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PREFACE

Cookery is become an art,
a noble science;
cooks are gentlemen.

— TITUS LIVIUS, Ab Urbe Condita XXXIX.vi
(Robert Burton, Anatomy of Melancholy 1.2.2.2)

THIS BOOK forms a natural sequel to the material on information structures in
Chapter 2 of Volume 1, because it adds the concept of linearly ordered data to
the other basic structural ideas.

The title “Sorting and Searching” may sound as if this book is only for those
systems programmers who are concerned with the preparation of general-purpose
sorting routines or applications to information retrieval. But in fact the area of
sorting and searching provides an ideal framework for discussing a wide variety
of important general issues:

How are good algorithms discovered?
How can given algorithms and programs be improved?
How can the efficiency of algorithms be analyzed mathematically?

How can a person choose rationally between different algorithms for the
same task?

In what senses can algorithms be proved “best possible”?

e How does the theory of computing interact with practical considerations?
e How can external memories like tapes, drums, or disks be used efficiently
with large databases?

Indeed, I believe that virtually every important aspect of programming arises
somewhere in the context of sorting or searching!

This volume comprises Chapters 5 and 6 of the complete series. Chapter 5
is concerned with sorting into order; this is a large subject that has been divided
chiefly into two parts, internal sorting and external sorting. There also are
supplementary sections, which develop auxiliary theories about permutations
(Section 5.1) and about optimum techniques for sorting (Section 5.3). Chapter 6
deals with the problem of searching for specified items in tables or files; this is
subdivided into methods that search sequentially, or by comparison of keys, or
by digital properties, or by hashing, and then the more difficult problem of
secondary key retrieval is considered. There is a surprising amount of interplay
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vi PREFACE

between both chapters, with strong analogies tying the topics together. Two
important varieties of information structures are also discussed, in addition to
those considered in Chapter 2, namely priority queues (Section 5.2.3) and linear
lists represented as balanced trees (Section 6.2.3).

Like Volumes 1 and 2, this book includes a lot of material that does not
appear in other publications. Many people have kindly written to me about
their ideas, or spoken to me about them, and I hope that I have not distorted
the material too badly when I have presented it in my own words.

I have not had time to search the patent literature systematically; indeed,
I decry the current tendency to seek patents on algorithms (see Section 5.4.5).
If somebody sends me a copy of a relevant patent not presently cited in this
book, I will dutifully refer to it in future editions. However, I want to encourage
people to continue the centuries-old mathematical tradition of putting newly
discovered algorithms into the public domain. There are better ways to earn a
living than to prevent other people from making use of one’s contributions to
computer science.

Before I retired from teaching, I used this book as a text for a student’s
second course in data structures, at the junior-to-graduate level, omitting most
of the mathematical material. I also used the mathematical portions of this book
as the basis for graduate-level courses in the analysis of algorithms, emphasizing
especially Sections 5.1, 5.2.2, 6.3, and 6.4. A graduate-level course on concrete
computational complexity could also be based on Sections 5.3, and 5.4.4, together
with Sections 4.3.3, 4.6.3, and 4.6.4 of Volume 2.

For the most part this book is self-contained, except for occasional discus-
sions relating to the MIX computer explained in Volume 1. Appendix B contains a
summary of the mathematical notations used, some of which are a little different
from those found in traditional mathematics books.

Preface to the Second Edition

This new edition matches the third editions of Volumes 1 and 2, in which I have
been able to celebrate the completion of TEX and METAFONT by applying those
systems to the publications they were designed for.

The conversion to electronic format has given me the opportunity to go
over every word of the text and every punctuation mark. I've tried to retain
the youthful exuberance of my original sentences while perhaps adding some
more mature judgment. Dozens of new exercises have been added; dozens of
old exercises have been given new and improved answers. Changes appear
everywhere, but most significantly in Sections 5.1.4 (about permutations and
tableaux), 5.3 (about optimum sorting), 5.4.9 (about disk sorting), 6.2.2 (about
entropy), 6.4 (about universal hashing), and 6.5 (about multidimensional trees
and tries).




PREFACE vii

>\ The Art of Computer Programming is, however, still a work in progress.

. Research on sorting and searching continues to grow at a phenomenal rate.
Therefore some parts of this book are headed by an “under construction” icon,
to apologize for the fact that the material is not up-to-date. For example, if I
were teaching an undergraduate class on data structures today, I would surely
discuss randomized structures such as treaps at some length; but at present, I
am only able to cite the principal papers on the subject, and to announce plans
for a future Section 6.2.5 (see page 478). My files are bursting with important
material that I plan to include in the final, glorious, third edition of Volume 3,
perhaps 17 years from now. But I must finish Volumes 4 and 5 first, and I do
not want to delay their publication any more than absolutely necessary.

I am enormously grateful to the many hundreds of people who have helped
me to gather and refine this material during the past 35 years. Most of the
hard work of preparing the new edition was accomplished by Phyllis Winkler
(who put the text of the first edition into TEX form), by Silvio Levy (who
edited it extensively and helped to prepare several dozen illustrations), and by
Jeffrey Oldham (who converted more than 250 of the original illustrations to
METAPOST format). The production staff at Addison-Wesley has also been
extremely helpful, as usual.

I have corrected every error that alert readers detected in the first edition —
as well as some mistakes that, alas, nobody noticed — and I have tried to avoid
introducing new errors in the new material. However, I suppose some defects still
remain, and I want to fix them as soon as possible. Therefore I will cheerfully
pay $2.56 to the first finder of each technical, typographical, or historical error.
The webpage cited on page iv contains a current listing of all corrections that
have been reported to me.

Stanford, California D. E. K.
February 1998

There are certain common Privileges of a Writer,

the Benefit whereof, | hope, there will be no Reason to doubt,
Particularly, that where | am not understood, it shall be concluded,
that something very useful and profound is coucht underneath.

— JONATHAN SWIFT, Tale of a Tub, Preface (1704)




NOTES ON THE EXERCISES

THE EXERCISES in this set of books have been designed for self-study as well as
classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to specific problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a definite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. This is sometimes unfortunate because readers like to know in
advance how long a problem ought to take —otherwise they may just skip over
all the problems. A classic example of such a situation is the book Dynamic
Programming by Richard Bellman; this is an important, pioneering work in
which a group of problems is collected together at the end of some chapters
under the heading “Exercises and Research Problems,” with extremely trivial
questions appearing in the midst of deep, unsolved problems. It is rumored that
someone once asked Dr. Bellman how to tell the exercises apart from the research
problems, and he replied, “If you can solve it, it is an exercise; otherwise it’s a
research problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general significance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head.”

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about fifteen or twenty minutes to answer it
completely.
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30 A problem of moderate difficulty and/or complexity; this one may
involve more than two hours’ work to solve satisfactorily, or even more

if the TV is on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this “logarithmic” scale, the significance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a 45 rating in later editions
of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 24 may take longer to solve than
an exercise that is rated 25, but the latter will require more creativity.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to find a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M
if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters “HM” if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An “HM” designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, “»”; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader /student is expected to work all of the exercises, so those that seem to be
the most valuable have been singled out. (This is not meant to detract from the
other exercises!) Each reader should at least make an attempt to solve all of the
problems whose rating is 10 or less; and the arrows may help to indicate which
of the problems with a higher rating should be given priority.

.-y
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solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may find the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means first. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later editions of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless specifically forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes: 00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)

> Recommended 30 Moderately hard

M Mathematically oriented 40 Term project

HM Requiring “higher math” 50 Research problem
EXERCISES

» 1. [00] What does the rating “M20” mean?
2. [10] Of what value can the exercises in a textbook be to the reader?

3. [HM45] Prove that when n is an integer, n > 2, the equation z™ + y™ = 2™ has
no solution in positive integers z,y, 2.

Two hours’ daily exercise ... will be enough
to keep a hack fit for his work.

— M. H. MAHON, The Handy Horse Book (1865)
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CHAPTER FIVE

SORTING

There is nothing more difficult to take in hand,

more perilous to con’duct, or more uncertain in its success,
than to take the lead in the introduction of

a new order of things.

— NICCOLO MACHIAVELLI, The Prince (1951)

“But you can't look up all those license

numbers in time,” Drake objected.

“We don’t have to, Paul. We merely arrange a list
and look for duplications.”

— PERRY MASON, in The Case of the Angry Mourner (1951)

“Treesort” Computer— With this new ‘computer-approach’
to nature study you can quickly identify over 260

different trees of U.S., Alaska, and Canada,

even palms, desert trees, and other exotics.

To sort, you simply insert the needle.

— Catalog of Edmund Scientific Company (1964)

IN THIS CHAPTER we shall study a topic that arises frequently in programming;:
the rearrangement of items into ascending or descending order. Imagine how
hard it would be to use a dictionary if its words were not alphabetized! We
will see that, in a similar way, the order in which items are stored in computer
memory often has a profound influence on the speed and simplicity of algorithms
that manipulate those items.

Although dictionaries of the English language define “sorting” as the process
of separating or arranging things according to class or kind, computer program-
mers traditionally use the word in the much more special sense of marshaling
things into ascending or descending order. The process should perhaps be called
ordering, not sorting; but anyone who tries to call it “ordering” is soon led
into confusion because of the many different meanings attached to that word.
Consider the following sentence, for example: “Since only two of our tape drives
were in working order, I was ordered to order more tape units in short order,
in order to order the data several orders of magnitude faster.” Mathematical
terminology abounds with still more senses of order (the order of a group, the
order of a permutation, the order of a branch point, relations of order, etc., etc.).
Thus we find that the word “order” can lead to chaos.

Some people have suggested that “sequencing” would be the best name for
the process of sorting into order; but this word often seems to lack the right

1



2 SORTING )

connotation, especially when equal elements are present, and it occasionally
conflicts with other terminology. It is quite true that “sorting” is itself an
overused word (“I was sort of out of sorts after sorting that sort of data”),
but it has become firmly established in computing parlance. Therefore we shall
use the word “sorting” chiefly in the strict sense of sorting into order, without
further apologies. :

Some of the most important applications of sorting are:

a) Solving the “togetherness” problem, in which all items with the same identi-
fication are brought together. Suppose that we have 10000 items in arbitrary
order, many of which have equal values; and suppose that we want to rearrange
the data so that all items with equal values appear in consecutive positions. This
is essentially the problem of sorting in the older sense of the word; and it can be
solved easily by sorting the file in the new sense of the word, so that the values
are in ascending order, v; < v < -+ < vigo0o. The efficiency achievable in this
procedure explains why the original meaning of “sorting” has changed.

b) Matching items in two or more files. If several files have been sorted into the
same order, it is possible to find all of the matching entries in one sequential pass
through them, without backing up. This is the principle that Perry Mason used
to help solve a murder case (see the quotation at the beginning of this chapter).
We can usually process a list of information most quickly by traversing it in
sequence from beginning to end, instead of skipping around at random in the
list, unless the entire list is small enough to fit in a high-speed random-access
memory. Sorting makes it possible to use sequential accessing on large files, as
a feasible substitute for direct addressing.

c) Searching for information by key values. Sorting is also an aid to searching,
as we shall see in Chapter 6, hence it helps us make computer output more
suitable for human consumption. In fact, a listing that has been sorted into
alphabetic order often looks quite authoritative even when the associated nu-
merical information has been incorrectly computed.

Although sorting has traditionally been used mostly for business data pro-
cessing, it is actually a basic tool that every programmer should keep in mind
for use in a wide variety of situations. We have discussed its use for simplify-
ing algebraic formulas, in exercise 2.3.2-17. The exercises below illustrate the
diversity of typical applications.

One of the first large-scale software systems to demonstrate the versatility
of sorting was the LARC Scientific Compiler developed by J. Erdwinn, D. E.
Ferguson, and their associates at Computer Sciences Corporation in 1960. This
optimizing compiler for an extended FORTRAN language made heavy use of
sorting so that the various compilation algorithms were presented with relevant
parts of the source program in a convenient sequence. The first pass was a
lexical scan that divided the FORTRAN source code into individual tokens, each
representing an identifier or a constant or an operator, etc. Each token was
assigned several sequence numbers; when sorted on the name and an appropriate
sequence number, all the uses of a given identifier were brought together. The
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“defining entries” by which a user would specify whether an identifier stood for a
function name, a parameter, or a dimensioned variable were given low sequence
numbers, so that they would appear first among the tokens having a given
identifier; this made it easy to check for conflicting usage and to allocate storage
with respect to EQUIVALENCE declarations. The information thus gathered about
each identifier was now attached to each token; in this way no “symbol table”
of identifiers needed to be maintained in the high-speed memory. The updated
tokens were then sorted on another sequence number, which essentially brought
the source program back into its original order except that the numbering scheme
was cleverly designed to put arithmetic expressions into a more convenient
“Polish prefix” form. Sorting was also used in later phases of compilation, to
facilitate loop optimization, to merge error messages into the listing, etc. In
short, the compiler was designed so that virtually all the processing could be
done sequentially from files that were stored in an auxiliary drum memory, since
appropriate sequence numbers were attached to the data in such a way that it
could be sorted into various convenient arrangements.

Computer manufacturers of the 1960s estimated that more than 25 percent
of the running time on their computers was spent on sorting, when all their
customers were taken into account. In fact, there were many installations in
which the task of sorting was responsible for more than half of the computing
time. From these statistics we may conclude that either (i) there are many
important applications of sorting, or (ii) many people sort when they shouldn’t,
or (iii) inefficient sorting algorithms have been in common use. The real truth
probably involves all three of these possibilities, but in any event we can see that
sorting is worthy of serious study, as a practical matter.

Even if sorting were almost useless, there would be plenty of rewarding rea-
sons for studying it anyway! The ingenious algorithms that have been discovered
show that sorting is an extremely interesting topic to explore in its own right.
Many fascinating unsolved problems remain in this area, as well as quite a few
solved ones.

From a broader perspective we will find also that sorting algorithms make a
valuable case study of how to attack computer programming problems in general.
Many important principles of data structure manipulation will be illustrated in
this chapter. We will be examining the evolution of various sorting techniques
in an attempt to indicate how the ideas were discovered in the first place. By
extrapolating this case study we can learn a good deal about strategies that help
us design good algorithms for other computer problems.

Sorting techniques also provide excellent illustrations of the general ideas
involved in the analysis of algorithms—the ideas used to determine performance
characteristics of algorithms so that an intelligent choice can be made between
competing methods. Readers who are mathematically inclined will find quite a
few instructive techniques in this chapter for estimating the speed of computer
algorithms and for solving complicated recurrence relations. On the other hand,
the material has been arranged so that readers without a mathematical bent can
safely skip over these calculations.
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Before going on, we ought to define our problem a little more clearly, and
introduce some terminology. We are given N items

RlyRZ""7RN

to be sorted; we shall call them records, and the entire collection of N records
will be called a file. Each record R; has a key, K, which governs the sorting
process. Additional data, besides the key, is usually also present; this extra
“satellite information” has no effect on sorting except that it must be carried
along as part of each record.

An ordering relation “<” is specified on the keys so that the following
conditions are satisfied for any key values a, b, c:

i) Exactly one of the possibilities a < b, a = b, b < a is true. (This is called
the law of trichotomy.)

ii) If a < band b < ¢, then a < ¢. (This is the familiar law of transitivity.)

Properties (i) and (ii) characterize the mathematical concept of linear ordering,
also called total ordering. Any relationship “<” satisfying these two properties
can be sorted by most of the methods to be mentioned in this chapter, although
some sorting techniques are designed to work only with numerical or alphabetic
keys that have the usual ordering.

The goal of sorting is to determine a permutation p(1)p(2)...p(N) of the
indices {1,2,..., N} that will put the keys into nondecreasing order:

Kp) S Kpz) £+ < Kpwvy- (1)

The sorting is called stable if we make the further requirement that records with
equal keys should retain their original relative order. In other words, stable
sorting has the additional property that

p(i) < p(J) whenever K, = Kp;) and 1< j. (2)

In some cases we will want the records to be physically rearranged in storage
so that their keys are in order. But in other cases it will be sufficient merely to
have an auxiliary table that specifies the permutation in some way, so that the
records can be accessed in order of their keys.

A few of the sorting methods in this chapter assume the existence of either
or both of the values “co” and “—o0”, which are defined to be greater than or
less than all keys, respectively:

—o0 < Kj < oo, for1<j <N. (3)

Such extreme values are occasionally used as artificial keys or as sentinel indica-
tors. The case of equality is excluded in (3); if equality can occur, the algorithms
can be modified so that they will still work, but usually at the expense of some
elegance and efficiency. ,

Sorting can be classified generally into internal sorting, in which the records
are kept entirely in the computer’s high-speed random-access memory, and ez-
ternal sorting, when more records are present than can be held comfortably in
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memory at once. Internal sorting allows more flexibility in the structuring and
accessing of the data, while external sorting shows us how to live with rather
stringent accessing constraints.

The time required to sort IV records, using a decent general-purpose sorting
algorithm, is roughly proportional to Nlog N; we make about log N “passes”
over the data. This is the minimum possible time, as we shall see in Section 5.3.1,
if the records are in random order and if sorting is done by pairwise comparisons
of keys. Thus if we double the number of records, it will take a little more
than twice as long to sort them, all other things being equal. (Actually, as N
approaches infinity, a better indication of the time needed to sort is N(log IV )2,
if the keys are distinct, since the size of the keys must grow at least as fast as
log N; but for practical purposes, N never really approaches infinity.)

On the other hand, if the keys are known to be randomly distributed with
respect to some continuous numerical distribution, we will see that sorting can
be accomplished in O(N) steps on the average.

EXERCISES — First Set

1. [M20] Prove, from the laws of trichotomy and transitivity, that the permutation
p(1)p(2)...p(N) is uniquely determined when the sorting is assumed to be stable.

2. [21] Assume that each record R; in a certain file contains two keys, a “major key”
K; and a “minor key” kj, with a linear ordering < defined on each of the sets of keys.
Then we can define lezicographic order between pairs of keys (K, k) in the usual way:

(Ki,ki) < (Kj,kj) if K; < Kj orif K;= Kj and k; < kj.

Alice took this file and sorted it first on the major keys, obtaining n groups of
records with equal major keys in each group,

Kpy =+ = Kp(iy) < Kpiy+1) =+ = Kp(ig) <00 < Kpin_y41) =+ = Kp(in),s
where i, = N. Then she sorted each of the n groups Rpi;_;+1),- .., Fp(i;) on their
minor keys.

Bill took the same original file and sorted it first on the minor keys; then he took
the resulting file, and sorted it on the major keys.

Chris took the same original file and did a single sorting operation on it, using
lexicographic order on the major and minor keys (Kj, kj).

Did everyone obtain the same result?

3. [M25] Let < be a relation on K1, ..., Ky that satisfies the law of trichotomy but
not the transitive law. Prove that even without the transitive law it is possible to sort
the records in a stable manner, meeting conditions (1) and (2); in fact, there are at
least three arrangements that satisfy the conditions!

4. [21] Lexicographers don’t actually use strict lexicographic order in dictionaries,
because uppercase and lowercase letters must be interfiled. Thus they want an ordering
such as this:

a< A <aa < AA < AAA < Aachen < aah < --- < zzz < ZZ7.

Explain how to implement dictionary order.
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» 5. [M28] Design a binary code for all nonnegative integers so that if n is encoded as
the string p(n) we have m < n if and only if p(m) is lexicographically less than p(n).
Moreover, p(m) should not be a prefix of p(n) for any m # n. If possible, the length of
p(n) should be at most lgn + O(loglogn) for all large n. (Such a code is useful if we
want to sort texts that mix words and numbers, or if we want to map arbitrarily large
alphabets into binary strings.}

6. [15] Mr. B. C. Dull (a MIX programmer) wanted to know if the number stored in
location A is greater than, less than, or equal to the number stored in location B. So
he wrote “LDA A; SUB B” and tested whether register A was positive, negative, or zero.
What serious mistake did he make, and what should he have done instead?

7. [17] Write a MIX subroutine for multiprecision comparison of keys, having the
following specifications:

Calling sequence: JMP COMPARE

Entry conditions: rIl = n; CONTENTS(A 4+ k) = a; and CONTENTS(B + k) = by, for
1 < k < n; assume that n > 1.

Exit conditions: CI = GREATER, if (an,...,a1) > (bn,...,b1);

CI = EQUAL, if (an,...,a1) = (bn,...,b1);

CI = LESS, if (an,...,01) < (bn,...,b1);

rX and rll are possibly affected.
Here the relation (an,...,a1) < (bn,...,b1) denotes lexicographic ordering from left to
right; that is, there is an index j such that ax = bx for n > k > j, but a; < b;.

» 8. [80] Locations A and B contain two numbers a and b, respectively. Show that it is
possible to write a MIX program that computes and stores min(a, b) in location C, without
using any jump operators. (Caution: Since you will not be able to test whether or not
arithmetic overflow has occurred, it is wise to guarantee that overflow is impossible
regardless of the values of a and b.)

9. [M27] After n independent, uniformly distributed random variables between 0
and 1 have been sorted into nondecreasing order, what is the probability that the rth
smallest of these numbers is < z?

EXERCISES — Second Set

Each of the following exercises states a problem that a computer programmer might
have had to solve in the old days when computers didn’t have much random-access
memory. Suggest a “good” way to solve the problem, assuming that only a few thousand
words of internal memory are available, supplemented by about half a dozen tape units
(enough tape units for sorting). Algorithms that work well under such limitations also
prove to be efficient on modern machines.

10. [15] You are given a tape containing one million words of data. How do you
determine how many distinct words are present on the tape?

11. [18] You are the U. S. Internal Revenue Service; you receive millions of “informa-
tion” forms from organizations telling how much income they have paid to people, and
millions of “tax” forms from people telling how much income they have been paid. How
do you catch people who don’t report all of their income?

12. [M25] (Transposing a matriz.) You are given a magnetic tape containing one
million words, representing the elements of a 1000 X 1000 matrix stored in order by rows:
@1,181,2 . ..0Q1,1000 42,1 - - - 32,1000 - - - 1000,1000- How do you create a tape in which the
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elements are stored by columns ai1,1@2,1---8@1000,1 @1,2 . - - @1000,2 - - - @1000,1000 instead?
(Try to make at most ten passes over the data.)

13. [M26] How could you “shuffle” a large file of IV words into a random rearrange-
ment?

14. [20] You are working with two computer systems that have different conventions
for the “collating sequence” that defines the ordering of alphameric characters. How do
you make one computer sort alphameric files in the order used by the other computer?

15. [18] You are given a list of the names of a fairly large number of people born in
the U.S.A., together with the name of the state where they were born. How do you
count the number of people born in each state? (Assume that nobody appears in the
list more than once.)

16. [20] In order to make it easier to make changes to large FORTRAN programs, you
want to design a “cross-reference” routine; such a routine takes FORTRAN programs
as input and prints them together with an index that shows each use of each identifier
(that is, each name) in the program. How should such a routine be designed?

17. [33] (Library card sorting.) Before the days of computerized databases, every
library maintained a catalog of cards so that users could find the books they wanted.
But the task of putting catalog cards into an order convenient for human use turned out
to be quite complicated as library collections grew. The following “alphabetical” listing
indicates many of the procedures recommended in the American Library Association
Rules for Filing Catalog Cards (Chicago: 1942):

Text of card Remarks

R. Accademia nazionale dei Lincei, Rome
1812; ein historischer Roman.
Bibliothéque d’histoire révolutionnaire.
Bibliothéque des curiosités.

Brown, Mrs. J. Crosby

Brown, John

Brown, John, mathematician

Brown, John, of Boston

Brown, John, 1715-1766

BROWN, JOHN, 1715-1766

Brown, John, d. 1811

Brown, Dr. John, 1810-1882

Ignore foreign royalty (except British)
Achtzehnhundert zwolf
Treat apostrophe as space in French
Ignore accents on letters
Ignore designation of rank
Names with dates follow those without
... and the latter are subarranged

by descriptive words
Arrange identical names by birthdate
Works “about” follow works “by”
Sometimes birthdate must be estimated
Ignore designation of rank

Brown-Williams, Reginald Makepeace
Brown America.

Brown & Dallison’s Nevada directory.
Brownjohn, Alan

Den’, Vladimir Eduardovich, 1867~
The den.

Den lieben siissen Madeln.

Dix, Morgan, 1827-1908

1812 ouverture.

Le XIXe siecle francais.

The 1847 issue of U. S. stamps.

1812 overture.

I am a mathematician.

Treat hyphen as space
Book titles follow compound names
& in English becomes “and”

Ignore apostrophe in names

Ignore an initial article

... provided it’s in nominative case
Names precede words

Dix-huit cent douze

Dix-neuvieme

Eighteen forty-seven

Eighteen twelve

(a book by Norbert Wiener)
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Text of card

IBM journal of research and development.

ha-I ha-ehad.
Ia; a love story.

International Business Machines Corporation

al-Khuwarizmi, Muhammad ibn Misa,
fl. 813-846

Labour. A magazine for all workers.

Labor research association

Labour, see Labor

McCall’s cookbook

McCarthy, John, 1927—

Machine-independent computer
programming.

MacMahon, Maj. Percy Alexander,
1854-1929

Mrs. Dalloway.

Mistress of mistresses.

Royal society of London

St. Petersburger Zeitung.

Saint-Saéns, Camille, 18351921

Ste-Marie, Gaston P

Seminumerical algorithms.

Uncle Tom’s cabin.

U.S. bureau of the census.

Vandermonde, Alexandre Théophile,
1735-1796

Van Valkenburg, Mac Elwyn, 1921

Von Neumann, John, 1903-1957

The whole art of legerdemain.

Who's afraid of Virginia Woolf?

Wijngaarden, Adriaan van, 1916-

Remarks
Initials are like one-letter words
Ignore initial article
Ignore punctuation in titles

Ignore initial “al-” in Arabic names
Respell it “Labor”

Cross-reference card

Ignore apostrophe in English

Mc = Mac

Treat hyphen as space

Ignore designation of rank
“Mrs.” = “Mistress”

Don’t ignore British royalty

“St.” = “Saint”, even in German
Treat hyphen as space
Sainte

(a book by Donald Ervin Knuth)
(a book by Harriet Beecher Stowe)
“U.S8.” = “United States”

Ignore space after prefix in surnames
Ignore initial article

Ignore apostrophe in English
Surname begins with upper case letter

(Most of these rules are subject to certain exceptions, and there are many other rules
not illustrated here.)

If you were given the job of sorting large quantities of catalog cards by computer,
and eventually maintaining a very large file of such cards, and if you had no chance to
change these long-standing policies of card filing, how would you arrange the data in
such a way that the sorting and merging operations are facilitated?

18. [M25] (E. T. Parker.) Leonhard Euler once conjectured [Nova Acta Acad. Sci.
Petropolitanz 13 (1795), 45-63, §3; written in 1778] that there are no solutions to the
equation
Wb + 08 +wb 42 + ¢ = 2
in positive integers u, v, w, x, y, z. At the same time he conjectured that
e +- -+ zpg =2y

would have no positive integer solutions, for all n > 3, but this more general conjecture
was disproved by the computer-discovered identity 27° + 84° 4 110° + 133° = 144°;
see L. J. Lander, T. R. Parkin, and J. L. Selfridge, Math. Comp. 21 (1967), 446-459.
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Infinitely many counterexamples when n = 4 were subsequently found by Noam Elkies
[Math. Comp. 51 (1988), 825-835]. Can you think of a way in which sorting would
help in the search for counterexamples to Euler’s conjecture when n = 67

19. [24] Given a file containing a million or so distinct 30-bit binary words z1,...,zx,
what is a good way to find all complementary pairs {zi,z;} that are present? (Two
words are complementary when one has O wherever the other has 1, and conversely;
thus they are complementary if and only if their sum is (11...1)2, when they are
treated as binary numbers.)

20. [25] Given a file containing 1000 30-bit words z1,..., 1000, how would you pre-
pare a list of all pairs (z;, ;) such that z; = z; except in at most two bit positions?

21. [22] How would you go about looking for five-letter anagrams such as CARET,
CARTE, CATER, CRATE, REACT, RECTA, TRACE; CRUEL, LUCRE, ULCER; DOWRY, ROWDY, WORDY?
[One might wish to know whether there are any sets of ten or more five-letter English
anagrams besides the remarkable set

APERS, ASPER, PARES, PARSE, PEARS, PRASE, PRESA, RAPES, REAPS, SPAER, SPARE, SPEAR,

to which we might add the French word APRES.]

22. [M28] Given the specifications of a fairly large number of directed graphs, what
approach will be useful for grouping the isomorphic ones together? (Directed graphs are
isomorphic if there is a one-to-one correspondence between their vertices and a one-to-
one correspondence between their arcs, where the correspondences preserve incidence
between vertices and arcs.)

23. [80] In a certain group of 4096 people, everyone has about 100 acquaintances.
A file has been prepared listing all pairs of people who are acquaintances. (The relation
is symmetric: If = is acquainted with y, then y is acquainted with z. Therefore the file
contains roughly 200,000 entries.) How would you design an algorithm to list all the
k-person cliques in this group of people, given k7 (A clique is an instance of mutual
acquaintances: Everyone in the clique is acquainted with everyone else.) Assume that
there are no cliques of size 25, so the total number of cliques cannot be enormous.

24. [30] Three million men with distinct names were laid end-to-end, reaching from
New York to California. Each participant was given a slip of paper on which he wrote
down his own name and the name of the person immediately west of him in the line.
The man at the extreme western end didn’t understand what to do, so he threw his
paper away; the remaining 2,999,999 slips of paper were put into a huge basket and
taken to the National Archives in Washington, D.C. Here the contents of the basket
were shuffled completely and transferred to magnetic tapes.

At this point an information scientist observed that there was enough information
on the tapes to reconstruct the list of people in their original order. And a computer
scientist discovered a way to do the reconstruction with fewer than 1000 passes through
the data tapes, using only sequential accessing of tape files and a small amount of
random-access memory. How was that possible?

[In other words, given the pairs (zi,zi41), for 1 < 4 < N, in random order,
where the z; are distinct, how can the sequence xiz2...2n be obtained, restricting
all operations to serial techniques suitable for use with magnetic tapes? This is the
problem of sorting into order when there is no easy way to tell which of two given keys
precedes the other; we have already raised this question as part of exercise 2.2.3-25.]
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25. [M21] (Discrete logarithms.) You know that p is a (rather large) prime number,
and that a is a primitive root modulo p. Therefore, for all b in the range 1 < b < p,
there is a unique n such that a” modp = b, 1 < n < p. (This n is called the index
of b modulo p, with respect to a.) Explain how to find n, given b, without needing
Q(n) steps. [Hint: Let m = [/p] and try to solve a™™! = ba™"? (modulo p) for
0<np,ne < mj ’

[
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. *5.1. COMBINATORIAL PROPERTIES OF PERMUTATIONS

A PERMUTATION of a finite set is an arrangement of its elements into a row.
Permutations are of special importance in the study of sorting algorithms, since
they represent the unsorted input data. In order to study the efficiency of
different sorting methods, we will want to be able to count the number of
permutations that cause a certain step of a sorting procedure to be executed
a certain number of times.

We have, of course, met permutations frequently in previous chapters. For
example, in Section 1.2.5 we discussed two basic theoretical methods of con-
structing the n! permutations of n objects; in Section 1.3.3 we analyzed some
algorithms dealing with the cycle structure and multiplicative properties of
permutations; in Section 3.3.2 we studied their “runs up” and “runs down.”
The purpose of the present section is to study several other properties of per-
mutations, and to consider the general case where equal elements are allowed to
appear. In the course of this study we will learn a good deal about combinatorial
mathematics.

The properties of permutations are sufficiently pleasing to be interesting in
their own right, and it is convenient to develop them systematically in one place
instead of scattering the material throughout this chapter. But readers who
are not mathematically inclined and readers who are anxious to dive right into
sorting techniques are advised to go on to Section 5.2 immediately, since the
present section actually has little direct connection to sorting.

*5.1.1. Inversions

Let aj az...a, be a permutation of the set {1,2,...,n}. If 1 < j and a; > aj,
the pair (a;,a;) is called an inversion of the permutation; for example, the
permutation 3142 has three inversions: (3,1), (3,2), and (4,2). Each inversion is
a pair of elements that is out of sort, so the only permutation with no inversions is
the sorted permutation 12...n. This connection with sorting is the chief reason
why we will be so interested in inversions, although we have already used the
concept to analyze a dynamic storage allocation algorithm (see exercise 2.2.2-9).

The concept of inversions was introduced by G. Cramer in 1750 [Intr. &
I’Analyse des Lignes Courbes Algébriques (Geneva: 1750), 657-659; see Thomas
Muir, Theory of Determinants 1 (1906), 11-14], in connection with his famous
rule for solving linear equations. In essence, Cramer defined the determinant of
an n X n matrix in the following way:

11 12 A Tin
det [ : ; =) (—1)mv(mezang, o T
. . . la;42ag - - - Lnag,,
ITnl Tn2 - Tan
summed over all permutations a; ay ... a, of {1,2,...,n}, where inv(a; as ... a,)

is the number of inversions of the permutation.
The inversion table by bs ... b, of the permutation a; as . .. a, is obtained by
letting b; be the number of elements to the left of j that are greater than j.
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In other words, b; is the number of inversions whose second component is j.
It follows, for example, that the permutation

591826473 (1)

has the inversion table
236402210, (2)

since 5 and 9 are to the left of 1; 5, 9, 8 are to the left of 2; etc. This permutation
has 20 inversions in all. By definition the numbers b; will always satisfy

0<b<n—-1, 0<by<n—-2, ..., 0<b1 <1, b,=0. (3)

Perhaps the most important fact about inversions is Marshall Hall’s observa-
tion that an inversion table uniquely determines the corresponding permutation.
[See Proc. Symp. Applied Math. 6 (American Math. Society, 1956), 203.] We
can go back from any inversion table by by ... b, satisfying (3) to the unique
permutation that produces it, by successively determining the relative placement
of the elements n,n—1,...,1 (in this order). For example, we can construct the
permutation corresponding to (2) as follows: Write down the number 9; then
place 8 after 9, since bg = 1. Similarly, put 7 after both 8 and 9, since b; = 2.
Then 6 must follow two of the numbers already written down, because bg = 2;
the partial result so far is therefore

986 7.

Continue by placing 5 at the left, since b5 = 0; put 4 after four of the numbers;
and put 3 after six numbers (namely at the extreme right), giving

598647 3.

The insertion of 2 and 1 in an analogous way yields (1).

This correspondence is important because we can often translate a problem
stated in terms of permutations into an equivalent problem stated in terms of
inversion tables, and the latter problem may be easier to solve. For example,
consider the simplest question of all: How many permutations of {1,2,...,n} are
possible? The answer must be the number of possible inversion tables, and they
are easily enumerated since there are n choices for by, independently n—1 choices
for b, ..., 1 choice for b,, making n(n—1)...1 = n! choices in all. Inversions are
easy to count, because the b’s are completely independent of each other, while
the a’s must be mutually distinct.

In Section 1.2.10 we analyzed the number of local maxima that occur when
a permutation is read from right to left; in other words, we counted how many
elements are larger than any of their successors. (The right-to-left maxima in (1),
for example, are 3, 7, 8, and 9.) This is the number of j such that b; has its
maximum value, n — j. Since b; will equal n — 1 with probability 1/n, and
(independently) by will be equal to n — 2 with probability 1/(n — 1), etc., it is
clear by consideration of the inversions that the average number of right-to-left
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2314

)1423

321494

b 4123

3241 ¢

4132

4321

Fig. 1. The truncated octahedron, which shows the change in inversions when adjacent
elements of a permutation are interchanged.

maxima is

1 1 1

—_— P —.:Hn_
n+n—1+ +1

The corresponding generating function is also easily derived in a similar way.

If we interchange two adjacent elements of a permutation, it is easy to see
that the total number of inversions will increase or decrease by unity. Figure 1
shows the 24 permutations of {1,2,3,4}, with lines joining permutations that
differ by an interchange of adjacent elements; following any line downward inverts
exactly one new pair. Hence the number of inversions of a permutation 7 is the
length of a downward path from 1234 to 7 in Fig. 1; all such paths must have
the same length.

Incidentally, the diagram in Fig. 1 may be viewed as a three-dimensional
solid, the “truncated octahedron,” which has 8 hexagonal faces and 6 square
faces. This is one of the classical uniform polyhedra attributed to Archimedes
(see exercise 10).

The reader should not confuse inversions of a permutation with the snverse
of a permutation. Recall that we can write a permutation in two-line form

1 2 3 ... n)\.
a1 az a a ’ (4)
1 2 3 - n
the inverse a/ ahaj...a!, of this permutation is the permutation obtained by
interchanging the two rows and then sorting the columns into increasing order
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of the new top row:

a a9 asg ... Qan . 1 2 3 n ( )
1 2 3 ... n) \dy dy af ... a,)’ b
For example, the inverse of 591826473 is 359716842, since

591826473\ (123456789
123456789/ \359716842)°

Another way to define the inverse is to say that a} = k if and only if q; = j.
The inverse of a permutation was first defined by H. A. Rothe [in Samm-
lung combinatorisch-analytischer Abhandlungen, edited by K. F. Hindenburg, 2
(Leipzig: 1800), 263-305], who noticed an interesting connection between inverses
and inversions: The inverse of a permutation has exactly as many inversions as
the permutation itself. Rothe’s proof of this fact was not the simplest possible
one, but it is instructive and quite pretty nevertheless. We construct an n X n
chessboard having a dot in column j of row ¢ whenever a; = j. Then we put
x’s in all squares that have dots lying both below (in the same column) and to
their right (in the same row). For example, the diagram for 591826473 is

.
X|[X|X]|e
.

XXX X|X| e
.

X | X °

X|e

X °

.

The number of x’s is the number of inversions, since it is easy to see that b; is the
number of x’s in column j. Now if we transpose the diagram — interchanging
rows and columns— we get the diagram corresponding to the inverse of the
original permutation. Hence the number of x’s (the number of inversions) is
the same in both cases. Rothe used this fact to prove that the determinant of a
matrix is unchanged when the matrix is transposed.

The analysis of several sorting algorithms involves the knowledge of how
many permutations of n elements have exactly k inversions. Let us denote that
number by I,(k); Table 1 lists the first few values of this function.

By considering the inversion table b; by . .. by, it is obvious that I,(0) = 1,
I,(1) = n —1, and there is a symmetry property

In((g> —k) = I(k). (6)
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Table 1
PERMUTATIONS WITH k INVERSIONS

1] 1n(0) In(1) In(2) In(3) In(4) I.(5) In(6) In(7) In(8) In(9) I.(10) I.(11)

1 1 0 0 0 0 0 0 0 0 0 0 0
2| 1 1 0 0 0 0 0 0 0 0 0 0
3] 1 2 2 1 0 0 0 10 0 0 0 0
4] 1 3 5 6 5 3 1 /’ 0 0 0 0 0
51 1 4 9 15 20 | 22 20 15 9 4 1 0
61 1 5 14 29 49 71 | 90 101 101 90 71 49

Furthermore, since each of the b’s can be chosen independently of the others, it
is not difficult to see that the generating function

Gn(2) = L(0) + I,(1)z + I,(2)2% + - - - (7)

satisfies Gp(2) = (1 + 2+ -+ - + 2" 1) G,_1(2); hence it has the comparatively
simple form noticed by O. Rodriguez [J. de Math. 4 (1839), 236-240]:

(I4+z+--+2"H...Q+2))=0Q-2")...01 -22)1-2)/1-2)". (8)

From this generating function, we can easily extend Table 1, and we can verify
that the numbers below the zigzag line.in that table satisfy

Li(k)=I,(k—=1)+ I,_1(k), for k<n. (9)

(This relation does not hold above the zigzag line.) A more complicated argu-
ment (see exercise 14) shows that, in fact, we have the formulas

I,(2) = (”) -1, n> 2

0=(")-() e
0=(")-(F) e
9 ("]

n 3>_(n—3})—2>+1’ n > b;

in general, the formula for I, (k) contains about 1.6v/k terms:
n+k—2 n+k—3 n+k—6 n+k—8
(k) = — — ...
w=("7) - (%) (50) + (M)
[ n+k—u;—1 n+k—u;—j5—1
-1y J J >k
e (T (M) e a2k oo
where u; = (35% — j)/2 is a so-called “pentagonal number.”

If we divide G,(z) by n! we get the generating function g,(z) for the
probability distribution of the number of inversions in a random permutation



16 SORTING 5.1.1

of n elements. This is the product

gn(2) = ha(2)ha(2) ... hp(2), (11)

where hi(z) = (14 z + --- + 2*71)/k is the generating function for the uniform
distribution of a random nonnegative integer less than k. It follows that

mean(g,) = mean(h;) + méan(hy) + - - - + mean(h,)

1 -1 -1

2
var(gn) = var(hy) + var(he) +---+ var(hy)
1

n-1 _ n(2n+5)(n-1)
= 0 + 1 +-+ 1 = = . (13)
So the average number of inversions is rather large, about inz; the standard
deviation is also rather large, about 1n3/2
A remarkable discovery about the distribution of inversions was made by
P. A. MacMahon [Amer. J. Math. 35 (1913), 281-322]. Let us define the index
of the permutation a; as . .. a, as the sum of all subscripts j such that a; > a;41,
1 < j < n. For example, the index of 591826473 is 2+4+ 6+ 8 = 20. By
coincidence the index is the same as the number of inversions in this case. If we
list the 24 permutations of {1, 2, 3,4}, namely

Permutation Index Inversions Permutation Index Inversions
1234 0 0 3124 1 2
124/3 3 1 3|1 4|2 4 3
13|24 2 1 3|2|11 4 3 3
1342 3 2 3|2 4]1 4 4
14]23 2 2 34|12 2 4
1 4|3|2 5 3 3 4/2]1 5 5
21134 1 1 4123 1 3
2|1 4|3 4 2 4|1 32 4 4
23|14 2 2 4|21 3 3 4
234|1 3 3 4|2 3|1 4 5
24|13 2 3 4/3]1 2 3 5
2 4J3)1 5 4 43|21 6 6

we see that the number of permutations having a given index, k, is.the same as
the number having k inversions.

At first this fact might appear to be almost obvious, but further scrutiny
makes it very mysterious. MacMahon gave an ingenious indirect proof, as follows:
Let ind(a; as ... a,) be the index of the permutation a; az ... ay, and let

Hn(Z) — Z Zind(al az...an) (14)

be the corresponding generating function; the sum in (14) is over all permutations
of {1,2,...,n}. We wish to show that H,(z) = Gn(z). For this purpose we will
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define a one-to-one correspondence between arbitrary n-tuples (g1, g2, ..., qn) of
nonnegative integers, on the one hand, and ordered pairs of n-tuples

((al az . "an)’ (pl,pQ, cee ,pn)>

on the other hand, where a; az ... a, is a permutation of the indices {1,2,...,n}
and p; > py > -+ > p, > 0. This correspondence will satisfy the condition

ql +q2+...+qn :ind(al,ag,...,an)-i—(pl +p2++pn)- (15)

The generating function _ 29 7%%+4» summed over all n-tuples of nonnega-
tive integers (q1,q2,---,qn), is Qn(2) = 1/(1 — 2)™; and the generating function

3" gP1tP2t+Pn gummed over all n-tuples of integers (p1, pa,...,pn) such that
P12p2 2+ 2pn20,is
Pu(2) =1/(1=2)(1—-2%)...(1 = 2"), (16)

as shown in exercise 15. In view of (15), the one-to-one correspondence we are
about to establish will prove that Q,(z) = H,(2)Pn(z), that is,

Hp(z) = Qn(2)/Pn(2). (17)

But Q.(2)/Pn(2) is Gn(2), by (8).

The desired correspondence is defined by a simple sorting procedure: Any
n-tuple (¢1,4a,...,qn) can be rearranged into nonincreasing order q,, > gu, >
-++ > (q, in a stable manner, where a; as ... a, is a permutation such that q,; =
Ga,,, implies a; < aj;+1. Weset (p1,D2,...,Pn) = (day,Gas> - - - » Ga,,) and then, for
1 < j < n, subtract 1 from each of py, ..., p; for each j such that a; > a;41. We
still have p; > py > -+ > pn, because p; was strictly greater than p;; whenever
aj > aj+1. The resulting pair ((ay,as,...,an),(P1,P2,...,Pn)) satisfies (15),
because the total reduction of the p’s is ind(a; az .. .a,). For example, if n = 9
and (q1,...,q99) = (3,1,4,1,5,9,2,6,5), we find a;...a9 = 685931724 and
(p1,.-.,p9) = (5,2,2,2,2,2,1,1,1).

Conversely, we can easily go back to (q1,¢2,...,¢n) When aj as...a, and
(p1,D2,...,pn) are given. (See exercise 17.) So the desired correspondence has
been established, and MacMahon’s index theorem has been proved.

D. Foata and M. P. Schiitzenberger discovered a surprising extension of
MacMahon’s theorem, about 65 years after MacMahon’s original publication:
The number of permutations of n elements that have k inversions and index [ is
the same as the number that have | inversions and index k. In fact, Foata and
Schiitzenberger found a simple one-to-one correspondence between permutations
of the first kind and permutations of the second (see exercise 25).

EXERCISES

1. [10] What is the inversion table for the permutation 2718459367 What per-
mutation has the inversion table 501212007

2. [M20] In the classical problem of Josephus (exercise 1.3.2-22), n men are initially
arranged in a circle; the mth man is executed, the circle closes, and every mth man is
repeatedly eliminated until all are dead. The resulting execution order is a permutation
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of {1,2,...,n}. For example, when n = 8 and m = 4 the order is 54613872; the
inversion table corresponding to this permutation is 36310010.

Give a simple recurrence relation for the elements b, b2 .. . b, of the inversion table
in the general Josephus problem for n men, when every mth man is executed.

3. [18] If the permutation a; a2 ...a, corresponds to the inversion table by b2 ... bn,
what is the permutation @1.@2 ...a, that corresponds to the inversion table

(n—l——b1)(n——2—b2)(0—‘bn)?

4. [20] Design an algorithm suitable for computer implementation that constructs
the permutation a; a2 ...a, corresponding to a given inversion table by b2 ... b, satis-
fying (3). [Hint: Consider a linked-memory technique.]

5. [35] The algorithm of exercise 4 requires an execution time roughly proportional
to n+b1 + - - - + b, on typical computers, and this is ©(n?) on the average. Is there an
algorithm whose worst-case running time is substantially better than order n??

6. [26] Design an algorithm that computes the inversion table b1 b2 .. . b, correspond-
ing to a given permutation ajaz...an of {1,2,...,n}, where the running time is
essentially proportional to nlogn on typical computers.

7. [20] Several other kinds of inversion tables can be defined, corresponding to a
given permutation aiaz...an of {1,2,...,n}, besides the particular table by b2 ...b,
defined in the text; in this exercise we will consider three other types of inversion tables
that arise in applications.

Let ¢; be the number of inversions whose first component is j, that is, the number
of elements to the right of j that are less than j. [Corresponding to (1) we have the
table 000142157; clearly 0 < c¢; < j.] Let By = b,; and C; = c,;.

Show that 0 < B; < jand 0 < C; < n —j, for 1 < j < n; furthermore show
that the permutation ajaz...a, can be determined uniquely when either cic2...cn
or BiBy...B, or C; Cs...C, is given.

8. [M24] Continuing the notation of exercise 7, let aj ay...a, be the inverse of
the permutation ai as ...an, and let the corresponding inversion tables be b} b5 ... b.,,
cich...ch,, BiBy...B), and C] C3...C;. Find as many interesting relations as you
can between the numbers aj, bj, ¢;, Bj, C;, aj, b, ¢, B, Cj.

9. [M21] Prove that, in the notation of exercise 7, the permutation a;as...a, is an
involution (that is, its own inverse) if and only if b; = C; for 1 < j < n.

10. [HM20] Consider Fig. 1 as a polyhedron in three dimensions. What is the diam-
eter of the truncated octahedron (the distance between vertex 1234 and vertex 4321),
if all of its edges have unit length?

11. [M25] If ®# =a1az...an is a permutation of {1,2,...,n}, let
E(m) = {(ai,a;5) | i <, a: > a5}

be the set of its inversions, and let
E(r) = {(ai,a3) | i > j, @i > a5}

be the non-inversions.
a) Prove that E(r) and E(r) are transitive. (A set S of ordered pairs is called
transitive if (a,c) is in S whenever both (a,b) and (b, c) are in S.)
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b) Conversely, let E be any transitive subset of T'= {(z,y) | 1 <y < = < n} whose
complement E = T'\ E is also transitive. Prove that there exists a permutation =
such that E(r) = E.

12. [M28] Continuing the notation of the previous exercise, prove that if 71 and m
are permutations and if E is the smallest transitive set containing E(m1)U E(m2), then
E is transitive. [Hence, if we say m is “above” ma whenever E(m1) C E(m2), a lattice
of permutations is defined; there is a unique “lowest” permutation “above” two given
permutations. Figure 1 is the lattice diagram when n = 4.]

13. [M23] It is well known that half of the terms in the expansion of a determinant
have a plus sign, and half have a minus sign. In other words, there are just as many
permutations with an even number of inversions as with an odd number, when n > 2.
Show that, in general, the number of permutations having a number of inversions
congruent to t modulo m is n!/m, regardless of the integer ¢, whenever n > m.

14. [M24] (F. Franklin.) A partition of n into k distinct parts is a representation
n=p1+p2+---+pk, where p1 > p2 > -+ > pr > 0. For example, the partitions of 7
into distinct parts are 7, 6 +1, 54+ 2,4+ 3, 44+ 2+ 1. Let fix(n) be the number of
partitions of n into k distinct parts; prove that 3, (=1)* fx(n) = 0, unless n has the
form (352 & 7)/2, for some nonnegative integer j; in the latter case the sum is (—1).
For example, when n = 7 the sumis —1+3—1=1 and 7 = (3-2% +2)/2. [Hint:
Represent a partition as an array of dots, putting p; dots in the ith row, for 1 <1i < k.
Find the smallest j such that p;4+1 < p; — 1, and encircle the rightmost dots in the first
j rows. If j < pk, these 7 dots can usually be removed, tilted 45°, and placed as a new
(k+1)st row. On the other hand if j > pi, the kth row of dots can usually be removed,
tilted 45°, and placed to the right of the circled dots. (See Fig. 2.) This process pairs
off partitions having an odd number of rows with partitions having an even number of
rows, in most cases, so only unpaired partitions must be considered in the sum.]

Fig. 2. Franklin’s correspondence between partitions with distinct parts.

Note: As a consequence, we obtain Euler’s formula

1-2)1-2)1-2%...=1—2-22+2°+2" 22 -4 ...
—oo<Lj< oo

The generating function for ordinary partitions (whose parts are not necessarily dis-
tinct) is 3 p(n)z™ = 1/(1 — 2)(1 — 2%)(1 — 2%)...; hence we obtain a nonobvious
recurrence relation for the partition numbers,

p(n) =p(n-1)+p(n—2)—p(n—-5) —p(n—"7) +p(n - 12) + p(n — 15) — --- .
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15. [M23] Prove that (16) is the generating function for partitions into at most n
parts; that is, prove that the coefficient of z™ in 1/(1 — 2)(1 — 2%y ... (1 — 2") is the
number of ways to write m = p1 +p2+ -+ po withpt > p2 > -+ > p, > 0.
[Hint: Drawing dots as in exercise 14, show that there is a one-to-one correspondence
between n-tuples (p1,p2,...,Pn) such that p1 > ps > --- > p, > 0 and sequences
(Py,P2,Ps,...) such that n > PL > P, > P3 > --- > 0, with the property that
p1+p2+---+pn =P+ Pr+Ps+---. In other words, partitions into at most n parts
correspond to partitions into parts not exceeding n.]

16. [M25] (L. Euler.) Prove the following identities by interpreting both sides of the
equations in terms of partitions:

1
1l (1—q 2) (1-2)1-g2)(1—¢?2)...

k>0
2

:1+1—q+(1—q)(1—q2)+m: 2"/ 11 a-d

nZO ISkSn
[[+d) =1 +2)0+a2)(1+¢%). ..
k>0
2 2%q _ n _n(n—1)/2 k
=l + = 2.7 L=a").
¢ " 0-o0-a ,;) 151;[9(

17. [20] In MacMahon’s correspondence defined at the end of this section, what are
the 24 quadruples (qi1, g2, g3, g4) for which (p1, p2, p3,ps) = (0,0,0,0)?

18. [M80] (T.Hibbard, CACM 6 (1963), 210.) Let n > 0, and assume that a sequence
of 2™ n-bit integers Xo,..., Xon_1 has been generated at random, where each bit of
each number is independently equal to 1 with probability p. Consider the sequence
Xo®0, X1®1, ..., Xon_1® (2" — 1), where @ denotes the “exclusive or” operation
on the binary representations. Thus if p = 0, the sequence is 0,1,...,2"—1, and if
p=1itis2"—-1,...,1,0; and when p = %, each element of the sequence is a random
integer between 0 and 2™ — 1. For general p this is a useful way to generate a sequence
of random integers with a biased number of inversions, although the distribution of
the elements of the sequence taken as a whole is uniform in the sense that each n-bit
integer has the same distribution. What is the average number of inversions in such a
sequence, as a function of the probability p?

19. [M28] (C. Meyer.) When m is relatively prime to n, we know that the sequence
(m mod n)(2m mod n). .. ((n—1)m mod m) is a permutation of {1,2,...,n—1}. Show
that the number of inversions of this permutation can be expressed in terms of Dedekind
sums (see Section 3.3.3).

20. [M43] The following famous identity due to Jacobi [Fundamenta Nova Theoriz
Functionum Ellipticarum (1829), §64] is the basis of many remarkable relationships
involving elliptic functions:

H(l WFR Y (1 — P R) (1 —

k21 = (1—u)(1 - )1 — w)(1 — ) (1 — w?)(1 - u®v?)...
=1—(u+9)+ (v + u®) — (W® + ®8) + ..
Y (=1)7u@o (),

—oo<j<+o0
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For example, if we set u = z, v = z°, we obtain Euler’s formula of exercise 14. If we

set z = v/u/v, ¢ = v/uv, we obtain
2
[Ta-* "0 -¢"Ha-a™)= > (-1)"2"¢"

k>1 —oco<n<oo

Is there a combinatorial proof of Jacobi’s identity, analogous to Franklin’s proof
of the special case in exercise 14?7 (Thus we want to consider “complex partitions”

m+ni = (p1 + q13) + (P2 + @28) + - - - + (Pr + qx?)

where the p; + ¢;1 are distinct nonzero complex numbers, p; and ¢; being nonnegative
integers with |p; — g;] < 1. Jacobi’s identity says that the number of such represen-
tations with k even is the same as the number with k odd, except when m and n
are consecutive triangular numbers.) What other remarkable properties do complex
partitions have?

» 21. [M25] (G. D. Knott.) Show that the permutation a;...an is obtainable with
a stack, in the sense of exercise 2.2.1-5 or 2.3.1-6, if and only if C; < C;41 + 1 for
1 < j < n in the notation of exercise 7.

22. [M26] Given a permutation ajaz2...an of {1,2,...,n}, let h; be the number of
indices i < j such that a; € {a;+1,a;+2,...,a;41}. (If aj41 < a;, the elements of this
set “wrap around” from n to 1. When j = n we use the set {an+1,ar+2,...,n}.) For
example, the permutation 591826473 leads to h1 ... hg =001214246.

a) Prove that a1 a2 ...an can be reconstructed from the numbers h;y hy ... hy.

b) Prove that hy + hz + --- 4+ hy is the index of a1 a2...ax.

» 23. [M27] (Russian roulette.) A group of n condemned men who prefer probability
theory to number theory might choose to commit suicide by sitting in a circle and
modifying Josephus’s method (exercise 2) as follows: The first prisoner holds a gun
and aims it at his head; with probability p he dies and leaves the circle. Then the
second man takes the gun and proceeds in the same way. Play continues cyclically,
with constant probability p > 0, until everyone is dead.

Let a; = k if man k is the jth to die. Prove that the death order a;a2...a,
occurs with a probability that is a function only of n, p, and the index of the dual
permutation (n+1—axn)...(n+1—a2)(n+1—a1). What death order is least likely?

24. [M26] Given integers t(1)¢(2)...t(n) with t(j) > j, the generalized indez of a
permutation a; a2 ...an is the sum of all subscripts j such that a; > t(a;j41), plus the
total number of inversions such that ¢ < j and t(a;) > a: > aj. Thus when t(j) = j for
all j, the generalized index is the same as the index; but when ¢(j) > n for all j it is the
number of inversions. Prove that the number of permutations whose generalized index
equals k is the same as the number of permutations having k inversions. [Hint: Show
that, if we take any permutation a; ...an—1 of {1,...,n — 1} and insert the number n
in all possible places, we increase the generalized index by the numbers {0,1,...,n—1}
in some order.]

» 25. [M30] (Foata and Schiitzenberger.) If @ = a1...an is a permutation, let ind(a)
be its index, and let inv(a) count its inversions.

a) Define a one-to-one correspondence that takes each permutation « of {1,...,n}
to a permutation f(«) that has the following two properties: (i) ind(f(a)) =
inv(a); (ii) for 1 < j < n, the number j appears to the left of j + 1 in f(«)
if and only if it appears to the left of 7 + 1 in a. What permutation does your
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construction assign to f(a) when a = 1982637457 For what permutation « is
f(a) = 1982637457 [Hint: If n > 1, write @ = T101%202 ... TrQkGn, Where
1, ..., T are all the elements < an if a1 < an, otherwise z1, ..., z) are all the
elements > a,; the other elements appear in (possibly empty) strings a1, ..., Qk.
Compare the number of inversions of h(a) = a1z1@2t2 ... akTk to inv(a); in this
construction the number a, does not appear in h(a).]

b) Use f to define another one-to-one correspondence g having the following two
properties: (i) ind(g(a)) = inv(a); (ii) inv(g(e)) = ind(e). [Hint: Consider
inverse permutations.]

26. [M25] What is the statistical correlation coefficient between the number of inver-
sions and the index of a random permutation? (See Eq. 3.3.2-(24).)

27. [M37] Prove that, in addition to (15), there is a simple relationship between
inv(ai az...a,) and the n-tuple (1,42, ---,gqn). Use this fact to generalize the deriva-
tion of (17), obtaining an algebraic characterization of the bivariate generating function

Hn('w,z) — 2 :wmv(al asz an)zm (a1 a2 an),

where the sum is over all n! permutations aj az...an.

» 28. [25] (R. W.Floyd, 1983.) If a1 a2 ... a, is a permutation of {1,2,...,n}, its total

displacement is defined to be Z?:l la; — j}. Find upper and lower bounds for total
displacement in terms of the number of inversions.
29. [28] If r = a1a2 ... a, and ™ = @} a3 ... a,, are permutations of {1,2,...,n},
their product 77’ is aj, a,, ... ag, . Let inv(7) denote the number of inversions, as in
exercise 25. Show that inv(w7’) < inv(rm)+inv(7’), and that equality holds if and only
if 7w’ is “below” 7’ in the sense of exercise 12.

*5.1.2. Permutations of a Multiset

So far we have been discussing permutations of a set of elements; this is just a
special case of the concept of permutations of a multiset. (A multiset is like a set
except that it can have repetitions of identical elements. Some basic properties
of multisets have been discussed in exercise 4.6.3-19.)

For example, consider the multiset

M ={a,a,a,b,b,c,d,d, d,d}, (1)

which contains 3 a’s, 2 b’s, 1 ¢, and 4 d’s. We may also indicate the multiplicities
of elements in another way, namely

M={3-a,2-b,¢c4-d}. (2)
A permutation*® of M is an arrangement of its elements into a row; for example
? p ?

cabddabdad.

From another point of view we would call this a string of letters, containing 3 a’s,
2b’s,1c, and 4 d’s.

How many permutations of M are possible? If we regarded the elements
of M as distinct, by subscripting them a1, az, a3, b1, b2, c1, d1, do, d3, d4,

* Sometimes called a “permatution.”
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we would have 10! = 3,628,800 permutations, but many of those permutations
would actually be the same when we removed the subscripts. In fact, each
permutation of M would occur exactly 3!2!1!4! = 288 times, since we can start
with any permutation of M and put subscripts on the a’s in 3! ways, on the
b’s (independently) in 2! ways, on the ¢ in 1 way, and on the d’s in 4! ways.
Therefore the true number of permutations of M is
10!
srariral - 2000

In general, we can see by this same argument that the number of permutations
of any multiset is the multinomial coefficient

( n )_ n! (3)
ni,me,...) milmgl...’ 3

where n, is the number of elements of one kind, ny is the number of another
kind, etc., and n = n; +ng + - - - is the total number of elements.

The number of permutations of a set has been known for more than 1500
years. The Hebrew Book of Creation (c. A.D. 400), which was the earliest literary
product of Jewish philosophical mysticism, gives the correct values of the first
seven factorials, after which it says “Go on and compute what the mouth cannot
express and the ear cannot hear.” [Sefer Yetzirah, end of Chapter 4. See Solomon
Gandz, Studies in Hebrew Astronomy and Mathematics (New York: Ktav, 1970),
494-496; Aryeh Kaplan, Sefer Yetzirah (York Beach, Maine: Samuel Weiser,
1993).] This is the first known enumeration of permutations in history. The
second occurs in the Indian classic Anuyogadvara-sutra (c. 500), rule 97, which
gives the formula

6Xx5x4x3x2x1-2

for the number of permutations of six elements that are neither in ascending nor
descending order. [See G. Chakravarti, Bull. Calcutta Math. Soc. 24 (1932),
79-88. The Anuyogadvara-sutra is one of the books in the canon of Jainism,
a religious sect that flourishes in India.]

The corresponding formula for permutations of multisets seems to have
appeared first in the Lildvati of Bhédscara Achérya (c. 1150), sections 270-271.
Bhéascara stated the rule rather tersely, and illustrated it only with two simple
examples {2,2,1,1} and {4,8,5,5,5}. Consequently the English translations of
his work do not all state the rule correctly, although there is little doubt that
Bhéscara knew what he was talking about. He went on to give the interesting
formula

(4+8+5+5+5) x 120 x 11111
5x6
for the sum of the 20 numbers 48555 + 45855 + - - -.

The correct rule for counting permutations when there is only one repeated
element was found independently by the German Jesuit scholar Athanasius Kir-
cher in his voluminous treatise on music [Musurgia Universalis 2 (Rome: 1650),
5-7.] Kircher was interested in the number of tunes that could be made from
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a given collection of notes, so he devised what he called “musarithmetic.” On
pages 18-21 of his treatise he correctly gave the number of permutations of the
multiset {m - C, n - D} for several values of m and n, although he didn’t reveal
his method of calculation except when n = 1.

The general rule (3) then appeared in Jean Prestet’s Elémens de Mathéma-
tiques (Paris: 1675), 351<352, one of the very first expositions of combinatorial
mathematics to be written in the Western world. Prestet stated the rule correctly
for a general multiset, but illustrated it only in the simple case {a,a,b,b,c,c}.
He specifically pointed out that division by the sum of the factorials, which
he considered to be the natural generalization of Kircher’s rule, did not work
properly. A few years later, John Wallis’s Discourse of Combinations (Oxford:
1685), Chapter 2 (published with his Treatise of Algebra) gave a clearer and
somewhat more detailed discussion of the rule.

In 1965, Dominique Foata introduced an ingenious idea called the “inter-
calation product,” which makes it possible to extend many of the known results
about ordinary permutations to the general case of multiset permutations. [See
Publ. Inst. Statistique, Univ. Paris, 14 (1965), 81-241; also Lecture Notes in
Math. 85 (Springer, 1969).] Assuming that the elements of a multiset have been
linearly ordered in some way, we may consider a two-line notation such as

aaabbcdddd
<cabddabdad>’ (4)
where the top line contains the elements of M sorted into nondecreasing order
and the bottom line is the permutation itself. The intercalation product a1 of
two multiset permutations o and (3 is obtained by (a) expressing @ and § in the
two-line notation, (b) juxtaposing these two-line representations, and (c) sorting
the columns into nondecreasing order of the top line. The sorting is supposed

to be stable, in the sense that left-to-right order of elements in the bottom line

is preserved when the corresponding top line elements are equal. For example,
cadabtbddad=cabddabdad, since

aabcd abddd\ aabbcdddd
cadab)"\bddad) \cabddabdad) (5)
It is easy to see that the intercalation product is associative:
(a1B)1y=a1(B17); (6)
it also satisfies two cancellation laws:
Tra=71p03 implies :ﬁ,
atnt=071T implies = 4. (7)

There is an identity element,

aTE=€ETa =, (8)
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where ¢ is the null permutation, the “arrangement” of the empty set. Although
the commutative law is not valid in general (see exercise 2), we do have

atB=081a  if a and 8 have no letters in common. (9)

In an analogous fashion we can extend the concept of cycles in permutations
to cases where elements are repeated; we let

(x1 z2 ... Zp) (10)

stand for the permutation obtained in two-line form by sorting the columns of

(:171 o ... xn> (11)

Tog T3 ... I

by their top elements in a stable manner. For example, we have

dbddacaabd\ [(aaabbcdddd
bddacaabdd) \cabddabdad)’

so the permutation (4) is actually a cycle. We might render this cycle in words
by saying something like “d goes to b goes to d goes to d goes ... goes to d
goes back.” Note that these general cycles do not share all of the properties of
ordinary cycles; (zy 2 ...2,) is not always the same as (z3...z, z1).

We observed in Section 1.3.3 that every permutation of a set has a unique
representation (up to order) as a product of disjoint cycles, where the “product”
of permutations is defined by a law of composition. It is easy to see that
the product of disjoint cycles is exactly the same as their intercalation; this
suggests that we might be able to generalize the previous results, obtaining a
unique representation (in some sense) for any permutation of a multiset, as the
intercalation of cycles. In fact there are at least two natural ways to do this,
each of which has important applications.

Equation (5) shows one way to factor c a b d d a b d a d as the intercala-
tion of shorter permutations; let us consider the general problem of finding all
factorizations m = a 18 of a given permutation 7. It will be helpful to consider
a particular permutation, such as

_[faabbbbbcccddddd )
™ \dbecbcacdaddbdbbbdd)’ (12

as we investigate the factorization problem.

If we can write this permutation 7 in the form a1 3, where a contains the
letter a at least once, then the leftmost a in the top line of the two-line notation
for o must appear over the letter d, so a must also contain at least one occurrence
of the letter d. If we now look at the leftmost d in the top line of «, we see in
the same way that it must appear over the letter d, so @ must contain at least
two d’s. Looking at the second d, we see that o also contains at least one b. We
have deduced the partial result

/a b d d > )

(dbddacaabd)=<
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on the sole assumption that o is a left factor of m containing the letter a.
Proceeding in the same manner, we find that the b in the top line of (13) must
appear over the letter c, etc. Eventually this process will reach the letter a again,
and we can identify this @ with the first a if we choose to do so. The argument
we have just made essentially proves that any left factor o of (12) that contains
the letter o has the forme (d d b ¢ d b b ¢ a) 7/, for some permutation o’ (It
is convenient to write the a last in the cycle, instead of first; this is permissible
since there is only one a.) Similarly, if we had assumed that a contains the
letter b, we would have deduced that a = (c d d b) 1" for some o”.

In general, this argument shows that, if we have any factorization atf=m,
where o contains a given letter y, exactly one cycle of the form

(iL‘l . T y), nZO, $1,---,$n7£y, (14)

is a left factor of . This cycle is easily determined when 7 and y are given; it is
the shortest left factor of 7 that contains the letter y. One of the consequences
of this observation is the following theorem:

Theorem A. Let the elements of the multiset M be linearly ordered by the
relation “<”. Every permutation m of M has a unique representation as the
intercalation

T=(x11.  Tin,¥1)T(To1 - Ton,¥2) T T (Te1 -+ Ten, W), E 20, (15)
where the following two conditions are satisfied:
y1<ys<---<y, and Yy <ay forl<j<ng, 1<i<t (16

(In other words, the last element in each cycle is smaller than every other element,
and the sequence of last elements is in nondecreasing order.)

Proof. If ™ = ¢, we obtain such a factorization by letting ¢ = 0. Otherwise
we let y; be the smallest element permuted; and we determine (Z11 .. T1n Y1),
the shortest left factor of 7 containing v, as in the example above. Now 7 =
(€11 ... T1n, Y1) 7 p for some permutation p; by induction on the length, we can
write

p= (T2 -  Tona ¥2) T T(Tt1 -+ Ten, Yt)y ¢ 21,

where (16) is satisfied. This proves the existence of such a factorization.

Conversely, to prove that the representation (15) satisfying (16) is unique,
clearly ¢t = 0 if and only if 7 is the null permutation . When ¢ > 0, (16)
implies that y; is the smallest element permuted, and that (11 -+ Tin, Y1) 18
the shortest left factor containing y;. Therefore (z11 ... Z1n, 1) is uniquely
determined; by the cancellation law (7) and induction, the representation is
unique. |

For example, the “canonical” factorization of (12), satisfying the given con-
ditions, is

(ddbcdbbca)r(ba)r(cdb)r(d), (17)
ifa<b<ec<d.
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It is important to note that we can actually drop the parentheses and the
7's in this representation, without ambiguity! Each cycle ends just after the first
appearance of the smallest remaining element. So this construction associates
the permutation

7 =ddbcdbbcabacdbd

with the original permutation
mt=dbcbcacdaddbbdbbd.

Whenever the two-line representation of 7 had a column of the form ¥, where
z < y, the associated permutation 7' has a corresponding pair of adjacent
elements ...y .... Thus our example permutation 7 has three columns of the
form ¢, and 7’ has three occurrences of the pair db. In general this construction
establishes the following remarkable theorem:

Theorem B. Let M be a multiset. There is a one-to-one correspondence
between the permutations of M such that, if m corresponds to 7', the following
conditions hold:

a) The leftmost element of ' equals the leftmost element of .

b) For all pairs of permuted elements (x,y) with ¢ < y, the number of occur-
rences of the column ¥ in the two-line notation of 7 is equal to the number of
times z is immediately preceded by y in 7'. 1

When M is a set, this is essentially the same as the “unusual correspondence”
we discussed near the end of Section 1.3.3, with unimportant changes. The more
general result in Theorem B is quite useful for enumerating special kinds of
permutations, since we can often solve a problem based on a two-line constraint
more easily than the equivalent problem based on an adjacent-pair constraint.

P. A. MacMahon considered problems of this type in his extraordinary
book Combinatory Analysis 1 (Cambridge Univ. Press, 1915), 168-186. He
gave a constructive proof of Theorem B in the special case that M contains
only two different kinds of elements, say a and b; his construction for this
case is essentially the same as that given here, although he expressed it quite
differently. For the case of three different elements a, b, ¢, MacMahon gave
a complicated nonconstructive proof of Theorem B; the general case was first
proved constructively by Foata [Comptes Rendus Acad. Sci. Paris 258 (1964),
1672-1675].

As a nontrivial example of Theorem B, let us find the number of strings of
letters a, b, ¢ containing exactly

occurrences of the letter a;

occurrences of the letter b;

occurrences of the letter c;

occurrences of the adjacent pair of letters ca;
occurrences of the adjacent pair of letters cb;
occurrences of the adjacent pair of letters ba. (18)

I T FQwe



28 SORTING 5.1.2

The theorem tells us that this is the same as the number of two-line arrays of
the form

A B C
T T T
L LU LU L
A—krm a’s mtz’s k;’s (19)
\ B—Yb’s o l;s ’
) CZ’S ’

The a’s can be placed in the second line in

(A O

then the b’s can be placed in the remaining positions in
Y

B+k C -k wavs
B-1 I v

The positions that are still vacant must be filled by ¢’s; hence the desired number

T LA)OOEHE @

Let us return to the question of finding all factorizations of a given per-
mutation. Is there such a thing as a “prime” permutation, one that has no
intercalation factors except itself and €? The discussion preceding Theorem A
leads us quickly to conclude that a permutation is prime if and only if it is a
cycle with no repeated elements. For if it is such a cycle, our argument proves
that there are no left factors except € and the cycle itself. And if a permutation
contains a repeated element y, it has a nontrivial cyclic left factor in which y
appears only once.

A nonprime permutation can be factored into smaller and smaller pieces
until it has been expressed as a product of primes. Furthermore we can show
that the factorization is unique, if we neglect the order of factors that commute:

Theorem C. Every permutation of a multiset can be written as a product
17027 T0% t 20, (21)

where each o is a cycle having no repeated elements. This representation is
unique, in the sense that any two such representations of the same permuta-
tion may be transformed into each other by successively interchanging pairs of
adjacent disjoint cycles.
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The term “disjoint cycles” means cycles having no elements in common. As
an example of this theorem, we can verify that the permutation

aabbccd
baacdbdec

has exactly five factorizations into primes, namely

(@b)r(a)r(cd)r(bc)=(abd)r(cd)r(a)r(be)
=(ab)7(cd)r(bc)T(a)
=(cd)1(ab)r(bc)r(a)
=(cd)r(ab)r(a)r(bo) (22)

Proof. We must show that the stated uniqueness property holds. By induction
on the length of the permutation, it suffices to prove that if p and o are unequal
cycles having no repeated elements, and if

pra=o1p,
then p and o are disjoint, and
CZ:O'TH, /szTga

for some permutation 6.

If y is any element of the cycle p, then any left factor of o 13 containing the
element y must have p as a left factor. So if p and o have an element in common,
o is a multiple of p; hence o = p (since they are primes), contradicting our as-
sumption. Therefore the cycle containing y, having no elements in common with
o, must be a left factor of 8. The proof is completed by using the cancellation

law (7). 1

As an example of Theorem C, let us consider permutations of the multiset
M ={A-a, B-b,C-c} consisting of A a’s, B b’s, and C ¢’s. Let N(A, B,C,m)
be the number of permutations of M whose two-line representation contains no
columns of the forms ¢, 2, ¢, and exactly m columns of the form ¢. It follows
that there are exactly A — m columns of the form ¢, B — m of the form §,
C — B+ m of the form ¢, C — A+ m of the form %, and A+ B — C — m of the

form 2. Hence

N(A,B,C,m)z(frt) <C—§+m> <B?m>. (23)

Theorem C tells us that we can count these permutations in another way:
Since columns of the form ¢, %, ¢ are excluded, the only possible prime factors

of the permutation are

(a b), (a c), (b ¢), (a bc), (a cb). (24)

Each pair of these cycles has at least one letter in common, so the factorization
into primes is completely unique. If the cycle (a b ¢) occurs k times in the
factorization, our previous assumptions imply that (a b) occurs m — k times,
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(b ¢) occurs C — A+ m — k times, (a c) occurs C — B + m — k times, and
(a ¢ b) occurs A+ B — C — 2m + k times. Hence N (A, B,C,m) is the number
of permutations of these cycles (a multinomial coefficient), summed over :

N(A, B,C,m)

_ (C+m—k)!
B ; (m—K (C—A+m—-k)(C—B+m—-k) k!l (A+B~—-C-2m+k)!

SO b)) -

Comparing this with (23), we find that the following identity must be valid:

Xk: <TIZ> <C—g;::;—k> <C+j4n_k> - <C—§+m> <B€m>' (26)

This turns out to be the identity we met in exercise 1.2.6-31, namely

SOV G =G () e

withM = A+B-C-m, N=C—-B+m,R=B,5=C,andj=C—-B+m—k.
Similarly we can count the number of permutations of {A-a, B-b, C-¢, D-d}
such that the number of columns of various types is specified as follows:

Column a a b b c c d d
type: d b a C b d a C (28)

Frequency: r A-r ¢ B—-q B—-A+4+r D—-r A—q D-A+gq

(Here A+ C = B + D.) The possible cycles occurring in a prime factorization
of such permutations are then

Cycle: (a b) (b c) (c d) (da) (abcd) (dcba)
Frequency: A—r—s B—g—s D—r—s A—qg—s S g—A+r+s

(29)

for some s (see exercise 12). In this case the cycles (a b) and (¢ d) commute with
each other, and so do (b ¢) and (d a), so we must count the number of distinct
prime factorizations. It turns out (see exercise 10) that there is always a unique
factorization such that no (¢ d) is immediately followed by (a b), and no (d a) is
immediately followed by (b ¢). Hence by the result of exercise 13, we have

Z<B>< A—qg—s ><B+D—r—s—t>
y t A—r—s—t B—qg-—s

D!
(D—r—s)l(A—qg—s)!sl(g— A+r+s)!

-(CREE G2

X
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Taking out the factor ( A[_)q) from both sides and simplifying the factorials slightly
leaves us with the complicated-looking five-parameter identity

{COT Q[ Gosonmon [ e [ Buru

A\/B+D-A\ /B
=)o) e

r - q
The sum on s can be performed using (27), and the resulting sum on ¢t is easily
evaluated; so, after all this work, we were not fortunate enough to discover any
identities that we didn’t already know how to derive. But at least we have

learned how to count certain kinds of permutations, in two different ways, and
these counting techniques are good training for the problems that lie ahead.

EXERCISES

1. [M05] True or false: Let M; and M; be multisets. If o is a permutation of M;
and  is a permutation of M., then a 13 is a permutation of M; U Ma.

2. [10] The intercalation of c a d a b and b d d a d is computed in (5); find the
intercalation bd da d 1 c a d a b that is obtained when the factors are interchanged.

3. [M13] Is the converse of (g9) valid? In other words, if @ and S commute under
intercalation, must they have no letters in common?

4. [M11] The canonical factorization of (12), in the sense of Theorem A, is given
in (17) when a < b < ¢ < d. Find the corresponding canonical factorization when
d<c<b<a.

5. [M23] Condition (b) of Theorem B requires z < y; what would happen if we
weakened the relation to z < y?

6. [M15] How many strings are there that contain exactly m a’s, n b’s, and no other
letters, with exactly k of the a’s preceded immediately by a b?

7. [M21] How many strings on the letters a, b, c satisfying conditions (18) begin
with the letter a? with the letter b7 with c?

8. [20] Find all factorizations of (12) into two factors a1 3.

9. [33] Write computer programs that perform the factorizations of a given multiset
permutation into the forms mentioned in Theorems A and C.

10. [M80] True or false: Although the factorization into primes isn’t quite unique,
according to Theorem C, we can insure uniqueness in the following way: “There is a
linear ordering < of the set of primes such that every permutation of a multiset has a
unique factorization 17027+ - 70, into primes subject to the condition that o; < 041
whenever o; commutes with 0,41, for 1 <i < n.”

11. [M26] Let o1,02,...,0¢ be cycles without repeated elements. Define a partial
ordering < on the ¢ objects {z1,...,z:} by saying that z; < z; if i < j and o; has at
least one letter in common with o;. Prove the following connection between Theorem C
and the notion of (Section 2.2.3): The number of distinct prime factorizations of
o17027 * 70t is the number of ways to sort the given partial ordering topologically. (For
example, corresponding to (22) we find that there are five ways to sort the ordering
1 < T2, 3 < T4, T1 < T4 topologically.) Conversely, given any partial ordering on t
elements, there is a set of cycles {o1,02,...,0:} that defines it in the stated way.
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12. [M16] Show that (29) is a consequence of the assumptions of (28).
13. [M21] Prove that the number of permutations of the multiset

{A-a,B-b,C-c,D-d,E-¢ F-f}
containing no occurrences of the adjacent pairs of letters ca and db is

D A+B+E+F) (A+B+C+E+F—t)(C+D+E+F)
Z(A—t)( t B C,D,E,F

14. [M30] One way to define the inverse 7~ of a general permutation w, suggested by
other definitions in this section, is to interchange the lines of the two-line representation
of © and then to do a stable sort of the columns in order to bring the top row into
nondecreasing order. For example, if a < b < ¢ < d, this definition implies that the
inverse of cabddabdad is acdadabbdd.

Explore properties of this inversion operation; for example, does it have any simple
relation with intercalation products? Can we count the number of permutations such
that m =777

15. [M25] Prove that the permutation ai ...an, of the multiset

{n1-z1, n2 “T2,...,Tm - Tm},
where ;1 < 22 < -+ < zp and n; + N2 + - -+ + Ny = m, is a cycle if and only if the
directed graph with vertices {z1,z2,...,Zm} and arcs from z; to an,+...+n,; contains

precisely one oriented cycle. In the latter case, the number of ways to represent the
permutation in cycle form is the length of the oriented cycle. For example, the directed
graph corresponding to

<aaabbcccdd) s G:Eb
dcbacaabdc d c

and the two ways to represent the permutation as a cycle are (baddcacabc) and
(caddcacbab).

16. [M35] We found the generating function for inversions of permutations in the
previous section, Eq. 5.1.1-(8), in the special case that a set was being permuted.
Show that, in general, if a multiset is permuted, the generating function for inversions

of {n1 - z1,n2 - T2,...} is the “z-multinomial coefficient”
m
n n! -
:—'—-—L'——, where m!z:||(1+z+~~-+zk 1).
ny,na,... 2 N1z N2iz « v Pt

[Compare with (3) and with the definition of z-nomial coefficients in Eq. 1.2.6—(40).]

17. [M24] Find the average and standard deviation of the number of inversions in
a random permutation of a given multiset, using the generating function found in
exercise 16.

18. [M30] (P. A. MacMahon.) The indexr of a permutation a1 az...an was defined
in the previous section; and we proved that the number of permutations of a given
set that have a given index k is the same as the number of permutations that have &
inversions. Does the same result hold for permutations of a given multiset?
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19. [HM28] Define the Mobius function u(m) of a permutation 7 to be 0 if 7 contains
repeated elements, otherwise (—1)* if 7 is the product of k primes. (Compare with the
definition of the ordinary Mobius function, exercise 4.5.2-10.)
a) Prove that if ™ # ¢, we have
> () =0,

summed over all permutations A that are left factors of # (namely all A such that
m = A1p for some p).

b) Given that z; < 22 < -+ < T, and ™ = xj, Tj, ... Z;,, Where 1 < jp < m for
1 < k < n, prove that

p(m) = (=1)"e(ir iz .. .in), where €(i142...1,) = sign H (ik — 15).
1<j<k<n

20. [HM33] (D. Foata.) Let (ai;) be any matrix of real numbers. In the notation of
exercise 19(b), define v(7) = ai,j; - . - @i, j,, Where the two-line notation for 7 is

<:ci1 Tiy .. iy, )

Tjy Ljp .. Tjn

This function is useful in the computation of generating functions for permutations of
a multiset, because Y v(m), summed over all permutations m of the multiset

{n1-21,...,0m  Tm},

will be the generating function for the number of permutations satisfying certain
restrictions. For example, if we take a;; = z for ¢ = j, and a;; = 1 for i # j,
then 5 v(m) is the generating function for the number of “fixed points” (columns in
which the top and bottom entries are equal). In order to study > () for all multisets
simultaneously, we consider the function

G= Z v (m)

summed over all 7 in the set {z1,...,zm}" of all permutations of multisets involving
the elements z1,...,Zm, and we look at the coefficient of z7* ...z in G.
In this formula for G we are treating m as the product of the z’s. For example,
when m = 2 we have
G = 14+z1v(z1)+zav(z2) 1z v(X1 1) F 1220 (X1 T2) + T2z 1 V(T2 1) +T2Z2v (T2 22) +- - -
=14zx1011 + 20022 +xfafl +x1x2011022 +T122021012 +$§a§2 RalR
Thus the coefficient of z]*...zn™ in G is Y v(m) summed over all permutations 7 of

{n1-z1,...,nm - Tm}. It is not hard to see that this coeflicient is also the coefficient of
zt...zp™ in the expression

(allxl +- -+ allmxm)n1 (aZle +--+ amexm)n2 e (amlxl +- ammxm)nm-

The purpose of this exercise is to prove what P. A. MacMahon called a “Master
Theorem” in his Combinatory Analysis 1 (1915), Section 3, namely the formula

1-— a11x1 —Qai2T2 . —A1mTm
—a2171 1 —azz: —A2mTm

G =1/D, where D =det

—Aam1T1 —AaAmaT2 PR 1-— AmmITm
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For example, if a;; = 1 for all ¢ and j, this formula gives
G=1/(1—(z1+z2+ " +2Zm)),

and the coefficient of z*...zp™ turns out to be (n1 + -+ + nm)!/mi!...nml, as it
should. To prove the Master Theorem, show that

a) v(r1p) = v(mv(p);

b) D = Y wu(n)v(r), in the notation of exercise 19, summed over all permutations

min {Z1,...,Tm}";
c) therefore D -G = 1.
21. [M21] Given ny, ..., Nm, and d > 0, how many permutations a1 az...an of the

multiset {ni - 1,...,nm - m} satisfy a;41 > a; —dfor 1 <j<n=ni+- +nm?

22. [M30] Let P(z7'...zp) denote the set of all possible permutations of the multi-
set {ni1-T1,...,m" xm} and let Py(zp°x]" ... zm™) be the subset of P(zg®z]" ... z5m)
in which the ﬁrst no elements are # xo.

a) Given a number ¢ with 1 < ¢t < m, find a one-to-one correspondence between
P(1™ ...m"™) and the set of all ordered pairs of permutations that belong re-
spectively to P,(0F1™ ...¢"*) and Py(0F(t4+1)™t+1 ... m™™), for some k > 0. [Hint:
For each m = a1 ...a, € P(1™...m"™), let I(7) be the permutation obtained by
replacing t+1, ..., m by 0 and erasing all Os in the last n41 +- -+ + nm positions;
similarly, let 7(w) be the permutation obtained by replacing 1, ..., ¢ by 0 and
erasing all Os in the first ny + - - - + n; positions.]

b) Prove that the number of permutations of P, (0™°1™* ... m"™™ ) whose two-line form

has p; columns J and g; columns j is

1P(.’Ei’1 ...xfnmy'{"l‘pl ._.yrr;m—pm)l 1P(.’v'{1 ..-mey'{"l q1 ..yTT:Lm‘Qm)l
| Py(Omo1m1 ... mmm)] '

c) Let w1, ..., Wm, 21, --., 2m be complex numbers on the unit circle. Define the
weight w(rm) of a permutation 7 € P(1™ ... m"™) as the product of the weights
of its columns in two-line form, where the weight of ] is w;/wi if j and k are
both < t or both > t, otherwise it is z;/zx. Prove that the sum of w(w) over all

T € P(1™...m"™)is
2
Wy Pm
(%)

where n<; is n1 + -+ +n¢, N>t I8 Ney1 + - + Nm, and the inner sum is over all
(pl’ e ,pm) SUCh that pSt = P>t = k,

23. [M23] A strand of DNA can be thought of as a word on a four-letter alphabet.
Suppose we copy a strand of DNA and break it completely into one-letter bases, then
recombine those bases at random. If the resulting strand is placed next to the original,
prove that the number of places in which they differ is more likely to be even than odd.
[Hint: Apply the previous exercise.]

k?(n<, — k)! (n>t — k)!

s e e e G () ()

k>0

?

24. [27] Consider any relation R that might hold between two unordered pairs of
letters; if {w,z}R{y, z} we say {w, z} preserves {y, z}, otherwise {w, x} moves {y, z}.

The operation of transposing , 7 with respect to R replaces 7 by % or 77,
according as the pair {w,z} preserves or moves the pair {y, 2z}, assuming that w # z

and y # z; if w = = or y = z the transposition always produces ; ;.
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] ... Ty

The operation of sorting a two-line array (! = {") with respect to R repeatedly
finds the largest z; such that x; > x;41 and transposes columns j and j + 1, until
eventually z; < -+ < z,. (We do not require y; . ..yn to be a permutation of z; ...x5.)

a) Given (Z::2n) prove that for every z € {z1,...,Zn} there is a unique y €
{y1,...,yn} such that sort(3! =:3n) = sort(z:Z - zz) for some T, Ya, ..., Th, Yn-
b) Let (%1 %k)® (3! %) denote the result of sorting (%7 %k 31 3) with

respect to R. For example, if R is always true, ® is simply juxtaposition; if R is
always false, ® is the intercalation product 1. Generalize Theorem A by proving
that every permutation m of a multiset M has a unique representation of the form

T=(x11.. Tin; Y1) ® (@21 . . T2ny 12) ® - ® (Te1 - . . Tim, Y1)

satisfying (16), if we redefine cycle notation by letting (11) stand for (z2 ... z, 1)
instead of (z1x2 ... ). For example, suppose {w, z}R{y, z} means that w, z,
y, and z are distinct; then it turns out that the factorization of (12) analogous
to (17) is

(ddbca) ® ((cbba) ® ((cdb) ® ((db) ® (d)))) -

(The operation ® does not always obey the associative law; parentheses in the
generalized factorization should be nested from right to left.)

*5.1.3. Runs

In Chapter 3 we analyzed the lengths of upward runs in permutations, as a way
to test the randomness of a sequence. If we place a vertical line at both ends
of a permutation a; a3 ...a, and also between a; and a;4, whenever a; > a;41,
the runs are the segments between pairs of lines. For example, the permutation

1357|168 9|4]|2]

has four runs. The theory developed in Section 3.3.2G determines the average
number of runs of length k in a random permutation of {1,2,...,n}, as well as
the covariance of the numbers of runs of lengths j and £. Runs are important in
the study of sorting algorithms, because they represent sorted segments of the
data, so we will now take up the subject of runs once again.
Let us use the notation
n
< k > ()

to stand for the number of permutations of {1,2,...,n} that have exactly k
“descents” a; > a;41, thus exactly k + 1 ascending runs. These numbers <Z>
arise in several contexts, and they are usually called Eulerian numbers since
Fuler discussed them in his famous book Institutiones Calculi Differentialis
(St. Petersburg: 1755), 485-487, after having introduced them several years
earlier in a technical paper [Comment. Acad. Sci. Imp. Petrop. 8 (1736), 147-
158, §13]; they should not be confused with the Fuler numbers E, discussed in
exercise 5.1.4-23. The angle brackets in (}) remind us of the “>” sign in the
definition of a descent. Of course (Z} is also the number of permutations that
have k “ascents” a; < a;41.
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We can use any given permutation of {1,...,n—1} to form n new permuta-
tions, by inserting the element n in all possible places. If the original permutation
has k descents, exactly k+ 1 of these new permutations will have k descents; the
remaining n — 1 — k will have k + 1, since we increase the number of descents
unless we place the element n at the end of an existing run. For example, the
six permutations formed from 31245 are

631245, 361245, 316245,
312645, 312465, 312456;

all but the second and last of these have two descents instead of one. Therefore
we have the recurrence relation

— -1
<Z> :(k+1)<nk 1>+(n—k)<z_1>, integer n > 0, integer k. (2)

By convention we set
0
=9
<k}> k0 » (3)

saying that the null permutation has no descents. The reader may find it
interesting to compare (2) with the recurrence relations for Stirling numbers
in Eqgs. 1.2.6-(46). Table 1 lists the Eulerian numbers for small n.

Several patterns can be observed in Table 1. By definition, we have

(e (o a
<g>=1; (5)

()= (D=o wmean

Eq. (6) follows from (5) because of a general rule of symmetry,

<Z>:<n—rll—k>’ forn 2 1, (7)

which comes from the fact that each nonnull permutation a; as ... a, having
k descents has n — 1 — k ascents.
Another important property of the Eulerian numbers is the formula

S = w2 g
k

which was discovered by the Chinese mathematician Li Shan-Lan and pub-
lished in 1867. [See J.-C. Martzloff, A History of Chinese Mathematics (Berlin:
Springer, 1997), 346-348; special cases for n < 5 had already been known to
Yoshisuke Matsunaga in Japan, who died in 1744.] Li Shan-Lan’s identity follows
from the properties of sorting: Consider the m™ sequences a; az . ..a, such that
1 < a; € m. We can sort any such sequence into nondecreasing order in a stable
manner, obtaining

a; <ai, <---<ag, (9)
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Table 1
EULERIAN NUMBERS

n n n n n n n n n
" <0> <1> <2> <3> <4> <5> <6> <7> <8>
0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0O 0
2 1 1 0 0 0 0 0 0O 0
3 1 4 1 0 0 0 0 0O 0
4 1 11 11 1 0 0 0 0 0
5 1 26 66 26 1 0 0 0 0
6 1 57 302 302 57 1 0 0 0
7 1 120 1191 2416 1191 120 1 0 0
8 1 247 4293 15619 15619 4293 247 1 0
9 1 502 14608 88234 156190 88234 14608 502 1

where 41 12 . .. 1, is a uniquely determined permutation of {1,2,...,n} such that

a;; = a;;,, implies 4; < 4;41; in other words, 7; > 7;41 implies that a;; < a;, -
If the permutation ¢;%s...%, has k runs, we will show that the number of
corresponding sequences aj ag . . . G 18 (mt?_k). This will prove (8) if we replace
k by n — k and use (7), because (Z} permutations have n — k runs.

For example, if n =9 and 41 42...72, =357168942, we want to count the
number of sequences a; as .. .a, such that

1<as<as<ar<a <ag<ag<ag<ag<ay <m (10)
this is the number of sequences by b ... bg such that
1<by <by<by<by<bs<bg<by<bg<by<m+25,

since we can let by = a3, bo = a5+ 1, bs = a7+ 2, by = a1 + 2, bs = ag + 3,
etc. The number of choices of the b’s is simply the number of ways of choosing
9 things out of m + 5, namely (m;r 5); a similar proof works for general n and k,
and for any permutation ¢; ¢3...%, with k runs.

Since both sides of (8) are polynomials in m, we may replace m by any real
number z, and we obtain an interesting representation of powers in terms of

consecutive binomial coefficients:

AN HIGE AN ey

For example,
3 x a:—i—l) <a:+2>
= 4 .
* <3>+ < 3 )7\ 3

This is the key property of Eulerian numbers that makes them useful in the
study of discrete mathematics.

Setting x = 1 in (11) proves again that (nL} = 1, since the binomial
coefficients vanish in all but the last term. Setting x = 2 yields

<n72>=<?>:2"—n—1, n>1. (12)
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Setting z = 3, 4, ... shows that relation (11) completely defines the numbers
(%), and leads to a formula originally given by Euler:

(2) =i ("3 e () ()

k
=3 (1) <"+1>(k+1—])” n>0, k>0 (13)

7=0 J

Now let us study the generating function for runs. If we set

k

(@ =3(, 0 ) (14)

the coefficient of 2* is the probability that a random permutation of {1,2,...,n}
has exactly k runs. Since k runs are just as likely as n+1—k, the average number
of runs must be $(n+1), hence g;,(1) = 3(n+1). Exercise 2(b) shows that there
is a simple formula for all the derivatives of g, (z) at the point z = 1:

s ={, 1 (R) e o3

Thus in particular the variance g//(1) + ¢,,(1) — ¢/.(1)® comes to (n + 1)/12, for
n > 2, indicating a rather stable distribution about the mean. (We found this
same quantity in Eq. 3.3.2-(18), where it was called covar(R}, R}).) Since gn(z)
is a polynomial, we can use formula (15) to deduce the Taylor series expansions

9 n‘Z k{k—i—l n‘zz TR E+1)
(16)

The second of these equations follows from the first, since

gn(2) = 2""gn(1/2),  n21, (17)

by the symmetry condition (7). The Stirling number recurrence
n+1 n n
=0 { {5
Geraf =60 {0 +{;
gives two slightly simpler representations,
n—k n
9n( n‘z z(z—1) k‘{ } Zz kk‘{k}, (18)

when n > 1. The super generating function

EEEE (M w

n>0 k,n>0
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is therefore equal to

_ n 1 (z—1)z _ k _
> ((Ez _11))3;) {Z}% =, <e > 1 1) = e(z(}l)zzz o (20)
k,n>0 k>0
this is another relation discussed by Euler.

Further properties of the Eulerian numbers may be found in a survey pa-
per by L. Carlitz [Math. Magazine 33 (1959), 247-260]. See also J. Riordan,
Introduction to Combinatorial Analysis (New York: Wiley, 1958), 38-39, 214—
219, 234-237; D. Foata and M. P. Schiitzenberger, Lecture Notes in Math. 138
(Berlin: Springer, 1970).

Let us now consider the length of runs; how long will a run be, on the
average? We have already studied the expected number of runs having a given
length, in Section 3.3.2; the average run length is approximately 2, in agreement
with the fact that about %(n + 1) runs appear in a random permutation of
length n. For applications to sorting algorithms, a slightly different viewpoint is
useful; we will consider the length of the kth run of the permutation from left to
right, for k=1, 2, ....

For example, how long is the first (leftmost) run of a random permutation
aiaz...a,? Its length is always > 1, and its length is > 2 exactly one-half
the time (namely when a; < a2). Its length is > 3 exactly one-sixth of the
time (when a; < a2 < a3), and, in general, its length is > m with probability
gm = 1/m!, for 1 < m < n. The probability that its length is exactly equal to m
is therefore

DPm = Gm — Gm+1 = 1/m! —1/(m + 1)!, for 1 <m < n;
o= 1/nl. (21)
The average length of the first run therefore equals

PL+2p2+ -+ npn = (1 —q2)+2(g2—g3)+- -+ (n—1)(gn-1 — gn) + ngn

1 1 1
=Qt @t ot =gt (22)
If we let n — oo, the limit is e — 1 = 1.71828..., and for finite n the value is

e — 1 — 4, where ¢, is quite small;

1 1 1 e—1
On = (n+1)! <1+n+2+ (n+2)(n + 3) +) = (n+ 1)

For practical purposes it is therefore convenient to study runs in a random infinite
sequence of distinct numbers

ai,az,0a3,...;

by “random” we mean in this case that each of the n! possible relative orderings
of the first n elements in the sequence is equally likely. The average length of
the first run in a random infinite sequence is exactly e — 1.

By slightly sharpening our analysis of the first run, we can ascertain the
average length of the kth run in a random sequence. Let gi,, be the probability
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that the first k runs have total length > m; then ggm is 1 /m! times the number
of permutations of {1,2,...,m} that have < k runs,

e (D) f

The probability that the first k runs have total length m is Grkm — Qk(m+1)-
Therefore if L denotes the average length of the kth run, we find that

L1+ -+ L = average total length of first k runs
= (qr1 — gr2) + 2(qr2 — qr3) + 3(qrk3 — Gra) + -+
=qk1+ k2 T qr3 + -

Subtracting L + - - - + Li—, and using the value of gim in (23) vyields the desired
formula

1 1 1 2 1 3 m 1
b= gl ) e 0 ale )t G )m e

Since (,°,) = 0 except when k = 1, L turns out to be the coefficient of zF=1in

the generating function g(z,1) — 1 (see Eq. (19)), so we have

ZLz 1_z)—z. (25)

ez 1—Z
k>0

From Euler’s formula (13) we obtain a representation of Ly as a polynomial in e:

Z Z <m+J1>gT_n_

m>0 j=0
D ah Dl (R s SCE i DY (R =
P S0 k—g/ml = = k—j7—1/m!
k » m K n
:Z(—l)’“ J]kJZZ_ﬂLZ( DRI
(k —7)! n! (k—j—1)! n!

k ko1
:kz(_l)k ]fc. ed. (26)

This formula for Lj was first obtained by B. J. Gassner [see CACM 10 (1967),
89-93]. In particular, we have

Ly =e-1 ~ 1.71828...;

Ly = €2 — 2e ~ 1.95249. .. ;

Ly = €3 —3e? + 3e =~ 1.99579....

Q

The second run is expected to be longer than the first, and the third run will
be longer yet, on the average. This may seem surprising at first glance, but a
moment’s reflection shows that the first element of the second run tends to be
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Table 2
AVERAGE LENGTH OF THE kTH RUN

k Ly k Ly

1 1.71828 18284 59045+ 10 2.00000 00012 05997+
2 1.95249 24420 12560— 11 2.00000 00001 93672+
3 1.99579 13690 84285— 12 1.99999 99999 99909+
4 2.00003 88504 76806— 13 1.99999 99999 97022—
5 2.00005 75785 89716+ 14 1.99999 99999 99719+
6 2.00000 50727 55710— 15 2.00000 00000 00019+
7 1.99999 96401 440224 16 2.00000 00000 00006+
8 1.99999 98889 04744+ 17 2.00000 00000 00000+
9 1.99999 99948 43434— 18 2.00000 00000 00000—

small (it caused the first run to terminate); hence there is a better chance for
the second run to go on longer. The first element of the third run will tend to
be even smaller than that of the second.

The numbers L are important in the theory of replacement-selection sorting
(Section 5.4.1), so it is interesting to study their values in detail. Table 2 shows
the first 18 values of L to 15 decimal places. Our discussion in the preceding
paragraph might lead us to suspect at first that L1 > L, but in fact the values
oscillate back and forth. Notice that Ly rapidly approaches the limiting value 2;
it is quite remarkable to see these monic polynomials in the transcendental
number e converging to the rational number 2 so quickly! The polynomials (26)
are also somewhat interesting from the standpoint of numerical analysis, since
they provide an excellent example of the loss of significant figures when nearly
equal numbers are subtracted; using 19-digit floating point arithmetic, Gassner
concluded incorrectly that Li2 > 2, and John W. Wrench, Jr., has remarked that
42-digit floating point arithmetic gives Log correct to only 29 significant digits.

The asymptotic behavior of Ly can be determined by using simple principles
of complex variable theory. The denominator of (25) is zero only when e*~' = z,
namely when

e® leosy == and e® lsiny =y, (27)

if we write z = = + iy. Figure 3 shows the superimposed graphs of these two
equations, and we note that they intersect at the points z = 2o, 21, 21, 22, 22, - . -,
where zp = 1,

21 = (3.08884 30156 13044—) + (7.46148 92856 54255—) 1, (28)

and the imaginary part S(zx+1) is roughly equal to $(zx) + 27 for large k. Since

1—
lim <———z-——>(z—zk)=—1, for k > 0,

2z \e?~ 1 — 2

and since the limit is —2 for k£ = 0, the function

Z2—2zy Z2—21 Z—2Z1 Z—2Z2 Z—22 Z—2Zm Z—Zm
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has no singularities in the complex plane for |z| < |zm+1]- Hence Ry (2) has a
power series expansion Y, prz¥ that converges absolutely when |z] < |Zm+1]; it
follows that pyM* — 0 as k — oo, where M = |zm+1] — €. The coeflicients of
L(z) are the coefficients of

2 1 1 1 1

: +oe ot -+ + Rm(2),
1—z+1—z/z1+1—z/21 1—2/2m 1—2/Zm (2)

namely,

L, =2+ 2r;"cosnb + 2ry " cosnlby + -+ + 2r " cosnb, + O(r;ﬁ_l), (29)

if we let
2p = e, (30)
This shows the asymptotic behavior of L,. We have
r1 = 8.07556 64528 89526—, 61 = 1.17830 39784 T4668+;
ro = 14.35456 68997 62106—, 0o = 1.31268 53883 87636+;
rs = 20.62073 15381 80628—, 03 = 1.37427 90757 91688—;
ry = 26.88795 29424 54546—, 04 = 1.41049 72786 51865—; (31)

so the main contribution to L, —2 is due to r1 and 6;, and convergence of (29) is
quite rapid. Further analysis [W. W. Hooker, CACM 12 (1969), 411-413] shows
that R, (z) — —z as m — oo; hence the series 23,7, " cosnfy actually
converges to L, when n > 1. B

A more careful examination of probabilities can be carried out to determine
the complete probability distribution for the length of the kth run and for the
total length of the first k runs (see exercises 9, 10, 11). The sum L; + --- + Ly
turns out to be asymptotically 2k — 1 + O(87%).

Let us conclude this section by considering the properties of runs when equal
elements are allowed to appear in the permutations. The famous nineteenth-
century American astronomer Simon Newcomb amused himself by playing a
game of solitaire related to this question. He would deal a deck of cards into a
pile, so long as the face values were in nondecreasing order; but whenever the
next card to be dealt had a face value lower than its predecessor, he would start
a new pile. He wanted to know the probability that a given number of piles
would be formed after the entire deck had been dealt out in this manner.

Simon Newcomb’s problem therefore consists of finding the probability dis-
tribution of runs in a random permutation of a multiset. The general answer
is rather complicated (see exercise 12), although we have already seen how to
solve the special case when all cards have a distinct face value. We will content
ourselves here with a derivation of the average number of piles that appear in
the game.

Suppose first that there are m different types of cards, each occurring exactly
p times. An ordinary bridge deck, for example, has m = 13 and p = 4 if suits
are disregarded. A remarkable symmetry applying to this case was discovered
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by P. A. MacMahon [Combinatory Analysis 1 (Cambridge, 1915), 212-213]:
The number of permutations with k£ + 1 runs is the same as the number with
mp —p — k + 1 runs. When p = 1, this relation is Eq. (7), but for p > 1 it is
quite surprising.

We can prove the symmetry by setting up a one-to-one correspondence
between the permutations in such a way that each permutation with k + 1 runs
corresponds to another having mp — p — k + 1 runs. The reader is urged to try
discovering such a correspondence before reading further.

No very simple correspondence is evident; MacMahon’s proof was based
on generating functions instead of a combinatorial construction. But Foata’s
correspondence (Theorem 5.1.2B) provides a useful simplification, because it
tells us that there is a one-to-one correspondence between multiset permutations
with k& + 1 runs and permutations whose two-line notation contains exactly k
columns ¥ with z < y.

Suppose the given multiset is {p - 1,p - 2,...,p - m}, and consider the
permutation whose two-line notation is

1 1 2 2 m .. m
x x x x x x ) (32)
11 1p 21 2p - ml mp
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We can associate this permutation with another one,

1 ... 1 2 ... 2 ... m ... m
<a:’11 oy Ty e Ty e T e xgp)’ (33)
where 2/ = m+ 1 —z. If (32) contains k columns of the form ¥ with z <y, then
(33) contains (m —1)p—k such columns; for we need only consider the case y > 1,
and z < y is equivalent to 2’ > m+2—y. Now (32) corresponds to a permutation
with k+ 1 runs, and (33) corresponds to a permutation with mp—p—k+1 runs,
and the transformation that takes (32) into (33) is reversible — it takes (33) back
into (32). Therefore MacMahon’s symmetry condition has been established. See
exercise 14 for an example of this construction.

Because of the symmetry property, the average number of runs in a random
permutation must be 1((k +1) + (mp —p—k+1)) = 1+ gp(m — 1). For
example, the average number of piles resulting from Simon Newcomb’s solitaire
game using a standard deck will be 25 (so it doesn’t appear to be a very exciting
way to play solitaire).

We can actually determine the average number of runs in general, using a
fairly simple argument, given any multiset {ny - 21, n2 - T2,..., Nm - Tm } Where
the z’s are distinct. Let n = ny + ng + - -+ + n.,m, and imagine that all of the
permutations a; as ... a, of this multiset have been written down; we will count
how often a; is greater than a4, for each fixed value of 7, 1 < ¢ < n. The
number of times a; > a;41 is just half of the number of times a; # a;+1; and it
is not difficult to see that a; = a;;1 = z; exactly Nnj(n; — 1)/n(n — 1) times,
where N is the total number of permutations. Hence a; = a;4+1 exactly

N ,
- 1+ (i — 1)) = ————(n? + - - 2
Ty M = D (i = 1)) = T (e =)
times, and a; > a;41 exactly
N 2 2 2
2n(n —1) (n (ny 4+ nm))

times. Summing over i and adding N, since a run ends at a, in each permutation,
we obtain the total number of runs among all N permutations:

n 1

N<§_%(n§+---+nfn)+l>. (34)

Dividing by N gives the desired average number of runs.

Since runs are important in the study of “order statistics,” there is a fairly
large literature dealing with them, including several other types of runs not
considered here. For additional information, see the book Combinatorial Chance
by F. N. David and D. E. Barton (London: Griffin, 1962), Chapter 10; and the
survey paper by D. E. Barton and C. L. Mallows, Annals of Math. Statistics 36
(1965), 236-260.

EXERCISES
1. [M26] Derive Euler’s formula (13).
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» 2. [M22] (a) Extend the idea used in the text to prove (8), considering those se-
quences a az . .. a, that contain exactly g distinct elements, in order to prove that

S0 (i) = {0t

(b) Use this identity to prove that

;<Z>(k;1):{n:i_}m}(n~m)!, for n > m.

HM25] Evaluate the sum S (M (1)

M21] What is the value of 3, (~=1)* {3} k! (".%) 7
M20] Deduce the value of (¥) mod p when p is prime.
M21] Mr. B. C. Dull noticed that, by Egs. (4) and (13),

a=3 (1) = T (1) uevr

k>0 k>0 j>0

3
4.
5
» 6

[
[
-
[

Carrying out the sum on k first, he found that 3, -o(—1)*77(37}) = 0 for all j > 0;
hence n! = 0 for all n > 0. Did he make a mistake?

7. [HM40] Is the probability distribution of runms, given by (14), asymptotically
normal? (See exercise 1.2.10-13.)

8. [M24] (P. A. MacMahon.) Show that the probability that the first run of a

sufficiently long permutation has length l1, the second has length Iz, ..., and the kth
has length > i, is
0 0 1 1/1%!

9. [M30] Let hx(z) = Y_pemz™, where prm is the probability that m is the total
length of the first k runs in a random (infinite) sequence. Find simple expressions
for h1(z), ha(z), and the super generating function h(z,z) = 3, hi(z)z"

10. [HM30] Find the asymptotic behavior of the mean and variance of the distribu-
tions hx(z) in the preceding exercise, for large k.

11. [M40] Let Hy(z) =Y Pemz™, where Pim is the probability that m is the length
of the kth run in a random (infinite) sequence. Express Hi(z), H2(z), and the super
generating function H(z,z) = 3., Hx(2)z" in terms of familiar functions.

12. [M33] (P. A. MacMahon.) Generalize Eq. (13) to permutations of a multiset, by

proving that the number of permutations of {n; - 1, n2-2,..., nm - m} having exactly
k runs is
Z( 1) (n—i—l)(nl—l—i—k—j)(nz—l—i—k—j) (nm—1+k—j)
ny N2 N ’

wheren=n1 +n2+ -+ nm.
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13. [05] If Simon Newcomb’s solitaire game is played with a standard bridge deck,
ignoring face value but treating clubs < diamonds < hearts < spades, what is the
average number of piles?

14. [M18] The permutation 3111231423342244 has 5 runs; find the correspond-
ing permutation with 9 runs, according to the text’s construction for MacMahon's
symmetry condition. .

» 15. [M21] (Alternating runs.) The classical nineteenth-century literature of combi-
natorial analysis did not treat the topic of runs in permutations, as we have considered
them, but several authors studied “runs” that are alternatively ascending and descend-
ing. Thus 53247618 was considered to have 4 runs: 532, 247, 761, and 18. (The
first run would be ascending or descending, according as a1 < a2 or a1 > az; thus
a1as...an and an...a2a1 and (n+1—a1)(n+1—az)...(n+1—ax) all have the
same number of alternating runs.) When n elements are being permuted, the maximum
number of runs of this kind is n — 1.

Find the average number of alternating runs in a random permutation of the set
{1,2,...,n}. [Hint: Consider the proof of (34).]
16. [M30] Continuing the previous exercise, let |} | be the number of permutations
of {1,2,...,n} that have exactly k alternating runs. Find a recurrence relation, by
means of which a table of | 7| can be computed; and find the corresponding recurrence
relation for the generating function Gn(z) = Y., |%|2"/nl. Use the latter recurrence
to discover a simple formula for the variance of the number of alternating runs in a
random permutation of {1,2,...,n}.
17. [M25] Among all 2" sequences a1az ...an, Where each a; is either 0 or 1, how
many have exactly k runs (that is, kK — 1 occurrences of a; > a;+1)?

18. [M28] Among all n! sequences by bz ...b, such that each b; is an integer in the
range 0 < b; < n — j, how many have (a) exactly k descents (that is, k occurrences of
b; > b;11)? (b) exactly k distinct elements?

L
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Fig. 4. Nonattacking rooks on a chessboard, with k = 3 rooks below the main diagonal.
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» 19. [M26] (J. Riordan.) (a) In how many ways can n nonattacking rooks—no two
in the same row or column—be placed on an n X n chessboard, so that exactly k lie
below the main diagonal? (b) In how many ways can k nonattacking rooks be placed
below the main diagonal of an n x n chessboard?
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For example, Fig. 4 shows one of the 15619 ways to put eight nonattacking rooks
on a standard chessboard with exactly three rooks in the unshaded portion below the
main diagonal, together with one of the 1050 ways to put three nonattacking rooks on
a triangular board.

» 20. [M21] A permutation is said to require k readings if we must scan it k times from
left to right in order to read off its elements in nondecreasing order. For example, the
permutation 49182536 7 requires four readings: On the first we obtain 1, 2, 3; on the
second we get 4, 5, 6, 7; then &; then 9. Find a connection between runs and readings.
21. [M22] If the permutation ajaz...an of {1,2,...,n} has k runs and requires
j readings, in the sense of exercise 20, what can be said about a,...a2a:7?

22. [M26] (L. Carlitz, D. P. Roselle, and R. A. Scoville.) Show that there is no
permutation of {1,2,...,n} with n+ 1 —r runs, and requiring s readings, if rs < n;
but such permutations do exist if n >n+1—r>s>1and rs > n.

23. [HM42] (Walter Weissblum.) The “long runs” of a permutation ayaz...an are
obtained by placing vertical lines just before a segment fails to be monotonic; long
runs are either increasing or decreasing, depending on the order of their first two
elements, so the length of each long run (except possibly the last) is > 2. For example,
75]62|389]14 has four long runs. Find the average length of the first two long
runs of an infinite permutation, and prove that the limiting long-run length is

1+ cot 2)/(3 —cot 1) ~ 2.4202.
2 2

24. [M30] What is the average number of runs in sequences generated as in exercise
5.1.1-18, as a function of p?
25. [M25] Let U,...,U, be independent uniform random numbers in [0..1). What
is the probability that |Uy + -+ Un} = k7
26. [M20] Let ¥ be the operation z-+, which multiplies the coefficient of 2™ in a
generating function by n. Show that the result of applying ¥ to 1/(1 — z) repeatedly,
m times, can be expressed in terms of Eulerian numbers.

» 27. [M21] An increasing forest is a forest in which the nodes are labeled {1,2,...,n}

in such a way that parents have smaller numbers than their children. Show that (7) is
the number of n-node increasing forests with k 4 1 leaves.

*5.1.4. Tableaux and Involutions

To complete our survey of the combinatorial properties of permutations, we
will discuss some remarkable relations that connect permutations with arrays
of integers called tableaux. A Young tableau of shape (ni,na,...,Nsm), where
ng > ng > - > n,, > 0, is an arrangement of ny + ng + - -+ + n,, distinct
integers in an array of left-justified rows, with n; elements in row i, such that
the entries of each row are in increasing order from left to right, and the entries
of each column are increasing from top to bottom. For example,

1{215191(10|15
3,6|7](13
418112|14
11
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is a Young tableau of shape (6, 4, 4, 1). Such arrangements were introduced by
Alfred Young as an aid to the study of matrix representations of permutations
[see Proc. London Math. Soc. (2) 28 (1928), 255-292; Bruce E. Sagan, The
Symmetric Group (Pacific Grove, Calif.: Wadsworth & Brooks/Cole, 1991)]. For
simplicity, we will simply say “tableau” instead of “Young tableau.”

An involution is a permutation that is its own inverse. For example, there
are ten involutions of {1, 2, 3, 4},

1234 1234 1234 1234 1234
1234 2134 32114 4231 1324
1234 1234 1234 1234 1234
1432 1243 2143 3412 4321

The term “involution” originated in classical geometry problems; involutions in
the general sense considered here were first studied by H. A. Rothe when he
introduced the concept of inverses (see Section 5.1.1).

It may appear strange that we should be discussing both tableaux and
involutions at the same time, but there is an extraordinary connection be-
tween these two apparently unrelated concepts: The number of involutions of
{1,2,...,n} is the same as the number of tableaux that can be formed from the
elements {1,2,...,n}. For example, exactly ten tableaux can be formed from
{1, 2, 3, 4}, namely,

[172]3]4] [1]3]4] 1]4] 1/3] 1]2]4]

2] 2] 2] 3]
3] 4]
1]2] 1]2]3] 1[3 1]2 (3)
3 4] 24 34
4]

corresponding respectively to the ten involutions (2).

This connection between involutions and tableaux is by no means obvious,
and there is probably no very simple way to prove it. The proof we will discuss
involves an interesting tableau-construction algorithm that has several other
surprising properties. It is based on a special procedure that inserts new elements
into a tableau.

For example, suppose that we want to insert the element 8 into the tableau

1/3]5]|9][12/16
6 10|15
413]14 (1)
11
17
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The method we will use starts by placing the 8 into row 1, in the spot previously
occupied by 9, since 9 is the least element greater than 8 in that row. Element 9 is
“bumped down” into row 2, where it displaces the 10. The 10 then “bumps” the
13 from row 3 to row 4; and since row 4 contains no element greater than 13, the
process terminates by inserting 13 at the right end of row 4. Thus, tableau (4)
has been transformed into

315|8|12[16
216|915
4 (10|14 (5)
11|13
17

A precise description of this process, together with a proof that it always
preserves the tableau properties, appears in Algorithm I.

Algorithm I (Insertion into a tableau). Let P = (P;;) be a tableau of positive
integers, and let z be a positive integer not in P. This algorithm transforms P
into another tableau that contains z in addition to its original elements. The new
tableau has the same shape as the old, except for the addition of a new position
in row s, column ¢, where s and ¢t are quantities determined by the algorithm.
(Parenthesized remarks in this algorithm serve to prove its validity, since
it is easy to verify inductively that the remarks are valid and that the array P
remains a tableau throughout the process. For convenience we will assume that
the tableau has been bordered by zeros at the top and left and with oco’s to the
right and below, so that P;; is defined for all 7, 7 > 0. If we define the relation

a<lb if and only if a<b or a=b=0 or a=b=o00, (6)

the tableau inequalities can be expressed in the convenient form
P =0 if and only if i=0 or j=0; )
Pi; £ P41y and Py S Putny, for all 7,5 > 0. 7

~o

The statement “z ¢ P” means that either z = oo or z # P;; for all 4,j > 0.)

I1. [Input z.] Set 7 « 1, set z; < x, and set j to the smallest value such that
Plj = Q.

I2. [Find z;+1.] (At this point Py_qy; < x; < Pj; and z; & P.) If z; < Pyj-1y,
decrease j by 1 and repeat this step. Otherwise set z;1; < F;; and set
i < ]

13. [Replace by .’L‘,] (NOW Pi(j—l) <zi<zig1=PF; S Pi(j-{-l)’ P(i——l)j <z <
Tit1 = P,;j S P(i+1)j7 and r; = ]) Set P,;j — Z;.

I4. [IS Tit1 = OO?] (NOW Pi(j-l) < Pij =2; < Ti1 ,S Pi(j+1)7 P(i——l)j < .Z:)ij =
z; < 2ir1 S Pluy1)jy ri = J, and x4y ¢ P.) If 2441 # 00, increase ¢ by 1 and
return to step 12.
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I5. [Determine s, t.] Set s < %, ¢ < j, and terminate the algorithm. (At this
point the conditions

Py #00 and Py = Pspg1) = 00 (8)
are satisfied.) |
Algorithm I defines a “bumping sequence”
=21 <Ty < < Ts < Ts41 = OO, (9)
as well as an auxiliary sequence of column indices
rL>Te > 2Ts =1 (10)

element P, has been changed from z;1; to z;, for 1 < i < s. For example,
when we inserted 8 into (4), the bumping sequence was 8, 9, 10, 13, oo, and the
auxiliary sequence was 4, 3, 2, 2. We could have reformulated the algorithm so
that it used much less temporary storage; only the current values of j, x;, and
z;.1 need to be remembered. But sequences (9) and (10) have been introduced
so that we can prove interesting things about the algorithm.

The key fact we will use about Algorithm I is that it can be run backwards:
Given the values of s and t determined in step I5, we can transform P back
into its original form again, determining and removing the element z that was
inserted. For example, consider (5) and suppose we are told that element 13 is
in the position that used to be blank. Then 13 must have been bumped down
from row 3 by the 10, since 10 is the greatest element less than 13 in that row;
similarly the 10 must have been bumped from row 2 by the 9, and the 9 must
have been bumped from row 1 by the 8. Thus we can go from (5) back to (4).
The following algorithm specifies this process in detail:

Algorithm D (Deletion from a tableau). Given a tableau P and positive
integers s, t satisfying (8), this algorithm transforms P into another tableau,
having almost the same shape, but with oo in column ¢ of row s. An element z,
determined by the algorithm, is deleted from P.

(As in Algorithm I, parenthesized assertions are included here to facilitate
a proof that P remains a tableau throughout the process.)

D1. [Input s, t.] Set j <, i < s, Ts41  00.

D2. [Find z;.] (At this point Pi; < z;41 S P41y, and x40 € P.) If P4y <
x;11, increase j by 1 and repeat this step. Otherwise set z; < P;; and
T, < ]

D3. [Replace by xi-{-l-] (NOW P,-(j__l) < P,'j =z, < ZTit1 S Pz'(j_{_l), P(,'__l)j <
P =x; < zit1 S Puyry;, and r; = J.) Set Py < ;4.

Da4. [IS 1 = 1?] (NOW Pi(j—l) <z <zit1 = F; S Pi(j-{-l), P(i——l)j <z <
Ti41 = P;j < Py, and r; = j.) 1f i > 1, decrease ¢ by 1 and return to
step D2.

D5. [Determine z.] Set z < x; the algorithm terminates. (Now 0 < z < 00.) 1|
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The parenthesized assertions appearing in Algorithms I and D are not only a
useful way to prove that the algorithms preserve the tableau structure; they also
serve to verify that Algorithms I and D are perfect inverses of each other. If we
perform Algorithm I first, given some tableau P and some positive integer z ¢ P,
it will insert z and determine positive integers s, t satisfying (8); Algorithm D
applied to the result will recompute z and will restore P. Conversely, if we
perform Algorithm D first, given some tableau P and some positive integers
s, t satisfying (8), it will modify P, deleting some positive integer x; Algorithm I
applied to the result will recompute s, t and will restore P. The reason is that the
parenthesized assertions of steps I3 and D4 are identical, as are the assertions of
steps 14 and D3, and these assertions characterize the value of 7 uniquely. Hence
the auxiliary sequences (9), (10) are the same in each case.

Now we are ready to prove a basic property of tableaux:

Theorem A. There is a one-to-one correspondence between the set of all
permutations of {1,2,...,n} and the set of ordered pairs (P,(Q) of tableaux
formed from {1,2,...,n}, where P and () have the same shape.

(An example of this theorem appears within the proof that follows.)

Proof. 1t is convenient to prove a slightly more general result. Given any two-line
array

g1 92 ... (Qn g1 < gz < -+ < gy, (1)
P P2 ... DPn )’ P1,P2, ..., Pn distinct,

we will construct two corresponding tableaux P and (), where the elements of P
are {p1,...,pn} and the elements of Q are {q1,...,q,} and the shape of P is the
shape of Q.

Let P and @ be empty initially. Then, for i =1, 2, ..., n (in this order),
do the following operation: Insert p; into tableau P using Algorithm I; then set

Qst < q;, where s and ¢ specify the newly filled position of P.

For example, if the given permutation is (; g 3 g g), we obtain

Insert 7:

P
Insert 2:
2
7]
2
7

Insert 9:

(12)

Insert 5:

Vo]
Wl
(@]

Insert 3:

HEE
©
oo
(@]
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so the tableaux (P, @) corresponding to (; g g g g) are

213 115
P=|5|91, Q=3|6]. (13)
L7 ] 18]

It is clear from this censtruction that P and @) always have the same shape;
furthermore, since we always add elements on the periphery of 2, in increasing
order, @ is a tableau.

Conversely, given two equal-shape tableaux P and @), we can find the cor-
responding two-line array (11) as follows. Let the elements of ) be

<@gz <- < {n-

For i =n, ..., 2,1 (in this order), let p; be the element x that is removed when
Algorithm D is applied to P, using the values s and ¢ such that Qs = ¢;.

For example, this construction will start with (13) and will successively undo
the calculation (12) until P is empty, and (535 %) is obtained.

Since Algorithms I and D are inverses of each other, the two constructions
we have described are inverses of each other, and the one-to-one correspondence

has been established. 1

The correspondence defined in the poof of Theorem A has many startling
properties, and we will now proceed to derive some of them. The reader is urged
to work out the example in exercise 1, in order to become familiar with the
construction, before proceeding further.

Once an element has been bumped from row 1 to row 2, it doesn’t affect
row 1 any longer; furthermore rows 2, 3, ... are built up from the sequence of
bumped elements in exactly the same way as rows 1, 2, ... are built up from the
original permutation. These facts suggest that we can look at the construction
of Theorem A in another way, concentrating only on the first rows of P and Q.
For example, the permutation (; g 3 g g) causes the following action in row 1,
according to (12):

Insert 7, set (17 + 1.

Insert 2, bump 7.

Insert 9, set Q12 < 5. (14)
Insert 5, bump 9.

8: Insert 3, bump 5.

Thus the first row of P is 2 3, and the first row of @ is 1 5. Furthermore, the
remaining rows of P and @ are the tableaux corresponding to the “bumped”

two-line array
368
(35%): (15)

In order to study the behavior of the construction on row 1, we can consider
the elements that go into a given column of this row. Let us say that (g;, p;) is
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in class t with respect to the two-line array

Qh G2 ... (gn Q< g2 << (g, (16)
P1 P2 ... Pna)’ P1,P2, - - -, Pn distinct,

if p;, = P, after Algorithm I has been applied successively to pi,pe,...,Dp:,
starting with an empty tableau P. (Remember that Algorithm I always inserts
the given element into row 1.)

It is easy to see that (g;,p;) is in class 1 if and only if p; has ¢ — 1 inversions,
that is, if and only if p; = min{p;,p2,...,p:} is a “left-to-right minimum.” If we
cross out the columns of class 1 in (16), we obtain another two-line array

¢ @ - I >
1
(p’l Py .- DPm (7)
such that (g, p) is in class ¢ with respect to (17) if and only if it is in class ¢+1 with
respect to (16). The operation of going from (16) to (17) represents removing
the leftmost position of row 1. This gives us a systematic way to determine the

classes. For example in (535 2 %) the elements that are left-to-right minima are

7 and 2, so class 1is {(1,7), (3,2)}; in the remaining array (3 g g) all elements
are minima, so class 2 is {(5,9), (6,5), (8,3)}. In the “bumped” array (15), class
1is {(3,7), (8,5)} and class 2 is {(6,9)}.

For any fixed value of ¢, the elements of class ¢ can be labeled

(Qil,pil)a- cey (Q7.kapzk)

in such a way that
Gy, < Gip < < G5y, (18)
Diy > Diy 2> " 2 Diy,
since the tableau position P;; takes on the decreasing sequence of values p; , ...,
pi, as the insertion algorithm proceeds. At the end of the construction we have

P = Dy Q1 = qi,; (19)
and the “bumped” two-line array that defines rows 2, 3, ... of P and () contains
the columns

( g, qis e sz > (20)

pil Di, e pik_l

plus other columns formed in a similar way from the other classes.

These observations lead to a simple method for calculating P and @ by
hand (see exercise 3), and they also provide us with the means to prove a rather
unexpected result:

Theorem B. If the permutation
1 2 ... n
a ay ... Q).

corresponds to tableaux (P, Q) in the construction of Theorem A, then the
inverse permutation corresponds to (Q, P).
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This fact is quite startling, since P and @ are formed by such completely
different methods in Theorem A, and since the inverse of a permutation is
obtained by juggling the columns of the two-line array rather capriciously.

Proof. Suppose that we have a two-line array (16); interchanging the lines and
sorting the columns so that the new top line is in increasing order gives the
“inverse” array .

@ @ - n “:(pl p2 .- pn>
Pr P2 --- Pn Qg1 G2 -.-- (Qn
_ (P Py - p’n> Py < py < -or < P 1)
Q@B o 4G )] q1, 5, - - -, g, distinct.

We will show that this operation corresponds to interchanging P and () in the
construction of Theorem A. _

Exercise 2 reformulates our remarks about class determination so that the
class of (g;,p;) doesn’t depend on the fact that qi,q2,...,qn are in ascending
order. Since the resulting condition is symmetrical in the ¢'s and the p’s, the
operation (21) does not destroy the class structure; if (g,p) is in class ¢ with
respect to (16), then (p,q) is in class ¢t with respect to (21). If we therefore
arrange the elements of the latter class t as

Pip < < Pip < Pip, (22)
Qi > " > Qip > iy

by analogy with (18), we have
Pt = g, Q1 = piy, (23)

as in (19), and the columns

(p":k—l -er Dis Dy > (24)

qiy cee Qi3 g,

go into the “bumped” array as in (20). Hence the first rows of P and ) are
interchanged. Furthermore the “bumped” two-line array for (21) is the inverse
of the “bumped” two-line array for (16), so the proof is completed by induction
on the number of rows in the tableaux. |

Corollary. The number of tableaux that can be formed from {1,2,...,n} is
the number of involutions on {1,2,...,n}.

Proof. If 7 is an involution corresponding to (P, @), then 7 = 7~ corresponds
to (@, P); hence P = Q. Conversely, if 7 is any permutation corresponding
to (P, P), then 7~ also corresponds to (P, P); hence 7 = n~. So there is a
one-to-one correspondence between involutions 7 and tableaux P. |

It is clear that the upper-left corner element of a tableau is always the
smallest. This suggests a possible way to sort a set of numbers: First we can
put the numbers into a tableau, by using Algorithm I repeatedly; this brings the
smallest element to the corner. Then we delete the smallest element, rearranging
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the remaining elements so that they form another tableau; then we delete the
new smallest element; and so on.

Let us therefore consider what happens when we delete the corner element
from the tableau

5| 7|11(15
2168114
913 . (25)
10112
16

If the 1 is removed, the 2 must come to take its place. Then we can move the
4 up to where the 2 was, but we can’t move the 10 to the position of the 4; the
9 can be moved instead, then the 12 in place of the 9. In general, we are led to
the following procedure.

Algorithm S (Delete corner element). Given a tableau P, this algorithm deletes
the upper left corner element of P and moves other elements so that the tableau
properties are preserved. The notational conventions of Algorithms I and D are
used.

S1. [Initialize.] Set r <1, s « 1.
S2. [Done?] If P,; = oo, the process is complete.

S3. [Compare.] If Pyi1)s S Pr(s+1), 80 to step S5. (We examine the elements
just below and to the right of the vacant cell, and we will move the smaller
of the two.)

S4. [Shift left.] Set P <= Pr(s+1), s + s+ 1, and return to S3.
S5. [Shift up.] Set Prs <~ P(r41)s, 7 < 7+ 1, and return to S2. |

It is easy to prove that P is still a tableau after Algorithm S has deleted its
corner element (see exercise 10). So if we repeat Algorithm S until P is empty,
we can read out its elements in increasing order. Unfortunately this doesn’t
turn out to be as efficient a sorting algorithm as other methods we will see; its
minimum running time is proportional to n!-®, but similar algorithms that use
trees instead of tableau structures have an execution time on the order of nlogn.

In spite of the fact that Algorithm S doesn’t lead to a superbly efficient
sorting algorithm, it has some very interesting properties.

Theorem C (M. P. Schiitzenberger). If P is the tableau formed by the con-
struction of Theorem A from the permutation a, as ... a,, and if

a; = min{ai,as,...,an},
then Algorithm S changes P to the tableau corresponding to a;...a;—1G;+1- .. Gn.

Proof. See exercise 13. |
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After we apply Algorithm S to a tableau, let us put the deleted element into
the newly vacated place P,s, but in italic type to indicate that it isn’t really part
of the tableau. For example, after applying this procedure to the tableau (25)
we would have

8114
911213 :
10} 1
16

and two more applications yield

6 8(13(14
9112\ 3
10} 1
16

Continuing until all elements are removed gives

16114113[12]10] 2
151964
11153 , (26)
8|1
7

which has the same shape as the original tableau (25). This configuration may
be called a dual tableau, since it is like a tableau except that the “dual order”
has been used (reversing the roles of < and >). Let us denote the dual tableau
formed from P in this way by the symbol P5.

From PS we can determine P uniquely; in fact, we can obtain the original
tableau P from P°, by applying exactly the same algorithm — but reversing the
order and the roles of italic and regular type, since PS is a dual tableau. For
example, two steps of the algorithm applied to (26) give

14]13]12]10| 2 |15
11{916 |4
8153 ,
711
16

and eventually (25) will be reproduced again! This remarkable fact is one of the
consequences of our next theorem.
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Theorem D (C. Schensted, M. P. Schiitzenberger). Let

@ 92 ... On
2
(Pl b2 ... Pn> (27)
be the two-line array corresponding to the tableaux (P, Q).

a) Using dual (reverse) order on the g’s, but not on the p’s, the two-line array

( n - @ G > (8)
Dn - D2 D1
corresponds to (PT,(Q%)T).

As usual, “T" denotes the operation of transposing rows and columns; P7 is a
tableau, while (Q°)7 is a dual tableau, since the order of the ¢'s is reversed.

b) Using dual order on the p’s, but not on the q’s, the two-line array (27)
corresponds to ((P%)T, Q7).

¢) Using dual order on both the p’s and the q’s, the two-line array (28) corre-
sponds to (P°,Q%).

Proof. No simple proof of this theorem is known. The fact that case (a)
corresponds to (PT, X) for some dual tableau X is proved in exercise 5; hence
by Theorem B, case (b) corresponds to (Y,Q7) for some dual tableau Y, and
Y must have the shape of PT.

Let p; = min{p1,...,pn}; since p; is the “largest” element in the dual order,
it appears on the periphery of Y, and it doesn’'t bump any elements in the con-
struction of Theorem A. Thus, if we successively insert p;,...,pi—1,Pi+1,--,Pn
using the dual order, we get Y —{p;}, that is, Y with p; removed. By Theorem C
if we successively insert py,...,Di—1,Pi+1,-- ., Pn using the normal order, we get
the tableau d(P) obtained by applying Algorithm S to P. By induction on n,
Y — {p:} = (d(P)%)”. But since

(P2)T = {p:} = (d(P)°)", (29)
by definition of the operation S, and since Y has the same shape as (P°)7, we
must have Y = (P%)7T.

This proves part (b), and part (a) follows by an application of Theorem B.
Applying parts (a) and (b) successively then shows that case (¢) corresponds
to ((PT)%)T,((Q5)T)T); and this is (P°,Q%) since (P)T = (PT)% by the
row-column symmetry of operation S. |

In particular, this theorem establishes two surprising facts about the tableau
insertion algorithm: If successive insertion of distinct elements p;, ..., p, into an
empty tableau yields tableau P, insertion in the opposite order p,,...,p; yields
the transposed tableau PT. And if we not only insert the p’s in this order
Dn,---,p1 but also interchange the roles of < and >, as well as 0 and oo, in
the insertion process, we obtain the dual tableau P°. The reader is urged to
try out these processes on some simple examples. The unusual nature of these
coincidences might lead us to suspect that some sort of witchcraft is operating
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behind the scenes! No simple explanation for these phenomena is yet known;
there seems to be no obvious way to prove even that case (c) corresponds to
tableaux having the same shape as P and (), although the characterization of
classes in exercise 2 does provide a significant clue.

The correspondence of Theorem A was given by G. de B. Robinson [Amer-
ican J. Math. 60 (1938),-745-760, §5], in a somewhat vague and different form,
as part of his solution to a rather difficult problem in group theory. Robinson
stated Theorem B without proof. Many years later, C. Schensted independently
rediscovered the correspondence, which he described in terms of “bumping” as
we have done in Algorithm I; Schensted also proved the “P” part of Theorem
D(a) [see Canadian J. Math. 13 (1961), 179-191}. M. P. Schiitzenberger [Math.
Scand. 12 (1963), 117-128] proved Theorem C and the “Q” part of Theorem
D(a), from which (b) and (c) follow. It is possible to extend the correspondence
to permutations of multisets; the case that p;,...,p, need not be distinct was
considered by Schensted, and the “ultimate” generalization to the case that both
the p’s and the ¢’s may contain repeated elements was investigated by Knuth
[Pacific J. Math. 34 (1970), 709-727].

Let us now turn to a related question: How many tableaux formed from
{1,2,...,n} have a given shape (n1,na,...,Nw), where ny +ng+---+n, =n?
If we denote this number by f(n1,n2,...,nny), and if we allow the parameters n;
to be arbitrary integers, the function f must satisfy the relations

f(ni,ng,...,nm) =0  unless 13 >ny> - > ny >0; (30)
f(ni,na,...,nm,0) = f(n1,n2,...,0m); (31)
f(n1,na,...,nn) = f(ni—1,n2,...,0m) + f(n1,n2—1,...,np)
+ -+ f(n1,n2, ..., —1),
if ng>ng > >nn > L (32)

Recurrence (32) comes from the fact that a tableau with its largest element
removed is always another tableau; for example, the number of tableaux of shape
(6,4,4,1) is f(5,4,4,1) + f(6,3,4,1) + f(6,4,3,1) + f(6,4,4,0) = f(5,4,4,1) +
f(6,4,3,1) + f(6,4,4), since every tableau of shape (6,4,4,1) on {1,2,...,15}
is formed by inserting the element 15 into the appropriate place in a tableau of
shape (5,4,4,1), (6,4,3,1), or (6,4,4). Schematically,

1 15 || ||

== + 15 + ( )
s 33
T L1 S
The function f(ni,ne,...,n,) that satisfies these relations has a fairly
simple form,
Anp+m—1,ng+m—2,..., ny)n!
f(n13n27"':nm): (34)

(m+m—-1)(nz+m-—2)...ny,!
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provided that the relatively mild conditions
mt+m—-1>2n+m-22>-.-->n,

are satisfied; here A denotes the “square root of the discriminant” function

m—1 m—1 m—1
A R 1
A1, @2, Tm) = det | g2 g2 2 | = Il @i-=z) ()
) To T 1<i<g<m
1 1 ... 1

Formula (34) was derived by G. Frobenius [Sitzungsberichte preuff. Akad. der
Wissenschaften (1900), 516-534, §3], in connection with an equivalent problem
in group theory, using a rather deep group-theoretical argument; a combinatorial
proof was given independently by MacMahon [Philosophical Trans. A209 (1909),
153-175]. The formula can be established by induction, since relations (30) and
(31) are readily proved and (32) follows by setting y = —1 in the identity of
exercise 17.

Theorem A gives a remarkable identity in connection with this formula for
the number of tableaux. If we sum over all shapes, we have

n! = > Flky ks ... kn)?

k1> ko> >kn>0
kitka+-Fhn=n

:n!2 Z A(k1+n_1:k2+n—2,...,kn)2
kS ky > >kn >0 (k1 +n— 1) (ks +n—2)12 .. k2
ket Ty on

=n!

2
2 § A(Ql:qQa"':Qn) .
12 12 12 ?
q1>q2>>qn>0 N 92 In
q+g2++gn=(n+1)n/2

hence
Z A(Ql:q2:"':qn)2 -1

Q112 ¢2!? ... gn!?

(36)
G1+g2+-+gn=(n+1)n/2
41,92,.-,qn >0
The inequalities ¢; > g2 > --- > ¢, have been removed in the latter sum, since
the summand is a symmetric function of the ¢'s that vanishes when ¢; = g;.
A similar identity appears in exercise 24.

The formula for the number of tableaux can also be expressed in much more
interesting way, based on the idea of “hooks.” The hook corresponding to a cell
in a tableau is defined to be the cell itself plus the cells lying below and to its
right. For example, the shaded area in Fig. 5 is the hook corresponding to cell
(2,3) in row 2, column 3; it contains six cells. Each cell of Fig. 5 has been filled
in with the length of its hook.
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12]11

— D |OU| OO (O

Fig. 5. Hooks and hook lengths.

If the shape of the tableau is (n1,n2,...,nm), the longest hook has length
ny+m—1. Further examination of the hook lengths shows that row 1 con-

tains all the lengths ny+m—1, ni+m—2, ..., 1 except for (n1+m—1)—(nn,),
(ni+m—1)— (Nm_1+1), ..., (n1+m—1)—(nz+m~—1). In Fig. 5, for example,
the hook lengths in row 1 are 12, 11, 10, ..., 1 except for 10, 9, 6, 3, 2; the

exceptions correspond to five nonexistent hooks, from nonexistent cells (6, 3),
(5,3), (4,5), (3,7), (2,7) leading up to cell (1,7). Similarly, row j contains
all lengths nj+m—7j, ..., 1, except for (n;+m—j)—(nm), ..., (nj+m—j)—
(nj+1+m—j—1). It follows that the product of all the hook lengths is equal to
Alni+m—1n+m—2,...,ny)’

This is just what happens in Eq. (34), so we have derived the following celebrated
result due to J. S. Frame, G. de B. Robinson, and R. M. Thrall [Canadian J.
Math. 6 (1954), 316-318]:

Theorem H. The number of tableaux on {1,2,...,n} having a specified shape
is n! divided by the product of the hook lengths. |

Since this is such a simple rule, it deserves a simple proof; a heuristic
argument runs as follows: Each element of the tableau is the smallest in its
hook. If we fill the tableau shape at random, the probability that cell (z, j) will
contain the minimum element of the corresponding hook is the reciprocal of the
hook length; multiplying these probabilities over all 7 and j gives Theorem H.
But unfortunately this argument is fallacious, since the probabilities are far from
independent! No direct proof of Theorem H, based on combinatorial properties of
hooks used correctly, was known until 1992 (see exercise 39), although researchers
did discover several instructive indirect proofs (exercises 35, 36, and 38).

Theorem H has an interesting connection with the enumeration of trees,
which we considered in Chapter 2. We observed that binary trees with n nodes
correspond to permutations that can be obtained with a stack, and that such
permutations correspond to sequences aj as ... a2, of n S8’s and n X’s, where the
number of S’s is never less than the number of X’s as we read from left to right.
(See exercises 2.2.1-3 and 2.3.1-6.) The latter sequences correspond in a natural
way to tableaux of shape (n,n); we place in row 1 the indices ¢ such that a; = S,
and in row 2 we put those indices with a; = X. For example, the sequence

SSSXXSSXXSXX
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corresponds to the tableau

112]316]7]10
4151819 (11]12]°

(37)

The column constraint is satisfied in this tableau if and only if the number of X’s
never exceeds the number of S’s from left to right. By Theorem H, the number
of tableaux of shape (n,n) is
(2n)!

(n+1)!n!’
so this is the number of binary trees, in agreement with Eq. 2.3.4.4—(14). Further-
more, this argument solves the more general “ballot problem” considered in
the answer to exercise 2.2.1-4, if we use tableaux of shape (n,m) for n > m.
So Theorem H includes some rather complex enumeration problems as simple
special cases.

Any tableau A of shape (n,n) on the elements {1,2,...,2n} corresponds
to two tableaux (P, Q) of the same shape, in the following way suggested by
MacMahon [Combinatory Analysis 1 (1915), 130-131]: Let P consist of the ele-
ments {1,...,n} as they appear in A; then Q is formed by taking the remaining

elements, rotating the configuration by 180°, and replacing n+1,n+2, ..., 2n
by n, n — 1, ..., 1, respectively. For example, (37) splits into
11236 and 7110}
415 8191112}’
rotation and renaming of the latter yields
112(3]|6 1121415
P = 3 = . 8
E Q=r:Te (38)

Conversely, any pair of equal-shape tableaux of at most two rows, each containing
n cells, corresponds in this way to a tableau of shape (n,n). Hence by exercise 7
the number of permutations ay az ...a, of {1,2,...,n} containing no decreasing
subsequence a; > a; > ay for 1 < j < k is the number of binary trees with
n nodes. An interesting one-to-one correspondence between such permutations
and binary trees, more direct than the roundabout method via Algorithm I that
we have used here, has been found by D. Rotem [Inf Proc. Letters 4 (1975),
58-61]; similarly there is a rather direct correspondence between binary trees
and permutations having no instances of a; > ax > a; for i < j < k (see exercise
2.2.1-5).

The number of ways to fill a tableau of shape (6,4,4,1) is obviously the
number of ways to put the labels {1,2,...,15} onto the vertices of the directed
graph

(39)
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in such a way that the label of vertex u is less than the label of vertex v whenever
u — v. In other words, it is the number of ways to sort the partial ordering (39)
topologically, in the sense of Section 2.2.3.

In general, we can ask the same question for any directed graph that contains
no oriented cycles. It would be nice if there were some simple formula generalizing
Theorem H to the case of an arbitrary directed graph; but not all graphs have
such pleasant properties as the graphs corresponding to tableaux. Some other
classes of directed graphs for which the labeling problem has a simple solution
are discussed in the exercises at the close of this section. Other exercises show
that some directed graphs have no simple formula corresponding to Theorem H.
For example, the number of ways to do the labeling is not always a divisor of n!.

To complete our investigations, let us count the total number of tableaux
that can be formed from n distinct elements; we will denote this number by t¢,,.
By the corollary to Theorem B, ¢, is the number of involutions of {1,2,...,n}.
A permutation is its own inverse if and only if its cycle form consists solely
of one-cycles (fixed points) and two-cycles (transpositions). Since ¢,_; of the
t,, involutions have (n) as a one-cycle, and since t,,_5 of them have (j n) as a
two-cycle, for fixed 7 < n, we obtain the formula

th =tn_1+ (’I’L — 1)tn_2, (40)

which Rothe devised in 1800 to tabulate t,, for small n. The values for n > 0
are 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, ....

Counting another way, let us suppose that there are k two-cycles and (n—2k)
one-cycles. There are (;ﬁ) ways to choose the fixed points, and the multinomial
coefficient (2k)!/(2!)* is the number of ways to arrange the other elements
into k distinguishable transpositions; dividing by k! to make the transpositions
indistinguishable we therefore obtain

[n/2]
Z n!
k=0

Unfortunately, this sum has no simple closed form (unless we choose to regard the
Hermite polynomial i"2~"/2H,,(—i/v/2) as simple), so we resort to two indirect
approaches in order to understand ¢, better:

a) We can find the generating function
Ztnz"/n! = e*t7/2, (42)

see exercise 25.

b) We can determine the asymptotic behavior of ¢,,. This is an instructive
problem, because it involves some general techniques that will be useful to
us in other connections, so we will conclude this section with an analysis of
the asymptotic behavior of ¢,,.
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The first step in analyzing the asymptotic behavior of (41) is to locate the
main contribution to the sum. Since

tn(k+1)  (n—2k)(n—2k-1) (13)

t(k))  2k+1) 3

we can see that the terms gradually increase from k = 0 until ¢,(k + 1) = t,, (k)
when k is approximately 5 ( —/n ) then they decrease to zero when k exceeds
§n The main contrlbutlon clearly comes from the vicinity of k = (n —/n).
It is usually preferable to have the main contribution at the value 0, so we write

(n—+n)+z, (44)

and we will investigate the size of t,,(k) as a function of z.

One useful way to get rid of the factorials in ¢,(k) is to use Stirling’s
approximation, Eq. 1.2.11.2—(18). For this purpose it is convenient (as we shall
see in a moment) to restrict z to the range

k =

DN | =

_ne+1/4 S T S ’I’LE+1/4, (45)

where ¢ = 0.001, say, so that an error term can be included. A somewhat
laborious calculation, which the author did by hand in the 60s but which is now
easily done with the help of computer algebra, yields the formula

to(k) =exp(ilnn—in+n—-iln-22%Vn-1-1lhr
— i3 n+2z/v/n+ /i — tzYnyn 4+ O(nP734). (46)

The restriction on z in (45) can be justified by the fact that we may set z =
+nt1/4 to get an upper bound for all of the discarded terms, namely

e~ exp( nlnn — —n—!—\/— lnn— i 1117T+O( e 1/4)), (47)

and if we multiply this by n we get an upper bound for the sum of the excluded
terms. The upper bound is of lesser order than the terms we will compute for
T in the restricted range (45), because of the factor exp(—2n?¢), which is much
smaller than any polynomial in n.

We can evidently remove the factor

exp(inlnn—in+vn—thnn—;—3lnw+3/vn) (48)

from the sum, and this leaves us with the task of summing

exp(—22%/v/n — $2°/n + 2z/v/n — §z*/ny/n + O(n>~%/4))
= exp (i;f) (1 - f;.f; + xﬁ) (1 +2—\/: +2—;)

(1 - ;fnf) (1+0(n*=%14)  (49)
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over the range ¢ = o, a+1, ..., 3—2, 3—1, where —« and (3 are approximately
equal to nt'/4 (and not necessarily integers). Euler’s summation formula,
Eg. 1.2.11.2-(10), can be written

B 1 s
Y. floy= ] fl@)dz—5f(2)
a<z<f @ o
RN (m) () P
+ ‘];BQ ff;r) + -+ mL—{—l Bm+1 f m'(x) + Rm-{-lv (50)

by translation of the summation interval. Here |R,,| < (4/(2m)™) . f ] fm) (x)] dz.
If we let f(z) = z* exp(—2x%/y/n ), where ¢ is a fixed nonnegative integer, Euler’s
summation formula will give an asymptotic series for > f(x) as n — oo, since

F™) () = nlt=m/4g(m) (n=1/4 gy, g(y) = yle™2V’ (51)
and g(y) is a well-behaved function independent of n. The derivative g(™)(y) is
e=2" times a polynomial in y, hence Ry, = O(n(+1=m)/4) [T24(m) (4| dy =
O(nt+1=m)/4) Furthermore if we replace & and 8 by —oco and +o¢ in the right-

hand side of (50), we make an error of at most O(exp(—2n¢)) in each term.
Thus

Z f(z)= / f(z)dz +O(n™™), for all m > 0; (52)
alz<f >
only the integral is really significant, given this particular choice of f(z)! The

integral is not difficult to evaluate (see exercise 26), so we can multiply out and
sum formula (49), giving 1/7/2(n*/4 — &n=Y* + O(n=1/?)). Thus

1
t, = %nn/QE_n/2+ﬁ_l/4(l + %’I’L_l/Q + O(n_3/4)). (53)

Actually the O terms here should have an extra 9¢ in the exponent, but our
manipulations make it clear that this 9¢ would disappear if we had carried further
accuracy in the intermediate calculations. In principle, the method we have
used could be extended to obtain O(n~*) for any k, instead of O(n~3/4). This
asymptotic series for t,, was first determined (using a different method) by Moser
and Wyman, Canadian J. Math. 7 (1955), 159-168.

The method we have used to derive (53) is an extremely useful technique
for asymptotic analysis that was introduced by P. S. Laplace [Mémoires Acad.
Sci. Paris (1782), 1-88]; it is discussed under the name “trading tails” in CMath,
§9.4. For further examples and extensions of tail-trading, see the conclusion of
Section 5.2.2.

EXERCISES
1. [16] What tableaux (P, Q) correspond to the two-line array

123456789
649571283)°
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in the construction of Theorem A? What two-line array corresponds to the tableaux
7] 1[3]7]

P=12:8 , Q=145 ?

519 8

2. [M21] Prove that (g,p) belongs to class t with respect to (16) if and only if ¢ is
the largest number of indices ¢1,. .., such that

Pi; < pip <+ <pi, =P, gi; < @Qip <---<¢g;, =4q.

» 3. [M24] Show that the correspondence defined in the proof of Theorem A can also
be carried out by constructing a table such as this:

Line 0 1 3 5 6 8
Line 1 7 2 9 5 3
Line 2 oo 7T oo 9 5
Line 3 00 oo 7
Line 4 00

Here lines 0 and 1 constitute the given two-line array. For k& > 1, line k + 1 is formed
from line k by the following procedure:

a) Set p + oo.

b) Let column j be the leftmost column in which line k contains an integer < p, but
line k 4+ 1 is blank. If no such columns exist, and if p = oo, line k + 1 is complete;
if no such columns exist and p < oo, return to (a).

c) Insert p into column j in line k + 1, then set p equal to the entry in column j of
line k and return to (b).

Once the table has been constructed in this way, row k of P consists of those integers
in line k that are not in line (k + 1); row k of Q consists of those integers in line 0 that
appear in a column containing oo in line k + 1.

» 4. [M30] Letay...aj-1aj...a, be a permutation of distinct elements, and assume
that 1 < j < n. The permutation ai...a;-28;a;-18;j+1...an, obtained by inter-
changing a;_1 with a;, is called “admissible” if either

i) 7 > 3 and a;—2 lies between a;_; and a;; or
ii) j < n and a;4+1 lies between a;_; and a;.

For example, exactly three admissible interchanges can be performed on the permuta-
tion 154683 7; we can interchange the 1 and the 5 since 1 < 4 < 5; we can interchange
the 8 and the 3 since 3 < 6 < 8 (or since 3 < 7 < 8); but we cannot interchange the 5
and the 4, or the 3 and the 7.

a) Prove that an admissible interchange does not change the tableau P formed from
the permutation by successive insertion of the elements ai,a2,...,a, into an
initially empty tableau.

b) Conversely, prove that any two permutations that have the same P tableau can be
transformed into each other by a sequence of one or more admissible interchanges.
[Hint: Given that the shape of P is (ni1,n2,...,nm), show that any permuta-
tion that corresponds to P can be transformed into the “canonical permutation”
Poi...Pon,, .. Pa1...Pan, P11... Pis, by asequence of admissible interchanges.]

» 5. [M22] Let P be the tableau corresponding to the permutation ajaz...an; use
exercise 4 to prove that PT is the tableau corresponding to a. ...a2a;.
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6. [M26] (M. P. Schiitzenberger.) Let 7 be an involution with k fixed points. Prove
that the tableau corresponding to m, in the proof of the corollary to Theorem B, has
exactly k columns of odd length.

7. [M20] (C. Schensted.) Let P be the tableau corresponding to the permutation
a1a2...a,. Prove that the number of columns in P is the longest length ¢ of an
increasing subsequence a;;, <~ai, < --- < a;,, where 71 < i3 < .-+ < i.; the number of
rows in P is the longest length r of a decreasing subsequence a;;, > aj, > --- > aj,
where j1 < ja < --- < jp. ‘

8. [M18] (P.Erdés, G. Szekeres.) Prove that any permutation containing more than
n® elements has a monotonic subsequence of length greater than n; but there are
permutations of n”? elements with no monotonic subsequences of length greater than n.
[Hint: See the previous exercise.]

9. [M24] Continuing exercise 8, find a “simple” formula for the exact number of
permutations of {1,2,...,n°} that have no monotonic subsequences of length greater
than n.

10. [M20] Prove that P is a tableau when Algorithm S terminates, if it was a tableau
initially.
11. [20] Given only the values of r and s after Algorithm S terminates, is it possible

to restore P to its original condition?

12. [M24] How many times is step S3 performed, if Algorithm S is used repeatedly
to delete all elements of a tableau P whose shape is (ni,n2,...,n.,)? What is the
minimum of this quantity, taken over all shapes with ny + n2 +--- + n,, = n?

13. [M28] Prove Theorem C.
14. [M43] Find a more direct proof of Theorem D, part (c).

15. [M20] How many permutations of the multiset {{-a, m-b, n-c} have the property
that, as we read the permutation from left to right, the number of ¢’s never exceeds the
number of b’s, and the number of b’s never exceeds the number of a’s? (For example,
aabcabbcaca is such a permutation.)

16. [M08] In how many ways can the partial ordering represented by (39) be sorted
topologically?

17. [HM25] Let

9(z1,T2,.. ., xn; y) = 1 A(z1+y, T2, ..., Tn) + T2 A1, T24Y, .. ., T0)
+ -t zn Az, T2, ., Tnty).

Prove that
g(zr,z2,.. T y) = (T + 324+ 20 + (3) y) A(z1,22,- .., Z0).

[Hint: The polynomial g is homogeneous (all terms have the same total degree); and
it is antisymmetric in the z’s (interchanging z; and z; changes the sign of g).]

18. [HM30] Generalizing exercise 17, evaluate the sum
1 A(z1+y, T2, ..., Tn) + 25 A1, T24Y, - - Tn) + -+ + 2 Az, T2, . . ., T 4y),

when m > 0.
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19. [M40] Find a formula for the number of ways to fill an array that is like a tableau
but with two boxes removed at the left of row 1; for example,

W 1 n1—2 boxes

no boxes

ns boxes

—

is such a shape. (The rows and columns are to be in increasing order, as in ordinary
tableaux.)

In other words, how many tableaux of shape (ni,n2,...,nm) on the elements
{1,2,...,n14+-- - +n,,} have both of the elements 1 and 2 in the first row?

- 20. [M24] Prove that the number of ways to label the nodes of a given tree with
the elements {1,2,...,n}, such that the label of each node is less than that of its
descendants, is n! divided by the product of the subtree sizes (the number of nodes in
each subtree). For example, the number of ways to label the nodes of

is11'/11-4-1-5-1-2-3-1-1-1-1=10-9-8-7-6. (Compare with Theorem H.)

21. [HM51] (R. M. Thrall.) Let n1 > na > --- > n,, specify the shape of a “shifted
tableau” where row i+ 1 starts one position to the right of row ¢; for example, a shifted
tableau of shape (7,5,4,1) has the form of the diagram

l12J11]8]7]5]4]1]
olel|s5(3]2
15141211
\_1~
Prove that the number of ways to put the integers 1,2,...,n = ni+na+---+n.,, into
shifted tableaux of shape (n1,n2,...,nm), so that rows and columns are in increasing

order, is n! divided by the product of the “generalized hook lengths”; a generalized
hook of length 11, corresponding to the cell in row 1 column 2, has been shaded in
the diagram above. (Hooks in the “inverted staircase” portion of the array, at the left,
have a U-shape, tilted 90°, instead of an L-shape.) Thus there are

17t/12-11-8-7-5-4-1-9-6-5-3-2-5-4-2-1-1

ways to fill the shape with rows and columns in increasing order.

22. [M39] In how many ways can an array of shape (ni,n2,...,n,,) be filled with
elements from the set {1,2,...,N} with repetitions allowed, so that the rows are
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nondecreasing and the columns are strictly increasing? For example, the simple m-
rowed shape (1,1,...,1) can be filled in (1) ways; the 1-rowed shape (m) can be filled
in (mtf_l) ways; the small square shape (2,2) in (N;H) (1;
23. [HMS30] (D. André.) In how many ways, A,, can the numbers {1,2,...,n} be

placed into the array of n cells

) ways.

in such a way that the rows and columns are in increasing order? Find the generating
function g(z) = Y Anz"/nl.
24. [M28] Prove that

> (m)---(m>A(Q1a---,qn)2

i+ tan=t I n

0<q1,..,gn<m
=n! <7;Ti;((nn2 _—:))> (nr-r—t 1) (nrf2> (Tg> A(n—l,...,O)z.

[Hints: Prove that A(ki1+n—1,...,kn) = A(m=kn+n—1,...,m—k1); decompose an
n X (m —n+ 1) tableau in a fashion analogous to (38); and manipulate the sum as in
the derivation of (36).]

25. [M20] Why is (42) the generating function for involutions?
26. [HM21] Evaluate [*°_z'exp(—2z°/y/n)dz when t is a nonnegative integer.

27. [M24] Let Q be a Young tableau on {1,2,...,n}; let the element ¢ be in row r;
and column c;. We say that i is “above” j when r; < r;.

a) Prove that, for 1 < i< n, i is above i + 1 if and only if ¢; > ci41.

b) Given that @ is such that (P, Q) corresponds to the permutation

1 2 ...00n
ai az ... an/’

prove that i is above i + 1 if and only if a; > ai+1. (Therefore we can determine
the number of runs in the permutation, knowing only . This result is due to
M. P. Schiitzenberger.)

c) Prove that, for 1 <i < n, i is above ¢+ 1 in Q if and only if ¢ 4-1 is above ¢ in Q5.
28. [M48] Prove that the average length of the longest increasing subsequence of a
random permutation of {1,2,...,n} is asymptotically 2/n. (This is the average length
of row 1 in the correspondence of Theorem A.)

29. [HM25] Prove that a random permutation of n elements has an increasing sub-
sequence of length > [ with probability < (’[) /1!. This probability is O(1/y/n) when
I =ey/n+ O(1), and O(exp(—cy/n)) when I =3y/n, c=6In3 — 6.

30. [M41] (M. P. Schiitzenberger.) Show that the operation of going from P to P is
a special case of an operation applicable in connection with any finite partially ordered
set, not merely a tableau: Label the elements of a partially ordered set with the integers
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{1,2,...,n} in such a way that the partial order is consistent with the labeling. Find
a dual labeling analogous to (26), by successively deleting the labels 1, 2, ... while
moving the other labels in a fashion analogous to Algorithm S and placing 1, 2, ...
in the vacated places. Show that this operation, when repeated on the dual labeling
in reverse numerical order, yields the original labeling; and explore other properties of
the operation.

31. [HM30] Let z, be the number of ways to place n mutually nonattacking rooks on
an n X n chessboard, where each arrangement is unchanged by reflection about both
diagonals. Thus, z4 = 6. (Involutions are required to be symmetrical about only one
diagonal. Exercise 5.1.3—-19 considers a related problem.) Find the asymptotic behavior
of z,,.

32. [HM21] Prove that t, is the expected value of X", when X is a normal deviate
with mean 1 and variance 1.

33. [M25] (O. H. Mitchell, 1881.) True or false: A(a1,a2,...,am)/A(1,2,...,m) is
an integer when a1, ag, ..., @, are integers.

34. [25] (T. Nakayama, 1940.) Prove that if a tableau shape contains a hook of length
ab, it contains a hook of length a.

35. [50] (A. P. Hillman and R. M. Grassl, 1976.) An arrangement of nonnegative
integers p;; in a tableau shape is called a plane partition of m if ) p;; = m and

pilZ"'Zpi’nw pIJZanJ'J7 forlSZSn/171S.7§nl7

when there are n; cells in row ¢ and nj cells in column j. It is called a reverse plane
partition if instead

pi1 < - < Ping, PljS"‘Spnj'j, for 1<i<ni, 1<5<my.

Consider the following algorithm, which operates on reverse plane partitions of a given
shape and constructs another array of numbers g¢;; having the same shape:
G1. [Initialize.] Set ¢;; +— 0 for 1 < j < mn; and 1 <¢ < nj. Then set j + 1.
G2. [Find nonzero cell.] If p,;; > 0, set 7 + n;-, k + j, and go on to step G3.
M)

Otherwise if 7 < n1, increase j by 1 and repeat this step. Otherwise stop (the
p array is now zero).

G3. [Decrease p.] Decrease pix by 1.

G4. [Move up or right.] If i > 1 and PGi—1)k > Dik, decrease ¢ by 1 and return
to G3. Otherwise if k < n;, increase k by 1 and return to G3.

G5. [Increase g.] Increase ¢;; by 1 and return to G2. |

Prove that this construction defines a one-to-one correspondence between reverse plane
partitions of m and solutions of the equation

m = Z hijqij

where the numbers h;; are the hook lengths of the shape, by designing an algorithm
that recomputes the p’s from the ¢’s.

36. [HM27] (R. P. Stanley, 1971.) (a) Prove that the number of reverse plane par-
titions of m in a given shape is [z”]1/[](1 — 2"¥), where the numbers h;; are the
hook lengths of the shape. (b) Derive Theorem H from this result. [Hint: What is the
asymptotic number of partitions as m — co?)
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37. [M20] (P. A. MacMahon, 1912.) What is the generating function for all plane
partitions? (The coefficient of 2™ should be the total number of plane partitions of m
when the tableau shape is unbounded.)

38. [M30] (Greene, Nijenhuis, and Wilf, 1979.) We can construct a directed acyclic
graph on the cells T of any given tableau shape by letting arcs run from each cell to
the other cells in its hook; tHe outdegree of cell (7, ) will then be d;; = h;; — 1, where
hij is the hook length. Suppose we generate a random path in this digraph by choosing
a random starting cell (i,j) and choosing further arcs at random, until coming to a
corner cell from which there is no exit. Each random choice is made uniformly.

a) Let (a,b) be a corner cell of T, and let I = {ioy--. ik} and J = {jo,...,Ji}
be sets of rows and columns with ip < -+ < iy = a and jo < --- < ji = b. The
digraph contains (*;') paths whose row and columns sets are respectively I and J;
let P(I,J) be the probability that the random path is one of these. Prove that
P(I, .]) = 1/(n diob . e dik—lb dajo e dajl—l)’ where n = ITI

b) Let f(T) = n!/[lhiy. Prove that the random path ends at corner (a,b) with
probability f(T'\ {(a,b)})/f(T).

c) Show that the result of (b) proves Theorem H and also gives us a way to generate
a random tableau of shape T, with all f(T) tableaux equally likely.

39. [M38] (I. M. Pak and A. V. Stoyanovskii, 1992.) Let P be an array of shape
(n1,...,nm) that has been filled with any permutation of the integers {1,... ,n}, where
n = ni+---+nm. The following procedure, which is analogous to the “siftup” algorithm
in Section 5.2.3, can be used to convert P to a tableau. It also defines an array Q of
the same shape, which can be used to provide a combinatorial proof of Theorem H.

P1. [Loop on (i,5).] Perform steps P2 and P3 for all cells (3, j) of the array, in
reverse lexicographic order (that is, from bottom to top, and from right to
left in each row); then stop.

P2. [Fix P at (4,5).] Set K + P;; and perform Algorithm S’ (see below).

P3. [Adjust Q.] Set Qix + Qik+1) + 1 for j <k <s,and set Qis —i—7. |
Here Algorithm S’ is the same as Schiitzenberger’s Algorithm S, except that steps S1
and S2 are generalized slightly:

S1'. [Initialize.] Set r + %, s « j.

S2'. [Done?] If K < Piry1ys and K S Prsq1y, set Prs «+ K and terminate.
(Algorithm S is essentially the special case i =1, j = 1, K = c0.)

For example, Algorithm P straightens out one particular array of shape (3,3,2)

in the following way, if we view the contents of arrays P and @Q at the beginning of
step P2, with P;; in boldface type:

7185|7851 7|8|5||7|8[5]||7|8|5||7|8|5||7|8[4]|73]|4
P=|1l614||1|6|4]||1|6]|4|{1|6|4]|{1|3]|4||1{3{4]||1{3|5]|;1|5|8
312 3|2 213 213 216 216 216 2
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The final result is

4 —2({—1
P=[215[8|, @=[o]1|o].
0
a) If P is simply a 1 x n array, Algorithm P sorts it into| 1| ... l n l Explain what

the Q array will contain in that case.
b) Answer the same question if P is n x 1 instead of 1 x n.
c) Prove that, in general, we will have

—bi; < Qiy < 1ij,

where b;; is the number of cells below (4, j) and r;; is the number of cells to the
right. Thus, the number of possible values for Q.; is exactly h;;, the size of the
(4, 7)th hook.

d) Theorem H will be proved constructively if we can show that Algorithm P defines
a one-to-one correspondence between the n! ways to fill the original shape and the
pairs of output arrays (P, Q), where P is a tableau and the elements of Q satisfy
the condition of part (c). Therefore we want to find an inverse of Algorithm P. For
what initial permutations does Algorithm P produce the 2 x 2 array @ = (g 3')?

e) What initial permutation does Algorithm P convert into the arrays

3]5]7][11]15] —2f-3l1|[1]0]
206|814 3 |-2[1] 0
P=[4]9]13 . Q=lo[1}o0 ?
10(12 —1]0
16) 9]

f) Design an algorithm that inverts Algorithm P, given any pair of arrays (P, Q)
such that P is a tableau and @ satisfies the condition of part (c). [Hint: Construct
an oriented tree whose vertices are the cells (¢, 7), with arcs

(4,7) = (4,7 — 1) if Pig—1) > Pu-1)j;
(6,7) = (1 —=1,7) if Pij—1y < Pu-1y;-

In the example of part (e) we have the tree

e
o

The paths of this tree hold the key to inverting Algorithm P.]

40. [HM48) Suppose a random Young tableau has been constructed by successively

placing the numbers 1, 2, ..., n in such a way that each possibility is equally likely
when a new number is placed For example, the tableau (1) would be obtained with
probability . 1.1.1. 1. 1. 1. 1. L. 4.1 1. L. 2. ] using this procedure.

Prove that, with high probability, the resulting shape (ni,nsz,...,nm,) will have

m & vV6n and k4 /nes1 & /mfor 0 < k < m.
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41. [25] (Disorder in a library.) Casual users of a library often put books back on the
shelves in the wrong place. One way to measure the amount of disorder present in a
library is to consider the minimum number of times we would have to take a book out
of one place and insert it in another, before all books are restored to the correct order.

Thus let 7 = a1 az...a, be a permutation of {1,2,...,n}. A “deletion-insertion
operation” changes 7 to

ay...Q0;—10Gi41...058; Q541 ...0n or ap...Q50; Q541 ...Qi-31 Qi41...0n,

for some ¢ and j. Let dis(7) be the minimum number of deletion-insertion operations
that will sort 7 into order. Can dis(7) be expressed in terms of simpler characteristics
of w7

42. [30] (Disorder in a genome.) The DNA of Lobelia fervens has genes occur-
ring in the sequence g¥'g)9.9495g59%, where g¥ stands for the left-right reflection
of g7; the same genes occur in tobacco plants, but in the order g1929394959697. Show
that five “fip” operations on substrings are needed to get from gig293gsgsgegr to
gfglgzg4gsggg§. (A flip takes a8y to aBfy, when a, 8, and v are strings.)

43. [35] Continuing the previous exercise, show that at most n + 1 flips are needed
to sort any rearrangement of gi1gz2 ... ¢gn. Construct examples that require n 4 1 flips,
for all n > 3.

44. [M37] Show that the average number of flips required to sort a random arrange-
ment of n genes is greater than n — H,, if all 2" n! genome rearrangements are equally
likely.
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5.2. INTERNAL SORTING

LET’S BEGIN our discussion of good “sortsmanship” by conducting a little ex-
periment. How would you solve the following programming problem?

“Memory locations R+1, R+2, R+3, R+4, and R+5 contain five numbers.
Write a computer program that rearranges these numbers, if necessary,
so that they are in ascending order.”

(If you already are familiar with some sorting methods, please do your best to
forget about them momentarily; imagine that you are attacking this problem for
the first time, without any prior knowledge of how to proceed.)

Before reading any further, you are requested to construct a solution to this
problem.

The time you spent working on the challenge problem will pay dividends
as you continue to read this chapter. Chances are your solution is one of the
following types:

A. An insertion sort. The items are considered one at a time, and each new
item is inserted into the appropriate position relative to the previously-sorted
items. (This is the way many bridge players sort their hands, picking up one
card at a time.)

B. An exchange sort. If two items are found to be out of order, they are
interchanged. This process is repeated until no more exchanges are necessary.

C. A selection sort. First the smallest (or perhaps the largest) item is lo-
cated, and it is somehow separated from the rest; then the next smallest (or next
largest) is selected, and so on.

D. An enumeration sort. Each item is compared with each of the others; an
item’s final position is determined by the number of keys that it exceeds.

E. A special-purpose sort, which works nicely for sorting five elements as
stated in the problem, but does not readily generalize to larger numbers of items.

F. A lazy attitude, with which you ignored the suggestion above and decided
not to solve the problem at all. Sorry, by now you have read too far and you
have lost your chance.

G. A new, super sorting technique that is a definite improvement over known
methods. (Please communicate this to the author at once.)

If the problem had been posed for, say, 1000 items, not merely 5, you might
also have discovered some of the more subtle techniques that will be mentioned
later. At any rate, when attacking a new problem it is often wise to find some
fairly obvious procedure that works, and then try to improve upon it. Cases A, B,
and C above lead to important classes of sorting techniques that are refinements
of the simple ideas stated.

Many different sorting algorithms have been invented, and we will be dis-
cussing about 25 of them in this book. This rather alarming number of methods
is actually only a fraction of the algorithms that have been devised so far;
many techniques that are now obsolete will be omitted from our discussion, or
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mentioned only briefly. Why are there so many sorting methods? For computer
programming, this is a special case of the question, “Why are therc so many x
methods?”, where z ranges over the set of problems; and the answer is that each
method has its own advantages and disadvantages, so that it outperforms the
others on some configurations of data and hardware. Unfortunately, there is no
known “best” way to sort; there are many best methods, depending on what
is to be sorted on what machine for what purpose. In the words of Rudyard
Kipling, “There are nine and sixty ways of constructing tribal lays, and every
single one of them is right.”

It is a good idea to learn the characteristics of each sorting method, so that
an intelligent choice can be made for particular applications. Fortunately, it is
not a formidable task to learn these algorithms, since they are interrelated in
interesting ways.

At the beginning of this chapter we defined the basic terminology and
notation to be used in our study of sorting: The records

Rl,RZ;--';RN (1)
are supposed to be sorted into nondecreasing order of their keys K1, K, ..., Ky,
essentially by discovering a permutation p(1)p(2)...p(NN) such that

Kp1y < Kpiz) <+ < Ky (2)

In the present section we are concerned with internal sorting, when the number
of records to be sorted is small enough that the entire process can be performed
in a computer’s high-speed memory.

In some cases we will want the records to be physically rearranged in memory
so that their keys are in order, while in other cases it may be sufficient merely
to have an auxiliary table of some sort that specifies the permutation. If the
records and/or the keys each take up quite a few words of computer memory,
it is often better to make up a new table of link addresses that point to the
records, and to manipulate these link addresses instead of moving the bulky
records around. This method is called address table sorting (see Fig. 6). If the
key is short but the satellite information of the records is long, the key may be
placed with the link addresses for greater speed; this is called keysorting. Other
sorting schemes utilize an auxiliary link field that is included in each record;
these links are manipulated in such a way that, in the final result, the records
are linked together to form a straight linear list, with each link pointing to the
following record. This is called list sorting (see Fig. 7).

After sorting with an address table or list method, the records can be rear-
ranged into increasing order as desired. Exercises 10 and 12 discuss interesting
ways to do this, requiring only enough additional memory space to hold one
record; alternatively, we can simply move the records into a new area capable
of holding all records. The latter method is usually about twice as fast as the
former, but it demands nearly twice as much storage space. Many applications
can get by without moving the records at all, since the link fields are often
adequate for all of the subsequent processing.
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Ry Ry Rs
89 37 41 Key
ds | R 5 0
Records Satellite information
D T E

N

[ » / \T\o /}/ l Before sorting

Auxiliary table [ Y
l I l d I\o lAfter sorting

Fig. 6. Address table sorting.

R Ro Rs
89 37 41 | Key
R S 8]

Satellite information
D T E
’ . _» | Link field (after sorting)
L

Head of list

Fig. 7. List sorting.

All of the sorting methods that we shall examine in depth will be illustrated
in four ways, by means of

a) an English-language description of the algorithm,

b) a flow diagram,

¢) a MIX program, and

d) an example of the sorting method applied to a certain set of 16 numbers.

For convenience, the MIX programs will usually assume that the key is numeric
and that it fits in a single word; sometimes we will even restrict the key to part
of a word. The order relation < will be ordinary arithmetic order; and the record
will consist of the key alone, with no satellite information. These assumptions
make the programs shorter and easier to understand, and a reader should find
it fairly easy to adapt any of the programs to the general case by using address
table sorting or list sorting. An analysis of the running time of each sorting
algorithm will be given with the MIX programs.

Sorting by counting. As a simple example of the way in which we shall study
internal sorting methods, let us consider the “counting” idea mentioned near
the beginning of this section. This simple method is based on the idea that the
jth key in the final sorted sequence is greater than exactly j—1 of the other
keys. Putting this another way, if we know that a certain key exceeds exactly
27 others, and if no two keys are equal, the corresponding record should go into
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position 28 after sorting. So the idea is to compare every pair of keys, counting
how many are less than each particular one.
The obvious way to do the comparisons is to

((compare K; with K;)for1<j< N) for1 <i<N;

but it is easy to see that more than half of these comparisons are redundant,
since it is unnecessary to compare a key with itself, and it is unnecessary to
compare K, with K, and later to compare K} with K,. We need merely to

((compare K; with K;) for 1 <j < 2) for 1 <7 < N.
Hence we are led to the following algorithm.

Algorithm C (Comparison counting). This algorithm sorts Ry, ..., Ry on the
keys Ki,...,Ky by maintaining an auxiliary table COUNT[1],...,COUNT[N] to
count the number of keys less than a given key. After the conclusion of the
algorithm, COUNT[j] + 1 will specify the final position of record R;.

C1. [Clear COUNTs.] Set COUNT[1] through COUNTLN] to zero.

C2. [Loop on i.] Perform step C3, for i = N, N—1, ..., 2; then terminate the
algorithm.
C3. [Loop on j.] Perform step C4, for j =i—-1,1-2, ..., 1.

C4. [Compare K; : K;.] If K; < K}, increase COUNT [j] by 1; otherwise increase
COUNT[i] by 1. |

Note that this algorithm involves no movement of records. It is similar to
an address table sort, since the COUNT table specifies the final arrangement of
records; but it is somewhat different because COUNT[j] tells us where to move
R;, instead of indicating which record should be moved into the place of R;.
(Thus the COUNT table specifies the inverse of the permutation p(1)...p(N); see
Section 5.1.1.)

Table 1 illustrates the typical behavior of comparison counting, by applying
it to 16 numbers that were chosen at random by the author on March 19, 1963.
The same 16 numbers will be used to illustrate almost all of other methods that
we shall discuss later.

In our discussion preceding this algorithm we blithely assumed that no two
keys were equal. This was a potentially dangerous assumption, for if equal
keys corresponded to equal COUNTs the final rearrangement of records would be
quite complicated. Fortunately, however, Algorithm C gives the correct result
no matter how many equal keys are present; see exercise 2.

Program C (Comparison counting). The following MIX implementation of
Algorithm C assumes that R, is stored in location INPUT + j, and COUNT[j]
in location COUNT + j, for 1 < j < N; rll = 4; 12 = j; rA = K; = R
rX = COUNT[4].

01 START ENT1 N 1 C1. Clear COUNTSs.
02 STZ COUNT,1 N COUNT[:] « 0.

03 DEC1 1 N

04 J1P  *-2 N N >i>0.
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Table 2
SORTING BY COUNTING (ALGORITHM C)

KEYS: 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
COUNT (init.): O 0 0 00O OO OO0 OO OO0 0 0
COUNT (i = ) O 0 001 01 00 00 0 0 0 112
COUNT (;=N—-1: 0 0 O O 2 0 2 0 0 0 0 0O 0 0 13 12
COUNT(;=N-2): 0 0 0 0 3 0 3 0 0 0 0 0 0 11 13 12
COUNT (i=N-3): 0 0 0 0 4 0 4 0 1 0 0 0 9 11 13 12
COUNT (i=N—-4): 0 0 1 0 5 0 5 0 2 0 0 7 9 11 13 12
COUNT (i = N — 5): 1 0 2 0 6 1 6 1 3 1 2 7 9 11 13 12

14 4 10 5 2 7 9 11 13 12

o

COUNT (i = 2): 6 1 8 0 15

\L N>i>1 i>j2>1
>
C1. Clear COUNTs C2. Loop on 1 C3. Loop on j <« C4.Ig(.)rfrg)are
iy

=

Fig. 8. Algorithm C: Comparison counting.

05 ENT1 N 1 C2. Loop on i.

06 JMP IF 1

07 2H LDA INPUT,1 N-1

08 LDX COUNT,1 N -1

09 3H CMPA INPUT,2 A C4. Compare K; : K.
10 JGE 4F A Jump if Ki Z Kj.

11 LD3 COUNT,2 B COUNT 7]

12 INC3 1 B +1

13 ST3 COUNT,2 B — COUNT [41.

14 JMP &F B

15 4H INCX 1 A— B COUNT[{] < COUNT[:] + 1.
16 5H DEC2 1 A C3. Loop on j.

17 J2P 3B A

18 STX COUNT,1 N -1

19 DEC1 1 N -1

20 1H ENT2 -1,1 N N>it>3>0.

21 J2P 2B N |

The running time of this program is 13N + 6A + 5B — 4 units, where [V is
the number of records; A is the number of choices of two things from a set of
N objects, namely (§) = (N2 — N)/2; and B is the number of pairs of indices
for which j < ¢ and K; > K;. Thus, B is the number of inversions of the
permutation K,..., Ky; this is the quantity that was analyzed extensively in
Section 5.1.1, where we found in Egs. 5.1.1-(12) and 5.1.1-(13) that, for unequal
keys in random order, we have

B = (min 0, ave (N>~N)/4, max (N*-N)/2, dev /N(N —1)(N +2.5)/6).
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Hence Program C requires between 3N2 + 10N — 4 and 5.5N? 4+ 7.5N — 4 units
of time, and the average running time lies halfway between these two extremes.
For example, the data in Table 1 has N = 16, A = 120, B = 41, so Program C
will sort it in 1129u. See exercise 5 for a modification of Program C that has
slightly different timing characteristics.

The factor N? that dominates this running time shows that Algorithm C
is not an efficient way to sort when N is large; doubling the number of records
increases the running time fourfold. Since the method requires a comparison of
all distinct pairs of keys (K;, K;), there is no apparent way to get rid of the
dependence on N2, although we will see later in this chapter that the worst-case
running time for sorting can be reduced to order N log IV using other techniques.
Our main interest in Algorithm C is its simplicity, not its speed. Algorithm C
serves as an example of the style in which we will be describing more complex
(and more efficient) methods.

There is another way to sort by counting that is quite important from the
standpoint of efficiency; it is primarily applicable in the case that many equal
keys are present, and when all keys fall into the range v < K; < v, where (v —u)
is small. These assumptions appear to be quite restrictive, but in fact we shall
see quite a few applications of the idea. For example, if we apply this method
to the leading digits of keys instead of applying it to entire keys, the file will be
partially sorted and it will be comparatively simple to complete the job.

In order to understand the principles involved, suppose that all keys lie
between 1 and 100. In one pass through the file we can count how many 1s, 2s,
..., 100s are present; and in a second pass we can move the records into the
appropriate place in an output area. The following algorithm spells things out
in complete detail:

Algorithm D (Distribution counting). Assuming that all keys are integers in
the range u < K; < wvfor 1 < j < N, this algorithm sorts the records Ry, ..., Ry
by making use of an auxiliary table COUNT [u],...,COUNT [v]. At the conclusion
of the algorithm the records are moved to an output area Si,...,Sy in the
desired order.

D1. [Clear COUNTs.] Set COUNT [u] through COUNT [v] all to zero.
D2. [Loop on j.] Perform step D3 for 1 < j < IV; then go to step D4.
D3. [Increase COUNT [K,;].] Increase the value of COUNT [K;] by 1.

D4. [Accumulate.] (At this point COUNT[¢] is the number of keys that are equal
to i.) Set COUNT[¢] - COUNT[:] +COUNT[i — 1], fori=u+1,u+2, ..., v.

D5. [Loop on j.] (At this point COUNT[i] is the number of keys that are less than
or equal to i; in particular, COUNT[v] = N.) Perform step D6 for j = N,
N —1, ..., 1; then terminate the algorithm.

D6. [Output R;.] Set ¢ + COUNT[K1, S; + R;, and COUNT[K;] <—i—1. |

An example of this algorithm is worked out in exercise 6; a MIX program appears
in exercise 9. When the range v — u is small, this sorting procedure is very fast.
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\L N2j=>1

D1. Clear COUNTs >4 D2. Loop on j D3. Increase COUNTLK];]
j=0
Nzj>1
D4. Accumulate D5. Loop on j D6. Output R;

\szo

Fig. 9. Algorithm D: Distribution counting.

Sorting by comparison counting as in Algorithm C was first mentioned in
print by E. H. Friend [JACM 3 (1956), 152}, although he didn’t claim it as his
own invention. Distribution sorting as in Algorithm D was first developed by
H. Seward in 1954 for use with radix sorting techniques that we will discuss
later (see Section 5.2.5); it was also published under the name “Mathsort” by
W. Feurzeig, CACM 3 (1960), 601.

EXERCISES

1. [15] Would Algorithm C still work if ¢ varies from 2 up to N in step C2, instead
of from N down to 27 What if j varies from 1 up to ¢ — 1 in step C37

2. [21] Show that Algorithm C works properly when equal keys are present. If
K; = K, and j < i, does R; come before or after R; in the final ordering?

3. [21] Would Algorithm C still work properly if the test in step C4 were changed
from “K; < K;” to “K; < K;"?
4. [16] Write a MIX program that “finishes” the sorting begun by Program C; your

program should transfer the keys to locations OUTPUT+1 through OUTPUT+N, in ascending
order. How much time does your program require?

5. [22] Does the following set of changes improve Program C?

New line 08a: INCX 0,2
Change line 10: JGE 5F
Change line 14: DECX 1

Delete line 15.

6. [18] Simulate Algorithm D by hand, showing intermediate results when the 16
records 5T, 0C, 5U, 00, 9., 1N, 8S, 2R, 6A, 4A, 1G, 5L, 6T, 6I, 70, 7N are being sorted.
Here the numeric digit is the key, and the alphabetic information is just carried along
with the records.

7. [13] Is Algorithm D a stable sorting method?

8. [15] Would Algorithm D still work properly if j were to vary from 1 up to N in
step D5, instead of from N down to 17

9. [23] Write a MIX program for Algorithm D, analogous to Program C and exercise 4.
What is the execution time of your program, as a function of N and (v — u)?

10. [25] Design an efficient algorithm that replaces the N quantities (R;,..., Ry) by
(Rpq1y, - - -, Rp(ny), respectively, given the values of R;,..., Ry and the permutation
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p(1)...p(N) of {1,...,N}. Try to avoid using excess memory space. (This problem
arises if we wish to rearrange records in memory after an address table sort, without
having enough room to store 2NN records.)

11. [M27] Write a MIX program for the algorithm of exercise 10, and analyze its
efficiency.

12. [25] Design an efficient algorithm suitable for rearranging the records Ry, ..., Ry
into sorted order, after a list sort (Fig. 7) has been completed. Try to avoid using
€XCess memory space.

13. [27] Algorithm D requires space for 2N records Ri,...,Ry and S1,...,Sy. Show
that it is possible to get by with only N records R;,...,Rpy, if a new unshuffling
procedure is substituted for steps D5 and D6. (Thus the problem is to design an
algorithm that rearranges Ri,...,Rn in place, based on the values of COUNT [w], ...,
COUNT [v] after step D4, without using additional memory space; this is essentially a
generalization of the problem considered in exercise 10.)

5.2.1. Sorting by Insertion

One of the important families of sorting techniques is based on the “bridge
player” method mentioned near the beginning of Section 5.2: Before examining
record R;, we assume that the preceding records Ri,...,R;_; have already
been sorted; then we insert R; into its proper place among the previously sorted
records. Several interesting variations on this basic theme are possible.

Straight insertion. The simplest insertion sort is the most obvious one.
Assume that 1 < j < N and that records R,,..., R;_, have been rearranged so
that

Ky <Ky<---<Kj;,.

(Remember that, throughout this chapter, K; denotes the key portion of R;.)
We compare the new key K; with K;_ 1, K;_2, ..., in turn, until discovering
that R; should be inserted between records R; and R;;,; then we move records
Ry, ..., Rj—1 up one space and put the new record into position ¢ + 1. It is
convenient to combine the comparison and moving operations, interleaving them
as shown in the following algorithm; since R; “settles to its proper level” this
method of sorting has often been called the sifting or sinking technique.

L{]LN S2.Setup i, K, R S3. Compare KKD
M > <

S1. Loop on j
i >0
SN 1>
\ S5. R into R;+1 — S4. Move R;, decrease ¢
1=
Fig. 10. Algorithm S: Straight insertion.
Algorithm S (Straight insertion sort). Records Ry, ..., Ry are rearranged in

place; after sorting is complete, their keys will be in order, K; < --- < Kj.
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S1. [Loop on j.] Perform steps S2 through S5 for j = 2,3,..., NV; then terminate
the algorithm.

S2.[Set up i, K, R.] Set i + j — 1, K < K;, R < R;. (In the following steps
we will attempt to insert R into the correct position, by comparing K with
K; for decreasing values of i.)

S3. [Compare K : K;.] If K > K;, go to step S5. (We have found the desired
position for record R.)

S4. [Move R;, decrease i.] Set R;+1 ¢ R;, then ¢ ¢ — 1. If i > 0, go back to
step S3. (If 1 = 0, K is the smallest key found so far, so record R belongs in
position 1.)

S5. [R into Ri+1.] Set Ri+1 + R. |
Table 1 shows how our sixteen example numbers are sorted by Algorithm S. This

method is extremely easy to implement on a computer; in fact the following MIX
program is the shortest decent sorting routine in this book.

Table 1
EXAMPLE OF STRAIGHT INSERTION

L, 003:087

087 503 ;512

087 503 512:061

061 087 503 512:908

061 087 503 512 908:170

061 087 170 503 512 908:897

061 087 154 170 275 426 503 509 512 612 653 677 765 897 908:703
061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Program S (Straight insertion sort). The records to be sorted are in locations
INPUT+1 through INPUT+N; they are sorted in place in the same area, on a full-
word key. rIl = j — N; rI2 =¢; rA = R = K, assume that N > 2.

01 START ENT1 2-N 1 S1. Loopon j. j+ 2.
02 2H LDA INPUT+N,1 N -1 S2. Set up i, K, R.
03 ENT2 N-1,1 N -1 1+ j—1.

04 3H CMPA INPUT,2 B+N-—-1—A 83. Compare K : K;.
05 JGE b5F B+N—-1—A ToS5if K > K;.

06 4H LDX INPUT,2 B 54. Move R;, decrease 1.
07 STX INPUT+1,2 B Ri1y < R;.

08 DEC2 1 B 11— 1.

09 J2P 3B B To S3 if 7 > 0.

10 5H STA INPUT+1,2 N -1 S5. R into R;y,.

11 INC1 1 N -1

12 JINP 2B N-1 2<j<N. 1
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The running time of this program is 9B + 10N — 3A — 9 units, where N is
the number of records sorted, A is the number of times ¢ decreases to zero in
step S4, and B is the number of moves. Clearly A is the number of times
K; < min(Ky,...,Kj-1) for 1 < j < N; this is one less than the number of left-
to-right minima, so A4 is equivalent to the quantity that was analyzed carefully
in Section 1.2.10. Some reflection shows us that B is also a familiar quantity:
The number of moves for fixed j is the number of inversions of K;, so B is
the total number of inversions of the permutation K; Ks ... Ky. Hence by Eqgs.
1.2.10—(16), 5.1.1—(12), and 5.1.1-(13), we have

A= (minO, ave Hy — 1, max N — 1, dev HN—H](\?));

B = (min0, ave (N? — N)/4, max (N? — N)/2, dev VIN(N —1)(N + 2.5)/6;

and the average running time of Program S, assuming that the input keys are
distinct and randomly ordered, is (2.25N? + 7.75N — 3Hy — 6)u. Exercise 33
explains how to improve this slightly.

The example data in Table 1 involves 16 items; there are two changes to the
left-to-right minimum, namely 087 and 061; and there are 41 inversions, as we
have seen in the previous section. Hence N =16, A =2, B =41, and the total
sorting time is 514u.

Binary insertion and two-way insertion. While the jth record is being
processed during a straight insertion sort, we compare its key with about j/2
of the previously sorted keys, on the average; therefore the total number of
comparisons performed comes to roughly (1+ 2+ -+ N)/2= N 2/4, and this
gets very large when N is only moderately large. In Section 6.2.1 we shall
study “binary search” techniques, which show where to insert the jth item
after only about lgj well-chosen comparisons have been made. For example,
when inserting the 64th record we can start by comparing Kgsq with Kgo; if it
is less, we compare it with Kig, but if it is greater we compare it with Kys,
etc., so that the proper place to insert Rgq will be known after making only six
comparisons. The total number of comparisons for inserting all N items comes
to about N lg N, a substantial improvement over $N?; and Section 6.2.1 shows
that the corresponding program need not be much more complicated than a
program for straight insertion. This method is called binary insertion; it was
mentioned by John Mauchly as early as 1946, in the first published discussion
of computer sorting.

The unfortunate difficulty with binary insertion is that it solves only half
of the problem; after we have found where record R; is to be inserted, we still
need to move about % 4 of the previously sorted records in order to make room
for R;, so the total running time is still essentially proportional to N2. Some
early computers such as the IBM 705 had a built-in “tumble” instruction that did
such move operations at high speed, and modern machines can do the moves even
faster with special hardware attachments; but as N increases, the dependence
on N? eventually takes over. For example, an analysis by H. Nagler [CACM 3
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(1960), 618-620] indicated that binary insertion could not be recommended for
sorting more than about N = 128 records on the IBM 705, when each record
was 80 characters long, and similar analyses apply to other machines.

Of course, a clever programmer can think of various ways to reduce the
amount of moving that is necessary; the first such trick, proposed early in the
1950s, is illustrated in Table 2. Here the first item is placed in the center of an
output area, and space is made for subsequent items by moving to the right or
to the left, whichever is most convenient. This saves about half the running time
of ordinary binary insertion, at the expense of a somewhat more complicated
program. It is possible to use this method without using up more space than
required for N records (see exercise 6); but we shall not dwell any longer on this
“two-way” method of insertion, since considerably more interesting techniques
have been developed.

Table 2
TWO-WAY INSERTION

003
087 503
087 503 512
061 087 503 512
061 087 503 512 908
061 087 170 503 512 908
061 087 170 503 512 897 908

061 087 170 275 503 512 897 908

Shell’s method. If we have a sorting algorithm that moves items only one
position at a time, its average time will be, at best, proportional to IV 2 since
each record must travel an average of about %N positions during the sorting
process (see exercise 7). Therefore, if we want to make substantial improvements
over straight insertion, we need some mechanism by which the records can take
long leaps instead of short steps.

Such a method was proposed in 1959 by Donald L. Shell [CACM 2,7
(July 1959), 30-32], and it became known as shellsort. Table 3 illustrates the
general idea behind the method: First we divide the 16 records into 8 groups
of two each, namely (Ri, Rg),(R2,Ri0),.-.,(Rs, Ri16). Sorting each group of
records separately takes us to the second line of Table 3; this is called the “first
pass.” Notice that 154 has changed places with 512; 908 and 897 have both
jumped to the right. Now we divide the records into 4 groups of four each,
namely (Ri, Rs, Rg, R13),- - ., (R4, Rs, R12, R1¢), and again each group is sorted
separately; this “second pass” takes us to line 3. A third pass sorts two groups
of eight records, then a fourth pass completes the job by sorting all 16 records.
Each of the intermediate sorting processes involves either a comparatively short
file or a file that is comparatively well ordered, so straight insertion can be used
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Table 3
SHELLSORT WITH INCREMENTS 8, 4, 2, 1

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
8-sort:
503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703

dsort: SN DLICCIEACA AL L 7S

503 087 154 061 612 170 512 275 653 426 765 509 908 677 897 703
2-sort: N ONAANANANANANANANADNANNL S

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703
1-s0Tt: N NACNACNANA AN NA NN NN NN NS
061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

for each sorting operation. In this way the records tend to converge quickly to
their final destinations.

Shellsort is also known as the “diminishing increment sort,” since each pass
is defined by an increment h such that w sort the records that are A units apart.
The sequence of increments 8, 4, 2, 1 is not sacred; indeed, any sequence h;_1,
hi_a,..., hg can be used, so long as the last increment hg equals 1. For example,
Table 4 shows the same data sorted with increments 7, 5, 3, 1. Some sequences
are much better than others; we will discuss the choice of increments later.

Algorithm D (Shellsort). Records Ry, ..., Ry are rearranged in place; after
sorting is complete, their keys will be in order, K; < --- < Ky. An auxiliary
sequence of increments h;—1, ht—2, ..., ho is used to control the sorting process,
where hy = 1; proper choice of these increments can significantly decrease the
sorting time. This algorithm reduces to Algorithm S when ¢ = 1.

D1. [Loop on s.] Perform step D2 for s =t—1,t—2, ..., 0; then terminate the
algorithm.

D2. [Loop on j.] Set h < hs, and perform steps D3 through D6 for h < j < N.
(We will use a straight insertion method to sort elements that are h positions
apart, so that K; < K;4p for 1 < i < N — h. Steps D3 through D6 are
essentially the same as steps S2 through S5, respectively, in Algorithm S.)

D3.[Setup i, K, R.] Set i + 7 —h, K + K;, R + R;.

D4. [Compare K : K;.] If K > Kj;, go to step D6.

D5. [Move R;, decrease i.] Set R;p < R;, then ¢ <~ ¢ — h. If i > 0, go back to
step D4.

De6. [R into Ri+h-] Set Riyn < R. |
The corresponding MIX program is not much longer than our program for

straight insertion. Lines 08-19 of the following code are a direct translation of
Program S into the more general framework of Algorithm D.

Program D (Shellsort). We assume that the increments are stored in an
auxiliary table, with hg in location H+ s; all increments are less than N. Register
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Table 4
SHELLSORT WITH INCREMENTS 7, 5, 3, 1

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

7-sort:

s

275 087 426 061 509 170 677 503 653 512 154 908 612 897 765 703

9-sort:

154 087 426 061 509 170 677 503 653 512 275 908 612 897 765 703

3-sort:

1-sort:

061 087 170 154 275 426 512 503 653 612 509 765 677 897 908 703

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

assignments: rIl = j — N; rI2 = ¢; rA = R = K; rl3 = s; 114 = h. Note that this
program modifies itself, in order to obtain efficient execution of the inner loop.
START ENT3

01
02
03
04
05
06
07
08
09
10
11
12
18
14
15
16
17
18
19
20
21

* Analysis of shellsort.
ht—l> .

1H

2H
3H
4H

5H

6H
TH

LD4
ENT1
ST1
ST1
ENN1
ST1
ENT1
LDA
ENT2
CMPA
JGE
LDX
STX
DEC2
J2P
STA
INC1
J1NP
DEC3
J3NN

T-1

H,3
INPUT, 4
5F(0:2)
6F(0:2)
-N,4
3F(0:2)
1-N,4
INPUT+N,1
N-H,1
INPUT, 2
6F
INPUT, 2
INPUT+H, 2
0,4

4B
INPUT+H, 2
1

2B

1

1B

L

i B s Mo e M B

NT-S
NT-S
B+NT-S—-A
B+NT-S—-A
B
B
B
B
NT-S
NT -S
NT-S
T
T

D1. Loopons. s+ t—1.

D2. Loop on j. h + hs.

Modify the addresses of three
instructions in the main loop.

rll « N —h.

j— h+1.

D3. Set upi, K, R.

i+ j—h. [Instruction modified]

D4. Compare K : K;.

To D6 if K > K;.

D5. Move R;, decrease i.

Riyh < Ri. [Instruction modified]
i+1i1—h. -

To D4 if 7 > 0.

D6. R into R;.5. [Instruction modified]
j+J+ 1

To D3 if j < N.

t>s2>0. 1

In order to choose a good sequence of increments
., ho for use in Algorithm D, we need to analyze the running time as

a function of those increments. This leads to some fascinating mathematical
problems, not yet completely resolved; nobody has been able to determine
the best possible sequence of increments for large values of V. Yet a good
many interesting facts are known about the behavior of shellsort, and we will
summarize them here; details appear in the exercises below. [Readers who are
not mathematically inclined should skim over the next few pages, continuing
with the discussion of list insertion following (12).]
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The frequency counts shown with Program D indicate that five factors
determine the execution time: the size of the file, IN; the number of passes
(that is, the number of increments), T' = ¢; the sum of the increments,

S=ho+ - +hei;

the number of comparisons, B + NT — S — A; and the number of moves, B. As
in the analysis of Prograrh S, A is essentially the number of left-to-right minima
encountered in the intermediate sorting operations, and B is the number of
inversions in the subfiles. The factor that governs the running time is B, so we
shall devote most of our attention to it. For purposes of analysis we shall assume
that the keys are distinct and initially in random order.

Let us call the operation of step D2 “h-sorting,” so that shellsort consists
of h;_i-sorting, followed by h:_2 sorting, ..., followed by hg-sorting. A file in
which K; < K;.p for 1 <i < N — h will be called “h-ordered.”

Consider first the simplest generalization of straight insertion, when there
are just two increments, h; = 2 and hgp = 1. In this case the second pass begins
with a 2-ordered sequence of keys, K7 K ... Ky. It is easy to see that the number
of permutations a; ag ... a, of {1,2,...,n} having a; < a;yp for 1 <i<n—21is

(2y)

since we obtain exactly one 2-ordered permutation for each choice of |n/2]
elements to put in the even-numbered positions ag a4 ..., while the remaining
[n/2] elements occupy the odd-numbered positions. Each 2-ordered permutation
is equally likely after a random file has been 2-sorted. What is the average
number of inversions among all such permutations?

Let A, be the total number of inversions among all 2-ordered permutations
of {1,2,...,n}. Clearly A; =0, Ay =1, A3 = 2; and by considering the six
cases

1324 1234 1243 2134 2143 3142

we find that 44 = 1+0+1+1+ 2+ 3 = 8. One way to investigate A, in
general is to consider the “lattice diagram” illustrated in Fig. 11 for n = 15.
A 2-ordered permutation of {1,2,...,n} can be represented as a path from the
upper left corner point (0,0) to the lower right corner point ([n/2], |n/2]), if
we make the kth step of the path go downwards or to the right, respectively,
according as k appears in an odd or an even position in the permutation. This
rule defines a one-to-one correspondence between 2-ordered permutations and
n-step paths from corner to corner of the lattice diagram; for example, the path
shown by the heavy line in Fig. 11 corresponds to the permutation

213465710811912 14 13 15. (1)

Furthermore, we can attach “weights” to the vertical lines of the path, as Fig. 11
shows; a line from (1, 7) to (i+1, J) gets weight |z — j|. A little study will convince
the reader that the sum of these weights along each path is equal to the number
of inversions of the corresponding permutation; this sum also equals the number
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00 02 03 04 05 06 07
2 8 4 5 6 7

10 12 13 14 15 16 17
8 4 5 6

20 21 22 25 26 27
2 1 2 3 4 5

30 31 32 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 56 57

60 61 62 63F

66 67

70 71 72 73 74 75

80 81 82 83 84 85 86 871

Fig. 11. Correspondence between 2-ordering and paths in a lattice. Italicized numbers
are weights that yield the number of inversions in the 2-ordered permutation.

of shaded squares between the given path and the staircase path indicated by
heavy dots in the figure. (See exercise 12.) Thus, for example, (1) has 1 + 0 +
1+0+1+2+1+ 0 =6 inversions.

When a < o' and b < b, the number of relevant paths from (a,b) to (a’,b")
is the number of ways to mix a’ — a vertical lines with b’ — b horizontal lines,

namely
o' —a+b —b\
a —a ’

hence the number of permutations whose corresponding path traverses the ver-
tical line segment from (7, j) to (i+1, 7) is

<i+j> (n—z’—j—1>
i In/2l =3 ]
Multiplying by the associated weight and summing over all segments gives

tm= 3l (2-12-]> <2n—ni:;—1>;

0<i<n
0<j<n

o o (t+7 2n—1—7
Agn1 = Z ll—]l< ; >< n_ i > (2)
0<i<n J
0<j<n

The absolute value signs in these sums make the calculations somewhat tricky,
but exercise 14 shows that A, has the surprisingly simple form |n/2]|2"~2. Hence
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the average number of inversions in a random 2-ordered permutation is

/()

by Stirling’s approximation this is asymptotically 1/7/128 n®/2 ~ 0.15n3/2. The
maximum number of inversions is easily seen to be

(Ln/22j + 1> N %nQ_

It is instructive to study the distribution of inversions more carefully, by
examining the generating functions

hi(z) =1,

ho(z) =1+ 2,

h3(z) =1+ 2z, (3)
ha(2) =14 32 4 22 + 28, ,

as in exercise 15. In this way we find that the standard deviation is also
proportional to n3/2, so the distribution is not extremely stable about the mean.

Now let us consider the general two-pass case of Algorithm D, when the
increments are h and 1:

Theorem H. The average number of inversions in an h-ordered permutation
of {1,2,...,n} is

fnmy =288 (Dar 0+ (a+n-3("3)e). @

where ¢ = |n/h| and r = n mod h.

This theorem is due to Douglas H. Hunt [Bachelor’s thesis, Princeton University

(April 1967)]. Note that when h > n the formula correctly gives f(n, k) = 5(5).

Proof. An h-ordered permutation contains r sorted subsequences of length ¢ + 1,
and h —r of length ¢. Each inversion comes from a pair of distinct subsequences,
and a given pair of distinct subsequences in a random h-ordered permutation
defines a random 2-ordered permutation. The average number of inversions
is therefore the sum of the average number of inversions between each pair of
distinct subsequences, namely

T Aggio Aggi1 h—r1Y\ Ay
172942 h—p) =29t 2 ,
(5) <2q+2> +rih=r) <2q+1> (s <2q> fln b
qg+1 q q
Corollary. If the sequence of increments h:_1, ..., h1, ho satisfies the condition

hssimodhs =0, for t—1>35>0, (5)
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Fig. 12. The average number, f(n, h), of inversions in an h-ordered file of n elements,
shown for n = 64.

then the average number of move operations in Algorithm D is

> (rsf(gs+1, hoa/hs) + (hs = 75) f(gs, By /hs)), (6)

t>5>0
where rs = N mod hg, gs = |IN/hs], ht = Nhi_1, and f is defined in (4).

Proof. The process of hs-sorting consists of a straight insertion sort on r;
(hs41/hs)-ordered subfiles of length gs + 1, and on (hs — rs) such subfiles of
length ¢,. The divisibility condition implies that each of these subfiles is a ran-
dom (hsy1/hs)-ordered permutation, in the sense that each (hs4y/hs)-ordered
permutation is equally likely, since we are assuming that the original input was
a random permutation of distinct elements. |

Condition (5) in this corollary is always satisfied for two-pass shellsorts,
when the increments are h and 1. If ¢ = | N/h]| and 7 = N mod h, the quantity
B in Program D will have an average value of

rf(g+1, N) + (h — 1) f(q, N) + (N, h) = %(q;1> + h;(g) + f(N,R).

To a first approximation, the function f(n,h) equals (y/7/8)n3/2h!/2; we can,
for example, compare it to the smooth curve in Fig. 12 when n = 64. Hence the
running time for a two-pass Program D is approximately proportional to

2N2/h + VrN3h.

The best choice of h is therefore approximately +/16N/7 & 1.72 v/N; and with
this choice of h we get an average running time proportional to N3/3.
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Thus we can make a substantial improvement over straight insertion, from
O(N?) to O(N'67), just by using shellsort with two increments. Clearly we
can do even better when more increments are used. Exercise 18 discusses the
optimum choice of h¢_1, ..., ho when t is fixed and when the h’s are constrained
by the divisibility condition; the running time decreases to O(N5+</2), where
e = 1/(2¢ — 1), for large N. We cannot break the N5 barrier by using the
formulas above, since the last pass always contributes

F(N, hy) & (V7 /8)N2h)?

inversions to the sum.

But our intuition tells us that we can do even better when the increments
he, ..., h1 do not satisfy the divisibility condition (5). For example, 8-sorting
followed by 4-sorting followed by 2-sorting does not allow any interaction between
keys in even and odd positions; therefore the final 1-sorting pass is inevitably
faced with ©(N 3/2) inversions, on the average. By contrast, 7-sorting followed
by 5-sorting followed by 3-sorting jumbles things up in such a way that the final
1-sorting pass cannot encounter more than 2N inversions! (See exercise 26.)
Indeed, an astonishing phenomenon occurs:

Theorem K. If a k-ordered file is h-sorted, it remains k-ordered.

Thus a file that is first 7-sorted, then 5-sorted, becomes both 7-ordered and
5-ordered. And if we 3-sort it, the result is ordered by 7s, 5s, and 3s. Examples
of this remarkable property can be seen in Table 4 on page 85.

Proof. Exercise 20 shows that Theorem K is a consequence of the following fact:

Lemma L. Let m, n, r be nonnegative integers, and let (z1,...,Zm4r) and
(Y1,-- -, Ynsr) be any sequences of numbers such that
0N < Tm+1, Y2 < ITm+42, SR Yr < Tm4r- (7)

If the z’s and y’s are sorted independently, so that T; < -+ < Ty and y1 <
-+ < Yn+r, the relations (7) will still be valid.

Proof. All but m of the z’s are known to dominate (that is, to be greater than
or equal to) some y, where distinct z’s dominate distinct y’s. Let 1 < j < r.
Since z,,; after sorting dominates m + j of the z’s, it dominates at least j of
the y’s; therefore it dominates the smallest j of the y’s; hence z,,4; > y; after
sorting. 1 |

Theorem K suggests that it is desirable to sort with relatively prime incre-
ments, but it does not lead directly to exact estimates of the number of moves
made in Algorithm D. Moreover, the number of permutations of {1,2,...,n}
that are both h-ordered and k-ordered is not always a divisor of n!, so we can see
that Theorem K does not tell the whole story; some k- and h-ordered files are
obtained more often than others after k- and h-sorting. Therefore the average-
case analysis of Algorithm D for general increments h;_;, ..., ho has baffled
everyone so far when ¢ > 3. There is not even an obvious way to find the worst
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case, when N and (h¢-1,...,ho) are given. We can, however, derive several
facts about the approximate maximum running time when the increments have
certain forms:

Theorem P. The running time of Algorithm D is O(N®/?), when h, = 2°+t1 —1
for0<s<t=|lgN|.

Proof. It suffices to bound B,, the number of moves in pass s, in such a way
that B;_1 + - + By = O(N3/2). During the first ¢/2 passes, for t > s > t/2,
we may use the obvious bound B, = O(hs(IN/h,)?); and for subsequent passes
we may use the result of exercise 23, By = O(Nhsiohs+1/hs). Consequently
B, 1+---+ By =O(N(2+22+"'+2t/2+2t/2+-"+2)) =O(N3/2). I

This theorem is due to A. A. Papernov and G. V. Stasevich, Problemy
Peredachi Informatsii 1,3 (1965), 81-98. It gives an upper bound on the worst
case running time of the algorithm, not merely a bound on the average running
time. The result is not trivial since the maximum running time when the h’s
satisfy the divisibility constraint (5) is of order N'?; and exercise 24 shows that
the exponent 3/2 cannot be lowered.

An interesting improvement of Theorem P was discovered by Vaughan Pratt
in 1969: If the increments are chosen to be the set of all numbers of the form 2P 34
that are less than N, the running time of Algorithm D is of order N(log N)2. In
this case we can also make several important simplifications to the algorithm; see
exercises 30 and 31. However, even with these simplifications, Pratt’s method
requires a substantial overhead because it makes quite a few passes over the data.
Therefore his increments don’t actually sort faster than those of Theorem P in
practice, unless [NV is astronomically large. The best sequences for real-world N
appear to satisfy hs; ~ p°, where the ratio p = hsy1/hs is roughly independent
of s but may depend on N.

We have observed that it is unwise to choose increments in such a way that
each is a divisor of all its predecessors; but we should not conclude that the best
increments are relatively prime to all of their predecessors. Indeed, every element
of a file that is gh-sorted and gk-sorted with h L k has at most $(h —1)(k — 1)
inversions when we are g-sorting. (See exercise 21.) Pratt’s sequence {2P37}
wins as N — oo by exploiting this fact, but it grows too slowly for practical use.

Janet Incerpi and Robert Sedgewick [J. Comp. Syst. Sci. 31 (1985), 210-224;
see also Lecture Notes in Comp. Sci. 1136 (1996), 1-11] have found a way to have
the best of both worlds, by showing how to construct a sequence of increments
for which hs ~ p° yet each increment is the gcd of two of its predecessors. Given
any number p > 1, they start by defining a base sequence a1, as, ..., where ay is
the least integer > p¥ such that a; L ay for 1 < j < k. If p = 2.5, for example,
the base sequence is

a1, as, az, ... =3, 7, 16, 41, 101, 247, 613, 1529, 3821, 9530, ... .
Now they define the increments by setting hp = 1 and

1
he = hs_ra, for (;) <s< (r—§2— ) (8)
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Thus the sequence of increments starts
1; ai1; ao, ai1az; ai1as, az2a3, A102a03; - .. .
For example, when p = 2.5 we get
1, 3,7, 21, 48, 112, 336, 861, 1968, 4592, 13776, 33936, 86961, 193768, . ...

The crucial point is that we can turn recurrence (8) around:

hs = hris/ar = hpyfagy_,  for <r ; 1) <s< <;> : (9)

Therefore, by the argument in the previous paragraph, the number of inversions
per element when we are hg-sorting, hp-sorting, ... 1s at most

b(az,a1); b(as,az), b(as, a1); bas, as), b(as, az), b(as,a1);. . . (10)

where b(h,k) = £(h—1)(k—1). If p*~' < N < p*, the total number B of moves
is at most N times the sum of the first ¢ elements of this sequence. Therefore

(see exercise 41) we can prove that the worst case running time is much better
than order N1

Theorem 1. The running time for Algorithm D is O(Ne®Y!"™) when the incre-
ments h, are defined by (8). Here ¢ = v/81np and the constant implied by O
depends on p. |

This asymptotic upper bound is not especially important as N — oo,
because Pratt’s sequence does better. The main point of Theorem I is that
a sequence of increments with the practical growth rate h, ~ p° can have a
running time that is guaranteed to be O(N'*€) for arbitrarily small € > 0, when
any value p > 1 is given.

Let’s consider practical sizes of N more carefully by looking at the total
running time of Program D, namely (9B+10NT 4137 —10S —3A+1)u. Table 5
shows the average running time for various sequences of increments when [NV = 8.
For this small value of IV, bookkeeping operations are the most significant part
of the cost, and the best results are obtained when ¢ = 1; hence for N = 8
we are better off using simple straight insertion. (The average running time of
Program S when N = 8 is only 191.85u.) Curiously, the best two-pass algorithm
occurs when h; = 6, since a large value of S is more important here than a
small value of B. Similarly, the three increments 3 2 1 minimize the average
number of moves, but they do not lead to the best three-pass sequence. It may
be of interest to record here some “worst case” permutations that maximize the
number of moves, since the general construction of such permutations is still
unknown: '

he =5, hy =3, hy=1 85263741 (19 moves)
heo =3, hi =2, hp=1: 83572461 (17 moves)
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Table 5

ANALYSIS OF ALGORITHM D WHEN N = 8§
Increments Aave B.ve S T MIX time
1 1.718 14.000 1 1 204.85u
21 2.667 9.657 3 2 235.91u
31 2.917 9.100 4 2 220.15u
41 3.083 10.000 5 2 217.75u
51 2.601 10.000 6 2 209.20u
61 2.135 10.667 7 2 206.60u
71 1.718 12.000 8 2 209.85u
421 3.500 8.324 7 3 274.42u
531 3.301 8.167 9 3 253.60u
321 3.320 7.829 6 3 280.50u

As N grows larger we have a slightly different picture. Table 6 shows
the approximate number of moves for various sequences of increments when
N = 1000. The first few entries satisfy the divisibility constraints (5), so
that formula (6) and exercise 19 can be used; empirical tests were used to
get approximate average values for the other cases. Ten thousand random files
of 1000 elements were generated, and they each were sorted with each of the
sequences of increments. The standard deviation of the number of left-to-right
minima A was usually about 15; the standard deviation of the number of moves
B was usually about 300.

Some patterns are evident in this data, but the behavior of Algorithm D still
remains very obscure. Shell originally suggested using the increments |N/2],
|N/4|, |N/8], ..., but this is undesirable when the binary representation of N
contains a long string of zeros. Lazarus and Frank [CACM 3 (1960), 20-22]
suggested using essentially the same sequence, but adding 1 when necessary,
to make all increments odd. Hibbard [CACM 6 (1963), 206-213] suggested
using increments of the form 2% — 1; Papernov and Stasevich suggested the form
2% + 1. Other natural sequences investigated in Table 6 involve the numbers
(28 — (—1)¥)/3 and (3F — 1)/2, as well as Fibonacci numbers and the Incerpi-
Sedgewick sequences (8) for p = 2.5 and p = 2. Pratt-like sequences {57117}
and {7P139} are also shown, because they retain the asymptotic O (N (log N)?)
behavior but have lower overhead costs for small N. The final examples in
Table 6 come from another sequence devised by Sedgewick, based on slightly
different heuristics [J. Algorithms 7 (1986), 159-173]:

b — 9.25—-9.2%/2 41, if s is even; (11)
° 8-2° —6.206+D/2 L1 if 5is odd.

When these increments (hg, hy,he,...) = (1,5,19,41,109,209,...) are used,
Sedgewick proved that the worst-case running time is O(N*/3).

The minimum number of moves, about 6750, was observed for increments
of the form 2* + 1, and also in the Incerpi-Sedgewick sequence for p = 2. But it
is important to realize that the number of moves is not the only consideration,
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Table 6

APPROXIMATE BEHAVIOR OF ALGORITHM D WHEN N = 1000
Increments Aasve  Bave T
1 6 249750 1
71 65 41667 2
. 60 61 158 26361 3
140 20 4 1 262 21913 4
256 64 16 4 1 362 20459 5
576 192 48 16 4 1 419 20088 6
729 243 81 27 9 31 378 18533 7
512 256 128 64 32 16 8 4 21 493 16435 10
500 250 125 62 31 15 7 31 516 7655 9
501 251 125 63 31 15 7 3 1 558 7370 9
511 255 127 63 31 15 7 3 1 559 7200 9
255 127 63 31 15 7 31 436 7445 8
127 63 31 15 7 31 299 8170 7
63 31 15 7 31 190 9860 6
31 15 7 31 114 13615 5
513 257 129 65 33 17 9 5 31 561 6745 10
257 129 65 33 17 9 5 31 440 6995 9
129 65 33 17 9 5 31 304 7700 8
65 33 17 9 5 31 197 9300 7
33 17 9 5 31 122 12695 6
683 341 171 85 43 21 11 5 31 511 7365 10
341 171 85 43 21 11 5 31 490 7490 9
255 63 15 7 31 373 8620 6
257 65 17 5 31 375 8990 6
341 8 21 5 31 410 9345 6
377 233 144 89 55 34 21 13 8 5 3 21 518 7400 13
233 144 89 55 34 21 13 8 5 3 21 432 7610 12
377 144 55 21 8 31 456 8795 7
365 122 41 14 5 2 1 440 8085 7
364 121 40 13 4 1 437 8900 6
121 40 13 4 1 268 9790 5
336 112 48 21 7 31 432 7840 7
306 170 90 45 18 10 5 2 1 465 6755 9
169 91 49 13 7 1 349 8698 6
275 125 121 55 25 11 5 1 446 6788 &8
929 505 209 109 41 19 5 1 512 7725 8
505 209 109 41 19 51 519 7790 7
209 109 41 19 5 1 382 8165 6

5.2.1

even though it dominates the asymptotic running time. Since Program D takes
9B 4+ 10NT + - - - units of time, we see that saving one pass is about as desirable
as saving %ON moves; when N = 1000 we are willing to add 1111 moves if we can
save one pass. Therefore it seems unwise to start with h;_, greater than, say,
%N , since a large increment will not decrease the subsequent number of moves
enough to justify the first pass.
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Extensive empirical tests conducted by M. A. Weiss [Comp. J. 34 (1991), 88—
91] suggest strongly that the average number of moves performed by Algorithm D
with increments 25 — 1, ..., 15, 7, 3, 1 is approximately proportional to N5/4,
More precisely, Weiss found that Baye ~ 1.55N°/% — 4. 48N + O(N3/%) for 100 <
N < 12000000 when these increments are used; the empirical standard deviation
was approximately .065N%/4. He also discovered that Sedgewick’s sequence (11)
gives asymptotically better performance, B,y ~ 0.43N7/6 + 18.5N + O(N%/6).
Surprisingly, the standard deviation for this sequence of increments appears to
be quite small, approximately of order N3/4.

Table 7 shows typical breakdowns of moves per pass obtained in three
random experiments, using increments of the forms 2% — 1, 2¥ + 1, and (11).
The same file of numbers was used in each case. The total number of moves,
> Bs, comes to 346152, 329532, 248788 in the three cases, so sequence (11) is
clearly superior in this example.

Table 7
MOVES PER PASS: EXPERIMENTS WITH N = 20000
hs Bs hS BS hS BS
4095 19458 4097 19459 3905 20714
2047 15201 2049 14852 2161 13428
1023 16363 1025 15966 929 18206
511 18867 513 18434 505 16444
255 23232 257 22746 209 21405
127 28034 129 27595 109 19605
63 33606 65 34528 41 26604
31 40350 33 45497 19 23441
15 66037 17 48717 ) 38941
7 43915 9 38560 1 50000
3 24191 ) 20271
1 16898 3 9448
1 13459

Although Algorithm D is gradually becoming better understood, more than
three decades of research have failed to turn up any grounds for making strong
assertions about what sequences of increments make it work best. If IV is less
than 1000, a simple rule such as

Let hg =1, hsy1 = 3hs + 1, and stop with h;_y when 3h; > N (12)

seems to be about as good as any other. For larger values of N, Sedgewick’s
sequence (11) can be recommended, again stopping with h; ; when 3h; > N.

Exercise 43 explains how to remove the test “s > 0” from step D5. This
change will make Program D run about 10% faster.

List insertion. Let us now leave shellsort and consider other types of im-
provements over straight insertion. One of the most important general ways to
improve on a given algorithm is to examine its data structures carefully, since
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a reorganization of data structures to avoid unnecessary operations often leads
to substantial savings. Further discussion of this general idea appears in Section
2.4, where a rather complex algorithm is studied; let us consider how it applies
to a very simple algorithm like straight insertion. What is the most appropriate
data structure for Algorithm S7

Straight insertion invelves two basic operations:

1) scanning an ordered file to find the largest key less than or equal to a given
key; and

ii) inserting a new record into a specified part of the ordered file.

The file is obviously a linear list, and Algorithm S handles this list by using
sequential allocation (Section 2.2.2); therefore it is necessary to move roughly
half of the records in order to accomplish each insertion operation. On the
other hand, we know that linked allocation (Section 2.2.3) is ideally suited to
insertion, since only a few links need to be changed; and the other operation,
sequential scanning, is about as easy with linked allocation as with sequential
allocation. Only one-way linkage is needed, since we always scan the list in the
same direction. Therefore we conclude that the right data structure for straight
insertion is a one-way, linked linear list. It also becomes convenient to revise
Algorithm S so that the list is scanned in increasing order:

Algorithm L (List insertion). Records Ry, ..., Ry are assumed to contain keys
K, ..., Kn, together with link fields L;,..., Ly capable of holding the numbers
0 through N; there is also an additional link field Ly, in an artificial record
Ry at the beginning of the file. This algorithm sets the link fields so that the
records are linked together in ascending order. Thus, if p(1)...p(NN) is the stable
permutation that makes Ky < -+ < Kpw), this algorithm will yield

Ly = p(1); Loy =p(i+1), for 1<i<N; Lyny =0. (13)

L1. [Loop on j.] Set Lo + N, Ly + 0. (Link Ly acts as the “head” of the list,
and 0 acts as a null link; hence the list is essentially circular.) Perform steps
L2 through L5 for j = N—1, N—-2, ..., 1; then terminate the algorithm.

L2. [Set up p, q, K.] Set p < Lo, ¢ + 0, K « K. (In the following steps we
will insert R; into its proper place in the linked list, by comparing K with
the previous keys in ascending order. The variables p and ¢ act as pointers
to the current place in the list, with p = L, so that ¢ is one step behind p.)

L3. [Compare K : K,.] If K < K, go to step L5. (We have found the desired
position for record R, between R, and R, in the list.)

L4. [Bump p, q.] Set g + p, p + L. If p > 0, go back to step L3. (If p = 0,
K is the largest key found so far; hence record R belongs at the end of the
list, between R, and Ry.)

L5. [Insert into list.] Set L, « 7, L; < p. |

This algorithm is important not only because it is a simple sorting method,
but also because it occurs frequently as part of other list-processing algorithms.
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Table 8 shows the first few steps that occur when our sixteen example numbers
are sorted; exercise 32 gives the final link setting.

Table 8
EXAMPLE OF LIST INSERTION

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
K,: — 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
Ljj16 — — — — — — — — — — — — — — — 0
Lj;16 — — — — — — — — — — — — — — 015
L

s14 - — — — — — — — — — — — — 16 015

Program L (List insertion). We assume that K is stored in INPUT+j (0:3),
and L; is stored in INPUT+j (4:5). rll = j; rI2 = p; rI3 = ¢; rA(0:3) = K.

01 KEY EQU 0:3

02 LINK EQU 4:5

03 START ENT1 N 1 L1. Loop on 3. j+ N.

04 ST1 INPUT(LINK) 1 Lo + N.

05 STZ INPUT+N(LINK) 1 Ly + 0.

06 JMP 6F 1 Go to decrease j.

07 2H LD2 INPUT(LINK) N-1 L2. Set up p, q, K. p+ L.
08 ENT3 0O N-1 q < 0.

09 LDA INPUT,1 N-1 K + K;.

10 3H CMPA INPUT,2(KEY) B+N-1- L3. Compare K : K.

11 JLE b5F B+N-1- To L5 if K < K.

12 4H ENT3 0,2 B L4. Bump p, q. q < p.

13 LD2 INPUT,3(LINK) B p < Lg.

14 J2P 3B B To L3 if p > 0.

15 BH ST1 INPUT,3(LINK) N-1 L5. Insert into list. Lq < j.
16 ST2 1INPUT,1(LINK) N-1 L; < p.

17 6H DEC1 1 N

18 JiP 2B N N>j>1 1

The running time of this program is 7B 4+ 14N — 3A — 6 units, where N is

the length of the file, A + 1 is the number of right-to-left maxima, and B is the
number of inversions in the original permutation. (See the analysis of Program S.
Note that Program L does not rearrange the records in memory; this can be done
as in exercise 5.2-12, at a cost of about 20N additional units of time.) Program S
requires (9B + 10N — 3A — 9)u, and since B is about iN2, we can see that the
extra memory space used for the link fields has saved about 22 percent of the
execution time. Another 22 percent can be saved by careful programming (see
exercise 33), but the running time remains proportional to NZ.

To summarize what we have done so far: We started with Algorithm S,
a simple and natural sorting algorithm that does about $ N2 comparisons and
iN 2 moves. We improved it in one direction by considering binary insertion,
which does about Nlg N comparisons and $N? moves. Changing the data
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061 087 503 ¢ 512 « 908

154 170 275 426 509 612 653 ¢ 897

677\1/765

703

Fig. 13. Example of Wheeler’s tree insertion scheme.

structure slightly with “two-way insertion” cuts the number of moves down
to about £ N2 Shellsort cuts the number of comparisons and moves to about
N7/8 for N in a practical range; as N — oo this number can be lowered to
order N(log N)2. Another way to improve on Algorithm S, using a linked data
structure, gave us the list insertion method, which does about %N 2 comparisons,
0 moves, and 2N changes of links.

Is it possible to marry the best features of these methods, reducing the
number of comparisons to order Nlog N as in binary insertion, yet reducing
the number of moves as in list insertion? The answer is yes, by going to a
tree-structured arrangement. This possibility was first explored about 1957 by
D. J. Wheeler, who suggested using two-way insertion until it becomes necessary
to move some data; then instead of moving the data, a pointer to another area
of memory is inserted, and the same technique is applied recursively to all items
that are to be inserted into this new area of memory. Wheeler’s original method
[see A. S. Douglas, Comp. J. 2 (1959), 5] was a complicated combination of
sequential and linked memory, with nodes of varying size; for our 16 example
numbers the tree of Fig. 13 would be formed. A similar but simpler tree-insertion
scheme, using binary trees, was devised by C. M. Berners-Lee about 1958 [see
Comp. J. 3 (1960), 174, 184]. Since the binary tree method and its refinements
are quite important for searching as well as sorting, they are discussed at length
in Section 6.2.2.

Still another way to improve on straight insertion is to consider inserting
several things at a time. For example, if we have a file of 1000 items, and
if 998 of them have already been sorted, Algorithm S makes two more passes
through the file (first inserting Rggg, then Riggo). We can obviously save time
if we compare Kggg with Koo, to see which is larger, then insert them both
with one look at the file. A combined operation of this kind involves about %N
comparisons and moves (see exercise 3.4.2-5), instead of two passes each with
about 1N comparisons and moves.

In other words, it is generally a good idea to “batch” operations that require
long searches, so that multiple operations can be done together. If we carry this
idea to its natural conclusion, we rediscover the method of sorting by merging,
which is so important it is discussed below in Section 5.2.4.
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Address calculation sorting. Surely by now we have exhausted all possible
ways to improve on the simple method of straight insertion; but let’s look again!
Suppose you want to arrange several dozen books on your bookshelves, in order
by authors’ names, when the books are given to you in random order. You'll
naturally try to estimate the final position of each book as you put it in place,
thereby reducing the number of comparisons and moves that you’ll have to make.
And the whole process will be somewhat more efficient if you start with a little
more shelf space than is absolutely necessary. This method was first suggested
for computer sorting by Isaac and Singleton, JACM 3 (1956), 169-174, and it
was developed further by Tarter and Kronmal, Proc. ACM Nat’l Conf. 21 (1966),
331-337.

Address calculation sorting usually requires additional storage space propor-
tional to IV, either to leave enough room so that excessive moving is not required,
or to maintain auxiliary tables that account for irregularities in the distribution
of keys. (See the “distribution counting” sort, Algorithm 5.2D, which is a form
of address calculation.) We can probably make the best use of this additional
memory space if we devote it to link fields, as in the list insertion method. In this
way we can also avoid having separate areas for input and output; everything
can be done in the same area of memory.

These considerations suggest that we generalize list insertion so that several
lists are kept, not just one. Each list is used for certain ranges of keys. We
make the important assumption that the keys are pretty evenly distributed, not
“bunched up” irregularly: The set of all possible values of the keys is partitioned
into M parts, and we assume a probability of 1/M that a given key falls into a
given part. Then we provide additional storage for M list heads, and each list
is maintained as in simple list insertion.

It is not necessary to give the algorithm in great detail here; the method
simply begins with all list heads set to A. As each new item enters, we first decide
which of the M parts its key falls into, then we insert it into the corresponding
list as in Algorithm L.

To illustrate this approach, suppose that the 16 keys used in our examples
are divided into the M = 4 ranges 0-249, 250-499, 500-749, 750-999. We

obtain the following configurations as the keys K, Ko, ..., K¢ are successively
inserted:
After After After Final
4 items: 8 items: 12 items: state:
List 1: 061,087 061,087,170 061,087,154,170 061,087,154, 170
List 2: 275 275,426 275,426
List 3: 503,512 503,512 503,509,512,6563 503,509,512,612,653,677, 703
List 4: 897,908 897, 908 765,897,908
(Program M below actually inserts the keys in reverse order, Ky, ..., Ko, K,

but the final result is the same.) Because linked memory is used, the varying-
length lists cause no storage allocation problem. All lists can be combined into
a single list at the end, if desired (see exercise 35).
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Program M (Multiple list insertion). In this program we make the same
assumptions as in Program L, except that the keys must be nonnegative, thus.
0 < K; < (BYTESIZE)®.

The program divides this range into M equal parts by multiplying each key by a

suitable constant. The list heads are in locations HEAD+1 through HEAD+M.

01 KEY EQU 1:3
02 LINK EQU 4:5

03 START ENT2 M 1

04 STZ HEAD,2 M HEAD [p] «+ A.

05 DEC2 1 M

06 J2P -2 M M>p>1.

07 ENT1 N 1 j« N.

08 2H LDA INPUT,1(KEY) N

09 MUL =M(1:3)= N rA « |M - K;/BYTESIZE?|,
10 STA *+1(1:2) N

11 ENT4 0O N rl4 < rA.

12 ENT3 HEAD+1-INPUT,4 N q < LOC(HEAD[rA]).
13 LDA INPUT,1 N K « K;.

14 JMP AF N Jump to set p.

15 3H CMPA INPUT,2(KEY) B+N-A

16 JLE 5F B+ N —A Jump to insert, if K < K.
17 ENT3 0,2 B q < p.

18 4H LD2 INPUT,3(LINK) B+ N p + LINK(g).

19 J2P 3B B+ N Jump if not end of list.
20 b5H ST1 INPUT,3(LINK) N LINK(g) + LOC(R;).
21 ST2 INPUT,1(LINK) N LINK(LOC(R;)) « p.
22 6H DEC1 1 N

23 J1P 2B N N>i>1 1

This program is written for general M, but it would be better to fix M
at some convenient value; for example, we might choose M = BYTESIZE, so
that the list heads could be cleared with a single MOVE instruction and the
multiplication sequence of lines 08-11 could be replaced by the single instruc-
tion LD3 INPUT,1(1:1). The most notable contrast between Program L and
Program M is the fact that Program M must consider the case of an empty list,
when no comparisons are to be made.

How much time do we save by having M lists? The total running time of
Program M is 7B + 31N — 3A + 4M + 2 units, where M is the number of lists
and N is the number of records sorted; A and B respectively count the right-to-
left maxima and the inversions present among the keys belonging to each list.
(In contrast to other time analyses of this section, the rightmost element of a
nonempty permutation is included in the count A.) We have already studied
A and B for M = 1, when their average values are respectively Hy and (%).
By our assumption about the distribution of keys, the probability that a given
list contains precisely n items at the conclusion of sorting is the “binomial”

robabili . .
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Therefore the average values of A and B in the general case are
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which is a special case of Eq. 1.2.6-(20), we can easily evaluate the sum in (16):

And exercise 37 derives the standard deviation of B. But the sum in (15) is
more difficult. By Theorem 1.2.7A, we have

3 ()= (1o ) G- an e

n
1 1NN M1
0<e= —(1——) < :
<€ T»ZN” M N+l

hence

M2 1 \V+1
o= M(Hy —InM)+6, 0<3§ (1——) .
A M(Hy —InM) + < <N+1 7 (18)
(This formula is practically useless when M = N; exercise 40 gives a more
detailed analysis of the asymptotic behavior of Aave when M = N/a.)
By combining (17) and (18) we can deduce the total running time of Pro-
gram M, for fixed M as N — oo:

min 31N + M + 2,
ave 1.75N?/M + 31N —3MHN +3MInM +4M — 35 — L.75N/M + 2,
max 3.50N% 4+ 245N +4M + 2. (19)

Notice that when M is not too large we are speeding up the average time by
a factor of M; M = 10 will sort about ten times as fast as M = 1. However,
the maximum time is much larger than the average time; this reiterates the
assumption we have made about a fairly equal distribution of keys, since the
worst case occurs when all records pile onto the same list.

If we set M = N, the average running time of Program M is approximately
34.36 N units; when M = %N it is slightly more, approximately 34.52N; and
when M = %N it is approximately 48.04N. The additional cost of the sup-
plementary program in exercise 35, which links all M lists together in a single
list, raises these times respectively to 44.99N, 41.95N, and 52.74N. (Note that
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10N of these MIX time units are spent in the multiplication instruction alone!)
We have achieved a sorting method of order N, provided only that the keys are
reasonably well spread out over their range.

Improvements to multiple list insertion are discussed in Section 5.2.5.

EXERCISES '

1. [10] Is Algorithm S a stable sorting algorithm?

2. [11] Would Algorithm S still sort numbers correctly if the relation “K > K" in
step S3 were replaced by “K > K;”7

3. [30] Is Program S the shortest possible sorting program that can be written for
MIX, or is there a shorter program that achieves the same effect?

4. [M20] Find the minimum and maximum running times for Program S, as a
function of N.

5. [M27] Find the generating function gn(2z) = Y k>0 pwk2”® for the total running
time of Program S, where pyj is the probability that Program S takes exactly &k units
of time, given a random permutation of {1,2,..., N} as input. Also calculate the
standard deviation of the running time, given N.

6. [28] The two-way insertion method illustrated in Table 2 seems to imply that
there is an output area capable of holding up to 2/NV + 1 records, in addition to the
input area containing N records. Show that two-way insertion can be done using only
enough space for N + 1 records, including both input and output.

7. [M20] Ifayas:...an is arandom permutation of {1,2,...,n}, what is the average
value of |a; — 1| + Jaz — 1| + - - + |an —n|? (This is n times the average net distance
traveled by a record during a sorting process.)

8. [10] Is Algorithm D a stable sorting algorithm?

9. [20] What are the quantities A and B, and the total running time of Program D,
corresponding to Tables 3 and 47 Discuss the relative merits of shellsort versus straight
insertion in this case.

10. [22] If K; > K;_» when we begin step D3, Algorithm D specifies a lot of actions
that accomplish nothing. Show how to modify Program D so that this redundant
computation can be avoided, and discuss the merits of such a modification.

11. [M10] What path in a lattice like that of Fig. 11 corresponds to the permutation
125374869 1110127

12. [M20] Prove that the area between a lattice path and the staircase path (as shown
in Fig. 11) equals the number of inversions in the corresponding 2-ordered permutation.
13. [M16] Explain how to put weights on the horizontal line segments of a lattice,
instead of the vertical segments, so that the sum of the horizontal weights on a lattice
path is the number of inversions in the corresponding 2-ordered permutation.

14. [M28] (a) Show that, in the sums defined by Eq. (2), we have As,y1 = 244,.
(b) The general identity of exercise 1.2.6-26 simplifies to

£ () = e (A

if we set r = s, t = —2. By considering the sum ) As,z™, show that

Azn =n: 4n_1.
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» 15. [HM33] Let gn(z), gn(2), hn(2), and hn(2) be S Ztotal weight of path gymmed over
all lattice paths of length 2n from (0,0) to (n,n), where the weight is defined as in
Fig. 11, subject to certain restrictions on the vertices on the paths: For h,(z), there is
no restriction, but for g.(z) the path must avoid all vertices (4, j) with i > j; izn(z) and
Gn(2) are defined similarly, except that all vertices (3,7) are also excluded, for 0 <i <n.
Thus

goz)=1, g =z g@@="+ a@k)=z §)=2"
ho(z) =1, hi(z) =z +1, ha(z) = 2° + 22 + 32 + 1;
hi(z) =z +1, ho(z) = 2° + 2.

Find recurrence relations defining these functions, and use these relations to prove that

1" ! 7n3 + 4n2 + dn (2n
(1) + Ry (1) = TS EER (),

(The exact formula for the variance of the number of inversions in a random 2-ordered

permutation of {1,2,...,2n} is therefore easily found; it is asymptotically (3—70 — 1”—6)n3 )
16. [M24] Find a formula for the maximum number of inversions in an h-ordered
permutation of {1,2,...,n}. What is the maximum possible number of moves in

Algorithm D when the increments satisfy the divisibility condition (5)?

17. [M21] Show that, when N = 2" and h, = 2° for t > s > 0, there is a unique
permutation of {1,2,...,n} that maximizes the number of move operations performed
by Algorithm D. Find a simple way to describe this permutation.

18. [HM24] For large N the sum (6) can be estimated as

1 N2 JT <N3/2hi£21 - N3/2hi/2>.

4 ht—l + ? ht_z hO

What real values of hy_1, ..., ho minimize this expression when N and ¢ are fixed and
ho = 17

» 19. [M25] What is the average value of the quantity A in the timing analysis of
Program D, when the increments satisfy the divisibility condition (5)?

20. [M22] Show that Theorem K follows from Lemma L.

21. [M25] Let h and k be relatively prime positive integers, and say that an integer
is generable if it equals zh + yk for some nonnegative integers z and y. Show that n
is generable if and only if hk — h — k — n is not generable. (Since 0 is the smallest
generable integer, the largest nongenerable integer must therefore be hk — h — k. It
follows that K; < K; whenever j —i > (h—1)(k—1), in any file that is both h-ordered
and k-ordered.)

22. [M30] Prove that all integers > 2°(2° — 1) can be represented in the form
a0(2° = 1) + a1 (2 — 1)+ a2 (2P - 1) + -+,

where the a;’s are nonnegative integers; but 2°(2° — 1) — 1 cannot be so represented.
Furthermore, exactly 2°~!(2° + s — 3) positive integers are unrepresentable in this form.

Find analogous formulas when the quantities 2% _ 1 are replaced by 2% + 1 in the
representations.
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» 23. [M22] Prove that if hst2 and hgy1 are relatively prime, the number of moves that
occur while Algorithm D is using the increment hs is O(Nhsi2hoy1/hs). Hint: See
exercise 21.

24. [M42] Prove that Theorem P is best possible, in the sense that the exponent 3/2
cannot be lowered.

» 25. [M22] How many permutations of {1,2,..., N} are both 3-ordered and 2-ordered?
What is the maximum number of inversions in such a permutation? What is the total
number of inversions among all such permutations?

26. [M35] Can a file of N elements have more than N inversions if it is 3-, 5-, and
7-ordered? Estimate the maximum number of inversions when N is large.

27. [M41] (Bjorn Poonen.) (a) Prove that there is a constant ¢ such that if m of the
increments h, in Algorithm D are less than N/2, the running time is Q(N*+¢/ V™) in the
worst case. (b) Consequently the worst-case running time is Q(N(log N/ loglog N)?)
for all sequences of increments.

28. [15] Which sequence of increments shown in Table 6 is best from the standpoint
of Program D, considering the average total running time?

29. [40] For N = 1000 and various values of ¢, find empirical values of h;_1, ..
hi, ho for which the average number of moves, Baye, is as small as you can make it.
30. [M23] (V. Pratt.) If the set of increments in shellsort is {2737 | 2P37 < N},
show that the number of passes is approximately 3(log, N)(logs N), and the number
of moves per pass is at most N/2. In fact, if K;_» > K; on any pass, we will always
have K;_3n, Kj—2n < K; < Kj_h < Kj1h, Kj+2r; 50 we may simply interchange K;_4
and K; and increase j by 2h, saving two of the comparisons of Algorithm D. Hint: See
exercise 25.

‘2

» 31. [25] Write a MIX program for Pratt’s sorting algorithm (exercise 30). Express its
running time in terms of quantities A, B, S, T, N analogous to those in Program D.

32. [10] What would be the final contents of Lo L ... Lje if the list insertion sort in
Table 8 were carried through to completion?

» 33. [25] Find a way to improve on Program L so that its running time is dominated
by 5B instead of 7B, where B is the number of inversions. Discuss corresponding
improvements to Program S.

34. [M10] Verify formula (14).

35. [21] Write a MIX program to follow Program M, so that all lists are combined into
a single list. Your program should set the LINK fields exactly as they would have been
set by Program L.

36. [18] Assume that the byte size of MIX is 100, and that the sixteen example keys in
Table 8 are actually 503000, 087000, 512000, ..., 703000. Determine the running time
of Programs L and M on this data, when M = 4.

37. [M25] Let gn(z) be the probability generating function for inversions in a random
permutation of n objects, Eq. 5.1.1-(11). Let gnn(2) be the corresponding generating
function for the quantity B in Program M. Show that

N_ N n\ M
ZQNM(Z)MNT = (Z%(@%) :
n>0

N>0

and use this formula to derive the variance of B.
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38. [HM23] (R. M. Karp.) Let F(z) be a distribution function for a probability
distribution, with F(0) = 0 and F(1) = 1. Given that the keys K, Ka,..., Ky are
independently chosen at random from this distribution, and that M = cN, where c is
constant and N — oo, prove that the running time of Program M is O(N) when F is
sufficiently smooth. (A key K is inserted into list j when |[M K| = j — 1; this occurs
with probability F(j/M) — F((57 — 1)/M). Only the case F(z) =z, 0 <z < 1,is
treated in the text.)

39. [HM16] If a program runs in approximately A/M + B units of time and uses
C + M locations in memory, what choice of M gives the minimum time x space?

40. [HM24] Find the asymptotic value of the average number of right-to-left maxima
that occur in multiple list insertion, Eq. (15), when M = N/« for fixed o as N — oo.
Carry out the expansion to an absolute error of O(N ~1), expressing your answer in
terms of the exponential integral function Ey(z) = [ e dt/t.

41. [HM26] (a) Prove that the sum of the first (%) elements of (10) is O(p**). (b) Now
prove Theorem I.

42. [HM43]) Analyze the average behavior of shellsort when there are ¢t = 3 increments
h, g, and 1, assuming that h L g. The first pass, h-sorting, obviously does a total of
1N?*h 4+ O(N) moves.
a) Prove that the second pass, g-sorting, does */T;(\/H —1/vh)N/g+ O(hN) moves.
b) Prove that the third pass, 1-sorting, does ¥ (h,g)N + O(g®h?) moves, where

v =3 ("TN(E (-9 b

43. [25] Exercise 33 uses a sentinel to speed up Algorithm S, by making the test
“ > 0” unnecessary in step S4. This trick does not apply to Algorithm D. Nevertheless,
show that there is an easy way to avoid testing “¢ > 0” in step D5, thereby speeding
up the inner loop of shellsort.

44, [M25) Ifr=a,...a, and ©' =a} ...a, are permutations of {1,...,n}, say that
m < m' if the ith-largest element of {a;,...,a;} is less than or equal to the ith-largest
element of {a},...,a}}, for 1 <i < j <n. (In other words, m < 7' if straight insertion
sorting of 7 is componentwise less than or equal to straight insertion sorting of =’ after
the first j elements have been inserted, for all j.)

a) If 7 is above 7' in the sense of exercise 5.1.1-12, does it follow that 7 < w'?

b) If 7 < 7', does it follow that =% > 7'%7

¢) If 7 < 7', does it follow that 7 is above 7'?

5.2.2. Sorting by Exchanging

We come now to the second family of sorting algorithms mentioned near the
beginning of Section 5.2: “exchange” or “transposition” methods that system-
atically interchange pairs of elements that are out of order until no more such
pairs exist.

The process of straight insertion, Algorithm 5.2.1S, can be viewed as an
exchange method: We take each new record R; and essentially exchange it with
its neighbors to the left until it has been inserted into the proper place. Thus
the classification of sorting methods into various families such as “insertion,”
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Pass 1
Pass 2
Pass 3
Pass 4
Pass 5
Pass 6
Pass 7
Pass 8
Pass 9

703 908 908 908 908 908 908 908 908 908
765 °703 897 897 897 897 897 897 897 897
677 °765 °703 765 765 765 765 765 765 765

612 °677 765 oo°°g 703 703 703 703 703 703 703
509 ° 612 ° 677 677 677 677 677 677 677 677

o

154 - 509 °612 653 653 653 653 653 653 653
426 . 154 509 °612 612 612 612 612 612 612
653 ° 426 o 154 5509 ,512 512 512 512 512 512
275 ° 653 . 426 5 154 $509 509 509 509 500 509
897 o 275 o 6534 426 £ 154 503 503 503 503 503
170 ° 8976 275 5124 426 $154 426 426 426 426

908§ 170 _512.# 275 50348 426wf 154 275 275 275
061 512w¢ 170 ,503w¢" 275 275  275u# 154 170 170
512. 061 5036’ 170 170 170 170  170«F 154 154
087 _503.¢ 061 087 087 087 087 087 087 087
503 087 087 061 061 061 061 061 061 061

Fig. 14. The bubble sort in action.

“exchange,” “selection,” etc., is not always clear-cut. In this section, we shall
discuss four types of sorting methods for which exchanging is a dominant char-
acteristic: exchange selection (the “bubble sort”); merge exchange (Batcher’s
parallel sort); partition exchange (Hoare’s “quicksort”); and radiz exzchange.

The bubble sort. Perhaps the most obvious way to sort by exchanges is to
compare K, with K5, interchanging R, and R if the keys are out of order;
then do the same to records Ry and R3, R3 and R4, etc. During this sequence
of operations, records with large keys tend to move to the right, and in fact
the record with the largest key will move up to become Rpy. Repetitions of the
process will get the appropriate records into positions Ry_1, Rny—2, etc., so that
all records will ultimately be sorted.

Figure 14 shows this sorting method in action on the sixteen keys 503 087
512 ... 703; it is convenient to represent the file of numbers vertically instead of
horizontally, with Ry at the top and R; at the bottom. The method is called
“bubble sorting” because large elements “bubble up” to their proper position,
by contrast with the “sinking sort” (that is, straight insertion) in which elements
sink down to an appropriate level. The bubble sort is also known by more prosaic
names such as “exchange selection” or “propagation.”

After each pass through the file, it is not hard to see that all records above
and including the last one to be exchanged must be in their final position, so
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they need not be examined on subsequent passes. Horizontal lines in Fig. 14
show the progress of the sorting from this standpoint; notice, for example, that
five more elements are known to be in final position as a result of Pass 4. On
the final pass, no exchanges are performed at all. With these observations we
are ready to formulate the algorithm.

Algorithm B (Bubble sort). Records Ry, ..., Ry are rearranged in place; after
sorting is complete their keys will be in order, K; <--- < Kn.

B1. [Initialize BOUND.] Set BOUND < N. (BOUND is the highest index for which
the record is not known to be in its final position; thus we are indicating
that nothing is known at this point.)

B2. [Loop on j.] Set ¢t < 0. Perform step B3 for j =1, 2, ..., BOUND — 1, and
then go to step B4. (If BOUND = 1, this means go directly to B4.)

B3. [Compare/exchange R;: Rj41.] If Kj > Kj41, interchange R; <> Rji; and
set t «+ J.

B4. [Any exchanges?] If ¢ = 0, terminate the algorithm. Otherwise set BOUND <« ¢
and return to step B2. 1

\l/ 1< j < BOUND
B1. Initialize BOUND B2. Loop on j B3. Compare/exchange R;: R;11
j =BOUND :
Yes
634. Any exchang@
No

Fig. 15. Flow chart for bubble sorting.

Program B (Bubble sort). As in previous MIX programs of this chapter, we
assume that the items to be sorted are in locations INPUT+1 through INPUT+N.
rll =¢; 112 = 3.

01 START ENT1 N 1 B1. Initialize BOUND. t « V.

02 1H ST1 BOUND(1:2) A BOUND « ¢t.

03 ENT2 1 A B2. Loop on j. j < 1.

04 ENT1 O A t+ 0.

05 JMP BOUND A Exit if j > BOUND.

06 3H LDA INPUT,2 C B3. Compare/exchange R;: Rji1.
07 CMPA INPUT+1,2 C

08 JLE 2F C No exchange if K; < Kj41.

09 LDX INPUT+1,2 B R;1

10 STX INPUT,2 B — R;.

11 STA INPUT+1,2 B (old R)) — Rji1.

12 ENT1 0,2 B t«ij

13 20  INC2 1 C e+l

14 BOUND ENTX -x,2 A+ C r1X < j—BOUND. [Instruction modified]
15 JXN 3B A+ C Do step B3 for 1 < 5 < BOUND.

16 4H J1iP 1B A B4. Any exchanges? To B2 ift > 0. |
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Analysis of the bubble sort. It is quite instructive to analyze the running
time of Algorithm B. Three quantities are involved in the timing: the number
of passes, A; the number of exchanges, B; and the number of comparisons, C. If
the input keys are distinct and in random order, we may assume that they form
a random permutation of {1,2,...,n}. The idea of inversion tables (Section
5.1.1) leads to an easy way to describe the effect of each pass in a bubble sort.

Theorem I. Let ay as . ..an be a permutation of {1,2,...,n}, and let by bz ... by
be the corresponding inversion table. If one pass of the bubble sort, Algorithm B,
changes ay as . . . an, to the permutation aj aj . ..ay,, the corresponding inversion
table b, bly...b!, is obtained from by by...b, by decreasing each nonzero entry
by 1.

Proof. If a; is preceded by a larger element, the largest preceding element is
exchanged with it, so b,, decreases by 1. But if a; is not preceded by a larger
element, it is never exchanged with a larger element, so b,, remains 0. 1

Thus we can see what happens during a bubble sort by studying the sequence
of inversion tables between passes. For example, the successive inversion tables
corresponding to Fig. 14 are

3183450403223210

Pass 1
2072340302112100

Pass 2 (1)
1061230201001000

Pass 3

0050120100000000

and so on. If by by ... b, is the inversion table of the input permutation, we must
therefore have

A= 1+max(b1,b2,...,bn), (2)
B=by +by+-+ by, (3)
C=ci+c+-+cCa, (4)

where c; is the value of BOUND — 1 at the beginning of pass j. In terms of the
inversion table,
cj=max{b;+i|b;>j—1} -] (5)

(see exercise 5). In example (1) we therefore have A=9, B =41, C =15+ 14+
13+12+7+5+4+3+2="75. The total MIX sorting time for Fig. 14 is 960u.

The distribution of B (the total number of inversions in a random permu-
tation) is very well-known to us by now; so we are left with A and C to be
analyzed.

The probability that A < k is 1/n! times the number of inversion tables
having no components > k, namely k™ *k!, when 1 < k < n. Hence the
probability that exactly k passes are required is

1

Ay '
n:

(K"Kt = (k= )™+ (k= 1)1). (6)
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The mean value > kAj can now be calculated; summing by parts, it is

iy A

Aaw::7l+]-_
n!

k=0

=n+1— P(n), (7)

where P(n) is the function whose asymptotic value was found to be /7n/2— 2 +
O(1/v/n) in Eq. 1.2.11.3—(24). Formula (7) was stated without proof by E. H.
Friend in JACM 3 (1956), 150; a proof was given by Howard B. Demuth [Ph.D.
Thesis (Stanford University, October 1956), 64-68]. For the standard deviation
of A, see exercise 7.

The total number of comparisons, C, is somewhat harder to handle, and we
will consider only C,ye. For fixed n, let f;(k) be the number of inversion tables
by ...b, such that for 1 <i < n we have either b; < 7 —1or b; +7—j < k; then

R =0G+RIG-D"77F,  for0<k<n—j (8)

(See exercise 8.) The average value of ¢; in (5) is (3 k(f;(k) — f;(k —1)))/n!;
summing by parts and then summing on j leads to the formula

Coe= ("I -2 S sw=("]) -5 X s

1<j<n 0<r<s<n
0<k<n—j
Here the asymptotic value is not easy to determine, and we shall return to it at
the end of this section.
To summarize our analysis of the bubble sort, the formulas derived above
and below may be written as follows:

A= (min 1, ave N — y/7N/2 + O(1), max N); (10)
B = (min 0, ave 2(N? — N), max 3(N? — N)); (11)

C=(min N-1, ave (N> = NInN — (y +In2 - 1)N) + O(VN),
max 3 (N? — N)). (12)

In each case the minimum occurs when the input is already in order, and the
maximum occurs when it is in reverse order; so the MIX running time is 8A +
7B +8C +1= (min 8N +1, ave 5.756N? + O(Nlog N), max 7.5N? + 0.5N +1).

Refinements of the bubble sort. It took a good deal of work to analyze the
bubble sort; and although the techniques used in the calculations are instructive,
the results are disappointing since they tell us that the bubble sort isn’t really
very good at all. Compared to straight insertion (Algorithm 5.2.1S), bubble
sorting requires a more complicated program and takes more than twice as long!

Some of the bubble sort’s deficiencies are easy to spot. For example, in
Fig. 14, the first comparison in Pass 4 is redundant, as are the first two in
Pass 5 and the first three in Passes 6 and 7. Notice also that elements can never
move to the left more than one step per pass; so if the smallest item happens
to be initially at the far right we are forced to make the maximum number of
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703 908 908 908 908 908 908 908
765 °703ew, 765 897 897 897 897 897

677  ° 765 %703 °765 765 765 765 765
612 °677 677 o703 703 703 703 703
509 ° 612 612 °677 677 677 677 677
154 - 509 509 ° 612 612 _653 653 653
426 ° 154 426 o 509 509 §612 612 612
653 ° 426 ° 653 426 oo 653 o 5090, 512 512
275 ° 653 3 275 ¢ 653 ©426 512 °509 509
897 o 275 o 8078 275 o, 512 o 4260%, 503 503
170 897 2170 512 °275 503 ©426 426

9088 170 ©512«¢ 170 o, 503 o 275 275 275
061 512 °154 _503 °170 170 170 170

[+

512o# 06l 503 154 154 154 154 154
087 503 o 087 087 087 087 087 087
503.f 087 °061 061 061 061 061 061

Fig. 16. The cocktail-shaker short [shic].

comparisons. This suggests the “cocktail-shaker sort,” in which alternate passes
go in opposite directions (see Fig. 16). The average number of comparisons is
slightly reduced by this approach. K. E. Iverson [A Programming Language
(Wiley, 1962), 218-219] made an interesting observation in this regard: If j is
an index such that R; and R;;1 are not exchanged with each other on two
consecutive passes in opposite directions, then R; and R;;; must be in their
final position, and they need not enter into any subsequent comparisons. For
example, traversing 4 321 8 6 9 7 5 from left to right yields 32146875 9;
no interchange occurred between R4 and Rs. When we traverse the latter
permutation from right to left, we find R4 still less than (the new) Rs, so we
may immediately conclude that R4 and Rs need not participate in any further
comparisons.

But none of these refinements lead to an algorithm better than straight
insertion; and we already know that straight insertion isn’t suitable for large V.
Another idea is to eliminate most of the exchanges; since most elements simply
shift left one step during an exchange, we could achieve the same effect by viewing
the array differently, shifting the origin of indexing! But the resulting algorithm
is no better than straight selection, Algorithm 5.2.3S, which we shall study later.

In short, the bubble sort seems to have nothing to recommend it, except a
catchy name and the fact that it leads to some interesting theoretical problems.

Batcher’s parallel method. If we are going to have an exchange algorithm
whose running time is faster than order N2, we need to select some nonadjacent
pairs of keys (K, K;) for comparisons; otherwise we will need as many exchanges
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as the original permutation has inversions, and the average number of inversions
is 1(N2 — N). An ingenious way to program a sequence of comparisons, looking
for potential exchanges, was discovered in 1964 by K. E. Batcher [see Proc.
AFIPS Spring Joint Computer Conference 32 (1968), 307-314]. His method is
not at all obvious; in fact, a fairly intricate proof is needed just to show that it
is valid, since comparatively few comparisons are made. We shall discuss two
proofs, one in this section and another in Section 5.3.4.

M1. Initialize p

M2. Initialize ¢, 7, d —> M3. Loop on i MS5. Loop on ¢ MS6. Loop on p
i>2N—d g=p
0<i<N—d p=0
IAp=T

M4. Compare/exchange Ri1:R; 4441

Fig. 17. Algorithm M.

Batcher’s sorting scheme is similar to shellsort, but the comparisons are
“done in a novel way so that no propagation of exchanges is necessary. We can,
for instance, compare Table 1 (on the next page) to Table 5.2.1-3; Batcher’s
method achieves the effect of 8-sorting, 4-sorting, 2-sorting, and 1-sorting, but
the comparisons do not overlap. Since Batcher’s algorithm essentially merges
pairs of sorted subsequences, it may be called the “merge exchange sort.”

Algorithm M (Merge exchange). Records Ry,..., Ry are rearranged in place;
after sorting is complete their keys will be in order, K; < --- < K. We assume
that NV > 2.

M1. [Initialize p.] Set p - 2!~ where ¢ = [lg N'] is the least integer such that
2* > N. (Steps M2 through M5 will be performed for p = 201,262 || 1))

MZ2. [Initialize ¢, v, d.] Set g + 2'7!, r < 0, d « p.

M3. [Loop on 4.] For all i such that 0 <i < N —d and i A p = r, do step M4.
Then go to step M5. (Here i A p means the “bitwise and” of the binary
representations of ¢ and p; each bit of the result is zero except where both
¢ and p have 1 bits in corresponding positions. Thus 13 A 21 = (1101), A
(10101)2 = (00101)2 = 5. At this point, d is an odd multiple of p, and p is
a power of 2, so that i Ap # (i +d) Ap; it follows that the actions of step M4
can be done for all relevant 4 in any order, even simultaneously.)

M4. [Compare/exchange R;11:Rivar1.] If Kipyp > Kipgye1, interchange the
records R;y1 <> Riygqy1.

MS5. [Loop on ¢.] If g # p, set d « g — p, ¢ + q/2, r < p, and return to M3.

MS6. [Loop on p.] (At this point the permutation K; K5 ... Ky is p-ordered.)
Set p < |p/2]. If p > 0, go back to M2. |
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Table 1
MERGE-EXCHANGE SORTING (BATCHER’S METHOD)

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

8 808 \\: ::; ;;; ;:; ;;; ;;; ;éé géé ;;; ;;; ;;; ;;; ;;: ::/

503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703

503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703

4444 S L 7S

503 087 154 061 612 170 512 275 653 426 765 509 908 677 897 703
2802\&(/ \_SU \Sé/ \_Sé/

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703

2426 W

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703
2222 NN S NN N NS

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703
1801 o o/ S

061 154 087 503 170 512 275 612 426 653 509 765 677 897 703 908

061 154 087 503 170 512 275 612 426 653 509 765 677 897 703 908

1213 N L L DL L S

061 154 087 275 170 426 503 509 512 653 612 703 677 897 765 908
R Y2 AN N N A AN,

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Table 1 illustrates the method for N = 16. Notice that the algorithm sorts NV
elements essentially by sorting R, R3, Rs,... and Ra, R4, Rg, . .. independently;
then we perform steps M2 through M5 for p = 1, in order to merge the two
sorted sequences together.

In order to prove that the magic sequence of comparison/exchanges specified
in Algorithm M actually will sort all possible input files R; Ry ... Ry, we must
show only that steps M2 through M5 will merge all 2-ordered files Ry Ry ... Ry
when p = 1. For this purpose we can use the lattice-path method of Section
5.2.1 (see Fig. 11 on page 87); each 2-ordered permutation of {1,2,...,N}
corresponds uniquely to a path from (0,0) to ([N/2], [N/2]) in a lattice di-
agram. Figure 18(a) shows an example for N = 16, corresponding to the
permutation 132410511613714815916 12. When we perform step M3 with
p=1,¢g=2"1 r =0, d =1, the effect is to compare (and possibly exchange)
Ry : R, R3: Ry, etc. This operation corresponds to a simple transformation of
the lattice path, “folding” it about the diagonal if necessary so that it never
goes above the diagonal. (See Fig. 18(b) and the proof in exercise 10.) The
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next iterations of step M3 have p = r = 1, and d = 2072 — 1,272 —1,... 1;
their effect is to compare/exchange Ro:Roid4, Ry:R4y4, etc., and again there
is a simple lattice interpretation: The path is “folded” about a line 3(d + 1)
units below the diagonal. See Fig. 18(c) and (d); eventually we get to the
path in Fig. 18(e), which corresponds to a completely sorted permutation. This
completes a “geometric proof” that Batcher’s algorithm is valid; we might call

it sorting by folding!

(a) . (b) (c) (d) (e)

Fig. 18. A geometric interpretation of Batcher’s method, NV = 16.

A MIX program for Algorithm M appears in exercise 12. Unfortunately the
amount of bookkeeping needed to control the sequence of comparisons is rather
large, so the program is less efficient than other methods we have seen. But it has
one important redeeming feature: All comparison/exchanges specified by a given
iteration of step M3 can be done simultaneously, on computers or networks that
allow parallel computations. With such parallel operations, sorting is completed
in £[lg N1([lgN] + 1) steps, and this is about as fast as any general method
known. For example, 1024 elements can be sorted in only 55 parallel steps by
Batcher’s method. The nearest competitor is Pratt’s method (see exercise 5.2.1—
30), which uses either 40 or 73 steps, depending on how we count; if we are
willing to allow overlapping comparisons as long as no overlapping exchanges
are necessary, Pratt’s method requires only 40 comparison/exchange cycles to
sort 1024 elements. For further comments, see Section 5.3.4.

Quicksort. The sequence of comparisons in Batcher’s method is predetermined;
we compare the same pairs of keys each time, regardless of what we may have
learned about the file from previous comparisons. The same is largely true of the
bubble sort, although Algorithm B does make limited use of previous knowledge
in order to reduce its work at the right end of the file. Let us now turn to a
quite different strategy, which uses the result of each comparison to determine
what keys are to be compared next. Such a strategy is inappropriate for parallel
computations, but on computers that work serially it can be quite fruitful.

The basic idea of the following method is to take one record, say R;, and to
move it to the final position that it should occupy in the sorted file, say position s.
While determining this final position, we will also rearrange the other records so
that there will be none with greater keys to the left of position s, and none with
smaller keys to the right. Thus the file will have been partitioned in such a way
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that the original sorting problem is reduced to two simpler problems, namely
to sort R;... R,_; and (independently) to sort R, ;... Ry. We can apply the
same technique to each of these subfiles, until the job is done.

There are several ways to achieve such a partitioning into left and right
subfiles; the following scheme due to R. Sedgewick seems to be best, for reasons
that will become clearer when we analyze the algorithm: Keep two pointers,
i and 7, with ¢ = 2 and j = N initially. If R, is eventually supposed to be
part of the left-hand subfile after partitioning (we can tell this by comparing
K; with K)), increase ¢ by 1, and continue until encountering a record R; that
belongs to the right-hand subfile. Similarly, decrease j by 1 until encountering
a record R; belonging to the left-hand subfile. If ¢ < j, exchange R; with Rj;
then move on to process the next records in the same way, “burning the candle
at both ends” until ¢ > j. The partitioning is finally completed by exchanging
R; with R;. For example, consider what happens to our file of sixteen numbers:

i J
{ {
Initial file: [503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703]

1st exchange: 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
2nd exchange: 503 087 154 061 908 170 897 275 653 426 512 509 612 677 765 703
3rd exchange: 503 087 154 061 426 170 897 275 653 908 512 509 612 677 765 703
Pointers cross: 503 087 154 061 426 170 275 897 653 908 512 509 612 677 765 703
Partitioned file:[275 087 154 061 426 170]503[897 653 908 512 509 612 677 765 703|

[
j i

(In order to indicate the positions of ¢ and j, keys K; and K; are shown here in
boldface type.)

Table 2 shows how our example file gets completely sorted by this approach,
in 11 stages. Brackets indicate subfiles that still need to be sorted; double
brackets identify the subfile of current interest. Inside a computer, the current
subfile can be represented by boundary values (I,7), and the other subfiles by
a stack of additional pairs (lg,7r). Whenever a file is subdivided, we put the
longer subfile on the stack and commence work on the shorter one, until we reach
trivially short files; this strategy guarantees that the stack will never contain
more than lg N entries (see exercise 20).

The sorting procedure just described may be called partition-exchange sort-
ing; it is due to C. A. R. Hoare, whose interesting paper [Comp. J. 5 (1962),
10-15] contains one of the most comprehensive accounts of a sorting method that
has ever been published. Hoare dubbed his method “quicksort,” and that name
is not inappropriate, since the inner loops of the computation are extremely fast
on most computers. All comparisons during a given stage are made against the
same key, so this key may be kept in a register. Only a single index needs to
be changed between comparisons. Furthermore, the amount of data movement
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Table 2

QUICKSORTING
(I,7) Stack

[503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703] (1,16) —
[275 087 154 061 426 170]503 [897 653 908 512 509 612 677 765 703] (1,6) (8,16)
[170 087 154 061]275 426 503 [897 653 908 512 509 612 677 765 703] (1,4) (8,16)
[061 087 154] 170 275 426 503 [897 653 908 512 509 612 677 765 703] (1,3) (8,16)
061 [087 154] 170 275 426 503 [897 653 908 512 509 612 677 765 703 (2,3) (8,16)
061 087 154 170 275 426 503 [897 653 908 512 509 612 677 765 703] (8,16)

061 087 154 170 275 426 503 [765 653 703 512 509 612 677] 897 908 (8,14)

061 087 154 170 275 426 503 [677 653 703 512 509 612] 765 897 908 (8,13)

061 087 154 170 275 426 503 [509 653 612 512] 677 703 765 897 908 (8,11) —
061 087 154 170 275 426 503 509 [653 612 512] 677 703 765 897 908 (9,11)

061 087 154 170 275 426 503 509 [512 612] 653 677 703 765 897 908 (9,10)

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908 — -

is quite reasonable; the computation in Table 2, for example, makes only 17
exchanges.

The bookkeeping required to control ¢, 7, and the stack is not difficult, but
it makes the quicksort partitioning procedure most suitable for fairly large V.
Therefore the following algorithm uses another strategy after the subfiles have
become short.

Algorithm Q (Quicksort). Records R;,..., Ry are rearranged in place; after
sorting is complete their keys will be in order, K; < --- < Kpy. An auxiliary
stack with at most |lg V| entries is needed for temporary storage. This algorithm
follows the quicksort partitioning procedure described in the text above, with
slight modifications for extra efficiency:

a) We assume the presence of artificial keys K¢ = —oo and Kn41 = 400 such
that

KOSKrLSKN_*_]_ fOI'].SlSN (13)
(Equality is allowed.)

b) Subfiles of M or fewer elements are left unsorted until the very end of the
procedure; then a single pass of straight insertion is used to produce the final
ordering. Here M > 1 is a parameter that should be chosen as described in
the text below. (This idea, due to R. Sedgewick, saves some of the overhead
that would be necessary if we applied straight insertion directly to each small
subfile, unless locality of reference is significant.)

c) Records with equal keys are exchanged, although it is not strictly necessary
to do so. (This idea, due to R. C. Singleton, keeps the inner loops fast and
helps to split subfiles nearly in half when equal elements are present; see
exercise 18.)

Q1. [Initialize.] If N < M, go to step Q9. Otherwise set the stack empty, and
set [ 1,7+ N.
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Q3. Compare K,;: K

QL. Initialize Q2. Efag;g Q6. Exchange
N<M
Q9 Straight Q8. Take Q7. Put on stack
insertion sort Stack off stack Both subfile
empty lengths <M
Fig. 19. Partition-exchange sorting (quicksort).
Q2. [Begin new stage.] (We now wish to sort the subfile R;...R,; from the

Q3.

Q4.

Q5.

Q6.
Q7.

Qs.

Qo.

nature of the algorithm, we have r > | + M, and K;_; < K; < K4, for
I1<i<r.)Seti« 1, j« r+1;andset K < K. (The text below discusses
alternative choices for K that might be better.)

[Compare K;:K.] (At this point the file has been rearranged so that
K <K forl—-1<k<1q, K<Kp forj<k<r+1; (14)

and | < i < j.) Increase ¢ by 1; then if K; < K, repeat this step. (Since
K; > K, the iteration must terminate with i < j.)

[Compare K : K;.] Decrease j by 1; then if K < K, repeat this step. (Since
K > K;_;, the iteration must terminate with 7 > — 1.)

[Test 7:5.] (At this point, (14) holds except for k = < and k = j; also
Ki>K>Kj,andr>j>i—12>1) If j <1, interchange R, <> R; and
go to step Q7.

[Exchange.] Interchange R; <+ R; and go back to step Q3.

[Put on stack.] (Now the subfile R;...R;... R, has been partitioned so
that K, < Kjforl -1 <k <jand Kj < Kgforj <k<r+1 If
r—j>4—1> M, insert (j+1,7) on top of the stack, set r < j — 1, and go
to Q2. If j—1 > r—j > M, insert (I, j—1) on top of the stack, set | + j+1,
and go to Q2. (Each entry (a,b) on the stack is a request to sort the subfile
R, ... Ry at some future time.) Otherwiseif r—j > M > j—1I,set [ + j+1
and go to Q2;orif j—I>M >r—j,set r < j—1 and go to Q2.

[Take off stack.] If the stack is nonempty, remove its top entry (I',r’), set
l + U, r < 7, and return to step Q2.

[Straight insertion sort.] For j = 2,3, ..., N, if K;_, > K; do the following
operations: Set K < K;, R < Rj, ¢ < j— 1; then set R, + R; and
i < i — 1 one or more times until K; < K; then set R;11 « R. (This
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is Algorithm 5.2.1S, modified as suggested in exercise 5.2.1-10 and answer
5.2.1-33. Step Q9 may be omitted if M = 1. Caution: The final straight
insertion might conceal bugs in steps Q1-Q8; don’t trust an implementation
just because it gives the correct answers!) |

The corresponding MIX program is rather long, but not complicated; in fact,
a large part of the coding is devoted to step Q7, which just fools around with
the variables in a very straightforward way.

Program Q (Quicksort). Records to be sorted appear in locations INPUT+1
through INPUT+N; assume that locations INPUT and INPUT+N+1 contain, respec-
tively, the smallest and largest values possible in MIX. The stack is kept in
locations STACK+1, STACK+2, . .. ; see exercise 20 for the exact number of locations
to set aside for the stack. rI2 =, rI3 = r, rl4 = ¢, rI5 = j, rI6 = size of stack,
rA = K = R. We assume that N > M.

A EQU 2:3 First component of stack entry.
B EQU 4:5 Second component of stack entry.

01 START ENT6 O 1 Q1. Initialize. Set stack empty.

02 ENT2 1 1 [+ 1.

03 ENT3 N 1 r + N.

04 2H ENT5 1,3 A Q2. Begin new stage. j +—r + 1.

05 LDA INPUT,2 A K« K.

06 ENT4 1,2 A 1+ 1+ 1.

07 JMP OF A To Q3 omitting “i «— ¢+ 1”.

08 6H LDX INPUT,4 B Q6. Exchange.

09 ENT1 INPUT,4 B

10 MOVE INPUT,5 B

11 STX 1INPUT,5 B R; < R;.

12 3H INC4 1 C'— A Q3. Compare K; : K. i «— i+ 1.

18 OH CMPA INPUT,4 C’

14 JG 3B C’ Repeat if K > K;.

15 4H DECS 1 C-C Q4. Compare K : K;. j+ j— 1.

16 CMPA INPUT,S c-C'

17 JL 4B C -’ Repeat if K < Kj.

18 ©SH ENTX 0,5 B+ A Q5. Testi:j.

19 DECX 0,4 B+ A

20 JXP 6B B+ A To Q6 if j > i.

21 LDX INPUT,5 A

22 STX INPUT,2 A Ry +— R;.

23 STA INPUT,S A R; « R.

2/ TH ENT4 0,3 A Q7. Put on stack.

25 DEC4 M,5 A rld «r—j— M.

26 ENT1 0,5 A

27 DEC1 M,2 A rll «j—1— M.

28 ENTA 0,4 A

29 DECA 0,1 A

30 JANN 1F A Jumpifr—75>j5—-1

31 JINP 8F A ToQ8IfM>j—I1>r—7j.

32 J4NP 3F S+ A Jumpifj—I>M>r—j.
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33 INC6 1 S’ (Now j—I>r—7> M)
34 ST2 STACK,6(A) S’

35 ENTA -1,5 S’

36 STA STACK,6(B) S’ (1,7—1) = stack.

37 4H ENT2 1,5 S+ A" l—j5+1.

38 JMP 2B S+ A" To Q2.

39 1H J4ANP 8F . A-—A ToQ8ifM>r—j52>j5—1.
40 JINP 4B S—8 +A" Jumpifr—j>M>j—1.
41 INC6 1 S-S5~ (Nowr—j>j—1>M)
42 ST3 STACK,6(B) S—5

43 ENTA 1,5 S -5

44 STA STACK,6(A) S -5 (j+1,7) = stack.

/5 3H  ENT3 -1,5 S—S§ +A" rej—1

46 JMP 2B S-S +A" ToQ2.

47 8H LD2 STACK,6(A) S+1 Q8. Take off stack.

48 LD3 STACK,6(B) S+1

49 DEC6 1 S+1 (I,7) < stack.

50 JENN 2B S+1 To Q2 if stack wasn’t empty.
51 9H ENTS 2-N 1 Q9. Straight insertion sort. j <+ 2.
52 2H LDA INPUT+N,5 N -1 K + Kj, R+ R;.

53 CMPA INPUT+N-1,5 N-1 (In this loop, rI5 = j — N)
54 JGE 6F N -1 Jump if K > K;_;.

55 3H ENT4 N-1,5 D i+ j—1.

56 4H LDX INPUT,4 E

57 STX INPUT+1,4 E Riy1 + R;.

58 DEC4 1 E i+ 11— 1.

59 CMPA INPUT,4 E

60 JL 4B E Repeat if K < K;.

61 5H STA INPUT+1,4 D Riy1 «+ R.

62 6H INC5 1 N-1

63 J5NP 2B N-1 2<j<N. |

Analysis of quicksort. The timing information shown with Program Q is not
hard to derive using Kirchhoff’s conservation law (Section 1.3.3) and the fact
that everything put onto the stack is eventually removed again. Kirchhoff’s law
applied at Q2 also shows that

A=1+(8"+A"+(S-9+A)+5=25+1+A"+ 4", (15)
hence the total running time comes to
24A +11B +4C + 3D +8E + 7N + 9§ units,
where

A = number of partitioning stages;

B = number of exchanges in step Q6;

C = number of comparisons made while partitioning;

D = number of times K;_; > K, during straight insertion (step Q9);

E = number of inversions removed by straight insertion;

S = number of times an entry is put on the stack. (16)
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By analyzing these six quantities, we will be able to make an intelligent choice of
the parameter M that specifies the “threshold” between straight insertion and
partitioning. The analysis is particularly instructive because the algorithm is
rather complex; the unraveling of this complexity makes a particularly good
illustration of important techniques. However, nonmathematical readers are
advised to skip to Eq. (25).

As in most other analyses of this chapter, we shall assume that the keys to
be sorted are distinct; exercise 18 indicates that equalities between keys do not
seriously harm the efficiency of Algorithm Q, and in fact they seem to help it.
Since the method depends only on the relative order of the keys, we may as well
assume that they are simply {1,2,..., N} in some order.

We can attack this problem by considering the behavior of the very first
partitioning stage, which takes us to Q7 for the first time. Once this partitioning
has been achieved, both of the subfiles Ry ... Rj—, and Rjy1... Ry will be in
random order if the original file was in random order, since the relative order of
elements in these subfiles has no effect on the partitioning algorithm. Therefore
the contribution of subsequent partitionings can be determined by induction
on N. (This is an important observation, since some alternative algorithms that
violate this property have turned out to be significantly slower; see Computing
Surveys 6 (1974), 287-289.)

Let s be the value of the first key, K;, and assume that exactly ¢ of the keys
K,,..., K, are greater than s. (Remember that the keys being sorted are the
integers {1,2,...,N}.) If s =1, it is easy to see what happens during the first
stage of partitioning: Step Q3 is performed once, step Q4 is performed N times,
and then step Q5 takes us to Q7. So the contributions of the first stage in this
case are A =1, B=0,C = N + 1. A similar but slightly more complicated
argument when s > 1 (see exercise 21) shows that the contributions of the first
stage to the total running time are, in general,

A=1 B=t, C=N+1, for1<s<N. (17)

To this we must add the contributions of the later stages, which sort subfiles of
s — 1 and N — s elements, respectively.

If we assume that the original file is in random order, it is now possible
to write down formulas that define the generating functions for the probability
distributions of A, B, ..., S (see exercise 22). But for simplicity we shall consider
here only the average values of these quantities, Ay, By, ..., Sy, as functions
of N. Consider, for example, the average number of comparisons, C'y, that occur
during the partitioning process. When N < M, Cn = 0. Otherwise, since any
given value of s occurs with probability 1/N, we have

N
1
Cnv =% ; (N+1+C 1 +Cn_s)

2
=N+1+ > Ck,  forN>M. (18)
0<k<N



120 SORTING 5.2.2

Similar formulas hold for other quantities Ay, By, Dn, En, Sy (see exercise 23).
There is a simple way to solve recurrence relations of the form

2
= fo+ = : fi > m.
Tn = fn+ " Z Tk orn>m (19)

The first step is to get rid of the summation sign: Since

(n+Dzpy1 =n+1)fnp1 +2 Z Tk,
0<k<n

NT, = nfn +2 Z Tk,
0<k<n
we may subtract, obtaining
(n+ 1)Zpt1 — NTp = gn + 224, where g, = (n+ 1) fay1 — nfn.
Now the recurrence takes the much simpler form
(n+ D zpp1 = (n+2)zy, + gn, for n > m. (20)
Any recurrence relation that has the general form
AnZn+1 = bnZTn + gn (21)

can be reduced to a summation if we multiply both sides by the “summation
factor” agay...an—1/bob1...bn; we obtain

ao...an_lz c _ao...an_l (22)
o b1 ™ T boby.. b, O

In our case (20), the summation factor is simply n!/(n+2)! = 1/(n+1)(n + 2),
so we find that the simple relation

Yn+1 = Yn + Cn, Where y, =

In+1 = Tn (n+1)fn+1"nfn
n+2 n+1 (n+1)(n+2) ’

for n > m, (23)

is a consequence of (19).
For example, if we set f, = 1/n, we get the unexpected result z,,/(n+1) =
Tm/(m+1) for all n > m. If we set f, =n+ 1, we get
onf(n+1) = 2/(n+ 1)+ 2fnt -+ 2/(m +2) + /(0 + 1)
=2(Hn+1 — Hms1) + 2m/(m + 1),

for all n > m. Thus we obtain the solution to (18) by setting m = M + 1 and
zn = 0 for n < M; the required formula is

CN:(N-i-].) (2HN+1 —2HM+2+1)
N+1
M +2

Exercise 6.2.2-8 proves that, when M = 1, the standard deviation of Cp is
asymptotically /(21 — 272)/3 N; this is reasonably small compared to (24).

z2(N+1)ln< ) for N > M. (24)
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The other quantities can be found in a similar way (see exercise 23); when
N > M we have

Anv =2(N +1)/(M+2) -1,

BNz—é-(NH) <2HN+1 — 2Hpypa+1— M6+2> +%,

Dy = (N+1)(1—2HM+1/(M+2)),

Ey=L(N+1)MM -1)/(M +2);

Sy =(N+1)/(2M +3) -1, for N > 2M + 1. (25)

The discussion above shows that it is possible to carry out an exact analysis
of the average running time of a fairly complex program, by using techniques
that we have previously applied only to simpler cases.

Formulas (24) and (25) can be used to determine the best value of M on a
particular computer. In MIX's case, Program Q requires (35/3)(N + 1)Hy 41 +
#(N +1)f(M) — 34.5 units of time on the average, for N > 2M + 1, where

Hyy1 o 270 54
f(M) = 8M = T0Hy 42 + 71 =36 7255 + o + 5o

(26)

We want to choose M so that f(M) is a minimum, and a simple computer
calculation shows that M = 9 is best. The average running time of Program Q
is approximately 11.667(N + 1)In N — 1.74N — 18.74 units when M = 9, for
large V.

So Program Q is quite fast, on the average, considering that it requires very
little memory space. Its speed is primarily due to the fact that the inner loops,
in steps Q3 and Q4, are extremely short — only three MIX instructions each (see
lines 12-14 and 15-17). The number of exchanges, in step Q6, is only about
1/6 of the number of comparisons in steps Q3 and Q4; hence we have saved a
significant amount of time by not comparing ¢ to j in the inner loops.

But what is the worst case of Algorithm Q? Are there some inputs that it
does not handle efficiently? The answer to this question is quite embarrassing:
If the original file is already in order, with K; < Ky < --- < Ky, each
“partitioning” operation is almost useless, since it reduces the size of the subfile
by only one element! So this situation (which ought to be easiest of all to sort)
makes quicksort anything but quick; the sorting time becomes proportional to
N? instead of NlgN. (See exercise 25.) Unlike the other sorting methods we
have seen, Algorithm Q litkes a disordered file.

Hoare suggested two ways to remedy the situation, in his original paper, by
choosing a better value of the test key K that governs the partitioning. One of
his recommendations was to choose a random integer g between [ and r in the
last part of step Q2; we can change the instruction “K « K;” to

K +— K, R < Ry, R, <+ Ry, R« R (27)
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in that step. (The last assignment “R; - R” is necessary; otherwise step Q4
would stop with j = I — 1 when K is the smallest key of the subfile being
partitioned.) According to Eqgs. (25), such random integers need to be calculated
only 2(N +1)/(M +2) — 1 times on the average, so the additional running time
is not substantial; and the random choice gives good protection against the
occurrence of the worst case. Even a mildly random choice of g should be safe.
Exercise 58 proves that, with truly random ¢, the probability of more than, say,
20N In N comparisons will surely be less than 1075.

Hoare's second suggestion was to look at a small sample of the file and to
choose a median value of the sample. This approach was adopted by R. C.
Singleton [CACM 12 (1969), 185-187], who suggested letting K, be the median
of the three values

K, K\ (14r)/2) 5 K. (28)

Singleton’s procedure cuts the number of comparisons down from 2N In N to
about 1—72—N In N (see exercise 29). It can be shown that By is asymptotically
Cn /5 instead of Cv/6 in this case, so the median method slightly increases the
amount of time spent in transferring the data; the total running time therefore
decreases by roughly 8 percent. (See exercise 56 for a detailed analysis.) The
worst case is still of order N?, but such slow behavior will hardly ever occur.

W. D. Frazer and A. C. McKellar [JACM 17 (1970), 496-507] have suggested
taking a much larger sample consisting of 2k _ 1 records, where k is chosen so
that 2 &~ N/In N. The sample can be sorted by the usual quicksort method,
then inserted among the remaining records by taking k passes over the file
(partitioning it into 2% subfiles, bounded by the elements of the sample). Finally
the subfiles are sorted. The average number of comparisons required by such
a “samplesort” procedure is about the same as in Singleton’s median method,
when N is in a practical range, but it decreases to the asymptotic value N lg N
as N — co.

An absolute guarantee of O(N log N) sorting time in the worst case, together
with fast running time on the average, can be obtained by combining quicksort
with other schemes. For example, D. R. Musser [Software Practice & Exper. 27
(1997), 983-993] has suggested adding a “depth of partitioning” component to
each entry on quicksort’s stack. If any subfile is found to have been subdivided
more than, say, 2lg N times, we can abandon Algorithm Q and switch to Al-
gorithm 5.2.3H. The inner loop time remains unchanged, so the average total
running time remains almost the same as before.

Robert Sedgewick has analyzed a number of optimized variants of quicksort
in Acta Informatica 7 (1977), 327-356, and in CACM 21 (1978), 847-857,
22 (1979), 368. See also J. L. Bentley and M. D. Mcllroy, Software Practice
& Exper. 23 (1993), 1249-1265, for a version of quicksort that has been tuned
up to fit the UNIX® software library, based on 15 further years of experience.

Radix exchange. We come now to a method that is quite different from
any of the sorting schemes we have seen before; it makes use of the binary
representation of the keys, so it is intended only for binary computers. Instead



5.2.2 SORTING BY EXCHANGING 123

of comparing two keys with each other, this method inspects individual bits of
the keys, to see if they are 0 or 1. In other respects it has the characteristics of
exchange sorting, and, in fact, it is rather similar to quicksort. Since it depends
on radix 2 representations, we call it “radix exchange sorting.” The algorithm
can be described roughly as follows:

i) Sort the sequence on its most significant binary bit, so that all keys that
have a leading 0 come before all keys that have a leading 1. This sorting is done
by finding the leftmost key K, that has a leading 1, and the rightmost key K;
with a leading 0. Then R; and R; are exchanged and the process is repeated
until ¢ > j. '

ii) Let Fp be the elements with leading bit 0, and let F be the others. Apply
the radix exchange sorting method to Fy (starting now at the second bit from
the left instead of the most significant bit), until Fy is completely sorted; then
do the same for Fj.

For example, Table 3 shows how the radix exchange sort acts on our 16
random numbers, which have been converted to octal notation. Stage 1 in the
table shows the initial input, and after exchanging on the first bit we get to
stage 2. Stage 2 sorts the first group on bit 2, and stage 3 works on bit 3. (The
reader should mentally convert the octal notation to 10-bit binary numbers. For
example, 0232 stands for (0 010 011 010),.) When we reach stage 5, after sorting
on bit 4, we find that each group remaining has but a single element, so this part
of the file need not be further examined. The notation “*[0232 0252]” means
that the subfile 0232 0252 is waiting to be sorted on bit 4 from the left. In this
particular case, no progress occurs when sorting on bit 4; we need to go to bit 5
before the items are separated.

The complete sorting process shown in Table 3 takes 22 stages, somewhat
more than the comparable number for quicksort (Table 2). Similarly, the number
of bit inspections, 82, is rather high; but we shall see that the number of bit
inspections for large IV is actually less than the number of comparisons made
by quicksort, assuming a uniform distribution of keys. The total number of
exchanges in Table 3 is 17, which is quite reasonable. Note that bit inspections
never have to go past bit 7 here, although 10-bit numbers are being sorted.

As in quicksort, we can use a stack to keep track of the “boundary line
information” for waiting subfiles. Instead of sorting the smallest subfile first, it
is convenient simply to go from left to right, since the stack size in this case
can never exceed the number of bits in the keys being sorted. In the following
algorithm the stack entry (r,b) is used to indicate the right boundary r of a
subfile waiting to be sorted on bit b; the left boundary need not be recorded in
the stack —it is implicit because of the left-to-right nature of the procedure.

Algorithm R (Radiz exchange sort). Records R,,...,Ry are rearranged in
place; after sorting is complete, their keys will be in order, K; < --- < Kp. Each
key is assumed to be a nonnegative m-bit binary number, (a; as . .. ay)2; the ith
most significant bit, a;, is called “bit ¢” of the key. An auxiliary stack with
room for at most m — 1 entries is needed for temporary storage. This algorithm



Table 3
RADIX EXCHANGE SORTING
Stage I r b Stack
1 o767 0127 1000 0075 1614 0252 1601 0423 1215 0652 0232 0775 1144 1245 1375 1277] 1 16 1 —
2 2[0767 0127 0775 0075 0232 0252 0652 0423]%1215 1601 1614 1000 1144 1245 1375 12771 1 8 2 (16,2)
3 3[0252 0127 0282 0075)%[0775 0767 0652 0423]%1215 1601 1614 1000 1144 1245 1375 1277 1 4 3 (8,3)(16,2)
4 Yoors 0127]402%2 0252180775 0767 0652 0423)%1215 1601 1614 1000 1144 1245 1375 1277) 1 2 4 (4,4)(8,3)(16,2)
5 0075 012740232 0252]%0775 0767 0652 0423]%1215 1601 1614 1000 1144 1245 1875 1277] 3 4 4 (8,3)(16,2)
6 0075 0127 °5[0232 0252]%0775 0767 0652 0423)%[1215 1601 1614 1000 1144 1245 1375 1277 3 4 % (8,3)(16,2)
70075 0127 0232 0252 3[0775 0767 0652 0423]%1215 1601 1614 1000 1144 1245 1875 1277] 5 8 3 (16,2)
8 0075 0127 0232 0252 0428 *[0767 0652 0775]%[1215 1601 1614 1000 1144 1245 1375 12771 6 8 4 (16,2)
9 0075 0127 0282 0252 0428 065250767 0775)%[1215 1601 1614 1000 1144 1245 1875 12771 7 8 5 (16,2)
10 0075 0127 0232 0252 0423 0652 °[0767 0775]%[1215 1601 1614 1000 1144 1245 13875 1277 7 8 6 (16,2)
11 0075 0127 0232 0252 0423 0652 7]0767 0775]%(1215 1601 1614 1000 1144 1245 1875 12770 7 8 7 (16,2)
12 0075 0127 0282 0252 0423 0652 0767 07752%[1215 1601 1614 1000 1144 1245 1375 1277] 9 16 2 —
13 0075 0127 0232 0252 0423 0652 0767 077531215 1277 1875 1000 1144 1245]%1614 1601) 9 14 3 (16,3)
14 0075 0127 0232 0252 0423 0652 0767 0775 41144 1000141875 1277 1215 1245)%1614 1601] 9 10 4 (14,4)(16,3)
15 0075 0127 0282 0252 0423 0652 0767 0775 1000 1144 *[1875 1277 1215 1245)%1614 1601] 11 14 4 (16,3)
16 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 5[1245 1277 1215]°(1875)%[1614 1601] 11 13 5 (14,5)(16,3)
17 0075 0127 0282 0252 0423 0652 0767 0775 1000 1144 1215°5[1277 1245]°%(1875)%[1614 1601] 12 13 6 (14,5)(16,3)
18 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 137531614 1601] 15 16 3 —
19 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 137541614 1601] 15 16 4 —
20 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 137531614 1601] 15 16 5 —
21 0075 0127 0232 0252 0428 0652 0767 0775 1000 1144 1215 1245 1277 18375°[1614 1601] 15 16 6 —
22 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1875 "[1614 1601] 15 16 7 —
23 0075 0127 0232 0252 0428 0652 0767 0775 1000 1144 1215 1245 1277 1375 1601 1614 17 — — —

The radix exchange method looks precisely once at every bit that is needed to determine the final order of the keys.

Vel
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essentially follows the radix exchange partitioning procedure described in the
text above; certain improvements in its efficiency are possible, as described in
the text and exercises below.

R1. [Initialize.] Set the stack empty, and set [ <~ 1, 7 < N, b« 1.

R2. [Begin new stage.] (We now wish to sort the subfile R; <--- < R, on bit b;
from the nature of the algorithm, we have | <r.) If [ = r, go to step R10
(since a one-word file is already sorted). Otherwise set ¢ < [, j .

R3. [Inspect K; for 1.] Examine bit b of K;. If it is a 1, go to step R6.

RA4. [Increase i.] Increase ¢ by 1. If ¢ < j, return to step R3; otherwise go to
step RS.

R5. [Inspect K;4q for 0.] Examine bit b of K;,;. If it is a 0, go to step R7.

R6. [Decrease j.] Decrease j by 1. If ¢ < j, go to step R5; otherwise go to
step R8.

R7. [Exchange R;, R;+1.] Interchange records R; <> R;41; then go to step R4.

R8. [Test special cases.] (At this point a partitioning stage has been completed;
i =7+1, bit b of keys K,...,K; is 0, and bit b of keys K;,..., K, is 1.)
Increase b by 1. If b > m, where m is the total number of bits in the keys,
go to step R10. (In such a case, the subfile R, ... R, has been sorted. This
test need not be made if there is no chance of having equal keys present in
the file.) Otherwise if j < [ or j = r, go back to step R2 (all bits examined
were 1 or 0, respectively). Otherwise if j = [, increase [ by 1 and go to
step R2 (there was only one 0 bit).

R9. [Put on stack.] Insert the entry (r,b) on top of the stack; then set r < j
and go to step R2.

R10. [Take off stack.] If the stack is empty, we are done sorting; otherwise set
| « r + 1, remove the top entry (', b’) of the stack, set r + r/, b + ¥, and
return to step R2. |

Program R (Radiz exchange sort). The following MIX code uses essentially the
same conventions as Program Q. We haverll = —r, rI2=r, rI3 =%, rl4 = j,
rld = m — b, rl6 = size of stack, except that it proves convenient for certain
instructions (designated below) to leave rI3 = ¢ — j or rl4 = j — 7. Because of
the binary nature of radix exchange, this program uses the operations SRB (shift
right AX binary), JAE (jump A even), and JAO (jump A odd), defined in Section
4.5.2. We assume that N > 2.

01 START ENT6 O 1 R1. Initialize. Set stack empty.

02 ENT1 1-N 1 [+ 1.

03 ENT2 N 1 r < N.

04 ENTS5 M-1 1 b+ 1.

05 JMP 1F 1 To R2 (omit testing [ = 7).

06 9H INC6 1 S R9. Put on stack. [rl4=1—7]
07 ST2 STACK,6(A) S

08 ST5 STACK,6(B) S (r,b) = stack.
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09 ENN1 0,4 S rll <1 — 3.

10 ENT2 -1,3 S rj.

11 1H ENT3 0,1 A R2. Begin new stage. [rI3=1¢—j]
12 ENT4 0,2 A i1, j T rI3 =i—j]
18 3H INC3 0,4 ol R3. Inspect K; for 1.

14 LDA INPUT,3 C’

15 SRB 0,5 ) c’ units bit of rA + bit b of K;.

16 JAE 4F C’ To R4 if it i1s 0.

17 6H DEC4 1,3 c'"+ X R6. Decrease j. j + j— 1. [rld=j—1]
18 J4N  8F C"+X ToR8ifj<i rI4 = j—i]
19 5BH INC4 0,3 c” R5. Inspect K ;.1 for 0.

20 LDA INPUT+1,4 c”

21 SRB 0,5 c” units bit of A « bit b of Kji1.

22 JAO 6B c” To R6 if it is 1.

28 TH LDA INPUT+1,4 B R7. Exchange R;, R; 1.

24 LDX INPUT,3 B

25 STX INPUT+1,4 B

26 STA INPUT,3 B

27 4H DEC3 -1,4 C'-X R4. Increasei. i + i+ 1. [rI3=1i—j]
28 J3NP 3B C'—-X  ToR3ifi<j. [rI3=i—j]
29 INC3 0,4 A—X rl3 + 1.

30 8H J5Z OF A R8. Test special cases. [rI4unknown]
31 DEC5 1 A—G ToR10if b=m, else b+ b— 1.

32 ENT4 -1,3 A—G 4.

33 DEC4 0,2 A—-G rld < j—r.

24 J4z 1B A-G  ToR2ifj=r

95 DEC4 0,1 A—G—-R tld«j—1

36 J4N 1B A—G—-—R ToR2ifj<l.

37 JANZ 9B A—G—L—R ToR9ifj#L

38 INC1 1 K [+ 1+1.

39 2H Ji1NZ 1B K+S Jump if [ # r.

40 OH ENT1 1,2 S+1 R10. Take off stack..

41 LD2 STACK,6(A) S+1

42 DEC1 0,2 S+1

43 LD5 STACK,6(B) S+1  stack = (r,b).

44 DEC6 1 S+1

45 J6NN 2B S+1 To R2 if stack was nonempty. |

The running time of this radix exchange program depends on

A = number of stages encountered with [ < r;

B = number of exchanges;

C = C' + C” = number of bit inspections;

G = number of times b > m in step RS;

K = number of times b < m, j = [ in step RS; (29)
L = number of times b < m, j <[ in step RS;

R = number of times b < m, j = r in step RS;

S = number of times things are entered onto the stack;

X = number of times j < ¢ in step R6.
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By Kirchhoff’s law, S = A — G — K — L — R; so the total running time comes to
27TA 4+ 8B +8C — 23G — 14K — 17L — 19R — X + 13 units. The bit-inspection
loops can be made somewhat faster, as shown in exercise 34, at the expense of
a more complicated program. It is also possible to increase the speed of radix
exchange by using straight insertion whenever r — [ is sufficiently small, as we
did in Algorithm Q; but we shall not dwell on these refinements.

In order to analyze the running time of radix exchange, two kinds of input
data suggest themselves. We can

i) assume that N = 2™ and that the keys to be sorted are simply the integers
0,1,2,...,2™ —1 in random order; or

ii) assume that m = co (unlimited precision) and that the keys to be sorted
are independent uniformly distributed real numbers in [0..1).

The analysis of case (i) is relatively easy, so it has been left as an exercise
for the reader (see exercise 35). Case (ii) is comparatively difficult, so it has
also been left as an exercise (see exercise 38). The following table shows crude
approximations to the results of these analyses:

Quantity Case (i) Case (ii)
A N aN
B iNlgN INIgN
C NlgN NlgN
G SN 0
K 0 N
L 0 3(a—1)N
R 0 3(a—1)N
S N IN
X iN Cle+DN (30

Here a = 1/In2 ~ 1.4427. Notice that the average number of exchanges, bit
inspections, and stack accesses is essentially the same for both kinds of data,
even though case (ii) takes about 44 percent more stages. Our MIX program
takes approximately 14.4 N In N units of time, on the average, to sort N items
in case (ii), and this could be cut to about 11.5 N In N using the suggestion of
exercise 34; the corresponding figure for Program Q is 11.7 N In NV, which can be
decreased to about 10.6 N In IV using Singleton’s median-of-three suggestion.
Thus radix exchange sorting takes about as long as quicksort, on the average,
when sorting uniformly distributed data; on some machines it is actually a little
quicker than quicksort. Exercise 53 indicates to what extent the process slows
down for a nonuniform distribution. It is important to note that our entire
analysis is predicated on the assumption that keys are distinct; radix exchange
as defined above is not especially efficient when equal keys are present, since it
goes through several time-consuming stages trying to separate sets of identical
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keys before b becomes > m. One plausible way to remedy this defect is suggested
in the answer to exercise 40.

Both radix exchange and quicksort are essentially based on the idea of
partitioning. Records are exchanged until the file is split into two parts: a left-
hand subfile, in which all keys are < K, for some K, and a right-hand subfile
in which all keys are > K. Quicksort chooses K to be an actual key in the
file, while radix exchange essentially chooses an artificial key K based on binary
representations. From a historical standpoint, radix exchange was discovered by
P. Hildebrandt, H. Isbitz, H. Rising, and J. Schwartz [JACM 6 (1959), 156-163],
about a year earlier than quicksort. Other partitioning schemes are also possible;
for example, John McCarthy has suggested setting K ~ %(u + v), if all keys are
known to lie between v and v. Yihsiao Wang has suggested that the mean of
three key values such as (28) be used as the threshold for partitioning; he has
proved that the number of comparisons required to sort uniformly distributed
random data will then be asymptotic to 1.082 N 1g N.

Still another partitioning strategy has been proposed by M. H. van Emden
[CACM 13 (1970), 563-567]: Instead of choosing K in advance, we “learn”
what a good K might be, by keeping track of K’ = max(Kj,...,K;) and K" =
min(Kj,..., K,) as partitioning proceeds. We may increase 7 until encountering
a key greater than K', then decrease j until encountering a key less than K", then
exchange and/or adjust K’ and K’. Empirical tests on this “interval-exchange
sort” method indicate that it is slightly slower than quicksort; its running time
appears to be so difficult to analyze that an adequate theoretical explanation
will never be found, especially since the subfiles after partitioning are no longer
in random order.

A generalization of radix exchange to radices higher than 2 is discussed in
Section 5.2.5.

*Asymptotic methods. The analysis of exchange sorting algorithms leads to
some particularly instructive mathematical problems that enable us to learn
more about how to find the asymptotic behavior of functions. For example, we
came across the function

1 n—s
anﬁ Z str (31)

T 0<r<s<n

in (9), during our analysis of the bubble sort; what is its asymptotic value?

We can proceed as in our study of the number of involutions, Eq. 5.1.4—(41);
the reader will find it helpful to review the discussion at the end of Section 5.1.4
before reading further.

Inspection of (31) shows that the contribution for s = n is larger than that
for s = n — 1, etc.; this suggests replacing s by n — s. In fact, we soon discover
that it is most convenient to use the substitutionst=n—-s+ 1, m=n+1, so
that (31) becomes

—r% m_lz_r;lz—! Z (m —t)! Z rt=t (32)
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The inner sum has a well-known asymptotic series obtained from Euler’s sum-
mation formula, namely

Nt 1 B _
) R L 5t1)+7‘2~(—1)(Nt2—5t2)+

:%Xk:( ) (NI —6,) + O(NTF) (33)

(see exercise 1.2.11.2-4); hence our problem reduces to studying sums of the
form

1
— E (m — t)! (m — t)*t*, k> —1. (34)
T 1<t<m

As in Section 5.1.4 we can show that the value of this summand is negligi-
ble, O(exp(—n?)), whenever ¢ is greater than m!/2t€; hence we may put t =
O(m1'/?*¢) and replace the factorials by Stirling’s approx1mat1on.

(m —t)! (m —t)*

m!

/1 t t (t2 N t3 N t N t° >+O(m—2+66)
= — — X — - .
m P 12m? 2m  3m?  4m3  5m?

We are therefore interested in the asymptotic value of

St k2 -l (35)

1<t<m

The sum could also be extended to the full range 1 <t < co without changing
its asymptotic value, since the values for ¢ > mY/2%¢ are negligible.
Let gr(z) = z*e==" and fr(z) = gi(z/v2m). When k > 0, Euler's

summation formula tells us that

> felt) / fe(z d$+z IV (m) - £I7V(0)) + Ry,

0<t<m

(-1

R, = ——/Om S((2)) 7P () do

p!

:<¢_é_7n_.>o< [ 162wl ay) = om-er, (36)

hence we can get an asymptotic series for ry(m) whenever & > 0 by using
essentially the same ideas we have used before. But when k£ = —1 the method
breaks down, since f_1(0) is undefined; we can’t merely sum from 1 to m either,
because the remainders don’t give smaller and smaller powers of m when the
lower limit is 1. (This is the crux of the matter, and the reader should pause to
appreciate the problem before proceeding further.)



130 SORTING 5.2.2

To resolve the dilemma we can define g_,(z) = (¢ — 1)/z and f_; =
g-1(z/v2m); then f_1(0) = 0, and r_;(m) can be obtained from Y ., .. f-1(t)
in a simple way. Equation (36) is now valid for &k = —1, and the remaining
integral is well known,

2
2 /m /m e~z /2m /m/2 e ¥ —1
— q(x)dx = 2 —_——dx = d
o | f-1(z) S - A ” Y

1 - m/2 _—
e ¥ -1 e Y m
= dy+/ —dy — In —
/0 Yy 1 Yy 2

= —y—Ilnm+1n2+ O(e™™/?),

by exercise 43.
Now we have enough facts and formulas to grind out the answer,

Wo=3imnm+l(v+n2)m—3vV2rm+ 2+ 00"V, m=n+1, (37)

as shown in exercise 44. This completes our analysis of the bubble sort.
For the analysis of radix exchange sorting, we need to know the asymptotic
value of the finite sum

U= 3 () 0 gy (58)

k>2

asn — o0o. This question turns out to be harder than any of the other asymptotic
problems we have met so far; the elementary methods of power series expansions,
Euler’s summation formula, etc., turn out to be inadequate. The following
derivation has been suggested by N. G. de Bruijn.

To get rid of the cancellation effects of the large factors (})(—1)* in (38),
we start by rewriting the sum as an infinite series

=S () Y (i) =X -2 -2 ). ()

k>2 521 5>1

<(1—%)n—1+:c>.

If we set z =n /27, the summand is

29(1—279)" —29 4 n =

813

When z < n¢, we have

(1 _Z )n = exp <n In (1 _Z )) =exp(—z +2° O(n™")), (40)

n n

and this suggests approximating (39) by

T,=Y (2™ — 29 4n). (41)

j21
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To justify this approximation, we have Uy, = X, + Y,, where

X, = Z (2y(1 — =iy QJe—n/W) [the terms for z > n¢
]>1
29 <ple
= Z O(n e™"/?) [since 0 < 1277 < e™277]
7>1
2j<n1—e

= O(nlogne™) [since there are O(logn) terms;
and

Yo = Z 2'(1-27)" - 2j€_n/2j) [the terms for z < nf]
i1
Qjan-—e

i n
= Y (e 5o0) by (40)]
izl
2] an——e
Our discussion below will demonstrate that the latter sum is O(1); consequently
U, — T, = O(1). (See exercise 47.)

So far we haven’t applied any techniques that are really different from those
we have used before. But the study of T}, requires a new idea, based on simple
principles of complex variable theory: If = is any positive number, we have

1 1/2+1i0c0 1 o
et = — [(z)z™*dz =

o INE it —(1/241t) dt.
211 J1/2—ico 2m (3 +it)e (42)

— O

To prove this identity, consider the path of integration shown in Fig. 20(a), where
N, N’, and M are large. The value of the integral along this contour is the sum
of the residues inside, namely

Z = k)zl_1>mk(z+k' Z zF

0<k<M 0<k<M

k

The integral on the top line is O(f_l/oz IT(t +iN)|z~tdt), and we have the well-
known bound

T(t+iN) = O(jt +iN|'""2e ™N/2)  as N — oo.

[For properties of the gamma function see, for example, Erdélyi, Magnus, Ober-
hettinger, and Tricomi, Higher Transcendental Functions 1 (New York: McGraw-
Hill, 1953), Chapter 1.] Therefore the top line integral is quite negligible,

O(e=mN/2 f_l/OZ(N/a:e)t dt). The bottom line integral has a similar innocuous
behavior. For the integral along the left line we use the fact that

I(+it—M)=C"(E+it)/(—M+ 5 +it) ... (-1+§ +it)
=T(3+4t)0(1/(M - 1)});
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LpiN-M 14+iN ~-24iN < M+iN

1_iN'-M 3 1—iN’ -3 N M—iN’
(a) (b)

Fig. 20. Contours of integration for gamma-function identities.

hence the left-hand integral is O (z~1/2/(M—1)! o *_|T(% +it)| dt. Therefore
as M, N, N' — oo, only the right-hand 1ntegral survwes and this proves (42).
In fact, (42) remains valid if we replace % by any positive number.

The same argument can be used to derive many other useful relations
involving the gamma function. We can replace z~* by other functions of z;
or we can replace the constant -%— by other quantities. For example,

1 —~3/2+i00
— [(z)z7dz=¢""-1+uz, (43)
2wt J _3/2—ic0

and this is the critical quantity in our formula (41) for Tb:
T,=n Z — ['(2)(n/27) 7% dz. (44)
iz

The sum may be placed inside the integrals, since its convergence is absolutely
well-behaved; we have

Z(n/? —nwz (1/2¥) =n"/(2¥ — 1), when R(w) > 0,

21 jz21

because |2¥| = 2%(¥) > 1. Therefore

o —3/2+i00 F(z) n-1-2 4
“5i [op TS )
and it remains to evaluate the latter integral. ‘
This time we integrate along a path that extends far to the right, as in
Fig. 20(b). The top line integral is O(n'/? —”N/Qf 32 M +iN|* dt),if 22N £1,
and the bottom line integral is equally neghglble when N and N’ are much
larger than M. The right-hand line integral is O(n™'=M [% |D(M + it)] dt).
Fixing M and letting N, N' — oo shows that —T,/n is O(n™!~ M) plus the sum
of the residues in the region —3/2 < R(z) < M. The factor I'(z) has simple poles
at 2 = —1 and 2z = 0, while n~'% has no poles, and 1/(2717% — 1) has simple
poles when z = —1 4 27ik/In 2.
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The double pole at z = —1 is the hardest to handle. We can use the well-
known relation

I(z+ 1) = exp(—yz + ((2)2%/2 — C(3)2%/3+¢(4)2Y4 —---),

where ((s) =17°+27°4+37° ... = éf), to deduce the following expansions
when w = z + 1 is small:
I'(w+1) -1
== — -1+ 0
() = progy =~ + = 1)+ Ofw),

n~17% =1 -wlnn + O(w?),

/217" -1)=—w /2 -1+ 0w).

The residue at z = —1 is the coefficient of w™! in the product of these three

formulas, namely % — (Inn+ v —1)/In2. Adding the other residues gives the
formula

T, Inn+~v-1 1 2 M
- T e 2+(5(n)+n+0(n ), (46)
for arbitrarily large M, where d(n) is a rather strange function,
5(n) = 2 Z R(D(—1 — 2mik/In2) exp(2wiklgn)). (47)
In2 k>1

Notice that §(n) = §(2n). The average value of §(n) is zero, since the average
value of each term is zero. (We may assume that (lgn) mod 1 is uniformly
distributed, in view of the results about floating point numbers in Section 4.2.4.)
Furthermore, since |I'(—1 + it)| = |x/(t(1 + t*)sinh 7t)|'/2, it is not difficult to
show that

|6(n)| < 0.000000173; (48)

thus we may safely ignore (5(71) for practical purposes. For theoretical purposes,
however, we can’t obtain a valid asymptotic expansion of U, without it; that is
why U, is a comparatively difficult function to analyze.
From the definition of T, in (41) we can see immediately that
Ton, Thn 1 e
— = — 41— — 4 —.
2n n + n + n (49)
Therefore the error term O(n~M) in (46) is essential; it cannot be replaced by
zero. However, exercise 54 presents another approach to the analysis, which
avoids such error terms by deriving a rather peculiar convergent series.
In summary, we have deduced the behavior of the difficult sum (38):
U =nlgn+n (12— L ism) + o) (50)
= n+n| ——— = n . 0
n="n% In2 2 o
The gamma-function method we have used to obtain this result is a special case
of the general technique of Mellin transforms, which are extremely useful in the
study of radix-oriented recurrence relations. Other examples of this approach
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can be found in exercises 51-53 and in Section 6.3. An excellent introduction
to Mellin transforms and their applications to algorithmic analysis has been
presented by P. Flajolet, X. Gourdon, and P. Dumas in Theoretical Computer
Science 144 (1995), 3-58.

EXERCISES '

1. [M20] Leta;...an be a permutation of {1,...,n}, and let i and j be indices such
that 4 < j and a; > a;. Let a}...a;, be the permutation obtained from a,...a, by
interchanging a; and a;. Can a]...a; have more inversions than ai...an?

2. [M25] (a) What is the minimum number of exchanges that will sort the permuta-~
tion 3769814527 (b) In general, given any permutation 7 = a1...a, of {1,...,n},
let xch(7) be the minimum number of exchanges that will sort 7 into increasing order.
Express xch(n) in terms of “simpler” characteristics of w. (See exercise 5.1.4-41 for
another way to measure the disorder of a permutation.)

3. [10] Is the bubble sort Algorithm B a stable sorting algorithm?

4. [M23] If t = 1 in step B4, we could actually terminate Algorithm B immediately,
because the subsequent step B2 will do nothing useful. What is the probability that
t =1 will occur in step B4 when sorting a random permutation?

5. [M25] Let by b2 ...b, be the inversion table for the permutation a1 a2 ... an. Show
that the value of BOUND after r passes of the bubble sort is max{b; 4+ | b; > r} —r, for
0 <r <max(by,...,bn).

6. [M22] Let ai...an, be a permutation of {1,...,n} and let a...a; be its in-
verse. Show that the number of passes to bubble-sort ai...a, is 1 + max(a) — 1,

/ /
az —2,...,a, —n).

7. [M28] Calculate the standard deviation of the number of passes for the bubble
sort, and express it in terms of n and the function P(n). [See Egs. (6) and (7).]
8. [M24] Derive Eq. (8).

9. [M48] Analyze the number of passes and the number of comparisons in the cock-
tail-shaker sorting algorithm. Note: See exercise 5.4.8-9 for partial information.
10. [M26] Let aiaz...an be a 2-ordered permutation of {1,2,...,n}.

a) What are the coordinates of the endpoints of the a;th step of the corresponding
lattice path? (See Fig. 11 on page 87.)

b) Prove that the comparison/exchange of a1:a2, az:a4, ... corresponds to folding
the path about the diagonal, as in Fig. 18(b).
c) Prove that the comparison/exchange of az:a24d, G4:a4+4, ... corresponds to

folding the path about a line m units below the diagonal, as in Figs. 18(c), (d)
and (e), when d =2m — 1.

b

11. [M25] What permutation of {1,2,...,16} maximizes the number of exchanges
done by Batcher’s algorithm?

12. [24] Write a MIX program for Algorithm M, assuming that MIX is a binary com-
puter with the operations AND, SRB. How much time does your program take to sort
the sixteen records in Table 17

13. [10] Is Batcher’s method a stable sorting algorithm?
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14. [M21] Let ¢(N) be the number of key comparisons used to sort N elements by
Batcher’s method; this is the number of times step M4 is performed.
a) Show that ¢(2) = 2¢(2"™") + (t — 127 41, fort > 1.
b) Find a simple expression for ¢(2") as a function of ¢t. Hint: Consider the sequence
z = c(2")/2".

15. [M38] The object of this exercise is to analyze the function ¢(IV) of exercise 14,

and to find a formula for ¢(N) when N = 2t 422 ... +2°" e; > ez > --- > e, > 0.

a) Let a(N) = ¢(N +1) —c(N). Prove that a(2n) = a(n) + [lg (2n)], and a(2n+1) =
a(n) + 1; hence

a(N) = (61;1> —r(er— 1)+ (e1+ea+---+e).

b) Let z(n) = a(n) — a(|n/2]), so that a(n) = z(n) + z(|n/2]) + z([n/4]) +---. Let
y(n) = z(1)+z(2)+- - -+z(n); and let z2(2n) = y(2n) —a(n), z(2n+1) = y(2n+1).
Prove that ¢(N 4+ 1) = z(N) + 22(|N/2]) + 42([N/4]) +---.

¢) Prove that y(N) = N + ([N/2] +1)(ex — 1) —2°* + 2.

d) Now put everything together and find a formula for ¢(V) in terms of the exponents
e;, holding r fixed.

16. [HM42] Find the asymptotic value of the average number of exchanges occurring
when Batcher’s method is applied to a random permutation of N distinct elements,
assuming that N is a power of two.

17. [20] Where in Algorithm Q do we use the fact that Ko and Kn41 have the values
postulated in (13)?

18. [20] Explain how the computation proceeds in Algorithm Q when all of the input
keys are equal. What would happen if the “<” signs in steps Q3 and Q4 were changed
to “<” instead?

19. [15] Would Algorithm Q still work properly if a queue (first-in-first-out) were
used instead of a stack (last-in-first-out)?

20. [M20] What is the largest possible number of elements that will ever be on the
stack at once in Algorithm Q, as a function of M and N7

21. [20] Explain why the first partitioning phase of Algorithm Q takes the number of
comparisons and exchanges specified in (17), when the keys are distinct.

22. [M25] Let pin be the probability that the quantity A in (16) will equal k, when
Algorithm Q is applied to a random permutation of {1,2,...,N}, and let An(z) =
> & PkN 2* be the corresponding generating function. Prove that An(z) = 1for N < M,
and An(2) = 2(3 <, <y As—1(2)An—s(2))/N for N > M. Find similar recurrence
relations defining the other probability distributions Bn(z), Cn(z2), Dn(z), En(2),
Sn(z).

23. [M23] Let AN, Bn, Dn, En, Sv be the average values of the corresponding
quantities in (16), when sorting a random permutation of {1,2,..., N}. Find recur-
rence relations for these quantities, analogous to (18); and solve these recurrences to
obtain (25).

24. [M21] Algorithm Q obviously does a few more comparisons than it needs to, since
we can have i = j in step Q3 and even ¢ > j in step Q4. How many comparisons Cn
would be done on the average if we avoided all comparisons when i > j7?
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25. [M20] When the input keys are the numbers 12 ... N in order, what are the exact
values of the quantities A, B, C, D, E, and S in the timing of Program Q7 (Assume
that N > M)

26. [M24] Construct an input file that makes Program Q go even more slowly than
it does in exercise 25. (Try to find a really bad case.)

27. [M28] (R.Sedgewick.) Consider the best case of Algorithm Q: Find a permutation
of {1,2,...,23} that takes the least time to be sorted when N = 23 and M = 3.

28. [M26] Find the recurrence relation analogous to (20) that is satisfied by the
average number of comparisons in Singleton’s modification of Algorithm Q (choosing
s as the median of {K1, K|(n+1)/2), K~} instead of s = K1).

29. [HM40] Continuing exercise 28, find the asymptotic value of the number of com-
parisons in Singleton’s “median of three” method.

30. [25] (P. Shackleton.) When multiword keys are being sorted, many sorting meth-
ods become progressively slower as the file gets closer to its final order, since equal
and nearly-equal keys require an inspection of several words to determine the proper
lexicographic order. (See exercise 5-5.) Files that arise in practice often involve such
keys, so this phenomenon can have a significant impact on the sorting time.

Explain how Algorithm Q can be extended to avoid this difficulty; within a subfile
in which the leading k& words are known to have constant values for all keys, only the
(k + 1)st words of the keys should be inspected.

31. [20] (C. A. R. Hoare.) Suppose that, instead of sorting an entire file, we only
want to determine the mth smallest of a given set of n elements. Show that quicksort
can be adapted to this purpose, avoiding many of the computations required to do a
complete sort.

32. [M40] Find a simple closed form expression for Cprm, the average number of key
comparisons required to select the mth smallest of n elements by the “quickfind”
method of exercise 31. (For simplicity, let M = 1; that is, don’t assume the use of
a special technique for short subfiles.) What is the asymptotic behavior of Cim-1)m,
the average number of comparisons needed to find the median of 2m — 1 elements by
Hoare’s method?

33. [15] Design an algorithm that rearranges all the numbers in a given table so
that all negative values precede all nonnegative ones. (The items need not be sorted
completely, just separated between negative and nonnegative.) Your algorithm should
use the minimum possible number of exchanges.

34. [20] How can the bit-inspection loops of radix exchange (in steps R3 through R6)
be speeded up?

35. [M23] Analyze the values of the frequencies 4, B, C, G, K, L, R, S, and X that
arise in radix exchange sorting using “case (i) input.”

36. [M27] Given a sequence of numbers (a,) = ao,a1,as,..., define its binomial
transform (Gn) = ao, a1, asz, ... by the rule

dn = Z (Z) (—l)kak.
k
a) Prove that (&,) = (an).
b) Find the binomial transforms of the sequences (1); (n); ((7)), for fixed m; (a™),
for fixed a; ((™)a™), for fixed a and m.
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c) Suppose that a sequence (z,) satisfies the relation

xn:an+21_"2(2)xk, for n > 2; To =21 =ag =a1 = 0.
k>2

Prove that the solution to this recurrence is

o= 3 (1) 1 ey =t X (1) 0 g

E>2 k>2

37. [M28] Determine all sequences (an) such that (Gn) = (an), in the sense of exer-
cise 36.

» 38. [M30] Find An, Bn, Cn, Gn, KN, Ln, RN, and XN, the average values of the
quantities in (29), when radix exchange is applied to “case (ii) input.” Express your
answers in terms of IV and the quantities

I

k>2 k>2
[Hint: See exercise 36.]

39. [20] The results shown in (30) indicate that radix exchange sorting involves about
1.44N partitioning stages when it is applied to random input. Prove that quicksort
will never require more than N stages; and explain why radix exchange often does.

40. [21] Explain how to modify Algorithm R so that it works with reasonable effi-
ciency when sorting files containing numerous equal keys.

» 41. [30] Devise a good way to exchange records R; ... R, so that they are partitioned
into three blocks, with (i) Kx < K for 1 < k < ¢; (ii) Kx = K for i« < k < j; (iii)
Ky > K for j < k <r. Schematically, the final arrangement should be

[ <K I =K { > K |
! i j r

42. [HM32] For any real number ¢ > 0, prove that the probability is less than e™°
that Algorithm Q will make more than (¢ + 1)(N + 1)Hn comparisons when sorting
random data. (This upper bound is especially interesting when c is, say, N°.)

43. [HM21] Prove that fol y e ¥ —1)dy + [Cyle"Vdy = —v. [Hint: Consider
limg o4 y* 1)

44. [HM24] Derive (37) as suggested in the text.

45. [HM20] Explain why (43) is true, when = > 0.

46. [HM20] What is the value of (1/2mé) [*7° T(2)n°"*dz/(2°7* — 1), given that
s is a positive integer and 0 < a < s7

47. [HM21] Prove that ZjZI(n/Qj)e_"/2j is a bounded function of n.

48. [HM2/] Find the asymptotic value of the quantity’ V. defined in exercise 38, using
a method analogous to the text’s study of U,, obtaining terms up to O(1).

49. [HM24] Extend the asymptotic formula (47) for U, to O(n ™).
50. [HM24] Find the asymptotic value of the function

U =32 (1) (" =y

E>2
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when m is any fixed number greater than 1. (When m is an integer greater than 2,
this quantity arises in the study of generalizations of radix exchange, as well as the
trie memory search algorithms of Section 6.3.)

51. [HM28] Show that the gamma-function approach to a;symptotic problems can be
used instead of Euler’s summation formula to derive the asymptotic expansion of the
quantity rx(m) in (35). (This gives us a uniform method for studying ri(m) for all k,
without relying on tricks such as the text’s introduction of g_1(z) = (e~=* —1)/z.)

52. [HMS85] (N. G. de Bruijn.) What is the asymptotic behavior of the sum

Sn=2 (nzj:t) ),

t>1

where d(t) is the number of divisors of t? (Thus, d(1) = 1, d(2) = d(3) = 2, d(4) = 3,
d(5) = 2, etc. This question arises in connection with the analysis of a tree traversal
algorithm, exercise 2.3.1-11.) Find the value of S,/(*") to terms of O(n™").

53. [HM42] Analyze the average number of bit inspections and exchanges done by

radix exchange when the input data consists of infinite-precision binary numbers in

[0..1), each of whose bits is independently equal to 1 with probability p. (Only the
1

case p = 3 is discussed in the text; the methods we have used can be generalized to

arbitrary p.) Consider in particular the case p = 1/¢ = .61803..
54. [HM24] (S. O. Rice.) Show that U, can be written

n dz 1
Un =(-1) E;r—z?i 2(z—1)...(z—mn) 22-1 —

where C is a skinny closed curve encircling the points 2,3,...,n. Changing C to an
arbitrarily large circle centered at the origin derive the convergent series

(Hn._l — l)n .
e 424 R(B 1, —
In2 + + ln2 ngl B(n+1, —1+ibm)),

U, =

where b = 27/In2, and B(n+1, —14+ibm) = I'(n + 1)T(—1 + ibm)/T(n + ibm) =
n!/ [lezo(k — 1+ ibm).

55. [22] Show how to modify Program Q so that the partitioning element is the
median of the three keys (28).

56. [M43] Analyze the average behavior of the quantities that occur in the running
time of Algorithm Q when the program has been modified to take the median of three
elements as in exercise 55. (See exercise 29.)

5.2.3. Sorting by Selection

Another important family of sorting techniques is based on the idea of repeated
selection. The simplest selection method is perhaps the following:

i) Find the smallest key; transfer the corresponding record to the output area;
then replace the key by the value co (which is assumed to be higher than
any actual key).

ii) Repeat step (i). This time the second smallest key will be selected, since
the smallest key has been replaced by oo.

iii) Continue repeating step (i) until N records have been selected.
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A selection method requires all of the input items to be present before sorting
may proceed, and it generates the final outputs one by one in sequence. This is
essentially the opposite of insertion, where the inputs are received sequentially
but we do not know any of the final outputs until sorting is completed.

Step (i) involves N —1 comparisons each time a new record is selected, and it
also requires a separate output area in memory. But we can obviously do better:
We can move the selected record into its proper final position, by exchanging it
with the record currently occupying that position. Then we need not consider
that position again in future selections, and we need not deal with infinite keys.
This idea yields our first selection sorting algorithm.

Algorithm S (Straight selection sort). Records Ry,..., Ry are rearranged in
place; after sorting is complete, their keys will be in order, K; < --- < Kp.
Sorting is based on the method indicated above, except that it proves to be
more convenient to select the largest element first, then the second largest, etc.

S1. [Loop on j.] Perform steps S2 and S3 for j = N, N —1,...,2.

S2. [Find max(Ky,...,K;).] Search through keys K;, K;_;,...,K; to find a
maximal one; let it be K, where i is as large as possible.

S3. [Exchange with R;.] Interchange records R; <> R;. (Now records R,,..., Ry
are in their final position.) |

o N

S1. Loop on j — S2. Find max(Ky,..., Kj) S3. Exchange with R;

i=1

Fig. 21. Straight selection sorting.

Table 1 shows this algorithm in action on our sixteen example keys. Elements
that are candidates for the maximum during the right-to-left search in step S2
are shown in boldface type.

Table 1
STRAIGHT SELECTION SORTING

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703 |
503 087 512 061 703 170 897 275 653 426 154 509 612 677 765|908
503 087 512 061 703 170 765 275 653 426 154 509 612 677|897 908
503 087 512 061 703 170 677 275 653 426 154 509 612|765 897 908
503 087 512 061 612 170 677 275 653 426 154 509|703 765 897 908
503 087 512 061 612 170 509 275 653 426 154|677 703 765 897 908

061|087 154 170 275 426 503 509 512 612 653 677 703 765 897 908
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The corresponding MIX program is quite simple:

Program S (Straight selection sort). As in previous programs of this chapter,
the records in locations INPUT+1 through INPUT+N are sorted in place, on a full-
word key. rA = current maximum, rIl = j -1, 1I2 = & (the current search
position), rI3 = i. Assume.that N > 2.

01 START ENT1 N-1 1 S1. Loop on 7. j + N.
02 2H ENT2 0,1 N -1 S2 Findmax(K;,....K;). k< j—1
03 ENT3 1,1 N-—-1 i+j.

04 LDA INPUT,3 N—-1 rA+ K,

05 8H CMPA INPUT,2 A

06 JGE *+3 A Jump if K; > K.

07 ENT3 0,2 B Otherwise set i < k,
08 LDA INPUT,3 B rA « K;.

09 DEC2 1 A k+—k—1.

10 J2P 8B A Repeat if &£ > 0.

11 LDX INPUT+1,1 N —1 S3. Exchange with R;.
12 STX INPUT,3 N -1 R;+ Rj.

18 STA INPUT+1,1 N -1 Rj; <+ rA.

14 DEC1 1 N-1

15 J1P 2B N—-1 N>j>2 |

The running time of this program depends on the number of items, N; the
number of comparisons, 4; and the number of changes to right-to-left maxima, B.
It is easy to see that
A= N)—EN(N—1) (

- ( 2) " 2 ’ )
regardless of the values of the input keys; hence only B is variable. In spite of the
simplicity of straight selection, this quantity B is not easy to analyze precisely.
Exercises 3 through 6 show that

B = (min 0, ave (N + 1)Hy — 2N, max | N?/4]); (2)

in this case the maximum value turns out to be particularly interesting. The
standard deviation of B is of order N3/%; see exercise 7.

Thus the average running time of Program S is 2.5N? + 3(N + 1)Hy +
3.5N — 11 units, just slightly slower than straight insertion (Program 5.2.1S).
It is interesting to compare Algorithm S to the bubble sort (Algorithm 5.2.2B),
since bubble sorting may be regarded as a selection algorithm that sometimes
selects more than one element at a time. For this reason bubble sorting usually
does fewer comparisons than straight selection and it may seem to be preferable;
but in fact Program 5.2.2B is more than twice as slow as Program S! Bubble
sorting is handicapped by the fact that it does so many exchanges, while straight
selection involves very little data movement.

Refinements of straight selection. Is there any way to improve on the
selection method used in Algorithm S? For example, take the search for a
maximum in step S2; is there a substantially faster way to find a maximum?
The answer to the latter question is no!
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Lemma M. Every algorithm for finding the maximum of n elements, based on
comparing pairs of elements, must make at least n — 1 comparisons.

Proof. If we have made fewer than n — 1 comparisons, there will be at least two
elements that have never been found to be less than any others. Therefore we do
not know which of these two elements is larger, and we cannot have determined
the maximum. |

Thus, any selection process that finds the largest element must perform at
least n — 1 comparisons; and we might suspect that all sorting methods based on
n repeated selections are doomed to require Q(n?) operations. But fortunately
Lemma M applies only to the first selection step; subsequent selections can make
use of previously gained information. For example, exercises 8 and 9 show that
a comparatively simple change to Algorithm S will cut the average number of
comparisons in half.

Consider the 16 numbers in Table 1; one way to save time on repeated
selections is to regard them as four groups of four. We can start by determining
the largest in each group, namely the respective keys

512, 908, 653, 765;

the largest of these four elements, 908, is then the largest of the entire file. To
get the second largest we need only look at 512, 653, 765, and the other three
elements of the group containing 908; the largest of {170, 897, 275} is 897, and
the largest of

512, 897, 653, 765

is 897. Similarly, to get the third largest element we determine the largest of
{170, 175} and then the largest of

512, 275, 653, 765.

Each selection after the first takes at most 5 additional comparisons. In general,
if N is a perfect square, we can divide the file into v/N groups of /N elements
each; each selection after the first takes at most v/N — 2 comparisons within
the group of the previously selected item, plus v/N — 1 comparisons among the
“group leaders.” This idea is called quadratic selection; its total execution time
is O(N+/N), which is substantially better than order NZ.

Quadratic selection was first published by E. H. Friend [JACM 3 (1956),
152-154], who pointed out that the same idea can be generalized to cubic,
quartic, and higher degrees of selection. For example, cubic selection divides the
file into v N large groups, each containing v/N small groups, each containing VN
records; the execution time is proportional to N VN. If we carry this idea to its
ultimate conclusion we arrive at what Friend called “nth degree selecting,” based
on a binary tree structure. This method has an execution time proportional to
N log N; we shall call it tree selection.

Tree selection. The principles of tree selection sorting are easy to understand
in terms of matches in a typical “knockout tournament.” Consider, for example,
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the results of the ping-pong contest shown in Fig. 22; at the bottom level, Kim
beats Sandy and Chris beats Lou, then in the next round Chris beats Kim, etc.

Chris

Chris Pat

Kim Chris Pat Robin

Kim | Sandy Chris | Lou Pat | Ray Dale | Robin

Fig. 22. A ping-pong tournament.

Figure 22 shows that Chris is the champion of the eight players, and 8—1 =7
matches/comparisons were required to determine this fact. Pat is not necessarily
the second-best player; any of the people defeated by Chris, including the first-
round loser Lou, might possibly be second best. We can determine the second-
best player by having Lou play Kim, and the winner of that match plays Pat;
only two additional matches are required to find the second-best player, because
of the structure we have remembered from the earlier games.

In general, we can “output” the player at the root of the tree, and replay
the tournament as if that player had been sick and unable to play a good game.
Then the original second-best player will rise to the root; and to recalculate the
winners in the upper levels of the tree, only one path must be changed. It follows
that fewer than [lg N| further comparisons are needed to select the second-best
player. The same procedure will find the third-best, etc.; hence the total time for
such a selection sort will be roughly proportional to /Vlog NV, as claimed above.

Figure 23 shows tree selection sorting in action, on our 16 example numbers.
Notice that we need to know where the key at the root came from, in order to
know where to insert the next “—o0”. Therefore each branch node of the tree
should actually contain a pointer or index specifying the position of the relevant
key, instead of the key itself. It follows that we need memory space for NV input
records, N — 1 pointers, and N output records or pointers to those records.
(If the output goes to tape or disk, of course, we don’t need to retain the output
records in high-speed memory.)

The reader should pause at this point and work exercise 10, because a good
understanding of the basic principles of tree selection will make it easier to
appreciate the remarkable improvements we are about to discuss.

One way to modify tree selection, essentially introduced by K. E. Iverson
[A Programming Language (Wiley, 1962), 223-227], does away with the need for
pointers by “looking ahead” in the following way: When the winner of a match
in the bottom level of the tree is moved up, the winning value can be replaced
immediately by —co at the bottom level; and whenever a winner moves up from
one branch to another, we can replace the corresponding value by the one that
should eventually move up into the vacated place (namely the larger of the two
keys below). Repeating this operation as often as possible converts Fig. 23(a)
into Fig. 24.
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908’//////////// \\\\\\\\\\\\\765
512 908 653 765
/ N\ / N\ / N\ / N\
503 512 908 897 653 509 677 765

/NN N N N SN SN

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

(a) Initial configuration.

897
897’//////////// \\\\\\\\\\\\\765
512 897 653 765
/ N\ / N\ / N\ / N\
503 512 170 897 653 509 677 765

N /N /N NN N N

503 087 512 061 —oo 170 897 275 653 426 154 509 612 677 765 703

(b) Key 908 is replaced by —oo, and the second highest element moves up to the root.

512’///////////’ \\\\\\\\\\\\‘509
512///// \\\\\275 509///// \\\\\—oo
/N /N VRN VRN

503 512 170 275 426 509

AN AN AN A Y A N AN AN

503 087 512 061 —oo 170 —o0 275 —oo 426 154 509 —oo —o0 —00 —00

(c) Configuration after 908, 897, 765, 703, 677, 653, and 612 have been output.

Fig. 23. An example of tree selection sorting.

897'////////////// \\\\\\\\\\\\\\‘765
512///// \\\\\275 653///// \\\\\703
50§// \\561 176// \ 426// \\309 67?// \\100

A AN A A N AN AN AR

—00 087 —00 —00 —00 —00 —00 —00 —00 —0o0 154 —o0 612 —o0 —o0 —00

Fig. 24. The Peter Principle applied to sorting. Everyone rises to their level of
incompetence in the hierarchy.
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Once the tree has been set up in this way we can proceed to sort by a “top-
down” method, instead of the “bottom up” method of Fig. 23: We output the
root, then move up its largest descendant, then move up the latter’s largest
descendant, and so forth. The process begins to look less like a ping-pong
tournament and more like a corporate system of promotions.

The reader should be able to see that this top-down method has the ad-
vantage that redundant comparisons of —co with —oco can be avoided. (The
bottom-up approach finds —co omnipresent in the latter stages of sorting, but
the top-down approach can stop modifying the tree during each stage as soon
as a —oo has been stored.)

Figures 23 and 24 are complete binary trees with 16 terminal nodes (see
Section 2.3.4.5), and it is convenient to represent such trees in consecutive
locations as shown in Fig. 25. Note that the parent of node number & is node
|k/2], and its children are nodes 2k and 2k + 1. This leads to another advantage
of the top-down approach, since it is often considerably simpler to go top-down
from node k to nodes 2k and 2k + 1 than bottom-up from node k£ to nodes £ &1
and |k/2|. (Here k@1 stands for k+1 or k — 1, according as k is even or odd.)

H O O 0 O O O -

Fig. 25. Sequential storage allocation for a complete binary tree.

Our examples of tree selection so far have more or less assumed that NV is
a power of 2; but actually we can work with arbitrary N, since the complete
binary tree with IV terminal nodes is readily constructed for any N.

Now we come to the crucial question: Can’t we do the top-down method
without using —oo at all? Wouldn’t it be nice if the important information of
Fig. 24 were all in locations 1 through 16 of the complete binary tree, without the
useless “holes” containing —co? Somne reflection shows that it is indeed possible
to achieve this goal, not only eliminating —oo but also avoiding the need for an
auxiliary output area. This line of thinking leads us to an important sorting
algorithm that was christened “heapsort” by its discoverer J. W. J. Williams
[CACM 7 (1964), 347-348].

Heapsort. Let us say that a file of keys K, K»,..., Kn is a heap if
KLJ/QJ ZKJ fOI‘lSI_j/2J<jSN (3)
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Thus, K, > K., K, > K3, Ko > Ky, etc.; this is exactly the condition that
holds in Fig. 24, and it implies in particular that the largest key appears “on top
of the heap,”

Kl :max(Kl,Kz,...,KN). (4)

If we can somehow transform an arbitrary input file into a heap, we can sort the
elements by using a top-down selection procedure as described above.

An efficient approach to heap creation has been suggested by R. W. Floyd
[CACM 7 (1964), 701]. Let us assume that we have been able to arrange the file
so that

Kijpy 2 K forl<]j/2] <j< N, (5)

where [ is some number > 1. (In the original file this condition holds vacuously for
I = | N/2], since no subscript j satisfies the condition | N/2] < |j/2] < j < N
It is not difficult to see how to transform the file so that the inequalities in (5)
are extended to the case [ = |j/2], working entirely in the subtree whose root
is node [. Then we can decrease [ by 1, until condition (3) is finally achieved.
These ideas of Williams and Floyd lead to the following elegant algorithm, which
merits careful study:

Algorithm H (Heapsort). Records R,..., Ry are rearranged in place; after
sorting is complete, their keys will be in order, K; < --- < Kp. First we
rearrange the file so that it forms a heap, then we repeatedly remove the top of
the heap and transfer it to its proper final position. Assume that N > 2.

H1. [Initialize.] Set [ + |N/2| +1, r < N.

H2. [Decrease lorr] If I > 1,set Il 1—1, R« R, K + K;. (If I > 1, we are
in the process of transforming the input file into a heap; on the other hand
if | = 1, the keys K, K5 ... K, presently constitute a heap.) Otherwise set
R+ R, K «< K., R, + Ry, and r < r — 1; if this makes r = 1, set
R, + R and terminate the algorithm.

H3. [Prepare for siftup.] Set j < . (At this point we have
K|k/2) 2 Kg forl < |k/2| < k < (6)

and record Ry, is in its final position for r < k¥ < N. Steps H3—H8 are called
the siftup algorithm; their effect is equivalent to setting R; +— R and then
rearranging Ry, ..., R, so that condition (6) holds also for [ = |k/2].)

H4. [Advance downward.] Set ¢ « j and j < 2j. (In the following steps we
have i = |j/2].) If j < r, go right on to step H5; if j = r, go to step H6;
and if 5 > r, go to HS.

H5. [Find larger child.] If K; < K11, then set j « j + 1.
H6. [Larger than K?] If K > K, then go to step HS.
H7. [Move it up.] Set R; < R;, and go back to step H4.

HS. [Store R.] Set R; «<— R. (This terminates the siftup algorithm initiated in
step H3.) Return to step H2. |



146

l

SORTING

H1. Initialize

>

H2. Decrease l or r

ll:r:l ‘| HS8. Store R

H4. Advance |J=T
: downward
ji>r j<r
H3. Prepare H5. Find
/ for siftup larger child

No /'H6. Larger

\ than K?

Yes

H7. Move
it up

Fig. 26. Heapsort; dotted lines enclose the siftup algorithm.

Heapsort has sometimes been described as the é algorithm, because of the
motion of [ and r. The upper triangle represents the heap-creation phase, when
r = N and [ decreases to 1; and the lower triangle represents the selection phase,
when [ = 1 and r decreases to 1. Table 2 shows the process of heapsorting our
sixteen example numbers. (Each line in that table shows the state of affairs at
the beginning of step H2, and brackets indicate the position of [ and r.)

Program H (Heapsort). The records in locations INPUT+1 through INPUT+N
are sorted by Algorithm H, with the following register assignments: rIl =1—1,
rl2=r—-1,rI3=i,tl4=4,1I5=r—-j5,1A=K = R, 1 X = R;.

01 START ENT1
02 ENT2
03 1H  DEC1
0/ LDA
05 3H  ENT4
06 ENTS
07 DEC5
08 JMP
09 5H  LDX
10 CMPX
11 JGE
12 INC4
13 DEC5
14 94  LDX
15 6H  CMPA
16 JGE
17 7TH  STX
18 4H  ENT3
19 DECS
20 INC4

N/2

N-1

1
INPUT+1,1
1,1

0,2

0,1

4F
INPUT, 4
INPUT+1,4
6F

1

1

INPUT, 4
INPUT, 4
8F
INPUT, 3
0,4

0,4

0,4

1

1
[V/2]
[V/2]

P

P

P

P
B+A-D
B+A-D
B+A-D

C

C
C+D
B+ A
B+ A

B
B+ P
B+ P
B+ P

H1. Initialize. | + |N/2] + 1.
r +— N.

[+ 1—-1.

R+ R, K+ K;.

H3. Prepare for siftup. j < [.

rlb < r —j.
To H4.
Hb5. Find larger child.

Jump if KJ Z Kj+1.
Otherwise set 7 «+ j + 1.

rX « Rj.

H6. Larger than K7

To H8 if K > K.

H7. Move it up. R; + R;.

H4. Advance downward. i « j.
rl5 - rI5 — 3.

JJ+7
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Table 2

EXAMPLE OF HEAPSORT
K, Ky, K; Ky Ks Ko K7 Ks Kg Kio Ki1n K12 K1z Kiga Kis Kig I 7
503 087 512 061 908 170 897 275 [653 426 154 509 612 677 765 703] 9 16
503 087 512 061 908 170 897 [703 653 426 154 509 612 677 765 275] 8 16
503 087 512 061 908 170 [897 703 653 426 154 509 612 677 765 275] 7 16
503 087 512 061 908 [612 897 703 653 426 154 509 170 677 765 275] 6 16
503 087 512 061 [908 612 897 703 653 426 154 509 170 677 765 275] 5 16
503 087 512 [703 908 612 897 275 653 426 154 509 170 677 765 061] 4 16
503 087 [897 703 908 612 765 275 653 426 154 509 170 677 512 061] 3 16
503 [908 897 703 426 612 765 275 653 087 154 509 170 677 512 061] 2 16
[908 703 897 653 426 612 765 275 503 087 154 509 170 677 512 061] 1 16
[897 703 765 653 426 612 677 275 503 087 154 509 170 061 512] 908 1 15
[765 703 677 653 426 612 512 275 503 087 154 509 170 061] 897 908 1 14
[703 653 677 503 426 612 512 275 061 087 154 509 170] 765 897 908 1 13
[677 653 612 503 426 509 512 275 061 087 154 170] 703 765 897 908 1 12
[653 503 612 275 426 509 512 170 061 087 154] 677 703 765 897 908 1 11
[612 503 512 275 426 509 154 170 061 087] 653 677 703 765 897 908 1 10
[612 503 509 275 426 087 154 170 061] 612 653 677 703 765 897 908 1 9
[509 503 154 275 426 087 061 170] 512 612 653 677 703 765 897 908 1 8
[503 426 154 275 170 087 061] 509 512 612 653 677 703 765 897 908 1 7
[426 275 154 061 170 087] 503 509 512 612 653 677 703 765 897 908 1 6
[275 170 154 061 087] 426 503 509 512 612 653 677 703 765 897 908 1 5
[170 087 154 061] 275 426 503 509 512 612 653 677 703 765 897 908 1 4
[154 087 061] 170 275 426 503 509 512 612 653 677 703 765 897 908 1 3
[087 061] 1564 170 275 426 503 509 512 612 653 677 703 765 897 908 1 2
21 J5P 5B B+P ToH5ifj<r.
22 J5Z 9B P—-—A+D ToH6ifj=r.
28 8H STA INPUT,3 P H8. Store R. R; + R.
24 2H J1P 1B P H2. Decrease [ or r.
25 LDA INPUT+1,2 N-1 Ifl=1,set R+ R,, K + K,.
26 LDX INPUT+1 N -1
27 STX INPUT+1,2 N-1 R, + R;.
28 DEC2 1 N -1 re—r—1.
29 J2P 3B N -1 To H3 if r > 1.
30 STA INPUT+1 1 Ri+ R. 1

Although this program is only about twice as long as Program S, it is much
more efficient when NV is large. Its running time depends on

P = N + |N/2] — 2,the number of siftup passes;

A, the number of siftup passes in which the key K finally lands
in an interior node of the heap;

B, the total number of keys promoted during siftups;

C, the number of times j < 7 + 1 in step H5; and

D, the number of times j = r in step H4.
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These quantities are analyzed below; in practice they show comparatively little
fluctuation about their average values,

A~ 0.349N, B~ NlgN — 187N,

C~1NlgN—094N, Dw~hh. (7)

For example, when N = 1000, four experiments on random input gave, respec-
tively, A = 371, 351, 341, 340; B = 8055, 8072, 8094, 8108; C' = 4056, 4087,
4017, 4083; and D = 12, 14, 8, 13. The total running time,

7TA+ 14B + 4C + 20N — 2D + 15| N/2]| — 28,

is therefore approximately 16 N lg N 4+ 0.01N units on the average.

A glance at Table 2 makes it hard to believe that heapsort is very efficient;
large keys migrate to the left before we stash them at the right! It is indeed a
strange way to sort, when N is small; the sorting time for the 16 keys in Table 2
is 1068y, while the simple method of straight insertion (Program 5.2.1S) takes
only 514u. Straight selection (Program S) takes 853u.

For larger N, Program H is more eflicient. It invites comparison with
shellsort (Program 5.2.1D) and quicksort (Program 5.2.2Q), since all three pro-
grams sort by comparisons of keys and use little or no auxiliary storage. When
N = 1000, the approximate average running times on MIX are

160000u for heapsort,
130000u for shellsort,
80000u for quicksort.

(MIX is a typical computer, but particular machines will of course yield somewhat
different relative values.) As N gets larger, heapsort will be superior to shell-
sort, but its asymptotic running time 16N lg N ~ 23.08 N In N will never beat
quicksort’s 11.67N In N. A modification of heapsort discussed in exercise 18 will
speed up the process by substantially reducing the number of comparisons, but
even this improvement falls short of quicksort.

On the other hand, quicksort is efficient only on the average, and its worst
case is of order N2. Heapsort has the interesting property that its worst case
isn’t much worse than the average: We always have

A<15N, B<N|gN|], C<N|gNn], (8)

so Program H will take no more than 18 N|lg N | + 38NV units of time, regardless
of the distribution of the input data. Heapsort is the first sorting method we
have seen that is guaranteed to be of order N log N. Merge sorting, discussed in
Section 5.2.4 below, also has this property, but it requires more memory space.

Largest in, first out. We have seen in Chapter 2 that linear lists can often be
classified in a meaningful way by the nature of the insertion and deletion oper-
ations that make them grow and shrink. A stack has last-in-first-out behavior,
in the sense that every deletion removes the youngest item in the list — the item
that was inserted most recently of all items currently present. A simple queue
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has first-in-first-out behavior, in the sense that every deletion removes the oldest
remaining item. In more complex situations, such as the elevator simulation of
Section 2.2.5, we want a smallest-in-first-out list, where every deletion removes
the item having the smallest key. Such a list may be called a priority queue,
since the key of each item reflects its relative ability to get out of the list quickly.
Selection sorting is a special case of a priority queue in which we do N insertions
followed by N deletions.

Priority queues arise in a wide variety of applications. For example, some
numerical iterative schemes are based on repeated selection of an item having
the largest (or smallest) value of some test criterion; parameters of the selected
item are changed, and it is reinserted into the list with a new test value, based on
the new values of its parameters. Operating systems often make use of priority
queues for the scheduling of jobs. Exercises 15, 29, and 36 mention other typical
applications of priority queues, and many other examples will appear in later
chapters.

How shall we implement priority queues? One of the obvious methods is
to maintain a sorted list, containing the items in order of their keys. Inserting
a new item is then essentially the same problem we have treated in our study
of insertion sorting, Section 5.2.1. Another even more obvious way to deal with
priority queues is to keep the list of elements in arbitrary order, selecting the
appropriate element each time a deletion is required by finding the largest (or
smallest) key. The trouble with both of these obvious approaches is that they
require (V) steps either for insertion or deletion, when there are N entries in
the list, so they are very time-consuming when N is large.

In his original paper on heapsorting, Williams pointed out that heaps are
ideally suited to large priority queue applications, since we can insert or delete
elements from a heap in O(log N) steps; furthermore, all elements of the heap
are compactly located in consecutive memory locations. The selection phase of
Algorithm H is a sequence of deletion steps of a largest-in-first-out process: To
delete the largest element K; we remove it and sift Kx up into a new heap of
N —1 elements. (If we want a smallest-in-first-out algorithm, as in the elevator
simulation, we can obviously change the definition of heap so that “>” becomes
“<” in (3); for convenience, we shall consider only the largest-in-first-out case
here.) In general, if we want to delete the largest item and then insert a new
element z, we can do the siftup procedure with

=1, r=N, and K=z

If we wish to insert an element x without a prior deletion, we can use the bottom-
up procedure of exercise 16.

A linked representation for priority queues. An efficient way to represent
priority queues as linked binary trees was discovered in 1971 by Clark A. Crane
[Technical Report STAN-CS-72-259 (Computer Science Department, Stanford
University, 1972)]. His method requires two link fields and a small count in
every record, but it has the following advantages over a heap:
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i) When the priority queue is being treated as a stack, the insertion and
deletion operations take a fixed time independent of the queue size.

ii) The records never move, only the pointers change.

iii) Two disjoint priority queues, having a total of N elements, can easily be
merged into a single priority queue, in only O(log IV) steps.

Crane’s original method, slightly modified, is illustrated in Fig. 27, which
shows a special kind of binary tree structure. Each node contains a KEY field, a
DIST field, and two link fields LEFT and RIGHT. The DIST field is always set to
the length of a shortest path from that node to the null link A; in other words,
it is the distance from that node to the nearest empty subtree. If we define
DIST(A) = 0 and KEY(A) = —o0, the KEY and DIST fields in the tree satisfy the
following properties:

KEY(P) > KEY(LEFT(P)),  KEY(P) > KEY(RIGHT(P)); (9)
DIST(P) = 1 + min(DIST(LEFT(P)),DIST(RIGHT(P))); = (10)
DIST(LEFT(P)) > DIST(RIGHT(P)). (11)

Relation (g) is analogous to the heap condition (3); it guarantees that the root
of the tree has the largest key. Relation (10) is just the definition of the DIST
fields as stated above. Relation (11) is the interesting innovation: It implies that
a shortest path to A may always be obtained by moving to the right. We shall
say that a binary tree with this property is a leftist tree, because it tends to lean
so heavily to the left.

It is clear from these definitions that DIST(P) = n implies the existence of
at least 2™ empty subtrees below P; otherwise there would be a shorter path
from P to A. Thus, if there are N nodes in a leftist tree, the path leading
downward from the root towards the right contains at most |[lg(N + 1)| nodes.
It is possible to insert a new node into the priority queue by traversing this path
(see exercise 33); hence only O(log V) steps are needed in the worst case. The
best case occurs when the tree is linear (all RIGHT links are A), and the worst
case occurs when the tree is perfectly balanced.

To remove the node at the root, we simply need to merge its two subtrees.
The operation of merging two disjoint leftist trees, pointed to respectively by
P and @, is conceptually simple: If KEY(P) > KEY(Q) we take P as the root
and merge Q with P’s right subtree; then DIST(P) is updated, and LEFT(P) is
interchanged with RIGHT (P) if necessary. A detailed description of this process
is not difficult to devise (see exercise 33).

Comparison of priority queue techniques. When the number of nodes,
N, is small, it is best to use one of the straightforward linear list methods to
maintain a priority queue; but when [V is large, a log N method using heaps
or leftist trees is obviously much faster. In Section 6.2.3 we shall discuss the
representation of linear lists as balanced trees, and this leads to a third log N
method suitable for priority queue implementation. It is therefore appropriate
to compare these three techniques.
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1L Fig. 27. A priority queue represented as a leftist tree.

We have seen that leftist tree operations tend to be slightly faster than heap
operations, although heaps consume less memory space because they have no
link fields. Balanced trees take about the same space as leftist trees, perhaps
slightly less; the operations are slower than heaps, and the programming is more
complicated, but the balanced tree structure is considerably more flexible in
several ways. When using a heap or a leftist tree we cannot predict very easily
what will happen to two items with equal keys; it is impossible to guarantee
that items with equal keys will be treated in a last-in-first-out or first-in-first-
out manner, unless the key is extended to include an additional “serial number
of insertion” field so that no equal keys are really present. With balanced trees,
on the other hand, we can easily stipulate consistent conventions about equal
keys, and we can also do things such as “insert ¢ immediately before (or after)
y.” Balanced trees are symmetrical, so that we can delete either the largest or
the smallest element at any time, while heaps and leftist trees must be oriented
one way or the other. (See exercise 31, however, which shows how to construct
symmetrical heaps). Balanced trees can be used for searching as well as for
sorting; and we can rather quickly remove consecutive blocks of elements from
a balanced tree. But (V) steps are needed in general to merge two balanced
trees, while leftist trees can be merged in only O(log N) steps.

In summary, heaps use minimum memory; leftist trees are great for merging
disjoint priority queues; and the flexibility of balanced trees is available, if
necessary, at reasonable cost.
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> Many new ways to represent priority queues have been discovered since the

. pioneering work of Williams and Crane discussed above. Programmers now
have a large menu of options to ponder, besides simple lists, heaps, leftist or
balanced trees:

e stratified trees, which provide symmetrical priority queue operations in only
O(loglog M) steps when all keys lie in a given range 0 < K < M [P. van
Emde Boas, R. Kaas, and E. Zijlstra, Math. Systems Theory 10 (1977),
99-127];

e binomial queues [J. Vuillemin, CACM 12 (1978), 309-315; M. R. Brown,
SICOMP 7 (1978), 298-319];

e pagodas [J. Frangon, G. Viennot, and J. Vuillemin, FOCS 19 (1978), 1-7];

e pairing heaps [M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan,
Algorithmica 1 (1986), 111-129; J. T. Stasko and J. S. Vitter, CACM 30
(1987), 234-249];

e skew heaps [D. D. Sleator and R. E. Tarjan, SICOMP 15 (1986), 52-59];

e Fibonacci heaps [M. L. Fredman and R. E. Tarjan, JACM 34 (1987), 596—
615] and the more general AF-heaps [M. L. Fredman and D. E. Willard,
J. Computer and System Sci. 48 (1994), 533-551];

e calendar queues [R. Brown, CACM 31 (1988), 1220-1227; G. A. Davison,
CACM 32 (1989), 1241-1243);

e relaxed heaps [J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan,
CACM 31 (1988), 1343-1354];

e fishspear [M. J. Fischer and M. S. Paterson, JACM 41 (1994), 3-30];

e hot queues [B. V. Cherkassky, A. V. Goldberg, and C. Silverstein, SODA 8
(1997), 83-92];

etc. Not all of these methods will survive the test of time; leftist trees are in fact
already obsolete, except for applications with a strong tendency towards last-in-
first-out behavior. Detailed implementations and expositions of binomial queues
and Fibonacci heaps can be found in D. E. Knuth, The Stanford GraphBase
(New York: ACM Press, 1994), 475-489.

* Analysis of heapsort. Algorithm H is rather complicated, so it probably will
never submit to a complete mathematical analysis; but several of its properties
can be deduced without great difficulty. Therefore we shall conclude this section
by studying the anatomy of a heap in some detail.

Figure 28 shows the shape of a heap with 26 elements; each node has been
labeled in binary notation corresponding to its subscript in the heap. Asterisks
in this diagram denote the special nodes, those that lie on the path from 1 to N.

One of the most important attributes of a heap is the collection of its subtree
sizes. For example, in Fig. 28 the sizes of the subtrees rooted at 1,2,...,26 are,
respectively,

26* 15,10%,7,7,6%3,3,3,3,3,3,251,1,1,1,1,1,1,1,1,1,1,1,1*.  (12)

Asterisks denote special subtrees, rooted at the special nodes; exercise 20 shows
that if the binary representation of N is

N = (bpbp—1...b1bo)a, n=|lgN]|, (13)
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Fig. 28. A heap of 26 = (11010), elements looks like this.

then the special subtree sizes are always

(1bn_1 Ce blbo)g, (1bn_2 I blbo)g, c ey (1b1b0)2, (1b0)2, (1)2 (14)

Nonspecial subtrees are always perfectly balanced, so their size is always of the
form 2% — 1. Exercise 21 shows that the nonspecial sizes consist of exactly

R R e

For example, Fig. 28 contains twelve nonspecial subtrees of size 1, six of size 3,
two of size 7, and one of size 15.

Let s; be the size of the subtree whose root is [, and let My be the multiset
{s1,82,...,sn} of all these sizes. We can calculate My easily for any given N
by using (14) and (15). Exercise 5.1.4-20 tells us that the total number of ways
to arrange the integers {1,2,..., N} into a heap is

N!/slsg...sN:N!/H{s|SEMN}. (16)

For example, the number of ways to place the 26 letters {A,B,C,...,Z} into
Fig. 28 so that vertical lines preserve alphabetic order is

26!/(26-10-6-2-1-1'2.3%.72.15%).

We are now in a position to analyze the heap-creation phase of Algorithm H,
namely the computations that take place before the condition ! = 1 occurs for
the first time in step H2. Fortunately we can reduce the study of heap creation
to the study of independent siftup operations, because of the following theorem.

Theorem H. If Algorithm H is applied to a random permutation of {1,2,...,N},
each of the N!/ []{s | s € My} possible heaps is an equally likely outcome of the
heap-creation phase. Moreover, each of the |N/2] siftup operations performed
during this phase is uniform, in the sense that each of the s; possible values of 1
is equally likely when step HS8 is reached.
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Proof. We can apply what numerical analysts might call a “backwards analysis”;
given a possible result K;... Ky of the siftup operation rooted at [, we see that
there are exactly s; prior configurations Kj... K}, of the file that will sift up
to that result. Each of these prior configurations has a different value of Kj;
hence, working backwards, there are exactly s; s;41... sy input permutations of
{1,2,..., N} that yield the configuration K;... Ky after the siftup at position {
has been completed.

The case | = 1 is typical: Let K;... Ky be a heap, and let K{... K} be
a file that is transformed by siftup into K;... Ky when ! = 1, K = Kj. If
K = K;, we must have K] = K3, K{i/% = K|i/a, etc., while K; = K;
for all 7 not on the path from 1 to ¢. Conversely, for each 7 this construction
yields a file KJ... K}, such that (a) siftup transforms Kj... K}, into K. .. Ky,
and (b) K| /2] > Kj for 2 < |j/2] < j < N. Therefore exactly N such files
K}... Kl are possible, and the siftup operation is uniform. (An example of the
proof of this theorem appears in exercise 22.) |

Referring to the quantities A, B, C, D in the analysis of Program H, we can
see that a uniform siftup operation on a subtree of size s contributes |s/2]/s to
the average value of A; it contributes

1 1< 1 )
g(0+1+1+2+---+ llgs]) = ;ZngJ = g((s+1)Ug5J _oligs]+1 +2)
k=1

to the average value of B (see exercise 1.2.4-42); and it contributes either 2/s or
0 to the average value of D, according as s is even or odd. The corresponding
contribution to C is somewhat more difficult to determine, so it has been left to
the reader (see exercise 26). Summing over all siftups, we find that the average
value of A during heap creation is

N = {ls/2]/s|s € My}, (17)

and similar formulas hold for B, C, and D. It is therefore possible to compute
these average values exactly without great difficulty, and the following table
shows typical results:

N Ay By Cy DYy

99 19.18 68.35 42.95 0.00
100 19.93 69.39 42.71 1.84
999 196.16 734.66 464.53 0.00
1000 196.94 735.80 464.16 1.92
9999 1966.02 7428.18 4695.54 0.00
10000 1966.82 7429.39 4695.06 1.97
10001 1966.45 7430.07 4695.84 0.00
10002 1967.15 7430.97 4695.95 1.73

Asymptotically speaking, we may ignore the special subtree sizes in My, and we
find for example that

N O N1 N
S 1tT 3%

/ 3 .
o . — . — 01 N — 1__ N
NT 51T 3 -k (log N) = (1— 1a)N + O(log N), (18)
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where

a=)_ le - = 1.60669 51524 15291 76378 33015 23190 92458 04805—.  (19)

k>1

(This value was first computed to high precision by J. W. Wrench, Jr., using the
series transformation of exercise 27. Paul Erdés has proved that « is irrational
[J. Indian Math. Soc. 12 (1948), 63-66], and Peter Borwein has demonstrated
the irrationality of many similar constants [Proc. Camb. Phil. Soc. 112 (1992),
141-146].) For large N, we may use the approximate formulas

v = 0.1967N + (-1)N0.3;
By =~ 0.74403N — 1.31In NV;
Ck ~ 0.47034N — 0.81n N;
Dy ~ (1.8 £ 0.2)[ N even].

(20)

The minimum and maximum values are also readily determined. Only O(N)
steps are needed to create the heap (see exercise 23).
This theory nicely explains the heap-creation phase of Algorithm H. But
the selection phase is another story, which remains to be written! Let A%, By,
v, and D}, denote the average values of A, B, C, and D during the selection
phase when IV elements are being heapsorted. The behavior of Algorithm H on
random input is subject to comparatively little fluctuation about the empirically
determined average values

A% = 0.152N;

By =~ NlgN — 2.61N; (1)
21

Cy ~ 3Nlg N — 1.41N;

Dy ~ g N £ 2;

but no adequate theoretical explanation for the behavior of Dy or for the
conjectured constants 0.152, 2.61, or 1.41 has yet been found. The leading
terms of By, and Cy have, however, been established in an elegant manner by
R. Schaffer and R. Sedgewick; see exercise 30. Schaffer has also proved that the
minimum and maximum possible values of C}; are respectively asymptotic to
iNIlgN and $N1gN.

EXERCISES
1. [10] Is straight selection (Algorithm S) a stable sorting method?

2. [15] Why does it prove to be more convenient to select the largest key, then
the second-largest, etc., in Algorithm S, instead of first finding the smallest, then the
second-smallest, etc.?

3. [M21] (a) Prove that if the input to Algorithm S is a random permutation of
{1,2,..., N}, then the first iteration of steps S2 and S3 yields a random permutation
of {1,2,...,N—1} followed by N. (In other words, the presence of each permutation
of {1,2,...,N—1} in K,... Kn_1 is equally likely.) (b) Therefore if By denotes the
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average value of the quantity B in Program S, given randomly ordered input, we have
By = Hy — 1+ By_1. [Hint: See Eq. 1.2.10-(16).]

4. [M25] Step S3 of Algorithm S accomplishes nothing when ¢ = j; is it a good idea
to test whether or not ¢ = j before doing step S3? What is the average number of
times the condition ¢ = j will occur in step S3 for random input?

5. [20] What is the value of the quantity B in the analysis of Program S, when the
input is N...3217 -

6. [M29] (a) Let ajaz...any be a permutation of {1,2,..., N} having C cycles,
I inversions, and B changes to the right-to-left maxima when sorted by Program S.
Prove that 2B < I + N — C. [Hint: See exercise 5.2.2-1.] (b) Show that I + N — C <
| N?/2|; hence B can never exceed | N°/4].

7. [M41] Find the variance of the quantity B in Program S, as a function of N,
assuming random input.

8. [24] Show that if the search for max (Ki,...,Kj;) in step S2 is carried out by
examining keys in left-to-right order K1, Ka, ..., Kj, instead of going from right to
left as in Program S, it is often possible to reduce the number of comparisons needed
on the next iteration of step S2. Write a MIX program based on this observation.

9. [M25] What is the average number of comparisons performed by the algorithm
of exercise 8, for random input?

10. [12] What will be the configuration of the tree in Fig. 23 after 14 of the original
16 items have been output?

11. [10] What will be the configuration of the tree in Fig. 24 after the element 908
has been output?

12. [M20] How many times will —oco be compared with —co when the bottom-up
method of Fig. 23 is used to sort a file of 2" elements into order?

13. [20] (J. W.J. Williams.) Step H4 of Algorithm H distinguishes between the three
cases j < r, j=r, and j > r. Show that if K > K, it would be possible to simplify
step H4 so that only a two-way branch is made. How could the condition K > K41
be ensured throughout the heapsort process, by modifying step H27

14. [10] Show that simple queues are special cases of priority queues. (Explain how
keys can be assigned to the elements so that a largest-in-first-out procedure is equivalent
to first-in-first-out.) Is a stack also a special case of a priority queue?

15. [M22] (B. A. Chartres.) Design a high-speed algorithm that builds a table of
the prime numbers < N, making use of a priority queue to avoid division operations.
[Hint: Let the smallest key in the priority queue be the least odd nonprime number
greater than the last odd number considered as a prime candidate. Try to minimize
the number of elements in the queue.

16. [20] Design an efficient algorithm that inserts a new key into a given heap of
n elements, producing a heap of n 4+ 1 elements.

17. [20] The algorithm of exercise 16 can be used for heap creation, instead of the
“decrease [ to 17 method used in Algorithm H. Do both methods create the same heap
when they begin with the same input file?

18. [21] (R. W. Floyd.) During the selection phase of heapsort, the key K tends to
be quite small, so that nearly all of the comparisons in step H6 find K < K;. Show
how to modify the algorithm so that K is not compared with K; in the main loop of
the computation, thereby nearly cutting the average number of comparisons in half.
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19. [21] Design an algorithm that deletes a given element of a heap of length N,
producing a heap of length N — 1.

20. [M20] Prove that (14) gives the special subtree sizes in a heap.
21. [M24] Prove that (15) gives the nonspecial subtree sizes in a heap.

- 22. [20] What permutations of {1, 2, 3,4, 5} are transformed into 53 412 by the heap-
creation phase of Algorithm H?

23. [M28] (a) Prove that the length of scan, B, in a siftup algorithm never exceeds
\lg (r/1)]. (b) According to (8), B can never exceed N|lgN| in any particular appli-
cation of Algorithm H. Find the maximum value of B as a function of N, taken over
all possible input files. (You must prove that an input file exists such that B takes on
this maximum value.)

24. [M24] Derive an exact formula for the standard deviation of By, (the total length
of scan during the heap-creation phase of Algorithm H).

25. [M20] What is the average value of the contribution to C made during the siftup
pass when [ =1andr =N, if N =21 — 17

26. [M30] Solve exercise 25, (a) for N = 26, (b) for general N.
27. [M25] (T. Clausen, 1828.) Prove that

> el

= T .
1—zm l1—2zm
n>1 n>1

(Setting = = % gives a very rapidly converging series for the evaluation of (19).)

28. [35] Explore the idea of ternary heaps, based on complete ternary trees instead
of binary trees. Do ternary heaps sort faster than binary heaps?

29. [26] (W. S. Brown.) Design an algorithm for multiplication of polynomials or
power series (a1z'* + a2z + ---)(b12’* + bax’2 + ---), in which the coefficients of
the answer c1z*'*71 4 -.. are generated in order as the input coefficients are being
multiplied. [Hint: Use an appropriate priority queue.]

30. [HM35] (R. Schaffer and R. Sedgewick.) Let hnm be the number of heaps on
the elements {1,2,...,n} for which the selection phase of heapsort does exactly m
promotions. Prove that hnm < 2™ []._,lgk, and use this relation to show that the
average number of promotions performed by Algorithm H is N1g N + O(N loglog N).

31. [37] (J. W. J. Williams.) Show that if two heaps are placed “back to back” in a
suitable way, it is possible to maintain a structure in which either the smallest or the
largest element can be deleted at any time in O(logn) steps. (Such a structure may be
called a priority deque.)

32. [M28] Prove that the number of heapsort promotions, B, is always at least
iNIgN + O(N), if the keys being sorted are distinct. Hint: Consider the movement
of the largest [N/2] keys.

33. [21] Design an algorithm that merges two disjoint priority queues, represented
as leftist trees, into one. (In particular, if one of the given queues contains a single
element, your algorithm will insert it into the other queue.)

34. [M41] How many leftist trees with N nodes are possible, ignoring the KEY values?
The sequence begins 1, 1, 2, 4, 8, 17, 38, 87, 203, 482, 1160, .. .; show that the number
is asymptotically ab™N =3/2 for suitable constants a and b, using techniques like those
of exercise 2.3.4.4—4.
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35. [26] IfUP links are added to a leftist tree (see the discussion of triply linked trees in
Section 6.2.3), it is possible to delete an arbitrary node P from within the priority queue
as follows: Replace P by the merger of LEFT(P) and RIGHT(P); then adjust the DIST
fields of P’s ancestors, possibly swapping left and right subtrees, until either reaching
the root or reaching a node whose DIST is unchanged.

Prove that this process never requires changing more than O(log N) of the DIST

fields, if there are N nodes in the tree, even though the tree may contain very long
upward paths.
36. [18] (Least-recently-used page replacement.) Many operating systems make use of
the following type of algorithm: A collection of nodes is subjected to two operations,
(i) “using” a node, and (ii) replacing the least-recently-used node by a new node. What
data structure makes it easy to ascertain the least-recently-used node?

37. [HM32] Let en(k) be the expected treewise distance of the kth-largest element
from the root, in a random heap of N elements, and let e(k) = limny o0 en(k). Thus
e(1) = 0, e(2) = 1, e(3) = 1.5, and e(4) = 1.875. Find the asymptotic value of e(k) to
within O(k™1).

38. [M21] Find a simple recurrence relation for the multiset My of subtree sizes in a
heap or in a complete binary tree with N internal nodes.

5.2.4. Sorting by Merging

Merging (or collating) means the combination of two or more ordered files into
a single ordered file. For example, we can merge the two files 503 703 765 and
087 512 677 to obtain 087 503 512 677 703 765. A simple way to accomplish this
is to compare the two smallest items, output the smallest, and then repeat the
same process. Starting with '

{ 503 703 765

087 512 677
we obtain
503 703 765
087 {512 677
then
703 765
087 503 {512 677
and

703 765

087 503 512 {677

and so on. Some care is necessary when one of the two files becomes exhausted;
a detailed description of the process appears in the following algorithm:

Algorithm M ( Two-way merge). This algorithm merges nonempty ordered files
Ty <32 <---<zpmandy <yp <--- <yp into asingle file 23 <zo <--- < Zipyn.

M1. [Initialize.] Set i + 1, j «+ 1, k « 1.
M2. [Find smaller.] If z; < y;, go to step M3, otherwise go to M5.
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M4. Transmit yj,...,Yn M6. Transmit z;,...,Tm
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Fig. 29. Merging 1 < -+ <y with y1 <+ < yp.

M3. [Output z;.] Set 2x « z;, k< k+ 1,7« ¢+ 1. If ¢ <m, return to M2.
MA4. [Transmit y;, ..., Yn.] Set (zk,. .- Zm+n) < (Yjs---,Yn) and terminate the

algorithm.
MS5. [Output y;.] Set zx <y, k < k+1, j < j+ 1. If j < n, return to M2.
MS6. [Transmit z;,...,Tm.] Set (zk,.-.,2min) < (Ti,...,Zm) and terminate

the algorithm. |

We shall see in Section 5.3.2 that this straightforward procedure is essentially
the best possible way to merge on a conventional computer, when m ~ n. (On
the other hand, when m is much smaller than n, it is possible to devise more
efficient merging algorithms, although they are rather complicated in general.)
Algorithm M could be made slightly simpler without much loss of efficiency by
placing sentinel elements Z,, 41 = Yn+1 = o0 at the end of the input files, stopping
just before co is output. For an analysis of Algorithm M, see exercise 2.

The total amount of work involved in Algorithm M is essentially propor-
tional to m + n, so it is clear that merging is a simpler problem than sorting.
Furthermore, we can reduce the problem of sorting to merging, because we can
repeatedly merge longer and longer subfiles until everything is in sort. We may
consider this to be an extension of the idea of insertion sorting: Inserting a new
element into a sorted file is the special case n = 1 of merging. If we want to
speed up the insertion process we can consider inserting several elements at a
time, “batching” them, and this leads naturally to the general idea of merge
sorting. From a historical point of view, merge sorting was one of the very first
methods proposed for computer sorting; it was suggested by John von Neumann
as early as 1945 (see Section 5.5).

We shall study merging in considerable detail in Section 5.4, with regard
to external softing algorithms; our main concern in the present section is the
somewhat simpler question of merge sorting within a high-speed random-access
memory.

Table 1 shows a merge sort that “burns the candle at both ends” in a manner
similar to the scanning procedure we have used in quicksort and radix exchange:
We examine the input from the left and from the right, working towards the
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middle. Ignoring the top line of the table for a moment, let us consider the
transformation from line 2 to line 3. At the left we have the ascending run 503
703 765; at the right, reading leftwards, we have the run 087 512 677. Merging
these two sequences leads to 087 503 512 677 703 765, which is placed at the
left of line 3. Then the keys 061 612 908 in line 2 are merged with 170 509 897,
and the result (061 170 509 612 897 908) is recorded at the right end of line 3.
Finally, 154 275 426 653 is merged with 653 — discovering the overlap before it
causes any harm — and the result is placed at the left, following the previous run.
Line 2 of the table was formed in the same way from the original input in line 1.

Table 1
NATURAL TWO-WAY MERGE SORTING

503] 087 512) 061 908 170 897| 275 [653] 426 154 [509 [612 [677 [765 703
503 703 765] 061 612 908| 154 275 426 |<653J|<897 500 170 [677 512 087
087 503 512 677 703 765) 154 275 426 (653][908 897 612 500 170 061
061 087 170 503 509 512 612 677 703 765 807 [908] 653 426 275 154

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Vertical lines in Table 1 represent the boundaries between runs. They are the
so-called stepdowns, where a smaller element follows a larger one in the direction
of reading. We generally encounter an ambiguous situation in the middle of the
file, when we read the same key from both directions; this causes no problem if we
are a little bit careful as in the following algorithm. The method is traditionally
called a “natural” merge because it makes use of the runs that occur naturally
in its input.

Algorithm N (Natural two-way merge sort). Records Ry,..., Ry are sorted
using two areas of memory, each of which is capable of holding N records. For
convenience, we shall say that the records of the second area are Ry .1, ..., Ran,
although it is not really necessary that Ry4; be adjacent to Ry. The initial
contents of Ry41,..., Ron are immaterial. After sorting is complete, the keys
will be in order, K; < --- < K.

N1. [Initialize.] Set s +— 0. (When s = 0, we will be transferring records from
the (Ry,..., Ry) area to the (Ry41,...,Ran) area; when s = 1, we will
be going the other way.)

N2. [Prepare for pass.] If s =0,set i+ 1,7 N,k N+1,1«+ 2N; if
s=1,seti+ N+1,7+ 2N, k+ 1,1+ N. (Variables ¢, j, k, [ point to
the current positions in the “source files” being read and the “destination
files” being written.) Set d < 1, f < 1. (Variable d gives the current
direction of output; f is set to zero if future passes are necessary.)

N3. [Compare K;:K;.] If K; > Kj, go to step N&. If i = j, set Ry + R; and
go to N13.
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Fig. 30. Merge sorting.

. [Transmit R;.] (Steps N4-N7 are analogous to steps M3-M4 of Algo-
rithm M) Set Ry «+— R;, k< k+d.

N5. [Stepdown?] Increase ¢ by 1. Then if K;_; < K;, go back to step N3.

N6. [Transmit R;.] Set Ry < R;, k < k+d.

N7. [Stepdown?] Decrease j by 1. Then if K11 < Kj, go back to step N6;
otherwise go to step N12.

N8. [Transmit R;.] (Steps N8-N11 are dual to steps N4-N7.) Set Ry + R;,
k+—k+d.

N9. [Stepdown?] Decrease j by 1. Then if K;,; < Kj, go back to step N3.

N10. [Transmit R;.] Set Ry < R;, k < k+d.

N11. [Stepdown?] Increase ¢ by 1. Then if K;_; < K, go back to step N10.

N12. [Switch sides.] Set f < 0, d «+ —d, and interchange k < [. Return to
step N3.

N13. [Switch areas.] If f =0, set s <~ 1 —s and return to N2. Otherwise sorting
is complete; if s = 0, set (Ry,...,RN) < (RN+1,--.,R2n). (This last
copying operation is unnecessary if it is acceptable to have the output in
(RN+1,- ., Ran) about half of the time.) 1

This algorithm contains one tricky feature that is explained in exercise 5.

It would not be difficult to program Algorithm N for MIX, but we can
deduce the essential facts of its behavior without constructing the entire program.

The

number of ascending runs in the input will be about %N, under random

conditions, since we have K; > K;; with probability %; detailed information
about the number of runs, under slightly different hypotheses, has been derived
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in Section 5.1.3. Each pass cuts the number of runs in half (except in unusual
cases such as the situation in exercise 6). So the number of passes will usually be
about lg £ N = lg N — 1. Each pass requires us to transmit each of the V records,
and by exercise 2 most of the time is spent in steps N3, N4, N5, N8, N9. We
can sketch the time in the inner loop as follows, if we assume that there is low
probability of equal keys:.

Step  Operations Time

N3 CMPA, JG, JE 3.5u

Either { N4 STA, INC 3u
N5 INC, LDA, CMPA, JGE 6u

Or { N8 STX, INC 3u
N9 DEC, LDX, CMPX, JGE 6u

Thus about 12.5u is spent on each record in each pass, and the total running
time will be asymptotically 12.5N 1g IV, for both the average case and the worst
case. This is slower than quicksort’s average time, and it may not be enough
better than heapsort to justify taking twice as much memory space, since the
asymptotic running time of Program 5.2.3H is never more than 18N 1lg N.

The boundary lines between runs are determined in Algorithm N entirely by
stepdowns. This has the possible advantage that input files with a preponderance
of increasing order can be handled very quickly, and so can input files with
a preponderance of decreasing order; but it slows down the main loop of the
calculation. Instead of testing stepdowns, we can determine the length of runs
artificially, by saying that all runs in the input have length 1, all runs after the
first pass (except possibly the last run) have length 2,. .., all runs after k passes
(except possibly the last run) have length 2*. This is called a straight two-merge,
as opposed to the “natural” merge in Algorithm N.

Straight two-way merging is very similar to Algorithm N, and it has essen-
tially the same flow chart; but things are sufficiently different that we had better
write down the whole algorithm again:

Algorithm S (Straight two-way merge sort). Records Ry, ..., Ry are sorted
using two memory areas as in Algorithm N.

S1. [Initialize.] Set s « 0, p < 1. (For the significance of variables s, i, 7, k,
[, and d, see Algorithm N. Here p represents the size of ascending runs to
be merged on the current pass; further variables g and r will keep track of
the number of unmerged items in a run.)

S2. [Prepare for pass.] If s=0,set i« 1,5« N,k N, |+ 2N +1;ifs =1,
set i~ N+1,7 2N, k<0, N+1 Thensetd« 1,q« p, < p.

S3. [Compare K;: K;.] If K; > K, go to step S8.

S4. [Transmit R;.] Set k « k +d, Rx < R;.

S5. [End of run?] Set i «+ i+ 1, g < q¢— 1. If ¢ > 0, go back to step S3.

S6. [Transmit R;.] Set k < k + d. Then if kK = [, go to step S13; otherwise set
Rk «— Rj.
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Table 2
STRAIGHT TWO-WAY MERGE SORTING

503 | 087 | 512 | 061 | 908 | 170 | 897 | 275 | 653 | 426 | 154 | 509 | 612 | 677 | 765 | 703
503 703|512 677|509 908|426 897]653 275|170 154|612 061|765 087
087 503 703 765|154 170 509 908|897 653 426 275|677 612 512 061
061 087 503 512 612 677 703 765]908 897 653 509 426 275 170 154
061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

S7. [End of run?] Set j « j— 1,7 « r—1. If r > 0, go back to step S6;
otherwise go to S12.

S8. [Transmit R;.] Set k + k +d, Rx + R;.
S9. [End of run?] Set j « j — 1, 7 < r— 1. If > 0, go back to step S3.

S10. [Transmit R;.] Set k < k + d. Then if k¥ =, go to step S13; otherwise set

S11. [End of run?] Set ¢ + i+ 1, ¢ < ¢ — 1. If ¢ > 0, go back to step S10.

S12. [Switch sides.] Set ¢ < p, r < p, d < —d, and interchange k < [. If
j — 1 < p, return to step S10; otherwise return to S3.

S13. [Switch areas.] Set p + p+p. If p < N, set s + 1 — s and return to S2.
Otherwise sorting is complete; if s = 0, set

(Rl,...,RN) «— (RN+1,...,R2N).

(The latter copying operation will be done if and only if [lg V] is odd,
regardless of the distribution of the input. Therefore it is possible to predict
the location of the sorted output in advance, and copying will usually be
unnecessary.) |

An example of this algorithm appears in Table 2. It is somewhat amazing
that the method works properly when N is not a power of 2; the runs being
merged are not all of length 2%, yet no provision has apparently been made for
the exceptions! (See exercise 8.) The former tests for stepdowns have been
replaced by decrementing q or r and testing the result for zero; this reduces the
asymptotic MIX running time to 11N lg N units, slightly faster than we were able
to achieve with Algorithm N.

In practice it would be worthwhile to combine Algorithm S with straight
insertion; we can sort groups of, say, 16 items using straight insertion, in place of
the first four passes of Algorithm S, thereby avoiding the comparatively wasteful
bookkeeping operations involved in short merges. As we saw with quicksort,
such a combination of methods does not affect the asymptotic running time, but
it gives us a reasonable improvement nevertheless.

Let us now study Algorithms N and S from the standpoint of data structures.
Why did we need 2N record locations instead of N? The reason is comparatively
simple: We were dealing with four lists of varying size (two source lists and
two destination lists on each pass); and we were using the standard “growing
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together” idea discussed in Section 2.2.2, for each pair of sequentially allocated
lists. But half of the memory space was always unused, and a little reflection
shows that we could really make use of a linked allocation for the four lists. If
we add one link field to each of the N records, we can do everything required
by the merging algorithms using simple link manipulations, without moving the
records at alll Adding N link fields is generally better than adding the space
needed for N more records, and the reduced record movement may also save
us time, unless our computer memory is especially good at sequential reading
and writing. Therefore we ought to consider also a merging algorithm like the
following one:

Algorithm L (List merge sort). Records Ri,...,Ry are assumed to contain
keys Ki,...,Kp, together with link fields L,,...,Ly capable of holding the
numbers —(N + 1) through (N + 1). There are two auxiliary link fields Ly and
L1 in artificial records Ry and Ry 41 at the beginning and end of the file. This
algorithm is a “list sort” that sets the link fields so that the records are linked
together in ascending order. After sorting is complete, Ly will be the index of
the record with the smallest key; and L, for 1 < k < N, will be the index of the
record that follows Ry, or Ly = 0 if Ry is the record with the largest key. (See
Eq. 5.2.1-(13).)

During the course of this algorithm, Ry and Ry serve as list heads for two
linear lists whose sublists are being merged. A negative link denotes the end of
a sublist known to be ordered; a zero link denotes the end of the entire list. We
assume that N > 2.

The notation “|Ls| < p” means “Set L, to p or —p, retaining the previous
sign of L;.” This operation is well-suited to MIX, but unfortunately not to most
computers; it is possible to modify the algorithm in straightforward ways to
obtain an equally efficient method for most other machines.

13

L1. [Prepare two lists.] Set Lo« 1, Lyt1 + 2, L; «+ —(i+2) for 1 <i < N -2,
and Ly_; < Ly + 0. (We have created two lists containing R;, R3, Rs, .. .
and Ry, R4, Rg, ..., respectively; the negative links indicate that each or-
dered sublist consists of one element only. For another way to do this step,
taking advantage of ordering that may be present in the initial data, see
exercise 12.)

L2. [Begin new pass.] Set s + 0,t < N +1,p« L,, ¢ « L;. If ¢ =0, the
algorithm terminates. (During each pass, p and q traverse the lists being
merged; s usually points to the most recently processed record of the current
sublist, while ¢ points to the end of the previously output sublist.)

L3. [Compare K, : K4.] If K, > K, go to L6.

L4. [Advance p.] Set |Ls| + p, s < p, p < Lp. If p > 0, return to L3.

L5. [Complete the sublist.] Set Ls < g, s - t. Then set ¢t - g and q «+ L, one
or more times, until ¢ < 0. Finally go to L8.

L6. [Advance g.] (Steps L6 and L7 are dual to L4 and L5.) Set |L;| < g, s + g,
q < Lg. If ¢ > 0, return to L3.
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Table 3
LIST MERGE SORTING

J 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

K; — 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703 —
L; 1 -3 -4 -5 —6 -7 -8 —-9-10-11 —-12 —13 —14 —15 16 0o 0 2
L; 2 —6 1 -8 3-10 5-11 7-13 9 12-16 14 0 0 15 4
L; 4 3 1-11 2-13 8 5 7 0 12 10 9 14 16 0 15 6
L; 4 3 6 7 2 0 8 5 1 14 12 10 13 9 16 0 15 11
L 4 12 11 13 2 0 8 5 10 14 1 &6 3 9 16 7 15 0

.

L7. [Complete the sublist.] Set L; - p, s - ¢. Then set t <—p and p < L,, one
or more times, until p < 0. :

L8. [End of pass?] (At this point, p < 0 and g < 0, since both pointers have
moved to the end of their respective sublists.) Set p < —p, ¢ + —q. If
=0, set |Ls| < p, |L¢| < 0 and return to L2. Otherwise return to L3. 1

An example of this algorithm in action appears in Table 3, where we can see the
link settings each time step L2 is encountered. It is possible to rearrange the
records Ri,..., Ry at the end of this algorithm so that their keys are in order,
using the method of exercise 5.2-12. There is an interesting similarity between
list merging and the addition of sparse polynomials (see Algorithm 2.2.4A).
Let us now construct a MIX program for Algorithm L, to see whether the
list manipulation is advantageous from the standpoint of speed as well as space:

Program L (List merge sort). For convenience, we assume that records are
one word long, with L; in the (0:2) field and K; in the (3:5) field of location
INPUT+j;rll=p, 1I2=¢q, rfI3=s,1l4 =, TA= K5 N > 2.

01 L EQU 0:2 Definition of field names

02 ABSL EQU 1:2
08 KEY EQU 3:5

04 START ENT1 N-2 1 L1. Prepare two lists.
05 ENNA 2,1 N -2

06 STA INPUT,1(L) N -2 L; +— —(i+2).

07 DEC1 1 N -2

08 JIP *-3 N-2 N-=-22>:>0.

09 ENTA 1 1

10 STA INPUT(L) 1 Lo « 1.

11 ENTA 2 1

12 STA INPUT+N+1(L) 1 Ln41 2.

15 STZ INPUT+N-1(L) 1 Ly_1 + 0.

14 STZ INPUT+N(L) 1 Ly « 0.

15 JMP L2 1 To L2.

16 L3Q LDA INPUT,2 C"” + B' L3. Compare K,:K,.
17 L3P CMPA INPUT,1(KEY) C

18 JL L6 C  Tol6if K, < K.

19 L4 ST1 INPUT,3(ABSL) C’ L4. Advance p. |Ls| «+ p.
20 ENT3 0,1 c’ s « p.

21 LD1 INPUT,1(L) C’ p < Ly.

22 Jip L3P o To L3 if p > 0.
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23 L5 ST2 INPUT,3(L) B’ L5. Complete the sublist. Ls <+ q.
2/ ENT3 0,4 B st

25 ENT4 0,2 D’ t + q.

26 LD2 INPUT,2(L) D' g+ Lg.

27 J2P  *-2 D' Repeat if ¢ > 0.

28 JMP L8 . B’ To LS.

29 L6 ST2 INPUT,3(ABSL) c” L6. Advance q. |Ls| + q.
30 ENT3 0,2 c” s+ q.

31 LD2 INPUT,2(L) o

32 J2P L3Q c" To L3 if ¢ > 0.

33 L7 ST1 INPUT,3(L) B" L7. Complete the sublist. L, + p.
34 ENT3 0,4 B" s + t.

35 ENT4 0,1 D’ tep.

36 LD1 INPUT,1(L) D" p 4 Lyp.

37 JIP  *-2 D" Repeat if p > 0.

38 L8 ENN1 O,1 B L8. End of pass? p + —p.
39 ENN2 0,2 B g+ —q.

40 J2NZ L3Q B To L3 if ¢ # 0.

41 ST1 INPUT,3(ABSL) A |L+«p.

42 STZ INPUT,4(ABSL) A |L¢| + 0.

48 L2 ENT3 O A+1 L2. Begin new pass. s « 0.
44 ENT4 N+1 A+1 t+— N+ 1.

45 LD1 INPUT(L) A+1 p+« L,.

46 LD2 INPUT+N+1(L) A+1 g+ L.

47 J2NZ 13Q A+1 ToL3ifg#0. 1|

The running time of this program can be deduced using techniques we have
seen many times before (see exercises 13 and 14); it comes to approximately
(10N 1g N + 4.92N)u on the average, with a small standard deviation of order
v/ N. Exercise 15 shows that the running time can be reduced to about 9N lg N
at the expense of a somewhat longer program.

Thus we have a clear victory for linked-memory techniques over sequential
allocation, when internal merging is being done: Less memory space is required,
and the program runs about 10 to 20 percent faster. Similar algorithms have
been published by L. J. Woodrum [IBM Systems J. 8 (1969), 189-203] and
A. D. Woodall [Comp. J. 13 (1970), 110-111.]

EXERCISES

1. [21] Generalize Algorithm M to a k-way merge of the input files z;; < -+ < Tim,
fori=1,2,...,k.

2. [M24] Assuming that each of the (™'") possible arrangement of m z’s among
n y’s is equally likely, find the mean and standard deviation of the number of times
step M2 is performed during Algorithm M. What are the maximum and minimum
values of this quantity?

3. [20] (Updating.) Given records Ri,..., Ry and Ry,..., R}y whose keys are dis-
tinct and in order, so that K1 < --- < Ku and K; < --- K}, show how to modify
Algorithm M to obtain a merged file in which records R, of the first file have been
discarded if their key appears also in the second file.
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4. [21] The text observes that merge sorting may be regarded as a generalization
of insertion sorting. Show that merge sorting is also strongly related to tree selection
sorting as depicted in Fig. 23.

5. [21] Prove that ¢ can never be equal to j in steps N6 or N10. (Therefore it is
unnecessary to test for a possible jump to N13 in those steps.)

6. [22] Find a permutation K1 K> ... Kis of {1,2,...,16} such that
K2 > K3, Ki>Ks, K¢>Kr, Kg> Ko, Kio<Ku, Ki2 <Kz, K <Kis,

yet Algorithm N will sort the file in only two passes. (Since there are eight or more
runs, we would expect to have at least four runs after the first pass, two runs after
the second pass, and sorting would ordinarily not be complete until after at least three
passes. How can we get by with only two passes?)

7. [16] Give a formula for the exact number of passes required by Algorithm S, as a
function of N.

8. [22] During Algorithm S, the variables ¢ and r are supposed to represent the
lengths of the unmerged elements in the runs currently being processed; ¢ and r both
start out equal to p, while the runs are not always this long. How can this possibly
work?

9. [24] Write a MIX program for Algorithm S. Specify the instruction frequencies in
terms of quantities analogous to A, B, B”,C’,... in Program L.

10. [25] (D. A. Bell.) Show that sequentially allocated straight two-way merging can
be done with at most %N memory locations, instead of 2V as in Algorithm S.

11. [21] Is Algorithm L a stable sorting method?

12. [22] Revise step L1 of Algorithm L so that the two-way merge is “natural,” taking
advantage of ascending runs that are initially present. (In particular, if the input is
already sorted, step L2 should terminate the algorithm immediately after your step L1
has acted.)

13. [M34] Give an analysis of the average running time of Program L, in the style
of other analyses in this chapter: Interpret the quantities A B,B',..., and explain
how to compute their exact average values. How long does Program L take to sort the
16 numbers in Table 37

14. [M24] Let the binary representation of N be 2°* 2% +-..+2%, where €1 > e2 >
.+ >ey >0, t>1. Prove that the maximum number of key comparisons performed
by Algorithm Lis 1 —2° + 3¢ (ex + k — 1)2°%.

15. [20] Hand simulation of Algorithm L reveals that it occasionally does redundant
operations; the assignments |L,| - p, |Ls| < q in steps L4 and L6 are unnecessary
about half of the time, since we have Ls; = p (or g) each time step L4 (or L6) returns
to L3. How can Program L be improved so that this redundancy disappears?

16. [28] Design a list merging algorithm like Algorithm L but based on three-way
merging.

17. [20] (J. McCarthy.) Let the binary representation of N be as in exercise 14, and
assume that we are given N records arranged in ¢ ordered subfiles of respective sizes

2¢1 2°2 . 2°t Show how to maintain this state of affairs when a new (N + 1)st record
is added and N = N+1. (The resulting algorithm may be called an online merge sort.)
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Fig. 31. A railway network with five “stacks.”

18. [40] (M. A. Kronrod.) Given a file on N records containing only two runs,
Ki<---<Ky and Kyp <-<Kn,

is it possible to sort the file with O(V) operations in a random-access memory, using
only a small fixred amount of additional memory space regardless of the sizes of M
and N? (All of the merging algorithms described in this section make use of extra
memory space proportional to N.)

19. [26] Consider a railway switching network with n “stacks,” as shown in Fig. 31
when n = 5; we considered one-stack networks in exercises 2.2.1-2 through 2.2.1-5. If
N railroad cars enter at the right, we observed that only comparatively few of the N!
permutations of those cars could appear at the left, in the one-stack case.

In the n-stack network, assume that 2™ cars enter at the right. Prove that each
of the 2™! possible permutations of these cars is achievable at the left, by a suitable
sequence of operations. (Each stack is actually much bigger than indicated in the
illustration — big enough to accommodate all the cars, if necessary.)

20. [47] In the notation of exercise 2.2.1-4, at most ay permutations of N elements
can be produced with an m-stack railway network; hence the number of stacks needed
to obtain all N! permutations is at least log N!/logan = log, N. Exercise 19 shows
that at most [lg V| stacks are needed. What is the true rate of growth of the necessary
number of stacks, as N — 00?

21. [28] (A. J. Smith.) Explain how to extend Algorithm L so that, in addition to
sorting, it computes the number of inversions present in the input permutation.

22. [28] (J. K. R. Barnett.) Develop a way to speed up merge sorting on multiword
keys. (Exercise 5.2.2-30 considers the analogous problem for quicksort.)

23. [M80] Exercises 13 and 14 analyze a “bottom-up” or iterative version of merge
sort, where the cost ¢(IV) of sorting IV items satisfies the recurrence

c(N) = c(2%) +¢(N — 2%) + f(2F, N = 25)  for 2F < N < 2k+!

and f(m,n) is the cost of merging m things with n. Study the “top-down” or divide-
and-conquer recurrence

e(N) = ¢([N/2]) +c(LN/2)) + £([N/2], IN/2])  for N >1,

which arises when merge sort is programmed recursively.

5.2.5. Sorting by Distribution

We come now to an interesting class of sorting methods that are essentially the
exact opposite of merging, when considered from a standpoint we shall discuss
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in Section 5.4.7. These methods were used to sort punched cards for many years,
long before electronic computers existed. The same approach can be adapted to
computer programming, and it is generally known as “bucket sorting,” “radix
sorting,” or “digital sorting,” because it is based on the digits of the keys.
Suppose we want to sort a 52-card deck of playing cards. We may define

A<2<3<4<5<BLCT<8CI9<1I0<TI<QLK,

as an ordering of the face values, and for the suits we may define

d<O <O <a.

One card is to precede another if either (i) its suit is less than the other suit, or
(ii) its suit equals the other suit but its face value is less. (This is a particular
case of lezicographic ordering between ordered pairs of objects; see exercise 5-2.)
Thus

A.?.<24.<---<K4.<A<><---<QQ<K§.

We could sort the cards by any of the methods already discussed. Card
players often use a technique somewhat analogous to the idea behind radix
exchange: First they divide the cards into four piles, according to suit, then
they fiddle with each individual pile until everything is in order.

But there is a faster way to do the trick! First deal the cards face up into
13 piles, one for each face value. Then collect these piles by putting the aces
on the bottom, the 2s face up on top of them, then the 3s, etc., finally putting
the kings (face up) on top. Turn the deck face down and deal again, this time
into four piles for the four suits. (Again you turn the cards face up as you deal
them.) By putting the resulting piles together, with clubs on the bottom, then
diamonds, hearts, and spades, you'll get the deck in perfect order.

The same idea applies to the sorting of numbers and alphabetic data. Why
does it work? Because (in our playing card example) if two cards go into different
piles in the final deal, they have different suits, so the one with the lower suit is
lowest. But if two cards have the same suit (and consequently go into the same
pile), they are already in proper order because of the previous sorting. In other
words, the face values will be in increasing order, on each of the four piles, as we
deal the cards on the second pass. The same proof can be abstracted to show
that any lexicographic ordering can be sorted in this way; for details, see the
answer to exercise 52, at the beginning of this chapter.

The sorting method just described is not immediately obvious, and it isn’t
clear who first discovered the fact that it works so conveniently. A 19-page
pamphlet entitled “The Inventory Simplified,” published by the Tabulating Ma-
chines Company division of IBM in 1923, presented an interesting Digit Plan
method for forming sums of products on their Electric Sorting Machine: Suppose,
for example, that we want to multiply the number punched in columns 1-10
by the number punched in columns 23-25, and to sum all of these products
for a large number of cards. We can sort first on column 25, then use the
Tabulating Machine to find the quantities aq,as,...,ay, where a; is the total
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of columns 1-10 summed over all cards having k in column 25. Then we can
sort on column 24, finding the analogous totals b1, b2, . .., bg; also on column 23,
obtaining ¢y, g, . .., cg. The desired sum of products is easily seen to be

0,1+2ag+-'-+909+10b1+20b2+"'+90b9+10061+20062+"'+90069.

This punched-card tabulating method leads naturally to the discovery of least-
significant-digit-first radix sorting, so it probably became known to the machine
operators. The first published reference to this principle for sorting appears in
L. J. Comrie’s early discussion of punched-card equipment [Transactions of the
Office Machinery Users’ Assoc., Ltd. (1929), 25-37, especially page 28].

In order to handle radix sorting inside a computer, we must decide what to
do with the piles. Suppose that there are M piles; we could set aside M areas of
memory, moving each record from an input area into its appropriate pile area.
But this is unsatisfactory, since each area must be large enough to hold N items,
and (M +1)N record spaces would be required. Therefore most people rejected
the idea of radix sorting within a computer, until H. H. Seward [Master’s thesis,
M.L.T. Digital Computer Laboratory Report R-232 (1954), 25-28] pointed out
that we can achieve the same effect with only 2N record areas and M count fields.
We simply count how many elements will lie in each of the M piles, by making
a preliminary pass over the data; this tells us precisely how to allocate memory
for the piles. We have already made use of the same idea in the “distribution
counting sort,” Algorithm 5.2D.

Thus radix sorting can be carried out as follows: Start with a distribution
sort based on the least significant digit of the keys (in radix M notation), moving
records from the input area to an auxiliary area. Then do another distribution
sort, on the next least significant digit, moving the records back into the original
input area; and so on, until the final pass (on the most significant digit) puts all
records into the desired order.

If we have a decimal computer with 12-digit keys, and if N is rather large, we
can choose M = 1000 (considering three decimal digits as one radix-1000 digit);
then sorting will be complete in four passes, regardless of the size of N. Similarly,
if we have a binary computer and a 40-bit key, we can set M = 1024 = 210 and
complete the sorting in four passes. Actually each pass consists of three parts
(counting, allocating, moving); E. H. Friend [JACM 3 (1956), 151] suggested
combining two of those parts at the expense of M more memory locations, by
accumulating the counts for pass k + 1 while moving the records on pass k.

Table 1 shows how such a radix sort can be applied to our 16 example
numbers, with M = 10. Radix sorting is generally not useful for such small N,
so a small example like this is intended to illustrate the sufficiency rather than
the efficiency of the method.

An alert, “modern” reader will note, however, that the whole idea of mak-
ing digit counts for the storage allocation is tied to old-fashioned ideas about
sequential data representation. We know that linked allocation is specifically
designed to handle a set of tables of variable size, so it is natural to choose a
linked data structure for radix sorting. Since we traverse each pile serially, all
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Table 1
RADIX SORTING
Input area contents: 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
Counts for units digit distribution: 11 2 3 1 21 3 11

Storage allocations based on these counts: 1 2 4 7 8 10 11 14 15 16
Auxiliary area contents: 170 061 512 612 503 653 703 154 275 765 426 087 897 677 908 509

Counts for tens digit distribution: 4 2 1 0 0 2 2 3 11
Storage allocations based on these counts: 4 6 7 7 7 9 11 14 15 16
Input area contents: 503 703 908 509 512 612 426 653 154 061 765 170 275 677 087 897
Counts for hundreds digit distribution: 2 2101 3 3 2 11

Storage allocations based on these counts: 2 4 5 5 6 9 12 14 15 16
Auxiliary area contents: 061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

we need is a single link from each item to its successor. Furthermore, we never
need to move the records; we merely adjust the links and proceed merrily down
the lists. The amount of memory required is (1 + €)N 4+ 2e M records, where €
is the amount of space taken up by a link field. Formal details of this procedure
are rather interesting since they furnish an excellent example of typical data
structure manipulations, combining sequential and linked allocation:

Algorithm R (Radiz list sort). Records Ry, ..., Ry are each assumed to contain
a LINK field. Their keys are assumed to be p-tuples

(a1,a2,...,ap), 0<a; <M, (1)
where the order is defined lexicographically so that
(a1,a2,...,ap) < (b1,b2,...,bp) (2)
if and only if for some j, 1 < j < p, we have
a; =b; foralli <y, but a; < bj. (3)

The keys may, in particular, be thought of as numbers written in radix M
notation,

agMP~t 4 aoMP2. . 4 ap—1M + ayp, (4)

and in this case lexicographic order corresponds to the normal ordering of non-
negative numbers. The keys may also be strings of alphabetic letters, etc.

Sorting is done by keeping M “piles” of records, in a manner that exactly
parallels the action of a card sorting machine. The piles are really queues in the
sense of Chapter 2, since we link them together so that they are traversed in a
first-in-first-out manner. There are two pointer variables TOP[:] and BOTM[:]
for each pile, 0 < i < M, and we assume as in Chapter 2 that

LINK(LOC(BOTM[¢])) = BOTM[:]. (5)
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Fig. 32. Radix list sort.

[Loop on k.] In the beginning, set P <= LOC(Ry), a pointer to the last
record. Then perform steps R2 through R6 for k = 1,2,...,p. (Steps R2
through R6 constitute one “pass.”) Then the algorithm terminates, with
P pointing to the record with the smallest key, LINK(P) to the record with
next smallest, then LINK(LINK(P)), etc.; the LINK in the final record will
be A.

[Set piles empty.] Set TOP[i] < LOC(BOTM[:]) and BOTM[{] « A, for
0<i1< M.

[Extract kth digit of key.] Let KEY(P), the key in the record referenced by P,
be (a1,az,...,ap); set i < apt1-k, the kth least significant digit of this key.

[Adjust links.] Set LINK(TOP[i]) < P, then set TOP[:] « P.

[Step to next record.] If k = 1 (the first pass) and if P = LOC(R;), for some
j # 1, set P« LOC(R;_1) and return to R3. If k£ > 1 (subsequent passes),
set P +— LINK(P), and return to R3 if P # A.

[Do Algorithm H.] (We are now done distributing all elements onto the
piles.) Perform Algorithm H below, which “hooks together” the individual
piles into one list, in preparation for the next pass. Then set P <— BOTM[0],
a pointer to the first element of the hooked-up list. (See exercise 3.) |

Algorithm H (Hooking-up of queues). Given M queues, linked according to

the

conventions of Algorithm R, this algorithm adjusts at most M links so that

a single queue is created, with BOTM[0] pointing to the first element, and with
pile 0 preceding pile 1 ... preceding pile M —1.

H1
H2
H3

H4
HS5

. [Initialize.] Set i < 0.
. [Point to top of pile.] Set P «- TOP[:].
. [Next pile.] Increase ¢ by 1. If i = M, set LINK(P) < A and terminate the

algorithm.

. [Is pile empty?] If BOTM[:] = A, go back to H3.
. [Tie piles together.] Set LINK(P) « BOTM[i]. Return to H2. |
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Figure 33 shows the contents of the piles after each of the three passes, when
our 16 example numbers are sorted with M = 10. Algorithm R is very easy to
program for MIX, once a suitable way to treat the pass-by-pass variation of steps
R3 and R5 has been found. The following program does this without sacrificing
any speed in the inner loop, by overlaying two of the instructions. Note that
TOP[¢] and BOTM[¢] can be packed into the same word.

ToP[0] TOP[1] TOP[2] TOP[3] TOP[4] TOP[5] TOP[6] TOP[7] TOP[8] TOP[9]

(170]  [061] 612 154 509

BOTM[O] BOTM[1] BOTM[2] BOTM[3] BOTM[4] BOTM[5] BOTM[6] BOTM[7] BOTM[8] BOTM[9]

TOP[0] TOP[1] TOP[2] TOP[3] TOP[4] TOP[5] TOP[6] TOP[7] TOP[8] TOP[9]

512 [154] [765] [275]
612 426 653 061 170 087 897
\Z A\ 2
BOTM[O] BOTM[1] BOTM[2] BDT_i/l_[S] BOT_III—[4] BOTM[5] BOTM[6] BOTM[7] BOTM[8] BOTM[9]
TOP[0] TOP[1] TOP[2] TOP—[S] TOP—[4] TOP[5] TOP[6] TOP[7] TOP[8] TOP[9]
. 509 653 765
061 897 908
BOTM[0] BOTM[1] BOTM[2] BOT_\Ti[S] BOTM[4] BOTM[5] BOTM[6] BOTM[7] BOTM[8] BOTM[9]

Fig. 33. Radix sort using linked allocation: contents of the ten piles after each pass.

Program R (Radiz list sort). The given records in locations INPUT+1 through
INPUT+N are assumed to have p = 3 components (aj, a2, as) stored respectively
in the (1:1), (2:2), and (3:3) fields. (Thus M is assumed to be less than or
equal to the byte size of MIX.) The (4:5) field of each record is its LINK. We
let TOP[i] = PILES + 4(1:2) and BOTM[i] = PILES 4 4(4:5), for 0 < i < M. I
is convenient to make links relative to location INPUT, so that LOC(BOTM[:]) =
PILES+¢— INPUT; to avoid negative links we therefore want the PILES table to be
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in higher locations than the INPUT table. Index registers are assigned as follows:
rl1 =P, rI2 = ¢, 113 = 3 — k, rl4 = TOP[¢]; during Algorithm H, rI2=1¢ - M.
01 LINK EQU 4:5

02 TOP EQU 1:2

08 START ENT1 N 1 R1. Loop on k. P = LOC(RnN).
04 ENT3 2 _ 1 kL

05 2H ENT2 M-1 3 R2. Set piles empty.

06 ENTA PILES-INPUT,2 3M roc(soTM[7])

07 STA PILES,2(TOP) 3M — TOP[4]

08 STZ PILES,2(LINK) 3M BOTM[7] « A.

09 DEC2 1 3M

10 J2NN *-4 3M M>1i>0.

11 LDA R3SW,3 3

12 STA 3F 3 Modify instructions for pass k.
18 LDA Rb5SW,3 3

14 STA bF 3

15 3H [LD2 1INPUT,1(3:3)] R3. Extract kth digit of key.
16 4H LD4 PILES,2(TOP) 3N R4. Adjust links.

17 ST1 INPUT,4(LINK) 3N LINK(TOP{:]) < P.

18 ST1 PILES,2(TOP) 3N TOP 7] < P.

19 5H [DEC1 1] R5. Step to next record.

20 JINZ 3B 3N To R3 if end of pass.

21 6H ENN2 M 3 R6. Do Algorithm H.

22 JMP T7F 3 To H2 with 7 « 0.

29 R3SW LD2 INPUT,1(1:1) N Instruction for R3 when k = 3.
2/ LD2 INPUT,1(2:2) N Instruction for R3 when k = 2.
25 LD2 INPUT,1(3:3) N Instruction for R3 when k = 1.
26 RBSW LD1 INPUT,1(LINK) N Instruction for R5 when k = 3.
27 LD1 INPUT,1(LINK) N Instruction for R5 when k = 2.
28 DEC1 1 N Instruction for R5 when k& = 1.
29 9H LDA PILES+M,2(LINK) 3M-3 H4. Is pile empty?

30 JAZ 8F 3M—3 To H3 if BOTM[z] = A.

31 STA INPUT,1(LINK) 3M-3—E H5. Tie piles together.

32 TH D1 PILES+M,2(TOP) 3M — E  H2. Point to top of pile.

38 8H INC2 1 3M H3. Next pile. 1 < 1+ 1.

34 J2NZ 9B 3M To H4 if ¢ £ M.

35 STZ INPUT,1(LINK) 3 LINK(P) + A.

36 D1 PILES(LINK) 3 P + BOTM[O].

37 DEC3 1 3

38 J3NN 2B 3 Loop for 1 <k <3. 1

The running time of Program R is 32N + 48M + 38 — 4E, where N is the

number of input records, M is the radix (the number of piles), and E is the
number of occurrences of empty piles. This compares very favorably with other
programs we have constructed based on similar assumptions (Programs 5.2.1M,
5.2.4L). A p-pass version of the program would take (11p — 1)N + O(pM) units
of time; the critical factor in the timing is the inner loop, which involves five
references to memory and one branch. On a typical computer we will have
M = b" and p = [t/r], where t is the number of radix-b digits in the keys;
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increasing r will decrease p, so the formulas can be used to determine a best
value of r.

The only variable in the timing is E, the number of empty piles observed
in step H4. If we consider each of the M N sequences of radix-M digits to be
equally probable, we know from our study of the “poker test” in Section 3.3.2D
that there are M — r empty piles with probability

M(M —1) ...(M—r-l—l){N}

(6)

on each pass, where {f } is a Stirling number of the second kind. By exercise 6,

MN r

N

E= <min max(M — N,0)p, ave M(l— %) p, max (M — 1)p> (7

An ever-increasing number of “pipeline” or “number-crunching” computers
have appeared in recent years. These machines have multiple arithmetic units
and look-ahead circuitry so that memory references and computation can be
highly overlapped; but their efficiency deteriorates noticeably in the presence of
conditional branch instructions unless the branch almost always goes the same
way. The inner loop of a radix sort is well adapted to such machines, because
it is a straight iterative calculation of typical number-crunching form. Therefore
radiz sorting is usually more efficient than any other known method for internal
sorting on such machines, provided that N is not too small and the keys are not
too long.

Of course, radix sorting is not very efficient when the keys are extremely
long. For example, imagine sorting 60-digit decimal numbers with 20 passes of a
radix sort, using M = 103; very few pairs of numbers will tend to have identical
keys in their leading 9 digits, so the first 17 passes accomplish very little. In our
analysis of radix exchange sorting, we found that it was unnecessary to inspect
many bits of the key, when we looked at the keys from the left instead of the
right. Let us therefore reconsider the idea of a radix sort that starts at the most
significant digit (MSD) instead of the least significant digit (LSD).

We have already remarked that an MSD-first radix method suggests itself
naturally; in fact, it is not hard to see why the post office uses such a method
to sort mail. A large collection of letters can be sorted into separate bags for
different geographical areas; each of these bags then contains a smaller number
of letters that can be sorted independently of the other bags, into finer and
finer geographical divisions. (Indeed, bags of letters can be transported nearer
to their destinations before they are sorted further, or as they are being sorted
further.) This principle of “divide and conquer” is quite appealing, and the
only reason it doesn’t work especially well for sorting punched cards is that it
ultimately spends too much time fussing with very small piles. Algorithm R is
relatively efficient, even though it considers LSD first, since we never have more
than M piles, and the piles need to be hooked together only p times. On the
other hand, it is not difficult to design an MSD-first radix method using linked
memory, with negative links as in Algorithm 5.2.4L to denote the boundaries
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between piles. (See exercise 10.) The main difficulty is that empty piles tend to
proliferate and to consume a great deal of time in an MSD-first method.

Perhaps the best compromise has been suggested by M. D. MacLaren [JACM
13 (1966), 404-411], who recommends an LSD-first sort as in Algorithm R, but
applied only to the most significant digits. This does not completely sort the file,
but it usually brings the {ile very nearly into order so that very few inversions
remain; therefore straight insertion can be used to finish up. Our analysis of
Program 5.2.1M applies also to this situation, so that if the keys are uniformly
distributed we will have an average of $ N(N — 1)M P inversions remaining in
the file after sorting on the leading p digits. (See Eq. 5.2.1-(17) and exercise
5.2.1-38.) MacLaren has computed the average number of memory references
per item sorted, and the optimum choice of M and p (assuming that M is
a power of 2, that the keys are uniformly distributed, and that N/MP < 0.1
so that deviations from uniformity are tolerable) turns out to be given by the
following table:

N = 100 1000 10000 100000 1000000 107 108 10°

best M = 32 128 512 1024 8192 215 917 9ol9
best p= 2 2 2 2 2 2 2 2
B(N)=193 185 182 18.1 18.0 18.0 18.0 18.0

Here B(N) denotes the average number of memory references per item sorted,

2pM N -1 HN_
BIN) =5p+8+ =+ o0 = 7 (8)

it is bounded as N — oo, if we take p = 2 and M > +/N, so the average sorting
time is actually O(N) instead of order N log N. This method is an improvement
over multiple list insertion (Program 5.2.1M), which is essentially the case p = 1.
Exercise 12 gives MacLaren’s interesting procedure for final rearrangement of a
partially list-sorted file.

It is also possible to avoid the link fields, using the methods of Algo-
rithm 5.2D and exercise 5.2-13, so that only O(\/N ) memory locations are
needed in addition to the space required for the records themselves. The average
sorting time is proportional to N if the input records are uniformly distributed.

W. Dobosiewicz obtained good results by using an MSD-first distribution
sort until reaching short subfiles, with the distribution process constrained so
that the first M/2 piles were guaranteed to receive between 25% and 75% of the
records [see Inf. Proc. Letters 7 (1978), 1-6; 8 (1979), 170-172]; this ensured
that the average time to sort uniform keys would be O(N) while the worst case
would be O(Nlog N). His papers inspired several other researchers to devise
new address calculation algorithms, of which the most instructive is perhaps the
following 2-level scheme due to Markku Tamminen [J. Algorithms 6 (1985), 138-
144]: Assume that all keys are fractions in the interval [0..1). First distribute
the N records into | N/8] bins by mapping key K into bin | KN/8|. Then suppose
bin k£ has received N records; if Ni < 16, sort it by straight insertion, otherwise



5.2.5 SORTING BY DISTRIBUTION 177

sort if by a MacLaren-like distribution-plus-insertion sort into M 2 bins, where
M? ~ 10N. Tamminen proved the following remarkable result:

Theorem T. There is a constant T such that the sorting method just de-
scribed performs at most TN operations on the average, whenever the keys
are independent random numbers whose density function f(z) is bounded and
Riemann-integrable for 0 < z < 1. (The constant 7' does not depend on f.)

Proof. See exercise 18. Intuitively, the first distribution into N/8 piles finds
intervals in which f is approximately constant; the second distribution will then
make the expected bin size approximately constant. |

Several versions of radix sort that have been well tuned for sorting large
arrays of alphabetic strings are described in an instructive article by P. M.
Mecllroy, K. Bostic, and M. D. Mcllroy, Computing Systems 6 (1993), 5-27.

EXERCISES

1. [20] The algorithm of exercise 5.2-13 shows how to do a distribution sort with
only N record areas (and M count fields), instead of 2V record areas. Does this lead
to an improvement over the radix sorting algorithm illustrated in Table 17

2. [13] Is Algorithm R a stable sorting method?

3. [15] Explain why Algorithm H makes BOTM[0] point to the first record in the
“hooked-up” queue, even though pile 0 might be empty.

4. [23] Algorithm R keeps the M piles linked together as queues (first-in-first-out).
Explore the idea of linking the piles as stacks instead. (The arrows in Fig. 33 would
go downward instead of upward, and the BOTM table would be unnecessary.) Show that
if the piles are “hooked together” in an appropriate order, it is possible to achieve a
valid sorting method. Does this lead to a simpler or a faster algorithm?

5. [20] What changes are necessary to Program R so that it sorts eight-byte keys
instead of three-byte keys? Assume that the most significant bytes of K, are stored in
location KEY+i (1:5), while the three least significant bytes are in location INPUT+i (1:3)
as presently. What is the running time of the program, after these changes have been
made?

6. [M2/] Let gun(z) = S paunikz®, where panvk is the probability that exactly k
empty piles are present after a random radix-sort pass puts IV elements into M piles.
a) Show that gar(vy1)(2) = gmn(2) + (1 = 2)/M) ghn (2)-
b) Use this relation to find simple expressions for the mean and variance of this
probability distribution, as a function of M and N.

7. [20] Discuss the similarities and differences between Algorithm R and radix ex-
change sorting (Algorithm 5.2.2R).

8. [20] The radix-sorting algorithms discussed in the text assume that all keys being
sorted are nonnegative. What changes should be made to the algorithms when the keys
are numbers expressed in two’s complement or ones’ complement notation?

9. [20] Continuing exercise 8, what changes should be made to the algorithms when
the keys are numbers expressed in signed-magnitude notation?
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10. [30] Design an efficient most-significant-digit-first radix-sorting algorithm that
uses linked memory. (As the size of the subfiles decreases, it is wise to decrease M, and
to use a nonradix method on the really short subfiles.)

11. [16] The sixteen input numbers shown in Table 1 start with 41 inversions; after
sorting is complete, of course, there are no inversions remaining. How many inversions
would be present in the file if we omitted pass 1, doing a radix sort only on the tens
and hundreds digits? How many inversions would be present if we omitted both pass 1
and pass 27

12. [2/] (M. D. MacLaren.) Suppose that Algorithm R has been applied only to the
p leading digits of the actual keys; thus the file is nearly sorted when we read it in
the order of the links, but keys that agree in their first p digits may be out of order.
Design an algorithm that rearranges the records in place so that their keys are in order,
K, < K> <:-- < Kn. [Hint: The special case that the file is perfectly sorted appears
in the answer to exercise 5.2—12; it is possible to combine this with straight insertion
without loss of efficiency, since few inversions remain in the file.]

13. [40] Implement the internal sorting method suggested in the text at the close of
this section, producing a subroutine that sorts random data in O(N) units of time with
only O(v/N) additional memory locations.

14. [22] The sequence of playing cards

(114
~5(9\2le
10/ Q8| v
8 o
()
can be sorted into increasing order A 2 ... J Q K from top to bottom in two passes,

using just two piles for intermediate storage: Deal the cards face down into two piles
containing respectively A 2 9 3 10 and 4 J 5 6 Q K 7 8 (from bottom to top); then put
the second pile on the first, turn the deck face up, and deal into two pilesA23456 7 8,
9 10 J Q K. Combine these piles, turn them face up, and you’re done.

Prove that this sequence of cards cannot be sorted into decreasing orderKQ J ... 2 A
from top to bottom in two passes, even if you are allowed to use up to three piles for
intermediate storage. (Dealing must always be from the top of the deck, turning the
cards face down as they are dealt. Top to bottom is right to left in the illustration.)

15. [M25] Consider the problem of exercise 14 when all cards must be dealt face up
instead of face down. Thus, one pass can be used to convert increasing order into
decreasing order. How many passes are required?

16. [25] Design an algorithm to sort strings i, ..., a, on an m-letter alphabet into
lexicographic order. The total running time of your algorithm should be O(m+n+ N),
where N = || + -+ - + || is the total length of all the strings.
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17. [15] In the two-level distribution sort proposed by Tamminen (see Theorem T),
why is a MacLaren-like method used for the second level of distribution but not the
first level?

18. [HM26] Prove Theorem T. Hint: Show first that MacLaren’s distribution-plus-
insertion algorithm does O(BN) operations, on the average, when it is applied to
independent random keys whose probability density function satisfies f(z) < B for
0<z<1

For sorting the roots and words
we had the use of 1100 lozenge boxes,
and used trays for the forms.

— GEORGE V. WIGRAM (1843)
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5.3. OPTIMUM SORTING

NOW THAT WE have analyzed a great many methods for internal sorting, it is
time to turn to a broader question: What is the best possible way to sort? Can
we place limits on the maximum sorting speeds that will ever be achievable, no
matter how clever a programmer might be?

Of course there is no best possible way to sort; we must define precisely
what is meant by “best,” and there is no best possible way to define “best.”
We have discussed similar questions about the theoretical optimality of algo-
rithms in Sections 4.3.3, 4.6.3, and 4.6.4, where high-precision multiplication
and polynomial evaluation were considered. In each case it was necessary to
formulate a rather simple definition of a “best possible” algorithm, in order to
give sufficient structure to the problem to make it workable. And in each case
we ran into interesting problems that are so difficult they still haven’t been
completely resolved. The same situation holds for sorting; some very interesting
discoveries have been made, but many fascinating questions remain unanswered.

Studies of the inherent complexity of sorting have usually been directed
towards minimizing the number of times we make comparisons between keys
while sorting n items, or merging m items with n, or selecting the ¢th largest of an
unordered set of n items. Sections 5.3.1, 5.3.2, and 5.3.3 discuss these questions
in general, and Section 5.3.4 deals with similar issues under the interesting
restriction that the pattern of comparisons must essentially be fixed in advance.
Several other types of interesting theoretical questions related to optimum sorting
appear in the exercises for Section 5.3.4, and in the discussion of external sorting
(Sections 5.4.4, 5.4.8, and 5.4.9).

As soon as an Analytical Engine exists,

it will necessarily guide the future course of the science.
Whenever any result is sought by its aid,

the question will then arise —

By what course of calculation can these

results be arrived at by the machine

in the shortest time?

— CHARLES BABBAGE (1864)

5.3.1. Minimum-Comparison Sorting

The minimum number of key comparisons needed to sort n elements is obviously
zero, because we have seen radix methods that do no comparisons at all. In fact,
it is possible to write MIX programs that are able to sort, although they contain
no conditional jump instructions at all! (See exercise 5-8 at the beginning of this
chapter.) We have also seen several sorting methods that are based essentially
on comparisons of keys, yet their running time in practice is dominated by other
considerations such as data movement, housekeeping operations, etc.

Therefore it is clear that comparison counting is not the only way to measure
the effectiveness of a sorting method. But it is fun to scrutinize the number of
comparisons anyway, since a theoretical study of this subject gives us a good
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Level 0

Level 1

Level 2

Level 3 [132] [312] [213] [231]

Fig. 34. A comparison tree for sorting three elements.

deal of useful insight into the nature of sorting processes, and it also helps us to
sharpen our wits for the more mundane problems that confront us at other times.

In order to rule out radix-sorting methods, which do no comparisons at
all, we shall restrict our discussion to sorting techniques that are based solely
on an abstract linear ordering relation “<” between keys, as discussed at the
beginning of this chapter. For simplicity, we shall also confine our discussion to
the case of distinct keys, so that there are only two possible outcomes of any
comparison of K; versus K;: either K; < K; or K; > K;. (For an extension
of the theory to the general case where equal keys are allowed, see exercises 3
through 12. For bounds on the worst-case running time that is needed to sort
integers without the restriction to comparison-based methods, see Fredman and
Willard, J. Computer and Syst. Sci. 47 (1993), 424-436; Ben-Amram and Galil,
J. Comp. Syst. Sci. 54 (1997), 345-370; Thorup, SODA 9 (1998), 550-555.)

The problem of sorting by comparisons can also be expressed in other
equivalent ways. Given a set of n distinct weights and a balance scale, we can
ask for the least number of weighings necessary to completely rank the weights in
order of magnitude, when the pans of the balance scale can each accommodate
only one weight. Alternatively, given a set of n players in a tournament, we
can ask for the smallest number of games that suffice to rank all contestants,
assuming that the strengths of the players can be linearly ordered (with no ties).

All n-element sorting methods that satisfy the constraints above can be
represented in terms of an extended binary tree structure such as that shown
in Fig. 34. Each internal node (drawn as a circle) contains two indices “i:j”
denoting a comparison of K; versus K;. The left subtree of this node represents
the subsequent comparisons to be made if K; < Kj;, and the right subtree
represents the actions to be taken when K; > K. Each external node of the tree
(drawn as a box) contains a permutation ajas...an of {1,2,...,n}, denoting
the fact that the ordering

Ky < Kgq, <+ < Kg,

has been established. (If we look at the path from the root to this external node,
each of the n — 1 relationships Ko, < K,,,, for 1 <4 < n will be the result of
some comparison a;:a;1 Or G;+1:a; on this path.)
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* @

Fig. 35. Example of a redundant comparison.

Thus Fig. 34 represents a sorting method that first compares K; with Kjy;
if K; > Ko, it goes on (via the right subtree) to compare K, with K3, and
then if K5 < K3 it compares K; with Kj; finally if Ky > K3 it knows that
K, < K3 < K,. An actual sorting algorithm will usually also move the keys
around in the file, but we are interested here only in the comparisons, so we
ignore all data movement. A comparison of K; with K; in this tree always
means the original keys K; and K, not the keys that might currently occupy
the sth and jth positions of the file after the records have been shuffied around.

It is possible to make redundant comparisons; for example, in Fig. 35 there
is no reason to compare 3:1, since K1 < K3 and K3 < K3 implies that K; < K.
No permutation can possibly correspond to the left subtree of node 3:1 in Fig. 35;
consequently that part of the algorithm will never be performed! Since we are
interested in minimizing the number of comparisons, we may assume that no re-
dundant comparisons are made. Hence we have an extended binary tree structure
in which every external node corresponds to a permutation. All permutations of
the input keys are possible, and every permutation defines a unique path from
the root to an external node; it follows that there are exactly n! external nodes
in a comparison tree that sorts n elements with no redundant comparisons.

The best worst case. The first problem that arises naturally is to find
comparison trees that minimize the mazimum number of comparisons made.
(Later we shall consider the average number of comparisons.)

Let S(n) be the minimum number of comparisons that will suffice to sort
n elements. If all the internal nodes of a comparison tree are at levels < k, it is
obvious that there can be at most 2% external nodes in the tree. Hence, letting
k = S(n), we have

n! < 25

Since S(n) is an integer, we can rewrite this formula to obtain the lower bound
S(n) > Ngnt]. (1)

Stirling’s approximation tells us that
lgn!] =nlgn —n/In2 + 1gn + O(1), (2)

hence roughly nlgn comparisons are needed.
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Relation (1) is often called the information-theoretic lower bound, since
cognoscenti of information theory would say that lgn! “bits of information” are
being acquired during a sorting process; each comparison yields at most one bit of
information. Trees such as Fig. 34 have also been called “questionnaires”; their
mathematical properties were first explored systematically in Claude Picard’s
book Théorie des Questionnaires (Paris: Gauthier-Villars, 1965).

Of all the sorting methods we have seen, the three that require fewest com-
parisons are binary insertion (see Section 5.2.1), tree selection (see Section 5.2.3),
and straight two-way merging (see Algorithm 5.2.4L). The maximum number of
comparisons for binary insertion is readily seen to be

B(n) =) [lgk] =n[lgn] -2/ +1, (3)

k=1

by exercise 1.2.4-42, and the maximum number of comparisons in two-way
merging is given in exercise 5.2.4-14. We will see in Section 5.3.3 that tree
selection has the same bound on its comparisons as either binary insertion or
two-way merging, depending on how the tree is set up. In all three cases we
achieve an asymptotic value of nlgn; combining these lower and upper bounds
for S(n) proves that

lim 5()

n—oo nlgn

=1 (4)

Thus we have an approximate formula for S(n), but it is desirable to obtain
more precise information. The following table gives exact values of the lower
and upper bounds discussed above, for small n:

n=12345 6 7 8 910 11 12 13 14 15 16 17
[Inn!]=0 1 3 5 7 10 13 16 19 22 26 29 33 37 41 45 49
B(n)=0 13 5 8 11 14 17 21 25 29 33 37 41 45 49 54
Lin)=013 59 11 14 17 25 27 30 33 38 41 45 49 65

Here B(n) and L(n) refer respectively to binary insertion and two-way list
merging. It can be shown that B(n) < L(n) for all n (see exercise 2).

From the table above, we can see that S(4) = 5, but S(5) might be either
7 or 8. This brings us back to a problem stated at the beginning of Section 5.2:
What is the best way to sort five elements? Can five elements be sorted using
only seven comparisons?

The answer is yes, but a seven-step procedure is not especially easy to dis-
cover. We begin as if we were sorting four elements by merging, first comparing
K,:K,, then K5:K,, then the larger elements of these pairs. This produces a
configuration that may be diagrammed as

/7. ©
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indicating that a < b < d and ¢ < d. (It is convenient to represent known
ordering relations between elements by drawing directed graphs such as this,
where z is known to be less than y if and only if there is a path from z to y in
the graph.) At this point we insert the fifth element K5 = e into its proper place
among {a,b, d}; only two comparisons are needed, since we may compare it first
with b and then with a ot d. This leaves one of four possibilities,

b d e b d b e d b d e
VA A A A A

and in each case we can insert ¢ among the remaining elements less than d in
two more comparisons. This method for sorting five elements was first found by
H. B. Demuth [Ph.D. thesis, Stanford University (1956), 41-43].

Merge insertion. A pleasant generalization of the method above has been
discovered by Lester Ford, Jr. and Selmer Johnson. Since it involves some aspects
of merging and some aspects of insertion, we shall call it merge insertion. For
example, consider the problem of sorting 21 elements. We start by comparing
the ten pairs K, : Ko, K3: K4, ..., Ki9: Kao; then we sort the ten larger elements
of the pairs, using merge insertion. As a result we obtain the configuration

alO

FIFIFI7I7 7.

bo b3 by bs be by bg by bio

analogous to (5). The next step is to insert b3 among {b1, a1, a2}, then by among
the other elements less than as; we arrive at the configuration

C1 c2 Cc3 Cq Cs alO

R ST

5 bﬁ b7 bs b9 10 bll

Let us call the upper-line elements the main chain. We can insert bs into its
proper place in the main chain, using three comparisons (first comparing it to
c4, then ¢y or cg, etc.); then by can be moved into the main chain in three more
steps, leading to

di do d3 da¢ ds ds dr dg do a1g

EEEEEEGAIIT

be by bg by big

The next step is crucial; is it clear what to do? We insert by; (not b7) into the
main chain, using only four comparisons. Then byg, by, bg, bz, bs (in this order)
can also be inserted into their proper places in the main chain, using at most
four comparisons each.

A careful count of the comparisons involved here shows that the 21 elements
have been sorted in at most 10+ S(10) +2+2+3+3+4+4+4+44+44+4 =66
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steps. Since
265 < 211 < 256,

we also know that no fewer than 66 would be possible in any event; hence
S(21) = 66. (10)

(Binary insertion would have required 74 comparisons.)
In general, merge insertion proceeds as follows for n elements:

i) Make pairwise comparisons of |n/2]| disjoint pairs of elements. (If n is odd,
leave one element out.)

ii) Sort the |n/2| larger numbers, found in step (i), by merge insertion.

iii) Name the elements a1, as,...,an/2], b1,b2,...,b[n 2] as in (7), where a; <
ag < -+ < ajne and b; < a; for 1 < i < [n/2]; call by and the a’s the
“main chain.” Insert the remaining b’s into the main chain, using binary
insertion, in the following order, leaving out all b, for j > [n/2]:

b3a b2, b5a b4a blla blOa ey bﬁa ceey btkabtk—la .. abtk_l—{-l; I (11)
We wish to define the sequence (ti,t2,ts,t4,...) = (1,3,5,11,...), which
appears in (11), in such a way that each of b;, ,b¢, —1,...,bs,_,+1 can be inserted

into the main chain with at most k comparisons. Generalizing (7), (8), and (9g),
we obtain the diagram

Z1 z2 T2ty Ctp_+1 Oty _1+2 Aty —1
— > —— - —>e >0 >0 e Nt
/ / / .
btk_1+1 btk—1+2 btk——l btk

where the main chain up to and including a;, —; contains 2t5_1 + (tx —tx—1 — 1)
elements. This number must be less than 2*; our best bet is to set it equal to
2% — 1, so that

th_1 + tr = 2F. (12)
Since t; = 1, we may set to = 1 for convenience, and we find that
th=2F —tp =2k —2F gy = o =2F 2Rl (—1)R90
= (2" +(-1)%)/3 (13)

by summing a geometric series. (Curiously, this same sequence arose in our
study of an algorithm for calculating the greatest common divisor of two integers;
see exercise 4.5.2-36.)

Let F(n) be the number of comparisons required to sort n elements by merge
insertion. Clearly

F(n) = [n/2] + F(|n/2]) + G([n/21), (14)
where G represents the amount of work involved in step (iii). If tx_1 < m < ty,
we have

k—1
G(m) = j(t; —tjm1) +k(m—tp1) =km—(to +t1 + -~ +tp-1), (15)
j=1
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summing by parts. Let us set
wy = to + b1+ +teo1 = (28773, (16)
so that (wo, w1, ws, w3, W, . ..) = (0, 1, 2, 5, 10, 21,...). Exercise 13 shows that

F(n)—F(n—-1)=k if and only if wk <N < Wryt, (17)
and the latter condition is equivalent to
2k+1 2k+2
<n< 3

or k+1<l1g3n <k +2; hence
F(n) - F(n—1) = [lg3n]. (18)

(This formula is due to A. Hadian [Ph.D. thesis, Univ. of Minnesota (1969),
38-42].) It follows that F(n) has a remarkably simple expression,
F(n)= > [1g 3K], (10)
k=1
quite similar to the corresponding formula (3) for binary insertion. A closed
form for this sum appears in exercise 14.
Equation (19) makes it easy to construct a table of F'(n); we have

n=12 3 45 6 7 & 9 10 11 12 13 14 15 16 17
[lgn!]=0 1 3 5 7 10 13 16 19 22 26 29 33 37 41 45 49
Fn)=0 1 3 5 7 10 13 16 19 22 26 30 34 38 42 46 50

n=18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[lgn!] =53 57 62 66 70 75 80 84 89 94 98 103 108 113 118 123
F(n)=54 58 62 66 71 76 81 86 91 96 101 106 111 116 121 126

Notice that F(n) = [lgn!] for 1 <n < 11 and for 20 < n < 21, so we know that
merge insertion is optimum for those n:

S(n) = [lgn!] = F(n) forn=1,...,11, 20, and 21. (20)

Hugo Steinhaus posed the problem of finding S(n) in the second edition of his
classic book Mathematical Snapshots (Oxford University Press, 1950), 38-39. He
described the method of binary insertion, which is the best possible way to sort n
objects if we start by sorting n — 1 of them first before the nth is considered; and
he conjectured that binary insertion would be optimum in general. Several years
later [Calcutta Math. Soc. Golden Jubilee Commemoration 2 (1959), 323-327],
he reported that two of his colleagues, S. Trybula and P. Czen, had “recently”
disproved his conjecture, and that they had determined S(n) for n < 11. Trybula
and Czen may have independently discovered the method of merge insertion,
which was published soon afterwards by Ford and Johnson [AMM 66 (1959),
387-389].

After the discovery of merge insertion, the first unknown value of S(n) was
5(12). Table 1 shows that 12! is quite close to 22° hence the existence of a
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Table 1
VALUES OF FACTORIALS IN BINARY NOTATION

(1) =1

(10)2 = 2!

(110), = 3!

(11000)2 = 4!

(1111000)2 = 5!

(1011010000)2 = 6!

(1001110110000)2 7!

(1001110110000000); = 8!

(1011000100110000000)2 9!
(1101110101111100000000)2 10!
(10011000010001010100000000)2 11!
(11100100011001111110000000000)2 12!
(101110011001010001100110000000000)2 13!
(1010001001100001110110010100000000000)2 14!
(10011000001110111011101110101100000000000)2 = 15!
(100110000011101110111011101011000000000000000)2 = 16!
(1010000110111111011101110110011011000000000000000)2 =17
(10110101111101110110011001010011100110000000000000000)2 = 18!
(110110000001010111001001100000110100010010000000000000000)2 = 19!
(10000111000011011001110111110010000010101101000000000000000000)2 = 20!

29-step sorting procedure for 12 elements is somewhat unlikely. An exhaustive
search (about 60 hours on a Maniac II computer) was therefore carried out by
Mark Wells, who discovered that S(12) = 30 [Proc. IFIP Congress 65 2 (1965),
497-498; Elements of Combinatorial Computing (Pergamon, 1971), 213-215].
Thus the merge insertion procedure turns out to be optimum for n = 12 as well.

*A slightly deeper analysis. In order to study S(n) more carefully, let us look
more closely at partial ordering diagrams such as (5). After several comparisons
have been made, we can represent the knowledge we have gained in terms of a
directed graph. This directed graph contains no cycles, in view of the transitivity
of the < relation, so we can draw it in such a way that all arcs go from left to
right; it is therefore convenient to leave arrows off the diagram. In this way (5)

becomes
/ (21)

If G is such a directed graph, let T(G) be the number of permutations consistent
with G, that is, the number of ways to assign the integers {1,2,...,n} to the
vertices of G so that the number on vertex z is less than the number on vertex
y whenever 2 — y in G. For example, one of the permutations consistent with
(21) hasa=1,b=4, c=2,d=5, e = 3. We have studied T(G) for various G
in Section 5.1.4, where we observed that T(G) is the number of ways in which
G can be sorted topologically.
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If G is a graph on n elements that can be obtained after k comparisons, we

define the efficiency of G to be
n!

(This idea is due to Frank Hwang and Shen Lin.) Strictly speaking, the efficiency
is not a function of the graph G alone, it depends on the way we arrived at G
during a sorting process, but it is convenient to be a little careless in our language.
After making one more comparison, between elements i and j, we obtain two
graphs G; and Gs, one for the case K; < K; and one for the case K; > Kj.
Clearly

If T(G1) > T(G3), we have

n! E(Q)T(G)
TGy - @) < o (23)

Therefore each comparison leads to at least one graph of less or equal efficiency;
we can’t improve the efficiency by making further comparisons.

When G has no arcs at all, we have kK = 0 and T(G) = n!, so the initial
efficiency is 1. At the other extreme, when G is a graph representing the final
result of sorting, G looks like a straight line and T(G) = 1. Thus, for example,
if we want to find a sorting procedure that sorts five elements in at most seven
steps, we must obtain the linear graph , whose efficiency is 5!/(27x 1) =
120/128 = 15/16. It follows that all of the graphs arising in the sorting procedure
must have efficiency > %; if any less efficient graph were to appear, at least one
of its descendants would also be less efficient, and we would ultimately reach
a linear graph whose efficiency is < %. In general, this argument proves that
all graphs corresponding to the tree nodes of a sorting procedure for n elements
must have efficiency > n!/2!, where [ is the number of levels of the tree (not
counting external nodes). This is another way to prove that S(n) > [lgn!],
although the argument is not really much different from what we said before.

The graph (21) has efficiency 1, since T(G) = 15 and since G has been
obtained in three comparisons. In order to see what vertices should be compared
next, we can form the comparison matriz

E(Gl) -

a b ¢ d e

a {0 15 10 15 11

bl]0O 0O 5 15 9
C(G)=c¢|5 10 0 15 9], (24)

atfo 0 0 0 3

e\4 8 6 12 0

where C;; is T(G;) for the graph G; obtained by adding the arc i — j to G.
For example, if we compare K. with K., the 15 permutations consistent with G
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split up into Cec = 6 having K. < K. and C.e = 9 having K. < K.. The
latter graph would have efficiency 15/(2 x 9) = % < %, so it could not lead to a
seven-step sorting procedure. The next comparison must be Kp: K, in order to
keep the efficiency > %.

The concept of efficiency is especially useful when we consider the connected
components of graphs. Consider for example the graph

a b d e
G = ; E ;
c f g

it has two components

a b d e
G = ; and G" = E
c f g

with no arcs connecting G’ to G”, so it has been formed by making some
comparisons entirely within G’ and others entirely within G”. In general, assume
that G = G’ © G” has no arcs between G’ and G”, where G’ and G’ have
respectively n’ and n” vertices; it is easy to see that

T(G) = (

n/ + n//

“7) r@) e, (25)
since each consistent permutation of G is obtained by choosing n’ elements
to assign to G’ and then making consistent permutations within G’ and G”
independently. If ¥’ comparisons have been made within G’ and k£” within G”,
we have the basic result

Wl
E&) = sevq) = 771(@) 7 TG

= E(@)E(@),  (26)

showing that the efficiency of a graph is related in a simple way to the efficiency
of its components. Therefore we may restrict consideration to graphs having
only one component.
Now suppose that G’ and G” are one-component graphs, and suppose that
we want to hook them together by comparing a vertex z of G’ with a vertex y
of G”. We want to know how efficient this will be. For this purpose we need a
function that can be denoted by
(p < q), (27)

m n

defined to be the number of permutations consistent with the graph

aj a2 ap Am

S (28)

b1 b2 by bn
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Thus (2 <?)is (™*") times the probability that the pth smallest of a set of
m numbers is less than the ¢th smallest of an independently chosen set of n
numbers. Exercise 17 shows that we can express (2 <?) in two ways in terms
of binomial coefficients,
m—p+n—=k —1+k
(m<a)= X2 ("0 00
m n 05Tee m—p P
n—qg+m-—3\/q—1+j
- X (R0 e
p<ism 1 ?
(Incidentally, it is by no means obvious on algebraic grounds that these two sums

of products of binomial coeflicients should come out to be equal.) We also have
the formulas

(m<a)* o) = (707 (30)
(nem) = (7<) )
(:ﬁ Z) N (mp_1<i) ” (:fn:) +(p§m”q:”}<m+£_l>- (32)

For definiteness, let us now consider the two graphs

(33)

L6

It is not hard to show by direct enumeration that 7'(G') = 42 and T(G") = 5; so
if G is the 11-vertex graph having G’ and G” as components, we have T(G) =
'Y . 42.5 = 69300 by Eq. (25). This is a formidable number of permutations
4 Y )
to list, if we want to know how many of them have z; < y, for each ¢ and j.
But the calculation can be done by hand, in less than an hour, as follows. We
form the matrices A(G') and A(G"), where A;; is the number of consistent
permutations of G’ (or G”) in which z; (or y;) is equal to k. Thus the number of
permutations of G in which z; is less than y; is the (7, p) element of A(G’) times
($<Z) times the (7, ¢) element of A(G"), summed over 1 <p < 7and1 < ¢ < 4.
In other words, we want to form the matrix product A(G') - L - A(G")T, where
Lpq = (£<?). This comes to
2116 5 0 0 0 O 210 294 322 329 48169 42042 66858 64031
0 5101210 5 0 126 238 301 325 22825 16005 53295 46475
2116 5 0 0 0 O 70 175 265 315 48169 42042 66858 64031
121812 0 O 35 115 215 295 = | 22110 14850 54450 47190
0 516 21 15 65 155 260 5269 2442 27258 21131

0
101210 5 O 5 29 92 204 22825 16005 53295 46475
0 0 516 21 1 8 36 120 5269 2442 27258 21131

O - NN
oW
W oo
NN = O

0 0
00
0 5
00
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Gi o1 Gy o—e 1 G3<\1 G4l<.<i

w

[}

315 15 15 63

Fig. 36. Some graphs and their efficiencies, obtained at the beginning of a long proof
that S(12) > 29.

Thus the “best” way to hook up G’ and G” is to compare z; with ys; this gives
42042 cases with z; < yo and 69300 — 42042 = 27258 cases with 21 > ys. (By
symmetry, we could also compare z3 with y2, 25 with y3, or z7 with ys, leading to
essentially the same results.) The efficiency of the resulting graph for z; < ys is

69300
84084

which is none too good; hence it is probably a bad idea to hook G’ up with G”
in any sorting method! The point of this example is that we are able to make
such a decision without excessive calculation.

These ideas can be used to provide independent confirmation of Mark Wells’s
proof that S(12) = 30. Starting with a graph containing one vertex, we can
repeatedly try to add a comparison to one of our graphs G or to G’ ® G” (a pair
of graph components G’ and G”) in such a way that the two resulting graphs
have 12 or fewer vertices and efficiency > 12!/2%° ~ 0.89221. Whenever this is
possible, we take the resulting graph of least efficiency and add it to our set,
unless one of the two graphs is isomorphic to a graph we already have included.
If both of the resulting graphs have the same efficiency, we arbitrarily choose
one of them. A graph can be identified with its dual (obtained by reversing the
order), so long as we consider adding comparisons to G’ @ dual(G") as well as
to G' ® G”. A few of the smallest graphs obtained in this way are displayed in

Fig. 36 together with their efficiencies.
' Exactly 1649 graphs were generated, by computer, before this process ter-
minated. Since the graph was not obtained, we may
conclude that S(12) > 29. It is plausible that a similar experiment could be
performed to deduce that S(22) > 70 in a fairly reasonable amount of time, since

E(G")E(G"),
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22!/270 x5 0.952 requires extremely high efficiency to sort in 70 steps. (Only 91
of the 1649 graphs found on 12 or fewer vertices had such high efficiency.)

The intermediate results suggest strongly that S(13) = 33, so that merge
insertion would not be optimum when n = 13. It should certainly be possible to
prove that S(16) < F(16), since F(16) takes no fewer comparisons than sorting
ten elements with S(10) .comparisons and then inserting six others by binary
insertion, one at a time. There must be a way to improve upon this! But at
present, the smallest case where F'(n) is definitely known to be nonoptimum is
n = 47: After sorting 5 and 42 elements with F(5) + F(42) = 178 comparisons,
we can merge the results with 22 further comparisons, using a method due to
J. Schulte Monting, Theoretical Comp. Sci. 14 (1981), 19-37; this beats F'(47) =
201. (Glenn K. Manacher [JACM 26 (1979), 441-456] had previously proved
that infinitely many n exist with S(n) < F(n), starting with n = 189.)

The average number of comparisons. So far we have been considering
procedures that are best possible in the sense that their worst case isn’t bad;
in other words, we have looked for “minimax” procedures that minimize the
mazximum number of comparisons. Now let us look for a “minimean” procedure
that minimizes the average number of comparisons, assuming that the input is
random so that each permutation is equally likely.

Consider once again the tree representation of a sorting procedure, as shown
in Fig. 34. The average number of comparisons in that tree is

2+3+3+3+3+2
- -

averaging over all permutations. In general the average number of comparisons
in a sorting method is the external path length of the tree divided by n!. (Recall
that the external path length is the sum of the distances from the root to each of
the external nodes; see Section 2.3.4.5.) It is easy to see from the considerations
of Section 2.3.4.5 that the minimum external path length occurs in a binary tree
with NV external nodes if there are 29 — N external nodes at level ¢ — 1 and
2N — 29 at level g, where ¢ = [lg N|. (The root is at level zero.) The minimum
external path length is therefore

(g-1)(27 = N) +q(2N = 29) = (g + )N - 2°. (34)

The minimum path length can also be characterized in another interesting way:
An extended binary tree has minimum external path length for a given number
of external nodes if and only if there is a number | such that all external nodes
appear on levels | and | + 1. (See exercise 20.)

If we set ¢ =1g N + 0, where 0 < 6 < 1, the formula for minimum external
path length becomes

2

?

winy

N(lgN +1+06-2°). (35)

The function 1 + 6 — 2% is shown in Fig. 37; for 0 < @ < 1 it is positive but very
small, never exceeding

1-(1+1nln2)/In2 = 0.08607 13320 55934+ (36)
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0.1

0 0 - -
00 0.1 02 03 04 05 06 07 0.8 09 1.0
Fig. 37. The function 1+ 6 — 2°.

Thus the minimum possible average number of comparisons, obtained by dividing
(35) by N, is never less than lg N and never more than Ig N +0.0861. (This result
was first obtained by A. Gleason in 1956.)

Now if we set N = n!, we get a lower bound for the average number of
comparisons in any sorting scheme. Asymptotically speaking, this lower bound is

lgn! + O(1) = nlgn —n/In2 + O(logn). (37)

Let F(n) be the average number of comparisons performed by the merge
insertion algorithm; we have

n=12 3 4 5 6 7 8
lower bound (34) =0 2 16 112 832 6896 62368 619904
nF(n)=0 2 16 112 832 6912 62784 623232

Thus merge insertion is optimum in both senses for n < 5, but for n = 6
it averages 6912/720 = 9.6 comparisons while our lower bound says that an
average of 6896/720 = 9.577777 ... comparisons might be possible. A moment’s
reflection shows why this is true: Some “fortunate” permutations of six elements
are sorted by merge insertion after only eight comparisons, so the comparison
tree has external nodes appearing on three levels instead of two. This forces
the overall path length to be higher. Exercise 24 shows that it is possible to
construct a six-element sorting procedure that requires nine or ten comparisons
in each case; it follows that this method is superior to merge insertion, on the
average, and no worse than merge insertion in its worst case.

When n = 7, Y. Césari [Thesis (Univ. of Paris, 1968), page 37] has shown
that no sorting method can attain the lower bound 62368 on external path
length. (It is possible to prove this fact without a computer, using the results of
exercise 22.) On the other hand, he has constructed procedures that do achieve
the lower bound (34) when n =9 or 10. In general, the problem of minimizing
the average number of comparisons turns out to be substantially more difficult
than the problem of determining S(n). It may even be true that, for some n, all
methods that minimize the average number of comparisons require more than
S(n) comparisons in their worst case.

EXERCISES

1. [20] Draw the comparison trees for sorting four elements using the method of

(a) binary insertion; (b) straight two-way merging. What are the external path lengths
of these trees?

2. [M24] Prove that B(n) < L(n), and find all n for which equality holds.
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3. [M22] When equality between keys is allowed, there are 13 possible outcomes
when sorting three elements:

K, = K; = K3, K, = K2 < K3, K1 = K3 < Ko,
Ky = K3 < K, K| < K32 = K3, K; < K) = K3,
Ks<Ki=Ks, Ki<Ks<Ks, K <Ks<Ks,

K, < K; < K3, Ko < K3 < Ky, K3 < K; < K, K3 < Ky < K.

Let P, denote the number of possible outcomes when n elements are sorted with ties
allowed, so that (Po, P, P2, Ps, Py, Ps,...) = (1, 1, 3, 13, 75, 541,...). Prove that the
generating function P(z) = > ., Pn2"/n!is equal to 1/(2 — e*). Hint: Show that

Pn=Z<Z)Pn—k when n > 0.
k>0

4. [HM27] (O. A. Gross.) Determine the asymptotic value of the numbers P, of
exercise 3, as n — co. [Possible hint: Consider the partial fraction expansion of cot z.]

5. [16] When keys can be equal, each comparison may have three results instead
of two: K; < Kj, K; = K;, K; > K;. Sorting algorithms for this general situation
can be represented as extended ternary trees, in which each internal node i:j has
three subtrees; the left, middle, and right subtrees correspond respectively to the three
possible outcomes of the comparison.

Draw an extended ternary tree that defines a sorting algorithm for n = 3, when
equal keys are allowed. There should be 13 external nodes, corresponding to the 13
possible outcomes listed in exercise 3.

6. [M22] Let S'(n) be the minimum number of comparisons necessary to sort n
elements and to determine all equalities between keys, when each comparison has three
outcomes as in exercise 5. The information-theoretic argument of the text can readily
be generalized to show that S’(n) > [logs P.], where P, is the function studied in
exercises 3 and 4; but prove that, in fact, $'(n) = S(n).

7. [20] Draw an extended ternary tree in the sense of exercise 5 for sorting four
elements, when it is known that all keys are either 0 or 1. (Thus if K, < K, and
K3 < K4, we know that K1 = K3 and K> = K4!) Use the minimum average number
of comparisons, assuming that the 2 possible inputs are equally likely. Be sure to
determine all equalities that are present; for example, don’t stop sorting when you
know only that Kl S Kz S Kg S K4.

8. [26] Draw an extended ternary tree as in exercise 7 for sorting four elements,
when it is known that all keys are either —1, 0, or +1. Use the minimum average
number of comparisons, assuming that the 3* possible inputs are equally likely.

9. [M20] When sorting n elements as in exercise 7, knowing that all keys are 0 or 1,
what is the minimum number of comparisons in the worst case?

10. [M25] When sorting n elements as in exercise 7, knowing that all keys are 0 or 1,
what is the minimum average number of comparisons as a function of n?

11. [HM27] When sorting n elements as in exercise 5, and knowing that all keys are
members of the set {1,2,...,m}, let Sn(n) be the minimum number of comparisons
needed in the worst case. [Thus by exercise 6, S,(n) = S(n).] Prove that, for fixed m,
Sm(n) is asymptotically nlgm + O(1) as n — co.
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» 12. [M25] (W. G. Bouricius, circa 1954.) Suppose that equal keys may occur, but we
merely want to sort the elements {K1, K2, ..., K.} so that a permutation a; az...an
is determined with K., < Kq, < --- < K,,; we do not need to know whether or not
equality occurs between K., and K, ;.

Let us say that a comparison tree sorts a sequence of keys strongly if it will sort
the sequence in the stated sense no matter which branch is taken below the nodes i:j
for which K; = K. (The tree is binary, not ternary.)
a) Prove that a comparison tree with no redundant comparisons sorts every sequence
of keys strongly if and only if it sorts every sequence of distinct keys.
b) Prove that a comparison tree sorts every sequence of keys strongly if and only if
it sorts every sequence of zeros and ones strongly.

13. [M28] Prove (17).
14. [M2/] Find a closed form for the sum (19).

15. [M21] Determine the asymptotic behavior of B(n) and F(n) up to O(logn).
[Hint: Show that in both cases the coeflicient of n involves the function shown in
Fig. 37.]

16. [HM26] (F. Hwang and S. Lin.) Prove that F(n) > [lgn!] for n > 22.

17. [M20] Prove (29).

18. [20] If the procedure whose first steps are shown in Fig. 36 had produced the
linear graph with efficiency 12!/22°) would this have proved
that S(12) = 297

19. [40] Experiment with the following heuristic rule for deciding which pair of el-
ements to compare next while designing a comparison tree: At each stage of sorting
{K1,..., K.}, let u; be the number of keys known to be < K as a result of the com-
parisons made so far, and let v; be the number of keys known to be > K, for 1 <i < n.
Renumber the keys in terms of increasing u;/vi, so that ui/v1 < wuz/ve <+ < up/vn.
Now compare K;:K;+1 for some i that minimizes |u;viy1 — uir1vi|. (Although this
method is based on far less information than a full comparison matrix as in (24), it
appears to give optimum results in many cases.)

» 20. [M26] Prove that an extended binary tree has minimum external path length if
and only if there is a number ! such that all external nodes appear on levels [ and [+ 1
(or perhaps all on a single level ).

21. [M21] The height of an extended binary tree is the maximum level number of its
external nodes. If z is an internal node of an extended binary tree, let ¢t(z) be the
number of external nodes below z, and let [(z) denote the root of z’s left subtree. If
z is an external node, let ¢t(z) = 1. Prove that an extended binary tree has minimum
height among all binary trees with the same number of nodes if

|t(z) — 2t(1(z))] < 278N —¢(2)
for all internal nodes z.

22. [M24] Continuing exercise 21, prove that a binary tree has minimum external
path length among all binary trees with the same number of nodes if and only if

[t(@) = 2t(1(2))] <277 —4(2)  and  Jt(2) - 26(U())] < t(x) — 2MEH

for all internal nodes z. [Thus, for example, if t(x) = 67, we must have t(I(z)) = 32,

33, 34, or 35. If we merely wanted to minimize the height of the tree we could have
3 < t(I(z)) < 64, by the preceding exercise.]
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23. [10] The text proves that the average number of comparisons made by any sorting
method for n elements must be at least [lgn!] &~ nlgn. But multiple list insertion
(Program 5.2.1M) takes only O(n) units of time on the average. How can this be?

24. [27] (C. Picard.) Find a sorting tree for six elements such that all external nodes
appear on levels 10 and 11.

25. [11] If there were a sorting procedure for seven elements that achieves the min-
imum average number of comparisons predicted by the use of Eq. (34), how many
external nodes would there be on level 137

26. [M42] Find a sorting procedure for seven elements that minimizes the average
number of comparisons performed.

27. [20] Suppose it is known that the configurations K1 < K2 < K3, K1 < K3 < Kz,
Ky < K1 < K3, K; < K3 < K1, Ks < K1 < K2, K3 < K2 < K; occur with respective
probabilities .01, .25, .01, .24, .25, .24. Find a comparison tree that sorts these three
elements with the smallest average number of comparisons.

28. [40] Write a MIX program that sorts five one-word keys in the minimum possible
amount of time, and halts. (See the beginning of Section 5.2 for ground rules.)

29. [M25] (S.M. Chase.) Let a; a2 ...an bea permutation of {1,2,...,n}. Prove that
any algorithm that decides whether this permutation is even or odd (that is, whether
it has an even or odd number of inversions), based solely on comparisons between the
a’s, must make at least nlgn comparisons, even though the algorithm has only two
possible outcomes.

30. [M23] (Optimum exchange sorting.) Every exchange sorting algorithm as defined
in Section 5.2.2 can be represented as a comparison-exchange tree, namely a binary tree
structure whose internal nodes have the form 2:5 for ¢ < j, interpreted as the following
operation: “If K; < Kj, continue by taking the left branch of the tree; if K; > Kj,
continue by interchanging records ¢ and j and then taking the right branch of the tree.”
When an external node is encountered, it must be true that K; < Ky < ... < K.
Thus, a comparison-exchange tree differs from a comparison tree in that it specifies
data movement as well as comparison operations.

Let Se(n) denote the minimum number of comparison-exchanges needed, in the
worst case, to sort n elements by means of a comparison-exchange tree. Prove that
Se(n) < S(n) +n—1.

31. [M38] Continuing exercise 30, prove that S.(5) = 8.
32. [M42] Continuing exercise 31, investigate S.(n) for small values of n > 5.

33. [M30] (T. N. Hibbard.) A real-valued search tree of order z and resolution § is
an extended binary tree in which all nodes contain a nonnegative real value such that
(i) the value in each external node is < ¢, (ii) the value in each internal node is at
most the sum of the values in its two children, and (iii) the value in the root is z. The
weighted path length of such a tree is defined to be the sum, over all external nodes, of
the level of that node times the value it contains.

Prove that a real-valued search tree of order = and resolution 1 has minimum
weighted path length, taken over all such trees of the same order and resolution, if and
only if equality holds in (ii) and the following further conditions hold for all pairs of
values z¢ and z; that are contained in sibling nodes: (iv) There is no integer & > 0 such
that zo < 28 < 21 or 1 < 2% < zo. (V) [zo] — 20 + [21] — 21 < 1. (In particular if z is
an integer, condition (v) implies that all values in the tree are integers, and condition
(iv) is equivalent to the result of exercise 22.)



9.3.2 MINIMUM-COMPARISON MERGING 197

Also prove that the corresponding minimum weighted path length is z[lgz] +
[2] — 2M8=],

34. [M50] Determine the exact value of S(n) for infinitely many n.
35. [49] Determine the exact value of S(13).

36. [M50] (S. S. Kislitsyn, 1968.) Prove or disprove: Any directed acyclic graph G
with T(G) > 1 has two vertices u and v such that the digraphs G; and G2 ob-
tained from G by adding the arcs u - v and u — v are acyclic and satisfy 1 <

T(G1)/T(G2) < 2. (Thus T(G1)/T(G) always lies between 3 and 2, for some v and v.)

*5.3.2. Minimum-Comparison Merging

Let us now consider a related question: What is the best way to merge an
ordered set of m elements with an ordered set of n?7 Denoting the elements to
be merged by

Al <A< <Ay and By < By < - < By, (1)

we shall assume as in Section 5.3.1 that the m + n elements are distinct. The
A’s may appear among the B’s in (m;:”) ways, so the arguments we have used
for the sorting problem tell us immediately that at least

(") .

comparisons are required. If we set m = an and let n — oo, while « is fixed,
Stirling’s approximation tells us that

lg(ana: n) =n((1+a)lg(l+a)—alga) — 31gn+ O(1). (3)
The normal merging procedure, Algorithm 5.2.4M, takes m +n — 1 comparisons
in its worst case.

Let M(m,n) denote the function analogous to S(n), namely the minimum
number of comparisons that will always suffice to merge m things with n. By
the observations we have just made,

[lg(mﬂﬂ <M(m,n)<m+n-1 forallmn>1 (4)
m

Formula (3) shows how far apart this lower bound and upper bound can be.
When o = 1 (that is, m = n), the lower bound is 2n — 11gn + O(1), so both
bounds have the right order of magnitude but the difference between them can
be arbitrarily large. When o = 0.5 (that is, m = %n), the lower bound is

3n(lg3— 2) + O(logn),

which is about 1g3 — % ~ 0.918 times the upper bound. And as « decreases, the
bounds get farther and farther apart, since the standard merging algorithm is
primarily designed for files with m = n.
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When m = n, the merging problem has a fairly simple solution; it turns
out that the lower bound of (4), not the upper bound, is at fault. The follow-
ing theorem was discovered independently by R. L. Graham and R. M. Karp
about 1968:

Theorem M. M(m,m)=2m -1, form > 1.

Proof. Consider any algorithm that merges 4; < --- < A,, with B; < --- < By,.
When it compares 4;: B;, take the branch A; < Bj if ¢ < 7, the branch A; > B;
if { > j. Merging must eventually terminate with the configuration

Bl<A1<BZ<A2<"’<Bm<Ama (5)

since this is consistent with all the branches taken. And each of the 2m — 1

comparisons
BllAl, AliBz, BQIAQ, ey BmAm

must have been made explicitly, or else there would be at least two configurations
consistent with the known facts. For example, if A; has not been compared to
B3, the configuration

B <By< A1 <Ay < < By <Apn
is indistinguishable from (5). |
A simple modification of this proof yields the companion formula
M(m,m+1) = 2m, for m > 0. (6)

Constructing lower bounds. Theorem M shows that the “information the-
oretic” lower bound (2) can be arbitrarily far from the true value; thus the
technique used to prove Theorem M gives us another way to discover lower
bounds. Such a proof technique is often viewed as the creation of an adversary,
a pernicious being who tries to make algorithms run slowly. When an algorithm
for merging decides to compare A;: Bj, the adversary determines the fate of the
comparison so as to force the algorithm down the more difficult path. If we can
invent a suitable adversary, as in the proof of Theorem M, we can ensure that
every valid merging algorithm will have to make quite a few comparisons.

We shall make use of constrained adversaries, whose power is limited with
regard to the outcomes of certain comparisons. A merging method that is under
the influence of a constrained adversary does not know about the constraints,
so it must make the necessary comparisons even though their outcomes have
been predetermined. For example, in our proof of Theorem M we constrained all
outcomes by condition (5), yet the merging algorithm was unable to make use
of that fact in order to avoid any of the comparisons.

The constraints we shall use in the following discussion apply to the left and

right ends of the files. Left constraints are symbolized by
.- (meaning no left constraint),
\ (meaning that all outcomes must be consistent with A, < By),
/ (meaning that all outcomes must be consistent with 4, > By );
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similarly, right constraints are symbolized by
. (meaning no right constraint),
\ (meaning that all outcomes must be consistent with A,, < B,),
/ (meaning that all outcomes must be consistent with A,, > B,).

There are nine kinds of adversaries, denoted by AMp, where A is a left constraint
and pis a right constraint. For example, a \M\ adversary must say that 4; < B;
and A; < B,; a .M. adversary is unconstrained. For small values of m and n,
constrained adversaries of certain kinds are impossible; when m = 1 we obviously
can’t have a \ M/ adversary.

Let us now construct a rather complicated, but very formidable, adversary
for merging. It does not always produce optimum results, but it gives lower
bounds that cover a lot of interesting cases. Given m, n, and the left and right
constraints A and p, suppose the adversary is asked which is the greater of A;
or B;. Six strategies can be used to reduce the problem to cases of smaller m +n:

Strategy A(k,l), for i < k < m and 1 <1 < j. Say that A; < Bj, and
require that subsequent operations merge {A;,..., Ax} with {B;,...,B;_1} and
{Aps1,...,An} with {By,...,B,}. Thus future comparisons Ap: By will result
in Ay < Bjifp< kandg>1 A, > B, if p > k and ¢ < I; they will be
handled by a (k,I—1, \,.) adversary if p < k and ¢ < [; they will be handled by
an (m—k,n+1-1,.,p) adversary if p > k and ¢ > L.

Strategy B(k,l), for i < k < m and 1 < 1 < j. Say that A, < Bj, and
require that subsequent operations merge {A,,..., Ay} with {B;,..., B;} and
{Aks1,...,An} with {By,..., B}, stipulating that Ay < B; < Agyi. (Note
that B; appears in both lists to be merged. The condition Ay < B; < Ak
ensures that merging one group gives no information that could help to merge
the other.) Thus future comparisons A,: B, will result in A, < B, if p < k and
q>1; Ay > By if p > k and ¢ < [; they will be handled by a (k,[, \,\) adversary
if p<kandgq<l;byan (m—k,n+1-1,/,p) adversary if p > k and g > [.

Strategy C(k,l), for i < k < m and 1 <1 < j. Say that A; < Bj, and
require that subsequent operations merge {A, ..., Ax} with {B1,...,B;_1} and
{Ag,..., An} with {B,..., By}, stipulating that B;_; < Ax < B;. (Analogous
to Strategy B, interchanging the roles of A and B.)

Strategy A'(k,l), for 1 < k < i and j <1 < n. Say that A; > B;, and
require the merging of {A;,..., Ag—1} with {By,...,B;} and {Ay,..., A, } with
{Bi+1,---,Bn}. (Analogous to Strategy A.)

Strategy B'(k,l), for 1 < k <t and 5 <l < n. Say that A; > B;, and
require the merging of {A;,..., Ax—1} with {B1,...,B;} and {Ag,..., A} with
{Bi,...,By,}, subject to A1 < B; < Ag. (Analogous to Strategy B.)

Strategy C'(k,l), for 1 < k < i and 7 < 1 < n. Say that A; > Bj, and
require the merging of {A;,..., Ax} with {By,...,B;} and {Ay,..., A} with
{Bi+1,--.,Bn}, subject to B; < Ax < Bi4+1. (Analogous to Strategy C.)
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Because of the constraints, the strategies above cannot be used in certain
cases summarized here:

Strategy Must be omitted when
A(k,1), B(k,1), C(k,1) A=/
A(1,0), B'(%, 1), C'(L,1) A=\
A(m,1), B(m, 1), C(m,1) p=1/
A'(k,n),B'(k,n),C'(k,n) p=\

Let AMp(m,n) denote the maximum lower bound for merging that is ob-
tainable by an adversary of the class described above. Each strategy, when
applicable, gives us an inequality relating these nine functions, when the first
comparison is A;:B;, namely,

A(k,1): AMp(m,n) > 1+ AM.(k,1-1) + .Mp(m—Fk,n+1-1);
B(k,1):  AMp(m,n) > 1+ AM\(k, 1) + /Mp(m—k,n+1-1);
C(k,1):  AMp(m,n) > 1+ AM/(k,1-1) + \Mp(m+1—k,n+1-1);
Ak, D): AMp(m,n) > 1+ AM.(k-1,1) + .Mp(m+1-k,n—1);
B'(k,1): AMp(m,n) > 1+ AM\(k-1,1) + /Mp(m+1—k,n+1-1);
C'(k,1): p(m,n) > 1+ AM/(k,1) + \Mp(m+1-k,n-1).

For fixed ¢ and j, the adversary will adopt a strategy that maximizes the lower
bound given by all possible right-hand sides, when k and [ lie in the ranges
permitted by ¢ and j. Then we define AMp(m,n) to be the minimum of these
lower bounds taken over 1 < i < mand 1 < 5 < n. When m or n is zero,
AMp(m,n) is zero.

For example, consider the case m = 2 and n = 3, and suppose that our
adversary is unconstrained. If the first comparison is A, : B, the adversary may
adopt strategy A’(1,1), requiring .M.(0,1) + .M.(2,2) = 3 further comparisons.
If the first comparison is A;:Bs, the adversary may adopt strategy B(1,2),
requiring .M\(1,2) + /M.(1,2) = 4 further comparisons. No matter what
comparison A;: B; is made first, the adversary can guarantee that at least three
further comparisons must be made. Hence .M.(2,3) = 4.

It isn’t easy to do these calculations by hand, but a computer can grind out
tables of AMp functions rather quickly. There are obvious symmetries, such as

/M.(m,n) = .M\(m,n) =\M.(n,m) = .M/(n,m), (7)
by means of which we can reduce the nine functions to just four,
M.(m,n), J/M.(m,n), J/M\(m,n), and J/M/(m,n).

Table 1 shows the resulting values for all m,n < 10; our merging adversary has
been defined in such a way that

M.(m,n) < M(m,n) for all m,n > 0. (8) .
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Table 1
LOWER BOUNDS FOR MERGING, FROM THE “ADVERSARY”
M.(m,n) /M. (m,n)
1 2 3 4 5 6 7 8 910 n 1 2 3 4 5 6 7 8 910
1 1 2 2 3 3 3 3 4 4 4 1 2 2 3 3 3 3 4 4 4 1
2 2 3 4 5 5 6 6 6 7 7 1 3 4 4 5 5 6 6 7 7 2
3 2 4 5 6 7 7 8 8 9 9 1 3 5 6 7 7 8 8 9 9 3
4 3 5 6 7 8 910 10 11 11 1 4 5 7 8 9 9 10 10 11 4
5 3 5 7 8 910 11 12 12 13 1 4 6 8 9 10 11 12 12 13 5
6 3 6 7 9 10 11 12 13 14 15 1 4 6 8 10 11 12 13 14 14 6
7 3 6 8 10 11 12 13 14 15 16 1 4 7 9 10 12 13 14 15 16 7
8 4 6 8 10 12 13 14 15 16 17 1 5 7 9 11 13 14 15 16 17 8
9 4 7 9 11 12 14 15 16 17 18 1 5 8 10 11 13 15 16 17 18 9
10 4 7 9 11 13 15 16 17 18 19 1 5 8 10 12 14 15 17 18 19 10
m m
/M\(m, n) /M /(m, n)
1 -0 2 2 3 3 3 3 4 4 4 1 11 1 1 1 1 1 1 1 1
2 —c0 2 4 4 5 5 6 6 7 T 1 3 3 4 4 4 4 5 5 5 2
3 —oc 2 4 6 6 7 8 8 8 9 1 3 5 5 6 6 7 7 8 8 3
4 —c0 2 5 6 8 8 9 10 10 11 1 4 5 7 7 8 9 9 910 4
5 —c0 2 5 7 8 10 10 11 12 13 1 4 6 7 9 910 11 11 12 5
6 —co 2 5 7 9 10 12 13 14 14 1 4 6 8 9 11 11 12 13 14 6
7 -0 2 5 8 10 11 12 14 15 16 1 4 7 910 11 13 14 15 15 7
8 —co 2 6 8 10 12 13 15 16 17 1 5 7 9 11 12 14 15 16 17 8
9 —co 2 6 9 10 12 14 16 17 18 1 5 8 9 11 13 15 16 17 18 9
10 —co 2 6 9 11 13 15 16 18 19 1 5 8 10 12 14 15 17 18 19 10
1 2 3 4 5 6 7 8 910 n 1 2 3 4 5 6 7 8 910

This relation includes Theorem M as a special case, because our adversary will
use the simple strategy of that theorem when |m —n| < 1.
Let us now consider some simple relations satisfied by the M function:

M(m,n) = M(n,m); ()
M(m,n) < M(m,n+1); (10)

M (k+m,n) < M(k,n) + M(m,n); (11)

M(m,n) <max(M(m,n-1)+ 1, M(m—1,n)+1), form>1,n>1 (12)
M(m,n) < max(M(m,n-2)+1, M(m-1,n) + 2), form>1,n>2 (13)

Relation (12) comes from the usual merging procedure, if we first compare
A;:B;. Relation (13) is derived similarly, by first comparing A, : Bo; if A; > Bo,
we need M (m,n—2) more comparisons, but if A; < By, we can insert A; into
its proper place and merge {42,..., A} with {By,..., B,}. Generalizing, we
can see that if m > 1 and n > k we have

M(m,n) < max(M(m,n—k)+ 1, M(m-1,n) + 1+ [lg k1), (14)

by first comparing A; : By and using binary search if 4, < Bx.

It turns out that M (m,n) = .M.(m,n) for all m,n < 10, so Table 1 actually
gives the optimum values for merging. This can be proved by using (9)-(14)
together with special constructions for (m,n) = (2,8), (3,6), and (5,9) given in
exercises 8, 9, and 10.
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On the other hand, our adversary doesn’t always give the best possible
lower bounds; the simplest example is m = 3, n = 11, when .M.(3,11) = 9
but M(3,11) = 10. To see where the adversary has “failed” in this case, we
must study the reasons for its decisions. Further scrutiny reveals that if (4, j) #
(2,6), the adversary can find a strategy that demands 10 comparisons; but when
(i,7) = (2,6), no strategy beats Strategy A(2,4), leading to the lower bound
1+ .M.(2,3) +.M.(1,8) = 9. It is necessary but not sufficient to finish by
merging {A,, Ay} with {B1, B2, Bs} and {A3} with {B4,...,B11}, so the lower
bound fails to be sharp in this case.

Similarly it can be shown that .M.(2,38) = 10 while M (2,38) = 11, so our
adversary isn’t even good enough to solve the case m = 2. But there is an infinite
class of values for which it excels:

Theorem K. M(m,m+2) =2m +1 for m > 2;
M(m, m+3) =2m + 2 for m > 4;
M(m, m+4) =2m + 3 for m > 6.

Proof. We can in fact prove the result with M replaced by .M. ; for small m the
results have been obtained by computer, so we may assume that m is sufficiently
large. We may also assume that the first comparison is A;: B; where i < [m/2].
If 7 < we use strategy A’(7,1), obtaining

M.(m,m+d) > 14+ .M.(i—1,%) + M.(m+1—i,m+d—i) =2m+d — 1
by induction on d, for d < 4. If j > i we use strategy A(7,i+1), obtaining
M.(m,m+d) > 1+ .M.(4,7) + M.(m—i,m+d—i) = 2m +d — 1
by induction on m. |

The first two parts of Theorem K were obtained by F. Hwang and S. Lin
in 1969. Paul Stockmeyer and Frances Yao showed several years later that the
pattern evident in these three formulas holds in general, namely that the lower
bounds derived by the adversarial strategies above suffice to establish the values
M(m,m+d) = 2m +d — 1 for m > 2d — 2. [SICOMP 9 (1980), 85-90.]

Upper bounds. Now let us consider upper bounds for M(m,n); good upper
bounds correspond to efficient merging algorithms.

When m = 1 the merging problem is equivalent to an insertion problem,
and there are n + 1 places in which A; might fall among B,,..., B,. For this
case it is easy to see that any extended binary tree with n + 1 external nodes is
the tree for some merging method! (See exercise 2.) Hence we may choose an
optimum binary tree, realizing the information-theoretic lower bound

1+ [lgn]| = M(1,n) = [lg(n +1)]. (15)

Binary search (Section 6.2.1) is, of course, a simple way to attain this value.
The case m = 2 is extremely interesting, but considerably harder. It has
been solved completely by R. L. Graham, F. K. Hwang, and S. Lin (see exercises
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11, 12, and 13), who proved the general formula
M2,n) = [lgEn+1)]+ [lgBn+1)]. (16)

We have seen that the usual merging procedure is optimum when m = n,
while the rather different binary search procedure is optimum when m = 1. What
we need is an in-between method that combines the normal merging algorithm
with binary search in such a way that the best features of both are retained.
Formula (14) suggests the following algorithm, due to F. K. Hwang and S. Lin
[SICOMP 1 (1972), 31-39]:

Algorithm H (Binary merging).

H1. If m or n is zero, stop. Otherwise, if m > n, set ¢t « |lg(m/n)| and go to
step H4. Otherwise set t < |lg(n/m)].

H2. Compare A,,:Bpy1_2t. If A, is smaller, set n < n — 2t and return to
step H1.

H3. Using binary search (which requires exactly ¢ more comparisons), insert A,
into its proper place among {B,y1_2t,...,Br}. If k is maximal such that
By < A,,, set m <+ m — 1 and n < k. Return to HI.

H4. (Steps H4 and H5 are like H2 and H3, interchanging the roles of m and n,
Aand B.) If B, < Apy1-2t, set m < m — 2° and return to step HI.

H5. Insert B,, into its proper place among the A’s. If k is maximal such that
A < B, set m + k and n < n — 1. Return to H1. |

As an example of this algorithm, Table 2 shows the process of merging
the three keys {087, 503, 512} with thirteen keys {061, 154,...,908}; eight
comparisons are required in this example. The elements compared at each step
are shown in boldface type.

Table 2
EXAMPLE OF BINARY MERGING
A B Output

087 503 512|061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 512|061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 512|061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 512|061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 061 154 170 275 426 509 512 612 653 677 703 765 897 908
087 503 061 154 170 275 426 509 512 612 653 677 703 765 897 908
087 061 154 170 275 426 503 509 512 612 653 677 703 765 897 908
087 061 154 170 275 426 503 509 512 612 653 677 703 765 897 908

061 ﬁg? 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Let H(m,n) be the maximum number of comparisons required by Hwang
and Lin’s algorithm. To calculate H(m,n), we may assume that £ = n in step
H3 and k = m in step H5, since we shall prove that H(m—1,n) < H(m—1,n+1)
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for all n > m — 1 by induction on m. Thus when m < n we have
H(m,n) = max(M(m, n—2Y+1, H(m—1,n)+t+1), (17)
for 2tm < n < 2t*'m. Replace n by 2n + ¢, with e = 0 or 1, to get
H(m, 2n+¢€) = max (H(m, 2n+e—2"1) + 1, H(m—1, 2n+€)+t+2),
for 2!m < n < 2t*im; ancf it follows by induction on n that
H(m, 2n+€) = H(m,n) +m, form <mnand e=0or 1. (18)

It is also easy to see that H(m,n) = m+ n — 1 when m < n < 2m; hence a
repeated application of (18) yields the general formula

H(m,n)=m+ |n/2'| —1+tm, for m<n, t=|lg(n/m). (19)

This implies that H(m,n) < H(m,n+1) for all n > m, verifying our inductive
hypothesis about step H3.
Setting m = an and § = lg(n/m) — t gives

H(an,n) =an(14+2° -0 —1ga) + O(1), (20)

as n — oo. We know by Eq. 5.3.1-(36) that 1.9139 < 1 +2¢ — 9 < 2; hence (20)
may be compared with the information-theoretic lower bound (3). Hwang and
Lin have proved (see exercise 17) that

H(m,n) < (@(”ZZ”)] + min (m, n). (21)

The Hwang-Lin binary merging algorithm does not always give optimum
results, but it has the great virtue that it can be programmed rather easily.
It reduces to “uncentered binary search” when m = 1, and it reduces to the
usual merging procedure when m =~ n, so it represents an excellent compromise
between those two methods. Furthermore, it is optimum in many cases (see
exercise 16). Improved algorithms have been found by F. K. Hwang and D. N.
Deutsch, JACM 20 (1973), 148-159; G. K. Manacher, JACM 26 (1979), 434-
440; and most notably by C. Christen, FOCS 19 (1978), 259-266. Christen’s
merging procedure, called forward-testing-backward-insertion, saves about m/3
comparisons over Algorithm H when n/m — oo. Moreover, Christen’s procedure
achieves the lower bound .M.(m,n) = [(11lm +n — 3)/4| when 5m — 3 < n <
7m + 2[m even]|; hence it is optimum in such cases (and, remarkably, so is our
adversarial lower bound).

Formula (18) suggests that the M function itself might satisfy

M(m,n) < M(m,|n/2]) +m. (22)

This is actually true (see exercise 19). Tables of M (m,n) suggest several other
plausible relations, such as

M(m+1,n) > 1+ M(m,n) > M(m, n+1), for m < mn; (23)
M(m+1,n+1) > 2+ M(m,n); (24)

but no proof of these inequalities is known.
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EXERCISES

1. [15] Find an interesting relation between M (m,n) and the function S defined in
Section 5.3.1. [Hint: Consider S(m + n).|

2. [22] When m = 1, every merging algorithm without redundant comparisons
defines an extended binary tree with (m;’;") = n + 1 external nodes. Prove that,
conversely, every extended binary tree with n + 1 external nodes corresponds to some
merging algorithm with m = 1.

3. [M24] Prove that .M.(1,n) = M(1,n) for all n.

4. [M42] Is .M.(m,n) > [lg (™*™)] for all m and n?
5. [M30] Prove that .M.(m,n) < .M\(m,n+1).
]

6. [M26] The stated proof of Theorem K requires that a lot of cases be verified by
computer. How can the number of such cases be drastically reduced?

7. [21] Prove (11).

8. [24] Prove that M(2,8) < 6, by finding an algorithm that merges two elements
with eight others using at most six comparisons.

9. [27] Prove that three elements can be merged with six in at most seven steps.

10. [33] Prove that five elements can be merged with nine in at most twelve steps.
[Hint: Experience with the adversary suggests first comparing A;: Bz, then trying
A5:Bg if A1 < Bs ]

11. [M40] (F. Hwang, S. Lin.) Let gar = |2° 12|, gax41 = |27 22|, for k > 0, so that
(go,91,92,--.) = (1,1,2,3,4,6,9,13,19,27,38,54,77,...). Prove that it takes more
than ¢ comparisons to merge two elements with g elements, in the worst case; but two
elements can be merged with g, — 1 in at most ¢ steps. [Hint: Show that if n = g, or
n = g: — 1 and if we want to merge {A1, A2} with {B1,Ba,..., Bn} in ¢t comparisons,
we can’t do better than to compare Az: By, _; on the first step.]

12. [M21] Let Rn(i,J) be the least number of comparisons required to sort the distinct
objects {a, 8, X1,...,Xn}, given the relations

a<ﬁ, X1 < X< < X, a < Xit1, ﬁ>Xn_j.

(The condition a@ < X;41 or 8 > X,_; becomes vacuous when i > n or j > n.
Therefore R,(n,n) = M(2,n).)
Clearly, R.(0,0) = 0. Prove that
R.(i,j) =1+ min(linggmax(Rn(k—l, 7)s Ra—ik(i—k, 7)),

min max(R, (¢, k—1), Ra-k(i, j—K)))

1<k<s
for0<i<n,0<j<n,i+35>0.

13. [M42] (R. L. Graham.) Show that the solution to the recurrence in exercise 12
may be expressed as follows. Define the function G(z), for 0 < z < oo, by the rules

1, if 0<z <
G(LL‘)_‘ %+%G(8LL‘—-5), if §7>‘<LL‘§_%;
1G(2z — 1), if 3<z<
0, if 1 <z < oo
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(See Fig. 38.) Since R,(4,7) = Rn(j, 1) and since R,(0,7) = M(1,j), we may assume

that 1 <i<j<n. Let p=|lgi], g = |lgj], » = |lgn], and let t = n — 2" + 1. Then
Rn(i,j) =p+q+ Su (i, 5) + Talt, ),

where S, and T, are functions that are either O or 1:

Sn(i,7) =1 if and only if g<ror (i—2° >uand j—2" > u),
Tn(i,j) =1 if and only if p<ror(t>22"%andi—2" >v),

where u = 2PG(t/2P) and v = 2" "*G(t/2"7?).
(This may be the most formidable recurrence relation that will ever be solved!)

1.0
0.9
0.8
0.7
0.6 —

T

0.5
0.4
0.3

0.2 [

0.1

oo l—1 o+ 00011y N L]
0.00.1020304050607080910111213

Fig. 38. Graham’s function (see exercise 13).

14. [41] (F. K. Hwang.) Let har = [222%] — 1, hgeq1 = har +3-2°7% hgepn =
Ll} 2k %J for k > 3, and let the initial values be defined so that

(ho, ha, k... ) = (1,1,2,2,3,4,5,7,9, 11, 14, 18, 23, 29, 38, 48, 60, 76, ... ) .
Prove that M(3,h:) > t and M(3, hy—1) < ¢ for all ¢, thereby establishing the exact
values of M (3,n) for all n.

15. [12] Step H1 of the binary merge algorithm may require the calculation of the
expression |lg(n/m)|, for n > m. Explain how to compute this easily without division
or calculation of a logarithm.

16. [18] For which m and n is Hwang and Lin’s binary merging algorithm optimum,
for 1 <m<n<107

17. |
18. [M40] Study the average number of comparisons used by binary merge.
19. [23] Prove that the M function satisfies (22).

20. [20] Show that if M(m,n+1) < M(m+1,n) for all m < n, then M(m, n+1) <
1+ M(m,n) for all m < n.

21. [M47] Prove or disprove (23) and (24).

M25] Prove (21). [Hint: The inequality isn’t very tight.|
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22. [M43] Study the minimum average number of comparisons needed to merge m
things with n.
23. [M31]) (E. Reingold.) Let {A1,...,An} and {Bi,...,Bn} be sets containing
n elements each. Consider an algorithm that attempts to test equality of these two
sets solely by making comparisons for equality between elements. Thus, the algorithm
asks questions of the form “Is A; = B;?” for certain ¢ and 7, and it branches depending
on the answer.

By defining a suitable adversary, prove that any such algorithm must make at least
%n(n + 1) comparisons in its worst case.

24. [22] (E.L. Lawler.) What is the maximum number of comparisons needed by the
following algorithm for merging m elements with n > m elements? “Set ¢t « |lg(n/m)]
and use Algorithm 5.2.4M to merge A1, As, ..., Ay with Bye, Bygt, ..., Bj.ot, where
g = |n/2']. Then insert each A; into its proper place among the Bi.”

» 25. [25] Suppose (zi;) is an m x n matrix with nondecreasing rows and columns:
Tij < T(it1); for 1 < ¢ < m and zi; < x4 for 1 <7 < n. Show that M(m,n) is
the minimum number of comparisons needed to determine whether a given number z
is present in the matrix, if all comparisons are between z and some matrix element.

*5.3.3. Minimum-Comparison Selection

A similar class of interesting problems arises when we look for best possible
procedures to select the tth largest of n elements.

The history of this question goes back to Rev. C. L. Dodgson’s amusing
(though serious) essay on lawn tennis tournaments, which appeared in St. James’s
Gazette, August 1, 1883, pages 5—6. Dodgson— who is of course better known
as Lewis Carroll— was concerned about the unjust manner in which prizes were
awarded in tennis tournaments. Consider, for example, Fig. 39, which shows
a typical “knockout tournament” between 32 players labeled 01, 02,..., 32
In the finals, player 01 defeats player 05, so it is clear that player 01 is the
champion and deserves the first prize. The inequity arises because player 05
usually gets second prize, although someone else might well be the second best.
You can win second prize even if you are worse than half of the players in the
competition! In fact, as Dodgson observed, the second-best player wins second
prize if and only if the champion and the next-best are originally in opposite
halves of the tournament; this occurs with probability 2"~ 1/(2™ — 1), when there
are 2™ competitors, so the wrong player receives second prize almost half of the
time. If the losers of the semifinal round (players 25 and 17 in Fig. 39) compete
for third prize, it is highly unlikely that the third-best player receives third prize.

Dodgson therefore set out to design a tournament that determines the true
second- and third-best players, assuming a transitive ranking. (In other words, if
player A beats player B and B beats C, Dodgson assumed that A would beat C.)
He devised a procedure in which losers are allowed to play further games until
they are known to be definitely inferior to three other players. An example of
Dodgson’s scheme appears in Fig. 40, which is a supplementary tournament to
be run in conjunction with Fig. 39. He tried to pair off players whose records in
previous rounds were equivalent; he also tried to avoid matches in which both
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players had been defeated by the same person. In this particular example, 16
loses to 11 and 18 loses to 12 in Round 1; after 18 beats 16 in the second
round, we can eliminate 16, who is now known to be inferior to 71, 12, and 13.
In Round 3 Dodgson did not allow 19 to play with 21, since they have both
been defeated by 18 and we could not automatically eliminate the loser of 19
versus 21.

Champion = 011

F : 1
Round 5 (Finals) 01 0|5
|
| I I I
Round 4 01 25 05 17
25 29 05 11 17 18

Round 3 01 : 0|2 | |

— r 1 r 1 r | —— r 1 r 1 r !
Round2 01 03 02 04 25 26 29 30 05 06 11 12 17 20 18 21

R e B = e

Round 1 0107031002080409252826272932303105150614111612131724202318192122

Fig. 39. A knockout tournament with 32 players.

It would be nice to report that Lewis Carroll’s tournament turns out to be
optimal, but unfortunately that is not the case. His diary entry for July 23,
1883, says that he composed the essay in about six hours, and he felt “we are
now so late in the [tennis] season that it is better it should appear soon than be
written well.” His procedure makes more comparisons than necessary, and it is
not formulated precisely enough to qualify as an algorithm. On the other hand, it
has some rather interesting aspects from the standpoint of parallel computation.
And it appears to be an excellent plan for a tennis tournament, because he
built in some dramatic effects; for example, he specified that the two finalists
should sit out round 5, playing an extended match during rounds 6 and 7. But
tournament directors presumably thought the proposal was too logical, and so
Carroll’s system has apparently never been tried. Instead, a method of “seeding”
is used to keep the supposedly best players in different parts of the tree.

Third prize = 03

Round 9 03 05 Second prize = 02
~ L ]
Round 8 0|2 05
f 1
Round 7 02 03
i i
] 1 f |
Round 6 02 06 03 17
— : 1 —L 5
Round 5 02 06 07 03 11 1725
- —— 5 —
Round 4 02 20 12 06 23 0729 03 26 1118 13
5 5 — — i —
Round 3 2021 1219 0627 23 31 07 08 03042630 13 14
-~ S 5 A I,
Round 2 1922 2728 23243132 07100809 13161415

Fig. 40. Lewis Carroll’s lawn tennis tournament (played in conjunction with Fig. 39).
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In a mathematical seminar during 1929-1930, Hugo Steinhaus posed the
problem of finding the minimum number of tennis matches required to determine
the first and second best players in a tournament, when there are n > 2 players
in all. J. Schreier [Mathesis Polska 7 (1932), 154-160] gave a procedure that
requires at most n— 2+ [lgn] matches, using essentially the same method as the
first two stages in what we have called tree selection sorting (see Section 5.2.3,
Fig. 23), avoiding redundant comparisons that involve —oco. Schreier also claimed
that n — 2 + [lgn] is best possible, but his proof was incorrect, as was another
attempted proof by J. Stupecki [Colloquium Mathematicum 2 (1951), 286-290).
Thirty-two years went by before a correct, although rather complicated, proof
was finally published by S. S. Kislitsyn [Sibirskii Mat. Zhurnal 5 (1964), 557-564].

Let Vi(n) denote the minimum number of comparisons needed to determine
the tth largest of n elements, for 1 < ¢t < n, and let W;(n) be the minimum

number required to determine the largest, second largest, ..., and the tth largest,

collectively. By symmetry, we have
Vi(n) = Vay1-4(n), (1)

and it is obvious that
Vi(n) = Wi(n), (2)
Wr(n) = Wp_1(n) = S(n). (4)
We have observed in Lemma 5.2.3M that

Viln) =n— 1. (5)

In fact, there is an astonishingly simple proof of this fact, since everyone in a
tournament except the champion must lose at least one game! By extending this
idea and using an “adversary” as in Section 5.3.2, we can prove the Schreier—
Kislitsyn theorem without much difficulty:

Theorem S. Va(n) = Wa(n) =n— 2+ [lgn], forn > 2.

Proof. Assume that n players have participated in a tournament that has
determined the second-best player by some given procedure, and let a; be the
number of players who have lost j or more matches. The total number of matches
played is then a; + a3 + a3 + ---. We cannot determine the second-best player
without also determining the champion (see exercise 2), so our previous argument
shows that a; = n — 1. To complete the proof, we will show that there is always
some sequence of outcomes of the matches that makes as > [lgn] — 1.

Suppose that at the end of the tournament the champion has played (and
beaten) p players; one of these is the second best, and the others must have lost
at least one other time, so as > p — 1. Therefore we can complete the proof by
constructing an adversary who decides the results of the games in such a way
that the champion must play at least [lgn] other people.

Let the adversary declare A to be better than B if A is previously undefeated
and B has lost at least once, or if both are undefeated and B has won fewer
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matches than A at that time. In other circumstances the adversary may make
an arbitrary decision consistent with some partial ordering.

Consider the outcome of a complete tournament whose matches have been
decided by such an adversary. Let us say that “A supersedes B” if and only if A =
B or A supersedes the player who first defeated B. (Only a player’s first defeat
is relevant in this relation; a loser’s subsequent games are ignored. According
to the mechanism of the adversary, any player who first defeats another must
be previously unbeaten.) It follows that a player who won the first p matches
supersedes at most 2P players on the basis of those p contests. (This is clear
for p = 0, and for p > 0 the pth match was against someone who was either
previously beaten or who supersedes at most 2P~ ! players.) Hence the champion,
who supersedes everyone, must have played at least [lgn| matches. |

Theorem S completely resolves the problem of finding the second-best player,
in the minimax sense. Exercise 6 shows, in fact, that it is possible to give a simple
formula for the minimum number of comparisons needed to find the second
largest element of a set when an arbitrary partial ordering of the elements is
known beforehand.

What if ¢ > 2? In the paper cited above, Kislitsyn went on to consider larger
values of ¢, proving that

Win)<n—t+ > [lgj], forn>t. (6)

n+l—t<j<n

For t =1 and t = 2 we have seen that equality actually holds in this formula;
for t = 3 it can be slightly improved (see exercise 21).

We shall prove Kislitsyn’s theorem by showing that the first ¢ stages of tree
selection require at most n —t+ . ., , ...[lgj] comparisons, ignoring all of
the comparisons that involve —oo. It is interesting to note that, by Eq. 5.3.1—(3),
the right-hand side of (6) equals B(n) when t = n, and also when ¢t = n — 1;
hence tree selection and binary insertion yield the same upper bound for the
sorting problem, although they are quite different methods.

Let a be an extended binary tree with n external nodes, and let = be a
permutation of {1,2,...,n}. Place the elements of 7 into the external nodes,
from left to right in symmetric order, and fill in the internal nodes according to
the rules of a knockout tournament as in tree selection. When the resulting tree is
subjected to repeated selection operations, it defines a sequence ¢,—j ch—2...c1,
where ¢; is the number of comparisons required to bring element j to the root
of the tree when element 7 + 1 has been replaced by —oo. For example, if « is
the tree
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and if m = 5 3 1 4 2, we obtain the successive trees

(2)

c3 =2 co =0 c1 =10

If # had been 315 4 2, the sequence ¢4 c3 ¢o ¢; would have been 2 1 1 0 instead.
It is not difficult to see that ¢; is always zero.
Let u(a, ) be the multiset {¢n_1,¢n—2,...,c1} determined by a and =. If

= A

al all

and if elements 1 and 2 do not both appear in o’ or both in &, it is easy to see
that

p(a,m) = (p(a,7) + 1) W (p(a”, 7") + 1) W {0} (8)
for appropriate permutations 7’ and 7"/, where p+1 denotes the multiset obtained

by adding 1 to each element of . (See exercise 7.) On the other hand, if elements
1 and 2 both appear in o/, we have

pla,m) = (p(a,7') + €)W (u(a”, 7") + 1) w {0},

where u + ¢ denotes a multiset obtained by adding 1 to some elements of x and
0 to the others. A similar formula holds when 1 and 2 both appear in o’. Let us
say that multiset u; dominates uo if both py and po contain the same number
of elements, and if the kth largest element of u; is greater than or equal to the
kth largest element of uo for all k; and let us define u(a) to be the dominant
p(a, ), taken over all permutations 7, in the sense that pu(o) dominates p(a, )
for all 7 and p(a) = p(a, 7) for some 7. The formulas above show that

w(]) =0, u(}%) = (u(a) +1) ¥ (u(a") +1) ¥ {0}; (9)

al all

hence p(a) is the multiset of all distances from the root to the internal nodes of c.

The reader who has followed this train of thought will now see that we are
ready to prove Kislitsyn’s theorem (6). Indeed, W;(n) is less than or equal to
n — 1 plus the t — 1 largest elements of p(a), where o is any tree being used
in tree selection sorting. We may take o to be the complete binary tree with
n external nodes (see Section 2.3.4.5), when

wlo) = {llg1],llg2],..., llg(n—1)]}
= {[1g2]-1,[1lg3]-1,..., [lgn]—1}. (10)

Formula (6) follows when we consider the ¢ — 1 largest elements of this multiset.
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Kislitsyn’s theorem gives a good upper bound for Wi(n); he remarked that
V3(5) = 6 < W3(5) = 7, but he was unable to find a better bound for Vi(n) than
for Wy(n). A. Hadian and M. Sobel discovered a way to do this using replacement
selection instead of tree selection; their formula [Univ. of Minnesota, Dept. of
Statistics Report 121 (1969)],

Viln) <m—t+(t —1)[lgln+2—1)], n>t, (11)

is similar to Kislitsyn’s upper bound for Wy(n) in (6), except that each term in
the sum has been replaced by the smallest term.

Hadian and Sobel’s theorem (11) can be proved by using the following
construction: First set up a binary tree for a knockout tournament on n —t + 2
items. (This takes n — ¢t + 1 comparisons.) The largest item is greater than
n —t + 1 others, so it can’t be tth largest. Replace it, where it appears at an
external node of the tree, by one of the ¢ — 2 elements held in reserve, and find
the largest element of the resulting n —t +2; this requires at most [lg(n +2— t)'|
comparisons, because we need to recompute only one path in the tree. Repeat
this operation ¢t — 2 times in all, for each element held in reserve. Finally, replace
the currently largest element by —oco, and determine the largest of the remaining
n + 1 — t; this requires at most [lg(n +2— t)-| — 1 comparisons, and it brings
the tth largest element of the original set to the root of the tree. Summing the
comparisons yields (11).

In relation (11) we should of course replace ¢ by n+ 1 — ¢ on the right-hand
side whenever n+1—t gives a better value (as whenn = 6 and t = 3). Curiously,
the formula gives a smaller bound for V7(13) than it does for V(13). The upper
bound in (11) is exact for n < 6, but as n and t get larger it is possible to obtain
much better estimates of Vi(n).

For example, the following elegant method (due to David G. Doren) can be
used to show that V4(8) < 12. Let the elements be X,,..., Xs; first compare
X;:X, and X3: X4 and the two winners, and do the same to X5: X¢ and X7: X5
and their winners. Relabel elements so that X; < Xo < X4 > X3, X5 < X6 <
Xg > X7, then compare X5: X¢; by symmetry assume that Xo < Xg, so that we
have the configuration

(Now X; and Xg are out of contention and we must find the third largest of
{X3,...,X7}.) Compare Xo:X7, and discard the smaller; in the worst case we
have X, < X7 and we must find the third largest of

5——e6

o7

3o——o4

This can be done in V3(5) — 2 = 4 more steps, since the procedure of (11) that
acieves V3(5) = 6 begins by comparing two disjoint pairs of elements.
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Table 1
VALUES OF V;(n) FOR SMALL n

n Vi(n) Va(n) Vs(n) Va(n) Vs(n) Vs(n) Vi(n) Vs(n) Vo(n) Vie(n)
1 0

2 1 1

3 2 3 2

4 3 4 4 3

5 4 6 6 6 4

6 5 7 8§ 8 7 5

76 8 10 10 10 8 6

8 7 9 11 12 12 1 9 7

9 8 11 12 14 14 14 12 11 8

10 9 12 14° 15 16 16" 15 14® 12 9

* Exercises 10-12 give constructions that improve on Eq. (11) in these cases.
** See K. Noshita, Trans. of the IECE of Japan E59,12 (December 1976), 17-18.

Other tricks of this kind can be used to produce the results shown in Table 1;
no general method is evident as yet. The values listed for V4(9) = V5(9) and
V5(10) = V4(10) were proved optimum in 1996 by W. Gasarch, W. Kelly, and
W. Pugh [SIGACT News 27,2 (June 1996), 88-96], using a computer search.

A fairly good lower bound for the selection problem when ¢ is small was
obtained by David G. Kirkpatrick [JACM 28 (1981), 150-165]: If 2 < t <
(n+1)/2, we have

I op—t+2
|7 >n+t—3+ lg —| .
) 2 n ;[g t+j 1 02
In his Ph.D. thesis [U. of Toronto, 1974], Kirkpatrick also proved that
-1 -1
%(n)§n+1+[lg%1+[lgn5 ‘l; (13)

this upper bound matches the lower bound (12) for lg % ~ 74% of all integers n,
and it exceeds (12) by at most 1. Kirkpatrick’s analysis made it natural to
conjecture that equality holds in (13) for all n > 4, but Jutta Eusterbrock found
the surprising counterexample V5(22) = 28 [Discrete Applied Math. 41 (1993),
131-137]. Improved lower bounds for larger values of ¢ were found by S. W. Bent
and J. W. John (see exercise 26):

Vi(n) 2 n+m—2[vVm], m:2+(lg(<?>/(n+l——t))-l. (14)

This formula proves in particular that

Van(n) > <1+alg§+(1——a)lg )n—!—O(\/fr_i) (15)

l—«
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A linear method. When n is odd and ¢t = [n/2], the tth largest (and ¢th
smallest) element is called the median. According to (11), we can find the
median of n elements in ~ %nlgn comparisons; but this is only about twice as
fast as sorting, even though we are asking for much less information. For several
years, concerted efforts were made by a number of people to find an improvement
over (11) when t and n are large. Finally in 1971, Manuel Blum discovered a
method that needed only O(nloglogn) steps. Blum’s approach to the problem
suggested a new class of techniques, which led to the following construction due
to R. Rivest and R. Tarjan [J. Comp. and Sys. Sci. 7 (1973), 448-461]:

Theorem L. V;(n) < 15n — 163 for 1 <t <mn, when n > 32.

Proof. The theorem is trivial when n is small, since V;(n) < S(n) < 10n <
15n — 163 for 32 < n < 2% By adding at most 13 dummy —oo elements, we
may assume that n = 7(2¢ + 1) for some integer ¢ > 73. The following method
may now be used to select the tth largest:

Step 1. Divide the elements into 2¢ + 1 groups of seven elements each, and sort
each of the groups. This takes at most 13(2¢ 4+ 1) comparisons.

Step 2. Find the median of the 2¢ + 1 median elements obtained in Step 1,
and call it z. By induction on ¢, this takes at most Vyy1(2¢ + 1) < 30g — 148
comparisons.

Step 3. The n — 1 elements other than = have now been partitioned into three
sets (see Fig. 41):

4q + 3 elements known to be greater than z (Region B);
4q + 3 elements known to be less than z (Region C);

6q elements whose relation to z is unknown (Regions A and D).

By making 4¢ additional comparisons, we can tell exactly which of the elements
in regions A and D are less than z. (We first test = against the middle element
of each triple.)

Step 4. We have now found r elements greater than z and n — 1 — r elements
less than z, for some r. If ¢ = r + 1, z is the answer; if ¢ < 7 + 1, we need
to find the tth largest of the r large elements; and if ¢ > r 4+ 1, we need to
find the (t—1—r)th largest of the n — 1 — r small elements. The point is that
r and n — 1 — r are both less than or equal to 10¢ + 3 (the size of regions A
and D, plus either B or C). By induction on g this step therefore requires at
most 15(10¢ + 3) — 163 comparisons.
The total number of comparisons comes to at most

13(2¢ + 1) + 30q — 148 + 4q + 15(10g + 3) — 163 = 15(14q — 6) — 163.

Since we started with at least 14g — 6 elements, the proof is complete. |}

Theorem L shows that selection can always be done in linear time, namely
that Vi(n) = O(n). Of course, the method used in this proof is rather crude,
since it throws away good information in Step 4. Deeper study of the problem
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Region A Region B

= . ,

"L og+1

P,

Region C | ﬁegion D‘

Fig. 41. The selection algorithm of Rivest and Tarjan (¢ = 4).

has led to much sharper bounds; for example, A. Schonhage, M. Paterson, and
N. Pippenger [J. Comp. Sys. Sci. 13 (1976), 184-199] proved that the maximum
number of comparisons required to find the median is at most 3n4O(n logn)3/4.
See exercise 23 for a lower bound and for references to more recent results.

The average number. Instead of minimizing the maztmum number of compar-
isons, we can ask instead for an algorithm that minimizes the average number
of comparisons, assuming random order. As usual, the minimean problem is
considerably harder than the minimax problem; indeed, the minimean problem
is still unsolved even in the case t = 2. Claude Picard mentioned the problem in
his book Théorie des Questionnaires (1965), and an extensive exploration was
undertaken by Milton Sobel [Univ. of Minnesota, Dept. of Statistics Reports
113 and 114 (November 1968); Revue Frangaise d’Automatique, Informatique et
Recherche Opérationnelle 6, R-3 (December 1972), 23-68].

Sobel constructed the procedure of Fig. 42, which finds the second largest
of six elements using only 6% comparisons on the average. In the worst case,
8 comparisons are required, and this is worse than V5(6) = 7; in fact, an
exhaustive computer search by D. Hoey has shown that the best procedure for
this problem, if restricted to at most 7 comparisons, uses 6%— comparisons on
the average. Thus no procedure that finds the second largest of six elements can
be optimum in both the minimax and the minimean senses simultaneously.

Let V;(n) denote the minimum average number of comparisons needed to
find the tth largest of n elements. Table 2 shows the exact values for small n, as
computed by D. Hoey.

R. W. Floyd discovered in 1970 that the median of n elements can be found
with only %n + O(n?*/3logn) comparisons, on the average. He and R. L. Rivest
refined this method a few years later and constructed an elegant algorithm to

rove th
prove that Vi(n) < n+min(t, n—t) + O(vnlogn). (16)

(See exercises 13 and 24.)
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@ Symmetrical
. @ Symmetrical
@ Symmetrical

26 (36) (4 (4
4 12 3
4 1

Fig. 42. A procedure that selects the second largest of { X1, X2, X3, X4, X5, X6}, using
6% comparisons on the average. Each “symmetrical” branch is identical to its sibling,
with names permuted in some appropriate manner. External nodes contain “j &£” when

X is known to be the second largest and X the largest; the number of permutations
leading to such a node appears immediately below it.

Using another approach, based on a generalization of one of Sobel’s construc-
tions for ¢t = 2, David W. Matula [Washington Univ. Tech. Report AMCS-73-9
(1973)] showed that

Vi(n) <n+t[lgt](11 + Inlnn). (17)

Thus, for fixed ¢ the average amount of work can be reduced to n + O(loglog n)
comparisons. An elegant lower bound on V(n) appears in exercise 25.

The sorting and selection problems are special cases of the much more
general problem of finding a permutation of n given elements that is consistent
with a given partial ordering. A. C. Yao [SICOMP 18 (1989), 679-689] has
shown that, if the partial ordering is defined by an acyclic digraph G on n
vertices with k connected components, the minimum number of comparisons
necessary to solve such problems is always ©(lg(n!/T(G)) + n — k), in both the
worst case and on the average, where T'(G) is the total number of permutations
consistent with the partial ordering (the number of topological sortings of G).

EXERCISES

1. [15] In Lewis Carroll’s tournament (Figs. 39 and 40), why was player 18 elimi-
nated in spite of winning in Round 37
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Table 2
MINIMUM AVERAGE COMPARISONS FOR SELECTION

n Vi(n) Van) Vi(n) Vi) Vs(n) Ve(n) V7(n)
1 0
2 1 1
3 2 22 2
4 3 4 4 3
13 4
5 4 555- 512 5% 4
1 7 7 1
6 5 6% T T 61 5 .
4 509 32 509 14
7 6 32 8558 932 85% 738 6

» 2. [M25] Prove that after we have found the tth largest of n elements by a sequence
of comparisons, we also know which ¢t — 1 elements are greater than it, and which n —t
elements are less than it.

3. [20] Prove that Vi(n) > Vi(n — 1) and Wi(n) > Wi(n — 1), for 1 <t < n.
» 4. [M25] (F. Fussenegger and H. N. Gabow.) Prove that W;(n) > n—t+ [lgnt=t].
5. [10] Prove that W3(n) < Vz(n) + 1.

» 6. [M26] (R. W. Floyd.) Given n distinct elements {Xi,...,X,} and a set of
relations X; < X; for certain pairs (¢,7), we wish to find the second largest element.
If we know that X; < X; and X; < X for j # k, X, cannot possibly be the second
largest, so it can be eliminated. The resulting relations now have a form such as

.~——->>>>

namely, m groups of elements that can be represented by a multiset {l1,l2,...,lm}; the
jth group contains /; + 1 elements, one of which is known to be greater than the others.
For example, the configuration above can be described by the multiset {0,1,2,2,3,5};
when no relations are known we have a multiset of n zeros.

Let f(l1,l2,...,lm) be the minimum number of comparisons needed to find the
second largest element of such a partially ordered set. Prove that

Flla,la, ..y lm) =m — 2+ [lg(2" + 22 4 ... 1 2!m)].

[Hint: Show that the best strategy is always to compare the largest elements of the two
smallest groups, until reducing m to unity; use induction on Iy +l2 + -+ - + I + 2m.]
7. [M20] Prove (8).
8. [M21] Kislitsyn’s formula (6) is based on tree selection sorting using the complete

binary tree with n external nodes. Would a tree selection method based on some other
tree give a better bound, for any t and n?

» 9. [20] Draw a comparison tree that finds the median of five elements in at most six
steps, using the replacement-selection method of Hadian and Sobel [see (11)].

10. [35] Show that the median of seven elements can be found in at most 10 steps.



218 SORTING 5.3.3

11. [38] (K. Noshita.) Show that the median of nine elements can be found in at
most 14 steps, of which the first seven are identical to Doren’s method.

12. [21] (Hadian and Sobel.) Prove that Vi(n) < Va(n — 1) + 2. [Hint: Start by
discarding the smallest of { X1, X2, X3, Xa}.]

13. [HM28] (R. W. Floyd.) Show that if we start by finding the median element of
{X1,...,X 2/3}, using a regursively defined method, we can go on to find the median
of {X1,...,X,} with an average of %n + O(n?/®logn) comparisons.

14. [20] (M. Sobel.) Let Ui(n) be the minimum number of comparisons needed to
find the t largest of n elements, without necessarily knowing their relative order. Show
that Us(5) < 5.

15. [22] (1. Pohl.) Suppose that we are interested in minimizing space instead of time.
What is the minimum number of data words needed in memory in order to compute
the tth largest of n elements, if each element fills one word and if the elements are
input one at a time into a single register?

16. [25] (I. Pohl.) Show that we can find both the maximum and the minimum of a
set of n elements, using at most [2n] — 2 comparisons; and the latter number cannot
be lowered. [Hint: Any stage in such an algorithm can be represented as a quadruple
(a,b,c,d), where a elements have never been compared, b have won but never lost,
¢ have lost but never won, d have both won and lost. Construct an adversary.]

17. [20] (R. W. Floyd.) Show that it is possible to select, in order, both the k largest
and the [ smallest elements of a set of n elements, using at most [2n] —k — 1 +
D ont1—k<j<n 18I+ Xni1icj<n [1gJ] comparisons.

18. [M20] If groups of size 5, not 7, had been used in the proof of Theorem L, what
theorem would have been obtained?

19. [M42] Extend Table 2 to n = 8.

20. [M47] What is the asymptotic value of Va(n) —n, as n — 0o?

21. [32] (P.V.Ramanan and L. Hyafil.) Prove that W, (2" +25+17%) < 2% 4 2k+i=t 4
(t — 1)(k — 1), when k > t > 2; also show that equality holds for infinitely many
k and t, because of exercise 4. [Hint: Maintain two knockout trees and merge their
results cleverly.]

22. [24] (David G. Kirkpatrick.) Show that when 4-2* <n —1 <5-2*, the upper
bound (11) for V3(n) can be reduced by 1 as follows: (i) Form four knockout trees of
size 2*. (i) Find the minimum of the four maxima, and discard all 2 elements of its
tree. (iii) Using the known information, build a single knockout tree of size n —1 — 2",
(iv) Continue as in the proof of (11).

23. [M49) What is the asymptotic value of Vi 21(n), as n — oo?

24. [HM40] Prove that Vi(n) < n +t+ O(Vnlogn) for t < [n/2]. Hint: Show
that with this many comparisons we can in fact find both the |t — vtlnn |th and
[t + VtInn|th elements, after which the tth is easily located.

25. [M35] (W. Cunto and J. I. Munro.) Prove that V;(n) > n+t—2 when t < [n/2].
26. [M32] (A.Schénhage, 1974.) (a) In the notation of exercise 14, prove that U;(n) >
min(24+Ui(n—1),2+U;—1(n—1)) for n > 3. [Hint: Construct an adversary by reducing
from n to n — 1 as soon as the current partial ordering is not composed entirely of
components having the form + or «—.] (b) Similarly, prove that

Ui(n) > min(2 + Ug(n — 1),3 + Ui—1(n — 1),3 4+ Us(n — 2))
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for n > 5, by constructing an adversary that deals with components «, ~—, >,
«~>~. (c) Therefore we have U;(n) > n +t + min([(n —¢t)/2[,t) — 3 for 1 <t <n/2.
[The inequalities in (a) and (b) apply also when V or W replaces U, thereby establishing
the optimality of several entries in Table 1.]

» 27. [M34] A randomized adversary is an adversary algorithm that is allowed to flip
coins as it makes decisions.

a) Let A be a randomized adversary and let Pr(l) be the probability that A reaches
leaf [ of a given comparison tree. Show that if Pr(l) < p for all [, the height of the
comparison tree is > lg(1/p).

b) Consider the following adversary for the problem of selecting the tth largest of n
elements, given integer parameters ¢ and r to be selected later:

A1. Choose a random set T of t elements; all (Tt‘) possibilities are equally likely.
(We will ensure that the t — 1 largest elements belong to T.) Let S =
{1,...,n}\ T be the other elements, and set Sp < S, Ty + T'; Sp and Tp will
represent elements that might become the ¢th largest.

A2. While |Tp| > r, decide all comparisons z:y as follows: If x € S and y € T, say
that ¢ < y. If x € S and y € S, flip a coin to decide, and remove the smaller
element from Sy if it was in Sp. If z € T and y € T, flip a coin to decide, and
remove the larger element from Tp if it was in Tp.

A3. Assoon as |Tp| = r, partition the elements into three classes P, Q, R as follows:
If |So| < q,let P=S,Q =Ty, R=T)\Ty. Otherwise, for each y € Ty, let
C(y) be the elements of S already compared with y, and choose yo so that
|C(yo)] is minimum. Let P = (S \ So) UC(yo), @ = (So \ C(vo)) U {%o},
R =T\ {yo}. Decide all future comparisons z:y by saying that elements of P
are less than elements of @), and elements of @ are less than elements of R;
flip a coin when z and y are in the same class.
Prove that if 1 < r <t and if |C(yo)] < ¢ — r at the beginning of step A3, each
leaf is reached with probability < (n+1—t)/(2" ¢ (Tt‘)) Hint: Show that at least n—gq
coin flips are made.

c) Continuing (b), show that we have

Vi(n) >min(n— 14+ (r—1)(g+1—7), n—q+1g((})/(n+1-1))),

for all integers ¢ and r.
d) Establish (14) by choosing ¢ and 7.

*5.3.4. Networks for Sorting

In this section we shall study a constrained type of sorting that is particularly
interesting because of its applications and its rich underlying theory. The new
constraint is to insist on an oblivious sequence of comparisons, in the sense that
whenever we compare K; versus K; the subsequent comparisons for the case
K; < Kj are exactly the same as for the case K; > Kj;, but with ¢ and j
interchanged.

Figure 43(a) shows a comparison tree in which this homogeneity condition is
satisfied. Notice that every level has the same number of comparisons, so there
are 2™ outcomes after m comparisons have been made. But n! is not a power
of 2; some of the comparisons must therefore be redundant, in the sense that
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one of their subtrees can never arise in practice. In other words, some branches
of the tree must make more comparisons than necessary, in order to ensure that
all of the corresponding branches of the tree will sort properly.

Since each path from top to bottom of such a tree determines the entire tree,
such a sorting scheme is most easily represented as a network; see Fig. 43(b).
The boxes in such a network represent “comparator modules” that have two
inputs (represented as lines coming into the module from above) and two outputs
(represented as lines leading downward); the left-hand output is the smaller of
the two inputs, and the right-hand output is the larger. At the bottom of the
network, K7 is the smallest of {K1, Ko, K3, K4}, K the second smallest, etc.
It is not difficult to prove that any sorting network corresponds to an oblivious
comparison tree in the sense above, and any oblivious tree corresponds to a
network of comparator modules.

Incidentally, we may note that comparator modules are fairly easy to manu-
facture, from an engineering point of view. For example, assume that the lines
contain binary numbers, where one bit enters each module per unit time, most
significant bit first. Each comparator module has three states, and behaves as
follows:

Time ¢ Time (¢t + 1)
State Inputs State Outputs
0 00 0 00
0 01 1 01
0 10 2 01
0 11 0 11
1 Ty 1 Ty
2 Ty 2 yx

Initially all modules are in state 0 and are outputting 0 0. A module enters
either state 1 or state 2 as soon as its inputs differ. Numbers that begin to be
transmitted at the top of Fig. 43(b) at time ¢t will begin to be output at the
bottom, in sorted order, at time ¢ + 3, if a suitable delay element is attached to
the K| and K lines.

K '—4—1»—1———1—»—1—-——1——1——1{{
Ky —1——4—-4—F—4—9—3 ‘1*—2 — K, Fig. 44. Another way to rep-
resent the network of Fig. 43
K3 —3——3 2—4¢—2—1—2——3— K| . ’
8 T 3 as it sorts the sequence of four
Ky —2—2-——-3—3—-4—4— K] numbers (4,1,3,2).

In order to develop the theory of sorting networks it is convenient to repre-
sent them in a slightly different way, illustrated in Fig. 44. Here numbers enter at
the left, and comparator modules are represented by vertical connections between
two lines; each comparator causes an interchange of its inputs, if necessary, so
that the larger number sinks to the lower line after passing the comparator. At
the right of the diagram all the numbers are in order from top to bottom.
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Our previous studies of optimal sorting have concentrated on minimizing
the number of comparisons, with little or no regard for any underlying data
movement or for the complexity of the decision structure that may be necessary.
In this respect sorting networks have obvious advantages, since the data can be
maintained in n locations and the decision structure is “straight line” — there
is no need to remember the results of previous comparisons, since the plan is
immutably fixed in advance. Another important advantage of sorting networks
is that we can usually overlap several of the operations, performing them simul-
taneously (on a suitable machine). For example, the five steps in Figs. 43 and 44
can be collapsed into three when simultaneous nonoverlapping comparisons are
allowed, since the first two and the second two can be combined. We shall exploit
this property of sorting networks later in this section. Thus sorting networks can
be very useful, although it is not at all obvious that efficient n-element sorting
networks can be constructed for large n; we may find that many additional
comparisons are needed in order to keep the decision structure oblivious.

1 T [ p— z)
T2 ! To !
2 2
T3 b——— T T3 ——t Ty
l ! __L l
Tn—1 * To_q Tn—1 To_q
’ ’
Tn T, Tn T,
. P ’
Tn+1 Toyl Tn41 Thi1

(a) (b)

Fig. 45. Making (n + 1)-sorters from n-sorters: (a) insertion, (b) selection.

There are two simple ways to construct a sorting network for n+ 1 elements
when an n-element network is given, using either the principle of insertion or
the principle of selection. Figure 45(a) shows how the (n + 1)st element can
be inserted into its proper place after the first n elements have been sorted;
and part (b) of the figure shows how the largest element can be selected before
we proceed to sort the remaining ones. Repeated application of Fig. 45(a) gives
the network analog of straight insertion sorting (Algorithm 5.2.1S), and repeated
application of Fig. 45(b) yields the network analog of the bubble sort (Algorithm
5.2.2B). Figure 46 shows the corresponding six-element networks.

HEE R

(b)
Fig. 46. Network analogs of elementary internal sorting schemes, obtained by applying
the constructions of Fig. 45 repeatedly: (a) straight insertion, (b) bubble sort.

0—1
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@

Fig. 47. With parallelism, straight insertion = bubble sort!

Notice that when we collapse either network together to allow simultaneous
operations, both methods actually reduce to the same “triangular” (2n — 3)-
stage procedure (Fig. 47).

It is easy to prove that the network of Figs. 43 and 44 will sort any set
of four numbers into order, since the first four comparators route the smallest
and the largest elements to the correct places, and the last comparator puts the
remaining two elements in order. But it is not always so easy to tell whether or
not a given network will sort all possible input sequences; for example, both

and

are valid 4-element sorting networks, but the proofs of their validity are not triv-
ial. It would be sufficient to test each n-element network on all n! permutations
of n distinct numbers, but in fact we can get by with far fewer tests:

Theorem Z (Zero-one principle). If a network with n input lines sorts all
2™ sequences of 0s and ls into nondecreasing order, it will sort any arbitrary
sequence of n numbers into nondecreasing order.

Proof. (This is a special case of Bouricius’s theorem, exercise 5.3.1-12.) If f(x)
is any monotonic function, with f(z) < f(y) whenever z < y, and if a given
network transforms (zy,...,z,) into (y1,...,Yn), then it is easy to see that the
network will transform (f(zy),..., f(zn)) into (f(v1),-.., flyn)). U yi > vips
for some i, consider the monotonic function f that takes all numbers < y; into 0
and all numbers > y; into 1; this defines a sequence (f(z1),..., f(zn)) of Os and
1s that is not sorted by the network. Hence if all 0—1 sequences are sorted, we
have y, < yeq for 1 <i<n. |

The zero-one principle is quite helpful in the construction of sorting net-
works. As a nontrivial example, we can derive a generalized version of Batcher’s
“merge exchange” sort (Algorithm 5.2.2M). The idea is to sort m + n elements
by sorting the first m and the last n independently, then applying an (m,n)-
merging network to the result. An (m,n)-merging network can be constructed
inductively as follows:

a) If m = 0 or n = 0, the network is empty. If m = n = 1, the network is a
single comparator module.

b) If mn > 1, let the sequences to be merged be (z1,...,z,) and (y1,...,Yn)-
Merge the “odd sequences” (r1,Z3,...,Tarm/21—1) and (Y1,¥3,. .-, Y2[n/2]-1),
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Fig. 48. The odd-even merge, when m =4 and n = 7.
obtaining the sorted result (vi,vz,...,V[m/21+[n/2]); @and merge the “even se-
quences” (T2,Z4,...,T2(m/2)) and (Y2,Y4,---,Y2[n/2)), Obtaining the sorted re-
sult (w1, ws, ..., Wm/2|+|ns2))- Finally, apply the comparison-interchange oper-
ations

. . sy ¥
wyiv2, W2:U3, W3iV4, ...y Wim/2|4|n/2] Y (1)

to the sequence

(v1, w1, V2, W, V3, W3, - -,V m/2]+|n/2)> W|m/2]+|n/2], ¥ >V "); (2)

the result will be sorted. (!) Here v* = V|m/2)+[n/2]+1 does not exist if both m
and n are even, and v** = V|, /2) 4 [n/2)+2 dOes not exist unless both m and n are
odd; the total number of comparator modules indicated in (1) is [(m+n—1)/2].

Batcher’s (m,n)-merging network is called the odd-even merge. A (4,7)-merge
constructed according to these principles is illustrated in Fig. 48.

To prove that this rather strange merging procedure actually works, when
mn > 1, we use the zero-one principle, testing it on all sequences of 0s and 1s.
After the initial m-sort and n-sort, the sequence (z1,...,Z,,) will consist of k
Os followed by m — k 1s, and the sequence (y1,...,¥m) will be I 0s followed by
n —1 1s, for some k and [. Hence the sequence (vy,v2,...) will consist of exactly
[k/2] + [1/2] Os, followed by 1s; and (wq,ws,...) will consist of |k/2] + [I/2]
Os, followed by 1s. Now here’s the point:

(Tk/21 +11/21) = (Lk/2] + [1/2]) =0, 1, or 2. (3)

If this difference is 0 or 1, the sequence (2) is already in order, and if the
difference is 2 one of the comparison-interchanges in (1) will fix everything up.
This completes the proof. (Note that the zero-one principle reduces the merging
problem from a consideration of (™*") cases to only (m +1)(n + 1), represented
by the two parameters k and [.)
Let C(m,n) be the number of comparator modules used in the odd-even
merge for m and n, not counting the initial m-sort and n-sort; we have
mn, if mn <1;
C(m,n)= :
{ C([m/2],[n/2])+C(lm/2], n/2])+|(m+n—-1)/2], if mn>1.
(4)
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This is not an especially simple function of m and n, in general, but by noting
that C(1,n) = n and that

Cim+1,n+1)—C(m,n)

=1+C(lm/2] +1,[n/2] +1) = C(Im/2],|n/2]), ifmn>1,

we can derive the relation

Cm+1,n+1)—C(m,n) = [lgm| +2+ [n/2le™F | ifn>m>1. (5)
Consequently

C(m,m +r) = B(m) + m + Rn(r), for m > 0 and r > 0, (6)

where B(m) is the “binary insertion” function Y ;. [lgk] of Eq. 5.3.1-(3), and
where R, (r) denotes the sum of the first m terms of the series

0] [ 2 [ 5 L+

In particular, when 7 = 0 we have the important special case

C(m,m) = B(m) +m. (3)

Furthermore if t = [lgm],

Ry(r+29 =Rp(r)+1-207 422072 4. 4207120 4oy
= Ry (r) +m+t-271

Hence C(m,n + 2%) — C(m,n) has a simple form, and

t
C(m,n) = (—2— + g) n+ O(1), for m fixed, n — oo, t = [lgm]; (9)
the O(1) term is an eventually periodic function of n, with period length 2¢. As

n — co we have C(n,n) = nlgn + O(n), by Eq. (8) and exercise 5.3.1-15.

Minimum-comparison networks. Let $(n) be the minimum number of
comparators needed in a sorting network for n elements; clearly S (n) > S(n),
where S(n) is the minimum number of comparisons needed in an not-necessarily-
oblivious sorting procedure (see Section 5.3.1). We have S(4) = 5 = S(4), so
the new constraint causes no loss of efficiency when n = 4; but already when
n = 5 it turns out that $(5) = 9 while S(5) = 7. The problem of determining
S(n) seems to be even harder than the problem of determining S(n); even the
asymptotic behavior of §(n) is still unknown.

It is interesting to trace the history of this problem, since each step was
forged with some difficulty. Sorting networks were first explored by P. N. Arm-
strong, R. J. Nelson, and D. J. O’Connor, about 1954 [see U.S. Patent 3029413];
in the words of their patent attorney, “By the use of skill, it is possible to
design economical n-line sorting switches using a reduced number of two-line
sorting switches.” After observing that S(n + 1) < S(n) + n, they gave special
constructions for 4 < n < g, using 5, 9, 12, 18, and 19 comparators, respectively.
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Then Nelson worked together with R. C. Bose to show that S(2™) < 3" — 2
for all n; hence S(n) = O(n'83) = O(n!%%%). Bose and Nelson published their
interesting method in JACM 9 (1962), 282-296, where they conjectured that it
was best possible; T. N. Hibbard [JACM 10 (1963), 142-150] found a similar
but slightly simpler construction that used the same number of comparisons,
thereby reinforcing the conjecture.

In 1964, R. W. Floyd and D. E. Knuth found a new way to approach the
problem, leading to an asymptotic bound of the form S(n) = O(nl*+*/ m).
Working independently, K. E. Batcher discovered the general merging strategy
outlined above. Using a number of comparators defined by the recursion

c(1)=0, e(n)=e(fn/2]) +e(ln/2]) + C([n/2], In/2)) forn>2, (10)
he proved (see exercise 5.2.2-14) that
c(2)) = (2 —t+4)2t72 1,

consequently S(n) = O(n(logn)?). Neither Floyd and Knuth nor Batcher pub-
lished their constructions until some time later [Notices of the Amer. Math. Soc.
14 (1967), 283; Proc. AFIPS Spring Joint Computer Conf. 32 (1968), 307-314].

Several people have found ways to reduce the number of comparators used
by Batcher’s merge-exchange construction; the following table shows the best
upper bounds currently known for S (n):

n=12345 6 7 8 910 11 12 13 14 15 16
g(n):0135912 16 19 26 31 37 41 48 53 59 63 (11)
S(n)<01359 1216 19 25 29 35 39 45 51 56 60

Since S(n) < ¢(n) for 8 < n < 16, merge exchange is nonoptimal for all n > 8.
When n < 8, merge exchange uses the same number of comparators as the
construction of Bose and Nelson. Floyd and Knuth proved in 1964-1966 that
the values listed for S(n) are ezact when n < 8 [see A Survey of Combinatorial
Theory (North-Holland, 1973), 163-172]; the values of S(n) for n > 8 are still
not known.

Constructions that lead to the values in (11) are shown in Fig. 49. The
network for n = 9, based on an interesting three-way merge, was found by R. W.
Floyd in 1964; its validity can be established by using the general principle
described in exercise 27. The network for n = 10 was discovered by A. Waksman
in 1969, by regarding the inputs as permutations of {1,2,...,10} and trying to
reduce as much as possible the number of values that can appear on each line at
a given stage, while maintaining some symmetry.

The network shown for n = 13 has quite a different pedigree: Hughes Juillé
[Lecture Notes in Comp. Sci. 929 (1995), 246-260] used a computer program
to construct it, by simulating an evolutionary process of genetic breeding. The
network exhibits no obvious rhyme or reason, but it works— and it’s shorter
than any other construction devised so far by human ratiocination.

A 62-comparator sorting network for 16 elements was found by G. Shapiro
in 1969, and this was rather surprising since Batcher’s method (63 comparisons)
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Fig. 49. Efficient sorting networks.

would appear to be at its best when n is a power of 2. Soon after hearing of
Shapiro’s construction, M. W. Green tripled the amount of surprise by finding
the 60-comparison sorter in Fig. 49. The first portion of Green’s construction
is fairly easy to understand; after the 32 comparison/interchanges to the left of
the dotted line have been made, the lines can be labeled with the 16 subsets of
{a,b,c,d}, in such a way that the line labeled s is known to contain a number less
than or equal to the contents of the line labeled ¢ whenever s is a subset of t. The
state of the sort at this point is discussed further in exercise 32. Comparisons
made on subsequent levels of Green’s network become increasingly mysterious,
however, and as yet nobody has seen how to generalize the construction in order
to obtain correspondingly efficient networks for higher values of n.

Shapiro and Green also discovered the network shown for n = 12. When
n = 11, 14, or 15, good networks can be found by removing the bottom line of
the network for n + 1, together with all comparators touching that line.
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The best sorting network currently known for 256 elements, due to D. Van
Voorhis, shows that §(256) < 3651, compared to 3839 by Batcher’s method.
[See R. L. Drysdale and F. H. Young, SICOMP 4 (1975), 264-270.] As n — oo,
it turns out in fact that S(n) = O(nlogn); this astonishing upper bound was
proved by Ajtai, Komlés, and Szemerédi in Combinatorica 3 (1983), 1-19. The
networks they constructed are not of practical interest, since many comparators
were introduced just to save a factor of logn; Batcher’s method is much better,
unless n exceeds the total memory capacity of all computers on earth! But the
theorem of Ajtai, Komlds, and Szemerédi does establish the true asymptotic
growth rate of S(n), up to a constant factor.

Minimum-time networks. In physical realizations of sorting networks, and
on parallel computers, it is possible to do nonoverlapping comparison-exchanges
at the same time; therefore it is natural to try to minimize the delay time. A
moment’s reflection shows that the delay time of a sorting network is equal to
the maximum number of comparators in contact with any “path” through the
network, if we define a path to consist of any left-to-right route that possibly
switches lines at the comparators. We can put a sequence number on each
comparator indicating the earliest time it can be executed; this is one higher than
the maximum of the sequence numbers of the comparators that occur earlier on
its input lines. (See Fig. 50(a); part (b) of the figure shows the same network
redrawn so that each comparison is done at the earliest possible moment.)

1 2 31 2 3 44 35 6 6 1 2 3 4 5 6
| G — G .
l — 1 i
. . l . -~ o ) N
G ! .| l

] 1

(a) (b)

Fig. 50. Doing each comparison at the earliest possible time.

Batcher’s odd-even merging network described above takes Tg(m,n) units
of time, where Tg(m,0) = Ts(0,n) =0, Ts(1,1) =1, and

Ts(m,n) = 1+ max(Ts(|m/2}, [n/2]), Ts([m/2],[n/2])) for mn > 2.

We can use these relations to prove that Tg(m,n+1) > Ts(m,n), by induction;
hence Tg(m,n) = 1+ Tg([m/2],[n/2]) for mn > 2, and it follows that

Tg(m,n) =1+ [lgmax(m,n)], for mn > 1. (12)

Exercise 5 shows that Batcher’s sorting method therefore has a delay time of

(1 + [21gn1) | (s)

Let T'(n) be the minimum achievable delay time in any sorting network for
n elements. It is possible to improve some of the networks described above so
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Fig. 51. Sorting networks that are the fastest known, when comparisons are performed
in parallel.

that they have smaller delay time but use no more comparators, as shown for
n =6 and n =9 in Fig. 51, and for n = 10 in exercise 7. Still smaller delay time
can be achieved if we add one or two extra comparator modules, as shown in
the remarkable networks for n = 10, 12, and 16 in Fig. 51. These constructions
yield the following upper bounds on T'(n) for small n:

n=1234567891011 1213 14 15 16 ”
T(n)<013355667 7 8 8 9 9 9 9 14

For n < 10 the values given here are known to be exact (see exercise 4). The
networks in Fig. 51 merit careful study, because it is by no means obvious that
they always sort; they were discovered in 1969-1971 by G. Shapiro (n = 6, 9,
12) and D. Van Voorhis (n = 10, 16).
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Merging networks. Let M (m,n) denote the minimum number of comparator
modules needed in a network that merges m elements z; < --- < z,, with n
elements y; < --- < y,, to form the sorted sequence 21 < -+ < 2;,4,. At present
no merging networks have been discovered that are superior to the odd-even
merge described above; hence the function C(m,n) in (6) represents the best
upper bound known for M(m,n).

R. W. Floyd has discovered an interesting way to find lower bounds for this
merging problem.

Theorem F. M(Zn, 2n) > ZM(n,n) +mn, foralln > 1.

Proof. Consider a network with M (2n,2n) comparator modules, capable of
sorting all input sequences (21,..., 2an) such that 2; < z3 < -+ < 24,1 and
29 < zg < -+ < z4,. We may assume that each module replaces (z;,2;) by
(min(z;, z;), max(z;, z;) ), for some i < j (see exercise 16). The comparators can
therefore be divided into three classes:

a) 1< 2nand j < 2n.

b) i > 2n and j > 2n.

¢) 1 <2n and j > 2n.
Class (a) must contain at least M(n, n) comparators, since 2ap41, 22n+2; - - - , Z4n
may be already in their final position when the merge starts; similarly, there
are at least M(n,n) comparators in class (b). Furthermore the input sequence
(0,1,0,1,...,0,1) shows that class (c) contains at least n comparators, since n
zeros must move from {22,411, -, 2an) t0 {21,...,22n). |

Repeated use of Theorem F proves that M(2™,2™) > 2(m + 2)2™; hence

M(n,n) > snlgn+0(n). We know from Theorem 5.3.2M that merging without
the network restriction requires only M(n,n) = 2n — 1 comparisons; hence we
have proved that merging with networks is intrinsically harder than merging in
general.

The odd-even merge shows that

M(m,n) < C(m,n) = $(m+ n)lgmin(m,n) + O(m + n).
P. B. Miltersen, M. Paterson, and J. Tarui [JACM 43 (1996), 147-165] have
improved Theorem F by establishing the lower bound
M(m,n) > 3((m +n)lg(m +1) — m/In2) for 1 <m <n.

Consequently M(m,n) = 3(m + n)lgmin(m,n) + O(m + n).
The exact formula M(2,n) = C(2,n) = [3n] has been proved by A. C. Yao

and F. F. Yao [JACM 23 (1976), 566-571]. The value of M (m,n) is also known
to equal C(m,n) for m = n < 5; see exercise 9.

Bitonic sorting. When simultaneous comparisons are allowed, we have seen
in Eq. (12) that the odd-even merge uses [lg(Zn)] units of delay time, when
1 < m < n. Batcher has devised another type of network for merging, called a
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Fig. 52. Batcher’s bitonic sorter of order 7.

bitonic sorter, which lowers the delay time to [lg(m + n)] although it requires
more comparator modules. [See U.S. Patent 3428946 (1969).]

Let us say that a sequence (21, ..., 2p) of p numbers is bitonic if z; > --- 2>
2z <o < zp for some k, 1 <k <p. (Compare this with the ordinary definition
of “monotonic” sequences.) A bitonic sorter of order p is a comparator network
that is capable of sorting any bitonic sequence of length p into nondecreasing
order. The problem of merging z; < -+ < Ty With y1 < -+ < yp is a special
case of the bitonic sorting problem, since merging can be done by applying a
bitonic sorter of order m + n to the sequence (Tpm,...,T1,Y1,---1Yn)-

Notice that when a sequence (21,...,2p) is bitonic, so are all of its sub-
sequences. Shortly after Batcher discovered the odd-even merging networks, he
observed that we can construct a bitonic sorter of order p in an analogous way,
by first sorting the bitonic subsequences (z1, 23, 25, . . . ) and (22,24, 26, - . . ) inde-
pendently, then comparing and interchanging 2;:22, 23:24, .. .. (See exercise 10
for a proof.) If C'(p) is the corresponding number of comparator modules, we
have

C'(p) = C'([p/2]) + C'(lp/2]) + lp/2],  forp=2 (15)
and the delay time is clearly [lgp]. Figure 52 shows the bitonic sorter of order 7
constructed in this way: It can be used as a (3,4)- as well as a (2,5)-merging
network, with three units of delay; the odd-even merge for m = 2 and n = 5
saves one comparator but adds one more level of delay.

Batcher’s bitonic sorter of order 2! is particularly interesting; it consists of
t levels of 2t~! comparators each. If we number the input lines zp, 21, ..., 22t 1,
element z; is compared to z; on level [ if and only if 7 and j differ only in the
Ith most significant bit of their binary representations. This simple structure
leads to parallel sorting networks that are as fast as merge exchange, Algorithm
5.2.2M, but considerably easier to implement. (See exercises 11 and 13.)

Bitonic merging is optimum, in the sense that no parallel merging method
based on simultaneous disjoint comparisons can sort in fewer than [lg(m + n)|
stages, whether it works obliviously or not. (See exercise 46.) Another way to
achieve this optimum time, with fewer comparisons but a slightly more compli-
cated control logic, is discussed in exercise 57.

When 1 < m < n, the nth smallest output of an (m,n) merging network
depends on 2m + [m < n] of the inputs (see exercise 29). If it can be computed
by comparators with [ levels of delay, it involves at most 2! of the inputs; hence
2t > 2m + [m<n], and | > [lg(2m + [m <n])|. Batcher has shown [Report
GER-14122 (Akron, Ohio: Goodyear Aerospace Corporation, 1968)] that this
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Fig. 53. Merging one item with six others, with multiple fanout, in order to achieve
the minimum possible delay time.

minimum delay time is achievable if we allow “multiple fanout” in the network,
namely the splitting of lines so that the same number is fed to many modules
at once. For example, one of his networks, capable of merging one item with n
others after only two levels of delay, is illustrated for n = 6 in Fig. 53. Of course,
networks with multiple fanout do not conform to our conventions, and it is fairly
easy to see that any (1,n) merging network without multiple fanout must have
a delay time of lg(n + 1) or more. (See exercise 45.)

Selection networks. We can also use networks to approach the problem of
Section 5.3.3. Let U;(n) denote the minimum number of comparators required
in a network that moves the t largest of n distinct inputs into ¢ specified output
lines; the numbers are allowed to appear in any order on these output lines.
Let V;(n) denote the minimum number of comparators required to move the tth
largest of n distinct inputs into a specified output line; and let Wt(n) denote the
minimum number of comparators required to move the t largest of n distinct
inputs into ¢ specified output lines in nondecreasing order. It is not difficult to
deduce (see exercise 17) that

ﬁt(n) < V}(n) < Wt(n) (16)

Suppose first that we have 2t elements (z1, ..., T2:) and we wish to select the
largest ¢t. V. E. Alekseev [Kibernetika 5, 5 (1969), 99-103] has observed that we
can do the job by first sorting (z1,...,:) and (41, ..,T2), then comparing
and interchanging

1 T2, To1T9:_1, e TyiTig- (17)

Since none of these pairs can contain more than one of the largest ¢ elements
(why?), Alekseev’s procedure must select the largest ¢ elements.

If we want to select the t largest of nt elements, we can apply Alekseev’s
procedure n — 1 times, eliminating ¢ elements each time; hence

Uu(nt) < (n—1)(25(¢) + t). (18)
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(1,8) (1,7) (1,5) (1,5) (1,4)
(1,8) (2,8) (2,7) (2,6) (2,4)
(1,8) (1,7) (2,7) (3,7) (2,4)
(1,8) (2,8) (4,8) (4,8) (1,4)
(1,8) (1,7) (1,5) (1,5) (5,8)
(1,8) (2,8) (2,7) (2,6) (5,7)
(1,8) (1,7) (2,7) (3,7) (5,7)
(1,8) (2,8) (4,8) (4,8) (5,8)

Fig. 54. Separating the largest four from the smallest four. (Numbers on these lines
are used in the proof of Theorem A.)

Alekseev also derived an interesting lower bound for the selection problem:
Theorem A. Ui(n) > (n—t)[lg(t + 1)].

Proof. 1t is most convenient to consider the equivalent problem of selecting the
smallest t elements. We can attach numbers (I, u) to each line of a comparator
network, as shown in Fig. 54, where [ and u denote respectively the minimum
and maximum values that can appear at that position when the input is a
permutation of {1,2,...,n}. Let [; and [; be the lower bounds on lines i and j
before a comparison of z;:z;, and let /] and I} be the corresponding lower bounds
after the comparison. It is obvious that I! = min(l,,[.); exercise 24 proves the

11
(nonobvious) relation ’
<L+ 1 (19)

0 0 0 0 0
0 1 1 1 1
0 0 1 2 1
0 1 2 2 0
0 0 0 0 3
0 1 1 1 3
0 0 1 2 3
0 1 2 2 3

Fig. 55. Another interpretation for the network of Fig. 54.

Now let us reinterpret the network operations in another way (see Fig. 55):
All input lines are assumed to contain zero, and each “comparator” now places
the smaller of its inputs on the upper line and the larger plus one on the lower
line. The resulting numbers (m;, ms,...,m,) have the property that

2m >, (20)
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Table 1
COMPARISONS NEEDED IN SELECTION NETWORKS (Ut(n), Vt(n), Wt(n))
=1 t=2 t=3 t=4 t=25 t=26
n=1 (0,0,0)
n=2 (1,1,1) (0,1,1)
n=3 (2,2,2) (2,3,3) (0,23)
n=4 (3,3,3) (4,55 (3,550 (0,3,5)
n=5 (4,4,4) (67,7 (678 (479 (0,49
n=6 (555 (89,9 (810,10) (8,10,1

2) (5,9,12) (0,5,12)

throughout the network, since this holds initially and it is preserved by each
comparator because of (19). Furthermore, the final value of

my+msg+ -+ my

is the total number of comparators in the network, since each comparator adds
unity to this sum.

If the network selects the smallest ¢ numbers, n — ¢ of the [; are > t + 1;
hence n — t of the m; must be > [lg(t + 1)] |

The lower bound in Theorem A turns out to be exact when ¢ = 1 and when
t = 2 (see exercise 19). Table 1 gives some values of U,(n), Vi(n), and W;(n) for
small t and n. Andrew Yao [Ph.D. thesis, U. of Illinois (1975)] determined the
asymptotic behavior of Uy(n) for fixed ¢, by showing that Us(n) = 2n+lgn+0(1)
and U, (n) = n[lg(t + 1)] + O((logn)!'s t1) as n — oo; the minimum delay time
is lgn + |lgt]lglgn + O(logloglogn). N. Pippenger [SICOMP 20 (1991), 878~
887] has proved by nonconstructive methods that for any € > 0 there exist
selection networks with U in/21(n) < (2+€)nlgn, whenever n is sufficiently large
(depending on ¢).

EXERCISES — First Set

Several of the following exercises develop the theory of sorting networks in detail, and
it is convenient to introduce some notation. We let [i:j] stand for a comparison/
interchange module. A network with n inputs and r comparator modules is written
[41:71][i2:72] - . - [ir : jr], Wwhere each of the i’s and j’s is < n; we shall call it an n-network
for short. A network is called standard if 14 < jq for 1 < g < r. Thus, for example,
Fig. 44 on page 221 depicts a standard 4-network, denoted by the comparator sequence
[1:2][3:4][1:3][2:4][2:3].

The text’s convention for drawing network diagrams represents only standard
networks; all comparators [¢: 7] are represented by a line from 7 to j, where 1 < j. When
nonstandard networks must be drawn, we can use an arrow from 1 to j, indicating that
the larger number goes to the point of the arrow. For example, Fig. 56 illustrates
a nonstandard network for 16 elements, whose comparators are [1:2][4:3][5:6][8:7] etc.
Exercise 11 proves that Fig. 56 is a sorting network.

If £ = (z1,...,Zn) is an n-vector and « is an n-network, we write za for the
vector of numbers {(za)1,. .., (xa)n) produced by the network. For brevity, we also let
aVb = max(a, b), aAb = min(a, b), @ = 1—a. Thus (z[i:j]); = ziAz;, (z[i:f]); = z:Va;,
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Fig. 56. A nonstandard sorting network based on bitonic sorting.
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and (x[i:§])x = zx when i # k # j. We say a is a sorting network if (za); < (za)it1
for all x and for 1 < ¢ < n.

The symbol e(i) stands for a vector that has 1 in position 7, 0 elsewhere; thus
(et); = 6;;. The symbol D, stands for the set of all 2" n-place vectors of 0s and 1s,
and P, stands for the set of all n! vectors that are permutations of {1,2,...,n}. We
write z Ay and z V y for the vectors (1 Ay1,...,Tn Ayn) and (1 VY1,...,Zn V Yn),
and we write z < y if 2; < y; for all i. Thus ¢ <y if and only if xVy = y if and only if
z Ay =z. If x and y are in D,,, we say that = covers y if x = (y V e(9)) # y for some i.
Finally for all « in D,, we let v(z) be the number of 1s in z, and {(z) the number of Os;
thus v(z) + {(z) = n.

1. [20] Draw a network diagram for the odd-even merge when m = 3 and n = 5.

2. [22] Show that V. Pratt’s sorting algorithm (exercise 5.2.1-30) leads to a sorting
network for n elements that has approximately (log, n)(logs n) levels of delay. Draw
the corresponding network for n = 12.

3. [M20] (K.E. Batcher.) Find a simple relation between C(m, m—1) and C(m, m).
4. [M23] Prove that T'(6) = 5.

5. [M16] Prove that (13) is the delay time associated with the sorting network
outlined in (10).

6. [28] Let T(n) be the minimum number of stages needed to sort n distinct numbers
by making simultaneous disjoint comparisons (without necessarily obeying the network
constraint); such comparisons can be represented as a node containing a set of pairs
{i1:1,12:72,.-.,%r:jr } where i1, 71,12, j2, ..., r, jr are distinct, with 2" branches below
this node for the respective cases

<Ki1 < ij K, < Kj2’ o K < Kj'r>’
<Ki1 >Kj1,Ki2 < Kj,, vy K, <Kj7‘>7 etc.

Prove that T'(5) = T'(6) = 5.
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7. [25] Show that if the final three comparators of the network for n = 10 in Fig. 49
are replaced by the “weaker” sequence [5:6][4:5](6:7], the network will still sort.

8. [M20] Prove that M (mi+ma, n1+nz) > M(ml,nl) + M(ma, nz) + min(m, n2),
for mi,mz,Mn1, N2 Z 0.

9. [M25] (R. W. Floyd.) Prove that M(3,3) = 6, M(4,4) = 9, M(5,5) = 13.

10. [M22] Prove that Batcher’s bitonic sorter, as defined in the remarks preceding
(15), is valid. [Hint: It is only necessary to prove that all sequences consisting of k 1s
followed by I 0Os followed by n — k — | 1s will be sorted.]

11. [M23] Prove that Batcher’s bitonic sorter of order 2* will not only sort sequences
(z0,21,---,29¢_1) for which zg > -+- > zx < -+ < z5¢_q, it also will sort any sequence
for which z9 < --- < zx > -+ > 25t _,. [As a consequence, the network in Fig. 56 will
sort 16 elements, since each stage consists of bitonic sorters or reverse-order bitonic
sorters, applied to sequences that have been sorted in opposite directions.]

12. [M20] Prove or disprove: If  and y are bitonic sequences of the same length, so
arex Vy and T Ay.

13. [24] (H.S. Stone.) Show that a sorting network for 2* elements can be constructed
by following the pattern illustrated for t = 4 in Fig. 57. Each of the t* steps in this
scheme consists of a “perfect shuffle” of the first 27! elements with the last 2t~
followed by simultaneous operations performed on 2'~1 pairs of adjacent elements.
Each of the latter operations is either “0” (no operation), “4+” (a standard comparator
module), or “~” (a reverse comparator module). The sorting proceeds in t stages of
t steps each; during the last stage all operations are “4”. During stage s, for s < t, we
do t— s steps in which all operations are “0”, followed by s steps in which the operations
within step g consist alternately of 297! “4” followed by 297! “~" forg=1,2,...,s.
[Note that this sorting scheme could be performed by a fairly simple device whose
circuitry performs one “shuffle-and-operate” step and feeds the output lines back into
the input. The first three steps in Fig. 57 could of course be eliminated; they have
been retained only to make the pattern clear. Stone notes that the same pattern
“shuffle/operate” occurs in several other algorithms, such as the fast Fourier transform
(see 4.6.4—(40)).]
14. [M27] (V. E. Alekseev.) Let @ = [i1:71] ... [ir:jr] be an n-network; for 1 < s <r
we define o® = [i1:41] ... [th_1:Js_1)[ts:ds] - - - [tr 1 4r], where the 7} and j;, are obtained
from ix and jx by changing i, to j; and changing js to ¢; wherever they appear. For
example, if o = [1:2](3:4][1:3][2:4][2:3], then o* = [1:4][3:2][1:3][2:4][2:3].

a) Prove that D,a = Dn(a®).

b) Prove that (a®)" = (a)°.

c) A conjugate of o is any network of the form (... ((a®)%?)...)%. Prove that « has
at most 2"~ ! conjugates.

d) Let go(z) = [z € Draj, and let fo(z) = (Ziy V2;,) A+ A (Z:, V ;). Prove that
ga(z) = V{fo(z) | @ is a conjugate of a}.

e) Let G, be the directed graph with vertices {1,...,n} and with arcs i, — js for
1 < s < r. Prove that « is a sorting network if and only if G,/ has an oriented
path from i to i+ 1 for 1 <7 < n and for all @' conjugate to a. [This condition is
somewhat remarkable, since G, does not depend on the order of the comparators
in a.]

15. [20] Find a nonstandard sorting network for four elements that has only five
comparator modules.
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16. [M22] Prove that the following algorithm transforms any sorting network [i1: 1]
...[ir:j) into a standard sorting network of the same length:

T1. Let g be the smallest index such that 74 > jg. If no such index exists, stop.

T2. Change all occurrences of i; to jg, and all occurrences of jq to ig4, in all
comparators [is:js] for g < s <. Return to T1. |

Thus, [4: 1][3:2][1:3][2:4][1:2][3:4] is first transformed into [1:4][3:2][4:3](2:1][4:2](3:1],
then [1:4][2:3][4:2)[3:1][4:3][2:1], then [1:4][2:3][2:4][3:1][2:3][4:1], etc., until the
standard network [1:4][2:3][2:4][1:3][1:2][3:4] is obtained.
17. [M25] Let Dy, be the set of all (7) sequences (z1,...,zn) of Os and 1s having
exactly ¢t 1s. Show that Ui(n) is the minimum number of comparators needed in a
network that sorts all the elements of Din; Vi(n) is the minimum number needed to
sort Din U Dgs_1yn; and W;(n) is the minimum number needed to sort U0<k<t Di,..

18. [M20] Prove that a network that finds the median of 2t — 1 elements requires at
least (t—1)[1g(t+1)]+[lgt] comparator modules. [Hint: See the proof of Theorem A.]

19. [M22] Prove that Uz(n) = 2n —4 and Va(n) = 2n — 3, for all n > 2.
20. [24] Prove that V3(5) = 7.

21. [21] True or false: Inserting a new standard comparator into any standard sorting
network yields another standard sorting network.

22. [M17] Let a be any n-network, and let z and y be n-vectors.
a) Prove that z <y implies that za < ya.
b) Prove that z-y < (za)-(ya), where z-y denotes the dot product z1y1 4+ - +ZnYn.

23. [M18] Let a be an n-network. Prove that there is a permutation p € Pn such
that (pa); = j if and only if there are vectors z and y in Dn such that z covers y,

(za); =1, (ya)s =0 and {(y) = J.
24. [M21] (V.E. Alekseev.) Let a be an n-network, and for 1 <k < n let

lx = min{(pa)x | P € P}, ur = max{(pa)x | p € Pn}

denote the lower and upper bounds on the range of values that may appear in line & of
the output. Let I and u}, be defined similarly for the network o’ = a[i:j]. Prove that

=LA, <l +1, u; > ug +u; — (n+1), wi =u; Vuj.
[Hint: Given vectors « and y in D, with (za); = (ya); =0, {(z) =L, and ((y) = I,
find a vector z in D, with (z&); =0, {(2) <l +1;)

25. [M30] Let lx and ux be as defined in exercise 24. Prove that all integers between
Iy and uk inclusive are in the set {(pa)x | p in Pr}.

26. [M24] (R.W. Floyd.) Let a be an n-network. Prove that one can determine the
set Dpo = {za |« in D, } from the set Pra = {pa | p in P,}; conversely, P,a can be
determined from Dj,a.

27. [M20] Let z and y be vectors, and let za and ya be sorted. Prove that (za); <
(ya); if and only if, for every choice of j elements from y, we can choose ¢ elements
from z such that every chosen z element is < some chosen y element. Use this principle
to prove that if we sort the rows of any matrix, then sort the columns, the rows will
remain in order.
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» 28. [M20] The following diagram illustrates the fact that we can systematically write
down formulas for the contents of all lines in a sorting network in terms of the inputs:

a-—w——a/\b—w»———(a/\b)/\(C/\d) (@anbd)A(cnd)

b aVh (aVvb)A(cVd) —e——((aVD)A(cVA)A((aAb)V (cAd)

c—e—cAd (aAb)V(cNd) —eo—— ((aVD)A(cVaA)V((@aAb)V(cAd)
) ) ————

d—=b—cVd———-e—(aVb)V(cvd (aVb)V(cVd)
Using the commutative laws £ Ay = yAz, xVy = yV, the associative laws z A (yAz) =
(xAY) Az, zV(yVz)=(xVy)Vz the distributive laws z A (y Vz) = (z Ay) V(T A 2),
zV(yAz) = (xVy)A(zVz), the absorption laws z A (zVy) =z V(xAy) ==z
and the idempotent laws ¢ Az = ¢ V ¢ = z, we can reduce the formulas at the right
of this network to (a AbAcAd), (aAbAC)V(aAbAd)V(aAcAd)V (bAcAA),
(aAb)V(ance)V(aAnd)V(bAc)V (bAD)V (cAd),and aVbVcV d, respectively.
Prove that, in general, the tth largest element of {z1,...,z.,} is given by the
“elementary symmetric function”

0,5(931,...,:%):\/{:):il/\:):i2/\~-/\:):¢t |1 <id1 <ia<---<iy <m}

[There are (Tt’) terms being V’d together. Thus the problem of finding minimum-cost
sorting networks is equivalent to the problem of computing the elementary symmetric
functions with a minimum of “and/or” circuits, where at every stage we are required
to replace two quantities ¢ and ¥ by ¢ Ay and ¢ V ¥.]

29. [M20] Given that 1 < z2 < z3 and y1 < Y2 < y3 < ya < ys, and that z; < 22 <

- < zg is the result of merging the z’s with the y’s, find formulas for each of the z’s
in terms of the x’s and the y’s, using the operators A and V.

30. [HM24] Prove that any formula involving A and V and the independent variables
{z1,...,zn} can be reduced using the identities in exercise 28 to a “canonical” form
71V T2 V- -V Tk, where k > 1, each 1 has the form A{z; | jin S;} where S, is a
subset of {1,2,...,n}, and no set S; is included in S; for ¢ # j. Prove also that two
such canonical forms are equal for all z1,...,z, if and only if they are identical (up to
order).

31. [M24] (R. Dedekind, 1897.) Let §, be the number of distinct canonical forms on
Z1,...,Tn in the sense of exercise 30. Thus §; = 1, d2 = 4, and 63 = 18. What is 647
32. [M28] (M. W. Green.) Let G; = {00,01, 11}, and let G141 be the set of all strings
B¢ipw such that 6, ¢, ¥, w have length 2°~! and 8¢, Yw, 8¢, and ¢w are in G;. Let
a be the network consisting of the first four levels of the 16-sorter shown in Fig. 49.
Show that Diga = G4, and prove that it has exactly d4 + 2 elements. (See exercise 31.)

» 33. [M22] Not all 6, of the functions of (x1,...,zn) in exercise 31 can appear in
comparator networks. In fact, prove that the function (z1 Az2) V (z2 Azs) V (x3 Axa)
cannot appear as an output of any comparator network on (x1,...,ZTn).

34. [23] Is the following a sorting network?

1
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35. [20] Prove that any standard sorting network must contain each of the adjacent
comparators [i:i+1], for 1 <7 < n, at least once.

» 36. [22] The network of Fig. 47 involves only adjacent comparisons [i:741]; let us call
such a network primitive.
a) Prove that a primitive sorting network for n elements must have at least (’2‘)
comparators. [Hint: Consider the inversions of a permutation. ]
b) (R. W. Floyd, 1964.) Let a be a primitive network for n elements, and let z be a
vector such that (za); > (za); for some i < j. Prove that (ya):; > (ya);, where

y is the vector (n,n—1,...,1).
¢) As a consequence of (b), a primitive network is a sorting network if and only if it
sorts the single vector (n,n—1,...,1).

37. [M22] The odd-even transposition sort for n numbers, n > 3, is a network n levels
deep with %n(n — 1) comparators, arranged in a brick-like pattern as shown in Fig. 58.
(When n is even, there are two possibilities.) Such a sort is especially easy to implement
in hardware, since only two kinds of actions are performed alternatively. Prove that
such a network is, in fact, a valid sorting network. [Hint: See exercise 36.]

Py & Py

n=>5 n==6 n==06

Fig. 58. The odd-even transposition sort.

» 38. [43] Let N = (’2‘) Find a one-to-one correspondence between Young tableaux of

shape (n—1,n—2,...,1) and primitive sorting networks [1:414+1] ... [in:in+1]. [Con-
sequently by Theorem 5.1.4H there are exactly
NI

1n-13n-25n-3 __ (2n — 3)1

such sorting networks.] Hint: Exercise 36(c) shows that primitive networks without
redundant comparators correspond to paths from 12...n ton...21 in polyhedra like
Fig. 1 in Section 5.1.1.

39. [25] Suppose that a primitive comparator network on n lines is known to sort the
single input 1010 ... 10 correctly. (See exercise 36; assume that n is even.) Show that
its “middle third,” consisting of all comparators that involve only lines [n/3] through
[2n/3] inclusive, will sort all inputs.

40. [HM44) Comparators [i1:31+1][¢2:42+1]...[i,:i,41] are chosen at random, with
each value of iy € {1,2,...,n — 1} equally likely; the process stops when the network
contains a bubble sort configuration like that of Fig. 47 as a subnetwork. Prove that
r < 4n? + \/n lgn, except with probability O(n~10%9),

41. [M47] Comparators [i1:j1]{i2:j2] - - . [ir:jr] are chosen at random, with each irre-
dundant choice 1 < ik < jx < n equally likely; the process stops when a sorting network
has been obtained. Estimate the expected value of r; is it O(n'™) for all € > 07

» 42. [25] (D. Van Voorhis.) Prove that S(n) > S(n — 1) + [lgn].
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43. 48] Find an (m,n) merging network with fewer than C(m,n) comparators, or
prove that no such network exists.

44. [50] Find the exact value of S(n) for some n > 8.

45. [M20] Prove that any (1, n)-merging network without multiple fanout must have
at least [lg(n + 1)1 levels of delay.

46. [30] (M. Aigner.) Show that the minimum number of stages needed to merge m
elements with n, using any algorithm that does simultaneous disjoint comparisons as in
exercise 6, is at least [lg(m-+n)]|; hence the bitonic merging network has optimum delay.

47. [47] Is the function T'(n) of exercise 6 strictly less than T(n) for some n?

48. [26] We can interpret sorting networks in another way, letting each line carry
a multiset of m numbers instead of a single number; under this interpretation, the
operation [i:j] replaces z; and z;, respectively, by z; Az; and z; V z;, the least m and
the greatest m of the 2m numbers z; W z;. (For example, the diagram

—{3,5} —— {1,3} —{1,3} ——{1,2} {1,2} {1,2} —
— {1,8} —— {5,8} —— {5, 8} —— {5,8} —¢— {5, 7} —p— {2,3} —

—{2,9} —— {2,9} —— {2,2} —o— {2,3} ——{2,3} —— {5, 7} —

— {2, 7} —— {2, 7} —e— {7,9} —— {7,9} —— {8,9} —— {8,9} —

illustrates this interpretation when m = 2; each comparator merges its inputs and
separates the lower half from the upper half.)

If a and b are multisets of m numbers each, we say that a < b if and only if
a Ab = a (equivalently, a ¥ b = b; the largest element of a is less than or equal to the
smallest of b). Thus a Ab <K a V¥ b. ,

Let a be an n-network, and let z = (x1,...,zn) be a vector in which each z; is
a multiset of m elements. Prove that if (za); is not < (za); in the interpretation
above, there is a vector y in D, such that (ya); = 1 and (ya); = 0. [Consequently, a
sorting network for n elements becomes a sorting network for mn elements if we replace
comparisons by m-way merges. Figure 59 shows an 8-element sorter constructed from
a 4-element sorter by using this observation.)

T_“ Jr—ﬂ iHr [ o ]

Fig. 59. An 8-sorter constructed from a 4-sorter, by using the merging interpretation.

49. [M23] Show that, in the notation of exercise 48, (z Ay) Az = z A (y A 2) and
(xVy)Vz=zV (yV 2); however (zV y) A z is not always equal to (z A 2) V¥ (y A 2),
and (zAy) V¥ (x A2)V (YA z) does not always equal the middle m elements of zWyw 2.
Find a correct formula, in terms of z, y, z and the A and VY operations, for those middle
elements.
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50. [HM46] Explore the properties of the A and V operations defined in exercise 48.
Is it possible to characterize all of the identities in this algebra in some nice way, or
to derive them all from a finite set of identities? In this regard, identities such as
chzAz=cAz, orzA(zVY(zA(zVy))) =z A(zVy), which hold only for m <2,
are of comparatively little interest; consider only the identities that are true for all m.
51. [M25] (R. L. Graham.) The comparator [i:j] is called redundant in the network
aifi:jlas if either (zai); ¥ (zai); for all vectors z, or (zai); > (zai); for all
vectors z. Prove that if a is a network with r irredundant comparators, there are
at least r distinct ordered pairs (7, j) of distinct indices such that (za); < (za); for all
vectors z. (Consequently, a network with no redundant comparators contains at most
(3) modules.)

0 0
T d

i ! ) % 3
3 - 3
1 + b 1
5 b4 5
8 b4 . 8
7 4 7
8 : b 8
9 b4 9
10 : b 10
11 b 11
12 : 13
13 : 13
14 b 14
15 e 15
16 . 16
17 3 17
18 b 18
19 . 19
20 b 20
21 de 21
22 4 23
: £ .
24 .

35 3 g 25
%? 99 2?

L @
28 o, g 28
29 »n Q 29
3 2 50
w0

33 33
33 33
33 34
35 35
36 38
37 37
38 38
3g 3g
10 10
a1 a1
42 42
43 43

Fig. 61. A family of networks whose ability to sort is difficult to verify, illustrated for
m = 3 and n = 5. (See exercise 52.)

52. [32] (M. O. Rabin, 1980.) Prove that it is intrinsically difficult to decide in
general whether a sequence of comparators defines a sorting network, by considering
networks of the form sketched in Fig. 61. It is convenient to number the inputs zo to
zn, where N = 2mn + m + 2n; the positive integers m and n are parameters. The
first comparators are [j:j + 2nk] for 1 < j < 2n and 1 < k < m. Then we have
[27—1:24][0:25] for 1 < j < n, in parallel with a special subnetwork that uses only
indices > 2n. Next we compare [0:2mn+2n+j] for 1 < j < m. And finally there is
a complete sorting network for (x1,...,zn), followed by [0:1][1:2]...[N—t—1:N—t],
where t = mn +n + 1.

a) Describe all inputs (zo, z1, ..., zN) that are not sorted by such a network, in terms
of the behavior of the special subnetwork.

b) Given a set of clauses such as (y1 Vy2 V %3) A (F2 V ys V §a) A ..., explain how
to construct a special subnetwork such that Fig. 61 sorts all inputs if and only if
the clauses are unsatisfiable. [Hence the task of deciding whether a comparator
sequence forms a sorting network is co-NP-complete, in the sense of Section 7.9.]
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53. [30] (Periodic sorting networks.) The following two 16-networks illustrate general
recursive constructions of t-level networks for n = 2! in the case t = 4:

1 ) :

i ' )

P D 1 ¢

) G ’ B¢

T 1 :

) S ' 1

: 1 1 ¢

: ’ » D

1 T :

N ’ 4

% 1 1 T

: ’ ' B

—T T v

‘—y ’ :

4+ 4+
(a) (b)

If we number the input lines from 0 to 2* — 1, the [th level in case (a) has comparators
[i:4] where i mod 2!+t < 2¢7! and j = i @ (2'7'7! — 1); there are ¢2‘~! comparators

altogether, as in the bitonic merge. In case (b) the first-level comparators are [25:2j41]
for 0 < j < 2" !, and the lth-level comparators for 2 <[ < t are [25 + 1:25 + 2t+1‘l]
for 0 < j < 27! —2'7% there are (¢t — 1)2t_l 4+ 1 comparators altogether, as in the
odd-even merge.

If the input numbers are 2*-ordered in the sense of Theorem 5.2.1H, for some
k > 1, prove that both networks yield outputs that are 2¥=1_ordered. Therefore we
can sort 2' numbers by passing them through either network ¢ times. [When ¢ is large,
these sorting networks use roughly twice as many comparisons as Algorithm 5.2.2M;
but the total delay time is the same as in Fig. 57, and the implementation is simpler
because the same network is used repeatedly.]

54. [42] Study the properties of sorting networks made from m-sorter modules instead
of 2-sorters. (For example, G. Shapiro has constructed the network

which sorts 16 elements using fourteen 4-sorters. Is this the best possible? Prove that
m? elements can be sorted with at most 16 levels of m-sorters, when m is sufficiently
large.)

55. [28] A permutation network is a sequence of modules [¢1:71] ... [¢,: -] where each
module [:7] can be set by external controls to pass its inputs unchanged or to switch
z; and z; (irrespective of the values of z; and z;,), and such that each permutation
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of the inputs is achievable on the output lines by some setting of the modules. Every
sorting network is clearly a permutation network, but the converse is not true: Find a
permutation network for five elements that has only eight modules.

56. [25] Suppose the bit vector z € Dy, is not sorted. Show that there is a standard
n-network a, that fails to sort z, although it sorts all other elements of D,,.

57. [M85] The even-odd merge is similar to Batcher’s odd-even merge, except that
when mn > 2 it recursively merges the sequence (Zm mod 241, -+;ZTm-3,Lm-1) With
(Y1,Y35- -, Y2[ny21-1) and (Z(m+1) mod 241y Tm=2, Tm) With (y2,Ya,...,Y2|n/2|) be-
fore making a set of [m/2] + [n/2] — 1 comparison-interchanges analogous to (1).
Show that the even-odd merge achieves the optimum delay time [lg(m + n)] of bitonic
merging, without making more comparisons than the bitonic method. In fact, prove
that the number of comparisons A(m,n) made by even-odd merging satisfies C(m, n) <
A(m,n) < 2(m+ n)lgmin(m,n) + m + In.

EXERCISES — Second Set

The following exercises deal with several different types of optimality questions related
to sorting. The first few problems are based on an interesting “multihead” general-
ization of the bubble sort, investigated by P. N. Armstrong and R. J. Nelson as early
as 1954. [See U.S. Patents 3029413, 3034102.] Let 1 = hy < ha < -+ < h;y = n be
an increasing sequence of integers; we shall call it a “head sequence” of length m and
span n, and we shall use it to define a special kind of sorting method. The sorting of
records R ... Ry proceeds in several passes, and each pass consists of N +n —1 steps.
On step j, for j =1—-n,2-mn, ..., N — 1, the records R; 1], Bj4n[2s- - Bjtnm]
are examined and rearranged if necessary so that their keys are in order. (We say
that R;inp, ..., Rjtrpm) are “under the read-write heads.” When j + hlk] is <1 or
> N, record R,k is left out of consideration; in effect, the keys Ko, K1, K—2,... are
treated as —oo and Kn+1,KnN+2,... are treated as +o0o. Therefore step j is actually
trivial when j < —h[m — 1] or j > N — h[2].)

For example, the following table shows one pass of a sort when m =3, N =9,
andh1 :1, h2:2, h3:4:

K—Q K——l KO Kl K2 K3 K4 KS K6 K? KS K9 KlO Kll K12

j=-3 3 1 4 5 9 2 6 8 7

j=-2 3 1 4 5 9 2 6 8 7

j=- 3 1 4 5 9 2 6 8 7

i=0 1 3 4 5 9 2 6 8 7

j=1 1 3 4 5 9 2 6 8 7

j=2 1 3 2 4 9 5 6 8 7

j= 1 3 2 4 6 5 9 8 7

j=4 1 3 2 4 5 6 9 8 7

j=5 1 3 2 4 5 6 7 8 9

j=6 1 3 2 4 5 6 7 8 9

j=7 1 3 2 4 5 6 7 8 9
j=8 1 3 2 4 5 6 7 8 9 o

When m = 2, hy = 1, and hz = 2, this multihead method reduces to the bubble sort
(Algorithm 5.2.2B).
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58. [21] (James Dugundji.) Prove that if h{k + 1] = h[k] + 1 for some k, 1 < k < m,
the multihead sorter defined above will eventually sort any input file in a finite number
of passes. But if h[k + 1] > hl[k] + 2 for 1 < k < m, the input might never become
sorted.

- 59. [30] (Armstrong and Nelson.) Given that h[k + 1] < h[k] +k for 1 < k < m, and
N > n—1, prove that the largest n — 1 elements always move to their final destination
on the first pass. [Hint: Use the zero-one principle; when sorting Os and 1s, with fewer
than n 1s, prove that it is impossible to have all heads sensing a 1 unless all Os lie to
the left of the heads.]

Prove that sorting will be complete in at most [(IN —1)/(n — 1)] passes when the
heads satisfy the given conditions. Is there an input file that requires this many passes?

60. [26] If n = N, prove that the first pass can be guaranteed to place the smallest
key into position R; if and only if h[k + 1] < 2h[k] for 1 < k < m.

61. [34] (J. Hopcroft.) A “perfect sorter” for N elements is a multihead sorter
with N = n that always finishes in one pass. Exercise 59 proves that the sequence
(hi,ha, ha, hay ... hm) = (1,2,4,7,...,1 + (’;)) gives a perfect sorter for N = (’;’) +1
elements, using m = (v/8N — 7+1)/2 heads. For example, the head sequence (1,2, 4,7,
11,16, 22) is a perfect sorter for 22 elements.

Prove that, in fact, the head sequence (1,2,4,7,11,16,23) is a perfect sorter for
23 elements.

62. [49] Study the largest N for which m-head perfect sorters exist, given m. Is
N = O(m?)?

63. [23] (V. Pratt.) When each head hy is in position 27" for 1 < k < m, how many
passes are necessary to sort the sequence z; z3...29m—1 of Os and 1s where z; = 0 if
and only if j is a power of 27

64. [24] (Uniform sorting.) The tree of Fig. 34 in Section 5.3.1 makes the comparison
2:3 in both branches on level 1, and on level 2 it compares 1:3 in each branch unless
that comparison would be redundant. In general, we can consider the class of all sorting
algorithms whose comparisons are uniform in that way; assuming that the M = (I;J )
pairs {(a,b) | 1 < a <b < N} have been arranged into a sequence

(a1,b1), (az, bz), Ceey (CLM, bM),

we can successively make each of the comparisons Kg, :Ky,, Koy :Ksp,, ... whose
outcome is not already known. Each of the M! arrangements of the (a, b) pairs defines a
uniform sorting algorithm. The concept of uniform sorting is due to H. L. Beus [JACM
17 (1970), 482-495], whose work has suggested the next few exercises.

It is convenient to define uniform sorting formally by means of graph theory. Let G
be the directed graph on the vertices {1,2,..., N} having no arcs. For i =1,2,..., M
we add arcs to G as follows:

Case 1. G contains a path from a; to b;. Add the arc a; — b; to G.
Case 2. G contains a path from b; to a;. Add the arc b; — a; to G.

Case 3. G contains no path from a; to b; or b; to a;. Compare K, : K3,; then add
the arc a; — b; to G if K., < Ky, the arc b; — a; if Ko, > Kp,.
We are concerned primarily with the number of key comparisons made by a uniform
sorting algorithm, not with the mechanism by which redundant comparisons are ac-
tually avoided. Thus the graph G need not be constructed explicitly; it is used here
merely to help define the concept of uniform sorting.
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We shall also consider restricted uniform sorting, in which only paths of length 2
are counted in cases 1, 2, and 3 above. (A restricted uniform sorting algorithm may
make some redundant comparisons, but exercise 65 shows that the analysis is somewhat
simpler in the restricted case.)

Prove that the restricted uniform algorithm is the same as the uniform algorithm
when the sequence of pairs is taken in lexicographic order

(1,2)(1,3)(1,4) ... (1, N)(2,3)(2,4)...(2,N)...(N-1,N).

Show in fact that both algorithms are equivalent to quicksort (Algorithm 5.2.2Q) when
the keys are distinct and when quicksort’s redundant comparisons are removed as in
exercise 5.2.2-24. (Disregard the order in which the comparisons are actually made in
quicksort; consider only which pairs of keys are compared.)

65. [M38] Given a pair sequence (a1,b1)...(am,bn) as in exercise 64, let c; be the
number of pairs (4, k) such that j < k <4 and (as, bs), (aj,b;), (ax, bx) forms a triangle.
a) Prove that the average number of comparisons made by the restricted uniform
sorting algorithm is S°07, 2/(ci + 2).
b) Use the results of (a) and exercise 64 to determine the average number of irredun-
dant comparisons performed by quicksort.
c) The following pair sequence is inspired by (but not equivalent to) merge sorting:

(1,2)(3,4)(5,6) ... (1,3)(1,4)(2,3)(2,4)(5,7) ... (1,5)(1,6)(1, 7)(1, 8)(2,5) . ..

Does the uniform method based on this sequence do more or fewer comparisons
than quicksort, on the average?

66. [M29] In the worst case, quicksort does (I;J) comparisons. Do all restricted
uniform sorting algorithms (in the sense of exercise 63) perform (I;J ) comparisons in
their worst case?

67. [M48] (H. L. Beus.) Does quicksort have the minimum average number of com-
parisons, over all (restricted) uniform sorting algorithms?

68. [25] The Ph.D. thesis “Electronic Data Sorting” by Howard B. Demuth (Stanford
University, October 1956) was perhaps the first publication to deal in any detail with
questions of computational complexity. Demuth considered several abstract models
for sorting devices, and established lower and upper bounds on the mean and maxi-
mum execution times achievable with each model. His simplest model, the “circular
nonreversible memory” (Fig. 60), is the subject of this exercise.

erte Read

H

Fig. 60. A device for which the bubble-sort strategy is optimum.
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Consider a machine that sorts R; Rz... Ry in a number of passes, where each
pass contains the following IV + 1 steps:

Step 1. Set R «— R,. (R is an internal machine register.)

Step i, for 1 < i < N. Either (i) set Ri—1 <+ R, R + R;, or (ii) set R;—1 « R;,

leaving R unchanged.

Step N+1. Set Ry « R.

The problem is to find a way to choose between alternatives (i) and (ii) each time, in
order to minimize the number of passes required to sort.

Prove that the “bubble sort” technique is optimum for this model. In other words,
show that the strategy that selects alternative (i) whenever R < R; and alternative (ii)
whenever R > R, will achieve the minimum number of passes.

They that weave networks shall be confounded.
— lsaiah 19:9
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5.4. EXTERNAL SORTING

Now IT 1s TIME for us to study the interesting problems that arise when the
number of records to be sorted is larger than our computer can hold in its
high-speed internal memory. External sorting is quite different from internal
sorting, even though the problem in both cases is to sort a given file into
nondecreasing order, since efficient storage accessing on external files is rather
severely limited. The data structures must be arranged so that comparatively
slow peripheral memory devices (tapes, disks, drums, etc.) can quickly cope with
the requirements of the sorting algorithm. Consequently most of the internal
sorting techniques we have studied (insertion, exchange, selection) are virtually
useless for external sorting, and it is necessary to reconsider the whole question.

Suppose, for example, that we are supposed to sort a file of five million
records Ry Ry ... Rso00000, and that each record R; is 20 words long (although
the keys K; are not necessarily this long). If only one million of these records
will fit in the internal memory of our computer at one time, what shall we do?

One fairly obvious solution is to start by sorting each of the five subfiles
R; ... R1000000, R1000001 - - - R2000000, ---, 4000001 - - - Fs000000 independently,
then to merge the resulting subfiles together. Fortunately the process of merging
uses only very simple data structures, namely linear lists that are traversed in
a sequential manner as stacks or as queues; hence merging can be done without
difficulty on the least expensive external memory devices.

The process just described — internal sorting followed by external merging —
is very commonly used, and we shall devote most of our study of external sorting
to variations on this theme.

The ascending sequences of records that are produced by the initial internal
sorting phase are often called strings in the published literature about sorting;
this terminology is fairly widespread, but it unfortunately conflicts with even
more widespread usage in other branches of computer science, where “strings”
are arbitrary sequences of symbols. Our study of permutations has already given
us a perfectly good name for the sorted segments of a file, which are convention-
ally called ascending runs or simply runs. Therefore we shall consistently use
the word “runs” to describe sorted portions of a file. In this way it is possible to
distinguish between “strings of runs” and “runs of strings” without ambiguity.
(Of course, “runs of a program” means something else again; we can’t have
everything.)

Let us consider first the process of external sorting when magnetic tapes
are used for auxiliary storage. Perhaps the simplest and most appealing way to
merge with tapes is the balanced two-way merge following the central idea that
was used in Algorithms 5.2.4N, S, and L. We use four “working tapes” in this
process. During the first phase, ascending runs produced by internal sorting are
placed alternately on Tapes 1 and 2, until the input is exhausted. Then Tapes 1
and 2 are rewound to their beginnings, and we merge the runs from these tapes,
obtaining new runs that are twice as long as the original ones; the new runs
are written alternately on Tapes 3 and 4 as they are being formed. (If Tape
1 contains one more run than Tape 2, an extra “dummy” run of length 0 is
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assumed to be present on Tape 2.) Then all tapes are rewound, and the contents
of Tapes 3 and 4 are merged into quadruple-length runs recorded alternately on
Tapes 1 and 2. The process continues, doubling the length of runs each time,
until only one run is left (namely the entire sorted file). If S runs were produced
during the internal sorting phase, and if 281 < S < 2%, this balanced two-way
merge procedure makes exactly k = [lg S] merging passes over all the data.
For example, in the situation above where 5000000 records are to be sorted
with an internal memory capacity of 1000000, we have S = 5. The initial
distribution phase of the sorting process places five runs on tape as follows:

Ta'pe 1 Rl s RlOOOOOO; RZOOOOOI SR RSOOOOOO; R4000001 S R5OOOOOO-

Tape 2 R1000001 - - - 22000000 R3000001 - - - £24000000- ()
1

Tape 3 (empty)
Tape 4 (empty)

The first pass of merging then produces longer runs on Tapes 3 and 4, as it reads
Tapes 1 and 2, as follows:

Tape 3 R ... R20000005 R4o000001 - - - Rs5000000-

Tape 4 R2000001 - - - F24000000-

(2)

(A dummy run has implicitly been added at the end of Tape 2, so that the last
run Rap00001 - - - Bsoooooo on Tape 1 is merely copied onto Tape 3.) After all tapes
are rewound, the next pass over the data produces

Tape 1 R, ... R4000000-

(3)

Tape 2 R4000001 - - - F25000000-

(Again that run Raooo001 - - - £5000000 Was simply copied; but if we had started
with 8000000 records, Tape 2 would have contained Ragoo001 - - - Fsoooooo at this
point.) Finally, after another spell of rewinding, R, - .. Rs000000 is produced on
Tape 3, and the sorting is complete.

Balanced merging can easily be generalized to the case of T tapes, for any
T > 3. Choose any number P with 1 < P < T, and divide the T' tapes into two
“banks,” with P tapes on the left bank and T — P on the right. Distribute the
initial runs as evenly as possible onto the P tapes in the left bank; then do a
P-way merge from the left to the right, followed by a (T — P)-way merge from
the right to the left, etc., until sorting is complete. The best choice of P usually
turns out to be [T/2] (see exercises 3 and 4).

Balanced two-way merging is the special case T = 4, P = 2. Let us
reconsider the example above using more tapes, taking T = 6 and P = 3. The
initial distribution now gives us

Tape 1 R1 ... R1000000; R3000001 - - - 24000000
Tape 2 R1000001 - - - £2000000; R4000001 - - - 185000000 (4)

Tape 3 R3000001 - - - £23000000-
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And the first merging pass produces
Tape 4 R ... R3000000-

Tape 5 R3000001 - - - F5000000- (5)
Tape 6 (empty)

(A dummy run has been assumed on Tape 3.) The second merging pass completes
the job, placing Ry . .. Rso00000 o0 Tape 1. In this special case T' = 6 is essentially
the same as T = 5, since the sixth tape is used only when S > 7.

Three-way merging requires more computer processing than two-way merg-
ing; but this is generally negligible compared to the cost of reading, writing,
and rewinding the tapes. We can get a fairly good estimate of the running time
by considering only the amount of tape motion. The example in (4) and (5)
required only two passes over the data, compared to three passes when T' = 4,
so the merging takes only about two-thirds as long when T" = 6.

Balanced merging is quite simple, but if we look more closely, we find
immediately that it isn’t the best way to handle the particular cases treated
above. Instead of going from (1) to (2) and rewinding all of the tapes, we should
have stopped the first merging pass after Tapes 3 and 4 contained R, ... R2000000
and Ru000001 - - - Ra000000, respectively, with Tape 1 poised ready to read the
records R4000001 - - - Rs000000- Then Tapes 2, 3, 4 could be rewound and we could
complete the sort by doing a three-way merge onto Tape 2. The total number of
records read from tape during this procedure would be only 4000000+ 5000000 =
9000000, compared to 5000000 + 5000000 + 5000000 = 15,000000 in the balanced
scheme. A smart computer would be able to figure this out!

Indeed, when we have five runs and four tapes we can do even better by
distributing them as follows:

Tape 1 Ry ...Ri000000; 3000001 - - - 24000000
Tape 2 Ri1000001 - - - £22000000; L24000001 - - - 5000000-
Tape 3 R2000001 - - - H3000000-

Tape 4 (empty)

Then a three-way merge to Tape 4, followed by a rewind of Tapes 3 and 4,
followed by a three-way merge to Tape 3, would complete the sort with only
3000000 + 5000000 = 8000000 records read.

And, of course, if we had six tapes we could put the initial runs on Tapes 1
through 5 and complete the sort in one pass by doing a five-way merge to Tape 6.
These considerations indicate that simple balanced merging isn’t the best, and
it is interesting to look for improved merging patterns.

Subsequent portions of this chapter investigate external sorting more deeply.
In Section 5.4.1, we will consider the internal sorting phase that produces the
initial runs; of particular interest is the technique of “replacement selection,”
which takes advantage of the order present in most data to produce long initial
runs that actually exceed the internal memory capacity by a significant amount.
Section 5.4.1 also discusses a suitable data structure for multiway merging.
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The most important merging patterns are discussed in Sections 5.4.2 through
5.4.5. It is convenient to have a rather naive conception of tape sorting as we
learn the characteristics of these patterns, before we come to grips with the
harsh realities of real tape drives and real data to be sorted. For example, we
may blithely assume (as we did above) that the original input records appear
magically during the initial distribution phase; in fact, these input records might
well occupy one of our tapes, and they may even fill several tape reels since
tapes aren’t of infinite length! It is best to ignore such mundane considerations
until after an academic understanding of the classical merging patterns has been
gained. Then Section 5.4.6 brings the discussion down to earth by discussing
real-life constraints that strongly influence the choice of a pattern. Section 5.4.6
compares the basic merging patterns of Sections 5.4.2 through 5.4.5, using a
variety of assumptions that arise in practice.

Some other approaches to external sorting, not based on merging, are dis-
cussed in Sections 5.4.7 and 5.4.8. Finally Section 5.4.9 completes our survey of
external sorting by treating the important problem of sorting on bulk memories
such as disks and drums.

When this book was first written, magnetic tapes were abundant and disk
drives were expensive. But disks became enormously better during the 1980s,
and by the late 1990s they had almost completely replaced magnetic tape units
on most of the world’s computer systems. Therefore the once-crucial topic of
patterns for tape merging has become of limited relevance to current needs.

Yet many of the patterns are quite beautiful, and the associated algorithms
reflect some of the best research done in computer science during its early years;
the techniques are just too nice to be discarded abruptly onto the rubbish heap
of history. Indeed, the ways in which these methods blend theory with practice
are especially instructive. Therefore merging patterns are discussed carefully
and completely below, in what may be their last grand appearance before they

accept a final curtain call.

For all we know now,
these techniques may well become crucial once again.

— PAVEL CURTIS (1997)
EXERCISES '

1. [15] The text suggests internal sorting first, followed by external merging. Why
don’t we do away with the internal sorting phase, simply merging the records into
longer and longer runs right from the start?

2. [10] What will the sequence of tape contents be, analogous to (1) through (3),
when the example records R; Rs ... Rso00000 are sorted using a 3-tape balanced method
with P = 27 Compare this to the 4-tape merge; how many passes are made over all
the data, after the initial distribution of runs?

3. [20] Show that the balanced (P, T—P)-way merge applied to S initial runs takes
2k passes, when P*(T — P)*~! < § < P*(T — P)*; and it takes 2k + 1 passes, when
P*(T — P)* < § < P*Y(T - P)~.

Give simple formulas for (a) the exact number of passes, as a function of S, when
T = 2P; and (b) the approximate number of passes, as S — oo, for general P and T.

4. [HM15]) What value of P, for 1 < P < T, makes P(T — P) a maximum?
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5.4.1. Multiway Merging and Replacement Selection

In Section 5.2.4, we studied internal sorting methods based on two-way merging,
the process of combining two ordered sequences into a single ordered sequence.
It is not difficult to extend this to the notion of P-way merging, where P runs
of input are combined into a single run of output.

Let’s assume that we have been given P ascending runs, that is, sequences
of records whose keys are in nondecreasing order. The obvious way to merge
them is to look at the first record of each run and to select the record whose
key is smallest; this record is transferred to the output and removed from the
input, and the process is repeated. At any given time we need to look at only P
keys (one from each input run) and select the smallest. If two or more keys are
smallest, an arbitrary one is selected.

When P isn’t too large, it is convenient to make this selection by simply
doing P — 1 comparisons to find the smallest of the current keys. But when
P is, say, 8 or more, we can save work by using a selection tree as described in
Section 5.2.3; then only about lg P comparisons are needed each time, once the
tree has been set up.

Consider, for example, the case of four-way merging, with a two-level selec-
tion tree:

{087 503 oo
170 908
Step 1. 087 ¢ o0
154 426 653 oo
| 154 {
612 oo
170 {503 00
170 90
Step 2. 087 154 ¢ 8 o0
154 426 653 oo
| 154 {
612 oo
170 {503 00
170 90
Step 3. 087 154 170 8 o0
426 653 oo
| 426 {
612 oo
(% {
Step 9. 087 154 170 426 503 612 653 908 co <
~{ %
\ 00

An additional key “co” has been placed at the end of each run in this example,
so that the merging terminates gracefully. Since external merging generally
deals with very long runs, the addition of records with co keys does not add
substantially to the length of the data or to the amount of work involved in
merging, and such sentinel records frequently serve as a useful way to delimit
the runs on a file.
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[807] [275] [653] [426] [154] [509

Fig. 62. A tournament to select the smallest key, using a complete binary tree
whose nodes are numbered from 1 to 23.

Each step after the first in this process consists of replacing the smallest
element by the succeeding element in its run, and changing the corresponding
path in the selection tree. Thus the three positions of the tree that contain 087
in Step 1 are changed in Step 2; the three positions containing 154 in Step 2 are
changed in Step 3; and so on. The process of replacing one key by another in
the selection tree is called replacement selection.

We can look at this four-way merge in several ways. From one standpoint it
is equivalent to three two-way merges performed concurrently as coroutines; each
node in the selection tree represents one of the sequences involved in concurrent
merging processes. The selection tree is also essentially operating as a priority
queue, with a smallest-in-first-out discipline.

As in Section 5.2.3 we could implement the priority queue by using a heap
instead of a selection tree. (The heap would, of course, be arranged so that the
smallest element appears at the top, instead of the largest, reversing the order of
Eq. 5.2.3-(3).) Since a heap does not have a fixed size, we could therefore avoid
the use of co keys; merging would be complete when the heap becomes empty.
On the other hand, external sorting applications usually deal with comparatively
long records and keys, so that the heap is filled with pointers to keys instead of
the keys themselves; we shall see below that selection trees can be represented by
pointers in such a convenient manner that they are probably superior to heaps
in this situation.

A tree of losers. Figure 62 shows the complete binary tree with 12 external
(rectangular) nodes and 11 internal (circular) nodes. The external nodes have
been filled with keys, and the internal nodes have been filled with the “winners,”
if the tree is regarded as a tournament to select the smallest key. The smaller
numbers above each node show the traditional way to allocate consecutive stor-
age positions for complete binary trees.
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1[6908] [170] [897] [275] [653]| [426] [154] {509 |

Fig. 63. The same tournament as Fig. 62, but showing the losers instead of the
winners; the champion appears at the very top.

When the smallest key, 061, is to be replaced by another key in the selection
tree of Fig. 62, we will have to look at the keys 512, 087, and 154, and no
other existing keys, in order to determine the new state of the selection tree.
Considering the tree as a tournament, these three keys are the losers in the
matches played by 061. This suggests that the loser of a match should actually
be stored in each internal node of the tree, instead of the winner; then the
information required for updating the tree will be readily available.

Figure 63 shows the same tree as Fig. 62, but with the losers represented
instead of the winners. An extra node number 0 has been appended at the top
of the tree, to indicate the champion of the tournament. Each key except the
champion is a loser exactly once (see Section 5.3.3), so each key appears just
once in an external node and once in an internal node.

In practice, the external nodes at the bottom of Fig. 63 will represent fairly
long records stored in computer memory, and the internal nodes will represent
pointers to those records. Note that P-way merging calls for exactly P external
nodes and P internal nodes, each in consecutive positions of memory, hence
several efficient methods of storage allocation suggest themselves. It is not
difficult to see how to use a loser-oriented tree for replacement selection; we
shall discuss the details later.

Initial runs by replacement selection. The technique of replacement se-
lection can be used also in the first phase of external sorting, if we essentially
do a P-way merge of the input data with itself! In this case we take P to be
quite large, so that the internal memory is essentially filled. When a record is
output, it is replaced by the next record from the input. If the new record has a
smaller key than the one just output, we cannot include it in the current run; but
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Table 1
EXAMPLE OF FOUR-WAY REPLACEMENT SELECTION
Memory contents Output
503 087 512 061 061
503 087 512 908 087
503 170 512 908 170
503 897 512 908 503
(275) 897 512 908 512
(275) 897 653 908 653
(275) 897  (426) 908 897
(275) (154) (426) 908 908
(275) (154) (426) (509) (end of run)
275 154 426 509 154
275 612 426 509 275
etc.

otherwise we can enter it into the selection tree in the usual way and it will form
part of the run currently being produced. Thus the runs can contain more than
P records each, even though we never have more than P in the selection tree at
any time. Table 1 illustrates this process for P = 4; parenthesized numbers are
waiting for inclusion in the following run.

This important method of forming initial runs was first described by Har-
old H. Seward [Master’s Thesis, Digital Computer Laboratory Report R-232
(Mass. Inst. of Technology, 1954), 29-30], who gave reason to believe that the
runs would contain more than 1.5P records when applied to random data. A. 1.
Dumey had also suggested the idea about 1950 in connection with a special sort-
ing device planned by Engineering Research Associates, but he did not publish it.
The name “replacement selecting” was coined by E. H. Friend [JACM 3 (1956),
154], who remarked that “the expected length of the sequences produced eludes
formulation but experiment suggests that 2P is a reasonable expectation.”

A clever way to show that 2P is indeed the expected run length was discov-
ered by E. F. Moore, who compared the situation to a snowplow on a circular
track [U.S. Patent 2983904 (1961), columns 3-4]. Consider the situation shown
in Fig. 64: Flakes of snow are falling uniformly on a circular road, and a lone
snowplow is continually clearing the snow. Once the snow has been plowed off
the road, it disappears from the system. Points on the road may be designated by
real numbers z, 0 < x < 1; a flake of snow falling at position  represents an input
record whose key is z, and the snowplow represents the output of replacement
selection. The ground speed of the snowplow is inversely proportional to the
height of snow it encounters, and the situation is perfectly balanced so that the
total amount of snow on the road at all times is exactly P. A new run is formed
in the output whenever the plow passes point 0.

After this system has been in operation for awhile, it is intuitively clear that
it will approach a stable situation in which the snowplow runs at constant speed
(because of the circular symmetry of the track). This means that the snow is at
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Fig. 64. The perpetual plow on its ceaseless cycle.

constant height when it meets the plow, and the height drops off linearly in front
of the plow as shown in Fig. 65. It follows that the volume of snow removed in
one revolution (namely the run length) is twice the amount present at any one
time (namely P).

Fralling snow

N 2 2 I 2

:T'uture snow g ) E ]

e Total length of the road >|

Fig. 65. Cross-section, showing the varying height of snow in front of the plow when
the system is in its steady state.

In many commercial applications the input data is not completely random;
it already has a certain amount of existing order. Therefore the runs produced by
replacement selection will tend to contain even more than 2P records. We shall
see that the time required for external merge sorting is largely governed by the
number of runs produced by the initial distribution phase, so that replacement
selection becomes especially desirable; other types of internal sorting would pro-
duce about twice as many initial runs because of the limitations on memory size.

Let us now consider the process of creating initial runs by replacement
selection in detail. The following algorithm is due to John R. Walters, James
Painter, and Martin Zalk, who used it in a merge-sort program for the Philco
2000 in 1958. It incorporates a rather nice way to initialize the selection tree
and to distinguish records belonging to different runs, as well as to flush out the
last run, with comparatively simple and uniform logic. (The proper handling
of the last run produced by replacement selection turns out to be a bit tricky,
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R1. Initialize
R3. Qutput R4. Input R5. Prepare
/7 top of tree new record to update
R2. End of run? \ T=leaf
Efnd T=root R7. Move up R6. Set new loser
0
file
’

Fig. 66. Making initial runs by replacement selection.

and it has tended to be a stumbling block for programmers.) The principal idea
is to consider each key as a pair (5, K), where K is the original key and S is
the run number to which this record belongs. When such extended keys are
lexicographically ordered, with S as major key and K as minor key, we obtain
the output sequence produced by replacement selection.

The algorithm below uses a data structure containing P nodes to represent
the selection tree; the jth node X[j] is assumed to contain ¢ words beginning
in LOC(X[j]) = Lo + ¢j, for 0 < j < P, and it represents both internal node
number j and external node number P + 7 in Fig. 63. There are several named
fields in each node:

KEY = the key stored in this external node;
RECORD = the record stored in this external node (including KEY as a subfield);
LOSER = pointer to the “loser” stored in this internal node;
RN = run number of the record pointed to by LOSER;
PE = pointer to internal node above this external node in the tree;

'PI = pointer to internal node above this internal node in the tree.

For example, when P = 12, internal node number 5 and external node number 17
of Fig. 63 would both be represented in X[5], by the fields KEY = 170, LOSER =
Lo + 9¢ (the address of external node number 21), PE = Lo + 8¢, PI = Ly + 2¢.
The PE and PI fields have constant values, so they need not appear explicitly
in memory; however, the initial phase of external sorting sometimes has trou-
ble keeping up with the I/O devices, and it can be worthwhile to store these
redundant values with the data instead of recomputing them each time.

Algorithm R (Replacement selection). This algorithm reads records sequen-
tially from an input file and writes them sequentially onto an output file, pro-
ducing RMAX runs whose length is P or more (except for the final run). There
are P > 2 nodes, X[0],..., X [P — 1], having fields as described above.

R1. [Initialize.] Set RMAX < 0, RC + 0, LASTKEY «+ oo, Q + LOC(X]0]), and
RQ + 0. (RC is the number of the current run and LASTKEY is the key of the
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last record output. The initial setting of LASTKEY should be larger than any
possible key; see exercise 8.) For 0 < j < P, set the initial contents of X[j]
as follows, when J = LOC(X[j]):

LOSER(J) «+ J; RN(J) < 0;
PE(J) <+ LOC(X[[(P +37)/2]D; PI(J) < LOC(XI[[j/2]D.

(The settings of LOSER(J) and RN(J) are artificial ways to get the tree
initialized by considering a fictitious run number 0 that is never output.
This is tricky; see exercise 10.)

R2. [End of run?] If RQ = RC, go on to step R3. (Otherwise RQ = RC + 1 and
we have just completed run number RC; any special actions required by a
merging pattern for subsequent passes of the sort would be done at this
point.) If RQ > RMAX, stop; otherwise set RC +— RQ.

R3. [Output top of tree.] (Now Q points to the “champion,” and RQ is its run
number.) If RQ # 0, output RECORD(Q) and set LASTKEY «+ KEY(Q).

R4. [Input new record.] If the input file is exhausted, set RQ <— RMAX + 1 and go
on to step R5. Otherwise set RECORD(Q) to the next record from the input
file. If KEY(Q) < LASTKEY (so that this new record does not belong to the
current run), set RQ < RQ + 1 and then if RQ > RMAX set RMAX « RQ.

R5. [Prepare to update.] (Now Q points to a new record, whose run number
is RQ.) Set T «— PE(Q). (T is a pointer variable that will move up the tree.)

R6. [Set new loser.] If RN(T) < RQ or if RN(T) = RQ and KEY(LOSER(T)) <
KEY(Q), then interchange LOSER(T) <« Q, RN(T) <> RQ. (Variables Q and RQ
keep track of the current winner and its run number.)

R7. [Move up.] If T = LOC(X([1]) then go back to R2, otherwise set T +— PI(T)
and return to R6. 1

Algorithm R speaks of input and output of records one at a time, while in
practice it is best to read and write relatively large blocks of records. Therefore
some input and output buffers are actually present in memory, behind the scenes,
effectively lowering the size of P. We shall illustrate this in Section 5.4.6.

*Delayed reconstitution of runs. A very interesting way to improve on
replacement selection has been suggested by R. J. Dinsmore [CACM 8 (1965),
48] using a concept that we shall call degrees of freedom. As we have seen,
each block of records on tape within a run is in nondecreasing order, so that its
first element is the lowest and its last element is the highest. In the ordinary
process of replacement selection, the lowest element of each block within a run
is never less than the highest element of the preceding block in that run; this is
“1 degree of freedom.” Dinsmore suggests relaxing this condition to “m degrees
of freedom,” where the lowest element of each block may be less than the highest
element of the preceding block so long as it is not less than the highest elements
i m different preceding blocks of the same run. Records within individual blocks
are ordered, as before, but adjacent blocks need not be in order.
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For example, suppose that there are just two records per block; the following
sequence of blocks is a run with three degrees of freedom:

| 08 50 | 06 90 | 17 27 | 42 67 | 51 89 | (1)

A subsequent block that is to be part of the same run must begin with an
element not less than the third largest element of {50, 90, 27, 67,89}, namely 67.
The sequence (1) would not be a run if there were only two degrees of freedom,
since 17 is less than both 50 and 90.

A run with m degrees of freedom can be “reconstituted” while it is being
read during the next phase of sorting, so that for all practical purposes it is a run
in the ordinary sense. We start by reading the first m blocks into m buffers, and
doing an m-way merge on them’; when one buffer is exhausted, we replace it with
the (m + 1)st block, and so on. In this way we can recover the run as a single
sequence, for the first word of every newly read block must be greater than or
equal to the last word of the just-exhausted block (lest it be less than the highest
elements in m different blocks that precede it). This method of reconstituting
the run is essentially like an m-way merge using a single tape unit for all the
input blocks! The reconstitution procedure acts as a coroutine that is called
upon to deliver one record of the run at a time. We could be reconstituting
different runs from different tape units with different degrees of freedom, and
merging the resulting runs, all at the same time, in essentially the same way as
the four-way merge illustrated at the beginning of this section may be thought
of as several two-way merges going on at once.

This ingenious idea is difficult to analyze precisely, but T. O. Espelid has
shown how to extend the snowplow analogy to obtain an approximate formula
for the behavior [BIT 16 (1976), 133-142]. According to his approximation,
which agrees well with empirical tests, the run length will be about

2P + (m — 2)b b
2P +(2m —=3)b)

when b is the block size and m > 2. Such an increase may not be enough to
justify the added complication; on the other hand, it may be advantageous when
there is room for a rather large number of buffers during the second phase of
sorting.

2P + (m — 1.5) <

*Natural selection. Another way to increase the run lengths produced by
replacement selection has been explored by W. D. Frazer and C. K. Wong [CACM
15 (1972), 910-913]. Their idea is to proceed as in Algorithm R, except that
a new record is not placed in the tree when its key is less than LASTKEY; it is
output into an external reservoir instead, and another new record is read in. This
process continues until the reservoir is filled with a certain number of records, P’;
then the remainder of the current run is output from the tree, and the reservoir
items are used as input for the next run.

The use of a reservoir tends to produce longer runs than replacement selec-
tion, because it reroutes the “dead” records that belong to the next run instead
of letting them clutter up the tree; but it requires extra time for input and output
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Fig. 67. Equal amounts of snow are input and output; the plow moves dz in time dt.

to and from the reservoir. When P’ > P it is possible that some records will be
placed into the reservoir twice, but when P’ < P this will never happen.

Frazer and Wong made extensive empirical tests of their method, noticing
that when P is reasonably large (say P > 32) and P’ = P the average run
length for random data is approximately given by eP, where e ~ 2.718 is the
base of natural logarithms. This phenomenon, and the fact that the method
is an evolutionary improvement over simple replacement selection, naturally led
them to call their method natural selection.

The “natural” law for run lengths can be proved by considering the snowplow
of Fig. 64 again, and applying elementary calculus. Let L be the length of the
track, and let z(t) be the position” of the snowplow at time ¢, for 0 < ¢ < T¢
The reservoir is assumed to be full at time T, when the snow stops temporarily
while the plow returns to its starting position (clearing the P units of snow
remaining in its path). The situation is the same as before except that the
“balance condition” is different; instead of P units of snow on the road at all
times, we have P units of snow in front of the plow, and the reservoir (behind
the plow) gets up to P’ = P units. The snowplow advances by dz during a
time interval dt if h(z,t)dz records are output, where h(z,t) is the height of
the snow at time ¢t and position z = z(t), measured in suitable units; hence
h(z,t) = h(z,0) + Kt for all z, where K is the rate of snowfall. Since the
number of records in memory stays constant, h(z,t)dz is also the number of
records that are input ahead of the plow, namely K dt(L — z) (see Fig. 67).
Thus y

dr K (L—1z) ‘ (2)
dt h(z,t)

Fortunately, it turns out that h(z,t) is constant, equal to KT, whenever z = z(t)
and 0 < t < T, since the snow falls steadily at position z(t) for T'—t units of time
after the plow passes that point, plus ¢ units of time before it comes back. In
other words, the plow sees all snow at the same height on its journey, assuming
that a steady state has been reached where each journey is the same. Hence
the total amount of snow cleared (the run length) is LKT; and the amount of
snow in memory is the amount cleared after time T, namely KT (L —x(T)). The
solution to (2) such that z(0) =0 is

z(t) = L(1 - e™*T); (3)

hence P = LKTe~! = (run length)/e; and this is what we set out to prove.
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Exercises 21 through 23 show that this analysis can be extended to the case
of general P’; for example, when P’ = 2P the average run length turns out to
be €?(e — 0) P, where § = (e —/e? — 4) /2, a result that probably wouldn’t have
been guessed offhand! Table 2 shows the dependence of run length on reservoir
size; the usefulness of natural selection in a given computer environment can be
estimated by referring to this table. The table entries for reservoir size < P use
an improved technique that is discussed in exercise 27.

The ideas of delayed run reconstitution and natural selection can be com-
bined, as discussed by T. C. Ting and Y. W. Wang in Comp. J. 20 (1977),
298-301.

Table 2
RUN LENGTHS BY NATURAL SELECTION
Reservoir size Run length k46 Reservoir size Run length k+6
0.10000P 2.15780P  0.32071 0.00000P 2.00000P  0.00000
0.50000P 2.54658P  0.69952 0.43428P 2.50000P 0.65348
1.00000P 2.71828P  1.00000 1.30432P 3.00000P 1.15881
2.00000P 3.53487P  1.43867 1.95014P 3.50000P 1.42106
3.00000P 4.16220P  1.74773 2.72294P 4.00000P 1.66862
4.00000P 4.69446P  2.01212 4.63853P 5.00000P 2.16714
5.00000P 5.16369P  2.24938 21.72222P 10.00000P  4.66667
10.00000P 7.00877P  3.17122 5.29143P 5.29143P  2.31329

The quantity k + 6 is defined in exercise 22, or (when k& = 0) in exercise 27.

* Analysis of replacement selection. Let us now return to the case of replace-
ment selection without an auxiliary reservoir. The snowplow analogy gives us
a fairly good indication of the average length of runs obtained by replacement
selection in the steady-state limit, but it is possible to get much more precise
information about Algorithm R by applying the facts about runs in permutations
that we have studied in Section 5.1.3. For this purpose it is convenient to assume
that the input file is an arbitrarily long sequence of independent random real
numbers between 0 and 1.

Let

gP(Zl,ZQ,...,Zk): Z ap(ll,lg,...,lk)zlllzéz...zfg'“
l17l27"'7lk20
be the generating function for run lengths produced by P-way replacement
selection on such a file, where ap(l1,ls,...,lx) is the probability that the first
run has length [;, the second has length [, ..., the kth has length [;. The

following “independence theorem” is basic, since it reduces the analysis to the
case P = 1:

Theorem K. gp(z1,2,...,2c) = g1(21,22, .-, 2)F.

Proof. Let the input keys be X1, X2, X3,.... Algorithm R partitions them into
P subsequences, according to which external node position they occupy in the



262 SORTING 5.4.1

tree; the subsequence containing X, is determined by the values of X;,..., X,,_;.
Each of these subsequences is therefore an independent sequence of independent
random numbers between 0 and 1. Furthermore, the output of replacement
selection is precisely what would be obtained by doing a P-way merge on these
subsequences; an element belongs to the jth run of a subsequence if and only if
it belongs to the jth run produced by replacement selection (since LASTKEY and
KEY(Q) belong to the same subsequence in step R4).

In other words, we might just as well assume that Algorithm R is being
applied to P independent random input files, and that step R4 reads the next
record from the file corresponding to external node Q; in this sense, the algorithm
is equivalent to a P-way merge, with “stepdowns” marking the ends of the runs.

Thus the output has runs of lengths (l1,...,lx) if and only if the sub-
sequences have runs of respective lengths (l11,...,0%), ..., (Ip1,...,lpk), where
the [;; are some nonnegative integers satisfying >, ,.pli; =1; for 1 < j < k.
It follows that o

G,P(ll,‘..,lk)Z Z al(ln,.‘.,llk)...al(lpl,...,lpk),
l11+-"-i.—lp1=l1

Lt Hlpr=lk

and this is equivalent to the desired result. |

We have discussed the average length Ly of the kth run, when P = 1,
in Section 5.1.3, where the values are tabulated in Table 5.1.3-2. Theorem K
implies that the average length of the kth run for general P is P times as long
as the average when P = 1, namely L P; and the variance is also P times as
large, so the standard deviation of the run length is proportional to v/P. These
results were first derived by B. J. Gassner about 1958.

Thus the first run produced by Algorithm R will be about (e—1)P = 1.718P
records long, for random data; the second run will be about (e —2¢)P =~ 1.952P
records long; the third, about 1.996P; and subsequent runs will be very close
to 2P records long until we get to the last two runs (see exercise 14). The
standard deviation of most of these run lengths is approximately /(4e — 10)P =
0.934+/P [CACM 6 (1963), 685-687]. Furthermore, exercise 5.1.3-10 shows that
the total length of the first k runs will be fairly close to (2k — %) P, with a
standard deviation of ((2k + 2)P) /2. The generating functions g1 (z, 2, . .. ,Z)
and ¢1(1,...,1,2) are derived in exercises 5.1.3-9 and 11.

The analysis above has assumed that the input file is infinitely long, but
the proof of Theorem K shows that the same probability a,(l1,...,lx) would
be obtained in any random input sequence containing at least i1 +--- +{ + P
elements. So the results above are applicable for, say, files of size N > (2k+1)P,
in view of the small standard deviation.

We will be seeing some applications in which the merging pattern wants
some of the runs to be ascending and some to be descending. Since the residue
accumulated in memory at the end of an ascending run tends to contain numbers
somewhat smaller on the average than random data, a change in the direction
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of ordering decreases the average length of the runs. Consider, for example, a
snowplow that must make a U-turn every time it reaches an end of a straight
road; it will go very speedily over the area just plowed. The run lengths
when directions are reversed vary between 1.5P and 2P for random data (see
exercise 24).

EXERCISES

1. [10] What is Step 4, in the example of four-way merging at the beginning of this
section?

2. [12] What changes would be made to the tree of Fig. 63 if the key 061 were
replaced by 6127

3. [16] (E. F. Moore.) What output is produced by four-way replacement selection
when it is applied to successive words of the following sentence:

fourscore and seven years ago our fathers brought forth
on this continent a new nation conceived in liberty and
dedicated to the proposition that all men are created equal.

(Use ordinary alphabetic order, treating each word as one key.)

4. [16] Apply four-way natural selection to the sentence in exercise 3, using a reser-
voir of capacity 4.

5. [00] True or false: Replacement selection using a tree works only when P is a
power of 2 or the sum of two powers of 2.

6. [15] Algorithm R specifies that P must be > 2; what comparatively small changes
to the algorithm would make it valid for all P > 17

7. [17] What does Algorithm R do when there is no input at all?

8. [20] Algorithm R makes use of an artificial key “co” that must be larger than
any possible key. Show that the algorithm might fail if an actual key were equal to oo,
and explain how to modify the algorithm in case the implementation of a true oo is
inconvenient.

9. [28] How would you modify Algorithm R so that it causes certain specified runs
(depending on RC) to be output in ascending order, and others in descending order?

10. [26] The initial setting of the LOSER pointers in step R1 usually doesn’t correspond
to any actual tournament, since external node P + j may not lie in the subtree below
internal node j. Explain why Algorithm R works anyway. [Hint: Would the algorithm
work if {LOSER(LOC(X0])),...,LOSER(LOC(X [P — 1]))} were set to an arbitrary per-
mutation of {LOC(X][0]),...,LOC(X[P — 1))} in step R17?]

11. [M25] True or false: The probability that KEY(Q) < LASTKEY in step R4 is
approximately %, assuming random input.

12. [M46] Carry out a detailed analysis of the number of times each portion of
Algorithm R is executed; for example, how often are interchanges made in step R67

13. [13] Why is the second run produced by replacement selection usually longer than
the first run?

14. [HM25] Use the snowplow analogy to estimate the average length of the last two
runs produced by replacement selection on a long sequence of input data.
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15. [20] True or false: The final run produced by replacement selection never contains
more than P records. Discuss your answer.

16. [M26] Find a “simple” necessary and sufficient condition that a file Ry Rz ... Ry
will be completely sorted in one pass by P-way replacement selection. What is the
probability that this happens, as a function of P and N, when the input is a random
permutation of {1,2,...,N}?

17. [20] What is output by Algorithm R when the input keys are in decreasing order,
Ki>Ky>--- > Kn?

18. [22] What happens if Algorithm R is applied again to an output file that was
produced by Algorithm R7?

19. [HM22] Use the snowplow analogy to prove that the first run produced by re-
placement selection is approximately (e — 1) P records long.

20. [HM24] Approximately how long is the first run produced by natural selection,
when P = P'?

21. [HM23] Determine the approximate length of runs produced by natural selection
when P’ < P.

22. [HM40] The purpose of this exercise is to determine the average run length
obtained in natural selection, when P’ > P. Let k = k + 6 be a real number > 1,
where k = | k| and § = k mod 1, and consider the function F(x) = Fx(8), where Fx(6)
is the polynomial defined by the generating function

Z Fr(6)2* = e7%%/(1 — ze* 7).

k>0

Thus, Fyo(f) =1, F1(8) = e — 6, Fy(0) = € — e — ef + 36, etc.

Suppose that a snowplow starts out at time 0 to simulate the process of natural
selection, and suppose that after T units of time exactly P snowflakes have fallen behind
it. At this point a second snowplow begins on the same journey, occupying the same
position at time ¢t + T as the first snowplow did at time ¢. Finally, at time 7T, exactly
P’ snowflakes have fallen behind the first snowplow; it instantaneously plows the rest
of the road and disappears.

Using this model to represent the process of natural selection, show that a run
length equal to e F(k)P is obtained when

P,/P:k‘-l—].-l-ee(h?F(li)—ZF(KZ—j)).

23. [HM35] The preceding exercise analyzes natural selection when the records from
the reservoir are always read in the same order that they were written, first-in-first-
out. Find the approximate run length that would be obtained if the reservoir contents
from the preceding run were read in completely random order, as if the records in the
reservoir had been thoroughly shuffled between runs.

24. [HM39] The purpose of this exercise is to analyze the effect caused by haphazardly
changing the direction of runs in replacement selection.

a) Let gp(21,22,...,2x) be a generating function defined as in Theorem K, but with
each of the k runs specified as to whether it is to be ascending or descending.



5.4.1 MULTIWAY MERGING AND REPLACEMENT SELECTION 265

For example, we might say that all odd-numbered runs are ascending, all even-
numbered runs are descending. Show that Theorem K is valid for each of the 2"
generating functions of this type.

b) As a consequence of (a), we may assume that P = 1. We may also assume that the

input is a uniformly distributed sequence of independent random numbers between

0 and 1. Let .
e T —e¥TT ifzx <y
(L(CE,y) = { l—x - y

e 7, ifx>y.
Given that f (:c) da: is the probability that a certain ascending run begins with z,
prove that ( fo z,y)f(z)dz)dy is the probability that the following run begins
with y. [Hint: Consider, for each n > 0, the probability that z < X; < .- <
X, >y, when z and y are given.]

c) Consider runs that change direction with probability p; in other words, the direc-

tion of each run after the first is randomly chosen to be the same as that of the
previous run, ¢ = (1 — p) of the time, but it is to be in the opposite direction p of
the time. (Thus when p = 0, all runs have the same direction; when p = 1, the
runs alternate in direction; and when p = %, the runs are independently random.)
Let

1

fi(z) =1, frr1(y) = p/o a(z,y) fn(l — z)dz + q/o a(z,y) fn(z) dz.

Show that the probability that the nth run begins with z is fn(z)dz when the
(n — 1)st run is ascending, fn(1 — )dz when the (n — 1)st run is descending.

d) Find a solution f to the steady-state equations

) =p / a(z,y)f(1 - ) dz + g / alz,y)f(z) dz, / f(z)de = 1.

[Hint: Show that f”(z) is independent of x.]

e) Show that the sequence f»(z) in part (c) converges rather rapidly to the function

f) Show that the average length of an ascending run starting with z is e

f(z) in part (d).

l—z

g) Finally, put all these results together to prove the following theorem: If the

directions of consecutive runs are independently reversed with probability p in
replacement selection, the average run length approaches (6/(3+p))P

(The case p = 1 of this theorem was first derived by Knuth [CACM 6 (1963),

685-688]; the case p = % was first proved by A. G. Konheim in 1970.)

25. [HM40] Consider the following procedure:

N1. Read a record into a one-word “reservoir.” Then read another record, R, and
let K be its key.

N2. Output the reservoir, set LASTKEY to its key, and set the reservoir empty.
N3. If K < LASTKEY then output R and set LASTKEY « K and go to Nb.
N4. If the reservoir is nonempty, return to N2; otherwise enter R into the reservoir.
N5. Read in a new record, R, and let K be its key. Go to N3. |

This is essentially equivalent to natural selection with P = 1 and with P’ = 1 or 2

(depending on whether you choose to empty the reservoir at the moment it fills or at
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the moment it is about to overfill), except that it produces descending runs, and it
never stops. The latter anomalies are convenient and harmless assumptions for the
purposes of this problem.

Proceeding as in exercise 24, let fn(z,y) dy dz be the probability that z and y are
the respective values of LASTKEY and K just after the nth time step N2 is performed.
Prove that there is a function gn(z) of one variable such that fn(z,y) = gn(z) when
z <y, and fa(z,y) = gn(w) — e ¥(gn(z) — gn(y)) when z > y. This function gn(z) is
defined by the relations g1(z) = 1,

gn+1(2) :/Oze gn(u)du-l-/ dv v-l—l)/ du ((e” = 1)gn(u) + gn(v))
-l—:z:/ dv/ du ((€” — 1)gn(u) + gn(v)).

Show further that the expected length of the nth run is

/0 d / " dy (gn(2)(e* — 1) + 9n(¥))(2 — 347) + / dz (1 — ) gn(z)€”.

[Note: The steady-state solution to these equations appears to be very complicated;
it has been obtained numerically by J. McKenna, who showed that the run lengths
approach a limiting value ~ 2.61307209. Theorem K does not apply to natural selection,
so the case P = 1 does not carry over to other P.]

26. [M33] Considering the algorithm in exercise 25 as a definition of natural selection
when P’ = 1, find the expected length of the first run when P' =y, forany r >0, as
follows.

a) Show that the first run has length n with probability
(n-l—r)[n-l_r]/(n-i—r-i—l)!.

b) Define “associated Stirling numbers” [[]] by the rules

s [ =emn (PN (2] ormso
o BB RIN]

c) Prove that the average length of the first run is therefore cre — r — 1, where

=y [T

27. [HM30] (W. Dobosiewicz.) When natural selection is used with P’ < P, we need
not stop forming a run when the reservoir becomes full; we can store records that do
not belong to the current run in the main priority queue, as in replacement selection,
until only P’ records of the current run are left. Then we can flush them to the output
and replace them with the reservoir contents.

How much better is this method than the simpler approach analyzed in exercise 217

28. [25] The text considers only the case that all records to be sorted have a fixed size.
How can replacement selection be done reasonably well on variable-length records?
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29. [22] Consider the 2% nodes of a complete binary tree that has been right-threaded,
illustrated here when k = 3:

(Compare with 2.3.1-(10); the top node is the list head, and the dotted lines are thread
links. In this exercise we are not concerned with sorting but rather with the structure
of complete binary trees when a list-head-like node 0 has been added above node 1, as
in the “tree of losers,” Fig. 63.)

Show how to assign the 2"7* internal nodes of a large tree of losers onto these
2% host nodes so that (i) every host node holds exactly 2" nodes of the large tree;
(i1) adjacent nodes in the large tree either are assigned to the same host node or to
host nodes that are adjacent (linked); and (iil) no two pairs of adjacent nodes in the
large tree are separated by the same link in the host tree. [Multiple virtual processors
in a large binary tree network can thereby be mapped to actual processors without
undue congestion in the communication links.]
30. [M29] Prove that if n > k > 1, the construction in the preceding exercise is
optimum, in the sense that any 2°-node host graph satisfying (i), (ii), and (iii) must
have at least 2 4+ 2! — 1 edges (links) between nodes.

*5.4.2. The Polyphase Merge

Now that we have seen how initial runs can be built up, we shall consider various
patterns that can be used to distribute them onto tapes and to merge them
together until only a single run remains.

Let us begin by assuming that there are three tape units, T1, T2, and T3,
available; the technique of “balanced merging,” described near the beginning of
Section 5.4, can be used with P = 2 and T' = 3, when it takes the following form:

B1. Distribute initial runs alternately on tapes T1 and T2.

B2. Merge runs from T1 and T2 onto T'3; then stop if T3 contains only one run.
B3. Copy the runs of T3 alternately onto T1 and T2, then return to B2. |

If the initial distribution pass produces S runs, the first merge pass will produce
[S/2] runs on T3, the second will produce [S/4], etc. Thus if, say, 17 < S < 32,
we will have 1 distribution pass, 5 merge passes, and 4 copy passes; in general,
if S > 1, the number of passes over all the data is 2{lg ST.

The copying passes in this procedure are undesirable, since they do not
reduce the number of runs. Half of the copying can be avoided if we use a
two-phase procedure:

A1. Distribute initial runs alternately on tapes T1 and T2.

A2. Merge runs from T1 and T2 onto T3; then stop if T3 contains only one run.
A3. Copy half of the runs from T3 onto T1.

A4. Merge runs from T1 and T3 onto T2; then stop if T2 contains only one run.
A5. Copy half of the runs from T2 onto T1. Return to A2. |
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The number of passes over the data has been reduced to 3[lg S+ 3, since steps
A3 and A5 do only “half a pass”; about 25 percent of the time has therefore
been saved.

The copying can actually be eliminated entirely, if we start with Fj, runs
on T1 and F,,_; runs on T2, where F, and F,_, are consecutive Fibonacci
numbers. Consider, for example, the case n =7, S = F, + F,_, =13+ 8 = 21:

Phase Contents of T1 Contents of T2 Contents of T3 Remarks

1 1,1,1,1,1,1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1 Initial distribution

2 1,1,1.1.1 — 2,2,2,2,22,22 Merge 8 runs to T3
3 — 3,3,3,3,3 2,2,2 Merge 5 runs to T2
4 5,5,5 3,3 — Merge 3 runs to T1
5 5 — 8,8 Merge 2 runs to T3
6 — 13 8 Merge 1 run to T2
7 21 — — Merge 1 run to T1

Here, for example, “2,2,2,2,2,2,2,2” denotes eight runs of relative length 2, con-
sidering each initial run to be of relative length 1. Fibonacci numbers are
omnipresent in this chart!

Only phases 1 and 7 are complete passes over the data; phase 2 processes
only 16/21 of the initial runs, phase 3 only 15/21, etc., and so the total number
of “passes” comes to (214 16 + 15+ 15+ 16 + 13 4 21)/21 = 5% if we assume
that the initial runs have approximately equal length. By comparison, the two-
phase procedure above would have required 8 passes to sort these 21 initial runs.
We shall see that in general this “Fibonacci” pattern requires approximately
1.041g S + 0.99 passes, making it competitive with a four-tape balanced merge
although it requires only three tapes.

The same idea can be generalized to T tapes, for any 7' > 3, using (T' — 1)-
way merging. We shall see, for example, that the four-tape case requires only
about .7031g S + 0.96 passes over the data. The generalized pattern involves
generalized Fibonacci numbers. Consider the following six-tape example:

Phase T1 T2 T3 T4 T5 T6 Initial runs processed
1 13! 180 128 124 1'% 31 430+28+24+16=129
2 118 14 112 18 —  plé 16x 5= 80
3 17 1° 1 — 9 58 8x 9= T2
4 13 12 S G 4x17= 68
5 1! — 332 177 9 57 2x33= 66
6 — 65 33 17t 9! 5! 1x65= 65
7 1291 — — — — — 1 x129 =129

Here 13! stands for 31 runs of relative length 1, etc.; five-way merges have
been used throughout. This general pattern was developed by R. L. Gilstad
[Proc. Eastern Joint Computer Conf. 18 (1960), 143-148], who called it the
polyphase merge. The three-tape case had been discovered earlier by B. K. Betz
[unpublished memorandum, Minneapolis-Honeywell Regulator Co. (1956)].

In order to make polyphase merging work as in the examples above, we
need to have a “perfect Fibonacci distribution” of runs on the tapes after each
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phase. By reading the table above from bottom to top, we can see that the first
seven perfect Fibonacci distributions when 7' = 6 are {1,0,0,0,0}, {1,1,1,1,1},
{2,2,2,2,1}, {4,4,4,3,2}, {8,8,7,6,4}, {16,15, 14, 12,8}, and {31,30,28,24,16}.
The big questions now facing us are

1. What is the rule underlying these perfect Fibonacci distributions?
2. What do we do if S does not correspond to a perfect Fibonacci distribution?

3. How should we design the initial distribution pass so that it produces the
desired configuration on the tapes?

4. How many “passes” over the data will a T-tape polyphase merge require, as
a function of S (the number of initial runs)?

We shall discuss these four questions in turn, first giving “easy answers” and
then making a more intensive analysis.

The perfect Fibonacci distributions can be obtained by running the pattern
backwards, cyclically rotating the tape contents. For example, when T' = 6 we
have the following distribution of runs:

Final output

Level T1 T2 T3 T4 Th Total will be on
0 1 0 0 0 0 1 T1
1 1 1 1 1 1 5 T6
2 2 2 2 2 1 9 T5
3 4 4 4 3 2 17 T4
4 8 8 7 6 4 33 T3
5 16 15 14 12 8 65 T2
6 31 30 28 24 16 129 T1
7 61 59 55 47 31 253 T6
8 120 116 108 92 61 497 T5
n an br Cn dn én tn T(k)

n+1l an+by ant+cn antdn Gnten an tntdan T(k—1) (1)

(Tape T6 will always be empty after the initial distribution.)
The rule for going from level n to level n + 1 shows that the condition

aannZCnZanGn (2)
will hold in every level. In fact, it is easy to see from (1) that
€n = Gpn-1,
dp = Qn-1+€p-1 = Qp-1+ An-2,
Cp = Qp-1 + dn—l =ap-1 t+aApn-2 + an-3, (3)

by =an-1+Crho1 =Qn-1+an_2+ an-3 + An—4,

An = Ap-1 + bn—l =Qp-1+ -2+ An-3+ Ap_g + Gpn-s,

where ag = 1 and where we let a, =0 forn = -1, -2, -3, —4.
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The pth-order Fibonacci numbers FP) are defined by the rules

F@ = FP + BP, + -+ EP,, forn>p; (4)
Frsp):O, for0 < n <p-—2; Fp(f)lzl.

In other words, we start with p — 1 0Os, then 1, and then each number is the sum
of the preceding p values. When p = 2, this is the usual Fibonacci sequence;
for larger values of p the sequence was apparently first studied by V. Schlegel
in El Progreso Matemé&tico 4 (1894), 173-174. Schlegel derived the generating

function .

(p),n — = .
;)Fn R T (5)

The last equation of (3) shows that the number of runs on T1 during a six-tape
polyphase merge is a fifth-order Fibonacci number: a, = F’rs.i-)él‘

In general, if we set P = T'—1, the polyphase merge distributions for T" tapes
will correspond to Pth order Fibonacci numbers in the same way. The kth tape
gets

P P P
FTS+)})—2 + FTS+)})—3 +-t FTE+2<:—2

initial runs in the perfect nth level distribution, for 1 < £ < P, and the total
number of initial runs on all tapes is therefore

tn=PFL) 4+ (P-1)E e s+ +F. (6)

n

This settles the issue of “perfect Fibonacci distributions.” But what should
we do if S is not exactly equal to t,, for any n? And how do we get the runs
onto the tapes in the first place?

When S isn’t perfect (and so few values are), we can do just as we did in
balanced P-way merging, adding artificial “dummy runs” so that we can pretend
S is perfect after all. There are several ways to add the dummy runs, and we
aren’t ready yet to analyze the “best” way of doing this. We shall discuss first
a method of distribution and dummy-run assignment that isn’t strictly optimal,
although it has the virtue of simplicity and appears to be better than all other
equally simple methods.

Algorithm D (Polyphase merge sorting with “horizontal” distribution). This
algorithm takes initial runs and disperses them to tapes, one run at a time, until
the supply of initial runs is exhausted. Then it specifies how the tapes are to
be merged, assuming that there are T'= P + 1 > 3 available tape units, using
P-way merging. Tape T may be used to hold the input, since it does not receive
any initial runs. The following tables are maintained:

A[j1, 1 < j < T: The perfect Fibonacci distribution we are striving for.

D[j]1,1 < j <T: Number of dummy runs assumed to be present at the
beginning of logical tape unit number j.

TAPE[j], 1 < j < T: Number of the physical tape unit corresponding to logical
tape unit number j.
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D1. Initialize

D
D2. Inqu D3. Advance j D4. Up a level
to tape J

Input complete

D5. Merge D6. Down a level

Sorting complete

Fig. 68. Polyphase merge sorting.

(It is convenient to deal with “logical tape unit numbers” whose assignment to
physical tape units varies as the algorithm proceeds.)

Di1.

D2.

D3.

D4.

Ds5.

De6.

[Initialize.] Set A[j] « D[j] — 1 and TAPE[k] «+ j, for 1 < j < T. Set
A[T] < D[T] < 0 and TAPE[T] < T. Thenset [ < 1, j < 1.

[Input to tape j.| Write one run on tape number j, and decrease D[ 7] by 1.
Then if the input is exhausted, rewind all the tapes and go to step D5.

[Advance j.| If D[] < D[j+ 11, increase j by 1 and return to D2.
Otherwise if D[j] = 0, go on to D4. Otherwise set j <— 1 and return to D2.

[Up a level.] Set | + [+ 1, a + A[1], and then for j =1, 2, ..., P (in
this order) set D[j] < a + A[j+ 11 — A[j] and A[j] < a+ A[j+1].
(See (1) and note that A[P + 1] is always zero. At this point we will have
D[1] >D[2] > --- > D[T]1.) Now set j < 1 and return to D2.

[Merge.] If [ = 0, sorting is complete and the output is on TAPE[1]. Other-
wise, merge runs from TAPE[1],..., TAPE[P] onto TAPE[7] until TAPE[P]
is empty and D[P] = 0. The merging process should operate as follows,
for each run merged: If D[] > 0 for all j, 1 < j < P, then increase D[7T]
by 1 and decrease each D[j] by 1 for 1 < j < P; otherwise merge one run
from each TAPE[j] such that D[j] = 0, and decrease D[j] by 1 for each
other j. (Thus the dummy runs are imagined to be at the beginning of the
tape instead of at the ending.)

[Down a level.] Set [ + [—1. Rewind TAPE[P] and TAPE[T]. (Actually the
rewinding of TAPE[P] could have been initiated during step D5, just after
its last block was input.) Then set (TAPE[1],TAPE[2],...,TAPE[T]) <
(TAPE[T],TAPE[1],...,TAPE[T —1]), (D[1],D([2],...,D[T1) « (DLT1],
D[11,...,D[T — 1]), and return to step D5. |

The distribution rule that is stated so succinctly in step D3 of this algorithm

is intended to equalize the number of dummies on each tape as well as possible.



272 SORTING 5.4.2

Fig. 69. The order in which runs 34 through 65 are 35( (36 |37 |
distributed to tapes, when advancing from level 4 to 381 |39 |40 j4l )}
level 5. (See the table of perfect distributions, Eq. (1).) 42) 143} | 441145 -
Shaded t the first 33 runs that were dis- 461 1471 148) 1491150
1aded areas represent the fir 511 1520 s3] |54] |55
tributed when level 4 was reached. The bottom row 561 [571 58] [59] {60
corresponds to the beginning of each tape. 61| [62] |63] [64) |65

T1 Tg T3 T4 TS

Figure 69 illustrates the order of distribution when we go from level 4 (33 runs)
to level 5 (65 runs) in a six-tape sort; if there were only, say, 53 initial runs,
all Tuns numbered 54 and higher would be treated as dummies. (The runs are
actually being written at the end of the tape, but it is best to imagine them being
written at the beginning, since the dummies are assumed to be at the beginning.)

We have now discussed the first three questions listed above, and it remains
to consider the number of “passes” over the data. Comparing our six-tape
example to the table (1), we see that the total number of initial runs processed
when S = tg was ast; + asts + asts + asts + a1ts + apte, excluding the initial
distribution pass. Exercise 4 derives the generating functions

a(z) = Z anz”™ = =

1 —2z—22—2%—2%4—2%
n>0

n 5z + 422 + 32% + 22% + 2° (7)
t(z):Ztnz C l—z—22 -2 -2t =25

n>1

It follows that, in general, the number of initial runs processed when S = ¢,
is exactly the coefficient of 2™ in a(z)t(z), plus t, (for the initial distribution
pass). This makes it possible to calculate the asymptotic behavior of polyphase
merging, as shown in exercises 5 through 7, and we obtain the following results:

Table 1
APPROXIMATE BEHAVIOR OF POLYPHASE MERGE SORTING

Tapes Phases Passes Pass/phase Growth ratio
3 2.0781n S +0.672 1.5041n S 4 0.992 2% 1.6180340
4 1.6411n S 4 0.364 1.015In S + 0.965 62% 1.8392868
5 1.524In S + 0.078 0.863In .S 4 0.921 57% 1.9275620
6 1.479InS — 0.185 0.795In S + 0.864 54% 1.9659482
7 1.460In S — 0.424 0.7621n S 4 0.797 52% 1.9835828
8 1.4511In S — 0.642 0.7441n S + 0.723 51% 1.9919642
9 1.447In S — 0.838 0.7341n S + 0.646 51% 1.9960312
10 1.445In S — 1.017 0.7281In .S + 0.568 50% 1.9980295
20 1.443In S — 2.170 0.7211n S — 0.030 50% 1.9999981
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In Table 1, the “growth ratio” is lim,—co0 tnt1/tn, the approximate factor by
which the number of runs increases at each level. “Passes” denotes the average
number of times each record is processed, namely 1/S times the total number
of initial runs processed during the distribution and merge phases. The stated
number of passes and phases is correct in each case up to O(S™¢), for some € > 0,
for perfect distributions as S — 0.

Figure 70 shows the average number of times each record is merged, as
a function of S, when Algorithm D is used to handle the case of nonperfect
numbers. Note that with three tapes there are “peaks” of relative inefficiency
occurring just after the perfect distributions, but this phenomenon largely dis-
appears when there are four or more tapes. The use of eight or more tapes gives
comparatively little improvement over six or seven tapes.
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Fig. 70. Efficiency of polyphase merge using Algorithm D.

A closer look. In a balanced merge requiring k passes, every record is processed
exactly k times during the course of the sort. But the polyphase procedure does
not have this lack of bias; some records may get processed many more times
than others, and we can gain speed if we arrange to put dummy runs into the
oft-processed positions.
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Let us therefore study the polyphase distribution more closely; instead of
merely looking at the number of runs on each tape, as in (1), let us associate
with each run its merge number, the number of times it will be processed during
the complete polyphase sort. We get the following table in place of (1):

Level T1 T2 T3 T4 T5
0 0 . — — — —
1 1 1 1 1 1
2 21 21 21 21 2
3 3221 3221 3221 322 32
4 43323221 43323221 4332322 433232 4332
5 5443433243323221 544343324332322 54434332433232 544343324332 54434332
n An Bn Chn Dy E,
n-+1 (An + 1)-Bn (An + I)Cn (An + l)Dn (An + l)En An +1 (8)

Here A, is a string of a, values representing the merge numbers for each run
on T1, if we begin with the level n distribution; B, is the corresponding string
for T2; etc. The notation “(A, + 1)B,” means “A, with all values increased
by 1, followed by B,.”

Figure 71(a) shows As, Bs, Cs, Ds, E5 tipped on end, showing how the
merge numbers for each run appear on tape; notice, for example, that the run at
the beginning of each tape will be processed five times, while the run at the end
of T1 will be processed only once. This discriminatory practice of the polyphase
merge makes it much better to put a dummy run at the beginning of the tape
than at the end. Figure 71(b) shows an optimum order in which to distribute runs
for a five-level polyphase merge, placing each new run into a position with the
smallest available merge number. Algorithm D is not quite as good (see Fig. 69),
since it fills some “4” positions before all of the “3” positions are used up.

1

2 3

4 5 6
161 {171 |18

7 8 91 (10
19] |20 |21 {22
23| 124 |25} |26
421 | 43| 44| 145
11 (12¢ |13 |14 {15
27 128) 1291 |30} |31
324 133} [34] {35] |36
46 147 (48] (49| {50
38| 139 (40| |41
51( t521 |63 |54 |55
56| |57] 158! |59 | 60
Beginning of tape [61] [62] |63]| {64 |65

(b)
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G b Wik WWN R WWNDWN

U Wb W W R WWw

Uik Wbk W W N
w
-3

A
)
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Fig. 71. Analysis of the fifth-level polyphase distribution for six tapes: (a) merge
numbers, (b) optimum distribution order.
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The recurrence relations (8) show that each of B,, Ch, D,, and E, are
initial substrings of A,. In fact, we can use (8) to derive the formulas

= (An-1) +
n (nlAn 2)+1
(A
= (A

Cn n— lAn 2An 3) + 1 (9)
B n— lAn 2An SAn 4) + 1
An (An—lAn—ZAn~3An—4An—5) + 17

n

generalizing Egs. (3), which treated only the lengths of these strings. Further-
more, the rule defining the A’s implies that essentially the same structure is
present at the beginning of every level; we have

where Q,, is a string of a,, values defined by the law
Qn = Qn1(Qn_2+1)(Qn-3+2)(Qn-a+3)(Qn-s+4), forn=>1L
Qo = 0; Q. = € (the empty string) forn <O0. (11)

Since Q. begins with @,_1, we can consider the infinite string Qoo, whose first
a,, elements are equal to Qn; this string Qo essentially characterizes all the
merge numbers in polyphase distribution. In the six-tape case,

Qoo = 011212231223233412232334233434412232334233434452334344534454512232 - - - .
(12)

Exercise 11 contains an interesting interpretation of this string.
Given that A,, is the string mims ... Mg, , let
Ap(z) =2™ + 2™ + -+ 2™en

be the corresponding generating function that counts the number of times each
merge number appears; and define By (z ) Cn(:v), Dn(:v), En(:v) similarly. For
example, Aq(z) = z* + 2% + 2% + 22 + 2° + 2? + 22+ 2 =2 +32%+ 322 + 2.
Relations (g) tell us that

En(z) = z(Ann1(2)),
D,(z) = :v( n-1(z) + An_z(:v)),
Co(z) = 2(An-1(x) + An—2(z) + An-3()), (13)
Brn(x) = m(An 1(z) + An_a(z) + An—s(z) + An—4($)),
An(z) = 2(An—1(z) + An—2(2) + An—3(2) + An-a(2) + An—s(z)),

for n > 1, where Ag(z) = 1 and A,(z) =0 for n = —1, =2, —3, —4. Hence
n _ 1 _ k 2 . 3 1 L4 5k
ZAn(:v)z =1 —Zm(z-l—z +2° 4+ 2% + 2°)%.

2 3 4 5
= x(z + 22 + 23 + 24 + 2°) >0 (14)
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Considering the runs on all tapes, we let
T, (z) = Ap(z) + Bn(z) + Cu(z) + Dn(z) + En(z), n>1; (15)
from (13) we immediately have
T, () = 5An_1(z) + 4An_2(x) + 3An _3(z) + 24,4(z) + An—5(2),

hence

bz + 422 + 323 + 22% >
ZTn(m)zn_m(z—l— 2%+ 32°% +22* + 2°) (16)

o l-z(z+ 22+ 234244 25)
n>1

The form of (16) shows that it is easy to compute the coeflicients of T),(z):

2 z2 23 z4 z5 z6 z7 z8 z9 le z11 z12 z13 z14
z 5 4 3 2 1 0 0 0 O 0 0 o0 0 0
22 0 5 9 12 14 15 10 6 3 1 0 0 0 0
z2 0 0 5 14 26 40 55 60 57 48 35 20 10 4 (17)
zt 0 0 0 5 19 45 85 140 195 238 260 255 220 170
22 0 0 0 0 5 24 69 154 294 484 703 918 1088 1168

The columns of this tableau give T, (z); for example, Ty(z) = 2z + 1222 +
1413 + 5z*. After the first row, each entry in the tableau is the sum of the five
entries just above and to the left in the previous row.

The number of runs in a “perfect” nth level distribution is 7,,(1), and the
total amount of processing as these runs are merged is the derivative, T, (1).
Now

bz + 422 +32% +22% + 2°
ZTT/L(:L‘)Z”: (1 ( + 2+ 3+ 4+ 5 )2’ (18)
= —z(z+ 22 4+ 23+ 24 + 25)
setting x = 1 in (16) and (18) gives a result in agreement with our earlier

demonstration that the merge processing for a perfect nth level distribution is
the coefficient of z™ in a(2)t(z); see (7).

We can use the functions T, (z) to determine the work involved when dummy
runs are added in an optimum way. Let ¥,(m) be the sum of the smallest m
merge numbers in an nth level distribution. These values are readily calculated
by looking at the columns of (17), and we find that 3,(m) is given by

m=12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

n=1 1234 5 00 00 00 00 GO 00 00 00 OO0 OO OO0 OO OO OO0 00 OO
n=2 1234 6 8 10 12 14 o0 00 0O 0O OO OO OO OO OO OO 0O OO
n=3 1235 7 911 13 15 17 19 21 24 27 30 33 36 oo o0 o0 o0
n=4 1246 8 10 12 14 16 18 20 22 24 26 29 32 35 38 41 44 47 (19)
n=5 1357 911 13 15 17 19 21 23 25 27 29 32 35 38 41 44 47
n=6 246 8 10 12 14 16 18 20 22 24 26 28 30 33 36 39 42 45 48
n=7 246 8 10 12 14 16 18 20 23 26 29 32 35 38 41 44 47 50 53

For example, if we wish to sort 17 runs using a level-3 distribution, the total
amount of processing is ¥3(17) = 36; but if we use a level-4 or level-5 distribution



5.4.2 THE POLYPHASE MERGE 277

Table 2
NUMBER OF RUNS FOR WHICH A GIVEN LEVEL IS OPTIMUM

Level T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10

1 2 2 2 2 2 2 2 2 M,
2 3 4 5 6 7 8 9 10 M
3 4 6 8 10 12 14 16 18 M3
4 6 10 14 14 17 20 23 26 My
5 9 18 23 29 20 24 28 32 Ms
6 14 32 35 43 53 27 32 37 Ms
7 22 55 76 61 73 88 35 41 M-
8 35 96 109 154 98 115 136 44 M;g
9 o6 173 244 216 283 148 171 199 My
10 90 280 359 269 386 168 213 243 Mo
11 145 535 456 779 481 640 240 295 My
12 234 820 1197 1034 555 792 1002 330 M2

13 378 1635 1563 1249 1996 922 1228 1499 M3
14 611 2401 4034 3910 2486 1017 1432 1818 M4
15 988 4959 5379 4970 2901 4397 1598 2116 M;s
16 1598 7029 6456 5841 10578 5251 1713 2374 M;s
17 2574 14953 18561 19409 13097 5979 8683 2576 M7
18 3955 20583 22876 23918 15336 6499 10069 2709 Mg
19 6528 44899 64189 27557 17029 30164 11259 15787 Mg

and position the dummy runs optimally, the total amount of processing during
the merge phases is only X4(17) = 35(17) = 35. It is better to use level 4, even
though 17 corresponds to a “perfect” level-3 distribution! Indeed, as S gets large
it turns out that the optimum number of levels is many more than that used in
Algorithm D.

Exercise 14 proves that there is a nondecreasing sequence of numbers M,
such that level n is optimum for M,, < § < M, 41, but not for S > M, ;. In
the six-tape case the table of X, (m) we have just calculated shows that

Mo = O, M1 = 2, M2 = 6, M3 = 10, M4 = 14.

The discussion above treats only the case of six tapes, but it is clear that the
same ideas apply to polyphase merging with T tapes for any 7" > 3; we simply
replace 5 by P = T — 1 in all appropriate places. Table 2 shows the sequences
M,, obtained for various values of 7. Table 3 and Fig. 72 indicate the total
number of initial runs that are processed after making an optimum distribution
of dummy runs. (The formulas that appear at the bottom of Table 3 should
be taken with a grain of salt, since they are least-squares fits over the range
1 <85 <5000 or1 <S8 <10000 for T = 3; this leads to somewhat erratic
behavior because the given range of S values is not equally favorable for all 7.
As § — oo, the number of initial runs processed after an optimum polyphase
distribution is asymptotically Slogp S, but convergence to this asymptotic limit
is extremely slow.)
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Fig. 72. Efficiency of polyphase merge with optimum initial distribution, using the
same assumptions as Fig. 70.

Table 3
INITIAL RUNS PROCESSED DURING AN OPTIMUM POLYPHASE MERGE

S T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10

10 36 24 19 17 15 14 13 12
20 90 60 49 44 38 36 34 33
50 294 194 158 135 128 121 113 104
100 702 454 362 325 285 271 263 254

500 4641 3041 2430 2163 1904 1816 1734 1632
1000 10371 6680 5430 4672 4347 3872 3739 3632
5000 63578 41286 32905 28620 26426 23830 23114 22073
g { (1.51 0.951 0.761 0.656 0.589 0.548 0.539 0.488) x SInS +
(-11 +.14 +16 +.19 +.21 +.20 +.02 +.18)x S

Table 4 shows how the distribution method of Algorithm D compares with
the results of optimum distribution in Table 3. It is clear that Algorithm D is
not very close to the optimum when S and T become large; but it is not clear
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Table 4
INITIAL RUNS PROCESSED DURING THE STANDARD POLYPHASE MERGE

S T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10

10 36 24 19 17 15 14 13 12
20 90 62 49 44 41 37 34 33
50 294 194 167 143 134 131 120 114
100 714 459 393 339 319 312 292 277

500 4708 3114 2599 2416 2191 2100 2047 2025
1000 10730 6920 5774 5370 4913 4716 4597 4552
5000 64740 43210 36497 32781 31442 29533 28817 28080

how to do much better than Algorithm D without considerable complication in
such cases, especially if we do not know S in advance. Fortunately, we rarely
have to worry about large S (see Section 5.4.6), so Algorithm D is not too bad
in practice; in fact, it’s pretty good.

Polyphase sorting was first analyzed mathematically by W. C. Carter [Proc.
IFIP Congress (1962), 62-66]. Many of the results stated above about optimal
dummy run placement are due originally to B. Sackman and T. Singer [“A vector
model for merge sort analysis,” an unpublished paper presented at the ACM Sort
Symposium (November 1962), 21 pages|. Sackman later suggested the horizontal
method of distribution used in Algorithm D. Donald Shell [CACM 14 (1971),
713-719; 15 (1972), 28] developed the theory independently, noted relation (10),
and made a detailed study of several different distribution algorithms. Further
instructive developments and refinements have been made by Derek A. Zave
[SICOMP 6 (1977), 1-39]; some of Zave’s results are discussed in exercises 15
through 17. The generating function (16) was first investigated by W. Burge
[Proc. IFIP Congress (1971), 1, 454-459].

But what about rewind time? So far we have taken “initial runs processed”
-as the sole measure of efficiency for comparing tape merge strategies. But after
each of phases 2 through 6, in the examples at the beginning of this section,
it is necessary for the computer to wait for two tapes to rewind; both the
previous output tape and the new current output tape must be repositioned at
the beginning, before the next phase can proceed. This can cause a significant
delay, since the previous output tape generally contains a significant percentage
of the records being sorted (see the “Pass/phase” column in Table 1). It is
a shame to have the computer twiddling its thumbs during all these rewind
operations, since useful work could be done with the other tapes if we used a
different merging pattern.

A simple modification of the polyphase procedure will overcome this prob-
lem, although it requires at least five tapes [see Y. Césari, Thesis, U. of Paris
(1968), 25-27, where the idea is credited to J. Caron]. Each phase in Caron’s
scheme merges runs from 7" — 3 tapes onto another tape, while the remaining
two tapes are rewinding.
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For example, consider the case of six tapes and 49 initial runs. In the
following tableau, R denotes rewinding during the phase, and T5 is assumed to
contain the original input:

Phase T1 T2 T3 T4 T5 T6 Write time Rewind time

1 IR IR b 18 — (R) 49 17

2 (R) 1 1t — R 38 8x3=24 49-17 =32
3 1° * — R 3° R 5x3=15  max(8,24)
4 12 — R 54 R 34 4x5=20  max(13,15)
5 — R 72 R 3 3? 2x7=14  max(17,20)
6 R 11> R 52 3! — 2x11=22  max(11,14)
7 15! R 7! 5! — R 1x15=15  max(22,24)
8 R nt+ 7° — R 23! 1x23=23  max(15,15)
9 15! 1nt — R  33° R 0x33= 0  max(20,23)
10 (15°) — R 49" (R) (23% 1x49=49 14

Here all the rewind time is essentially overlapped, except in phase 9 (a “dummy
phase” that prepares for the final merge), and after the initial distribution phase
(when all tapes are rewound). If ¢ is the time to merge the number of records in
one initial run, and if r is the time to rewind over one initial run, this process
takes about 182t +40r plus the time for initial distribution and final rewind. The
corresponding figures for standard polyphase using Algorithm D are 140t + 104r,
which is slightly worse when r = %t, slightly better when r = %t.

Everything we have said about standard polyphase can be adapted to Caron’s
polyphase; for example, the sequence a,, now satisfies the recurrence

Qp = Qn—2 +0n—3 +An—yg (20)

instead of (3). The reader will find it instructive to analyze this method in the
same way we analyzed standard polyphase, since it will enhance an understand-
ing of both methods. (See, for example, exercises 19 and 20.)

Table 5 gives statistics about Polyphase Caron that are analogous to the
facts about Polyphase Ordinaire in Table 1. Notice that Caron’s method actually
becomes superior to polyphase on eight or more tapes, in the number of runs
processed as well as in the rewind time, even though it does (7 — 3)-way merging
instead of (7' — 1)-way merging!

Table 5
APPROXIMATE BEHAVIOR OF CARON’S POLYPHASE MERGE SORTING
Tapes Phases Passes Pass/phase Growth ratio
5 3.5561In .S + 0.158 1.4631n S + 1.016 41% 1.3247180
6 2.6161InS — 0.166 0.9511n S + 1.014 36% 1.4655712
7 2.337In S — 0.472 0.7811n S + 1.001 33% 1.5341577
8 2.216In S — 0.762 0.6991n S 4 0.980 32% 1.5701473
9 2.1561In S — 1.034 0.6541n S 4 0.954 30% 1.5900054
10 2.124In S — 1.290 0.6261n S 4 0.922 29% 1.6013473
20 2.0781nS — 3.093 0.575In S 4 0.524 28% 1.6179086
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This may seem paradoxical until we realize that a high order of merge does
not necessarily imply an efficient sort. As an extreme example, consider placing
one run on T1 and n runs on T2, T3, T4, T5; if we alternately do five-way
merging to T6 and T1 until T2, T3, T4, T5 are empty, the processing time is
(2n? + 3n) initial run lengths, essentially proportional to S? instead of Slog S,
although five-way merging was done throughout.

Tape splitting. Efficient overlapping of rewind time is a problem that arises
in many applications, not just sorting, and there is a general approach that can
often be used. Consider an iterative process that uses two tapes in the following
way:

T1 T2
Phase 1 Output 1 —
Rewind —
Phase 2 Input 1 Output 2
Rewind Rewind
Phase 3 Output 3 Input 2
Rewind Rewind
Phase 4 Input 3 Output 4
Rewind Rewind

and so on, where “Output k£” means write the kth output file and “Input k”
means read it. The rewind time can be avoided when three tapes are used, as
suggested by C. Weisert [CACM 5 (1962), 102]:

T1 T2 T3
Phase 1 Output 1.1 — —
Output 1.2 — —
Rewind Output 1.3 —
Phase 2 Input 1.1 Output 2.1 —
Input 1.2 Rewind Output 2.2
Rewind Input 1.3 Output 2.3
Phase 3 Output 3.1 Input 2.1 Rewind
Output 3.2 Rewind Input 2.2
Rewind Output 3.3 Input 2.3
Phase 4 Input 3.1 Output 4.1 Rewind
Input 3.2 Rewind Output 4.2
Rewind Input 3.3 Output 4.3

and so on. Here “Output k.j” means write the jth third of the kth output
file, and “Input k.j” means read it. Virtually all of the rewind time will be
eliminated if rewinding is at least twice as fast as the read/write speed. Such a
procedure, in which the output of each phase is divided between tapes, is called
“tape splitting.”
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R. L. McAllester [CACM 7 (1964), 158-159] has shown that tape splitting
leads to an efficient way of overlapping the rewind time in a polyphase merge.
His method can be used with four or more tapes, and it does (T'—2)-way merging.

Assuming once again that we have six tapes, let us try to design a merge
pattern that operates as follows, splitting the output on each level, where “I”,
“O”, and “R”, respectively, denote input, output, and rewinding;:

Level T1 T2 T3 T4 T5 T6 Number of runs output

7 I I I I R O U7
I I I I O R v7
6 I I I R O I Up
I I I O R I Vg
5 I I R O I I Us
I I O R I I Us
4 I R O I I I Ug
I O R I I I V4
3 R O I I I I U3
O R I I I I v3
2 O I I I I R U2
R I I I I O V2
1 I I I I R O Uy
I I I I O R V1
0 I I I R O I U
I I I O R 1 vo (21)

In order to end with one run on T4 and all other tapes empty, we need to have

v = 1,
up +v1 = 0,
Uy + V2 = up + Vo,
uz + vz = uy + v1 + Up + Vo,
uz +v4 = ug + v2 +u1 + v1 + up + o,
Ug +vs = uz + vz +uz +v2 +u1 + vy + up + vo,

Us + Vg = Uq + Vg +u3z + V3 + Uy + Vo +uy +v1 + Up + Vo,
etc.; in general, the requirement is that
Un + Unt1 = Up—1 + Un1+ Un-2+ VUn_2 +Un_3 +Vn_3+Up_g +Vp_a (22)

for all n > 0, if we regard u; = v; =0 for all 7 < 0.

There is no unique solution to these equations; indeed, if we let all the u’s be
zero, we get the usual polyphase merge with one tape wasted! But if we choose
Up & Up41, the rewind time will be satisfactorily overlapped.

McAllester suggested taking

Up = VUp—1 +Un—2 + Un_3 + VUpn—4g,

Un+1 = Un—1 + Upn—2+ Up_3 + Un_g,
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so that the sequence
<$0,.’E1,$2,$3,$4,$5, <. > = <U0,U0,U1,U1,U2,U2, .. >

satisfies the uniform recurrence T, = Tn—3 + Tn_s + Tn—7 + Tn—g. However, it
turns out to be better to let
Un+1 = Un-—1 + Up—1 tUpn—2 + VUpn—2, (23)
Up = Up_3 + Un—3 + Un—g4 + Un—g;

this sequence not only leads to a slightly better merging time, it also has the
great virtue that its merging time can be analyzed mathematically. McAllester’s
choice is extremely difficult to analyze because runs of different lengths may
occur during a single phase; we shall see that this does not happen with (23).

We can deduce the number of runs on each tape on each level by working
backwards in the pattern (21), and we obtain the following sorting scheme:

Level T1 T2 T3 T4 T5 T6 Write time Rewind time
123 121 117 110 o 111 82 23
7 11 17 113 18 R 114 4x4=16 82 — 23
113 1! 17 — 4° R 6x4=24 27
6 1 18 14 R 4° 184* 3x4=12 10
18 14 — 44 R 1444 4x4=16 36
5 1° 13 R 47! 48 1344 1x7=7 17
12 — 73 R 4° 4* 3x7=21 23
4 1! R 73138 437! 44 43 1x13=13 21
— 13! R 47! 43 42 1x13=13 34
3 R 1319 7213 4'7! 42 4! 1x19=19 23
19! R 7t13t 7! 4! — 1x19=19 32
2 19'31° 13!'19* 7r13t 7! 4! R 0x31=0 27
R 19* 13! 70 — 31 1x31=31 19
1 19'31° 19! 13! 70 R 31'52° 0x52=0
19'31° 19! 13! — 520 R 0x52=0 } max (36, 31, 23)
0 19'31° 19! 13! R 52082° 31'52° 0x82=0
(31 (19 — 82! (R) (52°) 1 x 82=82 0

Unoverlapped rewinding occurs in three places: when the input tape T5 is being
rewound (82 units), during the first half of the level 2 phase (27 units), and
during the final “dummy merge” phases in levels 1 and 0 (36 units). So we may
estimate the time as 273t + 145r; the corresponding amount for Algorithm D,
268t + 208r, is almost always inferior.

Exercise 23 proves that the run lengths output during each phase are suc-
cessively

4,4,7,13,19,31,52,82,133,..., (24)
a sequence (tq,t2,t3,...) satisfying the law
th =th—2+ 2th—3+tn—ya (25)

if we regard t, = 1 for n < 0. We can also analyze the optimum placement
of dummy runs, by looking at strings of merge numbers as we did for standard
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polyphase in Eq. (8): Final
Level T1 T2 T3 T4 T6  output on

1 1 1 1 1 — T5

2 1 1 1 — 1 T4

3 21 21 2 2 1 T3

4 2221 222 222 22 2 T2

5 23222 23222 2322 23 222 T1

6 333323222 33332322 333323 3333 2322 T6

.n R .A,'L e B.n .o o D 5 0

n+l (AVE, +1)B, (A!E,+1)Cn (ALE,+1)Dn, ALE,+1 A,  T(k-1) (26)

where A, = A}, A’ and A, consists of the last u,, merge numbers of A,,. The rule
above for going from level n to level n+1 is valid for any scheme satisfying (22).
When we define the u’s and v’s by (23), the strings A,, ..., E, can be expressed

in the following rather simple way analogous to (g):

An = (Wn 1Wn 2Wn 3Wn 4) +1

n ( n— 1Wn 2Wn 3) +1
Cn = ( n— 1Wn 2) + 1
D, :( )
E, = (Wn_ 2Wn 3) (27)

where
Wn = (Wn—3Wn—4Wn—2Wn—3) +1 for n > Oa

Wy =0, and W, =€ forn <O0.

From these relations it is easy to make a detailed analysis of the six-tape case.
In general, when there are T' > 5 tapes, we let P = T — 2, and we define the
sequences (u,), (v,) by the rules

(28)

Upnt+1 = Up—1 +VUp_1 + -+ Un—r + VUpn_p,

(29)

where r = |P/2]; vo = 1, and u,, = v, = 0 for n < 0. So if w,, = u,, +v,, we have

Up = Up—r—1 T VUp—r—1+ -+ Up_p +Vp_p, for n > 0,

Wp = Wnp_2+ -+ Waer +2Wp_r_1 +Wp_r_2+ -+ wn_p, forn>0; (30)

wo = 1; and w, = 0 for n < 0. The initial distribution on tapes for level
n + 1 places wy, + wp—1 + -+ + Wp_p4+r runs on tape k, for 1 < k < P, and
Wp_1 + -+ + wn_,r on tape T'; tape T' — 1 is used for input. Then u, runs are
merged to tape T' while T'—1 is being rewound; v,, are merged to T'— 1 while T
is rewinding; u,_; to T'— 1 while T' — 2 is rewinding; etc.

Table 6 shows the approximate behavior of this procedure when S is not
too small. The “Pass/phase” column indicates approximately how much of the
entire file is being rewound during each half of a phase, and approximately how
much of the file is being written during each full phase. The tape splitting method
is superior to standard polyphase on siz or more tapes, and probably also on five,
at least for large S.
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Table 6

APPROXIMATE BEHAVIOR OF POLYPHASE MERGE WITH TAPE SPLITTING

Tapes Phases Passes Pass/phase  Growth ratio
4 2.8851n S + 0.000 1.4431In S + 1.000 50% 1.4142136
5 2.078In S + 0.232 0.9291n S + 1.022 45% 1.6180340
6 2.078InS — 0.170 0.752In S + 1.024 36% 1.6180340
7 1.9581n S — 0.408 0.670In S + 1.007 34% 1.6663019
8 2.008In S — 0.762 0.6241n S + 0.994 31% 1.6454116
9 1.972In S — 0.987 0.5951In S + 0.967 30% 1.6604077
10 2.013In S — 1.300 0.5801In S + 0.941 29% 1.6433803
20 2.0691In S — 3.164 0.5661n S 4 0.536 27% 1.6214947

When T = 4 the procedure above would become essentially equivalent to
balanced two-way merging, without overlapping the rewind time, since wagp41
would be 0 for all n. So the entries in Table 6 for T' = 4 have been obtained by
making a slight modification, letting vy =0, vy =1, v; =0, up = 0, vo = 1,
and Vp41 = Up—1 + Un—1, Un = Un—2 + Un—2 for n > 2. This leads to a very
interesting sorting scheme (see exercises 25 and 26).

EXERCISES

1. [16] Figure 69 shows the order in which runs 34 through 65 are distributed to five
tapes with Algorithm D; in what order are runs 1 through 33 distributed?

2. [21] True or false: After two merge phases in Algorithm D (that is, on the second
time we reach step D6), all dummy runs have disappeared.

3. [22] Prove that the condition D[1] > D[2] > --- > DIT1] is always satisfied at the
conclusion of step D4. Explain why this condition is important, in the sense that the
mechanism of steps D2 and D3 would not work properly otherwise.

4. [M20] Derive the generating functions (7).

5. [HM26] (E.P. Miles, Jr., 1960.) For all p > 2, prove that the polynomial fp(z) =
2P — zP71 — ... — 2z —1 has p distinct roots, of which exactly one has magnitude greater
than unity. [Hint: Consider the polynomial 2P+ — 227 4 1]

6. [HM24] The purpose of this exercise is to consider how Tables 1, 5, and 6 were
prepared. Assume that we have a merging pattern whose properties are characterized
by polynomials p(z) and ¢(z) in the following way: (i) The number of initial runs present
in a “perfect distribution” requiring n merging phases is [2"] p(2)/q(z). (ii) The number
of initial runs processed during these n merging phases is [2"] p(z)/q(2)?. (iii) There
is a “dominant root” a of g(z~!) such that g(a=!) = 0, q¢'(a~!) # 0, p(a—!) # 0, and
q(8-1) = 0 implies that 8 = a or 8] < |e].

Prove that there is a number € > 0 such that, if S is the number of runs in a
perfect distribution requiring n merging phases, and if pS initial runs are processed
during those phases, we have n = aln S+ b+ O(S7¢) and p = ¢clnS + d + O(57°),

where -1
— (lna) ! — g [P N -
e=(na)™,  b=-al (—q'(a—w) b 7@y’
d= (b+Da-pal)/pla™) +¢"(e™)/d (™)
—q¢'(a™1) '
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7. [HM22] Let c, be the dominant root of the polynomial fy(z) in exercise 5. What
is the asymptotic behavior of ap as p — oo?

8. [M20] (E. Netto, 1901.) Let NP be the number of ways to express m as an
ordered sum of the integers {1,2,...,p}. For example, when p = 3 and m = 5, there
are 13 ways, namely 1+1+1+14+1 = 1+14+1+2 = 1+142+1 = 1+1+3 = 14+2+1+41 =
1+242= 1+3+1 =24+1+14+1=24+142=2+4+2+1=2+3=3+1+1=3+2.
Show that N is a generalized Fibonacci number.

9. [M20] Let KT(,’I’) be the number of sequences of m 0s and 1s such that there are
no p consecutive 1s. For example, when p = 3 and m = 5 there are 24 such sequences:
00000, 00001, 00010, 00011, 00100, 00101, 00110, 01000, 01001, ...,11011. Show that
KP isa generalized Fibonacci number.

10. [M27] (Generalized Fibonacci number system.) Prove that every nonnegative
integer n has a unique representation as a sum of distinct pth order Fibonacci numbers
F j(p ), for 7 > p, subject to the condition that no p consecutive Fibonacci numbers are
used.

11. [M24] Prove that the nth element of the string Q. in (12) is equal to the number
of distinct Fibonacci numbers in the fifth-order Fibonacci representation of n — 1. [See
exercise 10.]

12. [M18] Find a connection between powers of the matrix and

_ OO OO
— O O O~
= O O = O
O = O O
= =0 OO

the perfect Fibonacci distributions in (1).

13. [22] Prove the following rather odd property of perfect Fibonacci distributions:
When the final output will be on tape number T, the number of runs on each other
tape is odd; when the final output will be on some tape other than 7, the number of
runs will be odd on that tape, and it will be even on the others. [See (1).]

14. [M35] Let Tn(z) = 3 450 T 'k Z®, where T, (z) is the polynomial defined in (16).
a) Show that for each k there is a number n(k) such that Thx < Tox < -+ < Tprye >
Tin(ky+1),k 2 -
b) Given that Tn;k/ < T, and n’ < n, prove that T, < Ty« for all k> k.
c) Prove that there is a nondecreasing sequence (M) such that £, (S) = min;>,3;(S)
when M,, < § < My,+1, but £,(S) > minj>1 £;(S) when § > M, 41. [See (19)]
15. [M43] Prove or disprove: E,_1(m) < Ln(m) implies that £,(m) < Z,41(m) <
L,42(m) < ---. [Such a result would greatly simplify the calculation of Table 2.]

16. [HM48] Determine the asymptotic behavior of the polyphase merge with optimum
distribution of dummy runs.

17. [382] Prove or disprove: There is a way to disperse runs for an optimum polyphase
distribution in such a way that the distribution for S + 1 initial runs is formed by
adding one run (on an appropriate tape) to the distribution for S initial runs.

18. [30] Does the optimum polyphase distribution produce the best possible merging
pattern, in the sense that the total number of initial runs processed is minimized, if we
insist that the initial runs be placed on at most T'—1 of the tapes? (Ignore rewind time.)

19. [21] Make a table analogous to (1), for Caron’s polyphase sort on six tapes.
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20. [M24] What generating functions for Caron’s polyphase sort on six tapes corre-
spond to (7) and to (16)7 What relations, analogous to (9) and (27), define the strings
of merge numbers?

21. [11] What should appear on level 7 in (26)?

22. [M21] Each term of the sequence (24) is approximately equal to the sum of the
previous two. Does this phenomenon hold for the remaining numbers of the sequence?
Formulate and prove a theorem about ¢, — t,—-1 — th—2.

23. [29] What changes would be made to (25), (27), and (28), if (23) were changed
t0 Un+1 = Up—1 + Un—1 + Un—2, Un = Un-2 + Un—-3 + Un—3 + Un—a + Un_4a?

24. [HM41] Compute the asymptotic behavior of the tape-splitting polyphase proce-
dure, when v,+; is defined to be the sum of the first g terms of up—1 +vp—1 + -+ +
Up—p + Up—p, for various P =T — 2 and for 0 < ¢ < 2P. (The text treats only the
case g = 2| P/2]; see exercise 23.)

25. [19] Show how the tape-splitting polyphase merge on four tapes, mentioned at
the end of this section, would sort 32 initial runs. (Give a phase-by-phase analysis like
the 82-run six-tape example in the text.)

26. [M21] Analyze the behavior of the tape-splitting polyphase merge on four tapes,
when S = 2" and when S = 2™ + 2”71, (See exercise 25.)

27. [23] Once the initial runs have been distributed to tapes in a perfect distribution,
the polyphase strategy is simply to “merge until empty”: We merge runs from all
nonempty input tapes until one of them has been entirely read; then we use that tape
as the next output tape, and let the previous output tape serve as an input.

Does this merge-until-empty strategy always sort, no matter how the initial runs
are distributed, as long as we distribute them onto at least two tapes? (One tape will,
of course, be left empty so that it can be the first output tape.)

28. [M26] The previous exercise defines a rather large family of merging patterns.
Show that polyphase is the best of them, in the following sense: If there are six tapes,
and if we consider the class of all initial distributions (a, b, ¢, d, €) such that the merge-
until-empty strategy requires at most n phases to sort, then a + b+ c+d+ e < tp,
where t,, is the corresponding value for polyphase sorting (1).

29. [M47] Exercise 28 shows that the polyphase distribution is optimal among all
merge-until-empty patterns in the minimum-phase sense. But is it optimal also in the
minimum-pass sense?

Let a be relatively prime to b, and assume that a + b is the Fibonacci number F,,.
Prove or disprove the following conjecture due to R. M. Karp: The number of initial
runs processed during the merge-until-empty pattern starting with distribution (a,b)
is greater than or equal to ((n —5)Fn+1 + (2n+2)Fy)/5. (The latter figure is achieved
when a = F,_1, b= F,_3.)

30. [42] Prepare a table analogous to Table 2, for the tape-splitting polyphase merge.

31. [M22] (R. Kemp.) Let K4(n) be the number of n—node ordered trees in which
every leaf is at distance d from the root. For example, K3(8) = 7 because of the trees

BN Y

Show that K4(n) is a generalized Fibonacci number, and find a one-to-one correspon-
dence between such trees and the ordered partitions considered in exercise 8.
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*5.4.3. The Cascade Merge

Another basic pattern, called the “cascade merge,” was actually discovered
before polyphase [B. K. Betz and W. C. Carter, ACM National Conf. 14 (1959),
Paper 14]. This approach is illustrated for six tapes and 190 initial runs in the
following table, using the notation developed in Section 5.4.2:

Initial runs

T1 T2 T3 T4 TH T6 processed
Pass 1 155 150 14 129 115 — 190
- Pass 2 — *1° 29 312 414 515 190
Pass 3 15° 144 123 92 x5! — 190
Pass 4 — *151 201 411 501 551 190
Pass 5 1901 — — — — — 190

A cascade merge, like polyphase, starts out with a “perfect distribution” of
runs on tapes, although the rule for perfect distributions is somewhat different
from those in Section 5.4.2. Each line in the table represents a complete pass
over all the data. Pass 2, for example, is obtained by doing a five-way merge
from {T1,T2,T3,T4,T5} to T6, until T5 is empty (this puts 15 runs of relative
length 5 on T6), then a four-way merge from {T1,T2,T3,T4} to T5, then a
three-way merge to T4, a two-way merge to T3, and finally a one-way merge
(a copying operation) from T1 to T2. Pass 3 is obtained in the same way, first
doing a five-way merge until one tape becomes empty, then a four-way merge,
and so on. (Perhaps the present section of this book should be numbered 5.4.3.2.1
instead of 5.4.3!)

It is clear that the copying operations are unnecessary, and they could be
omitted. Actually, however, in the six-tape case this copying takes only a small
percentage of the total time. The items marked with an asterisk in the table
above are those that were simply copied; only 25 of the 950 runs processed are
of this type. Most of the time is devoted to five-way and four-way merging.

Table 1
APPROXIMATE BEHAVIOR OF CASCADE MERGE SORTING

Tapes Passes (with copying) Passes (without copying) Growth ratio

3 2.078In S + 0.672 1.5041n S + 0.992 1.6180340
4 1.235In S + 0.754 1.1021n S 4 0.820 2.2469796
5 0.9461n S + 0.796 0.8971n S + 0.800 2.8793852
6 0.7961n S + 0.821 0.7731In S + 0.808 3.5133371
7 0.7031n S + 0.839 0.6911n S 4 0.822 4.1481149
8 0.6391n S + 0.852 0.632In S + 0.834 4.7833861
9 0.5921n S 4 0.861 0.5871n S + 0.845 5.4189757
10 0.5551n S + 0.869 0.5521n S + 0.854 6.0547828
20 0.3971n S 4 0.905 0.3971n S + 0.901 12.4174426

At first it may seem that the cascade pattern is a rather poor choice, by
comparison with polyphase, since standard polyphase uses (7' — 1)-way merging
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throughout while the cascade uses (T — 1)-way, (T' — 2)-way, (T' — 3)-way, etc.
But in fact it is asymptotically better than polyphase, on six or more tapes! As
we have observed in Section 5.4.2, a high order of merge is not a guarantee of
efficiency. Table 1 shows the performance characteristics of cascade merge, by
analogy with the similar tables in Section 5.4.2.

The “perfect distributions” for a cascade merge are easily derived by working
backwards from the final state (1,0,...,0). With six tapes, they are

evel T1 T2 T3 T4 T5
0 1 0 0 0 0
1 1 1 1 1 1
2 5 4 3 2 1
3 15 14 12 9 5
4 55 50 41 29 15
) 190 175 146 105 055
n (07%% bn Cn dn €n

1+1  apntbutentditen antbitentdn antbaten  an+b, an (1)

It is interesting to note that the relative magnitudes of these numbers appear
also in the diagonals of a regular (27" — 1)-sided polygon. For example, the five
diagonals in the hendecagon of Fig. 73 have relative lengths very nearly equal
to 190, 175, 146, 105, and 55! We shall prove this remarkable fact later in this
section, and we shall also see that the relative amount of time spent in (7'—1)-way
merging, (7' — 2)-way merging, ..., 1-way merging is approximately proportional
to the squares of the lengths of these diagonals.

Fig. 73. Geometrical interpretation of cascade numbers.

Initial distribution of runs. When the actual number of initial runs isn’t
perfect, we can insert dummy runs as usual. A superficial analysis of this situ-
ation would indicate that the method of dummy run assignment is immaterial,
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Fig. 74. Efficiency of cascade merge with the distribution of Algorithm D.

since cascade merging operates by complete passes; if we have 190 initial runs,
each record is processed five times as in the example above, but if there are 191
we must apparently go up a level so that every record is processed six times.
Fortunately this abrupt change is not actually necessary; David E. Ferguson has
found a way to distribute initial runs so that many of the operations during the
first merge pass reduce to copying the contents of a tape. When such copying
relations are bypassed (by simply changing “logical” tape unit numbers relative
to the “physical” numbers as in Algorithm 5.4.2D), we obtain a relatively smooth
transition from level to level, as shown in Fig. 74.

Suppose that (a,b, ¢,d, e) is a perfect distribution, where a > b > ¢ > d > e.
By redefining the correspondence between logical and physical tape units, we
can imagine that the distribution is actually (e, d,c,b,a), with a runs on T5,
bon T4, etc. The next perfect distribution is (a+b+c+d+e, a+b+c+d, a+b+c,
a+b, a); and if the input is exhausted before we reach this next level, let us
assume that the tapes contain, respectively, (D), Dy, D3, D4, Ds) dummy runs,
where

Di<a+b+c+d, Dy<a+b+c, D3<a+b Dy<a, Ds=0;
Dy > Dy > D3 > Dy > Ds. (2)
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We are free to imagine that the dummy runs appear in any convenient place
on the tapes. The first merge pass is supposed to produce a runs by five-way
merging, then b by four-way merging, etc., and our goal is to arrange the dummies
so as to replace merging by copying. It is convenient to do the first merge pass
as follows:

1. If D4 = a, subtract a from each of Dy, Dy, D3, D4 and pretend that
T5 is the result of the merge. If Dy < a, merge a runs from tapes T1 through
T5, using the minimum possible number of dummies on tapes T1 through T5 so
that the new values of Dy, D2, D3, D4 will satisfy

D, <b+c+d, Dy<b+ec, D3<b Dy=0
Dy > Dy > D3 > Dy. (3)
Thus, if Dy was originally < b+ ¢, we use no dummies from it at this step, while
if b+ ¢ < Dy < a+ b+ ¢ we use exactly Dy — b — ¢ of them.

2. (This step is similar to step 1, but “shifted.”) If D3 = b, subtract b from
each of Dy, Dy, D3 and pretend that T4 is the result of the merge. If D3 < b,
merge b runs from tapes T1 through T4, reducing the number of dummies if
necessary in order to make

Dy <b+e¢, Dy<b D3s=0; D, > Dy > Ds3.
3. And so on.

Table 2
EXAMPLE OF CASCADE DISTRIBUTION STEPS

Add to T1 Add to T2 Add to T3 Add to T4 Add to T5 “Amount saved”

Step (1,1) 9 0 0 0 0 1541441245
Step (2,2) 3 12 0 0 0 15+1449+5
Step (2,1) 9 0 0 0 0 15+14+5
Step (3,3) 2 2 14 0 0 1541245
Step (3,2) 3 12 0 0 0 154945
Step (3,1) 9 0 0 0 0 1545
Step (4,4) 1 1 1 15 0 1445
Step (4,3) 2 2 14 0 0 1245
Step (4,2) 3 12 0 0 0 945
Step (4,1) 9 0 0 0 0 5

Ferguson’s method of distributing runs to tapes can be illustrated by con-
sidering the process of going from level 3 to level 4 in (1). Assume that “logical”
tapes (T1,...,T5) contain respectively (5,9,12,14, 15) runs and that we want
eventually to bring this up to (55,50, 41,29,15). The procedure can be summa-
rized as shown in Table 2. We first put nine runs on T1, then (3,12) on T1
and T2, etc. If the input becomes exhausted during, say, Step (3,2), then the
“amount saved” is 15 + 9 + 5, meaning that the five-way merge of 15 runs, the
two-way merge of 9 runs, and the one-way merge of 5 runs are avoided by the
dummy run assignment. In other words, 15 + 9 + 5 of the runs present at level
3 are not processed during the first merge phase.
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The following algorithm defines the process in detail.

Algorithm C (Cascade merge sorting with special distribution). This algorithm
takes initial runs and disperses them to tapes, one run at a time, until the supply
of initial runs is exhausted. Then it specifies how the tapes are to be merged,
assuming that there are 7' > 3 available tape units, using at most (7' — 1)-way
merging and avoiding unnecessary one-way merging. Tape T' may be used to
hold the input, since it does not receive any initial runs. The following tables
are maintained:

A[j1,1 < 3 <T: The perfect cascade distribution we have most recently
reached.

AA[7], 1< j <T: The perfect cascade distribution we are striving for.

D[j], 1 < j <T: Number of dummy runs assumed to be present on logical
tape unit number j.

M[j], 1 < j < T: Maximum number of dummy runs desired on logical tape
unit number 7.

TAPE[j]1, 1 < j < T: Number of the physical tape unit corresponding to logical
tape unit number j.

C1. [Initialize.] Set A[k] « AA[k] < D[kl < 0 for 2 < k < T; and set
A[1] < 0, AA[1] < 1,D[1] « 1. Set TAPE[k] « k for 1 < k < T. Finally
set i+ T —2,j« 1, k<« 1,1+ 0, m+« 1, and go to step C5. (This
maneuvering is one way to get everything started, by jumping right into the
inner loop with appropriate settings of the control variables.)

C2. [Begin new level.] (We have just reached a perfect distribution, and since
there is more input we must get ready for the next level.) Increase [ by 1. Set
Alk] < AA[k],for1 <k < T;thenset AA[T — k] < AA[T — k + 1] +A[k],
for k =1, 2, ..., T—1 in this order. Set (TAPE[1],...,TAPE[T—1]) «
(TAPE[T'—1],...,TAPE[1]), and set D[k] « AA[k+1] for 1 < k < T.
Finally set 7 < 1.

C3. [Begin ith sublevel.] Set j < i. (The variables ¢ and j represent “Step
(1,7)” in the example shown in Table 2.)

C4. [Begin Step (7,7).] Set k « jand m < A[T —j—1]1. If m = 0 and 7 = j,
set i < T — 2 and return to C3; if m = 0 and ¢ # j, return to C2. (Variable
m represents the number of runs to be written onto TAPE[k]; m = 0 occurs
only when [ =1.)

C5. [Input to TAPE[k].] Write one run on tape number TAPE[k], and decrease
D[k] by 1. Then if the input is exhausted, rewind all the tapes and go to
step C7.

C6. [Advance.] Decrease m by 1. If m > 0, return to C5. Otherwise decrease k
by 1;if k > 0, set m « A[T — j — 11 — A[T — 5] and return to C5 if m > 0.
Otherwise decrease j by 1; if j > 0, go to C4. Otherwise increase 1 by 1; if
t < T —1, return to C3. Otherwise go to C2.
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C2. Begin new level

C3. Begin ith sublevel

C4. Begin Step (i, j)

C1. Initialize C5. Input to TAPE[k] C6. Advance
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C8. Cascade C9. Down a level

\L Sorting complete

Fig. 75. The cascade merge, with special distribution.

[Prepare to merge.] (At this point the initial distribution is complete, and
the AA, D, and TAPE tables describe the present states of the tapes.) Set
M[k] < AA[k+1] for 1 < k < T, and set FIRST <« 1. (Variable FIRST is
nonzero only during the first merge pass.)

[Cascade.] If [ = 0, stop; sorting is complete and the output is on TAPE[1].
Otherwise, forp =T —1,T -2, ..., 1, in this order, do a p-way merge from
TAPE[1], ..., TAPE[p] to TAPE[p + 1] as follows:

If p = 1, simulate the one-way merge by simply rewinding TAPE[2], then
interchanging TAPE[1] < TAPE[2].

Otherwise if FIRST = 1 and D[p — 11 = M[p — 1], simulate the p-way merge
by simply interchanging TAPE[p] < TAPE[p + 1], rewinding TAPE[p], and
subtracting M[p — 1] from each of D[1],...,D[p—11,M[1],... ,M[p—1].
Otherwise, subtract M[p — 1] from each of M[1],...,M[p — 1]. Then merge
one run from each TAPE[j] such that 1 < j < p and D[j] < M[j]; subtract
one from each D[j] such that 1 < j < p and D[35] > M[j]; and put the
output run on TAPE[p + 1]. Continue doing this until TAPE [p] is empty.
Then rewind TAPE[p] and TAPE[p + 1].

[Down a level.] Decrease [ by 1, set FIRST < 0, and set (TAPE[1],...,
TAPE[T]) « (TAPE[T],...,TAPE[1]). (At this point all D’s and M’s are
zero and will remain so.) Return to C8. |

Steps C1-C6 of this algorithm do the distribution, and steps C7-C9 do the

merging; the two parts are fairly independent of each other, and it would be
possible to store M[k] and AA[k + 1] in the same memory locations.
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Analysis of cascade merging. The cascade merge is somewhat harder to
analyze than polyphase, but the analysis is especially interesting because so
many remarkable formulas are present. Readers who enjoy discrete mathematics
are urged to study the cascade distribution for themselves, before reading further,
since the numbers have extraordinary properties that are a pleasure to discover.
We shall discuss here one of the many ways to approach the analysis, emphasizing
the way in which the results might be discovered.

For convenience, let us consider the six-tape case, looking for formulas that
generalize to all T. Relations (1) lead to the first basic pattern:

On = 0an = (g)an’
bn =0anp—€n-1
=0n—0n—2 = ((1)) Gn— (g) dn-2,
Cp = bn—d —1
=bp—an_2—bp_a = (2)an—()an—2+()an—a, (4)
dn =Cp—€n_1 4
=cpn—Qn_2—byp_o—cCp 2 = (g) On— (2) An-2+ (Z) On—4— (g) an—6;

€n = dn_bn—l
=dn—apn_9—bp_o2—Cp_o—dn_o= (é) an— (2) an—2+ (2) An—q— (Z) an-6+ (S) Qn—g.

Let A(2) =37 5pan2™, ..., B(2) = 3,50 €n2", and define the polynomials
_[m m—+ 1\ , <m+2) 4
qm(z)‘(o) ( 2 )Z+ 4 )*
m+k k 2k m<2m_k) —k_2m—2k
= -1 — -1 m m )
;(%)()z > () (5)

The result of (4) can be summarized by saying that the generating functions
B(2) — 1(2)A(2), C(2) — a2(2)A(2), D(2) — as(2)A(2), and E(2) — qs(2)A(2)
reduce to finite sums, corresponding to the valuesofa_1,a_2,a_3, ... that appear
in (4) for small n but do not appear in A(z). In order to supply appropriate
boundary conditions, let us run the recurrence backwards to negative levels,
through level —8:

n Qn bn Cn dn €n

0 1 0 0 0 0
-1 0 0 0 0 1
-2 1 -1 0 0 0
-3 0 0 0 -1 2
—4 2 -3 1 0 0
-5 0 0 1 -4 5
—6 5 -9 5 -1 0
-7 0 -1 6 —-14 14
-8 14 —28 20 -7 1
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(On seven tapes the table would be similar, with entries for odd n shifted right
one column.) The sequence ag,a—2,a—4,--.=1,1,2,5,14,.. . is a dead giveaway
for computer scientists, since it occurs in connection with so many recursive
algorithms (see, for example, exercise 2.2.1-4 and Eq. 2.3.4.4-(14)); therefore we
conjecture that in the T-tape case

a_2n=<2n)—~1—, for0<n<T -2

n/n+1 (6)
a_on—1 =0, for0<n<T-3.

To verify that this choice is correct, it suffices to show that (6) and (4) yield the

correct results for levels 0 and 1. On level 1 this is obvious, and on level 0 we

have to verify that

<m) <m+1) +<m+2)a <m+3)a L
an — a. - P
AL 9 2 4 4 6 6
m+k\ (2k\ (=1)F
:Z< 2%k )(k)k+1 = Omo (7)
k>0

for 0 < m < T — 2. Fortunately this sum can be evaluated by standard tech-
niques; it is, in fact, Example 2 in Section 1.2.6.

Now we can compute the coefficients of B(z) —¢1(z)A(z), etc. For example,
consider the coefficient of 22™ in D(z) — g3(2)A(z): It is

£ (oo S0 () 5o
- (<22nj—m1) - <3;mm)>

= om0,

2m

by the result of Example 3 in Section 1.2.6. Therefore we have deduced that
A(z) = qo(2)A(2),
B(2) = q1(2)A(2) —qo(2),  C(2) = @2(2)A(2) — au(2),
D(2) = g3(2)A(2) — @2(2),  E(2) = qa(2)A(2) — g3(2). (8)

Furthermore we have e, = a,; hence zA(z) = E(z), and

A(z) = a3(2)/ (qa(2) - 2). (9)

The generating functions have now been derived in terms of the g polyno-
mials, and so we want to understand the g’s better. Exercise 1.2.9-15 is useful
in this regard, since it gives us a closed form that may be written

((\/Z——z2 + iz)/2)2m+1 + ((\/4—:.,2_2 _ iz)/2)2m+1
= . (o)

gm(2) =
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Everything simplifies if we now set z = 2sin6:

(cos 0 +isin0)2™+1 + (cos—isin§)*" ! cos(2m+1)¢

= . (11)

gm(28in0) = 2 cos 6 cosf

(This coincidence leads us to suspect that the polynomial g, (z) is well known in
mathematics; and indeed, a glance at appropriate tables will show that g, (2) is
essentially a Chebyshev polynomial of the second kind, namely (—1)™Uszm(2/2)
in conventional notation.)

We can now determine the roots of the denominator in (9): The equation
g4(2sin f) = 2sin 6 reduces to

cos 90 = 2sin 0 cos § = sin 28.

We can obtain solutions to this relation whenever £96 = 26 + (2n — 3)m; and
all such 8 yield roots of the denominator in (9) provided that cos# # 0. (When
cosf = 0, g, (£2) = (2m + 1) is never equal to £2.) The following eight distinct
roots for g4(z) — z = 0 are therefore obtained:

2s1n 7r 2s1n 7r 2s1n a7 2s1n 7r 2s1n 7r 2sm 55T, 2s1n 55T, 2sm%7r

Since q4(z) is a polynomlal of degree 8, this accounts for all the roots. The first
three of these values make g3(z) = 0, so ¢3(z) and g4(z) — z have a polynomial
of degree three as a common factor. The other five roots govern the asymptotic
behavior of the coefficients of A(z), if we expand (9) in partial fractions.

Considering the general T-tape case, let 6, = (4k + 1)7/(4T — 2). The
generating function A(z) for the T-tape cascade distribution numbers takes the
form

4 cos? O,
3 . »
2T —1 _rpaihelT) 1 —2z/(2sinb)

(see exercise 8); hence

4 5 1 \"
- 0 .
e SN DR (2sin 9k> (13)

—~T/2<k<|T/2]

Egs. (8) now lead to the similar formulas

4 1 "
= 6 6
b 5T —1 Z cos 0y, cos 30, (2sin0k> ,

—T/2<k<|T/2]
4 Ly
en = g7 Z cos B, cos b0, (2sin 9k> ) (14)
~T/2<k<|T/2]
4 Ly
n — 0 0
dn=ges D, oS kC°S7’“(2sm9k> !
—T/2<k<|T/2]

and so on. Exercise 9 shows that these equations hold for all n > 0, not only
for large n. In each sum the term for £ = 0 dominates all the others, especially
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when n is reasonably large; therefore the “growth ratio” is

1 2 1 T 9
2sinfy 7rT T T 48T +O(T™). (15)
Cascade sorting was first analyzed by W. C. Carter [Proc. IFIP Congress
(1962), 62-66], who obtained numerical results for small T, and by David E.
Ferguson [see CACM T (1964), 297], who discovered the first two terms in the
asymptotic behavior (15) of the growth ratio. During the summer of 1964,
R. W. Floyd discovered the explicit form 1/(2sinfy) of the growth ratio, so that
exact formulas could be used for all 7. An intensive analysis of the cascade
numbers was independently carried out by G. N. Raney [Canadian J. Math. 18
(1966), 332-349], who came across them in quite another way having nothing to
do with sorting. Raney observed the “ratio of diagonals” principle of Fig. 73,
and derived many other interesting properties of the numbers. Floyd and Raney
used matrix manipulations in their proofs (see exercise 6).

Modifications of cascade sorting. If one more tape is added, it is possible
to overlap nearly all of the rewind time during a cascade sort. For example,
we can merge T1-T5 to T7, then T1-T4 to T6, then T1-T3 to T5 (which by
now is rewound), then T1-T2 to T4, and the next pass can begin when the
comparatively short data on T4 has been rewound. The efficiency of this process
can be predicted from the analysis of cascading. (See Section 5.4.6 for further
information.)

A “compromise merge” scheme, which includes both polyphase and cascade
as special cases, was suggested by D. E. Knuth in CACM 6 (1963), 585-587.
Each phase consists of (T' — 1)-way, (T — 2)-way, ..., P-way merges, where P
is any fixed number between 1 and T'— 1. When P =T — 1, this is polyphase,
and when P = 1 it is pure cascade; when P = 2 it is cascade without copy
phases. Analyses of this scheme have been made by C. E. Radke [IBM Systems
J. 5 (1966), 226-247] and by W. H. Burge [Proc. IFIP Congress (1971), 1, 454~
459]. Burge found the generating function ) T,,(z)z"™ for each (P, T) compromise
merge, generalizing Eq. 5.4.2-(16); he showed that the best value of P, from the
standpoint of fewest initial runs processed as a function of S as S — oo (using
a straightforward distribution scheme and ignoring rewind time), is respectively
(2,3,3,4,4,4,3,3,4) for T = (3,4,5,6,7,8,9,10,11). These values of P lean
more towards cascade than polyphase as T' increases; and it turns out that the
compromise merge is never substantially better than cascade itself. On the other
hand, with an optimum choice of levels and optimum distribution of dummy
runs, as described in Section 5.4.2, pure polyphase seems to be best of all the
compromise merges; unfortunately the optimum distribution is comparatively
difficult to implement.

Th. L. Johnsen [BIT 6 (1966), 129-143] has studied a combination of bal-
anced and polyphase merging; a rewind-overlap variation of balanced merging
has been proposed by M. A. Goetz [Digital Computer User’s Handbook, edited
by M. Klerer and G. A. Korn (New York: McGraw-Hill, 1967), 1.311-1.312];
and many other hybrid schemes can be imagined.
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EXERCISES

1. [10] Using Table 1, compare cascade merging with the tape-splitting version of
polyphase described in Section 5.4.2. Which is better? (Ignore rewind time.)

2. [22] Compare cascade sorting on three tapes, using Algorithm C, to polyphase
sorting on three tapes, using Algorithm 5.4.2D. What similarities and differences can
you find? .

3. [23] Prepare a table that shows what happens when 100 initial runs are sorted
on six tapes using Algorithm C.

4. [M20] (G. N. Raney.) An “nth level cascade distribution” is a multiset defined
as follows (in the case of six tapes): {1,0,0,0,0} is a Oth level cascade distribution;
and if {a,b,c,d,e} is an nth level cascade distribution, {a+b+c+d+e, a+b+c+d,
a+b+c, a+b, a} is an (n + 1)st level cascade distribution. (A multiset is unordered,
hence up to 5! different (n + 1)st level distributions can be formed from a single nth
level distribution.)

a) Prove that any multiset {a,b,c,d,e} of relatively prime integers is an nth level

cascade distribution, for some n.

b) Prove that the distribution defined for cascade sorting is optimum, in the sense
that, if {a,b,c, d, e} is any nth level distribution with a > b > ¢ > d > €, we have
a< an,b<bn,c<cn,d< dn, e <en, where (an,bn, Cn,dn, en) is the distribution
defined in (1).

5. [20] Prove that the cascade numbers defined in (1) satisfy the law
Akln—k + bkbn_k + CkCn—k + dkdn_k + €k€n—k = Gn, for0 <k <n.
[Hint: Interpret this relation by considering how many runs of various lengths are

output during the kth pass of a complete cascade sort.]

6. [M20] Find a 5 x 5 matrix @Q such that the first row of Q™ contains the six-tape
cascade numbers a, by cn dn €, for all n > 0.

7. [M20] Given that cascade merge is being applied to a perfect distribution of an
initial runs, find a formula for the amount of processing saved when one-way merging
is suppressed.

8. [HM23] Derive (12).

9. [HM26] Derive (14).
10. [M28] Instead of using the pattern (4) to begin the study of the cascade numbers,
start with the identities

€n = Gn-1 = (i)an—ly
dn = 2an_1 — €n--2 = (?)an—l - (g)an—-&

Cn =3Gn—1 —dn-2—26n—2= (?)an—l - (‘;)an—a - (i)an_s,

= (T (77 (")

express A(z), B(z), etc. in terms of these r polynomials.
11. [M38] Let

etc. Letting

Fm(2) = Z < L(m "‘kk)/QJ) (_1)[k/2]zk‘

k=0
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Prove that the generating function A(z) for the T-tape cascade numbers is equal to
fr-3(2)/fr-1(z), where the numerator and denominator in this expression have no
common factor.

12. [M40] Prove that Ferguson’s distribution scheme is optimum, in the sense that
no method of placing the dummy runs, satisfying (2), will cause fewer initial runs to
be processed during the first pass, provided that the strategy of steps C7—C9 is used
during this pass.

13. [40] The text suggests overlapping most of the rewind time, by adding an extra—
tape. Explore this idea. (For example, the text’s scheme involves waiting for T4 to
rewind; would it be better to omit T4 from the first merge phase of the next pass?)

*5.4.4. Reading Tape Backwards

Many magnetic tape units have the ability to read tape in the opposite direction
from which it was written. The merging patterns we have encountered so far
always write information onto tape in the “forward” direction, then rewind the
tape, read it forwards, and rewind again. The tape files therefore behave as
queues, operating in a first-in-first-out manner. Backwards reading allows us to
eliminate both of these rewind operations: We write the tape forwards and read
it backwards. In this case the files behave as stacks, since they are used in a
last-in-first-out manner.

The balanced, polyphase, and cascade merge patterns can all be adapted to
backward reading. The main difference is that merging reverses the order of the
runs when we read backwards and write forwards. If two runs are in ascending
order on tape, we can merge them while reading backwards, but this produces
descending order. The descending runs produced in this way will subsequently
become ascending on the next pass; so the merging algorithms must be capable
of dealing with runs in either order. Programmer who are confronted with read-
backwards for the first time often feel like they are standing on their heads!

As an example of backwards reading, consider the process of merging 8 initial
runs, using a balanced merge on four tapes. The operations can be summarized
as follows:

T1 T2 T3 T4
Pass 1 AlAlAlAl AlAlAlAl — — Initial distribution
Pass 2 — — Dy Do Dy Do Merge to T3 and T4
Pass 3 Ay Ay — — Merge to T1 and T2
Pass 4 — — Dg — Final merge to T3

Here A, stands for a run of relative length r that appears on tape in ascending
order, if the tape is read forwards as in our previous examples; D, is the
corresponding notation for a descending run of length r. During Pass 2 the
ascending runs become descending: They appear to be descending in the input,
since we are reading T1 and T2 backwards. Then the runs switch orientation
again on Pass 3.

Notice that the process above finishes with the result on tape T3, in de-
scending order. If this is bad (depending on whether the output is to be read
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backwards, or to be dismounted and put away for future use), we could copy it
to another tape, reversing the direction. A faster way would be to rewind T1
and T2 after Pass 3, producing Asg during Pass 4. Still faster would be to start
with eight descending runs during Pass 1, since this would interchange all the
A’s and D’s. However, the balanced merge on 16 initial runs would require the
initial runs to be ascending; and we usually don’t know in advance how many
initial runs will be formed, so it is necessary to choose one consistent direction.
Therefore the idea of rewinding after Pass 3 is probably best.

The cascade merge carries over in the same way. For example, consider
sorting 14 initial runs on four tapes:

T1 T2 T3 T4
Pass 1 A1A1A1A1A1A1 A1A1A1A1A1 AlAlAl —
Pass 2 — D1 D2D2 D3D3D3
Pass 3 Ag Ag Az —
Pass 4 — — — D4

Again, we could produce A4 instead of Dig4, if we rewound T1, T2, T3 just
before the final pass. This tableau illustrates a “pure” cascade merge, in the
sense that all of the one-way merges have been performed explicitly. If we had
suppressed the copying operations, as in Algorithm 5.4.3C, we would have been
confronted with the situation

A — D, D, D3D3D3

after Pass 2, and it would have been impossible to continue with a three-way
merge since we cannot merge runs that are in opposite directions! The operation
of copying T1 to T2 could be avoided if we rewound T1 and proceeded to read
it forward during the next merge phase (while reading T3 and T4 backwards).
But it would then be necessary to rewind T1 again after merging, so this trick
trades one copy for two rewinds.

Thus the distribution method of Algorithm 5.4.3C does not work as efficient-
ly for read-backwards as for read-forwards; the amount of time required jumps
rather sharply every time the number of initial runs passes a “perfect” cas-
cade distribution number. Another dispersion technique can be used to give a
smoother transition between perfect cascade distributions (see exercise 17).

Read-backward polyphase. At first glance (and even at second and third
glance), the polyphase merge scheme seems to be totally unfit for reading back-
wards. For example, suppose that we have 13 initial runs and three tapes:

T1 T2 T3

Phase 1 A1A1A1A1A1 A1A1A1A1A1A1A1A1 —
Phase 2 — A1 AL A DyDyDy Dy Dy

Now we’re stuck; we could rewind either T2 or T3 and then read it forwards,
while reading the other tape backwards, but this would jumble things up and
we would have gained comparatively little by reading backwards.
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An ingenious idea that saves the situation is to alternate the direction of
runs on each tape. Then the merging can proceed in perfect synchronization:

T1 T2 T3
Phase 1 A1D1A1D1A1 DlAlDlAlDlAlDlAl —
Phase 2 — D1A1D1 D2A2D2A2D2
Phase 3 A3D3A3 — D2A2
Phase 4 A3 D5A5 —
Phase 5 — Ds Ds
Phase 6 Ais — —

This principle was mentioned briefly by R. L. Gilstad in his original article on
polyphase merging, and he described it more fully in CACM 6 (1963), 220-223.

The ADA ... technique works properly for polyphase merging on any num-
ber of tapes; for we can show that the A’s and D’s will be properly synchronized
at each phase, provided only that the initial distribution pass produces alter-
nating A’s and D’s on each tape and that each tape ends with A (or each tape
ends with D): Since the last run written on the output file during one phase is
in the opposite direction from the last runs used from the input files, the next
phase always finds its runs in the proper orientation. Furthermore we have seen
in exercise 5.4.2-13 that most of the perfect Fibonacci distributions call for an
odd number of runs on one tape (the eventual output tape), and an even number
of runs on each other tape. If T1 is designated as the final output tape, we can
therefore guarantee that all tapes end with an A run, if we start T1 with an A
and let the remaining tapes start with a D. A distribution method analogous to
Algorithm 5.4.2D can be used, modified so that the distributions on each level
have T1 as the final output tape. (We skip levels 1, T'41, 2T +1, ..., since they
are the levels in which the initially empty tape is the final output tape.) For
example, in the six-tape case, we can use the following distribution numbers in
place of 5.4.2—(1):

Final output

Level T1 T2 T3 T4 T5H Total will be on
0 1 0 0 0 0 1 T1
2 1 2 2 2 2 9 T1
3 3 4 4 4 2 17 . T1
4 7 8 8 6 4 33 T1 (1)
5 15 16 14 12 8 65 T1
6 31 30 28 24 16 129 T1
8 61 120 116 108 92 497 T1

Thus, T1 always gets an odd number of runs, while T2 through T5 get the even
numbers, in decreasing order for flexibility in dummy run assignment. Such a
distribution has the advantage that the final output tape is known in advance,
regardless of the number of initial runs that happen to be present. It turns out
(see exercise 3) that the output will always appear in ascending order on T1
when this scheme is used.
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Another way to handle the distribution for read-backward polyphase has
been suggested by D. T. Goodwin and J. L. Venn [CACM 7 (1964), 315]. We
can distribute runs almost as in Algorithm 5.4.2D, beginning with a D run on
each tape. When the input is exhausted, a dummy A run is imagined to be
at the beginning of the unique “odd” tape, unless a distribution with all odd
numbers has been reached. Other dummies are imagined at the end of the
tapes, or grouped into pairs in the middle. The question of optimum placement
of dummy runs is analyzed in exercise 5 below.

Optimum merge patterns. So far we have been discussing various patterns
for merging on tape, without asking for “best possible” methods. It appears
to be quite difficult to determine the optimal patterns, especially in the read-
forward case where the interaction of rewind time with merge time is hard to
handle. On the other hand, when merging is done by reading backwards and
writing forwards, all rewinding is essentially eliminated, and it is possible to
get a fairly good characterization of optimal ways to merge. Richard M. Karp
has introduced some very interesting approaches to this problem, and we shall
conclude this section by discussing the theory he has developed.

In the first place we need a more satisfactory way to describe merging
patterns, instead of the rather mysterious tape-content tableaux that have been
used above. Karp has suggested two ways to do this, the vector representation
and the tree representation of a merge pattern. Both forms of representation are
useful in practice, so we shall describe them in turn.

The vector representation of a merge pattern consists of a sequence of “merge
vectors” y(™) ...y y©) each of which has T components. The ith-last merge
step is represented by 3 in the following way:

i) =

bl

0 if tape number j is not used in the merge; (2)

{ +1, if tape number j is an input to the merge;
—1, if tape number j gets the output of the merge.

Thus, exactly one component of (*) is —1, and the other components are Os and
1s. The final vector y(® is special; it is a unit vector, having 1 in position j if the
final sorted output appears on unit j, and 0 elsewhere. These definitions imply
that the vector sum

o) =y 4 (-1 4 o4 (0 (3)

represents the distribution of runs on tape just before the ith-last merge step,
with vj(»l) runs on tape j. In particular, v(™) tells how many runs the initial
distribution pass places on each tape.

It may seem awkward to number these vectors backwards, with y(™) coming
first and y(© last, but this peculiar viewpoint turns out to be advantageous for
developing the theory. One good way to search for an optimal method is to start
with the sorted output and to imagine “unmerging” it to various tapes, then
unmerging these, etc., considering the successive distributions v(®), v(1) ()

in the reverse order from which they actually occur during the sorting process.
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In fact that is essentially the approach we have taken already in our analysis of
polyphase and cascade merging.

The three merge patterns described in tabular form earlier in this section
have the following vector representations:

Balanced (T =4, S=28) Cascade (T’ =4, S = 14) Polyphase (T = 13)
v =( 4, 4, 0, 0) w19 =( 6, 5, 3, 0) “2)—( 5, 8, 0)
y'? = (+1,+1,-1, 0) Y0 = (41,41, 41, 1) y® = (+1,+1,-1)
y® = (+1,+1, 0,-1) Y@ = (+1,+1,+1,-1) y(“) = (+1,+1,-1)
y® = (+1,+1,-1, 0)  y'¥ =(+1,+1,+1,~1) Y% = (+1,+1,-1)
y@ = (+1,41, 0,-1) 7 =(+L,+1,-1, 0) v = (+1,+1,-1)
y® = (-1, 0,+1,+1)  ¥© =(+1,+1,-1, 0) y® = (+1,+1,-1)
Yy =( 0,—1,+1,+1) y® = (+1,-1, 0, 0) Yy = (=1,+1,+1)
yV = (+1,4+1,-1, 0) y® = (=1,4+1,+1,+1) y® = (=1,+41,+1)
y@=(0 0, 1 0  y¥ =(0-1+1+1 y'® = (=1,+1,+1)
y? =( 0, 0,—1,+1) y@ = (+1,-1,+1)
y = (+1,41,+1,-1) y® = (+1,-1,+1)
y©@ =( 0, 0, 0, 1) y? = (+1,+1,-1)
' = (=141, +1)
y©@ =( 1, 0, 0)

Every merge pattern obviously has a vector representation. Conversely, it is
easy to see that the sequence of vectors y(™) ...y y(® corresponds to an actual
merge pattern if and only if the following three conditions are satisfied:

i) 4 is a unit vector.

ii) y has exactly one component equal to —1, all other components equal to
Qor +1, form >1 > 1.

iii) All components of y@& 4.+ y® + y(© are nonnegative, for m > 1 > 1.

The tree representation of a merge pattern gives another picture of the same
information. We construct a tree with one external leaf node for each initial
run, and one internal node for each run that is merged, in such a way that the
descendants of each internal node are the runs from which it was fabricated.
Each internal node is labeled with the step number on which the corresponding
run was formed, numbering steps backwards as in the vector representation;
furthermore, the line just above each node is labeled with the name of the tape
on which that run appears. For example, the three merge patterns above have
the tree representations depicted in Fig. 76, if we call the tapes A, B, C, D
instead of T1, T2, T3, T4.

This representation displays many of the relevant properties of the merge
pattern in convenient form; for example, if the run on level 0 of the tree (the
root) is to be ascending, then the runs on level 1 must be descending, those
on level 2 must be ascending, etc.; an initial run is ascending if and only if the
corresponding external node is on an even-numbered level. Furthermore the total
number of initial runs processed during the merging (not including the initial
distribution) is exactly equal to the external path length of the tree, since each
initial run on level k is processed exactly k times.
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Balanced (T'=4, S=38) Cascade (I'=4, S=14)

Fig. 76. Tree representations of three merge patterns.

Every merge pattern has a tree representation, but not every tree defines a
merge pattern. A tree whose internal nodes have been labeled with the numbers
1 through m, and whose lines have been labeled with tape names, represents a
valid read-backward merge pattern if and only if

a) no two lines adjacent to the same internal node have the same tape name;

b) if i > j, and if A is a tape name, the tree does not contain the configuration

Al
@

¢) if i <j<k<l, and if A is a tape name, the tree does not contain

both A| and 4 or both A| and 4| . (4

~—
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Condition (a) is self-evident, since the input and output tapes in a merge must be
distinct; similarly, (b) is obvious. The “no crossover” condition (c) mirrors the
last-in-first-out restriction that characterizes read-backward operations on tape:
The run formed at step k must be removed before any runs formed previously on
that same tape; hence the configurations in (4) are impossible. It is not difficult
to verify that any labeled tree satisfying conditions (a), (b), (c) does indeed
correspond to a read-backward merge pattern.

If there are T tape units, condition (a) implies that the degree of each
internal node is T'— 1 or less. It is not always possible to attach suitable labels
to all such trees; for example, when T' = 3 there is no merge pattern whose tree
has the shape

This shape would lead to an optimal merge pattern if we could attach step
numbers and tape names in a suitable way, since it is the only way to achieve
the minimum external path length in a tree having four external nodes. But
there is essentially only one way to do the labeling according to conditions (a)
and (b), because of the symmetries of the diagram, namely,

A

Al \C A/ \B

and this violates condition (c). A shape that can be labeled according to the
conditions above, using at most T tape names, is called a T-lifo tree.

Another way to characterize all labeled trees that can arise from merge
patterns is to consider how all such trees can be “grown.” Start with some tape
name, say A, and with the seedling

&

Step number 7 in the tree’s growth consists of choosing distinct tape names
B,B1,B,, ..., B, and changing the most recently formed external node corre-
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sponding to B

This “last formed, first grown on” rule explains how the tree representation can
be constructed directly from the vector representation.

The determination of strictly optimum 7'-tape merge patterns—that is, of
T-lifo trees whose path length is minimum for a given number of external nodes —
seems to be quite difficult. For example, the following nonobvious pattern turns
out to be an optimum way to merge seven initial runs on four tapes, reading
backwards:

A one-way merge is actually necessary to achieve the optimum! (See exercise 8.)
On the other hand, it is not so difficult to give constructions that are asymptot-
tcally optimal, for any fixed T.

Let K7(n) be the minimum external path length achievable in a T-lifo tree
with n external nodes. From the theory developed in Section 2.3.4.5, it is not
difficult to prove that

Kr(n) >ng— [(T-1)?=n)/(T-2)},  g=[logp_,n], (9)

since this is the minimum external path length of any tree with n external nodes
and all nodes of degree < T. At the present time comparatively few values of
K7 (n) are known exactly. Here are some upper bounds that are probably exact:

n=12 34 5 6 7 8 9 10 11 12 13 14 15
Ki(n)<0 2 5 9 12 16 21 25 30 34 39 45 50 56 61  (10)
Kin)<0 2 3 6 8 11 14 17 20 24 27 31 33 37 40

Karp discovered that any tree whose internal nodes have degrees < T is
almost T-lifo, in the sense that it can be made T-lifo by changing some of the
external nodes to one-way merges. In fact, the construction of a suitable labeling
is fairly simple. Let A be a particular tape name, and proceed as follows:
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Step 1. Attach tape names to the lines of the tree diagram, in any manner
consistent with condition (a) above, provided that the special name A is used
only in the leftmost line of a branch.

Step 2. Replace each external node of the form

B by
A
whenever B # A.

Step 3. Number the internal nodes of the tree in preorder. The result will be a
labeling satisfying conditions (a), (b), and (c).

For example, if we start with the tree

(11)

and three tapes, this procedure might assign labels as follows:

(12)

It is not difficult to verify that Karp’s construction satisfies the “last formed,
first grown on” discipline, because of the nature of preorder (see exercise 12).

The result of this construction is a merge pattern for which all of the initial
runs appear on tape A. This suggests the following distribution and sorting
scheme, which we may call the preorder merge:
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P1. Distribute initial runs onto Tape A until the input is exhausted. Let S be
the total number of initial runs.

P2. Carry out the construction above, using a minimum-path-length (7' — 1)-
ary tree with S external nodes, obtaining a T-lifo tree whose external path
length is within S of the lower bound in (9g).

P3. Merge the runs according to this pattern. 1|

This scheme will produce its output on any desired tape. But it has one serious
flaw— does the reader see what will go wrong? The problem is that the merge
pattern requires some of the runs initially on tape A to be ascending, and some to
be descending, depending on whether the corresponding external node appears
on an odd or an even level. This problem can be resolved without knowing S
in advance, by copying runs that should be descending onto an auxiliary tape
or tapes, just before they are needed. Then the total amount of processing, in
terms of initial run lengths, comes to

Slogr_1 S+ O(S). (13)

Thus the preorder merge is definitely better than polyphase or cascade, as
S — oo; indeed, it is asymptotically optimum, since (9) shows that Slog;_; S+
O(S) is the best we could ever hope to achieve on T tapes. On the other
hand, for the comparatively small values of S that usually arise in practice, the
preorder merge is rather inefficient; polyphase or cascade methods are simpler
and faster, when S is reasonably small. Perhaps it will be possible to invent a
simple distribution-and-merge scheme that is competitive with polyphase and
cascade for small S, and that is asymptotically optimum for large S.

The second set of exercises below shows how Karp has formulated the
question of read-forward merging in a similar way. The theory turns out to
be rather more complicated in this case, although some very interesting results
have been discovered.

EXERCISES — First Set

1. [17] It is often convenient, during read-forward merging, to mark the end of each
run on tape by including an artificial sentinel record whose key is +0o. How should
this practice be modified, when reading backwards?

2. [20] Will the columns of an array like (1) always be nondecreasing, or is there a
chance that we will have to “subtract” runs from some tape as we go from one level to
the next?

» 3. [20] Prove that when read-backward polyphase merging is used with the perfect
distributions of (1), we will always obtain an A run on tape T1 when sorting is complete,
if T1 originally starts with ADA... and T2 through T5 start with DAD ....

4. [M22] Isit a good idea to do read-backward polyphase merging after distributing
all runs in ascending order, imagining all the D positions to be initially filled with
dummies?

» 5. [28] What formulas for the strings of merge numbers replace (8), (9), (10), and
(11) of Section 5.4.2, when read-backward polyphase merging is used? Show the
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merge numbers for the fifth level distribution on six tapes, by drawing a diagram
like Fig. 71(a).

6. [07] What is the vector representation of the merge pattern whose tree represen-
tation is (8)7?

7. [16] Draw the tree representation for the read-backward merge pattern defined
by the following sequence of vectors:

v®) = (20, 9, 5) y19 = (+1,+1,-1)
Y33 = (4+1,-1,+1) Y% = (41,41,-1)
yB? = (41,41,-1) Yy = (+1,-1,4+1)
yB) = (41, +1,-1) y(lz):(-l—l,—l,—l—l)
y = (+1,41,-1) Y = (—1,41,+1)
Yy = (41,-1,+1) Yy = (41, +41,-1)
y®® = (~1,+1, +1) y(9 = (+1,+1, 1)
y?) = (+1,-1,+1) Y = (+1,-1,+1)
y(26):(+1,—1,+1) y® = (+1,+1,-1)
y®) = (+1,+1,-1) y = (+1,+1,-1)
Yy = (41,1, +1) y® = (+1,+1,-1)
y(21)=(+1,—1,+1) v =(+1,-1,+1)
(20)2(—1,+1,+1) v =(=1,+1,+1)

= (+1,+1,-1) ¥ = (+1,-1,+1)
19 = (—1,+1,+1) y) = (—1,41,+1)
g% = (+1,+1, 1) y©@ =(1, 0, 0

Y17 = (41,41, 1)

8. [23] Prove that (8) is an optimum way to merge, reading backwards, when § =7
and T = 4, and that all methods that avoid one-way merging are inferior.

9. [M22] Prove the lower bound (9).
10. [41] Prepare a table of the exact values of Kr(n), using a computer.

11. [20] True or false: Any read-backward merge pattern that uses nothing but
(T — 1)-way merging must always have the runs alternating ADAD ... on each tape;
it will not work if two adjacent runs appear in the same order.

12. [22] Prove that Karp’s preorder construction always yields a labeled tree satisfy-
ing conditions (a), (b), and (c).

13. [16] Make (12) more efficient, by removing as many of the one-way merges as
possible so that preorder still gives a valid labeling of the internal nodes.

14. [40] Devise an algorithm that carries out the preorder merge without explicitly
representing the tree in steps P2 and P3, using only O(log S) words of memory to
control the merging pattern.

15. [M39] Karp’s preorder construction in the text yields trees with one-way merges at
several terminal nodes. Prove that when T' = 3 it is possible to construct asymptotically
optimal 3-lifo trees in which two-way merging is used throughout.

In other words, let K7(n) be the minimum external path length over all T-lifo
trees with n external nodes, such that every internal node has degree T'—1. Prove that
Ks(n) = nlgn + O(n).

16. [M46] In the notation of exercise 15, is K7(n) = nlogy_, n+O(n) for all T > 3,
when n =1 (modulo T — 2)?
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» 17. [28] (Richard D. Pratt.) To achieve ascending order in a read-backward cascade
merge, we could insist on an even number of merging passes; this suggests a technique
of initial distribution that is somewhat different from Algorithm 5.4.3C.

a) Change 5.4.3-(1) so that it shows only the perfect distributions that require an
even number of merging passes.

b) Design an initial distribution scheme that interpolates between these perfect dis-
tributions. (Thus, if the number of initial runs falls between perfect distributions,
it is desirable to merge some, but not all, of the runs twice, in order to reach a
perfect distribution.)

» 18. [M38] Suppose that T tape units are available, for some T' > 3, and that T1
contains N records while the remaining tapes are empty. Is it possible to reverse the
order of the records on T1 in fewer than Q(N log N) steps, without reading backwards?
(The operation is, of course, trivial if backwards reading is allowed.) See exercise
5.2.5-14 for a class of such algorithms that do require order N log IV steps.

EXERCISES — Second Set

The following exercises develop the theory of tape merging on read-forward tapes; in
this case each tape acts as a queue instead of as a stack. A merge pattern can be
represented as a sequence of vectors y(m) ... y(l)y(o) exactly as in the text, but when
we convert the vector representation to a tree representation we change “last formed,
first grown on” to “first formed, first grown on.” Thus the invalid configurations (4)
would be changed to

both fi and fi or both % and ,Ai (4")

A tree that can be labeled so as to represent a read-forward merge on T tapes is called
T-fifo, analogous to the term “T-lifo” in the read-backward case.

When tapes can be read backwards, they make very good stacks. But unfortu-
nately they don’t make very good general-purpose queues. If we randomly write and
read, in a first-in-first-out manner, we waste a lot of time moving from one part of the
tape to another. Even worse, we will soon run off the end of the tape! We run into the
same problem as the queue overrunning memory in 2.2.2—(4) and (5), but the solution
in 2.2.2—(6) and (7) doesn’t apply to tapes since they aren’t circular loops. Therefore
we shall call a tree strongly T-fifo if it can be labeled so that the corresponding merge
pattern makes each tape follow the special queue discipline “write, rewind, read all,
rewind; write, rewind, read all, rewind; etc.”

» 19. [22] (R. M. Karp.) Find a binary tree that is not 3-fifo.

» 20. [22] Formulate the condition “strongly T-fifo” in terms of a fairly simple rule
about invalid configurations of tape labels, analogous to (4').

21. [18] Draw the tree representation for the read-forwards merge pattern defined by
the vectors in exercise 7. Is this tree strongly 3-fifo?

22. [28] (R. M. Karp.) Show that the tree representations for polyphase and cascade
merging with perfect distributions are exactly the same for both the read-backward
and the read-forward case, except for the numbers that label the internal nodes. Find
a larger class of vector representations of merging patterns for which this is true.
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23. [24] (R.M. Karp.) Let us say that a segment y@ . y(" of a merge pattern is a
stage if no output tape is subsequently used as an input tape— that is, if there do not
exist ¢, j, k withg>1 >k >, yy) = —1, and ygk) = +1. The purpose of this exercise
is to prove that cascade merge minimizes the number of stages, over all merge patterns
having the same number of tapes and initial runs.

It is convenient to define some notation. Let us write v — w if v and w are T-
vectors such that w reduces to v in the first stage of some merge pattern. (Thus there
is a merge pattern y(™. .. y® such that y™ Lyt s a stage, w = y(™ 4 4y O,
and v = y® + ... 4 y(o).) Let us write v < w if v and w are T-vectors such that
the sum of the largest k elements of v is < the sum of the largest k elements of w, for
1 < k < T. Thus, for example, (2,1,2,2,2,1) < (1,2,3,0,3,1), since 2 < 3,242 < 343,
24242424141 <34+3+2+1+1+0. Finally, if v = (v1,...,vr), let
C(v) = (sr,87-2,87-3,...,51,0) where s is the sum of the largest k elements of v.

a) Prove that v — C(v).

b) Prove that v < w implies C(v) < C(w).

¢) Assuming the result of exercise 24, prove that cascade merge minimizes the number
of stages.

24. [M35] In the notation of exercise 23, prove that v — w implies w < C(v).

25. [M36] (R. M. Karp.) Let us say that a segment y D ... y(" of a merge pattern
is a phase if no tape is used both for input and for output —that is, if there do not
exist i, j, k withq>i>r,q>k 2>, yj(i) = +1, and yj(k) = —1. The purpose of this
exercise is to investigate merge patterns that minimize the number of phases. We shall
write v = w if w can be reduced to v in one phase (a similar notation was introduced
in exercise 23); and we let

Dk(’l)) = (8k+tk+1, Sk+tey2, .., Sk+tr, 0, ..., 0),

where t; denotes the jth largest element of v and sx =t + - -+ + t&.

a) Prove that v = Dy (v) for 1 < k <T.

b) Prove that v < w implies Dg(v) < Di(w), for 1 <k < T.

c) Prove that v = w implies w < Dy(v), for some k, 1 < k < T.

d) Consequently, a merge pattern that sorts the maximum number of initial runs on
T tapes in q phases can be represented by a sequence of integers ki k2 ... kq, such
that the initial distribution is Dg,(. .. (Dgy(Dk, (u)))...), where u = (1,0,...,0).
This minimum-phase strategy has a strongly T-fifo representation, and it also
belongs to the class of patterns in exercise 22. When T = 3 it is the polyphase
merge, and for T = 4, 5, 6, 7 it is a variation of the balanced merge.

26. [M46] (R.M. Karp.) Is the optimum sequence k; kz ... k; mentioned in exercise 25
equal to 1[T/2]|T/2][T/2]|T/2]..., for all T > 4 and all sufficiently large q?

*5.4.5. The Oscillating Sort

A somewhat different approach to merge sorting was introduced by Sheldon
Sobel in JACM 9 (1962), 372-375. Instead of starting with a distribution pass
where all the initial runs are dispersed to tapes, he proposed an algorithm that
oscillates back and forth between distribution and merging, so that much of the
sorting takes place before the input has been completely examined.
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Suppose, for example, that there are five tapes available for merging. Sobel’s
method would sort 16 initial runs as follows:

Operation T1 T2 T3 T4 T5 Cost
Phase 1 Distribute A A A A — 4
Phase 2 Merge . — — — — Dy 4
Phase 3 Distribute i Al Al Al D4A1 4
Phase 4 Merge Dy — — — Dy 4
Phase 5 Distribute D4A1 — Al Al D4A1 4
Phase 6 Merge D4 D4 - - D4 4
Phase 7 Distribute DA, D,A, — Ay DA, 4
Phase 8 Merge D4 D4 D4 — D4 4
Phase 9 Merge — — — Ais — 16

Here, as in Section 5.4.4, we use A, and D, to stand respectively for ascending
and descending runs of relative length . The method begins by writing an initial
run onto each of four tapes, and merges them (reading backwards) onto the fifth
tape. Distribution resumes again, this time cyclically shifted one place to the
right with respect to the tapes, and a second merge produces another run Djy.
When four D,’s have been formed in this way, an additional merge creates Ass.
We could go on to create three more Ajg’s, merging them into a Dg¢4, and so on
until the input is exhausted. It isn’t necessary to know the length of the input
in advance.

When the number of initial runs, S, is 4™, it is not difficult to see that this
method processes each record exactly m + 1 times: once during the distribution,
and m times during a merge. When S is between 4™~ ! and 4™, we could assume
that dummy runs are present, bringing S up to 4™; hence the total sorting time
would essentially amount to [log4 51 + 1 passes over all the data. This is just
what would be achieved by a balanced sort on eight tapes; in general, oscillating
sort with 7 work tapes is equivalent to balanced merging with 2(T'—1) tapes,
since it makes

[logr_1 S| +1

passes over the data. When S is a power of T' — 1, this is the best any T-tape
method could possibly do, since it achieves the lower bound in Eq. 5.4.4—(g). On
the other hand, when § is '

(T —1)™ ' +1,

just one higher than a power of T'— 1, the method wastes nearly a whole pass.

Exercise 2 shows how to eliminate part of this penalty for non-perfect-
powers S, by using a special ending routine. A further refinement was discovered
in 1966 by Dennis L. Bencher, who called his procedure the “criss-cross merge”
[see H. Wedekind, Datenorganisation (Berlin: W. de Gruyter, 1970), 164-166;
see also U.S. Patent 3540000 (1970)]. The main idea is to delay merging until
more knowledge of S has been gained. We shall discuss a slightly modified form
of Bencher’s original scheme.
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This improved oscillating sort proceeds as follows:

Operation T1 T2 T3 T4 T5 Cost
Phase 1 Distribute — A A A A 4
Phase 2 Distribute - Al A1A1 A1A1 A1A1 3
Phase 3 Merge D, — A A A 4
Phase 4 Distribute D4A1 - Al AlAl A1A1 3
Phase 5 Merge Dy Dy — A Ay 4
Phase 6 Distribute  DjA; DsA; — A AlA 3
Phase 7 Merge Dy D, Dy — A 4
Phase 8 Distribute DyA, D4A; D4A; — Ay 3
Phase 9 Merge Dy Dy Dy Dy — 4

We do not merge the D,’s into an Ajg at this point (unless the input happens
to be exhausted); only after building up to

Phase 15 Merge DyDy DysDy DyDy Dy — 4
will we get

Phase 16  Merge D, Dy Dy — Ais 16
The second A,¢ will occur after three more D,’s have been made,

Phase 22 Merge DyD, DyD, D, — A16D4 4
Phase 23  Merge Dy Dy — Ais Ais 16

and so on (compare with Phases 1-5). The advantage of Bencher’s scheme can be
seen for example if there are only five initial runs: Oscillating sort as modified
in exercise 2 would do a four-way merge (in Phase 2) followed by a two-way
merge, for a total cost of 4+ 4 + 1 + 5 = 14, while Bencher’s scheme would do
a two-way merge (in Phase 3) followed by a four-way merge, for a total cost of
4+ 1+ 2+ 5 =12. Both methods also involve a small additional cost, namely
one unit of rewind before the final merge.

A precise description of Bencher’s method appears in Algorithm B below.
Unfortunately it seems to be a procedure that is harder to understand than to
code; it is much easier to explain the technique to a computer than to a computer
scientist! This is partly because it is an inherently recursive method that has
been expressed in iterative form and then optimized somewhat; the reader may
find it necessary to trace through the operation of this algorithm several times
before discovering what is really going on.

Algorithm B (Oscillating sort with “criss-cross” distribution). This algorithm
takes initial runs and disperses them to tapes, occasionally interrupting the
distribution process in order to merge some of the tape contents. The algorithm
uses P-way merging, assuming that 7' = P 4+ 1 > 3 tape units are available —
not counting the unit that may be necessary to hold the input data. The tape
units must allow reading in both forward and backward directions, and they are
designated by the numbers 0,1, ..., P. The following tables are maintained:
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D[41, 0 < j < P: Number of dummy runs assumed to be present at the end of
tape J.
A[l,71,0 <1< L, Here L is a number such that at most PL+1 initial runs will
0<j <P beinput. When A[l,51 = k£ > 0, a run of nominal length
P* is present on tape j, corresponding to “level [” of the
algorithm’s operation. This run is ascending if k is even,
descending if k is odd. When A[l, j1 < 0, level [ does not use
tape 7.
The statement “Write an initial run on tape j” is an abbreviation for the
following operations:
Set A[l,j1 « 0. If the input is exhausted, increase D[j] by 1; otherwise
write an initial run (in ascending order) onto tape j.
The statement “Merge to tape j” is an abbreviation for the following operations:

If D[] > O for all i # j, decrease D[i] by 1 for all ¢ # j and increase D[]
by 1. Otherwise merge one run to tape j, from all tapes ¢ # j such that
D[:] = 0, and decrease D[i] by 1 for all other ¢ # j.

\’

B1. Initialize

B2. Input \ No
complete?

Yes

mo
B3. Begin B4. Ready \ Yes
new level to merge?

No

B6. Is level
complete?

B5. Merge

Fig. 77. Oscillating sort, with a “criss-cross” distribution.

B1. [Initialize.] Set D[j] - 0 for 0 < j < P. Set A[0,0] «~ —1,1« 0, ¢ < 0.
Then write an initial run on tape j, for 1 < 3 < P.

B2. [Input complete?] (At this point tape g is empty and the other tapes contain
at most one run each.) If there is more input, go on to step B3. But if
the input is exhausted, rewind all tapes j # ¢ such that A[0, ] is even;
then merge to tape g, reading forwards on tapes just rewound, and reading
backwards on the other tapes. This completes the sort, with the output in
ascending order on tape g.

B3. [Begin new level] Set [ +~ {4+ 1,7 < ¢, s + 0, and ¢ <~ (g+ 1) mod T.
Write an initial run on tape (¢ + j)mod T, for 1 < j < T — 2. (Thus an
initial run is written onto each tape except tapes g and r.) Set A[l,q] + —1
and A[l,r] « —2.

B4. [Ready to merge?] If All—1,4¢] # s, go back to step B3.
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B5. [Merge.] (At this point A[l—1,q1 = All,j]1 = s forall j # ¢, j # 1.)
Merge to tape r, reading backwards. (See the definition of this operation
above.) Thenset s +— s+ 1,1« [ —1, All,7] < s, and A[l,q] < —1. Set
r < (2¢—7)mod T. (In general, we have r = (¢— 1) mod T when s is even,
r =(g+ 1) mod T when s is odd.)

B6. [Is level complete?] If [ = 0, go to B2. Otherwise if A[l,j] = s for all j # ¢
and j # r, go to B4. Otherwise return to B3. 1

We can use a “recursion induction” style of proof to show that this al-
gorithm is valid, just as we have done for Algorithm 2.3.1T. Suppose that
we begin at step B3 with | = lp, ¢ = qo, s+ = Allp,(go+1) modT1, and
s— = Allp, (go—1) mod T]; and assume furthermore that either s, = 0ors_ =1
orsy =2ors_ =3or---. Itis possible to verify by induction that the algorithm
will eventually get to step B5 without changing rows 0 through Iy of A, and with
l=1lg+1,g=qgx1,r=gqp, and s = s+ or s_, where we choose the + sign if
sy =0o0r (sy =2ands_ #1)or (sy =4and s_ #1, 3) or ---, and we choose
the — sign if (s_ =1 and sy # 0) or (s— =3 and s # 0, 2) or ---. The proof
sketched here is not very elegant, but the algorithm has been stated in a form
more suited to implementation than to verification.

Figure 78 shows the efficiency of Algorithm B, in terms of the average num-
ber of times each record is merged as a function of the number S of initial runs,
assuming that the initial runs are approximately equal in length. (Corresponding
graphs for polyphase and cascade sort have appeared in Figs. 70 and 74.) A slight
improvement, mentioned in exercise 3, has been used in preparing this chart.

A related method called the gyrating sort was developed by R. M. Karp,
based on the theory of preorder merging that we have discussed in Section 5.4.4;
see Combinatorial Algorithms, edited by Randall Rustin (Algorithmics Press,
1972), 21-29.

Reading forwards. The oscillating sort pattern appears to require a read-
backwards capability, since we need to store long runs somewhere as we merge
newly input short runs. However, M. A. Goetz [Proc. AFIPS Spring Joint
Comp. Conf. 25 (1964), 599-607] has discovered a way to perform an oscillating
sort using only forward reading and simple rewinding. His method is radically
different from the other schemes we have seen in this chapter, in two ways:

a) Data is sometimes written at the front of the tape, with the understanding
that the existing data in the middle of the tape is not destroyed.

b) All initial runs have a fixed maximum length.

Condition (a) violates the first-in-first-out property we have assumed to be
characteristic of forward reading, but it can be implemented reliably if a sufficient
amount of blank tape is left between runs and if parity errors are ignored at
appropriate times. Condition (b) tends to be somewhat incompatible with an
efficient use of replacement selection.

Goetz’s read-forward oscillating sort has the somewhat dubious distinction
of being one of the first algorithms to be patented as an algorithm instead of as a
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physical device [U.S. Patent 3380029 (1968)]; unless successfully contested, such
a patent makes it illegal to use the algorithm in a program without permission of
the patentee. Bencher’s read-backward oscillating sort technique was patented
by IBM several years later. [Alas, we have reached the end of the era when
the joy of discovering a new algorithm was satisfaction enough! Fortunately the
oscillating sort isn’t especially good; let’s hope that community-minded folks
who invent the best algorithms continue to make their ideas freely available.
Of course the specter of people keeping new techniques completely secret is far
worse than the public appearance of algorithms that are proprietary for a limited
time.]

The central idea in Goetz’s method is to arrange things so that each tape
begins with a run of relative length 1, followed by one of relative length P, then

P?, etc. For example, when T = 5 the sort begins as follows, using “.” to
indicate the current position of the read-write head on each tape:

Operation T1 T2 T3 T4 T5 “Cost” Remarks
Phase 1 Distribute .A; A Ay Ay As. 5 [T5 not rewound]
Phase 2 Merge M. X, X, ¥,. Al A, 4 [Now rewind all]
Phase 3 Distribute .A; Ay Aq A;. A1 Ay 4 [T4 not rewound]
Phase 4 Merge . M. ¥,. A1 Ay M .Ay 4 [Now rewind all]
Phase 5 Distribute .A; Ay Al AL Ay LA Ay 4 [T3 not rewound]
Phase 6 Merge M. M. A1 AL A A ¥ Ay 4 [Now rewind all]
Phase 7 Distribute .A; A, Ay Ag AL Ag A1 Ay 4 [T2 not rewound]
Phase 8 Merge M. Al Ay WAL A AL M Ay 4 [Now rewind all]
Phase 9 Distribute A;. .A;1 A4 A1 Ay A1 Ay At Ay 4 [T1 not rewound]
Phase10 Merge A1Ay M AL M AL YA Ay 4 [No rewinding]
Phase1ll Merge A:1AsA,6. ¥, ¥, ¥ ¥, 4 4. X ¥, 16 [Now rewind all

And so on. During Phase 1, T1 was rewinding while T2 was receiving its input,
then T2 was rewinding while T3 was receiving input, etc. Eventually, when the
input is exhausted, dummy runs will start to appear, and we will sometimes
need to imagine that they were written explicitly on the tape at full length. For
example, if § = 18, the A;’s on T4 and T5 would be dummies during Phase 9;
we would have to skip forwards on T4 and T5 while merging from T2 and T3
to T1 during Phase 10, because we have to get to the A/s on T4 and T5 in
preparation for Phase 11. On the other hand, the dummy A, on T1 need not
appear explicitly. Thus the “endgame” is a bit tricky.
Another example of this method appears in the next section.

EXERCISES

1. [22] The text illustrates Sobel’s original oscillating sort for T = 5 and S = 16.
Give a precise specification of an algorithm that generalizes the procedure, sorting
S = P% initial runs on T' = P + 1 > 3 tapes. Strive for simplicity.

2. [24] If S = 6 in Sobel’s original method, we could pretend that S = 16 and that
11 dummy runs were present. Then Phase 3 in the text’s example would put dummy
runs Ag on T4 and T5; Phase 4 would merge the Ays on T2 and T3 into a D2 on T1;
Phases 5—-8 would do nothing; and Phase 9 would produce Ag on T4. It would be better
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Fig. 78. Efficiency of oscillating sort, using the technique of Algorithm B and exercise 3.

to rewind T2 and T3 just after Phase 3, then to produce As immediately on T4 by
three-way merging.
Show how to modify the algorithm of exercise 1, so that an improved ending like
this is obtained when S is not a perfect power of P.
» 3. [29] Prepare a chart showing the behavior of Algorithm B when T = 3, assuming
that there are nine initial runs. Show that the procedure is obviously inefficient in one
place, and prescribe corrections to Algorithm B that will remedy the situation.

4. [21] Step B3 sets All,q] and A[l,7] to negative values. Show that one of these
two operations is always superfluous, since the corresponding A table entry is never
looked at.

5. [M25] Let S be the number of initial runs present in the input to Algorithm B.
Which values of S require no rewinding in step B2?

*5.4.6. Practical Considerations for Tape Merging

Now comes the nitty-gritty: We have discussed the various families of merge
patterns, so it is time to see how they actually apply to real configurations of
computers and magnetic tapes, and to compare them in a meaningful way. Our
study of internal sorting showed that we can’t adequately judge the efficiency of a
sorting method merely by counting the number of comparisons it performs; sim-
ilarly we can’t properly evaluate an external sorting method by simply knowing
the number of passes it makes over the data.
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In this section we shall discuss the characteristics of typical tape units, and
the way they affect initial distribution and merging. In particular we shall study
some schemes for buffer allocation, and the corresponding effects on running
time. We also shall consider briefly the construction of sort generator programs.

How tape works. Different manufacturers have provided tape units with widely
varying characteristics. For convenience, we shall define a hypothetical MIXT tape
unit, which is reasonably typical of the equipment that was being manufactured
at the time this book was first written. MIXT reads and writes 800 characters per
inch of tape, at a rate of 75 inches per second. This means that one character
is read or written every '616 ms, Or 16% microseconds, when the tape is active.
Actual tape units that were available in 1970 had densities ranging from 200 to
1600 characters per inch, and tape speeds ranging from 37% to 150 inches per
second, so their effective speed varied from 1/8 to 4 times as fast as MIXT.

Of course, we observed near the beginning of Section 5.4 that magnetic tapes
in general are now pretty much obsolete. But many lessons were learned during
the decades when tape sorting was of major importance, and those lessons are
still valuable. Thus our main concern here is not to obtain particular answers; it
is to learn how to combine theory and practice in a reasonable way. Methodology
is much more important than phenomenology, because the principles of problem
solving remain useful despite technological changes. Readers will benefit most
from this material by transplanting themselves temporarily into the mindset of
the 1970s. Let us therefore pretend that we still live in that bygone era.

One of the important considerations to keep in mind, as we adopt the
perspective of the early days, is the fact that individual tapes have a strictly
limited capacity. Each reel contains 2400 feet of tape or less; hence there is
room for at most 23,000,000 or so characters per reel of MIXT tape, and it takes
about 23000000/3600000 ~ 6.4 minutes to read them all. If larger files must be
sorted, it is generally best to sort one reelful at a time, and then to merge the
individually sorted reels, in order to avoid excessive tape handling. This means
that the number of initial runs, S, actually present in the merge patterns we have
been studying is never extremely large. We will never find S > 5000, even with a
very small internal memory that produces initial runs only 5000 characters long.
Consequently the formulas that give asymptotic efficiency of the algorithms as
S — oo are primarily of academic interest.

Data appears on tape in blocks (Fig. 79), and each read/write instruction
transmits a single block. Tape blocks are often called “records,” but we shall
avoid that terminology because it conflicts with the fact that we are sorting a
file of “records” in another sense. Such a distinction was unnecessary on many
of the early sorting programs written during the 1950s, since one record was
written per block; but we shall see that it is usually advantageous to have quite
a few records in every block on the tape.

An interblock gap, 480 character positions long, appears between adjacent
blocks, in order to allow the tape to stop and to start between individual read
or write commands. The effect of interblock gaps is to decrease the number of
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Interblock Gaps

Load Point

Fig. 79. Magnetic tape with variable-size blocks.

characters per reel of tape, depending on the number of characters per block (see
Fig. 80); and the average number of characters transmitted per second decreases
in the same way, since tape moves at a fairly constant speed.

. 20,000,000 I
2 /
. /
o
= 10,000,000
2
o]
&
=
© 0
0 1000 2000 3000 2000 5000

Characters per block

Fig. 80. The number of characters per reel of MIXT tape, as a function of the block size.

Many old-fashioned computers had fixed block sizes that were rather small;
their design was reflected in the MIX computer as defined in Chapter 1, which
always reads and writes 100-word blocks. But MIX’s convention corresponds to
about 500 characters per block, and 480 characters per gap, hence almost half
the tape is wasted! Most machines of the 1970s therefore allowed the block size
to be variable; we shall discuss the choice of appropriate block sizes below.

At the end of a read or write operation, the tape unit “coasts” at full speed
over the first 66 characters (or so) of the gap. If the next operation for the same
tape is initiated during this time, the tape motion continues without interruption.
But if the next operation doesn’t come soon enough, the tape will stop and it
will also require some time to accelerate to full speed on the next operation. The
combined stop/start time delay is 5ms, 2 for the stop and 3 for the start (see
Fig. 81). Thus if we just miss the chance to have continuous full-speed reading,
the effect on running time is essentially the same as if there were 780 characters
instead of 480 in the interblock gap.

Now let us consider the operation of rewinding. Unfortunately, the exact
time needed to rewind over a given number n of characters is not easy to
characterize. On some machines there is a high-speed rewind that applies only
when n is greater than 5 million or so; for smaller values of n, rewinding goes at
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” Minimum stop/start delay
- for noncontinuous read/write

Continuous read/write is possible if the
. \//_ command is initiated soon enough, on the same tape

\

Stop/start delay between
tape operations (ms)

-
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T

1 i ’ 1 i 1
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Time from completion of previous operation to initiation
of next command to tape controller (ms)

Fig. 81. How to compute the stop/start delay time. (This gets added to the time used
for reading or writing the blocks and the gaps.)

normal read/write speed. On other machines a special motor is used to control
all of the rewind operations; it gradually accelerates the tape reel to a certain
number of revolutions per minute, then puts on the brakes when it is time to
stop, and the actual tape speed varies with the fullness of the reel. For simplicity,
we shall assume that MIXT requires max(30,7/150) ms to rewind over n character
positions (including gaps), roughly two-fifths as long as it took to write them.
This is a reasonably good approximation to the behavior of many actual tape
units, where the ratio of read/write time to rewind time is generally between 2
and 3, but it does not adequately model the effect of combined low-speed and
high-speed rewind that is present on many other machines. (See Fig. 82.)

Initial loading and/or rewinding will position a tape at “load point,” and an
extra 110 ms are necessary for any read or write operation initiated at load point.
When the tape is not at load point, it may be read backwards; an extra 32 ms is
added to the time of any backward operation following a forward operation or
any forward operation following a backward one.

: e

Rewind at 2.5 times /

read/write speed \>/
/
/ /

Time (min)

1 / ///
Combined
low-speed/high-speed rewind
O | H 1
0 5,000,000 15,000,000 23,000,000

Number of characters from load point

Fig. 82. Approximate running time for two commonly used rewind techniques.
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Merging revisited. Let us now look again at the process of P-way merging,
with an emphasis on input and output activities, assuming that P+ 1 tape units
are being used for the input files and the output file. Our goal is to overlap
the input/output operations as much as possible with each other and with the
computations of the program, so that the overall merging time is minimized.

It is instructive to consider the following special case, in which serious
restrictions are placed on the amount of simultaneity possible. Suppose that

a) at most one tape may be written on at any one time;
b) at most one tape may be read from at any one time;

c¢) reading, writing, and computing may take place simultaneously only when
the read and write operations have been initiated simultaneously.

It turns out that a system of 2P input buffers and 2 output buffers is sufficient
to keep the tape moving at essentially its maximum speed, even though these
three restrictions are imposed, unless the computer is unusually slow. Note that
condition (a) is not really a restriction, since there is only one output tape.
Furthermore the amount of input is equal to the amount of output, so there is
only one tape being read, on the average, at any given time; if condition (b) is
not satisfied, there will necessarily be periods when no input at all is occurring.
Thus we can minimize the merging time if we keep the output tape busy.

An important technique called forecasting leads to the desired effect. While
we are doing a P-way merge, we generally have P current input buffers, which
are being used as the source of data; some of them are more full than others,
depending on how much of their data has already been scanned. If all of them
become empty at about the same time, we will need to do a lot of reading before
we can proceed further, unless we have foreseen this eventuality in advance.
Fortunately it is always possible to tell which buffer will empty first, by simply
looking at the last record in each buffer. The buffer whose last record has the
smallest key will always be the first one empty, regardless of the values of any
other keys; so we always know which file should be the source of our next input
command. The following algorithm spells out this principle in detail.

Algorithm F (Forecasting with floating buffers). This algorithm controls the
buffering during a P-way merge of long input files, for P > 2. Assume that the
input tapes and files are numbered 1,2,..., P. The algorithm uses 2P input
buffers I[1],...,I[2P]; two output buffers 0[0] and 0[1]; and the following
auxiliary tables:

Alj1,1<5<2P: 0if I[j] is available for input, 1 otherwise.

B[i], 1<: < P: Index of the buffer holding the last block read so far from file 3.
Clil, 1<t < P: Index of the buffer currently being used for the input from file 3.
L[:], 1<¢ < P: The last key read so far from file 1.

S[7],1<j5<2P: Index of the buffer to use when I[j] becomes empty.

The algorithm described here does not terminate; an appropriate way to shut it
off is discussed below.



322 SORTING 5.4.6

F4. Forecast

F5. Read/write

J

F1. Initialize F2. Merge

F3. I/O complete

Fig. 83. Forecasting with floating buffers.

F1. [Initialize.] Read the first block from tape 7 into buffer I[i], set A[i] « 1,
A[P+1i] « 0, B[i] « 7, C[t] « ¢, and set L[¢] to the key of the final
record in buffer I[¢], for 1 < ¢ < P. Then find m such that L[m] =
min{L[1],...,L[P]}; and set ¢t +- 0, k < P + 1. Begin to read from tape
m into buffer I [k].

F2. [Merge.] Merge records from buffers I[C[1]1],...,I[C[P]] to 0[t], until
0[t] is full. If during this process an input buffer, say I[C[i]], becomes
empty and 0[t] is not yet full, set A[C[z]] <« 0, C[:] « S[C[i]l], and
continue to merge.

F3. [I/O complete.] Wait until the previous read (or read/write) operation is
complete. Then set A[k] «+— 1, S[B[m]] <« k, B[m] « k, and set L[m] to
the key of the final record in I[k].

F4. [Forecast.] Find m such that L[m] = min{L[1],...,L[P]}, and find k£ such
that A[k] = 0.

F5. [Read/write.] Begin to read from tape m into buffer I[k], and to write from
buffer 0[¢t] onto the output tape. Then set ¢t «— 1 — ¢t and return to F2. 1

The example in Fig. 84 shows how forecasting works when P = 2, assuming
that each block on tape contains only two records. The input buffer contents are
illustrated each time we get to the beginning of step F2. Algorithm F essentially
forms P queues of buffers, with C[i] pointing to the front and B[i] to the rear
of the ith queue, and with S[j] pointing to the successor of buffer I[j]; these
pointers are shown as arrows in Fig. 84. Line 1 illustrates the state of affairs
after initialization: There is one buffer for each input file, and another block is
being read from File 1 (since 03 < 05). Line 2 shows the status of things after the
first block has been merged: We are outputting a block containing [01 02], and
inputting the next block from File 2 (since 05 < 09). Note that in line 3, three
of the four input buffers are essentially committed to File 2, since we are reading
from that file and we already have a full buffer and a partly full buffer in its
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File 1 contains [01 03] ]04 09][11 13[[16 18] --

File 2 contains [02 05] [06 07][08 10][12 14[[ ---

' ) ) Next input being
Line No. Buffers for File 1 Buffers for File 2 read from

1 01 03 File 1
2 —>{ 03}>{04 09 File 2

:

3 —>{ os5p>{06 07k File 2
4 —{ o7p>{o8 10k File 1
5 = o09l>{11 131 File 2
6 = P12 14k File 1
7 —>{ 13P>{16 18K~ File 2

Fig. 84. Buffer queuing, according to Algorithm F.

queue. This floating-buffer arrangement is an important feature of Algorithm F,
since we would be unable to proceed in line 4 if we had chosen File 1 instead of
File 2 for the input on line 3.

In order to prove that Algorithm F is valid, we must show two things:

i) There is always an input buffer available (that is, we can always find a k in
step F4).

ii) If an input buffer is exhausted while merging, its successor is already present
in memory (that is, S[C[#]] is meaningful in step F'2).

Suppose (i) is false, so that all buffers are unavailable at some point when we
reach step F4. Each time we get to that step, the total amount of unprocessed
data among all the buffers is exactly P bufferloads, just enough data to fill
P buffers if it were redistributed, since we are inputting and outputting data
at the same rate. Some of the buffers are only partially full; but at most one
buffer for each file is partially full, so at most P buffers are in that condition. By
hypothesis all 2P of the buffers are unavailable; therefore at least P of them must
be completely full. This can happen only if P are full and P are empty, otherwise
we would have too much data. But at most one buffer can be unavailable and
empty at any one time; hence (i) cannot be false.

Suppose (ii) is false, so that we have no unprocessed records in memory,
for some file, but the current output buffer is not yet full. By the principle of
forecasting, we must have no more than one block of data for each of the other
files, since we do not read in a block for a file unless that block will be needed
before the buffers on any other file are exhausted. Therefore the total number of
unprocessed records amounts to at most P — 1 blocks; adding the unfilled output
buffer leads to less than P bufferloads of data in memory, a contradiction.
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This argument establishes the validity of Algorithm F; and it also indicates
the possibility of pathological circumstances under which the algorithm just
barely avoids disaster. An important subtlety that we have not mentioned,
regarding the possibility of equal keys, is discussed in exercise 5. See also
exercise 4, which considers the case P = 1.

One way to terminate Algorithm F gracefully is to set L[m] to oo in step F'3
if the block just read is the last of a run. (It is customary to indicate the end of
a run in some special way.) After all of the data on all of the files has been read,
we will eventually find all of the L’s equal to oo in step F4; then it is usually
possible to begin reading the first blocks of the next run on each file, beginning
initialization of the next merge phase as the final P 4 1 blocks are output.

Thus we can keep the output tape going at essentially full speed, without
reading more than one tape at a time. An exception to this rule occurs in step F1,
where it would be beneficial to read several tapes at once in order to get things
going in the beginning; but step F1 can usually be arranged to overlap with the
preceding part of the computation.

The idea of looking at the last record in each block, to predict which buffer
will empty first, was discovered in 1953 by F. E. Holberton. The technique was
first published by E. H. Friend [JACM 3 (1956), 144-145, 165]. His rather
complicated algorithm used 3P input buffers, with three dedicated to each
input file; Algorithm F improves the situation by making use of floating buffers,
allowing any single file to claim as many as P + 1 input buffers at once, yet
never needing more than 2P in all. A discussion of merging with fewer than 2P
input buffers appears at the end of this section. Some interesting improvements
to Algorithm F are discussed in Section 5.4.9.

Comparative behavior of merge patterns. Let us now use what we know
about tapes and merging to compare the effectiveness of the various merge
patterns that we have studied in Sections 5.4.2 through 5.4.5. It is very in-
structive to work out the details when each method is applied to the same task.
Consider therefore the problem of sorting a file whose records each contain 100
characters, when there are 100,000 character positions of memory available for
data storage— not counting the space needed for the program and its auxiliary
variables, or the space occupied by links in a selection tree. (Remember that
we are pretending to live in the days when memories were small.) The input
appears in random order on tape, in blocks of 5000 characters each, and the
output is to appear in the same format. There are five scratch tapes to work
with, in addition to the unit containing the input tape.

The total number of records to be sorted is 100,000, but this information is
not known in advance to the sorting algorithm.

The foldout illustration in Chart A summarizes the actions that transpire
when ten different merging schemes are applied to this data. The best way to look
at this important illustration is to imagine that you are actually watching the
sort take place: Scan each line slowly from left to right, pretending that you can
actually see six tapes reading, writing, rewinding, and/or reading backwards, as
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indicated on the diagram. During a P-way merge the input tapes will be moving
only 1/P times as often as the output tape. When the original input tape has
been completely read (and rewound “with lock”), Chart A assumes that a skilled
computer operator dismounts it and replaces it with a scratch tape, in just 30
seconds. In examples 2, 3, and 4 this is “critical path time” when the computer
is idly waiting for the operator to finish; but in the remaining examples, the
dismount-reload operation is overlapped by other processing.

Example 1. Read-forward balanced merge. Let’s review the specifications
of the problem: The records are 100 characters long, there is enough internal
memory to hold 1000 records at a time, and each block on the input tape contains
5000 characters (50 records). There are 100,000 records (= 10,000,000 characters
= 2000 blocks) in all.

We are free to choose the block size for intermediate files. A six-tape
balanced merge uses three-way merging, so the technique of Algorithm F calls for
8 buffers; we may therefore use blocks containing 1000/8 = 125 records (= 12500
characters) each.

The initial distribution pass can make use of replacement selection (Algo-
rithm 5.4.1R), and in order to keep the tapes running smoothly we may use two
input buffers of 50 records each, plus two output buffers of 125 records each.
This leaves room for 650 records in the replacement selection tree. Most of the
initial runs will therefore be about 1300 records long (10 or 11 blocks); it turns
out that 78 initial runs are produced in Chart A, the last one being rather short.

The first merge pass indicated shows nine runs merged to tape 4, instead of
alternating between tapes 4, 5, and 6. This makes it possible to do useful work
while the computer operator is loading a scratch tape onto unit 6; since the total
number S of runs is known once the initial distribution has been completed, the
algorithm knows that [S/9] runs should be merged to tape 4, then [(S — 3)/9]
to tape 5, then [(S — 6)/9] to tape 6.

The entire sorting procedure for this example can be summarized in the
following way, using the notation introduced in Section 5.4.2:

o o - 39 39 38
93 93 9261 o o -
— — — 27! 27! 241
780 — — e —

Example 2. Read-forward polyphase merge. The second example in
Chart A carries out the polyphase merge, according to Algorithm 5.4.2D. In
this case we do five-way merging, so the memory is split into 12 buffers of 83
records each. During the initial replacement selection we have two 50-record
input buffers and two 83-record output buffers, leaving 734 records in the tree;
so the initial runs this time are about 1468 records long (17 or 18 blocks). The
situation illustrated shows that S = 70 initial runs were obtained, the last two
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actually being only four blocks and one block long, respectively. The merge
pattern can be summarized thus:

013118 013117 013115 012112 0818 o

115 114 . 112 18 o 08142153
17 16 14 o 48 149153
13 12 o ]4 44 9153
1! — 161191 82 42 52
— 34! 191 gt 41 5!
70! — — — — —

Curiously, polyphase actually took about 25 seconds longer than the far less
sophisticated balanced merge! There are two main reasons for this:

1) Balanced merge was particularly lucky in this case, since S = 78 is just
less than a perfect power of 3. If 82 initial runs had been produced, the balanced
merge would have needed an extra pass.

2) Polyphase merge wasted 30 seconds while the input tape was being
changed, and a total of more than 5 minutes went by while it was waiting for
rewind operations to be completed. By contrast the balanced merge needed
comparatively little rewind time. In the second phase of the polyphase merge,
13 seconds were saved because the 8 dummy runs on tape 6 could be assumed
present even while that tape was rewinding; but no other rewind overlap oc-
curred. Therefore polyphase lost out even though it required significantly less
read/write time.

Example 3. Read-forward cascade merge. This case is analogous to the
preceding, but using Algorithm 5.4.3C. The merging may be summarized thus:

114 115 112 114 115 o
15 19 o 114 115 132336
5163 53 5362 _ 11 22
— 12! 6! 18! 18! 16!
701 - _ _ _ .

(Remember to watch each of these examples in action, by scanning Chart A in
the foldout illustration.)

Example 4. Tape-splitting polyphase merge. This procedure, described at
the end of Section 5.4.2, allows most of the rewind time to be overlapped. It uses
four-way merging, so we divide the memory into ten 100-record buffers; there are
700 records in the replacement selection tree, so it turns out that 72 initial runs
are formed. The last run, again, is very short. A distribution scheme analogous
to Algorithm 5.4.2D has been used, followed by a simple but somewhat ad hoc
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method of placing dummy runs:

121

02117

113
110
16
15
12

119 115
02115 02111
111 17
18 14
14 —
13 —
— 3172
— 317213!
13! 317213}

131141 7213!
131141 71131

14! 13!

4431
4331
4231
413!
31

721

0244
024%324!
02443241
0'44324!

423241
413241
324!
341
41

021°
021944
021944
1844
1444
1344
44
43
42
41
27!

327

This turns out to give the best running time of all the examples in Chart A that
do not read backwards. Since S will never be very large, it would be possible to
develop a more complicated algorithm that places dummy runs in an even better
way; see Eq. 5.4.2—(26).

Example 5. Cascade merge with rewind overlap. This procedure runs
almost as fast as the previous example, although the algorithm governing it is
much simpler. We simply use the cascade sort method as in Algorithm 5.4.3C
for the initial distribution, but with T' = 5 instead of T = 6. Then each phase
of each “cascade” staggers the tapes so that we ordinarily don’t write on a tape

until after it has had a chance to be rewound. The pattern, very briefly, is

72!

122 119
17 —
_ 83
261 —

110
7282
81

122235

221

410
41
16!

Example 6. Read-backward balanced merge. This is like example 1 but
with all the rewinding eliminated:

26
Aj

A3

1
1478

26 26
A Aj

A5 A3AG

D3

1
1)24

D3

1 1
1)27 1927
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Since there was comparatively little rewinding in example 1, this scheme is not a
great deal better than the read-forward case. In fact, it turns out to be slightly
slower than tape-splitting polyphase, in spite of the fortunate value S = 78.

Example 7. Read-backward polyphase merge. In this example only five of
the six tapes are used, in order to eliminate the time for rewinding and changing
the input tape. Thus, the merging is only four-way, and the buffer allocation
is like that in examples 4 and 5. A distribution like Algorithm 5.4.2D is used,
but with alternating directions of runs, and with tape 1 fixed as the final output
tape. First an ascending run is written on tape 1; then descending runs on tapes
2, 3, 4; then ascending runs on 2, 3, 4; then descending on 1, 2, 3; etc. Each time
we switch direction, replacement selection usually produces a shorter run, so it
turns out that 77 initial runs are formed instead of the 72 in examples 4 and 5.

This procedure results in a distribution of (22, 21, 19, 15) runs, and the next
perfect distribution is (29, 56, 52, 44). Exercise 5.4.4-5 shows how to generate
strings of merge numbers that can be used to place dummy runs in optimum
positions; such a procedure is feasible in practice because the finiteness of a tape
reel ensures that S is never too large. Therefore the example in Chart A has
been constructed using such a method for dummy run placement (see exercise 7).
This turns out to be the fastest of all the examples illustrated.

Example 8. Read-backward cascade merge. As in example 7, only five
tapes are used here. This procedure follows Algorithm 5.4.3C, using rewind and
forward read to avoid one-way merging (since rewinding is more than twice as
fast as reading on MIXT units). Distribution is therefore the same as in example 6.
The pattern may be summarized briefly as follows, using | to denote rewinding;:

Azl Az2 Al® A0 —
AL AL~ DDy DY
A2 A AL — Dy
— Dz Aol Dss Do
Ara — — — —

Example 9. Read-backward oscillating sort. Oscillating sort with T' =5
(Algorithm 5.4.5B) can use buffer allocation as in examples 4, 5, 7, and 8, s