value> 
{ 
   private static int R = 256;       // radix 
   private Node root = new Node();   // root of trie

   private static class Node 
   { 
      private Object val; 
      private Node[] next = new Node[R]; 
   }

   public Value get(String key) 
   { 
      Node x = get(root, key, 0); 
      if (x == null) return null; 
      return (Value) x.val; 
   }

   private Node get(Node x, String key, int d) 
   {  // Return node associated with key in the subtrie rooted at x. 
      if (x == null) return null; 
      if (d == key.length()) return x; 
      char c = key.charAt(d); // Use dth key char to identify subtrie. 
      return get(x.next[c], key, d+1); 
   }

   public void put(String key, Value val) 
   {  root = put(root, key, val, 0);  }

   private Node put(Node x, String key, Value val, int d) 
   {  // Change value associated with key if in subtrie rooted at x. 
      if (x == null) x = new Node(); 
      if (d == key.length()) {  x.val = val; return x; } 
      char c = key.charAt(d); // Use dth key char to identify subtrie. 
      x.next[c] = put(x.next[c], key, val, d+1); 
      return x; 
   } 
}

This code uses an R-way trie to implement a symbol table. Additional methods in the string symbol-
table API of page 730 are presented in the next several pages. Modifying this code to handle keys from 
specialized alphabets is straighforward (see page 741). The value in Node has to be an Object because 
Java does not support arrays of generics; we cast values back to Value in get().
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Collecting keys  Because characters and keys are represented implicitly in tries, provid-
ing clients with the ability to iterate through the keys presents a challenge. As with bina-
ry search trees, we accumulate the string keys in a Queue, but for tries we need to create 
explicit representations of all of the string keys, not just find them in the data structure. 
We do so with a recursive private method collect() that is similar to size() but also 
maintains a string with the sequence of characters on the path from the root. Each time 
that we visit a node via a call to collect() with that node as first argument, the second 

argument is the string associated 
with that node (the sequence of 
characters on the path from the 
root to the node). To visit a node, 
we add its associated string to the 
queue if its value is not null, then 
visit (recursively) all the nodes 
in its array of links, one for each 
possible character. To create the 
key for each call, we append the 
character corresponding to the 
link to the current key. We use 
this collect() method to col-
lect keys for both the keys() and 
the keysWithPrefix() methods 
in the API. To implement keys() 
we call keysWithPrefix() with 

the empty string as argument; to implement 
keysWithPrefix(), we call get() to find the 
trie node corresponding to the given prefix 
(null if there is no such node), then use the 
collect() method to complete the job. The 
diagram at left shows a trace of collect() 
(or keysWithPrefix("")) for an example 
trie, giving the value of the second argument 
key and the contents of the queue for each 
call to collect(). The diagram at the top 
of the facing page illustrates the process for 
keysWithPrefix("sh"). 

public Iterable<String> keys() 
{  return keysWithPrefix("");  }

public Iterable<String> keysWithPrefix(String pre) 
{ 
   Queue<String> q = new Queue<String>(); 
   collect(get(root, pre, 0), pre, q); 
   return q; 
}

private void collect(Node x, String pre, 
                             Queue<String> q) 
{ 
   if (x == null) return; 
   if (x.val != null) q.enqueue(pre); 
   for (char c = 0; c < R; c++) 
      collect(x.next[c], pre + c, q); 
}

Collecting the keys in a trie
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Wildcard match  To implement keysThatMatch(), we use a similar process, but add 
an argument specifying the pattern to collect() and add a test to make a recursive call 
for all links when the pattern character is a wildcard or only for the link corresponding 
to the pattern character otherwise, as in the code below. Note also that we do not need 
to consider keys longer than the pattern.

Longest prefix  To find the longest key that is a prefix of a given string, we use a recur-
sive method like get() that keeps track of the length of the longest key found on the 
search path (by passing it as a parameter to the recursive method, updating the value 

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

find subtrie for all
keys beginning with "sh"

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

collect keys
in that subtrie 

keysWithPrefix("sh");

Pre�x match in a trie

sh
she

shel
shell

shells
sho

shor
shore

she

she shells

she shells shore

key q

public Iterable<String> keysThatMatch(String pat) 
{ 
   Queue<String> q = new Queue<String>(); 
   collect(root, "", pat, q); 
   return q; 
}

private void collect(Node x, String pre, String pat, Queue<String> q) 
{ 
   int d = pre.length(); 
   if (x == null) return; 
   if (d == pat.length() && x.val != null) q.enqueue(pre); 
   if (d == pat.length()) return;

   char next = pat.charAt(d); 
   for (char c = 0; c < R; c++) 
      if (next == '.' || next == c) 
         collect(x.next[c], pre + c, pat, q); 
 }

Wildcard match in a trie
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whenever a node with a non-null value is encountered). 
The search ends when the end of the string or a null link is 
encountered, whichever comes first.

Deletion  The first step needed to delete a key-value pair 
from a trie is to use a normal search to find the node cor-
responding to the key and set the corresponding value to 
null. If that node has a non-null link to a child, then no 
more work is required; if all the links are null, we need to 
remove the node from the data structure. If doing so leaves 
all the links null in its parent, we need to remove that node, 
and so forth. The implementation on the facing page dem-
onstrates that this action can be accomplished with remark-
ably little code, using our standard recursive setup: after 
the recursive calls for a node x, we return null if the client 
value and all of the links in a node are null; otherwise we 
return x.

public String longestPrefixOf(String s) 
{ 
   int length = search(root, s, 0, 0); 
   return s.substring(0, length); 
}

private int search(Node x, String s, int d, int length) 
{ 
   if (x == null) return length; 
   if (x.val != null) length = d; 
   if (d == s.length()) return length; 
   char c = s.charAt(d); 
   return search(x.next[c], s, d+1, length); 
}

Matching the longest prefix of a given string
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Alphabet  As usual, Algorithm 5.4 
is coded for Java String keys, but it is 
a simple matter to modify the imple-
mentation to handle keys taken from 
any alphabet, as follows:

n	 Implement a constructor that 
takes an Alphabet as argument, 
which sets an Alphabet in-
stance variable to that argument 
value and the instance variable 
R to the number of characters 
in the alphabet.

n	 Use the toIndex() method 
from Alphabet in get() and 
put() to convert string char-
acters to indices between 0 and 
R1. 

n	 Use the toChar() method from 
Alphabet to convert indices between 0 and R1 to char values. This operation 
is not needed in get() and put() but is important in the implementations of 
keys(), keysWithPrefix(), and keysThatMatch().

With these changes, you can save a considerable amount of space (use only R links per 
node) when you know that your keys are taken from a small alphabet, at the cost of the 
time required to do the conversions between characters and indices. 

Deleting a key (and its associated value) from a trie
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public void delete(String key) 
{  root = delete(root, key, 0);  }

private Node delete(Node x, String key, int d) 
{ 
   if (x == null) return null; 
   if (d == key.length()) 
      x.val = null; 
   else 
   {  
      char c = key.charAt(d); 
      x.next[c] = delete(x.next[c], key, d+1); 
   }

   if (x.val != null) return x;

   for (char c = 0; c < R; c++) 
      if (x.next[c] != null) return x; 
   return null; 
}

Deleting a key (and its associated value) from a trie
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The code that we have considered is a compact and complete implementation 
of the string symbol-table API that has broadly useful practical applications. Several 
variations and extensions are discussed in the exercises. Next, we consider basic proper-
ties of tries, and some limitations on their utility.

Properties of tries As usual, we are interested in knowing the amount of time and 
space required to use tries in typical applications. Tries have been extensively studied 
and analyzed, and their basic properties are relatively easy to understand and to apply. 

proposition F. The linked structure (shape) of a trie is independent of the key in-
sertion/deletion order: there is a unique trie for any given set of keys.

proof: Immediate, by induction on the subtries.

This fundamental fact is a distinctive feature of tries: for all of the other search tree 
structures that we have considered so far, the tree that we construct depends both on 
the set of keys and on the order in which we insert those keys.

Worst-case time bound for search and insert  How long does it take to find the value 
associated with a key? For BSTs, hashing, and other methods in Chapter 3, we needed 
mathematical analysis to study this question, but for tries it is very easy to answer:

proposition G. The number of array accesses when searching in a trie or inserting 
a key into a trie is at most 1 plus the length of the key. 

proof: Immediate from the code. The recursive get() and put() implementations 
carry an argument d that starts at 0, increments for each call, and is used to stop the 
recursion when it reaches the key length.

From a theoretical standpoint, the implication of Proposition G is that tries are opti-
mal for search hit—we could not expect to do better than search time proportional to 
the length of the search key. Whatever algorithm or data structure we are using, we can-
not know that we have found a key that we seek without examining all of its characters. 
From a practical standpoint this guarantee is important because it does not depend on 
the number of keys : when we are working with 7-character keys like license plate num-
bers, we know that we need to examine at most 8 nodes to search or insert; when we are 
working with 20-digit account numbers, we only need to examine at most 21 nodes to 
search or insert.
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Expected time bound for search miss  Suppose that we are searching for a key in a 
trie and find that the link in the root node that corresponds to its first character is null. 
In this case, we know that the key is not in the table on the basis of examining just one
node. This case is typical: one of the most important properties of tries is that search 
misses typically require examining just a few nodes. If we assume that the keys are 
drawn from the random string model (each character is equally likely to have any one 
of the R different character values) we can prove this fact:

proposition H. The average number of nodes examined for search miss in a trie 
built from N random keys over an alphabet of size R is ~log R N . 

proof sketch (for readers who are familiar with probabilistic analysis): The prob-
ability that each of the N keys in a random trie differs from a random search key in 
at least one of the leading t characters is (1  Rt )N. Subtracting this quantity from 
1 gives the probability that one of the keys in the trie matches the search key in all 
of the leading t characters. In other words, 1  (1  Rt )N is the probability that 
the search requires more than t character compares. From probabilistic analysis, 
the sum for t = 0, 1, 2, . . . of the probabilities that an integer random variable is > t
is the average value of that random variable, so the average search cost is 

1  (1  R1)N  1  (1  R2)N . . . 1  (1  Rt )N . . .   

Using the elementary approximation (11/x)x ~ e1, we find the search cost to be 
approximately

(1  e N/R1)  (1  e N/R2) . . .  (1  e N/Rt) . . .  

The summand is extremely close to 1 for approximately log R N terms with  Rt sub-
stantially smaller than N; it is extremely close to 0 for all the terms with Rt substan-
tially greater than N; and it is somewhere between 0 and 1 for the few terms with   
Rt  N. So the grand total is about log R N.  

From a practical standpoint, the most important implication of this proposition is that 
search miss does not depend on the key length. For example, it says that unsuccessful 
search in a trie built with 1 million random keys will require examining only three or 
four nodes, whether the keys are 7-digit license plates or 20-digit account numbers. 
While it is unreasonable to expect truly random keys in practical applications, it is rea-
sonable to hypothesize that the behavior of trie algorithms for keys in typical applica-
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tions is described by this model. Indeed, this sort of behavior is widely seen in practice 
and is an important reason for the widespread use of tries. 

Space  How much space is needed for a trie? Addressing this question (and under-
standing how much space is available) is critical to using tries effectively.

proposition i. The number of links in a trie is between RN and RNw, where w is 
the average key length.

proof: Every key in the trie has a node containing its associated value that also has 
R links, so the number of links is at least RN. If the first characters of all the keys are 
different, then there is a node with R links for every key character, so the number of 
links is R times the total number of key characters, or RNw. 

The table on the facing page shows the costs for some typical applications that we have 
considered. It illustrates the following rules of thumb for tries:

n	 When keys are short, the number of links is close to RN.
n	 When keys are long, the number of links 

is close to RNw.
n	 Therefore, decreasing R can save a huge 

amount of space. 
A more subtle message of this table is that it is 
important to understand the properties of the 
keys to be inserted before deploying tries in an 
application. 

One-way branching  The primary reason 
that trie space is excessive for long keys is that 
long keys tend to have long tails in the trie, 
with each node having a single link to the next 
node (and, therefore, R1 null links). This sit-
uation known as external one-way branching is 
not difficult to correct (see Exercise 5.2.11). A 
trie might also have internal one-way branch-
ing. For example, two long keys may be equal 
except for their last character. This situation is 
a bit more difficult to address (see Exercise 
5.2.12). These changes can make trie space 

1

1 2

2

put("shells", 1);
put("shellfish", 2);

Removing one-way branching in a trie
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fish

internal
one-way

branching

external
one-way
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standard
trie

no one-way
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usage a less important factor than for the straightforward implementation that we have 
considered, but they are not necessarily effective in practical applications. Next, we con-
sider an alternative approach to reducing space usage for tries.

The bottom line is this: do not try to use Algorithm 5.4 for large numbers of long keys 
taken from large alphabets, because it will require space proportional to R times the total 
number of key characters. Otherwise, if you can afford the space, trie performance is 
difficult to beat.

application typical key
average 
length  

w

alphabet 
size  

R

links in trie 
built from 1 million keys

CA license plates 4PGC938 7 256 256 million

account numbers 02400019992993299111 20
256 4 billion

10 256 million

URLs www.cs.princeton.edu 28 256 4 billion

text processing seashells 11 256 256 million

proteins in 
genomic data ACTGACTG 8

256 256 million

4 4 million

Space requirements for typical tries
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Ternary search tries (TSTs) To help us 
avoid the excessive space cost associated with 
R-way tries, we now consider an alternative 
representation: the ternary search trie (TST). 
In a TST, each node has a character, three links, 
and a value. The three links correspond to keys 
whose current characters are less than, equal 
to, or greater than the node’s character. In the 
R-way tries of Algorithm 5.4, trie nodes are 
represented by R links, with the character cor-
responding to each non-null link implictly 
represented by its index. In the corresponding 
TST, characters appear explicitly in nodes—we 
find characters corresponding to keys only 
when we are traversing the middle links.

Search and insert  The search and insert code 
for implementing our symbol-table API with 
TSTs writes itself. To search, we compare the 
first character in the key with the character at 
the root. If it is less, we take the left link; if it is 
greater, we take the right link; and if it is equal, 
we take the middle link and move to the next 
search key character.  In each case, we apply 

the algorithm 
recursively.  We 
terminate with 
a search miss if we encounter a null link or if the node 
where the search ends has a null value, and we terminate 
with a search hit if the node where the search ends has a 
non-null value.  To insert a new key, we search, then add 
new nodes for the characters in the tail of the key, just as 
we did for tries. Algorithm 5.5 gives the details of the 
implementation of these methods.

Using this arrangement is equivalent to implement-
ing each R-way trie node as a binary search tree that uses 
as keys the characters corresponding to non-null links. 
By contrast, Algorithm 5.4 uses a key-indexed array. A 

TST representation of a trie

each node has
three links

link to TST for all keys
that start with s
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that start with
a letter before s
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return value
associated with

last key character

match: take middle link,
move to next char

mismatch: take left or right link,
 do not move to next char
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aLgorIthM 5.5 tSt symbol table

public class TST<Value> 
{ 
   private Node root;            // root of trie

   private class Node 
   { 
      char c;                    // character 
      Node left, mid, right;     // left, middle, and right subtries 
      Value val;                 // value associated with string 
   }

   public Value get(String key)  // same as for tries (See page 737).

   private Node get(Node x, String key, int d) 
   { 
      if (x == null) return null; 
      char c = key.charAt(d); 
      if      (c < x.c) return get(x.left,  key, d); 
      else if (c > x.c) return get(x.right, key, d); 
      else if (d < key.length() - 1) 
                        return get(x.mid,   key, d+1); 
      else return x; 
   }

   public void put(String key, Value val) 
   {  root = put(root, key, val, 0);  }

   private Node put(Node x, String key, Value val, int d) 
   { 
      char c = key.charAt(d); 
      if (x == null) { x = new Node(); x.c = c; } 
      if      (c < x.c) x.left  = put(x.left,  key, val, d); 
      else if (c > x.c) x.right = put(x.right, key, val, d); 
      else if (d < key.length() - 1) 
                        x.mid   = put(x.mid,   key, val, d+1); 
      else x.val = val; 
      return x; 
   }

}

This implementation uses a char value c and three links per node to build string search tries where 
subtries have keys whose first character is less than c (left), equal to c (middle), and greater than c 
(right).
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TST and its corresponding trie are illustrated above. Continuing the correspondence 
described in Chapter 3 between binary search trees and sorting algorithms, we see 
that TSTs correspond to 3-way string quicksort in the same way that BSTs correspond 
to quicksort and tries correspond to MSD sorting.  The figures on page 714 and 721, 
which show the recursive call structure for MSD and 3-way string quicksort (respec-
tively), correspond precisely to the trie and TST drawn on page 746 for that set of keys. 
Space for links in tries corresponds to the space for counters in string sorting; 3-way 
branching provides an effective solution to both problems.

Trie node representations

s

e h u

link for keys
that start with s

link for keys
that start with su

h
ue

standard array of links (R = 26) ternary search trie (TST)

s
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Properties of TSTs A TST is a compact representation of an R-way trie, but the 
two data structures have remarkably different properties. Perhaps the most important 
difference is that Proposition F does not hold for TSTs: the BST representations of 
each trie node depend on the order of key insertion, as with any other BST.

Space  The most important property of TSTs is that they have just three links in each 
node, so a TST requires far less space than the corresponding trie.

proposition J. The number of links in a TST built from N string keys of average 
length w is between 3N and 3Nw.

proof. Immediate, by the same argument as for Proposition I. 

Actual space usage is generally less than the upper bound of three links per character, 
because keys with common prefixes share nodes at high levels in the tree. 

Search cost  To determine the cost of search (and insert) in a TST, we multiply the cost 
for the corresponding trie by the cost of traversing the BST representation of each trie 
node. 

proposition k. A search miss in a TST built from N random string keys requires 
~ln N character compares, on the average. A search hit or an insertion in a TST uses 
~ln N + L character compares, where L is the length of the search key.

proof: The search hit/insertion cost is immediate from the code. The search miss 
cost is a consequence of the same arguments discussed in the proof sketch of Prop-
osition H. We assume that all but a constant number of the nodes on the search 
path (a few at the top) act as random BSTs on R character values with average path 
length ln R, so we multiply the time cost logR N = ln N / ln R by ln R. 

In the worst case, a node might be a full R-way node that is unbalanced, stretched out 
like a singly linked list, so we would need to multiply by a factor of R. More typically, 
we might expect to do ln R or fewer character compares at the first level (since the root 
node behaves like a random BST on the R different character values) and perhaps at a 
few other levels (if there are keys with a common prefix and up to R different values on 
the character following the prefix), and to do only a few compares for most characters 
(since most trie nodes are sparsely populated with non-null links).  Search misses are 
likely to involve only a few character compares, ending at a null link high in the trie, 
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and search hits involve only about one compare per search key character, since most of 
them are in nodes with one-way branching at the bottom of the trie.

Alphabet  The prime virtue of using TSTs is that they adapt gracefully to irregularities 
in search keys that are likely to appear in practical applications. In particular, note that 
there is no reason to allow for strings to be built from a client-supplied alphabet, as was 
crucial for tries. There are two main effects. First, keys in practical applications come 
from large alphabets, and usage of particular characters in the character sets is far from 
uniform. With TSTs, we can use a 256-character ASCII encoding or a 65,536-character 
Unicode encoding without having to worry about the excessive costs of nodes with 256- 
or 65,536-way branching, and without having to determine which sets of characters are 
relevant.  Unicode strings in non-Roman alphabets can have thousands of characters—
TSTs are especially appropriate for standard Java String keys that consist of such char-
acters. Second, keys in practical applications often have a structured format, differing 
from application to application, perhaps using only letters in one part of the key, only 
digits in another part of the key. In our CA license plate example, the second, third, and 
fourth characters are uppercase letter (R = 26) and the other characters are decimal 
digits (R = 10). In a TST for such keys, some of the trie nodes will be represented as 
10-node BSTs (for places where all keys have digits) and others will be represented as 
26-node BSTs (for places where all keys have letters). This structure develops automati-
cally, without any need for special analysis of the keys.

Prefix match, collecting keys, and wildcard match  Since a TST represents a 
trie, implementations of longestPrefixOf(), keys(), keysWithPrefix(), and 
keysThatMatch() are easily adapted from the corresponding code for tries in the pre-
vious section, and a worthwhile exercise for you to cement your understanding of both 
tries and TSTs (see Exercise 5.2.9). The same tradeoff as for search (linear memory 
usage but an extra ln R multiplicative factor per character compare) holds. 

Deletion  The delete() method for TSTs requires more work. Essentially, each char-
acter in the key to be deleted belongs to a BST. In a trie, we could remove the link cor-
responding to a character by setting the corresponding entry in the array of links to 
null; in a TST, we have to use BST node deletion to remove the node corresponding to 
the character.

Hybrid TSTs  An easy improvement to TST-based search is to use a large explicit mul-
tiway node at the root. The simplest way to proceed is to keep a table of R TSTs: one 
for each possible value of the first character in the keys. If R is not large, we might use 
the first two letters of the keys (and a table of size R 2).  For this method to be effec-
tive, the leading digits of the keys must be well-distributed. The resulting hybrid search 
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algorithm corresponds to the way that a human might search for names in a telephone 
book. The first step is a multiway decision (“Let’s see, it starts with ‘A’,’’), followed per-
haps by some two-way decisions (“It’s before ‘Andrews,’ but after ‘Aitken,’’’), followed 
by sequential character matching  (“‘Algonquin,’ ... No, ‘Algorithms’ isn’t listed,  because 
nothing starts with ‘Algor’!’’). These programs are likely to be among the fastest avail-
able for searching with string keys.

One-way branching  Just as with tries, we can make TSTs more efficient in their use of 
space by putting keys in leaves at the point where they are distinguished and by elimi-
nating one-way branching between internal nodes. 

proposition l. A search or an insertion in a TST built from N random string keys 
with no external one-way branching and R t-way branching at the root requires 
roughly ln N  t ln R character compares, on the average. 

proof: These rough estimates follow from the same argument we used to prove   
Proposition K. We assume that all but a constant number of the nodes on the 
search path (a few at the top) act as random BSTs on R character values, so we 
multiply the time cost by ln R. 

Despite the temptation to tune the algorithm to peak performance, we should not 
lose sight of the fact that one of the most attractive features of TSTs is that they free us 
from having to worry about application-specific dependencies, often providing good 
performance without any tuning.
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Which string symbol-table implementation should I use? As with string 
sorting, we are naturally interested in how the string-searching methods that we have 
considered compare to the general-purpose methods that we considered in Chapter 
3. The following table summarizes the important characteristics of the algorithms that 
we have discussed in this section (the rows for BSTs, red-black BSTs and hashing are 
included from Chapter 3, for comparison). For a particular application, these en-
tries must be taken as indicative, not definitive, since so many factors (such as char-
acteristics of keys and mix of operations) come into play when studying symbol-table 
implementations.

algorithm 
(data structure)

typical growth rate for N strings 
from an R-character alphabet 

(average length w)
sweet spot

characters 
examined for 
search miss

memory usage

binary tree search 
(BST) c1 (lg N )2 64N

randomly ordered 
keys

2-3 tree search 
(red-black BST) c2 (lg N )2 64N

guaranteed 
performance

linear probing†

(parallel arrays) w 32N to 128N
built-in types 

cached hash values

trie search 
(R-way trie) log R N (8R56)N to (8R56)Nw

short keys 
small alphabets

trie search 
(TST) 1.39 lg N 64N to 64Nw nonrandom keys

                                                 † under uniform hashing assumption

performance characteristics of string-searching algorithms

If space is available, R-way tries provide the fastest search, essentially completing the 
job with a constant number of character compares. For large alphabets, where space 
may not be available for R-way tries, TSTs are preferable, since they use a logarithmic 
number of character compares, while BSTs use a logarithmic number of key compares. 
Hashing can be competitive, but, as usual, cannot support ordered symbol-table opera-
tions or extended character-based API operations such as prefix or wildcard match.
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Q&A

Q. Does the Java system sort use one of these methods for searching with String keys?

A. No. 
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ExErcisEs

5.2.1 Draw the R-way trie that results when the keys

 no is th ti fo al go pe to co to th ai of th pa

are inserted in that order into an initially empty trie (do not draw null links).

5.2.2 Draw the TST that results when the keys

 no is th ti fo al go pe to co to th ai of th pa

are inserted in that order into an initially empty TST.

5.2.3 Draw the R-way trie that results when the keys

 now is the time for all good people to come to the aid of

are inserted in that order into an initially empty trie (do not draw null links).

5.2.4 Draw the TST that results when the keys

 now is the time for all good people to come to the aid of

are inserted in that order into an initially empty TST.

5.2.5 Develop nonrecursive versions of TrieST and TST.

5.2.6 Implement the following API, for a StringSET data type:

public class StringSET

StringSET() create a string set

void add(String key) put key into the set

void delete(String key) remove key from the set

boolean contains(String key) is key in the set?

boolean isEmpty() is the set empty?

int size() number of keys in the set

String toString() string representation of the set

apI for a string set data type
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crEAtivE problEms

5.2.7  Empty string in TSTs. The code in TST does not handle the empty string prop-
erly. Explain the problem and suggest a correction.

5.2.8  Ordered operations for tries. Implement the floor(), ceiling(), rank(), and 
select() (from our standard ordered ST API from Chapter 3) for TrieST.

5.2.9  Extended operations for TSTs. Implement keys() and the extended opera-
tions introduced in this section—longestPrefixOf(), keysWithPrefix(), and 
keysThatMatch()—for TST.

5.2.10  Size. Implement very eager size() (that keeps in each node the number of 
keys in its subtree) for TrieST and TST.

5.2.11  External one-way branching. Add code to TrieST and TST to eliminate external 
one-way branching.

5.2.12  Internal one-way branching. Add code to TrieST and TST to eliminate internal 
one-way branching.

5.2.13  Hybrid TST with R2-way branching at the root. Add code to TST to do multiway 
branching at the first two levels, as described in the text.

5.2.14  Unique substrings of length L. Write a TST client that reads in text from stan-
dard input and calculates the number of unique substrings of length L that it contains. 
For example, if the input is cgcgggcgcg, then there are five unique substrings of length 
3: cgc, cgg, gcg, ggc, and ggg. Hint : Use the string method substring(i, i + L) to 
extract the ith substring, then insert it into a symbol table.

5.2.15  Unique substrings. Write a TST client that reads in text from standard input 
and calculates the number of distinct substrings of any length. This can be done very 
efficiently with a suffix tree—see Chapter 6.

5.2.16  Document similarity. Write a TST client with a static method that takes an int 
value k and two file names as command-line arguments and computes the k-similarity 
of the two documents: the Euclidean distance between the frequency vectors defined by 
the number of occurrences of each k-gram divided by the number of k-gram. Include a 
static method main() that takes an int value k as command-line argument and a list of 
file names from standard input and prints a matrix showing the k-similarity of all pairs 
of documents.
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5.2.17  Spell checking. Write a TST client SpellChecker that takes as command-line 
argument the name of a file containing a dictionary of words in the English language, 
and then reads a string from standard input and prints out any word that is not in the 
dictionary. Use a string set.

5.2.18  Whitelist. Write a TST client that solves the whitelisting problem presented in 
Section 1.1 and revisited in Section 3.5 (see page 491).

5.2.19  Random phone numbers. Write a TrieST client (with R = 10) that takes as 
command line argument an int value N and prints N random phone numbers of the 
form (xxx) xxx-xxxx. Use a symbol table to avoid choosing the same number more 
than once. Use the file AreaCodes.txt from the booksite to avoid printing out bogus 
area codes. 

5.2.20  Contains prefix. Add a method containsPrefix() to StringSET (see Exer-
cise 5.2.6) that takes a string s as input and returns true if there is a string in the set 
that contains s as a prefix.

5.2.21  Substring matches. Given a list of (short) strings, your goal is to support que-
ries where the user looks up a string s and your job is to report back all strings in the 
list that contain s. Design an API for this task and develop a TST client that implements   
your API. Hint : Insert the suffixes of each word (e.g., string, tring, ring, ing, ng, g) 
into the TST.

5.2.22  Typing monkeys. Suppose that a typing monkey creates random words by ap-
pending each of 26 possible letter with probability p to the current word and finishes the 
word with probability 1  26p. Write a program to estimate the frequency distribution 
of the lengths of words produced. If "abc" is produced more than once, count it only 
once.

crEAtivE problEms (continued)
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ExpErimENts

5.2.23  Duplicates (revisited again). Redo Exercise 3.5.30 using StringSET (see Ex-
ercise 5.2.6) instead of HashSET. Compare the running times of the two approaches. 
Then use Dedup to run the experiments for N = 10 7, 10 8, and 10 9, repeat the experi-
ments for random long values and discuss the results.

5.2.24  Spell checker. Redo Exercise 3.5.31, which uses the file dictionary.txt from 
the booksite and the BlackFilter client on page 491 to print all misspelled words in 
a text file. Compare the performance of TrieST and TST for the file WarAndPeace.txt 
with this client and discuss the results. 

5.2.25  Dictionary. Redo Exercise 3.5.32: Study the performance of a client like 
LookupCSV (using TrieST and TST) in a scenario where performance matters. Specifi-
cally, design a query-generation scenario instead of taking commands from standard 
input, and run performance tests for large inputs and large numbers of queries. 

5.2.26  Indexing. Redo Exercise 3.5.33: Study a client like LookupIndex (using 
TrieST and TST) in a scenario where performance matters. Specifically, design a query-
generation scenario instead of taking commands from standard input, and run perfor-
mance tests for large inputs and large numbers of queries.
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5.3 SUBString SeArCh

A fundamental operation on strings is substring search: given a text string of length 
N and a pattern string of length M, find an occurrence of the pattern within the text. 
Most algorithms for this problem can easily be extended to find all occurrences of the 
pattern in the text, to count the number of occurrences of the pattern in the text, or to 
provide context (substrings of the text surrounding each occurrence of the pattern). 

When you search for a word while using a text editor or a web browser, you are doing 
substring search. Indeed, the original motivation for this problem was to support such 
searches. Another classic application is searching for some important pattern in an in-
tercepted communication. A military leader might be interested in finding the pattern 
A T T A C K  A T  D A W N  somewhere in an intercepted text message; a hacker might be 
interested in finding the pattern P a s s w o r d :  somewhere in your computer’s mem-
ory. In today’s world, we are often searching through the vast amount of information 
available on the web. 

To best appreciate the algorithms, think of the pattern as being relatively short (with 
M equal to, say, 100 or 1,000) and the text as being relatively long (with N equal to, say, 
1 million or 1 billion). In substring search, we typically preprocess the pattern in order 
to be able to support fast searches for that pattern in the text.

Substring search is an interesting and classic problem: several very different (and 
surprising) algorithms have been discovered that not only provide a spectrum of use-
ful practical methods but also illustrate a spectrum of fundamental algorithm design 
techniques.

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text

758



ptg12441863

A short history The algorithms that we examine have an interesting history; we 
summarize it here to help place the various methods in perspective.

There is a simple brute-force algorithm for substring search that is in widespread 
use. While it has a worst-case running time proportional to MN, the strings that arise 
in many applications lead to a running time that is (except in pathological cases) pro-
portional to M  N. Furthermore, it is well-suited to standard architectural features on 
most computer systems, so an optimized version provides a standard benchmark that 
is difficult to beat, even with a clever algorithm.

In 1970, S. Cook proved a theoretical result about a particular type of abstract ma-
chine that implied the existence of an algorithm that solves the substring search prob-
lem in time proportional to M  N in the worst case. D. E. Knuth and V. R. Pratt labori-
ously followed through the construction Cook used to prove his theorem (which was 
not intended to be practical) and refined it into a relatively simple and practical algo-
rithm. This seemed a rare and satisfying example of a theoretical result with immediate 
(and unexpected) practical applicability. But it turned out that J. H. Morris had discov-
ered virtually the same algorithm as a solution to an annoying problem confronting 
him when implementing a text editor (he wanted to avoid having to “back up’’ in the 
text string). The fact that the same algorithm arose from two such different approaches 
lends it credibility as a fundamental solution to the problem.

Knuth, Morris, and Pratt didn’t get around to publishing their algorithm until 1976, 
and in the meantime R. S. Boyer and J. S. Moore (and, independently, R. W. Gosper) 
discovered an algorithm that is much faster in many applications, since it often exam-
ines only a fraction of the characters in the text string. Many text editors use this algo-
rithm to achieve a noticeable decrease in response time for substring search.

Both the Knuth-Morris-Pratt (KMP) and the Boyer-Moore algorithms require some 
complicated preprocessing on the pattern that is difficult to understand and has lim-
ited the extent to which they are used. (In fact, the story goes that an unknown systems 
programmer found Morris’s algorithm too difficult to understand and replaced it with 
a brute-force implementation.)

In 1980, M. O. Rabin and R. M. Karp used hashing to develop an algorithm almost as 
simple as the brute-force algorithm that runs in time proportional to M  N  with very 
high probability. Furthermore, their algorithm extends to two-dimensional patterns 
and text, which makes it more useful than the others for image processing.

This story illustrates that the search for a better algorithm is still very often justified; 
indeed, one suspects that there are still more developments on the horizon even for this 
classic problem.
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Brute-force substring search An obvious method for substring search is to 
check, for each possible position in the text at which the pattern could match, whether 
it does in fact match.  The search() method below operates in this way to find the first 
occurrence of a pattern string pat in a text string txt. The program keeps one pointer 

(i) into the text and another point-
er (j) into the pattern. For each i, it 
resets j to 0 and increments it until 
finding a mismatch or the end of 
the pattern (j == M). If we reach 
the end of the text (i == N-M+1) 
before the end of the pattern, then 
there is no match: the pattern does 
not occur in the text. Our conven-
tion is to return the value N to indi-
cate a mismatch.

In a typical text-processing ap-
plication, the j index rarely incre-
ments so the running time is pro-
portional to N. Nearly all of the 

compares find a mismatch with the first character of the pattern. For example, suppose 
that you search for the pattern pattern in the text of this paragraph. There are 196 
characters up to the end of the first occurrence of the pattern, only 7 of which are the 
character p (not including the p in pattern). Also, there is only 1 other occurrence of pa 
and no other occurences of pat, so the total number of character compares is 196+7+1, 
for an average of 1.041 compares per character in the text. On the other hand, there is 
no guarantee that the algorithm will always be so efficient. For example, a pattern might 
begin with a long string of As. If 
it does, and the text also has long 
strings of As, then brute-force 
substring search will be slow.

public static int search(String pat, String txt) 
{ 
   int M = pat.length(); 
   int N = txt.length(); 
   for (int i = 0; i <= N - M; i++) 
   {    
      int j; 
      for (j = 0; j < M; j++) 
         if (txt.charAt(i+j) != pat.charAt(j)) 
            break; 
      if (j == M) return i;  // found 
   } 
   return N;                 // not found
}

Brute-force substring search

Brute-force substring search

i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C

 0   2   2   A  B  R  A 

 1   0   1      A  B  R  A 

 2   1   3         A  B  R  A 

 3   0   3            A  B  R  A 

 4   1   5               A  B  R  A 

 5   0   5                  A  B  R  A 

6   4  10                     A  B  R  A 

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match
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proposition m. Brute-force substring search requires ~NM character compares to 
search for a pattern of length M in a text of length N, in the worst case.

proof: A worst-case input is when both pattern and text are all As followed by a B. 
Then for each of the  N  M  1 possible match positions, all the characters in the 
pattern are checked against the text, for a total cost of M(N  M  1). Normally M
is very small compared to N, so the total is ~NM. 

Such degenerate strings are not likely to appear in English text, but they may well occur 
in other applications (for example, in binary texts), so we seek better algorithms.

The alternate implementation at 
the bottom of this page is instructive. 
As before, the program keeps one 
pointer (i) into the text and another 
pointer (j) into the pattern. As long 
as they point to matching characters, 
both pointers are incremented. This 
code performs precisely the same 
character compares as the previous 
implementation. To understand it, 

note that i in this code maintains the value of i+j in the previous code: it points to the 
end of the sequence of already-matched characters in the text (where i pointed to the 
beginning of the sequence before). If i and j point to mismatching characters, then we 
back up both pointers: j to point to the beginning of the pattern and i to correspond to 
moving the pattern to the right one position for matching against the text. 

public static int search(String pat, String txt) 
{ 
   int j, M = pat.length(); 
   int i, N = txt.length(); 
   for (i = 0, j = 0; i < N && j < M; i++) 
   { 
      if (txt.charAt(i) == pat.charAt(j)) j++; 
      else { i -= j; j = 0;  } 
   } 
   if (j == M) return i - M;  // found   
   else            return N;  // not found
}

alternate implementation of brute-force substring search (explicit backup)

Brute-force substring search (worst case)

i   j  i+j   0  1  2  3  4  5  6  7  8  9

              A  A  A  A  A  A  A  A  A  B 

 0   4   4    A  A  A  A  B 

 1   4   5       A  A  A  A  B 

 2   4   6          A  A  A  A  B 

 3   4   7             A  A  A  A  B 

 4   4   8                A  A  A  A  B 

5   5  10                   A  A  A  A  B

txt

pat
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Knuth-Morris-Pratt substring search The basic idea behind the algorithm 
discovered by Knuth, Morris, and Pratt is this: whenever we detect a mismatch, we 
already know some of the characters in the text (since they matched the pattern charac-
ters prior to the mismatch). We can take advantage of this information to avoid backing 
up the text pointer over all those known characters.

As a specific example, suppose that we have a two-character alphabet and are search-
ing for the pattern B A A A A A A A A A. Now, suppose that we match five char-
acters in the pattern, with a mismatch on the sixth. When the mismatch is detected, 

we know that the six previous 
characters in the text must 
be B A A A A B (the first 
five match and the sixth does 
not), with the text pointer 
now pointing at the B at the 
end. The key observation is 
that we need not back up the 
text pointer i, since the previ-
ous four characters in the text 
are all As and do not match 
the first character in the pat-
tern. Furthermore, the char-
acter currently pointed to by 

i is a B and does match the first character in the pattern, so we can increment i and 
compare the next character in the text with the second character in the pattern. This 
argument leads to the observation that, for this pattern, we can change the else clause 
in the alternate brute-force implementation to just set j = 1 (and not decrement i). 
Since the value of i does not change within the loop, this method does at most N char-
acter compares. The practical effect of this particular change is limited to this particular 
pattern, but the idea is worth thinking about—the Knuth-Morris-Pratt algorithm is a 
generalization of it. Surprisingly, it is always possible to find a value to set the j pointer 
to on a mismatch, so that the i pointer is never decremented.

Fully skipping past all the matched characters when detecting a mismatch will not 
work when the pattern could match itself at any position overlapping the point of the 
mismatch. For example, when searching for the pattern A A B A A A in the text 
A A B A A B A A A A, we first detect the mismatch at position 5, but we had better 
restart at position 3 to continue the search, since otherwise we would miss the match. 
The insight of the KMP algorithm is that we can decide ahead of time exactly how to 
restart the search, because that decision depends only on the pattern.

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A

   B  A  A  A  A  A  A  A  A  A

      B  A  A  A  A  A  A  A  A  A 

         B  A  A  A  A  A  A  A  A  A 

            B  A  A  A  A  A  A  A  A  A 

               B  A  A  A  A  A  A  A  A  A 

                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text
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Backing up the pattern pointer  In KMP sub-
string search, we never back up the text pointer 
i, and we use an array dfa[][] to record how 
far to back up the pattern pointer j when a 
mismatch is detected. For every character c, 
dfa[c][j] is the pattern position to compare 
against the next text position after compar-
ing c with pat.charAt(j). During the search, 
dfa[txt.charAt(i)][j] is the pattern position 
to compare with txt.charAt(i+1) after com-
paring txt.charAt(i) with pat.charAt(j). 
For a match, we want to just move on to the 
next character, so dfa[pat.charAt(j)][j] is 
always j+1. For a mismatch, we know not just 
txt.charAt(i), but also the j-1 previous char-
acters in the text: they are the first j-1 characters 
in the pattern. For each character c, imagine that 
we slide a copy of the pattern over these j char-
acters (the first j-1 characters in the pattern fol-
lowed by c—we are deciding what to do when 
these characters are txt.charAt(i-j+1..i)), 
from left to right, stopping when all overlap-
ping characters match (or there are none). 
This gives the next possible place the pattern 
could match. The index of the pattern char-
acter to compare with txt.charAt(i+1) 
(dfa[txt.charAt(i)][j]) is precisely the 
number of overlapping characters.

KMP search method  Once we have computed 
the dfa[][] array, we have the substring search 
method at the top of the next page: when i and 
j point to mismatching characters (testing for a 
pattern match beginning at position i-j+1 in the text string), then the next possible 
position for a pattern match is beginning at position  i-dfa[txt.charAt(i)][j]. But 
by construction, the first dfa[txt.charAt(i)][j] characters at that position match 
the first dfa[txt.charAt(i)][j] characters of the pattern, so there is no need to back 
up the i pointer: we can simply set j to dfa[txt.charAt(i)][j] and increment i, 
which is precisely what we do when i and j point to matching characters. 

A B A B A C

A
B
A B A B A C

C
A B A B A C

A B
A A
A B A B A C

A C
 A B A B A C

A B A
A B B
   A B A B A C
A B C
   A B A B A C

A B A B
A B A A
   A B A B A C
A B A C
    A B A B A C

A B A B A
A B A B B
    A B A B A C
A B A B C
    A B A B A C

A B A B A C
A B A B A A
     A B A B A C
A B A B A B
  A B A B A C

j  pat.charAt(j) dfa[][j]
               A  B  C

0      A       1  
               
                  0

                     0 
     
1      B          2 
           
               1

                     0

2      A       3
              
                  0

                     0

3      B          4
           
               1

                     0
     
4      A       5
              
                  0 

                     0
     
5      C             6    
           
               1

                                                                                                                      4
     

Pattern backup for A B A B A C  in KMP substring search

backup is length of max overlap
of beginning of pattern
with known text chars

match (move to next char)
set dfa[pat.charAt(j)][j]

to j+1
known text chars

on mismatch

text (pattern itself)

mismatch
(back up in pattern)
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DFA simulation  A useful way to describe this process is in terms of a determinis-
tic finite-state automaton (DFA). Indeed, as indicated by its name, our dfa[][] ar-
ray precisely defines a DFA. The graphical DFA represention shown at the bottom of 

this page consists of states (indicated by 
circled numbers) and transitions (indi-
cated by labeled lines). There is one state 
for each character in the pattern, each 
such state having one transition leaving 
it for each character in the alphabet. For 
the substring-matching DFAs that we 
are considering, one of the transitions is 
a match transition (going from j to j+1 
and labeled with pat.charAt(j)) and all 
the others are mismatch transitions (go-

ing left). The states correspond to character compares, one for each value of the pattern 
index. The transitions correspond to changing the value of the pattern index. When 
examining the text character i when in the state labeled j, the machine does the follow-
ing: “Take the transition to dfa[txt.charAt(i)][j] and move to the next character 
(by incrementing i).’’ For a match transition, we move to the right one position because 
dfa[pat.charAt(j)][j] is always j+1; for a mismatch transition we move to the left. 
The automaton reads the text characters one at a time, from left to right, moving to a 
new state each time it reads a character. We also include a halt state M that has no tran-

sitions. We start the machine at state 
0: if the machine reaches state M, then 
a substring of the text matching the 
pattern has been found (and we say 
that the DFA recognizes the pattern); 
if the machine reaches the end of the 
text before reaching state M, then we 
know the pattern does not appear as 
a substring of the text. Each pattern 
corresponds to an automaton (which 
is represented by the dfa[][] array 
that gives the transitions). The KMP 
substring search() method is a Java 
program that simulates the operation 
of such an automaton. 

public int search(String txt)  
{  // Simulate operation of DFA on txt. 
   int i, j; 
   int N = txt.length(), M = pat.length(); 
   for (i = 0, j = 0; i < N && j < M; i++) 
      j = dfa[txt.charAt(i)][j]; 
   if (j == M) return i - M;  // found 
   else        return N;      // not found
}

KMp substring search (DFa simulation)

DFA corresponding to the string A  B  A  B  A  C 

match
transition

(increment)

mismatch
transition
(back up)

halt state

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

     0   1   2   3   4   5
     A   B   A   B   A   C
     1   1   3   1   5   1
     0   2   0   4   0   4
     0   0   0   0   0   6

dfa[][j]

pat.charAt(j)

j

A
B

C

graphical representation

internal representation

B
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simplest things that it does. At the beginning of the process, when started in state 0 at 
the beginning of the text, it stays in state 0, scanning text characters, until it finds a text 
character that is equal to the first pattern character, when it moves to the next state and 
is off and running. At the end of the process, when it finds a match, it matches pattern 
characters with the right end of the text, incrementing the state until reaching state M. 
The trace at the top of this page gives a typical example of the operation of our example 
DFA. Each match moves the DFA to the next state (which is equivalent to increment-
ing the pattern index j); each mismatch moves the DFA to an earlier state (which is 
equivalent to setting the pattern index j to a smaller value). The text index i marches 
from left to right, one position at a time, while the pattern index j bounces around in 
the pattern as directed by the DFA.

Constructing the DFA  Now that you understand the mechanism, we are ready to ad-
dress the key question for the KMP algorithm: How do we compute the dfa[][] array 
corresponding to a given pattern? Remarkably, the answer to this question lies in the 
DFA itself   (!) using the ingenious (and rather tricky) construction that was developed 
by Knuth, Morris, and Pratt. When we have a mismatch at pat.charAt(j), our interest 
is in knowing in what state the DFA would be if we were to back up the text index and 

A  B  A  B  A  C

   A  B  A  B  A  C

      A  B  A  B  A  C

         A  B  A  B  A  C

         A  B  A  B  A  C

            A  B  A  B  A  C

            A  B  A  B  A  C

            A  B  A  B  A  C

                        A  B  A  B  A  C

                        A  B  A  B  A  C

                           A  B  A  B  A  C

                           A  B  A  B  A  C

                           A  B  A  B  A  C

                           A  B  A  B  A  C

                           A  B  A  B  A  C

                           A  B  A  B  A  C

Trace of KMP substring search (DFA simulation) for A  B  A  B  A  C

         0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16

                                                          B  C  B  A  A  B  A  C  A  A  B  A  B  A  C  A  A 

                                                          0  0  0  0  1  1  2  3  0  1  1  2  3  4  5  6

                                        

found
return i - M = 9

mismatch:
    set j to dfa[txt.charAt(i)][j]
         implies pattern shift to align
    pat.charAt(j) with
    txt.charAt(i+1)

match:
   set j to  dfa[txt.charAt(i)][j] 
      = dfa[pat.charAt(j)][j]
      = j+1

read this char

in this state

go to this state

i

txt.charAt(i)

j
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rescan the text characters that we just saw after shifting to the right one position. We do 
not want to actually do the backup, just restart the DFA as if we had done the backup. 
The key observation is that the characters in the text that would need to be rescanned 

are precisely pat.charAt(1) through pat.charAt(j-1): we 
drop the first character to shift right one position and the last 
character because of the mismatch. These are pattern characters 
that we know, so we can figure out ahead of time, for each pos-
sible mismatch position, the state where we need to restart the 
DFA. The figure at left shows the possibilities for our example. 
Be sure that you understand this concept. 

What should the DFA do with the next character? Exactly 
what it would have done if we had backed up, except if it finds 
a match with pat.charAt(j), when it should go to state j+1. 
For example, to decide what the DFA should do when we have 
a mismatch at j = 5 for A B A B A C, we use the DFA to learn 
that a full backup would leave us in state 3 for B A B A, so we 
can copy dfa[][3] to dfa[][5], then set the entry for C to 6 

because pat.charAt(5) is C (a match). Since we only need to know how the DFA runs 
for j-1 characters when we are building the jth state, we can always get the information 
that we need from the partially built DFA.

The final crucial detail to the computation is to observe that maintaining the restart 
position X when working on column j of dfa[][] is easy because X < j so that we can use 
the partially built DFA to do the job—the next value of X is dfa[pat.charAt(j)][X]. 
Continuing our example from the previous paragraph, we would update the value of 
X to dfa['C'][3] = 0 (but we do not use that value because the DFA construction is 
complete).

The discussion above leads to the remarkably compact code below for constructing 
the DFA corresponding to a given pattern. For each j, it

n	 Copies dfa[][X] to dfa[][j] (for 
mismatch cases)

n	 Sets dfa[pat.charAt(j)][j] to 
j+1 (for the match case)

n	 Updates X
The diagram on the facing page traces 
this code for our example. To make sure 
that you understand it, work Exercise 
5.3.2 and Exercise 5.3.3.

dfa[pat.charAt(0)][0] = 1; 
for (int X = 0, j = 1; j < M; j++) 
{  // Compute dfa[][j]. 
   for (int c = 0; c < R; c++) 
      dfa[c][j] = dfa[c][X]; 
   dfa[pat.charAt(j)][j] = j+1;

   X = dfa[pat.charAt(j)][X]; 
}

Constructing the DFa for KMp substring search

DFA simulations to compute
restart states for A  B  A  B  A  C

  A   B   A   B   A

      0   0   1   2   3    

  A   B   A   B

      0   0   1   2 

  A   B   A 

      0   0   1  

  A   B   

      0   0  

  A   

      0  
restart
states
X

1

2

3

4

5
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Constructing the DFA for KMP substring search for A  B  A  B  A  C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

B
C

     0   1   2   3   4   5
     A   B   A   B   A   C
     1   1   3   1   5   1
     0   2   0   4   0   4
     0   0   0   0   0   6

dfa[][j]
A
B

C

X

X j

X

X

X

X

j

j

j

j

j

0 1 2 3 4 5A B A A

B,C

A

CB,CC

B,C A

B

     0   1   2   3   4
     A   B   A   B   A
     1   1   3   1   5
     0   2   0   4   0
     0   0   0   0   0

dfa[][j]
A
B

C

X

0 1 2 3 4A B A

A

CB,CC

B,C A

B

     0   1   2   3 
     A   B   A   B
     1   1   3   1 
     0   2   0   4
     0   0   0   0

dfa[][j]
A
B

C

X

0 1 2 3A B A

B,CC

B,C A

     0   1   2   
     A   B   A 
     1   1   3 
     0   2   0
     0   0   0

dfa[][j]
A
B

C

X

0 1 2A B

C

B,C A     0   1
     A   B
     1   1
     0   2
     0   0

dfa[][j]
A
B

C

X

0 1A

B,C     0 
     A 
     1 
     0 
     0 

dfa[][j]

pat.charAt(j)

j

pat.charAt(j)

j

pat.charAt(j)

j

pat.charAt(j)

j

pat.charAt(j)

j

pat.charAt(j)

j

A
B

C

copy dfa[][X] to dfa[][j]

dfa[pat.charAt(j)][j] = j+1;

X = dfa[pat.charAt(j)][X];
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aLgorIthM 5.6 knuth-Morris-Pratt substring search

public class KMP 
{ 
   private String pat; 
   private int[][] dfa;

   public KMP(String pat) 
   {  // Build DFA from pattern. 
      this.pat = pat; 
      int M = pat.length(); 
      int R = 256; 
      dfa = new int[R][M]; 
      dfa[pat.charAt(0)][0] = 1; 
      for (int X = 0, j = 1; j < M; j++) 
      {  // Compute dfa[][j]. 
         for (int c = 0; c < R; c++) 
            dfa[c][j] = dfa[c][X];            // Copy mismatch cases. 
         dfa[pat.charAt(j)][j] = j+1;         // Set match case. 
         X = dfa[pat.charAt(j)][X];           // Update restart state. 
      } 
   }

   public int search(String txt) 
   {  // Simulate operation of DFA on txt. 
      int i, j, N = txt.length(), M = pat.length(); 
      for (i = 0, j = 0; i < N && j < M; i++) 
         j = dfa[txt.charAt(i)][j]; 
      if (j == M) return i - M;  // found (hit end of pattern) 
      else        return N;      // not found (hit end of text) 
   }

   public static void main(String[] args) 
   // See page 769.
}

The constructor in this implementation of the Knuth-Morris-Pratt algorithm for substring search 
builds a DFA from a pattern string, to support a search() method that can find the pattern in a given 

text string. This program does the same job as the brute-force method, but it runs faster for patterns 

that are self-repetitive.
% java KMP AACAA AABRAACADABRAACAADABRA 
text:    AABRAACADABRAACAADABRA 
pattern:             AACAA 
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Algorithm 5.6 on the facing page implements the following API:

public class KMP

KMP(String pat) create a DFA that can search for pat

int search(String txt) find index of pat in txt 

Substring search apI

You can see a typical test client at the bottom of this page. The constructor builds a DFA 
from a pattern that the search() method uses to search for the pattern in a given text.

proposition N. Knuth-Morris-Pratt substring search accesses no more than M  N
characters to search for a pattern of length M in a text of length N.

proof. Immediate from the code: we access each pattern character once when com-
puting dfa[][] and each text character once (in the worst case) in search(). 

Another parameter comes into play: for an R-character alphabet, the total running time 
(and space) required to build the DFA is proportional to MR. It is possible to remove 
the factor of R by building a DFA where each state has a match transition and a mis-
match transition (not transitions for each possible character), though the construction 
is somewhat more intricate.

The linear-time worst-case guarantee provided by the KMP algorithm is a significant 
theoretical result. In practice, the speedup over the brute-force method is not often 
important because few applications involve searching for highly self-repetitive patterns 
in highly self-repetitive text. Still, the method 
has the practical advantage that it never backs 
up in the input. This property makes KMP 
substring search more convenient for use 
on an input stream of undetermined length 
(such as standard input) than algorithms re-
quiring backup, which need some complicat-
ed buffering in this situation. Ironically, when 
backup is easy, we can do significantly better 
than KMP. Next, we consider a method that 
generally leads to substantial performance 
gains precisely because it can back up in the 
text.

public static void main(String[] args) 
{ 
   String pat = args[0]; 
   String txt = args[1]; 
   KMP kmp = new KMP(pat); 
   StdOut.println("text:    " + txt); 
   int offset = kmp.search(txt); 
   StdOut.print("pattern: "); 
   for (int i = 0; i < offset; i++) 
      StdOut.print(" "); 
   StdOut.println(pat);

}

KMp substring search test client
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Boyer-Moore substring search When backup in the text string is not a prob-
lem, we can develop a significantly faster substring-searching method by scanning the   
pattern from right to left when trying to match it against the text. For example, when 
searching for the substring B A A B B A A , if we find matches on the seventh and sixth 
characters but not on the fifth, then we can immediately slide the pattern seven posi-
tions to the right, and check the 14th character in the text next, because our partial 
match found X A A  where X  is not B , which does not appear elsewhere in the pattern. In 
general, the pattern at the end might appear elsewhere, so we need an array of restart 
positions as for Knuth-Morris-Pratt. We will not explore this approach in further detail 
because it is quite similar to our implementation of the Knuth-Morris-Pratt method. 
Instead, we will consider another suggestion by Boyer and Moore that is typically even 
more effective in right-to-left pattern scanning.

As with our implementation of KMP substring search, we decide what to do next on 
the basis of the character that caused the mismatch in the text as well as the pattern. The 
preprocessing step is to decide, for each possible character that could occur in the text, 
what we would do if that character were to cause the mismatch. The simplest realiza-
tion of this idea leads immediately to an efficient and useful substring search method. 

Mismatched character heuristic  Consider the figure at the bottom of this page, which 
shows a search for the pattern N E E D L E  in the text F I N D I N A H A Y S T A C K N E E D L E . 
Proceeding from right to left to match the pattern, we first compare the rightmost E in 
the pattern with the N (the character at position 5) in the text. Since N appears in the 
pattern, we slide the pattern five positions to the right to line up the N in the text with 
the (rightmost) N in the pattern. Then we compare the rightmost E in the pattern with 
the S (the character at position 10) in the text. This is also a mismatch, but S does not
appear in the pattern, so we can slide the pattern six positions to the right. We match 
the rightmost E in the pattern against the E at position 16 in the text, then find a mis-
match and discover the N at position 15 and slide to the right four positions, as at the 
beginning. Finally, we verify, moving from right to left starting at position 20, that the 
pattern is in the text. This method brings us to the match position at a cost of only four 
character compares (and six more to verify the match)!

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search 

 i   j   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

         F  I  N  D  I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

 0   5   N  E  E  D  L  E

 5   5                  N  E  E  D  L  E

11   4                                    N  E  E  D  L  E

15   0                                                N  E  E  D  L  E 

   return i = 15

 pattern

 text
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Starting point  To implement the mismatched 
character heuristic, we use an array right[] that 
gives, for each character in the alphabet, the index 
of its rightmost occurrence in the pattern (or -1 
if the character is not in the pattern). This value 
tells us precisely how far to skip if that character 
appears in the text and causes a mismatch during 
the string search. To initialize the right[] array, 
we set all entries to -1 and then, for j from 0 to 
M-1, set right[pat.charAt(j)] to j, as shown 
in the example at right for our example pattern 
N E E D L E . 

Substring search  With the right[] array pre-
computed, the implementation in Algorithm 5.7 is straightforward. We have an index 
i moving from left to right through the text and an index j moving from right to left 
through the pattern. The inner loop tests whether the pattern aligns with the text at 
position i. If txt.charAt(i+j) is equal to pat.charAt(j) for all j from M-1 down to 
0, then there is a match. Otherwise, there is a character mismatch, and we have one of 
the following three cases:

n	 If the character causing the mismatch is 
not found in the pattern, we can slide the 
pattern j+1 positions to the right (incre-
ment i by j+1). Anything less would align 
that character with some pattern character.
Actually, this move aligns some known 
characters at the beginning of the pattern 
with known characters at the end of the 
pattern so that we could further increase 
i by precomputing a KMP-like table (see 
example at right).

n	 If the character c causing the mismatch is 
found in the pattern, we use the right[] array to line up the pattern with the 
text so that character will match its rightmost occurrence in the pattern. To do 
so, we increment i by j minus right[c]. Again, anything less would align that 
text character with a pattern character it could not match (one to the right of its 
rightmost occurrence). Again, there is a possibility that we could do better with a 
KMP-like table, as indicated in the top example in the figure on page 773.

Boyer-Moore skip table computation

c right[c]

          N   E   E   D   L   E

          0   1   2   3   4   5

A    -1  -1  -1  -1  -1  -1  -1     -1

B    -1  -1  -1  -1  -1  -1  -1     -1

C    -1  -1  -1  -1  -1  -1  -1     -1

D    -1  -1  -1  -1   3   3   3      3

E    -1  -1   1   2   2   2   5      5

...                                 -1

L    -1  -1  -1  -1  -1   4   4      4

M    -1  -1  -1  -1  -1  -1  -1     -1

N    -1   0   0   0   0   0   0      0

...                                 -1

Mismatched character heuristic (mismatch not in pattern)

 increment i by j+1 

 reset j to M-1 

.  .  .  .  .  .  T  L  E  .  .  .  .  . 

         N  E  E  D  L  E

i

j

j

i+j

.  .  .  .  .  .  T  L  E  .  .  .  .  .

                     N  E  E  D  L  E

i
 could do better with

KMP-like table
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aLgorIthM 5.7 Boyer-Moore substring search (mismatched character heuristic)

public class BoyerMoore 
{ 
   private int[] right; 
   private String pat;

   BoyerMoore(String pat) 
   {  // Compute skip table. 
      this.pat = pat; 
      int M = pat.length(); 
      int R = 256; 
      right = new int[R]; 
      for (int c = 0; c < R; c++) 
         right[c] = -1;                // -1 for chars not in pattern 
      for (int j = 0; j < M; j++)      // rightmost position for 
         right[pat.charAt(j)] = j;     //   chars in pattern 
   }

   public int search(String txt) 
   {  // Search for pattern in txt. 
      int N = txt.length(); 
      int M = pat.length(); 
      int skip; 
      for (int i = 0; i <= N-M; i += skip) 
      {  // Does the pattern match the text at position i ? 
         skip = 0; 
         for (int j = M-1; j >= 0; j--) 
            if (pat.charAt(j) != txt.charAt(i+j)) 
            { 
               skip = j - right[txt.charAt(i+j)]; 
               if (skip < 1) skip = 1; 
               break; 
            } 
         if (skip == 0) return i;          // found.    
      } 
      return N;                            // not found. 
   }

   public static void main(String[] args)  // See page 769. 
}

The constructor in this substring search algorithm builds a table giving the rightmost occurrence in 
the pattern of each possible character. The search method scans from right to left in the pattern, skip-
ping to align any character causing a mismatch with its rightmost occurrence in the pattern.
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n	 If this computation would not in-
crease i, we just increment i instead, 
to make sure that the pattern always 
slides at least one position to the 
right. The bottom example in the fig-
ure at right illustrates this situation.

Algorithm 5.7 is a straightforward imple-
mentation of this process. Note that the 
convention of using -1 in the right[] 
array entries corresponding to characters 
that do not appear in the pattern uni-
fies the first two cases (increment i by 
j - right[txt.charAt(i+j)]).

The full Boyer-Moore algorithm takes 
into account precomputed mismatches of 
the pattern with itself (in a manner simi-
lar to the KMP algorithm) and provides a 
linear-time worst-case guarantee (whereas 
Algorithm 5.7 can take time proportional 
to NM in the worst case—see Exercise 
5.3.19). We omit this computation because 
the mismatched character heuristic con-
trols the performance in typical practical 
applications. 

property o. On typical inputs, substring search with the Boyer-Moore mismatched 
character heuristic uses ~NM character compares to search for a pattern of length 
M in a text of length N.

Discussion: This result can be proved for various random string models, but such 
models tend to be unrealistic, so we shall skip the details. In many practical situa-
tions it is true that all but a few of the alphabet characters appear nowhere in the 
pattern, so nearly all compares lead to M characters being skipped, which gives the 
stated result.

Mismatched character heuristic (mismatch in pattern) 

 increment i by j - right['N']
 to line up text with N in pattern

 reset j to M-1 

.  .  .  .  .  .  N  L  E  .  .  .  .  .  .

         N  E  E  D  L  E

i

j

j

 reset j to M-1 
j

i+j

.  .  .  .  .  .  N  L  E  .  .  .  .  .  .

                  N  E  E  D  L  E

i

basic idea

 lining up text with rightmost E
would shift pattern left

 could do better with
KMP-like table

 could do better with
KMP-like table

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .

         N  E  E  D  L  E

i

j

i+j

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .

   N  E  E  D  L  E

 so increment i by 1

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .

            N  E  E  D  L  E

i

heuristic is no help
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Rabin-Karp fingerprint search The method developed by M. O. Rabin and 
R. M. Karp is a completely different approach to substring search that is based on hash-
ing.  We compute a hash function for the pattern and then look for a match by using 
the same hash function for each possible M-character substring of the text. If we find 
a text substring with the same hash value as the pattern, we can check for a match. 
This process is equivalent to storing the pattern in a hash table, then doing a search 
for each substring of the text, but we do not need to reserve the memory for the hash 
table because it would have just one entry.  A straightforward implementation based 
on this description would be much slower than a brute-force search (since comput-
ing a hash function that involves every character is likely to be much more expensive 
than just comparing characters), but Rabin and Karp showed that it is easy to compute 
hash functions for M-character substrings in constant time (after some preprocessing), 
which leads to a linear-time substring search in practical situations.

Basic plan  A string of length M corresponds to an M-digit base-R number. To use a hash 
table of size Q for keys of this type, we need a hash function to convert an M-digit base-R 
number to an int value between 0 and Q-1. Modular hashing (see Section 3.4) pro-
vides an answer: take the remainder when dividing the number by Q. In practice, we use 
a random prime Q, taking as large a value as possible while avoiding overflow (because 
we do not actually need to store a hash table). The method is simplest to understand for 
small Q and R = 10, shown in the example below.  To find the pattern 2 6 5 3 5  in the 
text 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 , we choose a table size Q (997 in the example), compute 
the hash value 26535 % 997 = 613, and then look for a match by computing hash val-

ues for each five-digit substring 
in the text. In the example, we 
get the hash values 508, 201, 715, 
971, 442, and 929 before finding 
the match 613. 

Computing the hash func-
tion  With five-digit values, we 
could just do all the necessary 
calculations with int values, but 
what do we do when M is 100 or 
1,000? A simple application of 
Horner’s method, precisely like 
the method that we examined in 
Section 3.4 for strings and other 
types of keys with multiple values, Basis for Rabin-Karp substring search 

                      txt.charAt(i)

i    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

     3  1  4  1  5  9  2  6  5  3  5  8  9  7  9  3

0    3  1  4  1  5  % 997 = 508

1       1  4  1  5  9  % 997 = 201

2          4  1  5  9  2  % 997 = 715

3             1  5  9  2  6  % 997 = 971

4                5  9  2  6  5  % 997 = 442

5                   9  2  6  5  3  % 997 = 929 

6                                                                                                            2  6  5  3  5  % 997 = 613

     pat.charAt(j)

j    0  1  2  3  4

     2  6  5  3  5  % 997 = 613

                                              

 return i = 6

 match
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leads to the code shown at right, which computes the hash function for an M-digit base-
R number represented as a char array in time proportional to M. (We pass M as an argu-
ment so that we can use the method for both the pattern and the text, as you will see.) 
For each digit in the number, we multiply by R, add the digit, and take the remainder 
when divided by Q. For example, computing the 
hash function for our pattern using this process 
is shown at the bottom of the page. The same 
method can work for computing the hash func-
tions in the text, but the cost for the substring 
search would be a multiplication, addition, and 
remainder calculation for each text character, 
for a total of NM operations in the worst case, 
no improvement over the brute-force method.

Key idea  The Rabin-Karp method is based on efficiently computing the hash func-
tion for position i+1 in the text, given its value for position i. It follows directly from a 
simple mathematical formulation. Using the notation ti for txt.charAt(i), the num-
ber corresponding to the M-character substring of txt that starts at position i is

xi = ti R M1  ti+1 R M2  .  .  .  ti+M1R 0

and we can assume that we know the value of h(xi) = xi mod Q . Shifting one position 
right in the text corresponds to replacing xi by

xi+1 =  (xi  ti R M1) R  ti+M  .

We subtract off the leading digit, multiply by R, then add the trailing digit. Now, the 
crucial point is that we do not have to maintain the values of the numbers, just the 
values of their remainders when divided by Q. A fundamental property of the modu-
lus operation is that if we take the remainder when divided by Q after each arithmetic 
operation, then we get the same answer as if we were to perform all of the arithmetic 
operations, then take the remainder 
when divided by Q. We took advan-
tage of this property once before, 
when implementing modular hash-
ing with Horner’s method (see page 
460). The result is that we can ef-
fectively move right one position in 
the text in constant time, whether M 
is 5 or 100 or 1,000.

private long hash(String key, int M) 
{  // Compute hash for key[0..M-1]. 
   long h = 0; 
   for (int j = 0; j < M; j++) 
      h = (R * h + key.charAt(j)) % Q; 
   return h; 
}

horner’s method, applied to modular hashing

Computing the hash value for the pattern with Horner’s method

         pat.charAt(j)

 i   0  1  2  3  4

     2  6  5  3  5

 0   2  % 997 = 2

 1   2  6  % 997 = (2*10 + 6) % 997 = 26

 2   2  6  5  % 997 = (26*10 + 5) % 997 = 265

 3   2  6  5  3  % 997 = (265*10 + 3) % 997 = 659

 4   2  6  5  3  5  % 997 = (659*10 + 5) % 997 = 613

QR
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Implementation  This discussion leads direct-
ly to the substring search implementation in Al-
gorithm 5.8. The constructor computes a hash 
value patHash for the pattern; it also computes 
the value of RM1mod Q in the variable RM. The 
hashSearch() method begins by computing 
the hash function for the first M characters of the 
text and comparing that value against the hash 
value for the pattern. If that is not a match, it 
proceeds through the text string, using the tech-
nique above to maintain the hash function for 
the M characters starting at position i for each i 
in a variable txtHash and  comparing each new 
hash value to patHash. (An extra Q is added during the txtHash calculation to make 
sure that everything stays positive so that the remainder operation works as it should.)   

A trick: Monte Carlo correctness  After finding a hash value for an M-character sub-
string of txt that matches the pattern hash value, you might expect to see code to com-
pare those characters with the pattern to ensure that we have a true match, not just a 
hash collision. We do not do that test because using it requires backup in the text string. 
Instead, we make the hash table “size” Q as large as we wish, since we are not actually 
building a hash table, just testing for a collision with one key, our pattern. We will use 
a long value greater than 1020, making the probability that a random key hashes to the 

Rabin-Karp substring search example 

 i   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

     3  1  4  1  5  9  2  6  5  3  5  8  9  7  9  3

 0   3  % 997 = 3

 1   3  1  % 997 = (3*10 + 1) % 997 = 31

 2   3  1  4  % 997 = (31*10 + 4) % 997 = 314

 3   3  1  4  1  % 997 = (314*10 + 1) % 997 = 150

 4   3  1  4  1  5  % 997 = (150*10 + 5) % 997 = 508

 5      1  4  1  5  9  % 997 = ((508 + 3*(997 - 30))*10 + 9) % 997 = 201

 6         4  1  5  9  2  % 997 = ((201 + 1*(997 - 30))*10 + 2) % 997 = 715

 7            1  5  9  2  6  % 997 = ((715 + 4*(997 - 30))*10 + 6) % 997 = 971

 8               5  9  2  6  5  % 997 = ((971 + 1*(997 - 30))*10 + 5) % 997 = 442

 9                  9  2  6  5  3  % 997 = ((442 + 5*(997 - 30))*10 + 3) % 997 = 929

10                                                                                                           2  6  5  3  5  % 997 = ((929 + 9*(997 - 30))*10 + 5) % 997 = 613

Q

RM R

 return i-M+1 = 6

 match

Key computation in Rabin-Karp substring search
(move right one position in the text)

 i   ...  2  3  4  5  6  7  ...

       1  4  1  5  9  2  6  5

          4  1  5  9  2  6  5

          

          4  1  5  9  2

       -  4  0  0  0  0

             1  5  9  2

                *  1  0

          1  5  9  2  0

                   +  6

          1  5  9  2  6

current value

subtract leading digit

multiply by radix

add new trailing digit

new value

current value

new value
 text
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aLgorIthM 5.8 rabin-karp fingerprint substring search

public class RabinKarp 
{ 
   private String pat;       // pattern (only needed for Las Vegas) 
   private long patHash;     // pattern hash value  
   private int M;            // pattern length 
   private long Q;           // a large prime 
   private int R = 256;      // alphabet size 
   private long RM;          // R^(M-1) % Q                                              

   public RabinKarp(String pat) 
   { 
      this.pat = pat;        // save pattern (needed only for Las Vegas) 
      M = pat.length(); 
      Q = longRandomPrime();           // See Exercise 5.3.33. 
      RM = 1; 
      for (int i = 1; i <= M-1; i++)   // Compute R^(M-1) % Q for use 
         RM = (R * RM) % Q;            //   in removing leading digit. 
      patHash = hash(pat, M); 
   }

   public boolean check(int i)  // Monte Carlo (See text.) 
   {  return true;  }  //   For Las Vegas, check pat vs txt(i..i-M+1).

   private long hash(String key, int M) 
   // See text (page 775). 
   private int search(String txt) 
   {  // Search for hash match in text. 
      int N = txt.length(); 
      long txtHash = hash(txt, M); 
      if (patHash == txtHash && check(0)) return 0;    // match 
      for (int i = M; i < N; i++) 
      {  // Remove leading digit, add trailing digit, check for match. 
         txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q; 
         txtHash = (txtHash*R + txt.charAt(i)) % Q; 
         if (patHash == txtHash)                     
           if (check(i - M + 1)) return i - M + 1;     // match 
      } 
      return N;                                        // no match 
   } 
}

This substring search algorithm is based on hashing.  It computes a hash value for the pattern in the 
constructor, then searches through the text looking for a hash match.
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same value as our pattern less than 10–20, an exceedingly small value. If that value is not 
small enough for you, you could run the algorithms again to get a probability of fail-
ure of less than 10–40. This algorithm is an early and famous example of a Monte Carlo
algorithm that has a guaranteed completion time but fails to output a correct answer 
with a small probability. The alternative method of checking for a match could be slow 
(it might amount to the brute-force algorithm, with a very small probability) but is 
guaranteed correct. Such an algorithm is known as a Las Vegas algorithm.

property p. The Monte Carlo version of Rabin-Karp substring search is linear-time 
and extremely likely to be correct, and the Las Vegas version of Rabin-Karp sub-
string search is correct and extremely likely to be linear-time.

Discussion: The use of the very large value of Q, made possible by the fact that we 
need not maintain an actual hash table, makes it extremely unlikely that a collision 
will occur. Rabin and Karp showed that when Q is properly chosen, we get a hash 
collision for random strings with probability 1/Q, which implies that, for practi-
cal values of the variables, there are no hash matches when there are no substring 
matches and only one hash match if there is a substring match. Theoretically, a text 
position could lead to a hash collision and not a substring match, but in practice it 
can be relied upon to find a match.

If your belief in probability theory (or in the random string model and the code we 
use to generate random numbers) is more half-hearted than resolute, you can add to 
check() the code to check that the text matches the pattern, which turns Algorithm 
5.8 into the Las Vegas version of the algorithm (see Exercise 5.3.12). If you also add a 
check to see whether that code ever returns a negative value, you might develop more 
faith in probability theory as time wears on.

Rabin-Karp substring search is known as a fingerprint search because it uses a small 
amount of information to represent a (potentially very large) pattern. Then it looks 
for this fingerprint (the hash value) in the text. The algorithm is efficient because the 
fingerprints can be efficiently computed and compared. 
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Summary The table at the bottom of the page summarizes the algorithms that we 
have discussed for substring search. As is often the case when we have several algo-
rithms for the same task, each of them has attractive features. Brute-force search is easy 
to implement and works well in typical cases (Java’s indexOf() method in String uses 
brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup in 
the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and Rabin-
Karp is linear. Each also has drawbacks: brute-force might require time proportional 
to MN; Knuth-Morris-Pratt and Boyer-Moore use extra space; and Rabin-Karp has a 
relatively long inner loop (several arithmetic operations, as opposed to character com-
pares in the other methods). These characteristics are summarized in the table below.

algorithm version operation count backup 
in input? correct? extra 

spaceguarantee typical

brute force — M N 1.1 N yes yes 1

Knuth-Morris-Pratt

full DFA 
(Algorithm 5.6 ) 2 N 1.1 N no yes MR

mismatch 
transitions only 3 N 1.1 N no yes M

Boyer-Moore

full algorithm 3 N N / M yes yes R

mismatched char 
heuristic only 

(Algorithm 5.7 )
M N N / M yes yes R

Rabin-Karp†

Monte Carlo 
(Algorithm 5.8 ) 7 N 7 N no yes † 1

Las Vegas 7 N  † 7 N yes yes 1

† probabilisitic guarantee, with uniform and independent hash function

Cost summary for substring search implementations
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Q&A

Q. This substring search problem seems like a bit of a toy problem.  Do I really need to 
understand these complicated algorithms?

A. Well, the factor of M speedup available with Boyer-Moore can be quite impressive in 
practice. Also, the ability to stream input (no backup) leads to many practical applica-
tions for KMP and Rabin-Karp. Beyond these direct practical applications, this topic 
provides an interesting introduction to the use of abstract machines and randomiza-
tion in algorithm design.  

Q. Why not simplify things by converting each character to binary, treating all text as 
binary text?

A. That idea is not quite effective because of false matches across character boundaries. 
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ExErcisEs

5.3.1 Develop a brute-force substring search implementation Brute, using the same 
API as Algorithm 5.6.

5.3.2 Give the dfa[][] array for the Knuth-Morris-Pratt algorithm for the pattern 
A A A A A A A A A, and draw the DFA, in the style of the figures in the text.

5.3.3 Give the dfa[][] array for the Knuth-Morris-Pratt algorithm for the pattern 
A B R A C A D A B R A, and draw the DFA, in the style of the figures in the text.

5.3.4 Write an efficient method that takes a string txt and an integer M as arguments 
and returns the position of the first occurrence of M consecutive blanks in the string, 
txt.length if there is no such occurrence. Estimate the number of character compares 
used by your method, on typical text and in the worst case.

5.3.5 Give the right[] array computed by the constructor in Algorithm 5.7 for the 
pattern A A B A A B A A B C D A C A B.

5.3.6 Give the right[] array computed by the constructor in Algorithm 5.7 for the 
pattern A B R A C A D A B R A.

5.3.7 Add to our brute-force implementation of substring search a count() method to 
count occurrences and a searchAll() method to print all occurrences.

5.3.8 Add to KMP a count() method to count occurrences and a searchAll() method 
to print all occurrences.

5.3.9 Add to BoyerMoore a count() method to count occurrences and a searchAll() 
method to print all occurrences.

5.3.10 Add to RabinKarp a count() method to count occurrences and a searchAll() 
method to print all occurrences.

5.3.11 Construct a worst-case example for the Boyer-Moore implementation in Algo-
rithm 5.7 (which demonstrates that it is not linear-time).

5.3.12 Add the code to check() in RabinKarp (Algorithm 5.8) that turns it into a 
Las Vegas algorithm (check that the pattern matches the text at the position given as 
argument).

5.3.13 In the Boyer-Moore implementation in Algorithm 5.7, show that you can set 
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right[c] to the penultimate occurrence of c when c is the last character in the pattern.

5.3.14 Develop versions of the substring search implementations in this section that 
use char[] instead of String to represent the pattern and the text.

5.3.15 Develop a brute-force substring search implementation BruteForceRL that 
processes the pattern from right to left (a simplified version of Algorithm 5.7).

5.3.16 Show the trace of the brute-force algorithm in the style of the figures in the text   
for the following pattern and text strings

a. pattern: AAAAAAAB     text: AAAAAAAAAAAAAAAAAAAAAAAAB

b. pattern: ABABABAB     text: ABABABABAABABABABAAAAAAAA 

5.3.17 Draw the KMP DFA for the following pattern strings.

a. AAAAAAB

b. AACAAAB

c. ABABABAB

d. ABAABAAABAAAB

e. ABAABCABAABCB

5.3.18 Suppose that the pattern and text are random strings over an alphabet of size 
R (which is at least 2). Show that the expected number of character compares for the 
brute-force method is (N  M + 1) (1  RM) / (1  R1)  2(N  M + 1).

5.3.19 Construct an example where the Boyer-Moore algorithm (with only the mis-
matched character heuristic) performs poorly.

5.3.20 How would you modify the Rabin-Karp algorithm to determine whether any of 
a subset of k patterns (say, all of the same length) is in the text? 

Solution : Compute the hashes of the k patterns and store the hashes in a StringSET 
(see Exercise 5.2.6). 

5.3.21 How would you modify the Rabin-Karp algorithm to search for a given pattern 
with the additional proviso that the middle character is a “wildcard” (any text character 

ExErcisEs (continued)
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at all can match it).

5.3.22 How would you modify the Rabin-Karp algorithm to search for an H-by-V pat-
tern in an N-by-N text? 

5.3.23 Write a program that reads characters one at a time and reports at each instant 
if the current string is a palindrome. Hint : Use the Rabin-Karp hashing idea.
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crEAtivE problEms

5.3.24  Find all occurrences. Add a method findAll() to each of the four substring 
search algorithms given in the text that returns an Iterable<Integer> that allows 
clients to iterate through all offsets of the pattern in the text.

5.3.25  Streaming. Add a search() method to KMP that takes variable of type In as 
argument, and searches for the pattern in the specified input stream without using any 
extra instance variables. Then do the same for RabinKarp. 

5.3.26  Cyclic rotation check. Write a program that, given two strings, determines 
whether one is a cyclic rotation of the other, such as example and ampleex.

5.3.27  Tandem repeat search. A tandem repeat of a base string t in a string s is a 
substring of s having at least two consecutive copies t (nonoverlapping). Develop and 
implement a linear-time algorithm that, given two strings s and t, returns the index of 
the beginning of the longest tandem repeat of t in s. For example, your program should 
return 3 when t is abcab and s is abcabcababcababcababcab. 

5.3.28  Buffering in brute-force search. Add a search() method to your solution to 
Exercise 5.3.1 that takes an input stream (of type In) as argument and searches for the 
pattern in the given input stream. Note : You need to maintain a buffer that can keep at 
least the previous M characters in the input stream. Your challenge is to write efficient 
code to initialize, update, and clear the buffer for any input stream.

5.3.29  Buffering in Boyer-Moore. Add a search() method to Algorithm 5.7 that 
takes an input stream (of type In) as argument and searches for the pattern in the given 
input stream.

5.3.30  Two-dimensional search. Implement a version of the Rabin-Karp algorithm to 
search for patterns in two-dimensional text. Assume both pattern and text are rect-
angles of characters.

5.3.31  Random patterns. How many character compares are needed to do a substring 
search for a random pattern of length 100 in a given text?

Answer: None. The method

public boolean search(char[] txt) 
{  return false; }
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    int i = -1; 
sm: i++; 
s0: if (txt[i]) != 'A' goto sm; 
s1: if (txt[i]) != 'A' goto s0; 
s2: if (txt[i]) != 'B' goto s0; 
s3: if (txt[i]) != 'A' goto s2; 
s4: if (txt[i]) != 'A' goto s0; 
s5: if (txt[i]) != 'A' goto s3; 
    return i-8;

Straight-line substring search for a a B a a a

is quite effective for this problem, since the chances of a random pattern of length 100 
appearing in any text are so low that you may consider it to be 0.

5.3.32  Unique substrings. Solve Exercise 5.2.14 using the idea behind the Rabin-
Karp method.

5.3.33  Random primes. Implement longRandomPrime() for RabinKarp (Algorithm 
5.8). Hint : A random n-digit number is prime with probability proportional to 1/n.

5.3.34  Straight-line code. The Java Virtual Machine (and your computer’s assembly 
language) support a goto instruction so that the search can be “wired in’’ to machine 
code, like the program at right (which is exactly equiva-
lent to simulating the DFA for the pattern as in KMPdfa, 
but likely to be much more efficient). To avoid check-
ing whether the end of the text has been reached each 
time i is incremented, we assume that the pattern it-
self is stored at the end of the text as a sentinel, as the 
last M characters of the text. The goto labels in this code 
correspond precisely to the dfa[] array. Write a static 
method that takes a pattern as input and produces as 
output a straight-line program like this that searches for 
the pattern.

5.3.35  Boyer-Moore in binary strings. The mismatched character heuristic does not 
help much for binary strings, because there are only two possibilities for characters that 
cause the mismatch (and these are both likely to be in the pattern). Develop a substring 
search class for binary strings that groups bits together to make “characters’’ that can 
be used exactly as in Algorithm 5.7. Note : If you take b bits at a time, then you need 
a right[] array with 2b entries. The value of b should be chosen small enough so that 
this table is not too large, but large enough that most b-bit sections of the text are not 
likely to be in the pattern—there are Mb1 different b-bit sections in the pattern 
(one starting at each bit position from 1 through Mb1), so we want Mb1 to 
be significantly less than 2b. For example, if you take b to be about lg (4M), then the 
right[] array will be more than three-quarters filled with -1 entries, but do not let b 
become greater than M/2, since otherwise you could miss the pattern entirely, if it were 
split between  two b-bit text sections.
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ExpErimENts

5.3.36  Random text. Write a program that takes integers M and N as arguments, gener-
ates a random binary text string of length N, then counts the number of other occur-
rences of the last M bits elsewhere in the string. Note : Different methods may be appro-
priate for different values of M.

5.3.37  KMP for random text. Write a client that takes integers M, N, and T as input and 
runs the following experiment T times: Generate a random pattern of length M and a 
random text of length N, counting the number of character compares used by KMP to 
search for the pattern in the text. Instrument KMP to provide the number of compares, 
and print the average count for the T trials.

5.3.38  Boyer-Moore for random text. Answer the previous exercise for BoyerMoore.

5.3.39  Timings. Write a program that times the four methods for the task of searchng 
for the substring

it is a far far better thing that i do than i have ever done

in the text of Tale of Two Cities (tale.txt). Discuss the extent to which your results 
validate the hypthotheses about performance that are stated in the text.
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5.4 regUlAr exPreSSionS

IN many applications, we need to do substring searching with somewhat less than 
complete information about the pattern to be found. A user of a text editor may wish 
to specify only part of a pattern, or to specify a pattern that could match a few different 
words, or to specify that any one of a number of patterns would do. A biologist might 
search for a genomic sequence satisfying certain conditions. In this section we will con-
sider how pattern matching of this type can be done efficiently.

The algorithms in the previous section fundamentally depend on complete specifi-
cation of the pattern, so we have to consider different methods. The basic mechanisms 
we will consider make possible a very powerful string-searching facility that can match 
complicated M-character patterns in N-character text strings in time proportional to 
MN in the worst case, and much faster for typical applications.

First, we need a way to describe the patterns: a rigorous way to specify the kinds of 
partial-substring-searching problems suggested above. This specification needs to in-
volve more powerful primitive operations than the “check if the i th character of the text 
string matches the j th character of the pattern’’ operation used in the previous section. 
For this purpose, we use regular expressions, which describe patterns in combinations 
of three natural, basic, and powerful operations.

Programmers have used regular expressions for decades. With the explosive growth 
of search opportunities on the web, their use is becoming even more widespread. We 
will discuss a number of specific applications at the beginning of the section, not only 
to give you a feeling for their utility and power, but also to enable you to become more 
familiar with their basic properties.

As with the KMP algorithm in the previous section, we consider the three basic op-
erations in terms of an abstract machine that can search for patterns in a text string. 
Then, as before, our pattern-matching algorithm will construct such a machine and 
then simulate its operation. Naturally, pattern-matching machines are typically more 
complicated than KMP DFAs, but not as complicated as you might expect.

As you will see, the solution we develop to the pattern-matching problem is inti-
mately related to fundamental processes in computer science. For example, the method 
we will use in our program to perform the string-searching task implied by a given 
pattern description is akin to the method used by the Java system to transform a given 
Java program into a machine-language program for your computer. We also encounter 
the concept of nondeterminism, which plays a critical role in the search for efficient 
algorithms (see Chapter 6).
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Describing patterns with regular expressions We focus on pattern descrip-
tions made up of characters that serve as operands for three fundamental operations. 
In this context, we use the word language specifically to refer to a set of strings (pos-
sibly infinite) and the word pattern to refer to a language specification. The rules that 
we consider are quite analogous to familiar rules for specifying arithmetic expressions.

Concatenation  The first fundamental operation is the one used in the last section. 
When we write A B , we are specifying the language { A B } that has one two-character 
string, formed by concatenating A and B.

Or  The second fundamental operation allows us to specify alternatives in the pattern. 
If we have an or between two alternatives, then both are in the language. We will use the 
vertical bar symbol | to denote this operation. For example, A | B  specifies the language 
{ A , B }  and A | E | I | O | U  specifies the language  { A , E , I , O , U }. Concatenation has 
higher precedence than or, so A B | B C D  specifies the language  { A B , B C D } .

Closure  The third fundamental operation allows parts of the pattern to be repeated 
arbitrarily. The closure of a pattern is the language of strings formed by concatenating 
the pattern with itself any number of times (including zero). We denote closure by 
placing a * after the pattern to be repeated. Closure has higher precedence than con-
catenation, so A B *  specifies the language consisting of strings with an A followed by 0 
or more Bs, while A * B  specifies the language consisting of strings with 0 or more As 
followed by a B. The empty string, which we denote by , is found in every text string 
(and in A*).

Parentheses  We use parentheses to override the default precedence rules. For exam-
ple, C ( A C | B ) D  specifies the language { C A C D , C B D }; ( A | C ) ( ( B | C ) D )  speci-
fies the language { A B D ,  C B D ,  A C D ,  C C D }; and ( A B ) *  specifies the language of 
strings formed by concatenating 
any number  of occurrences of 
A B , including no occurrences: 
{ ,  A B ,  A B A B ,  . . .}.

These simple rules allow us 
to write down REs that, while 
complicated, clearly and com-
pletely describe languages (see 
the table at right for a few ex-
amples). Often, a language can be simply described in some other way, but discovering 
such a description can be a challenge. For example, the RE in the bottom row of the 
table specifies the subset of ( A | B ) *  with an even number of Bs.

re matches does not match

( A | B ) ( C | D ) AC AD BC BD every other string

A(B|C)*D AD ABD ACD ABCCBD BCD ADD ABCBC

A* | (A*BA*BA*)* AAA BBAABB BABAAA ABA BBB BABBAAA

examples of regular expressions
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Regular expressions are extremely simple formal objects, even simpler than the 
arithmetic expressions that you learned in grade school. Indeed, we will take advantage 
of their simplicity to develop compact and efficient algorithms for processing them. 
Our starting point will be the following formal definition:

Definition. A regular expression (RE) is either
n	 The empty set ∅
n	 The empty string 
n	 A single character
n	 A regular expression enclosed in parentheses
n	 Two or more concatenated regular expressions
n	 Two or more regular expressions separated by the or operator (|)
n	 A regular expression followed by the closure operator (*)

This definition describes the syntax of regular expressions, telling us what constitutes 
a legal regular expression. The semantics that tells us the meaning of a given regular 
expression is the point of the informal descriptions that we have given in this section. 
For review, we summarize these by continuing the formal definition:

Definition (continued). Each RE represents a set of strings, defined as follows:
n	 The empty set ∅ represents the set of strings with 0 elements.
n	 The empty string  represents the set of strings with one element, the string 

with zero characters.
n	 A single character represents the set of strings with one element, itself.
n	 An RE enclosed in parentheses represents the same set of strings as the RE 

without the parentheses.
n	 The RE consisting of two concatenated REs represents the cross product of 

the sets of strings represented by the individual components (all possible 
strings that can be formed by taking one string from each and concatenating 
them, in the same order as the REs).

n	 The RE consisting of the or of two REs represents the union of the sets rep-
resented by the individual components.

n	 The RE consisting of the closure of an RE represents  or the union of the 
sets represented by the concatenation of any number of copies of the RE.

There are many different ways to describe each language: we must try to specify succinct 
patterns just as we try to write compact programs and implement efficient algorithms. 
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Shortcuts Typical applications adopt various additions to these basic rules to en-
able us to develop succinct descriptions of languages of practical interest. From a theo-
retical standpoint, these are each simply a shortcut for a sequence of operations involv-
ing many operands; from a practical standpoint, they are a quite useful extention to the 
basic operations that enable us to develop compact patterns.

Set-of-characters descriptors  It is often convenient 
to be able to use a single character or a short sequence 
to directly specify sets of characters. The dot character 
(.) is a wildcard that represents any single character. A 
sequence of characters within square brackets repre-
sents any one of those characters. The sequence may 
also be specified as a range of characters. If preceded by 
a ^, a sequence within square brackets represents any 
character but one of those characters. These notations 
are simply shortcuts for a sequence of or operations.

Closure shortcuts  The closure operator specifies any 
number of copies of its operand. In practice, we want the flexibility to specify the num-
ber of copies, or a range on the number. In particular, we use the plus sign (+) to specify 
at least one copy, the question mark (?) to specify zero or one copy, and a count or a 
range within braces ({}) to specify a given number of copies. Again, these notations are 
shortcuts for a sequence of the basic concatenation, or, and closure operations.

Escape sequences  Some characters, such as  \,   .,  |,  *,  (,  and ),  are metacha-
racters  that we use to form regular expressions. We use escape sequences that begin 
with a backslash character \ separating metacharacters from characters in the alphabet. 
An escape sequence may be a \ followed by a single metacharacter (which represents 
that character). For example, \\ represents \. Other escape sequences represent special 
characters and whitespace. For example, \t represents a tab character, \n represents a 
newline, and \s represents any whitespace character.

name notation example

wildcard . A.B

specified set enclosed in [] [AEIOU]*

range enclosed in [] 
separated by -

[A-Z]
[0-9]

complement enclosed in [] 
preceded by ^

[^AEIOU]*

Set-of-characters descriptors

option notation example shortcut for in language not in language

at least 1 + (AB)+ (AB)(AB)* AB ABABAB   BBBAAA

0 or 1 ? (AB)?   | AB   AB any other string

specific count in {} (AB){3} (AB)(AB)(AB) ABABAB any other string

range range in {} (AB){1-2} (AB)|(AB)(AB) AB ABAB any other string

Closure shortcuts (for specifying the number of copies of the operand)
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REs in applications REs have proven to be remarkably versatile in describing lan-
guages that are relevant in practical applications. Accordingly, REs are heavily used and 
have been heavily studied. To familiarize you with regular expressions while at the same 
time giving you some appreciation for their utility, we consider a number of practical 
applications before addressing the RE pattern-matching algorithm. REs also play an 
important role in theoretical computer science. Discussing this role to the extent it 
deserves is beyond the scope of this book, but we sometimes allude to relevant funda-
mental theoretical results. 

Substring search  Our general goal is to develop an algorithm that determines wheth-
er a given text string is in the set of strings described by a given regular expression. If a 
text is in the language described by a pattern, we say that the text matches the pattern. 
Pattern matching with REs vastly generalizes the substring search problem of Section 
5.3. Precisely, to search for a substring pat in a text string txt is to check whether txt 
is in the language described by the pattern . * pat. *  or not.   

Validity checking  You frequently encounter RE matching when you use the web. 
When you type in a date or an account number on a commercial website, the input-
processing program has to check that your response is in the right format. One ap-
proach to performing such a check is to write code that checks all the cases: if you were 
to type in a dollar amount, the code might check that the first symbol is a $, that the 
$ is followed by a set of digits, and so forth. A better approach is to define an RE that 
describes the set of all legal inputs. Then, checking whether your input is legal is pre-
cisely the pattern-matching problem: is your input in the language described by the RE? 
Libraries of REs for common checks have sprung up on the web as this type of checking 
has come into widespread use. Typically, an RE is a much more precise and concise ex-
pression of the set of all valid strings than would be a program that checks all the cases.

context regular expression matches

substring search . * N E E D L E . * A  H A Y S T A C K  N E E D L E  I N

phone number \([0-9]{3}\)\ [0-9]{3}-[0-9]{4} (800) 867-5309

Java identifier [$_A-Za-z][$_A-Za-z0-9]* Pattern_Matcher

genome marker gcg(cgg|agg)*ctg gcgaggaggcggcggctg

email address [a-z]+@([a-z]+\.)+(edu|com) rs@cs.princeton.edu

typical regular expressions in applications (simplified versions)
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Programmer’s toolbox  The origin of regular expression pattern matching is the Unix 
command grep, which prints all lines matching a given RE. This capability has proven 
invaluable for generations of programmers, and REs are built into many modern pro-
gramming systems, from awk and emacs to Perl, Python, and JavaScript. For example, 
suppose that you have a directory with dozens of .java files, and you want to know 
which of them has code that uses StdIn. The command

% grep StdIn *.java

will immediately give the answer. It prints all lines that match .*StdIn.* for each file. 

Genomics  Biologists use REs to help address important scientific problems. For 
example, the human gene sequence has a region that can be described with the RE 
gcg(cgg)*ctg, where the number of repeats of the cgg pattern is highly variable 
among individuals, and a certain genetic disease that can cause mental retardation and 
other symptoms is known to be associated with a high number of repeats.

Search  Web search engines support REs, though not always in their full glory. Typi-
cally, if you want to specify alternatives with | or repetition with *, you can do so.

Possibilities  A first introduction to theoretical computer science is to think about the 
set of languages that can be specified with an RE. For example, you might be surprised 
to know that you can implement the modulus operation with an RE: for example, 
( 0  |  1 ( 0 1 * 0 ) * 1 ) *  describes all strings of 0s and 1s that are the binary repre-
sentations of numbers that are multiples of three (!): 1 1 , 1 1 0 , 1 0 0 1 , and 1 1 0 0  are 
in the language, but 1 0 , 1 0 1 1 , and 1 0 0 0 0  are not. 

Limitations  Not all languages can be specified with REs. A thought-provoking ex-
ample is that no RE can describe the set of all strings that specify legal REs. Simpler 
versions of this example are that we cannot use REs to check whether parentheses are 
balanced or to check whether a string has an equal number of As and Bs. 

These examples just scratch the surface. Suffice it to say that REs are a useful part 
of our computational infrastructure and have played an important role in our under-
standing of the nature of computation. As with KMP, the algorithm that we describe 
next is a byproduct of the search for that understanding.
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Nondeterministic finite-state automata Recall that we can view the Knuth-
Morris-Pratt algorithm as a finite-state machine constructed from the search pattern 
that scans the text. For regular expression pattern matching, we will generalize this idea.

The finite-state automaton for KMP changes from state to state by looking at a char-
acter from the text string and then changing to another state, depending on the char-
acter. The automaton reports a match if and only if it reaches the accept state. The al-
gorithm itself is a simulation of the automaton. The characteristic of the machine that 
makes it easy to simulate is that it is deterministic: each state transition is completely 
determined by the next character in the text.

To handle regular expressions, we consider a more powerful abstract machine. Be-
cause of the or operation, the automaton cannot determine whether or not the pattern 
could occur at a given point by examining just one character; indeed, because of clo-
sure, it cannot even determine how many characters might need to be examined before 
a mismatch is discovered. To overcome these problems, we will endow the automaton 
with the power of nondeterminism: when faced with more than one way to try to match 
the pattern, the machine can “guess’’ the right one! This power might seem to you to be 
impossible to realize, but we will see that it is easy to write a program to build a nonde-
terministic finite-state automaton (NFA) and to efficiently simulate its operation. The 
overview of our RE pattern matching algorithm is nearly the same as for KMP:

n	 Build the NFA corresponding to the given RE.
n	 Simulate the operation of that NFA on the given text.

Kleene’s Theorem, a fundamental result of theoretical computer science, asserts that 
there is an NFA corresponding to any given RE (and vice versa). We will consider a 
constructive proof of this fact that will demonstrate how to transform any RE into an 
NFA; then we simulate the operation of the NFA to complete the job.

Before we consider how to build pattern-matching NFAs, we will consider an exam-
ple that illustrates their properties and the basic rules for operating them. Consider the 
figure below, which shows an NFA that determines whether a text string is in the lan-
guage described by the RE ( ( A * B | A C ) D ) . As illustrated in this example, the NFAs 
that we define have the following characteristics:

n	 The NFA corresponding to an RE of length M has exactly one state per pattern 
character, starts at state 0, and has a (virtual) accept state M.

NFA corresponding to the pattern   ( ( A * B | A C ) D )

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

accept statestart state
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n	 States corresponding to a character from the alphabet have an outgoing edge 
that goes to the state corresponding to the next character in the pattern (black 
edges in the diagram).

n	 States corresponding to the metacharacters (, ), |, and * have at least one outgo-
ing edge (red edges in the diagram), which may go to any other state.

n	 Some states have multiple outgoing edges, but no state has more than one out-
going black edge.

By convention, we enclose all patterns in parentheses, so the first state corresponds to a 
left parenthesis and the final state corresponds to a right parenthesis (and has a transi-
tion to the accept state).

As with the DFAs of the previous section, we start the NFA at state 0, reading the 
first character of a text. The NFA moves from state to state, sometimes reading text 
characters, one at a time, from left to right. However, there are some basic differences 
from DFAs:

n	 Characters appear in the nodes, not the edges, in the diagrams.
n	 Our NFA recognizes a text string only after explicitly reading all its characters, 

whereas our DFA recognizes a pattern in a text without necessarily reading all 
the text characters.

These differences are not critical—we have picked the version of each machine that is 
best suited to the algorithms that we are studying.

Our focus now is on checking whether the text matches the pattern—for that, we 
need the machine to reach its accept state and consume all the text. The rules for mov-
ing from one state to another are also different than for DFAs—an NFA can do so in 
one of two ways: 

n	 If the current state corresponds to a character in the alphabet and the current 
character in the text string matches the character, the automaton can scan past 
the character in the text string and take the (black) transition to the next state. 
We refer to such a transition as a match transition.

n	 The automaton can follow any red edge to another state without scanning any 
text character. We refer to such a transition as an -transition, referring to the 
idea that it corresponds to “matching” the empty string .

Finding a pattern with    ( ( A * B | A C ) D ) NFA

      A     A     A     A     B        D



accept state reached
and all text characters scanned:

NFA recognizes text

match transition:
scan to next input character

and change state

�-transition:
change state

with no match
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For example, suppose that our NFA for 
( ( A * B | A C ) D ) is started (at state 0) 
with the text A A A A B D as input. The figure 
at the bottom of the previous page shows a se-
quence of state transitions ending in the accept 
state. This sequence demonstrates that the text 
is in the set of strings described by the RE—the 
text matches the pattern. With respect to the 
NFA, we say that the NFA recognizes that text.

The examples shown at left illustrate that it 
is also possible to find transition sequences that 
cause the NFA to stall, even for input text such 
as A A A A B D that it should recognize. For 
example, if the NFA takes the transition to state 

4 before scanning all the As, it is left with nowhere to go, since the only way out of state 
4 is to match a B. These two examples demonstrate the nondeterministic nature of the 
automaton. After scanning an A and finding itself in state 3, the NFA has two choices: 
it could go on to state 4 or it could go back to state 2. The choices make the difference 
between getting to the accept state (as in the first example just discussed) or stalling (as 
in the second example just discussed). This NFA also has a choice to make at state 1 
(whether to take an -transition to state 2 or to state 6).

These examples illustrate the key difference between NFAs and DFAs: since an NFA 
may have multiple edges leaving a given state, the transition from such a state is not 
deterministic—it might take one transition at one point in time and a different transi-
tion at a different point in time, without scanning past any text character. To make 
some sense of the operation of such an automaton, imagine that an NFA has the power 
to guess which transition (if any) will lead to the accept state for the given text string. 
In other words, we say that an NFA recognizes a text string if and only if there is some   
sequence of transitions that scans all the text characters and ends in the accept state when 
started at the beginning of the text in state 0. Conversely, an NFA does not recognize a 
text string if and only if there is no sequence of match transitions and -transitions that 
can scan all the text characters and lead to the accept state for that string.

As with DFAs, we have been tracing the operation of the NFA on a text string simply 
by listing the sequence of state changes, ending in the final state. Any such sequence is a 
proof that the machine recognizes the text string (there may be other proofs). But how 
do we find such a sequence for a given text string? And how do we prove that there is no 
such sequence for another given text string?  The answers to these questions are easier 
than you might think: we systematically try all possibilities.

Stalling sequences for ( ( A * B | A C ) D ) NFA

no way out
of state 4

no way out
of state 4

      A     A     A

0  1  2  3  2  3  4

no way out
of state 7

wrong guess if input is
A  A  A  A  B  D

      A

0  1  6  7

      A     A     A     A     C

0  1  2  3  2  3  2  3  2  3  4
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Simulating an NFA The idea of an automaton that can guess the state transitions 
it needs to get to the accept state is like writing a program that can guess the right an-
swer to a problem: it seems ridiculous. On reflection, you will see that the task is con-
ceptually not at all difficult: we make sure that we check all possible sequences of state 
transitions, so if there is one that gets to the accept state, we will find it.

Representation  To begin, we need an NFA representation. The choice is clear: the 
RE itself gives the state names (the integers between 0 and M, where M is the number of 
characters in the RE). We keep the RE itself in an array re[] of char values that de-
fines the match transitions (if re[i] is in the alphabet, then there is a match transition 
from i to i+1). The natural representation for the  -transitions is a digraph—they are 
directed edges (red edges in our diagrams) connecting vertices between 0 and M (one 
for each state). Accordingly, we represent all the -transitions as a digraph G. We will 
consider the task of building the digraph associated with a given RE after we consider 
the simulation process. For our example, the digraph consists of the nine edges

0 → 1  1 → 2  1 → 6  2 → 3  3 → 2  3 → 4  5 → 8  8 → 9  10 → 11

NFA simulation and reachability  To simulate an NFA, we keep track of the set of 
states that could possibly be encountered while the automaton is examining the cur-
rent input character. The key computation is the familiar multiple-source reachability
computation that we addressed in Algorithm 4.4 (page 571). To initialize this set, we find 
the set of states reachable via -transitions from state 0. For each such state, we check 
whether a match transition for the first input character is possible. This check gives 
us the set of possible states for the NFA just after matching the first input character. 
To this set, we add all states that could be reached via -transitions from one of the 
states in the set. Given the set of possible states for the NFA just after matching the first 
character in the input, the solution to the multiple-source reachability problem in the 
-transition digraph gives the set of states that could lead to match transitions for the 
second character in the input. For example, the initial set of states for our example NFA 
is 0 1 2 3 4 6; if the first character is an A, the NFA could take a match transition to 
3 or 7; then it could take -transitions from 3 to 2 or 3 to 4, so the set of possible states 
that could lead to a match transition for the second character is 2 3 4 7. Iterating this 
process until all text characters are exhausted leads to one of two outcomes:

n	 The set of possible states contains the accept state.
n	 The set of possible states does not contain the accept state.

The first of these outcomes indicates that there is some sequence of transitions that 
takes the NFA to the accept state, so we report success. The second of these outcomes 
indicates that the NFA always stalls on that input, so we report failure. With our SET 
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Simulation of   ( ( A * B | A C ) D ) NFA  for input   A A B D 

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

0 1 2 3 4 6 : set of states reachable via �-transitions from start

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

  3 7 : set of states reachable after matching A

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

2 3 4 7 : set of states reachable via �-transitions after matching A

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

    3 : set of states reachable after matching A A

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

  2 3 4 : set of states reachable via �-transitions after matching A A 

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

    5 : set of states reachable after matching A A B

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

  5 8 9 : set of states reachable via �-transitions after matching A A B

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

   10 : set of states reachable after matching A A B D

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

  10 11 : set of states reachable via �-transitions after matching A A B D

accept !
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data type and the DirectedDFS class just described for computing multiple-source 
reachability in a digraph, the NFA simulation code given below is a straightforward 
translation of the English-language description just given. You can check your under-
standing of the code by following the trace on the facing page, which illustrates the full 
simulation for our example.

proposition Q. Determining whether an N-character text string is recognized by 
the NFA corresponding to an M-character RE takes time proportional to NM in 
the worst case.

proof: For each of the N text characters, we iterate through a set of states of size 
no more than M and run a DFS on the digraph of -transitions. The construction 
that we will consider next establishes that the number of edges in that digraph is no 
more than 2M, so the worst-case time for each DFS is proportional to M.

Take a moment to reflect on this remarkable result. This worst-case cost, the product 
of the text and pattern lengths, is the same as the worst-case cost of finding an exact 
substring match using the el-
ementary algorithm that we 
started with at the beginning 
of Section 5.3.

public boolean recognizes(String txt) 
{  // Does the NFA recognize txt? 
   Bag<Integer> pc = new Bag<Integer>(); 
   DirectedDFS dfs = new DirectedDFS(G, 0); 
   for (int v = 0; v < G.V(); v++) 
      if (dfs.marked(v)) pc.add(v);

   for (int i = 0; i < txt.length(); i++) 
   {  // Compute possible NFA states for txt[i+1]. 
      Bag<Integer> match = new Bag<Integer>(); 
      for (int v : pc) 
         if (v < M) 
            if (re[v] == txt.charAt(i) || re[v] == '.') 
                match.add(v+1); 
      pc = new Bag<Integer>(); 
      dfs = new DirectedDFS(G, match); 
      for (int v = 0; v < G.V(); v++) 
         if (dfs.marked(v)) pc.add(v);

   }

   for (int v : pc) if (v == M) return true; 
   return false; 
}

nFa simulation for pattern matching
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Building an NFA corresponding to an RE From the similarity between regu-
lar expressions and familiar arithmetic expressions, you may not be surprised to find 
that translating an RE to an NFA is somewhat similar to the process of evaluating an 
arithmetic expression using Dijkstra’s two-stack algorithm, which we considered in 
Section 1.3. The process is a bit different because

n	 REs do not have an explicit operator for concatenation
n	 REs have a unary operator, for closure (*)
n	 REs have only one binary operator, for or (|)

Rather than dwell on the differences and similarities, we will consider an implementa-
tion that is tailored for REs. For example, we need only one stack, not two.

From the discussion of the representation at the beginning of the previous subsec-
tion, we need only build the digraph G that consists of all the -transitions. The RE itself 
and the formal definitions that we considered at the beginning of this section provide 
precisely the information that we need. Taking a cue from Dijkstra’s algorithm, we will 
use a stack to keep track of the positions of left parentheses and or operators.

Concatenation  In terms of the NFA, the concatenation operation is the simplest to 
implement. Match transitions for states corresponding to characters in the alphabet 
explicitly implement concatenation.

Parentheses  We push the RE index of each left parenthesis on the stack. Each time we 
encounter a right parenthesis, we eventually pop the corresponding left parentheses 
from the stack in the manner described below. As in Dijkstra’s algorithm, the stack en-
ables us to handle nested parentheses in a natural manner.

Closure  A closure (*) operator must occur either (i ) after a single character, when we 
add -transitions to and from the character, or (ii ) after a right parenthesis, when we 
add -transitions to and from the corresponding left parenthesis, the one at the top of 
the stack.

Or expression  We process an RE of the form (A | B) where A and B are both REs by 
adding two -transitions: one from the state corresponding to the left parenthesis to the 
state corresponding to the first character of B and one from the state corresponding to 
the | operator to the state corresponding to the right parenthesis. We push the RE index 
corresponding the | operator onto the stack (as well as the index corresponding to the 
left parenthesis, as described above) so that the information we need is at the top of the 
stack when needed, at the time we reach the right parenthesis. These -transitions allow 
the NFA to choose one of the two alternatives. We do not add an -transition from the 
state corresponding to the | operator to the state with the next higher index, as we have 
for all other states—the only way for the NFA to leave such a state is to take a transition 
to the state corresponding to the right parenthesis.
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These simple rules suffice to build NFAs corresponding to arbitrarily complicated 
REs. Algorithm 5.9 is an implementation whose constructor builds the -transition 
digraph corresponding to a given RE, and a trace of the construction for our example 
appears on the following page. You can find other examples at the bottom of this page 
and in the exercises and are encouraged to enhance your understanding of the process 
by working your own examples. For brevity and for clarity, a few details (handling 
metacharacters, set-of-character descriptors, closure shortcuts, and multiway or op-
erations) are left for exercises (see Exercises 5.4.16 through 5.4.21). Otherwise, the 
construction requires remarkably little code and represents one of the most ingenious 
algorithms that we have seen.

NFA construction rules

( | )

A *

iorlp

G.addEdge(i, i+1);
G.addEdge(i+1, i);

G.addEdge(lp, i+1);
G.addEdge(i+1, lp);

lp i       i+1

i       i+1

( . . .

... ...

) *

single-character closure

closure expression

G.addEdge(lp, or+1);
G.addEdge(or, i);

or expression

NFA corresponding to the pattern   (  .  *  A  B  (  (  C  |  D  *  E  )  F  )  *  G  ) 

A*.( B ( ( C | D E ) F ) * G )
0      1      2      3      4      5      6      7      8      9     10     11     12     13     14     15     16     17     18  

*
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aLgorIthM 5.9 regular expression pattern matching (grep)

public class NFA 
{ 
   private char[] re;           // match transitions 
   private Digraph G;           // epsilon transitions 
   private int M;               // number of states

   public NFA(String regexp) 
   {  // Create the NFA for the given regular expression.   
      Stack<Integer> ops = new Stack<Integer>(); 
      re = regexp.toCharArray(); 
      M = re.length; 
      G = new Digraph(M+1);

      for (int i = 0; i < M; i++) 
      { 
         int lp = i; 
         if (re[i] == '(' || re[i] == '|') 
            ops.push(i); 
         else if (re[i] == ')') 
         { 
            int or = ops.pop(); 
            if (re[or] == '|') 
            { 
               lp = ops.pop(); 
               G.addEdge(lp, or+1); 
               G.addEdge(or, i); 
            } 
            else lp = or; 
         } 
         if (i < M-1 && re[i+1] == '*')  // lookahead  
         { 
            G.addEdge(lp, i+1); 
            G.addEdge(i+1, lp); 
         } 
         if (re[i] == '(' || re[i] == '*' || re[i] == ')') 
            G.addEdge(i, i+1); 
      } 
   } 
   public boolean recognizes(String txt) 
   // Does the NFA recognize txt? (See page 799.)
}

This constructor builds an NFA corresponding to a given RE by creating a digraph of -transitions.
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Building the NFA corresponding to  ( ( A * B | A C ) D ) 

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10      11

( ( A * B | A C ) D )
0       1       2       3       4       5       6       7       8       9       10

( ( A * B | A C ) D
0       1       2       3       4       5       6       7       8       9

( ( A * B | A C )
0       1       2       3       4       5       6       7       8

( ( A * B | A C
0       1       2       3       4       5       6       7

( ( A * B | A
0       1       2       3       4       5       6

( ( A * B |
0       1       2       3       4       5

( ( A * B
0       1       2       3       4

( ( A *
0       1       2       3

( ( A
0       1       2

( (
0       1

(
0

0

stack for
indices of

left parentheses
and ors
(ops)

i
0
1

0
1

0
1

0
1

0
1
5

0
1
5     

0
1
5

0

0
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proposition r. Building the NFA corresponding to an M-character RE takes time 
and space proportional to M in the worst case.

proof. For each of the M RE characters in the regular expression, we add at most 
three -transitions and perhaps execute one or two stack operations.

The classic GREP client for pattern matching, illustrated in the code at left, takes an RE 
as argument and prints the lines from standard input having some substring that is 

in the language described by the RE. 
This client was a feature in the early 
implementations of Unix and has 
been an indispensable tool for gen-
erations of programmers.

public class GREP 
{   
   public static void main(String[] args) 
   { 
      String regexp = "(.*" + args[0] + ".*)"; 
      NFA nfa = new NFA(regexp); 
      while (StdIn.hasNextLine()) 
      { 
         String txt = StdIn.readLine(); 
         if (nfa.recognizes(txt)) 
            StdOut.println(txt); 
      } 
   } 
}

Classic generalized regular expression pattern-matching nFa client

% more tinyL.txt 
AC 
AD 
AAA 
ABD 
ADD 
BCD 
ABCCBD 
BABAAA 
BABBAAA

% java GREP "(A*B|AC)D" < tinyL.txt 
ABD 
ABCCBD

% java GREP StdIn < GREP.java 
     while (StdIn.hasNextLine()) 
        String txt = StdIn.hasNextLine();
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Q&A

Q. What is the difference between ∅ and ?

A. The former denotes an empty set; the latter denotes an empty string. You can have a 
set that contains one element, , and is therefore not an empty set ∅.
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ExErcisEs

5.4.1 Give regular expressions that describe all strings that contain 
n	 Exactly four consecutive As
n	 No more than four consecutive As
n	 At least one occurrence of four consecutive As

5.4.2 Give a brief English description of each of the following REs: 

a. .* 

b. A.*A | A 

c. .*ABBABBA.*

d. .* A.*A.*A.*A.*

5.4.3 What is the maximum number of different strings that can be described by a 
regular expression with M or operators and no closure operators (parentheses and con-
catenation are allowed)?

5.4.4 Draw the NFA corresponding to the pattern ( ( ( A | B ) * | C D * | E F G ) * ) * .

5.4.5 Draw the digraph of -transitions for the NFA from Exercise 5.4.4.

5.4.6 Give the sets of states reachable by your NFA from Exercise 5.4.4 after each 
character match and susbsequent -transitions for the input A B B A C E F G E F G C A A B .

5.4.7 Modify the GREP client on page 804 to be a client GREPmatch  that encloses the pat-
tern in parentheses but does not add .* before and after the pattern, so that it prints 
out only those lines that are strings in the language described by the given RE. Give the 
result of typing each of the following commands: 

a. % java GREPmatch "(A|B)(C|D)" < tinyL.txt 

b. % java GREPmatch "A(B|C)*D"   < tinyL.txt 

c. % java GREPmatch "(A*B|AC)D"  < tinyL.txt

5.4.8 Write a regular expression for each of the following sets of binary strings:

a. Contains at least three consecutive 1s

b. Contains the substring 110

c. Contains the substring 1101100

d. Does not contain the substring 110
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5.4.9 Write a regular expression for binary strings with at least two 0s but not con-
secutive 0s.

5.4.10 Write a regular expression for each of the following sets of binary strings: 

a. Has at least 3 characters, and the third character is 0

b. Number of 0s is a multiple of 3

c. Starts and ends with the same character

d. Odd length

e. Starts with 0 and has odd length, or starts with 1 and has even length

f. Length is at least 1 and at most 3

5.4.11 For each of the following regular expressions, indicate how many bitstrings of 
length exactly 1,000 match:

a. 0(0 | 1)*1

b. 0*101*

c. (1 | 01)*

5.4.12 Write a Java regular expression for each of the following:

a. Phone numbers, such as (609) 555-1234

b. Social Security numbers, such as 123-45-6789

c. Dates, such as December 31, 1999 

d. IP addresses of the form a.b.c.d where each letter can represent one, two, 
or three digits, such as 196.26.155.241

e. License plates that start with four digits and end with two uppercase letters
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crEAtivE problEms

5.4.13  Challenging REs. Construct an RE that describes each of the following sets of 
strings over the binary alphabet:

a. All strings except 11 or 111 

b. Strings with 1 in every odd-number bit position 

c. Strings with at least two 0s and at most one 1  

d. Strings with no two consecutive 1s  

5.4.14  Binary divisibility. Construct an RE that describes all binary strings that when 
interpreted as a binary number are

a. Divisible by 2 

b. Divisible by 3 

c. Divisible by 123 

5.4.15  One-level REs. Construct a Java RE that describes the set of strings that are 
legal REs over the binary alphabet, but with no occurrence of parentheses within pa-
rentheses. For example, (0.*1)* | (1.*0)* is in this language, but (1(0 | 1)1)* is 
not.

5.4.16  Multiway or. Add multiway or to NFA. Your code should produce the machine 
drawn below for the pattern ( . * A B ( ( C | D | E ) F ) * G ) .

NFA corresponding to the pattern   (  .  *  A  B  (  (  C  |  D |  E  )  F  )  *  G  ) 

A*.( B ( ( C | D | E ) F ) * G )
0      1      2      3      4      5      6      7      8      9     10     11     12     13     14     15     16     17  
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5.4.17  Wildcard. Add to NFA the capability to handle wildcards.

5.4.18  One or more. Add to NFA the capability to handle the + closure operator.

5.4.19  Specified set. Add to NFA the capability to handle specified-set descriptors.

5.4.20  Range. Add to NFA the capability to handle range descriptors.

5.4.21  Complement. Add to NFA the capability to handle complement descriptors.

5.4.22  Proof. Develop a version of NFA that prints a proof that a given string is in the 
language recognized by the NFA (a sequence of state transitions that ends in the accept 
state).

8095.4 n Regular Expressions



ptg12441863

5.5 DAtA CoMPreSSion

The world is awash with data, and algorithms designed to represent data efficiently play 
an important role in the modern computational infrastructure.  There are two primary 
reasons to compress data: to save storage when saving information and to save time 
when communicating information. Both of these reasons have remained important 
through many generations of technology and are familiar today to anyone needing a 
new storage device or waiting for a long download.

You have certainly encountered compression when working with digital images, 
sound, movies, and all sorts of other data. The algorithms we will examine save space 
by exploiting the fact that most data files have a great deal of redundancy: For example, 
text files have certain character sequences that appear much more often than others; 
bitmap files that encode pictures have large homogeneous areas; and files for the digital 
representation of images, movies, sound, and other analog signals have large repeated 
patterns.

We will look at an elementary algorithm and two advanced  methods that are widely 
used. The compression achieved by these methods varies depending on characteristics 
of the input. Savings of 20 to 50 percent are typical for text, and savings of 50 to 90 per-
cent might be achieved in some situations. As you will see, the effectiveness of any data 
compression method is quite dependent on characteristics of the input. Note : Usually, 
in this book, we are referring to time when we speak of performance; with data com-
pression we normally are referring to the compression they can achieve, although we 
will also pay attention to the time required to do the job.

On the one hand, data-compression techniques are less important than they once 
were because the cost of computer storage devices has dropped dramatically and far 
more storage is available to the typical user than in the past. On the other hand, data-
compression techniques are more important than ever because, since so much storage 
is in use, the savings they make possible are greater.  Indeed, data compression has come 
into widespread use with the emergence of the internet, because it is a low-cost way to 
reduce the time required to transmit large amounts of data.

Data compression has a rich history (we will only be providing a brief introduction 
to the topic), and contemplating its role in the future is certainly worthwhile. Every stu-
dent of algorithms can benefit from studying data compression because the algorithms 
are classic, elegant, interesting, and effective. 
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Rules of the game All of the types of data that we process with modern computer 
systems have something in common:  they are ultimately represented in binary.  We can 
consider each of them to be simply a sequence of bits (or bytes). For brevity, we use the 
term bitstream in this section to refer to a sequence of bits and bytestream when we are 
referring to the bits being considered as a sequence of fixed-size bytes. A bitstream or a 
bytestream might be stored as a file on your computer, or it might be a message being 
transmitted on the internet.

Basic model  Accordingly, our basic model for data compression is quite simple, hav-
ing two primary components, each a black box that reads and writes bitstreams:

n	 A compress box that transforms a bitstream B into a compressed version C (B )
n	 An expand box that transforms C (B ) back into B

Using the notation | B | to denote the number of bits in a bitstream, we are interested in 
minimizing the quantity | C (B ) |  / | B |, which is known as the compression ratio. 

Basic model for data compression

Compress Expand

bitstream B

0110110101...

original bitstream B

0110110101...

compressed version C(B)

1101011111...

This model is known as lossless compression—we insist that no information be lost, in 
the specific sense that the result of compressing and expanding a bitstream must match 
the original, bit for bit. Lossless compression is required for many types of files, such as 
numerical data or executable code. For some types of files (such as images, videos, or 
music), it is reasonable to consider compression methods that are allowed to lose some 
information, so the decoder only produces an approximation of the original file.  Lossy 
methods have to be evaluated in terms of a subjective quality standard in addition to 
the compression ratio.We do not address lossy compression in this book. 

Reading and writing binary data A full description of how information is en-
coded on your computer is system-dependent and is beyond our scope, but with a few 
basic assumptions and two simple APIs, we can separate our implementations from 
these details. These APIs, BinaryStdIn and BinaryStdOut, are modeled on the StdIn 
and StdOut APIs that you have been using, but their purpose is to read and write bits, 
where StdIn and StdOut are oriented toward character streams encoded in Unicode. 
An int value on StdOut is a sequence of characters (its decimal representation); an int 
value on BinaryStdOut is a sequence of bits (its binary representation).
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Binary input and output  Most systems nowadays, including Java, base their I/O on 
8-bit bytestreams, so we might decide to read and write bytestreams to match I/O for-
mats with the internal representations of primitive types, encoding an 8-bit char with 
1 byte, a 16-bit short with 2 bytes, a 32-bit int with 4 bytes, and so forth. Since bit-
streams are the primary abstraction for data compression, we go a bit further to allow 
clients to read and write individual bits, intermixed with data of primitive types. The 
goal is to minimize the necessity for type conversion in client programs and also to take 
care of operating system conventions for representing data. We use the following API 
for reading a bitstream from standard input:  

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value

char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r (between 1 and 16) bits of data 
and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

apI for static methods that read from a bitstream on standard input

A key feature of the abstraction is that, in marked constrast to StdIn, the data on stan-
dard input is not necessarily aligned on byte boundaries. If the input stream is a sin-
gle byte, a client could read it 1 bit at a time with eight calls to readBoolean(). The   
close() method is not essential, but, for clean termination, clients should call close() 
to indicate that no more bits are to be read. As with StdIn/StdOut, we use the follow-
ing complementary API for writing bitstreams to standard output: 

public class BinaryStdOut

void write(boolean b) write the specified bit

void write(char c) write the specified 8-bit char

void write(char c, int r) write the r (between 1 and 16) least significant bits 
of the specified char

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

void close() close the bitstream

apI for static methods that write to a bitstream on standard output
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For output, the close() method is essential: clients must call close() to ensure that 
all of the bits specified in prior write() calls make it to the bitstream and that the final 
byte is padded with 0s to byte-align the output for compatibility with the file system.   
As with the In and Out APIs associated with StdIn and StdOut, we also have available 
BinaryIn and BinaryOut that allows us to reference binary-encoded files directly. 

Example  As a simple example, suppose that you have a data type where a date is rep-
resented as three int values (month, day, year). Using StdOut to write those values in 
the format 12/31/1999 requires 10 characters, or 80 bits. If you write the values directly 
with BinaryStdOut, you would produce 96 bits (32 bits for each of the 3 int values); 
if you use a more economical representation that uses byte values for the month and 
day and a short value for the year, you would produce 32 bits. With BinaryStdOut you 
could also write a 4-bit field, a 5-bit field, and a 12-bit field, for a total of 21 bits (24 
bits, actually, because files must be an integral number of 8-bit bytes, so close() adds 
three 0 bits at the end). Important note: Such economy, in itself, is a crude form of data 
compression.

Binary dumps  How can we examine the contents of a bitstream or a bytestream while 
debugging? This question faced early programmers when the only way to find a bug was 
to examine each of the bits in memory, and the term dump has been used since the early 
days of computing to describe a human-readable view of a bitstream. If you try to open 

Four ways to put a date onto standard output

110011111011111001111000

a 4-bit �eld, a 5-bit �eld, and a 12-bit �eld (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

two chars and a short (BinaryStdOut)

BinaryStdOut.write((char) month);
BinaryStdOut.write((char) day);
BinaryStdOut.write((short) year);

000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

a character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

00001100000111110000011111001111

12 31 1999

00110001001100100010111100110111001100010010111100110001001110010011100100111001

1 2 / 3 1 / 1 9 9 9

12 31 1999 12 31 1999

80 bits

8-bit ASCII representation of '9'

32-bit integer representation of 31

32 bits 21 bits ( + 3 bits for byte alignment at close)

96 bits
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a file with an editor or view it in 
the manner in which you view text 
files (or just run a program that 
uses BinaryStdOut), you are like-
ly to see gibberish, depending on 
the system you use. BinaryStdIn 
allows us to avoid such system de-
pendencies by writing our own 
programs to convert bitstreams 
such that we can see them with 
our standard tools. For example, 
the program BinaryDump at left is 
a BinaryStdIn client that prints 
out the bits from standard in-
put, encoded with the characters 
0 and 1. This program is useful 
for debugging when working with 
small inputs. The similar client 

HexDump groups the data into 8-bit bytes and prints each as two hexadecimal digits 
that each represent 4 bits. The client PictureDump displays the bits in a Picture with 
0 bits represented as white pixels and 1 bits represented as black pixels. This pictorial 
representation is often useful in identifying patterns in a bitstream. You can download 
BinaryDump, HexDump, and PictureDump from the booksite. Typically, we use piping 
and redirection at the command-line level when working with binary files: we can pipe 
the output of an encoder to BinaryDump, HexDump, or PictureDump, or redirect it to a 
file. 

public class BinaryDump 
{ 
   public static void main(String[] args) 
   { 
      int width = Integer.parseInt(args[0]); 
      int cnt; 
      for (cnt = 0; !BinaryStdIn.isEmpty(); cnt++) 
      { 
         if (width == 0) continue; 
         if (cnt != 0 && cnt % width == 0) 
            StdOut.println(); 
         if (BinaryStdIn.readBoolean()) 
              StdOut.print("1"); 
         else StdOut.print("0"); 
      } 
      StdOut.println(); 
      StdOut.println(cnt + " bits"); 
   } 
}

printing a bitstream on standard (character) output

Four ways to look at a bitstream

standard character stream

bitstream represented as 0 and 1 characters

bitstream represented with hex digits

bitstream represented as pixels in a Picture

16-by-6 pixel
window, magnified

% more abra.txt
ABRACADABRA!

% java PictureDump 16 6 < abra.txt

96 bits

% java BinaryDump 16 < abra.txt
0100000101000010
0101001001000001
0100001101000001
0100010001000001
0100001001010010
0100000100100001
96 bits

%  java HexDump 4 < abra.txt
41 42 52 41
43 41 44 41
42 52 41 21
96 bits
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ASCII encoding  When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.   
Given a two digit hex number, use the first 
hex digit as a row index and the second hex 
digit as a column index to find the character 
that it encodes. For example, 31 encodes the 
digit 1, 4A encodes the letter J, and so forth. 
This table is for 7-bit ASCII, so the first hex 
digit must be 7 or less. Hex numbers starting 
with 0 and 1 (and the numbers 20 and 7F) 
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices 
such as typewriters were controlled by ASCII input; the table highlights a few that you 
might see in dumps. For example, SP is the space character, NUL is the null character, LF 
is line feed, and CR is carriage return. 

In summary, working with data compression requires us to reorient our thinking about 
standard input and standard output to include binary encoding of data. BinaryStdIn 
and BinaryStdOut provide the methods that we need. They provide a way for you to 
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans). 

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ' ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

hexadecimal-to-aSCII conversion table
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Limitations To appreciate data-compression algorithms, you need to understand   
fundamental limitations. Researchers have developed a thorough and important theo-
retical basis for this purpose, which we will consider briefly at the end of this section, 
but a few ideas will help us get started.

Universal data compression  Armed with the algorithmic tools that have proven so 
useful for so many problems, you might think that our goal should be universal data 
compression: an algorithm that can make any bitstream smaller. Quite to the contrary, 
we have to adopt more modest goals because universal data compression is impossible.

proposition s. No algorithm can compress every bitstream.

proof: We consider two proofs that each provide some insight. 
The first is by contradiction: Suppose that you have an algorithm 
that does compress every bitstream. Then you could use that algo-
rithm to compress its output to get a still shorter bitstream, and 
continue until you have a bistream of length 0! The conclusion 
that your algorithm compresses every bitstream to 0 bits is absurd, 
and so is the assumption that it can compress every bitstream.

The second proof is a counting argument. Suppose that you have 
an algorithm that claims lossless compression for every 1,000-bit 
stream. That is, every such stream must map to a different shorter 
one. But there are only 1 + 2 + 4 + ... + 2998 + 2999 = 210001 bit-
streams with fewer than 1,000 bits and 21000 bitstreams with 1,000 
bits, so your algorithm cannot compress all of them. This argu-
ment becomes more persuasive if we consider stronger claims. Say 
your goal is to achieve better than a 50 percent compression ratio. 
You have to know that you will be successful for only about 1 out 
of 2500 of the 1,000-bit bitstreams!

Put another way, you have at most a 1 in 2500 chance of being able to 
compress by half a random 1,000-bit stream with any data-compres-
sion algorithm.  When you run across a new lossless compression al-
gorithm, it is a sure bet that it will not achieve significant compression 
for a random bitstream. The insight that we cannot hope to compress 
random streams is a start to understanding data compression. We 
regularly process strings of millions or billions of bits but will never 
process even the tiniest fraction of all possible such strings, so we need 

Universal 
data compression?

.
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not be discouraged by this theoretical result. Indeed, the bitstrings that we regularly 
process are typically highly structured, a fact that we can exploit for compression.

Undecidability  Consider the million-bit string pictured at the top of this page. This 
string appears to be random, so you are not likely to find a lossless compression algo-
rithm that will compress it. But there is a way to represent that string with just a few 
thousand bits, because it was produced by the program below.  (This program is an ex-
ample of a pseudo-random number generator, like Java’s Math.random() method.) A 
compression algorithm that compresses by writing the program in ASCII and expands 
by reading the program and then running it achieves a .3 percent compression ratio, 
which is difficult to beat (and we can drive the ratio arbitrarily low by writing more 
bits). To compress such a file is to discover the program that produced it. This example 
is not so far-fetched as it first appears: when you compress a video or an old book 
that was digitized with a scanner or any of countless other types of files from the web, 
you are discovering something about the program that produced the file. The realiza-
tion that much of the data that we process is 
produced by a program leads to deep issues 
in the theory of computation and also gives 
insight into the challenges of data compres-
sion. For example, it is possible to prove that 
optimal data compression (find the short-
est program to produce a given string) is an 
undecidable problem: not only can we not 
have an algorithm that compresses every bit-
stream, but also we cannot have a strategy 
for developing the best algorithm!

A di�cult �le to compress: 1 million (pseudo-) random bits

% java RandomBits | java PictureDump 2000 500

1000000 bits

public class RandomBits 
{ 
   public static void main(String[] args) 
   { 
      int x = 11111; 
      for (int i = 0; i < 1000000; i++) 
      { 
         x = x * 314159 + 218281; 
         BinaryStdOut.write(x > 0); 
      } 
      BinaryStdOut.close(); 
   } 
}

a “compressed” million-bit stream
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The practical impact of these limitations is that lossless compression methods must 
be oriented toward taking advantage of known structure in the bitstreams to be com-
pressed. The four methods that we consider exploit, in turn, the following structural 
characteristics:

n	  Small alphabets
n	  Long sequences of identical bits/characters
n	  Frequently used characters
n	  Long reused bit/character sequences

If you know that a given bitstream exhibits one or more of these characteristics, you 
can compress it with one of the methods that you are about to learn; if not, trying them 
each is probably still worth the effort, since the underlying structure of your data may 
not be obvious, and these methods are widely applicable. As you will see, each method 
has parameters and variations that may need to be tuned for best compression of a par-
ticular bitstream. The first and last recourse is to learn something about the structure 
of your data yourself and exploit that knowledge to compress it, perhaps using one of 
the techniques we are about to consider.
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Warmup: genomics As preparation for more complicated data-compression al-
gorithms, we now consider an elementary (but very important) data-compression task. 
All of our implementations will use the same conventions that we will now introduce 
in the context of this example. 

Genomic data  As a first example of data compression, consider this string:

A T A G A T G C A T A G C G C A T A G C T A G A T G T G C T A G C A T

Using standard ASCII encoding (1 byte, or 8 bits per character), this string is a bitstream 
of length 835 = 280. Strings of this sort are extremely important in modern biology, 
because biologists use the letters A, C, T, and G to represent the four nucleotides in the 
DNA of living organisms. A genome is a sequence of nucleotides. Scientists know that 
understanding the properties of genomes is a key to understanding the processes that 
manifest themselves in living organisms, in-
cluding life, death, and disease. Genomes for 
many living things are known, and scientists 
are writing programs to study the structure of 
these sequences. 

2-bit code compression  One simple prop-
erty of genomes is that they contain only 
four different characters, so each can be en-
coded with just 2 bits per character, as in the 
compress() method shown at right. Even 
though we know the input stream to be 
character-encoded, we use BinaryStdIn to 
read the input, to emphasize adherence to the 
standard data-compression model (bitstream 
to bitstream). We include the number of encoded characters in the compressed file, to 
ensure proper decoding if the last bit does not fall at the end of a byte. Since it converts 
each 8-bit character to a 2-bit code  and just adds 32 bits for the length, this program 
approaches a 25 percent compression ratio as the number of characters increases.

2-bit code expansion  The expand() method at the top of the next page expands a 
bitstream produced by this compress() method. As with compression, this method 
reads a bitstream and writes a bitstream, in accordance with the basic data-compression 
model. The bitstream that we produce as output is the original input.

public static void compress() 
{ 
   Alphabet DNA = new Alphabet("ACTG"); 
   String s = BinaryStdIn.readString(); 
   int N = s.length(); 
   BinaryStdOut.write(N); 
   for (int i = 0; i < N; i++) 
   {  // Write two-bit code for char. 
      int d = DNA.toIndex(s.charAt(i)); 
      BinaryStdOut.write(d, DNA.lgR()); 
   } 
   BinaryStdOut.close(); 
}

Compression  method for genomic data
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The same approach works for other 
fixed-size alphabets, but we leave this 
generalization for an (easy) exercise (see 
Exercise 5.5.25).  

These methods do not quite adhere to 
the standard data-compression model, 
because the compressed bitstream does 
not contain all the information needed 
to decode it. The fact that the alphabet 
is one of the letters A, C, T, or G is agreed 
upon by the two methods. Such a con-
vention is reasonable in an application 
such as genomics, where the same code 

is widely reused. Other situations might require including the alphabet in the encoded 
message (see Exercise 5.5.25). The norm in data compression is to include such costs 
when comparing methods.

In the early days of genomics, learning a genomic sequence was a long and arduous 
task, so sequences were relatively short and scientists used standard ASCII encoding 
to store and exchange them. The experimental process has been vastly streamlined, 
to the point where known genomes are numerous and lengthy (the human genome 
is over 1010 bits), and the 75 percent savings achieved by these simple methods is very 
significant. Is there room for further compression? That is a very interesting question 
to contemplate, because it is a scientific question: the ability to compress implies the ex-
istence of some structure in the data, and a prime focus of modern genomics is to dis-
cover structure in genomic data. 
Standard data-compression 
methods like the ones we will 
consider are ineffective with 
(2-bit-encoded) genomic data, 
as with random data. 

We package compress() and 
expand() as static methods in 
the same class, along with a sim-
ple driver, as shown at right. To 
test your understanding of the 
rules of the game and the basic 
tools that we use for data com-
pression, make sure that you 
understand the various commands on the facing page that invoke Genome.compress() 
and Genome.expand() on our sample data (and their consequences).

public static void expand() 
{ 
   Alphabet DNA = new Alphabet("ACTG"); 
   int w = DNA.lgR(); 
   int N = BinaryStdIn.readInt(); 
   for (int i = 0; i < N; i++) 
   {   // Read 2 bits; write char. 
       char c = BinaryStdIn.readChar(w); 
       BinaryStdOut.write(DNA.toChar(c), 8); 
   } 
   BinaryStdOut.close(); 
}

expansion method for genomic data

public class Genome 
{ 
   public static void compress() 
   // See text.

   public static void expand() 
   // See text.

   public static void main(String[] args) 
   { 
       if (args[0].equals("-")) compress(); 
       if (args[0].equals("+")) expand(); 
   } 
}

packaging convention for data-compression methods
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Compressing and expanding genomic sequences with 2-bit encoding   

an actual virus (50000 bits)

tiny test case (264 bits)

% java PictureDump 512 100 < genomeVirus.txt

50000 bits

% java Genome - < genomeVirus.txt | java PictureDump 512 25

12536 bits

% more genomeTiny.txt
ATAGATGCATAGCGCATAGCTAGATGTGCTAGC

% java BinaryDump 64 < genomeTiny.txt
0100000101010100010000010100011101000001010101000100011101000011
0100000101010100010000010100011101000011010001110100001101000001
0101010001000001010001110100001101010100010000010100011101000001
0101010001000111010101000100011101000011010101000100000101000111
01000011
264 bits

% java Genome - < genomeTiny.txt
??

% java Genome - < genomeTiny.txt | java BinaryDump 64
0000000000000000000000000010000100100011001011010010001101110100
1000110110001100101110110110001101000000
104 bits

% java Genome - < genomeTiny.txt | java HexDump 8
00 00 00 21 23 2d 23 74
8d 8c bb 63 40
104 bits

% java Genome - < genomeTiny.txt > genomeTiny.2bit
% java Genome + < genomeTiny.2bit
ATAGATGCATAGCGCATAGCTAGATGTGCTAGC

% java Genome - < genomeTiny.txt | java Genome +
ATAGATGCATAGCGCATAGCTAGATGTGCTAGC

cannot see bitstream on standard output

compress-expand cycle
produces original input
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Run-length encoding The simplest type of redundancy in a bitstream is long 
runs of repeated bits. Next, we consider a classic method known as run-length encoding
for taking advantage of this redundancy to compress data. For example, consider the 
following 40-bit string:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

This string consists of 15 0s, then 7 1s, then 7 0s, then 11 1s, so we can encode the bit-
string with the numbers 15, 7, 7, and 11. All bitstrings are composed of alternating runs 
of 0s and 1s; we just encode the length of the runs. In our example, if we use 4 bits to 
encode the numbers and start with a run of 0s, we get the 16-bit string

1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1

(15 = 1111, then 7 = 0111, then 7 = 0111, then 11 = 1011) for a compression ratio of 
16/40 = 40 percent. In order to turn this description into an effective data compression 
method, we have to consider the following issues:

n	 How many bits do we use to store the counts?
n	 What do we do when encountering a run that is longer than the maximum 

count implied by this choice?
n	 What do we do about runs that are shorter than the number of bits needed to 

store their length?
We are primarily interested in long bitstreams with relatively few short runs, so we ad-
dress these questions by making the following choices:

n	 Counts are between 0 and 255, all encoded with 8 bits.
n	 We make all run lengths less than 256 by including runs of length 0 if needed.
n	 We encode short runs, even though doing so might lengthen the output.

These choices are very easy to implement and also very effective for several kinds of bit-
streams that are commonly encountered in practice. They are not effective when short 
runs are numerous—we save bits on a run only when the length of the run is more than 
the number of bits needed to represent itself in binary. 

Bitmaps  As an example of the effectiveness of run-length encoding, we consider bit-
maps, which are widely use to represent pictures and scanned documents. For brev-
ity and simplicity, we consider binary-valued bitmaps organized as bitstreams formed 
by taking the pixels in row-major order. To view the contents of a bitmap, we use 
PictureDump. Writing a program to convert an image from one of the many common 
lossless image formats that have been defined for “screen shots” or scanned documents 
into a bitmap is a simple matter. Our example to demonstrate the effectiveness of run-
length encoding comes from screen shots of this book: a letter q (at various resolutions).   
We focus on a binary dump of a 32-by-48-pixel screen shot, shown at right along with 
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run lengths for each row. Since each row starts 
and ends with a 0, there is an odd number of 
run lengths on each row; since the end of one 
row is followed by the beginning of the next, the 
corresponding run length in the bitstream is the 
sum of the last run length in each row and the 
first run length in the next (with extra additions 
corresponding to rows that are all 0).

Implementation  The informal description 
just given leads immediately to the  compress() 
and expand() implementations on the next 
page. As usual, the expand() implementation is 
the simpler of the two: read a run length, print 
that many copies of the current bit, complement 
the current bit, and continue until the input is 
exhausted. The compress() method is not 
much more difficult, consisting of the following 
steps while there are bits in the input stream: 

n	 Read a bit. 
n	 If it differs from the last bit read, write the 

current count and reset the count to 0. 
n	 If it is the same as the last bit read, and 

the count is a maximum, write the count, 
write a 0 count, and reset the count to 0.

n	 Increment the count.
When the input stream empties, writing the 
count (length of the last run) completes the 
process.

Increasing resolution in bitmaps  The primary reason that run-length encoding is 
widely used for bitmaps is that its effectiveness increases dramatically as resolution in-
creases. It is easy to see why this is true. Suppose that we double the resolution for our 
example. Then the following facts are evident:

n	 The number of bits increases by a factor of 4.
n	 The number of runs increases by about a factor of 2.
n	 The run lengths increase by about a factor of 2.
n	 The number of bits in the compressed version increases by about a factor of 2.
n	 Therefore, the compression ratio is halved!

A typical bitmap, with run lengths for each row 

7 1s
% java BinaryDump 32 < q32x48.bin

00000000000000000000000000000000
00000000000000000000000000000000
00000000000000011111110000000000
00000000000011111111111111100000
00000000001111000011111111100000
00000000111100000000011111100000
00000001110000000000001111100000
00000011110000000000001111100000
00000111100000000000001111100000
00001111000000000000001111100000
00001111000000000000001111100000
00011110000000000000001111100000
00011110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111110000000000000001111100000
00111111000000000000001111100000
00111111000000000000001111100000
00011111100000000000001111100000
00011111100000000000001111100000
00001111110000000000001111100000
00001111111000000000001111100000
00000111111100000000001111100000
00000011111111000000011111100000
00000001111111111111111111100000
00000000011111111111001111100000
00000000000011111000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000001111100000
00000000000000000000011111110000
00000000000000000011111111111100
00000000000000000111111111111110
00000000000000000000000000000000
00000000000000000000000000000000

1536 bits

32
32
15  7 10
12 15  5
10  4  4  9  5
 8  4  9  6  5
 7  3 12  5  5
 6  4 12  5  5
 5  4 13  5  5
 4  4 14  5  5
 4  4 14  5  5
 3  4 15  5  5
 2  5 15  5  5
 2  5 15  5  5
 2  5 15  5  5
 2  5 15  5  5
 2  5 15  5  5
 2  5 15  5  5
 2  5 15  5  5
 2  5 15  5  5
 2  5 15  5  5
 2  6 14  5  5
 2  6 14  5  5
 3  6 13  5  5
 3  6 13  5  5
 4  6 12  5  5
 4  7 11  5  5
 5  7 10  5  5
 6  8  7  6  5
 7 20  5
 9 11  2  5  5
22  5  5
22  5  5
22  5  5
22  5  5
22  5  5
22  5  5
22  5  5
22  5  5
22  5  5
22  5  5
22  5  5
22  5  5
21  7  4
18 12  2
17 14  1
32
32  

17 0s
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Without run-length encoding, space require-
ments increase by a factor of 4 when the res-
olution is doubled; with run-length encod-
ing, space requirements for the compressed 
bitstream just double when the resolution is 
doubled. That is, space grows and the com-
pression ratio drops linearly with resolution. 
For example, our (low-resolution) letter q
yields just a 74 percent compression ratio; if 
we increase the resolution to 64 by 96, the ra-
tio drops to 37 percent. This change is graph-
ically evident in the PictureDump outputs 
shown in the figure on the facing page. The 
higher-resolution letter takes four times the 
space of the lower resolution letter (double 
in both dimensions), but the compressed ver-
sion takes just twice the space (double in one 
dimension). If we further increase the resolu-
tion to 128-by-192 (closer to what is needed 
for print), the ratio drops to 18 percent (see 
Exercise 5.5.5).

Run-length encoding is very effective
in many situations, but there are plenty of 
cases where the bitstream we wish to com-
press (for example, typical English-language 
text) may have no long runs at all. Next, we 
consider two methods that are effective for a 
broad variety of files. They are widely used, 
and you likely have used one or both of these 
methods when downloading from the web.

public static void expand() 
{ 
   boolean b = false; 
   while (!BinaryStdIn.isEmpty()) 
   { 
      char cnt = BinaryStdIn.readChar(); 
      for (int i = 0; i < cnt; i++) 
         BinaryStdOut.write(b); 
      b = !b; 
   } 
   BinaryStdOut.close(); 
}

public static void compress() 
{ 
   char cnt = 0; 
   boolean b, old = false; 
   while (!BinaryStdIn.isEmpty()) 
   { 
      b = BinaryStdIn.readBoolean(); 
      if (b != old) 
      { 
         BinaryStdOut.write(cnt, 8); 
         cnt = 0; 
         old = !old; 
      } 
      else 
      { 
         if (cnt == 255) 
         { 
            BinaryStdOut.write(cnt, 8); 
            cnt = 0; 
            BinaryStdOut.write(cnt, 8); 
         } 
      } 
      cnt++; 
   } 
   BinaryStdOut.write(cnt); 
   BinaryStdOut.close(); 
}

expand and compress methods for run-length encoding
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Compressing and expanding bitstreams with run-length encoding   

a bitmap (1536 bits)

a higher-resolution bitmap (6144 bits)

tiny test case (40 bits)

ASCII text (96 bits)

% java RunLength - < q32x48.bin > q32x48.bin.rle
% java HexDump 16 < q32x48.bin.rle
4f 07 16 0f 0f 04 04 09 0d 04 09 06 0c 03 0c 05
0b 04 0c 05 0a 04 0d 05 09 04 0e 05 09 04 0e 05
08 04 0f 05 08 04 0f 05 07 05 0f 05 07 05 0f 05
07 05 0f 05 07 05 0f 05 07 05 0f 05 07 05 0f 05
07 05 0f 05 07 05 0f 05 07 06 0e 05 07 06 0e 05
08 06 0d 05 08 06 0d 05 09 06 0c 05 09 07 0b 05
0a 07 0a 05 0b 08 07 06 0c 14 0e 0b 02 05 11 05
05 05 1b 05 1b 05 1b 05 1b 05 1b 05 1b 05 1b 05
1b 05 1b 05 1b 05 1b 05 1a 07 16 0c 13 0e 41
1144 bits

% java BinaryDump 0 < q64x96.bin
6144 bits
% java RunLength - < q64x96.bin | java BinaryDump 0
2296 bits

% java BinaryDump 40 < 4runs.bin
0000000000000001111111000000011111111111
40 bits

% java RunLength - < 4runs.bin | java HexDump
0f 07 07 0b
32 bits

% java RunLength - < 4runs.bin | java RunLength + | java BinaryDump 40
0000000000000001111111000000011111111111
40 bits

compression ratio 416/96 = 433% — do not use run-length encoding for ASCII !

compression ratio 2296/6144 = 37%

compress-expand produces original input

compression ratio 1144/1536 = 74%

compression ratio 32/40 = 80%

% java RunLength - < abra.txt | java HexDump 24
01 01 05 01 01 01 04 01 02 01 01 01 02 01 02 01 05 01 01 01 04 02 01 01
05 01 01 01 03 01 03 01 05 01 01 01 04 01 02 01 01 01 02 01 02 01 05 01
02 01 04 01
416 bits

% java PictureDump 32 48 < q32x48.bin

1536 bits

% java PictureDump 64 96 < q64x96.bin

6144 bits

% java PictureDump 64 36 < q64x96.bin.rle

2296 bits

% java PictureDump 32 36 < q32x48.bin.rle

1144 bits
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Huffman compression We now examine a data-compression technique that can 
save a substantial amount of space in natural language files (and many other kinds of 
files). The idea is to abandon the way in which text files are usually stored: instead of 
using the usual 7 or 8 bits for each character, we use fewer bits for characters that appear 
often than for those that appear rarely.

To introduce the basic ideas, we start with a small example. Suppose we wish to en-
code the string A B R A C A D A B R A !  Encoding it in 7-bit ASCII gives this bitstring: 

1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 - 

1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 . 

To decode this bitstring, we simply read off 7 bits at a time and convert according to 
the ASCII coding table on page 815. In this standard code the D, which appears only once, 
requires the same number of bits as the A, which appears five times. Huffman compres-
sion is based on the idea that we can save bits by encoding frequently used characters 
with fewer bits than rarely used characters, thereby lowering the total number of bits 
used. 

Variable-length prefix-free codes  A code associates each character with a bitstring: a 
symbol table with characters as keys and bitstrings as values. As a start, we might try 
to assign the shortest bitstrings to the most commonly used letters, encoding A with 0, 
B with 1, R with 00, C with 01, D with 10, and ! with 11, so A B R A C A D A B R A !  would 
be encoded as 0 1 00 0 01 0 10 0 1 00 0 11. This representation uses only 17 bits 
compared to the 84 for 7-bit ASCII, but it is not really a code because it depends on the 
blanks to delimit the characters. Without the blanks, the bitstring would be 

0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 

and could be decoded as C R R D D C R C B  or as several other strings. Still, the count of 
17 bits plus 11 delimiters is rather more compact than the standard code, primarily be-
cause no bits are used to encode letters not appearing in the message. The next step is to 
take advantage of the fact that delimiters are not needed if no character code is the prefix 
of another. A code with this property is known as a prefix-free code. The code just given 
is not prefix-free because 0, the code for A, is a prefix of 00, the code for R. For example, 
if we encode A with 0, B with 1111, C with 110, D with 100, R with 1110, and ! with 101, 
there is only one way to decode the 30-bit string 

0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1

A B R A C A D A B R A ! All prefix-free codes are uniquely decodable (without needing any 
delimiters) in this way, so prefix-free codes are widely used in practice. Note that fixed-
length codes such as 7-bit ASCII are prefix-free. 
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Trie representation for prefix-free codes  One conve-
nient way to represent a prefix-free code is with a trie (see 
Section 5.2). In fact, any trie with M null links defines a 
prefix-free code for M characters: we replace the null links 
by links to leaves (nodes with two null links), each con-
taining a character to be encoded, and define the code for 
each character with the bitstring defined by the path from 
the root to the character, in the standard manner for tries 
where we associate 0 with moving left and 1 with moving 
right. For example, the figure at right shows two prefix-
free codes for the characters in A B R A C A D A B R A ! . On 
top is the variable-length code just considered; below is a 
code that produces the string 

1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1

which is 29 bits, 1 bit shorter. Is there a trie that leads to 
even more compression? How do we find the trie that 
leads to the best prefix-free code? It turns out that there is 
an elegant answer to these questions in the form of an al-
gorithm that computes a trie which leads to a bitstream of 
minimal length for any given string. To make a fair com-
parison with other codes, we also need to count the bits in 
the code itself, since the string cannot be decoded without 
it, and, as you will see, the code depends on the string. The general method for finding 
the optimal prefix-free code was discovered by D. Huffman (while a student!) in 1952 
and is called Huffman encoding. 

Overview  Using a prefix-free code for data compression involves five major steps. We 
view the bitstream to be encoded as a bytestream and use a prefix-free code for the 
characters as follows:

n	 Build an encoding trie.
n	 Write the trie (encoded as a bitstream) for use in expansion.
n	 Use the trie to encode the bytestream as a bitstream.

Then expansion requires that we
n	 Read the trie (encoded at the beginning of the bitstream)
n	 Use the trie to decode the bitstream

To help you best understand and appreciate the process, we consider these steps in 
order of difficulty.

Two pre�x-free codes

011111110011001000111111100101
A   B   RA  CA  DA   B   RA  !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

leaves

11000111101011100110001111101
 A B  R A  C A  D A B  R A  !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

trie representationcodeword table

trie representationcodeword table

compressed bitstring

compressed bitstring
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Trie nodes  We begin with the 
Node class at left. It is similar to 
the nested classes that we have 
used before to construct bi-
nary trees and tries: each Node 
has left and right references 
to Nodes, which define the trie 
structure. Each Node also has 
an instance variable freq that 
is used in construction, and 
an instance variable ch, which 
is used in leaves to represent 
characters to be encoded.

Expansion for prefix-free 
codes  Expanding a bitstream 
that was encoded with a prefix-
free code is simple, given the 
trie that defines the code. The 

expand() method at left is an implementa-
tion of this process. After reading the trie from 
standard input using the readTrie() method 
to be described later, we use it to expand the 
rest of the bitstream as follows: Starting at the 
root, proceed down the trie as directed by the 
bitstream (read in input bit, move left if it is 0,  
and move right if it is 1). When you encounter 
a leaf, output the character at that node and re-
start at the root. If you study the operation of 
this method on the small prefix code example 
on the next page, you will understand and ap-
preciate this process: For example, to decode 
the bitstring 0 1 1 1 1 1 0 0 1 0 1 1 . . .we start 
at the root, move left because the first bit is 0, 

output A; go back to the root, move right three times, then output B; go back to the root, 
move right twice, then left, then output R; and so forth. The simplicity of expansion is 
one reason for the popularity of prefix-free codes in general and Huffman compression 
in particular.

public static void expand() 
{ 
   Node root = readTrie(); 
   int N = BinaryStdIn.readInt(); 
   for (int i = 0; i < N; i++) 
   {  // Expand ith codeword. 
      Node x = root; 
      while (!x.isLeaf()) 
         if (BinaryStdIn.readBoolean()) 
              x = x.right; 
         else x = x.left; 
      BinaryStdOut.write(x.ch, 8); 
   } 
   BinaryStdOut.close(); 
}

prefix-free code expansion (decoding)

private static class Node implements Comparable<Node> 
{  // Huffman trie node 
   private char ch;   // unused for internal nodes 
   private int freq;  // unused for expand 
   private final Node left, right;

   Node(char ch, int freq, Node left, Node right) 
   {    
      this.ch    = ch; 
      this.freq  = freq; 
      this.left  = left; 
      this.right = right; 
   }

   public boolean isLeaf() 
   {  return left == null && right == null;  }

   public int compareTo(Node that) 
   {  return this.freq - that.freq;  }

}

trie node representation
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Compression for prefix-free codes  For compression, we use 
the trie that defines the code to build the code table, as shown 
in the buildCode() method at the top of this page. This 
method is compact and elegant, but a bit tricky, so it deserves 
careful study. For any trie, it produces a table giving the bit-
string associated with each character in the trie (represented 
as a String of 0s and 1s). The coding table is a symbol table 
that associates a String with each character: we use a charac-
ter-indexed array st[] instead of a general symbol table for 
efficiency, because the number of characters is not large. To create it, buildCode() 
recursively walks the tree, maintaining a binary string that corresponds to the path 
from the root to each node (0 for left links and 1 for right links), and setting the code-
word corresponding to each character when the character is found in a leaf. Once the 
coding table is built, compression is a simple matter: just look up the code for each 
character in the input. To use the encoding at right to compress A B R A C A D A B R A !  we 
write 0 (the codeword associated with A), 
then 111 (the codeword associated with 
B), then 110 (the codeword associated 
with R), and so forth. The code snippet at 
right accomplishes this task: we look up 
the String associated with each character 
in the input, convert it to 0/1 values in a 
char array, and write the corresponding 
bitstring to the output.

private static String[] buildCode(Node root) 
{  // Make a lookup table from trie. 
   String[] st = new String[R]; 
   buildCode(st, root, ""); 
   return st; 
}

private static void buildCode(String[] st, Node x, String s) 
{  // Make a lookup table from trie (recursive). 
   if (x.isLeaf()) 
   {  st[x.ch] = s; return; } 
   buildCode(st, x.left,  s + '0'); 
   buildCode(st, x.right, s + '1'); 
}

Building an encoding table from a (prefix-free) code trie

for (int i = 0; i < input.length; i++) 
{ 
   String code = st[input[i]]; 
   for (int j = 0; j < code.length(); j++) 
      if (code.charAt(j) == '1') 
           BinaryStdOut.write(true); 
      else BinaryStdOut.write(false); 
}

Compression with an encoding table

A Hu�man code

1010
0
111
1011
100
110

!
A
B
C
D
R

key value

D R B

C!

A

00 11

00 11

00 11

00 11 00 11

Trie representationCodeword table
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Trie construction  For reference as we describe the process, the figure on the facing 
page illustrates the process of constructing a Huffman trie for the input 

it was the best of times it was the worst of times 

We keep the characters to be encoded in leaves and maintain the freq instance variable 
in each node that represents the frequency of occurrence of all characters in the subtree 
rooted at that node. The first step is to create a forest of 1-node trees (leaves), one for 
each character in the input stream, each assigned a freq value equal to its frequency of 
occurrence in the input. In the example, the input has 8 ts, 5 es, 11 spaces, and so forth. 
(Important note: To obtain these frequencies, we need to read the whole input stream—
Huffman encoding is a two-pass algorithm because we will need to read the input stream 
a second time to compress it.) Next, we build the coding trie from the bottom up accord-
ing to the frequencies. When building the trie, we view it as a binary trie with frequencies 
stored in the nodes; after it has been built, we view it as a trie for coding, as just described. 
The process works as follows: we find the two nodes with the smallest frequencies and 
then create a new node with those two nodes as children (and with frequency value set 
to the sum of the values of the children). This operation reduces the number of tries in 
the forest by one. Then we iterate the process: find the two nodes with smallest frequen-
cy in that forest and a create a new node created in the same way. Implementing the 
process is straightforward with a priority queue, as shown in the buildTrie() method 
at the bottom of this page. (For clarity, the tries in the figure are kept in sorted order.) 
Continuing, we build up larger and larger tries and at the same time reduce the num-
ber of tries in the forest by one at each step (remove two, add one). Ultimately, all the 

private static Node buildTrie(int[] freq) 
{ 
    // Initialize priority queue with singleton trees. 
    MinPQ<Node> pq = new MinPQ<Node>(); 
    for (char c = 0; c < R; c++) 
       if (freq[c] > 0) 
          pq.insert(new Node(c, freq[c], null, null));

    while (pq.size() > 1) 
    {  // Merge two smallest trees. 
       Node x = pq.delMin(); 
       Node y = pq.delMin(); 
       Node parent = new Node('\0', x.freq + y.freq, x, y); 
       pq.insert(parent); 
    } 
    return pq.delMin(); 
}

Building a huffman encoding trie



ptg12441863

8315.5 n Data Compression

e

w o

SP

s

LF

i

b

f h m a

t

r

Constructing a Hu�man encoding trie

55 8888776666

33 33 44 44 4433

2211 22 22 22 22

11 11

1111 1313 16161111

2222 2929

5151

e

w o

SP

s

LF

i

b

f h m a

t

r

55 8888776666

33 33 44 44 4433

2211 22 22 22 22

11 11

1111 1313 16161111

2222 2929

e

w o

SPs

LF

i

b

f h m a

t

r

55

88887766

66

33 33

44 44 4433

2211 22 22 22 22

11 11

1111

1313 1616

1111

2222

e

w o

SP

s

LF

i

b

f h m a

t

r

55 8888776666

33 33 44 44 4433

2211 22 22 22 22

11 11

1111 1313 16161111

e

w o

SP

s

LF

i

b

f h m a

t

r

55

8888

776666

33 33 44

44 44

33

2211

22 22 22 22

11 11

1111 13131111

SP

e

w o

55 66

33 33

11111111

t
888877

f h m a

44 44

22 22 22 22

LF

i

b

r

4433

2211

11 11

77

LF

i

b

r

4433

2211

11 11

w o

66

33 33

f h m a

44 44

22 22 22 22

m a

44

22 22

LF b

r

33

2211

11 11

LF b

22

11 11

SPs t
8866

e
55

w o
33 33

f h m a
22 22 22 22

LF ib r
441111 11 1111

SPs t
8866

e
55

w o
33 33

f h m a
22 22 22 22

a f h

22 22 22 22

ir
4411 1111

SPs t
8866

e
55

w o
33 33

w o
33 33

LF b

r

33

2211

11 11

w o
33 33

LF b

r

33

2211

11 11

f h

22 22

i

44

i

44

i
44

1111

SPs t
8866

e
55 1111

SPs t
8866

e
55

f h m a

44 44

22 22 22 22

LF b

r

33

2211

11 11

i
44

e
55

1111

SPs t
8866

w o

66

33 33
f h m a

44
44

22 22 22 22
e
55

s
66

w o

66

33 33
e
55

s
66

t
888877

f h m a

44 44

22 22 22 22

LF

i

b

r

4433

2211

11 11

s
66

1111

SP

t
88

1111

two tries
with smallest

 weights

new parent for 
those two tries

to top of  right
column

from bottom of
left column

m



ptg12441863

nodes are combined together into a single trie. The leaves in this trie have the characters 
to be encoded and their frequencies in the input; each non-leaf node is the sum of the 
frequencies of its two children. Nodes with low frequencies end up far down in the trie, 
and nodes with high frequencies end up near the root of the trie. The frequency in the 
root equals the number of characters in the input. Since it is a binary trie with charac-
ters only in its leaves, it defines a prefix-free code for the characters. Using the codeword 
table created by buildCode() for this example (shown at right in the diagram at the 
top of this page), we get the output bitstring 

1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 0 - 

0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 - 

1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 0 - 

0 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 .

which is 176 bits, a savings of 57 percent over the 408 bits needed to encode the 51 
characters in standard 8-bit ASCII (not counting the cost of including the code, which 
we will soon consider). Moreover, since it is a Huffman code, no other prefix-free code 
can encode the input with fewer bits.

Optimality  We have observed that high-frequency characters are nearer the root of 
the trie than lower-frequency characters and are therefore encoded with fewer bits, so 
this is a good code, but why is it an optimal prefix-free code? To answer this question, we 
begin by defining the weighted external path length of a tree to be the sum of the weight 
(associated frequency count) times depth (see page 226) of all of the leaves. 
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proposition t. For any prefix-free code, the length of the encoded bitstring is equal 
to the weighted external path length of the corresponding trie.

proof: The depth of each leaf is the number of bits used to encode the character in 
the leaf. Thus, the weighted external path length is the length of encoded bitstring : 
it is equivalent to the sum over all letters of the number of occurrences times the 
number of bits per occurrence.

For our example, there is one leaf at distance 2 (SP, with frequency 11), three leaves at 
distance 3 (e, s, and t, with total frequency 19), three leaves at distance 4 (w, o, and i, 
with total frequency 10), five leaves at distance 5 (r, f, h, m, and a, with total frequency 
9) and two leaves at distance 6 (LF and b, with total frequency 2), so the sum total is 2·11 
 3·19  4·10  5·9  6·2 176, the length of the output bitstring, as expected.

proposition U. Given a set of r symbols and frequencies, the Huffman algorithm 
builds an optimal prefix-free code.

proof: By induction on r. Assume that the Huffman code is optimal for any set 
of fewer than r symbols. Let TH be the code computed by Huffman for the set of 
symbols and associated frequencies (s1, f1), . . . , (sr , fr) and denote the length of the 
code (weighted external path length of the trie) by W(TH). Suppose that (si , fi) and 
(sj, fj) are the first two symbols chosen. The algorithm then computes the code TH*
for the set of r1 symbols with (si , fi) and (si , fj) replaced by (s*, fi + fj) where s* is a 
new symbol in a leaf at some depth d. Note that 

W(TH) = W(TH*)  d( fi + fj) + (d + 1)( fi + fj ) = W(TH*) + (fi + fj )

Now consider an optimal trie T  for (s1, f1), . . . , (sr , fr), of height h. Note that (si , fi) 
and (sj , fj) must be at depth h (else we could make a trie with lower external path 
length by swapping them with nodes at depth h).  Also, assume (si , fi) and (sj, fj) 
are siblings by swapping (sj, fj) with (si , fi)’s sibling. Now consider the tree T* ob-
tained by replacing their parent with (s*, fi + fj ). Note that (by the same argument 
as above) W(T ) = W(T*) + (fi + fj).

By the inductive hypothesis TH* is optimal: W(TH*)  W(T*). Therefore, 

W(TH) = W(TH*) + ( fi + fj )    W(T*) + ( fi + fj ) = W(T )

Since T is optimal, equality must hold, and TH is optimal.
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Whenever a node is to be picked, it can be the case that there are several nodes with 
the same weight. Huffman’s method does not specify how such ties are to be broken. It 
also does not specify the left/right positions of the children. Different choices lead to 

different Huffman codes, but all such 
codes will encode the message with 
the optimal number of bits among 
prefix-free codes. 

Writing and reading the trie  As we 
have emphasized, the savings figure 
quoted above is not entirely accurate, 
because the compressed bitstream 
cannot be decoded without the trie, 
so we must account for the cost of 
including the trie in the compressed 
output, along with the bitstring. For 
long inputs, this cost is relatively 
small, but in order for us to have a 

full data-compression scheme, we must write the trie onto a bitstream when compress-
ing and read it back when expanding. How can we encode a trie as a bitstream, and then 
expand it? Remarkably, both tasks can be achieved with simple recursive procedures, 
based on a preorder traversal of the trie. The procedure writeTrie() below traverses a 
trie in preorder: when it visits an internal node, it writes a single 0 bit; when it visits a 
leaf, it writes a 1 bit, followed by the 8-bit ASCII code of the character in the leaf. The 
bitstring encoding of the Huffman trie for our A B R A C A D A B R A !  example is shown 
above. The first bit is 0, corresponding to the root; since the leaf containing A is encoun-
tered next, the next bit is 1, followed by 
01000001, the 8-bit  ASCII code for A; 
the next two bits are 0 because two in-
ternal nodes are encountered next, and 
so forth. The corresponding method 
readTrie() on the next page 835 re-
constructs the trie from the bitstring: 
it reads a single bit to learn which type 
of node comes next: if a leaf (the bit 
is 1) it reads the next character and 
creates a leaf; if an internal node (the 
bit is 0) it creates an internal node and 

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

! C

A

01010000010010100010001001000011010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55

private static void writeTrie(Node x) 
{  // Write bitstring-encoded trie. 
   if (x.isLeaf()) 
   { 
      BinaryStdOut.write(true); 
      BinaryStdOut.write(x.ch, 8); 
      return; 
   } 
   BinaryStdOut.write(false); 
   writeTrie(x.left); 
   writeTrie(x.right); 
}

Writing a trie as a bitstring
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then (recursively) builds its left and right subtrees. Be sure that you understand these 
methods: their simplicity is somewhat deceiving.

Huffman compression implementation  Along with the methods buildCode(), 
buildTrie(), readTrie() and writeTrie() that we have just considered (and 
the expand() method that we considered first), Algorithm 5.10 is a complete imple-
mentation of Huffman compression. To expand the overview that we considered sev-
eral pages earlier, we view the bitstream to be encoded as a stream of 8-bit char values 
and compress it as follows:

n	 Read the input.
n	 Tabulate the frequency of occurrence of each char value in the input.
n	 Build the Huffman encoding trie corresponding to those frequencies.
n	 Build the corresponding codeword table, to associate a bitstring with each char 

value in the input.
n	 Write the trie, encoded as a bitstring.
n	 Write the count of characters in the input, encoded as a bitstring.
n	 Use the codeword table to write the codeword for each input character.

To expand a bitstream encoded in this way, we
n	 Read the trie (encoded at the beginning of the bitstream)
n	 Read the count of characters to be decoded
n	 Use the trie to decode the bitstream

With four recursive trie-processing methods and a seven-step compression process, 
Huffman compression is one of the more involved algorithms that we have considered, 
but it is also one of the most widely used, because of its effectiveness.

private static Node readTrie() 
{ 
   if (BinaryStdIn.readBoolean()) 
      return new Node(BinaryStdIn.readChar(), 0, null, null); 
   return new Node('\0', 0, readTrie(), readTrie()); 
}

reconstructing a trie from the preorder bitstring representation
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aLgorIthM 5.10 huffman compression

public class Huffman 
{ 
   private static int R = 256;   // ASCII alphabet 
   // See page 828 for inner Node class. 
   // See text for helper methods and expand().

   public static void compress() 
   { 
      // Read input. 
      String s = BinaryStdIn.readString(); 
      char[] input = s.toCharArray();

      // Tabulate frequency counts. 
      int[] freq = new int[R]; 
      for (int i = 0; i < input.length; i++) 
         freq[input[i]]++;

      // Build Huffman code trie. 
      Node root = buildTrie(freq);

      // Build code table (recursive). 
      String[] st = new String[R]; 
      buildCode(st, root, "");

      // Print trie for decoder (recursive). 
      writeTrie(root);

      // Print number of chars. 
      BinaryStdOut.write(input.length);

      // Use Huffman code to encode input. 
      for (int i = 0; i < input.length; i++) 
      { 
         String code = st[input[i]]; 
         for (int j = 0; j < code.length(); j++) 
         if (code.charAt(j) == '1') 
              BinaryStdOut.write(true); 
         else BinaryStdOut.write(false); 
      } 
      BinaryStdOut.close(); 
   } 
}

This implementation of Huffman encoding builds an explicit coding trie, using various helper meth-
ods that are presented and explained in the last several pages of text.
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Compressing and expanding bytestreams with Hu�man encoding   

�rst chapter of Tale of Two Cities

test case (96 bits)

example from text (408 bits)

entire text of Tale of Two Cities

compression ratio 23912/45056 = 53%

compression ratio 120/96 = 125% due to 59 bits for trie and 32 bits for count

compression ratio 352/408 = 86% even with 137 bits for trie and 32 bits for count

compression ratio 3043928/5812552 = 52%

45056 bits

23912 bits

% java PictureDump 512 90 < medTale.txt

% java Huffman - < medTale.txt | java PictureDump 512 47 

% java Huffman - < tale.txt > tale.txt.huf
% java BinaryDump 0 < tale.txt.huf
3043928 bits

% java BinaryDump 0 < tale.txt
5812552 bits

% more abra.txt
ABRACADABRA!

% java Huffman - < abra.txt | java BinaryDump 60
010100000100101000100010010000110100001101010100101010000100
000000000000000000000000000110001111100101101000111110010100
120 bits

% more tinytinyTale.txt
it was the best of times it was the worst of times

% java Huffman - < tinytinyTale.txt | java BinaryDump 64         
0001011001010101110111101101111100100000001011100110010111001001
0000101010110001010110100100010110011010110100001011011011011000
0110111010000000000000000000000000000110011101111101001011011100
0111111001000011010110001001110100111100001111101111010000100011
0111110100101101110001111110010000100100011101001001110100111100
00111110111101000010010101000000
352 bits

% java Huffman - < tinytinyTale.txt | java Huffman +
it was the best of times it was the worst of times
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One reason for the popularity of Huffman compression is that it is effective for 
various types of files, not just natural language text. We have been careful to code the 
method so that it can work properly for any 8-bit value in each 8-bit character. In 
other words, we can apply it to any bytestream whatsoever. Several examples, for file 
types that we have considered earlier in this section, are shown in the figure at the bot-
tom of this page.  These examples show that Huffman compression is competitive with 
both fixed-length encoding and run-length encoding, even though those methods are 
designed to perform well for certain types of files. Understanding the reason Huff-
man encoding performs well in these domains is instructive. In the case of genomic 
data, Huffman compression essentially discovers a 2-bit code, as the four letters appear 
with approximately equal frequency so that the Huffman trie is balanced, with each 
character assigned a 2-bit code. In the case of run-length encoding, 0 0 0 0 0 0 0 0  and 
1 1 1 1 1 1 1 1  are likely to be the most frequently occurring characters, so they are likely 
to be encoded with 2 or 3 bits, leading to substantial compression.

Compressing and expanding genomic data and bitmaps with Hu�man encoding   

bitmap (1536 bits)

virus (50000 bits)

Huffman compression uses 29%  fewer bits than customized method

% java Genome  - < genomeVirus.txt | java PictureDump 512 25

12536 bits

% java Huffman - < genomeVirus.txt | java PictureDump 512 25

12576 bits Huffman compression needs just 40 more bits than custom 2-bit code

% java RunLength - < q32x48.bin | java BinaryDump 0
1144 bits

% java Huffman   - < q32x48.bin | java BinaryDump 0
816 bits

higher-resolution bitmap (6144 bits)

gap narrows to 11%  for higher resolution

% java RunLength - < q64x96.bin | java BinaryDump 0
2296 bits

% java Huffman   - < q64x96.bin | java BinaryDump 0
2032 bits
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A remarkable alternative to Huffman compression that was developed in the late 
1970s and the early 1980s by A. Lempel, J. Ziv, and T. Welch has emerged as one of the 
most widely used compression methods because it is easy to implement and works well 
for a variety of file types.

The basic plan complements the basic plan for Huffman coding. Rather than main-
tain a table of variable-length codewords for fixed-length patterns in the input, we 
maintain a table of fixed-length codewords for variable-length patterns in the input. A 
surprising added feature of the method is that, by contrast with Huffman encoding, we 
do not have to encode the table. 

LZW compression To fix ideas, we will consider a compression example where we 
read the input as a stream of 7-bit ASCII characters and write the output as a stream of 
8-bit bytes. (In practice, we typically use larger values for these parameters—our imple-
mentations use 8-bit inputs and 12-bit outputs.) We refer to input bytes as characters, 
sequences of input bytes as strings, and output bytes as codewords, even though these 
terms have slightly different meanings in other contexts. The LZW compression algo-
rithm is based on maintaining a symbol table that associates string keys with (fixed-
length) codeword values. We initialize the symbol table with the 128 possible single-
character string keys and associate them with 8-bit codewords obtained by prepending 
0 to the 7-bit value defining each character.  For economy and clarity, we use hexadeci-
mal to refer to codeword values, so 41 is the codeword for ASCII A, 52 for R, and so 
forth. We reserve the codeword 80 to signify end of file (EOF). We will assign the rest of 
the codeword values (81 through FF) to various substrings of the input that we encoun-
ter, by starting at 81 and incrementing the value for each new key added. To compress, 
we perform the following steps as long as there are unscanned input characters:

n	 Find the longest string s in the symbol table that is a prefix of the unscanned 
input.

n	 Write the 8-bit value (codeword) associated with s.
n	 Scan one character past s in the input.
n	 Associate the next codeword value with s + c (c appended to s) in the symbol 

table, where c is the next character in the input.
In the last of these steps, we look ahead to see the next character in the input to build 
the next dictionary entry, so we refer to that character c as the lookahead character. 
For the moment, we simply stop adding entries to the symbol table when we run out 
of codeword values (after assigning the value FF to some string)—we will later discuss 
alternate strategies.
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LZW compression example  The figure below gives details of the operation of LZW 
compression for the example input A B R A C A D A B R A B R A B R A. For the first seven 
characters, the longest prefix match is just one character, so we output the codeword 
associated with the character and associate the codewords from 81 through 87 to two-
character strings. Then we find prefix matches with AB (so we output 81 and add ABR to 
the table), RA (so we output 83 and add RAB to the table), BR (so we output 82 and add 
BRA to the table), and ABR (so we output 88 and add ABRA to the table), leaving the last 
A (so we output its codeword, 41).   

LZW compression for  A B R A C A D A B R A B R A B R A

A B
B R 82

A B 81 A B
B R
R A 83

A B
B R
R A
A C 84

A B
B R
R A
A C
C A 85

A B
B R
R A
A C
C A
A D 86

A B
B R
R A
A C
C A
A D
D A 87

A B
B R
R A
A C
C A
A D
D A
A B R 88

A B
B R
R A
A C
C A
A D
D A
A B R
R A B 89

A B  
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A
A B R A 8B

A B  
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A 8A

A     B     R     A     C     A     D     A     B     R     A     B     R     A     B     R     A

A     B     R     A     C     A     D     A B         R A         B R         A B R             A

41    42    52    41    43    41    44    81          83          82          88                41    80

EOF

A B  
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A
A B R A

81
82
83
84
85
86
87
88
89
8A
8B

valuekey

output

input

matches

lookahead
character

codeword table

LZW
codeword

input
substring

The input is 17 ASCII characters of 7 bits each for a total of 119 bits; the output is 13 
codewords (including EOF) of 8 bits each for a total of 104 bits—a compression ratio 
of 87 percent even for this tiny example. 

LZW trie representation  LZW compression involves two symbol-table operations:
n	 Find a longest-prefix match of the input with a symbol-table key.
n	 Add an entry associating the next code-

word with the key formed by appending 
the lookahead character to that key.

Our trie data structures of Section 5.2 are tai-
lor-made for these operations. The trie repre-
sentation for our example is shown at right. To 
find a longest prefix match, we traverse the trie 
from the root, matching node labels with input 
characters; to add a new codeword, we connect 
a new node labeled with the next codeword and 
the lookahead character to the node where the 
search terminated. In practice, we use a TST for Trie representation of LZW code table

AA

81

41

84 86 82 85 87 83

8A88

8B

89

42 43 44 52BB CC DD RR

RR

BB CC DD RR AA AA AA

AA BB

AA
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space efficiency, as described in Section 5.2. The contrast with the use of tries in Huff-
man encoding is worth noting: for Huffman encoding, tries are useful because no prefix 
of a codeword is also a codeword; for LZW tries are useful because every prefix of an 
input-substring key is also a key.

LZW expansion  The input for LZW expansion in our example is a sequence of 8-bit 
codewords; the output is a string of 7-bit ASCII characters. To implement expansion, 
we maintain a symbol table that associates strings of characters with codeword values 
(the inverse of the table used for compression). We fill the table entries from 00 to 7F 
with one-character strings, one for each ASCII character, set the first unassigned code-
word value to 81 (reserving 80 for end of file), set the current string val to the one-
character string consisting of the first character, and perform the following steps until 
reading codeword 80 (end of file):

n	 Write the current string val.
n	 Read a codeword x from the input.
n	 Set s to the value associated with x in the symbol table.
n	 Associate the next unasssigned codeword value to val + c in the symbol table, 

where c is the first character of s.
n	 Set the current string val to s.

This process is more complicated than compression because of the lookahead charac-
ter: we need to read the next codeword to get the first character in the string associated 
with it, which puts the process one step out of synch. For the first seven codewords, we 
just look up and write the appropriate character, then look ahead one character and 
add a two-character entry to the symbol table, as before. Then we read 81 (so we write 
A B  and add A B R  to the table), 83 (so we write R A  and add R A B  to the table), 82 (so 
we write B R  and add B R A  to the table), and 88 (so we write A B R  and add A B R A  to 
the table), leaving 41. Finally we read the end-of-file character 80 (so we write A ). At 

LZW expansion for  41 42 52 41 43 41 44 81 83 82 88 41 80

A B
B R82

A B81 A B
B R
R A83

A B
B R
R A
A C84

A B
B R
R A
A C
C A85

A B
B R
R A
A C
C A
A D86

A B
B R
R A
A C
C A
A D
D A87

A B
B R
R A
A C
C A
A D
D A
A B R88

A B
B R
R A
A C
C A
A D
D A
A B R
R A B89

A B
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A8A

A B
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A
A B R A8B

 A     B     R     A     C     A     D     A B         R A         B R         A B R       A
41    42    52    41    43    41    44    81          83          82          88          41     80

A B
B R
R A
A C
C A
A D
D A
A B R
R A B
B R A
A B R A

81
82
83
84
85
86
87
88
89
8A
8B

key value

output

input

inverse codeword table

LZW
codeword input

substring
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aLgorIthM 5.11 lZW compression

public class LZW 
{ 
   private static final int R = 256;    // number of input chars 
   private static final int L = 4096;   // number of codewords = 2^12 
   private static final int W = 12;     // codeword width

   public static void compress() 
   { 
      String input = BinaryStdIn.readString(); 
      TST<Integer> st = new TST<Integer>();

      for (int i = 0; i < R; i++) 
          st.put("" + (char) i, i); 
      int code = R+1;  // R is codeword for EOF.

      while (input.length() > 0) 
      { 
         String s = st.longestPrefixOf(input); // Find max prefix match. 
         BinaryStdOut.write(st.get(s), W);     // Print s's encoding. 
         int t = s.length(); 
         if (t < input.length() && code < L)   // Add s to symbol table. 
             st.put(input.substring(0, t + 1), code++); 
         input = input.substring(t);           // Scan past s in input. 
      }

      BinaryStdOut.write(R, W);                // Write EOF. 
      BinaryStdOut.close(); 
   }

   public static void expand() 
   // See page 844. 
}

This implementation of Lempel-Ziv-Welch data compression uses 8-bit input bytes and 12-bit code-
words and is appropriate for arbitrary large files. Its codewords for the small example are similar to 
those discussed in the text: the single-character codewords have a leading 0; the others start at 100. 
Efficiency of this code depends on a constant-time substring() method (see page 202).

% more abraLZW.txt 
ABRACADABRABRABRA

% java LZW - < abraLZW.txt | java HexDump 20 
04 10 42 05 20 41 04 30 41 04 41 01 10 31 02 10 80 41 10 00 
160 bits
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the end of the process, we have written the original input, as expected, and also built 
the same code table as for compression, but with the key-value roles inverted. Note that 
we can use a simple array-of-strings representation for the table, indexed by codeword.

Tricky situation  There is a subtle bug in the process just described, one that is of-
ten discovered by students (and experienced programmers!) only after developing an 
implementation based on the description above. 
The problem, illustrated in the example at right, is 
that it is possible for the lookahead process to get 
one character ahead of itself. In the example, the 
input string 

A B A B A B A

is compressed to five output codewords 

41 42 81 83 80

as shown in the top part of the figure. To expand, 
we read the codeword 41, output A, read the code-
word 42 to get the lookahead character, add AB as 
table entry 81, output the B associated with 42, 
read the codeword 81 to get the lookahead char-
acter, add BA as table entry 82, and output the AB 
associated with 81. So far, so good. But when we 
read the codeword 83 to get the lookahead character, we are stuck, because the reason 
that we are reading that codeword is to complete table entry 83! Fortunately, it is easy 
to test for that condition (it happens precisely when the codeword is the same as the 
table entry to be completed) and to correct it (the lookahead character must be the first 
character in that table entry, since that will be the next character to be output). In this 
example, this logic tells us that the lookahead character must be A (the first character in 
ABA). Thus, both the next output string and table entry 83 should be ABA.

Implementation  With these descriptions, implementing LZW encoding is straight-
forward, given in Algorithm 5.11 on the facing page (the implementation of expand() 
is on the next page). These implementations take 8-bit bytes as input (so we can com-
press any file, not just strings) and produce 12-bit codewords as output (so that we can 
get better compression by having a much larger dictionary). These values are specified 
in the (final) instance variables R, L, and W in the code. We use a TST (see section 5.2) 
for the code table in compress() (taking advantage of the ability of trie data structures 
to support efficient implementations of longestPrefixOf()) and an array of strings 

LZW expansion: tricky situation

A B
B A82

A B
B A
A B ?83

A B81

A     B     A B         ?                                                                                                              
41    42    81          83    80   

A     B     A     B     A     B     A

A     B     A B         A B A        

41    42    81          83               80

expansion

compression

A B
B A 82

A B 81 A B
B A
A B A 83

A B
B A
A B A

81
82
83

need lookahead character
to complete entry

must be A B A
(see below)

next character in output—the lookahead character!

output

input

output

input

matches

valuekey
codeword table
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aLgorIthM 5.11 (continued) lZW expansion

public static void expand() 
{ 
   String[] st = new String[L];

   int i; // next available codeword value

   for (i = 0; i < R; i++)            // Initialize table for chars. 
      st[i] = "" + (char) i; 
   st[i++] = " ";  // (unused) lookahead for EOF  

   int codeword = BinaryStdIn.readInt(W); 
   String val = st[codeword]; 
   while (true) 
   { 
      BinaryStdOut.write(val);        // Write current substring. 
      codeword = BinaryStdIn.readInt(W); 
      if (codeword == R) break;        
      String s = st[codeword];        // Get next codeword. 
      if (i == codeword)              // If lookahead is invalid, 
         s = val + val.charAt(0);     //    make codeword from last one. 
      if (i < L) 
         st[i++] = val + s.charAt(0); // Add new entry to code table. 
      val = s;                        // Update current codeword. 
   }

   BinaryStdOut.close();

}

This implementation of expansion for the Lempel-Ziv-Welch algorithm is a bit more complicated 
than compression because of the need to extract the lookahead character from the next codeword 
and because of a tricky situation where lookahead is invalid (see text). 

% java LZW - < abraLZW.txt | java LZW + 
ABRACADABRABRABRA

% more ababLZW.txt 
ABABABA

% java LZW - < ababLZW.txt | java LZW + 
ABABABA
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for the inverse code table in expand(). With these choices, the code for compress() 
and expand() is little more than a line-by-line translation of the descriptions in the 
text. These methods are very effective as they stand. For certain files, they can be further 
improved by emptying the codeword table and starting over each time all the codeword 
values are used. These improvements, along with experiments to evaluate their effec-
tiveness, are addressed in the exercises at the end of this section. 

As usual, it is worth your while to study carefully the examples given with the pro-
grams and at the bottom of this page of LZW compression in action. Over the several 
decades since its invention, it has proven to be a versatile and effective data-compres-
sion method.

Compressing and expanding various �les with LZW 12-bit encoding

virus (50000 bits)

% java Genome - < genomeVirus.txt | java PictureDump 512 25

12536 bits

% java LZW - < genomeVirus.txt | java PictureDump 512 36

18232 bits not as good as 2-bit code because repetitive data is rare

bitmap (6144 bits)

% java RunLength - < q64x96.bin | java BinaryDump 0
2296 bits

% java LZW - < q64x96.bin | java BinaryDump 0
2824 bits

entire text of Tale of Two Cities  (5812552 bits)

compression ratio 2667952/5812552 = 46% (best yet)

% java Huffman - < tale.txt | java BinaryDump 0
3043928 bits

% java LZW - < tale.txt | java BinaryDump 0
2667952 bits

% java BinaryDump 0 < tale.txt
5812552 bits

not as good as run-length code because file size is too small
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Q&A

Q. Why BinaryStdIn and BinaryStdOut?

A. It’s a tradeoff between efficiency and convenience. StdIn can handle 8 bits at a time; 
BinaryStdIn has to handle each bit. Most applications are bytestream-oriented; data 
compression is a special case.

Q. Why close() ?

A. This requirement stems from the fact that standard output is actually a bytestream, 
so BinaryStdOut needs to know when to write the last byte.

Q. Can we mix StdIn and BinaryStdIn ?

A. That is not a good idea. Because of system and implementation dependencies, there 
is no guarantee of what might happen.  Our implementations will raise an exception. 
On the other hand, there is no problem with mixing StdOut and BinaryStdOut (we do 
it in our code).

Q. Why is the Node class static in Huffman?

A. Our data-compression algorithms are organized as collections of static methods, 
not data-type implementations.

Q. Can I at least guarantee that my compression algorithm will not increase the length 
of a bitstream?

A. You can just copy it from input to output, but you still need to signify not to use 
a standard compression scheme. Commercial implementations sometimes make this 
guarantee, but it is quite weak and far from universal compression. Indeed, typical 
compression algorithms do not even make it past the second step of our first proof of 
Proposition S: few algorithms will further compress a bitstring produced by that same 
algorithm.
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ExErcisEs

5.5.1 Consider the four variable-length codes shown 
in the table at right. Which of the codes are prefix-free? 
Uniquely decodable? For those that are uniquely decod-
able, give the decoding of 1000000000000 .

5.5.2 Give an example of a uniquely decodable code 
that is not prefix-free.

Answer : Any suffix-free code is uniquely decodable.

5.5.3 Give an example of a uniquely decodable code that is not prefix free or suffix free.

Answer : {0011, 011, 11, 1110} or {01, 10, 011, 110}

5.5.4 Are  { 1, 100000, 00 } and  { 01, 1001, 1011, 111, 1110 } uniquely decodable? 
If not, find a string with two encodings.

5.5.5 Use RunLength on the file q128x192.bin from the booksite. How many bits are 
there in the compressed file?

5.5.6 How many bits are needed to encode N copies of the symbol a (as a function 
of N)? N copies of the sequence abc?

5.5.7 Give the result of encoding the strings a, aa, aaa, aaaa, ... (strings consisting of 
N a’s) with run-length, Huffman, and LZW encoding. What is the compression ratio 
as a function of N?

5.5.8 Give the result of encoding the strings ab, abab, ababab, abababab, ... (strings 
consisting of N repetitions of ab) with run-length, Huffman, and LZW encoding. What 
is the compression ratio as a function of N?

5.5.9 Estimate the compression ratio achieved by run-length, Huffman, and LZW en-
coding for a random ASCII string of length N (all characters equally likely at each posi-
tion, independently). 

5.5.10 In the style of the figure in the text, show the Huffman coding tree construction 
process when you use Huffman for the string "it was the age of foolishness".  
How many  bits does the compressed bitstream require?

symbol code 1 code 2 code 3 code 4

A 0 0 1 1

B 100 1 01 01

C 10 00 001 001

D 11 11 0001 000
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5.5.11 What is the Huffman code for a string whose characters are all from a two-
character alphabet? Give an example showing the maximum number of bits that could 
be used in a Huffman code for an N-character string whose characters are all from a 
two-character alphabet.

5.5.12 Suppose that all of the symbol probabilities are negative powers of 2. Describe 
the Huffman code.

5.5.13 Suppose that all of the symbol frequencies are equal. Describe the Huffman code. 

5.5.14 Suppose that the frequencies of the occurrence of all the characters to be encoded 
are different. Is the Huffman encoding tree unique?

5.5.15 Huffman coding could be extended in a straightforward way to encode in 2-bit 
characters (using 4-way trees). What would be the main advantage and the main dis-
advantage of doing so?

5.5.16 What is the LZW encoding of the following inputs?

a. T O B E O R N O T T O B E 
b. Y A B B A D A B B A D A B B A D O O 
c. A A A A A A A A A A A A A A A A A A A A A

5.5.17 Characterize the tricky situation in LZW coding.

Solution : Whenever it encounters cScSc, where c is a symbol and S is a string, cS is in 
the dictionary already but cSc is not.

5.5.18 Let Fk be the k th Fibonacci number. Consider N symbols, where the k th symbol 
has frequency Fk. Note that F1 + F1 + ... + FN = FN+2  1. Describe the Huffman code.
Hint : The longest codeword has length N  1.

5.5.19 Show that there are at least 2N1 different Huffman codes corresponding to a 
given set of N symbols.

5.5.20 Give a Huffman code where the frequency of 0s in the output is much, much 
higher than the frequency of 1s.

ExErcisEs (continued)

848 Chapter 5 n Strings



ptg12441863

5.5.21 Prove that the two longest codewords in a Huffman code have the same length.

5.5.22 Prove the following fact about Huffman codes: If the frequency of symbol i is 
strictly larger than the frequency of symbol j, then the length of the codeword for sym-
bol i is less than or equal to the length of the codeword for symbol j. 

5.5.23 What would be the result of breaking up a Huffman-encoded string into five-bit 
characters and Huffman-encoding that string?

5.5.24 In the style of the figures in the text, show the encoding trie and the compression 
and expansion processes when LZW is used for the string

it was the best of times it was the worst of times

8495.5 n Data Compression



ptg12441863

crEAtivE problEms

5.5.25  Fixed-length code. Implement a class RLE that uses fixed-length encoding, to 
compress ASCII bytestreams using relatively few different characters, including the 
code as part of the encoded bitstream. Add code to compress() to make a string alpha 
with all the distinct characters in the message and use it to make an Alphabet for use 
in compress(), prepend alpha (8-bit encoding plus its length) to the compressed bit-
stream, then add code to expand() to read the alphabet before expansion.

5.5.26  Rebuilding the LZW dictionary. Modify LZW to empty the dictionary and start 
over when it is full. This approach is recommended in some applications because it bet-
ter adapts to changes in the general character of the input.

5.5.27  Long repeats. Estimate the compression ratio achieved by run-length, Huff-
man, and LZW encoding for a string of length 2N formed by concatenating two copies 
of a random ASCII string of length N (see Exercise 5.5.9).
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853

Computing devices are ubiquitous in the modern world. In the last several 
decades, we have evolved from a world where computing devices were virtually 
unknown to a world where billions of people use them regularly. Moreover, to-

day’s cellphones are orders of magnitude more powerful than the supercomputers that 
were available only to the privileged few as little as 30 years ago. But many of the under-
lying algorithms that enable these devices to work effectively are the same ones that we 
have studied in this book. Why? Survival of the fittest. Scalable (linear and linearithmic) 
algorithms have played a central role in the process and validate the idea that efficient 
algorithms are important. Researchers of the 1960s and 1970s built the basic infrastruc-
ture that we now enjoy with such algorithms. They knew that scalable algorithms are 
the key to the future; the developments of the past several decades have validated that 
vision.  Now that the infrastructure is built, people are beginning to use it, for all sorts 
of purposes. As B. Chazelle has famously observed, the 20th century was the century of 
the equation, but the 21st century is the century of the algorithm.

Our treatment of fundamental algorithms in this book is only a starting point. The 
day is soon coming (if it is not already here) when one could build a college major 
around the study of algorithms. In commerical applications, scientific computing, en-
gineering, operations research (OR), and countless other areas of inquiry too diverse 
to even mention, efficient algorithms make the difference between being able to solve 
problems in the modern world and not being able to address them at all. Our empha-
sis throughout this book has been to study important and useful algorithms. In this 
chapter, we reinforce this orientation by considering examples that illustrate the role of 
the algorithms that we have studied (and our approach to the study of algorithms) in 
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several advanced contexts. To indicate the scope of the impact of the algorithms, we be-
gin with a very brief description of several important areas of application. To indicate 
the depth, we later consider specific representative examples in detail and introduce the 
theory of algorithms.  In both cases, this brief treatment at the end of a long book can 
only be indicative, not inclusive. For every area of application that we mention, there 
are dozens of others, equally broad in scope; for every point that we describe within 
an application, there are scores of others, equally important; and for every detailed 
example we consider, there are hundreds if not thousands of others, equally impactful.

Commercial applications  The emergence of the internet has underscored the central 
role of algorithms in commercial applications. All of the applications that you use regu-
larly benefit from the classic algorithms that we have studied:

n	 Infrastructure (operating systems, databases, communications)
n	 Applications (email, document processing, digital photography)
n	 Publishing (books, magazines, web content)
n	 Networks (wireless networks, social networks, the internet)
n	 Transaction processing (financial, retail, web search)

As a prominent example, we consider in this chapter B-trees, a venerable data structure 
that was developed for mainstream computers of the 1960s but still serve as the basis 
for modern database systems. We will also discuss suffix arrays, for text indexing.

Scientific computing  Since von Neumann developed mergesort in 1950, algorithms 
have played a central role in scientific computing. Today’s scientists are awash in ex-
perimental data and are using both mathematical and computational models to under-
stand the natural world for: 

n	 Mathematical calculations (polynomials, matrices, differential equations)
n	 Data processing (experimental results and observations, especially genomics)
n	 Computational models and simulation

All of these can require complex and extensive computing with huge amounts of data.
As a detailed example of an application in scientific computing, we consider in this 
chapter a classic example of event-driven simulation. The idea is to maintain a model of 
a complicated real-world system, controlling changes in the model over time. There are 
a vast number of applications of this basic approach.  We also consider a fundamental 
data-processing problem in computational genomics.

Engineering  Almost by definition, modern engineering is based on technology.  Mod-
ern technology is computer-based, so algorithms play a central role for

n	 Mathematical calculations and data processing
n	 Computer-aided design and manufacturing
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n	 Algorithm-based engineering (networks, control systems)
n	 Imaging and other medical systems

Engineers and scientists use many of the same tools and approaches. For example, sci-
entists develop computational models and simulations for the purpose of understand-
ing the natural world; engineers develop computational models and simulations for the 
purpose of designing, building, and controlling the artifacts they create.

Operations research  Researchers and practitioners in OR develop and apply math-
ematical models for problem solving, including

n	 Scheduling
n	 Decision making
n	 Assignment of resources

The shortest-paths problem of Section 4.4 is a classic OR problem. We revisit this 
problem and consider the maxflow problem, illustrate the importance of reduction, and 
discuss implications for general problem-solving models, in particular the linear pro-
gramming model that is central in OR.

Algorithms play an imporTant role in numerous subfields of computer science 
with applications in all of these areas, including, but certainly not limited to

n	 Computational geometry
n	 Cryptography
n	 Databases
n	 Programming languages and systems
n	 Artificial intelligence

In each field, articulating problems and finding efficient algorithms and data structures 
for solving them play an essential role. Some of the algorithms we have studied apply 
directly; more important, the general approach of designing, implementing, and ana-
lyzing algorithms that lies at the core of this book has proven successful in all of these 
fields. This effect is spreading beyond computer science to many other areas of inquiry, 
from games to music to linguistics to finance to neuroscience.

So many important and useful algorithms have been developed that learning and 
understanding relationships among them are essential. We finish this section (and this 
book!) with an introduction to the theory of algorithms, with particular focus on intrac-
tability and the p=np? question that still stands as the key to understanding the practi-
cal problems that we aspire to solve.
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Event-driven simulation Our first example is a fundamental scientific applica-
tion: simulate the motion of a system of moving particles that behave according to the 
laws of elastic collision. Scientists use such systems to understand and predict proper-
ties of physical systems. This paradigm embraces the motion of molecules in a gas, the 
dynamics of chemical reactions, atomic diffusion, sphere packing, the stability of the 
rings around planets, the phase transitions of certain elements, one-dimensional self-
gravitating systems, front propagation, and many other situations. Applications range 
from molecular dynamics, where the objects are tiny subatomic particles, to astrophys-
ics, where the objects are huge celestial bodies.

Addressing this problem requires a bit of high-school physics, a bit of software engi-
neering, and a bit of algorithmics. We leave most of the physics for the exercises at the 
end of this section so that we can concentrate on the topic at hand: using a fundamental 
algorithmic tool (heap-based priority queues) to address an application, enabling cal-
culations that would not otherwise be possible.

Hard-disc model  We begin with an idealized model of the motion of atoms or mol-
ecules in a container that has the following salient features:

n	 Moving particles interact via elastic collisions with each other and with walls.
n	 Each particle is a disc with known position, velocity, mass, and radius. 
n	 No other forces are exerted.

This simple model plays a central role in statistical mechanics, a 
field that relates macroscopic observables (such as temperature and 
pressure) to microscopic dynamics (such as the motion of individ-
ual atoms and molecules). Maxwell and Boltzmann used the model 
to derive the distribution of speeds of interacting molecules as a 
function of temperature; Einstein used the model to explain the 
Brownian motion of pollen grains immersed in water. The assump-
tion that no other forces are exerted implies that particles travel in 
straight lines at constant speed between collisions. We could also 
extend the model to add other forces. For example, if we add fric-
tion and spin, we can more accurately model the motion of familiar 
physical objects such as billiard balls on a pool table. 

Time-driven simulation  Our primary goal is simply to maintain 
the model: that is, we want to be able to keep track of the positions 
and velocities of all the particles as time passes. The basic calcula-
tion that we have to do is the following: given the positions and 
velocities for a specific time t, update them to reflect the situation at 

advance time to t + dt

advance time to t + 2dt

roll back time to moment of collision

Time-driven simulation
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a future time t+dt for a specific amount of time dt. Now, if the particles are sufficiently 
far from one another and from the walls that no collision will occur before t+dt, then 
the calculation is easy: since particles travel in a straight-line trajectory, we use each 
particle’s velocity to update its position. The challenge is to take the collisions into 
account. One approach, known as time-driven simulation, is based 
on using a fixed value of dt. To do each update, we need to check 
all pairs of particles, determine whether or not any two occupy the 
same position, and then back up to the moment of the first such 
collision. At that point, we are able to properly update the velocities 
of the two particles to reflect the collision (using calculations that 
we will discuss later). This approach is computationally intensive 
when simulating a large number of particles: if dt is measured in 
seconds (fractions of a second, usually), it takes time proportional 
to N 2/dt to simulate an N-particle system for 1 second. This cost is 
prohibitive (even worse than usual for quadratic algorithms)—in 
the applications of interest, N is very large and dt is very small. The 
challenge is that if we make dt too small, the computational cost is 
high, and if we make dt too large, we may miss collisions.

Event-driven simulation  We pursue an alternative approach that 
focuses only on those times at which collisions occur. In particular, we are always in-
terested in the next collision (because the simple update of all of the particle positions 
using their velocities is valid until that time). Therefore, we maintain a priority queue 
of events, where an event is a potential collision sometime in the future, either between 
two particles or between a particle and a wall. The priority associated with each event 
is its time, so when we remove the minimum from the priority queue, we get the next 
potential collision.

Collision prediction  How do we identify potential collisions? The particle velocities 
provide precisely the information that we need. For example, suppose that we have, at 
time t, a particle of radius s at position (rx  , ry ) moving with velocity (vx , vy ) in the unit 
box. Consider the vertical wall at x = 1 with y between 0 and 1. Our interest is in the 
horizontal component of the motion, so we can concentrate on the x-component of the 
position rx and the x-component of the velocity vx. If vx is negative, the particle is not 
on a collision course with the wall, but if vx is positive, there is a potential collision with 
the wall. Dividing the horizontal distance to the wall (1  s  rx ) by the magnitude 
of the horizontal component of the velocity  (vx ) we find that the particle will hit the 
wall after dt = (1  s  rx )/vx time units, when the particle will be at ( 1  s, ry  vy  dt), 
unless it hits some other particle or a horizontal wall before that time. Accordingly, we 

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation
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put an entry on the priority queue with priority t  dt (and appropriate information 
describing the particle-wall collision event). The collision-prediction calculations for 
other walls are similar (see Exercise 6.1). The calculation for two particles colliding 
is also similar, but more complicated. Note that it is often the case that the calculation 
leads to a prediction that the collision will not happen (if the particle is moving away 
from the wall, or if two particles are moving away from one another)—we do not need 
to put anything on the priority queue in such cases. To handle another typical situation 
where the predicted collision might be too far in the future to be of interest, we include 
a parameter limit that specifies the time period of interest, so we can also ignore any 
events that are predicted to happen at a time later than limit.

Collision resolution  When a collision does occur, we need to resolve it by applying 
the physical formulas that specify the behavior of a particle after an elastic collision 
with a reflecting boundary or with another particle.  In our example where the particle 
hits the vertical wall, if the collision does occur, the velocity of the particle will change 
from (vx  , vy ) to (– vx  , vy ) at that time. The collision-resolution calculations for other 
walls are similar, as are the calculations for two particles colliding, but these are more 
complicated (see Exercise 6.1).

prediction (at time t)
    particles hit unless one passes
    intersection point before the other
    arrives

resolution (at time t + dt)
     velocities of both particles
     change after collision

Predicting and resolving a particle-particle collision

Predicting and resolving a particle-wall collision

prediction (at time t)
    dt  � time to hit wall
          = distance/velocity

resolution (at time t + dt)
     velocity after collision   = ( − vx , vy) 
     position after collision  = ( 1 − s , ry + vydt)

 = (1 − s − rx )/vx

1 − s − rx 

(rx , ry 
)

s

wall at
x = 1

vx

vy
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Invalidated events  Many of the collisions that we predict do not actu-
ally happen because some other collision intervenes. To handle this situ-
ation, we maintain an instance variable for each particle that counts the 
number of collisions in which it has been involved. When we remove an 
event from the priority queue for processing, we check whether the counts 
corresponding to its particle(s) have changed since the event was creat-
ed. This approach to handling invalidated collisions is the so-called lazy 

approach: when a particle is involved in a colli-
sion, we leave the now-invalid events associated 
with it on the priority queue and essentially ig-
nore them when they come off. An alternative approach, the 
so-called eager approach, is to remove from the priority queue 
all events involving any colliding particle before calculating all 
of the new potential collisions for that particle. This approach 
requires a more sophisticated priority queue (that implements 
the remove operation).

This discussion sets the stage for a full event-driven simula-
tion of particles in motion, interacting according to the physi-
cal laws of elastic collisions. The software architecture is to en-
capsulate the implementation in three classes: a Particle data 
type that encapsulates calculations that involve particles, an 
Event data type for predicted events, and a CollisionSystem 
client that does the simulation. The cen-
terpiece of the simulation is a MinPQ that 
contains events, ordered by time. Next, we 
consider implementations of Particle, 
Event, and CollisionSystem. 

An invalidated event

two particles on a collision course

third particle interferes: no collision

Predictable events

particle moving
towards a wall

particles moving
on a collision course

Predictable non-events

particle moving
away from a wall

particles moving
away from each other

collision too far
into the future

one particle reaching
 potential collision point

before the other
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Particles  Exercise 6.1 outlines the implementation of a data type particles, based on 
a direct application of Newton’s laws of motion. A simulation client needs to be able to 
move particles, draw them, and perform a number of calculations related to collisions, 
as detailed in the following API:

public class Particle

Particle() create a new random particle in unit square

Particle( 
 double rx, double ry, 
 double vx, double vy, 

  double s, 
 double mass)

create a particle with the given 
     position, 
     velocity, 
     radius, 
     and mass

void draw() draw the particle

void move(double dt) change position to reflect passage of time dt 

int count() number of collisions involving this particle

double timeToHit(Particle b) time until this particle hits particle b

double timeToHitHorizontalWall() time until this particle hits a horizontal wall

double timeToHitVericaltWall() time until this particle hits a vertical wall

void bounceOff(Particle b) change particle velocities to reflect collision

void bounceOffHorizontalWall() change velocity to reflect hitting horizontal wall

void bounceOffVerticalWall() change velocity to reflect hitting vertical wall

apI for moving-particle objects

The three timeToHit*() methods all return Double.POSITIVE_INFINITY for the 
(rather common) case when there is no collision course. These methods allow us to 
predict all future collisions that are associated with a given particle, putting an event 
on a priority queue corresponding to each one that happens before a given time limit. 
We use the bounceOff() method each time that we process an event that corresponds 
to two particles colliding to change the velocities (of both particles) to reflect the colli-
sion, and the bounceOff*() methods for events corresponding to collisions between a 
particle and a wall. 
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Events  We encapsulate in a private class the description of the objects to be placed on 
the priority queue (events). The instance variable time holds the time when the event 
is predicted to happen, and the instance variables a and b hold the particles associated 
with the event. We have three different types of events: a particle may hit a vertical wall, 
a horizontal wall, or another particle. To develop a smooth dynamic display of the par-
ticles in motion, we add a fourth event type, a redraw event that is a command to draw 
all the particles at their current positions. A slight twist in the implementation of Event 
is that we use the fact that particle values may be null to encode these four different 
types of events, as follows:

n	 Neither a nor b null: particle-particle collision
n a not null and b null: collision between a and a vertical wall
n a null and b not null: collision between b and a horizontal wall
n	 Both a and b null: redraw event (draw all particles)

While not the finest object-oriented programming, this convention is a natural one 
that enables straightforward client code and leads to the implementation shown below.

private static class Event implements Comparable<Event> 
{ 
   private final double time; 
   private final Particle a, b; 
   private final int countA, countB;

   public Event(double t, Particle a, Particle b) 
   {  // Create a new event to occur at time t involving a and b. 
      this.time = t; 
      this.a    = a; 
      this.b    = b; 
      if (a != null) countA = a.count(); else countA = -1; 
      if (b != null) countB = b.count(); else countB = -1; 
   }

   public int compareTo(Event that) 
   {  
      if      (this.time < that.time) return -1; 
      else if (this.time > that.time) return +1; 
      else return 0; 
   }

   public boolean isValid() 
   { 
      if (a != null && a.count() != countA) return false; 
      if (b != null && b.count() != countB) return false; 
      return true; 
   } 
}

event class for particle simulation
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A second twist in the implementation of Event is that we maintain the instance vari-
ables countA and countB to record the number of collisions involving each of the par-
ticles at the time the event is created. If these counts are unchanged when the event is 
removed from the priority queue, we can go ahead and simulate the occurrence of the 
event, but if one of the counts changes between the time an event goes on the priority 
queue and the time it leaves, we know that the event has been invalidated and can ig-
nore it.  The method isValid() allows client code to test this condition.

Simulation code  With the computational details encapsulated in Particle and Event, 
the simulation itself requires remarkably little code, as you can see in the implemen-
tation in the class CollisionSystem (see page 863 and page 864). Most of the calculations
are encapsulated in the predictCollisions() method shown on this page. This meth-

od calculates all potential 
future collisions involv-
ing particle a (either with 
another particle or with 
a wall) and puts an event 
corresponding to each onto 
the priority queue. 

The heart of the simu-
lation is the simulate() 
method shown on  page 
864. We initialize by calling 
predictCollisions() 
for each particle to fill the 
priority queue with the 
potential collisions involv-
ing all particle-wall and all 

particle-particle pairs. Then we enter the main event-driven simulation loop, which 
works as follows:

n	 Delete the impending event (the one with minimum priority t).
n	 If the event is invalid, ignore it.
n	 Advance all particles to time t on a straight-line trajectory.
n	 Update the velocities of the colliding particle(s).
n	 Use predictCollisions() to predict future collisions involving the colliding 

particle(s) and insert onto the priority queue an event corresponding to each.
This simulation can serve as the basis for computing all manner of interesting proper-
ties of the system, as explored in the exercises. For example, one fundamental property 

private void predictCollisions(Particle a, double limit) 
{ 
   if (a == null) return; 
   for (int i = 0; i < particles.length; i++) 
   {  // Put collision with particles[i] on pq. 
      double dt = a.timeToHit(particles[i]); 
      if (t + dt <= limit) 
         pq.insert(new Event(t + dt, a, particles[i])); 
   } 
   double dtX = a.timeToHitVerticalWall(); 
   if (t + dtX <= limit) 
      pq.insert(new Event(t + dtX, a, null)); 
   double dtY = a.timeToHitHorizontalWall(); 
   if (t + dtY <= limit) 
      pq.insert(new Event(t + dtY, null, a)); 
}

predicting collisions with other particles
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event-driven simulation of colliding particles (scaffolding)

public class CollisionSystem 
{ 
   private class Event implements Comparable<Event> 
   {  /* See text. */  }

   private MinPQ<Event> pq;        // the priority queue 
   private double t  = 0.0;        // simulation clock time 
   private Particle[] particles;   // the array of particles

   public CollisionSystem(Particle[] particles) 
   {  this.particles  = particles;  }

   private void predictCollisions(Particle a, double limit) 
   {  /* See text. */  }

   public void redraw(double limit, double Hz) 
   { // Redraw event: redraw all particles. 
     StdDraw.clear(); 
     for (int i = 0; i < particles.length; i++) particles[i].draw(); 
     StdDraw.show(20); 
     if (t < limit) 
        pq.insert(new Event(t + 1.0 / Hz, null, null)); 
   }

   public void simulate(double limit, double Hz) 
   {  /* See next page. */  }

   public static void main(String[] args) 
   { 
      StdDraw.show(0); 
      int N = Integer.parseInt(args[0]); 
      Particle[] particles = new Particle[N]; 
      for (int i = 0; i < N; i++)  
         particles[i] = new Particle(); 
      CollisionSystem system = new CollisionSystem(particles); 
      system.simulate(10000, 0.5); 
   } 
}

This class is a priority-queue client that simulates the motion of a system of particles over time. 
The main() test client takes a command-line argument N, creates N random particles, creates a 
CollisionSystem consisting of the particles, and calls simulate() to do the simulation. The instance 
variables are a priority queue for the simulation, the time, and the particles. 
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event-driven simulation of colliding particles (primary loop)

public void simulate(double limit, double Hz) 
{ 
   pq = new MinPQ<Event>(); 
   for (int i = 0; i < particles.length; i++) 
      predictCollisions(particles[i], limit); 
   pq.insert(new Event(0, null, null));  // Add redraw event.

   while (!pq.isEmpty()) 
   {  // Process one event to drive simulation. 
      Event event = pq.delMin(); 
      if (!event.isValid()) continue; 
      for (int i = 0; i < particles.length; i++) 
         particles[i].move(event.time - t); // Update particle positions 
      t = event.time;                       //   and time. 
      Particle a = event.a, b = event.b; 
      if      (a != null && b != null) a.bounceOff(b); 
      else if (a != null && b == null) a.bounceOffVerticalWall(); 
      else if (a == null && b != null) b.bounceOffHorizontallWall(); 
      else if (a == null && b == null) redraw(limit, Hz); 
      predictCollisions(a, limit); 
      predictCollisions(b, limit); 
   } 
}

This method represents the main event-driven simulation. First, the priority queue is initialized with 
events representing all predicted future collisions involving each particle. Then the main loop takes 
an event from the queue, updates time and particle positions, and adds new events to reflect changes. 

a collision% java CollisonSystem 5
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of interest is the amount of pressure exerted by the particles against the walls. One way 
to calculate the pressure is to keep track of the number and magnitude of wall colli-
sions (an easy computation based on particle mass and velocity) so that we can easily 
compute the total. Temperature involves a similar calculation.

Performance  As described at the outset, our interest in event-driven simulation is 
to avoid the computationally intensive inner loop intrinsic in time-driven simulation.

proposition A. An event-driven simulation of N colliding particles requires at 
most N 2 priority queue operations for initialization, and at most N priority queue 
operations per collision (with one extra priority queue operation for each invalid 
collision).  

proof Immediate from the code.

Using our standard guaranteed-logarithmic-time-per operation priority-queue imple-
mentation from Section 2.4, the time needed per collision is linearithmic.  Simulations 
with large numbers of particles are therefore quite feasible. 

Event-driven simulation applies to countless other domains that involve physical 
modeling of moving objects, from molecular modeling to astrophysics to robotics. 
Such applications may involve extending the model to add other kinds of bodies, to 
operate in three dimensions, to include other forces, and in many other ways.  Each ex-
tension involves its own computational challenges. This event-driven approach results 
in a more robust, accurate, and efficient simulation than many other alternatives that 
we might consider, and the efficiency of the heap-based priority queue enables calcula-
tions that might not otherwise be possible. 

Simulation plays a vital role in helping researchers to understand properties of the 
natural world in all fields of science and engineering. Applications ranging from manu-
facturing processes to biological systems to financial systems to complex engineered 
structures are too numerous to even list here. For a great many of these applications, 
the extra efficiency afforded by the heap-based priority queue data type or an efficient 
sorting algorithm can make a substantial difference in the quality and extent that are 
possible in the simulation. 
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B-trees In Chapter 3, we saw that algorithms that are appropriate for accessing 
items from huge collections of data are of immense practical importance. Searching is 
a fundamental operation on huge data sets, and such searching consumes a significant 
fraction of the resources used in many computing environments. With the advent of 
the web, we have the ability to access a vast amount of information that might be rele-
vant to a task—our challenge is to be able to search through it efficiently. In this section, 
we describe a further extension of the balanced-tree algorithms from Section 3.3 that 
can support external search in symbol tables that are kept on a disk or on the web and 
are thus potentially far larger than those we have been considering (which have to fit in 
addressable memory). Modern software systems are blurring the distinction between 
local files and web pages, which may be stored on a remote computer, so the amount 
of data that we might wish to search is virtually unlimited. Remarkably, the methods 
that we shall study can support search and insert operations on symbol tables contain-
ing trillions of items or more using only four or five references to small blocks of data.

Cost model  Data storage mechanisms vary widely and continue to evolve, so we use 
a simple model to capture the essentials. We use the term page to refer to a contiguous 
block of data and the term probe to refer to the first access to a page. We assume that 
accessing a page involves reading its contents into local memory, so that subsequent ac-
cesses are relatively inexpensive. A page could be a file on your local computer or a web 
page on a distant computer or part of a file on 
a server, or whatever. Our goal is to develop 
search  implementations that use a small num-
ber of probes to find any given key.  We avoid 
making specific assumptions about the page 
size and about the ratio of the time required 
for a probe (which presumably requires com-
municating with a distant device) to the time 
required, subsequently, to access items within 
the block (which presumably happens in a local processor). In typical situations, these 
values are likely to be on the order of 100 or 1,000 or 10,000; we do not need to be more 
precise because the algorithms are not highly sensitive to differences in the values in the 
ranges of interest.

B-trees  The approach is to extend the 2-3 tree data structure described in Section 
3.3, with a crucial difference: rather than store the data in the tree, we build a tree with 
copies of the keys, each key copy associated with a link. This approach enables us to 
more easily separate the index from the table itself, much like the index in a book. As 
with 2-3 trees, we enforce upper and lower bounds on the number of key-link pairs 

b-tree cost model. When study-
ing algorithms for external 
searching, we count page accesses
(the number of times a page is ac-
cessed, for read or write). 
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that can be in each node: we choose a parameter M (an even number, by convention)   
and build multiway trees where every node must have at most M  1 key-link pairs (we 
assume that M is sufficiently small that an M-way node will fit on a page) and at least
M/2 key-link pairs (to provide the branching that we need to keep search paths short), 
except possibly the root, which can have fewer than M/2 key-link pairs but must have 
at least 2.  Such trees were named B-trees by Bayer and McCreight, who, in 1970, were 
the first researchers to consider the use of multiway balanced trees for external search-
ing. Some people reserve the term B-tree to describe the exact data structure built by 
the algorithm suggested by Bayer and McCreight; we use it as a generic term for data 
structures based on multiway balanced search trees with a fixed page size. We specify 
the value of M by using the terminology “B-tree of order M.” In a B-tree of order 4, each 
node has at most 3 and at least 2 key-link pairs; in a B-tree of order 6, each node has 
at most 5 and at least 3 key-link pairs (except possibly the root, which could have 2 
key-link pairs), and so forth. The reason for the exception at the root for larger M will 
become clear when we consider the construction algorithm in detail.

Conventions  To illustrate the basic mechanisms, we consider an (ordered) SET imple-
mentation (with keys and no values). Extending to provide an ordered ST to associate 
keys with values is an instructive exercise (see Exercise 6.16). Our goal is to support 
add() and contains() for a set of keys that could be huge. We use ordered keys be-
cause we are generalizing search trees, which are based on ordered keys. Extending our 
implementation to support other ordered operations is also an instructive exercise. In 
external searching applications, it is common to keep the index separate from the data. 
For B-trees, we do so by using two different kinds of nodes: 

n	 Internal nodes, which associate copies of keys with pages
n	 External nodes, which have references to the actual data

Every key in an internal node is associated with another node that is the root of a tree 
containing all keys greater than or equal to that key and less than the next largest key, if 

Anatomy of a B-tree set (M = 6)

2-node

external
3-node external 5-node (full)

 internal 3-node

 external 4-node

all nodes except the root are 3-, 4- or 5-nodes

* B C

 sentinel key

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X Y

each red key is a copy
of min key in subtree

client keys (black)
are in external nodes
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any. It is convenient to use a special key, known as a sentinel, that is defined to be less 
than all other keys, and to start with a root node containing that key. The symbol table 
does not contain duplicate keys, but we use copies of keys (in internal nodes) to guide 
the search. (In our examples, we use single-letter keys and the character * as the sentinel 
that is less than all other keys.) These conventions simplify the code somewhat and thus 
represent a convenient (and widely used) alternative to mixing all the data with links in 
the internal nodes, as we have done for other search trees. 

Search and insert  Search in a B-tree is based on recursively searching in the unique 
subtree that could contain the search key. Every search ends in an external node that 
contains the key if and only if it is in the set. We might also terminate a search hit when 
encountering a copy of the search key in an internal node, but we always search to an 
external node because doing so simplifies extending the code to an ordered symbol-
table implementation (also, this event rarely happens when M is large).  To be specific, 
consider searching in a B-tree of order 6: it consists of 3-nodes with 3 key-link pairs, 
4-nodes with 4 key-link pairs, and 5-nodes with 5 key-link pairs, with possibly a 2-node 
at the root. To search, we start at the root and move from one node to the next by find-
ing the proper interval for the search key in the current node and then exiting through 
the corresponding link to get to the next node. Eventually, the search process leads us to 
a page containing keys at the bottom of the tree. We terminate the search with a search 
hit if the search key is in that page; we terminate with a search miss if it is not.  As with 
2-3 trees, we can use recursive code to insert a new key at the bottom of the tree. If there 
is no room for the key, we allow the node at the bottom to temporarily overflow (be-
come a 6-node) and then split 6-nodes on the way up the tree, after the recursive call. If 
the root is an 6-node, we split it into a 2-node connected to two 3-nodes; elsewhere in 
the tree, we replace any k-node attached to a 6-node by a (k+1)-node attached to two 
3-nodes. Replacing 3 by M/2 and 6 by M in this description converts it into a descrip-
tion of search and insert for B-trees of order M and leads to the following definition:

Definition. A B-tree of order M (where M is an even positive integer) is a tree that 
either is an external k-node (with k keys and associated information) or comprises 
internal k-nodes (each with k keys and k links to B-trees representing each of the k
intervals delimited by the keys), having the following structural properties: every 
path from the root to an external node must be the same length (perfect balance); 
and k must be between 2 and M  1 at the root and between M/2 and M  1 at 
every other node. 
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Inserting a new key into a B-tree set

inserting A

* B C

searching for E

D E F H I J K M N O P Q R T

* D H

* K

K Q U

U W X

search for E in
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E is between D and H

Searching in a B-tree set (M = 6)
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Representation  As just discussed, we have a great deal of freedom in choosing con-
crete representations for nodes in B-trees. We encapsulate these choices in a Page API 
that associates keys with links to Page objects and supports the operations that we 
need to test for overfull pages, split them, and distinguish between internal and exter-
nal pages. You can think of a Page as a symbol table, kept externally (in a file on your 
computer or on the web). The terms open and close in the API refer to the process of 
bringing an external page into internal memory and writing its contents back out (if 
necessary). The add() method for internal pages is a symbol-table operation that asso-
ciates the given page with the minimum key in the tree rooted at that page. The add() 
and contains() methods for external pages are like their corresponding SET opera-
tions. The workhorse of any implementation is the split() method, which splits a full 
page by moving the M/2 key-value pairs of rank greater than M/2 to a new Page and 
returns a reference to that page. Exercise 6.15 discusses an implementation of Page 
using BinarySearchST, which implements B-trees in memory, like our other search 
implementations. On some systems, this might suffice as an external searching imple-
mentation because a virtual-memory system might take care of disk references. More 
typical practical implementations might involve hardware-specific code that reads and 

  public class Page<Key>

Page(boolean bottom) create and open a page

void close() close a page

void add(Key key) add key into the (external) page

void add(Page p)
open p and add an entry into this 
(internal) page that associates the 
smallest key in p with p

boolean isExternal() is this page external?

boolean contains(Key key) is key in the page?

Page next(Key key) the subtree that could contain the key

boolean isFull() has the page overflowed?

Page split()
move the highest-ranking half of the 
keys in the page to a new page

Iterable<Key> keys() iterator for the keys on the page

apI for a B-tree page
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writes pages. Exercise 6.19 encourages you to think about implementing Page using 
web pages. We ignore such details here in the text to emphasize the utility of the B-tree 
concept in a broad variety of settings.

With these preparations, the code for BTreeSET on page 872  is remarkably simple. For 
contains(), we use a recursive method that takes a Page as argument and handles 
three cases:

n	 If the page is external and the key is in the page, return true.
n	 If the page is external and the key is not in the page, return false.
n	 Otherwise, do a recursive call for the subtree that could contain the key.

For add() we use the same recursive structure, but insert the key at the bottom if it is 
not found during the search and then split any full nodes on the way up the tree.

Performance  The most important property of B-trees is that for reasonable values of 
the parameter M the search cost is constant, for all practical purposes:

proposition b. A search or an insertion in a B-tree of order M with N items requires 
between logM N and logM/2 N probes—a constant number, for practical purposes.  

proof This property follows from the observation that all the nodes in the interior 
of the tree (nodes that are not the root and are not external) have between M/2 
and M  1 links, since they are formed from a split of a full node with M keys and 
can only grow in size (when a child is split). In the best case, these nodes form a 
complete tree of branching factor M  1, which leads immediately to the stated 
bound. In the worst case, we have a root with two entries each of which refers to a 
complete tree of degree M/2. Taking the logarithm to the base M results in a very 
small number—for example, when M is 1,000, the height of the tree is less than 4 
for N less than 62.5 billion. 

In typical situations, we can reduce the cost by one probe by keeping the root in in-
ternal memory. For searching on disk or on the web, we might take this step explicitly 
before embarking on any application involving a huge number of searches; in a virtual 
memory with caching, the root node will be the one most likely to be in fast memory, 
because it is the most frequently accessed node.

Space  The space usage of B-trees is also of interest in practical applications. By con-
struction, the pages are at least half full, so, in the worst case, B-trees use about double 
the space that is absolutely necessary for keys, plus extra space for links. For random 
keys, A. Yao proved in 1979 (using mathematical analysis that is beyond the scope of 
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aLgorIthM 6.1 B-tree set implementation

public class BTreeSET<Key extends Comparable<Key>> 
{ 
   private Page root = new Page(true);

   public BTreeSET(Key sentinel) 
   {  add(sentinel);  }

   public boolean contains(Key key) 
   {  return contains(root, key);  }

   private boolean contains(Page h, Key key) 
   { 
      if (h.isExternal()) return h.contains(key); 
      return contains(h.next(key), key); 
   }

   public void add(Key key) 
   { 
      add(root, key); 
      if (root.isFull()) 
      { 
         Page lefthalf = root; 
         Page righthalf = root.split(); 
         root = new Page(false); 
         root.add(lefthalf); 
         root.add(righthalf); 
      } 
   }

   public void add(Page h, Key key) 
   { 
      if (h.isExternal()) {  h.add(key); return;  }

      Page next = h.next(key); 
      add(next, key); 
      if (next.isFull()) 
         h.add(next.split()); 
      next.close(); 
   } 
}

This B-tree implementation implements multiway balanced search trees as described in the text, us-
ing a Page data type that supports search by associating keys with subtrees that could contain the key 
and supports insertion by including a test for overflow and a page split method.
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this book) that the average number of keys in a node is about M ln 2, so about 44 per-
cent of the space is unused.  As with many other search algorithms, this random model 
reasonably predicts results for key distributions that we observe in practice.

The implications of Proposition B are profound and worth contemplating. Would 
you have guessed that you can develop a search implementation that can guarantee a 
cost of four or five probes for search and insert in files as large as you can reason-
ably contemplate needing to process? B-trees are widely used because they allow us to 
achieve this ideal. In practice, the primary challenge to developing an implementation 
is ensuring that space is available for the B-tree nodes, but even that challenge becomes 
easier to address as available storage space increases on typical devices.

   Many variations on the basic B-tree abstraction suggest themselves immediately.   
One class of variations saves time by packing as many page references as possible in 
internal nodes, thereby increasing the branching factor and flattening the tree.  Another 
class of variations improves storage efficiency by combining nodes with siblings before 
splitting.  The precise choice of variant and algorithm parameter can be engineered to 
suit particular devices and applications. Although we are limited to getting a small con-
stant factor improvement, such an improvement can be of significant importance for 
applications where the table is huge and/or huge numbers of transactions are involved, 
precisely the applications for which B-trees are so effective.
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Suffix arrays Efficient algorithms for string processing play a critical role in com-
mercial applications and in scientific computing. From the countless strings that define 
web pages that are searched by billions of users to the extensive genomic databases that 
scientists are studying to unlock the secret of life, computing applications of the 21st 
century are increasingly string-based. As usual, some classic algorithms are effective, 
but remarkable new algorithms are being developed. Next, we describe a data structure 
and an API that support some of these algorithms. We begin by describing a typical 
(and a classic) string-processing problem.

Longest repeated substring  What is the longest substring that appears at least 
twice in a given string? For example, the longest repeated substring in the string 
"to be or not to be" is the string "to be". Think briefly about how you might solve 
it. Could you find the longest repeated substring in a string that has millions of char-
acters? This problem is simple to state and has many important applications, including 
data compression, cryptography, and computer-assisted music analysis. For example, 
a standard technique used in the development of large software systems is refactoring 
code. Programmers often put together new programs by cutting and pasting code from 
old programs. In a large program built over a long period of time, replacing duplicate 
code by function calls to a single copy of the code can make the program much easier 
to understand and maintain. This improvement can be accomplished by finding long 
repeated substrings in the program. Another application is found in computational 
biology. Are substantial identical fragments to be found within a given genome? Again, 
the basic computational problem underlying this question is to find the longest repeat-
ed substring in a string. Scientists are typically interested in more detailed questions 
(indeed, the nature of the repeated substrings is precisely what scientists seek to under-
stand), but such questions are certainly no easier to answer than the basic question of 
finding the longest repeated substring.

Brute-force solution  As a warmup, consider the following simple task: given two 
strings, find their longest common prefix (the longest substring that is a prefix of both 
strings). For example, the longest 
common prefix of acctgttaac and 
accgttaa is acc. The code at right 
is a useful starting point for address-
ing more complicated tasks: it takes 
time proportional to the length of 
the match. Now, how do we find the 
longest repeated substring in a given 
string? With lcp(), the following 

private static int lcp(String s, String t) 
{ 
   int N = Math.min(s.length(), t.length()); 
   for (int i = 0; i < N; i++) 
      if (s.charAt(i) != t.charAt(i)) return i; 
   return N; 
}

Longest common prefix of two strings
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~

brute-force solution immediately suggests itself: we compare the substring starting at 
each string position i with the substring starting at each other starting position j, keep-
ing track of the longest match found. This code is not useful for long strings, because 
its running time is at least quadratic in the length of the string: the number of different 
pairs i and j is N (N1) 2, so the number of calls on lcp() for this approach would be 

N 2/2. Using this solution for a genomic sequence with millions of characters would 
require trillions of lcp() calls, which is infeasible.

Suffix sort solution  The following clever approach, which takes advantage of sort-
ing in an unexpected way, is an effective way to find the longest repeated substring, 
even in a huge string: we make an array of the 
N suffixes of s (the substrings starting at each 
position and going to the end), and then we sort 
this array.  The key to the algorithm’s correctness 
is that every substring appears somewhere as a 
prefix of one of the suffixes in the array. After 
sorting, the longest repeated substrings will ap-
pear in adjacent positions in the array. Thus, we 
can make a single pass through the sorted array, 
keeping track of the longest matching prefixes 
between adjacent strings. The key to the algo-
rithm’s efficiency is to form the N suffixes im-
plicitly (storing only the original string and the 
index of the first character in each suffix) instead 
of explicitly (since that would require quadratic 
time and space). This suffix sorting approach is 
significantly more efficient than the brute-force 
method, but before implementing and analyz-
ing it, we consider another application of suffix 
sorting.

Computing the LRS by sorting su�xes
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Indexing a string  When you are trying to find a particular substring within a large 
text—for example, while working in a text editor or within a page you are viewing with 
a browser—you are doing a substring search, the problem we considered in Section 5.3. 
For that problem, we assume the text to be relatively large and focus on preprocessing 
the substring, with the goal of being able to efficiently find that substring in any given 
text. When you type search keys into your web browser, you are doing a search with 
string keys, the subject of Section 5.2. Your search engine must precompute an index, 
since it cannot afford to scan all the pages in the web for your keys. As we discussed 
in Section 3.5 (see FileIndex on page 501), this would ideally be an inverted index 
associating each possible search string with all web pages that contain it—a symbol 
table where each entry is a string key 
and each value is a set of pointers 
(each pointer giving the information 
necessary to locate an occurrence of 
the key on the web—perhaps a URL 
that names a web page and an integer 
offset within that page). In practice, 
such a symbol table would be far too 
big, so your search engine uses vari-
ous sophisticated algorithms to re-
duce its size. One approach is to rank 
web pages by importance (perhaps 
using an algorithm like the PageRank 
algorithm that we discussed on page 
502) and work only with highly-
ranked pages, not all pages. Another 
approach to cutting down on the size 
of a symbol table to support search 
with string keys is to associate URLs 
with words (substrings delimited by 
whitespace) as keys in the precomputed index. Then, when you search for a word, the 
search engine can use the index to find the (important) pages containing your search 
keys (words) and then use substring search within each page to find them.  But with 
this approach, if the text were to contain "everything" and you were to search for 
"thing", you would not find it. For some applications, it is worthwhile to build an 
index to help find any substring within a given text. Doing so might be justified for a 
linguistic study of an important piece of literature, for a genomic sequence that might 
be an object of study for many scientists, or just for a widely accessed web page. Again, 

Idealized view of a typical web search

key

symbol-table search with string keys:
find the pages containing the key

substring search:
find the key in the page

value    

       ... it 
was the best 
deal I could 
get ...

   

... it was the 
best kiss I’ve 
ever had ...

   
   ... it was 
the best of 
times, it was 
the worst of 
times ...

it was the best
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ideally, the index would associate all pos-
sible substrings of the text string with each 
position where it occurs in the text string, 
as depicted at right. The basic problem with 
this ideal is that the number of possible sub-
strings is too large to have a symbol-table 
entry for each of them (an N-character text 
has N (N+1)  2 substrings). The table for the 
example at right would need entries for b, be, 
bes, best, best o, best of, e, es, est, est o, 
est of, s, st, st o, st of, t, t o, t of,  o, 
of, and many, many other substrings. Again, we can use a suffix sort to address this 
problem in a manner analogous to our first symbol-table implementation using binary 
search, in Section 3.1. We consider each of the N suffixes to be keys, create a sorted ar-
ray of our keys (the suffixes), and use binary search to search in that array, comparing 
the search key with each suffix.  

it was the best of times it was the
t was the best of times it was the
 was the best of times it was the
was the best of times it was the
as the best of times it was the
s the best of times it was the
 the best of times it was the
the best of times it was the
he best of times it was the
e best of times it was the
 best of times it was the
best of times it was the
est of times it was the
st of times it was the
t of times it was the
 of times it was the
of times it was the
f times it was the
 times it was the
times it was the
imes it was the
mes it was the
es it was the
s it was the
 it was the
it was the
t was the
 was the
was the
as the
s the
 the
the
he
e

   0   10    0        best of times it was the
   1   24    1        it was the
   2   15    1        of times it was the
   3   31    1        the
   4    6    4        the best of times it was the
   5   18    2        times it was the
   6   27    1        was the
   7    2    8        was the best of times it was the
   8   29    0       as the
   9    4    6       as the best of times it was the
  10   11    0       best of times it was the
  11   34    0       e
  12    9    1       e best of times it was the
  13   22    1       es it was the
  14   12    2       est of times it was the
  15   17    0       f times it was the
  16   33    0       he
  17    8    2       he best of times it was the
  18   20    0       imes it was the
  19   25    1       it was the
  20    0   10       it was the best of times it was the
  21   21    0       mes it was the
  22   16    0       of times it was the
  23   23    0       s it was the
  24   30    2       s the
  25    5    5       s the best of times it was the
  26   13    1       st of times it was the
  27   14    0       t of times it was the
  28   26    2       t was the
  29    1    9       t was the best of times it was the
  30   32    1       the
  31    7    3       the best of times it was the
  32   19    1       times it was the
  33   28    0       was the
  34    3    7       was the best of times it was the

Binary search in a su�x array
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intervals containing
"th" found by rank()
during binary search

Idealized view of a text-string index

key value    
 ...
it was the 
best of times, 
it was the 
worst of times 
it was the age 
of wisdom    
it was the age 
of foolishness 
it was the 
epoch of 
belief
 ...

best of times

it was
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API and client code  To support client code to solve these two problems, we artic-
ulate the API shown below. It includes a constructor; a length() method; methods 
select() and index(), which give the string and index of the suffix of a given rank in 
the sorted list of suffixes; a method lcp() that gives the length of the longest common 
prefix of each suffix and the one preceding it in the sorted list; and a method rank() 
that gives the number of suffixes less than the given key (just as we have been using 
since we first examined binary search in Chapter 1). We use the term suffix array to 
describe the abstraction of a sorted list of suffix strings, without committing to use an 
array of strings as the underlying data structure.

public class SuffixArray

SuffixArray(String text) build suffix array for text

int length() length of text 

String select(int i)
ith in the suffix array  
(i between 0 and N-1)

int index(int i) index of  select(i)  (i between 0 and N-1)

int lcp(int i)
length of longest common prefix of select(i) 
and select(i-1) (i between 1 and N-1)

int rank(String key) number of suffixes less than  key

Suffix array apI

In the example on the facing page, select(9) is "as the best of times...", index(9) 
is 4, lcp(20) is 10 because "it was the best of times..." and "it was the" 
have the common prefix "it was the" which is of length 10, and rank("th") is 30.  
Note also that the select(rank(key)) is the first possible suffix in the sorted suffix 
list that has key as prefix and that all other occurrences of key in the text immediately 
follow (see the figure on the opposite page). With this API, the client code on the next 
two pages is immediate. LRS (page 880) finds the longest repeated substring in the text 
on standard input by building a suffix array and then scanning through the sorted suf-
fixes to find the maximum lcp() value.  KWIC (page 881) builds a suffix array for the 
text named as command-line argument, takes queries from standard input, and prints 
all occurrences of each query in the text (including a specified number of characters 
before and after to give context). The name KWIC stands for keyword-in-context search, 
a term dating at least to the 1960s. The simplicity and efficiency of this client code for 
these typical string-processing applications is remarkable, and testimony to the impor-
tance of careful API design (and the power of a simple but ingenious idea).
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% more tinyTale.txt 
it was the best of times it was the worst of times 
it was the age of wisdom it was the age of foolishness 
it was the epoch of belief it was the epoch of incredulity 
it was the season of light it was the season of darkness 
it was the spring of hope it was the winter of despair

% java LRS < tinyTale.txt 
'st of times it was the '

% java LRS < mobyDick.txt 
',- Such a funny, sporty, gamy, jesty, joky, hoky-poky lad, is the Ocean, oh! Th'

public class LRS 
{ 
   public static void main(String[] args) 
   { 
      String text = StdIn.readAll().replaceAll("\\s+", " "); 
      int N = text.length(); 
      SuffixArray sa = new SuffixArray(text); 
      String lrs = ""; 
      for (int i = 1; i < N; i++) 
      { 
         int length = sa.lcp(i); 
         if (length > lrs.length()) 
            lrs = text.substring(sa.index(i), sa.index(i) + length); 
      } 
      StdOut.println("'" + lrs + "'"); 
   } 
} 

Longest repeated substring client
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public class KWIC 
{ 
   public static void main(String[] args) 
   {  
      In in = new In(args[0]); 
      int context = Integer.parseInt(args[1]);

      String text = in.readAll().replaceAll("\\s+", " "); 
      int N = text.length(); 
      SuffixArray sa = new SuffixArray(text);

      while (StdIn.hasNextLine()) 
      { 
         String query = StdIn.readLine(); 
         for (int i = sa.rank(query); i < N; i++) 
         { 
            // Check if sorted suffix i is a match. 
            int from1 = sa.index(i); 
            int to1   = Math.min(N, sa.index(i) + query.length()); 
            if (!query.equals(text.substring(from1, to1))) break;

            // Print context surrounding sorted suffix i. 
            int from2 = Math.max(0, sa.index(i) - context); 
            int to2   = Math.min(N, sa.index(i) + context + query.length()); 
            StdOut.println(text.substring(from2, to2)); 
         } 
         StdOut.println(); 
      } 
   }  
} 

Keyword-in-context indexing client

% java KWIC tale.txt 15 
search 
o st giless to search for contraband 
her unavailing search for your fathe 
le and gone in search of her husband 
t provinces in search of impoverishe 
 dispersing in search of other carri 
n that bed and search the straw hold 

better thing 
t is a far far better thing that i do than 
 some sense of better things else forgotte 
was capable of better things mr carton ent
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Implementation  The code on the facing page is an elementary implementation of the 
SuffixArray API. The key to the implementation is a nested class Suffix that repre-
sents a suffix of a text string. A Suffix has two instance variables: a String reference 
to the text string and an int index of its first character. It provides four utility meth-
ods: length() returns the length of the suffix; charAt(i) returns the ith character in 
the suffix; toString() returns a string representation of the suffix; and compareTo() 
compares two suffixes, for use in sorting. Using this nesed class, it is straigthfoward 
to complete the implementation. The constructor builds an array of Suffix objects 
and sorts them, so index(i) just returns the index associated with suffixes[i]. The 
implementations of length() and select() are also a one-liners. The implementation 
of lcp() is similar to the lcp() on page 875, and rank() is virtually the same as our 
implementation of binary search for symbol tables, on page 381. Again, the simplicity 
and elegance of this implementation should not mask the fact that it is a sophisticated 
algorithm that enables the solution of important problems like the longest repeated 
substring problem that would otherwise seem to be infeasible.

Performance  The efficiency of our suffix sorting implementation depends on the fact 
that we form the  suffixes implicitly—each suffix is represented by a reference to the text 
string and the index of its first character. Thus, the space to store the array of suffixes 
is linear in the length of the text string. This point is a bit counterintuitive because the 
total number of characters in the N suffixes is ~N 2/2, a quadratic function of the length 
of the string. Moreover, that quadratic factor gives one pause when considering the cost 
of sorting the array of suffixes. It is very important to bear in mind that this approach 
is effective for long strings because of our implicit representation for suffixes: when we 
exchange two suffixes, we are exchanging only references, not the whole suffixes. Now, 

the cost of comparing
two suffixes may be pro-
portional to the length 
of the suffixes in the case 
when their common pre-
fix is very long, but most 
comparisons in typical 
applications involve only 
a few characters. If so, the 
running time of the suf-
fix sort is linearithmic.

public int compareTo(Suffix that) 
{   
   if (this == that) return 0; 
   int N = Math.min(this.length(), that.length()); 
   for (int i = 0; i < N; i++) 
   { 
      if (this.charAt(i) < that.charAt(i)) return -1; 
      if (this.charAt(i) > that.charAt(i)) return +1; 
   } 
   return this.length() - that.length();

}

Comparing two suffixes
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aLgorIthM 6.2 Suffix array (elementary implementation)

import java.util.Arrays;

public class SuffixArray 
{ 
   private Suffix[] suffixes;   // array of suffixes

   public SuffixArray(String text) 
   { 
      int N = text.length(); 
      this.suffixes = new Suffix[N]; 
      for (int i = 0; i < N; i++) 
         suffixes[i] = new Suffix(text, i); 
      Arrays.sort(suffixes); 
   }

   private static class Suffix implements Comparable<Suffix> 
   { 
      private final String text; // reference to text string 
      private final int index;   // index of suffix's first character

      private Suffix(String s, int index) 
      { 
         this.text = text; 
         this.index = index; 
      }

      private int length()       {  return text.length() - index;   } 
      private char charAt(int i) {  return text.charAt(index + i);  } 
      public String toString()   {  return text.substring(index);   } 
      public int compareTo(Suffix that)  // See page 882. 
   }

   public int index(int i)     {  return suffixes[i].index;       } 
   public int length()         {  return suffixes.length;         } 
   public String select(int i) {  return suffixes[i].toString();  } 

   public int lcp(int i)        // See Exercise 6.28. 
   public int rank(String key)  // See Exercise 6.28.
}

This implementation of our SuffixArray API depends for its efficiency on the fact that the suffixes 
are represented implicitly (see text), using the nested class Suffix.
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For example, in many applications, it is reasonable to use a random string model:

proposition c. Using 3-way string quicksort, we can build a suffix array from a 
random string of length N with space proportional to N and  ~ 2N ln N character 
compares, on the average.

Discussion: The space bound is immediate, but the time bound follows from a de-
tailed and difficult research result by P. Jacquet and W. Szpankowski, which implies   
that the cost of sorting the suffixes is asymptotically the same as the cost of sorting 
N random strings (see Proposition E on page 723).

Improved implementations  Our elementary implementation of SuffixArray (Al-
gorithm 6.2) has poor worst-case performance. For example, if all the characters are 
equal, the sort examines every character in each suffix and thus takes quadratic time. 
For strings of the type we have been using as examples, such as genomic sequences or 
natural-language text, this is not likely to be problematic, but the algorithm can be slow 
for texts with long runs of identical characters. Another way of looking at the problem 
is to observe that the cost of finding the lon-
gest repeated substring is (at least) quadratic in 
the length of the longest repeated substring be-
cause all of the prefixes of the repeat need to be 
checked (see the diagram at right). This is not a 
problem for a text such as A Tale of Two Cities, 
where the longest repeated substring

"s dropped because it would have 
 been a bad thing for me in a  
 worldly point of view i" 

has just 84 characters, but it is a serious prob-
lem for genomic data, where long repeated 
substrings are not unusual. How can this qua-
dratic behavior for repeat searching be avoid-
ed? Remarkably, research by P. Weiner in 1973 
showed that it is possible to solve the longest re-
peated substring problem in guaranteed linear 
time.  Weiner’s algorithm was based on build-
ing a suffix tree data structure (essentially a LRS cost is quadratic in repeat length

a c a a g
c a a g
a a g
 a g
  g

input string

su�xes of longest repeated substring (M = 5)

a a c a a g t t t a c a a g c
a a g c
a a g t t t a c a a g c
a c a a g c
a c a a g t t t a c a a g c
a g c
a g t t t a c a a g c
c
c a a g c
c a a g t t t a c a a g c
g c
g t t t a c a a g c
t a c a a g c
t t a c a a g c
t t t a c a a g c

sorted su�xes of input

a a c a a g t t t a c a a g c

all appear at least
twice as a prefix of
a suffix string

comparison cost is at least
1 + 2 + . . . + M ~ M 2/2

3

5

2

4

1
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trie for suffixes). With multiple pointers per character, suffix trees consume too much 
space for many practical problems, which led to the development of suffix arrays. In the 
1990s, U. Manber and E. Myers presented a linearithmic algorithm for building suffix 
arrays directly and a method that does preprocessing at the same time as the suffix sort 
to support constant-time lcp(). Several linear-time suffix sorting algorithms have been 
developed since. With a bit more work, the Manber-Myers implementation can also 
support a two-argument lcp() that finds the longest common prefix of two given suf-
fixes that are not necessarily adjacent in guaranteed constant time, again a remarkable 
improvement over the straightforard implementation. These results are quite surpris-
ing, as they achieve efficiencies quite beyond what you might have expected. 

proposition D. With suffix arrays, we can solve both the suffix sorting and longest 
repeated substring problems in linear time.

proof: The remarkable algorithms for these tasks are just beyond our scope, but 
you can find on the booksite code that implements the SuffixArray constructor 
in linear time and lcp() queries in constant time.

A SuffixArray implementation based on these ideas supports efficient solutions of 
numerous string-processing problems, with simple client code, as in our LRS and KWIC 
examples.

Suffix arrays are the culmination of decades of research that began with the de-
velopment of tries for KWIC indices in the 1960s. The algorithms that we have dis-
cussed were worked out by many researchers over several decades in the context of solv-
ing practical problems ranging from putting the Oxford English Dictionary online to the 
development of the first web search engines to sequencing the human genome. This 
story certainly helps put the importance of algorithm design and analysis in context. 
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Network-flow algorithms Next, we consider a 
graph model that has been successful not just because it 
provides us with a simply stated problem-solving model 
that is useful in many practical applications but also be-
cause we have efficient algorithms for solving problems 
within the model. The solution that we consider illustrates 
the tension between our quest for implementations of gen-
eral applicability and our quest for efficient solutions to 
specific problems. The study of network-flow algorithms is 
fascinating because it brings us tantalizingly close to com-
pact and elegant implementations that achieve both goals.   
As you will see, we have straightforward implementations 
that are guaranteed to run in time proportional to a poly-
nomial in the size of the network.

The classical solutions to network-flow problems are 
closely related to other graph algorithms that we studied 
in Chapter 4, and we can write surprisingly concise pro-
grams that solve them, using the algorithmic tools we have 
developed. As we have seen in many other situations, good 
algorithms and data structures can lead to substantial re-
ductions in running times. Development of better imple-
mentations and better algorithms is still an area of active 
research, and new approaches continue to be discovered.

A physical model  We begin with an idealized physical 
model in which several of the basic concepts are intui-
tive. Specifically, imagine a collection of interconnected oil 
pipes of varying sizes, with switches controlling the direc-
tion of flow at junctions, as in the example illustrated at 
right. Suppose further that the network has a single source
(say, an oil field) and a single sink (say, a large refinery) to 
which all the pipes ultimately connect. At each vertex, the 
flowing oil reaches an equilibrium where the amount of oil 
flowing in is equal to the amount flowing out. We measure 
both flow and pipe capacity in the same units (say, gallons 
per second). If every switch has the property that the total 
capacity of the ingoing pipes is equal to the total capacity 
of the outgoing pipes, then there is no problem to solve: we Adding �ow to a network

add 2 units of �ow
along 0->1->3->5

add 1 unit of �ow
along 0->2->4->5

redirect 1 unit of �ow
from 1->3->5 
to 1->4->5

add 1 unit of �ow
along 0->2->3->5

source

sink
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simply fill all pipes to full capacity. Otherwise, not all pipes are 
full, but oil flows through the network, controlled by switch 
settings at the junctions, satisfying a local equilibrium con-
dition at the junctions: the amount of oil flowing into each 
junction is equal to the amount of oil flowing out. For ex-
ample, consider the network in the diagram on the opposite 
page. Operators might start the flow by opening the switches 
along the path 0->1->3->5, which can handle 2 units of flow, 
then open switches along the path 0->2->4->5 to get another 
unit of flow in the network. Since 0->1, 2->4, and 3->5 are full, there is no direct way 
to get more flow from 0 to 5, but if we change the switch at 1 to redirect enough flow 
to fill 1->4, we open up enough capacity in 3->5 to allow us to add a unit of flow on 
0->2->3->5. Even for this simple network, finding switch settings that increase the flow 
is not an easy task; for a complicated network, we are clearly interested in the following 
question: What switch settings will maximize the amount of oil flowing from source 
to sink? We can model this situation directly with an edge-weighted digraph that has a 
single source and a single sink.  The edges in the network correspond to the oil pipes, 
the vertices correspond to the junctions with switches that control how much oil goes 
into each outgoing edge, and the weights on the edges correspond to the capacity of the 
pipes. We assume that the edges are directed, specifying that oil can flow in only one di-
rection in each pipe. Each pipe has a certain amount of flow, which is less than or equal 
to its capacity, and every vertex satisfies the equilibrium condition that the flow in is 
equal to the flow out. This flow-network abstraction is a useful problem-solving model 
that applies directly to a variety of applications and indirectly to still more. We some-
times appeal to the idea of oil flowing through pipes for intuitive support of basic ideas, 

Anatomy of a network-�ow problem

flow value
associated

with
each edgecapacities

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

0 1  2.0  2.0
0 2  3.0  1.0
1 3  3.0  2.0
1 4  1.0  0.0
2 3  1.0  0.0
2 4  1.0  1.0
3 5  2.0  2.0
4 5  3.0  1.0

tinyFN.txt standard drawing

V
source

sink

E

drawing with capacities drawing with �ow �ow representation

Local equilibrium in a �ow network

inflow equals outflow
at every vertex

(except the source
 and the sink)
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but our discussion applies equally well to goods moving through distribution chan-
nels and to numerous other situations. As with our use of distance in shortest-paths 
algorithms, we are free to abandon any physical intuition when convenient because 
all the definitions, properties, and algorithms that we consider are based entirely on 
an abstract model that does not necessarily obey physical laws. Indeed, a prime reason 
for our interest in the network-flow model is that it allows us to solve numerous other 
problems through reduction, as we see in the next section.  

Definitions  Because of this broad applicability, it is worthwhile to consider precise 
statements of the terms and concepts that we have just informally introduced:

Definition. A flow network is an edge-weighted digraph with positive edge weights 
(which we refer to as capacities). An st-flow network has two identified vertices, a 
source s and a sink t.

We sometimes refer to edges as having infinite capacity or, equivalently, as being un-
capacitated. That might mean that we do not compare flow against capacity for such 
edges, or we might use a sentinel value that is guaranteed to be larger than any flow 
value. We refer to the total flow into a vertex (the sum of the flows on its incoming 
edges) as the vertex’s inflow, the total flow out of a vertex (the sum of the flows on its 
outgoing edges) as the vertex’s outflow, and the difference between the two (inflow 
minus outflow) as the vertex’s netflow. To simplify the discussion, we also assume that 
there are no edges leaving t or entering s.

Definition. An st-flow in an st-flow network is a set of nonnegative values associ-
ated with each edge, which we refer to as edge flows. We say that a flow is feasible if 
it satisfies the condition that no edge’s flow is greater than that edge’s capacity and 
the local equilibrium condition that every vertex’s netflow is zero (except s and t).

We refer to the sink’s inflow as the st-flow value. We will see in Proposition E that the 
value is also equal to the source’s outflow. With these definitions, the formal statement 
of our basic problem is straightforward:

Maximum  st-flow  Given an st-flow network, find an st-flow such that no other 
flow from s to t has a larger value. 

For brevity, we refer to such a flow as a maxflow and the problem of finding one in a 
network as the maxflow problem. In some applications, we might be content to know 
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just the maxflow value, but we generally want to know a flow (edge flow values) that 
achieves that value.

APIs  The FlowEdge and FlowNetwork APIs shown on page 890 are straightforward 
extensions of APIs from CHAPTER 4. We will consider on page 896 an implementation 
of FlowEdge that is based on adding an instance variable containing the flow to our 
Edge class from page 610. Flows have a direction, but we do not base FlowEdge on 
DirectedEdge because we work with a more general abstraction known as the residual 
network that is described below, and we need each edge to appear in the adjacency lists 
of both its vertices to implement the residual network. The residual network allows us to 
both add and subtract flow and to test whether an edge is full to capacity (no more flow 
can be added) or empty (no flow can be subtracted). This abstraction is implemented via 
the methods residualCapacity() and addResidualFlow() that we will consider later. 
The implementation of FlowNetwork is virtually identical to our EdgeWeightedGraph 
implementation on page 611, so we omit it. To simplify the file format, we adopt the 
convention that the source is 0 and the sink is V1. These APIs leave a straightforward 
goal for maxflow algorithms: 
build a network, then assign 
values to the flow instance 
variables in the client’s edges 
that maximize flow through 
the network.  Shown at right 
are client methods for certify-
ing whether a flow is feasible. 
Typically, we might do such a 
check as the final action of a 
maxflow algorithm. 

private boolean localEq(FlowNetwork G, int v) 
{  // Check local equilibrium at vertex v.  
   double EPSILON = 1E-11; 
   double netflow = 0.0; 
   for (FlowEdge e : G.adj(v)) 
      if (v == e.from()) netflow -= e.flow(); 
      else               netflow += e.flow();

   return Math.abs(netflow) < EPSILON; 
}

private boolean isFeasible(FlowNetwork G) 
{ 
   // Check that flow on each edge is nonnegative  
   //   and not greater than capacity. 
   for (int v = 0; v < G.V(); v++) 
      for (FlowEdge e : G.adj(v)) 
         if (e.flow() < 0 || e.flow() > e.capacity()) 
            return false;

   // Check local equilibrium at each vertex.  
   for (int v = 0; v < G.V(); v++) 
      if (v != s && v != t && !localEq(v)) 
         return false;

   return true; 
}

Checking that a flow is feasible in a flow network
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public class FlowEdge

FlowEdge(int v, int w, double cap)

int from() vertex this edge points from
int to() vertex this edge points to
int other(int v) other endpoint

double capacity() capacity of this edge
double flow() flow in this edge
double residualCapacityTo(int v) residual capacity toward v

void addResidualFlowTo(int v, double delta) add delta flow toward v
String toString() string representation

apI for edges in a flow network

public class FlowNetwork

FlowNetwork(int V) empty V-vertex flow network
FlowNetwork(In in) construct from input stream

int V() number of vertices
int E() number of edges

void addEdge(FlowEdge e) add e to this flow network
Iterable<FlowEdge> adj(int v) edges pointing from v
Iterable<FlowEdge> edges() all edges in this flow network

String toString() string representation

Flow network apI

Flow network representation

adj[]

0

1

2

3

4

5

0 2 1.03.0 0 1 2.0 2.0

Bag
objects

4 5 1.03.0 3 5 2.0 2.0

4 5 1.03.0 2 4 1.0 1.0 1 4 1.0 0.0

3 5 2.02.0 2 3 1.0 0.0 1 3 3.0 2.0

2 4 1.01.0 2 3 1.0 0.0 0 2 3.0 1.0

1 4 0.01.0 1 3 3.0 2.0 0 1 2.0 2.0

references to the same 
FlowEdge object

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

tinyFN.txt

V

E
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Ford-Fulkerson algorithm  An effective approach to solving max-
flow problems was developed by L. R. Ford and D. R. Fulkerson in 
1962. It is a generic method for increasing flows incrementally along 
paths from source to sink that serves as the basis for a family of algo-
rithms. It is known as the Ford-Fulkerson algorithm in the classical lit-
erature; the more descriptive term augmenting-path algorithm is also 
widely used. Consider any directed path from source to sink through 
an st-flow network. Let x be the minimum of the unused capacities of 
the edges on the path. We can increase the network’s flow value by at 
least x by increasing the flow in all edges on the path by that amount. 
Iterating this action, we get a first attempt at computing flow in a net-
work: find another path, increase the flow along that path, and con-
tinue until all paths from source to sink have at least one full edge (so 
that we can no longer increase flow in this way). This algorithm will 
compute the maxflow in some cases but will fall short in other cases. 
Our introductory example on page 886 is such an example. To im-
prove the algorithm such that it always finds a maxflow, we consider 
a more general way to increase the flow, along a path from source to 
sink through the network’s underlying undirected graph. The edges 
on any such path are either forward edges, which go with the flow 
(when we traverse the path from source to sink, we traverse the edge 
from its source vertex to its destination vertex), or  backward edges, 
which go against the flow (when we traverse the path from source 
to sink, we traverse the edge from its destination vertex to its source 
vertex). Now, for any path from source to sink with no full forward 
edges and no empty backward edges, we can increase the amount of 
flow in the network by increasing flow in forward edges and decreas-
ing flow in backward edges. The amount by which the flow can be 
increased is limited by the minimum of the unused capacities in the 
forward edges and the flows in the backward edges. Such a path is 
called an augmenting path. An example is shown at right. In the new 
flow, at least one of the forward edges along the path becomes full 
or at least one of the backward edges along the path becomes empty. 
The process just sketched is the basis for the classical Ford-Fulkerson 
maxflow algorithm (augmenting-path method). We summarize it as 
follows:  

An augmenting path
(0->2->3->1->4->5)

no path from 0 to 5
without a full edge

add 1 unit of �ow
along 0->2->3

subtract 1 unit of �ow
from 1->3 
(traverse 3->1)

add 1 unit of �ow
along 1->4->5

out of
equlibrium

out of
equlibrium



ptg12441863

892 CONTEXT

Ford-Fulkerson  maxflow algorithm. Start with zero flow everywhere. Increase the 
flow along any augmenting path from source to sink (with no full forward edges or 
empty backward edges), continuing until there are no such paths in the network.

Remarkably (under certain technical conditions about numeric properties of the flow), 
this method always finds a maxflow, no matter how we choose the paths. Like the 
greedy MST algorithm discussed in Section 4.3 and the generic shortest-paths method 
discussed in Section 4.4, it is a generic algorithm that is useful because it establishes 
the correctness of a whole family of more specific algorithms. We are free to use any 
method whatsoever to choose the path. Several algorithms that compute sequences of 
augmenting paths have been developed, all of which lead to a maxflow. The algorithms 
differ in the number of augmenting paths they compute and the costs of finding each 
path, but they all implement the Ford-Fulkerson algorithm and find a maxflow.

Maxflow-mincut theorem  To show that any flow computed by any implementation 
of the Ford-Fulkerson algorithm is indeed a maxflow, we prove a key fact known as the 
maxflow-mincut theorem. Understanding this theorem is a crucial step in understand-
ing network-flow algorithms. As suggested by its name, the theorem is based on a direct 
relationship between flows and cuts in networks, so we begin by defining terms that 
relate to cuts. Recall from Section 4.3 that a cut in a graph is a partition of the vertices 
into two disjoint sets, and a crossing edge is an edge that connects a vertex in one set to 
a vertex in the other set. For flow networks, we refine these definitions as follows:  

Definition. An st-cut is a cut that places vertex s in one of its sets and vertex t in 
the other.

Each crossing edge corresponding to an st-cut is either an st-edge that goes from a ver-
tex in the set containing s to a vertex in the set containing t, or a ts-edge that goes in 
the other direction. We sometimes refer to the set of crossing st-edges as a cut set. The 
capacity of an st-cut in a flow network is the sum of the capacities of that cut’s  st-edges, 
and the flow across an st-cut is the difference between the sum of the flows in that cut’s 
st-edges and the sum of the flows in that cut’s ts-edges. Removing all the st-edges (the 
cut set) in an st-cut of a network leaves no path from s to t, but adding any one of them 
back could create such a path. Cuts are the appropriate abstraction for many applica-
tions. For our oil-flow model, a cut provides a way to completely stop the flow of oil 
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from the source to the sink. If we view the capacity of the cut as the cost of doing so, to 
stop the flow in the most economical manner is to solve the following problem:

Minimum st-cut  Given an st-network, find an st-cut such that the capacity of 
no other cut is smaller. For brevity, we refer to such a cut as a mincut and to the 
problem of finding one in a network as the mincut problem.

The statement of the mincut problem includes no mention of flows, and these defini-
tions might seem to digress from our discussion of the augmenting-path algorithm. 
On the surface, computing a mincut (a set of edges) seems easier than computing a 
maxflow (an assignment of weights to all the edges). On the contrary, the maxflow and 
mincut problems are intimately related. The augmenting-path method itself provides 
a proof. That proof rests on the following basic relationship between flows and cuts, 
which immediately gives a proof that local equilibrium in an st-flow implies global 
equilibrium as well (the first corollary) and an upper bound on the value of any st-flow 
(the second corollary):

proposition E. For any st-flow, the flow across each st-cut 
is equal to the value of the flow.

proof: Let Cs be the vertex set containing s and Ct the 
vertex set containing t. This fact follows immediately by 
induction on the size of Ct.  The property is true by defi-
nition when Ct is t and when a vertex is moved from Cs to 
Ct , local equilibrium at that vertex implies that the stated 
property is preserved. Any st-cut can be created by mov-
ing vertices in this way.

corollary. The outflow from s is equal to the inflow to t (the value of the  st-flow).

proof: Let Cs be { s }.

corollary. No st-flow’s value can exceed the capacity of any st-cut.

Cs

Ct

inflow to t is
value of the flow

difference between
inflow and outflow
is flow across cut

s

t
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proposition F. (maxflow-mincut theorem) Let f  be an st-flow.  The following three 
conditions are equivalent:

i. There exists an st-cut whose capacity equals the value of the flow f.
ii. f is a maxflow.
iii. There is no augmenting path with respect to f.

proof:  Condition i. implies condition ii. by the corollary to Proposition E. Con-
dition ii. implies condition iii. because the existence of an augmenting path implies 
the existence of a flow with a larger flow value, contradicting the maximality of f.

It remains to prove that condition iii. implies condition i. Let Cs be the set of all 
vertices that can be reached from s with an undirected path that does not contain a 
full forward or empty backward edge, and let Ct be the remaining vertices. Then, t
must be in Ct , so (Cs , Ct) is an st-cut, whose cut set consists entirely of full forward 
or empty backward edges. The flow across this cut is equal to the cut’s capacity 
(since forward edges are full and the backward edges are empty) and also to the 
value of the flow (by Proposition E).

corollary. (integrality property) When capacities are integers, there exists an inte-
ger-valued maxflow, and the Ford-Fulkerson algorithm finds it.

proof:  Each augmenting path increases the flow by a positive integer (the mini-
mum of the unused capacities in the forward edges and the flows in the backward 
edges, all of which are always positive integers). 

It is possible to design a maxflow with noninteger flows, even when capacities are all 
integers, but we do not need to consider such flows. From a theoretical standpoint, this 
observation is important: allowing capacities and flows that are real numbers, as we 
have done and as is common in practice, can lead to unpleasant anomalous situations. 
For example, it is known that the Ford-Fulkerson algorithm could, in principle, lead to 
an infinite sequence of augmenting paths that does not even converge to the maxflow 
value.  The version of the algorithm that we consider is known to always converge, even 
when capacities and flows are real-valued. No matter what method we choose to find an 
augmenting path and no matter what paths we find, we always end up with a flow that 
does not admit an augmenting path, which therefore must be a maxflow.
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Residual network  The generic Ford-Fulkerson algorithm does not specify any par-
ticular method for finding an augmenting path. How can we find a path with no full 
forward edges and no empty backward edges? To this end, we begin with the following 
definition:  

Definition. Given a st-flow network and an st-flow, the residual network for the 
flow has the same vertices as the original and one or two edges in the residual net-
work for each edge in the original, defined as follows: For each edge e from v to w in 
the original, let fe  be its flow and ce its capacity. If fe is positive, include an edge w->v 
in the residual with capacity fe ; and if fe is less than ce, include an edge v->w in the 
residual with capacity ce  fe .

If an edge e from v to w is empty (fe is equal to 0), there is a single corresponding edge 
v->w with capacity ce in the residual; if it is full (fe is equal to ce), there is a single cor-
responding edge w->v with capacity fe in the residual; and if it is neither empty nor full, 
both v->w and w->v are in the residual with their respective capacities. An example is 
shown at the bottom of this page. At first, the residual network representation is a bit 
confusing because the edges corresponding to flow go in the opposite direction of the 
flow itself. The forward edges represent the remaining capacity (the amount of flow we 
can add if traversing that edge); the backward edges represent the flow (the amount of 
flow we can remove if traversing that edge).  The code on page 896 gives the meth-
ods in the FlowEdge class that we need to implement the residual network abstrac-
tion. With these implementations, our algorithms work with the residual network, but 
they are actually examining capacities and changing flow (through edge references) 
in the client’s edges. The methods from() and other() allow us to process edges in 

Anatomy of a network-�ow problem (revisited)

flow
forward edge

(remaining capacity)

capacity

backward edge
(flow)

0 1  2.0  2.0
0 2  3.0  1.0
1 3  3.0  2.0
1 4  1.0  0.0
2 3  1.0  0.0
2 4  1.0  1.0
3 5  2.0  2.0
4 5  3.0  1.0

residual networkdrawing with �ow �ow representation

2.0

1.0

2.0

1.0

1.0
2.0

1.0
2.0

2.0 1.0

1.0
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Flow edge data type (residual network)

public class FlowEdge 
{ 
   private final int v;                       // edge source 
   private final int w;                       // edge target 
   private final double capacity;             // capacity 
   private double flow;                       // flow

   public FlowEdge(int v, int w, double capacity) 
   { 
      this.v = v; 
      this.w = w; 
      this.capacity = capacity; 
      this.flow = 0.0; 
   }

   public int from()         {  return v;          } 
   public int to()           {  return w;          } 
   public double capacity()  {  return capacity;   } 
   public double flow()      {  return flow;       }

   public int other(int vertex) 
   // same as for Edge

   public double residualCapacityTo(int vertex) 
   { 
      if      (vertex == v) return flow; 
      else if (vertex == w) return capacity - flow; 
      else throw new RuntimeException("Inconsistent edge");

   }

   public void addResidualFlowTo(int vertex, double delta) 
   { 
      if      (vertex == v) flow -= delta; 
      else if (vertex == w) flow += delta; 
      else throw new RuntimeException("Inconsistent edge");

   }

   public String toString() 
   {  return String.format("%d->%d %.2f %.2f", v, w, capacity, flow);  } 
}

This FlowEdge implementation adds to the Edge implementation of Section 4.3 (see page 610) a 
flow instance variable and two methods to implement the residual flow network.
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either orientation: e.other(v) returns the endpoint of e that is not v. The methods 
residualCapacityTo() and addResidualFlowTo() implement the residual network. 
Residual networks allow us to use graph search to find an augmenting path, since any 
path from source to sink in the residual network corresponds directly to an augment-
ing path in the original network. Increasing the flow along the path implies making 
changes in the residual network: for example, at least one edge on the path becomes 
full or empty, so at least one edge in the residual network changes direction or disap-
pears (but our use of an abstract residual network means that we just check for positive 
capacity and do not need to actually insert and delete edges). 

Shortest-augmenting-path method  Perhaps the simplest Ford-Fulkerson implemen-
tation is to use a shortest augmenting path (as measured by the number of edges on the 
path, not flow or capacity). This method was suggested by J. Edmonds and R. Karp in 1972. 
In this case, the search for an augmenting path amounts to breadth-first search (BFS) in 
the residual network, precisely as described in Section 4.1, as you can see by compar-
ing the hasAugmentingPath() implementation below to our breadth-first search im-
plemention in Algorithm 4.2 on page 540 (the residual graph is a digraph, and this 
is fundamentally a digraph processing algorithm, as mentioned on page 685). This 
method forms the 
basis  for the full 
implementation 
in Algorithm 
6.3 on the next 
page, a remark-
ably concise 
implementation 
based on the tools 
we have devel-
oped. For brevity, 
we refer to this 
method as the 
shortest-augment-
ing-path maxflow 
algorithm. A trace 
for our example 
is shown in detail 
on page 899.

private boolean hasAugmentingPath(FlowNetwork G, int s, int t) 
{ 
   marked = new boolean[G.V()];  // Is path to this vertex known? 
   edgeTo = new FlowEdge[G.V()]; // last edge on path 
   Queue<Integer> q = new Queue<Integer>();

   marked[s] = true;             // Mark the source 
   q.enqueue(s);                 //   and put it on the queue. 
   while (!q.isEmpty())  
   { 
      int v = q.dequeue(); 
      for (FlowEdge e : G.adj(v)) 
      { 
         int w = e.other(v); 
         if (e.residualCapacityTo(w) > 0 && !marked[w]) 
         {  // For every edge to an unmarked vertex (in residual) 
            edgeTo[w] = e;      // Save the last edge on a path. 
            marked[w] = true;   // Mark w because a path is known 
            q.enqueue(w);       //   and add it to the queue. 
         } 
      } 
   } 
   return marked[t]; 
}

Finding an augmenting path in the residual network via breadth-first search
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aLgorIthM 6.3 Ford-Fulkerson shortest-augmenting path maxflow algorithm

public class FordFulkerson 
{ 
   private boolean[] marked;    // Is s->v path in residual graph? 
   private FlowEdge[] edgeTo;   // last edge on shortest s->v path 
   private double value;        // current value of maxflow

   public FordFulkerson(FlowNetwork G, int s, int t) 
   {  // Find maxflow in flow network G from s to t.

      while (hasAugmentingPath(G, s, t)) 
      {  // While there exists an augmenting path, use it.

         // Compute bottleneck capacity. 
         double bottle = Double.POSITIVE_INFINITY; 
         for (int v = t; v != s; v = edgeTo[v].other(v)) 
            bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v));

         // Augment flow. 
         for (int v = t; v != s; v = edgeTo[v].other(v)) 
            edgeTo[v].addResidualFlowTo(v, bottle);

         value += bottle; 
      } 
   }

   public double value()        {  return value;      } 
   public boolean inCut(int v)  {  return marked[v];  }

   public static void main(String[] args) 
   { 
      FlowNetwork G = new FlowNetwork(new In(args[0])); 
      int s = 0, t = G.V() - 1; 
      FordFulkerson maxflow = new FordFulkerson(G, s, t);

      StdOut.println("Max flow from " + s + " to " + t); 
      for (int v = 0; v < G.V(); v++) 
         for (FlowEdge e : G.adj(v)) 
            if ((v == e.from()) && e.flow() > 0) 
               StdOut.println("   " + e); 
      StdOut.println("Max flow value = " +  maxflow.value());

   } 
}

This implementation of the Ford-Fulkerson algorithm finds the shortest augmenting path in the 
residual network, finds the bottleneck capacity in that path, and augments the flow along that path, 
continuing until no path from source to sink exists.
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% java FordFulkerson tinyFN.txt   
Max flow from 0 to 5 
  0->2 3.0 2.0 
  0->1 2.0 2.0 
  1->4 1.0 1.0 
  1->3 3.0 1.0 
  2->3 1.0 1.0 
  2->4 1.0 1.0 
  3->5 2.0 2.0 
  4->5 3.0 2.0 
Max flow value = 4.0

Trace of augmenting-path Ford-Fulkerson algorithm

add 2 units of �ow
along 0->1->3->5

add 1 unit of �ow
along 0->2->4->5

add 1 unit of �ow
along 0->2->3->1->4->5

initial empty network residual network

st-cut

1.0

1.0
2.0

2.0

2.0

1.0

3.0

1.0

3.0

3.0

1.0

3.0

1.0

1.0

2.0

2.0

3.0

2.0

1.0

2.0

1.0

1.0
2.0

1.0
2.0

2.0 1.0

1.0

1.0

1.0

1.0
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1.0
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Performance  A larger example is shown in the figure above. As is evident from the 
figure, the lengths of the augmenting paths form a nondecreasing sequence.  This fact 
is a first key to analyzing the performance of the algorithm.  

proposition G. The number of augmenting paths needed in the shortest-augment-
ing-path implementation of the Ford-Fulkerson maxflow algorithm for a flow net-
work with V vertices and E edges is at most EV /2.

proof sketch: Every augmenting path has a critical edge—an edge that is deleted 
from the residual network because it corresponds either to a forward edge that be-
comes filled to capacity or a backward edge that is emptied. Each time an edge is a 
critical edge, the length of the augmenting path through it must increase by 2 (see 
Exercise 6.39). Since an augmenting path is of length at most V each edge can be 
on at most V/2 augmenting paths, and the total number of augmenting paths is at 
most EV/2.

Shortest augmenting paths in a larger �ow network



ptg12441863

901Network-flow algorithms 

corollary. The shortest-augmenting-path implementation of the Ford-Fulkerson 
maxflow algorithm takes time proportional to VE 2 in the worst case.

proof: Breadth-first search examines at most E edges.

The upper bound of Proposition G is very conservative. For example, the graph shown 
in the figure at the top of page 900 has 14 vertices and 27 edges, so the bound says that 
the algorithm uses no more than 189 augmenting paths. In fact, it uses 14.

Other implementations  Another Ford-Fulkerson implementation, suggested by Ed-
monds and Karp, is the following: Augment along the path that increases the flow by 
the largest amount. For brevity, we refer to this method as the maximum-capacity-
augmenting-path maxflow algorithm. We can implement this (and other approaches) 
by using a priority queue and slightly modifying our implementation of Dijkstra’s 
shortest-paths algorithm, choosing edges from the priority queue to give the maximum 
amount of flow that can be pushed through a forward edge or diverted from a back-
ward edge. Or, we might look for a longest augmenting path, or make a random choice. 
A complete analysis establishing which method is best is a complex task, because their 
running times depend on

n		 The number of augmenting paths needed to find a maxflow
n		 The time needed to find each augmenting path

These quantities can vary widely, depending on the network being processed and on 
the graph-search strategy. Several other approaches to solving the maxflow problem 
have also been devised, some of which compete well with the Ford-Fulkerson algo-
rithm in practice. Developing a mathematical model of maxflow algorithms that can 
validate such hypotheses, however, is a significant challenge. The analysis of maxflow 
algorithms remains an interesting and active area of research. From a theoretical stand-
point, worst-case performance bounds for numerous maxflow algorithms have been 
developed, but the bounds are generally substantially higher than the actual costs ob-
served in applications and also quite a bit higher than the trivial (linear-time) lower 
bound. This gap between what is known and what is possible is larger than for any 
other problem that we have considered (so far) in this book.
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Computing a minimum st-cut  Remarkably, the Ford-Fulkerson algorithm computes 
not only a maximum st-flow but also a minimum st-cut. The augmenting path algo-
rithm terminates when there are no more augmenting paths with respect to the flow 
f. Upon termination, let Cs be the set of all vertices that can be reached from s with an 
undirected path that does not contain a full forward or empty backward edge, and let 
Ct be the remaining vertices. Then, as in the proof of Proposition F, (Cs , Ct) is a mini-
mum st-cut. Algorithm 6.3 provides an inCut() method that identifies the vertices 
on the s-side of the mincut. It accomplishes this by using the information left over in 
marked[] from the last call to hasAugmentingPath().

The practical application of maxflow algorithms remains both an art and a science. 
The art lies in picking the strategy that is most effective for a given practical situation; 
the science lies in understanding the essential nature of the problem. Are there new data 
structures and algorithms that can solve the maxflow problem in linear time, or can we 
prove that none exist? 

algorithm

worst-case order of growth 
of running time 

 for V vertices and E edges 
with integral capacities (max C)

Ford-Fulkerson 
shortest augmenting path VE 2

Ford-Fulkerson 
maximum-capacity augmenting path E 2 log C

preflow-push E V log (E / V 2)

possible ? V  + E ?

performance characteristics of maxflow algorithms
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Reduction Throughout this book, we have focused on articulating specific prob-
lems, then developing algorithms and data structures to solve them. In several cases 
(many of which are listed below), we have found it convenient to solve a problem by 
formulating it as an instance of another problem that we have already solved. Formal-
izing this notion is a worthwhile starting point for studying relationships among the   
diverse problems and algorithms that we have studied. 

Definition. We say that a problem A reduces to another problem B if we can use an 
algorithm that solves B to develop an algorithm that solves A.

This concept is certainly a familiar one in software development: when you use a library 
method to solve a problem, you are reducing your problem to the one solved by the li-
brary method. In this book, we have informally referred to problems that we can reduce 
to a given problem as applications.

Sorting reductions  We first encountered reduction in Chapter 2, to express the idea 
that an efficient sorting algorithm is useful for efficiently solving many other problems, 
that may not seem to be at all related to sorting. For example, we considered the follow-
ing problems, among many others:

Finding the median  Given a set of numbers, find the median value.

Distinct values  Determine the number of distinct values in a set of numbers.

Scheduling to minimize average completion time  Given a set of jobs of speci-
fied duration to be completed, how can we schedule the jobs on a single processor 
so as to minimize their average completion time?

proposition H. The following problems reduce to sorting:
n	 Finding the median
n	 Counting distinct values
n	 Scheduling to minimize average completion time

proof: See page 345 and Exercise 2.5.12.

Now, we have to pay attention to cost when doing a reduction. For example, we can find 
the median of a set of numbers in linear time, but using the reduction to sorting will 
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end up costing linearithmic time. Even so, such extra cost might be acceptable, since we 
can use an existing sort implementation. Sorting is valuable for three reasons:

n	 It is useful in its own right.
n	 We have efficient algorithms for solving it.
n	 Many problems reduce to it.

Generally, we refer to a problem with these properties as a problem-solving model. Like 
well-engineered software libraries, well-designed problem-solving models can greatly 
expand the universe of problems that we can efficiently address. One pitfall in focusing 
on problem-solving models is known as Maslow’s hammer, an idea widely attributed 
to A. Maslow in the 1960s: If all you have is a hammer, everything seems to be a nail. By 
focusing on a few problem-solving models, we may use them like Maslow’s hammer 
to solve every problem that comes along, depriving ourselves of the opportunity to 
discover better algorithms to solve the problem, or even new problem-solving models. 
While the models we consider are important, powerful, and broadly useful, it is also 
wise to consider other possibilities.

Shortest-paths reductions  In Section 4.4, we revisited the idea of reduction in the 
context of shortest-paths algorithms. We considered the following problems, among 
many  others:

Single-source shortest paths in undirected graphs  Given an edge-weighted un-
directed graph with nonnegative weights and a source vertex s, support queries of 
the form Is there a path from s to a given target vertex v? If so, find a shortest such 
path (one whose total weight is minimal).

Parallel precedence-constrained scheduling  Given a set of jobs of specified du-
ration to be completed, with precedence constraints that specify that certain jobs 
have to be completed before certain other jobs are begun, how can we schedule 
the jobs on identical processors (as many as needed) such that they are all com-
pleted in the minimum amount of time while still respecting the constraints?

Arbitrage  Find an arbitrage opportunity in a given table of currency-conversion 
rates.

Again, the latter two problems do not seem to be directly related to shortest-paths 
problems, but we saw that shortest paths is an effective way to address them. These ex-
amples, while important, are merely indicative. A large number of important problems, 
too many to survey here, are known to reduce to shortest paths—it is an effective and 
important problem-solving model.
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proposition i. The following problems reduce to shortest paths in weighted 
digraphs:

n	 Single-source shortest paths in undirected graphs with nonnegative weights
n	 Parallel precedence-constrained scheduling
n	 Arbitrage
n	 [many other problems]

proof examples: See page 654, page 665, and page 680.

Maxflow reductions  Maxflow algorithms are also important in a broad context. We 
can remove various restrictions on the flow network and solve related flow problems; we 
can solve other network- and graph-processing problems; and we can solve problems 
that are not network problems at all.  For example, consider the following problems.

Job placement  A college’s job-placement office arranges interviews for a set of 
students with a set of companies; these interviews result in a set of job offers. As-
suming that an interview followed by a job offer represents mutual interest in the 
student taking a job at the company, it is in everyone’s best interests to maximize 
the number of job placements. Is it possible to match every student with a job?  
What is the maximum number of jobs that can be filled?

Product distribution  A company that manufactures a single product has fac-
tories, where the product is produced; distribution centers, where the product is 
stored temporarily; and retail outlets, where the product is sold.  The company 
must distribute the product from factories through distribution centers to retail 
outlets on a regular basis, using distribution channels that have varying capacities. 
Is it possible to get the product from the warehouses to the retail outlets such that 
supply meets demand everywhere? 

Network reliability  A simplified model considers a computer network as con-
sisting of a set of trunk lines that connect computers through switches such that 
there is the possibility of a switched path through trunk lines connecting any two 
given computers.  What is the minimum number of trunk lines that can be cut to 
disconnect some pair of computers? 

Again, these problems seem to be unrelated to one another and to flow networks, but 
they all reduce to maxflow.
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proposition J. The following problems reduce to the maxflow problem:

n	 Job placement
n	 Product distribution
n	 Network reliability
n	 [many other problems]

proof example: We prove the first (which is known as the maximum bipartite 
matching problem) and leave the others for exercises. Given a job-placement prob-
lem, construct an instance of the maxflow problem by directing all edges from 
students to companies, adding a source vertex with edges directed to all the stu-
dents and adding a sink vertex with edges directed from all the companies. Assign 
each edge capacity 1. Now, any integral solution to the maxflow problem for this 
network provides a solution to the corresponding bipartite matching problem (see 
the corollary to Proposition F). The matching corresponds exactly to those edges 
between vertices in the two sets that are filled to capacity by the maxflow algorithm. 
First, the network flow always gives a legal matching: since each vertex has an edge 
of capacity 1 either coming in (from the source) or going out (to the sink), at most 
1 unit of flow can go through each vertex, implying in turn that each vertex will be 
included at most once in the matching. Second, no matching can have more edges, 
since any such matching would lead directly to a better flow than that produced by 
the maxflow algorithm. 
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For example, as illustrated in the figure at right, an augmenting-path max-
flow algorithm might use the paths s->1->7->t, s->2->8->t, s->3->9->t, 
s->5->10->t, s->6->11->t, and s->4->7->1->8->2->12->t to compute 
the matching 1-8, 2-12, 3-9, 4-7, 5-10, and 6-11. Thus, there is a way to 
match all the students to jobs in our example. Each augmenting path fills 
one edge from the source and one edge into the sink. Note that these edges 
are never used as back edges, so there are at most V augmenting paths and 
a total running time proportional to VE. 

Shortest paths and maxflow are important problem-solving models 
because they have the same properties that we articulated for sorting:

n	 They are useful in their own right.
n	 We have efficient algorithms for solving them.
n	 Many problems reduce to them.

This short discussion serves only to introduce the idea. If you take a course 
in operations research, you will learn many other problems that reduce to 
these and many other problem-solving models.

Linear programming  One of the cornerstones of operations research is 
linear programming (LP). It refers to the idea of reducing a given problem 
to the following mathematical formulation: 

Linear programming  Given a set of M linear inequalities and linear 
equations involving N variables, and a linear objective function of the N
variables, find an assignment of values to the variables that maximizes 
the objective function, or report that no feasible assignment exists.

Linear programming is an extremely important prob-
lem-solving model because
								n	 A great many important problems reduce to 
        linear programming
								n	 We have efficient algorithms for solving linear- 
        programming problems
The “useful in its own right” phrase is not needed 
in this litany that we have stated for other problem-
solving models because so many practical problems 
reduce to linear programming. 

path with 
back edges

Augmenting paths for
bipartite matching

LP example

0 �  a � 2

0 �  b � 3

0 �  c � 3

0 �  d � 1

0 �  e � 1

0 �  f � 1

0 �  g � 2

0 �  h � 3

a = c + d 

b = e + f 

c + e = g

d + f = h 

Maximize f  + h
subject to the constraints
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proposition k. The following problems reduce to linear programming
n	 Maxflow
n	 Shortest paths
n	 [many, many other problems]

proof example: We prove the first and leave the second to Exercise 6.50. We con-
sider a system of inequalities and equations that involve one variable correspond-
ing to each edge, two inequalities corresponding to each edge, and one equation 
corresponding to each vertex (except the source and the sink). The value of the 
variable is the edge flow, the inequalities specify that the edge flow must be between 
0 and the edge’s capacity, and the equations specify that the total flow on the edges 
that go into each vertex must be equal to the total flow on the edges that go out of 
that vertex. Any max flow problem can be converted into an instance of a linear 
programming problem in this way, and the solution is easily converted to a solution 
of the maxflow problem. The illustration below gives the details for our example.

Example of reducing network �ow to linear programming

LP solution

max�ow problem max�ow solution

LP formulation

capacities

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

V
E

0  � x 01 � 2

0  � x 02 � 3

0  � x 13 � 3

0  � x 14 � 1

0  � x 23 � 1

0  � x 24 � 1

0  � x 35 � 2

0  � x 45 � 3

x 01 = x 13 + x 14 

x 02 = x 23 + x 24 

x 13 + x 23 = x 35 

x 14 + x 24 = x 45 

Maximize x 35+ x 45
subject to the constraints

x 01 =  2

x 02 =  2

x 13 =  1

x 14 =  1

x 23 =  1

x 24 =  1

x 35 =  2

x 45 =  2

Max flow from 0 to 5

  0->2 3.0 2.0

  0->1 2.0 2.0

  1->4 1.0 1.0

  1->3 3.0 1.0

  2->3 1.0 1.0

  2->4 1.0 1.0

  3->5 2.0 2.0

  4->5 3.0 2.0

Max flow value: 4.0
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The  “many, many other problems” in the statement of Proposition K refers to three 
ideas. First, it is very easy to extend a model and to add constraints. Second, reduction 
is transitive, so all the problems that reduce to shortest paths and maximum flow also 
reduce to linear programming. Third, and more generally, optimization problems of all 
sorts can be directly formulated as linear programming problems. Indeed, the term lin-
ear programming means “formulate an optimization problem as a linear programming 
problem.” This use predates the use of the word programming for computers. Equally 
important as the idea that a great many problems reduce to linear programming is the 
fact that efficient algorithms have been known for linear programming for many de-
cades. The most famous, developed by G. Dantzig in the 1940s, is known as the simplex 
algorithm.  Simplex is not difficult to understand (see the bare-bones implementation 
on the booksite). More recently, the ellipsoid algorithm presented by L. G. Khachian in 
1979 led to the development of interior point methods in the 1980s that have proven to 
be an effective complement to the simplex algorithm for the huge linear programming 
problems that people are solving in modern applications. Nowadays, linear program-
ming solvers are robust, extensively tested, efficient, and critical to the basic operation 
of modern corporations. Uses in scientific contexts and even in applications program-
ming are also greatly expanding. If you can model your problem as a linear program-
ming problem, you are likely to be able to solve it.  

In a very real sense, linear programming is the parent of problem-solving 
models, since so many problems reduce to it. Naturally, this idea leads to the question 
of whether there is an even more powerful problem-solving model than linear pro-
gramming. What sorts of problems do not reduce to linear programming?  Here is an 
example of such a problem:

Load balancing  Given a set of jobs of specified duration to be completed, how 
can we schedule the jobs on two identical processors so as to minimize the com-
pletion time of all the jobs?

Can we articulate a more general problem-solving model and solve instances of prob-
lems within that model efficiently? This line of thinking leads to the idea of intractabil-
ity, our last topic.
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Intractability The algorithms that we have studied in this book generally are used 
to solve practical problems and therefore consume reasonable amounts of resources.   
The practical utility of most of the algorithms is obvious, and for many problems we 
have the luxury of several efficient algorithms to choose from. Unfortunately, many 
other problems arise in practice that do not admit such efficient solutions. What’s 
worse, for a large class of such problems we cannot even tell whether or not an effi-
cient solution exists. This state of affairs has been a source of extreme frustration for 
programmers and algorithm designers, who cannot find any efficient algorithm for a 
wide range of practical problems, and for theoreticians, who have been unable to find 
any proof that these problems are difficult. A great deal of research has been done in 
this area and has led to the development of mechanisms by which new problems can 
be classified as being “hard to solve” in a particular technical sense. Though much of 
this work is beyond the scope of this book, the central ideas are not difficult to learn. 
We introduce them here because every programmer, when faced with a new problem, 
should have some understanding of the possibility that there exist problems for which 
no one knows any algorithm that is guaranteed to be efficient.

Groundwork  One of the most beautiful and intriguing intellectual discoveries of 
the 20th century, developed by A. Turing in the 1930s, is the Turing machine, a simple 
model of computation that is general enough to embody any computer program or 
computing device. A Turing machine is a finite-state machine that can read inputs, 
move from state to state, and write outputs. Turing machines form the foundation of 
theoretical computer science, starting with the following two ideas:

n	 Universality .  All physically realizable computing devices can be simulated by a 
Turing machine. This idea is known as the Church-Turing thesis. This is a state-
ment about the natural world and cannot be proven (but it can be falsified). The 
evidence in favor of the thesis is that mathematicians and computer scientists 
have developed numerous models of computation, but they all have been proven 
equivalent to the Turing machine.

n	 Computability . There exist problems that cannot be solved by a Turing machine 
(or by any other computing device, by universality). This is a mathematical 
truth. The halting problem (no program can guarantee to determine whether a 
given program will halt) is a famous example of such a problem.

In the present context, we are interested in a third idea, which speaks to the efficiency 
of computing devices: 

n	 Extended Church-Turing thesis . The order of growth of the running time of a 
program to solve a problem on any computing device is within a polynomial 
factor of some program to solve the problem on a Turing machine (or any other 
computing device). 
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Again, this is a statement about the natural world, buttressed by the idea that all known 
computing devices can be simulated by a Turing machine, with at most a polynomial 
factor increase in cost. In recent years, the idea of quantum computing has given some 
researchers reason to doubt the extended Church-Turing thesis. Most agree that, from a 
practical point of view, it is probably safe for some time, but many researchers are hard 
at work on trying to falsify the thesis.

Exponential running time  The purpose of the theory of intractability is to separate 
problems that can be solved in polynomial time from problems that (probably) require 
exponential time to solve in the worst case. It is useful to think of an exponential-time 
algorithm as one that, for some input of size N, takes time proportional to 2N (at least). 
The substance of the argument does not change if we replace 2 by any number a > 1. 
We generally take as granted that an exponential-time algorithm cannot be guaranteed 
to solve a problem of size 100 (say) in a reasonable amount of time, because no one 
can wait for an algorithm to take 2100 steps, regardless of the speed of the computer. 
Exponential growth dwarfs technological changes: a supercomputer may be a trillion 
times faster than an abacus, but neither can come close to solving a problem that re-
quires 2100 steps. Sometimes the 
line between “easy” and “hard” 
problems is a fine one. For ex-
ample, we studied an algorithm   
in Section 4.1 that can solve the 
following problem: 

Shortest-path length  What 
is the length of the shortest 
path from a given vertex s to a 
given vertex t in a given graph?

But we did not study algorithms 
for the following problem, which 
seems to be virtually the same: 

Longest-path length  What 
is the length of the longest 
simple path from a given ver-
tex s to a given vertex t in a 
given graph?

public class LongestPath 
{ 
   private boolean[] marked; 
   private int max; 

   public LongestPath(Graph G, int s, int t) 
   {   
      marked = new boolean[G.V()]; 
      dfs(G, s, t, 0); 
   }

   private void dfs(Graph G, int v, int t, int i) 
   { 
      if (v == t && i > max) max = i; 
      if (v == t) return; 
      marked[v] = true; 
      for (int w : G.adj(v)) 
         if (!marked[w]) dfs(G, w, t, i+1); 
      marked[v] = false; 
   }

   public int maxLength() 
   {  return max;  }

}

Finding the length of the longest path in a graph
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The crux of the matter is this: as far as we know, these problems are nearly at opposite 
ends of the spectrum with respect to difficulty. Breadth-first search yields a solution for 
the first problem in linear time, but all known algorithms for the second problem take 
exponential time in the worst case. The code at the bottom of the previous page shows a 
variant of depth-first search that accomplishes the task. It is quite similar to depth-first 
search, but it examines all simple paths between s and t in the graph to find the longest 
one.

Search problems  The great disparity between problems that can be solved with “ef-
ficient” algorithms of the type we have been studying in this book and problems where 
we need to look for a solution among a potentially huge number of possibilities makes 
it possible to study the interface between them with a simple formal model. The first 
step is to characterize the type of problem that we study:

Definition. A search problem is a problem having solutions with the property that 
the time needed to certify that any solution is correct is bounded by a polynomial in 
the size of the input. We say that an algorithm solves a search problem if, given any 
input, it either produces a solution or reports that none exists.

Four particular problems that are of interest in our discussion of intractability are 
shown at the top of the facing page. These problems are known as satisfiability prob-
lems. Now, all that is required to establish that a problem is a search problem is to show 
that any solution is sufficiently well-characterized that you can efficiently certify that 
it is correct. Solving a search problem is like searching for a “needle in a haystack” with 
the sole proviso that you can recognize the needle when you see it. For example, if you 
are given an assignment of values to variables in each of the satisfiability problems at 
the top of page 913, you easily can certify that each equality or inequality is satisfied, but 
searching for such an assignment is a totally different task. The name np is commonly 
used to describe search problems—we will describe the reason for the name on page 914: 

Definition. np is the set of all search problems.

np is nothing more than a precise characterization of all the problems that scientists, 
engineers, and applications programmers aspire to solve with programs that are guar-
anteed to finish in a feasible amount of time. 
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Linear equation satisfiability  Given a set of M linear equations involving N
variables, find an assignment of values to the variables that satisfies all of the 
equations, or report that none exists.

Linear inequality satisfiability (search formulation of linear program-
ming)  Given a set of M linear inequalities involving N variables, find an assign-
ment of values to the variables that satisfies all of the inequalities, or report that 
none exists.

0-1 integer linear inequality satisfiability (search formulation of 0-1 integer 
linear programming)  Given a set of M linear inequalities involving N integer
variables, find an assignment of the values 0 or 1 to the variables that satisfies all 
of the inequalities, or report that none exists.

Boolean satisfiability  Given a set of M equations involving and and or opera-
tions on N boolean variables, find an assignment of values to the variables that 
satisfies all of the equations, or report that none exists.

Selected search problems

Other types of problems  The concept of search problems is one of many ways to char-
acterize the set of problems that form the basis of the study of intractability. Other 
possibilities are decision problems (does a solution exist?) and optimization problems 
(what is the best solution?). For example, the longest-paths length problem on page 
911 is an optimization problem, not a search problem (given a solution, we have no 
way to verify that it is a longest-path length). A search version of this problem is to find
a simple path connecting all the vertices (this problem is known as the Hamiltonian 
path problem). A decision version of the problem is to ask whether there exists a simple 
path connecting all the vertices. Arbitrage, boolean satisfiability, and Hamiltonian path 
are search problems; to ask whether a solution exists to any of these problems is a de-
cision problem; and shortest/longest paths, maxflow, and linear programming are all 
optimization problems. While not technically equivalent, search, decision, and optimi-
zation problems typically reduce to one another (see Exercise 6.58 and 6.59) and the 
main conclusions we draw apply to all three types of problems. 
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Easy search problems  The definition of np says nothing about the difficulty of finding
the solution, just certifying that it is a solution. The second of the two sets of problems 
that form the basis of the study of intractability, which is known as p, is concerned with 
the difficulty of finding the solution. In this model, the efficiency of an algorithm is a 
function of the number of bits used to encode the input.

Definition. p is the set of all search problems that can be solved in polynomial time.

Implicit in the definition is the idea that the polynomial time bound is a worst-case 
bound. For a problem to be in p, there must exist an algorithm that can guarantee to 
solve it in polynomial time. Note that the polynomial is not specified at all. Linear, lin-
earithmic, quadratic, and cubic are all polynomial time bounds, so this definition cer-
tainly covers the standard algorithms we have studied so far. The time taken by an algo-
rithm depends on the computer used, but the extended Church-Turing thesis renders 
that point moot—it says that a polynomial-time solution on any computing device 
implies the existence of a polynomial-time solution on any other computing device. 
Sorting belongs to p because (for example) insertion sort runs in time proportional to
N 2 (the existence of linearithmic sorting algorithms is not relevant in this context), as 
does shortest paths, linear equation satisfiability, and many others. Having an efficient 
algorithm to solve a problem is a proof that the problem is in p. In other words, p is 
nothing more than a precise characterization of all the problems that scientists, engi-
neers, and applications programmers do solve with programs that are guaranteed to 
finish in a feasible amount of time.

Nondeterminism  The n in np stands for nondeterminism. It represents the idea that 
one way (in theory) to extend the power of a computer is to endow it with the power 
of nondeterminism: to assert that when an algorithm is faced with a choice of several 
options, it has the power to “guess” the right one.  For the purposes of our discus-
sion, we can think of an algorithm for a nondeterministic machine as “guessing” the 
solution to a problem, then certifying that the solution is valid. In a Turing machine, 
nondeterminism is as simple as defining two different successor states for a given state 
and a given input and characterizing solutions as all legal paths to the desired result. 
Nondeterminism may be a mathematical fiction, but it is a useful idea. For example, 
in Section 5.4, we used nondeterminism as a tool for algorithm design—our regular 
expression pattern-matching algorithm is based on efficiently simulating a nondeter-
ministic machine. 
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problem input description poly-time 
algorithm instance solution

Hamiltonian 
path graph G

find a simple path that 
visits every vertex

? 0-2-1-3

factoring integer x
find a nontrivial

factor of x
? 97605257271 8784561

0-1 linear 
inequality 

satisfiability

N 0-1 variables 

M inequalities

assign values to the 
variables that 

satisfy the inequalities
?

x  y  1 
2x  z  2  
x + y  2 

z  0

x  = 1 
y = 1 
z = 0

all problems 
in P see table below

examples of problems in np

problem input description poly-time 
algorithm instance solution

shortest st-path
graph G 

vertices s, t
find the shortest path

from s to t
BFS

s

t

0-3

sorting array a
find a permutation

that puts a in 
ascending order

mergesort 2.8 8.5 4.1 1.3 3 0 2 1

linear equation 
satisfiability

N variables 

M equations

assign values to the 
variables that 

satisfy the equations

Gaussian
elimination

x + y = 1.5 
2x  y = 0

x  = 0.5 
y = 1

linear 
inequality 

satisfiability

N variables 

M inequalities

assign values to the 
variables that 

satisfy the inequalities
ellipsoid

x  y  1.5 
2x  z  0  
x + y  3.5 

z  4.0

x  = 2.0 
y = 1.5 
z = 4.0

examples of problems in p
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The main question  Nondeterminism is such a powerful notion that it seems almost 
absurd to consider it seriously. Why bother considering an imaginary tool that makes 
difficult problems seem trivial?  The answer is that, powerful as nondeterminism may 
seem, no one has been able to prove that it helps for any particular problem!  Put an-
other way, no one has been able to find a single problem that can be proven to be in np
but not in p (or even prove that one exists), leaving the following question open:

Does P = NP ? 

This question was first posed in a famous letter from K. Gödel to J. von Neumann in 
1950 and has completely stumped mathematicians and computer scientists ever since. 
Other ways of posing the question shed light on its fundamental nature:

n	 Are there any hard-to-solve search problems?
n	 Would we be able to solve some search problems more efficiently if we could 

build a nondeterministic computing device?
Not knowing the answers to these questions is extremely frustrating because many im-
portant practical problems belong to np but may or may not belong to p (the best 
known deterministic algorithms could take exponential time). If we could prove that 
a problem does not belong to p, then we could abandon the search for an efficient so-
lution to it. In the absence of such a proof, there is the possibility that some efficient 
algorithm has gone undiscovered. In fact, given the current state of our knowledge, 
there could be some efficient algorithm for every problem in np, which would imply 
that many efficient algorithms have gone undiscovered.  Virtually no one believes that 
p = np, and a considerable amount of effort has gone into proving the contrary, but this 
remains the outstanding open research problem in computer science. 

Poly-time reductions  Recall from page 903 that we show that a problem A reduces to 
another problem B by demonstrating that we can solve any instance of A in three steps:

n	 Transform it to an instance of B. 
n	 Solve that instance of B. 
n	 Transform the solution of B to be a solution of A. 

As long as we can perform the transformations (and solve B) efficiently, we can solve A
efficiently. In the present context, for efficient we use the weakest conceivable definition: 
to solve A we solve at most a polynomial number of instances of B, using transforma-
tions that require at most polynomial time. In this case, we say that A poly-time reduces
to B. Before, we used reduction to introduce the idea of problem-solving models that 
can significantly expand the range of problems that we can solve with efficient algo-
rithms. Now, we use reduction in another sense: to prove a problem to be hard to solve. If 
a problem A is known to be hard to solve, and A poly-time reduces to B, then B must be 
hard to solve, too. Otherwise, a guaranteed polynomial-time solution to B would give a 
guaranteed polynomial-time solution to A.
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proposition l. Boolean satisfiability poly-time reduces 
to 0-1 integer linear inequality satisfiability.

proof:  Given an instance of boolean satisfiability, de-
fine a set of inequalities with one 0-1 variable corre-
sponding to each boolean variable and one 0-1 vari-
able corresponding to each clause, as illustrated in 
the example at right. With this construction, we can 
transform a solution to the integer 0-1 linear inequal-
ity satisfiability problem to a solution to the boolean 
satisfiability problem by assigning each boolean vari-
able to be true if the corresponding integer variable is 
1 and false if it is 0.

corollary. If satisfiability is hard to solve, then so is in-
teger linear programming.

This statement is a meaningful statement about the rela-
tive difficulty of solving these two problems even in the 
absence of a precise definition of hard to solve. In the pres-
ent context, by “hard to solve,” we mean “not in p.” We 
generally use the word intractable to refer to problems that 
are not in p. Starting with the seminal work of R. Karp in 
1972, researchers have shown literally tens of thousands 
of problems from a wide variety of applications areas to 
be related by reduction relationships of this sort. More-
over, these relationships imply much more than just rela-
tionships between the individual problems, a concept that 
we now address.

NP-completeness  Many, many problems are known to belong to np but probably do   
not belong to p. That is, we can easily certify that any given solution is valid, but, despite 
considerable effort, no one has been able to develop an efficient algorithm to find a so-
lution. Remarkably, all of these many, many problems have an additional property that 
provides convincing evidence that p  np :

Example of reducing boolean satis�ability to
0-1 integer linear inequality satis�ability

c1� 1 � x1

c1� x2

c1� x3

c1� (1 � x1) + x2 + x3

c2� x1

c2� 1 � x2

c2� x3

c2�  x1 + (1 � x2) + x3

c3� 1 � x1

c3� 1 � x2

c3� 1 � x3

c3� (1 � x1) + 1 � x2 + (1 � x3)

c4� 1 � x1

c4� 1 �  x2

c4� x3

c4� (1 � x1) + (1 � x2) + x3

s �  c1

s �  c2

s �  c3

s �  c4

s  �  c1 +  c2 +  c3 +  c4  � 3

s is 1
if and only if
c’s are all 1 

c1is 1
if and only if
first clause is 

satisfiable 

boolean satis�ability problem

0-1 integer linear inequality satis�ability formulation

(x'1 or x2 or x3) and 

        (x1 or x'2 or x3) and

               (x'1 or x'2 or x'3) and

                       (x'1 or x'2 or x3) 
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Definition. A search problem A is said to be NP-complete if all problems in np poly-
time reduce to A.

This definition enables us to upgrade our definition of “hard to solve” to mean “intrac-
table unless p = np.”  If any np-complete problem can be solved in polynomial time on 
a deterministic machine, then so can all problems in NP (i.e., p = np). That is, the collec-
tive failure of all researchers to find efficient algorithms for all of these problems might 
be viewed as a collective failure to prove that p = np.  Since most computer scientists 
believe that p ≠ np, we cannot expect to find guaranteed polynomial-time algorithms 
for np-complete problems. 

Cook-Levin theorem  Reduction uses the np-completeness of one problem to imply 
the np-completeness of another.  But reduction cannot be used in one case: how was 
the first problem proven to be np-complete?  This was done independently by S. Cook 
and L. Levin in the early 1970s.

proposition m. (cook-levin theorem) Boolean satisfiability is np-complete.

Extremely brief proof sketch:  The goal is to show that if there is a polynomial 
time algorithm for boolean satisfiability, then all problems in np can be solved in 
polynomial time. Now, a nondeterministic Turing machine can solve any problem 
in np, so the first step in the proof is to describe each feature of the machine in 
terms of logical formulas such as appear in the boolean satisfiability problem. This 
construction establishes a correspondence between every problem in np (which 
can be expressed as a program on the nondeterministic Turing machine) and some 
instance of satisfiability (the translation of that program into a logical formula). 
Now, the solution to the satisfiability problem essentially corresponds to a simula-
tion of the machine running the given program on the given input, so it produces a 
solution to an instance of the given problem.  Further details of this proof are well 
beyond the scope of this book.  Fortunately, only one such proof is really necessary: 
it is much easier to use reduction to prove np-completeness.

The Cook-Levin theorem, in conjunction with the thousands and thousands of poly-
time reductions from np-complete problems that have followed it, leaves us with two 
possible universes: either p = np and no intractable search problems exist (all search 
problems can be solved in polynomial time); or p ≠ np, there do exist intractable search 
problems (some search problems cannot be solved in polynomial time). np-complete 
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problems arise frequently in important natural practical ap-
plications, so there has been strong motivation to find good 
algorithms to solve them.  The fact that no good algorithm has 
been found for any of these problems is surely strong evidence 
that p ≠ np, and most researchers certainly believe this to be 
the case. On the other hand, the fact that no one has been able 
to prove that any of these problems do not belong to p could 
be construed to comprise a similar body of circumstantial evi-
dence on the other side. Whether or not p = np, the practical 
fact is that the best known algorithm for any of the np-com-
plete problems takes exponential time in the worst case.

Classifying problems  Most practical search problems are known to be either in p or 
np-complete. To prove that a search problem is in p, we need to exhibit a polynomial-
time algorithm for solving it, perhaps by reducing it to a problem known to be in p. 
To prove that a problem in np is np-complete, we need to show that some known np-
complete problem is poly-time reducible to it: that is, that a polynomial-time algorithm 
for the new problem could be used to solve the np-complete problem, and then could, 
in turn, be used to solve all problems in np. Thousands and thousands of problems 
have been shown to be np-complete in this way, as we did for integer linear program-
ming in Proposition L. The list on page 920, which includes several of the problems 
addressed by Karp, is representative, but contains only a tiny fraction of the known np-
complete problems. Classifying problems as being easy to solve (in p) or hard to solve 
(np-complete) can be: 

n	 Straightforward. For example, the venerable Gaussian elimination algorithm 
proves that linear equation satisfiability is in p.

n	 Tricky but not difficult. For example, developing a proof like the proof of Propo-
sition L takes some experience and practice, but it is easy to understand.

n	 Extremely challenging. For example, linear programming was long unclassified, 
but Khachian’s ellipsoid algorithm proves that linear programming is in p.

n	 Open. For example, graph isomorphism (given two graphs, find a way to rename 
the vertices of one to make it identical to the other) and factor (given an integer, 
find a nontrivial factor) are still unclassified.

This is a rich and active area of current research, still involving thousands of research 
papers per year. As indicated by the last few entries on the list on page 920,  all areas of 
scientific inquiry are affected. Recall that our definition of np encompasses the prob-
lems that scientists, engineers, and applications programmers aspire to solve feasibly—
all such problems certainly need to be classified! 

Two possible universes

P

NP
P ≠ NP

P = NP

P = NP

NPC
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Boolean satisfiability  Given a set of M equations involving N boolean variables, 
find an assignment of values to the variables that satisfies all of the equations, or 
report that none exists. 

Integer linear programming  Given a set of M linear inequalities involving N
integer variables, find an assignment of values to the variables that satisfies all of 
the inequalities, or report that none exists.

Load balancing  Given a set of jobs of specified duration to be completed and a 
time bound T, how can we schedule the jobs on two identical processors so as to 
complete them all by time T?

Vertex cover  Given a graph and a integer C, find a set of C vertices such that each 
edge of the graph is incident to at least one vertex of the set.

Hamiltonian path  Given a graph, find a simple path that visits each vertex ex-
actly once, or report that none exists.

Protein folding  Given energy level M, find a folded three-dimensional confor-
mation of a protein having potential energy less than M.

Ising model  Given an Ising model on a lattice of dimension three and an energy 
threshhold E, is there a subgraph with free energy less than E ?

Risk portfolio of a given return  Given an investment portfolio with a given total 
cost, a given return, risk values assigned to each investment, and a threshold M, 
find a way to allocate the investments such that the risk is less than M.

Some famous np-complete problems
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Coping with NP-completeness  Some sort of solution to this vast panoply of problems 
must be found in practice, so there is intense interest in finding ways to address them. 
It is impossible to do justice to this vast field of study in one paragraph, but we can 
briefly describe various approaches that have been tried. One approach is to change the 
problem and find an “approximation” algorithm that finds not the best solution but a 
solution guaranteed to be close to the best. For example, it is easy to find a solution to 
the Euclidean traveling salesperson problem that is within a factor of 2 of the optimal. 
Unfortunately, this approach is often not sufficient to ward off np-completeness, when 
seeking improved approximations. Another approach is to develop an algorithm that 
solves efficiently virtually all of the instances that do arise in practice, even though 
there exist worst-case inputs for which finding a solution is infeasible. The most famous 
example of this approach are the integer linear programming solvers, which have been 
workhorses for many decades in solving huge optimizaiton problems in countless in-
dustrial applications. Even though they could require exponential time, the inputs that 
arise in practice evidently are not worst-case inputs. A third approach is to work with 
“efficient” exponential algorithms, using a technique known as backtracking to avoid 
having to check all possible solutions. Finally, there is quite a large gap between polyno-
mial and exponential time that is not addressed by the theory. What about an algorithm 
that runs in time proportional to N log N or 2 N ?

All the applications areas we have studied in this book are touched by np-com-
pleteness: np-complete problems arise in elementary programming, in sorting and 
searching, in graph processing, in string processing, in scientific computing, in systems 
programming, in operations research, and in any conceivable area where computing 
plays a role.  The most important practical contribution of the theory of np-complete-
ness is that it provides a mechanism to discover whether a new problem from any of 
these diverse areas is “easy” or “hard.”  If one can find an efficient algorithm to solve a 
new problem, then there is no difficulty. If not, a proof that the problem is np-complete 
tells us that developing an efficient algorithm would be a stunning achievement (and 
suggests that a different approach should perhaps be tried). The scores of efficient al-
gorithms that we have examined in this book are testimony that we have learned a 
great deal about efficient computational methods since Euclid, but the theory of np-
completeness shows that, indeed, we still have a great deal to learn.
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ExErcisEs on collision simulation

6.1 Complete the implementation of Particle as described in the text. There are three 
equations governing the elastic collision between a pair of hard discs: (a) conservation 
of linear momentum, (b) conservation of kinetic energy, and (c) upon collision, the 
normal force acts perpendicular to the surface at the collision point (assuming no fric-
tion or spin). See the booksite for more details.

6.2  Develop a version of CollisionSystem, Particle, and Event that handles multi-
particle collisions. Such collisions are important when simulating the break in a game 
of billiards. (This is a difficult exercise!)

6.3  Develop a version of CollisionSystem, Particle, and Event that works in three 
dimensions.

6.4 Explore the idea of improving the performance of simulate() in CollisionSystem 
by dividing the region into rectangular cells and adding a new event type so that you 
only need to predict collisions with particles in one of nine adjacent cells in any time 
quantum. This approach reduces the number of predictions to calculate at the cost of 
monitoring the movement of particles from cell to cell.

6.5 Introduce the concept of entropy to CollisionSystem and use it to confirm clas-
sical results. 

6.6  Brownian motion. In 1827, the botanist Robert Brown observed the motion 
of wildflower pollen grains immersed in water using a microscope. He observed that 
the pollen grains were in a random motion, following what would become known as 
Brownian motion. This phenomenon was discussed, but no convincing explanation 
was provided until Einstein provided a mathematical one in 1905. Einstein’s explana-
tion: the motion of the pollen grain particles was caused by millions of tiny molecules 
colliding with the larger particles. Run a simulation that illustrates this phenomenon.

6.7  Temperature. Add a method temperature() to Particle that returns the prod-
uct of its mass and the square of the magitude of its velocity divided by dkB where d =2 is 
the dimension and kB =1.3806488 × 1023 is Boltzmann’s constant. The temperature of 
the system is the average value of these quantities. Then add a method temperature() 
to CollisionSystem and write a driver that plots the temperature periodically, to check 
that it is constant.
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6.8  Maxwell-Boltzmann. The distribution of velocity of particles in the hard disc 
model obeys the Maxwell-Boltzmann distribution (assuming that the system has ther-
malized and particles are sufficiently heavy that we can discount quantum-mechanical 
effects), which is known as the Rayleigh distribution in two dimensions. The distribu-
tion shape depends on temperature. Write a driver that computes a histogram of the 
particle velocities and test it for various temperatures.

6.9  Arbitrary shape. Molecules travel very quickly (faster than a speeding jet) but dif-
fuse slowly because they collide with other molecules, thereby changing their direction. 
Extend the model to have a boundary shape where two vessels are connected by a pipe 
containing two different types of particles. Run a simulation and measure the fraction 
of particles of each type in each vessel as a function of time.

6.10  Rewind. After running a simulation, negate all velocities and then run the system 
backward. It should return to its original state! Measure roundoff error by measuring 
the difference between the final and original states of the system.

6.11  Pressure. Add a method pressure() to Particle that measures pressure 
by accumulating the number and magnitude of collisions against walls. The pres-
sure of the system is the sum of these quantities. Then add a method pressure() to 
CollisionSystem and write a client that validates the equation pv = nRT.

6.12  Index priority queue implementation. Develop a version of CollisionSystem 
that uses an index priority queue to guarantee that the size of the priority queue is at 
most linear in the number of particles (instead of quadratic or worse).

6.13  Priority queue performance. Instrument the priority queue and test Pressure 
at various temperatures to identify the computational bottleneck. If warranted, try 
switching to a different priority-queue implementation for better performance at high 
temperatures.
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ExErcisEs on b-trees

6.14 Suppose that, in a three-level tree, we can afford to keep a links in internal mem-
ory, between b and 2b links in pages representing internal nodes, and between c and 2c
items in pages representing external nodes. What is the maximum number of items that 
we can hold in such a tree, as a function of a, b, and c?

6.15 Develop an implementation of Page that represents each B-tree node as a 
BinarySearchST object.

6.16 Extend BTreeSET to develop a BTreeST implementation that associates keys with 
values and supports our full ordered symbol table API that includes min(), max(), 
floor(), ceiling(), deleteMin(), deleteMax(), select(), rank(), and the two-
argument versions of size() and get().

6.17 Write a program that uses StdDraw to visualize B-trees as they grow, as in the text.

6.18 Estimate the average number of probes per search in a B-tree for S random 
searches, in a typical cache system, where the T most-recently-accessed pages are kept in 
memory (and therefore add 0 to the probe count). Assume that S is much larger than T.

6.19  Web search. Develop an implementation of Page that represents B-tree nodes as 
text files on web pages, for the purposes of indexing (building a concordance for) the 
web. Use a file of search terms. Take web pages to be indexed from standard input. To 
keep control, take a command-line parameter m, and set an upper limit of 10m internal 
nodes (check with your system administrator before running for large m). Use an m-
digit number to name your internal nodes. For example, when m is 4, your nodes names 
might be BTreeNode0000, BTreeNode0001, BTreeNode0002, and so forth. Keep pairs 
of strings on pages. Add a close() operation to the API, to sort and write. To test your 
implementation, look for yourself and your friends on your university’s website.

6.20  B* trees. Consider the sibling split (or B*-tree) heuristic for B-trees: When it 
comes time to split a node because it contains M entries, we combine the node with its 
sibling.  If the sibling has k entries with k  <  M1, we reallocate the items giving the 
sibling and the full node each about (M+k)/2 entries.  Otherwise, we create a new node 
and give each of the three nodes about 2M/3 entries. Also, we allow the root to grow 
to hold about 4M/3 items, splitting it and creating a new root node with two entries 
when it reaches that bound. State bounds on the number of probes used for a search 
or an insertion in a B*-tree of order M with N items. Compare your bounds with the 
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corresponding bounds for B-trees (see Proposition B).  Develop an insert implementa-
tion for B*-trees.

6.21 Write a program to compute the average number of external pages for a B-tree of 
order M built from N random insertions into an initially empty tree. Run your program 
for reasonable values of M and N.

6.22 If your system supports virtual memory, design and conduct experiments to com-
pare the performance of B-trees with that of binary search, for random searches in a 
huge symbol table.

6.23 For your internal-memory implementation of Page in EXERCISE 6.15, run experi-
ments to determine the value of M that leads to the fastest search times for a B-tree 
implementation supporting random search operations in a huge symbol table. Restrict 
your attention to values of M that are multiples of 100.

6.24 Run experiments to compare search times for internal B-trees (using the value of 
M determined in the previous exercise), linear probing hashing, and red-black trees for 
random search operations in a huge symbol table. 
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ExErcisEs on suffix arrays

6.25 Give, in the style of the figure on page 878, the suffixes, sorted suffixes, index() and 
lcp() tables for the following strings: 

a. abacadaba 

b. mississippi 

c. abcdefghij

d. aaaaaaaaaa

6.26 Identify the problem with the following code fragment to suffix sort a string s:

int N = s.length(); 
String[] suffixes = new String[N]; 
for (int i = 0; i < N; i++) 
   suffixes[i] = s.substring(i, N); 
Quick3way.sort(suffixes);

Answer : There is no problem if the substring() method takes constant time and space 
(as is typical in Java 6 implementations). If the substring() method takes linear time 
and space (as is typical in Java 7 implementations), then the loop takes quadratic time 
and space.

6.27 Some applications require a sort of cyclic rotations of a text: for  i from 0 to N  1, 
the i th cyclic rotation of a text of length N is the last N  i characters followed by the 
first i characters. Develop a CircularSuffixArray data type that has the same API as 
SuffixArray (page 879) but using the N cyclic rotations of the text instead of the N 
suffixes.

6.28 Complete the implementation of SuffixArray (Algorithm 6.2).

6.29 Under the assumptions described in Section 1.4, give the memory usage of a 
SuffixArray object with a string of length N .

6.30 Modify the implementation to avoid using the helper class Suffix; instead make 
your instance variables a char array (to store the text characters) and an int array (to 
store the indices of the first characters in each of the sorted suffixes) and use a custom-
ized version of 3-way string quicksort to sort the suffixes. Compare the running time 
and memory usage of this implementation versus the one that uses the Suffix class.
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6.31  Longest common substring. Write a SuffixArray client LCS that take two file-
names as command-line arguments, reads the two text files, and finds the longest sub-
string that appears in both in linear time. (In 1970, D. Knuth conjectured that this 
task was impossible.) Hint : Create a suffix array for s#t where s and t are the two text 
strings and # is a character that does not appear in either.

6.32  Burrows-Wheeler transform. The Burrows-Wheeler transform (BWT) is a trans-
formation that is used in data compression algorithms, including bzip2 and in high-
throughput sequencing in genomics. Write a CircularSuffixArray client that com-
putes the BWT in linear time, as follows: Given a string of length N (terminated by a 
special end-of-file character $ that is smaller than any other character), consider the 
N-by-N matrix in which each row contains a different cyclic rotation of the original 
text string. Sort the rows lexicographically. The Burrows-Wheeler transform is the 
rightmost column in the sorted matrix. For example, the BWT of mississippi$ is 
ipssm$pissii. The Burrows-Wheeler inverse transform (BWI) inverts the BWT. For 
example, the BWI of ipssm$pissii is mississippi$.  Also write a client that, given 
the BWT of a text string, computes the BWI in linear time.

6.33  Circular string linearization. Write a CircularSuffixArray client that, given a 
string, finds the cyclic rotation that is the smallest lexicographically in linear time. This 
problem arises in chemical databases for circular molecules, where each molecule is 
represented as a circular string, and a canonical representation (smallest cyclic rotation) 
is used to support search with any rotation as key. (See Exercise 6.27.)

6.34  Longest repeated substrings. Write a SuffixArray client that, given a string 
and an integer k, find the longest substring that is repeated k or more times. Write a 
SuffixArray client that, given a string and an integer L, finds all repeated substrings of 
length L or more.

6.35  k-gram frequency counts. Develop and implement an ADT for preprocessing a 
string to support efficiently answering queries of the form How many times does a given 
k-gram appear ? Each query should take time proportional to k log N in the worst case, 
where N is the length of the string.
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ExErcisEs on maxflow

6.36 If capacities are positive integers less than M, what is the maximum possible flow 
value for any st-network with V vertices and E edges? Give two answers, depending on 
whether or not parallel edges are allowed.

6.37 Give an algorithm to solve the maxflow problem for the case that the network 
forms a tree if the sink is removed.

6.38  True or false. If true provide a short proof, if false give a counterexample: 

a. In any max flow, there is no directed cycle on which every edge carries 
positive flow 

b. There exists a max flow for which there is no directed cycle on which every 
edge carries positive flow 

c. If all edge capacities are distinct, the max flow is unique

d. If all edge capacities are increased by an additive constant, the min cut 
remains unchanged

e. If all edge capacities are multiplied by a positive integer, the min cut re-
mains unchanged

6.39 Complete the proof of Proposition G: Show that each time an edge is a critical 
edge, the length of the augmenting path through it must increase by 2.

6.40 Find a large network online that you can use as a vehicle for testing flow algo-
rithms on realistic data. Possibilities include transportation networks (road, rail, or 
air), communications networks (telephone or computer connections), or distribution 
networks. If capacities are not available, devise a reasonable model to add them. Write 
a program that uses the interface to implement flow networks from your data. If war-
ranted, develop additional private methods to clean up the data.

6.41 Write a random-network generator for sparse networks with integer capacities 
between 0 and 220. Use a separate class for capacities and develop two implementations: 
one that generates uniformly distributed capacities and another that generates capaci-
ties according to a Gaussian distribution. Implement client programs that generate ran-
dom networks for both capacity distributions with a well-chosen set of values of V and 
E so that you can use them to run empirical tests.
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6.42 Write a program that generates V random points in the plane, then builds a flow 
network with edges (in both directions) connecting all pairs of points within a given 
distance d of each other, setting each edge’s capacity using one of the random models 
described in the previous exercise.

6.43  Basic reductions. Develop FordFulkerson clients for finding a maxflow in each 
of the following types of flow networks:

n	 Undirected 
n	 No constraint on the number of sources or sinks or on either edges pointing to 

the sources or pointing from the sinks
n	 Lower bounds on capacities 
n	 Capacity constraints on vertices

6.44  Product distribution. Suppose that a flow represents products to be transferred by 
trucks between cities, with the flow on edge u-v representing the amount to be taken 
from city u to city v in a given day. Write a client that prints out daily orders for truck-
ers, telling them how much and where to pick up and how much and where to drop off. 
Assume that there are no limits on the supply of truckers and that nothing leaves a given 
distribution point until everything has arrived.

6.45  Job placement. Develop a  FordFulkerson client that solves the job-placement 
problem, using the reduction in Proposition J. Use a symbol table to convert symbolic 
names into integers for use in the flow network.

6.46 Construct a family of bipartite matching problems where the average length of 
the augmenting paths used by any augmenting-path algorithm to solve the correspond-
ing maxflow problem is proportional to E.

6.47  st-connectivity. Develop a FordFulkerson client that, given an undirected graph 
G and vertices s and t, finds the minimum number of edges in G whose removal will 
disconnect t from s.

6.48  Disjoint paths. Develop a FordFulkerson client that, given an undirected graph 
G and vertices s and t, finds the maximum number of edge-disjoint paths from s to t.
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ExErcisEs on reductions and intractability

6.49 Find a nontrivial factor of 37703491.

6.50 Prove that the shortest-paths problem reduces to linear programming.

6.51 Could there be an algorithm that solves an np-complete problem in an average 
time of N log N, if p ≠ np? Explain your answer.

6.52 Suppose that someone discovers an algorithm that is guaranteed to solve the 
boolean satisfiability problem in time proportional to 1.1N . Does this imply that we 
can solve other NP-complete problems in time proportional to 1.1N?

6.53 What would be the significance of a program that could solve the integer linear 
programming problem in time proportional to 1.1N ?

6.54 Give a poly-time reduction from vertex cover to 0-1 integer linear inequality 
satisfiability. 

6.55 Prove that the problem of finding a Hamiltonian path in a directed graph is np-
complete, using the NP-completeness of the Hamiltonian-path problem for undirected 
graphs.

6.56 Suppose that two problems are known to be NP-complete. Does this imply that 
there is a poly-time reduction from one to the other?

6.57 Suppose that X is NP-complete, X poly-time reduces to Y, and Y poly-time reduces 
to X. Is Y necessarily NP-complete?

6.58 Suppose that we have an algorithm to solve the decision version of boolean satisfi-
ability, which indicates that there exists an assignment of truth values to the variables 
that satisfies the boolean expression. Show how to find the assignment.

6.59 Suppose that we have an algorithm to solve the decision version of the vertex 
cover problem, which indicates that there exists a vertex cover of a given size. Show how 
to solve the optimization version of finding the vertex cover of minimum cardinality.

6.60 Explain why the optimization version of the vertex cover problem is not neces-
sarily a search problem.
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6.61 Suppose that X and Y are two search problems and that X poly-time reduces to Y. 
Which of the following can we infer?

a. If Y is NP-complete then so is X.

b. If X is NP-complete then so is Y.

c. If X is in P, then Y is in P.

d. If Y is in P, then X is in P.

6.62 Suppose that p ≠ np. Which of the following can we infer?

a. If X is NP-complete,  then X cannot be solved in polynomial time.

b. If X is in NP, then X cannot be solved in polynomial time.

c. If X is in NP but not NP-complete, then X can be solved in polynomial time.

d. If X is in P, then X is not NP-complete.
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