basic hasic

\eLrP-1 AN INTRODUCTION TO COMPUTER PROGRAMMING
‘ | IN BASIC LANGUAGE
2 Fdr Y=1 Td 10

5 LET C=0 second edition

10 FdRrR X=1 T2 50

20 - LET F=INT(2%RNDC1)) JAMES S. COAN
30 IF F=1 THEN 60

40 PRINT "T''3

S0 GOTa 100

S8 REM C COUNTS THE NUMBER @F HEADS

60 LET C=C+1

70 PRINT "H';

100 NEXT X

110 PKRINT

120 PRINT "HEADS '3C3'"@UT @F S50 FLIPS"
125 NEXT Y ' -
130 END

RUN

FLIP-1

HTTTTTHTTHHTTHTTTTTTTTHTHHHHHHTTTTTHTHHH THHH TTHHTT
HEADS 21 dUT @F 50 FLIPS
HTTHTHHTTHTTHTHHTTTHHHTTTTTTHHHH T THTH THHHH THH T THHH
HEADS 26 2UT @F 50 FLIPS
HTHTTTHTTHTTHTTTTTTTTHTTHTTTHTHTHTTTHTTTTTHHH THHHT |
HEADS 17 @UT @F S0 FLIPS

THITTTTTHTHTHTHH THHHHHHTHTTTHHTTHTTTTTTTHHTHTTHHTT
HEADS 21 @UT OF S50 FLIPS
TTHHTTTTHTHHTTHTHTHHHHTTHHTHHHTTTTTTHTHHHHTTHTHHTT
HEADS 24 JJT 3F S0 FLIPS
HTHTHHHHHHHTHTTTTTTTHTTHHHHHH TTTHTTTTHTH TTHH THH THH
HEADS 26 JUT @F 50 FLIPS .
HTTTTTHTTTTHHTTHTTHTHHHHTHTHHTTHHHHTHTTHTHTHTTTTHP
HEADS 22 @UT @F S0 FLIPS

THTHHHHHH THTHHHHTTTHH TH THHHHH THHH THH THHHHHHH TTTHTH
HEADS 34 2dT OF 50 FLIPS /
HTTHHTHHFTHTTTTTTHHHTTTHTTTHHTTHTHTHHHHHTTHHTHﬁTHT
- HEADS 24 AUT IF 50 FLIPS

’ TFHHTHHIHHHTHTTHTHHHTHHHTTTTHHHTTTTHTTHTHHTHHTHrHT
HEADS 26 AUT OF S0 FLIPS

INE | HAYDEN

Basic BASIC

An Introduction to Computer Programming in BASIC Language

Hayden Computer Programming Series

COMPREHENSIVE STANDARD FORTRAN PROGRAMMING
James N. Haag

BASICS OF DIGITAL COMPUTER PROGRAMMING (Second Ed.)
John S. Murphy

BASIC BASIC: An Introduction to Computer Programming in BASIC Language (Second Ed.)
James 8. Coan

ADVANCED BASIC: Applications and Problems

James S. Coan

DISCOVERING BASIC: A Problem Solving Approach

Robert E. Smith

ASSEMBLY LANGUAGE BASICS: An Annotated Program Book
Irving A. Dodes

PROGRAMMING PROVERBS

Henry F. Ledgard

PROGRAMMING PROVERBS FOR FORTRAN PROGRAMMERS
Henry F. Ledgard

EORTRAN WITH STYLE: Programming Proverbs

Henry F. Ledgard and Louis J. Chmura

COBOL WITH STYLE: Programming Proverbs

Louis J. Chmura and Henry F. Ledgard

BASIC WITH STYLE: Programming Proverbs

Paul Nagin and Henry F. Ledgard

SNOBOL: An Introduction to Programming

Peter R. Newsted

FORTRAN FUNDAMENTALS: A Short Course

Jack Steingraber

THE BASIC WORKBOOK: Creative Technigues for Beginning Programmers
Kenneth E. Schoman, Jr.

RASIC FROM THE GROUND UP

David E. Simon

APL: AN INTRODUCTION
Howard A. Peelle

Basic BASIC

SECOND EDITION

An Introduction to Computer Programming in BASIC Language

JAMES S. COAN

Community Computer Corporation
Germantown Friends School

H

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

Library of Congress Cataloging in Publication Data

Coan, James S
Basic BASIC: an introduction to computer
programming in BASIC language.

(Hayden computer programming series)
Includes indexes.
1. Basic (Computer program language).
2. Electronic digital computers—Programming.
. Title.
QA76.73.B3C62 1978 001.6'424
ISBN 0-8104-5107-7
ISBN 0-8104-5106-9 pbk.

77-14640

Copyright ® 1970, 1978 by HAYDEN BOOK COMPANY, INC. All rights re-
served. No part of this book may be reprinted, or reproduced, or utilized in
any form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any in-
formation storage and retrieval system, without permission in writing from

the Pubiisher.

Printed in the United States of America

4 5 6 7 8 9

PRINTING

79 80 81 82 83 84 85

YEAR

Preface

With the increasing availability of computer access through remote terminals
and time sharing, more and more schools and colleges are able to introduce
programming to substantial numbers of students.

This book is an attempt to incorporate computer programming, using BASIC
language, and the teaching of mathematics. I believe the two activities support
each other.

Flowcharts are used throughout the text. The general approach is to begin
with short complete programs and then simply and methodically build them
into larger programs. Each new capability or new organization of capabilities
is presented to create a desired effect in a program. Details are introduced
only as they become necessary or useful for the writing of a program, rather
than as sets of facts to be memorized in case a particular situation should
ever arise. Over 125 programs are used to achieve this.

All of the elementary BASIC language capabilities are presented in the first
five chapters and Chap. 7. Chapter 6 and Chaps. 8-13 emphasize applications.
The first seven chapters may be studied in conjunction with, or at any time fol-
lowing, a first-year algebra course. Chaplers 8-13 are applications oriented,
covering many of the popular topics of precalculus mathematics, with all of the
required algorithms developed in the text. Thus, this text is suitable for use
either as a supplementary text to be incorporated into existing mathematics
courses, or as the text for a course or unit to cover programming alone.

Appendices A and B, respectively, present information for the operation
of programs on paper tape and a few comments on error diagnosis. Appendix
C introduces two formatting capabilities that are available on some time-
sharing systems. Flowchart shapes are summarized in Appendix D. A sum-
mary of BASIC statement types is provided in Appendix E and an index of
all the programs in Chaps. 2-13 is provided in Appendix F.

Many of the problems in the book are intended to enable the student to
develop interesting mathematical concepts upon seeing the printed results of
program RUNS. Possible solution programs are given in Appendix G for the
even-numbered problems to give the student an indication of the correctness

of his program without being required to run every program. However, par-
ticularly at the beginning, students derive greater benefit from seeing programs
run (or not run) than from any other programming activity.

1 wish to thank Germantown Friends School for its support in the prepara-
tion of this text. Thanks are due Mis. Geoffrey Wilson for test teaching and
numerous students for test learning portions of the manuscript.

JaMmes S. Coan
Philadelphia

reface to the Second Edition

The First Edition of this book has been significantly enhanced by present-
ing character string handling and the use of data files. Since strings and files
involve language differences which depend on the computer, two versions are
presented. Demonstration programs are presented in Chap. 7 for both General
Electric Information Services BASIC and Hewlett-Packard BASIC.

The little used statement RESTORE is no longer discussed, and the INPUT
statement is now presented in Chap. 1.

Thanks are due to the Community Computer Corporation for assistance in
the preparation of material for this Second Edition.

James S. Coan
Philadelphia

Chapter

Chapter

Chapter

Chapter

Contents

1—Introduction to BASIC

1-1 PRINT . .

1-2 READ-DATA

1-3 System Commands

14 LET

1.5 INPUT .
1-6 Sample Ploglams ,,,,,,,,,,,

17 Comma and Semicolon in PRINT Statements

Summary and Problems for Chap. 1

2—Writing a Program

2-1 Planning

22 REM

2-3 Flowcharting . ..

2-4 JF-THEN .
Summary and Problems for Lhap 2 .

3—Loops and Lists

3-1 Introduction to Machine- Made Loops
Summary and Problems .
3-2 More on Loops .
Summary and Problems
3-3 Introduction to Lists
Summary and Problems .
3-4 More on Lists . .
Summary and Problems .

4—Computer Functions

4-1 Introduction to INT(), SQR(), ABS(), and SGN()

Summary and Problems .
4-2 Reducing Common Fractions and Dimension
Conversions . e
Summary and Problems
4-3 Program-Defined Functions
Summary and Problems .
4-4 Random Number Generator
Summary and Problems .

[y
T ODULR O

11

13
.13

13

13

92

prs)

24

24
31

.31

34
35

. 38

40

. 45
. 47

47
50

. 50
. 54

55
61
62
71

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

5—Elementary Data Processing
5-1 Introduction to Data Processing .
Q. PR B 5 B N P
uuunucuy il LA ULIAGELED B
5-2 Arrays .
Summary and Problems
5-3 A More Detailed Questionnaire Analysxs
Summary and Problems

6—Specific Applications .

6-1 Euclidean Algorlthm S,
Problems o

6-2 (‘hange Base
Problems

6-3 Looking at Tnteqms Dlmf bv T)lmt
Problems . .

7--Strings and Files

7-1 Introduction to Strings

7-2 Strings—The Substring Scheme
Summary and Problems .

7-3 The String Array Scheme
Summary and Problems .

7-4 Introduction to Data Files

7-5 Hewlett-Packard Files
Summary and Problems

7-6 General Electric Files
Summary and Problems

8~The Quadratic Function .
8-1 Zeros

8—‘7 Axis of Symmetry and Tmmng Point

8-3 Plotting the Parabola = . .
Summary and Problems for C hap 8

9—Trigonometry

9-1 Introduction to SIN(X) CAS(X), and TAN()

9-2 Right Triangles and Arctangent
Summary and Problems

9-3 Law of Sines and Law of Cosines
Summary and Problems

9-4 Polar Coordinates
Summary and Problems

10—~Complex Numbers

10-1 Fundamental Operations
Summary and Problems

0-2 Polar Coordinates
Summary and Problems

10-3 Powers and Roots
Problems

11 Polymomiale

11-1 Fundamental Operations
Summary and Problems
11-2 Integral Zeros
Summary and Pr oblems

11-3 Real Zeros «
Summary and Problems .
11-4 Complex Zeros
Summary and Problems

Chapter 12—-MAT Instructions in BASIC

12-1 Introduction to MAT Instructions
Problems . o

12-2 Solving a Problem
Problems

12-3 Operations and Specnl Matrices .
Summary and Problems

12-4 Solving Simultaneous Linear Equatlons
Summary and Problems -

12-5 Transpose of a Matrix
Problems .. . o

Chapter 13--Elementary Probability

13-1 Introduction
13-2 Enumeration
Summary and Pr oblems
13-3 Simple Probability
Summary and Problems
13-4 Random Simulation .
Problems
13-5 Binomial Trials .
Problems

Appendix A--Storing Programs on Paper Tape

A-1 Introduction .. «

A-2 Punching Paper T'lpe Off-Line

A-3 Reading Paper Tape

A-4 Getting the Computer to Punch Pdpel 'Iape

Appendix B—-Error Diagnosis

B-1 Introduction o
B-2 Errors that Prevent RUN ..
B-3 Errors that Terminate a RUN . .
B-4 Errors that Cause Unexpected or Incorrect Results
Summary e

Appendix C—Special Formatting Functions

C-1 TAB(X) . ..
C-2 IMAGE Statement

Appendix D—Summary of Flowchart Shapes

Appendix E—-Summary of Statements in BASIC

Matrix Instructions
Functions
Files

Appendix F~Index of Programs in Text
Appendix G—Answers to Even-Numbered Problems
Index

163

. 168
168
175

. 176

176

179

180

.. 183

185

188

190
193

... 194
.. 196

197

197

197

203
204
206
206
209
210

. .214

215
..215

215
216
216

..218

218
218
221
299

ppyd]

294

225
295
227
228

229

230
231
232

240
263

Basic BASIC

An Introduction to Computer Programming in BASIC Language

CHAPTER 1

Introduction to BASIC

In working with a computer, you, the programmer, must communicate
with the computer. In order to do that you will have to use a language that
the computer will understand. There are many languages written for this pur-
pose. The language of this text is called BASIC. The actual physical com-
munication is rather complicated and we will ignore most of the mechanics
except for the apparatus at our end of things. The device we will be using is
called a remote terminal. It will have a specific name depending on the manu-
facturer. The remote terminal has a keyboard, which is the part we are most
concerned about.

1-1 PRINT

No matter how complicated a particular set of instructions is, you will have
to tell the computer to put the results into some form discernible to yourself.
Therefore, let us begin with a discussion of the PRINT statement. If you want
the computer to write the following statement “THIS IS A SHORT PRO-
GRAM,” you will type on the keyboard of the terminal as follows:

10 PRINT "THIS IS A SHORT PR@GRAM."

20 END
The computer, on proper instruction, will do exactly what you have set out
to do.

The two lines 10 and 20 constitute a complete program. Several comments
are in order here.

1) Note that every line in a program must begin with a positive integer.

9) The statement that we want to write out is in quotes; this may be used
to good advantage, for example, for headings and labels.

3) In many time-share systems, every program must have as its highest
numbered line the END statement. In some systems, the END statement
is optional.

2 Basic BASIC

4) Note that all the letters are capitals. The terminal you may use or may
not be restricted in this way. Note also that the letter “O” has a slash
mark to distinguish it from the digit “0.” On some terminals the reverse
is true, the digit “0” has a slash and the letter “O” does not. On some
printers one is more nearly a circle than the other or one is nearly dia-
mond shaped. You can easily determine the method used by your equip-
ment by examining some sample output on your screen or “hard copy.”

5) It is conventional although not required to use intervals of 10 for the
numbers of adjacent lines in a program. This is because any modifica-
tion in the program must also have line numbers. So you can use the
in-between numbers for that purpose. It should be comforting to know
at this point that the line numbers do not have to be typed in order.
No matter what order they are typed in, the computer will follow
numerical order in executing the program.

6) Each line of a program is called a program statement.

You probably think of the computer as something that more commonly
produces numerical results and you are partly correct. Suppose you wish to
multiply 23.4 by 91. One way of doing this on the computer would be to
write a program like this:

10 PRINT 23.4%91
20 END

Then on proper instruction the computer will type out the following and stop.

2129. 4
DANE

Computers vary as to the message that gets printed here. Notice the absence
of quotes. In this case you have instructed the computer to perform an opera-
tion. Had you in fact wanted 23.4 ° 91 typed out, then you would change the
program. You might write the following;:

10 PRINT “23.4%91=",23. 4491
20 END

This time the result will be as follows:
23. 4%91= 2129. 4
DBNE

You have succeeded in instructing the computer not only to perform an opera-
tion, but to print out the result in easily understandable form, which is desir-
able throughout mathematics. Notice the use of the comma here. The comma
may be used to separate the different parts of a PRINT statement. Used in
this way, a comma is called a delimiter. Notice too, that there are eight spaces
between the equals sign and the nuinber, A way 1o eliminate all but one of
them will be explained later. There are many fine points that we will discuss
as we progress, but for now we will take it in small quantities.

If we were limited to the PRINT and the END instructions, we would
quickly return to using pencil and paper or an ordinary desk calculator. With-

Introduction to BASIC 3

out some additional capability, the computer would scon disappear. This
brings us to the READ and DATA statements.

PRINT
Characters in quotes will be printed exactly as typed. Computed
results will be typed as decimal numbers or as integers.

1-2 READ-DATA
The READ statement says to look for DATA as in the following:

10 DATA 23.4,91:83519,87594, 76, 5.98,876,918
20 READ A.,B

30 PRINT AxB

35 GIT3 20

A0 END

The computer ignores the DATA statement until it finds a READ, then it
takes the first number in the first DATA statement and assigns that value to
the first variable in the READ statement. Then, if there is a comma and
another variable in READ as in our example, the computer assigns the second
number in the DATA line to it; were there a third variable, the computer
would continue until it ran out of variables. In our program, the first time
through, A = 23.4 and B = 91. The next line says PRINT the product. Having
printed the product the computer looks for the next instruction, which is
CG@TE 20. This is a new one that means exactly what it says. So the computer
will GOTO line 20 and execute that instruction again. At this point the com-
puter “knows” that it has already read and used the first two numbers in
the DATA line. So it goes to the third and fourth numbers and assigns them
to A and B in order and proceeds to print the product of 83 and 19, then
goes back and assigns the fifth and sixth numbers to A and B, and so on until
it runs out of numbers in the DATA line. There may be any number of DATA
lines in a given program; all you need to realize for the time being is that a
comma must be used to separate each discrete item of data and a comma
should not be placed after the last item in a particular DATA line. Also, be
careful not to use commas to designate thousands, millions, etc. Warning: You
may not put variubles or operation symbols in a DATA line. Only numbers in
decimal form are allowed so fur. Here is the computer’s response to the above
program:

2129. 4
1577
8173
454, 48
804168.

3UT 3F DATA IN LINE 20

4 Buasic BASIC

Note the explicit message at the completion of the print-out. This will vary
from computer to computer.

In our examples so far, we have used only multiplication (®). The other
arithmetic operations that you may use are addition (+), subtraction (—),
division (/), and exponentiation (raising to a power). There are two symbols
in common use for exponentiation: one is an upwards arrow (1), and the other
is a double asterisk (°®). Symbols used to instruct the computer to perform
some operation are called operators. The symbols listed here are specifically
designated as the arithmetic operators. The numbers on which the operation
is to be performed ave called operands. Contrary to convention in algebra, the
multiplication symbol mugst he precent. AR in algebra must bhe written A ° B
for the computer. The computer assigns the same priorities to arithmetic
operations as are assigned in algebra. If there are several operations of the
same priority to be performed on the same line, the computer does them from
left to right. Several sample programs will be given soon.

READ
The READ statement looks for numbers in a DATA statement.
READ X, Y, Z looks for numbers in groups of three.

DATA

The DATA statement supplies values for the variables designated
in the corresponding READ statement. Items of data must be sep-
arated by a comma. Numbers only are allowed.

1-3 SYSTEM COMMANDS

There are two kinds of instructions of which you should be aware. We have
already discussed an instruction given by a program that you have written, We
have not yet mentioned an equally important kind of instruction, the system
command. We must realize that the computer does nothing by itself. There-
fore, there must be what is called an executive program which will respond to
your wishes. You need not worry about the executive program; it is taken care
of by the people who maintain the computer.

The first system command required is referred to as the sign-on or log-on.
The exact form of this varies from computer to computer. So we really cannot
be specific here. It simply notifies the computer that you would like to use it.

Once you are signed on, the next most important command is RUN. After
you have typed vul your prugram, the compuler must bave a way of knowing
that you want it to execute the program. So you must type RUN and then
touch the return key on the keyboard. Only then will it respond to the pro-
grammed instructions.

Possibly next in importance is the command SCR (SCRub or SCRatch) or

Introduction to BASIC &5

CLE (CLEar) followed by depressing the return key. (Which you use will
depend on the computer you are connected with.) Suppose you have run a
program and someone else would like to run his. The old program may be
erased by using the SCR command. So whenever you begin a new program
it might be wise to simply type SCR and touch the return key. The system
command must not be preceded by a number. There are several other com-
mands that we will take up as they seem appropriate.

RUN
Notifies the computer to execute the program instructions. Must
not have a number in front of it.

SCR or CLE =~ — N &W

Notifies the computer that you are not going to use the current
program. The current program is erased from the working area of the
computer. Must not have a number in front of it.

1-4 LET

At this point you do have enough information to write quite a few
programs. However, another statement type that may be used to make life
easier is the LET statement. The LET statement may be used to assign any
number or any algebraic expression to any variable. Using a LET statement,
the last program would look like this:

10 DATA 23.4,915,83,19,87,945 765 5.98,876,918
20 READ A,B

30 LET C=A#B

40 PRINT C

50 GaT3 20

60 END

RUN

2129.4
1577
8173
454. 48
804168,

@UT 3F DATA IN LINE 20

We obtain the same results as before. In this particular program, we really
did not save anything. However, in any situation where we need to write the
value of A ° B several times or the expression is more involved, we will see
that a saving may result. There are many things that you could not do
without a LET capability.

/ 6 Basic BASIC

LET

May be used to assign explicit values to a variable as LET X = 4.58,
or may be used to assign algebraic expressions to a variable as LET
V=X7°F+4 Y ° G. Note: All variables on the right-hand side must
have been previously evaluated. On some computers LET is optional.
Such systems permit Z = 4.56, for example.

1-5 INPUT

The INPUT statement serves much the same purpose as the READ state-
ment in that it permits us to provide numbers for the computer to work with.
For example, 100 INPUT A will cause the computer to print a question mark
and stop at line 100. The question mark is a signal to whoever is operating the
terminal that he or she is to type the desired value for A on the keyboard and
press the carriage return key to resume the run of the program. Likewise, 100
INPUT A, B, C will call for three numbers separated by commas to be typed
at the keyboard. It is advisable to have the computer print a label so that the
operator can determine the nature of the numbers required. In the following
program, note that the semicolon at the end of line 100 enables us to type the
values for A and B on the same line as the printed label. The input numbers
15, 17 following the question mark were typed at the keyboard by the program
operator.

100 PRINT "INPUT TWO NUMBERS:";

110 INPUT A.B
120 PRINT " THE NUMBERS ARE:"; A3 B

130 PRINT ' THEIR SUM IS:";A+8
140 PRINT "THEIR PRGDUCT IS:*sA%*B
150 END

RUN

INPUT TW@ NUMBERS:?15,17

THE NUMBERS ARE: 15 17
THEIR SuM I15: 32

THEIR PREDUCT IS: 255

DONE

INPUT
Causes the computer to request data from the keyboard.

ot

B CAMD
c 5

If we want the computer to obtain a decimal value for a compound frac-
tion, there may be several programs that will do the job. Here we will have
to use our knowledge of the order of operations as determined in algebra.

Introduction to BASIC 7

Three programs follow that find a decimal value for

2/5 4+ 3/7
3/4-1/3

10 LET Ns2/75+377
20 LET D=3/4-1/3
30 PRINT N/D

40 END

RUN

1.98857
DONE

10 LET F=(2/5¢+3/1/¢3/4~1/3)
20 PRINT F

30 END

RUN

1.98857
DANE

10 PRINT (2/5+3/1)/(374-1/73)
20 END
RUN

1.98857
DANE

Parentheses serve as a powerful tool in grouping terms properly for the
desired results. Keep in mind that priorities are exactly as they are in algebra
and that if several operations of the same priority appear in the same line, they
are executed from left to right.

Carefully study the programs which follow to see how the placement of the
parentheses affects the results.

10 PRINT "3/5/3/5="33/5/3/5

20 PRINT "3/(5/375)=*33/(5/3/5)

30 PRINT *3/5/(¢3/5)a"33/75/¢3/5)

40 PRINT *(€3/5)/(3/75)="3C¢3/5)/¢3/5)
S0 PRINT *'(3/5/3)/5="3C¢3/5/3)/5

60 PRINT *(¢3/5)/3/5="3(3/5)/3/5

70 END

RUN

3/5/3/5= <04
37(5/73/53= 9.
3/5/¢3/79= 1
€3/5)7¢3/5)= 1
(37/57/3)/5= .04
€3/53)/73/5= .04

DONE

10 PRINT "A="32t3+1+312+1
20 PRINT *"B="321(3+1)+322+1
30 PRINT "C="32t3+C1+3)12+1
40 PRINT "D="3213+ 1+31(2+1)
S0 PRINT "E='32¢(3+1+3)12+1
60 END

RUN

8 Basic BASIC

moOQDm>D
Wonon N
N
w

[}
[S]
r4
22

It is important to know the capacity of the computer you are working with.
Notice that according to the computer, (2/5 + 3/7)/(3/4 — 1/3) = 1.98857.
If we work that out longhand, the result would be 1.98857142. BASIC pro-
vides from 6 to 15 digits, if they are needed, depending on the computer, with
the last digit rounded off in decimal nwubers, i it is the capacity digit

If the results require more than the digit capacity of the computer, the
computer prints in scientific notation as follows:

10 LET A=98781.

20 LET Al=8976

30 LET P=A®Al

40 PRINT A» "%, Al,"='", P
50 END

98781, * 8976 = 8.86658E+08

DBNE

The E -+ 08 means “times ten to the eighth power” and the decimal number is
rounded off to the sixth digit. When the computer uses this notation, it is
called E-format. Again we get large spaces using the comma to delimit the
printed results. We will discuss this before we wind up chapter one.

A new item Al appears in the above program in line 20. There you will find
the statement LET A1 = 8976. The computer treats this as a new variable. In
BASIC you may use any letter of the alphabet and any letter of the alphabet
followed by a single digit as a variable. Some computers have additional
simple variables. Thus a large number of variables are available.

Probably the best way to learn how the computer handles scientific notation
is by experience. So, let us run a sample program to see what happens.

5 PRINT l.xli' IIY "’ IIQCI' IIPOD’ "sll

10 DATA 1.31E+10,2.13E+1151+16132E~05,2.83E+06
20 READ X»Y

26 LET Q@=X/Y

40 LET PsX%Y

50 LET S=X+Y

60 PRINT X»YsQsPsS

65 GOTe 20

70 END

Introduction to BASIC 9

X Y Q P S
1. 31000E+10 2. 13000E+11 6. 15023E-02 2. 79030E+21 2.26100E+11

1.16132E-05 2+.83000E+06 4. 10360E-12 32.8654 2.33000E+06

GUT @F DATA IN LINE 20

Notice the use of Q for quotient, P for product, etc. This is a technique
that is useful not only on the computer, but throughout mathematics.

Suppose you wish to write a program to find the total cost of a purchase
in which there are different numbers of items at various prices, say 2 @ $.35,
3 @ $2.65, 11 @ $.25, 1 @ $9.49, and 35 @ $1.59. We could have many
more, but for a sample this should suffice. This program could of course be
written in several ways, but here is one possibility:

10 PRINT "ITEMS">"UNIT PRICE",*"C@ST","SUBTQGTAL"
20 DATA 250355 3,24655,115.25,159.49,35,1.59

25 LET T=0

30 READ NP

40 LET T=T+N*P

45 PRINT NaP,N%P, T

50 G2TQ@ 30

70 END

RUN

ITEMS UNIT PRICE C3ST SUBT2TAL
2 .35 .7 .7
3 2.65 7-95 3.65
it .25 2.7% 11.4
1 9. 49 9. 49 20.89
35 1.59 55. 65 76+ 54

AUT 39F DATA [N LINE 30

The single figure we set out to obtain is in the lower right-hand corner. The
result is $76.54; however, the other information is bound to be useful in at
least some situations. Besides, even if we only print the right-hand column,
we do not yet know how to dispose of the first four figures in that column. If
you only want to print the right-hand column, then lines 10 and 45 may be
altered thus:

10 PRINT “SUBT@TAL”
45 PRINT T

and only that column will be printed. Notice that line 10 is executed only once
and line 45 is executed five times. The GOT@ statement in line 50 only
returns the computer back to line 30. So the computer only prints the headings
once and only lets T = 0 once.

Still, in the last program, the combination of lines 25 and 40 may seem
strange, but it will not as soon as you gain a little more insight into how the
computer works. Line 25 is said to initialize the value of T at 0, i.e., give it an
initial value of 0. When the computer executes the initializing statement, line

10 Basic BASIC

25 LET T = 0, it “says” that there is a location in the computer storage area
which A eall T oand that thic seaeram alss regiires

which this program will call T and that this program alsc requires that the
number zero be stored in that location for now. If we then say 26 LET T = 5,
then the computer will put the number 5 in that location designated as T and
zero will no longer be there. If we write a program that says 25 LET T = 0
followed by 26 LET T = T + 1, then the computer goes to the location where
it is storing the value for T, “sees” 0, adds 1 to it, and returns the result to the
location from which it just got 0, thereby replacing 0 (the old value) with 1
(the new value). So we see that in BASIC (as in other computer languages) =
does not mean “two names for the same thing.” It means, instead, that the
number on the right is to be placed in a location whose name is specified on
the left. Thus we see that the equals sign as used here really specifies an opera-
tion for the computer to perform. So the equals sign is called an assignment
operator or a replacement operator, and the LET statement is called the
assignment statement or replacement statement.

Let us go through the program line by line. The lowest numbered line is a
PRINT statement. So, right off, the computer prints the headings. Then it
recognizes that the next statement is a DATA statement and ignores it. Line
25 assigns the value 0 to T. Then in line 30 the computer reads the first two
numbers in the DATA line. Line 40 says that the previous value of T is to be
taken out of storage and added to N times P. So, the first time through line
40, the value of T on the left will be 0 (from storage) plus the cost of two
items at $.35, or $.70, and the computer returns the value .70 to the location
in storage called T. Line 50 sends the computer back to read the next two
numbers in the DATA line and to add their product (7.95) to .70 to get 8.65.
It should be clear that we are printing the values of N, P, N times P, and T
each time we read two new numbers. This process continues until the com-
puter finds no more data. This causes the computer to terminate the RUN.

1-7 COMMA AND SEMICOLON IN PRINT STATEMENTS

Let us look at one more capability. In two of the programs of this chapter,
the results were printed out with unnecessary great spaces. You may have
noticed that we did not have these spaces in the two programs where semi-
colons were used in the PRINT statements. We have two delimiters, i.e., we
have two signals that tell the computer how closely we want the results
printed. The rules are a little complicated, but in general, the semicolon
specifies closer spacing than the comma. The comma sets up zones across the
page. The number of characters in the zones does vary from computer to
computer, but 15 characters per zone is common. This zone width does
not change with the number of digits in the numbers being printed. The
semicolon sets up different sized zones depending on the number of digits
in the number and whether it is in scientific notation. Here is the pro-
gram from p. 8 again. First we run it. Then we insert a line which
replaces the comma print delimiters with semicolon delimiters. And we call
for another RUN,

Introduction to BASIC 11

10 LET A=98781.

20 LET A1=8976

30 LET P=A%Al

40 PRINT A, "', A1, "'='", P
50 END

98781 * 8976 = B8.86658E+08

DBNE
41 PRINT A3"%'"; Als"='"; P
RUN

98781 . * 8976 = B.B6658K+08

98781 * B976 = B+B66SBE+08

DONE

The output of this program is much more closely spaced. Notice that in the last
line of the printing there is a space between the ® and 8976. The computer
leaves a space there for a + sign but does not print it. If the number printed
were negative, then there would be a minus sign printed in that space. The
same holds true for the space between the = and 8.86658E + 08. Also notice
that in all program runs there is a space before the first number printed in any
line if the number is positive. However, if we write 10 PRINT “3” in a pro-
gram, then when we run the program, 3 will be printed in the very first
space. This is because the computer treats things in quotes differently from
the values of variables for printing purposes.

SUMMARY OF CHAP. 1

1) We now have the PRINT statement which puts results in readable form.
It may be used for titles, headings, and labels.

2) Everything in quotes will be printed just as you type it (except more
quotes).

3) Commas or semicolons may be used between the different items to be
printed to control spacing,

4) The READ statement is used to read data. Several variables may be
read with a single READ statement by separating them with commas, or they
may be read with different READ statements. Just be sure the data is in
proper order to match the READ variables.

5) The DATA statement supplies data for the READ statements. Discrete
items of data must be separated with commas.

6) The LET statement may be used to assign any value or any algebraic
expression to any variable.

7) The INPUT statement allows the operator to enter data from the key-
board in response to a question mark.

12 Basic BASIC

8) The G@TD statement is used to alter the progress of the computer
during the execution ot a program.

9) The END statement may or may not be required. If required, it must
carry the highest line number in the program.

10) The system commands to date are RUN and SCR or CLE. System com-
mands must not be preceded by line numbers.

PROBLEMS FOR CHAP. 1°

1) Define the following items: BASIC, PRINT, END, READ-DATA, LET, RUN,
(’@TQ) statement, system command, program, remote terminal, comma delimiter,
semicolon delimiter, scientific notation, initialize, and print zone.

2) What is the greatest number of vnriables permissible in a single BASIC pro-
gram thus far?

3) Which of the following are valid BASIC variables? A, XI, 1B, XA, YI12.

4) The statement was made in Chap. 1 that you cannot have the computer print
quotes by putting quotes inside quotes. Why not?

5) Write a program to add 2081, 682, 1161, and 72.03.

6) Write a program to add 1E6 and 1E — 3. Comment on the result.

7) Have the computer multiply 2E3 by 1E — 1.

8) Have the computer print a decimal value for %4

9) Modify the purchase program on p. 9 to total the number of items.

10) Write a program that will print the sum of the first 10 counting numbers.
Put the numbers in as data.

11) Write a program that will print the product of the first 10 counting numbers.
J/ 12) Write a program that will multiply two binomials. In other words, for
(Ax + B)(Cx 4 D), you will put in data in groups of four numbers (A, B, C, D), and
you want the computer to write out the threc numbers that are cocflicients in the
product.
J 13) Have the computer print products of fractions by putting the numerators
and denominators in as data and printing the numerator and denominator of the
product as two numbers.
J 14) Do the same for adding fractions as in problem 13).

15) Have the computer print all possible arrangements of three digits using each
once. Assign the digits in a DATA line and use semicolon spacing.

16) Write programs to print decimal values for the following:

(a) 1/2 4 1/3
173 — 1/4
(b) 2/3 3/4
56 T /3
43 — 32
(e) 1/2 4 3/7 e
250 —1 iz
(d) (93.481 — 7.008)4 N
4.983 — 87.82

® Check marks (/) in front of problem numbers indicate the more difficult problems.

CHAPTER 2

2-1 PLANNING

In Chap. 1 we looked at some programs and tried to analyze them, but
we did not really go into the development of the programs themselves. Pro-
grams do not just happen, they do not appear whole. They are planned and
developed with some considerable care. There are two important tools that we
will be using to help us write programs. One is a new BASIC statement type,
the REM statement. The other is flowcharting.

2-2 REM

XXX REM (REMark), where XXX is a line number in a BASIC program,
notifies the computer that what follows is to be ignored during the RUN of
the program. This means that you may write any message you like following
REM. None of what you type has any effect on the execution of the pro-
gram, but you may comment or remark upon the function of a particular
line or a group of lines or the entire program.

REM
Permits the programmer to remark or comment in the body of his
program.

EXAMPLE
118 REM THE NEXT THREE LINES PRINT THE FIRST SUM.
9 REM THIS PROGRAM ADDS PAIRS @OF NUMBERS.

2-3 FLOWCHARTING

Flowcharting, or block diagramming as it is sometimes called, is useful in
planning programs in any computer language or for that matter in planning
the solving of any problem, whether or not you are using a computer. We

13

14 Basic BASIC

introduce flowcharting by an example. Suppose we want to add the counting
numbers from 1 to 50 including 1 and 50, We will need two varinbles: one
for counting and the other to keep track of the sum. We want to start the
counting variable at 1 and the summing variable at 0. Then for every value
of the counting variable we want to add the counting variable to the old
value of the summing variable to get a new value of the summing variable.
Figure 2-1 represents a rough flowchart for such a process.

Figure 2-1 attempts to break the problem into its most fundamental steps.
By using a diagram of this kind, we are able to show the direction we must
follow to do the problem. We would like to have each step small enough for
the computer to handle with one BASIC statement. However, this will not
always be practical. In our example, though, it will be both practical and
reasonable to have each step be a BASIC statement. With that in mind we
redraw the diagram using statements more nearly like those in BASIC lan-
guage. At the same time we will introduce the more standard practice of
having different shapes for boxes that indicate different kinds of functions.
The shapes used for this example are listed in Fig. 2-2 and the new flow-
chart is Fig. 2-3(A).

This time we are very close to being able to write the program directly
from the flowchart. Of the statements in Fig. 2-3(A), the only one for which
we do not yet have a corresponding BASIC language statement is decision-
making. BASIC has a statement type that allows us to alter the path of the
computer through a program depending on whether an algebraic sentence is

true or false.

Start counting variable
Cat1l

<+

Start summing variable
Satd

Add summing variable
and counting variable

Have we done no Add 1.to
all 50? %T counting
. variable
< ves .
Print sum

Fig. 2-1. Diagram for adding counting numbers from 1 to 50.

Writing a Program 15

Used for beginning and

Terminal ending of programs.

Indicates that a computation

Operation
P is to be performed.

Shows that a question is being asked
and a decision is being made.

Indicates that results are
PRINT to be printed and will also
READ be used to indicate the
READ statement.

Small circle shows that we are
going to transfer to another
statementin the program.N

will match another small circle
in the same chart.

Fig. 2-2. First five shapes
Arrowheads will indicate direction in all cases. used for flowcharting.

2-4 IF-THEN

XXX IF Z = Q THEN 230 means that if Z does equal Q, then the next
line to be executed is line number 230. If Z does not equal Q, then the com-
puter is directed to simply execute the line with the next number after XXX.

The equals sign appears in the IF~THEN statement. Used here the equals
sign is clearly not the assignment operator we defined earlier. In the IF-THEN
statement the equals sign specifies a required relation (mathematical equality)
to exist between two numbers. Therefore, the equals sign is now designated as
a relational operator.

With the IF-THEN statement added to our growing list of BASIC state-
ments, we should be able to write the program directly from the Jowchart. See
Fig. 2-3(B). If we simply copy the program in Fig. 2-3(B) and run it, it looks
like the program below.

10 LET C=t

20 LET 8=0

30 LET S=5+C

40 IF C=50 THEN 70
50 LET C=z=C+1i

60 GAT? 30

70 PRINT S

80 END

1275

16 Basic BASIC

\T/

LETS=0 20 LETS=0

IETS=S+C 30 LETS=S+C

40 IFC=50THEN 70

LETC=C+ 1 50 LETC=C+1

60 GOTO 30
70 PRINTS

80 END

(A (B)

Fig. 2-3. (A) Flowchart for adding counting numbers 1 to 50. (B) Pro-
gram written from flowchart.

BASIC allows us to give programs names. This requires a system com-
mand and will vary with the system tied in with your terminal. Some systems
use the command NAME-, while others use NAME without the hyphen. After
the system command, you type the name to be used. Being able to name pro-
grams will be helpful to us here as we will be able to refer to programs by
name from now on.

We will give the last program a name, insert some REM statements to
explain the function of certain lines, and add a label to make the printed
result clearer. It is always recommended that you write programs with the
thought that someone else will be reading them and you may not be there to
do the explaining. You may even find that vou cannot understand your own

Writing a Program 17

SumMi

3 REM THE EXECUTIVE PRIGRAM ALLAWS US T@ GIVE BUR PRIGRAM A
NAME

5 REM THE RESTRICTIONS 3N NAMES VARY FR3M SYSTEM T2 SYSTEM

8 REM %%k &%

9 REM WE ARE ADDING INTEGERS @NE THROUGH S50 IN THIS PRQGRAM

10 LET C=1

20 LET S=0

30 LET S=S+C

38 REM HAVE WE ADDED 50 (THE LAST NUMBER T@ BE ADDED) YET?

40 IF C=50 THEN 70

48 REM WE HAVEN'T ADDED S0 YET *%% S@ WE ADD ONE

50 LET C=C+1

60 GOT® 30

68 REM WHEN C=50 WE PRINT S (THE SUM) IN LINE 70

70 PRINT S

80 END

1275

DONE
70 PRINT "THE SUM @F THE INTEGERS FROM @NE T@ FIFTY IS';
RUN
Suml

THE SUM @F THE INTEGERS FROM ONE T@ FIFTY IS 1275

DONE

programs several weeks after you write them, unless they have good REM
statements. See SUM1.

Let us do another program, similar to SUM1, where we will add all the
odd integers from 5 through 1191. This time instead of starting the counting
variable at 1, we will have to start it at 5. Since we are only interested in
odd numbers, we will have to add 2 instead of 1 each time we add the new
number to the summing variable. We will test N (the number added) each
time through the summing step to decide whether we have reached the
desired number, in this case 1191. First we draw the flowchart in Fig. 2-4.
This flowchart is very much like the one in Fig. 2-3(A). See SUM2. Again, of

10 LET N=5

20 LET S=0

28 REM LINE 30 ADDS THE NEW NUMBER TO THE SUMMING VARIARLF.
30 LET S=S+N

40 IF N=1191 THEN 70

48 REM ADD 2 IN LINE 50 F@R @DD NUMBERS

350 LET N=N+2

60 GOTO 30

70 PRINT *'SUM OF QDD NUMBERS FRGM S TO 1191 1S'":S

B0 END

SUM @F 0DD NUMBERS FROM S TO 1191 15 355212,

DONE

18 Basic BASIC

LETS=S+N ¥

PRINT S

T

LET N=N+2

Fig. 2-4. Flowchart for adding
odd integers from 5 to 1191,

course, we use the IF-THEN statement, because we have to decide each time
we add 2 whether or not we have reached 1191

The IF-THEN instruction is called a conditional transfer. Unless instructed
otherwise, the computer executes the statements of the program in numerical
order. The IF-THEN statement allows us to tell the computer to alter that
order of execution on the condition that an algebraic sentence is true. If the
algebraic sentence is false, then the computer passes to the next line in
sequence. On the other hand, the GOT@ statement is an unconditional transfer.

IF-THEN
XXX TF YYYYYY THEN ZZZ. If YYYYYY is true, transfer to line
ZZ7Z. 1f YYYYYY is false, pass to the next line after XXX.

Writing a Program 19

You may have more than one conditional transfer in the same place in a
program. This would be necessary if you wanted to test for several conditions.
Suppose in SUM2 you want to see the sum several times during the RUN.
Let us look at the sum for the first two, for N = 731, and the last two.

First we should draw a new flowchart. It is clear from the flowchart that we
have to decide each time we print the sum whether or not we have finished
or have to add 2 and take the sum again. See Fig. 2-5 and SUMS3.

Note that we test N for three relations: 1) “less than 9,” 2) “equals 731,”
and 3) “greater than 1188.” We have already seen the equals sign used as a
relational operator. The two new relational operators “less than” (<) and
“greater than” (>) are introduced here.

LETN =35
LETS=0
LETS=S+N K 0
Is yes
N <92 Q
no in
! no
yes y PRINT
' N, S
yes
Is yes
N > 11887 END

no

LETN=N+2 & °

‘ Fig. 2-5. Flowchart for changing program SUM2 so that
the sum is printed several times during the program,

20 Basic BASIC

S5UM3

5 PRINT "Sum @F @DD"

6 PRINT “NUMBERS FRZM"

7 PRINT "FIVE Ta','I1S5"

10 LET N=5

20 LET sS=0

28 REM LINE 30 ADDS THE NEW NUMBER T@ THE SUMMING VARIABLE.
30 LET S=S+N

40 1F N<9 THEN 90

50 IF N=731 THEN 90

60 IF N>1188 THEN 90

€8 REM ADD 2 IN LINE 70 F@R ADD NUMBERS
70 LET N=N+2

BU GBI 30

90 PRINT N, S

100 IF N<1191 THEN 70

110 END
RUN
SUmM3
SuM @F aDD
NUMBERS FROM
FIVE T2 IS
5 5
7 12
731 133952.
1189 354021.
1191 355212,
DANE

Other relational operators are “less than or equal to” (< =), “greater than
or equal to” (> =), and “not equal to” (< >>). Some time-sharing systems
require a set of alphabetic relational operators (such as EQ for =) instead of
the symbols listed above.

Some facts about flowcharts should be becoming clearer. Arrowheads along
connecting lines show the direction the computer is to follow. Rectangles and
parallelograms have only one exit arrow, but they may have more than one
entrance arrow. Diamonds have two exit arrows. Can diamonds have more
than one entrance arrow?

We said previously that we did not know how to eliminate some of the print-
ing in the SUBT@TAL column. Look at the purchase program cn p. 9 again.
We had no way of preventing the computer from running out of data. Now we
can simply tack on some artificial data at the end of the DATA line, which
could not possibly be data in the problem, and use the conditional transfer to
test each time data is read to see if the computer has read the artificial data. If
the computer has read the artificial data, then we do not want to use it; but we
have a signal for the computer that it is time to print the total and terminate
the run without reading any more data. Artificial data used in this way is
called dummy data. If we are talking about prices and numbers of items, we
can use O or negative numbers for dummy data, Let us use O for the number
of items and O for the price and name the program T@TAL. See the flowchart
in Fig. 2-6.

Writing a Program 21

LETT=20

Fig. 2-6. Flowchart for using dummy data in program TOTAL.

ToTAL

S REM THIS PROGRAM IS A MIDIFICATION 3F A PROGRAM THAT WE DID
BEFARE.

10 PRINT "TATAL CBST =8

20 DATA 2,¢35,3:2+.65,11,.25,159449,35,1.59,0,0

21 REM THE DuUMMY DATA IN THIS DATA LINE IS t,¢

25 LET T=0

30 READ NP

34 IF N=0 THEN 45

40 LET T=T+N%P

42 GATY 30

4% PRINT T

70 END

T TAL
I3TAL COST =% 76.54

DANE

Look at lines 10 and 45 and then look at the printed result. These two
PRINT instructions are executed on the same printed line. This is accomplished
by using the semicolon at the end of the PRINT instruction in line 10. The
semicolon there tells the computer to wait after printing the $ until it executes
the next PRINT instruction in the program and to print that on the same line
right after the $. Again there is a single space for the plus sign which is not
printed. If the number were negative, there would be a minus sign there.

22 Basic BASIC

SUMMARY OF CHAP. 2

1) We are now able to remark about a program right in the program
itself by using REM. You should use REM statements so that whoever reads
your program can determine what they are intended to do. It will also help
you to remember your own programs weeks or months later when you your-
self have forgotten what they will do.

2) Flowcharting will prove a very valuable process that we will use to

develop programs to solve problems.
2) The ability t¢ have the computer make decisi

408 Ay 0 HeYo ae L pPutel Qiaxe Cl

decision: J,
act according to the outeome of the decisions greatly increases the (‘omnlexity
of the problems we may solve by computer.

4) We now distinguish between conditional and unconditional transfer
statements.

5) Dummy data may be used to gain a greater control over what we can
ask the computer to do after it has read the last item of data.

PROBLEMS FOR CHAP. 2

Unless instructed otherwise, draw a flowchart for every problem that calls for
a computer program to be written. Also use REM liberally.

1) Write a short description of each of the following terms: flowchart, dummy
data, IF-THEN, REM, conditional transfer, unconditional transfer.

2) In the program TOTAL, why did we use two 0's for dummy data? Why
couldn’t we have used just one O since line 34 only tests to see if N == 0P

3) Bill took four tests. His marks were 100, 86, 71, and 92. What was his average
score?

4) Modify the program SUMZ2 to count the number of odd numbers from 5 to
1191 by first modifying the flowchart.

5) Three pairs of numbers follow in which the first number is the base and the
second number is the altitude of a triangle: 10, 21; 12.5, 8; 289, 114. Writc a
program to print in good form the base, the altitude, and the area for the three
triangles.

6) Find the number of and the sum of all positive integers greater than 1000
and less than 2213 divisible by 11.

7) A man is paid 1¢ the first day on the job, 2¢ the sceond day, 4¢ the third day,
and so on, doubling each day on the job for 30 days. You arc to calculate his wages
on the 30th day and his total for the 30 days

8) Write a program to print the integers from 1 to 25 paired with their reciprocals.

9) Write a program to print the integers from 75 to 100 paired with their
reciprocals.

10) Rewrite the program TOTAL to count the number of diflerent items in the
order and print the total.

11) A customer put in an order for four books which retail at $5.95 and carry a
25% discount, three records at $3.98 with a 15% discount, and one record player for
$39.95 on which there is no discount. in addition, there is a 2% discount allowed
on the total order for prompt payment. Write a program to compute the amount
of the order,

12) Write a program to balance a checkbook that includes the following transac-
tions: Sept. 2, deposit $9.00; Sept. 5, write a check for $3.24; Sept. 10, write a

Writing a Program 23

check for $1.98; and Sept. 17, write a check for $3.85. Assume that the balance was
$14 23 on Sept. 1. Have the computer print the balance after each transaction.

13) Write a program to find the amount of $100.00 deposited for one year in a
savings account at 4% per year compounded four times yearly. '
J 14) In the song “The 12 Days of Christmas,” gifts are bestowed upon the singer
in the following pattern: the first day she received a partridge in a pear tree; the
second day two turtle doves and a partridge in a pear tree; the third day three
french hens, two turtle doves, and a partridge in a pear tree. This continues for 12
days. On the 12th day she received 12 4 11 4+ -« 4+ 2 + 1 gifts, How many gifts
were there all together?
/ 15) For problem 14) have the computer print the number of gifts on each of the
12 days and the total up to that day.
J 16) George had test scores of 83, 91, 97, 100, and 89. Write a program to com-
pute his average. Have the computer count how many tests George took.
J 17) Write a program that will take more than one set of test scores, find the
average for cach set, and print the result before going back to read the next set of
scores.

CHAPTER 3

Loops and Lists

3-1 INTRODUCTION TO MACHINE-MADE LOOPS

A computer loop may be defined as a self-repeating sequence of program
statements. This being true, loops are not new to us. Most of the programs
we wrote in Chap. 2 used a loop. In those programs we initialized a variable
with the idea that we would be adding a fixed numbher repeatedly and doing
something each time we added the fixed number. Let us draw a flowchart and
write a program to simply print the integers 1 through 6. See LO@P1 and

Fig. 3-1.

LET X =1

10

Fig. 3-1.

20

30
40
50

LETX=X+1

99

LETX =1

PRINT X;

IF X = 6 THEN 99
LETX=X+1
GOTS 20

END

Flowchart for LG@P1 for printing six integers.

24

Loops and Lists 25

LAGP1

10 LET X=1

20 PRINT X;

30 1IF X=6 THEN 99
40 LET X=X+1

50 G@TO 20

99 END

LABP1

1 2 3 4 5 6
DBNE

In LO@PI1 we first print the number and then test to see if we have printed
the last number in the sequence. If we have, then we stop. If we have not
printed the last number, then we add 1 and print the new number. The
results we obtain are entirely equivalent to the results we would get when we
test to see if the number we are about to print is too great before we print it.
If it is not too great, then we print it. If it is too great, then we stop. Consider
the flowchart of Fig. 3-2 and LO@P2.

LETX =1

LETX=X+1

Fig. 3-2. Flowchart for LO@P2 for testing X before it is printed.

Leepr2

10 LET X=1

20 IF X>6 THEN 99
30 PRINT Xi

40 LET X=X+1

50 GOT® 20

99 END

26 Basic BASIC

FOR-NEXT

Loops are used so routinely in programming that BASIC provides a
machine-made loop. Program LO@P3 is the machine equivalent of our pro-
gram LOGP2.

Notice that the two statements 10 FOR X = 1 T@® 6 and 50 NEXT X in
LO@P3 do the work of the four statements 10, 20, 40, and 50 in LOOP2.
FOR X = 1 TY 6 indicates doing everything between this statement and
NEXT X, beginning with X = 1 and ending with X = 6. NEXT X tells the
computer to add 1 to the old value of X and go to the beginning of the loop
again. When X = 6. LO®P3 prints 6. After it prints 6, line 50 says NEXT X.
This means, add 1 and go to the beginning of the loop. At this point in the
RUN the value of X is 7, not 6 as you might think. Since 7 is greater than 6,
the FOR-NEXT combination instructs the computer to execute the next

instruction after NEXT X, which in program LO@P3 is END.

L3oP3

10 FOR X=1 Td 6
30 PRINT X3

50 NEXT X

99 END

RUN

LEaP3

1 2 3 4 5 6
DONE

A machine loop does not have to begin with 1. It may begin wherever you
require. The variable that is incremented in the machine loop may be treated
in the same way as other variables in the program. However, you are warned
against changing the value of that variable. LO@P3+, which is a modification
of LO@DP3, prints the values of X, 2 * X, X — 10, X ®° 3, and X/(-3).

LBOP3+
S PRINT *X 2¥kX X-10 X13 X/¢(-"

10 F@R X=1 710 6
30 PRINT X52#X2X~10:3X*33X/(-~-3)

50 NEXT X

99 END

RUN

LaapP3+

X 2%X X-10 X3 X/ (~3)

1 2 -9 1 ~«333333
2 4 -8 8 ~e 666667
3 6 -7 27 -1

4 8 -6 64 =-1.33333
5 10 -5 125 ~1.66667
6 12 -4 216 -2

DANE

Notice lines 80, 100, 150, 220, 240, and 310 in program LUPDEM. They
are all of the form XXX PRINT. This statement is sometimes called the
blank PRINT. 1t has the effect of directing the computer to turn up a new

Loops and Lists 27

line of paper at the terminal. In some cases, XXX PRINT serves to begin a

new line; in others, XXX PRINT results in a space between lines of printed
output.
LUPDEM
10 REM ##THIS PROGRAM 1S INTENDED T@ DEMONSTRATE S@ME OF
20 REM ##THE CAPABILITIES OF THE F@R-NEXT STATEMENT PAIR
30 REM
40 PRINT ™50 FOR X=14 T@ 20 PRGDUCES THE FOLLOWING VALUES F@R X"
SO FOR X=14 T@ 20
60 PRINT X3
70 NEXT X
80 PRINT
90 REM BASIC ALL@WS US T@ INCREMENT A LO@P BY VALUES @THER THAN @NE
100 PRINT
110 PRINT 120 FOR X=1 T@ 19 STEP 2 PR@DUCES;"
120 FOR X=1 T@ 19 STEP 2
130 PRINT X3
140 NEXT X
150 PRINT
160 REM THE STEP NEED N@T INCREASE THE VALUE @F X
170 PRINT
i80 PRINT 190 FOR X=345 T@ 282 STEP -9 GIVES;*
190 FOR X=345 T@ 282 STEP -9
200 PRINT X3
210 NEXT X
220 PRINT
230 REM DECIMALS ARE ALL@WED IN BASIC
240 PRINT
250 PRINT **260 F@R X=91.5 T@ 3 STEP -15.7 YIELDS3"
260 F@R X=91.5 T@ 3 STEP -15.7
270 PRINT X3
280 NEXT X
300 REM VARIABLES MAY BE USED T@ SET UP A MACHINE LO@P IN BASIC
310 PRINT
320 PRINT 330 LET A=S, 340 LET B=45, 350 LET C=6 AND"
325 PRINT 360 FOR V=A T8 B STEP C GIVES THESE RESW.TS3"
330 LET A=5
340 LET B=45
350 LET C=6
360 FOR V=A T@ B STEP C
370 PRINT V3
380 NEXT V
390 END
RUN
LUPDEM
50 FOR X=14 T@ 20 PRDUCES THE FOLLOWING VALUES FOR X
14 15 16 17 18 19 20
120 F@R X=1 T8 19 STEP 2 PRODUCES)
1 3 s 7 9 11 13 15 17 19
190 F@R X=345 T@ 282 STEP -9 GIVESS
345 336 327 318 309 300 291 282
260 FOR X=91.5 T@ 3 STEP -15.7 YIELDSs
91.5 75.8 60.1 44.4 28. 7 13.
330 LET A=S, 340 LET B=45, 350 LET C=6 AND
360 FOR V=A T8 B STEP C GIVES THESE RESULTSS
5 11 17 23 29 3s a1

D@NE

28 Basic BASIC

F@R-NEXT
F@R X = A TQ B STEP C sets up a machine loop with first nur-
ber A, last number B, and increment C. See LUPDEM for detail.

Now we will look again at some of the programs in Chap. 2 and do them
with a F@R-NEXT loop. Let us redo program SUMS3 and call it SUMS+.
Of course as we should expect, the printed results for SUM3+ are identical

Start)

PRINT
headings

Fig. 3-3. Flowchart for using machine loop for
program SUM3 from Chap. 2.

LETS =0

£L

FORN =35 T
1191 STEP 2

.

LETS=S+N

Is
N < 11882

yes

Loops and Lists 29
SUM3+
4 REM THIS PROGRAM IS A MBDIFICATION OF SUM3 FROM CHAPTER Twa
5 PRINT "SuM OF @DD"
6 PRINT "NUMBERS FROM™
7 PRINT “FIVE T@","Is"

10 LET S=0
20 F@R N=5 T@ 1191 STEP 2
28 REM LINE 30 ADDS THE NEW NUMBER T@ THE SUMMING VARIABLE.
30 LET S5=S5+N
40 IF N<9 THEN 90
50 IF N=731 THEN 90
60 IF N<1188 THEN 100
90 PRINT N»S
100 NEXT N
110 END
RUN
SUM3+
SuM @F @DD
NUMBERS FRAM
FIVE To 1s
5 5
7 12
731 133952.
1189 354021 .
1191 355212.
DONE

F@R~NEXT may be used to count the number of times the computer does
a particular operation or a set of operations. For instance, we can use a
machine loop to count the number of different items in program T@TAL of
Chap. 2 and at the same time instruct the computer to read data repeatedly.
We did not know how many items of data there were, but that does not
matter. We can simply pick a number that we are sure is greater than the
number of times we want the computer to read data. There could not possibly
be more than say 50 items.

So in TOTAL+ we can use FOR X = 1 T@ 50. Then we can test for the
dummy data each time data is read, using the conditional transfer to get the
data out of the loop and to print the results, when N is 0.

TOTAL+

5

REM THIS PROGRAM (S A MODIFICATIGN @F A PROGRAM THAT WE DID

BEF@RE
20 DATA 25 ¢35535246551150255,159449,35,1.59,0,0
21 REM THE DuUMMY DATA IN THIS DATA LINE IS t,t
25 LET T=0
27 F@R X=1 T2 S0
30 READ NP
34 IF N=0 THEN 45
40 LET T=T+N*P
42 NEXT X
45 PRINT “TOTAL CBST = $"3T3'THERE ARE"™3; X-1;"DIFFERENT ITEMS"
70 END
RUN
TOTAL.+
TOTAL €OST = $ 7654 THERE ARE 5 DIFFERENT ITEMS

DONE

30 Basic BASIC

Look carefully at line 45 in T@TAL+. This line gives the printing instruc-
tions. The counting loop calls for X to go from 1 to 50, but line 45 says print
X — 1. Since X counts the number of times the READ statement is executed,
1 is added even when the dummy data is read; but we do not want to count
the dummy data. So we have to tell the computer to subtract 1. An alterna-
tive method would be to use FOR X = 0 T® 50. Then we could call for
printing the value of X.

The same loop may be used several times in the same program. Every time
the computer executes the F@R statement, the limits on the incremented
variable are reestablishd, Suppose in a group of five people each person took
six tests. And we want to read their scores and find the average for each
person. We can set up a loop F@R X = 1 T@ 6 and use this repeatedly until
the computer runs out of data. The flowchart appears in Fig. 3-4 and we call
the program AVG. Note that the flowchart of Fig. 3-4 contains no END box.
This is because the computer runs out of data in the READ statement and
termination is automatic. Notice in the program that each score is printed as it
is read. This is one way of keeping track of whose average is being printed on
each line in the printed results. Also note that each line of data is devoted to
the scores for one person. This makes it easy to organize the typing of data.

Set total

at0
READ loop
READ S
FORX=1TP6 (scores)

g Add scores
NEXT X LETT=T+S
PRINT
average
Fig. 3-4. Flowchart for averaging test
scores for several people.

Loops and Lists 31

AVG

10 LET T=0

20 F@R X=} T@ 6

30 READ S

35 PRINT S3

40 LET T=T+S

50 NEXT X

60 PRINT "AVG='"3T/6

68 REM WE SEND THE COMPUTER BACK T@ LINE 10 T8 SET T AT ZER@
AGAIN

70 G@TO 10

80 DATA 65,68, 713,85,82,87

82 DATA 74,87,90,88,87,88

84 DATA 88,97,91,92,90,89

86 DATA 91,83, 78,89,79,87

88 DATA 65,765 67,505 60, 66

100 END
RUN
AVG
65 68 73 85 82 87 AVG= 76.6667
74 87 90 88 87 88 AVG= B5.6667
88 917 91 92 90 89 AVG= 91,1667
21 83 8 89 79 87 AVG= 84.5
65 76 67 50 60 66 AVG= 64

OUT @F DATA IN LINE 30

SUMMARY

We see that it is not necessary for us to construct repetitive operations.
This may be done automatically with the FOR-NEXT statement pair in BASIC.

PROBLEMS FOR SEC. 3-1

Draw flowcharts for all programs unless instructed otherwise.

1) Add the counting numbers from 1 to 50 using FOR-NEXT.

2) Do problem 8) in Chap. 2 using a machine loop.

3) Do problem 7) in Chap. 2 with FGR-NEXT.

4) Do problem 8) in Chap. 2 using a machine loop.

5) Do problem 9) in Chap. 2 with FOR-NEXT.

6) Find the sum of the reciprocals of all the integers from 1 to 1000.

7) Find the sum of the reciprocals of the integers from 900 to 1000. Comparc
this number with the result of problem 6).

8) Do problem 13) in Chap. 2 using a machine loop.

9) Find the sum of the squares of the reciprocals of the integers from 1 to 1000.

10) If you were given $1.00 today, $2.00 tomorrow, $3.00 the next day, and so
on for 12 days, how many dollars would you have been given? Suppose this went on
for 30 days. Then how much? Compare this with problem 3).

3-2 MORE ON LOOPS

In program AVG in Sec. 3-1, we went through the read and sum loop five
times, once for each person’s test duta. When we have the computer do the
same set of operations five times, we are actually using a loop. So let us
rewrite AVG with a loop FOR P = 1 T@ 5 and call it AVGCNG.

32 Basic BASIC

AVGCNG

5 FOR P=1 T8 S
10 LET T=0

20 FOR X=1 T@ 6
30 READ S

35 PRINT 83

40 LET T=T+S

50 NEXT X
60 PRINT "AVG="3T/6
70 NEXT P

80 DATA 65,68, 73,85,82,87
82 DATA 74,87.90,88,87,88
84 DATA 88557s51552,50-,89
86 DATA 91,835 78,89, 79,87
88 DATA 65,76, 67,505,605 66

100 END
RUN
AVGCNG
65 68 73 85 82 87 AVG= 76.6667
14 87 90 88 87 88 AVG= 85.6667
88 97 91 92 90 89 AVG= 91.1667
91 83 78 89 79 87 AVG: 84.5
65 76 67 50 60 66 AVG= 64
DANE

Notice that the X loop is entirely within the P loop. Loops written in this
way are called nested loops. They occur often in programming. Loops may be
nested to almost any number you may require, but the loops must be com-
pleted from within. The F@R statements and the NEXT statements must be
paired. Legal and nonlegal combinations are shown below.

Legal Illegal

FBR A=l T2 8 FBR A=1 T0 8
FOR B=2 T3 7 FOR B=2 T3 7
FOR C=2.3 T8 6.1 FBR C=2.3 Td 6.1
NEXT C NEXT A

FBR D=A TC B NEXT C

NEXT D FBR D=A T@ B
NEXT B NEXT D

NEXT A MEXT B

Suppose we want to calculate compound interest on $2000 at 4% com-
pounded quarterly for nine years. When you take your savings account book
to the bank after the first of the year, it calculates the interest four times at
1% each time. In nine years you take the book to the bank nine times. This is
an ideal example for nested loops. One loop goes from 1 to 9, with a loop
inside going from 1 to 4. This provides a good computer model for the actual
problem. As the program is written, it is a simple matter to have the principal
printed at the end of each year. A line may be inserted between 50 and 60
to print the winount afier each yeur. The program could also have been written
using FOR X = .25 T@® 9 STEP .25, or even FOR X = 1971.95 T@ 1980
STEP .25. If you want to be able to do several problems at several interest
rates, then substitute a variable, which may be assigned as data, for .01 in
line 40. See CMPINT and Fig. 3-5.

Loops and Lists 33

LET P = 2000

FORY =1 FORQ =1
09 O 4

Compute
interest

<+

Add
interest to
principal

+

NEXT Y NEXT Q

PRINT
amount

Fig. 3-5. Flowchart for finding the compound amount of $2000 after
nine years compounded quarterly.
CMPINT
8 REM START THE PRINCIPAL P AT %2000
10 LET P=2000
18 REM G2 FOR 9 YEARS
20 FQR Y=1 TO 9
28 REM G@ FOUR QUARTERS EACH YEAR
30 FOR Q=1 T0 4
38 REM COMPUTE THE INTEREST FOR THIS QUARTER
40 LET I[=.01%P
48 REM ADD THE INTEREST T@ THE PRINCIPAL
50 LET P=pP+1}
52 REM **%x% WE CCULD HAVE USED LET P=P+.01%P HERE
60 NEXT Q
62 REM AFTER FOUR QUARTEKS THE C3MPUTER GETS TO NEAT Y
70 NEXT Y
80 PRINT "AFTER 9 YEARS THE AMOUNT IS $';P
90 END
RUN
CMPINT
AFTER 9 YEARS THE AMOUNT IS ¢ 2861.54

DANE

We may want to have the limits of one loop determined by the variable in
another loop. For instance, we can print a triangle of numbers in which each
row prints all of the counting numbers up to and including the row number.

34 Basic BASIC

We need one loop for rows and another for columns. We want the number of
columns to go from 1 to the row number. This is accomplished by program
TRAGL. Now you can do problem 14) in Chap. 2 very easily. (Of course you
could do the problem before, but it took a longer program.)

TRAG.

10 F@R R=1 T9 10
20 FOR C=1 T0 R
30 PRINT G:

40 NEXT C
3% FPRINT
60 NEXT R
70 END
RUN
TRAGL
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9
1 2 3 4 s 6 7 8 9 10
DONE
SUMMARY

Loops may be nested inside other loops as long as we see to it that opera-
tions are done from within, much the same as we deal with sets of parentheses
within other sets of parentheses in algebraic expressions. There may be as many
loops within other loops as the problem may require up to a point. The limits
of one loop may be set by the variables of other loops. Caution is urged
against inadvertently changing the loop variable within the loop, although we
may use its value for any purpose.

PROBLEMS FOR SEC. 3-2

1) In TRAGL we printed from 1 to the row number. Write a program to print
from the row number to 10 for ten rows.

9) Print the multiplication table up to 12 X 12.

3) Print the addition table up to 12 + 12.

4) Find the compound interest on $1000 at 5% compounded quarterly for 10
years. Print the amount after each year with the year number.

5) In problem 4), have the computer print the interest cumulatively each year.

6) Print a table showing compound interests on $1000 for one, two, three, and
four years at 4%, 4%%, 5%, and 5%% compounded quarterly. Print year 1 through 4 at
the top, and put the interest rate in the first column of cach row. Put the rate in a

loop FOR R = 4 TO 5.5 STEP .5.

Loops and Lists 35

7) Redo problem 14) in Chap. 2 using nested loops.
v 8) Write a program to read 10 numbers from data, find the largest number, print
it and the position it occupied in the data line. This requires only one loop, but you
will have to read the first number directly from data outside the loop and then
have the loop begin with 2 to read the rest of the data. (This is essentially a problem
of storing values.)
v 9) Write a program to print all sets of three integers less than 20 so that they
can be the sides of a right triangle. Print no duplications, i.e., if you have the
computer print 3, 4, 5, do not print 4, 3, 5.

10) Write a program to print the integers 1 through 50 in order in 5 rows of 10
columns each.

11) Write a program to print the integers 1 through 50 in order in 10 rows of
5 columns each.
v 12) Print a table of the squares of positive integers 1 through 29. Label the
columns O through 9 and the rows 0, 10, and 20. Make the entry in the table be
the square of the sum of the row and column labels.

13) Have the computer print the product and the sum of all possible different
pairs of integers from 15 to 20.

3-3 INTRODUCTION TO LISTS

Recall that in Chap. 1 it was stated that when a program specifies a vari-
able, the computer sets up a location with the variable as its name. This
provides a means for the computer to store numbers for later use. You are
about to meet a very powerful extension of that concept, the computer list. A
computer list sets up not a single location for a variable, but many locations
for a variable. If we use the computer for a list of say four items (we may
have many more) and choose to call it L, the different locations of the list
will be L{1], L[2], L[3], and L[4]. If we want the list to contain the numbers
4, 9, —92, and 8, this could be accomplished by saying LET L[1] = 4, LET
L{2] = 9, LET L{3] = —92, and LET L[4] = 8. The numbers in brackets
may be thought of as subscripts and they designate at which location of the L
list the number is being stored. However, the LET statement with explicit
subscripts is not really any better than assigning a different variable for each
number. So values are usually assigned in a loop with the subscript being the
variable in the loop. In the demonstration program LIST1 we are letting S
go from 1 to 4 and reading L[S] from data. There may be several lists in the
same program. Any letter of the alphabet may be used to designate a list,
At this point we are limited to 10 or 11 items in a list, depending on the
computer. If we have 10, they are numbered 1 through 10. Some computers
start at 0.

As you can see from the RUN of LISTI, we may use any or all of the
numbers in a list. We can print them forwards or backwards. We can re-
arrange them at will. We may look at the numbers in any identifiable manner.
Lists are incredibly useful when you learn to handle them.

Let us use lists and loops to write all possible combinations of four digits
in one list taken in pairs with four digits in another list. First we draw a
flowchart as in Fig. 3-6. We call the program PAIRS.

36 Basic BASIC

LISTI

8 REM WE ARE READING FOUR ITEMS OF DATA WITH A L@OP

10 FBR S=1 TO 4

20 READ L(S51]

30 NEXT S

38 PRINT "WE CAN PRINT THE ITEMS @F THE LIST EXPLICITLY™

40 PRINT "LL1) LE2) LL3) L{a)™

50 PRINT LI{1)I3LE2DILE3I3LEA)

60 PRINT

70 PRINT “WE CAN ALS@ USE A LOOP. THE LOBNGER THE LIST THE
BETTER"

80 PRINT "BEING ABLE T@ USE A LGGP IS"

28 FER X=1 T¢ &

100 PRINT LLK)s

120 NEKT K

130 PRINT

135 PRINT

140 PRINT "WE CAN GPERATE ON THE NUMBERS IN THE LISTY

145 PRINT * B LEB) B*xL(B]"

150 FOGR B=1 T0 4

155 PRINT B3L(B}3B%L{B]

160 NEXT B

170 PRINT

180 PRINT "WE CAN PRINT THE LIST BACKWARDS WITH F8R X=4 TG 1
STEP =-1*

190 FGR X=4 T8 t STEP -1

200 PRINT LEX]3

210 NEXT X

220 PRINT

225 PRINT

230 PRINT "WE CAN RELOCATE ITEMS IN THE LIST"™

240 PRINT "250 LET Z=L{1), 260 LET LL11=L(2) AND 270 LET
Lg2)=z"

245 PRINT "GIVE THE FOLLOWING RESULT"

250 LET Z=L(1]

252 REM #*HERE WE ARE STORING THE VALUE OF L{13 IN Z

260 LET L{13=LC2)

262 REM WE HAVE PUT THE VALUE OF L[23 INTG LC1)

270 LET LC{2]1=Z

272 REM HERE THE BLD VALUE OF LC13 IS PUT INT8 L(2) FROM Z

280 PRINT "LI{1] ="3LL1)

290 PRINT "L(2) =*3L(2]

300 PRINT "LOBK CAREFULLY AT THE ORIGINAL LIST"

310 PRINT "WE HAVE EXCHANGED ITEMS GNE AND Tuwa*

320 PRINT

330 PRINT “WE CAN PUSH EVERY NUMBER UP FOUR LOCATIONS IN THE
LIST”

340 FOR P=1 T@ 4

350 LET LIP+4)=L(P)]

360 NEXT P

370 FOR N=1 T3 8

380 PRINT LINI3

390 NEXT N

S00 DATA 4,9,-92,8

9999 END

RUN

LIST1

WE CAN PRINT THE ITEMS OF THE LIST EXPLICITLY

Lli) L2} LI31 LLa)

4 9 -92 8

Loops and Lists

WE CAN AL SO USE A L@OP. THE LONGER THE LIST THE BETTER
BEING ABLE TO USE A LOOP IS
4 9 ~92 8

WE CAN OPERATE ON THE NUMBERS IN THE LIST
B LiB) B*LI(B)

1 4 4

2 9 18
3 -92 -276
4 8 32

WE CAN PRINT THE LIST BACKWARDS WITH FOR X=4 TO@ 1 STEP -1
8 -92 9 4

WE CAN RELOCATE ITEMS IN THE LIST

250 LET Z=L(13}, 260 LET LU1)=L(2) AND 270 LET LL{2]=Z
GIVE THE FOLLOWING RESW.T

LKl = 9

LE21 = 4

LOOK CAREFULLY AT THE ORIGINAL LIST

WE HAVE EXCHANGED ITEMS ONE AND TWo

WE CAN PUSH EVERY NUMBER UP FOUR LOCATIONS IN THE LIST
9 4 ~92 8 9 4 -92 8
DANE

READ A list
and
B list

FORK =
1D 4
PRINT
AIKI; BIL,
NEXT K
END

Fig. 3-6. Flowchart for program PAIRS for printing all combinations from
two four-item lists.

37

38 Basic BASIC

PAIRS

10 REM 20 T0 40 READ THE A LIST

20 FOR I=1 1@ 4

30 READ ALIl

40 NEXT I

45 REM 50 T@ 65 READ THE B LIST

50 F@R J=1 10 4

60 READ BLJ]

65 NEXT J

67 REM HERE IS ANOTHER NESTED LOQFP
70 FOR K=1 TO 4
80 FBR L=1 TO 4

36 PRINT AIK3ISBIL IS

91 REM #%+ N@TICE THE USE GF THE .SEMIC@LON AND THE CoMMA
100 WNEXT L

110 PRINT

120 NEXT K
500 DATA 1,3-5,7
510 DATA 2535659

999 END
RUN
PAIRS
1 2 1 3 ! 6 1 9
3 2 3 3 3 6 3 9
5 2 5 3 5 6 5 9
7 2 7 3 7 6 7 9
DONE
SUMMARY

The computer list has been introduced. A list is like a subscripted variable
in that it takes on different values according to the subscript. Each of the
numbers in a list is a variable unto itself. It may be handled in the same way
that any of our previous variables may be handled. The numbers in a list may
be rearranged. In order to exchange two numbers in a list, we first have to
store one of them in another variable,

PROBLEMS FOR SEC. 3-3

1) Using one READ statement in a loop, prepare a nine-element list using the
following numbers: 6, —89, 200, 31, 999, —999, 0, 1, and 18. Print out the list
across the page first in the order given, then in reverse order.

2) Fill a 10-element list with the squares of the subscripts. Print the element
number and the listed value in order in two columns down the page.

3) Prepare a 10-element list using the following numbers: 17, 18, 281, —722, 0,
—5, —16, 11, —1, and 10. Find the largest number in the list and its location. Print
them. Then exchange the largest number with the first element in the list and print
the new list with a loop.

4) Prepare one list with the numbers 6, 4, 11, 51, and 17 and another with 51,
12, 11, and 16. Now print all possible pairs using one number from each list.

5) Repeat problem 4), without printing a pair if the numbers are the same,

6) Redo program T@TAL in Chap. 2 using an N list for numbers of items and
a P list for prices. Instead of N ® P use N[I] ® PII].

Loops and Lists 39

7) Prepare one list with the numbers 6, 11, 15, 17, 26, and 83 and another
with 15, 19, 27, 83, and 91. Have the computer form a new list that contains only
those numbers that are in both lists.

8) Using the two lists given in problem 7), create a new list consisting of all
numbers that appear in either list. If the number appears in both lists, enter it only
once in the new list.

9) LET F[1] = 1 and LET F[2] == 1, then fill the next eight positions in F so that
every entry is the sum of the previous two entries. Print the complete list. You have
begun to form the sequence known as the Fibonacci numbers.

v 10) Form a 10-item list consisting of the first 10 positive odd integers in order.
Form a second list so that each entry contains the sum of all the numbers in the
first list up to and including the location number for the second list.

11) Prepare one list containing 6, 1, 3, 7, 2, and 9 and another containing 8, 2,
3,9, 7, and 4. Form a third list containing the sums of the corresponding elements,
ie., A[lI} = F{I] 4 S[I.

12) Do problem 11}, but enter the products in the third list.

v/ 13) Fill a four-element list with 9, 60, 700, and 3000. Fill a three-element list
with 7, 30, and 200. Sum up the products of all possible pairs of numbers, one
from each list.

_ Forf=1+1
DFOR I =1TQ9 O 10
Exchange
L, L
NEXT | NEXT |

END Fig. 3-7. Flowchart for arranging a 10-item list in
numerical order.

40 Basic BASIC

3-4 MORE ON LISTS

We will now discuss the arrangement of a list in numerical order. If we
look at every pair of numbers in a list of numbers and they are all in numerical
order, then we are assured that the entire list is in order. Thus, we must
instruct the computer to look at all the pairs and determine whether or not
they are in order. If the pair is in numerical order, then we want the com-
puter to look at the next pair. If it is not, then we want the computer to
exchange the two numbers. We can accomplish this in the same manner as
was done in program LIST1. In other words, we store one of the numbers in
a new variable. Then we put the second variable’s value into the first variable
and the original value of the first variable into the second variable from the
storage variable. The three statements look like this:

XXX LETS=L[I]
YYY LETL[I]=L[J]
7ZZ LETL{JI=S

ARANGE

10 REM WE ARE READING THE LIST FR@GM DATA

20 FOR X=1 1@ 10

30 READ LL{X)

40 NEXT X

S0 PRINT 'HERE IS THE LIST IN ORIGINAL @RDER"
60 FOR Y=1 10 10

70 PRINT LLY)3

80 NEXT Y

90 PRINT

100 REM N@W WE TEST PAIRS @F NUMBERS T@ SEE IF THEY ARE IN
@RDER

110 FOR I=1 TO 9

118 REM WHY DON'T WE SAY FOR I=1 T@ 10????

120 FBR J=I+1 10 10

130 IF L{I] <= LUJ] THEN 300

140 LET S=L(1}

150 LET LEI3I=LLJ]

160 LET LLJI=S

170 REM WE HAUE REVERSED TW@ ELEMENTS BF THE LIST

180 REM #*%k%% SEE PROGGRAM LISTI &k

300 NEXT J

400 NEKXKT I

405 PRINT "AND HERE IS THE LIST IN ORDER FROM SMALLEST TO@
GREATEST®™

410 FOR Y=1 T@ 10

420 PRINT LLYI1s

430 NEXT Y

500 DATA 65-19,28,20,~32574,19,28,23- 43

999 END
RUN
ARAN GE
HERE IS THE LIST IN QRIGINAL ORDER

[~19 28 20 -32 74 19 28 23 43
AND HERE 1S THE LIST IN @RDER FROM SMALLEST T@ GREATEST
~32 -19 6 19 20 23 28 28 43 74

DONE

Loops and Lists 41

In flowcharting when we have a process of this kind, which has been used and
clearly defined, we can avoid being explicit by using a shape to indicate a
predefined process. The generally accepted shape is a rectangle with two
additional vertical lines, which appears in the flowchait of Fig. 3-7 for pro-
gram ARANGE that solves the problem we have just outlined.

In program ARANGE, the list is read in lines 20, 30, and 40. Then, for the
purpose of seeing the list in the original order, it is printed immediately in
lines 60, 70, and 80. In lines 110 and 120 two loops are set up, where the 1
loop represents the first number of the pair and the J loop represents the
second number. As per line 118, why did we not let I go from 1 to 10? Had
we done that, at some point in the program the computer would have to
compare L[10] and L[10}, which is not necessary. The first time through,
L{1] = 6 and L[2] = —19. The first element is not less than or equal to the
second. Thus, we want the computer to exchange these two elements. This is
done by lines 140, 150, and 160. As the computer leaves line 160, L[1] = —19
and L[2] = 6. It is relatively simple for us to have the computer print the list
every time it is necessary to exchange two elements of the list. All that is
required is to insert four statements exactly like 60, 70, 80, and 90. This is
done in program ARANGI in lines 200, 210, 220, and 230. This means that
the more numbers out of order, the more printing we might expect. Study
the printing of ARANG1 carefully. Notice that after the first reversal, L{1] =
—19 and L[2} = 6 as promised.

Look at the three sets of lines: 60, 70, 80, 90; 200, 210, 220, 230; and 410,
420, 430, 440. You should recognize that these three sets of lines are identical.
BASIC provides a convenient program statement that allows us to type out
that set of lines only once and then call that set of lines from anywhere in the
program. The statement is G@SUB XXX, where XXX designates the first line
of the set of lines you would like repeated. The set of program statements
that is repeated is called a subroutine. When the computer encounters YYY
G@SUB XXX, it initially behaves as it would for G@T® XXX. However, the
computer “remembers” where it was when it left YYY and will return to the
next higher numbered line after YYY when it finishes the subroutine. In order
to achieve this, the computer must “know” when it has completed the sub-
routine. You, the programmer, must notify the computer where the end is by
inserting a line ZZZ RETURN at the end of the subroutine. Then the com-
puter will “know” that it must go to the line immediately following the G@SUB
XXX it most recently encountered.

G@SUB-RETURN

YYY G@SUB XXX sends the computer to line XXX to execute all
lines it encounters until the RETURN statement, which sends the
computer back to the line following YYY. G@SUB is especially useful
in programs where the same set of lines is used several times.

42 Basic BASIC

ARANG1

10 REM WE ARE READING THE LIST FROM DATA

20 F@R X=1 T@ 10

30 READ LIX]

40 NEXT X

S0 PRINT “HERE IS THE LIST IN ORIGINAL G@RDER"

60 FOR Y=1 T@ 10

70 PRINT LLY1s

80 NEXT Y

90 PRINT

95 PRINT “HERE WE ARE ARRANGING THE LIST"

100 REM N@W WE TEST PAIRS QF NUMBERS TG SEE IF THEY ARE IN
@RDER

110 F@R 1I=1 T@ 9

118 REM WHY DGN'T WE SAY FBR I=1 T@ 1022722

120 F@BR J=I1+1 TO® 10

130 IF LL{1} <= LLJ) THEN 300

140 LET S=L(1)

150 LET LLI)=LLJ)

160 LET LC{.J1=S

170 REM WE HAVE REVERSED TWé ELEMENTS OF THE LIST

180 REM #%##%% SEE PROGRAM LIST! kdkk

200 FOR Y=1 T8 10

210 PRINT LLY)s

220 NEXT Y

230 PRINT

300 NEXT J

400 NEXT I

405 PRINT "AND HERE IS THE LIST IN ORDER FROM SMALLEST 1@
GREATEST"

410 FOR Y=1 T8 10

420 PRINT LLY1s

430 NEXT Y

440 PRINT

500 DATA 65-19,28,20,~32574,19,28,23, 43
999 END
RUN
ARANG1
HERE IS THE LIST IN @ORIGINAL ORDER

6 -19 23 20 ~-32 74 19 28 23 43
HERE WE ARE ARRANGING THE LIST
~19 6 28 20 -32 74 19 28 23 43
-32 6 28 20 ~-19 T4 19 28 23 43
~32 -19 28 20 & 74 19 28 23 43
-32 -9 20 28 [74 i9 28 23 4
~32 -19 6 28 20 74 19 28 23 43
-32 -19 6 20 28 74 19 28 23 43
-32 -19 6 19 28 74 20 28 23 43
~32 =19 6 i9 20 74 28 28 23 43
-32 -19 6 19 20 28 74 28 23 43
-32 -19 6 19 20 23 74 28 28 43
~-32 ~19 6 19 20 23 28 74 28 43
~-32 ~19 [19 20 23 28 28 74 43
~32 -19 6 19 20 23 28 28 43 74

AND HERE IS THE LIST IN ORDER FROM SMALLEST T@ GREATEST
-32 -19 6 19 20 23 28 28 43 74

amaere
AR G

Loops and Lists 43

GasuB

10 PRINT "THIS PROGRAM IS INTENDED T@ DEMONSTRATE G@SUB'S
BEHAVIQUR"

20 G@sus 700

30 FOR X=1 T8 3

40 GIsuUB 500

45 GOSsSUB 700

50 NEXT X

60 GOSUB 400

70 PRINT 70

75 GB8SUB 700

80 GAsSuUB 400

90 PRINT 90

95 G@SUB 700

100 LET X=4

110 G@suB 500

115 G#suB 700

120 G@sSuB 400

130 PRINT 130

135 G@asus 700

140 G3SUB 600

150 PRINT 150

155 GesuB 700

399 G@Ta 999

400 PRINT "HERE WE ARE AT LINE'"3

410 RETURN

500 PRINT "THIS IS GOSUB 500"3X3'TIMES™

510 RETURN

600 PRINT "CALL G@SUB 400 FR@M GBSUB 600"

610 GBsSUB 400

620 RETURN

700 PRINT
710 RETURN
999 END
RUN

GosuB

THIS PROGRAM IS INTENDED T2 DEMONSTRATE GOSUB'S BEHAVIGUR

THIS 1S G@SUB 500 1 TIMES
THIS I5 GasuB 500 2 TIMES
THIS IS5 GASUB 500 3 TIMES

HERE WE ARE AT LINE 70
HERE WE ARE AT LINE 90
THIS IS GBSUB 500 4 TIMES
HERE WE ARE AT LINE 130

CALL GO@SUB 400 FROM GASUB 600
HERE WE ARE AT LINE 150

DANE

44 Basic BASIC

Let us look at a demonstration program before we use GBSUB in ARANGI1.
Go through program G@SUB line by line to be sure you see what has hap-
pened. Line 10 is reasonably clear. Line 20 says G@SUB 700. Line 700 says
PRINT and the next line is RETURN. Thus the computer generates one blank
line and goes to line 30, which sets up a loop. Inside the loop, G@SUB 500
and 700 are called three times, once each for X = 1, 2, and 3. This program

ARAN G2

1 REM UYE ARE READING THE LIST FRGM DATA

20 FOR X=1 T 10

30 READ LI{X]

40 NEXT X

50 PRINT "HERE IS THE LIST IN ORIGINAL @RDER"

60 GOSUB 410

95 PRINT "HERE WE ARE ARRANGING THE LIST"

100 REM N@W WE TEST PAIRS @F NUMBERS T8 SEE IF THEY ARE IN
@RDER

110 FOR I=1 T8 9

118 REM WHY DBN°T WE SAY FOR I=1 T@ 102???

120 FOR J=I+1 T@ 10

130 IF LUI} <= LE€JI THEN 300

140 LET S=LLI1]

150 LET LLIX=LLJ]

160 LET LEJI=S

170 REM WE HAVE REVERSED TW@ ELEMENTS OF THE LIST

180 REM k%#%% SEE PROGRAM LISTI k%

200 GosuB 410

300 NEXT J

400 NEXT 1

405 PRINT!'AND HERE IS THE LIST IN OGRDER FROM SMALLEST T@
GREATEST"

407 G@SUB 410

408 GBTB 999

410 FOR Y=1 T 10

420 PRINT L{YDs

430 NEXT Y

440 PRINT

450 RETURN

500 DATA 6,-19,28,20,-32,74,19,28,23, 43

999 END
ARANG2
HERE 1S THE 1.IST IN @RIGINAL GRDER

6 -19 28 20 -32 14 19 28 23 43
HERE WE ARE ARRANGING THE LIST
-19 [28 20 -32 74 19 28 23 43
-32 6 28 20 -19 74 19 2g 23 43
-32 -19 28 20 6 74 19 28 23 43
-32 ~19 20 28 6 74 19 28 23 43
-32 ~-19 6 28 20 74 19 28 23 43
-32 =19 6 20 28 74 19 28 23 43
-32 -19 [19 28 74 20 28 23 43
~-32 ~-19 6 19 20 14 28 28 23 43
~32 ~19 6 19 20 28 74 28 23 43
-32 -19 6 19 20 23 74 28 28 43
-3z iy -] i7 20 z3 28 ia z8 43
-32 -19 6 19 20 23 28 28 74 43
-32 -19 6 19 20 23 28 28 43 74
AND HERE IS THE LIST IN ORDER FR&M SMALLEST T@ GREATEST
-32 -19 [19 20 23 28 28 43 74

DBNE

Loops and Lists 45

is not intended to actually achieve any particular result except to give us a
chance to trace out the path of the computer through several G@SUB
statements.

You might wonder why 399 G@AT@ 999 is in there. Consider what would
happen if it were not there. Line 155 says G@SUB 700, which means go to
line 700, execute a line feed, and return. Then what? Line 400 is next. Print
“HERE WE ARE AT LINE,” and “RETURN.” RETURN where? RETURN
in this subroutine 1esponds only to GOSUB 400 and there was no such
statement. The computer cannot execute such a set of instructions and will
print a message to that effect. So you must build a barrier in front of sub-
routines to prevent the computer from accidentally beginning without the
proper GOSUB statement. Notice that lines 500, 600, and 700 are already
protected by RETURN statements.

Now we should be ready to enter the G@SUB concept into ARANGI. This
program is called ARANG2. Examine lines 60, 200, and 407. See the barrier
at line 408 to prevent accidentally beginning the subroutine.

SUMMARY

1) The computer list is beginning to emerge as a powerful storage area for
keeping numbers while we have the computer perform tests on numbers in
the list.

2) We can rearrange the elements in numerical order by testing all pairs
and exchanging any that are not in the required order.

3) GOSUB permits us to use the same set of program statements many
times at many different points in a program without disturbing the progress
of the computer through the rest of the program.

PROBLEMS FOR SEC. 34

1) Write a program to print the following numbers in decreasing numerical order:
34, —67, 10, 0, —99, 103, and 1. Count the number of times the computer has to
exchange two numbers and the number of comparisons.

2) Write a program to print the following numbers in increasing numerical order:
45, 76, —76, 45, and 98. Do not print the duplicated number, but leave it in the list.

3) Program the computer to list the numbers in order in problem 1) by comparing
elements one and two first, then elements two and three, then elements three and
four, etc. Create a switch S = 0 for off and S =1 for on. Turn the switch off, then
if an exchange is required, turn the switch on. After testing the last two elements,
look at the switch. If it is on, go through the list again. If it is off, print the list;
it must be in order. Count the number of tests and the number of exchanges.

4) Prepare a five-element list using the averages of the test scores from program
AVG in Sec. 3-1. Then arrange the averages in decreasing order and print a number
representing the position in the original list. This latter can be done by setting up
a second list containing 1, 2, 3, 4, 5, then exchanging these numbers each time the
corresponding averages are exchanged.

5) Prepare one list with the numbers 0, 6, 1, 3, 7, 2, 3, 1, 4, and 9 and another
with 0, 8, 2,3, 9,7, 4,1, 2, and 4. Prepare a third list with the sums of the corre-
sponding elements. So far this is similar to problem 11) in Sec. 3-3. Beginning with

46 Basic BASIC

the highest subscript, look at each entry in the sum list. If the entry is less than 10,
proceed to the next entry. I the enlry is more than 8, subtract 10 from that entry
and add 1 to the entry with the next lower subscript. Print all three lists across the
page, one above the other, with the sum list last. What have you accomplished?
J 6) On seven consecutive days the high and low temperatures were as follows:
51-71, 48-67, 50-77, 55-78, 55-76, 55-75, 49-79. Write a program using lists to find
the greatest range and the number of the day on which it occurred, the average high,
and the average low.

J 7) Prepare two 10-element lists using the following numbers: 43, 65, 92, 38, —45,
0, 15, 61, —61, —15, 45, 54, 52, —14, 49, —3, 66, 72, 29, —1. Arrange all the
numbers in increasing numerical order,

J 8) The following test scores are given: 65, 71, 82, 63, 90, 58, 66, 67, and 68.
Program the computer to list the scores, calculate the average, and then find the
number of test scores that were above average and the number below average.
Also, find the score where there are the same number of scores above as below.

J 9 The Fibonacei numbers are generated by letting the first two numbers of the
sequence equal 1, and from there on each number may be found by taking the
sum of the previous two elements in the sequence. So you get 1, 1, 2, 3, 5, 8, 13,
cte. Prepare two lists: one with the first 10 and the other with the second 10. For
cach element from 2 to 19 find the difference between the square of the element
and the product of the elements immediately preceding and following. In other
words, print F[1] °® 2 — F[I — 1] ® F[I + 11

CHAPTER 4

Computer Functions

4-1 INTRODUCTION TO INT(), SQR(), ABS(), AND SGN()

The four functions discussed in the following, will prove very useful in
BASIC.

INT(X) is used in two ways. In some computers, INT(X) determines the
greatest integer not greater than X. For example, if A = INT(43.2), then
A = 43; if A = INT(6), then A = 6; and if A = INT(—2.3), then A = —3. In
other computers, INT(X) truncates the number X, i.e., it simply removes the
decimal part. So if A = INT(—2.3), then A = —2.

SQR(Y) computes the non-negative square root of Y. For example, if B =
SQR(16), then B = 4.

Some computers will not compute if B = SQR(~186). However, if we have
many values for which we want the square roots and some happen to be
negative, we can instruct the computer to take the square root of the absolute
value of Y. BASIC provides ABS(Y) for just such occurrences. For example,
ABS(18.3) = 18.3, and ABS(—24.61) = 24.61. So we can use SQR(ABS(Y)) for
the problem above.

A fourth BASIC function which you may not have much call for right now
is SGN(N). SGN(N) is +1 if N is positive, 0 if N is 0, and —1 if N is negative.
The number in parentheses is called the argument of the function. Note that
the argument may be an explicit number, a variable, another function, or any
algebraic expression. Study the demonstration program ASIS to see how the
computer handles these functions.

INT(X) computes the greatest integer of X.

SQR(X) computes the positive square 100t of X.

ABS(X) computes the absolute value of X.

SCN(X) is +1if X is positive, 0 if X = 0, —1 if X is negative,

47

48 Basic BASIC

ASIS

10 PRINT "X',ABSC(X)", "SQRC(ABSC(X))" "INT(X) ", "SGN(X)"
20 READ X
30 PRINT Ks ABSCX2» SQRCABSCKI 5, INTCXY» SGNCXK)

40 DATA -899913.,-35.2,-.032

50 DATA 0,.032,23.412,8391 "

60 GOT@ 20

70 END

RUN
ASIS
X ABS(X) SGRCABS(X)) INTCX)
-2999123, B90913. 948, £37 -g99913.
-35.2 35.2 5.93296 -36
-o032 . 032 - 178885 -1

0 0] 0

.032 .032 . 178885 0

23. 412 23.412 4.8386 23

8391 8391 91.6024 8391
BUT OF DATA IN LINE 20

SGNCX:
-1
-1
-1

- -

One common use of INT() is for factoring integers. We can look at the
quotient of two integers, and if that is an integer, then the denominator is a
factor. For example, 65/5 = INT(65/5); therefore 5 is a factor of 65. So in
order to find the greatest factor, all we have to do is start with the integer, one
less than the number we are trying to factor, and test to see if it divides with-
out remainder. If it does, we use the conditional transfer and send the com-
puter to a PRINT statement. If it does not, we let the computer subtract 1 by
using a loop and try again. If we start at N, we will get N/N = INT(N/N) the
first time through even for prime numbers. Let us also print N is prime if it is.

FORD =N —1
TR 2 STEP —1

Is
D a factor?

1 K
no
PRINT ll
NEXT D i

Al ot
i A |
prime

Fig. 4-1. Flowchart for factoring integers.

Computer Functions 49

PRIMEL

10 READ N

20 FOGR D=N-1 T@® 2 STEP -1

30 IF N/D=INTC(N/D) THEN 70

40 NEXT D

50 PRINT N3"IS PRIME"

60 GOT2 10

70 PRINT D3"1S THE GREATEST FACTOR @F"iN
80 GO8To 10

90 DATA 1946,1949,1009,1003

100 DATA 11001,240,11

110 END
RUN
PRIMEL

973 1S THE GREATEST FACTOR @F 1946
1949 IS5 PRIME

1009 IS PRIME

59 IS THE GREATEST FACT@R 0F 1003
3667 15 THE GREATEST FACT@R GF 11001

120 IS5 THE GREATEST FACT@R @F 240
i1 IS PRIME

BUT 8F DATA IN LINE 10

So we stop at 2 rather than 1. First we draw the flowchart in Fig. 4-1, then
write the program PRIMEL.

In PRIMEL the computer tested 1949/D with 1947 different values for D
before it decided that 1949 is prime. That is a lot of tries. Whenever reasonable,
we should try to improve the efficiency of our program. What do we know
about factors of integers? We know that the smallest possible factor is 2. So the
greatest could be N/2. For 1949 then, we can reduce the number of tries to
975. But we also know that if we try all possible divisors down to the square
root of the number we are trying to factor, then the quotients will also be less

PRIMEZ2

10 READ N

20 FOR D=2 T@ SAQRN)

30 IF N/D=INTI(N/D) THEN 70

40 NEXT D

50 PRINT N3!S PRIME"

60 GOTO 10

70 PRINT N/Ds;*'1S THE GREATEST FACTOR @F'3N
80 GeTe 10

90 DATA 1946,1949,1009,1003

100 DATA 11001,240,11

110 END
RUN
PRIME2
973 IS THE GREATEST FACT@R OF 1946
1949 IS PRIME
1009 IS PRIME

59 IS THE GREATEST FACT@R @F 1003
3667 I5 THE GREATEST FACTOR @F 11001
120 15 THE GREATEST FACTOR @F 240

1t 1S PRIME

QUT @F DATA IN LINE 10

50 Basic BASIC

than the square root. So we might try FORD =N — 1 T@ SQR(N) STEP —1.
Well, SQR(1949) is approximately 44 and this means 1904 tries, which is much
worse. But why not go from 2 up to SQR(1949)? Now we have only 43 tries
and if we do get divisibility for other numbers, we will have the smallest
factor and we can get the greatest factor by dividing the number by its small-
est factor. This seems worth making the necessary changes in PRIMEL. Only
lines 20 and 70 require changing. Line 20 is the line which sets up the loop
to test for divisibility and line 70 is the PRINT statement. In the PRINT
statement we want N/D printed now, whereas we wanted D printed before.

See PRIMEZ.

SUMMARY

Four computer functions were introduced.

1) INT(A) evaluates the greatest integer of A.

2) SQR(B) finds the positive square root of B.

3) ABS(C) computes the absolute value of C.

4) SGN(D) becomes +1 if D is positive, 0 if D is 0, and —1 if D is negative.
The value in parentheses is called the argument of the function.

PROBLEMS FOR SEC. 4-1

1) Modify PRIMEZ2 to write all pairs of factors.

9) Modify the program in problem 1) to print no duplications.

3) Write a program that will print only prime factors of integers.

4) Write a subroutine that will perform the work of ABS(), without using
another computer function.

5) Write a subroutine that will perform the work of SGN(), without using
another computer function.

6) Write a program to print all different pairs of factors of the following set of
integers: 711, 991, —991, 453, —654, 1009, —1009, 9001.

7) Write a program to print all of the prime positive integers less than 100. Do
not let the computer try numbers divisible by 2.

8) Print the prime integers from 1000 to 1500. Do not let the computer test the
even numbers.
/9 For cach of the following pairs of numbers, find two numbers so that the
sum of your two is the first number in the given pair and the product is the second
number in the given pair: 3, 2; 7, 12; 11, 28; —11, 28; 3, —28, 76, 1003; 7, 8;
34, 289.

4-2 REDUCING COMMON FRACTIONS AND DIMENSION
CONVERSIONS

We are finally ready to reduce fractions to lowest terms. Look at problems
13) and 14) in Chap. 1. There, if we had added 5/6 and 7/8 we would have
gotten 82/48. Since, however, it is customary to reduce fractions, we would
like to get 41/24.

Computer Functions 51

All we have to do is find the largest factor of the numerator that is also a
factor of the denominator. Only this time we have to go all the way to 2. So
we will use the procedure of program PRIMEL. First we should prepare a
flowchart. See Fig. 4-2. We simply find the greatest factor of the numerator
and see if it is also a factor of the denominator. If it is, fine. If it is not, then
we go back and find the next greatest factor of the numerator and test to see
if that is a factor of the denominator. If it is, fine. If not, we go back again
and look for the next factor of the numerator. If we get all the way to 2
without a number that is a factor of both numerator and denominator, then
we print the fraction as it was given. See program REDUCE.

We should try to pick the largest factor of the smaller number to reduce
the number of tries the computer has to execute.

Dimension Conversions

We find the INT() function useful in simplifying dimensioned numbers
to simplest form. Suppose we change 93 in. to feet and inches. By hand we
would divide 93 by 12 and the whole number in the result would be in feet.
Then the remainder would be in inches. The problem would appear as follows:

<

12)

[NV

9
8

ol

and we would say 7 ft 9 in. with no difficulty. We can easily get the 7 by
using INT(93/12), but it is an exercise in mathematics to get the 9. Let us
look at the division problem in more detail:

775 75
1293.00 12j9.00
84 8.4

9.0 60
8.4 .60
60 00

60

00

We see that if we divide 12 into the remainder after integer division, we get
the decimal portion of the result if we divide by 12 by decimal division. That is,

9/12 = 93/12 — INT(93/12)

for this problem. Or in general, for N divided by D and calling the remainder
R we get

R/D =N/D — INT(N/D)
Multiplying both sides by D we get
R=N-—INT(N/D) * D

52 Basic BASIC

FORP =NTP
2 STEP —1

IsPa
factor of D?

PRINT
N/P, D/P

Fig. 4-2. Flowchart for reducing common fractions.

REDUCE

10 READ N.D

20 F@R P=N T@ 2 STEP -1}

30 IF N/P=INT(N/P) THEN 70
40 NEXT P

50 PRINT N"/"D

60 GAT? 10

70 IF D/P=INTC(D/P) THEN 90
80 GATO 40

90 PRINT N"/"D"="N/P"/"D/P
100 Ga&T® 10

110 DATA 5,6

120 DATA 82,48

130 DATA 3,4

140 DATA 36,48

150 END

RUN
REDUCE

S /7 6

82 / 48 = 4] /7 24
3 / 4

36 / 48 = 3 / 4

8UT @F DATA IN LINE 10

Computer Functions 53

So all we need is a program statement LET R = N — INT(N/D) * D. See line
20 in program DEMREM.
DEMREM
5 PRINT “NUMERAT@R™, "DENJMINAT@R", “REMAINDER'", "INTEGER QUITIENT"
10 READ N,D
15 REM FIND THE REMAINDER WHEN 'N* IS DIVIDED BY 'D°
20 LET R=N-INT(N/D)%D
30 PRINT N»Ds R, INTCN/D)
40 GOT? 10
50 DATA 93,12, 100,25, 365, 52, 365, 7
52 DATA 365, 12,52, 13, 5280, 440, 55, 6
60 END
RUN
DEMREM
NUMERATOR DEN@GMINATBR REMAINDER INTEGER QUBTIENT
93 12 9 7
100 25 0 4
365 52 1 7
365 7 1 52
365 12 S 30
52 13 0 4
5280 440 0 12
55) 1 9
OUT @F DATA IN LINE 10

Now we can easily convert numbers in inches to feet and inches. First see
the flowchart in Fig. 4-3 and then the program CONVRT.

LETF
= INT(1/12)

Fig. 4-3 Flowchart for converting
numbers in inches to feet and inches.

54 Basic BASIC
conyRT

10 READ I

20 LET F=INI(I/12)

30 LET I1=1-F%12

40 PRINT I"INCHES ="F"FEET "II"INCHES"
45 G@Te 10

50 DATA 9,86547:37,947, 480

60 END

RUM

CONVRT

9 INCHES = O FEET 9 INCHES
86 INCHES = 7 FEET 2 INCHES
47 INCHES = 3 FEET [INCHES
37 INCHES = 3 FEET 1 INCHES
947 INCHES = 78 FEET 11 INCHES
480 INCHES = 40 FEET ¢} INCHES
BUT 8F DATA IN LINE 10

SUMMARY

1) We can now find the greatest common factor of two integers and thus
reduce fractions to lowest terms.

2) We have seen that the INT() function may be used to break quotients
up into their integer part and their decimal part less than 1.

3) We can find the remainder in a division problem by using R = N — INT
(N/D) ® D. This allows us to convert dimensioned numbers, such as inches,
to feet and inches.

PROBLEMS FOR SEC. 4-2

1) Write a program to add two simple fractions and print the sum reduced to
lowest terms.

9) Improve the efficiency of program REDUCE by putting the smaller number in
the P loop in line 20.

3) Write a program to convert improper fractions to mixed numbers.

4) Convert inches to yards and feet and inches.

/ 5) Write a program to multiply two fractions, converting the result to a mixed
number in reduced form.
/ 6) Convert dollars in decimal form to the equivalent in coins.

7) Do problem 5) for adding two fractions.

8) For each of the following pairs of numbers, find the greatest common factor:
190, 1083; 27, 35; 27, 36; 16, 34; 12, 30.

9) For each of the following pairs of numbers, find the least common multiple:
190, 1083; 25, 745; 187, 34.

10) Prepare a list consisting of the first 10 Fibonacci numbers. Find the greatest
common factor for every pair in the list, preparc a list of these with no duplications,
and print them,

/ 11) Write a program to find the greatest common factor of sets of three numbers
assigned as data.

Computer Functions 55

4-3 PROGRAM-DEFINED FUNCTIONS

Suppose we have $56.31 in a savings account bearing 4%% interest com-
pounded monthly and we hear of a bank that is offering 4%% compounded
quarterly. Should we change banks? We did work with compound interest
earlier. So this should be a matter of doing two calculations in the same pro-
gram, Let us leave the $56.31 in each bank for 10 years and see if there is
enough difference to change banks. For compounding monthly, we use the
yearly rate divided by 12, and caleulate and add the interest 12 times per year.
For quarterly compounding, we use the yearly rate divided by 4, and calcu-
late and add interest four times per year. In this case, use one loop for the
years and a 1 to 12 loop for monthly compounding and a 1 to 4 loop for
quarterly compounding, both inside the same 1- to 10-year loop. The flowchart
in Fig. 4-4 should help to sort out this plan.

Since the intent is to develop several concepts in this program that will
require changing the printing, the variables will be printed individually on
separate lines. This technique may often save typing when you anticipate

Initialize

principal ———-%(FOR Y1§ (1

on both rates

Cor%;ute
new principal
for this year

at4.5%

e

Compute
new principal
for this year
at4.75%

L

NEXT Y

e

PRINT
headings
and P’s

Fig. 4-4. Flowchart for computing
compound interest at two rates.

56 Basic BASIC

making changes 25 you develop a program. Thus in program BANK1 lines
130 and 150 are printed with semicolons at the end so that the printing can
be placed at the ends of those lines from PRINT instructions on other lines.
The values of the different principals will be printed, according to instructions,
on lines 140 and 160.

Note: On some computers line 10 of BANK1 would be written as 10 LET
P,P1=0.

We can certainly obtain the information we want from the RUN of this
program in its present form. Clearly, we would get more interest by changing
banks. You will have to decide whether it is worth switching. Even so, let us
see what we can do to simplify the results. For instance, when we talk about
money, most of us tend to round off to the nearest cent. So we should be able
to have the computer do that too. We could multiply by 100 and then take
the greatest integer, but that would give 8823 for P and we want dollars and
cents. Let us then divide by 100 again and get 88.23. However, we really
want 88.24 because the .007 is more than one half a cent. We can obtain this
by adding .5 after we multiply by 100, then taking the greatest integer and
dividing by 100 again. Adding .5 to positive numbers from .5 to .99 results in
numbers from 1.0 to 1.49, and sends positive numbers from .01 to .49 into
numbers from .51 to .99. When we take INT(the sum), the result increases by
1 for numbers .5 or more and is unchanged for numbers less than .5. Thus

BANK 1

10 LET P=P1=56.31

20 FOR Y=1 T8 10

22 REM FOR TEN YEARS

30 FOR M=1 TO 12

32 REM COMPOUND MONTHLY AND COMPUTE INTEREST
40 LET I=P%4.5/100/12

50 LET P=P+]

60 NEXT M
62 REM THAT FIGURES THE INTEREST F@R THIS YEAR COMPBUNDED
M@NTHLY

70 FOR @=1 T8 4

72 REM CEBGMPOUND QUARTERLY

80 LET I1=P1%4.75/100/4

90 LET Pi=Pl+]1]

100 NEXT @

102 REM THAT TAKES CARE @F THE QUARTERLY INVESTMENT FOR THIS
YEAR

108 REM NOW T@ COMPUTE THE NEXT YEAR

110 NEXT Y

120 PRINT "FBR TEN YEARS"

130 PRINT "@4.5% COMPBUNDED MOGNTHLY..."s

140 PRINT P

150 PRINT "84.75% COMPOUNDED QUARTERLY...';

160 PRINT P1

9999 END

RUN

BANK }

FOR TEN YEARS
@4.5%7 COMPBUNDED MOMTHLY... 88.2374
@4.75% COMPOUNDED QUARTERLY... 90.2943

DONE

Computer Functions 57

ROUND

10 READ X

20 LET Y=INT(X*100+.5)/100

30 PRINT Y,X

40 DATA 2.31462,2.34999,2.35001, 382, 617.346,3.86149E-02
30 GOTO 10

60 END
RUN
RAOUND

2. 31 2. 31462
2435 2.34999
2435 2.35001

382 382

617.35 617.346

«04 3.86149E-02

QUT 9F DATA IN LINE 10

we have a rounding function all our own as follows:
LETY = INT(X * 100 + .5)/100

Let us try this with a few numbers to see that it actually works, before we
insert it in our banking problem. See ROUND. (It may often be wise to perfect
a technique in a smaller uninvolved program before trying it in a longer more
complicated one. There should be fewer sources of error in the final program.)

ROUND works out well. However, we often have more than one variable
that we want to round off. BASIC has a way of doing this. We may define
any function of our own using DEF FNA(X) = ZZZ7772777777, where X is
a dummy variable. It simply holds a place where we will later enter the
variable for which we want the function evaluated. The format of our round-
ing function looks like this:

XXX DEF FNH(Z) = INT(Z ® 100 + .5)/100

XXX is the line number of the statement number of the DEFining statement
in a BASIC program. We may substitute any letter of the alphabet for H.
Thus, we may for example, DEF FNI() and DEF FNJ() for other func-
tions in the same program. The third letter is the one that identifies which
function we are calling for. We may define another function that rounds off
to tenths as ZZZ DEF FNT(G) = INT (G ® 10 + .5)/10 and whenever we call
for FNT(), we round off to tenths. Let us see how this works out in program
DEF().

DEF

XXX DEF FNA(X) = (any legal BASIC expression). BASIC pro-
vides a program-defined function. It begins with FN followed by a
third letter which is used to identify the function. (Some computers
allow more than one argument.)

58 Basic BASIC

DEF ()

20 DEF FNH(H)=INT(H%100+.5)/100

30 DEF FNT(T)=INT(T#10+.5)/10

40 PRINT "X "Y', "X/Y", "FNH(X/Y)", "FNT(X/Y)"
45 READ X»Y

50 PRINT X, Y»X/Y, FNH(X/Y)s FNT(X/Y)

60 DATA 1,11,10,3,3,4,6511.2,3.125,8.6324

70 GBTO 45

80 END

RUN

DEF ()

X Y /Y FNH(X/Y) FNTC(KAY S
1 11 9.09091E-02 - 09 .1
10 3 3.33333 3.33 3.3
3 4 .75 .75 -8
[11.2 + 535714 «D4 -5
3.125 8.6324 « 362008 .36 .4

BUT 8F DATA IN LINE 45

Now we can alter our compound interest program BANK1. We only need
to change two lines and insert the DEF statement. It is common practice to
put all DEF statements at the beginning of the program. Let us also put in
dollar signs (§).

2 DEF FNH(X)=INT(X¥100+.5)/100
140 PRINT "S$"FNH(P)
160 PRINT "S$"FNH(P1)

RUN
BANK |

FOR TEN YEARS
84.5% COMPOUNDED MONTHLY...$ B88.24
@4.75% COMPOUNDED QUARTERLY..«35 90.29

DONE

The results in the above program are rounded off to the nearest cent and
the dollar signs make it clear that we are dealing with money. However, it
would be even better if we could line up the decimal points. If your version
of BASIC does not provide a computer function to override the semicolon
spacing, you may write your own subroutine that will allow you to place
results exactly where you want them printed. In our particular problem all we
want to do is move the first number three spaces to the right. But we might

develop a subroutine,

What we are trying to do is to gain control over the number of spaces
between items of printed output. This implies getting the computer to print
different numbers of spaces according to our need This suggests putting XXX

Computer Functions 59

PRINT “”; in a loop and letting the high number be a variable that equals
the number of blank spaces required. The following subroutine will print X
spaces.

500 FORS=1T@ X
510 PRINT “ 7

520 NEXT S

530 RETURN

In BANKI, no matter where we place the numbers, we will have to put the
first number three spaces further to the right than the second number. We
may now accomplish the required spacing by first printing according to line
130 and then setting a reasonable value of X followed by G@SUB 500. Upon
getting the computer to print according to line 150, we next LET X = X — 3
put in three fewer spaces and G@SUB 500 again. Finally, we must be sure
that we do not let the computer enter the subroutine accidentally, Should this
happen, the computer will attempt to execute the RETURN statement when
there was no prior G@SUB to direct it. To avoid this we can use 490 G@T®
9999. However, BASIC has the statement XXX ST@P for just such a situation.

ST@P
XXX STQOP is equivalent to XXX GOT@ 9999 when 9999 is the
END statement.

Below we list the latest changes, and name the resulting program BANK2.
The entire program is listed to see where things fit together. As you can see
the results are aligned in the RUN.

3>

132 LET X=4

138 GOsSUB 500
156 LET X=X-3
158 G@sSUB 500
490 S5TOP

500 F@R S5=1 T@ X
510 PRINT ™ 3
520 NEXT S

530 RETURN

RUN
BANK2

FOR TEN YEARS
84.5% COMPOUNDED MONTHLY... $ 88.24
84, 752 COMPOUNDED QUARTERLY.«+ $ 90.29

DONE

60 Basic BASIC

BANK2

2 DEF FNH(X)=INT(X*100+.5>7100

10 LET P=P1=56.3}

20 FOR Y=1 10 10

22 REM FOR TEN YEARS

30 FOR M=1 T0 12

32 REM COMPOUND MONTHLY AND COMPUTE INTEREST
a0 LET I=P%4.5/100712

50 LET P=P+1

60 NEXT M
62 REM THAT FIGURES THE INTEREST FOR THIS YEAR COMPOUNDED
MONTHL Y

70 FBR Q=1 TO 4

72 REM CE@MPOUND QUARTERLY
80 LET I1=P1%4.75/100/4
90 LET Pi=P1+11

100 NEXT @

102 REM THAT TAKES CARE OF THE QUARTERLY INVESTMENT FOR THIS
YEAR

108 REM N@W TO COMPUTE THE NEXT YEAR

110 NEXT Y

120 PRINT "FOR TEN YEAKS®"

130 PRINT "84.57 COMPOUNDED MONTHLY...'s
132 LET X=4

138 GO3UB 500

140 PRINT “S"FNH(P)

150 PRINT "84.75% COMPOUNDED QUARTERLY...'}
156 LET X=X-3

158 GBSUB 500

160 PRINT "S"FNH(P1)

490 STeP
500 F@R S=1 T0 X
510 PRINT " *'3

520 NEXT 5
530 RETURN
9999 END
RUN

BANK2

FOR TEN YEARS
@84.5% COMPOUNDED MONTHLY <.« $ 88.24
@4.75% COMPOUNDED QUARTERLY.es $ 90.29

DONE

Now as long as we have the spacing subroutine available, let us try several

values of X in line 132 and see what happens.

132 LET X=10

RUN

BANK2

FBR TEN YEARS

©4.5%2 COMPOUNDED MONTHLYs . $ 8B.24
@4.75% COMPOUNDED QUARTERLYoo. $ 90.29
DINE

132 LET X=20
RUN
BANK2

Computer Functions 61

FOR TEN YEARS

@4.5% COMPOUNDED MONTHLY .o $ BB.24
84.75% COMPOUNDED QUARTERLY.e. $ 90.29
DBNE

132 LET X=3
RUN
BANK2

FOR TEN YEARS
84.5% COMPOUNDED MONTHLY e« 5 88.24
@4. 75% COMPOUNDED QUARTERLYe«e$ 90.29

DONE

Note: See Appendix C for TAB() and PRINT USING formatting
functions.

SUMMARY

1) The program-defined function DEF FNA(X) has been introduced. This
allows us to have the computer perform the same function on different
variables.

2) The STPP statement may be used to terminate the RUN of a program
at places other than the physical end of the program. The end of a program
specified in this way may be referred to as the logical end.

3) We have constructed a subroutine that enables us to control more pre-
cisely than with the semicolon or comma the spacing of printed results by
putting “ ”; in a loop. This gives more versatility of format.

PROBLEMS FOR SEC. 4-3

1) Find the square roots of the integers from 11 to 23. Print the integer, its
square root, and its square root rounded off to the nearest thousandth and to the
nearest tenth with appropriate labels.

9) How much money will you have in the bank, if you deposit $5 at the begin-
ning of every month for 25 years in a savings account which pays 4%% compounded
monthly?

3) Define a function for Y = --3X2 4 7X — 3. Print pairs of values for
X = —4 to 5.

4) Do problem 2), but for daily compounding. Ignore leap year; use 12, 30-day
months.

/ 5) Set up a table of amounts that $100.00 will be at the end of 5, 10, 15, and
20 years at 4%, 4%%, 4%%, and 5% per year compounded monthly. Put the rates in
a rate loop. Print the years across the top and the rates in the first column of each
row.

J/ 6) Write a program to compare $99.00 compounded monthly at 4%%, quarterly
at 5%, and daily at 4%% for 15 years. Print with the decimal points lined up.

7) Define a function for Y = 3X + 4. Print pairs of values for X and Y for
X = —5to 5.

8) Define a function for Y = 2X* 4 8X — 1. Print pairs of values for X and Y
for X = —6 to 2.

62 Basic BASIC

4-4 RANDOM NUMBER GENERATOR

The last computer function we will consider in this chapter is RND(X).
Often in programming we want numbers to try out a new program. Also, there
are many events in mathematics and science that occur at random. If we do
not have any real data or we want a very large number of numbess, it is
desirable to have the computer pick the numbers for us. This can be done in
BASIC with the computer function RND(X).

RND(X) picks at random a decimal fraction between 0 and 1. It will not

v - i - " o Foavi,
pick 0 or 1. Depending on the computer, the value of ¥ may be immaterial,

but there must be a number in parentheses. If the argument does not affect
the numbers generated, it is called a dummy argument. Some computers use
the argument to determine the numbers generated. Computers vary as to the
actual set of random numbers generated. Some have a fixed set of numbers that
is the same every time RND() is used in the same program. Such a random
number generator is called a pseudo random number generator. Others give a
different set of numbers each time you run the same program. Program
RND(1) is a short routine that prints a few random numbers.

RNDC1)

10 F@R X=1 T@ 10
20 PRINT RND(5),
30 NEXT X

40 END

RUN

RNDC1)

° 788345 +865051 « 595169 285522 +856583

6.9 7632E-02 209305 « 12793 + 383804 « 651428

DONE

Before we get very far trying to use RNIXZ) we realize that numbers
between 0 and 1 do indeed limit us greatly as a source of data. Suppose we
want data selected from 1 to 10. First we might try to multiply the random
number by 10 before taking the INT() function. Let us try it in RND(2).

RNDC2)

10 FBR X=1 T6 20
20 PRINT INTC10%RNDCIY)}

30 NEXT X
40 END
RUN
KNDUCZ)
3 5 5 2 6 3 1 0 2 3 9 4
2 2 [3 9 4 3 4

Computer Functions 63

Program RND(2) seems only to give integers 0 through 9. However, RND(Z)
will never take on 1 as a value, and therefore multiplying by 10 will never yield
10 as the product. But we can add 1 to each of the above integers and both
include 10 and exclude 0, which is exactly what we set out to do. The 1 can
). We get 1 to 10 in program

be added either before or after taking INTY(

RND(3).

RND(3)

10 FOR X=1 T@ 30
20 PRINT INTC1O0%RNDC1)+1)3

30 NEXT X

40 END

RUN

RNDC3)
5 8 4 S 3
8 7 i 7 1
i 6 6 1 3
DONE

10

10

10

If we want decimal numbers from 1 to 11, not including 11, all we have to

do is leave out the INT(), as in RAND3+.

RAND3+

10 FOR X=1 T8 10

20 PRINT 10%RND(9)+13
30 NEXT X

40 END

RUN

RAND3+

10.0205 3.06177 7. 18546

2.02798 9.08411 5.25247

DONE

4.55652

8.73757

1. 66971

8.00928

Now we have a way to determine the interval in which the numbers are
picked. If we can get 1 to 11 with 10 ® RND(Z) + 1, we ought to be able to

get 1 to 100 with 99 ®* RND(Z) + 1.

RND(X)

+ 1),

XXX LET Y = RND(X) will assign at random a number between 0
and 1 to Y. We can get integers from 1 to A with INT(A » RND(X)

64 Basic BASIC

Now, what shall we do with randomly assigned numbers? The possi-
bilities are endless. We could put some in a list and arrange them in numerical
order. Remember ARANGE? Instead of reading data, we can use randomly
assigned numbers. This time, let us not print the list after every exchange,
but only after it is in order. How about picking integers from 1 to 2507 This
will require INT(250 ° RND(1) + 1). This time let us rewrite the program to
look at successive adjacent pairs in the list. This method was outlined in
problem 3) of Sec. 3-4. As we have the computer look at each pair, we have
it decide whether the first is less than or equal to the second. If it is, then we
do not exchange—exactly as in ARANGE. But if the first is greater than the
second, we call for the exchange. However, there is no guarantee that the list
is in order after the first time through. So we have to turn on a switch after
each exchange. Then after the computer has gone through the list comparing
1 and 2, then 2 and 3, then 3 and 4, etc., we have it check the switch. The

FOR X =1
10 10
LET L(X)
= INT (250 *
RND(1) + 1)
Turn _
NEXT X switch off FOR 1=1
LETS =0
Exchange
L() and LO + D
See ARANGE
Turn
switch on NEXT |
LETS =1
PRINT
END list
N in order

Fig. 4-5. Flowchart for arranging a list of numbers assigned from
RND() using comparison of adjacent pairs.

Computer Functions 65

name of the switch can be any number of things, but here we will use S. If
S = 0, the switch is off. If S = 1, the switch is on and we tell the computer to
lock at the list again. If the switch is off, we want the computer to print the
ordered list. Under what conditions do you think this will be the most efficient
ordering technique? The name of this program is ARANG3 and its flowchart is
in Fig. 4-5.

ARANG3

10 FBR X=1 T2 10

20 LET LCXI=INTC(250%RNDC1)+1)

40 NEXT X

58 REM TURN THE SWITCH QFF!!!
60 LET S=0

70 FOR I=1 18 9

80 IF LUI] <= LLI+1] THEN 130

90 LET K=L(1]

100 LET LUIJ=LOI+1]

110 LET Li{i+1])=K

120 LET s=1

121 REM #%% TURN THE SWITCH ON *%#
130 NEXT I

138 REM 1S THE SWITCH @N??

140 IF S=1 THEN 60

142 REM IF THE SWITCH IS OFF THERE WERE N@ EXCHANGES AND
143 REM THE LIST IS IN @RDER

145 PRINT "THE NUMBERS IN ORDER"
150 FOR X=1 TO0 10

160 PRINT LI{X13

170 NEXT X

180 END
RUN
ARANG3
THE NUMBERS IN ORDER
12 &7 15 98 109 161 162 199 221 231
DONE

The program looks fine, but nobody could prove that we really used the
ordering routine to put the list in order, because we do not know what the
original list was. So let us put back the routine that prints the list as it is
formed.

S PRINT "HERE 1S THE LIST AS IT IS BEING FORMED**x%x"
30 PRINT L(X)3

42 PRINT
RUN
ARANG4
HERE IS THE LIST AS IT IS BEING FORMED#%x%

924 156 216 22 64 65 195 2190 129 11
THE NUMBERS IN O@RDER

11 22 64 65 94 129 156 195 210 216
DONE

Fine! Now we believe it. We have just put 10 random numbers in order.
It is about time we found out how to create longer lists.

66 Basic BASIC

DIM

We can usually get 10 (or 11) elements in a list. If we want longer lists
we simply notify the computer that we wish to specify a greater dimension for
our list. The BASIC statement is XXX DIM L[Z], where Z is the highest sub-
script in the list. Computers vary. Some allow a variable in parentheses, while
others require an explicit integer. If you do not know how long the list is
going to be, simply pick a number larger than you think you will need. You
need not use every location in the list. Let us dimension a list in ARANG4 up
to 75 and use 20 locations to see how a longer list looks,

2 DIM LOTS)

7 LET N=20

10 F@BR X=1 T8 N

70 FBR I = 1 TO N-1
150 FOR X=1 T0 N
RUN

ARANG5S

HERE IS THE LIST AS IT IS BEING FORMED##%
41 246 236 83 248 119 107 195 85 128 134 25

73 93 27 204 it 208 122 241

THE NUMBERS IN 2RDER

25 27 41 73 83 85 93 107 111 119 122 128
134 195 204 208 236 241 246 248

DONE

The program seems to work nicely. Let us try a few other numbers.

7 LET N=5

RUN

ARANGS

HERE IS THE LIST AS IT IS BEING F@RMED%*x%
71 86 [141 172

THE NUMBERS IN @RDER

6 71 86 141 172

DANE

For N == 25 we list the entire program with all the changes we have made.
Notice that when we made the original change we put lines 10, 70, and 150
in terms of N so that we would not have to retype them each time we made a
minor change in the length of the list. See ARANGS.

Divi

XXX DIM A[24], B[75], L[33] dimensions three lists. The A list
has 24 as its highest subscript, B has 75, and L has 33. You may
dimension as many lists as will fit on one line,

Computer Functions 67

ARANGS

2 DIM LL7T5]

S PRINT "HERE IS THE LIST AS IT 1S BEING FORMED#*%#*
7 LET N=25

10 FOR X=1 T@ N

20 LET LIXI=INTC250%RNDC1)+1)

30 PRINT LI{X13

40 NEXT X

42 PRINT

58 REM TURN THE SWITCH @FF!!!

60 LET $=0

70 FOR I=1 TO N-1

80 IF LCIJ <= L{I+1] THEN 130

90 LET K=LL1]

100 LET LOUIX=LUI+1)

110 LET LL{I+11=K

120 LET S=1

121 REM #%% TURN THE SWITCH ON %%%
130 NEXT I

138 REM IS THE SWITCH ON??

140 IF S=1 THEN 60

142 REM IF THE SWITCH 1S OFF THERE WERE N@ EXCHANGES AND
143 REM THE LIST IS IN ORDER

145 PRINT '"THE NUMBERS IN @RDER"
150 FOR X=1 T@ N

160 PRINT LIX13

170 NEXT X

180 END

RUN

ARANGS

HERE IS THE LIST AS IT IS BEING FORMED#%x%
107 195 85 130 138 38 112 209 127 5 15 168
5 138 162 109 75 98 44 6 i8 177 30 213
138

THE NUMBERS IN @RDER

5 5 6 15 18 30 as 44 75 85 98 107

109 112 127 130 138 138 138 162 168 177 195 209

213
DANE

We will now generate random data for one other type of problem. If it is
4 o'clock, 10 hours later it will be 2 o’clock. This concept contains the seed
of the development of modular arithmetic. First let us write a little program
to take random times and add random numbers of hours. The random times
must be numbers from 1 to 12. The random numbers of hours could have
virtually any range, but 1 to 36 will do. The flowchart of Fig. 4-6 should
help to organize the problem. We can determine the number of computations
with a loop. Here we are picking 10 pairs of numbers, with T for time and
H for hours. Then we add them and check to see if the sum is less than or
equal to 12. If the sum is less than or equal to 12, we want to have the sum
printed as the time. If the sum is greater, we want to subtract 12 and check to
see if the result is less than or equal to 12, ete. After the sum is printed we
want the computer to return and pick another pair and repeat the same process
until 10 pairs of numbers have been picked and processed. See CL@CK1.

68 Basic BASIC

FORP =1 LET T =INT
TO 10 (12*RND(1) + 1)

LET H = INT
(36 «RND(1) + 1)

~

LETS=T+H

LETS=5-12

Fig. 4-6. Flowchart for adding hours to times and computing times for
program CLOCK.

Now, if we want to change the number picked for hours, we can change
line 30 to 30 LET H = INT(12 ® RND(1) + 1) and get the same range for
both T and H. But then we would have two lines using exactly the same
function:

20 LET T = INT(12 ®* RND(1) + 1)
30 LET H = INT(12 ® RND(1) + 1)

This situation is a candidate for the program-defined function:
DEF FNC(Z) = INT(12 ®* RND(Z) + 1)
Then lines 20 and 30 are

20 LET T = FNC(1)
30 LET H = FNC(1)

Computer Functions 69

CLack1

10 FOR P=1 T@ 10

20 LET T=INTC12%RNDC(1)>+1)

30 LET H=INTC(36%RNDC(1I+1)

40 LET S=T+H

50 IF S <= 12 THEN 80

60 LET S=8-12

70 G2Te S50

80 PRINT H"HOURS FROM"T"Q *'CLGBCK IT WILL BE®'S"@ °*CLOCK"

90 NEXT P

100 END
RUN
CLACK1

8 HOURS FR@M 6 @°'CLOCK IT WiLL BE 2 @ *CLOCK
33 HBURS FRoM 9 B°'CLOCK 1T WILL BE 6 2 *CLacK
27 HOURS FROM 5 @°'CL.OCK IT WILL BE 8 2 *CLOCK
33 HOURS FROM S @°'CLOCK IT WILL BE 2 0 *CLaCK
31 HBURS FROM 9 ©°'CLOCK IT WILL BE 4 @ *CLACK
32 HOURS FROM 12 2*'CLACK IT WILL BE 8 @ CLack
2 HBURS FR@M 9 @'CLeCK IT wiLL BE 11 2 *CLacK
28 HOURS FRBM 4 @°'CLOCK IT WILL BE 8 @ 'CLACK
8 HAURS FROM 10 Q°'CLOCK IT WILL BE 6 @ *CLACK
4 HAURS FReM 11 2°'CLACK IT WILL BE 3 2 'CLacK

DONE

In CLBCK2 we change lines 20 and 30 and insert line 5 to define FNC()
and list the program in full.

CLacCK2

5 DEF FNCC(ZIY=INTCI2%RNDC(Z)+ 1)

10 F@R P=1 T@ 10

20 LET T=FNC(1)

30 LET H=FNC(1)

40 LET S=T+H

50 IF S <= 12 THEN 80

60 LET S=$-12

70 68T S50

80 PRINT H"HOURS FROM"T"Q'CLOCK IT WILL BE"S"Q 'CLOCK"

90 NEXT P

100 END

RUN

CLaCKa

[HAURS FROM 6 @°CLOCK IT WILL BE 12 3 CLaecK
7 H@URS FROM 8 Q'CLOCK IT WILL BE 3 @ *ClacK
7 HOURS FRoM 12 @'CLACK IT WILL BE 7 @ 'CLacCK
8 HAURS FROM 3 O°'CLACK IT WILL BE 11} @°'CLOCK
5 HBURS FREM 7 Q°'CLACK 1T WILL BE 12 2 *CLaCK
4 HOURS FROM 4 9'CLOCK IT WILL BE 8 @°'CLaCK
7 HOURS FROM 5 9°'CLACK IT WILL BE 12 @ 'ClL.ack
4 HBURS FROM 11 9'CLaCK IT WILL BE 3 9 *CLOCK
11 HOURS FROM 3 Q°'CLACK IT WILL BE 2 @°*'CLaCK
10 HOURS FRoOM 12 P'CLBCK IT WILL BE 10 9 *Cl.acCK

DONE

70 Basic BASIC

Modular Arithmetic

From the clock program we can easily develop the concept of modular addi-
tion. The biggest difference between modular addition and the last program is
that for modulo 12 addition mathematicians define the set of integers as {0, 1,
2,3,4,5,6,7,8,9, 10, 11}, dropping 12 and appending 0. Now we may not
allow sums of 12 as before. So we will have to change line 50 to test for less
than or equal to 11 not 12. But we must not change line 60 which subtracts
12. Why? Since we defined a function in CL@CKZ2, we need change only line 5
to generate integers from 0 to 11. As we wrote CL@CK1, we would have had
to change two lines. Of course, we will have to change the printing and name
the new program M@D12.

mMaDl2

S DEF FNCCZI=INTC12%RND(Z))
10 F@R P=1 T0 10

20 LET T=FNCC(D)

30 LET H=FNC(1)

40 LET S=T+H

50 IF S <= 11 THEN 80 MAMD12
60 LET S5=5-12
70 GOTB S0 5 DEF FNCCZ)=INTCI2%RND(Z))
80 PRINT H"+"T*=*5"Mp@D 12" 10 FO2x P=1 TO $
90 NEXT P 20 LET A=FNCCI)
100 END 30 LET B=FNC(D)
RUN 40 LET S=A+8B
Mani2 50 PRINT A”+"B"=
60 GOSUB 500
7 + 6 =1 M@D 12 70 LET 3=A%*d
8 + 5 = 1 M@D 12 80 PRINT A"x"B"= '}
2 + 9 = 11 M@gD 12 85 GBSUB 500
8 + 6 =2 MaD 12 87 PRINT
10 + 8 = 6 MaD 12 90 NEXT P
1 + 1 = 2 M@D 12 4906 STOF
i + 3 = 4 M@D 12 500 IF S <= 11 THEN 530
7 + 11 = 6 MOD 12 510 LET 3=8-12
10 + 9 = 7 M@D 12 520 GOTO 500
1 + 7 = 8 MaD 12 530 PRINT s*'sMCh 12 "3
540 RETUxN
DONE 9999 END
(N
MAMD 12
10 + 4 = 2 MOD 12 10 x 4 = 4 Man 12
! + 2 = 3 MBD 12 1 * 2 = 2 MO 12
6 + 1 = 7 MOD 12 6 * 1 = & MOD 12
3 + 10 = 1 MOD 12 3 * 10 = 6 MOD 12
1 + 10 = 11 MOD 12 1 * 10 = 10 MOb 12
DONE

Where there is addition, multiplication s bound to follow. Suppose we mul-
tiply 5 by 7. We are accustomed to getting 35. But for M@D12 we only allow
0 through 11, so we subtract 12 and get 23, which is still too large. Subtract
12 again to get 11. Thus we are going to use the subtraction routine in the

multiplication part of M@D12 also. This is a G@SUB situation. In the flow-

Computer Functions 71

chart of Fig. 4-7, the GOSUB predefined process is the subroutine of lines 50,
60, and 70 in M@D12. Of course, there are more changes in printing. We call
the program MAMDI12 (Multiply and Add MoD 12).

Start
n Get two num-
FORP =1 -bers 0 to 11
%5 A B
LETS=A+B

PRINT
AII + //B

GOSUB 500

<5

LETS=A=*B

PRINT
AI(* llB

GOSUB 500

Fig. 4-7. Flowchart for adding and multiplying mod 12 for program
MAMD12.

SUMMARY

Two major expansions in our programming capability have occurred in this
section. We are now able to generate random numbers in any range we like.
They can be limited to integers or they can be decimal numbers. And lists
may now be dimensioned to the length that we require. We have also used the
G@SUD statement to good advantage in a modular arithmetic program.

72 Basic BASIC

PROBLEMS FOR SEC. 44

1) Print a list of 30 randomly assigned numbers from 2.00 to 20.00 with tenths
and hundredths permitted but no digits to the right.

2) Print a list of 25 integers from —200 to 200 assigned by a random number
function in increasing order.

3) Print the list in problem 2) to guarantee that there are no duplications. In
other words, if you generate a number that has already been used, generate another.

4) Prepare a list of the first 18 Fibonacci numbers. For all nonequal pairs find
the greatest common factor. Enter the greatest common factors in a list with no
duplications and print the result.

5) Prepare a list of the first 20 Fibonacci numbers. For 1 = 2 to 19 print F[I] ** 2
— F{I —1]° FII 4+ 11

6) Use three lists to add two 20-digit numbers. Use one list for each number and
enter the digits one by one as elements in the list. Use the third list as the sum list.
Be sure to carry if the sum of the two corresponding digits is 10 or more.

7) Do problem 6) using two lists instead of three.

v 8) Use three lists to multiply two 10-digit numbers digit by digit. (Could this
be done with two lists?)

9) Modify program MAMDI2 to find the remainder after dividing the value of
S by 12 to replace the subroutine that uses successive subtraction.

10) Write a program to do arithmetic mod 5 and mod 6, five problems each.
Put 5 and 6 in a data line and write one random function so that it generates 0 to 4
for mod 5 and 0 to 5 for mod 6.

11) Have the computer print the addition table and the multiplication table for
mod 6.

12) Have the computer do subtraction mod 7.

13) Write a program in which the mod and the number of problems are selected
at random, and the problems are generated with random data.

14) Have the computer generate pairs of integers and find the greatest common
factor. _

15) Have the computer generate sets of three integers and find the greatest
common factor.

16) Generate pairs of integers and find the least common multiple.

17) Generate sets of four integers and treat them as coefficients of two binomials

and find the three coefficients of the product; ie., generate A, B, C, and D
in (AX 4+ B}CX 4 D) and find E, F, and G in EX ** 2 4+ FX 4 G. Print all
five numbers in two groups, one group for A, B, C, and D and another for E, F,
and G.
v 18) Form two 20-element lists with integers in the same range. Form two other
lists. One list is to contain all numbers that appear in both lists, i.e., the intersec-
tion of the two lists. The other list is to contain a number if it is in either of the
original two lists, but only entering it once if it is in both lists. In other words, find
the union.

19) Fill a 25-clement list with the first 25 positive odd integers. Fill a second
25-element list with the sum of all the entries of the first list up to and including
the subscript number of the second list.

20) Meodify CLACK] to handle times in hours an 2 minutcs

e OO il AU QLG MG ueCa.

CHAPTER 5

Elementary Data Processing

5-1 INTRODUCTION TO DATA PROCESSING

One of the very common uses of computers is for data processing. There is
no clear cut definition for data processing that distinguishes it from other
kinds of computer activity. In a sense, all computer work is data processing.
However, data processing often implies that the computer is being used to
sort, collate, tabulate, and/or otherwise process data. Such activities as process-
ing questionnaires fall in this category.

Tabulating One Item

Let us ask some families how many television sets they have in their homes.
The answers will be numbers, one number per family. We can set up a list so
that the first element counts the number of families with one set and the Nth
element counts the number of families with N sets. Before we begin counting,
there will be zero families having each number of sets. So we will have to
initialize each element of the list at 0. Then when the number for a family is
read, we will add 1 to the element in the list corresponding to that number of
television sets. If the first family has one set, then we have the computer look
at T[1]. T[1] = 0 to start, and adding 1 makes T[1] = 1. The next time a
family has one set we have the computer add 1 to T[1], and then T[1] will
equal 2. The process is repeated until all data is read. We will have to use
dummy data, since we want to print the results only after we have tabulated
all data, We can draw a simple Howchart. See Fig. 5-1.

Of course we could allow for a larger number of sets by simply using a
longer list. We could have provided for zero sets by letting T[1] tabulate 0,
T[2] tabulate 1, T[3] tabulate 2, ete. Then line 60 in program TV’S would read

60 LETTIN+1]1=TIN+1]+1

because, when N is 0, you want T[1] and when N is 1, you want T[2], etc.
Or we could use 0 subscripts if they are available.

73

74

Basic BASIC

Initialize
four-item
listall0’s

PRINT
headings

LET TIN]
=T[N] +1

Fig. 5-1. Flowchart for tabulating number
of television sets per family.

TV*'S
10 FOKk I=1 TO 4
20 LET TL{1J)=0
30 WNEXT 1
31 REM EACH ELEMENT IN THE LIST IS NOW ZEKD
40 READ N
49 nEM TEST FOR THE END JF DATA
50 IF N==-1 THEN 80
59 REM INCREASE THE TABULATING ELEMENT FBR N SETS BY ONF
60 LET TIN)=TINI+1
70 GOTO 40
80 PRINT "NB. OF TV*'S","NG. OF FAMILIES"
89 REM NOW PRINT THE NUMBER OF SETS AND THE NUMBER 3F FAMILIES
90 FOR I=1 T0 4
100 PRINT 1,T013
110 NEXT I
498 REM EACH ITEM OF DATA IS THE NUMBEK OF TV'S IN ONE FAMILY
500 DATA 153545152515 3: 15152545153, 152, 451535151515 4515352,
2r1s2
5106 DATA 25123:3:2525 15151525253, 454,25 45 15 452, 452, 1525 1
520 DATA -1
999 END
RUN
TV'S
WNde OF Tv©y NU. OF FAMILIES
1 20
2 15
3 8
4 9

Elementary Data Processing 75

There are some more things that we can do with TV'S. We might have the
computer count the number of families or count the total number of television
sets. These figures may be computed as the data is being read. There can be a
counting statement LET C = C + 1 somewhere between lines 50 and 70, and
there can be a summing statement in the same part of the program. LET § =
S + N will total the number of sets. Then as long as we have the total number
of sets and the total number of families, we might just as well compute the
average number of sets per family. These are left as exercises.

Tabulating Several Items

With just a few modifications TV’S can be extended to handle data pertain-
ing to several different things.

Suppose in taking a census, we ask not only how many television sets the
family has, but also how many cars, homes, and bathrooms. All that is neces-
sary is to have four counting lists instead of one. We need one list for each
item being counted. In lines 10, 20, and 30 we initialize four lists at O for up
to eight items in any one category. This could be more or less for any par-
ticular problem. We check for dummy data in line 50 and then update the
four lists in lines 60 through 90. In the printing routine, I determines the
element number in each list and so is the number of items in each list. T[I]
is the number of families that have I television sets, C[I] is the number of
families that have I cars, etc. See program TCHB.

From the results we see that there were nine families with one car, seven
families with two television sets, etc. We could also do more data processing
in TCHB. We could find the average number of cars per family, etc.

Tabulating Yes~No Answers

We are not limited to numerical quantities. Suppose you weie to question
each of your classmates about cowrses they want to take. If you ask, “Do you
want to take chemistry?” and the answer is “no,” you can call that 0, and sim-
ilarly call “ves” 1. Let us ask people if they want to take the following courses:
chemistry, physics, French, Spanish, calculus. If someone says he wants to
take chemistry, French, and Spanish, his data will be: 1, 0, 1, 1, 0. We can use
one list to count all courses. The first element of the list will count people who
want to take chemistry, the second will count people who want to take French,
ete. Before reading any data, we will have to initialize each element of the list
at 0. Then after reading the fist person’s data, we want the list to be
1, 0, 1, 1, 0, which can be done by adding the number representing yes or no
to the number already in that location of the list. We can get the computer to
read the data in groups of five by using a loop FOR R = 1 T@ 5, with the
READ statement and the tabulating statement inside. The real works of the
program will be the tubulating statement

LET C[R] = C[R] + K

where R is the loop available and goes from 1 to 5 for each person’s data. If
R = 1, the cowrse is chemistiy; it R = 2, the course is physics, ete. Where K is

76 Basic BASIC

TCHB

10 FOR I=1 10 8

20 LET TLI)=CLIJd=HLII=BL{11=0

30 NEXT I

31 REM ALL TABULATING LISTS ARE INITIALIZED AT ZERO
40 READ T1,C,H,B

49 REM CHECK F@R DUMMY DATA

50 IF T=~1 THEN 110

59 REM 60 T@ 90 ENTER THE LATEST DATA IN THE FOUR LISTS.
60 LET TUTl=T(Tl+])

70 LET CLCI=CLCl+1}

80 LET HEHI=HIHI+1

90 LET BIR1=BL21+}

100 G812 40

109 REM HERE THE HEADINGS ARE PRINTED

110 PRINT NUMBER, TV'Ss CARS», HOMES, BATHS"

119 REM HERE THE RESULTS ARE PRINTED

120 FOR I=1 T2 8

130 PRINT I3TCII3CLIISHILIISBII)

140 NEXT |

349 REM EACH GROUP 3F FUUR NUMBERS 15 F3R ONE FAMILY- T,C,H,B
350 DATA 151515152515 15253:25 152542 3,2:85452, 155
355 DATA 2515153515 15153525 151525 151215 1,25 15151
360 DATA 252525651513 15453,4,2,651525122,2,2,2,8
365 DATA 2,1,1,2,~150,0,0

400 END

TCHB

NUMBER, TV*S, CARS, HOMES,BATHS

1 S 9 12 3
2 7 5 4 S
3 2 1 0 2
4 2 1 0 1
S 0 0 0 1
6 0 0 0 2
7 ¢} 0 0 0
8 0 0 0 2
DINE

0 this person does not want to take the course, and where K is 1 he does. So
when K = 0, the tabulating statement adds 0 to the previous value in the C
list, which does not change the number there. This is what we want for the
person who does not want to take the cowrse. However, if K = 1, then the
tabulating statement adds 1 to the previous value of the entry in the C list,
which is exactly what we want the computer to do for a person wanting to
take the course. Again the dummy data is —1.

From COURSI, we can easily see that seven people want to take chemistry,
five people want to take physics, ete.

One last thing we might try to consider in this section is getting larger
amounts of cata in a program similar to CQURS1. Suppose you want to see
what results might look like for say 500 people. Well, you could ask 500
people and Hicii type vul all i duia. Or you could generate random data,
with the understanding that the results will be random and may not simulate
the real situation. However, knowing that the numbers will be random will
help you spot serious errors if there are any. For 500 people and random data,
each course should draw about 250 yeses. If the results show 96 or 600 yeses

Elementary Data Processing 77

COURSH

10 FOx I=1 TQ S
20 LET CLIl=0

30 NEXT [
40 FOx R=1 TO S
50 READ K

60 IF K=-1 THEN 100

70 LET CURI=CLRI+K

80 NEXT R

90 GOTD 40

100 PRINT "CHEMISTRY®, “FHYSICS', "FRENCH' S ""SPANT SH™, ""CALC!IL"1IS"
110 Fix 1=1 T8 5

120 PRINT CL11,

130 NEXT I

990 REM DATA IS IN OKDER CHEMISTRY PHYSICS FRENCH SPANISH
CALCHLUS

995 EM *1* MEANS YES 'O’ MEANS NO

1000 DATA 150:15,150,05,051515051515151,1505,05151,051,1505051
1010 DATA 0»1,1205150:0,051,00151505150,15150505,151,0,050s1
1020 DATA 05051505151,0,1,0,0

1100 DATA -1

9999 END

RUN

COURS1

CHEMI STRY PHYSICS FRENCH SPANI SH CALCULUS
7 5 7 6 6

DBNE

in some course, then you must search for the error. One nice thing about using
random data is that you do not have any data to type in. So in COURSI we
may eliminate lines 1000, 1010, 1020, and 1100. Now the REM statements
are not quite relevant. Line 60 can be deleted as we are not testing for dummy
data and line 50 is deleted as we are not going to read data anymore. Line 90
will be taken care of by putting in a loop 1 to 500 to simulate 500 people. To
get random numbers 0 or 1 we need INT(2 ® RND(1)). The initializing, the
tabulating, and the printing of COURS1 can be used in the new program
C@URS2, where the results are reasonably close to 250.

SUMMARY

We have seen lists used to analyze data from questionnaire-type questions
having numerical or yes-no type answers. The tabulating may be done using
one or several lists depending on the problem itself. Random numbers may be
used to try out such programs with many numbers. The random nature of
these numbers may help to spot serious program errors, which might not show
up with small amounts of data unless you check the totals by hand.

PROBLEMS FOR SEC. 5-1

1) Modify program TV’S to total the number of television sets and the number
of families, and find the average number of sets per family rounded off to the nearest
hundredth.

78 Basic BASIC

C@URS2

10 FeR }=l 10 5

20 LET CLI]1=0

30 NEXT I

33 REM THIS L@OP SIMULATES 500 PEOPLE

35 FOR X=1 T@ 500

40 FOR R=1 10 S

42 REM THIS LOBP LBOKS AT FIVE COGURSES FOR EACH PERSON
48 REM PICK A RANDGM NUMBER ZERG OR ONE
50 LET K=INT(2%RND(1))

70 LET CIR)I=CLRI+K

78 REM NEXT CQURSE

80 NEXT R

88 REM NEXT PERSON

g0 NEXT X

100 PRINT *'CHEMISTRY'., "PHYSICS'", "FRENCH", " SPANI SH*, ""CALCULUS"
110 FOR I=1 T 5

120 PRINT CUL13,

130 NEXT 1

9999 END

RUN

COURS2

CHEMI STRY PHYSICS FRENCH SPANI SH CALCULUS
253 257 237 249 256

DONE

9) Modify program COURSI to find the number of people who want to take
chemistry and physics.

3) Modify COURS2 to generate twice as many yeses as nos.

4) Modify COURSI1 to find the number of people who want to take physics but
not calculus.
/ 5) Consider a questionnaire in which there are 14 questions which call for yes,
no, or other answers. Let 1 be yes, 2 be no, and 3 be other. Set up three separate
lists for yes, no, and other. Generate 25 sets of 14 numbers 1, 2, or 3 and find the
number of each type of answer for each question number. Print the results in
decipherable form.

6) Modify COURS2 to generate yes-to-no answers in a ratio of 3 to 4.

5-2 ARRAYS

So far we have only been able to store numbers in a simple variable or in
a list. There will be situations where we will want to store more numbers than
is convenient in a list. While we have seen that we can use several lists very
effectively, BASIC provides a two-dimensional list for such situations. It may
be called an array. You may think of an array as being similar to a checker-
board. Instead of the familiar single subscript we have been using for lists, we
will need double subscripts; one for rows and the other for columns. (As with
lists, computers vary. Some will allow 0 sohserints, athers hegin with 1.) For
an array designated as A, A[l, 1] is the number in the upper lefthand corner.
(In some cases, it will be A[0, 0].) A[1, 2] indicates the number in tow 1
and column 2; A[5, 8] indicates the number in row 5 and column 8, etc. In
other words, the first subscript indicates the row starting at the top and the

Elementary Data Processing 79

second subscript indicates the column starting at the left. Thus, A[R, C] indi-
cates the number in row R and column C.

An array is just a set of numbers arranged in columns and rows, This per-
fectly matches the printed result in program TCHB in Sec. 5-1. We may use
each column of an airay in the same manner that we used each list in that
prograin, and we can use each row to keep track of the number of families
having that number of the item being tabulated. But before we tackle TCHB
in an array, we should see a little more how arrays operate.

Very often we will use a nested loop, with one loop taking the computer
thiough the columns and the other loop going through the rows. The structure
of an array is shown in Table 5-1, For students without O subscripts, consider
the dashed outline to exclude the 0 row and 0 column. For students who have
0 subscripts, consider the dashed outline to suggest that it is optional whether
or not you use them at this time.

TABLE 5-1. ARRAY STRUCTURE.

!

i

: [

} {1,0] l 1,11 [1,2] {1, 3] [1,4] [1,5]
I |

I [2,0] : 12,1 [2,2] 12, 3] 12, 4] 12, 51
|

i |

| 13, 0] | 3,1] 13,2] [3, 3] (3, 4] {3, 5]

ARRAY 1

9 REM INITIALIZE A AT ONE

10 LET A=1

19 REM RAWS G@ FrROM 1 T2 3

20 FBR R=1 T@ 3

29 REM COLUMNS G@ FROM 1 T@ 5
30 FOR C=1 18 5

40 LET TCR.Cl=A

50 LET A=A+

59 REM NEXT CeLuUMN

60 NEXT C

69 REM NEXT RaW

70 NEXT R

80 PRINT AT THIS POINT THE ARRAY IS FILLED"
999 END

RUN

ARRAY 1

AT THIS PRINT THE ARRAY IS FILLED

DANE

It is time for another demonstration program. In ARRAY1 we simply fill a
3-row by 5-column array with integers 1 through 15 going first across the

80 Basic BASIC

page and then down, just as we read the printed page. In this program we
have called the array T. Any letter of the alphabet may be used. However, do
not use the same letter to name both a list and an array in the same program.
This is because the computer treats a list as an array with just one column or
one row, depending on the computer.

We have filled the array just as the printed message states. However, as
was noted in Chap. 1, in order for the work of the computer to be useful,
we must eventually get back from the computer some printed results. Note
that we say eventually. The more advanced we get in programming, the
more we will do things that are not immediately printed. Nonetheless, just
to restore your faith in the computer, let us ask it to print some values from
the array we just created. After line 80 we will insert a variety of printing

ARRAY2

9 REM INITALIZE A AT @NE

10 LET A=l

19 REM ROWS G@ FROM 1 T8 3

20 FOR R=1 T8 3

29 REM COLUMNS G@ FR@GM 1 1@ 5
30 FBR C=1 T@ S

40 LET TCR»Cl=A

50 LET A=A+l

59 REM NEXT COLUMN

60 NEXT C

69 REM NEXT ROW

70 NEXT R

80 PRINT “AT THIS POINT THE ARRAY IS FILLED"
85 PRINT

89 REM LET'S PRINT T(3, 4]
90 PRINT "TL3, 41 ="3T(3, 41

100 PRINT
110 PRINT *"WHO LIVES AT (2,51?"3T(2,5)3"LIVES THERE"
120 PRINT

130 PRINT "LET'S LOOK AT THE ENTIRE ARRAY"
139 REM INCREMENT ROWS

140 FOR R=1 T@ 3

129 REM INCREMENT COLUMNS

150 FOR C=1 TQ 5

160 PRINT TC(R,Cls

170 NEXT C

175 PRINT
176 PRINT
180 NEXT R
999 END
RUN

ARRAY2

AT THIS PBINT THE ARRAY IS FILLED

TC3,4) = 14

WHG LIVES AT (2,517 10 LIVES THERE

LET®S L.8BK AT THE ENTIRE ARRAY

1 2 3 4 5
6 7 8 9 i0
11 12 13 14 15

D@NE

Elementary Data Processing 81

with labels and comments much as we did earlier in the introduction to lists.
See ARRAY?2.
The elements of an array constitute variables just as do the elements of a

list. We may operate on any element or elements in the array we choose.
Consider ARRAY3.

ARRAY 3

10 LET A=1

20 FOR R=1 T@ 3

30 FOR C=1 T@ S

40 LET ALR,Cli=A

50 LET A=A+]

60 NEXT C

70 NEXT r

90 PRINT "“WE PRINT THE @RIGINAL ARRAY"

100 GUsSuB 900

110 PRINT "WE CAN MULTIPLY EVERY ELEMENT IN THE 4TH COL UMN
BY 6"

120 F@R R=1 T9 3

130 LET ALR, 41=ALR, 41*6

140 NEXT R

150 GasuB 900

160 PRINT "WE CAN SUBTRACT THE 3RD ROW FRGM THE 2ND ROW"

170 PRINT “AND PUT THE RESULT IN THE 3RD ROW"

180 FOR C=1 T@ 5

190 LET AL3,Cl=Al2,C1-A[3,5C)

200 NEXT C

210 G@sSUB 900

880 STaP

890 REM #+*#PRINTING SUBRIUTINE IS HERE®x*%x%

900 FOR R=1 T2 3

910 F@OR C=1 Td S

920 PRINT ALKsC13

930 NEXT C

940 PRINT

950 PRINT

960 NEXT R

970 RETURN

B

999 END

RUN

ARRAY 3

WE PRINT THE QRIGINAL ARRAY
1 2 3 4]
6 7 8 9 10
11 12 13 14 15
WE CAN MULTIPLY EVERY ELEMENT IN THE 4TH COLUMN BY 6
1 2 3 24 5
6 7 8 54 10
11 12 13 84 15

WE CAN SUBTRACT THE 3RD RAW FRAM THE 2ND ROW
AND PUT THE RESW T IN THE 3RD ROW

1 2 3 24 5
] 7 8 54 10
-5 -5 -9 -30 -5

82 Basic BASIC

We ocan even change the size of the array during a program. In ARRAY4
we begin with the original 3 by 5 array of ARRAY3 and tack on an extra row
to enter the sums of the entries in the first three columns. Notice that in both
ARRAY3 and ARRAY4 we are able to use G@SUB to save writing the printing

routines more than once.
You should begin to see that we have exactly the same control over the

contents of an array that we do over the contents of a list.

Now let us look again at our census program TCHB. There we used an
8-row by 5-column array in which the first column simply contained the row
number and the other four columns each contained tabulated results for a
different item. We may now put the READ statement in a loop going from 2
to 5 and let the loop variable determine the column in which the tabulation
takes place. The other features of the program are procedures that we have
used before. See TCHB+. d

ARRAY 4

10 LET A=1

20 F@R R=1 T8 3
30 FOR C=1 T@ S
40 LET ALR,Cl=A
50 LET A=A+l

60 NEXT C

70 NEXT R

80 PRINT ''HERE IS THE @RIGINAL ARRAY!"

100 FYR R=1 T8 3

110 FBR C=1 T2 S

120 PRINT ALRsCI3

130 NEXT C

140 PRINT

150 PRINT

160 NEXT-R

168 REM SET ALL ELEMENTS IN THE 4TH R@W T@ ZEROQ

170 FBR I=1 T@ S5

180 LET Al4,11=0

190 NEXT 1

200 PRINT "N2W WE HAVE THE 4 BY 5 ARRAY3"

210 GBsuB 500

219 REM THIS RBUTINE ADDS COLUMNS AND PUTS THE SuUM IN THE 4TH
RAW

220 FOR C=1 T9 5

230 FO8R R=1 T@ 3

240 LET AL 4,C)=AL4CI+ALR,C]

250 WNEXT R

260 NEXT C

270 PRINT "THE FOURTH RAOW CONTAINS THE SUMS OF THE FIRST 3

RAWS."
280 G@suB 500
490 STeP

498 REM #*%THIS IS THE PRINTING ROUTINE FOR THE 4 BY 5 ARRAY**
500 FOR R=1 TO 4

510 FOR C=1 T0 5

520 PRINT ALR,CI3

530 WNEXT C

540 PRINT

550 PRINT

560 NEXT R

570 RETURN

999 END

Elementary Data Processing 83

RUN
ARKAY 4

HERE IS5 THE @RIGINAL ARRAY!
1

2 3 4)
6 7 8 9 10
11 12 13 14 15

N@W WE HAVE THE 4 BY S ARRAY:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
o] 0 [4] 0 [¢]

THE FOURTH R@W CONTAINS THE SUMS OF THE FIRST 3 ROWS.

1

6

11

18

2

7

12

21

3

8

13

24

4

9

14

27

S

10

15

30

DONE

TCHB+

10
14
15

FagRr
REM
LET
FOR
LET

R=l T@ 8

HERE THE ROGW NUMBER IS ENTERED IN THE FIRST COLUMN

SLtRs 11=R
C=2 T¢ 5
SER» C1=0

NEXT C
NEXT R

REM WE ARE ENTERING FIGURES IN COLUMNS 2 THROUGH 5 @NLY

F@R C=2 T@ 5
READ N
IF N=-1 THEN 110

REM N DETERMINES THE ROW NUMBER WHICH KEEPS TRACK OF N

ITEMS
LET SIN, C1=SIN,Cl+1
NEXT C
GaTa 70
PRINT **NUMBER, TV'S, CARS,

HBMES, BATHS"”

REM HERE THE RESULTS ARE PRINTED

FOR R=1 T@ 8
FOR C=1 719 5
PRINT S(CR,C13
NEXT C
PRINT
NEXT R

349 REM EACH GROUP OF FGUR NUMBERS IS FOR ONE FAMILY- T»C,H,B
350 DATA 15 1,15152,515152,3525 152545 3:2,85 425155

355 DATA 25 15153-1515153,25151525151515152,5151,1

360 DATA 25 2,2,65 1515154, 3, 4,25651,251,2,2,2,2,8

365 DATA 25, 1,1,2,-1,0,0,0

400 END

84 Basic BASIC

RUN

TCHB+

NUMBER, TV*Ss CARS, HOMES,BATHS
12

RO VD WN =
COCONNaWn
COOQ =0
[cY=N-N-N.N-NN

WON =~ = OuW

DONE

SUMMARY

We may now use a powerful extension of the list concept, the array. An
array may be thought of as an arrangement of numbers in which there are
rows and columns. Numbers in an array may be accessed by designating the
location by a double subscript such as H[3, 7] for the number in array named
H which is located in the row numbered 3 and the column numbered 7. As
you may have guessed, you will not need a DIMension statement as long as
you do not exceed a subscript of [10, 10].

PROBLEMS FOR SEC. 5-2

1) Print an array with 3 rows and 6 columns flled with (s,

92) Print an array with 6 rows and 3 columns filled with 1’s.

3) Set up an array with 4 rows and 9 columns and fill it with random numbers
from —999 to 4-999. Print the array.

4) Fill the addresses along the top left to bottom right diagonal of a square
7 by 7 array with 1’s and all other locations with 0’s and print the result.

5) Fill two arrays of the same dimensions with random integers and print each
array. Then fill a third array with the sums of the corresponding entries from the
first two and print the result.

6) Fill two arrays of the same dimensions with random integers and print cach
array. Then fill one of these two arrays with the sums of the corresponding entries
from each array and print the result.

7) Fill a 3 by 7 array with the integers O through 20. Print that array. Then
multiply each entry by the sum of the row number and the column number and
print the result.

8) Fill a 4 by 7 array with random integers from —500 to --500 and print the
result. Then multiply each entry by 2 and print that result. Insert the printing
routine using G@SUB.

9) Fill a 10 by 10 array with the addition table.

10) Fill a2 10 hy 10 arrav with the multinlication table,

11) Fill a 5 by 5 array with the addition table mod 5. Then have the computer
generate addition problems with a random number function and find the sum by
accessing the appropriate entry in the additon array.

12) Do problem 11) for the multiplication table mod 5.

v 13) Consider a questionnaire containing 10 questions with yes, no, or other as the

Elementary Data Processing 85

three possible answers. Generate random data and print the results in a 10 by 4
array. Use the first column for the question number and the other three for yes, no,
or other. Have the computer generate 50 questionnaires.

5-3 A MORE DETAILED QUESTIONNAIRE ANALYSIS

Consider a questionnaire submitted to four categories of people: male—21 or
over, male—under 21, female—21 or over, and female—under 21. On this ques-
tionnaire there are 15 questions calling for yes—no answers. Our task is to
present a tabulated summary of the data collected. We can provide sample
data for say 10 people for the purpose of getting a first test RUN. Let us
refer to this first problem and the program as SURVEY. The flowchart for
SURVEY is drawn in Fig. 5-2.

The first computer problem we run into is, how do we get 15 rows in an
array? The answer is that we may dimension an array much the same as we
dimensioned lists. In the array DIM (DIMension) statement, we must specify

Initialize 15 by 5
array cols. 2-5 at 0
Col. 1 to contain row no.

PRINT
headings

LET S[Q, PI

NEXT Q = S[Q, P] + A

Fig. 5-2. Flowchart for program SURVLY.

86 Basic BASIC

two dimensions: one for rows and one for columns. We want an array with 15
rows and 5 columns (4 for categories and 1 for the question numbers). DIM
S$[15, 5] will provide just such an array.

DIM (TWO-DIMENSIONAL)

DIM A[R, C] sets up an array designated as A with highest column
number C and highest row number R. The statement is required if
either R or C exceeds 10. Some computers require explicit integers,
others allow variables in DIM statements.

In our questionnaire problem, there are three things that we must keep
track of: 1) the category of the respondent, 2) the question number, and 3) the
response. We may organize the data and results according to Table 5-2.

TABLE 5-2. CHART TO ORGANIZE SURVEY.

Array .
Code in
Column Number Use DATA Line
1 Question number Pasition in line
2 Male 21 or over 2
3 Male under 21 3
4 Female 21 or over 4
5 Female under 21 5

It will be easier to organize the data, if we reserve an entire data line for
each person. Then we can put the category code (2 through 5) in the first
location and the response (0 or 1) in the next 15 locations. A DATA line will
look like this:

XXX DATA4,1,0,1,1,1,0,0,1,1,0,1,0,1,0,1

where the 4 indicates that the respondent is female and 21 or over, and the
I’s and 0’s mean yes and no in response to the 15 questions. We could count
the number of people in advance or use dummy data so that the printing can
be done after all data is read.

Sty v

9 REM DIM 5015,51 SETS UP AN ARRAY WITH 'HIGHEST' LOCATION
(15,51

10 DIM 5015,5]

20 FOR R=1 T0 15

28 REM LINE 30 ENTERS THE iKOW NUMBER IN THE FIRST COLUMN

30 LET SLR,11=H

Elementary Data Processing 87

40 F3x C=2 10 5
48 n~EM LINE 50 SETS THE LAST 4 COLUMNS AT ZERO
50 LET SEik»C1=0

60 NEXT C
70 NEXT R
78 REM 80 READS THE CATEGIRY FOR THE NFXT PRERSON IN THE SURVEY
B0 KEAD P

90 IF P=-1 THEN 200

98 REM Q GOES THROUGH THE 1S QUESTIONS

100 FOR Q=1 T0 15

110 READ A

120 LET 500Q,P1=500,P1+A

130 NEXT O

138 KEM LINE 140 SENDS THE COMPUTER BACK T3 READ ANOTHER LINF
OF DATA

140 GOTO 80

198 REM THE PRINTING BEGINS HERE

200 PRINT "QUEST MALE MALE FEMALEFEMALE"™

210 PRINT "NIMBER 21+ UNDER 21+ UNDER"™

220 FOR R=1 T3 15

230 FOR C=1 T2 S

250 PRINT SLR.C)s

260 NEXT C

270 PRINT

280 NEXT r

498 REM **%A LINE LIKE 500 MAY HELP T3 LINEUP THE DATA LINES

499 REM IN TYPINGx*#*

S00 REM 1slslslalslalslalstslslsrlalslsd

501 DATA 4,5150515151,0,0,1,150,1,0,1,0,1

502 DATA 451,05,0,0505,151505,151,0,0,0,1,1

503 DATA 351,1,15150505150,150,0,1,1,0,0

504 DATA 551,1,1,0,05,051,0,0,0,15151,1,0

S0S DATA 2,1515150,051505,15,0,0,15151,1,0

506 DATA 5,0,0,150515050,0515151,0+0,151

S07 DATA 550:0505151515,05,15,0,1,0,1,0,0,1

508 DATA 2,0,05151,0,0,1515,0,150,1,0,0,1

509 DATA 4s1515151512141,0,05,051,0,1,0,0

510 DATA 25151505051,0,1,0,0,0,0515151,1

900 DATA -1

999 END
RUN
SUKVEY

QUEST MALE MALE FEMALEFEMALE
NUMBER 21+ UNDER 21+ UNDER

1 2 1 3 1
2 2 1 1 1
3 2 1 2 2
4 1 1 2 1
S 1 0 2 2
6 1 0 2 1
7 2 1 2 1
8 2 0 1 1
9 0 1 2 1
10 1 0 1 2
1l 1 0 2 2
12 3 1 0 2
13 2 1 2 1
14 2 0 1 2
15 2 0 2 2
DUNE

Notice in SURVEY that while there are four categories in the original
problem, there are five additional categories generated by the conditions of the
problem. They are male, female, under 21, 21 or over, and total. We may

88 Basic BASIC

further process the tabulated results after line 140 in SURVEY by totaling up
ihe appropriate columns to get these latest categories tabuiated. Of course, we
will have to change the DIM statement to DIM S[15, 10]. This is done in
SRVEY1. Study lines 145 through 190 carefully to assure yourself that the
correct values are being tabulated there.

There are many other results that we might try to find. There are other

SRVEY1

10 DIM S015:100

20 FOR R=} TO 15

28 REM LINE 30 ENTERS THE ROW NUMBER IN THE FIRST COLUN

30 LET S{Rs1)=R
40 FOR C=2 T0 10
48 <EM LINE S50 SETS THE LAST 9 COLUMNS AT ZERO
50 LET S{R,»CI=0

60 NEXT C
70 NEXT R
78 REM 80 READS THE CATEGORY FOR THE NEXT PERSON IN THE S!HRVEY
80 READ P

90 IF P=-1 THEN 145

98 REM Q@ GOES THROUGH THE 15 QUESTIONS

100 FOR Q=1 TO 15

110 READ A

120 LET S[Gs,PI=S{C,PI+A

130 NEXT 0

138 REM LINE 140 SENDS THE COMPUTER BACK TO READ ANOTHER LINF
AF DATA

140 GBTO 8O

145 FOR R=1 TO 15

150 LET SIR,»61=SI{R,2)+S[Rs 3]

160 LET SURs 71=50Ks41+SL4»5]

170 LET SI[Rs81=SUR,31+S01,5]

180 LET SIR»91=5{K»2)+S[R, 4]

185 LET SIR,101=S0R,6)+50K, 7]

190 NEXT R :

198 REM THE PRINTING BEGINS HEXF

200 PRINT "QUEST MALE MALE FEMALEFEMALE"

210 PRINT “NUMBER 21+ UNDER 21+ 1UNDER MALE FEMALE !INDER
21+

211 PRINT ' TOTAL"

220 FOR R=1 T0 15

230 FOR C=1 TO 10

250 PRINT SI[RsC13

260 NEXT C

270 PRINT

280 NEXT =»

498 REM *%x%A LINE LIKE 500 MAY HELP T3 LINE!P THE DATA LINFS

499 REM IN TYPING*%*

S00 REM Iolsololalolalalslstslatatslstsd

501 DATA 451,0515151,050515150,1,0,1,0,1

502 DATA 451,0,0,0,0,15150,1,1,0,0,051,1

503 DATA 3515151215020, 150,1,0,0,1,1,040

504 DATA 551515150:0,05,1,0,0,0515151,1,0

505 DATA 25151515050,15051,0,05151,1,1,0

506 DATA 5,05,0515051,0,0,0514151,050,151

507 DATA 5,050505151515051,0,1,0,1,0,0,1

508 DATA 2,0,0,1515050515150,1,0,1,0,0,1

509 DATA 4,15121515151,150,0,0,1,0,1,0,0

510 DATA 2515150505150, 150,0,0,0-1s15151

900 DATA -1

999 END

Elementary Data Processing 89

RUN
SRVEY1

QUEST MALE MALE FEMALEFEMALE
NUMBER 21+ UNDER 21+ UNDER MALE FEMALE UNDER 21+ TaTAL

1 2 1 3 1 3 4 2 S 7
2 2 1 i i 3 2 2 3 5
3 2 1 2 2 3 4 3 4 7
4 1 1 2 i 2 3 2 3 S
5 1 0 2 2 i 4 2 3)
[} i 0 2 1 1 3 1 3 4
7 2 1 2 1 3 3 2 4 [}
8 2 0 1 1 2 2 1 3 4
9 0 1 2 i i 3 2 2 4
10 1 0 i 2 1 3 2 2 4
i1 1 0 2 2 i 4 2 3 S
12 3] 0 2 4 2 3 3 6
13 2 1 2 1 3 3 2 4 6
14 2 0 1 2 2 3 2 3 S
15 2 0 2 2 2 4 2 4 6
DONE

totals that could be tabulated. At the time P is read, we could total the
number of people in each of the original four categories and enter these
totals in row 16. Then we could compute averages. There are numerous ratios
that we could evaluate. We could have the computer generate random data to
get larger numbers in the printed result. That would require random integers
9 through 5 for P in line 80 and random 0 or 1 in line 110 for the yes-no
responses.

SUMMARY

We see that the two-dimensional array permits tremendous flexibility. We
may determine its size exactly. The array serves as a vast storage area for
large amounts of data or tabulated results. We may process the contents of
an array and enter results in other parts of the same array with tremendous
maneuverability.

The DIM statement may be used to specify subscripts greater than 10 in
the two-dimensional array much as it was used for lists.

PROBLEMS FOR SEC. 5-3

1) Modify SURVEY to handle 75 questionnaires with random data.

2) Modify SRVEY] to tabulate the totals discussed with that program in the 16th
row of the S array.

3) Modify SURVEY to handle yes, no, and other as possible answers. Create
three arrays: one for yes, a second for no, and a third for other responses. Use
random data and 50 questionnaires.

4) Modify SRVEY1 to generate random data for 50 questionnaires.

5) Modify SRVEY1 to tabulate the results as percentages of the total number of
yes responses. Do not create a second array.

L

90 Basic BASIC

6) Fill an array with the multiplication table up to 12 X 12, and print the last
three rows.
v 7) In a 12 by 12 array enter all 1’s in the upper left to lower right diagonal and
the left-most column, and all 0’s elsewhere. Then beginning in the third row, second
column, enter the sum of the entry in the same column of the row immediately
above and in the column one to the left and the row immediately above, through
the 12th row, 11th column. Print the result.

CHAPTER 6

Specific Applications

6-1 EUCLIDEAN ALGORITHM

In Chap. 4 when we first reduced common fractions to lowest terms, even
though the computer did the work, it was done the hard way.
For two integers N and D,

N/D =1+ R/D
or N=I*D+R

where 1 is the integer quotient and R is the remainder. If we successively
divide the remainder into the previous divisor until the remainder is 0, the last
divisor is the greatest common factor. This will always happen, even for
mutually prime pairs, as the last divisor will be 1.

Let us see what hap <« for 13398 and 7854.

N=1°D+
13398 = (1)[7854] + (6-1)
7854 = (1)[5544] + 2310 (6-2)
5544 = (2)[2310] + 924 (6-3)
2310 = (2)[924] + 462 (6-4)
924 = (@) 462]+ O (6-5)

According to Euclid the greatest common factor of 13398 and 7854 is 462, be-
cause 462 was the divisor when the remainder was 0. Indeed 13398 = 29 * 462
and 7854 = 17 * 462. That took only five tries. How many would it have taken
using the old method? Now all we have to do is figure out why it works.
Look carefully at Eq. (6-5). 924 is divisible by 462 because the remainder
is 0 and 0 is divisible by any nonzero number. This 0 remainder is the key to
the entire proposition. Now look at Eq. (6-4). Since 924 is divisible by 462, so
is (2)[924] + 462, which makes 2310 divisible by 462. Now lock at Eq. (6-3).

91

92 Basic BASIC

Since 2310 and 924 are both divisible by 462, so is 5544. This makes 7854
divisible by 462, which in turn makes 13398 divisible by 462, which is the
original contention. The argument we have just presented is hardly a proof of
the Euclidean algorithm, but it should be convincing.

Now, how do we get the computer to carry out this process? First, from
Egs. (6-1) through (6-5) we should see that we have simply taken the old
divisor D and made it the dividend and the old remainder R and made it the
divisor. So we will get the computer to LET N = D and LET D = R after we
look at the remainder to see if it is 0. If the remainder is 0, we direct the
computer to print the last divisor as it is the greatest common factor.

Now we should be able to draw the flowchart (Fig. 6-1) and write the
program COMTFAC,

LET I
= INT (N/D)

LETR
=N-—-{*D

PRINT

“G.C.E"D LETD =R

oF

Fig. 6-1. Flowchart for using Euclidean algorithm for program C@MFAC,

Specific Applications 93

COMFAC

10 PRINT '"N,D"3

20 INPUT N,D

25 IF N=0 THEN 120

28 REM FIND THE INTEGER QUOTIENT

30 LET I=INT(N/D)

38 REM FIND THE REMAINDER

40 LET R=N-I%D

43 REM IF THE REMAINDER IS ZERG THEN D IS THE Gy Co Fo
50 IF R=0 THEN 90

58 REM R WAS N@T ZERO, S@ WE ITERATE
60 LET N=D

70 LET D=R

80 GOTO® 30

90 PRINT "G«CeF. ="3D

100 PRINT
110 GoTe 10
120 END

RUN

CAOMFAC

N» D?13398, 922251
GeCoFe = 33

N» D? 741279, 922251
GeCoeFe = 33

N»D?13398, 7854
GeCeFs = 462

N»D2991,199
GeCoFe = 1

N»D?272851,246156
G.C.Fe = 281

N»D?0,0

DANE

PROBLEMS FOR SEC. 6-1

1) Write a program to add fractions given the numerators and denominators.
Print the sum reduced to lowest terms.

9) Do problem 1) for multiplication.
/ 3) INPUT two pairs of coordinates. Have the computer find the slope and the
Y-intercept of the straight line containing the points and print the results as rational
numbers reduced to lowest terms. If the result is negative, have the numerator be
the negative number.

4) As a project, write a program to factor quadratic expressions with integer
coefficients. Be sure to allow for 0 cocfficients and factor out greatest common
factors of all three coefficients.

6-2 CHANGE BASE

In this section we are going to develop a program to convert base-10
numbers to base-2 numbers. You will recall that for base-2, only the digits 0
and 1 are permitted and each digit represents a power of 2 instead of 10.

94 Basic BASIC

One of the widespread uses for base-2 numbers is in computers themselves.
This is because in base-2, all numbers may be expressed by a set of switches
with 0 being off and 1 being on.

One difficulty that we quickly encounter is that whatever the digit capacity
of the computer we have access to, that number of digits provides a much
smaller number in base-2 than it does in base-10. We will use up to six digits
in the base-10 number for our program. In base-2 100000 is only 32
base-10 and

111111, = 1°2%*°0 or 1
+i®2°**1 or + 2
+1%2°°¢g or + 4
4 1*2%°3 or 4 8
+1°2%°4 or +16
+1®2%°5 or +32

63y

which we could handle asily with pencil and paper. Clearly, we are going
to have to work with more than six digits in base-2.

Let us assume that we can provide for as many digits as are needed. How
many digits do we need to represent the base-10 number 999999 in base-27
We could write a program that would give that information, but we can also
figure it out ourselves. We can begin with 2 ** 5,

2°°5 = 32
2°°10= 32°°2=1024
2°°20==1024 *° 2 = 1048576

So, if we provide for up to 2 *® 20, we can handle six-digit integers with
room to spare. We know how many digits we need, now we have to figure
out how to make the conversion.

Let us run a sample conversion before we attempt to write the program.
We use 149 base-10 here. First find the greatest integer power of 2 that is
less than 149. Itis 2 ®*° 7 or 128.

149/2°* T=1+21/2°*7

or 149=1°(2°°7)+2l (6-6)
21=10°(2°°6)+ 21 (6-7)
21=0°(2°°5)+ 21 (6-8)
21=1°(2°°4)+ 5 (6-9)
5=0°(2°°3)+ 5 (6-10)
5=1°(@2°°2) + 1 (6-11)
1=0°@°° 1)+ 1 (6-12)
1=1°(2°°0)+ 0 (6-13)

By successive substitution we see that

Specific Applications 95

149= 1°(2°°7)
+0°(2°°6)
+0°(2°°5)
+10(2004)
+0°(2°°3)
+l°(2°°2)
+0¢(2ool)
+1°(2°°0)

So that
149,, = 10010101,
Equation (6-6) may be written in general as
N=I°*(2° E)+R

where N is the number, I is the integer quotient, E is the exponent on the
base-2, and R is the remainder after integer division. Therefore

= INT(N/(2 *° E)

and, solving for R we get

R=N-—1°(2°°E)

Now, looking at Egs. (6-6) through (6-13) we see that we have an iterative
process in which the new number is to be the old remainder and the exponent
on the base-2 is reduced by 1 until it gets to 0. This looks like a loop in which
the loop variable is the exponent on the base-2 and stops at 0. Where does it
start? Earlier we decided that the greatest exponent on 2 could be 20. Now
we should be able to assemble our problem into a flowchart (Fig. 6-2).

BASE

10 READ N

20 PRINT N; "BASE TEN ='%
30 FOk E=20 TO O STEP -1
40 LET I=INT(N/2TE)

50 PRINT I3

60 LET R=N-I1%2tE

70 LET N=R

80 NEXT E
85 PRINT "BASE TWO"
86 PRINT

90 GOT8 10
100 DATA 999999.,1,16

110 END

RUN

BASE

999999. BASE TEN = 0O 1 1 1 1 0 1 o
0 0 o] 1 0 0 0 i 1 i i 1

1 BASE TWO

Fig. 6-2. Flowchart for conversion
from base-10 to base-2.

FORE = 20 ;I LET 1
TP 0 STEP —1i v’i = INT(N/2 **E)

LETR
=N 1+2++E

<

@Q" NEXT E LETN=R

1 BASE TEN = O 0 0 0 0 0 0 0 0

0 0 0 0 0 o 0 0 0 0 0
BASE TwO

16 BASE TEN = O 0 0 0 0 0 o 0 0

0 0 o 0 0 0 0 1 0 0 0 o

BASE TwO

BGUT OF DATA IN LINE 10

Looking carefully at the printed results in BASE, we can see that 16 base-10
does equal 000000000000000010000; however it is difficult to sort that out.
Printing the variable I is controlled by semicolon spacing which will not place
one-digit numbers in adjacent spaces. We can however, get the digits next to
each other by printing them explicitly. If we say PRINT “1”; the next printed
character will be printed in the next space. So, instead of 50 PRINT I; we
insert

45 IF I=1 THEN 55
50 PRINT "Q'';

52 GOT9 60

55 PRINT "1°';

Specific Applications 97

and call for a RUN:

RUN

BASE-2

999999, BASE TEN =011110100001000111111 BASE TWO

16

ouT

BASE TEN =000000000000000000001 BASE TWwO

BASE TEN =000000000000000010000 BASE TWO

OF DATA IN LINE 10

By not worrying too much about the fact that we were going to require a
large number of digits, we have succeeded in printing numbers with 21 digits.
Quite often in programming, as in any problem-solving situation, you will
solve seemingly impossible problems by emphasizing those things that you
can do rather than holding back because of all the things you think that you
will be unable to handle.

Let us reassemble the program as it now stands in BASE-2 and insert
another set of data just to see a few more results.

BASE-2
10 READ N
20 PRINT N;"BASE TEN =3

30 FOR E=20 T0 0 STEP -1

40 LET I=INT(N/21E)

45 IF I=1 THEN 55

50 PRINT '0';

52 GOTO 60

55 PRINT '"1%;

60 LET R=N-1%2tE

70 LET N=R

80 NEXT E

85 PRINT ' BASE Two"

86 PRINT

90 GOTO 10

100 DATA 999999.,1,16

110 END

100 DATA 45,9875, 123456

RUN

BASE-2
45 BASE TEN =000000000000000101101 BASE TWO
9875 BASE TEN =000000010011010010011 BASE TWO
123456, BASE TEN =000011110001001000000 BASE T®0

@UT BF DATA IN LINE 10

Of course we really are not finished with the program yet. We should
eliminate the leading 0's. Then the printed results will be in more familiar
form. This is left as an exercise.

98 Basic BASIC

PROBLEMS FOR SEC. 6-2

1) Eliminate the leading 0’s in BASE-2. Be careful not to eliminate all 0’s.

2) Write a program to convert base-2 numbers to base-10. It may help to put
the digits of the base-2 number in a list.

3) Write a program to add two numbers in base-2.

4) Have the computer convert numbers in base-10 to base-3.
J/ 5) Write a program to convert from base-10 to base-12. It is conventional to use
T for 10 and E for 11 in base-12.
v 6) Have the computer convert base-3 numbers to base-2.
J 7)) Write a program to convert base-10 numbers to any base up to 12 with the

(PRI L3 Wik

base determined from data.

6-3 LOOKING AT INTEGERS DIGIT BY DIGIT

In general, the more control we have over a number in the computer, the
more complex the problems we might expect to be able to handle. So, for the
purpose of learning to control a number in the computer digit by digit, let us
write a program to take the digits of an integer and print them one at a time.

Consider the number 8394. The 8 means 8 thousand which may be written
8 ® 10 °® 3; the 3 means 3 hundred which may be written 3 * 10 ®*® 2; the 9
means ninety which may bhe written 9 ° 10 °°® 1; and the 4 means four which
may be written 4 ° 10 *°® 0. Looking at the numbers step by step,

8394 =8°10°° 3 4 394
304=3"10°"2+ 94
94=9°10"*14 4

4=4°10°*0+ O

This is an example of the general relationship
N=I°10°"E+R

where I is the integer quotient found by
I=INT(N/10 °* E)

and an iterative process whereby the new N is the old R and the value of E
is decreased by 1 for each iteration. Solving for R we get

R=N-1°10°*E

All of this should begin to look familiar.

For six-digit integers the valne of E will have to hegin at 5§ und go to 0
STEP —1. Carefully study program DIGIT and you will see that we have
indeed broken integers into their separate digits. However, as always, we should
look for ways to improve our programs. One change that will save a little paper

Specific Applications

DIGIT

10 PRINT "INPUT ANY INTEGER";
20 INPUT N

30 IF N=0 THEN 999

40 FOR E=5 TO O STEP -1
50 LET I=INT(N/1OTE)

60 PRINT I

70 LET R=N-I*10'E

80 LET N=R

90 NEXT E

100 PRINT

110 GOTO 10

999 END

RUN

DIGIT

INPUT ANY INTEGER?123456

1

[T N S V)

INPUT ANY INTEGER?819045

VbhOO—-®

INPUT ANY INTEGER?53627

IR O RRT N el

INPUT ANY INTEGER?0

DONE

99

would be to print the digits across the page with semicolon spacing. We can
do that by changing line 60 to read 60 PRINT I; and call for a« RUN.

60 PRINT I;

RUN

DIGIT

INPUT ANY INTEGER?123456

1

2 3 4 5 6

INPUT ANY INTEGER?975432

9

7 5 4 3 2

INPUT ANY INTEGER?53627

0

5 3 6 2 7

INPUT ANY INTEGER?0

DONE

100 Basic BASIC

Now let us see the program with the change and try another number.
(See DIGIT1.)

DIGITI

10 PRINT “INPUT ANY INTEGER"3
20 INPUT N

30 IF N=0 THEN 999

40 FOR E=5 TQ O STEP -1}
S0 LET I=INT(N/10tED

60 PRINT I3

70 LET R=N-I#10tE

80 LET N=R

90 NEXT E

100 PRINT

110 GBTO0 10

999 END

RUN

DIGITH

INPUT ANY INTEGER?666666
6 6 6 [6 6
INPUT ANY INTEGER?O

DONE

One last consideration is that we might want to eliminate the leading 0.
We leave this as an exercise.

PROBLEMS FOR SEC. 6-3

1) Eliminate the leading 0’s in DIGIT. Be careful not to eliminate all zeroes.

9) Test integers for divisibility by 3 by summing the digits.

3) Construct the integer formed by reversing the order of the digits in an INPUT
integer. Print the result as an integer.
J/ 4) Test integers with the integer formed by reversing the order of the digits to
find the greatest common factor. '
J/ 5) Find all three-digit integers that are prime. Form new integers by reversing
the digits and sec if the new number is also prime. Print a number only if it and
its reverse number is prime. There are 43 pairs of numbers, some of which will
appear twice. You should pay particular attention to efficiency in this problem.

CHAPTER 7

Strings and Files

7-1 INTRODUCTION TO STRINGS

To a BASIC programmer, a string is a set of characters. We use strings every
time we print a message by enclosing it in quotes in a PRINT statement. BASIC
provides the ability to save strings in a special string variable, identified by
using a trailing dollar sign ($). We may use A$, BS, etc., to designate string
variables. Some computers allow Al$, B8$, etc., and some allow A$(R,C) to
designate string arrays. The use of strings enables us to process alphabetic data,
such as names and addresses, and descriptive data of all kinds.

We may work with string variables in many of the ways that we do with
numeric variables. For instance, in BASIC programs we may use such state-
ments as

100 LET A% = '"FIRST"
100 READ AS$, BS$

100 INPUT AS$, BS

100 PRINT AS$, BS

In order to READ A$, B$, we must provide a corresponding DATA state-
ment. Some systems require all strings in DATA statements to be enclosed in
quotes. Others require quotes only when the string contains a comma or Jooks
like’ a number. For PRINT A$, B$, the output will have “comma spacing.” That
is, the page will be arranged in 15-character columns. If we replace the comma
with a semicolon, the two strings will be printed with no space between them.

We will use a short program named FIRST$ to demonstrate LET, READ,
INPUT, and PRINT.

101

102 Basic BASIC

FIRSTS

95 REM % FIRST STRING PROGRAM

96 REM

100 LET AS = "THIS IS A"

110 READ BS, Cs

120 PRINT AS3 ' '3 BS: " '3 C$3

1306 INPUT DS

140 PRINT

150 PRINT AS$s ™ *3 BSs ™ "5 €83 " '3 D3
155 REM

160 DATA "PRBGRAM T@", "DEMONSTRATE"
170 END

RUN

FIRSTS

THIS 1S A PROGRAM T0 DEMONSTRATE?STRINGS
THIS 1S A PROGRAM TD DEMBNSTRATE STRINGS

BASIC allows us to compare strings for order in accordance with a sequence
known as ASCII (American Standard Code for Information Interchange). For
strictly alphabetic strings, this code will alphabetize in the conventional order.
ASCII places the digits 0 through 9 ahead of the letters of the alphabet. We
can easily write a short program to demonstrate order comparison. See ORDS$.

@RDS

95 REM * COMPARES STRINGS FOR ORDER

100 PRINT

110 PRINT "A$"3

120 INPUT AS

130 IF A$ = "STPP"™ THEN 240
140 PRINT "BS$"3

150 INPUT BS

160 IF AS < B$ THEN 220

170 IF AS
180 PRINT ASs
190 GoTe 100
195 REM

200 PRINT AS;
210 G@Te 100
215 REM

220 PRINT AS3
230 G@Te 100
240 END

RUN

ORDS$

AS?WHAT'S THIS
BE?WHAT'S THAT
WHAT'S THIS IS

AS?WHAT®S THIS
BS?WHAT®S WHAT
WHAT®*S THIS IS

ASTWHAT®S WHAT
B$?WHAT®S WHAT
WHAT®S WHAT IS

A$?STOP

B$ THEN 200
'* IS GREATER THAN "5 BS

** IS EQUAL T@ "; BS

" IS LESS THAN ™3 BS

GREATER THAN WHAT'S THAT

LESS THAN WHAT®S WHAT

EQUAL T@ WHAT'S WHAT

In the handling of strings, we find that different computers have significantly
different BASIC language definitions. For example, on one computer, the state-

Strings and Files 103

ment 100 PRINT A$(4) will cause the computer to output the character string
stored in string variable A$, beginning with the fourth character, whereas on
another, the same statement will cause the computer to output the fourth string
of the string list A$. It is because of these differences that we present two dis-
tinctly different schemes for handling strings in the next two sections.

7-2 STRINGS-THE SUBSTRING SCHEME®

In the substring scheme, strings may be considered as a complete entity by
referring to A$, BS$, etc., or we may consider segments of A$ by using one or
two subscripts. A$(I) specifies the segment beginning with the I*" character and
continuing to the end of the string. A$(1,]) [some computers using this scheme
may require A$(I:])] specifies the segment from the I*" character through the
Jtb character inclusive, provided I = J. If I =], then A$(L]) is a single char-
acter. This scheme does not provide for string arrays. (It has been extended on
some computers, however, by using A$(1;],K), where the I designates which
string in the single dimension array is referred to and the J,K pair designates
the segment from the Jt through the K character.)

As with arrays, it is necessary to specify the capacity of any string variable
we intend to use (for more than one character) in a DIMension statement, Thus,
100 DIM A$(10),B$(16),C(2,11) provides for up to 10 characters in A§, up to
16 characters in B$, and two rows and 11 columns in a numeric array C. The
C dimensioning is included here merely to demonstrate that string and array
dimensioning may be intermixed in a single statement. The LEN() function is
provided to count the number of characters actually stored in a string. LEN(Z$)
takes on the value of the number of characters stored in string variable Z$.

In program SEG$1, note the dimensioning in line 100, the use of the LEN()
function in lines 140 and 150, and the printing of segments in line 160.

SEGS$1

95 REM * DEMONSTRATES STRING SUBSCRIPTS

100 DIM ASE8)

110 READ AS

120 IF AS="STOP" THEN 210

130 PRINT "AS="3AS$

140 PRINT “LENCAS)=";LEN(AS)

150 F@R I=1 TO LENCAS) STEP 2

160 PRINT "AS("313',"31+13")="3AS01,1+1]

170 NEXT I

180 PRINT

190 GOTO 110

195 REM

200 DATA "ABCDEF',"BASIC","STOPY

210 END

TN

SEGS$1

AS=ABCDEF

LEN(AS)= 6

ASC 1 > 2)=AB
s 4)=CD
s 6)=EF

ASC 3
AsC 5

® The programs of this section were run on a Howlett-Packard computer.

104 Basic BASIC

A$=BASIC

LEN(AS)= S

ASC 1 » 2)=BA
ASC 3 s 4)»=51
ASC S » 6)=C

The ability to isolate a segment of a string has many uses. We may wish to
pack related information into a single string such as

100 LET D$ = “JANFEBMARAPRMAYJUNJULAUGSEP@CTN@VDEC”

Now we, may select the desired month according to its position in D$. Or, we
might want to use a single string to contain the names of a group of individuals,
last name first, but to print only the last name and first initial.

One common use of string segments is to format numbers in printed results.
For instance, the appearance of the output produced by program SEG$1 could
be improved by using string output to print I and I 4 1 in line 160. See lines
110 and 160 in program SEG$2. Notice the compact appearance of the printed
result there.

SEGS2

95 REM % PRINTING A SINGLE DIGIT NUMERIC
96 REM USING STRING QUTPUT

100 DIM ASL8),DS(91]

110 LET D$="123456789"

120 READ AS

130 IF A$="ST@P" THEN 210

140 PRINT "AS=";AS

150 FOR I=1 T0 LENC(AS) STEP 2

160 PRINT "ASC"SDSII,133"5 " DS0I+1,1+13;3")="3A80L,1+1]}
170 NEXT |

180 PRINT

190 GoTe 110

195 REM

200 DATA '"ABCDEF',*BASIC","STpP"

210 END

RUN

SEG $2

A$=ABCDEF

ASC1,2)=AB
ASC3, 4)=CD
AS(5, 6)=EF

As=BASIC

A$C1,2)=BA
AS(3, 4)=S1
A$(5,6)=C

We see in SEG$2 the beginning of a technique for printing a numeric using
string output. Obviously missing are the ability to print zero and the ability to
handle more than one digit We can take care of zero by using LET D$ =

“rnnn,n:’nrron” 1. 1. ~L S Ny il
LTINS U, out kunxuub LGUIGoCrs Or Mo uian Oné \u5u.).cxiuuca tinat wé

use the technique of program DIGIT in Sec. 6-3. That is, we must isolate the
digits of our number one at a time. Once we have the digit to be printed stored
in I, we must print D$(I + 1,I -+ 1) since zero is the first digit in D$. This step

Strings and Files 105

is taken in program DIGIT2. The numeric output is placed between # signs,
and the string output is placed between $ signs,

DIGIT2

95 REM * PRINTING A NUMERIC 8F MORE
96 REM THAN ONE DIGIT USING STRING
97 REM QUTPUT

100 DIM D3SC101

110 LET D$='"0123456789"

120 PRINT “INPUT ANY INTEGER"3
130 INPUT N

140 1IF N=0 THEN 260

150 PRINT "#*3N3"#"

160 PRINT *'8";

170 FOR E=5 Tp 0 STEP -1

180 LET I=INT(N/10tED

190 PRINT DSLI+1,1+113

200 LET R=N-I*10tE

210 LET N=R

220 NEXT E

230 PRINT “s*

240 PRINT

250 G@Tg 120

260 END

RUN

DIGIT2

INPUT ANY INTEGER?93617
93617.
$093617%

INPUT ANY INTEGER?0

It is left as an exercise to eliminate the printing of the leading zero in the
output of DIGIT2.

SUMMARY

We have used strings to store nonnumeric data. Any string may be con-
sidered in its entirety, or any segment may be isolated using subscripts. A$(L])
designates the substring from the It to the Jt characters, inclusive. By placing
the ten digits in a dummy string, we gain complete control over the printing
of numerics by using string output.

PROBLEMS FOR SEC. 7-2

1) Write a program to print the characters of a string in reverse order.

2) Eliminate leading zeros in the output of DIGIT2. Be careful not to eli-
minate all zeros.

3) Write a program to arrange the characters of a string in order using the
technique of program ARANGS of Sec. 4-4.

4) Use string formatting to print the output in problem 7 of Sec. 6-2.

5) Write a program to convert a string integer to a numeric.

v/ 6) Write a program to convert a numeric input to a string output if the nu-

meric input is allowed to contain a decimal point and be negative.

106 Basic BASIC

7-3 THE STRING ARRAY SCHEME*

In the string array scheme, A$(l) names the string stored in the position
numbered 1 of a string single-dimensioned array, and A$(L]) names the string
stored in row I and column J of a string two-dimensional array. As with arrays
used elsewhere, a DIMension statement is required if we intend to have either
subscription exceed 10. The maximum number of characters which may be
stored in any one array position varies from computer to computer but ranges
from 6 to the thousands.

We may do many things with string arrays that we do with numeric arrays.
We may READ, PRINT, INPUT, assign, and compare for order elements of
the array. We may even be able to use the statement LET A$ = “XYZ” +
“ATV” to assign “XYZATV” to A$.

DAYSO1

100 DIM WS(T)

105

108 REM * READ DAYS @F THE WEEK
110 FPR I =1 10 7

120 READ WS$C(I)
130 NEXT I
135

138 REM #% PRINT DAYS @F THE WEEK
140 F@R I = 1 T8 7

150 PRINT I3 WS$CD)
160 NEXT I
165

168 REM % DATA

170 DATA SUNDAY, MONDAY., TUESDAY, WEDNESDAY
180 DATA THURSDAY, FRIDAY, SATURDAY

190 END

RUN

SUNDAY
MBN DAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

N D W -

Suppose we wish to work with the days of the week. We can easily read the
names of the days of the week into an array. Then these names can be printed
later as labels whenever needed, as shown in program DAYSOI1.

It is useful to be able to manipulate data in string variables. We might want
to know the number of characters in one of them, for example. There are two
ways to find out. One is to use the LEN function. LEN(A$) returns the number
of characters in A$. Another is to use the CHANGE statement. CHANGE A$
T A stores the number of characters in A$ in A(O), converts each of the char-
acters in the string A$ to a numeric equivalent code, and then stores that nu-
meric in a corresponding position of the one-dimensional A array. The code
UsGa for this is ASCII (1‘11‘1‘161&(;'«111 Standard Code for Information Iui(uuhuugc).

CHANGE A T@ A$ makes the conversion in the opposite direction. This can

® The programs of this section were run on the General Electric Information Services
time sharing system.

Strings and Files

CHANGE

98 REM * DEMONSTRATE CHANGE STATEMENT
100 DIM AC30).,BC(1)

110 PRINT “STRING"3

120 INPUT AS bd

130 CHANGE A3 To A

140 PRINT LENCAS$)3 “CHARACTERS IN '3 A%; "'"
150 PRINT

160 LET B(OY = 1

170 PRINT *CHAR ASCII C@DE™

180 FOR I = 1 T@ A(D)

190 LET BC(1) = ACD)

200 CHANGE B T@ BS

210 PRINT ***3 BSs "' 3 ACD

220 NEXT 1

230 END

RUN

STRING? TRY THIS
8 CHARACTERS IN *TRY THIS®

CHAR ASCI1 CODE

T
R
rye
[
e
rye
e
LE

84
82
89
32
84
12
73
83

107

probably best be demonstrated with a program. See especially lines 130 and
200 of program CHANGE.

Notice that it required four statements to extract the I character of A$.
In program CHANGE, we used statements 130, 160, 190, and 200 to do this.
The EXT$ function is available for just this purpose. EXT$(A$,1,]) extracts the
group of characters beginning with I and ending with J for string A$. Some
computers use SEG$ for this. Using EXT$, program CHANGE becomes

CHANGF.
CHANGF
98 REM * DEMONSTRATE CHANGE STATEMENT
100 DIM AC30)
110 PRINT "STRING™S
120 INPUT AS
130 CHANGE A3 T@ A
140 PRINT LENCAS$)3 "CHARACTERS IN "3 A$3 "*"
150 PRINT
170 PRINT "CHAR ASCII CogbhE™
180 FPR I = 1 T A(D
210 PRINT ***3 EXTS$CASsI»103 "* "3 ACD)
220 NEXT 1
230 END
RUN

STRING? #1&+:)]
6 CHARACTERS IN ‘*"#!&+:1°

CHAR ASCII C@DE

LF
tpe
(¥
[P
LER

).

35
33
a8
43
58
93

108 Basic BASIC

We may form strings from the characters of strings in some rearranged se-
quence. We might print a siring backwards or with the characters in alphabetic
order. In order to arrange the characters of a string in alphabetic order, we can
simply provide a one-dimensional array with the corresponding ASCII code

numerics in increasing order. Program ORDERS$ does exactly this.

BRDERS

100 DIM AC100)

110 PRINT "AS$"3

120 INPUT AS

i30 PRINT

140 CHANGE A3 19 A

150 FBR I = 1 10 ACOY - 1

160 FRR J = 1 + 1 10 A

170 IF ACI) <= A(J) THEN 210
175 REM * EXCHANGE BUT 8F ORDER CODES
180 LET 5 = ACD)

190 LET ACI) = AW

200 LET A¢J) = S

210 NEXT J

220 NEXT I

230 CHANGE A T AS
240 PRINT AS

250 END

RUN

A$? WHAT IF I CAN'T THINK @F SOMETHING?

*2AACEFFGHHHITIIKMNNNGBSTTTTW

SUMMARY

Whenever subscripted array string variables may be used, A$(L]) specifies
the string stored in row I, column J. We may use CHANGE A$ T@ A to con-
vert the characters in the string variable A$ to the equivalent ASCII code
numerics in corresponding positions of the A array. We may also reverse this
process by using CHANGE A T@ A$. We also find the number of characters
in A$ stored in A(O). Alternatively, we may use the LEN function. We may
extract a group of characters with the EXT$(A$,L]) function. This may be im-
plemented as SEG$.

We may assign, PRINT, INPUT, and READ string variables in much the
same way that we handle these operations with numeric variables. Strings may
be placed in DATA statements, and string arrays must be DIMensioned if a
subscript is to exceed 10,

PROBLEMS FOR SEC. 7-3

1) Write a program to print the characters of a string in reverse order.

2) Write a progam to accept string input, and tabulate the number of times
each character appears.

3) Write a program to alphabetize the strings of a single-dimension string
array.

4) Write a program to produce the following output, using the days of the
week as stored in W$ in program DAYSOL.

Strings and Files 109

<DUZCwn
<PUZoX
<XDOLMC~
<DCuvmeoraE
<~POUVLCI-
<X POz
<XPOUXTC-ADW

5) Modify program ORDERS$ to eliminate duplicates.
6) Write a program to produce the following output, using the days of the
week as stored in W$ in program DAYSOL.

7-4 INTRODUCTION TO DATA FILES

So [ar in our programming work all of the data used by our programs has
been entered through DATA statements, INPUT statements, or LET statements.
Consequently, we have had to store the data as part of the program or type the
data directly at the keyboard of our terminal. This works out all right for small
amounts of data that we wish to process just once. But, if we have large
amounts of data or we expect to carry out several processes on our data, then
we need to separate the data from the program. We can do this by using data
files.

A data file is simply a storage space in the computer where we store data,
much as a program may be stored in a storage space. (In fact, in some com-
puters, files and programs are indistinguishable until we type certain commands.
Obviously, we cannot RUN a data file.) By designating a separate storage space
for data, we gain many capabilities. We may now store much larger amounts of
data than we could possibly store in the data statements of a program. We may
alter the data to accommodate the results of program calculations. We may
rearrange the data according to program specifications. The possibilities are
limited only by our ability to think of problems to solve.

Most computer processing done today utilizes data files. Data files are used
for inventory, bookkeeping, and data processing of all kinds. Just considering
the data handled by the Internal Revenue Service and the Census Bureau, the
use of data files can be seen as a very complex business indeed. So we will
attempt here to present only some rudiments of files processing in BASIC.

As we said earlier, a file is a storage space accessible to the computer. This
space may be used to store programs and data, which may be accessed during
program execution. One of the features of these files that makes them mysteri-
ous is that they are invisible. But then, so are programs during execution. How-
ever, it is now possible to carry out tremendous amounts of useful computer

110 Basic BASIC

work without the need for printing at the terminal, although it is good pro-
gramining practice to provide some printed output to help keep irack of what
the computer has done. After we have seen several examples, we will gain
confidence that the computer is really performing the expected operations.
The fundamental concept is that we may write or print data into a file and
that we may retrieve that data under program control. Several versions of pro-
gram statements are used to achieve these purposes. The next two sections
explain the use of files as defined by two different systems. We have chosen
Hewlett-Packard and General Electric versions of BASIC for this.

7-5 HEWLETT-PACKARD FILES

Just to get an idea about how data gets into files and how file data is ac-
cessed, let’s look at two short programs. The first is a program to enter some
numbers into a file. See program PRINT.

PRINT

90 REM * FIRST FILE DEMONSTRATION
100 FILES TEST

110 FER I=1 T0 4

115 READ X

120 PRINT #13X

130 NEXT I

140 DATA 3,17,11,31

150 END

RUN

PRINT

This is the very first program we have run which does something useful
without any printed output. (As a general rule, however, it is good practice to
have programs produce some meaningful printed output at the terminal.) State-
ments 100 and 120 introduce the first two file handling statements. Statement
100 is called the FILES statement. It is the statement which makes the file
whose name is TEST available to the program. Statement 120 instructs the
computer to print data into the film instead of onto the paper in the terminal.
In that statement, the #1 specifies the first file named in the files statement. We
may be able to name eight or more files, separated by commas. In addition,
some computers allow us to replace any file originally named during program
execution by using the ASSIGN statement. In the PRINT # statement, every-
thing past the semicolon is printed into the file. We may list several data items
here, and strings and numerics may be intermixed.

In order to allocate the file space in the first place, we used the OPEN com-
mand. OPEN-TEST, 15 designates a file space, called TEST, that contains
15 segments called records or sectors. Typically, a sector is large enough to
store 32 numbers, or about 128 alphameric characters. More recent Hewlett-
Packard computers allow the option of specifying record size thwrough the
CREATE command. On such a machine, CREATE TEST, 15,106 provides 15
records, each allowing up to 53 numerics, or about 212 alphameric characters.
(106, 212, and 319 are storage efficient numbers to use in the CEATE command.)

In counting space for strings, we must add two to the number of characters

Strings and Files 111

for each string and add one if there is an odd number of characters. Thus three
characters require the same storage space as four.
Now let’s examine a program to read the contents of our file TEST.

READ

90 REM * PR@GRAM T@ READ NUMBERS FR@M A FILE
100 FILES TEST

110 READ #13Y

120 PRINT Y3

136 GgTe 110

140 END

RUN

READ

3 17 1t 31

END-@F~FILE/END GF RECGRD IN LINE 110

The printed output produced by program READ should convince us that
those numbers really came from a computer file as they do not appear anywhere
in the program itself. We also got an error message which is exactly analogous
to the @UT @F DATA IN LINE n message we have seen before.

There are several ways to avoid terminating with this error. One is to keep
track of the number of entries in the file; another is to place an item of artificial
data at the end of the real data just as we did in DATA statements in programs.
However, BASIC provides a special statement just for this purpose. It is the IF
END statement. See line 105 of program READOL.

READO1

90 REM * PROGRAM READ WITH IF END 'TRAP'®
100 FILES TEST

105 IF END #1 THEN 140

110 READ #13Y

120 PRINT Y3

130 G@To 110

140 END

RUN

READO1

3 17 11 31

Statement 105 caused the computer to “remember” that if at any time we
ask it to read beyond the data, it is to then execute line 140 as the next state-
ment. In our case, that causes the program execution to terminate through the
END statement.

The IF END “trap” may also be used to find the end of data in a file so that
we may begin at that point to print additional data into it. Program PRINT1
does exactly this.

PRINTI1

90 REM * PRINT WITH IF END °'TRAP'
100 FILES TEST

110 IF END #1 THEN 140

120 READ #1:3X

130 GeTe 120

140 FOR I=1 Tg 3

112 Basic BASIC

150 READ X

160 PRINT #13X
170 PRINT X3
180 NEXT I

190 DATA 19.2,6

200 END
RUN
PRINT1
19 2 6

Note that PRINT1 will also print numbers into an empty file. Consequently,
we can eliminate the need for program PRINT. Now we run program READOI
to verify for us that the file now contains numbers printed into it in separate
runs of two programs.

RUN
READO 1

3 17 11 31 19 2 6

When we used file TEST above, we simply printed numbers one after an-
other into the file without any concern for exactly where in the file those num-
bers were placed. Used in this way, file TEST is called a serial file. However,
we could have directed the computer to print each of those numbers on a
different record of the file. We need the following expanded file PRINT state-
ment for this purpose:

999 PRINT #1,R;X

This statement allows us to specify that the data following the semicolon is to
be printed in the Rth record of file #1. See line 130 of program PRINT2.

PRINT2

90 REM * PRINT TG RECORD R IN A FILE
100 FILES TEST

110 F@R R=1 To 4

120 READ X

130 PRINT #1,R5X

140 PRINT X3

150 NEXT R

160 DATA 3,17,11,31
170 END

RUN

PRINT2

3 17 11 31

Now to read the Rth value we needn’t read through all R items. We may
read it directly with the statement,

999 READ #1,R;X

Since this structure allows us to select at random any starting point in the file,
we refer to the file as a random access file. See program READO2.

Strings and Files 113

READOZ2

90 REM * DEMONSTRATE RANDGM ACCESS
100 FILES TEST

110 PRINT "“ITEM #';
120 INPUT R

130 IF R=0 THEN 170
140 READ #15R5X

150 PRINT X

160 GEeTg 110

170 END

RUN

READO2

ITEM #24
31
ITEM #21
3
ITEM #20

One of the uses of data files is to rearrange data and store it in rearranged
form. For example, let’s enter the names of seven people along with their dates
of birth and death in file TEST, one person to a record, and arrange them in
alphabetical order using the technique of program ARANGE in Sec. 3-4.

Program ENTERA reads the data from DATA statements and prints it in the
first seven records of the file.

ENTERA

90 REM * FILE PRINT @NE T@ A RECGRD

100 DIM NsL72]

110 FILES TEST

120 F@R I=1 T@ 7

130 READ N$.A,B

140 PRINT #1,15N%:A,8

150 NEXT 1

160 DATA "JONES, JBHN PAUL",1747,1792

170 DATA "ANTHEBNY», SUSAN B.',1820,1906

180 DATA "WASHINGTON, B@GKER T."»1859,1915
190 DATA "BELL, ALEXANDER GRAHAM", 1847, 1922
200 DATA "EDISON, THBMAS ALVA'", 1847,1931
210 DATA "F@RD, HENRY",1863,1947

220 DATA "BLOOMER, AMELIA JENKS'",1818,1894

230 END
RUN
ENTERA

Program READA reads from file TEST and prints at the terminal.

READA

90 REM * READ NAMES FROM A FILE
100 DIM N$SE72]

110 FILES TEST

120 PRINT ** D@8 NAME*"
130 FOR I=1 Tg 7

140 READ #1,I3N$»A»B

150 PRINT AINS

160 NEXT 1

170 END

RUN

READA

114 Basic BASIC

DeB NAME

1747 JONES, JOHN PAUL

1820 ANTHONY», SUSAN B.

1859 WASHINGTON, BOOKER T.
1847 BELL,» ALEXANDER GRAHAM
1847 EDISEN, THOMAS ALVA
1863 FORD, HENRY

1818 BLBOMER, AMELIA JENKS

Program ORDERA arranges the data in the file alphabetically. Note that
line 190 is required so that when the comparison for order is made in line 160
after an. exchange has taken place, A$ stores the appropriate string. This is
necessary because data is stored in two places—in the file and in the variables
of the program. It is the programmer’s job to keep these two storage areas
coordinated.

ORDERA

90 REM * ALPHABETIZE NAMES IN A FILE
100 DIM AS[721,B%L72)

110 FILES TEST

120 FBR 1I=1 TO 6

130 READ #1,13A%5A5A1

140 F@R J=I+1 To 7

150 READ #1,J3BS$,B,Bl1

160 IF A$ <= BS$ THEN 200

170 PRINT #1,15B$,B,B1

180 PRINT #1,J35A8,A,A1

190 READ #1,13A%,AsA1

200 NEXT J

210 NEXT I

220 PRINT "“FILE ALPHABETIZED"

230 END
RUN
ORDERA

FILE ALPHABETIZED

And once again we run READA to see that the data is properly arranged in
the file.

RUN
READA

peB NAME

1820 ANTHBNYs SUSAN B.

1847 BELL, ALEXANDER GRAHAM
1818 BLOOMER, AMELIA JENKS
1847 EDIS@Ns, THBMAS ALVA
1863 FBRDs HENRY

1747 JONESs JOHN PAUL

1859 WASHINGTON, BOOKER T.

SUMMARY

The FILES statement is used to make files accessible to a program. We may
be able to replace the files named during execution using the ASSIGN state-
ment. We may print data into a file using PRINT #N;A,B,C$ to print in the
next available space serially. Or we may use PRINT #N,R;A,B,C$ to specily

Strings and Files 115

that the printing be at the beginning of record R. This approach is referred to
as random access. We have the same options in the file READ statement. READ
#N;A,B,C$ reads the next available data serially and READ #N,R;A,B,C$ reads
at record R. The IF END statement allows us to determine when we are read-
ing past the end of data in the file or are trying to read or print past the physical
boundaries of the file itself.

PROBLEMS FOR SEC. 7-5

1) Use the IF END “trap” to avoid reading empty records or past the physi-
cal end of the file in program READO02.

2) Modify ENTERA so that it will accept varying numbers of names and can
be used to add names to a file without “losing” data.

3) Modify READA to read any number of names.

4) Modify ORDERA to handle any number of names.

5) Modify ORDERA to arrange the data in increasing order of date of birth.

6) Write a program to print the names in file TEST at the terminal in alpha-
betical order without altering the arrangement in the file itself.

7) Write a program to print the names from file TEST in order of increasing
age at death without altering the arrangement within the file itself.

8) Since strings and numbers may be intermixed in a file and an attempt to
read one when the other is next will result in an error condition, it is desirable
to be able to distinguish between them. The TYP() function is provided for
this purpose. TYP(N) takes on a value of one if the next item in the file is a
numerie, two if the next item is a string, three if the next item is the end of file,
and, if N is negative, four if the next item is end of record. The absolute value
of N is the position of the file in the files statement. In order to get positioned
at the beginning of a record without reading data, we can READ #N,R. Using
the TYP() function and the positioning READ statement, write a program to
read the unknown contents of a file and print them record by record at the
terminal,

7-6 GENERAL ELECTRIC FILES

The files we are concerned with in this section are referred to as external files
since they store data externally to any programs, Files are generally charac-
terized in two ways: the access type and the data storage type.

Data in files may be accessed sequentially or at random. Sequential access is
similar to the way in which DATA statements of a program are accessed. Ran-
dom access is similar to the way in which the elements of an array are accessed.
As long as we know the exact position of a data item in a file, we may access
it directly.

The data contained in a file may be stored either as ASCII character codes
or as the binary representations of ASCII character codes and the numbers
being stored. We do not need to be concerned with the details of this distinction
when writing BASIC programs. We need only identify the slight differences in
program statement syntax required. ASCII files may be accessed only sequen-
tially whereas binary files may be accessed either sequentially or at random.

116 Basic BASIC

ASCII Files

ASCII files behave in many ways just like the DATA statements of a pro-
gram. The data must be read sequentially, beginning with the first data item
in the file. There is no way to access data at random points. The file may be
filled from the keyboard exactly as DATA statements of a program are typed,
but omitting the word DATA. The file may be listed at the keyboard with the
LISt command, just as programs may be listed. Lines may be corrected in a
file by retyping them. Lines may be removed by typing the line number fol-
lowed by a carriage return. In order to make a file available for future use, it
must be SAVed, just as a program must.

Perhaps the best way to learn about files is to study an example. Let’s type
an ASCII file containing test score data for a class. Suppose we consider a class
of only five people and enter their test scores on six tests.

File SCORE has been typed at the keyboard and SAVed as described earlier.
We list the file here:

LIST
SCRRE

100 MARK UNDERW@®BD,»65,83,92,77,68,79
110 SUSAN STALBERG»73,88,82577,69,79
120 EDGAR ANGLEMAN,»T74,86573,79,80,73
130 ALTHEA LARGE»91592,90599,92,90

140 GERTRUDE SMITH»715,86,87,90,8%,92

Now, to gain some file handling experience, let's make our first program
merely print the contents of the file under program control rather than use the
LIST command. This approach makes it possible to print labels and arrange
the data in an easy-to-read form. See program READTEST.

READTEST

94 REM #% READ FrROM A FILE AND PRINT OnN THE TErRMINAL
100 FILES SCORE

110 PRINT "WAME'","TEST! TEST2 TEST3 TEST4 TESTS TES6™
130 READ #15 NS

150 PRINT N$3 TAB(15)3;

160 FOR I =1 TO 6

170 READ #1, X

190 PRINT X3 '™ '3

200 NEXT 1

210 PRINT

230 IF MORE #1 THEN 130

260 END

RUN

NAME TEST! TESTZ2 TEST3 TEST4 TESTS TEST6
MARK UNDERWBOD 65 83 92 77 63 79
SUSAN STALBERG 73 88 82 77 69 79
EDGAR ANGLEMAN T4 56 73 T2 33 T3
ALTHEA LARGE 91 92 90 99 92 90
GERTRUDE SMITH 71 86 87 90 838 92

In program READTEST, there are just four statements of a file-handling
nature. The statement 100 FILES SCORE makes the file available to the pro-

Strings and Files 117

gram. The file must exist to execute the program. The statement 130 READ
#1, N$ is like 2a DATA READ statement except that the “#1” appears to notify
the computer to read from the first file named in the FILES statement. We may
name up to eight files there by separating them with semicolons. Statement 160
is another file read statement. A statement 999 READ #N, A B,X$,T would
read three numerics and one string from the Nth-named file in the FILES state-
ment. The statement 230 IF M@RE #1 THEN 130 has the ability to “look
ahead” in the file to “see” if there is more data in the file. If there is more data,
the computer is transfered to line 130; if not, then control passes to the next line.

Now that we are able to read the file, let’s perform the necessary operations
to find each student average and the class average, We will require two vari-
ables to store running totals. In program AVERAGE, T2 is the running total
for the class, and T1 is the student running total.

AVERAGE

94 REM * CALCULATE AVERAGES FROM A FILE

100 FILES SCORE

110 PRINT "NAME","TESTI TEST2 TEST3 TEST4 TESTS TEST6 AVERAGE"™
120 LET Ti=0

130 READ #15 NS

140 LET T2 = O

150 PRINT N$3 TABC15);

160 FER I = 1 TO 6

170 READ #1, X
180 LET T2 = T2 + X
190 PRINT X5 * '3

200 NEXT I
210 PRINT T2vs6
220 LET T! = T1 + T2

230 IF MORE #1 THEN 130

240 PRINT

250 PRINT '"CLASS AVERAGE = *"T1/30

260 END

RUN

NAME TEST1 TEST2 TEST3 TEST4 TESTS TEST6 AVERAGH
MARK UNDERWOGD 65 83 92 77 68 79 773333
SUSAN STALBERG 73 88 g2 717 69 79 78
EDGAR ANGLEMAN 74 86 78 79 30 78 791667
ALTHEA LARGE 91 92 90 99 92 20 9243333
GERTRUDE SMITH 71 86 37 90 838 92 85. 6667
CLASS AVERAGE = 82.5

Now that we know how to read an ASCII file under program control, let’s
see how to write data into such a file under program control. Suppose that we
consolidate the data in file SCORE, retaining just the names and averages to
write into a new file, SCOREL. To do this, we begin by naming both files in
the FILES statement. We may enter data into an ASCII file with the WRITE
#N statement. However, before writing into the file, it must be prepared for
writing with the SCRATCH #N statement. SCRATCH #N sets a pointer to
the beginning of the Nth-named file and prepares it for writing. In program
WRITEAVG, we print each name at the terminal just to show the progress
of execution during the program run. For large amounts of data, we might
simply print the number of names moved. See lines 110 and 140 of program
WRITEAVG.

118 Basic BASIC

WRITEAVG

94 REM *% READ SCORE -~ WRITE SCORE1L

100 FILES SCORE3 SCORE1

110 SCRATCH #2

120 READ #1, NS$»X1,X2,X3,X45X5,%6

130 PRINT NS

140 WRITE #2, NS3 (X1+X2+X3+X4+X5+X6)/6
150 IF MORE #1 THEN 120

160 END

RUN

MARK UNDERWOBD
SUSAN STALBERG
EDGAR ANGLEMAN
ALTHEA LARGE

GERTRUDE SMITH

Since this is an ASCII file, we may LISt it at the keyboard as follows:

SCORE 1

100 MARK UNDERWOOD, 77.3333 »
110 SUSAN STALBERGs 78 »

120 EDGAR ANGLEMAN, 79.1667 »
130 ALTHEA LARGE» 92.3333 »
140 GERTRUDE SMITH, B85.6667 »

Additional files statements include APPEND #N, which sets a pointer to the
end of data in a file and prepares the file for the write mode in a way similar
to that of the SCRATCH #N statement, and RESTORE #N, which sets a
pointer to the beginning of the file and prepares it for the read mode so that
we may read the data in a file more than once in a single execution of a program.

Binary Files

Binary files may be used only under program control. They may be either
sequential or random access. Sequential binary files are treated for programming
purposes exactly like ASCII files except that where pound signs (#) appear for
an ASCII file, a colon (:) is used for a binary file.

Random Access Files

Random access files may be segmented into blocks of storage called records.
We may dictate the size of each record and the number of records in a file when
we create it, much as we dimension a two-dimensional array. The record size
is measured in words of storage. The word requirements for data are as follows:

One word per numeric
One word per four string characters, or fraction thereof
One ward per string for internal computer control

The exact arrangement of data within a file is completely the programmer’s
responsibility. We must know exactly where data is to be found and what it
means. The situation is no different from data handling within an array except
that once data is in a file, it seems more invisible.

Strings and Files 119

For our first example, let’s simply write three rows of six numbers each into
a binary file with one program and then select some of them for printing at the
keyboard with another program. The storage requirements amount to just three
records, each containing six words. We obtain such a file with the CREate com-
mand, as follows:

CRE NUMB,(RAN(6,3))
See program RND.
RND
94 REM % LOAD RANDOM NUMBERS INTZ A BINARY FILE

100 FILES NUMB
110 FOR I =1 T8 3

120 FOBR J = 1 T8 6
130 LET X = RND(X)
140 WRITE 1, X
150 PRINT X3

160 NEXT J

170 PRINT

180 NEXT 1

190 END

RUN

0.98385 0.362274 0.250535 0.333074 0.250009 0.342306
0.676737 0.820017 0.290332 0.63319 0.373523 0.853779
04151996 0.975866 0.811924 0.448439 0.139038 0.847165

Notice that we are able to fill the file without regard to position in the file
because we are exactly filling each record as we go. This is not always the case.

To select locations at random within the file, we need the SETW statement.
SETW N T@ X places a pointer in file N to the Xth word in the file without
regard to file dimensions. Thus, in our file of six words per record, the ninth
word is the third word on the second record. To think in terms of records and
words within a record, we need a formula to determine the value of X. For the
Cth word in record R where there are W words per record, the value of X is
We(R—1) + C. Now let’s write a short program to find selected positions in file
NUMB. See program PICK. Notice that the REST@RE statement is not re-
quired for random access files. REST@ORE:N is equivalent to SETW N T@ 1.

PICK

94 REM * SELECT A NUMBER FREM A FILE AT RANDOM
100 FILES NUMB

110 PRINT "ROW,COL''3

120 INPUT RsK

130 IF R = 0 THEN 190

140 SETW 1 TO 6%(R-1) + K

150 READ :1, A

160 PRINT "FOUND"; A

170 PRINT
186 GOTO 110
190 END

RUN

ROW,COL? 2,3
FOUND 0.290332

120 Basic BASIC

ROW-COL? 3,6
FOUND 0.847165

RoW,CoL? 0,0

For our final example we will use a binary file to arrange the student data
from our ASCII file SCOREL in order of increasing test average. We must
write the necessary data into a binary file, arrange it, and then print the results.
This can be done with three different programs or with a single program. We
will use a single program here. See @RDERAUG.

To determine the size records required, we must know the number of char-
acters in the name strings. We find a maximum of 14 characters. We should
go to at least 16 since that is the next multiple of four. In practice, to make
such a file generally useful, we would probably go even higher. Allowing for
16 characters, we need four words for storage of string data, plus one word
for control, plus one word for the numeric. For this problem, a file with five
records containing six words per record is sufficient. We get that with CRE
SCORE2,(RAN(6,5)).

ORDERAVG

100 FILES SCORE13 SCORER

104 REM % WRITE DATA INTG BINARY FILE
110 FBR I = 1 10 5

120 READ #1, NS$»Al
130 SETW 2 T@ 6%(I-1) + 1
140 WRITE 3125, NSsAlL

150 NEXT I
154 REM % NOW ARRANGE THE DATA ACCORDING TO AVERAGES
160 FOR I = 1 TC 4

170 FORJ =1 + 1 T0 5

180 SETH 2 TO 6#(¢1-1) + 1
190 READ 2, NS»Al

200 SETW 2 To 6é%¢J-1) + 1
210 READ :2, M35,31

220 IF Al <= Bl THEN 270
230 SETH 2 TO 6%(I-1) + 1
240 WRITE $2s M3,81

250 SETW 2 TG 6%¢J-1) + 1
260 WRITE $2s NEsAl

270 NEAT J

280 NEXT 1
254 REM % AND NOW PRINT THE RESULTS
290 PRINT ' NAME'","AVERAGE"

300 PRINT
310 FER I = 1 TC 5
320 SETW 2 TO 6%CI-1) + 1
330 READ :2, NI,Al
340 PRINT NS»Al
350 NEXT I
360 END
RUN
MNAME AVERAGE

MARK UNDERWOOD 77.3333
SUSAN STALBERG 73

EDGAR ANGLEMAN 79.1667
GERTRUDE SMITH 85.6667
AL THEA LARGE 92. 3333

Strings and Files 121

SUMMARY

The FILES statement is used to make files accessible to a program. The files
of this section are of two types: ASCII and BINARY. ASCII files are sequential
and may be accessed from the keyboard or through a program. Binary files
may be either sequential or random access and may be accessed only through
a program. We may use READ #N, WRITE #N, SCRATCH #N, APPEND #N
or RESTORE #N to handle data in an ASCII file. For sequential binary files,
all of the above statement types may be used by replacing the pound signs (#)
with colons (:). For random access files, we have the additional statement
SETW N T@ X which sets a pointer at the Xth word of a file in preparation
for the next READ or WRITE statement. A file is made random access in the
CREate command.

PROBLEMS FOR SEC. 7-6

1) Type a few inventory items with quantity and price data into an ASCII
file. Write a program to print the value of each item and the total value of
inventory at the terminal.

2) Write a program to print a list of an unknown number of names in an
ASCII file at the terminal in alphabetic order. Use RESTORE #N and repeated
reading of the file for this purpose. Assume that there are no duplicates.

3) Consider a random access file containing five words per record and six
records filled with numbers. Write a program to find the largest number in each
record and the largest number in each “column.”

4) You are presented with a random access file with a set of ten names in it;
each name was entered first name first, followed by a space, followed by last
name. Since this ordering is difficult to alphabetize, you are to replace each
entry in the file rearranged so that the last name is first, followed by a comma,
a space, and the first name. You know that each string is to be allocated eight
words of storage.

5) (Project) Print some names into a random access file. Place a list of point-
ers to those names in an ASCII file so that if the pointers are read sequentially
from the ASCII file and used to access the names in the random access file with
the SETW statement, the names will be accessed in alphabetic order. Use the
ASCII file to print the names in alphabetic order.

CHAPTER 8

The Quadratic Function

We define a quadratic function as a real function of the form
f(X) =AX2+BX+C (8-1)

where A does not equal 0.

8-1 ZEROS

Often in mathematics we would like to find the zeros of a quadratic func-
tion. For some sets of coeficients, we may factor the expression on the right in
Eq. (8-1) and set each factor equal to 0. This would be the method to use
for £(X) = X2 + 3X + 2. We would find zeros as follows:

X24+3X+2=0
Factoring,

XX+1DX+2)=0
and X+1D=0 or X+2)=0
So X=-1 or X=-2

and the truth set is {—2, —1}.

However, in general for nonfactorable as well as factorable quadratic ex-
pressions on the right in Eq. (8-1), we may use the quadratic formula, which
may be derived by the method of completing the square. The zeros of
f(X) = AX2 4+ BX + C are

—B + VB* — 44C

X1 = o
_ —B—+/BY-4AC
X2= 2A

122

The Quadratic Function 123

Since we are going to insert these equations into a program we will write

YNNA LET X1 =(-B+SQR(B°°2—4*A°C)/(2°A)
and
Z7Z 410 LET X2=(~B—SQR(B*°°2—-4°A*C))/(2°A)

Now all we need is some data and some printing instructions (see QUADI),
which seems to work well enough. You will want to modify QUADI to
account for nonreal zeros. You may want to just print a message or you may go
ahead and compute the nonreal values. As the program stands though, if
B ®*® 2 —4° A * C is negative, the computer will at best print an error
message and at worst it will terminate the RUN,

QUADI

5 PRINT " A B c
10 READ A»B»C

15 IF A=0 THEN 99

20 LET X1=(~-B+SQR(Bt 2~ 4%xA%C))/ (2%A)
30 LET X2=(~-B-SQR(Bt2-4%A%C))/ (2%A)
40 PRINT A3B3CsX1,X2

45 GOTO 10

S0 DATA 1,3.2

60 DATA 1,25-352,45-656513:655,-1,2
70 DATA 0,0.,0

n, oy e, ux o

99 END
RUN
QuUAD1

A B c X1 X2

1 3 2 -1 -2

1 2 -3 i -3
2 4 -6 1 -3

[13 [} ~“e 666667 =15
5 7 2 H 4

DONE

8-2 AXIS OF SYMMETRY AND TURNING POINT

The graph of a quadratic function is called a parabola. In examining the
graph of a quadratic function we often want to know where the axis of
symmetry is and where the turning point is. By completing the square on
the right

f(X) =AX2+BX+C

f(x)=A| x4+ B x4 B2 _ BQ:]+C

R A 4A2 4A%
A xeqp Boxy B2l B2
FX)=A| Xe - X 4 4A2] T C
we get
—al B ? . 4AC —B?
f(X)=A] X+ 2Ajl +-————-———~4A

L

124 Basic BASIC

Now, when X = —B/2A, X + B/2A = 0. The value of f(X) is minimum if A
is positive and maximum if A is negative, and the value of f(—B/24) is
(4AC — B2)/4A. Thus the coordinates of the turning point are

B 4AC—B?
2A ° 4A

You should know, too, that the line whose equation is X = —B/2A is called the
axis of symmetry. We should now be able to write a program to print three
items of information: 1) the maximum or minimum status of the parabola,
2) the equation of the axis of symmetry, and 3) the coordinates of the turning
point. Let us collect things into a flowchart (see Fig. 8-1), and write program

QUAD2.

Fig. 8-1. Flowchart for finding axis
of symmetry, turning point, and
maximum—minimum status for

parabolas.

LETM
= SGN(A)

maximum

LET X = —B/
(2*A)

~

LETY = (4« A=C PRINT
—~B*x2)/(4s A) X, Y

QUAD

10
15
20

150
155
160
9999
RUN

The Quadratic Function 125

2

READ A»B.C
IF B=-.001 THEN 9999
PRINT A3B3C
IF A <> 0 THEN 30
PRINT "A=0 THE EXPRESSION IS N@T QUADRATIC"
GaTe 20
REM DETERMINE MAX. OR MIN.
LET M=SGN(A)
IF M=1 THEN 70
PRINT ‘'MAXIMUM PARABILA"
GOTY 80
PRINT "MINIMUM PARABILA™
REM FIND THE AXIS OF SYMMETRY
LET X=-B/{(2%A)
PRINT *"AXIS QF SYMMETRY 1§ X =";X
REM FIND THE EXTREME VALUE
LET Y=(4kA%C-Bt2)/ (4%A)
PRINT "THE TURNING POINT IS ('"™3X3"»"53Y3'")"
PRINT
GATe 10
DATA 1:3225152,-3,6213+6
DATA -355511
DATA 4,-.001,1
END

QUAD2

i
MINI

3 2
MUM PARABOLA

AXIS @F SYMMETRY IS X =-1.5

THE

1
MINI

TURNING PBINT IS (-1.5 »=e25)

2 -3
MUM PARABOL.A

AXIS @F SYMMETRY IS X =-1

THE

6
MINI
AXIS
THE

-3
MAXI

TURNING POINT IS (-1 =4)

13 6
MUM PARABOLA
OF SYMMETRY 15 X =-1.08333
TURNING P@INT IS (-1.08333 »-1.04167)

5 11
MUM PARABOLA

AXIS OF SYMMETRY IS X = .833333

THE

DONE

TURNING POINT IS (¢ .B33333 » 13.0833)

8-3 PLOTTING THE PARABOLA

One last consideration for the parabola is to plot its graph. This works well

right on
axis and

the terminal itself. We may use the spaces across the carriage as one
the paper lengthwise as the other axis. Since the line feed is auto-

matically set on the terminal, the X-axis should run perpendicular to the

carriage

and the Y-axis should run across the page. This means that one line

represents one unit on the X-axis and one space represents one unit on the
Y-axis. This is rotated 90 degrees clockwise from the conventional system.
Let us start out with the simplest possible graph and see what refinements

126 Basic BASIC

will be required. We will first graph Y = X ** 2. We will put “ ”; in a loop to
get the printing head to the point that we want plotted. Any printed character
may be used to represent the plotted points. The range you select will depend
on the width of the carriage on your terminal. Selecting the domain for X as

-7 to +7 we will require a range of 0 to 49.
When X = —7, we want the printing head to step out 48 spaces, then print

a character, and then RETURN. Now we want X to go to —6 and the printing
head will have to step out only 35 spaces, print a character, and RETURN. As
this process is repeated, it too will be put in a loop with X going from —7 to
47 incrementing by 1. It will be convenient to define a function here, not as
a saving now, but to fit in with later plotting problems. Before writing the
program PL@T1, let us draw a flowchart (see Fig. 8-2). Notice that we intend
printing the spaces followed by a semicolon and the plotted points also fol-
lowed by a semicolon. After the point has been plotted, we do not want the
printing head to step the rest of the way across the carriage as that would be
a waste of computer time for this particular plot. So line 62 is used to return
the printing head to the left margin. We should observe that the procedure
we are developing is not especially efficient in the first place, and so should
be used sparingly.

Start

DEF FNQ(X)
== X *% 2

L

FOR X
=—7T@7

Y = FNQ(X)?

NEXT X . NEXT V

Fig. 8-2. Flowchart to plot Y = X ** 2,

PLOT1

30 D

60 F
62 P
88 R
89 R

90 F
120
148
150
180
210
212
240
2170
RUN
PLOTI

DONE

The Quadratic Function 127

EF FNGQ(X)=Xt2

BR X=-7 T0 7

RINT

EM LINE 90 HAS THE EFFECT OF NUMBERING THE SPACES

EM ACR@SS THE PAGE 0 Te 70

@R Y=0 T@ 70

IF Y=FNG@(X) THEN 210

REM IF Y DOES N@T EQUAL FNQ(X) THEN PRINT A BLANK SPACE
PRINT ™ "3

NEXT Y
PRINT "%x'';
REM PLOT THE POINT AND G@ TO NEXT X
NEXT X
END
*
*
*
*
*
*
*
*

PLOT1 was not bad for our first try. If we are going to plot other para-

bolas, we

will have to make a provision for values of Y less than 0. So we

may change line 90 to read 90 FOR Y = ~M T@ 70 — M, where M is the
number of spaces to the left of 0, and then we can put M on INPUT:

90 F
S INP
4 PRIl
88

89

6 PRI
RUN
PLOT2

@R Y= -M TO 70-M
Ut ™
NT "INPUT THE NUMBER @F SPACES DESIRED T@ THE LEFT OF ZERG'":

NT

INPUT THE NUMBER @F SPACES DESIRED T@ THE LEFT @F ZERG?10

DONE

128 Basic BASIC

We have indeed graphed Y = X °® 2; however, the graph is not clearly
defined because there are no axes to specify the coordinate system. Let us
build up the coordinate system by first putting in the origin by plotting a 0
there. Immediately, we are faced with a decision. If the graph contains the
origin, do we want the plotted point or the origin designation? Since the
absence of the plotted point for X = 0 would indicate that it should have been
plotted at the origin, let us plot the 0 at the origin as first priority. So, before
anything gets done for a particular value of X, we ask if the value of Y is 0.
If it is, we next look for the point at which X is also 0. At (0, 0) we print 0.
Having printed 0, we next look to see if FNQ(X) is greater than 0. If it is, we
send the printing head on across the page.

92 IF Y <> 0 THEN 120

94 IF X <> 0 THEN 120

95 REM IF THE COMPUTER GETS THROBUGH HERE THE
96 REM PRINTING HEAD IS AT THE ORIGIN

98 PRINT ''0";

100 IF FNQ@(X)>0 THEN 180

102 REM IF FNGQ(X) > 0 GO FIND WHERE IT IS
103 REM @THERWISE GET THE NEXT VALUE OF X

106 GATG 240

RUN
PLOT3

INPUT THE NUMBER OF SPACES DESIRED T@ THE LEFT OF ZERQ?6

DONE

As long as we have the X-axis located, we might just as well put it in
the graph. All that is necessary is to have a PRINT instruction whenever
Y = 0 but X does not.

94 1IF X=0 THEN 98
95 PRINT '3

96 GBTO 100

RUN

PLOTA

The Quadratic Function 129

INPUT THE NUMBER @F SPACES DESIRED T8 THE LEFT OF ZERO?9

*

D B T S T TR Y
*

DONE

Finally, we may put in a Y-axis. Let us settle for having the Y-axis along
the leading side of the graph. By putting the Y-axis there, we will be able to
print the scale without interfering with the graph itself. For the particular
graph we have been plotting a range from 0 to 50 is reasonable.

8 PRINT " b

10 FBR X=0 T@ 50 STEP 10
12 PRINT ™ "3X3

14 NEXT X

15 PRINT

16 FBR X=1 T@ 70

g IF X/10=INT(X/10) THEN 24
20 PRINT '"-*;

22 GOTe 26

24 PRINT "'

26 NEXT X

PLOTS

INPUT THE NUMBER OF SPACES DESIRED TG THE LEFT OF ZERG?9

¢} 10 20 30 40 50
---------- L T e I e R L

t *

t *

t *

t *

t *

1 *

Tk

¢}

tk

t *

1 *

1 *

t %

1 *

t *

DONE

130 Basic BASIC

At this point, the program is scattered all over the place and some of the
iine numbers are very close together. So we renumber beginning with line 10
and print the entire program in PLATS5.

PLOTS

10 PRINT "INPUT THE NUMBER OF SPACES DESIRED TG THE LEFT OF
ZERD"3

20 INPUT M

30 PRINT

40 PRINT * 3

S0 F@R X=0 T@ S0 STEP 10

60 PRINT * Y3X3

70 NEXT X

80 PRINT

90 FOR X=1 TO 70

100 IF X/10=INT(X/10> THEN 130

110 PRINT *-'*;

120 GRTO 140

130 PRINT *'r*3

140 NEXT X

150 DEF FN@(X)=Xt2

160 F@R X=-7 T0 7

170 PRINT

180 FOR Y=-M TO 70-M

190 IF Y <> O THEN 280

200 IF x=0 THEN 230

210 PRINT "t

220 GOTO 240

230 PRINT "0'*;

240 IF FNG(X)>0 THEN 310

250 REM IF FNQ(X) > O GO FIND WHERE IT IS
260 REM OTHERWISE GET THE NEXT VALUE OF X
270 GBTO 340

280 IF Y=FNG(X) THEN 320

290 REM IF Y DGES NOT EQUAL FNG(X) THEN PRINT A BLANK SPACE
300 PRINT " '3

310 NEXT Y

320 PRINT "%';

330 REM PLOT THE POINT AND GO T@ NEXT X
340 NEXT X

350 END

There are still several considerations regarding this program for plotting.
For instance, as the program is written, it will not plot the X-axis if the Y
value is less than 0. The scale is fixed. There is provision for only one function
to be plotted. Also, consider what happens if the value of Y is not an integer.
All of these comments suggest areas in which the program could be improved.
Let us insert a different function and call for one last RUN of PLATS.

150 DEF FNGCX)=(X-2)t2+3
160 FOR X=-5 T3 8

RuUN

PLOTS

The Quadratic Function 131

INPUT THE NUMBER UF SPACES DESIRED T@ THE LEFT OF ZER2?9

o} 10 20 30 40 50
--------- e e et B e e e
1 *
t *

A *
* *

t *

0 *

T *

) *

t *

* *

L 4 *

A *

A *
t *

DONE

SUMMARY FOR CHAP. 8

There are several things that can be done with the quadratic function on a
computer: 1) we can calculate the zeros; 2) we can find the various constants
that specify the appearance of the graph; 3) and we can even use the terminal
itself to plot a graph of the function. Of course the graphing program may be
used to plot other functions as well.

PROBLEMS FOR CHAP. 8

1) Write a program that finds the results of QUADI, but prints rational zeros as
fractions reduced to lowest terms.

2) Modify QUADI to compute nonreal zeros.

3) The Y-coordinate of the turning point of a parabola may also be found by
cvaluating f(—B/(2 ® A)). Rewrite QUADZ2 by defining a function.

4) For sets of coeflicients in data lines, have the computer print coordinate pairs
(X, Y) for a reasonable range.

5) Modify PL@T5 to permit the X-axis to be printed for Y-coordinates less than
0. Also provide for the point to be plotted where the graph crosses the X-axis.

CHAPTER 9

Trigonometry

9-1 INTRODUCTION TO SIN(X), C@S(X), AND TAN(X)

We choose to define the circular functions in terms of a point (X, Y) plotted
in a rectangular coordinate system. Consider the point (X,Y). It is at a dis-
tance R from the origin. We may find R from X and Y by using the
Pythagorean theorem:

R=yXT+ Y2

It is conventional to use Greek letters for angles. However, since computer
terminals do not provide them, we may use any letters we wish, Let us use G
to measure the angle whose initial side is the non-negative portion of the
X-axis and whose terminal side is the ray that has its endpoint at the origin and
contains the point (X, Y). See Fig. 9-1.
From Fig. 9-1 we define three circular functions as follows:

cos G = X/R

sin G = Y/R

tan G = Y/X

where cos stands for cosine, sin stands for sine, and tan stands for tangent.

In BASIC it is required that the angles be meuasured in radians. 1 radian
may be defined as the central angle subtended by an arc length of R on the
circumference of a circle of radius R. Since the circumference of a circle of
radius R is 27rR, we see that

27r radians = 360 degrees
ar radians = 180 degrees
1 radian = 180/7 degrees
7r/ 180 radians = 1 degree

132

Trigonometry 133

R X, V)

Fig. 9-1

Although some time-share systems provide the special computer functions
RAD(X) and DEG(X) to convert from degrees to radians and from radians to
degrees, respectively, you should be prepared to make the required conversions.

The usually available computer trigonometric functions are SIN(X),
C@S(X), and TAN(X). They are used in much the same way that all other
computer functions are used. Just be sure that the argument of the function
is in radians.

In mathematics, it is customary to define three additional circular functions
as follows:

sec G = R/X or sec G = 1/cos G
cse G = R/Y or ese G = 1/sin G
cot G =X/Y or cot G = 1/tan G

where sec stands for secant, csc stands for cosecant, and cot stands for
cotangent. Some computers provide these three functions in addition to the
eatlier three, but we may always use the appropriate reciprocal. As always,
should an expression become too cumbersome, we have the option of defining a
program function using DEF.

Let us get the computer to print a small table of values of sin, cos, and
tan for 0 to 80 degrees in intervals of 10 degrees. We stop short of 90 degrees
to avoid having an undefined value for the tangent of 90 degrees. To write
program TRIG1, we will have to convert degrees to radians, so we multiply
by 7/180.

9-2 RIGHT TRIANGLES AND ARCTANGENT

Taking the graph of Fig. 9-1 and dropping the perpendicular from (X, Y)
in the first quadrant to the X-axis we get Fig. 9-2. We have formed a right
triangle in which the length of the hypotenuse is R, the length of the base is
X, and the length of the altitude is Y. Redrawing the triangle without the
coordinate system, we get triangle ABC with the trigonometric ratios as in
Fig. 9-3.

134 Basic BASIC

TRIGI

5 PRINT "SINE"."CBSINE">"TANGENT", *RADIANS', “"DEGREES"
9 REM WE COMPUTE A CONVERSION CONSTANT

10 LET C=3.14159/180

20 F@R G=0 T@ 80 STEP 10

30 PRINT SINC(G:C)»COSCG%C)» TANCG%C)» GxC» G

40 NEXT G

50 END
RUN
TRI Gt
SINE COSINE TANGENT RADIANS DEGREES

0 1. [e] 0 o]

« 173648 «+ 984808 «176327 « 174533 10

» 34202 - 935652 « 36397 e 349066 20

«5 - 866025 « 57735 « 523599 30

°+ 642788 - 766044 «B391 « 698132 40

« 766044 « 642788 1.19175 +B72665 50

- 866025 - 1. 73205 1.0472 60

+939692 « 34202 2. 74748 1.22173 70

« 984808 - 173648 567129 1.39626 80
DONE

Y
xY)
R y
e —— X
X
Fig. 9-2
B
¢ a
cos/ A=Db/c
cin/ A= alec
A \ C tan/_A=a/b
b

Fig. 9-3

Trigonometry 135

-

B

Fig. 9-4

We also know from geometry that £ A and /B are complements, i.e., their
sum is 90 degrees or 7r/2 radians.

Let us solve a problem: George has a 36-ft ladder which he is going to use
to paint his father’s house. He believes that the angle formed by the ladder
and the side of the house should be not less than 14 degrees and not more
than 15 degrees. He needs to know how far out from the house to place the
foot of the ladder. See Fig. 9-4.

We may use either SIN(G) = B/L or C8S(90 — G) = B/L. Let us choose
the sin function and solve for B:

B =L ®° SIN(G)

We will have to convert degrees to radians. This is the purpose of line 10 in
program LADER.

LADER

10 LET C=3.14159/180

20 LET L=36

30 PRINT "36' LADDER BASE MUST BE OUT FROM THE HOUSE IN FEET"
40 PRINT "NOT LESS THAN',"NOT MORE THAN"

SO PRINT L*SINCC*14),L*%SINCC%15)

60 END

RUN

LADER

36" LADDER BASE MUST BE OUT FROM THE HOUSE IN FEET
N@T LESS THAN NOT MORE THAN
8.70918 9.31748

DONE

We really do not need more than hundredths, so let us round off. Also,
since George may want to change the length of the ladder to reach different
heights, let the ladder length go from 36 ft to 20 ft. See LADERI.

136 Basic BASIC

LADER1

10 LET C=3.14159/180

30 PRINT “LADDER BASE MUST BE QUT FR@M THE HOUSE IN FEET"

40 PRINT "NOT LESS THAN'",“N@T MORE THAN","LADDER LENGTH"

45 FOR L=36 18 20 STEP -2

50 PRINT INTCL*SINCC*14)%100+.5)/100s INTCL*SINCC*15)*%100+.5)>/100,
51 PRINT L

55 NEXT L

60 END

LADERI

LADDER BASE MUST BE QUT FROM THE HE@USE IN FEET
NOT LESS THAN NOT MORE THAN LADDER LENGTH

871 932 36
8.23 8.8 34
T« 74 8.28 32
726 Te76 30
6+ 77 725 28
6.29 6.73 26
5.81 6.21% 24
5. 32 5. 69 22
4.84 5.18 20
DGNE
ATN(X)

Suppose we know the lengths of the sides of a right triangle and we need
to know the angles. If we are using printed tables in a book, we may look up
the angle whose sin, cos, or tan is known. Not so with the computer. An addi-
tional computer function is required for this. ATN(X) is the function usually
available, though some systems will provide others as well. ATN(X) computes
the angle whose tangent is X. If

TAN(G) =X
then
ATN(X) =G

where ATN stands for arctangent and C is in radians.

ﬁg_95 ////,/////x\\\\\\\\\

~H

Trigonometry 137

Suppose we lean a 36-ft ladder against a building with the base 8 ft out
and we would like to know the angle formed by the ground and the ladder,
as in Fig. 9-5. We can say

TAN(G) = H/8

which means

ATN(H/8) =G
H=SQR(36°°2—8°°2)

Therefore, G may be found in radians by

G = ATN(SQR(36 °® 2 — 8 °° 2)/8)

and the angle in degrees may be found by
LET G =G * 180/

See LADER2.

LADER2

10

LET G=ATNC(SGR(36t2-812)/8)

15 PRINT Gs'RADIANS"
20 LET G=6%180/3.14159
30 PRINT G:'"DEGREES™
40 END
RUN
LADER2

143467 RADIANS

77. 1605 DEGREES
DONE

SUMMARY

We now may apply the computer to the trigonometry of the right triangle
using SIN (X), COS(X), and TAN(X) to find sides when angles are known and
using ATN(X) when we wish to compute angles. We must always be aware of
the need to use radians for the argument of the computer trigonometric
functions.

1) Modify LADER2 to give the angle in degrees and minutes.

PROBLEMS FOR SEC. 9-2

2) Modify LADER2 to give the angle in degrees, minutes, and seconds.
3) Rewrite LADER2 so that the number of radians is given in terms of .

4) If the sides of a triangle are 10, 10, and 4, find the angles of the triangle to
the nearest minute.
5) Find the angles of a 3, 4, 5 right triangle to the nearest minute.

6) Find the angles of a 5, 12, 13 right triangle to the nearest minute.

138 Basic BASIC

7) A right triangle has one angle 42°25 and the side opposite that angle has a
length of 10.0”. Find the other sides of the triangle.

8) Standing 1000 ft from the base of a lighthouse on level ground, the angle of
clevation is 7°30’. Find the height of the lighthouse.

9.3 LAW OF SINES AND LAW OF COSINES
Law of Sines

By drawing a triangle successively with each of its vertices at the origin of
a rectangular coordinate system, we may compute jts area in three ways.
Referring to Fig. 9-6, the area is found by

Area = %b(H1) or #a(H2) or #e(H3) (9-1)
We should see that

sin C1 = H1/a

sin B1 = H2/¢

sin Al = H3/b
Solving for the heights we get

Hl =asinCl
H2 = ¢sin Bl
H3 = bsin Al

Substituting in Eq. (9-1) we get
Area = %b(a sin CI) or #a(c sin B1) or %e(bsin Al) (9-2)

Therefore we may find the area of any triangle by taking one half the product
of two sides and the sine of the included angle.

Since the area of a triangle is unique, we may set the three expressions for
area in Eq. (9-2) equal to get

¥ba sin C1 = %ac sin B1 = ¥%cb sin Al
By clearing of fractions and dividing through by abc, we get

sinCl ~ sinBl sin Al
¢ T b T a
Equation (9-3) is called the Law of Sines. It enables us to find all parts of a
triangle if we are given any two sides and the angle opposite one of them, or
if we are given any two angles and any one side (provided, of course, the
triangle exists).
Let us write a program to find the remaining parts of a triangle ABC given
Al, Bl, and a. Since the sum of the measures of the angles of a triangle is
180 degrees, we first get

Cl = 180° — (Al 4 B1) (9-4)

(9-3)

Trigonometry 139

Y Y Y c1

H1i AN b
Al b Ci1 i a g1 B1{€¢ A1

s

Fig. 9-6
The Law of Sines gives us
sinAl sin Bl
a — b

Solving for b gives

asin B1
sin Al

Similarly we get

__ bsinCl1
sin B1

And finally, the area may be found by
Area = J#ab sin C1 (9-7)

All we have to do is put all that into a program. We may do that almost
directly from Egs. (9-4)-(9-7). These four equations appear in order in lines
60, 70, 80, and 90 of program LAWSIN.

In writing the program, we have done only slightly more work than we
would do preparing to do the calculation by hand. However, we are letting
the computer take the drudgery out of the actual calculation. We also have the
program available to do large numbers of calculations at a later date with
virtually no additional effort required. However, we continue to be totally
responsible for the mathematics required.

If we reflect for a moment upon the congruence of triangles, the various
congruence conditions come to mind. They are side-angle-side, angle-side-angle,
side-side-side, and angle-angle-corresponding side. There are special cases for
right triangles. We should see then, that if any of these four sets of measures
is known, we should be able to find the remaining three parts uniquely. And
so we can. We have just used LAWSIN for two angles and a nonincluded
side. We should be able to handle two angles and the included side with only
slight modifications of LAWSIN. However, you should see that we cannot
handle side-side-side or side-angle-side with the Law of Sines. For these we
need the Law of Cosines.

b= (9-5)

(9-6)

140 Basic BASIC

LAWSIN

g KEM WE COMPUTE THE CONVERSION FACTOR

10 LET K=3.14159/7180

18 REM DEFINE TRIG FUNCTION FORX DEGREES

20 DEF FNT(GI=SIN(G*K)

28 REM DEFINE A ROUNDING FUNCTI®N

30 DEF FNR(X)=INT(X*100+.5>)/100

38 REM' Al AND Bl ARE ANGLES AND A IS A SIDE
40 READ Al,Bl,A

50 IF A1=0 THEN 999

58 REM FIND THE THIKD ANGLE

60 LET Cl1=180-(Al1+B1)

68 REM 70 AND 80 CBMPUTE THE OTHER TW0 SIDES
70 LET B=AXFNT(B1)/FNTC(AL)

80 LET C=B*FNTC(CI)/FNT(B1)

88 REM COMPUTE AREA

90 LET A2=.5%A%xB*FNT(C1)

98 REM NOW PRINT THE RESULTS

100 PRINT " ", A, B, C"

110 PRINT "THE ANGLES ARE'",A1,B1,C1

120 PRINT "THE SIDES ARE", FNRCA), FNR(B), FNR(C)
130 PRINT "AND THE AREA IS "; FNRCA2)

140 PRINT

150 GBTO 40

500 DATA 24,51,10

510 DATA 30,60,15

520 DATA 45, 45,20

530 DATA 0,0,0

999 END
RUN
LAWSIN

A 8 c
THE ANGLES ARE 24 51 105
THE SIDES ARE 10 1911 23. 75
AND THE AREA IS 92.28

A B C
THE ANGLES ARE 30 60 90
THE SIDES ARE 15 25.98 30
AND THE AREA I35 194.86

A B C
THE ANGLES ARE 45 45 90
THE SIDES ARE 20 20 28.28

AND THE AREA IS 200

DBNE

Law of Cosines

For any triangle A1B1C1 we may place a vertex at the origin of a rectangu-
lar coordinate system and designate the vertices as shown in Fig. 9-7.

Usitig thie Tyiliagorean ihevrem, we may cumpuie a2 by
a? = (c cos Al — b)2 + (csin Al)?2
Simplifying the right side we get
a? = ¢? cos? Al — 2bc cos Al 4 b? 4 ¢?sin? Al

Trigonometry 141

(c cos A1, ¢ sin A1)
B1
c a
- X
Al b 1
(0,0} (b, 0)
Fig. 9-7
Rearranging terms
a? = b? + c*(cos? Al + sin? Al) — 2bc cos Al
Since cos® Al + sin® Al = 1, we finally get
a% = b2 4 ¢ — 2be cos Al (9-8)

Equation (9-8) is the statement of the Law of Cosines solved for vertex Al at
the origin. Placing B1 at the origin we would get

b? = a? + ¢? - 2ac cos Bl (9-9)
and placing C1 at the origin would produce
¢ = a? 4 b2 — 2ab cos C1 (9-10)

In the form of Egs. (9-8)-(9-10) the Law of Cosines is appropriate for
handling problems in which two sides and the included angle are given. Once
you obtain the third side by taking the square root of the right side of the
equation, you may use the Law of Sines to obtain a second angle, or you may
proceed as for the side-side-side congruence.

If we solve Eq. (9-8) for cos Al, we get

b2 + ¢ — a2

cos Al = obo

(9-11)

So, if we are faced with a side-side-side congruence, we may easily find the
value of cos Al. Now our only problem is to get the value of Al from the value
of cos Al. This will require the ATN (X) function. We should know that

sin Al
cos Al

and for Al between 0 and 180 degrees, sin Al is always positive. Thus,
sin Al = /1 — cos? Al (9-12)

tan Al =

142 Basic BASIC

Thus
_ V1—cos?Al
tan Al = cos Al
And so,
T cos2 A1
Al = ATN (ML cos®AlL (9-13)
cos Al

Now, we will be able to translate Eqs. (9-11)-(9-13) into BASIC program
statements. From Eq. (9-11) we get

LETT=(B"®*2+C®°2—-A°""2)/(2°B°C)
and from Eq. (9-12) we get

LET T1 = SQR(1L — T °° 2)
and finally from Eq. (9-13),

LET Al = ATN(T1/T)

These three statements constitute the heart of our program LAWC®S which
reads three sides from data and prints all six parts of the triangle. See espe-
cially lines 50, 60, and 70.

We could have done the work of lines 90 through 120 by shuffling the data
around and using lines 50 through 80 as a subroutine.

SUMMARY

This section has been devoted to solving triangles which may be uniquely
determined. We have developed the Law of Sines into a program to solve the
case of two angles and a nonincluded side and indicated that, with a few
changes, the angle-side-angle case is solvable by the Law of Sines also.

The Law of Cosines has been used to find the angles of a triangle whose
sides are known. It has been indicated that the case of side-angle-side is appro-
priate for the Law of Cosines also. This covers the uniquely determined cases
except hypotenuse-leg. There remains the ambiguous case. If two sides and a
nonincluded angle are given, there may be two, one, or no triangles possible.
If solvable, such triangles are solvable by the Law of Sines. This is left to the
student in the exercises.

PROBLEMS FOR SEC. 9-3

1) Write a program to solve the angle-side-angle case.

2)* Write a program to handle given two angles and a nonincluded side, and two
angles and the included side. Use an item of data to determine which kind of data
is provided.

3) Modify LAWOCYS to use lines 30, 60, 70, and 60 as a subruuiine and shuille
the data as discussed in text.

4) Write a program to solve the side-angle-side case.

5) Write a program to handle given three sides, and two sides and the included
angle. Use an item of data to designate which set of data is provided.

LAWC

10
15
20
30
40
48
S0
58
60
68
70
78
80
88
90
100
110
120
130
140
150
500
510
520
530
999
RUN

Trigonometry 143

@S

DEF FNRC(X)=INT(X%100+.5)/100
PRI NT L] I'. .”" All. ” Bl!’ ” c!‘
READ A,B,C
IF A=z0 THEN 999
PRINT '"THE SIDES ARE',AsB,C
REM T IS REALLY C@SCA1)
LET T=(B12+Ct2~At2)/(2%B*(C)
REM Tl IS REALLY SINCA1)
LET T1=SQR(1-T*2)
REM Al IS THE ANGLE INCLUDED BY SIDES B AND C
LET Al=ATNC(TI/T)
REM CeNVERT RADIANS TO DEGREES
LET A1=A1#%180/3.14159
REM WE NOW REPEAT THE PROBCESS T@ FIND ANGLE Bl
LET T=(Ar2+4Ct2-Bt2)/(2%A%(C)
LET T1=SORC1-Tt2)
LET BI=ATNC(TI/T)
LET Bl=B1%180/3.14159
PRINT "THE ANGLES ARE"™,FNRCA1),FNR(B1),180-(FNRCAL)+FNR(B1))
PRINT
GaTe 20
DATA 3, 4,5, 300, 400, 500
DATA 1.73205,1,2
DATA 2,2,3
DATA 0,0.,0
END

LAWC@S

THE
THE

THE
THE

THE
THE

THE
THE

DANE

A B
SIDES ARE 3 a
ANGLES ARE 36.87 53.13

w0

SIDES ARE 300 400 S00
ANGLES ARE 36.87 53.13 90

SIDES ARE 1.73205 1 2
ANGLES ARE 60 30 90

SIDES ARE 2 2 3
ANGLES ARE 41.41 41. 41 27.18

/ 6) Write a program to solve the ambiguous case. Be sure to provide for no
triangles, one triangle, or two triangles.
v/ 7) Rewrite problem 3) to handle degrees, minutes, and seconds.
J 8) Rewrite problem 4) to handle degrees, minutes, and seconds.
9) Project: Write a single program to process data in four uniquely determined

cases. You

might include the HL case.

9-4 POLAR COORDINATES

Every point in a rectangular coordinate system may be named by a unique
pair of real numbers. The pair is usually designated (X, Y). If we plot a point
(X,Y), we find that we may determine anothier ordered pair of numbers, one
of which is the distance from the origin and the other is an angle measured

from the

positive portion of the X-axis to the ray with endpoint at the origin

144 Basic BASIC

and containing point (X, Y). If we call the distance R and the measure of the
angle G, we may designate a new ordered pair (R, G). Refer to Fig. 9-1.

Ordered pairs of this kind are called polar coordinates. The ray consisting of
the origin and the positive portion of the X-axis is called the polar axis and
the origin is called the pole. Our new coordinate system appears in Fig. 9-8.
Such a coordinate system is particularly adapted to plotting periodic functions
with finite upper and lower bounds.

R, G) Fig. 9-8

POLE POLAR AXIS

Note that there is no one-to-one correspondence between ordered pairs and
plotted points for the polar coordinate system. How do we designate the
origin? (0, 0°)? How about calling it (0, 10°) or (0, —25°)? Also note that
(1, 45°) and (1, 405°) name the same point. Any particular ordered pair does
name a unique point, but every point may be named by an unlimited number
of ordered number pairs in this polar coordinate system.

Looking at the polar equation R = cos G suggests that for some values of G
we would like to allow R to take on negative values. So we extend the defini-
tion of R to permit this. The absolute value of R is the distance of the point
from the pole and we define (—R, G) and (R, G 4 180°) to name the same
point.

Some polar equations are relatively easy to convert to rectangular form.
For instance,

R=2cos G

is equivalent to

2X
VLY
which is equivalent to

X24+Y2—-2X=0

VRET Y=

which turns out to be a circle with radius 1 and center at the point (1, 0).
However, other polar equations are not so easily identifiable when converted
and so are more appropriate to plot on a polar coordinate system. Consider,

R=1-—2cosCG (9-14)
R =2 + sin 2G (9-15)
R=1+42cosG—3sin2CG (9-16)

No matter how you approach plotting any of these, you run into a tremendous
amount of calculating.

Trigonometry 145

We can easily get the coordinates of the points to plot for all three of these
in the same computer program.

In program POLAR we have simply defined a function for each of the Egs.
(9-14), (9-15), and (9-16), and put the value of the angle G in a loop to get
values every 15 degrees. We are not obligated to define functions, but with
converting to radians and rounding off to hundredths this seems a reasonable
approach. Now if we want different functions we only need change the
printing in line 10 and redefine the new functions in lines 30, 40, and 50. Of
course the actual plotting is left to the student to do on polar coordinate paper.

PBLAR

5 LET K=3.141597180

10 PRINT "ANGLE'"»"1-2C0SCG)"> "2+ SINC2G) ", " 1+2CAS(G) - 3SINCGY 2"
20 DEF FNR(X)I=INT(X*100+.5>/100

30 DEF FNA(X)=1-2%COS(K*X)

40 DEF FNB(X)=2+4SIN(2%K%X)

50 DEF FNC(X)=1+2%COS(K*X)~3xSIN(K®kX)t2

60 F@R G=0 T@ 360 STEP 15

70 PRINT Gs FNRCFNACG)) s FNRCFNBC(G))» FNRCFNCC(G))

80 NEXT G

90 END

RUN

PROLAR

ANGL.E 1-2C05¢6) 2+SIN(2G) 1+2CO0SCEY-3SINCY 12
0 -1 2 3

15 ~+93 245 2. 73
30 -.73 2.87 1.98
45 ~+ 41 3 91
60 0 2.87 ~-+25
75 .48 245 -1.28
90 1 2 -2
105 1.52 1.5 -2.32
120 2 1.13 ~-2.25
135 2. 41 1 ~1.91
150 2. 73 1.13 -1.48
165 2.93 1.5 -1.13
180 3 2 -1
195 2.93 2.5 -1.13
210 2.73 2.87 ~1.48
225 2. 41 3 ~1.91
240 2 2.87 -2.25
255 1.52 2.5 ~-2.32
2170 1 2 -2
285 . 48 1.5 -1.28
300 0 1.13 ~«25
315 .41 i «91
330 -. 73 1.13 1.98
345 ~-+93 1.5 2. 73
360 -1 2 3

DONE

SUMMARY

The computer is an invaluable aid to obtaining values of ordered pairs of
polar coordinates for polar equations.

146 Basic BASIC

PROBLEMS FOR SEC. 94

1) Obtain polar coordinates for plotting any of the following polar equations. /It
would be instructive to plot the graph as well.)

(a) R = cos 2G

(b) R = cos 3G

() R = cos 4G

(d) R = sin 2G

(e) R = sin 3G

f) RecosG=1

(g) R=1+Rcos G
(h) R =sin G + cos G

2) Write a program to convert from polar coordinates to rectangular coordinates
for any of the polar equations in problem 1).
v 3) Write a program to store rectangular coordinates in an array for any of the
polar equations in problem 1) except (f) and (g) and then rearrange the ordered pairs
in order of increasing values of X. Print the resulting set of ordered pairs. Plot the
graph on rectangular coordinate paper and compare it with the plot obtained in
problem 1).

CHAPTER 10

Complex Numbers

10-1 FUNDAMENTAL OPERATIONS

In the development of mathematics we find that we cannot solve the
equation

X24+1=0
if we are limited to real numbers. We want to say

X = \/:T or X=—y-1
However, such numbers are not allowed in the real number system. So we
define a new number i such that

=1 or i= \/:T

Then, if we should try to solve X* + 2X + 2 = 0 using the quadratic formula,
we get

_ —2++/4-8) =2/
X = — ox X = B
and we decide to call \/..__Z the same number as i\/z which is 2i. So now
-2
2
or X=—1+41i
R

These two numbers are representative of complex numbers in rectangular form.
In general, rectangular form is written as a + bi, where a and b are real num-
bers. Another number could be written ¢ + di. Of course, the computer cannot
handle a + bi because it is limited to real numbers. But we can deal with the
two real numbers a and b. This means that we will be working with complex
numbers in ordered pair form or (a, b) form. Since the computer terminal is
limited to capital letters, we use (A, B).

147

148 Basic BASIC

For two complex numbers (A, B) and (C, D) we define equality:

(A,B)=(C,D)
if and only if

A=C and B=D (10-1)
Their sum is found by

(A,B) + (C,D) = (A+C,B+D) (10-2)
and their product is found by

(A, B)* (C,D) = (AC — BD, AD + BC) (10-3)

Equations (10-1), (10-2), and (10-3) are relatively straightforward consid-
erations for a computer program. We can test a pair of real numbers for
equality with ancther pair or we can perform the addition of Eq. (10-2) or the
multiplication of Eq. (10-3). As an example, let us write a short program to
add two complex numbers on INPUT. See ADDA, B.

ADDA»B

10 PRINT "THIS PROGRAM ADDS TW@ COMPLEX NUMBERS IN A»B FORM™
20 PRINT

30 PRINT ** FIRST NUMBER':

40 INPUT A.,B

50 IF A=999 THEN 999

60 PRINT * SECOND NUMBER";

70 INPUT C»D

80 PRINT "THE SUM IS ('";A+C3*»"iB+D;'™"'
90 GOTG 20

999 END
RUN
ADDA,» B

THIS PROGRAM ADDS TWe COMPLEX NUMBERS IN A,B FORM
FIRST NUMBER?1, 4
SECBND NUMBER?0,0
THE SUM IS ¢ 1 > 4)
FIRST NUMBER?1,5
SECGBND NUMBER?3,8
THE S5UM IS5 ¢ 4 » 13)
FIRST NUMBER?~467,902
SECOGND NUMBER?56,-1234
THE SUM IS ¢(-41} ,-332 »

FIRST NUMBER?999, 1

Subtraction and multiplication are also relatively straightforward.
Now consider division:

(A,B)/(C,D) = (X,Y) (10-4)

Complex Numbers 149

Equation (10-4) may be defined in terms of multiplication:
(A,B)=(X,Y)®(C,D)
(A, B) = (XC — YD, XD + YC)

By the definiton of equality for complex numbers,
A=XC-YD and B = XD+ YC

Solving for X and Y we get

__AC+3BD _ BC—-AD
X=—ripe TDe and Y = i DT
This is a little more complicated than the other operations, but still manage-

able.

SUMMARY

The computer may be programmed to work with complex numbeys, if we
represent them as ordered pairs of real numbers. The four fundamental oper-
ations of addition, subtraction, multiplication, and division may all be done
by formula.

PROBLEMS FOR SEC. 10-1

1) Write a program to give the sum, difference, product, and quotient for pairs
of complex numbers assigned as data.

9) Write a program to compute and print the complex roots of quadratic
equations.

3) Write a program to test the commutative properties of both addition and
multiplication for five pairs of complex numbers.

4) Demonstrate that subtraction and division are not commutative.

5) Write a program to generate random complex numbers. Then test the asso-
ciative property for both addition and multiplication.
J 6) Find the reciprocal of complex numbers assigned as data.

7y Whenever we talk about ordered pairs of real numbers, the rectangular
coordinate system should come to mind. Think of (A, B) as a plotted point on a
graph with an A-axis and a B-axis. Write a program to find the distance from the
origin of five complex numbers assigned as data.

10-2 POLAR COORDINATES

If we think of ordered pairs of real numbers as being associated with a
rectangular coordinate system, we may plot a point representing (A, B) as
shown in Fig. 10-1, where the distance from the B-axis is the absolute value
of A and the distance from the A-axis is the absolute value of B.

Whenever we plot an ordered pair of real numbers on a rectangular
coordinate system, we may associate the point with another ordered pair of
real numbers. In the new pair, the first number is the distance from the origin
and the second is the angle whose initial side is the positive A-axis and whose
terminal side is the ray with an endpoint at the origin and containing the point

150 Basic BASIC

o (A, B)

Fig. 10-1

(A, B). We use R for the distance and call it the absolute value of the complex
number (A, B). R is found from (A, B) by

R=|(A,B)|=VAZ+ B?
We use G for the angle. G may be found from (A, B) by
G = arctan (A/B)

G is sometimes called the argument of the complex number. We may now
refer to complex numbers in polar form as (R, G). This form for complex
numbers is the same as the form for (X,Y) ordered pairs converted to polar
form in Chap. 9, with the one exception that we prefer not to allow R to be
negative for complex numbers.

So we see that for every complex number we may choose a rectangular
form or polar form depending on which form is appropriate to the problem at
hand. We saw in Sec. 10-1 that addition and subtraction worked out easily
in (A, B) form, but that multiplication and division were more cumbersome.
Let us lock at multiplication in (R, G) form.

It turns out that a third form will be helpful in establishing the multiplica-
tion algorithm. From (R, G) we get that A = R cos G and B = R sin G, and
similarly for (R1, G1) we get that C = RI cos G1 and D = R1 sin G1. Using
the old formula to multiply (A, B) by (C, D) we get

(R cos G, R sin G) (R1 cos G1, Rl sin G1)
= (RR1 cos G cos G1 — RR1 sin G sin G1,
RR1 sin G cos G1 + RR1 cos G sin G1)

After factoring, the right side becomes

(RRI{cos G cos G1 — sin G sin G1), RR1(sin G cos G1 + cos G sin G1))
(10-5)

e
TV

T o~) R e Y
Ak CAR U iUV LGy

cos G cos G1 — sin G sin G1 = cos (G + GI) (10-6)
and
sin G cos G1 + cos G sin Gl = sin (G + G1) (10-7)

Complex Numbers 151

Substituting Egs. (10-6) and (10-7) into (10-5) we get
(RR1 cos (G + G1), RR1 sin (G + G1))

which is a plotted point associated with a distance from the origin of RR1 and
an angle of G + G1. So

(R, G)(R1, G1) = (RRL, G + G1) (10-8)

This means that to multiply two complex numbers in polar form we should
multiply their absolute values and add their arguments. This is less cumber-
some than the method of Sec. 10-1. -

It follows from Eq. (10-8) that to divide two complex numbers in polar
form we divide their absolute values and subtract their arguments:

(R, G)/(R1,Gl) = (R/R1, G —~ G1)

Again this is less cumbersome than the formula of Sec. 10-1.
Let us multiply some randomly assigned complex numbers in polar form.

We generate arguments. in degrees and absolute values in units 1 to 10. See
MLTR, G.

MLTR» G

10 DEF FNC(Z)=INT(Z#RNDCZ)+1)

20 FOR X=1 T8 6

30 LET R=FNCC10)

40 LET G=FNC(360)

SO0 LET RI=FNCC(10)

60 LET GI=FNC(360)

70 PRINT “C''3R3"™, ™3 G ')%("3R13'> "3 G13"™)=("3R¥RI13"» "3 G+ GI3"™) "

80 NEXT X
90 END
RUN
ML TR, G
€10, 135 H#C 2 > 311 =€ 20 , 446)
C6 > 98 3% 9 » 341 >=C Sa , 439
€9 s 6 Y%C 1 > 231)=C 9 s 237
€10, 95 I%C 8 » 307 H)=C 80 , 402)
<6 » 60 J%C 5 » 356 H=C 30 , 416)
€10, 139 D 2 » 343 =¢ 20 , 482)
DENE

SUMMARY

Complex numbers may be represented in polar form as (R, G), where R is
the absolute value and G is the angular location starting at the positive end of
the A-axis on an (A, B) graph. We have seen that while addition and subtrac-
tion are easily done in (A, B) form, multiplication and division are better
suited to (R, G) form. (R, G}(RI, G1) = (RR1, G + G1) and (R, G)/(R], G1) =
(R/R1, G — G1). To multiply in polar form, multiply absolute values and add
arguments. To divide in polar form, divide absolute values and subtract
arguments.

152 Basic BASIC

PROBLEMS FOR SEC. 10-2

1) Write a program to find the quotient of two complex numbers in polar form.

2) Write a program to print the positive integral powers of (1, 45°) from 1 to 8.

3) Write a program to convert from (R, G) form to (A, B) form.
v 4) Write a program to convert complex numbers from (A, B) form to (R, G) form.
You will want to use the ATN(X) computer function here and be sure you have the
angle in the correct quadrant. To check this, simply try numbers in all four quadrants.
v/ B) Write a program to take two complex numbers in (A, B) form and print their
product in (R, G) form.
J 6) Write a program to print the positive integral powers of a complex number in
(A, B) form. Keep the result in (A, B) form.
v 7) Modify MLTR, G to generate negative as well as positive numbers for angles.
Print the resulting angle as a value between —360 and +4-360 degrees.

i

10-3 POWERS AND ROOTS

We have seen that for multiplying two complex numbers the polar form
provides a very convenient algorithm. If we wish to square a complex number,
ie., multiply it by itself, we get

(R,G=(R%,G+G) or (R 20)

We also see that for a positive integer n,

(R, G)» = (R, nG) (10-9)
It can also be shown that an nth root of (R, G) may be found by
(R, G)/» = (RV/», G/n) (10-10)

where R!/» means VYR, Equations (10-9) and (10-10) constitute a portion of
De Moivre’s theorem. It can also be shown that every nonzero complex num-
ber has exactly n complex nth roots.

Let us find the four complex fourth roots of unity. By taking the square roots
of the square roots of 1, we should get 1, i, —1, and —i, which in (R, G) form
are (1, 0°), (1,90°), (1, 180°), and (1, 270°). Using De Moivre’s theorem,

(L,0°)/% = (1/4,0/4°) or (1,0

However, there should be three more. Now we see that there is a tremendous
advantage associated with the nonuniqueness for polar coordinates. By writing
unity (1, 0°) as (1, 360°) we may apply Eq. (10-10) again:

(1, 360°)1/¢ = (1, 90°)

Writing (1, 0°) as (1, 720°) we get
(1, 720°)1/4 = (1, 180°)

and finally (1, 0°) = (1, 1080°) gives
(1, 1080°)1/% = (1, 270°)

Complex Numbers 153

REOBTS

10 PRINT "TAKE R@OGTS @F CGMPLEX NUMBERS IN POLAR FORM"
20 READ R, GsN

30 PRINT "THE"3N3'">'"3N3"TH ROGTS OF ("3R;",";G;i"™) ARE:"
40 FOR X=1 T N

S0 PRINT "("3 Rt C1/N)X3', "3 G/Ns "™

60 LET G=G+360

70 NEXT X

80 PRINT

90 GATE 20

100 DATA 1,0, 4

110 DATA 1,0,3

120 DATA 1,45,2

130 DATA 3,90,3

140 END

RUN

R@GTS

TAKE RGOTS @F COMPLEX NUMBERS IN POLAR F@RM

THE 4 s 4 TH ROOTS QF ¢ 1 s 0) ARE:
C 1. s O)

C 1. » 90)

¢ 1. » 180)

C 1. > 270

THE 3 > 3 TH R@2TS @F ¢ 1 » 0) ARE:
1. » 0)

¢ 1. s 120)

1. » 240

THE 2 s 2 TH R@OTS AF ¢ 1 s 45) ARE:
C 1. s 225)

1. » 20245)

THE 3 » 3 TH R@ATS @F ¢ 3 + 90) ARE:
¢ 1,44225 > 30)

¢ 1,44225 > 150

¢ 1.44225 s 270 2

QUT OF DATA IN LINE 20

as expected. Suppose we add 360 degrees again. Then G = 1440° and
1440(1/4) = 360° which we have already in (1, 0°). Finding roots of complex
numbers in polar foun becomes a very straightforward computer program.

See RODTS.

PROBLEMS FOR SEC. 10-3

1) In program ROGTS have the computer convert the roots to (A, B) form.
V' 2) Write a program to find the n complex nth roots of complex numbers in (A, B)
form and print the results in (A, B) form.
/ 3) In program RGATS print the roots in both (A, B) and polar form.

CHAPTER 11

Polynomials

11-1 FUNDAMENTAL OPERATIONS

We define a real polynomial in X as an expression that can be written in
the form

ARXS 4+ Ay X¥—1 oo AX2 + AX + A,

where N is a non-negative integer, X is a complex number, and the Ay are
constant real coefficients. The following are examples of polynomials in X:

5 X-3 X8 43X —X+1 X4 3X—4

For the polynomial 5, note that 5 = 5X 50 the polynomial consists of the term
A, which is 5. The number 0 is considered a polynomial. All real polynomials
except the zero polynomials have degree i where A;X! is the term of the
polynomial with the greatest value of i for A; not equal to 0. Polynomials may
be used to describe many physical problems. For instance, the trajectory of a

projectile is described by a second-degree polynomial.
We may perform operations on polynomials much as we perform opera-

tions on explicit numbers. You have had considerable experience adding and
subtracting such expressions. You have often multiplied two binomials of the
form (AX + B)(CX + D). One of the problems in Chap. 1 was to perform just
that multiplication by computer. We now develop a program to multiply two
polynomials.

Multiplication

Clearly we will perform operations on the computer by working with the
coefficients and being careful to line things up properly. This means being very
much aware of missing terms and inserting zero coefficients where necessary.
Let us begin with an example, say (2X + 7)(3X* + 11X — 5). By hand we get

154

Polynomials 155

3X2 411X -~ 5
2X+ 7
21X% 4+ 77X — 35
6X3 4 22X2 — 10X
6X3 + 43X* + 67X — 35

where all the X~ were known in advance and do not depend on the coefficients.
So the problem could have been done in the following manner:

3+11— 5
2+ 7
91 + 77 ~ 35
6+ 22 — 10
6 + 43 + 67 — 35 (11-1)

The program can be set up by putting 3, 11, and 5 in one computer list,
2 and 7 in another, and making provision for putting 6, 43, 67, and —35 in a
third list. We may find the organization to be a little easier by thinking of the
computation in Eq. (11-1) as being set up in columns numbered from right to
left. (If your computer permits 0 subscripts in a list, you may use that to
good advantage here by starting with 0.)

3 2 1 0 Column numbers
4 3 2 1 Column numbers
3 +11 - 5
2 + 7
21 +77 —35
6 +22 —10
6 +43 +67 —35

We observe that when we multiply two numbers in column 1, we put the
result in column 1; when we multiply a number from column 1 by a number
from column 3, we put the result in column 3; and when we multiply a
number in column 2 by a number in column 3 we put the result in column 4.
This suggests that multiplying a number in column I by a number in column J
calls for the result to go in column (I + J — 1). [If O is allowed, then the
result goes in column (I +]).] So, if we store the two polynomials being
multiplied in an F list and an S list and the product in a P list, our computer
program will have an instruction to store F[1] ® S[J] in P[1 + J - 1]. We must
also provide for subtotals. Thus the program statement will be

XXX LETP[I+]~—11=P[I+]— 11+ F[]*S[J]

where we initialize the P list at 0. Program TRI ® BI multiplies the two poly-
nomials of our example.

It will be left as an exercise to modify TRI * Bl to multiply pairs of poly-
nomials of various degrees.

156 Basic BASIC

TRI*81

8 REM LINES 10 THRRUGH 40 READ AND PRINT THE FIRST PGLYNOMIAL
10 FBR X=3 16 1 STEP ~1

20 READ FLCXJ

30 PRINT FiX3;

40 NEXT X

50 PRINT "TIMES s

58 REM LINES 60 THROUGH 90 READ AND PRINT THE SECOBND POLYNOMIAL
60 FOR Y=2 T0 | STEP -1}

70 READ SCLY]

80 PRINT S5{Y)3

20 NEXT Y
98 REM 100 THROUGH 120 SET THE RESULT LIST AT ALL ZERGS
100 FOR wW=1 TO 4

110 LET PLWI=0

120 NEXT W

i28 REM LINES 130 THROUGH 170 DB THE ACTUAL MULTIPLYING
130 FOR I=1 T 3

140 F@R J=1 T8 2

150 LET PELI+J=-1)=PL{1+J-13+FL13%500)

160 NEXT J

170 NEXT 1

180 PRINT "YIELDS *5

188 REM AND NOW WE PRINT THE ‘'ANSWER LIST®

190 FOR Z=4 TG 1 STEP -1

200 PRINT PLZ3;

210 NEXT Z

218 REM THE FIRST THREE NUMBERS REPRESENT 3Xt2+11X-5
219 REM THE NEXT TWo NUMBERS REPRESENT 2X+7

220 DATA 3511,-5»2,7

230 END

RUN

TRI*BI

3 11 -5 TIMES 2 7 YIELDS 6 43 67 -35
DONE

Division

When working with polynomials we often wish to perform the operation of
division. It is especially frequent that we wish to divide by a polynomial of the
form X — R where R iz a constant. Let us divide 2X3 — 3X2 — 10X + 3 by
X — 3 and see what can be done to computerize the operation. As with multi-
plication, we will end up considering only the coefficients. First we do the
division by hand:

2X2 43X ~1
X — 3)2X3 — 3X2 — 10X 4 3
2X3 — 6X2
3X2 — 10X
3X2 — 9X
— X+43
— X+43

Every term in the computation that will be written twice in every problem
appears in bold face. Now if we simply decide not to write things twice and
at the same time compress the problem vertically, we get

Polynomials 157

2X243X — 1
X — 3)2X3 — 3X2 — 10X + 3
— 6X2 — 9X 43
3X2—- X

We saw that for multiplication, as long as everything was lined up correctly,
we could eliminate all the X’s. Also note that we are dividing only by
binomials of the form X — R, so the coefficient of X will always be 1. Let us
not even write it. Now we have the division in the following form:

94+3-1

32 —3—-10+3

—6— 9+3
3— 1

Since the coefficient of X in the divisor is always 1, the coefficient of cach term
in the quotient will always be the same as the coefficient of the leading term
of the expression into which we divide the X term. Thus it is no accident that
we see 3 — 1 in the bottom row as well as in the answer. So, if we agree to
simply insert the leading coefficient of the polynomial into which we are
dividing X — R in front of the bottom row of figures, we will always have
the coefficients of the quotient polynomial and we would not need the top
row. We now have reduced the problem to an iteration involving “multiply
and subtract” repeatedly, and the division looks like

—32-3—10+3
—6— 9+3
2+3— 1

which we got by the following set of steps: 1) copy down the first coefficient
of the original polynomial 2; 2) multiply 2 by —3 to get —6 and write it down
under the second term of the original polynomial; 3) subtract to get 3, mul-
tiply 3 by —3 to get —9; 4) write it down beneath the next term to the right
and subtract to get —1; 5) multiply —1 by —3 to get +3 and write it down
beneath the next term; 6) subtract to get 0 and we have a 0 remainder. So we
see that 2 + 3 — 1 is interpreted as 2X2 4+ 3X — L.

Since subtracting a number may be accomplished by multiplying the num-
ber to be subtracted by —1 and adding, we may convert “multiply and sub-
tract” to “multiply and add” if we multiply the —3 by —1 to get 3. Or for
X — R we just use R. Let us complete the development of this algorithm by
inserting the 0 in the last column to the right to indicate a remainder of 0.

3)2~-3—-10+3
6+ 9-3
24+3— 140

Dividing 3X* — 2X2 + 5X — 2 by X + 2 results in

~2)34+0— 24+ 5— 2
—6 4 12 — 20 4+ 30
3—6+10—154+28

yielding a quotient of 3X3 — 6X2 + 10X — 15 and a remainder of 28.

158 Basic BASIC

Division by the algorithm we have just developed is usually called synthetic
division. Since this is essentially an iterative process, we should be able to get
the computer to perform division in this way. We put the original polynomial
in a P list and the quotient polynomial in a Q list. Let us store the division
constant in R. For every division problem of the kind we are working with
here, the first coefficient in the quotient polynomial is the same as the first
coeflicient in the dividend polynomial. So we need a line in the program which
says LET Q[4] = P[4]. See line 70 in program SYNDIV,

SYNDIV

5 PRINT “SYNTHETIC DIVISION:™

8 REM READ THE DIVIS@R

10 READ R

18 REM READ AND PRINT ORIGINAL PGLYNOMIAL IN LINES 20 THRU 50
20 FOR N=4 T@ 1 STEP -1

30 READ PIN]

40 PRINT PINI3

50 NEXT N

60 PRINT "DIVIDED BY X ~"3R;“YIELDS"

68 REM FIRST QUDTIENT COEFFICIENT EQUALS FIRST
69 REM COEFFICIENT OF ORIGINAL POLYNOMIAL
70 LET Qf 4)=PL 4]

80 PRINT QL 4)3

90 FO@R X=3 T@ 1 STEP -1

98 REM "MULTIPLY AND ADD"™

100 LET QEX)=PIX]+QLX+1]J%R

110 PRINT QLX13

120 NEXT X

130 DATA 3:,2,-3,-10,3

140 END

RUN

SYNDIV

SYNTHETIC DIVISION:
2 -3 ~-10 3 DIVIDED BY X - 3 YIELDS
2 3 -1 [¢]

DBNE

In SYNDIV, 2 3 -1 0 is to be interpreted as 2X2 4 3X — 1 with
a remainder of 0. Let us try another:

130 DATA 2,35~1s4,-5

RUN

SYNDIV

SYNTHETIC DIVISION:
3 -1 4 -5 DIVIDED BY X - 2 YIELDS
3 5 14 23

DoiNE

The 3 5 14 23 is to be interpreted as 3X® + 5X + 14 with a
remainder of 23.

Polynomials 159

SUMMARY

You should be able to add and subtract polynomials easily using computer
lists. We have written an elementary program for multiplication of two poly-
nomials, and we have written a program to perform synthetic division using
X — R as the divisor.

PROBLEMS FOR SEC. 11-1

1) Write a program to find the sum of two polynomials assigned as data. Be sure
to avoid printing leading zero coefficients when adding pairs similar to 3X* 4 6X — 4
and — 3X* 4 5X3 — 3X + L.

2) Do problem 1) for subtraction.

3) Write a single program to add or subtract pairs of polynomials as determined
by an item of data. (Example: use S = 1 for add and S = 0 for subtract.)

4) Prepare a program to multiply two polynomials of varying degrees.

5) Write a program to multiply three polynomials.

6) Generate pairs of random polynomials of random degree and multiply them.
Print the original polynomials and the product. Be sure to allow negative coeflicients.
/ 7) Extend SYNDIV to divide X — R into polynomials of any degree. Also have the
computer print the remainders with a message to the effect that the remainder
equals whatever it comes out to.

/ 8) Write a program to print the first 11 integral powers of (X + 1).
J/ 9) Write a program to divide any polynomial by any polynomial of equal or
lesser degree. Suggestion: get data from problem 6.

11-2 INTEGRAL ZEROS

It is common practice to abbreviate any polynomial and call it Py, for a
polynomial in X (read as P of X). We often look at the polynomial equation

Y:P(x)

and its graph. The values of X for which Y =0 are called the zeros of the
function. You have solved many quadratic functions in which there were always
two zeros. Sometimes they were equal, sometimes integral, sometimes real,
and sometimes complex. It can be shown that every Nth-degree polynomial
equation has exactly N complex zeros. Before we actually look for any zeros
of Y = Py, we need to have some theorems available.

Remainder Theorem

According to the Remainder theorem, if a polynomial is divided by X — Z,
then the remainder is the value of the polynomial when Z is substituted
for X. Dividing P x, by (X — Z) we get

Pxy _ R
-7 T =7y

where Q y, is the quotient polynomial. Multiplying through by (X — Z) we get

160 Basic BASIC

Pxy=Qux) *X—-7Z)+R
and we can see that if we substitute Z for X, then X — Z = 0 and

Looking at SYNDIV we see that substituting 3 for X in 2X3 — 3X2 — 10X
+ 3 gives 54 — 27 — 30 + 3 or 0, confirming that P4, = 0, which is the
remainder after dividing by X — 3. We also see that substituting 2 for X in
3X3 ~ X2 + 4X — 5 gives 24 — 4 + 8 — 5 or 23, confirming that Py = 23,
which is the remainder after dividing by X — 2.

Factor Theorem

The Factor theorem states very simply that if the value of R in Eq. (11-2)
is 0, then X — Z is a factor of Px,. Looking at SYNDIV again, we see that
X —3 is a factor of 2X3 — 3X2 — 10X + 3 while X — 2 is not a factor of
3X3 — X2+ 4X — 5. Now all we have to do is find a value of Z so that
Py = 0 and Z is a zero of the function.

Search for Integral Zeros

What integers do we try for Z to test P;, for 07 We have assumed that
there are N complex zeros. Let us call them Zy, Zy_1,..., Zs, Z;. It can be
shown that

X—Z)X ~Zy_y) - (X = Z)X —Zy)
= ANXN 4+ Ay XN—14 o f AX + A,

Multiplying the left side out we should see that the only constant term in the
product is (~Zy) (=Zyx_1) - (=Zy) (—Z;) which simplifies to (—1)N¥ (Zy)
(Zy—1) - (Z3) (Z;) and must equal the constant term in the product poly-
nomial which is Ay. And so it follows that if a polynomial has any integral
zeros, they must be factors of the constant term A,. That is not to say that all
integral factors of A, are zeros of the polynomial.

This should provide sufficient basis for writing a computer program to find
the integral zeros of a polynomial function. We can define a computer func-
tion and test for FNP(X) = 0 for all integral factors of the constant term. If
we continue to enter the coeflicients of polynomials in computer lists as we
have been doing, then we know that the constant term will always be P[1]. For
our first program, let us define our function using the list entries as coefficients
in a DEF statement and look at only third-degree polynomials.

One feature of the program that requires comment is the finding of num-
bers to test for factors. These numbers must be in the interval —P[1] to P[1]
including the end numbers. Well, if P[1] is negative, we want to step —1
and if P{i] is positive, we want to step +1. This 1s a perfect place to use
SGN(P[11). See line 80 of program INTZER. It would be useful to print that
there are no integral zeros if that turns out to be the case. In order to do
that, we need a switch which is off initially and which we turn on only if we

Polynomials 161

find at least one zero. Then after we test all possible factors of P[1], we test
to see if the switch is on. If it is, we read more data. If the switch is off,
there were no zeros, so we print a message and then read more data. See
the flowchart in Fig. 11-1.

INTZER works well for polynomials of the same degree; but suppose we
have polynomials of several different degrees we wish to study using the same
program? Well, we could define a different function for each degree or we
could define a function of the highest degree we anticipate and fill in with
leading zeros. But suppose we want up to ninth or tenth degree? The function
would not fit on one line on some terminals. We could define two functions

INTZER

10
20
22
25

118
119
120
128
130
140
150
160
165
170
180
190
200
210
RUN

DEF FNP(X)=PLAI*Xt3+PL 3IXt2+PL2)aX+P[1]
PRINT
PRINT
F@R S=4 To 1| STEP -1
READ PLS]
PRINT PLS13
NEXT S
PRINT “INTEGRAL ZERO(S): '3
REM TURN SWITCH QFF
LET K=0
REM STUDY LINE 80 CAREFULLY!
FOR X=-PL1] T@ PL11 STEP SGN(PLI1D)
REM LINE 90 PREVENTS AN ERROR MESSAGE CAUSED BY
REM DIVIDING BY ZERQ
IF X=0 THEN 140
REM 1S X A FACTOR OF PL117?
IF PL11/7K <> INTCPL11/X) THEN 140
REM IS THE REMAINDER ZER@?
IF FNP(X) <> O THEN 140
REM IF THE COMPUTER GETS THROUGH HERE, THE
REM VALUE OF X IS A ZERG OF THE FUNCTIGN
PRINT X3
REM TURN THE SWITCH @N - WE HAVE A ZERQG
LET K=1
NEXT X
IF K=1 THEN 20
PRINT NONE FOUND''s
GaTo 20
DATA 1,-2,~-11,12
DATA 1515,-5,-2
DATA 1,-2,3,~4
DATA 2,-3,-10,3
END

INTZER

QuUT

-2 -1l 12 INTEGRAL ZERQ(S): -3 1 4
1 -5 -2 INTEGRAL. ZERO(S): 2
-2 3 -4 INTEGRAL ZERO(S): NONE FOUND

-3 ~-10 3 INTEGRAL ZERG(S): 3

@F DATA IN LINE 30

162 Basic BASIC

READ
coefficient f
list

Turn switch Open X loop
g to search for
off factors of
LETK =0 PI1]
Close X Turn switch
loop on
LETK =1

Fig. 11-1. Flowchait for finding integral zeros of polynomial

and add them. But then we have lurge numbers of leading zeros to worry
about. All of these complications may be eliminated by using a subroutine to
define a function instead of a DEF statement. Notice that evaluating an
Nth-degree polynomial is equivalent to summing up N + [terms which look
like A, Xi where i goes from N to 0. If you have 0 subscripts, this is perfect.
For those of us without O subscripts, we must use a term similar to
P[I1 ® X °® (I — 1), where the value of I goes from N to 1 for N equal to one
more than the degree of the nalynaminl

We may now define a polynomial function in a five-line subroutine for any
degree with no further complications and no fuss over leading zeros and such:

500 LET P=0
510 FPR I=N T@ 1 STEP —1

Polynomials 163

520 LET P=P+P[I]*X°**(1-1)
530 NEXT I
540 RETURN

Let us insert G@ASUB 500 after line 100 in INTZER, insert line 23 READ N,
where N is the number of terms in the polynomial, and change line 25 to
read FOR S = N T@ 1 STEP —1. See IZER@1.

This program will handle up to ninth-degree polynomials. (Tenth, if you
have 0 subscripts.) If we want to work with polynomials of greater degree,
all we need is a DIM statement to specify a longer list for P.

SUMMARY

We have seen that by combining the Remainder theorem, the Factor
theorem, and the fact that the product of all zeros multiplied by (—1)¥, where
N is the degree of the polynomial, gives the constant term, we are able to
find all integral zeros. We simply test all integral factors of the constant term
to see if the remainder is 0. If the remainder is 0, then we have a zero of the
polynomial. If it is not 0, then we do not have a zero of the polynomial. We
have two alternative methods of evaluating a polynomial for a specified value
of X: one is to use a DEF statement, and the other is to write a subroutine to
sum up terms.

PROBLEMS FOR SEC. 11-2

1) For each of the polynomials to follow: (a) find an integral zero, (b) use syn-
thetic division to find the resulting factor after dividing by (X — Z), and (¢} search
for zeros of the depressed polynomial. Repeat until all integral zeros are found and
then print the remaining polynomial.

10X3 — 71X2 — 76X + 32

6X8 — 32X7 — 23X6 — 3X5 — 12X+ . 36X3 — X2 4 8X — 12
8X5 — 18X+ — 8X3 — 32X% 4+ 2X 4 3

2X1 4 5X3 — 31X? — 21X 4 45

2) Gencrate random integers in sets of three, Have the computer print the poly-
nomial having those three integers as zeros Be sure to get some negative integers.

3) Do problem 2) for scts of four integers.

4) In IZER@1 have the computer determine if Pix) is within two units of 0 for
each factor of the constant term.

5) Prepare a table of ordered pairs (X, Pex)) such as would be appropriate for
plotting points. Sketch a graph on graph paper. How would you estimate non-
integral zeros?

11-3 REAL ZEROS

It can be shown that for a polynomial, if Py, >0 and Py,, <0, then
there is a value of X between X, and X, such that P, = 0. This is called the
Location Principle. In graphical terms, the Location Principle may be stated as

164 Basic BASIC

IZERG)

20 PRINT

22 PRINT

23 READ N

25 FOR S=N T@ 1 STEP ~1

30 READ P(S]

40 PRINT PLS3s

50 NEXT S

55 PRINT

60 PRINT "INTEGRAL ZERG(S): '3

68 REM TURN SWITCH OFF

70 LET K=0

78 REM STUDY LINE 80 CAREFULLY!

80 FOR X=-PL1) T@ PL1] STEP SGN(PL!1)

88 REM LINE 90 PREVENTS AN ERROR MESSAGE CAUSED BY
89 REM DIVIDING BY ZERO

90 IF X=0 THEN 140

98 REM IS X A FACTOR OF PL11?

100 IF PL1I/7X <> INTC(P{11/X> THEN 140

105 GOSUB 500

108 REM IS THE REMAINDER ZERG?

110 IF P <> 0 THEN 140

118 REM IF THE CBMPUTER GETS THRGUGH HERE, THE
119 REM VALUE GF X IS A ZERG GF THE FUNCTION
120 PRINT X3

128 REM TURN THE SWITCH @N ~ WE HAVE A ZERO
130 LET K=1

140 NEXT X

150 IF K=1 THEN 20

160 PRINT "NONE FOUND'™3

165 GBTO 20

170 DATA A 1,-2,-11,12

180 DATA 4,1:15-5,-2

190 DATA 4, 1,-2,3,~4

200 DATA 552s-15-11511,~2

210 DATA 7,2,~5,-659,9,-39, 36

490 REM SUBROUTINE 500 THRAOUGH 540 TAKES THE PLACE 8F A
491 REM DEF STATEMENT AND EVALUATES A PBLYNOMIAL GF
492 REM GBF DEGREE N-1.

500 LET P=0

510 FOR I=N TG 1 STEP -1

520 LET P=P+PLIJ#Xt(I~-1)

530 NEXT I

540 RETURN

999 END

RUN

IZERB1
1 -2 =11 12

INTEGRAL ZERG(S)>: ~3 1 4
1 i -5 -2

INTEGRAL ZERG(S): 2

1 -2 3 -4
INTEGRAL ZERG(S)$s NONE FOUND

2 -1 ~-11 1l -2
INTEGRAL ZERG(S): 2

2 -5 -6 9 9 ~39 36
INTEGRAL ZERG(S)3 3

BUT 8F DATA 1IN LINE 23

Polynomials 165

follows: If point (X;, P(x,)) and point (X,, P(x,)) are on opposite sides of the
X-axis, then the graph must cross the X-axis between (Xy, 0} and (X,, 0).

We may now search for real zeros by finding intervals in which the graph
crosses the X-axis. In order to find out if the value of the function is positive
for one value of X and negative for another, we may simply test the product.
If the product is negative, they are of opposite sign. If the product is positive,
then they are of the same sign and we are not concerned with those values of
X. Since we anticipate more than one zero, let us make a provision for putting
the information in a list. For that, we need a counter. It seems reasonable to
list the left number of the interval. As long as we know the increment, we
should be able to see the right number of the interval. It is usual to start
looking for real zeros in an increment of one unit. Let us prepare a flowchart
for this problem and call the program REAL. See Fig. 11-2.

Thus, we have found that the three zeros of 12X3 — 64X2 + 17X -+ 195 fall
in the three intervals —2 to —1, 2 to 3, and 3 to 4. That is fine to know, but
we generally prefer more precision than that. So, we should try to improve on

Start
Define
function
FNT(X)
FOR X = —5 Set Ca:)lanter
195 LETA=0
LET ST = FNT(X)
LET 52 = FNT(X+1)
LETA=A4+1
NEXT X LET S = o1

Fig. 11-2 Flowchart for searching for
real zeros in program REAL.

166 Basic BASIC

REAL.

50 DEF FNT(X)=12%K$3-64%X12+17£X+195
60 LET A=0

70 FBR X=-5 T8 5

80 LET SI=FNT(X)

90 LET S2=FNT(X+1)

100 IF S1%S2>0 THEN 130

110 LET A=A+]

120 LET SLAlX=X

130 NEXT X

190 PRINT “INTERVAL(S) BEGIN ATs"
200 FBR I=) T@ A

210 PRINT SC11s

220 NEXT I

270 END

RUN

REAL

INTERVAL(S) BEGIN AT:
-2 2 3

DBNE

REAL to get smaller intervals. There are several very satisfactory procedures
one might try. Let us develop a program that permits us to make decisions
about what to try for the limits and the increment of the search. That calls
for INPUT statements. We can change line 70 to 70 FOR X = F T@ L STEP
S and INPUT F, L, S for First, Last, and Step. We may also use S = 0 as a
flag to terminate the RUN. After we get the computer to search for a change
of sign in a particular interval, we want it to come back and permit us to
either look for more precision in that same interval or to search in a different
interval. We should also provide for the situation where there has been no
change in sign. This will happen for one of several reasons. Either the search
is not including the zeros within its limits, or the increment is large enough
that two zeros are included in one interval, or there might be no real zeros.
We will discuss this in Sec. 11-4. We can determine that no change of sign
has been found by testing the value of A after line 130. If A is still O, then
there were no changes of sign and we should print a message to that effect.
We make the above changes and call the program REALL

REAL 1

10 PRINT "SEARCH FOR REAL ZERGS OF A PBLYN@GMIAL™
20 PRINT “START» END, INCREMENT"3

30 INPUT FslsS

40 IF S=0 THEN 270

50 DEF FNTC(X)=12%Xt3-64kX12+1 TxX+195

60 LET A=0

70 F@R X=F T@ L STEP S

g0 LET S1=FNMTIX)

90 LET S2=FNT(X+S)

100 IF S1*%S2>0 THEN 130

110 LET AzA+1

120 LET StAl=X

130 NEXT X

140 IF A>0 THEN 190

150 PRINT “NO INTERVALS F@UND #%%% TRY AGAIN "

Polynomials 167

160 PRINT "WITH EITHER GREATER LIMITS @R SMALLER INCREMENT"
170 PRINT

180 G@TO 20

190 PRINT "INTERVAL(S) BEGIN AT:*"
200 FOR I=1 T2 A

210 PRINT S(I1s

220 NEXT 1

230 PRINT

240 PRINT

250 PRINT "NOW "3

260 G@TO 20

270 END

RUN

REAL 1

SEARCH FOR REAL ZERQS OF A POLYNOMIAL
START, END, INCREMENT?-5,5,1
INTERVAL (S5) BEGIN AT:

-2 2 3

N@W START, END, INCREMENT?-3,-2,.1
NG INTERVALS FOUND *#%x% TRY AGAIN
WITH EITHER GREATER LIMITS @R SMALLER INCREMENT

START» END» INCREMENT?-2,-1,.1
INTERVAL(S) BEGIN AT:
~1.5

N@W START, ENDs INCREMENT?-1<5,-1.4,.01
INTERVAL(S) BEGIN AT:
~1+45

N@W START, END, INCREMENT?2,3,.1
INTERVAL (S) BEGIN AT:
2.8

N@W START, END, INCREMENT?1,2,0

DONE

Since we are using INPUT often in this program, we should pick limits and
increments carefully. We should also be prepared to make up our mind quickly.
Some of the things we should not try are —50 to 50 STEP .01, or 50 to —50
STEP 1. A little care should avoid such blunders.

Let us define a new function and obtain another RUN.

50 DEF FNTC(X)=Xt3+49.1809%Xt2+2.67761%X~15223.8
RUN
REAL2

SEARCH F@R REAL ZERGOS OF A POLYNOMIAL

START, END, INCREMENT?-10,10,1

N@ INTERVALS FOUND #¥%¥ TRY AGAIN

WITH EITHER GREATER LIMITS OR SMALLER INCREMENT

START, END, INCREMENT?~-100,100,5
INTERVAL (S) BEGIN AT:
- 40 ~-30 15

N@W START, END, INCREMENT?-40,-35,.1
INTERVAL (S) BEGIN AT:
-39.3

168 Basic BASIC

NBW START» ENDs INCREMENT?~39.3,~39.2,.01
INTERVAL(S) BEGIN AT:
-39.22

NOW START» END, INCREMENT?15,20,.1
INTERVAL(S) BEGIN AT:
15.3

NOW START, END, INCREMENT?15.3,15.4,.01
INTERVAL (S) BEGIN AT:
15.33

NOW START, END», INCREMENT?0,0.0

DONE

One of the contingencies that we have not accounted for in REAL] is the
possibility that the polynomial has integral zeros. As the program stands, if S1
or S2 equals 0, then the value of X used for S1 will be identified as the
number at the beginning of the interval in which a real zero will be found.
It will be left as an exercise to identify a zero more explicitly if S1 or S2
does equal 0.

SUMMARY

We have used the Location Principle to find intervals within which real
zeros are expected to occur. It should be noted that the Location Principle
may be applied to any continuous function and is not limited to polynomial
functions.

PROBLEMS FOR SEC. 11-3

1) Modify REALI1 so that if the value picked for X in line 70 gives either S1
or S2 equal to 0, we get a message and the value of the zero printed.

2) In program REALL, after the computer has found the initial intervals for all
real zeros, we do not want the computer to search the entire intervals specified in
subsequent searches in the X-loop. We want the computer to print immediately
after finding the change in sign without scarching the rest of the interval. Incorporate
this into the program.

3) Modify REAL1 to read data for more than one polynomial. You may use
some dummy value for S in line 30 as a signal to read the next set of data.

J 4) Write a program to scarch for real zeros by first finding the unit intervals and
then using linear interpolation until FNT(X) is within 10—+ of zcro. You may wamnt
to specify less or greater precision.

11-4 COMPLEX ZEROS

The simplest real polynomial for which we may find complex zeros is the
second-degree polynomial A,X*+ A X + A, We may use the general quad-
ratic formula

—A; = VA — 4A.4,

X= T (11-3)

Polynomials 169

Letting the radicand equal D we get
D= A12 —-4A2A0

D is called the discriminant of the quadratic expression. We can see that if D
is negative, the zeros are nonreal. We can rewrite Eq. (11-3) as

—A, . /D
9A, — 94,

and finally, considering X as being associated with two numbers A and B, we let

X =

_ A _ VID|
A= %A, and B = 9A,
If D is greater than or equal to 0, the real zeros are
X1=A+B and X2=A—~B (11-4)

But if D is less than 0, we get the nonreal zeros
X1=(A,B) and X2 =(A, —B) (11-5)

So, in our computer program we compute I), A, and B. Then we test D. If
D is negative, we print as in Eq. (11-5) and if D is not negative, we print as
in Eq.(11-4). See Fig. 11-3 for the flowchart. We call the program C@OMP-1,

It turns out that there is no convenient general procedure for finding non-
real zeros for polynomials of higher degree than two. But for any polynomial
that has exactly two nonreal zeros, we may find the real zeros first, then for
each real zero Z we may divide out the corresponding X — Z using synthetic
division and if after all division is carried out the result is a second-degree
polynomial, we may apply the technique of program C@MP-1. We demon-
strate this procedure by an elementary example: Find all zeros of the following
polynomials, given that each has at least one integral zero:

X84 9X2 —X — 2

X3 — X2 — 48
Xs—1
X341
X8 —X24X—1

6X3 — 77X2* — 189X — 90

This is of course a special case, but it should help us develop a more gen-
eral approach. Since we have a third-degree polynomial with one integral
zero, we may take program INTZER to find the integral zero Z and then use
program SYNDIV to divide the given polynomial by X —~ Z. The polynomial
we get is called a depressed polynomial. We know that in this problem each
depressed polynomial will be a second-degree polynomial. So we may then
use program COMP-1. In each of these earlier programs the polynomials were
all represented with the same variable P list. So all that will have to be
changed is the various READ statements and the variable in which the integral
zero in INTZER is called X, while in SYNDIV the corresponding number was
stored in R. Thus the need for line 170 in program ALLZER. We also changed

170

Basic BASIC

Fig. 11-3. Flowchart for finding real
and nonreal zeros of second-degree

READ and polynomials

PRINT

coefficients

M LET D = P[2)=+2
I —4sP[31+P[1]

LET F = 2+P[3]

<

LET A = —P[2]/F

<+

LET B = SQR
(ABS(D))/F

PRINT
nonreal
(A,B), (A,—B)

CoMP-1

10 PRINT

20 READ P(31),P{21,P(L 1]

30 IF P{3)=0 THEN 170

40 PRINT PL31IPI2)sPL 11}

50 LET D=PL2])r2-4%P{31%P{1]
60 LET F=2%PL 31}

70 LET A=-PL21/F

80 LET B=SQRC(ABS(D)I)/F

90 IF D<O THEN 130

100 PRINT “REAL ZERGS:*

110 PRINT A+B;s°*AND *3A-B

120 G370 10

130 PRINT "NON-REAL ZERGS:'

140 PRINT "™("™3A3*,"3B3") AND ("3A3",'3-Bs'")»"

150 GeT19 10

160 DATA 15253515-352,153:2,153513,-15,2,-3s153,12,0,0,0
170 END

RUN
CoMP-1
1 2 3
NIN-REAL ZERQS:
-1 > le4l42)) AND ¢~-1 2= 1041421
| -3 2
REAL ZERQS:
2 AND 1
1 3 2
REAL ZEROS:
-1 AND -2
1 3 13
NON~REAL ZEROS:
(-1+5 » 3.27872) AND (~1.5
-1 2 -3
NON-REAL ZER®S:
1 s -le 41421) AND ¢ 1 » 1e4]1421
1 3 12
N@N-REAL ZER@S:
(-1.5 » 3.1225) AND (-1.5
DONE
ALL.ZER

Polynomials

»~3.27872

»=3.1225

)

)

171

8 REM INTZER BEGINS HERE (WE HAVE REM@VED THE REM STATEMENTS)

9 REM SEZ THE PROGRAM F@R REM STATEMENTS

10 DEF FNP(X)=PLAJ#*Xt3+P[3)%X12+PL21%X+P(1]

20 PRINT

30 PRINT

40 FOR S=4 T@ | STEP -1

5¢ READ PLS]

60 IF PLS]=.0101 THEN 430

70 PRINT P(S13

80 NEXT S

90 PRINT "INTEGRAL ZER®@: i]

100 FOR X=-PL1) T@ PL1)} STEP SGNCPLII)
110 IF X=0 THEN 160

120 IF PL11/X <> INTCPCL11/X) THEN 160
130 IF FNP(X) <> C THEN 160

140 PRINT X

150 GaT@ 170

160 NEXT X

164 REM INTZER ENDS HERE #%% SYNDIV BEGINS HERE

170 LET R=X

180 PRINT "“SYNTHETIC DIVISIGN BY X ="3R3'"YIELDS:"

190 PRINT PLA4);

200 FOR X=3 T® 1 STEP -1
210 LET PL{X)=PLX1+P{X+11%R
220 IF X>1 THEN 240

230 PRINT "REMAINDER =3
240 PRINT PLX13

250 NEXT X

252 REM SYNDIV ENDS HERE

258 REM HERE WE MOVE EACH ENTRY IN THE P LIST
259 REM To THE LO@CATION GNE SUBSCRIPT LGWER

172 Basic BASIC

260 FOR X=1 T@ 3

270 LET PIRI=PLK+1]

280 NEXT X

290 PRINT

298 REM COMP-1 BEGINS HERE

300 LET D=PL2)+2-4%P(31%P[1]

310 LET F=2%P{ 3]

320 LET A=-PLR2I/F

330 LET B=SQRC(ABS(D))/F

340 IF D<0 THEN 380

350 PRINT "REAL ZER@S:"

360 PRINT A+B3'AND *"JA-B

370 GATG 20

380 PRINT "NON-REAL ZERBS:'

390 PRINT “(“5A3'".'"3B3") AND ("3 A3",*"5-B3*')"
400 G@Te 20

405 DATA 1,25-1,-2

410 DATA 1,-1,0,-485150,0,-15120,05151,~151,-1
415 DATA 6,-77,-189,-90

420 DATA .0101

430 END
RUN
ALLZER
1 2 -1 -2 INTEGRAL ZERG: 1
SYNTHETIC DIVISI@N BY X - 1 Y1ELDS:
1 3 2 REMAINDER = 0
REAL ZER@S:
-1 AND -2
1 -1 0 -48 INTEGRAL ZER®: 4
SYNTHETIC DIVISION BY X - 4 YIELDS:
1 3 12 REMAINDER = 0
NON-REAL ZER@S:
(-1.5 » 3.1225) AND (-1.5 »-3.1225
1 0 0 -1 INTEGRAL. ZERG: 1
SYNTHETIC DIVISI@N BY X - 1 YIELDS?
1 1 1 REMAINDER = 0
N@N-REAL ZERDSS
(=25 s +866025) AND (-.5 »=2866025
1 o 0 1 INTEGRAL ZERO: -1
SYNTHETIC DIVISIGN BY X --1 YIELDS:
1 -1 1 REMAINDER = 0
NZN-REAL ZERDS:
¢ .5 » +866025) AND ¢ 5 »~+ 866025
1 -1 1 -1 INTEGRAL ZERG: 1
SYNTHETIC DIVISI@N BY X - 1 YIELDS:
] 0 1 REMAINDER = O
N@N-REAL ZERGS:
co , 1 > AND € O -1 >
6 -77 ~-189 -90 INTEGRAL ZER®: 15
SYNTHETIC DIVISI@N BY X - 15 YIELDS:
6 13 6 REMAINDER = 0O
REAL ZER@S:
-0 666667 AND -1.5

DONE

Polynomials 173

the way in which the quotient was stored in SYNDIV, It turns out that the
quotient polynomial can be stored right back in the P list instead of creating
the new Q list. This is done in line 210 of ALLZER. Then in order to aveid
changing the subscripts in COMP-1 it seems reasonable to simply take the
quotient polynomial, which also stores the remainder in the lowest subscripted
location, and move every entry into the location one subscript lower. Instead
of having the quotient polynomial in P[4], P[3], and P[2], we are putting the
quotient polynomial in P[3], P[2], and P[1], which exactly fits program
C@MP-1. This is done in lines 260, 270, and 280.

As always, some interesting problems have been left for you to solve. For
instance, suppose we have third-degree polynomials with two nonreal zeros
and a real zero that is not an integer, or what about higher degree poly-
nomials? These considerations are left as exercises in the problems set for
Sec. 11-4.

Descartes’ Rule of Signs

We may define the variation in a sequence of numbers as the number of
changes in sign found by comparing successive pairs of adjacent numbers.
For example, for the sequence 1, 3, 4, —8, 2, the value of V is 2. There is no
change for 1 to 3 or 3 to 4. There is one change for 4 to —8 and for —8 to 2.
If zeros appear in the sequence, we drop them. The sequence —2, 8, 0, 5, -3,
6 becomes —2, 8, 5, —3, 6 in order to determine the number of variations
which is 3.

Descartes’ Rule of Signs says that for

AXY 4+ Ay XN—14 4 A X+ A,

the number of positive zeros depends on the number of variations in the
sequence

AnAn_1 . AL A

in the following manner. If V is the number of variations, then the number
of positive zeros is either V or V — 2 or V — 4, etc., but not less than 0. This
may be written V — 2I, where I is a positive integer.

It turns out that we may find a corresponding number for negative zeros
by finding positive zeros for P _y,. Substituting —X for X will change the
sign of all terms which have an odd exponent on X. So if Pix, = —4X5
— 3X% 4 5X8 — 2X2 4 X — 3, the value of V is 4 and there must be 4 or 2 or 0
positive zeros. Now we find P _y, = +4X5 — 3X* — 5X3 — 9X2 — X — 3,
and V is 1. So there must be exactly one negative zero.

This is something we can get the computer to do for us. We may read the
coefficients into the first row of a P array and change the sign of the coefficients
of the terms with odd exponents on X and put the new coefficient list in the
second row of the P array. Then we may look for changes in sign and provide
two counters: one for the first row keeping track of changes of sign for the
positive zeros, and the other for the second row counting sign changes for the
negative zeros. These are V1 for the positive zeros and V2 for the negative
zeros in program DESCRT.

174 Basic BASIC

DESCRT

10 READ N

15 IF N=0 THEN 999

20 FOR X=N T@ 1| STEP -1

30 READ Pl1,X)

40 PRINT PU1,X1)3

48 REM ENTER THE SAME COEFFICIENT IN THE SAME COLUMN
49 REM @8F THE SECOND RaW

50 LET PL2,X)=PL1,X]

58 REM IF THE EXP@NENT @N X IS @DD THEN CHANGE THE SIGN
60 IF (X+1)/72=INTC(X+1)/2) THEN BO
70 LEY PL2:X1=-Pl2:X1]

B0 NEXT X

90 PRINT

100 PRINT N-15"COMPLEX ZERO®S™

200 LET vV1=vy2=0

210 FOR X=N-1 T@ 1 STEP -1

218 REM LOB@X AT POSITIVE ZER2S
220 IF PL1,X1%PL1,X+1)>0 THEN 240
230 LET VI=Vi+l

238 REM LBOK AT NEGATIVE ZER@S
240 1F PL2,X1%PL2,X+1]1>0 THEN 260
250 LET ve=va+l

260 NEXT X

300 PRINT V13'"MAX P3SITIVE'

310 PRINT V23'MAX NEGATIVE"

320 PRINT

340 GBTE 10

500 DATA 456,103,201,90

510 DATA 551,3,4,-8,2

520 DATA 6--4,-3:5,-251,~3

600 DATA O

999 END
RUN
DESCRT

6 103 201 90
3 COMPILLEX ZER@GS

0 MAX PBSITIVE

3 MAX NEGATIVE

3 4 -8 2
COMPLEX ZERGS
MAX PBSITIVE
MAX NEGATIVE

0L -

]

Ll ~ R VI -4

-3 5 -2 1 -3
COMPLEX ZER@S

MAX PBSITIVE

MAX NEGATIVE

DONE

You might reasonably ask, just what have we done that could not be done
quicker by hand. Well, maybe not much, but look at 6 103 201 90
in DESCRT. If we run these coefficients through INTZER, the computer tests
P[1]/X 180 times (from —90 to 90 skipping 0). We may now use DESCRT
and change the limits on the test loop in INTZER to test no positive values
of X. So the computer will now test a maximum of 90 values of X. We could
take this one step further and use the fact that the maximum number of

Polynomials 175

negative zeros is three to transfer out of the loop after the third value is found
if they all are integral.

There is more to Descartes’ Rule of Signs than appears in program DESCRT.
The rule states that zero coefficients are to be dropped. DESCRT does not
provide for that. You will find that when zero coefficients appear, we may
consider polynomials such as

Pix) = 3X* + 2X3 — 5X2 — 7

V1 for positive zeros gives us 1. The coeficients for P _y, are 3, —2, —5, —7,
and V2 is 1. Since there are no 0 zeros, there are a total of two real zeros.
Since there are 4 complex zeros, we find that there are two nonreal zeros
for P x,.

SUMMARY

Once again we have used polynomial coefficients stored in a computer list.
This time we find all zeros whenever no more than two zeros are nonintegral.
In addition, we have used Descartes’ Rule of Signs to obtain the possible
numbers of positive and negative zeros and outlined a procedure for deter-
mining the possible numbers of nonreal zeros.

PROBLEMS FOR SEC. 11-4

1) Medify DESCRT to permit zero coefficients. Read all coefficients into a P list
and then eliminate the zero coefficients as you enter them into a two-row array.

2) Modify ALLZER to handle polynomials of degree greater than thrce which
have for degree D at least D — 2 integral zeros.

v/ 3) Write a program to generate polynomials of random degree D which are
guaranteed to have exactly D — 2 integral Zeros and two nonreal zeros.

4) Project: Modify your program in problem 2) to handle D — 2 real zeros using
linear interpolation until P(x) is within .001 of 0. (You may want to change the
tolerance.)

5) Project: Use DESCRT to modify ALLZER to reduce the number of tests for
polynomials similar to 6X3 4 103X* 4 201X + 90.

CHAPTER 12

12-1 INTRODUCTION TO MAT INSTRUCTIONS

MAT instructions are BASIC statements which allow us to manipulate
entire arrays in the computer without being required to do it entry by entry.
This capability will enable us to write shorter programs, using arrays, than we
have been able to write thus far.

We have had to assign values of array entries one at a time. We have been
putting LET A[], J] = or READ A[l, J]in a nested loop for assignment and
then in order to print the array, we have been putting PRINT A[l, J]; in
another nested loop. In order to print out a 3 by 4 array consisting of —1’s, we

MAT-1

8 REM LINES 10 T@ S0 ‘ASSIGN VALUES
10 FOR R=1 T2 3

20 FOR C=1 TO 4

30 LET ALRsCl=-1

40 NEXT C

50 NEXT R

98 REM LINES 100 T@ 160 PRINT THE ARRAY
100 F@R R=1 TO 3

110 FOR C=1 T2 4

120 PRINT ALR»Cls

130 NEXT C

140 PRINT

150 PRINT

160 NEXT R

200 END

RUN

MAT-1

-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
DANE

176

MAT Instructions in Basic 177

MAT~2

10 DIM AL 3, 4)

20 WM™MAT READ A

30 MAT PRINT A3

40 DATA ~ls~ls-1s=1s-1ls=ls=1s=1s-1s=1a=1,-1
S0 END

MAT-2

DONE

would proceed as in MAT-1, using programming statements and techniques
with which we are familiar, MAT-1 certainly does what we said we would do.

But consider MAT-2, which is a five-line program that does what required 13
lines to do in MAT-1. In MAT-2, line 10 instructs the computer to set up a
3 by 4 array. Then line 20 reads the data into the array named and dimen-
sioned in line 10. (Some of you who had 0 subscripts will find that as soon
as you specify a MAT instruction for a particular variable you also lose 0
subscripts for that variable. Others will find the situation unchanged. This
depends on the system.) Note in line 20 a semicolon appears after the array A.
Used in this way we are specifying semicolon spacing. To get comma spacing,
we may place a comma there or leave it blank. If we wish to specify printing
for several arrays in one print instruction, we may do so as follows:

XXX MAT PRINT A, B; C

In this case A and C will be printed with comma spacing, and B will be
printed with semicolon spacing.

In MAT-2 it may not be clear just how the computer takes the numbers in
the data line and enters them in the array locations. MAT-3 is intended to
show what numbers are entered where in the array.

MAT-3

10 DIM AL 3,5]

20 MAT READ A

30 MAT PRINT A3

A0 DATA 152535425565 7:859,10,11512,13,14,15

50 END

RUN

MAT-3
1 2 3 4 5
6 7 8 9 10
11 12 i3 14 15

DANE

178 Basic BASIC

It should be clear now that MAT READ enters numbers just as we read
across the printed page. It reads and enters across until it runs out of space
in the row and then reads the next data item into the first location of the next
row. This is the method we have been using in all array programs throughout
this text.

It was stated earlier that a list is just a special array consisting of a single
column or a single row, depending on the computer. Now we will look at
arrays of just one column or just one row. See MAT-4 and MAT-5.

MAT~-4

10 DIM ALS5,112

20 MAT READ A

30 MAT PRINT A
40 DATA 1,2-354 5

50 END
RUN
MAT~ 4 MAT-5
1 10 DIM AlL1,5)
20 WMAT READ A
2 30 M™MAT PRINT A3
40 DATA 1,2,3,4:,5
3 50 END
RUN
4 MAT-5
5 i 2 3 4 5
DANE DANE

Some systems may permit you to dimension a list as DIM A[5] and then
MAT READ A. If this works, then you can determine whether your system
thinks of a list as a row vector or a column vector, by having it MAT PRINT
A when A is a list.

The MAT READ statement has an optional redimensioning capability.
MAT READ A[R, C] redimensions A to have rows numbered up to R and
columns numbered up to C and then reads data into that redimensioned array.
See MAT-6.

MAT-6

10 DIM ALB.B81

20 M™MAT READ AL(2,5]

30 MAT PRINT A3

40 DATA 653,4,8,-1,0,17,31,899510

50 END

RUN

MAT-6
6 3 4 8 -1
0 17 31 899 10

OONE

MAT Instructions in Basic 179

Some systems permit the use of MAT READ A[R, C] to perform the initial
dimensioning within certain limits (usually up to [10, 10]).

An array of just one column is called a column vector by mathematicians.
An array of one row is called a row vector. Mathematicians use the term matrix
to describe all arrays. Thus the term MAT is used in BASIC.

MAT READ X
Reads data into the array named X according to previously deter-
mined dimensions.

MAT READ Y[R, C]

Dimensions or redimensions an array named Y with R rows and C
columns and reads data into the array Y. R and C may be explicit
integers or variables,

MAT PRINT P; Q, R;
Prints array P with semicolon spacing, then prints array Q with
comma spacing, and then prints array R with semicolon spacing.

Even though you use MAT READ in a program, you are not required to
use MAT PRINT. You may often want to use nested loops to print an array
as we have been doing up to this section. You will do this if you do not want
the blank line between printed rows and if you want to print headings in front
of each row or if you only want to print a poition of the array. Note too,
that you may use MAT PRINT even if you have not used MAT READ. This
will be the case if-we analyze data and enter results into an array as we did
in Chap. 5.

PROBLEMS FOR SEC. 12-1

1) Fill an array with the numbers 1, 2, 3, 4, 5, 6, 7, 23, 51, 47, 56, and 234 and
fill another array of the same dimensions with the numbers 2, —3, 43, 90, 45, 32,
—89, 65, 43, —96, 0, and 1. Fill a third array of the same dimensions with the sums
of the numbers in order. The sum array should contain the numbers 3, —1, 46, 94,
ete.

2) Use the data of problem 1). Dimension a 3 by 12 array. MAT READ the
above data into the first two rows and 0’s into the third row and then replace the
0’s with the sums of the entries in the first two rows column by column.

3) Fill an array with the multiplication table up to 12 x 12. MAT PRINT the
result.

4) Fill a 4 by 3 array with the following numbers: 2, 56, 78, 3, 20, 45, 3, 9, 673,
564, 90, and 234. Have the computer multiply each number in the array by 3 and
enter the product to replace the old number. Print the result.

180 Basic BASIC

5) Use the data of problem 4), but this time multiply each entry by the product
of the row and column number. MAT PRINT the result.

6) Fill a 2 by 5 array with the following numbers: 3, 67, 32, 45, 90, 2, 9, 57, —3,
and 1. Multiply each entry by —3 if the sum of the row and column numbers is odd
and by —1 if the sum of the row and column numbers is even. Print the result.

7) Fill a square array so that the locations along the top left to bottom right
diagonal are filled with I's and all other entries are 0’s. MAT PRINT the array.

8) Fill an array with all I’s and print it.

9) Have the computer read the following array:

1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

and have it create the new array:

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

10) Fill a 2 by 8 array with all 0’s and print it.
11) A company has salesmen on the road four days a week. At the end of each
week each salesman turns in an expense sheet. Here is a sample expense sheet:

Mon. Tue. Wed. Thur.

Lodging $12.00 $11.00 $10.50 $14.00

Meals $ 4.00 $ 7.50 $ 6.90 $ 7.40

Transportation $ 200 0 0 $ 3.50
Customer

entertainment 0 $18.00 $ 4.50 $ 450

Miscellaneous $ 2.31 $ 1.84 $ 3.15 $ 1.83

Write a program that will ind total expenses for the week, total expenses for cach
day of the weck, and total expenses in cach of the five categories listed on the
expense sheet.

12-2 SOLVING A PROBLEM

To get from a certain town to another town one must travel over a toll
road, through a toll tunnel, and over a toll bridge. At the beginning of the
trip there is a sign posted, listing the rates as in Table 12-1.

MAT Instructions in Basic 181

TABLE 12-1.
Tolls per Vehicle
Road Tunnel Bridge
Trucks $6.00 $3.00 $2.00
Buses $5.00 $3.00 $2.00
Passenger Cars $4.00 $3.00 $2.00
Motorcycles $3.00 $2.00 $1.00

On a particular day there were five caravans which traveled this route. The
caravans consisted of different types of vehicles as shown in Table 12-2.

TABLE 12-2.
Vehicles per Caravan
Trucks Buses Cars Cycles
Caravan 1 1 3 4 2
Caravan 2 1 5 3 6
Caravan 3 2 4 2 5
Caravan 4 1 6 3 2
Caravan 5 3 1 0 2

The Road Commission would like to have a report which would include the
amount each caravan paid in tolls at each toll booth. The problem will be
solved, when we are able to fill in Table 12-3.

TABLE 12-3.
Tolls Paid
Road Tunnel Bridge
Caravan 1 A B C
Caravan 2 D E F
Caravan 3 G H |
Caravan 4] K L
Caravan 5 M N 9]

Before we actually attempt the problem solution, let us write just the por-
tion of our program that we will use later, which will read the data into two
arrays. One array, which we call A, stores the values of Table 12-1, the other

182 Basic BASIC

array, which we call B, stores the values of Table 12-2. Then let us print the
two arrays with headings so that we may later concentrate on the actual
problem solution, having taken care of the mechanics of getting the data into
the proper arrays. Taken by itself, the task of getting the data into the two
arrays is reasonably straightforward. See program T@LL-1.

ToLL -1

20 DIM AC4,31,BL5, 4]

40 |MAT READ A

60 DATA 653,255, 3:2,4,3,253, 251

80 PRINT "TOLLS PER VEHICLE"

100 PRINT "ROGAD TuNL BRIDGE™

120 MAT PRINT A3

140 MAT READ B

160 DATA 1:,3,4,2,155,3,652,4>2-5:,156,3:,223,1,0,2
180 PRINT "VEHICLES PER CARAVAN'

200 PRINT "TRUCK BUS CARS MOQTQRCYCLES"™
220 MAT PRINT B3

240 END
RUN
ToLL~1

TOLLS PER VEHICLE
RGAD TUNL BRIDGE
3

6 2
B 3 2
4 3 2
3 2 3

VEHICLES PER CARAVAN
TRUCK BUS CARS MBTARCYCLES

1 3 4 2
1 5 3 [
2 4 2 5
i 6 3 2
3 1 o] 2
DONE

Writing the program in parts like this will help us isolate any errors that
we might encounter while writing the program. We may now strike out lines
80, 100, 120, 180, 200, and 220 as we will not need these values printed again.

Now to tackle the problem itself. We can find out how much Caravan 1
paid at the road toll booth. It had one truck which paid $6, three buses at $5
sach for %15 four cars at $4 each for $18, and two motarcveles at $3 each
for $6. Totaling 1 ®6,3°5, 4 °4, and 2 ° 3 we get $43. So, $43 is the value
of A in Table 12-3. How much did Caravan 1 pay at the tunnel? It paid
1 ® 3 for the truck, 3 ° 3 for the buses, 4 ® 3 for the cars, and 2 ® 2 for the
motorcycles for a total of $28, which is the value of B in Table 12-3. We

MAT Instructions in Basic 183

repeat this process at the bridge substituting 2, 2, 2, and 1 for 3, 3, 3, and 2
andsumup 1 ° 2,3 °2,4°2 and 2 ° 1 getting a total of $18 for the value
of C in Table 12-3. Then we would go to Caravan 2 and step through the
road tolls, then the tunnel tolls, and finally the bridge tolls. Then on to the
next caravan until we have gotten results for all the five caravans. This is
just the kind of repetitive process that we use the computer for.

We will find it helpful to think of Table 12-3 as an array with C[I, J] as
the values of the entries rather than A, B,..., M, N, @. Calling that array C
we get C[1, 1] = A, C[1, 2] = B, etc. down to C[5, 3] = @.

Note that after we step across row 1 in MAT B and down column 1 in MAT
A, the final sum is entered in row 1 and column 1 of MAT C. When we step
across row 1 of MAT B and down column 2 of MAT A, the sum is entered in
row 1 column 2 of MAT C. You should see that stepping across row R of MAT
B and down column C of MAT A results in a sum that is entered in row R,
column C of MAT C. Note too, that the row headings of MAT B correspond
to the row headings of MAT C and the column headings of MAT A corre-
spond to the column headings of MAT C, and that the row headings of MAT A
and the column headings of MAT B coincide. With some experimentation, you
should be able to convince yourself that this is a natural consequence of the
problem and not mere coincidence for this particular set of data. If you
change the number of toll booths, all of the above statements still hold.

Summarizing, we have just tried to establish that we sum up the following
products:

B[R, X] ® A[X, C] (12-1)

where R is the row number in MAT B, C is the column number in MAT A,
and X goes from 1 to the number of columns in MAT B which is the same as
the number of rows in MAT A. Having found the sum of all products in Eq.
(12-1) for a fixed [R, C] pair, we enter that sum in C[R, C]. We do this for all
rows of MAT B and all columns of MAT A.

You should run through the calculations by hand with pencil and paper to
verify the procedure and to become more familiar with it. We draw a flowchart
in Fig. 12-1 and call the program TOLL-2.

PROBLEMS FOR SEC. 12-2

1) Suppose on a particular day there were four caravans. Caravan 1 had one
truck, Caravan 2 had one bus, Caravan 3 had one car, and Caravan 4 had one
motorcycle. Have the computer print the amounts that each caravan paid at each
toll booth,

2) Suppose there were no vehicles on a particular day. What would the Road
Commission report look like?

3) Suppose there were three caravans, each having one vehicle of each type.
Print the schedule of payments for this situation.

4) On a given day there were four caravans. Caravan 1 had one motorcycle,
Caravan 2 had one car, Caravan 3 had one bus, and Caravan 4 had one truck. Have
the computer print the schedule of payments.

184 Basic BASIC

MAT READ A
MAT READ B
Step through
Step through
|
rows of MAT B m%\ CO,\;"A'"T"ZOf LET CIR, C] = 0
FORR=1T0 5 FORC=1T(3
Step columns in
B and rows in A
FORX=1TQ 4
LET C[R, C}=
CIR, C] + BIR, X}
*AlX, C]
NEXT R NEXT C NEXT X

MAT PRINT C

Fig. 12-1. Flowchart for finding tolls paid
by caravans at various toll booths for program
TOLL-2.

ToLL-2

20 DIM AL 4, 31,BL5, 4]

25 DIM CU5,3)

40 MAT READ A

60 DATA 6+3:,25553s2,4, 3,253,251

140 MAT READ B

160 DATA 153,4,251555 356525452550 156035253-,1,0,2
235 REM WE STEP THROUGH ROWS 8F B THE CARAVANS
240 FOR R=1 T8 S

255 REM WE STEP THROUGH COLUMNS OF MAT A

256 REM THE TOLL BOOTH IDENTIFICATIGN

260 FOR C=1 T8 3

nac 13 1aa TALETY AC T2 ~e oo
[ogt [y ANV S B e ke we o

280 LET CLR»,C)=0

295 REM X STEPS THROUGH THE RGWS OF A AND THE COLUMNS GF B
296 REM THERE WE FIND °TRUCKS BUSES CARS M@TORCYCLES'

297 REM IN EACH ARRAY

300 FOR X=1 T@ 4

320 LET CER,CI=CLR,CI+BIR,X1#ALXsC]

335 REM GO T8 THE NEXT COLUMN OF B AND THE NEXT ROW OF A
340 NEXT X

~ ol dnd
ERV 21y

MAT Instructions in Basic 185

355 REM GO T@ THE NEXT COLUMN OF WMAT A
360 NEXT C

375 REM GU T3 THE NEXT ROW OF MAT B
380 NEXT R

500 PRINT "ROAD", “TUNNEL','""BRIDGE"

520 MAT PRINT C

999 END
RUN
TeLL-2
ROAD TUNNEL BRIDGE
43 28 18
61 39 24
55 34 21
S4 34 22
29 16 10
DONE
5) Let
1 2 3
92
A= 4 5 6 and B = 1 = 3 4
7 8 9 5 6 7 8
10 11 12

Perform the operations of this section to get MAT C.

6) Suppose we let

1 2 3 4 10 11 12 13
A= d =
[5 6 7 BJ and B [14 15 16 17]
Why could not we perform the set of operations of program T@LL-2?

12-3 OPERATIONS AND SPECIAL MATRICES

While the MAT operations have specialized and rigid definitions in matrix
algebra, we will find at times that some of the MAT capabilities will help us
in writing programs not deeply involved in a matrix algebra setting. It is the
purpose of this section to list the MAT capabilities, but not to develop the
matrix algebra to any great extent. For such a treatinent, you should see any
text in advanced algebra.

Multiplication

The requirements of the Road Commission report in Sec. 12-2 led us to
evolve a set of steps that occurs often in both applied and theoretical mathe-
matics. The set of steps cairied out there exactly fits the definition of matrix
multiplication. Using the array names of Sec. 12-2, we define the product of
B and A as the array C, which is written as C = B ° A.

186 Basic BASIC

From the discussion in Sec. 12-2, we should see that the dimensioning must
conform as

B[R, M] ® A[M, C] = C[R, C]

Calling for a product of two nonconforming matrices will generate an error
message from the computer. The program statement for multiplication is

XXX MATC=B*A

We may now have the computer do everything from lines 240 through 380
with a single statement. Having worked through the operation in considerable
detail in Sec. 12-2, you should have little difficulty in having the dimensions
correctly provided for. See TOLL-3.

ToLL-3

20 DIM AL 4,33,BI(5, 4]

25 DIm CL5,3)

40 MAT READ A

60 DATA 653,2,5,3,2,4»3,2,352, 1

140 MAT READ B

160 DATA 1,3:4:2515553,652:4:2555,15,653,253,1:0,2
200 MAT C=B%A

210 PRINT "ROAD', " TUNNEL"' ""BRIDGE"

230 MAT PRINT C

999 END
RUN
ToLL-3
RGAD TUNNEL BRIDGE
43 28 i8
61 39 24
55 34 21
54 34 22
29 16 10
DONE

Addition and Subtraction

Some past problems have asked vou to add two wravs. For two amays of
the same dimensions, the sum is defined as an array containing the sums of
corresponding entries of the given arrays. In other words, for all 1, J pairs,
SII, 11 = AlL J] + BIL, JJ, where the sum amay is S. Matrix addition is accom-
plished with the program statement

XXX MAT S=A+B
or XXX MAT A=A-+B

may be used if you no longer need MAT A.

Subtraction is defined just as you would expect. For A — B, the difference
must be an array so that for all 1, T pairs, DI, J1 = A[l, J1 — Bl J1. The pro-
gram statement is

MAT Instructions in Basic 187
XXX MATD=A-B
or XXX MAT A=A-B

Neither addition nor subtraction is defined for arrays of different dimensions.

Scalar Multiplication

You may multiply each element of an array by some constant or algebraic
expression using

XXX MAT Z = (SIN(G)) ° X

which multiplies every entry in MAT X by SIN(G) and enters the product in
MAT Z.

Equality
A matrix may be created to be identical to an already existing matrix by
XXX MAT P=Q (12-2)

or, in systems which do not permit Eq. (12-2), you should be able to achieve
the same result by

XXX MAT P=(1)°Q

Special MAT’s

There are three special matiices available with a single assignment state-
ment in BASIC. They are

XXX MAT A = ZER (12-3A)
XXX MAT B = ZERI[R, C] (12-3B)
YYY MAT C = C@N (12-44)
YYY MAT D = CONIR, C] (12-4B)
7ZZZ MAT E = IDN (12-5A)
ZZZ MAT F = IDNIN, N] (12-5B)

Equation (12-3A) sets all entries in MAT A equal to 0 according to previ-
ously determined dimensions, while Eq. (12-3B) sets the dimensions of B at
[R, C] and fills MAT B with 0's. Equation (12-3B) is often used to change the
dimensions of a matrix during the RUN of a program.

Equation (12-4A) sets all entries in MAT C equal to 1 according to pre-
viously determined dimensions, while Eq. (12-4B) sets the dimensions of MAT
D at [R, C] and fills it with 1’s.

Equation (12-5A) requires that MAT E be a square array, and flls the
upper left to lower right dingonal with I's and all other locations with 0’s.
Equation (12-5B) has the same eflect as Eq. (12-5A), but the dimensions are
set at [N, N]. The matrix created in this form is called an identity matriv,
Program MATSP1 is intended to show how these special arrays are established.

188 Basic BASIC

MATSP1

10 DIM Al2,4),B02,121,C010,11)
20 PRINT "MAT A=ZER %% PREVIQGUSLY DIMENSIONED AT 2BY 4™
30 MAT A=ZER

40 MAT PRINT A

50 PRINT "MAT B=CON(3., 72"

60 MAT B=CONL3, 7}

70 MAT PRINT 83

80 PRINT "MAT C=IDNL 4, 41"

90 MAT C=IDNL 4, 4]

100 M™MAT FPRINT C3

110 PRINT "MAT A=CON[1,6]1"

120 MAT A=(CONL1,61

130 MAT PRINT AS

140 END

RUN

MATSP1

MAT A=ZER %% PREVIGUSLY DIMENSIONED AT 2BY4

o] 0 0 o]
[¢] 0 [0} o

MAT B=CON(3, 7]
1 1 L} 1 1 1 1

1 1 i 1 i 1 i

1 1 1 1 1 1 1

MAT C=IDNI 4, 4)

1 0 o] o]
o] H o] o]
[¢] 0 i 0
[} 0 0 i

MAT A=CONI1,61]
1 1 1 1 i i

DONE

SUMMARY

We have introduced the matrix operations—multiplication, addition, subtrac-
tion, and scalar multiplication. The special matrices ZER, C@N, and IDN have
been specified.

PROBLEMS FOR SEC. 12-3

1) Redo program TOTAL using a row vector for the numbers of items and a
column vector for the prices. Obtain the total cost with a single MAT statement.
2) Have the computer find the product of

1 3 -2 -1 —1
9 -3 1 -3 5
-7 5 -1 11 and -3

3 —1 1 —1 4

MAT Instructions in Basic 189

If we think of the above as

1 3 -2 -1 w
2 -3 1 -3 X
-7 5 -1 11 and Y
3 -1 1 -1 z

then we are really finding the values of W 4 3X — 2Y — Z, 2W — 3X 4 Y — 3Z,
—TW 4+ 85X — Y + 11Z, and 3W — X + Y — Z.

3) Multiply

"0 0 17 5 7 -5
0o o0 2 by 4 5 3
o o 3] o 0 0
and multiply
0 0o 17 5 6 2
0o 0 2 by 4 1 3
(0 o 3 0 0 0

Any conclusions about the matrix of 0’s?
4) Let
3 12 —12 28
A._l:l 4:' and B_.l: 3 ~7J
Find the product A ® B and the product B * A. What do you conclude?
5) Let
1 2 —1 -2 2 —11
s=[s 3] e=[] oesls
Find[A*B]* Cand A *[B*C].

6) Using A, B, and C from problem 5), ind A* [B+ Cland A*B + A ° C.
7) Multiply

1 2 —1 .08 —.24 2

9 -1 3 by 52 44 2

7 —2 4 12 .64 —_.2
8) Let

-2 1 1 2
A”[15 _.s:l and B“‘[a 4]

Find A® Band B ® A.

v 9) Write a program to raise a matrix to a power. Let the power be determined
by an item of data.

10) Enter the integers 1 through 12 into a row vector and into a column vector,
using MAT READ. (You can avoid typing the data twice by using RESTORE.)
Find the 12 by 12 product matrix and print it.

190 Basic BASIC

12-4 SOLVING SIMULTANEOUS LINEAR EQUATIONS

You should see that the matrix equation

"A, B, G X D,
A, B, GCy|o|Y|=]|Dy (12-6)
Ay By Gy Z D,

can be multiplied out on the left-hand side to obtain
"AX + B,Y + C,Z D,
A3X + B__)_Y + CQZ - DQ

| AyX + ByY + CyZ | Dy |

(12-7)

Defining equality for two matrices as existing if and only if for all 1, J pairs
the entry of one matrix equals the corresponding entry of the other, or for
MAT A and MAT B, A[I, J] = B[], J], we may say that

AX +B,Y+CZ=D,
A3X + B3Y + C32 = D3

which constitutes a system of three linear equations.

Equations (12-6), (12-7), and (12-8) are simply three different ways of writ-
ing the same set of equations. If we can find the values of X, ¥, and Z in
Eq. (12-6), we will have solved the set of linear equations in Eq. (12-8).

Let us rewrite Eq. (12-6) as

C*S=K
where
A, B, C, X D,
C=lA, B, G, S=1y K=|D,
Ay By Cy Z Dy

It would be very convenient if we could just divide both sides by C. But it
turns out that the division of one matrix by another is not an easily describable
process. However, we may instead multiply each side by the multiplicative
inverse of C. We write that as C—1 Doing that we get

S§S=C-1*K
We note here without elaboration, the following facts:

1) In order to have an inverse, a matrix must be square,
2) Not all matrices have inverses.
3) The product of a square matrix and its inverse is the identity matrix.

To see more clearly what the inverse of a matrix is, let us find the inverse of

)

MAT Instructions in Basic 191

We may call its inverse the matrix with entries A, B, C, and D such that

A B 5 G 1 0
o -

C D 7 8 0 1
Finding the product on the left, we get

5A 4+ 7B 6A+8B | |1 0

5C + 7D 6C+8D| |0 1
Two matrices are equal if their corresponding entries are equal. So we get
the following four equations:

5A+ 7B =1 6A+8B=0
5C+ 7D =0 6C + 8D =1

Solving these for A, B, C, and D we get A = —4, B = 3, C = 3.5, and
D= —2.5. 50

R Ty

BASIC provides a statement to find the inverse of a square matrix, if it
exists. After we have arranged for proper dimensioning, we may use

XXX MAT X = INV(A)
MATINV

10 DIM XL2,21,AL2,21,P(2,2]
20 ™MAT READ A

30 MAT X=INV(A)

40 PRINT '"ORIGINAL MATRIX®
50 M™MAT PRINT A3

60 PRINT "INVERSE MATRIX"
70 MAT PRINT X3

80 PRINT “THE PRODUCT IS"
90 MAT P=X%A

100 M™MAT PRINT P3

110 DATA 5,6,7,8

120 END

RuUN

MATINV

BRIGINAL MATRIX

5 [

7 8
INVERSE MATRIX
~4e 3.

3.5 -2.5
THE PRODUCT IS

1 0

0 i

DANE

192 Basic BASIC

and matrix X will be the inverse of matrix A. We may easily verify our calcu-
lations for finding the inverse above. See MATINV.

(You are cautioned that the computer may be susceptible to slight errors
when using the INV() statement.)

So with the MAT INV(), we should be able to solve sets of simultaneous
linear equations such as the following:

AW — X492V +3Z=— 3 (12-9A)
— W+ 4X 4 2Y =-15 (12-9B)
WA+ 2X— Y+ 3Z=—3 (12-9C)
—4W +3X + 2+ Z=-17 (12-9D)
We let
[~ 4 -1 2 3
C= -1 4 2 0
1 2 -1 3
| —4 3 2 1
where C is usually referred to as the cocfficient matrix, and we let
~— 3
-15
K=
— 3
| —17

Now we can read the data into two matrices C and K, have the computer find
the inverse of C, and multiply it by K to get matrix S consisting of the values
for W, X, Y, and Z, which satisfy Eq. (12-9). See program S@LVE.

SOLVE

10 DIM CLA,41,KL4-,11,504,11,1[4, 4]

20 MAT READ C»K

30 MAT I=INVIO)

40 MAT S=I%K

50 PRINT “SOLUTIONS:™

60 MAT PRINT S

70 DATA 45-152535~1,4,2,051,2,~1535~423,2515-3,-15,~-35~17
80 END

SOLUTIONSS
1.

MAT Instructions in Basic 193

The column vector

—2
-3
-1

is to be interpreted as, W=1, X=—2, Y = -3, and Z = —1. We may now
substitute these values in Eq. (12-9) to verify that they do in fact constitute the
unique solution.

SUMMARY

We have seen that sets of simultaneous linear equations may be solved by
considering an equivalent matrix equation C ° X =K, where C is the coeffi-
cient matrix, X is a column vector which contains the values of the variables
in the original set of linear equations, and K is a column vector containing the
constant terms in the original set of linear equations. We may solve for X by
finding the inverse of matrix C, so that X = C—1 ® K. The inverse may be found
with the BASIC statement MAT I = INV(C). For systems of simultaneous
linear equations having a unique solution, MAT C will always be square, which
is one of the requirements for having an inverse.

PROBLEMS FOR SEC. 12-4

1) Let
4 —4 4
A=] 1 1 7
-3 9 —8
Find and print A—1, A ®A—1 and A—1° A,
2) Let

=[]

Find B=1 and print it. Verify by hand-computing the inverse of B. Find and print
B*®B~1and B~1°B.

3) Solve for X and Y:
—92X — 5Y = 16
— X 4+4Y =3l

4) Solve for X, Y, and Z:
2X — 9Y —5Z =2
7X — 6Y + 5Z = —35
9X — 6Y 4 5Z = —39

194 Basic BASIC

5) Solve for X, Y, and Z:
X4 AY4+Z =7
53X — 6Y 32 =28
X 4 4Y +Z = —3

6) Solve for W, X, Y, and Z:
6W 43X + 6Y + 5Z = —12
—TW 4+ 85X —TY — Z="T7
—3W 4+ X 4 3Y 4 6Z =31
—OW — 4X 4 4Y — TZ = —176

7) Solve for W, X, Y, and Z:
—3W 4 6X — 5Y — Z = —32
W4+ 9X —~5Y—22=9

W 4+6Y+52=2
—TW + 4X — Y 4 5Z = —-86

8) Solve for X, Y, and Z:
2X 4+ 4Y — 3Z — —11.9
—9X — 3Y = 58.5
—9X 4 8Y 4 5Z = 66.6

9) Solve for V, W, X, Y, and Z:
TV + 6W — 3X — Y + 9Z = 26.3
—9V + 2W 4 9X + 5Y + Z=91.1
—3V 4 4W + 5X + 5Z = 62.9
6V — 8X — 2Y — 6Z = —55.6
-3V — OW 4 5X 4 7Y + 3Z = —25.9

10) Let
1 -2 3 2 —4 0
A=1}5 -1 -2 and B=1] -3 1 2
0 3 4 5 2 —5

Find and print (A * B)~*and B—1 ® A—1,

v 11) Write a program that can solve sets of simultancous linear equations having
different numbers of equations. Have an item of data that is the number of equa-
tions and redimension all matrices accordingly.

12-3 TRANSPOSE OF A MATRIX

Suppose you have just solved a set of 1U simultaneous iinear equations. The
10 values of the 10 unknowns are entered into a column vector that is called
X in Sec. 12-4. Calling for MAT PRINT X prints the 10 values down the page
with a blank line between every two. This takes up a lot of space. It might

MAT Instructions in Basic 195

be convenient to enter these same values in a row vector and MAT PRINT
that on one line. What we want is to create a new matrix whose row corre-
sponds to the column of the matrix X and whose columns correspond to the
rows of matrix X, ie., an exchange of rows and columns. Of course we could
make the exchange element by element or we could do the printing entry by
entry, but both are unnecessary. BASIC provides a program statement to per-
form this set of exchanges. XXX MAT A = TRN(B) fills matrix A so that its
rows correspond to the columns of B and its columns correspond to the rows of
B. This set of exchanges creates a matrix called the transpose of B. We write
the transpose of B as Bt.

As noted earlier, the transpose will enable us to have more compact print-
ing in some programs. The transpose also introduces some matrix properties
of theoretical interest. Some of these properties may be suggested by the
exercises.

TRP@S1 is simply a demonstration program that finds and prints the trans-
pose of a 10-element column vector.

TRPOS1

8 REM A IS A COLUMN VECTOR AND B IS A R@GW VECTAER
10 DIM AL10,11,BL1,10]

20 MAT READ A

30 DATA 152535455562 7:8,9,10

40 MAT B=TRN(A)

45 PRINT "TRANSPGSE @OF COLUMN VECT@R A"

50 MAT PRINT B3

60 END

RUN

TRPGS1

TRANSPOSE OF COLUMN VECTGR A
1 2 3 4 5 6 7 8 9 10

D@NE

The transpose differs from the inverse in that every matrix has a transpose.
If MAT A has M rows and N columns, then At has N rows and M columns.
Let us write a second demonstration program to print a 2 by 4 matrix and its
transpose. See TRP@S2.

TRPBS2

10 DIM AlL2s41,BL 4,21

20 PRINT "2 BY 4 MATRIX"

30 M™MAT READ A

40 MAT PRINT A3

30 MAT B=TRNC(A)

60 PRINT "TRANSPGSE @F THE AB@VE MATRIX"
70 MAT PRINT B3

B0 DATA 3,6515-5,0,18,999,11

90 END

196 Basic BASIC

RUN

TRPGS2
2 BY 4 MATRIK

3 6 1 -5
0 18 999 11
TRANSPGSE OF THE ABOVE MATRIX
3 0

[18

) 999

-5 11
DONE

MAT X = TRN(Y)
Creates a matrix X so that for all I, J pairs, X[, J] = Y[], I]. Dimen-
sions must be correctly provided for. X is called the transpose of Y.

PROBLEMS FOR SEC. 12-5

1) Let
1 -2 3
A= 2 1 —4
| -3 4 1
Find and print At, At 4+ A, and At — A,
2) Let
5 3 1
A=1{ 6 —2 9
[3 9 1
Print At, A + At, A — At and At — A.
3) Let

L]

Let B— Atand let C = A—1. Print B—1 and Ct.

4) Let
2 —1 3 6 3 8
A= 5 0 8 and B = 9 5 4
-3 4 2 11 —2 0

Print [A ° B]t, Bt ® At, and At ° Bt

CHAPTER 13

Elementary Probability

13-1 INTRODUCTION

It is the purpose of this chapter to introduce some fundamental concepts
of probability and to develop program routines for some of these applications.

Taking an intuitive approach to probability, we may think of rolling a die.
The term experiment is used to describe a particular trial, or in the case of
rolling a die, an experiment is the actual rolling of the die. The outcome is the
number that comes up. There are six possible outcomes for rolling a die. We
may say that the probability of the die coming up 2 is one in six or %,
because there is only one 2 and there are six different numbers, each of which
is equally likely to come up. We refer to the outcome we are looking for as a
success and all others as failure. We define probability so that the probability
of success P added to the probability of failure Q is 1, or P+ Q = 1.

Often our requirements for success permit more than one single outcome,
all of which are equally likely to occur. We define probability as the quotient
of the number of outcomes that constitute success and the total possible
number of outcomes:

P=S/T

where P is the probability of success, S is the number of outcomes that
constitute success, and T is the total number of possible outcomes. All out-
comes are equally likely to occur.

So, before we work with probability, we will have to develop ways of
counting the numbers of outcomes of various kinds of experiments.

13-2 ENUMERATION

Fundamental Principle of Enumeration

The Fundamental Principle of Enumeration states that, if one choice can
occur in A ways and then a second choice can occur in B ways, the total
number of ways that the two choices may occur is the product of A and B,
or A*B.

197

198 Basic BASIC

So, if you are going to buy a car that comes in five models and seven
colors, the number of cars you have to choose from is 5°7, or 35. The
Fundamental Principle of Enumeration may be extended to cover any number
of choices so that, if in buying the car you also may choose airconditioning
and whitewalls and you have four engines from which to choose, the number
of cars availableis 57 ° 2 * 2 * 4, or 560.

Permutations

How many four-letter combinations may be formed using the letters of the
word FLAG each used once?

We could approach this problem in one of several ways. We could sit down
with pencil and paper and try to write them all, or we might write a program
to write them all.

The techniques required for this vary so greatly from system to system
that we will not present the program, but only the RUN.

RUN

FLLAG

FLLAG FLGA FALG FAGL FGLA FGAL
LFAG LFGA LAFG LAGF LGFA LGAF

AFL.G AFGL ALFG ALGF AGFL AGLF
GFLA GFAL GLFA GLAF GAFL GALF

DONE

We can easily see that the number of different combinations is 24. Each of
the combinations listed is a permutation of the four letters F, L, A, and G, and
each is different from the others because the letters are in a different order.
In other words, when we talk about permutations, order matters.

One other approach to solving the original problem will lead us to a more
general enumeration technique. We observe that to form a four-letter word
using four different letters once, we may use any one of the four letters for
the first letter. Now there are only three letters left from which to choose the
second letter, two left from which to pick the third letter, and finally we have
exactly one letter for the fourth letter of the new word. Using the Fundamental
Principle of Enumeration, there are four choices. The first can occur in four
ways, the second can occur in three ways, the third in two ways, and the
fourth in one way. This makes 4°3°2° 1 or 24, ways that the four choices
can oceur.

This kind of calculation occurs often in mathematics and so is given a special
name. 4 * 3 * 2 ® 1is called 4 factorial written as 4! . In general,

N(N — 1)(N — 2) - - - (2)(1) = N!

where N is a positive integer. Let us write a routine to compute factorials
(see program NI).

Elementary Probability 199

Nt

10 PRINT "FIND THE FACTORIAL 0OF'3
20 INPUT N

30 LET F=1

40 F@R X=N TO 1 STEP -1

50 LET F=F%X

60 NEXT X

70 PRINT N3 "FACTORIAL =" F
80 END

RUN

Nt

FIND THE FACTORIAL BF?4
4 FACTORIAL = 24

DONE
Of course for larger integers, N! becomes very large.

RUN
N!?

FIND THE FACTORIAL OF?20
20 FACTORIAL = 2.43290E+18

DONE

Suppose we want to find the number of three-letter words that can be
formed from the letters of the word COMPUTER without duplication. For
the first letter we may pick from among eight, for the second we may pick
from among seven, and for the third we may pick from among the remaining
six letters. This makes 8 ° 7 * 6, or 336, different words. Since the order is
different, these are 336 different permutations. Notice that

go7og= 8§°7°6°5°4°3°2°1 8 8
- 5°4°3°2°1 - 5 T (8-3)!

We should see that for the number of arrangements of R letters taken from
among N different letters with no duplications we get NI/(N — R)L. This
defines the number of permutations of N things taken R at a time written as

N!
nPr = W=R! (13-1)
Writing the right side of Eq. (13-1) as the quotient of products, we get

b _ NN—D(N=2)---(N—R+1)(N—R(N—R~-—1)---(2)(1)
nPr = (N=R)YN—R—-1)-(2)1)

Dividing we get
Pr=NN-1)--- (N-R+1)

which is ideal for computing with a loop that goes from N to N~ R+ 1
STEP —1. Sce line 40 of program NPR.

200 Basic BASIC

10 READ NsR

20 IF N=0 THEN 100

30 LET P=1

40 FOR X=N TQ N-R+1 STEP =1

50 LET P=P%X

60 NEXT X

70 PRINT N3 "THINGS"3R3'"AT A TIME HAVE3 P;"PERMUTATIONS"
80 GOTO 10

90 DATA 8,3,54,4,0,0

100 END
RUN
NPR
8 THINGS 3 AT A TIME HAVE 336 PERMUTATIONS
4 THINGS 4 AT A TIME HAVE 24 PERMUTATIONS
DONE
Combinations

The distinction between combinations and permutations is order. For com-
binations, order does not matter. We may think of combinations as selections
of items while permutations are arrangements. The number of combinations of
four letters selected from among four letters is one. The number of combina-
tions of N different things taken R at a time is written Cp. We may find the
number of combinations of N things taken R at a time by looking at the
number of permutations. Each combination of R things could be arranged in
R! ways and that gives us the number of permutations. So

(xCr)R!) = xPp
and solving for yCy we get

NPR N! N

Cr= R T RN - R

Thus, the number of combinations of three letters selected from eight different
letters with no duplications is

8!
sCs = 35y = 56

while the number of permutations is
gP3 = 336

Combinations pertain to such things as committees and dealing cards where
order does not matter.

If we want to know the number of five-member committees that can be
selected from among 2U people, we get »,U;. For the purpose of writing a
computer program, we might think of ,,C; as ,,Ps/Rl. One approach is to
compute .,P; and then successively divide by the integers from 5 down to 1.
Let us draw a flowchart (Fig, 13-1) and call the program NCR.

Elementary Probability 201

combinations of N things taken R at

(: Fig. 13-1. Flowchart for computin
Start p &
— a time.

- FORX =NTQ
LT N--R-+1 STEP —1
LET C = CxX
FORX=RTP 1
NEXT X
XT STEP —1
LETC = C/X
NEXT X

READ N»R
IF N=0 THEN 150
LET C=1

REM 3C T8 50 FIND NPR
FOR X=N T@ N-R+1 STEP -1
LET C=C*X
NEXT X

REM 60 T@ 80 DIVIDE BY R!
FOR X=R T@ 1 STEP -1

LET C=C/X

NEXT X

PRINT N3 U"THINGS"IR3 "AT A TIME HAVE";C;'"COMBINATIONS"

GOTO 10
DATA 85 3s4s452055,0,0
END

202 Basic BASIC

RUN

NCR

8 THINGS 3 AT A TIME HAVE 56 COMBINATIONS

4 THINGS 4 AT A TIME HAVE 1 COMBINATIONS
20 THINGS 5 AT A TIME HAVE 15504 COMBINATIONS
DONE

Permutations of Things Not All Different

Suppose we want to know the number of arrangements possible for the let-
ters of the word PROGRAM. Since there are two R’s and we cannot tell which
is which, taking 7! counts every distinguishable arrangement twice, because
the R’s may occupy two positions in 2! ways. Therefore, the number of words
is 7!/2!. How many ways can we arrange the letters of the word ABSENTEE?
Well, if the E's were distinguishable, we would get 8!; but that counts the
indistinguishable arrangements 3! times, because three E’s can be arranged in
three locations in 3! indistinguishable ways. So we get 8!/3!. The letters of the
word SNOWSHOES can be arranged 9!/2!3! ways, because the two O’s can
be arranged in 2! ways and the three S’s can be arranged in 3! ways.

Partitioning

In how many ways can we arrange three X’s and five Y's? We get 8!/3!5!.
We might ask this question in the following way: In how many ways can we
put eight different things in two groups where one group contains three things
and the other contains five and order does not matter?

In how many ways can we arrange three X’s, five Y’s, and six Z’s? We get
141/315!6]. We could ask the question in the following way: In how many
ways can 14 different items be put into three groups of three, five, and six
items?

The second version of each of the last two problems are examples of parti-
tioning. In general, if we have R;, Ry, . . . , R, items such that R, + R,
+---+ R, = T, then the number of ways that we can put the T items in n
groups of Ry, Ry, ..., Ry is

TI
N= g Rl

Note that all the problems treated under permutations and combinations
were really special cases of partitioning. The combinations of N things taken
R at a time may be thought of as partitioning into two groups of R and N — R
items. The problem of arranging SNOWSHOES may be thought of as parti-
tioning into six groups of three items for the 5's, two items tor the O’s, and one
item each for the four remaining letters N, W, H, and E. Finally, the permu-
tations of N different items taken R at a time may be thought of as R+ 1
groups of N — R in the first group and one item each for the other R groups.

Elementary Probability 203

SUMMARY

This section has been devoted to introducing the Fundamental Principle of
Enumeration and the enumeration of permutations, combinations, and parti-
tionings of objects. In counting permutations order matters. Permutations count
such things as arrangements of letters in a word and books lined up on a
bookshelf. When counting combinations order does not matter. We use com-
binations for such things as the number of different committees formed from
a group of people and hands dealt in a game of cards.

PROBLEMS FOR SEC. 13-2

1) In how many orders can 15 people enter a classroom?

2} In how many diffcrent ways can 15 keys be put on a circular key ring?

3) Cars come in 18 colors, seven models, four engines, and there are 15 options
such as whitewalls, outside mirror, radio, etc. How many different cars are available?

4) You have 25 different books and two bookshelves, one of which holds exactly
12 books and the other holds exactly 13 books. In how many ways can the books
be arranged on the shelves?

5) In a class of 30, a six-member committce is to be selected. How many differ-
ent committees are possible? If there are 15 girls in the class, how many of the com-
mittees consist of six girls?

6) How many different five-card hands may be dealt from a deck of 52 cards?

7) How many different 13-card hands may be dealt from a deck of 52 cards?

8) There are five people in a room. In how many ways can they all have
different birthdays? Use a 365-day year and ignore Feb. 29.

9) In how many ways can 10 people have all different birthdays? Ignore Feb. 29,

10) If a state uses three letters followed by three digits for its license plates,
how many different license plates can it produce?

11) You have five different flags with which to form signals by arranging them
all on a flagpole. How many signals can you form?

12) You have five different flags with which to form signals by arranging up to
five of them on a flagpole. How many signals can you form? Let zero flags constitute
a signal.

13) You have 10 different flags with which to form signals by arranging up to
five of them on a flagpole. How many signals can you form?

14) You have 50 friends. You are going to have a party and can only invite 25
people. How many different guest lists could you have?

15) In how many ways can 15 people sit in a row of 15 chairs?

16) Do problem 15) if two of the people must sit next to each other.

17) How many different words can be formed from the letters of the word
COMPUTERS if 1) you must use all of the letters and 2) you must leave out one
letter?

18) A class consists of 30 students of which 17 are girls. In how many ways can
we seleet a committee of four? How many will have two boys and two girls? How
many will have one boy und three girls? How many will have four girls? How
many will have four boys?

19) How many outcomes are possible for rolling two dice followed by drawing
three cards from a 52-card deck?

204 Basic BASIC

20) How many different sets of two five-card hands can be dealt from a 52-card
deck?
21) How many words can be formed using all the letters in MISSISSIPPI?

13-3 SIMPLE PROBABILITY

We defined probability in Sec. 13-1 as S/T, where S is the number of
ways in which an outcome may constitute a success and T is the number of
possible outcomes, and all outcomes are equally likely. For flipping a coin,
we see that the probability of coming up heads is 1/2 or .5. For drawing a
card from a 52-card deck, the probability of getting the ace of spades is 1/52
or about .0192.

Suppose you are in a class of 29 students and a committee of four members
is to be selected at random. What is the probability that you get on the com-
mittee? Well, the total number of committees possible is 50C;. Now all we
have to find is how many of those committees count yourself as a member.
We can find out by saying in effect, “Let us put you on the committee and
pick the other three members from the remaining 28 class members.” This
means that you will be on 54C; of the committees, and the probability that
you get on the committee is 93C;3/29C,. Let us write a program to compute
this probability. We can use lines 30 through 110 of program NCR as a
subroutine to first find »,,C, and then find 5,C,4. See program CLASS. You can
see that your chances are about 14%. You should also see that the probability
that you do not get on the committee is about 1 — .14 or .86.

CLASS

10 READ N»R

20 G@SUB 500

30 LET Ci=C

32 REM C1 STORES THE NUMBER OF COMMITTEES OF WHICH
33 REM Y@U ARE A MEMBER

40 READ N R

50 GasuB 500

60 LET P=Ci/C

70 PRINT "THE PROBABILITY THAT YQU GET @N A 4 MEMBER™
75 PRINT “COMMITTEE FRGM A CLASS @F 29 IS'™:P

80 STerP

490 REM FIND COMBINATIONS @F N THINGS TAKEN R AT A TIME
500 LET C=1

510 FOR X=N T2 N-Rr+1 STEP -1

520 LET C=C#*X

530 NEAKT X

540 F@R Y=R T0 1 STEP ~1

550 LET C=C/Y

560 NEKT Y

570 RETURN

600 DATA 28,3

610 DATA 29,4

$35 END

RUN

CLASS

THE PR@BABILITY THAT Y@U GET N A 4 MEMBER
COMMITTEE FrROM A CLASS @F 29 IS .137931

DINE

Elementary Probability 205

Suppose we roll a die. The probability that a 3 comes up is one in six or
1/6. Now roll the die again. Again, the probability of a 3 is 1/6. We can see
that if we roll the die twice, the probability of both rolls coming up 3 is
(1/6) ® (1/6), or 1/36. We define an event as a set of outcomes for a particular
experiment. If we have two events A and B such that the probability of suc-
cess for A is P and the probability of success for B is Q, the events A and B
are said to be independent if the probability of success for A and B both is
P ® Q. This is exactly the case for rolling a 3 on each of two dice, which
enables us to arrive at probabilities without actually enumerating outcomes.
Thus we have extended our definition of probability.

For rolling two dice, the events associated with the first die are independent
of the events associated with the second die. The same may be said of rolling
the same die twice. Flipping two coins are independent. Drawing a card from
a deck is independent of rolling a die. So, the probability of getting a 1 and
an ace upon rolling a die and drawing a card is (1/6) ® (4/52), or (1/78).

Let us look at a problem often referred to as the “birthday problem.” Sup-
pose you are in a room with 29 other people. What is the probability that
at least two people have the same birthdate? We can say that if the probabil-
ity of no two people having the same birthdate is P, then the probability
that at least two do have the same birthdate is 1 — P. The birthdates for two
people are independent events, so we may multiply individual probabilities.
Picking any person first, we say that his probability of having a different birth-
date from those already picked is 365/365. Picking a second person, the
probability that his birthdate is different from the first person’s is 364/365.
For the third person we get 363/365 as the probability that his birthdate is
different from the first two, and for the 30th person we get 336/365 as the
probability that his birthdate is different from each of the first 29 birthdates.
So, the probability that all are different is

365 364 336

P=2365"° 365 ° " ° 365

and the probability that at least two people have the same birthdate is 1 — P.
We can write a short program to compute 1 — P. See BIRTH.
The chances are about 71%, which is much higher than many people would

BIRTH

10 LET r=1

20 FOR D=365 TO 336 STEP -}

30 LET P=pPxD/365

40 NEXT D

50 LET u=1-P

60 FRINT "THE PROBABILITY OF TW® OR MORE"

70 PRINT "IDENITICAL SIRTHDATES AMONG 30 PEOPLE 135';3 0
80 END

HUN

BIxTH

THE PxOBABILITY OF TWO OR MOKE
IDENTICAL BIRTHDATES AMONG 30 PEOJPLE IS . 706314

DONE

206 Basic BASIC

guess before doing the problem. Note that this is not the probability that
someone else in the room has the same birthday that you have. That problem
is left as an exercise.

SUMMARY

We have initially defined probability as the quotient of the number of ways
to constitute success and the total number of possible outcomes for equally
likely outcomes. We see that this can easily be applied to situations of enumer-
ation. Independent events which have individual probabilities P and Q occur
together with a probability of P ® Q. This produces an extended definition of
probability which does not always require enumeration, but requires only that
we know individual probabilities for successive events.

PROBLEMS FOR SEC. 13-3

1) A class of 29 has 16 girls. A committee of five is selected at random. What
is the probability that all fve committee members are girls?

2) Ten people are to sit in a row of 10 chairs. What is the probability that two
particular persons sit next to each other?

3) What is the probability of being dealt the ace of spades, the three of clubs,
the eight of hearts, the seven of diamonds, and the 10 of clubs?

4) What is the probability of being dealt the ace, king, queen, jack, and 10 of
spades from a 52-card deck?

5) What is the probability of the first six flips coming up heads and the last
four tails when flipping a coin 10 times?

6) What is the probability of getting all heads when flipping a coin 10 times?

7) You have a list of 20 true-false questions from which 10 will be selected at
random for a test. Of the 20, there are 15 you are guaranteed to get right and five
that you are guaranteed to get wrong. What is the probability that you will get
exactly eight right?

8) An experiment consists of drawing a card from a 52-card deck until the first
ace appears. Find the probability of the first ace appearing on the fourth draw.

9) For the experiment of problem 8), find the probability of the first ace appear-
ing on draws one through ten.

10) An experiment consists of rolling a die until it comes up 2. Find the proba-
bility of the first 2 coming up on the fourth roll, on the tenth roll.

/ 11) Refer to the birthday problem. How many people must be in a room to have
the probability of at least two identical birthdates be .5?

12) You are in a room with 29 other people. What is the probability that one of
them has your birthdate?

v 13) How many people must be in a room for the probability of another person
to have your birthdate be .5?

13-4 RANDOM SIMULATION

We may use the random number generator to simulate experiments that
occur at random. We can have the computer flip a coin by generating two
random digits. We can roll a die by generating six random digits, etc.

Elementary Probability 207

FLIP

5 LET C=0

10 FOix X=1 TO 50

20 LET F=INT(2%:NDC1))

30 IF F=1 THEN 60

40 PRINT "T';

50 G3Ta 100

58 REM C COUNTS THE NUMBER OF 4EADS
60 LET C=C+1

70 PRINT "H'';

100 NEXT X

110 PRINT

120 PRINT “HEADS ";C;"QUT 9F S0 FLIPS"
130 END

RUN

FLIP

HTTHTTTRTTHHHTTTHHHTHT THHH T TT THARYHTTY THTHTTTTTHTH ¢
HEADS 23 OUT OF 50 FLIPS

DANE

Let us begin by having the computer flip a coin 50 times. See program FLIP,
We get 23 heads out of 50 flips. One of the intriguing things about flipping
a coin many times is that we do not get heads for half of the flips for each
experiment. In fact, it is possible to flip a coin 50 times and get no heads or
to get all heads. Of course the probability of all heads or no heads is very
small compared to the probability of half heads. We will be able to compute
those probabilities in the next section. For now we are concentrating on
simulation.

In many ways, flipping a coin 50 times is the same as flipping 50 coins once.
Let us put program FLIP in a loop to perform the experiment 10 times to
see a range of results. See FLIP-1.

We get a range of 17 to 34 heads for this RUN of the program, and it
turned out this time that none of the trials came out 25 heads.

One of the nice features of simulation by computer is that we can have the
computer perform hundreds or thousands of trials of an experiment that might
take days to do with physical apparatus.

FLIP-1

2 Fa3r Y=1 T2 10

5 LET C=0

10 FUR X=1 T3 50

20 LET F=INT(2%RND(1))

30 IF F=1 THEN 60

40 PRINT "T7';

S0 G&Te 100

58 REM C COUNTS THE NUMBER 3F HEADS
60 LET C=C+1

70 PRINT "H'3

100 NEXT X

110 PRINT

120 PRINT "HEADS *;C;3'"@UT 32F 50 FLIPS"
125 NEXT Y

130 END

208 Basic BASIC

RuUN
LIP-1

HTTTTTHTTHHTTHTTTTTTTTHTHHHHHH TTTTTHTHHH THHHTTHHTT
HEADS 21 auT 9F 50 FLIPS
HTTHTHHTTHTTHTHHTTTHHHT TTTTTHHHH T TH TH THHHH THH T THHH
HEADS 26 @uT @F 50 FLIPS
HIHTTTHTTHTTHTTTTTTTTHTTHT T THTHTHTTTHT TTTTHHH THHHT
HEADS 17 QUT @F S0 FLIPS
THTTTTTTHTHTHTHH THHHHHHTHTTTHHTTHTTTTTTTHH THTTHHTT
HEADS 21 @UT 3F S0 FLIPS
TTHHTTTTHTHH T THTH THHHH T THH THHH T TT TTTHTHHHH TTHTHHTT
HEADS 24 @UT 8F S50 FLIPS
HTHTHHHHHHH THT TTTT T THT THHHHHH TTTHT TTTH TH T THH THH THH
HEADS 26 @uUT @F 50 FLIPS
HTTTTTHTTTTHATTHT THTHHHHA THTHHTTHHHHTHT THTHTHTTTTHT
HEADS 22 guT 8F S0 FLIPS
THTHHHHHH TH THHHH T T THH TH THHHHH THHH THH THHHHHHH TTTHTH
HEADS 34 3JT @F 50 FLIPS
HTTHHTHHTTHTTTTTTHHHTTTHT T THH T THTH THHHHH T THH THHTHT
HEADS 24 QUT OF 50 FLIPS
TTHHTHH THHH THTTHTHHHTHHHTTTTHHH TTTTH T THTHH THHTHTHT
HEADS 26 @UT @F 50 FLIPS

;

DANE

Let us set up an experiment to roll six dice 1000 times, counting the num-
ber of times 1 comes up for each roll of six dice. The possibilities are from
zero to six. Then let us count the number of times each of those seven numbers
occurs. We can keep track of all seven totals in a 1 by 7 row vector. We will
count the number of times no 1’s come up in column 1 and the number of
times one 1 comes up in column 2, etc. See the flowchart in Fig. 13-2 and
program R@LL.

ROLL

5 REM THE MAT INSTRUCTIONS ARE CONVENIENT HERE

10 DIM LL1,73

20 MAT L=ZER

38 REM THE C@MPUTER DGES SO THROUGH 110 1000 TIMES
40 FOR X=1 T9 1000

50 LET C=0

55 REM C IS GOING T@ COUNT 1°'S

S8 REM LINES 60 THRGUGH 100 ROLL 6 DICE AND COUNT 1°'S
60 F@R R=1 T9 6

70 LET U=sINTC(6%RND(1)X+1)

80 IF U>1 THEN 1G0

90 LET C=C+)

100 NEXT R

110 LET LL15C+11=L01,C+13+1

120 NEXT X

130 PRINT “NGNE ONE Tw@ THREE FQUR FIVE SIX"
140 MAT PRINT L3

150 END

RUN

ROLL

NONE @NE Twe THREE FQUR FIVE SIX
343 410 193 44 9 1 0

DENE

Initialize
vector at 0

<k

FORX =1
T 1000

LETC =0
Set counter

at0

Elementary Probability 209

FORR=1TQ6
Roll 6 dice

\| LETU = INT (6
7| «RND (1) + 1)

LETC=C+1

NEXT X

Enter Cinto
vector

Fig. 13-2. Flowchart for rolling six dice 1000 times.

PROBLEMS FOR SEC. 13-4

1) Have the computer flip six coins 1000 times and print the distribution of

outcomes.

2) Sketch a graph of the distribution for problem 1) and the distribution for

program R@GLL.

3) Write a program to deal five-card hands from a 52-card deck. Be sure not

to deal the same card twice.

4) A company manufactures light bulbs and can openers. For light bulbs it is
known that 1 in 20 is defective and for can openers 1 in 25 is defective. Write a
program to select at random one light bulb and one can opener 1000 times. Total
cach of the following: the number of times neither was defective, the number of

210 Basic BASIC

times both were defective, the number of times the light bulb was defective, and
the number of times the can opener was defective.

5) A regular tetrahedron has four equilateral triangles as faces. Let an experi-
ment consist of numbering one face 1 and the remaining faces 2, and tossing the
tetrahedron into the air to determine which number faces down. Write a program
to toss the tetrahedron 500 times and count the number of times the 1 faces down.

6) Roll a die 500 times. Count the number of times the 1 or the 5 comes up.

7) Roll a die and toss the tetrahedron of problem 5) 1000 times. Count the
number of times both come out 1 and count the number of times both come out 2.

8) An experiment consists of rolling a die until a 1 comes up. Write a program
to perform the experiment 500 times. Count the number of rolls for each experiment.

9) An experiment consists of flipping a coin until it comes up heads. Write a
program to perform the experiment 1500 times and count the number of flips
required for each. Print the distribution.

10) Roll 10 dice 500 times. Count the number of 1’s that come up for each roll.
Print the distribution.

11) Suppose 10% of the population is left handed. Write a program to pick groups
of 10 people at random. Count the number of left-handed people. Print the
distribution.

12) Project: Write a program to make the computer the dealer in a game of 21.

13-5 BINOMIAL TRIALS

Suppose we roll two dice. What is the probability that a 1 comes up
exactly once? If we use one red die and one green die, we may more clearly
describe the results. There are two ways that that we could get exactly one 1.
First, we could have the red die come up 1 and the green die not come up 1.
The probability of this is (1/6) ° (5/6). Second, we could have the red die
not come up 1 and the green die come up 1. The probability of this is
(5/6) ® (1/6). Now, if we roll the two dice, the probability that we get
exactly one 1 is the sum of the above two possibilities, or (5/6) ° (1/6)
+ (1/6) ® (5/6) Or we can say that the probability of exactly one 1 is two
times the probability of getting a 1 on the green die and not a 1 on the red die
which is 2 ° (5/6) ° (1/6).

Now suppose we roll four dice colored red, green, blue, and white. What is
the probability that we get exactly two 1’sP The probability that the red and
the green dice are 1's and the blue and white are not is (1/6) ° (1/6) ° (5/6)
® (5/6). But we might get the I’s on the green and blue with the same proba-
bility, or we might get I's on the red and white dice with the same probability,
In fact, there are ,C. ways that we could select two dice from the four to come
up with 1's. Each selection has probability of (1/6)° (1/6) ° (5/6) ° (5/6).
_So the probability of exactly two 1's up for a roll of four dice is

P=,C,° (1/6)2° (5/6)

which simplifies to 25/216.

Suppose we have 10 dice. What is the probability that exactly two dice
come up 1 when all 10 are rolled? For a particular selection of two dice, we
get (1/6)2 ° (5/6)% and we can select the two dice in {,C., ways. So,

P=,,C (1/6)"’ ° (5/6)%

Elementary Probability 211

We can write a short program to find the value of P. Note that in program

DICE lin

DICE

10
15
20

es 15 through 40 compute the value of 16Coa.
READ R

LET C=1

FOR X=10 TO 10-R+1 STEP -1

30 LET C=C#X/€10-X+1)
40 NEXT X
S0 LET P=C#(1/6)1R*(5/6)1(10-R)
60 PRINT P
65 DATA 2
70 END
RUN
DICE
«29071
DBNE

Program DICE is for exactly two 1’s. What about the other possible num-
bers of 1’s? With just a few changes in program DICE, we can answer that

question,

Instead of computing for R = 2 only, we can let R go from 0 to

10 in a FOR-NEXT loop. This can be done by changing only lines 10 and 65

in DICE.

See DICE-1.

In DICE-1 we have defined 11 events that cover all possible outcomes in
this experiment. There can be no outcomes that do not give from 0 to 10 1’s.

It is also

true that no two of the events have any outcomes in common. Events

which do not have any outcomes in common are called mutually exclusive

DICE

5 P
10
15
20
30
40
50
60
65
70
RUN
DICE

ONES
[¢]

Vb Wi

-0 N g

DONE

RINT "ONES PROBABILITY"
FOR R=0 T@ 10

LET C=1

FOR X=10 T@ 10-R+1 STEP -1
LET C=C%X/(¢10-X+1)

NEXT X

LET P=C*(1/6)tR¥(5/6)1(10-R)
PRINT R3P

NEXT R

END

-1

PRABABILITY
«161506
» 323011
«29071
« 155045
5.42659E-02
1. 30238E~02
2.17063E-03
2. 480 72E-04
1.86054E~05
8.26908E-07
1. 65382E-08

212 Basic BASIC

events. If we have a set of mutually exclusive events that also cover all pos-
sible outcomes, then the sum of the individual probabilities must total 1. We
can verify that the sum of the probabilities in DICE-1 is in fact 1. Of course
one way to do that would be to rewrite the program to total the probabilities in
DICE-L

Suppose we know that 10% of a certain population is left handed. If we
select 100 people at random, what is the probability that exactly 10 of them
will be left handed? The probability that a particular set of 10 people will be
left handed will be (1/10)10 ® (9/10)% and from 100 people there are 14yCyo
ways that 10 of them can be left handed. So the probability is

P = 190C1o * (1/10)10 * (9/10)%°
This too, can be done with a short program. See LEFT.

LEFT

10 LET C=1

20 FBR X=100 T@ 100-10+1 STEP -1
30 LET C=C#X/(100-X+1)

40 NEXT X

50 LET P=C#(.1)t10%(.9)790

60 PRINT P

70 END

RUN

LEFT

« 131865

DANE

In general, we should see that if an outcome has probability P of success
and Q of failure and we perform an experiment consisting of N trials, the
probability of exactly R successes is

P:NCRo PR‘I QN—R

Experiments that behave in this way are called binomial experiments because
the values of yCg ® P® ® Q¥—1 are the terms of the expansion of the binomial
(P + Q) raised to the Nth power.

Binomial Theorem

Looking at (P + Q)Y, we should be able to see the general term in the
product. (P + Q)X means, write (P + Q) as a factor N times. So

P+QN=P+QP+QP+Q) - (P+Q)

When we multiply this out, we are actually taking one term from each factor
in such a way that we can sum up all possible products of combinations of N
factors one from each (P -+ Q) factor. How many factors are there in the
product? There is one term that takes P as a factor N times. There is one term
that takes P as a factor N — 1 times and Q as a factor once. There is also a

Elementary Probability 213

term that takes P as a factor N — 2 times and Q as a factor twice, ete., down
to the term that takes Q as a factor N times. That makes N + 1 terms. Now,
for a particular term, say PSQN—3, we want three P’s and N minus three Q’s
We can select three P’s from among N terms in yCy ways and so the value
of this term is (Cy ® P3QN~3, For the Rth term we get xCp ® PRQN—R_ which
is exactly what we get for a probability of R successes in N trials where the
probability of success on a single trial is P and the probability of failure on a
single trial is Q. So to find (P + Q)N we simply evaluate ~Cgr * PRQN¥—R for
all values of R from 0 to N.

Taking a look at the probability of any binomial experiment, we see that
since P+ Q =1 and the sum of all (Cy ® PRQN—1 terms is (P + Q)¥, we get

if P+Q=1 then P+Q¥=1

which can be verified by summing up the probabilities in program DICE-1.

Finally, if we look at (X + Y)¥ for X and Y both equal to 1, we get the
general term in the expansion to be yCyzIR1¥~R which is the same as ~Cr»
so that the numerical coefficients of any binomial expansion are simply the
corresponding values of yCy. Since the values of X and Y are both 1, we are
really finding the value of 2% if we sum up all of the coefficients. Let us
write a program to print the coefficients for values of N from 0 to 11. See
program PASCAL.

You may recognize these numbers as Pascal’s Triangle which has many
interesting properties. Problem 9) in Sec. 11-1 and problem 7) in Sec. 5-3
should also have given the results of program PASCAL.

PASCAL
10 FOR N=0 T2 11
20 FOR R=0 T2 N
30 LET C=1
40 FOR X=N T@ N-R+1 STEP -1
50 LET C=CkX/(N-X+1)
60 NEXT X
70 PRINT Cs
80 NEXT R
90 PRINT
100 NEXT N
110 END
RUN
PASCAL
1
i 1
1 2 1
1 3 3 1
1 4 [4 1
i 5 10 10 5 1
1 6 15 20 15 6 H
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 | B} 55 165 330 462 462 330 165 55 | B 1

DONE

214 Basic BASIC

PROBLEMS FOR SEC. 13-5

1) Modify PASCAL to sum up the cocfficients. Print the values of R and the
sum of the coefficients. Do not print the coefficients.

2) Modify DICE-1 to sum up the individual probabilities. Have the loop go
from 10 to O.

3) It is known that 1% of the population has a certain type of blood. In a class
of 25 persons, what is the probability that exactly two people have this blood type?

4) A company makes bolts. It is known that 1 in 1000 is defective. You buy a
box of 100 bolts. What is the probability of getting exactly one defective bolt?

5) For the company in problem 4), what is the probability of getting 10 defective
bolts.

6) For the company in problem 4), what is the probability of getting at least one
defective bolt.

7) For the company in problem 4), what is the probability of getting less than
five defective bolts.

8) Find the probabilities of getting zero through six 1’s when rolling six dice.
Compare your results with the random simulation in program ROLL.

9) What is the probability of getting zero through 10 heads when flipping 10
coins.

10) What is the probability of getting more heads than tails when flipping 10
coins.

11) A test consists of 25 true—false questions. You know that your probability of
guessing right on any given question is 75%. Find the probability of getting 76% on
the test, if you guess on all questions. Find your probability of getting 76% or better,
J/ 12) An experiment consists of flipping a coin until it comes up heads. Find the
probability of success for 1 to 10 flips.

J/ 13) An experiment consists of rolling a die until it comes up 1. Find the proba-
bility of success for 1 to 10 flips. Find the probability that success will require more
than 10 rolls. Find the probability that success will require more than 20 rolls.

APPENDIX A

Storing Programs on Paper
Tape

A-1 INTRODUCTION

Once you have written your program, you would like to have the computer
execute it. In order to execute a program it must be typed into the com-
puter. Ideally, we should all be expert typists, but many of us are not.
So, many time-share terminals provide for punching programs on paper tape
when the terminal is not connected to the computer. Then the high-speed
tape reader may be used for reading the program in on-line. Even so, the
considerate student will do his utmost to improve his typing speed so as not
to tie up the terminal when others would like to be typing. One suggestion
is to type all programs in advance before sitting in front of the terminal to
punch tape. You will benefit in two ways: by getting practice in typing and
by being able to read the program easily. :

A-2 PUNCHING PAPER TAPE OFF-LINE

Programs may be stored on a narrow strip of paper tape by punching rows
of holes in a code. Each row represents a character, space, line feed, carriage
return, or other nonprinting character.

There are so many variations from one time-share company to the next,
that we cannot list them all here. But we can outline the general procedure.
First the terminal must be switched to local. Then the tape punch apparatus
must be turned on. Now you want some blank leading tape so that the tape
reader will be able to read the first character of your program. Some terminals
generate the blank leader by depressing the HERE IS key. On others, you
may have to depress the REPT and RUBOUT keys simultaneously until suffi-
cient tape shows, or try depressing CTRL, SHIFT, REPT, and P all at once.

Now you may type your program. As you type, holes will be punched,
which the tape reader will interpret when you feed the finished tape back.
Be swe to begin each line with a line number and touch the RETURN and

215

216 Basic BASIC

LINE FEED kevs at the end of each line. (There may be a special key for
RETURN.)

If you make a typing error, you may correct it in one of several ways. If
it is the previous character or within a few characters, depress the backspace
button on the tape punch apparatus once for each character you wish to
erase. Then touch the RUBOUT key once for each backspace. The RUBOUT
key punches out all holes in the row and will be ignored by the computer
and will not print. Alternatively, you may depress the SHIFT key and the
@ key once for each character you wish to erase. A backwards arrow will be
printed for each correction. Spaces do count as characters for this purpose. If
the entire line is a lost cause, simply RETURN, LINE FEED, and begin
typing from the beginning including the line number. After you have finished
typing, touch RETURN and LINE FEED. Then generate blank tape as you
did before typing your program. The idea is to get some paper that is not
filled with holes so that you may write some kind of identification on the
tape. As soon as you have your second tape, the need for this will become
obvious. After tape preparation is completed, tear it off and roll it up. It is
suggested that you not roll it less than about 2 in. in diameter, as the tape
will take on a permanent curl and that may cause trouble in the reader later.

A-3 READING PAPER TAPE

With the terminal on-line and the previous program erased, you are ready
to enter your program into the computer via the tape reader. Again computers
vary, but most require a system command, and for some the command is
TAPE followed by turning the tape reader on. After the tape is read in,
remove your tape from the reader and roll it up again. If the computer
requires a system command to enter tape mode, then a second command will
be required to remove it from that mode. The command KEY removes the
computer from tape mode and prepares it for instructions from the keyboard.
The command RUN usually will serve the same purpose.

At this time the computer takes your entire program and compiles it. To
compile a program means to put all instructions in order and convert it to a
form that the computer uses to actually perform the instructions. In order to
run, all statements must be legal BASIC statements and the entire program
must fit certain requirements that vary depending on the computer.

At this point, you should read all of Appendix B and then return and finish
this appendix.

A-4 GETTING THE COMPUTER TO PUNCH PAPER TAPE

Having read Appendix B, you can see that after you have read in a program
on tape, you may make many changes or additious. Aflter you have made all
of the necessary changes or after it becomes clear that you cannot make all of
the necessary corrections in a reasonable length of time at the keyboard, you
may want a new tape of the program in its latest form. Here again, time-

Storing Programs on Paper Tape 217

share systems will vary, but you will have a way of getting the computer to
punch your program. Some will automatically provide blank leading and
trailing tape, others will require you to use the method you used when you
typed off-line. Two of the system commands in use are PUNCH and LIST-
N@-HEADER.

Now you have two tapes for the same program. Most likely you will want
to throw the old one away. Be sure to write some identification on the new tape.

APPENDIX B

B-1 INTRODUCTION

From the time you type the last line of your program to the completion
of a successful RUN, there are three types of errors that may show up: 1) those
errors that prevent a RUN; 2) those errors that allow a RUN to begin but
cause it to terminate during execution; and 3) those that permit a complete
RUN, but cause the computer to produce an unexpected or incorrect result.
The whole process of taking a program that does not work and turning it into
one that does is called debugging. Let us look at the errors by type.

B-2 ERRORS THAT PREVENT RUN
These are very often simply typing errors:

10 LT=ET X=5

20 PRONT X

30 END

RUN

N@ STATEMENT TYPE FGUND IN LINE 20

The exact wording will vary from computer to computer, but the message
is clear, We retype line 20 as in the following:

20 PRINT X
RUN

5
DBNE

Even though BASIC does use English words, you may not get too conversa-
tional as in the following:

bho
Pt
.Y

Error Diagnosis 219

10 READ X AND Y

20 PRINT X»Y

30 DATA 4,5, 75-11

40 G& T 10

S0 END

RUN

CHARACTERS AFTER STATEMENT END IN LINE 10

As far as BASIC is concerned, line 10 says READ X. The AND Y is not
part of the language and so is rejected. Since there is no way to know just
what the characters after X mean, if the first one is not a comma or a single
digit, the computer will not take a guess at what you meant. You must say
exactly what you mean; the computer is not clairvoyant. So, change line 10
as follows:

10 READ X.»Y
RUN

4 5
7 -11

QUT 6F DATA IN LINE 10

To multiply X times Y in algebra we write XY.

10 LET X=5

20 LET Y=10

30 LET Z=XY

40 PRINT Z

50 END

RUN

CHARACTERS AFTER STATEMENT END IN LINE 30

However, even though in algebra XY is understood to mean X times Y, you
must be more explicit for the computer, and write X * Y.

30 LET Z=X#*Y
RUN

50

DONE

Let us put many errors in one program and see what happens,

10 LET X= 5

20 READ Y , Z
30 LER Ww=Y* Z

40 PRINT X

50 LET A*B=X

60 READ W

70 GaTe 9010

B0 LET S=CAX+BY*(CX+D)
90 LET At

100 GO BACK T@ 10
110 LET X=3%4+5)

220 Basic BASIC

120 DATA S 11, 25, =5

130 PRINT Wr2

140 GOTO 60

150 DATA 2: 67»-1>

RUN

N@ STATEMENT TYPE FOUND IN LINE 30
MISSING ASSIGNMENT @PERATOR IN LINE 50
MISSING RIGHT PARENTHESIS IN LINE 80
MISSING ASSIGNMENT @PERATZR IN LINE 90
N@ STATEMENT TYPE FOUND IN LINE 100
CHARACTERS AFTER STATEMENT END IN LINE 110
MISSING OR ILLEGAL DATA ITEM IN LINE 150

Now let us see what we can do to fix the program so it will run. First v
would like to see what is left of our program. The system command LIST wi
do that for us.

LIST

10 LET X=5

20 READ Y.,Z

40 PRINT X

60 READ W

70 G3T@ 9010

120 DATA 5,11-25:,~5
130 PRINT we2

140 GBTd 60

The computer automatically wiped out all of the statements that did n«
conform to BASIC requirements. So what remains ought to run, right? Wrong
The computer has only eliminated the errors that are self-contained in sing]
statements. These are sometimes called syntax errors or errors of form. Th
computer has not yet looked to see if the statements fit together into a set ¢
executable statements. To achieve that we type RUN again:

RUN
UNDEFINED STATEMENT REFERENCE IN LINE 70

We can easily see that the computer cannot G@T@ 9010 as there is)
line 9010 in the program., We take line 70 out by typing 70 followed
RETURN and try again.

70

RUN

LAST STATEMENT NOT ‘*END® IN LINE 140
9999 END

RUN

S
625
25

@UT BF DATA IN LINE 60

Error Diagnosis 221

Now we have gotten something printed, but the program is all over the
place. We can assemble it again with the LIST command or we may use a
new command first. We can get nice numbering by the command RENUM-
BER. Some computers use EDIT RESEQUENCE. We RENUMBER here and
LIST the program in its present form.

RENUMBER
LIST

10 LET X=35

20 READ Y.Z

30 PRINT X

40 READ W

50 DATA 5511,25.~-5
60 PRINT W2

70 GBTe 40

80 END

RUN

5
625
25

QUT @F DATA IN LINE 40

There is no substitute for experience.

B-3 ERRORS THAT TERMINATE A RUN

The possible errors in this category become more and more plentiful as
you use more and more advanced capabilities. However, the error messages
are rather explicit and so the most fundamental examples should serve to
demonstrate how termination errors operate. Probably the most common error
for beginning programmers is that the data is either missing or not matched
correctly for the READ variables.

10 PRINT "THE RUN HAS BEGUN'

20 LET A=2

30 READ BsCsD

40 PRINT BxCtA

50 PRINT D ='"3D

60 PRINT “WE G@T T@ LINE 60 AT LEAST™
70 READ X

80 PRINT X

90 DATA 3,17,11

100 END

THE RUN HAS BEGUN

867

D= 11

WE G@T T@ LINE 60 AT LEAST

BUT @F DATA IN LINE 70

992 Basic BASIC

Not all computers will print the out of data message, but they will termi-
nate after the last item of data is read if the program sends it back to READ
again,

You might instruct the computer to perform an illegal operation as follows:

10 PRINT "A","B","A-B","Atg"
20 READ A,B

30 PRINT A,B,A-B,A1B

40 GBTO 20

SO DATA 1525553530 41525 1.23, 4,050, 4.03, 5

60 END

RUN

A B8 A-B AtB
i 2 -1 1
S 3 2 125
3. 41 2 le 4l 11.6281
1.23 4 -2.77 2.28887
0 [¢] 0

ZER® TO LERV POWER IN LINE 30

Zero to the zero power is not defined. So the computer notifies you that it
has come to this undefined condition and halts execution awaiting your pro-
gram change. There are many more ervors that will halt execution, but these
examples should demonstrate the principle involved.

B-4 ERRORS THAT CAUSE UNEXPECTED OR INCORRECT RESULTS

These are the most difficult errors to find. Suppose you write a program and
the computer prints nothing, but notifies you that it has run the program in
the usual manner.

15 LET X=5
25 LET Y=10
30 LET Z=X12
40 LET wW=y12
70 END

DONE

We got three blank lines and that is not what we wrote the program to do.
It is reasonably obvious that we forgot to put in any PRINT statements.

50 PRINT X3Y3Z5 W

10 PRINT "X Y Xt2 Yye2"
KLIN
X Y X2 Yt2

5 10 25 100

DONE

Error Diagnosis 223

If you think that you have the PRINT statements and do not get any
printed results, look for a GOT@ that causes the computer to bypass the
PRINT statements.

The ways in which programs can give incorrect results are unlimited. And
to make matters worse, the computer has no way of determining that the
result is correct. This is the responsibility of the programmer. Consider the
following program to read pairs of numbers and print their sum and their
product and the number of pairs:

10 PRINT "A B Sum PROD ™
20 LET C=0

30 READ A,B

40 LET C=C+1

50 PRINT A3B3A+B; A%B; C3 "PAIRS S@ FAR"
60 GOTO 10

70 DATA 10,20,11,9

80 DATA 1,2,-45,18

90 END
RUN
A B SuM PROD

10 20 30 200 1 PAIRS S3 FAR
A B SuM PROD

11 9 20 99 1 PAIRS S8 FAR
A B SuM PROD

i 2 3 2 1 PAIRS 58 FAR
A B SumM PROD
-45 18 -217 -810 i PAIRS S3 FAR
A B SuM PROD

JUT @F DATA IN LINE 30

We certainly do not need to have the headings printed more than once.
So we want to change the G@TE@ in line 60 as follows:

60 GUTY20

RUN

A B SuM PROD
10 20 30 200 1 PAIRS S0 FAR
11 9 20 99 1 PAIRS 53 FAR
1 2 3 2 t PAIRS 353 FAR

~-45 18 =217 -810 i PAIRS S@ FAR

9uT 9F DATA IN LINE 30

But now we still have to find out why the computer prints 1 for the number
of pairs each time. Line 40 is LET C=C + 1. C must be 0 each time the
computer comes to line 40. This is because the G@OT® sends the computer
to line 20 which is LET C = 0. So we change line 60 again. This time we want
the computer to go only to the READ statement in line 30.

224 Basic BASIC

60 G@TB 30

RUN

A B Sum PROD
10 20 30 200 1 PAIRS SO FAR
11 9 20 99 2 PAIRS S3 FAR
1 2 3 2 3 PAIRS S3 FAR

-45 18 -27 ~-810 4 PAIRS S92 FAR

@UT 3F DATA IN LINE 30
And now the program is as follows:

10 PRINT A B Sum PROD
20 LET C=0

40 LET C=C+1

50 PRINT A3B3A+B3 A%B3 C3""PAIRS 52 FAR"
60 GITY 30

70 DAIA 10,20,11,9

80 DATA 1,2,-45,18

90 END

SUMMARY

We begin to see some of the types of errors and the way in which they
affect the running of our program. There are errors of language or syntax
errors. There are errors that prevent execution such as GOT@ 870 when there
is no line 870 in the program. Some errors do not affect the computer until it
tries to evaluate an expression that calls for an undefined condition. And
finally we have seen some errors that give incorrect results. As we are making
changes in programs we may find the LIST command helpful to see the
program in its present form. As we change programs, the line numbers may
become very scattered or very close together. The command RENUMBER or
EDIT RESEQUENCE makes 10 the first line number and the intervals 10.

APPENDIX C

Special Formatting Functions

C-1 TAB(X)

The TAB(X) function is available on many BASIC systems. The TAB()
function numbers the spaces across the terminal carriage and uses this number
to designate where to print. XXX PRINT TAB (10); “HELL® THERE” is
an instruction to the computer to skip out to the space whose number is 10
and begin printing there. See program HELL®.

HELL S

3 PRINT "HELLO THERE™

10 PRINT TABC10)3"HELLD® THERE"
20 END

RUN

HELL.Q

HELL@ THERE
HELL3 THERE

DANE

Some systems call the leftmost space zero and others call it one. Some
systems treat the argument of the TAB() function mod 72, so that
TAB(100) and TAB(28) mean the same thing. Others use mod 75, in which
case TAB(100) means the same as TAB(25).

There may be several TAB()’s in the same PRINT instruction. The argu-
ment of TAB() may be a variable as in program TAB(1)-

TABC1)

10 LET X=10

20 PRINT TABCX)3X3 TABCX+10)3X+103 TAB(X+25)3X+25
30 END

RUN
TABC1)

DONE

225

226 Basic BASIC

Notice that TAB() counts from the left margin every time it appears, not
from the previous printed character-

We may use the TAB() function to make the formatting a little simpler
in program BANK2 in Sec. 4-3. Turn back to that program and lock at lines
132, 138, 156, 158, and 500 through 530. All of these lines were required
to achieve flexible format. We may eliminate all of these as well as line 490
and replace line 140 with 140 PRINT TAB(X); “$”;FNH(P) and replace line
160 with 160 PRINT TAB(X);“$”;FNH(P1). Now all we need to take care of
is a value for X. Let us try 35 the first time through. Anywhere before line
140 we may insert ZZZ LET X = 35 and call for a RUN.

530

520

510

500

490

158

156

138

132

140 PRINT TABC(X)3“ 3"3 FNH(P)
160 PRINT TAB(X)3"S$'; FNH(P1)
135 LET X=35

RUN

BANK?2

FAR TEN YEAKS

@4.57 COMPOUNDED MONTHLY. s 3 BY.24
®4. 752 COMPOUNDED QUARTERLY e« 3 90.29

The printed results are aligned nicely. Now let us list the new program in
full with the value of X at 31 and call for a final RUN.

BANK 2

2 DEF FNHOO=INT(X%100+.5)7100

10 LET P=P1=56.31

20 FOR Y=1 T@ 10

22 REM FOR TEN YEARS

30 F@R M=} TO 12

32 REM COMPBUND MONTHLY AND COMPUTE INTEREST
40 LET I=P%4.5/100/12

50 LET P=P+]

60 NEXT ™
62 REM THAT FIGURES THE INTEREST FOR THIS YEAR COMPOUNDED
MONTHLY

70 FOR 0=1 T8 4

72 REM COMPOUND QUARTERLY

80 LET I1=P1%4.75/100/4

90 LET Pi=P1+]11

100 NEXT @

102 REM THAT TAKES CARE OF THE QUARTERLY INVESTMENT FBR THIS

YEAR
108 REM NOW T@ COMPUTE THE NEXT YEAR
110 NEXT Y

120 PRINT "F@R TEN YEARS"
130 PRINT "84.5% COMPOUNDED MONTHLY..."3
i35 LET X=31

Special Formatting Functions 227

140 PRINT TAB(X)>3'$'3 FNH(P)

150 PRINT '"84.75% COMPOUNDED QUARTERLY...'3
160 PRINT TAB(X)3'"$"; FNH(P1)

9999 END

RUN

BANK2

FOR TEN YEARS
84.5% COMPOUNDED MONTHLY+ e« $ 88.24
84.75%2 COMPGUNDED GQUARTERLY+«+ $ 90.29

DONE

C-2 IMAGE STATEMENT

There may be an IMAGE statement available on your system. An IMAGE
statement provides the printing pattern for a PRINT statement in yet another
statement. For our BANK2 program, we would use the following set of
statements:

130 PRINT USING 140, FNH(P)
140 :@4.5% COMP@UNDED M@NTHLY $ ##E . ##
150 PRINT USING 160, FNH(P1)
160 :@4.75% COMPOPUNDED QUARTERLY $ ## . ##

to achieve the results of the last RUN above. The IMAGE statement begins
with a colon and the number signs specify the locations of the digits in the
numerical results. In an IMAGE statement, you may specify the location of the
decimal point and the number of digits on either side with the number of
number signs. The IMAGE statement may specify printing for several num-
bers by having several sets of number signs, You may also specify E-format
by following the number signs with four exclamation marks (... ##11). In
our problem above, if we decide to change the location of the printed results,
we simply retype lines 140 and 160.

APPENDIX D

Terminal

K

Input
OQutput

Predefined
process

®

Operation
Opens loop

Closes loop

of Flowchart Shapes

Used for beginning and ending of program.

Indicates data entered into the computer or results
returned by the computer.

READ MAT READ READ#

PRINT MAT PRINT READ:

INPUT MAT INPUT WRITE#
WRITE:

Indicates that a decision is being made.

1F XXXXXX THEN YYY

Indicates a sequence of program statements not in-
cluded in the flowchart. May be used for G@SUB

statement.

Connector. Indicates transfer from one statement to
another other than the next higher numbered
statement in the program. N matches another N
elsewhere in the same fowchart.

Used for anything not already specified.
NEXT X
LET
RETURN
ST@P

o
o
o

APPENDIX E

Summary of Statements in

NOTE: Not all statements which appear in this appendix will run on all systems,
and the list here does not cover every statement from some systems.

END

PRINT

READ

DATA

INPUT

LET

GOTY n

IF-THEN n

It is the highest numbered statement of every BASIC
program. It is optional on some systems and re-
quired on others.

Prints values of variables, calculated values, and
literal expressions inside quotes. Spacing is con-
trolled by semicolons or commas.

Enters values stored in DATA statements into vari-
ables named in the READ statement. All legal
BASIC variables (string and numeric) may be read
in a single READ statement by separating them
with commas.

Stores values for READ statements. Items of data
must be separated by commas. Some systems re-
quire that strings be in quotes.

Same as READ except that data is to be typed on the
keyboard of the remote terminal.

Assignment statement. The word LET is optional on
many systems. Stores the value on the right of an
equals sign in the variable named on the left. May
be used to assign string variables. Multiple assign-
ment is available on most systems.

Names n as the next line number to be executed by
the computer.

Tests the truth of an algebraic sentence placed be-
tween the IF and the THEN. Sends the computer
to line n if the sentence is true. Control passes to
the next line of the sentence is false.

o
o
<

230 Basic BASIC

REM

FORX =AT®B
STEP C
NEXT X

G@SUB n

RETURN
DEF FNA(X) =

DIM A(),B$()....

STOP

RESTORE

CHANGE A} T@ A

CHANGE A TO A$

MAT READ A

MAT PRINT A

Permits the programmer to remark upon the program
in the program itself without affecting the program
operation, Some systems allow an apostrophe, ’, to
serve the same purpose.

Opens a machine loop with first value for X at A, last
number B, and increment C. If C is omitted, the
step defaults to an increment of 1.

Closes machine loop. Sends the computer to the
corresponding F@R statement to increment and
test X.

Sends the computer to a subroutine beginning at line
n. Upon executing a RETURN statement, the com-
puter returns to the line immediately following
G@SUB n.

Closes a subroutine.

Program-defined function. The letter pair FN desig-
nates that a function is called for. The function
name is A and the argument is X. Any letter of
the alphabet may be placed where the A is. Some
systems permit several variables as arguments.

Declares dimensions for one- or two-dimensional nu-
meric arrays or string arrays or both. One number
is required in the parentheses for a list, and two
numbers separated by a comma are required for a
two-dimensional array.

Execution of ST@P statement causes termination of
the RUN at that point.

Restores all data in the program. The next item of
data to be read will be the very first data item in
the program (not discussed in text).

Stores the ASCII code of the characters of the string
A$ in the array A with the length of the siring in
characters stored in A(Q).

Stores a string in A$ with length specified in A(0)
and characters determined by the ASCII code
stored in the array elements of the A list.

MATRIX INSTRUCTIONS

Enters data into the array named A. Several arrays
can be read in the same MAT READ statement by

Prints the array named A with comma spacing. Sev-
eral arrays may be printed with the same MAT
PRINT statement by separating array names with
a comma or a semicolon. The delimiter specifies
the spacing for the preceding array.

MAT INPUT

MATC=A-+B
MATA =B + C
MATA=B—C
MAT A = (K)oB

MAT A = ZER
MAT A = C¢¥N
MAT E = IDN

MAT X = INV(A)
MAT A = TRN(B)

SQR(X)

ABS(X)
SGN(X)

INT(X)

RND(X)

RND

RAND@MIZE

SIN(X),C@S(X), TAN(X)

Summary of Statements in BASIC 231

Enters data into an array from the keyboard (not dis-
cussed in text).

Enters the product of A and B into array C.

Enters the sum of B and C into array A.

Enters the difference of B and C into array A.

Multiplies each entry of B by the scalar K and enters
the result into A.

Creates the zero matrix (flls each entry of A with
zero). ZER may be followed by redimensioning
specifications in parentheses.

Fills each element of A with 1. C@N may be followed
by redimensioning specifications in parentheses.
Forms the identity matrix E. E must be square. All
elements with equal row and column numbers are
1 and all other elements are 0. IDN may be fol-
lowed by redimensioning specifications in paren-

theses.

Finds the inverse of A (if it exists) and enters it in X.

Fills A with the transpose of B.

FUNCTIONS

Computes the nonnegative square root of X. X must
be nonnegative.

Computes the absolute value of X.

Returns the value 1 for X positive, 0 for X equals
zero, and —1 for X negative.

Returns integer part of X. For some systems this is
the mathematically greatest integer function. For
others, the computer simply chops off the digits
to the right of the decimal point. (The results are
the same for nonnegative numbers.)

Generates a random number. In some systems the
set of random numbers accessed is determined by
the value of X. Some systems generate the same
set of numbers each time the program is run,
whereas others provide a different set and still
others provide an option. See RND below.

Returns a random number. The numbers will be the
same on successive runs of the program if the
RAND@MIZE statement is not present in the
program and different on successive runs if the
RAND@MIZE statement is present.

Causes the random numbers generated in successive
runs of the same program to vary.

Computes the sin, cos, or tan of X, where X must be
in radians.

232 Basic BASIC

ATN(X)

LOG(X)
EXP(X)
TAB(X)

LEN(AS$)
EXT$(AS,L))

FILES

READ #N,R

READ #N;
MAT READ #

PRINT #N,R

PRINT #N;

IF END #N THEN n

TYP(N)

Computes the arctan of X. ATN(X) is in radians.
The program must be written to determine the
correct quadrant for the result.

Computes thé logarithm of X using base e.

Computes the number whose LGAG base e is X.

Moves the printing mechanism to the (X + 1)st posi-
tion of the carriage unless the printing mechanism
is already past that point, in which case there is
no effect

Returns the number of characters in the string A$.

String extract function. Isolates a substring in A$
from the Ith to the Jth character inclusive.

FILES
Hewlett-Packard Files

Names files to be used by the present program and
makes them available for access. File names are
separated by commas.

Sets the file pointer to the beginning of the Rth rec-
ord of the Nth file named in the files statement. In
addition, when followed by a semicolon and vari-
able list, this statement reads values from the file
to the variables.

When followed by a variable list, this statement reads
from the file at a point previously established.

Reads values from a file with the same options al-
lowed for READ #,

Sets the file pointer in the Nth file named in the files
statement to the beginning of the Rth rcord and
erases the contents of that record. In addition,
when followed by a semicolon and a variable list,
this statement causes the contents of the variables
to be printed into the file.

When followed by a variable list this statement
causes the contents of the variables to be printed
wherever the file pointer has been previously set.

When executed, this statement sets a flag. If at any
later time an attempt is made to read past the end
of data or past the physical end of the file or to
nrint nast the Phycir‘n] end of the R]F.’, comtrol
passes to line n.

The TYP (N) function takes on values from 1 to 4,
depending on the nature of the next information
in the file TYP(N) becomes 1 for number, 2 for

FILES

READ #N,

WRITE #N,

IF MORE #N

IF END #N

APPEND #N

SCRATCH #N

RESTORE #N

Summary of Statements in BASIC 233

string, and 3 for end of file. If the argument is
negative, the value 4 will be returned for end of
record.

General Electric Files

Names files to be used by the current program and
makes them available for access. File names are
separated by semicolons.

ASCII Files

Reads data from the Nth file named in the program
into the variables of the variable list following the
comma.

Writes data from the variable list following the
comma to the file. The variables in the list may
be separated by semicolons or commas to achieve
corresponding spacing in the file.

Determines whether or not there is more data in the
file.

Determines whether or not the end of the file has
been reached.

Allows additional data to be written to an existing
file by setting the file pointer to the end of the Nth
file and placing the file in the WRITE mode.

Sets the pointer of the Nth file to the beginning of
the file, erases the file, and places it in write mode.

Sets the pointer of the Nth file to the beginning of
the file and places it in the READ mode.

Binary Sequential Files

Binary sequential files may be processed by all of the above statements by
substituting a colon (:) for the pound sign (#). Binary files should be less ex-
pensive to work with; however, ASCII files are very convenient due to the fact
that they may be listed at the terminal.

READ :N,
WRITE :N,
IF M@RE :N
IF END :N

SCRATCH :N

Random Access Files

Same as ASCIL

Same as ASCIL

Tests true, except when the file pointer is at the phy-
sical end of file.

Tests false, except when the file pointer is at the phy-
sical end of file.

Places the file pointer at the beginning of the file and
fills the file with binary zeros.

234 Basic BASIC

RESTORE :N Places the file pointer at the beginning of the file
without altering the contents of the file.
SETW N T@ X Places the file pointer to the Xth word of file N. To

access a random file by record, the formula
W?(R — 1) 4+ 1 places the pointer at the begin-
ning of the Rth record if there are W words per
record.

APPENDIX F

Index of Programs in Text

Program

ADDAB
ALLZER

ARANGI1

ARANG2
ARANG3
ARANGS5
ARANGE
ARRAY1
ARRAY2
ARRAY3
ARRAY4
ASIS

AVERAGE

AVG
AVGCNG

BANK1

BANK2
BASE
BASE-2
BIRTH
CHANGE
CHANGF
CLASS

CL@CK1
CLOCK2

Description

Adds complex numbers in (A,B) form

Finds nonreal zeros for some fourth-
degree polynomials

Prints list after each exchange in
ARANGE

Uses G@SUB for printing in ARANG1

Orders a list of random integers

Orders lists in excess of 10 elements

Orders list of 10 numbers from data

Demonstrates filling an array

Prints contents of ARRAY1

Detailed array manipulation

More detailed than ARRAY3

ABS(), SQR(), INT(), and SGN()
demonstration

Calculates test average from file SCORE
(GE)

Average test scores

AVG done with nested loops First nested
machine loops

Compound amount on $56.31 at two
rates

BANKI with rounding and spacing

Change base-10 numbers to base-2

Base with digits printed closely packed

Probability of two identical birthdates

Demonstrates change statement (GE)

Demonstrates EXT$ function (GE)

Probability of membership on a commit-
tee

Clock arithmetic with time of day

Medifies CLOCK1

235

Page
148

171-172

236 Basic BASIC

Program
CMPINT

COMFAC

COMP-1
CONVRT
C@URS1

COURS2
DAYS01
DEF()
DEMREM

DESCRT
DICE
DICE-1
DIGIT
DIGIT2
ENTERA
FIRST$
FLIP
FLIP-1
G@SUB
INTZER
IZERO1

LADER
LADERI
LADER2
LAWC@S
LAWSIN
LEFT

LIST1
LOGPL
LO@P2
LOOP3
LODP3+
LUPDEM
MAMDI12
MAT-1
MAT-2
MAT-3

MAT-4
MAT-5
MAT-6
MATINV
MATSP1

Description

Finds compound amount of $2000 after
nine years

Finds greatest common factor using the
Euclidean algorithm

Finds nonreal zeros for trinomials

Converts inches to feet and inches

Finds numbers of persons taking five
courses

COURS1 with random data

Reads days of week into MAT W$(GE)

Introduces DEF

Demonstrates finding remainder after in-
teger division

Uses Decartes” Rule of Signs

Probability of two 1’s on 10 dice

Probability of 0 to 10 1’s on 10 dice

Prints base-10 numbers digit by digit

Prints integers using string output (HP)

File prints one name to a record (HP)

First string program

Simulates flipping a coin 50 times

Simulates flipping 50 coins 10 times

G@SUB demonstration program

Finds integral zeros of polynomials

INTZER with a subroutine-defined func-
tion

Uses SIN() in right triangle

Gets several values for LADER

Introduces arctangent function

Given three sides of a triangle

Given two angles and nonincluded side

Probability of 10% success on 100 bi-
nomial trials

First list demonstration program

First loop introduction

Second loop introduction

First machine loop using FOR-NEXT

Uses the loop variable

Demonstrates several loop properties

Multiply and add mod 12

Preintroduction to matrix instructions

First MAT READ and MAT PRINT

Shows the order in which MAT READ
reads

Prints column vector

Prints row vector

Shows redimensioning of a matrix

Takes the inverse of a matrix

Special matrices in BASIC

Page

33

93
170-1

71

08

Program
MLTR,G
M@D12

NI

NCR

NPR

PRD$
ORDER$
PRDERA
ORDERAVG
PAIRS

PASCAL
PICK

PLOTI-PLOTS

POLAR
PRIME1
PRIME2
PRINT
PRINT1
PRINT2
QUAD1

QUAD2
RANDS+
READ
READOL
READO2
READA
READTEST
REAL

REALI
REDUCE
RND

RND(1)
RND(2)
RND(3)
ROLL

ROOTS

ROUND
SC@ORE

Index of Programs in Text 237

Description

Multiplies two complex numbers in polar
form

Mod 12 addition

Computes factorial N

Computes combinations of N things R
at a time

Computes permutations of N things R
at a time

Compares strings for order

Alphabetizes characters of a string (GE)

Alphabetizes names in a file (HP)

Arranges student data by test average in
a binary file

Prints all possible pairs from two sets of
four numbers

Prints numbers of Pascal’s triangle

Selects numbers from a random access
binary file

PL@T1 through PLOTS5 develop a plot-
ting program

Prints coordinates from polar graphing

Finds prime integers from data

More efficient than PRIME1

First HP file program

Uses ‘IF END’ in HP file

Prints to a file random access (HP)

Finds real roots of
AX12+BX+C=0

Analyzes parabola

Random decimal numbers 1. to 11

Reads a data file (HP)

Uses ‘IF END’ in HP file

Reads from a file random access (HP)

Reads names from a file (HP)

Reads file SCORE (GE)

Finds intervals for real zeros of poly-
nomials

REAL with input to reduce interval size

Reduces common fractions

Loads a binary file with 18 random num-
bers (GE)

Introduces random number generator

Random integers O to 9

Random integers 1 to 10

Simulates rolling 6 dice 1000 times

Takes roots of complex numbers in polar
form

Uses INT(X ¢ 100 + .5)/100 for first time

Listing of ASCII file (GE)

Page

151
70
199

201-202

200
102
108
114

120

38
213

119

127-130
145

49

49

110

111

112

123
125
63

111
111
113
113
116

166
166-167
52

238 Basic BASIC

Program

SCOREL
SEG$1
SEG$2

SOLVE
SRVEY1
SUM1
SUM2
SUM3
SUM3+
SURVEY

SYNDIV
TCHB
TCHB+-
TOLL-1
TOLL-2
TOLL-3
TOTAL
TOTAL+
TRAGL
TRI*BI
TRIG1
TRP@S1
TRP@S2
TV'S
WRITEAVG

Description

Listing of ASCII file (GE)

Demonstrates string subscripts (HP)

Prints one digit numeric using string out-
put (HP)

Solves four equations and four unknowns

More processing of data’in SURVEY

Adds integers 1 through 50

Modifies SUM1

Modifies SUM2

SUMS3 using machine loop

Uses a 15 by 5 array to analyze a ques-
tionnaire

Divides a polynomial by X — R

Tabulates four items per family

TCHB done with an array

Reads and prints data for TOLL-2

Prints schedule of tolls paid

T@OLL-2 with matrix operation

Finds total cost of five different items

TATAL using machine loop

Demonstrates variable loop limit

Multiplies a trinomial by a binomial

Prints trig table 0 to 80 degrees

Takes the transpose of a column vector

Takes the transpose of a 2 by 4 matrix

Tabulates survey of TV sets per family

Loads file SC@OREL from file SCORE
(GE)

APPENDIX G

Answers to
Even-Numbered Problems

o
W
<

APPENDIX G

Each two-page spread should be read from top to bottom as one individual page.

CHAP. 1
Problem No. 2

The answer to this will vary from 286 for computers
permitting only single letters of the alphabet, upward.
Some systems permit dollar signs and ampersands as
variables. Other systems permit several letters of the
alphabet, such as ABX, as simpie variables.

Problem No. 4

The quote is an nstruction to the computer that the
printed message is terminated. Here again, systems dif-
fer. Some systems permit printing double quotes {*} by
including them between single quotes ('), such as: ‘HE
SAID, “"HELLO.""”

Problem No. 6
10 REAU Al
20 PRINT A+B

25 DATA 1-£406s.001
30 END

1+00000E+36

DONE

Problem No. 8
10 PRINT 2721

20 END

HUN

8

666667

DONE

Problem No. 16(d)

10 LET N=(R23.481-7.048314
20 LEY D=4.9813-87.872

30 PRINT N/D

49 END

-9.61374

DUNE

CHAP. 2
Problem No. 2

The READ statement calls for two variables. A single
zero would have caused the program to terminate, as
the variable P would find no data.

Problem No. 4

5 HEM THE LINES USED TO MODIFY PROGHAM SUMZ AHE 75, 15 AND 35
10 LET NsS

i5 LEY ¥=0

20 LET S50

30 LET S3Sen

35 LEY TaT#d

40 1F Ns1191 THEN 70

50 LET NaNe2

&0 GOTO 30

70 PRINT “SuUM 6F ODD NUMBERS FROM 5 TG 1191 IS™1S
75 PRINT “THE NUMBEX OF NUMBERS SUMMED I1S*1T

B0 END

RUN

NG.a

5UM GF GDD NUMBERS FAOM S TO 1191 IS 355212
THE NUMBER OF NUMBERS SUMMED IS 594

DONE

Problem No. 12

10 PRINT "INITIAL BALANCE = $14.23"
20 LET B214.23

30 READ T

35 IF TsQ THEN 110

40 LET B=BeT

50 PRINT B

60 GBTE 30

160
110

DATA 9,-3.24,~1:98,-3:85:0
END

RUN
D412

INITIAL BALANCE # S$14.23
23.23
19.99
18.01
14.16

OONE

Problem No. 14

100
120
RUN
NO-1

LET 5+0

LET D=t

REM G KEEPS TRACK OF THE NUMBER BF GIFTS
REM D 1§ THE DAY MUMBER

REM T TGTALS THE HUMBER OF GIFTS ON A GIVEN DAY
LET T=0

LET TsTey

LET G=G* T

IF TaD THEN 80

GaTe SO

LET OwDei

IF D <= 12 THEN 40

PRINT “TOTAL NUMBER OF GIFTS IS 6

4

TOTAL NUXBER @F GIFTS IS5 364

DONE

1§44

Problem No. 10 Problem No. 6 Probiem No. 16

10 2SAD A,8sCa D EsFaGatsiad 10 LET N21001 10 LET T=0
20 PHINT AsS+CobsEsFoGatelr] 20 [15 LET Cs0
30 DATA 1,2,3,4,5:6472%09, 10 30 o 20 READ §
40 END a5 TsTel 30 IF 520 THEN 70
RN 40 Sx5en 40 LET C=C+)
10 45 NN i) 50 LET T=Tes
50 = 2212 THEN 100 60 GATO 20
s 70 5 70 PRINT “GEORGE TBOK'™ICs“TESTS™
100 PRINT “THE SUM OF THE NUMBERS 1515 BO PRINT “FOR AN AVERAGE OF"1T/C
DONE 110 PRINT “'THE NUMBER OF NUMBERS 1S™IT 90 DATA 83,91,97,100,89,0
200 END 200 END
RUN RUN
Problem No. 12 NB. s Na- 15
10 READ 4,8,C,0 THE 5UM OF THE NUMBERS 1S 178266. GEBRGE T@OK 5 TESTS
20 PRINT AeZ,AsDeReC.BeD THE NUMBER OF NUMBERS IS 111 FBR AN AVERAGE OF 52
A0 DATA 147,3,4,2,3,3,2
40 G6eTe 10 DaNE poNE
50 END
RUN
12 P
N 1o Y Problem No. 8 CHAP. 3
s 12 s 16 LET =1 SEC. 3-1
20 PKRINT Lyis1
OUT OF DATA 1IN LINE 10 30 IF §=25 THEN 50 Problem No. 2
35 LET i=le1 1o LET Coo
40 GOTE 20 =
Problem No. 14 0 w1 20 CET 1og
10 READ N1,01.82,02 RUN 30 FCR N=100) TO 2213 STEP 11
20 LET HeNisDReNZeDE nG.8 40 LET CxCol
30 LET D=D1su2 50 LET T=Ten
A0 PRINT “(1/2)+0576) 2 IN1“/*5D t t 80 NEXT N
S0 DATA 1.2.5.6 2 .5 70 PRINT “TOTAL 1537
éo Enp 3 +333333 80 PRINT “THE NUMBEW OF NUMBERS 15"1€
AUN 4 .25 90 END
1a 5 .2 RUN
6 166667 NO.2
CI/23405/6) = 16 4 12 7 - 142857
8 ~125 TOTAL 15 178264,
DONE 9 NITEEN! THE NUMBER OF NUMBERS IS 111
1o .
1 9.09091E-02 ooNE
Problem No. 16(a) 12 8.33333E-02
10 LET Ne1s20173 13 7.69231E-02
20 LET Deisa-irs ta 7. 14286£-02 Problem No. 4
36 PRINT 7D 15 6. 66667E-02
W0 £HD 16 -0625 10 FOR x=1 TC 25
AN 17 5.BB8235E-02 20 PRINT Xs17X
Ten 18 5+55556E-02 30 NEXT x
19 5.26316E-02 40 Ewp
10. 20 «05 AUN
21 +047619 NO. 4
22 4.54545£-02
beNE 20 4.34783-02 t '
24 4. 16667E-02 2 .
Problem No. 16(b) 25 .04 3 1333333
a
10 LET A=(2/3)/05/6) DONE s .2
20 LET 8=2(3/4)/02/3) 5 s 166667
30 PRINT asB 3 142857
a0 END 8 .15
RUN 9 B
168 10 .1
PrOb!em No‘ 10 1% 909091 £-02
1.92% 12 3.33333E-02
5 REM THIS I5 NO.10 13 7.692318-02
DONE. 20 DATA 2,.35,3:2.65, 11,25, 159.49,35,1.59,0,0 ra T+ 14286E-02
15 beEEEETE~ND
te <3625
Problem No. 16(c) 17 5.88235E-02
10 LET A=C1/243/713/¢2.3123-1) 18 $+55556E-02
20 LET B=((4r3-312)/5)/(15/4> 19 5.26316£-92
30 PRINT AeB 20 a5
a0 END 21 1047619
RUN 22 4.54525E-02
16C 23 a.34783E-02
2a Q. 164K67E-02
<332613 THE NUMBER OF DIFFERENT ITEMS IN THE ORDER 15 § 25 +0a
OONE DaNE DONE

74

SEC. 3-1 Cont'd

Problem No. 6

10 LET S=0

20 FOR Xsy 16 1000

30 LET S35¢1/%

a0 NEXT X

50 PRINT "SUM OF oECIPASCALS Facq 1 Y0 1093 I5%1S
40 ENY

SUM BF RECIPHCCALS FAOY | T) 1000 1S T.48547

DONE

Problem No. 8

5 LET P=i00
FOR g@v1 TO 4
EO LEY [=.0teP
33 LET PwPel
40 NEXT @
SO0 PRINT "AMBUNT AFTER ONE YEAR 1S™3¥
60 END

AMGUNT AFTER ONE YEAR 15 104.06

DONE

Problem No. 10
IG HIAD O

23 IF D=0 THEN 118
30 LEY S=0

40 FOR Xzt TO D

50 LET SsS5eX

60 NSXT X

70 PRINT “SU4 U° TO"IDI"DArS 1§98
GOTo 10

!00 BATA 12,300

10 END

RUN

NCa10

Sut ua T8 12
su4 UP T 30

DAYS 15 78
DAYS IS 48%

OONE

SEC. 3-2

Problem No. 2

10 FDX =1 TG 12
20 FG =) TO 17
30 ARUNT 9C)

4) NEXT €

50 PRINT

61 NEXT .t

73 IND

4N

HOa?

1 > 3 a 5 3 ki 4 9
B a 5 a 1 e 1e 16 L}
1 < 9 52 15 I 21 24 27
. “ 12 i6 23 2a 1R 32 36
B 1a s 20 25 k%) 35 a3 a5
3 1 It EDS an 36 a2 «A sS4
A ta .o 24 3s a2 «9 54 43
2 16 24 32 an ah 36 64 12

sn

60

13

RN
L{: 2%

999 15 THE LARGEST AND IS IN PUSITION ¢
DONE
Problem No. 10
S LET (=0
FOR R=j 10 S
20 FOR C=1 0 10

25 LET Islet
32 PUNT Iy

Aan NEXT ©

50 PARINT

80 MEXY R

70 END

RN

NO.IO
i 2 3 a 5 L 7
13 12+ 13 14 135 16 11
23 2z 23 24 25 26 27
3 32 a3 34 35 36 37
a1 42 a3 44 as 46 a7
DONE

Problem No. 12

10 PRINT “SQUARE™S
20 FOR X=0 TG 9
32 PRINT X3

40 NEXT X
45 PRINT
$9 PHINT

TG FOR L=0 TR 20 STEH® 10
75 PRINT L3

80 FOR C=0 TO 9

$3 PRINT (LeCIt23

100 HEXT €

105 PRINT

106 PRINT

110 NEXT L

137 END

NO. 12
SQUARE O 1 2 3 a s

20 400 a4t 484 529 376 625
DBNE

SEC. 3-3
Problem No. 2

10 FOR I=y TO 10
20 LET t{i)=1¢2

30 NEXT i

40 FOxt J=i YO 10
S0 PRINTY JsLid)

£0 NEXT J
70 END
RUN
NO.2
¥ 1
2 4
3 E}
a 16
s EH
3 36
7 a9
8 64
9 81
ia 100
DONE

a9

23s

BRO FOR Jal T8 A

230 PRINT TiJIs

840 NEXT J

235 DATA 6511515,17,26+83:15019,827282091
END

RUN

Ng.8

FIRST LIST 6 Il 1% 17 2d a3
SECOND L15T 1% 27 83 1

NWBERS !N LlST F OR LIST S
83 19 7 21

DGHE

Problem No. 10

10 FOR Isi T2 30
BO LET L(I3=2e1-
30 NEXT 1

40 FQR J=1 78 10
50 LET Swo

60 FOR Kel T8 J
TO LET S»SeLIK3
80 NEXT K

%0 LEY M{J)as
100 PRINT MIJ}s
110 NEXT J

120 END

RUN
NB.10
i
DNt
Problem No. 12

10 FOR Xui 18 6
2G READ FiX)

30 PRINT FLXD)
40 NEXT X

4% PRINT

50 FER Ye1 T &
60 READ SLY)

70 PRINT S{YD)

90 FOR I=i T
100 LEY A(l)-f(l)‘s(]l
110 PRINT ALLID)

120 NEXT 1

130 DATA 6:103:7225956:2:3:92704
140 END

RUN

Hg.1e

6 ‘ 3 1 2 9
8 2 3) 2 4
a2 9 63 14 3

DONE

SEC. 3-4

Problem No. 2

5 PRINT "ERIGINAL SRDER™:
FBR X=1

20 READ L{X}

25 PRINT LIX}s

40 F@R (=t 7O 4

50 FRR JsI TO S

60 IF LII) <m LLJY THEN 110
70 LET SsLl1}

BG LET Lif)eliJd

90 LEY L{J}=S

110 NEXT J

120 NEXT I

330 PRINT "LEAST FIRST 4
140 PRINT LI1D)

150 FOR Us2 16 5

160 IF LIUIsLLU-1) THEN 18O
170 PRINT LIULS

100

¥ 44

BENE

Pro

1% 27 1 as 24 53 72 “t

;5] 39 a) E=) I8} 70 any 21

24 36 4n 49 12 “a 9% (L5

blem No. 4

S PLINT “YEAR PRINCIPLE"
LET P=1000

FG4 Yt TG 10

gzt T &

NEXT
PRINT YiP
NEXT Y
£ND

YEAR PRINCIPLE

t

—om e WA LN

a

1050.95
1104.49
1160.75
1219.89
1282.04
1347.35
1415.99
12BR. 13
1563.94
1643.62

DONE

Pro

RUN
NO.6

RATE

[4

blem No. 6

PRINT “RATENYEARS™, 1,2.3,4
PRINT
FOR Raa T0O 5.5 STEP .5
LET P=1600
PAINT R,
FOR Y=i T0 4
FOR 0=) TO &
LET [=Pe(R/1003/4
LEY Paiet
NEXT Q
PHINT Py

NEXT Y

NEXT R

END

NYEARS t 2 3
104045 1082.56
1045.77 1093. 62
1050.95 1104.49

1056432 1115, a4

Problem No. 8

IBD
1o

READ §

LET Px)

FBR Fa2 T8 10
READ N

IF 5 »= 8 THEN 80
LET SsN

PRINT 5315 THE LARGEST AND IS IN POSITION':P
DATA 8732, 153,999,876, 321, 2, 18,999, 3

1126.82
1143.67
1160.75

117807

93

tro

19

99 19

1t 2n

4
1172.58
1156.01
1219.89

1244,21

Problem No. 4

10 PRINT “FIRST LIST™s
20 FOR Xet TG 5

30 READ F{X1

40 PRINT F(X13

50 MEXY X

55 PRINT

60 PRINT "SECOND L15T"s
70 FOR Yo T 4

80 READ SiY}

90 PRINT SlLY1s

100 NEXT Y

105 PRINT

110 PRINT “ALL PAIRS"
120 FOR A=1 10 5

130 FOR Ba} T8 4

140 PRINT FLA135(B),

150 NEXT B

155 PRINT

160 NEXT A

165 DAYA £,4s11451517551552,11,16

170 END

RN

HE. 4

FIRST LIST 6 4 11 51 17

SECOND LIST 5t 12 it 16

ﬁLL PAIRS

51 3 12 [} 1 3

4 51 4 12 4 11 +
11 51 11 12 1 1 1
51 51 S1 12 51 iy 51
17 5t 17 12 17 n i

DENE

Problem No. 6

10 PRINT “TATAL CBST = $*j

20 DATA 24435,322+65511,425,1,9.49,3%5,1.59,0.0
25 LET T=0

27 LET I=0

£8 LET Imle}

30 READ NII1,PL1)

34 IF NI131=0 THEN 4%

40 LET TaT+N[IJ*PII}

42 GST® 28
A5 PRINT T
10 END

RN

HG.6

TOTAL COST » 3 76.54

DENE
Problem No. 8

5 REM USE THREE LXSTS F+S5.7 FOR FIRST SECOND AND THIRD

10 PRINT “F{RST LIST"
20 FOR X=i TO 6

30 READ FIX)

40 LEY T(X)IsFiX}

50 PRINT FLX3s

60 NEXT X

70 PRINT

80 PRINT “SECOND LIST™)
90 FOR Y=1 T8 S

100 READ S(Y)

110 PRINT S(Y)s

120 NEXT Y

130 PRINT

140 LET A

145 PRXNT "NLNEERS IN LIST F OR LIST 5"
150 FOR X=1 TO

140 FOR =1 18 A

170 IF SCXI=TLI) THEN 210
180 NEXT 1

190 LET Awasey

200 LET T{AI=S{X}

210 NEXT X

180 NEXT U

190 DATA 45,76,-76,45,98

200

RUN

Np.2

BRIGINAL DROER 45 16 ~76 a5 98
LEAST FIRST “76 45 16 9B

DENE

Problem No. 4

10 LET AsQ
1S LET T=0
20 FOR X=1 TO 6
30 READ S
35 IF Ss-1 THEN 130
40 PRINT S»
50 LET TwTes
60 NEXT X
10 LET GeT/6
80 PRINT “AVG ='";G
90 LET AsA+l
100 LET GLAl=G
GB8Y8 1%
130 FOR X=1 TO A
140 LET H{X3=X
150 NEXT X
155 LET Sa0
166 FOR Y=i TB A-1
170 IF GLY} >= GLY+1] THEN 240
180 LET S1=G(Y)
190 LET GIYJ=GLYel]
200 LET GLY+i3wsS})
205 LET S2=H(Y}
210 LET HIYIaHIY+i}
220 LET HIY+1)}m=S2
230 LET S=t
240 NEXT Y
250 IF Sal THEN 155
252 PRINT
255 PRINT “GRADE AVERAGE™,"“QRIGINAL LOCATIGN®
260 FOR Ssi T0 A
270 PRINT GLSI.HIS)
280 NEXT 5
290 DATA 65,68,73,85,82,87
292 DATA 74.B57,90,88,87,88
294 DATA 8B,97,91,92,50,89
296 DATA 91,83,78,89579,87
298 DATA 65,76,67,50,60.66
299 DATA -1
300 END

65 68 73 BS 82 B7 AVG =

T4 87 90 88 87 8B AVG x

88 97 91 g2 90 a9 AVG = 91.1667
91 83 78 89 19 87 AVG = B4.5

65 76 67 50 40 &8 AVG = 64

GRADE AVERAGE BRIGINAL LOCATION
911687
B85.6667
B84.5
16.65667
b4

e w0

DBNE
Problem No. 6

10 FOR X=1 T80 7

20 READ LIX1,HIX)

30 LET LeteL(X)

40 LET HeHeHIX)

50 LEY ROXI=HIX1-LIX3
&0 NEXT X

70 PRINT “AVG LBW =
BO PRINT "“AVG HIGH -"H/7
90 LET ReR{1}

166667
85.6667

444

SEC. 3-4 Cont'd
Problem No. 6 Cont'd

100 LET D=1

110 FOR X=2 78 7

120 IF R >x RCXJ THEN 15}
130 LET ReR{X)

1480 LET DaXx

150 NEXT X

180 PRINT “HIGHEST RANGE a3"R
170 PRINT "GN DAY NUMBER “D
175 DATA S1,71, 485675505 17,55, 78, 55576455, 75,49, 7¢
180 END

AN

NB.6

AVG LOW = 51.B571
AVG HIGH a 74.7143
HIGHEST RANGE = 30
ON DAY NUMBER 7

DONE

Problem No. 8

10 LET X=0

20 LEY T=0

30 LET XXt

40 READ LIX3

50 IF L{X)=0 THEN 90

60 PRINT L{X1s

70 LET TeTeLiX)

80 GATS 30

90 LET AaT/(X~1)

95 PRINT

100 PRINT “AVERAGE 2"A

110 LET S=0

120 FOQR B=1 T8 X-2

130 IF L{B] <= LEB+1] YHEN 180

140 LET S1sLCB]

150 LET L{BiaL(Be1]

160 LET LIB+1)esS]

170 LET S=1

180 NEXT B

190 IF S31 THEN 110

200 FOR C=1 TO X~i

210 1F A»L{C) THEN 240

220 PRINT C-1"SCORES WERE BELOW AVERAGE™
230 GOTB 260

240 HEXT C

250 PRINT "TROUBLE™

260 FOR DeX-1 T0 { STEP -1

270 IF A<LID] THEN 300

280 PRINT X-C"TEST SCORLS WERE AHOVE AVERAGE®
290 GGTO 320
300 NEXT D
310 PRINT “TROUBL
320 PRINT LUINT((X=1)/2-.5)1"1§ THE MEDIAN SCORE™
325 DATA 65,71,82,63,90.58,66567,68

326 DATA O

336 END
AUN
HO.§
&5 % 82 63 90 58 66 67 68

AVERAGE = 70
3 SCORES WERE BELOW IWERAGE
3 TEST SCORES WERE A3OVE AVERAGE
67 15 TRE MEDIAN SCBRZ

DONE

CHAP. 4
SEC. 4-1
Problem No. 2

RUN
HE.8
237 * 3 * Tii
19 * 9 a Tit
i * Tl = 71
1 . 991 * 991
1 2-391 ®-991
-3 * 991 =2-991
151 s 453
L * 453 = 453
-327 = 2 =654
327 e-2 2654
~218 = 3 *=654
218 -3 #=-654
~109 6 2654
109 =-¢ 2654
El 2554 =-654
-t * 454 =©-654
H = 1009 = 1009
1 *-1G09 =~1009
-1 =+ 1009 ®-100%
t . 9001 4 9001
DENE
Problem No. 8
10 FOR Xal001 TO 1500 SYEP 2
20 FOR =3 TO SOR(X) STEP 2
30 IF X/IsINT(X/I) THEN 60
A0 NEXT I
50 PRINT XJ
60 NEXT X
70 END
RUN
NO.B
1009 1013 1019 1021
1051 1061 1063 1069
1103 1109 1117 123
1171 1181 1187 1193
22y 123 1237 1249
1289 129t 1297 1308
1327 1361 1367 1373
1427 1429 §433 1439
1471 1481 1483 1487
DONE
SEC. 4-2
Problem No. 2
10 READ N.D
11 IF NmQ THEN 150
12 PRINT N"/"D"="3
13 IF H<D THEN 17
14 LET XaD
15 LET Y=N
16 G878 20
17 LET YD
18 LET XeN
20 FOR PsX TO 2 STEP -1
3G IF X/P=INT(X/PY THEN 70

1031
1087
1129
1201
1259
1303
1381
1441

1489

1033

1691

1153

1213

1227

1307

1399

1451

1493

1039

1093

1153

1217

1279

1319

1409

1453

1499

1049
1097
1163
1223
1283
1321
1423

1459

Problem No. 8

Pro

READ F, 8

IF FeQ THEN 999

PRINT F3S5.""GCFw')

FOR X=F TO 1 STEP -1

1F S/XeINT(S/X) THEN &0
GBTS 70

IF F/XSINTCF/X) THEN 110
NEXT X

PRINT 1§

60T 10

PRINT X

GOt 10

DATA 1¥0,10B3,27,35,27:36516534,12,20,0:0

END

1063 GCFs
as GCF=
3% GCFe
J4 GCF=
20 GCF»

"y

a0

blem No. 10

LET Flilei
LET FL21w1
FOR =3 T0 10
LET FEIJ=FCI~1)eFL1-2]
NEXT ©
FGR I=3 T8 9
FOR Julel T8 10
LEY FuFLI)
LET s»F{J}
GOSUD 1000
NEXT J
NEXT 1
FGR Z=1 T8 ©
PRINT LIZD)
NEXT Z
G8To 1120
FOR XaF T8 1 STEP -1
1F 3/%X=INT(S/X) THEN 1010
GOTH 1040
IF F/XsIHTLF/X3 THEN 1060
NEXT X
GeTd 1110
FOR Y=1 7O C
IF XeL 1Y) THEN 1110
NEXT Y
LET C=Cei
LET LUCIaX
RETURN
END

SEC. 4-3

Problem No. 2

10 LEY Pas

20 FOR ¥Ymi TO 25
30 FOR Mui T9 12
40 LET InPe.045/12
50 LET PnPel

60 LET PnPs5

70 NEXT H

80 NEXT Y

90 PRINT P

100

£ND

SPE

10 PRINT 40 NEXY P RUN

15 READ N 50 PRINT N"/"D NB.2
17 IF NeO THEN 110 60 GOTO 10
20 FOR D=2 TO SORCN) 70 IF Y/PSINTCY/P) THEN 90 £780.36
30 IF N/D=INT(N/D} THEN 70 BD G@To 40
40 NEXT O 90 PRINT N/P“/"D/sP DONE
50 PRINT fssnwen 100 GOTD o
60 G8To 10 110 DATA 5,6,82,48. 34,36, 48
70 PRINT H/D"s"Des"N 120 DATA 0,0 Problem No. 4
75 IF D=N THEN 10 150
80 GBYD &0 RuN 10 LET P=0
B5 DATA 1946,1949,1001,0 ND.2 20 FOR Ye! TH 2%
110 END J0 FOR M=l T8 12
RUN 5 6 =5 s A0 LET PaPes
HD.2 82 7 48 ® 41 s 24 5p fSR D=1 TO 30
3,4 =3 s 60 LET 1xPe.043/360
3% /a8 w3 a4 70 LET Pepel
80 NEXT D
973 s 2~ o494s DONE 90 NEXT M
278 « 7 = 1946 100 NEXT Y
139 2 14 = 1946 110 PRINT “S"3INTCP8100+.5)#.01
i * 1946 . 15946 20 END
L s 155 = 1949 Problem No. 4 R
10 PRINT “INCHES »',"YARDS FEET INCHES™
Fralid I oo 20 READ 1 s 2778.71
oy T 25 IF 1=0 THEN 999
A A S 30 PRINT 1, DeNE

40 LET Y®INT(1/26)
50 LET If=j-3&eY
40 LET FeINTCI11/12)
ponE 70 LET 1zwll-Fei2 Problem No. 6

B8O PRINT YIF312 10 DEF FNHCXI®[NTC1008X+.5)9.01

90 8T8 20
20 LET PIsP2sP3asy
Problem No. 4 100 DATA 20,197,150,608/83,31,0 30 Fom vei g8 08
o e 40 FOR Mei TO
S PRINT “NUMBER",“ABSBLUTE VALUE" NB .4 ig :E;rp;'F“P""’5"°°"E
20 pamTa 70 FoR =1 ¥
s INGHES = YARDS FEET INCHES 80 LET PRappep2ss/100/4
30 GOSUB 1000 20 o | 8 80 LET PR
40 GOTE 10 197 s ! 5 100 FOR D=1 T8 345
1000 LEr anos THEN 1020 150 4 ° s 110 LET PasP3eP3s4.5/100/365
1010 LET As-a £08 16 2 M tag LET PO
1028 PRINT A 83 2 o Tt 130 NEXT v
:gig gﬁ;ﬂ“’,“,,,n,.”,.3,3..2,.,,,, R ° 2 i 140 PRINT " ##%599.00 FOR 15 YEARSexs™
150 PRINT “84.75%8 COMPOUNDED MONTHLY.."s
oy ENO DONE 150 LET X»5
53?, - 170 6O5U8 500
180 PRINT FNH(P1)
Problem No. 6 190 PRINT "05% COMPOLNDED QUARTERLY
NUMBER ABSGLUTE VALUE 200 LET X=X}
1.3 11.3 50 READ H»@sD0.N 210 GOSUB 500
° o “DOLLARS", “*HALF QUARTER DIMES NICKEL PENNIES™ 220 PRINT FHH(P2)
-7 17 ;g ;g::TD LLAR . 230 PRINT "04.51 CBMPOUNDED DAILY..")
13 i3 21 IF DwD THEN 9999 240 LET XeXe2
3.2 Itz 25 PRINT D. 250 GBSUB 500
~11.1 1141 27 LET DxD#100 260 PRINT FNHIPY)
38 LET HI=INT(D/H) 270 STeP
BUT OF DATA IN LINE 10 40 LET DinD-HisH 500 F@R Z=1 T@ X
50 LET QInINT(DI/Q) 510 PRINT ™ 3
60 LET D1=DI-G1eg :gg :gf;rl“s"‘
Problem No. 6 70 LET DR=INT(D1/D0} 330 RN
80 LET Di=D1-D28D0
90 LET NIWINT(DI/N) 999 END
10 PRINT 100 LET DI1=Di-NI®N R
I3 READ N 110 PRINT H15@1IDZIN1IDY NB.s
17 1F N20 THEN 110 120 GETE8 20
20 FOR D=2 T0 SQRCABS(N)) 1010 DATA 50,25,10,5 -;-ssa.og rag 15 v:A:foc- s .
30 IF N/D=INT(N/D) THEN T0 1020 DATA 1.56,+35:1.76 :;; Sénﬁgﬁuggﬁ §3A:?2§LvY" H gg;-b
40 NEXT D 1021 DATA .01.0 .. -
50 PRINT 1"erimeny $99% E£ND 84.5% COMPOUNDED DAILY.. S 194.43
St IF N>0 THEN &0 RUN
52 PRINT «f“em-Nvay HB.6 DBNE
60 GETE 10
70 PRINT N/D"erDextn DOLLARS HALF QUARTER DIMES NICKEL PENNIES
71 IF N»0 THEN 75 156 3] o 1
73 PRINT ~N/D"e"=D"x"N 35 i ¥ o o
75 IF DsR THEN 10 176 3 1 [[
80 GBT2 40 «01 Il] o 4] H
85 DATA 711,991,+991,453,~654,1009,~1009,9001,0
110 END PeNE

9rg

SEC. 4-3 Cont’d

Problem No. 8

10 DEF FN“(C)IE.C'E’H‘C-
80 PRINT ™ A
30 FOR Xe-6 70
40 PRINT X3FHH(X)
50 NEXT X
40 END
RUN
NG.8
x Y
-6 23
-5 9
-4 -1
-3 -1
-2 %
-1 -1
[-1
1 9
2 23
DONE
SEC. 4-4

Problem No. 2
5 DEF FNR(X)-[NT(lOl'RNB(() 200
2s)

DIM L

ED FOR X'l T8 25

30 LET L{XIwFNRCX}

40 PRINT LTX13

S0 NEXYT X

60 PRINT

70 LET 1226

75 REM WE CAN IMPROVE THE EFFICIENCY BY HAVING THE

76 REM COMPUTER L8GK AT O¥E LESS NUNBER EACH TIME THROUGH

80 LET 1s=i-j

90 LET 5»0

100 FOR X=1 T0 I

150 IF LEX) <= LEX#1) THEV 160

120 LET S1=L{X}

130 LET L{X)IsLiXe1)

140 LET L{Xeil=Si

150 LET S=§

160 HEXT X

170 IF S=1 THEN BO

180 F@R Y=} Y0 25

190 PRINT L{Y]s

200 HEXT Y

218 END

RUR

N8.2
108 -15%y -79 -3117 -190 116 ~-200 =37 169 -S2 ~31 80
15% L] 59 82 161 28 122 -t24 -4l =130 191 109
=60

-200 ~190 ~15%1 =130 -i24 ~i17 -79 ~60 -52 -4l -37 ~31
8 28 59 80 2 108 109 116 1g2 155 16} 6%
191

O8NE

Problem No. 4

DIM F{183,61181
LEY Ani

LET G{11=}

LET Fll]-FIE]'l

FER X=3 T8

LET ’I‘l-F(X-ll’FtX-E

HEXT X
FOR X=1 T0 17

360 PRINT PIKYS
370 NEXT K
500 DATA T+6+12009:8:7515859
501 DATA B,140,30625,9:2504%
599 RD‘ N@ WE COWLD NOT USE JUST T¥@ L1ST5e00s0es
600
RUN
H3.8
6 1 6 kd 6 8
1 3 4 2 3 9
DANE

Problem No. 10

10 DEF FNRCXI®SINTCXSRND(1))

20 READ

8% IF N=0 THEN 999

30 FOR Zm} TR 5

40 LET As=FNR(N)

S0 LET BeFNRC(N)

55 LET XuA+B

40 PRINT A™+"B"ws 'y

70 GBSUB 700

80 LET XwAeB

90 PRINT A™e™@"=)

100 GesuB 700

105 PRINT ™ hd

110 NEXT Z

115 PRINT

120 0878 20

700 LET I=INTU(X/N}

710 LET w=X-IeN

720 PRINT Y"MSD "IN

730 RETURN

900 DATA 5,6,0

999 END

RUN

NE.10
4 + 3 - 2 HBD 5 4
4 i - o HOD S A
4 * 0 - 4 MDD 5 4
4 + i L] o M3l 5 4
4 + 3 = a HOD 5 4
5 + 5 = 4 MED 3 5
4 + 2 - -] MaD 6 4
0 +5 = 5 HED &]
5 .2 - H HoD L] s
3 + 0 = 3 8D 6 a

DENE

Problem No. 12

5 REM SUBTRACT S5 FROW ¥ MBD 7
10 READ Fu5

15 IF F=,0] THEN 999

20 LET DsF-§

30 IF D<0Q THEN 100

40 IF De7 THEN 60

50 LET DaD-?Y

Sre HpEMED T

DATA 3565410205 45502s245240100
END
12
-6 = 4 MOD 7
-0 = 4 HOD 7
- A a 3 MOD 7
-2 = 3 MOD 7T
-5 “ a4 MODT
£

a0 nae

saeva
LT

——-D -

rrcam

TNOMD -

W mne

ENCY N

NQ.

FIRST L1SY
a8 -

80 96
SECEND L1ISY
28 33

17

LET As20

FER Ulsl TO 20

FOR U=l 70 20

IF UCUI=TLULY THEN 385

NEXT U

LET AmAel

LET UCAI=TCU1)

NEXT Ut

PRINT "ELEMENTS 8F EITHER SETY

FOR Xoi 18 A

PRINT ULX3s

NEXT X

PRINT

PRINT "ELEMENTS WHICH APPEAR IN BOTH LISTS"
B

IF B8»0 THEN S10

PRINT "N@ ELEMENTS COMMBN T8 SOTH LISTS™
sT8P

5T0P

LET BwBel

LET IIBIsULL)

IF Us20 THEN 360

GOTe 315

i8

54 -85 -94 97 ~42 -76
~49 =48 $1 33 49 48
45 80 -28 16 43 13

19 -g2 44 ~100 -96 23 96

ELEMENTS OF EITHER SET

a8
80
-28

3

=17 $4 8% -94 ~97 -a2 -716
76 -a9 - 48 L1 33 40 48

16 43 i3 -5 -4% 50 28

00 ~96 23 96
ELEMENTS WHICH APPEAR IN B8TH LISTS
«49 96

DENE
Problem No. 20

5

NB.

TiM
12
v
1

-—Ren o

DEN:

PRINT “TINE HOW',"ADD TIME”,"TIME LATER"
DEF FNT(T)aINTC(T#RND(L)+1)

FOR P=i TC 10

LET HsFNTC12)

LET MeFNT(59)

LET HI=FNT{36)

LEY M1aFNT(S9)

LET M23Mi+M

LET H2aHeH!

1F M2<50 THEN 110

LET H2sH2+e1y

IF HZ2 <= 12 THEN 150
LET H2aH2~12
GoTE 110
PRINT HYe'#, Hi™1"Mi, H2" 1 H2
NEXT ®
END
20
£ NOW ADD TIME TIME LATER
1 30 18 1 56 i 3 26
t 36 12 + 3 k4 39
T 38 a6 r 55 12 3
t 20 27 3 54 7 114
T 49 24 1 58 7 T a4
1 o4t 13 1 28 & 19
3 38 34 i 2t 11 3 59
1 23 12 T2 2 1 25
3 17 20 T 14 ki L))
1 49 33 129 i1 T 18

£

18

28

7

90

90

33

1%

50

16

45

a8

80

44

LFG

¥0 FOR YeXe: T2 I8

100 FOR Z=F(X) 18 GLA}+} STEP -|
FIO IF FUXI/ZWINTCFIX)1/Z) THEN 140
120 WNEXT 2

130 GOTe 210

140 IF FLYI/Y <> INTLF(YI/2) THEN 120
130 FOR Wsl TG A

160 IF Z=G(W) THEN 210

170 NEXT W

180 LET AsAsj

190 LET GIAJeZ

21O NEXT Y

RO NEXT X

230 FOR B=) YD A

240 PRINY GIB)3

250 NEXT B

260 £ND

RUN

NG.a

1
DONE

Problem No. 6

! REM WE ADD 34,583,278, 650,986,543, 612 16
REM 124 640, 980, 492,015, 4624 459

IO DIN BL20),T({20),8LR}3

R0 FOR Xsi T8 RO

30 READ &KX}

40 NEXT X

50 FER Ys: TO 20

&0 READ TUY?

70 MEXT ¥

80 FOR Ha20 T9 I STEP -~}

90 LET S{He1)nBIHIeT(H)

100 NEXT M

110 FER A=R§ TG 2 STEP -}

120 IF SIA)<10 THEN ROO

130 LEY SLAI=S{A}-50

140 LET S{A-1JaSlA~1}e)

200 NEXT A

300 FER Z=1 T8 23

310 PRINT 5(21s

IR0 NEXT Z

500 DATA 3,4s5,60352075856:5:0+9:80 625, 4,356,152

801 DATA 3.2,6:4,009,8,0,4:92+051,5,4,86,24605:%

400 END

RUN
NB.6
o 4 7 2 o 4 2 5
[} o 2 o o 4 2 7
DENE

Problem No. 8

5 REM WE MULTIPLY 7610967129 BY 810363920}
DIM S{101,T(101.P(20)

EO FBR Yot TG 10

30 READ BLY)

40 NEXT

SG FGR Xel T 10

80 READ TI(X)

70 NEXT X

72 FER Gei T8 20

74 LET PIQ}eD

76 HNEXT @

B0 FOR Fel0 T6 1 STEZP -1

90 F@R 3«10 T4 | STLP -

100 LET PLFeS)ePIF+5)enifIsT(s)

110 NEXT 3

120 NEXT F

130 FOR A=R0 T 2 STEP %

140 IF PLAJ<ID THEN 300

1530 LEY IINTC(P{A)/10)

160 LET PLAJ=PA}-100}

170 LET PLA~IIePlA~1]+]

NIXT A
330 FER Kel T9 20

Problem No. 14

10 DEF FNRCX)=INT(X®RND(2)+1)
20 FOR Xe1 T 10O

30 LET I=FNR(999)

40 LET Ii=FNRCES500)

A% PRINT 1311,%GCF =ny

50 FOR Tel TO 2 STEP ~1I

60 IF 1/T=INTC(I/T) THEN 200
10 NEXT T

B0 PRINT 1

B% GOTS 400

201 IF 11/T#INTCLI/T) THEN 300
203 GBTe 70

300 PRINT T

400 NEXT X

9%% END

RuN

LI TSR}

894 1302 acr = 6

654 24 GCF e &

08 31198 acr =

b1+ TRy GCF = 3

465 33 GCF = 1

Asa 1147 6CF = 37

93 269 GCF = 3

740 495 GCr = 8

81% 635 6CF = 3

108 1387 fcr =

DONE

Problem No. 16

10 DEF FNR(X)=INT(XORND(S)+1)

DONE

FOR Xel TO 1D

LET {=FNRC100)

LET 1iaFNRC100)

PRINT IS11."LCN =™}

FOR Tel T8 2 STEP -

IF 1/7T=INTCI/T) THEN 20O

NEXT T

PRINT Tel}

avre 400

IF 1i/TeINT(L1/T) THEN 300

eeto 70

PRINT 181177

NEXT X

EIND

&
39 LCH = 1287
2 LeK = 2
67 LCH = 3485
7 LCH = 3723
19 LCM = 133
7 LCN » 194
13 LCH = 1093
9 LCK = 468
L4 LeKM = 3274
65 LCw = 4880

Problem No. 18

DIM 9I203.T(201,1(203,UL40}

DEF FRREX)=INT(R201$RNDC1)~100)

LET B=O

PRINT "FIRST L1ST™
FEBR X=! TB 20

LET 8(XI=FNR(1)
LET ULXIsR(X)
PRINYT 9(X3)

HEXT X

PRINT

PRINT “SECOND LIST™
FOR Y=1 TO 20
LET TCYIaFNACE)
PRINT TIY)s

CHAP. §
SEC. 5-1

Prol

CHEM
THE

DENE

Prol

blem No. 2

FBR I=1 TO
LET Ctii=0
NEXT 1
LET PaD
FOR Re1 1O §
READ C
IF Cx=1 TMEN 100
LEY ALR}I=C
LET CLRInCIRI+C
NEXT R
IF AL11=0 THEN 90
IF AL23e THEN 90
LET PuPey
GOTE 40
PRINT "CMENISTRY“ “PRYSICS"s "FRAENCH™, “SPANI SH™, “CALCULUS™
FOR 1=
PRINT CH)»
EXT 1
PRINT “THE NUMBER OF PEQPLE TAKING CHEMISTRY AND =3
PRINT “PHYSICS 18P
REM DATA 15 IN ORDER CHEMISTRY P”YS]CS FRENCH SPANISH CALCULUS
{1 *1' MEANS YES *0¢ MEANS N
DATA I:Onl.I:D:D»O-IJI:D-I-lalnl:lpn.O;l-I-D'hhO.O.I

DATA 05151005520:0:00350515860512001215000014150.0.0,1
DATA 050-140514140,1,040
DATA ~1
END
18TRY PHYSICS FRENCH SPANISH CALCLUS
5 1 3 &

NUMBER BF PEGPLE TAKING CHEMISTRY AND PHYSICS IS 4

blem No. 4

FOR Iwf TD S
LET CCI)=0
NEXT 1
LET PaD

FOR Rel TD 5§

READ €

1F Cx«] THEN 100
LET A{R)=C

LET CIRI=CLRIeC
HEXT R

IF AL21»0 THEN 90

IF A{S}=i THEN 90
LET PaPs}

GOTO a0

PRINT "CREN[STRY" PHYSICS® s “FRENCH™, * SPANT SH™, “CALCULUS™
FOR 1=1 TO

PRINT Cllh

NEXT £

PRINT “TAXING PHYSICS BUT NOT CALCULUS™P
REN DATA IS IN GRDER CHEMISTRY PNYSICS FRENCH SPANISH CALCULUS

*3' NEANS YES 0" HEAW

1080 DITA hD:hhO:OnO:I.I-O;I:|»l'th;D»l.I-O-th:O.I

1010 DATA 0s1s1500100,0:00 s

21505 550+1012000215150,0:051¢

1020 DATA 0s0,1,051210053540:0
1100 DATA =~1
9999 ELND

CHEMISTRY PHYSICS FRENCH SPANISH CALCULUS
1 s 1 4 L]

TAMING PHYSICS BUT NRT CALCULUS §

DENE

SEC. 5-1 Cont’d
Problem No. 6

10 FOR i=1 TG 5
20 LET CLI)=0
30 NEXT I
33 REM THIS LEOP SIMULATE! SO0 PEOPLE
35 FOR X=1 TO 500
40 FOR R=1 T8 §
42 REW THIS LODP LBOKS AY FIVE COURSES FOR EACH PERSON
58 LET CsINTCT#RNDC1))
$2 IF C»3 TREN 58
54 LET C=0
56 6070 70
58 LEY Cal
70 LET C{RI=CIRI+C
78 REM NEXT COURSE
B0 NEXT R
88 REM NEXY PERSON
90 NEXT X
10G PRINT “CHEMISTRY","PHSICS
116 FOR {z1 T8 5
120 PRINT C(1)s
130 NEXT §
9999 ENRD
RUN
NE.6
CHEMISTRY PHYSICS FRENCH
204 232 234
DONE
SEC. 5-2
Problem No. 2
t0 FOR Rzt YO &
20 FOR Cwi 1O 3
36 LET BLR.,Clsi
40 HNEXT C
50 NEXT R
60 REM ARRAY 8 IS FILLED 1ITH BNES
70 FOR Rsl T4 &
80 FOR C=1 T8 3
90 PRINT BLR.C}3
100 NEXT C
118 PRINT
120 NEXT R
130 END
RUN
NO:2
H 1 1
1 i H
1 t 1
i t 1
t « t
i + H
DBNE
Problem No. 4
30 FOR R=sy TO 7
20 FOR C=1 T&® 7
3¢ LET DIR.CIsC
40 IF R «» € THEN 60
30 LET DIRsCl=i
60 NEXT C
70 NEXY R
80 FOR P=i TG 7
90 FOR Q%1 TO Y
100 PRINT DIP.G1J
110 NEXT @
120 PRINT
130 HNEXT P
140 END

SPANISH
205

FRENCH'» * SPANISH''» "CALEULUS™

CALLCULUS
219

115 PRINT "2 TIMES ENTRIES OF FIRST ARRAY"
120 G@SUB 1000

130 STOP

1000 FOR Az1 16 4

1010 FOR B=t TO ¥

1020 PRINT ILA,814

1030 NEXT 8

1040 PRINT

1050 NEXT A

1060 RETURN

9999 END

RUN

NO.8

FIRST ARRAY
210 ass 158 132 ~132 =479 -~i86
-307 a32 246 -8 240 14 427
-89 244 ~al6 ~184 134 =37 68
241 335 343 -452 -293 198 ~-S52
2 TIMES ENTRIES OF FIRST ARRAY
420 516 e 264 ~264 -958 -372
=614 664 492 -16 480 28 B854
~138 488 -832 ~368 268 ~74 136
482 670 486 ~-904 ~586 =~396 -104
DONE

Problem No. 10

10 FOR A=zt 10 10

20 FOR 8=1 Y0 10

30 LET MIA,BI=A+B

40 NEXT B

S0 NEXT A

60 FE8R i=1 7O 10

70 FOR J=i 70O !0

§0 PRINT M[1.012

90 NEXT J

95 PRINT

100 HEXY 1

110 END

RUN

NE.10

i 2 3 4 5 6 7

2 4) 8 10 12 14
3 6 g i2 15 i8 21
4 8 i2 16 20 24 28
5 i0 15 20 25 30 a5
6 iz 18 24 30 36 42
T 14 21 28 35 a2 43
8 i3 24 32 40 4B 56
9 i8 27 36 45 S4 63
10 20 30 40 50 60 a0

DONE

Problem No. 12

20
30

FOR 21 10 5

FOR Jmi TO 5

LET Patl~13e(J-1)

IF P<S THEN 90
LEYT PapP-5
6E¥0 70
LET PLI.J1w=P

NEXT J

NEXT i

PRINT "MULTIPLICATION MOD 5%
FOR I»1 T0 5

FOR J=1 T S

PRINT P{IsJ}s

NEXT J

PRINT

MEXT 1

PRINT

FOR Mzl T0 6

LET A=INT(SeRND(1})
LET BeIHTCSSRNDCE))

QUEST MALE HALE FEMALEFEMALE

RUN

NO.2

NUMBER 21+
i 2
2 2
3 -3
4 ¥
5 1
6 i
7 2
8 2
9 o
10 1
11 1
12 3
12 2
14 2
5 2
16 24

DONE
Problem N

UNDER

BOO QA" O OO~

0. 4

10 DIM S015,101

20 FOR R=1
28 REM LING
30 LET StR.
40 FOR Ca2

10

1i=R
6 10

21

MR- OM =R NN RN -

UNDER MALE FEMALE UNDER 21+

1 3 4 2 5
1 E] 2 2 3
2 3 4 3 4
i 2 3 2 3
2 1 “ 2 3
1 3 3 i 3
i 3 3 2 4
i 2 2 i 3
i 1 3 2 2
2 1 3 2 2
2 t 4 2 3
2 4 2 a 3
1 3 3 2 a
2 2 3 2 3
2 2 a 2 4
44 32 a7 30 49

48 REM LINE 50 SETS THE LAST 9 COLUMNS AT ZERD

50 LET S{R,
60 NEXT C
70 NEXT R
80 FOR Nel

c1=0

T8 50

90 LET P=INT(4#RNDC1)e2)
98 -REM @ GOES THROUGH THE 15 OUESTIONS

100 FOR 0=}

110 LET A=INT(2eRND(1))
120 LET S{2,P1=5{0,P1+A

130 NEXT Q
140 NEXT N

145 FBR R=1 TO 15
S(R,637S{R>2I45(R,)

150 LET

10

1640 LET S{Rs7}=5{R,4)+SIR,5)
§70 LET S{R.B3I=STR,3)1+S5IR,5)

180 LET SIR

»9

{R,2}+5{R, 41

§85 LET S[R,101=SCR,6I+5(R, 7]

190 NEXT R

1968 REM THE PRINTING BEGINS HERE

200 PRINT "QUEST MALE MALE

210 PRINT "NUMBER 21+

211 PRINT *
220 F@R Rl

230 FOR C=t 10 10
250 PRINT SCR,CIs

260 NEXT €
270 PRINT
280 NEXT F
9999 END
RUN
NO. 4
QUEST MALE
NUMBER 21+
1 S
2 8
3 9
4 ki
5 8
6 11
7 7
8 &
9 [
10 9
11 7
12 1
13 10
14 7
15 4

FEMALEFEMALE™
UNDER 21e UNDER HALE

TOTAL™

T8 15
HALE FEMALEFEMALE
UNDER 21+ UNDER MALE FEMALE UNDER 21+
10 s 3 8 10
s a 8 13 12 13 12
1 7 1 20 14 18 16
6 [} & 15 14 12 15
7 3 8 15 14 5 1
9 2 9 20 11 18 13
6 3 6 13 9 12 10
4 7 9 10 16 13 13
5 & 10 13 16 5 14
a 3 4 13 7 8 12
B 4 4 15 8 12 i
4 4 1 it i3 11 1
4 7 s i4 13 10 17
6 1 7 13 14 13 14
7 7 9 n 16 16 i

TOTAL

N A N L]

3

15
30 ENTERS THE ROW NUMBER IN THE FIRST COLUMN

FEMALE UNDER 21+%%

67¢

NB. 4

coosoO~

cecoco-o
eceo-00o
ccom~0o00
comoooo
o~ooocoo
—oooOOO

DONE

Pro

170
180
190
200
210
220
230
240
250
260
270
280
290
RUN
NB.6

FIRS
19
=g
33
SECS
46
35

13 39 14 31 .z
SUMS ENTERED IN SECOND ARRAY
65 55 95 1T

~a7
as

DONE

blem No. 6

DEF FNR(CI®INT(C®RND(1))-50
PRINT “FIRST ARRAY"
FBR R=! T8 2

FER C*1 T8 7

LET E[R.CI=FNRC100)
PRINT ELR.C1)

NEXT C

PRINT

NEXT R

PRINT “SECOND ARRAY™
FBR Re! T 3

FBR Cx1 T8 7

LET FIR.CI1=FNRC(Z00)
PRINT FLR,CIs

NEXT R

FOR Re1 TG 2

FOR Cot T 7

LET FURsCI*FIR,CISELR,CS
NEXT C

NEXT R

PRINT "SUMS ENTERED IN SECOND ARRAY"
FBR Rel TO 3

FBR C=) TR 7

PRINT FIR,C)s

NEXT €

PRINT

NEXT R

END

T ARRAY
ta -~33 L] e8 -1
~13 =24 26 16 k4 -39
] -4% =31 ~34 23 -7
ND ARRAY
A1 128 2% 139 36 65
107 54 56 148 19 37
=30 97

97 b4 44
*9a 30 B2 164 88 -2
40 =31 o “76 -7 20

Problem No. 8

5 P
10

100
110

'RINT “FIRST ARRAY"
FOR X=1 T0 4
FOR ys1 TR 7
LET [0XsY)=INTCIDOI#RNDC1)~500)
NEXT Y
NEXT X
GOSUB 1000
FOR I=1 10 4
FBR Y={ 10 7
LET I11,Y)=201(1,Y)
NEXT Y
NEXT 1

240 PRINT A"“B"z"'P{A+1,B¢}I"MOD 5
250 NEXT H

260 END

RUN

ND. 12

MULTIPLICATION #0D 5

0 0 4 [9
[1 2 E] a
o 2 4 1 3
o 3 1 4 2
4 4 3 2
El * 4 = 2 HUD 5
2 =1 -2 HoD S
4 * 1 » 0 MOD 5
2 * 2 = 4 MBD S
4 .4 1 N8D 5
4 .2 * 3 HGD S

DBNE

SEC. 5-3

Problem No. 2

DIM S(16,101

FBR Rei T 16

REM LINE 30 ENTERS THE ROW NUMBER IN THE FIRST CBLUMN
LET S{Rs1)=R

FOR C*2 T8 10

REM LINE 50 SETS THE LAST 9 COLUNNS AT ZERD

LET S{R,C3nd

NEXT C

NEXT R

REM 80 READS THE CATAGORY FOR THE NEXT PERSGN IN THE SURVEY
READ P

IF P=-1 THEN 145

REM § GBES THROUGH THE 15 OUESTIONS

foRr 0=1 T8 15

READ A

LET SC16,PI=SL16sP1+A

LET S(0.P)=aS{0,PIeA

NEXT @

REH LINE 140 SENDS THE COMPUTER BACK TO READ ANBTHMER LINE ©F DATA

G813 BO

FBR R=1 T8 15

LET S{R.6)I=S{Rs2)+5(R.+J1
LET SCR,73=5[R,4)+5(R,5}
LET SLR,8)=S(Rs33+SIR,S5]
LET SIR.9)=SIR,2345(R, 41
LET S{R,103%5(Rs63+5{Rs7]

FBR Cs5 TO

LET S5£16,C)=5(16,CI+5IR,CI
NEXT €

NEXT R

REM THE PRINTING BEGINS HERE
PRINT “QUEST MALE MALE FEKALEFEMALE'

PRIRT “NUMBER 21+ UNDER 21+ UNDER MALE FEMALE UNDER £1+")

PRINT ™ TOTAL"

FOR R=t T& 16

FOR C=f T8 10

PRINT SIR.CI3

NEXT C

PRINT

REXT R

REM eseA LINE LIKE 500 MAY HELP TO LINEUP THE DATA LINES
REM IN TYPINGw#s

REM foislalstslsloislalalataiatalel
DATA 45 120s1510150s0012120,1504150,1
DATA 441+0+0+0505151,0212150,0405151
DATA 351415121202051205150,00151,0,0
DATA 55121532000200150504001s151,120
DATA 2+1215150:0s150:1,0:051,151,1,0
DATA 55050:1,051+00000,3210120,05141
DATA 5,04000,1514140514051205150.0,1%
DATA €50,0085140,00151,041,0,1,0,0,1
DATA 4+141512151415850,02051504120:0
DATA 25151+0,05150,8+05040s0,1285101
DATA =}

END

Problem No. 6

DIM ML12,12)
FOR Rei TO 12
FOR Cat T2 12

LET M{R,CIuReC

HEXT €

NEXT R

FOR Rai0 T8 12
FOR C=} T8 12
PRINT HMCR,C1s
NEXT C

110 PRINT
120 NEXT R
130 END

10 20 30 40 50 (1] 70 8O 90 160 110

1t 22 3z 44 55 66 77 88 99 116 124

12 24 3s as &0 12 84 96 108 120 132

DBNE

CHAP. 6
SEC. 6-1

Pri

oblem No. 2

PRINT “MULTIPLY TWO FRACTIONS"
PRINT * TO ST@P RUN INPUT .01 FOR Ni™
PRINT

PRINT “N1,D1")

INPUT N1,D)

IF Nim.01 THEN 999

PRINT "N2,D2"1

INPUT N2,D2

LET NuHieN2

LET N3=N

LET D=DisDZ

LET D3=D

REM HERE 15 THE EUCLIDEAN ALGORITHM

100 LET IaINT(N/D)

110 LET ReN-1eD

120 IF ReD THEN 140

130 LET NeD

140 LET D=R

150 GOt 100

160 PRINT "PRODUCT 15“NJ/D"/"DA/D

NE

0 GBTS 30
9 END

.z

MULTIPLY TWO FRACTIONS

N
N2
PR

3]
N2

T8 STOP RUN INPUT .0} FBR Nt

sDIT1e2
+D274,3
SDUCT 15 2 73

2D1745,72
sD2121,8

PRODUCT 15 105 7 &4

Ny

sDIT.01s1

DBRE
SEC. 6-2
Problem No. 2

s

DI LI21)

10 READ N
15 LET T=0
20 FBR X=1 TG N

058

SEC. 6-2 Cont'd

30 READ LIX)

35 LET TeTelLIXJs2e(N-X)
40 IF LIX)=1 THEN 70
50 PRINT "0"#

60 GOTO 8O

78 PRINT "i"s

80 NEXY X

90 PRINT ™ BASE Tu@ »"TU3ASE TIN"

100 @oTe 10
110 DATA S.1.0.ts1si
120 DATA 2,1.0

130 DATA 15s100s0s0¢10120:0234¢204040+120

999 END

10111 BASE Twe = 23 BASL YEN

10 BASE TWB = 2 BASE

1
100015001100010 BASE Two

SUY BF DATA IN LINE 10

Problem No. 4

10 READ W

15 LET T=0

20 PRINT HI"BASE TEN vy
30 FOR E=20 Y0 O STEP ~3
40 LET I=INTI(N/JE)

42 LET TsTel

44 IF T=0 THEN &0

45 1F is1 THEN 35

47 1F 1e2 THEN 58

50 PRINT 0“3

s2 GATo 60

60 LET ReN-Io3vE

70 LET NwR

80 HEXT E

85 PRINT ™ BASE THREE"
%0 64TO 10

100 DATA 99999%.,1.16
110 END

RUN

ND. 4

999999 BASE TEN »1212210202000 SASE THREL

EN

18018

1 BASE TEN =1 BASE THIEK
16 BASE TER =121 BASE THREE

QUT OF DATA IN LINI 10

Problem No. 6

5 REM NI 1S NUMBER 9F DIGITS
1]

READ N1
15 LET Ne0O
20 FOR X=N1 T6 | STEP i
22 READ A
24 IF A=i THEN 30
25 IF A=2 THEN 3a
26 PRINT “0')
28 GOBTE 40
30 PRINT "1™
32 GOTH 40
34 PRINT "2';
40 LET NwNeAsIe(X~1)
50 NEXT X
&0 FRINT * BASE THREE"
70 PRINT “EQUALS"™
110 LET T=0
130 FOR E»20 Y8 0 STEP -1
140 LET {SINTIN/ZIE)
150 LET YaTel
160 IF T=0 THEN 210
170 IF I=1 THEN 200
180 PRINT "Q0"3

BASE TEM

N@.a

LET MisNiolwiOrEl
LET ReN-1¢107E
LET NaR

NEXT €

PRINT NZINI“G.CoFo o%3
LET IsINTINZ/NLY
LET R=N2-1sN}

IF R=0 THEN 260
LET N2aNi

LEY NisR

GOTe 200

PRINT N1

GoTe 30

END

INPUT INTEGER?2S
25 52

GaCaFe =5 1

INPUT INTEGER7456

456

634 GuCuFe = 6

INPUT INTEGER?779

719

977 GeCoFe = ¢

INPUT INTEGERTO

DONE

CHAP. 7
SEC. 7-2
Problem No. 2

95 REM * PRINTING A NUMERIC OF #ORE
96 REM THAN ONE DIGIT USING STRING
97 REM SEE LINES 165. 182 AND 1B5
100 DIM D5(101

110 LET DsS='"0123456789"

120

130 INPUT N

140 IF N=0 THEN 260

150 PRINT "#vspgiran

160 PRINT "'s"3

165 LET T=0

170 FOR E=5 TO O STEP -1

180 LET I=INTI(N/IOTE)

182 LET TaTel

i85 §F T=0 THEN 200

190 PRINT DSCUIs1,1+4113

200 LET RsN-Is10rE

210 LET N=R

220 NEXT E

230 PRINT s

240 PRINT

250 GoTe 120

260 END

RUN

N@. 2

POSITIVE INTEGER LESS THAN 1000000718%231
189231, ’

51892318

PRINT “POSITIVE INTEGER LESS THAN 1000000™.

PESITIVE INTEGER LESS5 THAN

Problem No. 4

REM #+ NOTICE THAT THIS IS MUCH SHORTEK

REM THEN A PHROGRAM WITHOUT THE USE OF

REM STRINGS

il

2
3
a
S Dim Dst1i2}
8
10

S="'0123456789TE"
READ Na8

100000070

RE. 2

BS? SUPPBSE I

vy

PRINT "BS*S

INPUT 8S

CHANGE BS T@ B
FgR 1 a 1 To B(d3)

LET ACBCI)) = ACBCII) + 1}

NEXT I

LET B(O) = 1

PRINT "CHAR NUM C@DE"
FBR I = 0 TP 127

1F AC1) = O THEN 240

LET 8(1) = 1
CHANGE B To AS

PRINT ™73 ASs ™' "3 Acld * "3 1

NEXT I
END

NUM COl

- 0 B D0 G e e e 0 0 e 80 e [0
~
o

Problem No. 4

100
105
108
110
126
130
140
150
160
165
168
170
180
120
200
210
220
225
228
230
240
250

DIN WSCT)

DENTT WISH TO PLAY THIS GAME
DE

REM * READ DATA AND FIND LENGEST STRING

1T
READ WS(1)

1IF LEN(WSCI)) <=
LET L = LEN(WSC(I))

L THEN 160

REM # PRINT DAYS OF THE WEEK VERTICALLY
L

FOR I = 1 T@
FORJ = 1 TO 7

PRINT TAB(3#J)3 EXTS(WSCJSIs1s,133

NEXT J
PRINT
NEXT I

REM * DATA

DATA SUNDAY, MONDAY, TUESDAY, WEDNESDAY

DATA THURSDAY, FRIDAY,
END

<“POZEI
“DPET MG -
“PoumZome
“POUMBC T
<P Qe
“pOBEAD W

SATURDAY

ISG

190 GBTO 210

200 PRINT "1™

210 LET R=N-Te2¢g

220 LET NeR .

230 NEXT E

240 PRINT * BASE Two™
245 PRINT

250 6818 10

260 DATA 5:1,0,0,1,2
265 DATA 1052,0:050,1,152515001
270 END

10012 BASE THREE
EQUALS
1810110 BASE TWD

2000112181 BASE THREE
EQUALS
1001161101001010 BASE TWO

OUT OF DATA IN LINE 10

SEC. 6-3
Problem No. 2

5 PRINT “TEST FOR OIVISIBILITY BY THREE"
& PRINT

10 PRINT “INPUT INTEGER"}

20 INPUT N

25 LET T=0

30 IF N=0 THEN 999

A0 FOR ExS T@ O STEP ~i

S50 LET I=INT(N/ID'E)

60 LET TaTel

70 LET RaN«I1s10vE

80 LET NaR

90 NEXT £

§00 PRINT “SUM OF DIGITS 15T

105 IF T/3®INTC(T/3) THEN 130

110 PRINT “NOT DIVISIBLE BY THREE™
120 GOATO 6

130 PRINT "2 1S A FACTOR"

140 GOT8 &

999 END

N2

TEST ¥BR DIVISIBILITY BY THREE

INPUT INTEGER?234972
SuM BF DBIGITS IS 27
3 IS A FACTOR

INPUT INTEGER?IT
SuUM OF DIGITS 1S 1D
N8T DIVISIBLE BY THREE

INPUT INTEGER?0

DBNE

Problem No. 4

30 PRINT

40 PRINT “INPUT INTEGER™)
50 INPUT N

55 LET N2aN

60 LET T=0

70 IF N=D THEN 350

80 LET Ni=0

90 LET Els-)

100 FOR E«S 1B O STEP ~1
110 LET ISINTIN/IOVE)
120 LET TaxTe}

130 IF T=0 THEN 140

140 LET Eisflet

20 LET T=0

30 PRINT NIVBASE TEN =*:

40 FOR E=20 TP O STEP -1

50 LET I1=INT(N/BtE)

&0 LET T=T+l

70 IF T=0 THEN 430

80 PRINT DSCI+l.I+¢13}

430 R=N-1%BtEg

440 LET N=R

450 NEXT E

460 PRINT " BASE 38

470 GOTO 10

480 DATA 99862.,12,79324.,9
485 DATA 64,2,999999.,3

470 END

RN

NB. 4

99862, BASE TEN =49957 BASE
79324, BASE TEN =130727 B8ASE
64 BASE TEN =31000000 BASE
999999, BASE TEN =1212210202000
QUT OF DATA IN LINE 10
Problem No. 6

100 DIM DSL10]

110 DS="0123456789"

120 GBYS 140

130 PRINT "@UT GF RANGE"

140 PRINT

150 PRINT “#'3

160 INPUT W

170 IF ABS(N)<.00000! THEN 30
180 IF ABSIN)>999999. THEN 130
190 PRINT ™#"iN3#™

200 PRINT "$'3

210 IF N>O THEN 240

220 PRINT -3

230 LEY N=ABS(N)

240 FOR T9 0O STEP ~1

250 IF N >= 10tE THEN 280
260 NEXT E

270 GeTs 350

280 FOR EI=£ TO O STEP -1
290 LET I=INTI(N/ZIOtED)

300 PRINT DSCLI+1,I+133

310 LET R=N-I*10ftE1

320 LET N

330 NEXT El

340 IF R=0 THEN 430

350 PRIKNT *.''3

360 FBR El=~1 1D -6 STEP ~1
370 LET I=INT(N/I1OtEl1+.0%)
380 PRINT DSLI+1,:%133

390 LET R=N-1x10rf1

400 LET N=

410 IF N<.000001 THEN 430
420 NEXT El

430 PRINT *"s*

440 b

RUN

N@. 6

#7-1. 10023

#-1.10023

5-i.10023s

SEC. 7-3

Problem No. 2

98 REM » TABULATE CHARACTER FREGQUENCY
100 DIM ACI2TILBLT2)

Problem No. 6

100 DIM WS(7)

105

108 REM * READ DATA AND FIND LONGEST STRING
110 LET L=0

126 FBR 1 = 1 T6 7

130 READ WS(I)

140 IF LEN(WSC1)) <= L THEN 160

150 LET L = LEN(WS(I))

160 NEXT 1

165

168 REM * PRINT DAYS OF THE WEEK AT A SLANT
170 FER I = 1 70 L

180 FOR J =} T8 7

190 PRINT TAB(A*J+1)) EXTS(WS(JI,1,13
200 NEXT J

210 PRINT

220 NEXT 1

225

228 REM * DATA

230 DATA SUNDAY, MDNDAY, TUESDAY, WEDNESDAY
240 DATA THURSDAY, FRIDAY, SATURDAY

250 END

SEC. 7-5
Problem No. 2

90 REM * FILE PRINT ONE TO A RECORD
92 REM % WITH RESTART FEATURE

100 DIM NS[723

110 FILES TEST

120 FBR I=1 T0 1000

121 IF END #1 THEN 130

122 READ #1,13NS

123 GOTD 150

130 READ NS,AsB

132 IF NS$S="STOP" THEN 230

138 IF END #1 THEN 155

140 PRINT 21,13NS,A,B

145 PRINT NS

150 NEXT 1

152 STgP

155 PRINT "FILE FUuLL™

170 DATA “WAGNER, WILHELM RICHARD",1813,1883
180 DATA "VERRAZAND, GIOVANNIY, 14801527
190 DATA “BRONTE., ANNE®,1820,1849
210 DATA "CURIE, MARIE™,1867,1934
220 DATA "VERNE, JULES"™,1828,1905
225 DATA “STOP",0,0

230 END

RN

NEL 2

WAGNER, WILHELM RICHARD
VERRAZANDS, GlVANNT
BRONTE, ANNE

CURIE, MARIE

VERNE, JULES

e

SEC,

7-5 Cont'd

Problem No. 4

90 REM * ALPHABETIZE 1AMES IN A FILE

92 REM * (ANY NUMBER JF NAMES)

160
1o
1a
14
116

DIM AS(723,Bs072}
FILES TEST

IF END #1 THEN 119

FOR N=f TG 1000
READ #1,N3JAS

18 NEXT N
119 LET N=N-1

120 FOR 1=i TO nN-1?
130 READ #1,13AS,AsA1
140 FOR J=I+1 TO N
150 READ ¢1,J3BS,B,B1
160 IF AS <= BS THEN 200
170 PRINT #1,1185,8,81
180 PRINT #1,JJAS,AsAL
190 READ #1,IJAS,AsA}
200 NEXT J
210 NEXT I
220 PRINT “FILE ALPHAIETIZED"
230 END
RUN
Ng. 4
FILE ALPHABETIZED
GET-NQ. 3
RN
NG+ 3
boB NAME
1820 ANTHONY, SUSAY B.
1847 BELL. ALEXANDER GRAHAM
1820 BRONTE, ANNE
1867 CURIE, MARIE
1747 JONES, JBHN PAUL
1828 VERNE, JULES
1480 VERRAZANG, GIJVANNI
1813 WAGNER, WILHELM RICHARD
1859 WASHINGTON, EJOKER T.
Problem No. 6
100 DIM AS[721,8S(781,A0250]1
110 FILES TEST
180 REM % COUNT NAME! AND SAVE
130 REM P@SITISBN IN A ARRAY
140 IF END #1 THEN 190
150 FSR I=i To 850
160 READ #1,11AS
170 LET Alll=I
180 NEXT I
190 LET I=I~1
200 REM * ARRANGE PRUITIGNS IN
210 REM A ARRAY
220 FOR R=1 TQ I-1
230 READ #1.ACRIJIAS
240 FOR JsR+1 T8 I
250 READ #1,A(J1IBS
260 1IF AS <= BS THEN 310
270 LET X=ALR)
280 LEYT ALRI=ALJ]
290 LET ALJI=X
300 LET AS=8S
310 NEXT J
320 NEXT R
330 REM # NOW PRINT LAMES
340 PRINT “NAMES IN URDER"™
350 PRINT ** DOB NAME"
360 FOR N=1 T@
J10 READ #1-AINIBAS,
380 PRINT AJAS

170 LET S1s = “ZZZZ"

180 RESTORE 41

190 FORI =1 70 C

200 READ #1, NS

204 REM # GET THE NEXT NAME GREATER THAN THE LAST
205 REM NAME PRINTED

210 IF N§ <= S5 THEN 240
220 IF NS > 515 THEN 240
230 LET 518 = NS

240 NEXT I

250 PRINT SIS

260 LET 55 = Sis

270 NEXT P

280 END

RN

ND. 2

CHRISTIE AGATHA
GOOSE MOTHER
TRUMAN HARRY
TWIST OLIVER
WHITE SNOW

Problem No. 4

100 FILES NAMESH

110 PRINT ** *+ BEFORE #***'3 TAB(25)) " #* AFTER *x"
120 F@R I = 1 To 10

130 SETW 1 TO 8%(1-1) ¢

140 READ 11, AS

150 PRINT AS3 TAB(25)3

160 FOR J = | TO LEN(AS)

170 IF EXTS{ASsJ,J) = ™ " THEN 210
180 NE!

199 PRINT "SPACE MISSING"

200 GOTO 280

210 LET BS = EXTSCAS,J+1,LENCAS))

220 LET €5 = *,

230 LET D$ = EXTSCAS,1,J~1)

240 LET AS = BS + €S +

250 SETW 1 TO 8%¢I=-1) + 1

260 WRITE 311, AS

270 PRINT AS

280 NEXT I

290 END

RN

NB» 4

#k BEFORE #% ** AFTER ##%
AGATHA CHRISTIE CHRISTIE, AGATHA
HARRY TRUMAN TRUMAN, HARRY
NOW WHITE WHITEs SNOW
MgTHER GOOSE GOBSE, MOTHER
GLIVER TWIST TWIST, OLIVER
SAMUEL. SPADE SPADE, SAMUEL
LEMBNT CRANSTBN CRANSTON, LEMONT
DELBRES SPIELER SPIELER, DELORES
EDGAR MARKS MARKS, EDGAR

DEROTHY WOORSON

WOODSON, DOROTHY

CHAP. 8
Problem No. 2

10
15

READ A:8.C

IF A=D THEN 99

PRINT AIB1CI

LEY DaBi2-asAel

IF D<O THEN 72

LET X1=(-B+5GR(Bt2~4¢ASC) I/ (29A)
LET X2e(~B-SQR(B12-4%A8C) I/ (2eA}
PRINT “REAL ZERBS “X11X2

GBTS 10

DATA 1,3.2

DATA isls1s3s-254

DATA 0,0.0

Problem No. 4

10 LET G=ATN{SGRC96)/2)

20 LET GsG#180/3.14159

30 LET D=INT(G)

40 LET M=INT({(G~D}®60+.5)

45 PRINT “TWG ANGLES ARE®

$0 PRINT D"DEGREES UHUMINUTES™

40 LET Gi=180-290G

65 PRINT "THE THIRD ANGLE HEASURES"

70 PRINT INT(G1)“DEGREES 5

80 PRINT INTU(GI-INT(G1)I960+.5) "MINUTES"

TWO ANGLES ARE

78 DEGREES 28 MINUTES
THE THIRD ANGLE MEASURES

23 DEGREES 4 MINUTES

DONE

Problem No. 6

10 LET GeATN(12/5)

20 LET G=Ge180/3.14159

30 LET DsINT(G)

42 LET MaINTC(G-DI®6G+.5)

50 PRINT DYDEGREES “M"MINUTES"

60 LET G1290-6

70 PRINT INT(GII“DEGREES ™

80 PRINT INTC(GI~INT(G1))e60+.SITHINUTES™

47 DEGREES 23 MINUTES
22 DEGREES 37 HINUTES

DBNE

Problem No. 8

10 LET H=10008TAN((7430/60393.14159/180)
20 PRINT “HEIGHT IS"H“FEET"

30 END

RUN

RO.8

HEIGHT 15 131.652 FEET

DBNE

SEC. 9-3
Problem No. 2

10 LET ¥=3.14159/180

20 DEF FNT(G)=SIN(GK)

30 DEF FNRCX)sINT(X#100+.5)/100

35 READ X

36 IF X=~1 THEN 999

37 IF X=0 THEN &2

40 READ Al,sBL,A

SB REM FIND THE THIRD ANGLE

60 LET Cli=180-¢AI+81)

&1 GoTa 70

62 READ Ci,Bl.A

64 LET A1=180-¢Ci+B1)

68 REM 70 AND 80 COMPUTE THE OTHER TWO SIDES
70 LET BsAeFNTCBII/FNTCAL)

80 LET CaBsFNT(CII/FNT(B1)

9B REM HOW PRINT THE RESULTS

100 PRINT ™ ™.t A, o, g

1316 PRINT “THE ANGLES ARE“»A1,B1,C1
120 PRINT “THE SIDES ARE",FNR(A),FNR(BI,FNR(L)
140 PRINT

150 GOTO 35

£698

390 NEXT N

400 END

RUN

NP« 6

NAMES IN BRDER

DB NAME

1820 ANTHENY, SUSAN 8.

1847 BELL, ALEXANDER GRAHAM
1820 BRENTE, ANNE

1867 CURIE, MARIE

1747 JONES, JBHN PAUL

1828 VERNE, JULES

1480 VERRAZANG, GIGVANNT
1B13 WAGNER, WILHELM RICHARD
1859 WASHINGTON, BOOKER T.

Problem No. 8

90 DIM AS(721

100 FILES TEST

105 IF END #1 THEN 999
110 FBR I=1 TG 1000

115 READ 21,1

116 PRINT

120 PRINT "RECGRD“SI

200 IF TYP(-1)»)! THEN 300
205 READ ¢13A

220 PRINT As

230 607Tg 200

300 IF TYP(-1)>2 THEN 400
310 READ #13AS

320 PRINT ASs

330 GOTD 200

400 IF TYPr-id>=4 THEN 600
500 PRINT “END pF FILE"
600 NEXT 1

999 END

RUN

ND. 8

RECORD

1
FIRST 999812, 16t2 -123.45

RECORD 2
SECEND RECBRD
RECORD 3

END @F FILE

RECBRD 4

1234 12456 «999999.
RECORD 5

END OF FILE

SEC. 7-6
Problem No. 2
NAMES

100 CHRISTIE AGATHA
110 TRUMAN HARRY
120 WHITE SNGW

130 GBOSE MOTHER
140 TWIST BLIVER

NG 2

100 FILES NAMES

104 REM * FIRST COWNT NAMES
110 LET C = ©

120 LET C = € + 1§

130 READ #1, NS

140 IF MDRE #1 THEN 120
150 LET S$ HAARAAT

160 FBR P = 1 T6 C

72 PRINT

75 PRINT “NON-REAL ZERDS “-B/(28A)1S0R(~D)/(24A},

BO PRINT «B/(2#A)}1-SOR(~DI/(28A)

?0 GOTO 10
99 END
RUN
Ng.2
1 3 2 REAL ZERGS -1 -2
1 1 1
NON«REAL ZERQS .5 +B66025
3 -2 4
NON-REAL ZERGS .333333 1410554
DBNE

Problem No. 4

10 READ A,8,C

20 IF Aa3.01 THEN 999

30 PRINT "X'",AVX12 +“B"X +"C
43 FOR X=-12 YO 12 STEP 3

50 PRINT XsAsX12+BeXel

60 NEXT X

10 GETH 10

BO DATA 2,-3.4

90 DATA 01,11

999 END

RUN

N34

X 2 Xt2 +-] X + 4
=12 328
-9 193
-& 94
-3 31
o a
3 13
L) 58
9 139
12 256
DBNE

CHAP. 9

SEC. 92

Problem No. 2

10 LET G#ATN(SOR(1612-812)/8)
15 PRINT G1“RADIANS"
17 PRINT oR *

20 LET G=G#180/3.14159
28 LET D=INT(G)

30 PRINT D“DEGREES"

35 LEY MzgDe(G-INT(E))
40 LET MIsINT(M)

45 PRINT HI“MINUTES™
S0 LET SaM-M1

55 PRINT Se60"SECONDS®
60 END

1.3467 RAGIANS
;L3

k DEGREES

9 HINUTES

377161 SECONDS

DONE

-.5

+333333

-.866025

+10554

497 HEM "1° MEANS AAS
498 REM '0° MEANS ASA
499 REM *-1°' MEANS STOP
500 DATA 1,24,51+10

510 DATA 0,90:60,15

520 DATA -1

$99 END
RUN
HE.2
A B
THE ANGLES ARE 24 51
THE SIDES ARE 10 19411
A B
THE ANGLES ARE 30 60
THE SIDES ARE 15 25.98
DONE

Problem No. 4

2 DEF FNRCXI=INTIX*100¢.5)/100
5 LET K=1BG/3.14159

7 BRINT = % am, o gu s g

10 READ AsB1.C

15 IF A=0 THEN 1000

20 LET TeCOS(BI/K)

35 LET Bs50R(A12+Ce2-2AsCET)
40 LET TIs(B12+(¢2-A12)/(2BeC}
50 LET Al=K®ATN(SOR(I-T1t23/713
60 LET CI=180-(AI+B1)

45 PRINT “THE SIDES ARE",AsB,C

[
105
2375

30

70 PRINT “THE ANGLES ARE",FNRCA1),FNRCB1),FNR(CI)

80 PRINT

90 6OTO 10

500 DATA 3,53.13,%
540 DATA 0,0,0

1000 END
RN
NO.a

A B
THE SIDES ARE 3 3.99999
THE ANGLES ARE 36.87 53413
DBNE

Problem No. 6

5 BRINT ©,% an,m gu,n gw
10 DEF FNRIX}=ZINT(X*100+.5)/100

15 LET X=180/3.1415%

20 READ B1,C.B

22 PRINT

25 IF Bi=0 THEN 9999

30 If ABS(SIN(BI/K)-B/C)<-00001 THEN
40 IF B<CHSINCBI/K) THEN 1100

60 1F B>C THEN 1200

BG PRINT “THERE ARE TWO TRIANGLES™

110 PRINT “TWo*
80-C1

150 GeTe 1230

1000 PRINT "RIGHT TRIANGLE™
1010 LET A=SGR(Cr2+812)
1020 PRINT “S1DES ARE™
1038 PRINT “ANGLES ARE
1040 GOTO 20

1100 PRINT "NB TRIANGLE™

1110 GOTO 20

1200 PRINT “SINGLE TRIANGLE"
1205 LET 51=0

1216 LET S=C#SINCBI/X)I/B

1220 LET C1=ATN(S/S0GR(1-512))eK

FNRCAY,B.C
"590-B1,81,90

1000

wuwn

b

SEC. 9-3 Cont'd

1230 LET AlsIBO-(B1+C1

1240 LET A=SINCA1/K)*B/ SIN(B1/K)

1250 PRINT "SIDES ARE" . -A,8,C

1260 PRINT “ANGLES ARE"sFNRCA1),FNR(BI),FNR(CI)
1265 IF Sisi THEN 110

1270 GOTG 20

1300 DATA 10,8.9

1310 DATA 10,98

1320 DATA 30.251

1400 DATA 0:0.0

9999 END
RUN
NO.6

A) <
SINGLE TRIANGLE
5IDES ARE 14:9905 9 8
ANGLES ARE 123.61 30 26.39

THERE ARE T#D TRIANGLES

SIDES ARE 14.4086 8 9
ANGLES ARE 115.77 30 J4.23
™D

SIDES ARE 1417985 8 °
ANGLES ARE 4.23 30 145.77
RIGHT TRIANGLE

SIDES ARE 2.24 i 2
ANGLES ARE 60 a0 90
DONE

Problem No. 8

S LET Kei180/3-14159

T PRINT * "% A%,% B, O

10 READ A,82,83,84.C

1S IF A=0 THEN 1000

17 LET B1=B2+B3/60+84, 3600

20 LET TaCBS(BI1/K)

30 LET BeSORCAT2+Cr2-; ¢ASCeT)

40 LET TI=(Br2eCr2-Ar{)/(2388C)
50 LET AI=KSATNC(SOR{I Ttr2)/T1)
60 LET Cl=180-(AI+B1)

65 PRINT ™THE SIDES ALE",A,B,C

70 PRINT “THE ANGLES #.RE"

80 LET A2=INT(ALY

50 LET AI=INT((AI~A2)160)

100 LET A4=INTCCCA1~AL)860-A2)8604.5)
110 LET C2=INT(CI)

128 LET CI=INT((Ci-CE:%60)

130 LET CAsINT(CC(CI~Ci)660-CI)n60e.5)
135 PRINT "ANGLE DEG HIN SEC™
140 PRINT "Aj = "A2JAIIA4Q

150 PRINT “Bi = *B2sBiuBa

160 PRINT “C} = “C2IC3C4

165 PRINT

170 GOTH 10

399 REM D HS

500 DATA 3,53,7,48,5

530 DATA 10,31,18,5,20

540 DATA 0,0,0:0,0

1080 END
RN
NB.8
A B c
THE SIDES ARE 3 3.99999 5

THE ANGLES ARE
ANGLE DEG HIR SEC

Al = 36 52 12
81 = 53 7 48
ci = 90 0 o

<48

DBNE

Problem No. 2(e),(f)

10 LET K=3.14159/180

20 PRINT ™ ReSINCIGI™™
25 PRINT ™ X".™ Y&, Xt,™ Y9, ANGLE"
30 DEF FNXCR)=ReCDSCG®K)

35 DEF FNY(R)=ReSIN(GeX)

40 DEF FNR(X)=INTCX®100+.51/100

50 FOR G=0 TG 360 STEP 15

60 LET EwSINCIGSK)

65 PRINT FNR(FNXCE)D.FNR(FNYLE)),
70 1F ABS(COS(G¥K))I<.0001 THEN 90
80 LET F=1/C85(GeK)

85 PRINT FNR(FNXCF)),FNREFNY(F3),6
87 G810 170

RCOS(GIwE™

90 PRINT * X OR Y UNDEFINED",G
170 NEXT G
180 ERD
RUN
N@.2EF
R=SIN(3G) RCOS(GI=
X Y x Y
[:} 1} i a
<68 It 1 .27
«B7 -5 1 .58
+5 -5 t 1
o 0 1 1.73
-.18 - 68 1 .73
a -1 X OR Y UNDEFINED
.18 -.68 1 ~3473
o a i -1.73
-5 .5 1 -1
-+87 »5 i ~.58
~+68 .18 L .27
0 o i 0
.68 18 1 .27
87 5 3 +58
+5 .5 1 1
-] o 1 1.73
-.18 ~+68 H 3.73
a -1 X SR Y UNDEFINED
-18 -.58 1 “3.73
a o 1 -1.73
-5 .5 t -1
~.87 .5 t -.58
-.48 .18 i 21
a 0 i
DONE

Problem No. 2(g),(h)

10 LET K23.14159/180

20 PRINT 1+RCOSCEI™
25 PRINT * X'g™ ¥, X7 ¥
30 DEF FNX{R)=ReCOS(GEK)

R=SINCGI+COS(GI™
CANGLE

Problem No. 4

10 READ AsB.C.D

11 IF Aw.01 THEN 999

12 PRINT

Ba PRINT ™ORN, D7D (HET WD b (*ACT, BBV I

30 PRINT *€7C"5"D™)~ ("AY, "8)= {C-A", D=8

40 PRINT “{"A™,"8")/ (" Sl

45 PRINT (ASCeB#DI/(CraeDr2)","(BeC-As0)/(Cr2eDr2))"
S0 PRINT "(C","D")/ ("R B I u (s

55 PRINT (ASCHBSD)/(AT24BTZ)"s"(A*D-BECI/(AIZeBr2I™I"
40 GOTE 10

100 DATA 140:05151s2,354,5:284204

110 DATA +01:05040

999 END

RUN

ND.4

< L0 vc0 s et a=t

[I I I T .t

<1 S0 Ko a1 we o el

<0 s 1 rC 3 s O IsC O » ¥ 1

[L2 3-03 .4 wez L2

£33 .4 -1 .2 mc2 .2)

< S22 303 .4 (.44 s .08

[I S s 2 et 2.2 seea

©5 .8 3-t2Z o, 4 mC3 -2)

€2 .4 =C5 .8 st-3 L2 3

$5 .8 302 .4 IwCeled e

€2 .4 3/CS -8B ¥e(-.24TI91 ;2404454
DORE

Problem No. 6

5 FOR Xs={ TO 5

10 READ C»D

20 PRINT "(1.03/¢"C"s #("C/(CYRODIZI Y
25 PRINT ~D/(Cr2+Dr2)™"

30 NEXT X

AD DATA 1+2+1,0s001+2:3:5-25~4

S50 END

RUN

NG 6

CI.Myse .2 1=(.2 =4 4
C1.03/¢ 1 + 0 LI . 0 3
{1.0¥17¢ O s ¥ 1x¢ O =t

1,037¢ 2 a3 ¢ 153846 22230769
€120¥/¢-3 A tal-.12 s o116 1
DONE

SEC. 10-2

Problem No. 2

10 LEYT R=i

20 LET G=a$

30 LEY Risi

40 LET G1=D

50 FOR Nwl T8¢ 8

&0 LET RiwRleR

70 LET Gim=GleG

80 PRINT (1,452t "N"s("RIi"»"G1"I"

90 NEXT

100 END

RUN

HE.2

(124531 } {3 + A5 k4

{1sa5)r 2 LASE + 90 3

{1,453 3 LIS s 135 ¢

(is45)1 & =0t s 180

t1s,45)r S LIS . 225

Cis45)7 & at g » 270

C1,45)1 7 LR s 315 1}

C1,45)1 8 =¢ 1 2 360

DONE

$98

THE SIDES ARE 10 12.5186 20
‘THE ANGLES ARE

ANGLE DEG MIN SEC

Al = 24 23 A4

81 » N 18 5

€1 = 124 18 it

DGNE

SEC. 9-4
Problem No. 2(a),(b}

5 LET K=3.14159/7180
DEF FRRUX)INT(X#100+.5)/100
IE PRINT » CaS(ReG) ™,
15 PRINT ™ X™»™ Y',™ X" Y%, “ANGLE"
30 F@R G=0 T8 J60 STEP 1S
40 LET A«COS(28GeK)
50 LET B=C8S¢3sGeK)
60 PRINT FNRC 332FHNRK
70 PRINT 'HR(B‘CBS(G.K));FNR(B‘S!N(GOK));B

Cos¢anG”

90 NEXT
100 END
Rund
HO.2AB
CoS(2eG) CO5(386)
X Y x Y
1 o 1
.84 22 -68 .18
.43 25 4] 0
o] “e5 -3
“25 ~a 42 =5 ~+87
-.22 -.84 .18 268
[-1 L]]
22 ~a84 -~ 18 88
25 “s43 -5 «B7
L] Q -5 5
o3 -85 0 o
~e84 22 6B s 18
-t o H 0
284 “.28 -8B =18
a3 =25 4] o
[o -5 “e5
-85 43 ~s5 -87
22 -84 .18 -+ 88
o 1 0 o
~.22 «Ba ~e18 «68
.25 =43 e +87
[o -5 5
o A3 -.25] o
-Ba -.22 .68 “e18
i [+ t 0
DONE

Problem No. 2(c),(d)

5 LET K=3.14159/180

10 PRINT ™ COSCA9G)I™,

15 PRINT ™ X', yie,% xn,% y», "ANGLE"

20 DEF FHR(X)®INT(X®100+.5)/100

30 FER G=D T@ 360 STEP 15

80 LET CwCOSCAsGeK)

70 LET DaSIN(2eGeX)

75 PRINT FNRCCOCOS(GOK)),FNR(CSSINIGHK)),
B0 PRINT FNRCDOCOS(GOK)ID,FNR{DSSIN(GHK)I)G
$0 NEXT G

SIN(2eG)™

100 END
RUN
N3.2CD
CBStaes) SIN(2e5)
x Y X Y
H 0 o [}
+a8 .13 48 .13
“a43 ~e25 .75 .a3
-7t .7t T .71

4> UEF FNY{(R)aReSIN(GK}

a0 DEF FNR(XY3INT(X#100+.53/100

50 FOR G=0 TO 360 STEP 15

90 IF ABSCI-COS(GEKII<.0081 THEN 110
180 LET Gists/¢1-COS(GOK))

105 PRINT FNRCFNXCGIII,FNRCFNY(G))),
107 GOTO 120

110 PRINT * X OR Y UNDEFINED"»
120 LET H=SINEGeK)I+COSIGR0)

130 PRINT FHROFNXCHI),FNRIFNYIH)I,G

170 NEXT G
180 END
RN
NG2GH
Re 1+RCOSLGY ReSIN(GY*COSKE)
Y x Y
X GR Y UNDEFINED ¥ o
2B.35 Tsb 1.18 .32
6e46 3.73 1e48 =68
2eay 2.41 1 1
1 1.7 68 1+18
-25 1.3 +32 1.18
[+ 1 o ¥
.21 «77 - 18 +88
~ed3 58 -«18 =32
= ai 4] o o
“ads -27 .32 -e18
.4y «13 .68 -.18
“a5 o 1]
“e49 =e13 tel8 .32
~.ab -.27 1e18 <68
“ea ~eal 1 1
-33 58 568 1.18
=.24 ~a77 32 1448
o -1 o 1
=35 =13 “ei8 68
i ~1+73 ~«18 .32
2. 41 =241 [o
b4t «3.73 32 ~e18
28.35 7.6 +68 e i
X B8R Y UNDEFINED H o
DORE
CHAP. 10
SEC. 10-1

Problem No. 2

10 PRINT “RODTS OF AXs2eBXes™
20 PRINT
30 PRINT "AsB,C™3
40 INPUT AsB.C
50 IF A=Q THEN 160
&0 LET D¥B12~awasC
70 IF D<0 THEN 120
BO PRINT "REAL RAGTS"
90 PRINT (-Bs5QR(D))/(2¢R);
100 PRINT («B-50R(D))/{2eA)
110 cete 20
120 PRINT “NON-REAL ROOTS"
130 PRINT “("-B/(2%A)",“SGR(ABSID) I/ (28A3")"
140 PRINT "¢ «B/{2¢A)","-5ARCABSID) } /7 (28R
156 GOTS 20
END

R

NEB.2

RBOYS 8F AX12+8XeC
AsBaC?6,13s6

REAL Rg@BYS
. 6666567 =145

AsBaCI2: 146
NON-REAL ROOTS

£-.25 s 1eT139Y 3
7-.2% »-1.71391 3
A:,8,C70,0,0

DBNE

Problem No. 4

10 LET X=3.14159/180

20 PRINT "C@NVERT FROM (A,B8) TO (R,G)"
a0 PRINT

40 PRINT "“A,8™)

30 INPUT A8

40 1F A=~.01 THEN 280

70 PRINT “(R.G) FORM = (™)

80 IF A «» O THEN 170

90 IF B<0 THEN 130

120 GITEe 30
130 PRINT ~B%,2703"
140

150 PRlN? B 903"
160 GBYE 20
170 LET ReSOR(AI2+DY2)
180 LET GwATN(B/AI/K
190 IF. A»0 THEN 220
200 LET Gm=O+180
210 GOTO 240
220 IF B>0 THEN 240
230 LET G=GeJ60
240 PRINT R™,"G*3"
850 G918 30

END

LI Je]

CONVERT FROM (A,8) T8 (H,G)

AsB70,1
CRsG) FORM » ¢ 1 2903

AsBYet,=1

$HG) FBRM = (}.4142) . 2285, 3
AsBT-.01,0

DONE

Problem No. 6

10 PRINT “FIND INTEGRAL POWERS @F (A.8)™
20 PRINT

30 PRINT "WHAT PAWER":
40 INPUT N

50 PRINT “A,B"3

40 INPUT AsB

70 LET Cefw}

80 LET DufaQ

90 FOR Xs) T@ N

100 LET CeASE-BaF

$10 LET DsAefeBsf

120 LET E=C

130 LEY Fed

140 PRINT XMCUCHa%DY3*
150 NEXT X

180 END

HE.5
FIND INTEGRAL POWERS OF (A.B)
WHAT PBWERTA

AsBI-ts-t
[B N
2 co . >
[T R
- (~a s 0 3

DENE

SEC. 10-3

Problem No. 2
20 DEF FHRIX)=INT(X®]1000¢.53/1000

40 PRINT “TAKE ROOTS OF COMPLEX NUMBERS IN (A,B) FORM™

S0 READ AsBsN

BO PRINT "THE“N',“N“TH RBGTS @F {“A","B") AREr"
100 LEY R=SQR(AT2+B12)

102 If A <> O THEN 120

SEC. 10-3 Cont'd

104 LET Ge3.14159/2
106 1f B>0 THEN 240
108 GOTD 160

120 LETY G=ATN(B/A)
140 IF A»0 THEN 200
160 LET GxGe3.14159
180 GOTO 240

200 IF B>D THEN 240
220 LET GmGe293:14159
240 FOR X=t TO N

260 LET RIsR*CI/N)Y
280 LET Gi=G/N

300 LET A1=RIwCES(GI)
320 LET B1=RI®SIN(GY)
340 PRINT "CFNRCATI™,
360 LET GuGe2#3.14159

FNRCB1I™Y"

420 GOTO 60
430 DATA Os1s4
440 DATA 1s1.2
460 DATA (20,3
4B0 END

NO.2

TAKE ROOTS OF COMPLEX NUMBERS IN (A,B) FORM

THE 4 s TH REGTIS OF ¢ O
924 + 4383 i
€=+383 . 2924

(.924 +-a383 +

¢ 4383 V=924 i

THE 2 s 2 TH ROOIS OF ¢t
¢ 14099 s 4455

€-1.099 sue455 ¢

THE 3 .3 TH HOCIS OF ¢ &
-5 < .B66 [
[E9%-1 ,= 886 ¥

[-0 +

out OF DATA IN LINE 6C
CHAP. 11

SEC. 11-1

Problem No. 2

S REM SUBTRACT TwO POLYNGMIALS
£0 FOR X=1 T8 10

20 LET 8(XJ=T[X}=5(X)30
30 HEXT X

a0 READ N

50 FOR X=N TO 2 STEP -1
60 READ ©(X)

70 PRINT BLXI"Xe"X-17¢™t
80 NEXT X

90 READ BL13

166 PRINT 0C13

110 READ N1

120 FOR X=Ni T8 2 STEI =i
130 READ TLX)

140 PRINT TLXIUXroX=10e"
150 HEXT X

160 READ TL11

170 PRINT TL11

190 FOR X=10 TO i STEI -1
200 LET S(XJ=0{X3-T(X
216 NEXT X

215 LET 530

220 FOR X=1Q TO 2 STE® -
230 LET S=5+50X}

240 1F S$20 THEN 260

250 PRINT SUXIVXTUX-ivets
260 NEXT X

270 PRINT 5011

280 DATA 4:3s2,6.-B

290 DATA Ss6»+7.80041

299 END

.

H

t AREY

1 ARE1

+ AREY

120 NEXT 1

125 FOR ZsAsB-1 T0 { STEP -1
130 PRINT PLZ)3

135 NEXT 2

140 PRINT

145 PRINT

158 NEXT T

155 END

RUN
NG.§

[10 § -8 s

3 14 3

[} 30 tea 118 -61 102 27
-8

12

B RE]

4 4 o 4

T

25 s6 a 28

& 8 6 t

2 13 3

24 110 182 154 67 9
DONE

Problem No. 8

10 PRINT “POWERS OF {X¢13}"
20 DIM FL12),FL13)

30 FOR Wt YO 12

40 LET PLWi=0

50 HNEXT W

60 LET FLIIsFL2)s

76 LET SCiIwstaisy

80 LET A=z8e2

90 PRINT FUIJSFL2)

100 FOR Twl TO 10

186 FOR I=»} TD A

120 FOR Jri 10 B

130 LET PCIsd-ilsP{led-13eF(50}
140 NEXT J

150 NEXT

160 FOR X=1 T80 11

178 LEY FLX)sPIX}

180 NEXT X

19C FOR IZsA+«i 0 1 STEP -1
200 PRINT P(Z1s

210 NEXT Z

220 FOR M=l TO 12

230 LET PINIeQ

240 NEXT W

250 LET AsAst

260 PRINT

270 NEXT T

280 END

RON

HO.B

POWERS OF (Xe¢il
1 i

H
i
i
i
i
¢
%
1
i
i

2 i

3 3 1

4 [4 1

s 10 1a s

4 15 20 15 &

1 21 35 35 21 ki

8 28 58 70 S6 28]

9 36 84 126 126 84 36 9 1
10 45 120 210 252 210 120 45 10
n 55 165 330 462 462 330 165 S5

DONE

1

260 IF Kxi THEN 10
270 PRINT “NONE FOUND™
280 GOTO 10
290 DATR 4,1s-2,3,~4
300 DATA S,2,-ls-ilsits-2
310 DATA 4s1.23,-78.-80
315 DATA -.01
320 IF ABS(P} »a 2 THEN 180
330 LET K{Gs1)2P
340 LET K{Q.218X
350 LET Qm@el
360 GOTO 180
370 LET P=0
380 FOR I=N TO t STEP -1
390 LET PxPsP{1)exXr(l-1)
400 NEXT
410 RETURN

END

-a

q -2 3
INTEGRAL ZERO(S5}s NONE FOUND

S L 1no-2
INTEGRAL ZENO(S)1 2
ABS(PYI<2

X [

1 -1

-78 -80

INTEGRAL ZEROCS)T 8 =1 =10
DONE
SEC. 11-3

Problem No. 2

10 PRINT “SEARCH FOR REAL ZEROS OF A POLYNOMIAL™
20 PRINT “START. END, INGREMENT"S

25 LET 5380

30 INPUT F,L.5

40 IF 520 THEN 270

50 DEF FNT(X)e120Xrl-64eX12e17eX+195

60 LET AsQ

70 FOR XaF TO L STEF S

80 LET SI1=FNTC(X)

90 LET S2eFNTIX*5)

100 IF S$1e52>0 THEN 130

110 LET Asasel

120 LET SLAJsX

$25 IF S3wi THEN 1%0

130 NEXT X

14 IF A>0 THMEN 190

150 PHINT “NO INTERVALS FOUND eses TAY AGAIN ™

160 PARINT “WITH EITHER GREATER LIMITS DR SMALLER INCREMENT'

180 GOTO 20

190 PRINT “INTERVAL(S) BEGIN AT:"™
200 FOR i=i TC A

210 PRINT S(113

220 NEXT |
225 LET 53=1
230 PRINT

250 PAINT “NOW "3
260 GOTD 20
270 END

NO+2

SEARCH FOR KEAL ZEROGS OF A POLYNOMIAL
START, END, INCREMENT?=195,195:1
INTEAVAL(S) 3EGIN AT1

-2

NOW STANT, END, INCREMENT?2,3..1
INTERVAL(S) BEGIN ATs

2.8
NOW STAKT, END, INCHEMENT?151,0

DONE

RUN

ND.Z

k)
3
-8

Xt 3 .2 xr 2 >
Xt 4 L] xr 3 .
Xt & + 16 Xt 3 -

DONE

Problem No. 4

EO

oM

DoN

DIM PL20)

FOR we! 10 10

LET FIWIsSIWIsPIWI=P(W+10)=0

NEXT W

READ A

IF Am«} THEN 620

FOR X=A 10 i S5TEP -}

READ FLX3

PRINT FLXx}s
T X

PRINT

READ 8

FOR Y®8 YO t STEP -t
READ S{Y3

PRINT sivn

NEXT ¥

PRINT

FOR I=} 10 A

FOR J=1 YO B

LET PLIsJ-1)sPlleg-1)eFL 1305002
HEXT J

NEXT 1

FOR ZsAsB-} TO | STEP ~i
PRINT PLZ)s

NEXT Z

PRINT

PRINT

GOTB 100

DATA 553,240,241
DATA 2,2,5,2

DATA 243.2

DATA 242,31

DATA -1

END

wn

-t

£

Problem No. 6

Dl# PL20)
UEF FNPCXI=INTOX®RAND(X) o1 ~X/2)
DEF FNR{X)®INTCXORNDIX}+1)
FOx T=1 T0 2
FOd wxi TC 10
LET FIWInSIWIaP(#)2P(We10)u0
NEXT
LET AsFNI10)
FCrt X«A TO 3 STEP «)
LET FIXIsFNP(2})
PRINT FEX)3
NEXT X
PRINT
LET 3aFNR(S)
FCR Y38 Y0 1 STEP -3
LET SUY)=FNHCIS)
PRINT SIY1#
NEXT ¥
PRANT
FCR 1x} T0 A
FCR =i 10 8
LET PlleJ-1)aPUled=1)eFLEoS{J)
NEXT J

SEC. 11-2
Problem No. 2

16 DEF FNR(X)xINT(X®RND(13-X/2)

15 FOR T=! TO 3

20 PRINT

30 PRINT “ZERDS ARE1 3

40 LET Sei

50 FOR X=1 T0 4

60 LEY PIX)Iw0

70 NEXT X

80 LET F(2)«S[2}n}

90 LET A=Ba2

106 LET FUi}=FNRC(20)

110 PRINT -F(1D

120 LET SC1I=FNR(20)

130 PRINT -S(1)s

146 FOR =i TO A

150 FOR Jei TO B

160 LET PLIsJ-11eP{lsJ~13+FLIYe5(J)
170 NEXT J

180 NEXT I

198 1F Se0 THEW 270

200 LET S$=0

210 FDR Xwi TO 4

220 LET FIX)wPIX)

230 LET PiX1ap

240 NEXT X

250 LET Aw3

280 GOTO 120

270 PRINT

275 PRINT “THE COEFFICIENTS ARE: ™
280 FOR X=4 T0 | STEP ~i

250 PRINT PIX)s

300 NEXT

305 PRINT

318 NEXT T

320 END

RUN

ND.2

ZERDS ARE! 4 T

THE CDEFFICIENTS AREL =12 39
ZERDS ARE: -4 8 -9

THE COEFFICIENTS ARE: 1§ s -68
ZERDOS ARE -7 -5

THE CBEFFIC!ENTS ARET § 1 -3¢
DONE

Problem No. 4

PRINT
READ N
IF Ns-.01 THEN 420
FOR S=N TO t STEP ~1
READ PLS)
PRINT PLSIs
NEXT 5§
PRINT
LET Qw1
PRINT “INTEGRAL ZERB(S}: ‘3
LET K=0
FOR Xe-PC1) TO P{}) STEP SGN(PL1})
IF Xe0 THEN 180
1F PLI3/X <» INTEPCII/X) THEN 180
Gosue 270
i1# P «» 0 THEN 320
PRINT XJ
LET K=t
NEXT X
1F Ow1 THEN 240
PRINT
PRINT "ABS(P)<2"
PRINT * X
FOR Xai TG 0~}
PRINT KIXs213KEX,13
NEXT X
GBTO 10

~288

=252

Problem No. 4

10 DEF FNT{X}=128Xt3-648X12¢170X¢195
20 LET As0

30 FOR X=«5 Y0 $

40 LET SIsFNT(X)

50 LET S2aFNTiX+1)

60 IF S1#52>0 THEN 90

70 LET AsAst

80 LET S{A)sX

82 IF X <> F THEN %0

Ba IF S1 «» & THEN 90

B6 PRINT X“15 A ZERO™

90 NEXT X

92 IF $2 <> 0 THEN 100

94 PRINT X+5"1S A ZERD"

100 PHINT “INTERVAL(S) BEGIN AT1"
110 FON 1=} TO A

120 PARINT S{1)s

130 NEX
140 PRINT
150 PRINT

208 LET Dm¢lIeFNTORIZCFNTIFI-FNT(S))
210 LET XsFeD

220 {F FNTIX} <» O THEN 250

230 PRINT X3"1S A ZERC*

240 GOTD 340

250 IF ABS{FNT(X3)»>.0001 THEN 280
260 PRINT XSUYIELDS FNTOX3 ="f1FNT(X)
270 GOTO 340

280 IF FNT(F)eFNT{X)»0 THEN 310

290 LET lieD

300 6OTO 190

310 LET Ii=ti-D

320 LEY Fex

330 GOTO 190

340 NEXT |

350 END

INTEHVALS) BEGIN ATH

-2 2 3

“1.44a714 YIELDS FNT(X) » 6.10352E~05
2.87573 YIELDS FNT(X} =-6.10352E-05
3.90478 YIELDS FNTCX) #-3.051746£-05

DONE

SEC. 11-4
Problem No. 2

10 DEF FNAUXIPI9)eX1BsPIBISXtT+PITIeX16ePL6]eXISoPIS)0X1 A
20 DEF FNBOORPLATaX13eP{IJex12+P{230X+P{1)

30 DEF FNPXI=FNACX)FNB(X)

40 PHINT

41 FOR Xei TO 9

S0 LET PIX1x0

60 NEXT X

70 READ H

75 IF Nx.0101 THEN 500

80 FOR SaN 10 1 STEP -1

110 PRINT P(S)s

120 NEXT §

130 PRINT “INTEGRAL ZEHOT 3

140 FOR Xx~P{1} TO PU1]} STEP SGNC(PE11)
150 1f X=0 THEN 200

160 IF PL13/X <> INT(PL11/X) THEN 200
176 IF FNP{X) <> O THEN 200

180 PRINT X

190 GOTO 210

200 NEXT X

210 LET Hax

220 PRINY "SYNTHETIC BIVISION 8Y X ~“3a3“YIELDS:™
230 PRINT PINIY

240 FOR X=N-1 TO | STEP -1

0
0

SEC. 11-4 Cont'd

250 LET PIXJaPIX}+PLX-1)9R
260 1F xs} THEN 280

270 PARINT PIXis

280 NEXT X

300 FOR Xwi TO N-i

310 LET PLX1=PI{Xel)

320 NEXT X

125 LET PLw)I=0

330 IF N=a THEN 360

340 LET Nef-1

350 GOTC 130

360 LET D=PC23r2~asP(11eP(1]
370 LET F=2eP(3)

380 LET Az-PF(2)/F

390 LET 8=S5QR(AB5¢0))'F

400 1F D<Q THEN 440

410 PRINT "REAL ZERGS: *)
420 PRINT A+BIVAND *SA-8
430 GOTO 40

440 PRINT “NON-HEAL ZIROS1™
450 PRINT “{"3A3", 1871 AND (141", 1-8g5"y"
460 GOTO 40

470 DATA 4r142.-1,72

480 DATA 5,2,5,+314~21.45
430 DATA L0101

500 EHD
RUN
HO.2
2 -1 -2 INTEGRAL ZERO1 {
SYNTHETIC DIVISION BY X - 4 Y1ELOSY
t 3 2 REAL ZERGS: =1 AND -2
2 5 =31 =21 4% INTEGRAL ZEROT -5
SYNTHETIC D!vlsloN sv X =-5 YIELDS:
- INTEGRAL ZERO® t
Y1ELDS?

SYNTHETIC DIVlSION av x -
2 -3 REAL ZERGS5s 3 aND -1.5

DONE

CHAP. 12

SEC. 12-1
Problem No. 2

10 DIM AL3,12)

20 HMAT READ A

30 FOR X»1 To 12

40 LET Al3,XIsAl2.X3+al1,X)

60 MAT PRINT AJ

65 DATA 1,2:3,4,52657,23,51247,56,234

66 DATA 2,+3,43290,45,32,489,65,43,+964041
67 DATA 0,0,0,0,040,0:0,0,0:0,0

2 -3 43 90 as a» -89 (3

DONE

Problem No. 4

10 DIM ALA4,23

20 MAT AEAD A

30 MAT PRINT As

40 FOR R=1 T0 4

S0 FOR C=i T0O 3

66 LET ALR,CI=3¢AlA;C]
70 NEXT €

B0 NEXT R

70 MAT PARINT As

R) END
wee
NC. 3
0 0 a s a [o
o 9 0 2 ° ° °
DANE
SEC. 12-2

Problem No. 2

20 DIM AL4,31,801,43,C01,3)
48 MAT READ A
60 DATA 653+255s3:204,35223,251
140 MAT READ B
160 DATA 0,0,0.0
240 FOR R=i O 1
260 FOR C=1 T0 3
280 LET CLR,C)=0
300 FOR X} TO 4
320 LEY CLR.CIWCIRSCI*BER,XISALXLCE
340 NEXT X
360 NEXT C
380 NEXT
500 PRINT "ROAD" MTUNNEL", "BRIDGE"
520 MAT PRINT
END

ROAD TUNNEL BRIDGE
[} [} [}

DENE

Problem No. 4

20 DIM AL2,33,804,4),C04:3]

40 MAT READ A

60 DATA 6,2,2:5,3,2:453:2,3,25)

140 MAT READ B

160 DATA 0,0,0,150:001s0:0+1s0,0,150,0.0
240 FOR R} T0 4

260 FOR Cwi TO 3

280 LET C{R.,L)a0

300 FTR X=l TO 4

320 T CCR,CI®CLR,CI+BIR XISALIX,C)
340 NEXT X

360 NEXT ©

3BC NEXT R

SO0 PRINT "ROAD": ' TUNNEL™,"BHIDGE"
$20 MAT PRINT €

999 END
RUN
NO.4
RBRO TUNNEL BRIDGE
3 2 4
4 3 z
5 3 2
& 3 a
DONE

Problem No. 6

10 PRINT "OECAUSE THE DIMENSIONS ARE"
20 PRINT “NDN~CONFERMING™

30 END

RUN

NO.4

BECAUSE THE DIMENSICONS ARE
NON-CONFORMING

DBONE

61 35
123 97

DONF.

Problem No. 8

10 014 AL2,21.4902,21.C02.2),0(2,7)
20 MAT READ 4,4

30 DATA ~2,101.5,-05,1:2,304

40 MAT Cxaed

50 ARINT “Asg”

60 AT PRINT €3

70 HAT Dadea

8O PAINT “Hea"

99 AT PRIUINT DI

100 £ND
RuN
NC.B
Asn

b n
n 1
aea

1 2
[} '
DCNE

Problem No. 10

10 DIM AL1,123.8012.10,C012,12)
20 MAT ®EAD &
30 HESTOHE
4) HMAT READ E
50 MAT Cs=3ea
MAT PRINT C#
100 DATA §:2+3,4,5,6s7+8,9510511412

200 END

AN

NO.10

i 2 3 4 5 [} kS A 9 10 1
2 - L3 2 10 12 14 16 18 20 22
3 & 9 12 15 18 24 24 27 k5] 33
4 8 12 16 29 24 28 32 38 A0 Al
5 10 15 29 25 1 35 49 45 59 55
& 12 16 24 30 as az 43 54 89 &4
T 14 21 28 as a2 a9 s6 63 710 17
8 14 24 32 49 4% 56 b4 72 /9 455
v 18 21 a6 a3 sa 63 72 a1 90 99

N
b
w
[

44 55 66 77 a8 99 o 2y

DONE

144

653G

85 PRINT

90 MAT PRINT A

95 DATA 2,565,785, 3,20,45:3,9,673, 5644905234
100 END

RUN
NG. 4
2 56 79
3 20 as
) ¥ 671
544 90 234
s 168 23a
9 60 135
9 27 2019
1692 270 702
ONT

Problem No. 6

10 DIM XU2,51

20 MAT READ X

30 MAT PRINT X1

40 FOd4 Rzl TO 7

50 FOx C=1 TO 5

60 IF (R4CI/R5INTELRCI/R) THEN 90
70 LET X(R,C}==3eX{%,C]

RO GCTO 110

90 LET X{d,Q)=z-1aX(i,C3

110 NEXT €

120 NEXT R

130 MAT PRINT X2

140 DATA 13.67,32,45,90,2,9,57,-3,1
150 END

RUN
NO.&
3 67 32 43 99
2 9 57 -3
-3 ~201 =32 -135 -92
-6 -9 R k2] -3
DONE

Problem No. 8

18 DIM Xt2.6)

20 foR T 2
33 FO+ TO 6
40 LET XUR,Clst
50 NEXT €

60 NEXT 4
73 MAT B2INT 13
A5 E£wn

oCwy

Problem No. 10

10 DIM Ar2,33

AP FC2 x=1 10 P
33 Fon Y=1 TC B
40 LET ACX,Y)=g

SEC. 12-3
Problem No. 2

10 OIM AL&,43,902,11,Cl4st0
20 MAT READ A

30 DATA 12ds=2u-1,20230bsm3s= 7550 =4a 110 F0mtsksnt
40 MAT READ 8

50 DATA =1,2,+3,4

60 MAT CmAsy

70 MAT ®RINT C

BG END

ooNE

Problem No. 4

10 DIM AL2,21.302,2),C02,20,802.2)
20 MAT READ A.B

30 DATA 3.12s1,4s-12,26, 3,7

a3 Mat CxAed

50 MAT Daser

60 PRINT “Asgw

706 MAT PRINT €2

RO PRINT "Gsar

90 MAT PRINT D#

100 PRINT ™1 CONCLUDE THAT MATHIX™

110 PAINT “MULTIPLICATICN IS NOT™
[20 PHINT “COMBUTATIVE"
130 END

auN

NO.a

Aen

o 0

[} [

EET

-8 -32

2 8

! CONCLUDE THAT MATRIX
MULTIPLICATION IS NOTY
COMMUTATIVE

DONE

Problem No. 6

17 0fM al2,23.80°2,23,C02,21,002,21
P2 L1 EL2,20,F02,2),602, 1
20 4AY ap A.8.C

30 DATA 1,2,3,4071,=2:5, 102, 11,25, 31
a5 AT DsAed

50 MAT EsaeC

50 MAT Frpef

70 PRINT “AeRenscH

R MAT POINT F3

90 MAT GzReC

130 MAT FzaeG

TED PRINT “Asfderle

120 MAT PAINT Fr

130 ENp

NCeo

AsZeasC
6t 55

23 97

AetasCy

SEC. 12-4
Problem No. 2

10 DIN B(2,21,002,2),D(2,2}
20 MAT o 8

30 MAT C=INV(B)

40 PRINT “INV(B)"
S0 MAT PRINT C

60 MAT DuBeC

70 PRINT “BeinNv(BI*
75 MAT PRINT D

80 MAT D=Ceg

90 PRINT “INV(B)eB"
100 MAT PRINT D
200 DATA -8,-3,0,+1

300 END
RuUN
NR.2
1NVeB)
-.125 .37
o -1
asINVeR)
t o
o !
INVEBIeB
1 o
o t
peNE

Problem No. 4

10 DIM CL2,33,K(0, 10,563, 13,102, 3)
20 MAT READ C.K

30 MAT IsINVEC:

40 MAT S=feK

50 MAT PRINT S

100 DATA 2s~9:-5:74+6s5:%s26s5
105 DATA 2,-15,-39

115 END

N4
-2«

-999998

-3

DANE

Problem No. 6

10 DIM ClasataKLA 13,104, 43,5040 1)
20 MAT READ G

30 MAT I=INV(CH

40 MAT Saiex

50 MAT PRINT S

100 DATA 6.2:6,5:-75,-Ts=1

102 DATA =351 3, 6020~ 4s ds=7

105 DATA -12,77,31,~76

110 END

DeNE

SEC. 12-4 Cont'd
Problem No. 8

HO. 8

~8.7

~601

.29

DENE

DIM CU3431.K{3,131.505013,103.33
MAT READ C.¥
HAT T=INVIC)
MAT Szlex
MAT PRINT S
DATA 2,45%34-9,-340,-9:8,5
DATA -11-9,5845,660¢
END

0001

9998

Problem No. 10

DIH CE10,103,K(10,11

READ N

IF N=O THEN 999

MAT READ CUNsNI,KEN. 1)
PRINT "COEFFICIENT MnTRIX™

50 MAT PRINT CJ

60 PRINT "CONSTANT TEWM:™
70 MAT PRINT X

B0 MAT IwZERIN.N)

96 MAT S=ZERIN,1]

100 MAT IwINV(G)

110 MAY Selex

120 PRINT “SCLUTIONS"

130 MAT PHINT §

140 GOTO 20

200 DATA 2,3,1,5,3,7.2
210 DATA 3:2,3s=123s0s4s15+2,-5
220 DATA 20.0,6

230 DATA O

999 END

RUN

NO.1O

CCEFFICIENT HATRIX
3 1

S

-3

CONSTANT TERMS
7

2t
SCLIF
3
-2.
COEF!
2
a
1

TIONS

FICIENT MATRIX
3 -t
[1
-2 -5

CORSTANT TERMS

o
6

SOLUTIGNS
te

Se
~3
DONE

1610,1073,5010.11
REM WE ALLOW UP YO TIN UNKNOWNS

TRNKAY& TRN(E)Y
3 31 1z
26 7 -1

58 75 v7
DONE

CHAP. 13

SEC. 13-2

Problem No. 2

10 LET N=t

20 FO4d X=14 TO 1 STEP -1
30 LET NaNsx

40 NEXT X

58 LET NeN/2

80 PRINT N

10 END

4.35891E+10

DONE

Problem No. 4

10 LEY Pet

20 FOM Xx25 TG 13 STEP -1
30 LET PePex

40 NEXT X

SG Foit Xel2 10 { STEP -§
60 LET PaPax

70 HEXT X

B0 PRINT ¢

S0 £END

NO.4
$:55112E+25

oeNE

Probiem No. 6

10 LET C=}

20 FOR Xx52 TQ $2-5¢1 STEF -}
30 LET CxCex

40 NEXT X

50 FOR X«5 T8 1 STEP -1

60 LEY CaCrx

70 NEXT X

B0 PRINT C"MANDS"

¥0 END

2.59896E+06 HANDS

DONE

Problem No. 8

5 LET N=i
10 FOR X=385 T8 365-5+1 STEP ~}
20 LET NwNaX
30 NEXT X
40 PRINT N
END

NEXT X
FOR X4 TO § STEP -1
LET Cal/Xx
NEXT X

PRINT C“STRAIGHT COMMITTEES™
LET Cn13si2/(201)

LET Ciwi7e16/(291)

LET C2a=CeCl

PRINT "TY0 GIRLS AND THO BRYS"C2
LET Ca213e172316215/(1e200)

PRINT "ONE DDY AND THREE GIRLS"C
LEY CriT7016315e14/(433%20])
PRINT “ALL GIRLS"C

LET CriJeigalieig/s(4edezel)
PRINT ™ALL 30YS“C

END

27445 STRAIGHT CEMMITTEES

THE
BNE
ALL
ALL

GIRLS AND TWG BOYS 10608
BOY AND THREE GIRLS B640
GIRLS 2380

BRYS 715

DENE
Problem No. 20

LET HuHlel
FBR Xn52 T8 52-5¢1 STEP ~1
LET HnHeX
NEXT X
FBR Xv5 T8 § STEP -}
LET HnH/sX
NEXT X

FBR im52-5 TO (52-5)-5+1 STEP -1
LET HisHisX

NEXT X

FER ite5 T8 { STEP =1

LET HisHI/X

NEXT X

PRINT ReHI“FAIRS @F FIVE CARD HANDS"

END

RUN
NE.20

3.978665E-32

DENE

SEC. 13-3
Problem No. 2

100
RUN

LET Ns2
FOR Xe9 TO 1 STEP «i
LET N=NeX
HEXT %
LET D=1
FBR Xe10 TH { STEP -1
LET DsDeXx
NEXT X
PRINT N/D
END

Ng.2

2

DONE

Problem No. 4

LET Nni

FBR XuS52 T8 S2-5¢1 STEP ~i
LET NoNex

NEXT 2

FOR X5 f@ i STEP =i

LET NuN/sX

NEXT 3

PAIRS oF FIVE CARD HANDS

SEC. 12-5

Problem No. 2

10 DIM AL3,33.B8(3,31,C03, 3
20 MAT READ A

30 MAT B=TRN(A)

40 PRINT “TRN(AI"

50 MAT PRINT B}

60 HAT C=AeB

70 PRINT “AsTRNCAI"

B0 MAT PRINT C3

100 PRINT "A-TRN(A}®
120 MAT FRINT Cs

140 PRINT “TRN(A}-A"

150 ®AT PRINT C1

300 DATA 5,3,5.6,-2,9,3:9, 1
o

999 EN
RUN
ND.2
TRNCA)
5 3
3 -2 9
1 9 1
A+TRNCAY
i0 9 4
9 -4 i8
4 18 2
A~TRNCA)
0 -3 -2
3 a ¢
2 0 o
TRNCAI~A
o 3 2
-3] o
-2 o o
DONE
Problem No. 4

10 DIM AC3,31,8(3,3),603,31,8(3, 31,603 2}
20 MAT READ A,B

30 HAT CsAeg

4G MAT D=TRN(C)

50 PRINT “TRN(A*B}"

60 HAT PRINT D3

70 MAT C=TRN{A)

80 MAT D=TRN(B)

90 MAT EsDeC

100 PRINT “TRNCBI®TRNCA)™
110 MAT PRINT E3

120 MAT E=CaD

130 PRINT “TANCA)®TRN(B)™
140 MAT PRINT Er

300 BATA 2,~1.3,5,008s+3: 8 2
310 DATA £,3,8:9:5,4,11,-2,0

999 END
RUN
ND. 4
TRN(A®E)
36 g 40
-5 -t 7

12 40 -8

TRNCBI*TRNCA)

RUn
NB.B

6+ 30255E+12

DBNE

Problem No. 10

10 PRINT 2613¢10+3"DIFFERENT PLATES"
20 END

RUN

N2.10

1+ 7S760E+07 DIFFERENT PLATES
DONE

Problem No. 12

5 LET T=0

10 FOR FuS Y0 0 STEP -1

15 LET Puy

20 FOR X=5 T@ S-F+1 STEP -}
30 LET Pspex

40 NEXT X

50 LET ITep

60 PRINT F"FLAGS“P"SIGNALS"
70 NEXY F

75 PRINT “TBTAL NUMBER OF SIGNALS IS"T
80 END

RN
ND. 12
s FLAGS 120 SIGNALS
4 FLAGS 120 SIGNALS
3 FLAGS &0 S1GNALS
2 FLAGS 20 SIGNALS
1] FLAGS 5 S1GNALS
0 FLAGS 1 GNALS
TETAL NUMBER OF SIGNALS 15 326
DONE
Problem No. 14
10 LET Gw}

20 FBR X=50 TD 50-25+1
30 LET GeGeX

40 NEXT X

80 FOR Xx25 T8 § STEP -1
10 LET GeG/X

80 NEXT X

96 PRINT G"GUEST LISTS"
100 END

Run

ND.14

6. A4695E-26 GUEST LISTS
DE@NE

Problem No. 16

16 LET Nai

20 FOR X=14 70 t STEP -1
30 LET NsNex

40 NEXT X

45 LET NaNe2

50 PRINT N

60 END

NO.18
14743576411
DSNE

Problem No. 18

10 LEY C=i
20 FOR X=30 TGO 30-~4%1 STEP -1
30 LEY CsCex

80 PRINT 1/N
90 END

RN

NO. 4
3.B4TE9E-07

DONE

Problem No. 6

10 PRINT (1/2)+10
20 END

RUN

NE.6

9.76562£-04
DONE

Problem No. 8

10 LET P=(48/52)%(4a7/517¢(46/50)8C 47493
20 PRINT P

30 END

RUN

NB.8

5+38B17E-02
DONE

Problem No. 10

10 PRINT €5/6)¢3%(i/6)
20 PRINT (5/6)19%(1/6)
50 END

RUN

NB. 10

9+64506E-02
3.23011£-02

DONE

Problem No. 12

10 PRINT 1~(364/365)128
20 END

RUN

NBa12

7.393996-02

DONE

SEC. 13-4

Problem No. 4

10 MAT S=ZERU1,4)
20 PRINT * DEFECTIVE®
30 PRINT “LIGHT OPENER BOTH NEITHER™
40 F@R Xx=1 T8 1000
50 LET LeINT(Z08RNB(1))
60 LET C=INT(Z2SRND(1))
70 IF L»C THEN 120
80 LEY S{1,1)=501,13+)
96 IF C»0 THEN 140
100 LET S5{1,2)501.2}91
105 IF L»D THEN 140
110 LET SU1,3)1=5014331
115 GOTC 140
120 1IF C=0 THEN 90
130 LET SC1,4)=SEis4d+t
140 NEXT X
150 MAT PRINT Si

END

RUN
Ng.4
DEFECTIVE
LIGHT GPENER BOTH NEITHER
A2 35 3 926

DBNE

SEC. 13-4 Cont'd

Problem No. 6

10 LET Cs0

20 FER Xe1 T8 S00

30 LET ReINT(6#RAND(I)e1}

40 IF R=si THEN 100

50 IF ReS THEN 100

60 GETO 200

100 LET CwCet

200 NEXT X

210 PRINT C"FIVE OR ONI uP™
END

DL 6
162 FIVE B8R OGNE UP
DEHE

Problem No. 8

10 LET Ni=i

20 DIM S{500)

30 MAT 5=ZER

40 FOR Xx=1 T8 500

S50 LET Nsi

60 LET ReINTC4®RNDC1)+1)
70 IF R»1 THEN 120

80 LET SIN)»S{NIe}

90 IF NeNt THEN 140

100 LET NiaN

110 GOTO 140

120 LET HN=N+i

130 GOT8 60

140 NEXT X

$50 PRINT “ROLLS TIL OME",“NUMBER OF TIME
160 FOR X=1 TQ Ni

170 PRINT X,S(X3}

180 HNEXT X

190 END

RUN

NO.B

ROLLS TIL €NE NUMBER OF TIMES
i 84
2 62
3 60
4 37
5 35
6 39
7 a2
B 23
9 17
1o 14
13 16
12 15
13 11
12 7
15 s
16 S
7 7
18 2
19 i
20 3
21 2
22 a
23 a
24 3
a5 1
26 2
27 1]
28 o
29 ¢
30 H
i i
32 o
33 o
34 o
35 i

DONE

Problem No. 10

10 DIM S[1.11)

15 MAT SwZER

20 FOR Xx=t 70 500

25 LEY Cw0

30 FOR Re=(T8

40 LET RISINTC6#RNDCE)+1)

S0 1F Ri»t THEN 100

60 LET C2Cei

100 NEXT R

110 LET SE1,C¢1)=S{i,Ce13e1

£30 NEXT X

140 PRINT "NONE ©ONE ™D THREE"S
150 PRINT * FOUR FIVE SIX SEVEN')
160 PRINT ' EIGHT NINE TEN"

170 MAT PRINT S7

180 END

AUN

NB.10

NONE ONE TWO THAEE FGUR FIVE SIX SEVEN EIGHT NINE TEN
78 160 153 6% [o [0 °
DONE

SEC. 13-5

Problem No. 2

S5 PRINT "8NES PROBABILITY",“TOTAL™
T LET T0

10 FOR Rwi0 T8 O STEP -f

15 LET Cat

20 FOR Xe10 TO 10-Rel STEP -1

30 LET £sCeX/¢10-Xe1)

40 NEXT X

SO LET PaC#(1/6) tRe(S5/6)r{10-R)

55 LET T=TsP

40 PRINT RIP.T

6% NEXT R

70 END

RUN

Na.2

BNES PROBABILITY TOTAL
10 1.653826-08 1+65382E-08
9 8.2690BE~0T §442447€~07
8 1+86054E-05 1.94489E-05
7 2. 4BOTRE-04 2.67521E-04
6 2.17063E~03 2.43816£+03
5 ©+3023BE-02 015462
4 5.42659E~02 6+9T2TPE-02
3 +155045 «224773

2 +29071 +515483
i +32301% ~838495
[} «161506 i

DONE

Problem No. 4

10 RE® COMB 100 THINGS § AT A TIME=100
20 LET P=1009.00i110.999¢9%

A0 PRINT P

40 END

F.05693E-02

DONE

Problem No. 6

10 LET PRi#.00110%.9991100
20 PRINT 1P

30 E£ND

RUN

NB. 6

9.52127E-02

BONE

(=]

Problem No.

S PRINT "ONES PFROBABILITY™
10 LET N=6
20 FOR R=x0 TO
30 LET €=1

50 FOR X=N TG N-Ret STEP -i

60 LET C=CeX

70 NEXT X

90 FOR X=R TO 1 STEP -y

100 LEY C=CsX

110 NEXT X

120 PRINT RFCa(S/6)t(N-RI®CI/621R

@

130 NEXT R

150 END

RUN

NO.B

GNES PROBABILITY
o +334898
1 401878

2 +20093%
3 5.35837E£-02
4 8.03755E-00
S 6443004E-04
6 2+14335E-05
BONE

Problem No. 10

5 LET T«0

10 FOR Res T8 10

18 LET C=1

20 FOR X=10 TO 10-R+} STEP =i
30 LET CaCeX/C10-Xe1)

40 NEXT X

S0 LET PaCeC1/2)*ReC1/237(10~R)
60 LET TaTeP

65 HNEXT R

68 PRIGT T

70 END

RUN
ND.10
+376953
DONE

Problem No. 12

S PRINT “FLIPS PROBABILITY"
10 LET Pai

20 FOR Rsl T0 10

30 LET P=Pe(1/2)

40 PRINT RIP

7.81250E-03
3.90625E-02
1+95312E~03
10 3. 76542E~04

DONE

50 NEXT R

66 END

RUN

NB.12

FLIPS PRBBABILITY
1 .5
2 +25
3 +125
a » 0625
s .03125
L] «015625
M
8
9

Index

ABS (Y) function, 47
Addition
matrix, 186
modular, 67
Algorithm, Euclidean, 91-92
Argument, definition of, 47
APPEND N statement, 118
Arithmetic, modular; see Modular arith-
metic
Arithmetic operators, definition of, 4
Arrays, 78-79, 84
DIM (two-dimensional), 85, 86, 89
dimensioning, 8586
MAT instructions in, 176
structure of, 79
Artificial data, 20
ASCII, 102, 115, 116
Assignment operator, 10
Assignment statement, 10
ATN (X) function, 136
Axis of symmetry, 123, 124

Base-2, 93, 94

Binary files, 118

Binomial experiments, 212

Binomial theorem, 212

Binomial trials, 210-213

Birthday problem, 205

Block diagramming; see Flowcharting

Circular functions, 132, 133
CLE; see SCR
Coeflicient matrix, 192
Column vector, definition of, 179
Combinations, 200
Comma, use of, 2, 3, 101
Comma delimiter, 10-11
Complex numbers
addition of, 148
de Moivre’s theorem, 152
division of, 148
multiplication of, 148
polar form, 150, 151
rectangular form, 147, 149
roots of, 152
subtraction of, 148
Complex zeros, 168-175
Compound fraction, decimal value for,

6

Index

Compound interest, 55
caleulating, 32
Computer list, 35-36, 40-45
dimensioning, 66
Computer functions
ABS(Y), 47
ATN(X), 136
DEF FNA(X), 57, 58, 61
INT(X), 47, 48, 51
RND(X), 62-63
SGN(N), 47
SOQR(Y), 47
trigonometric, 133, 136
C®N, 187
Conditional transfer, 18, 19
Congruence conditions, 139
Conversions
base-10 to base-2, 93-96
degrees to radians, 133
dimensions, 50-51

inches to feet and inches, 51, 54

Coordinate systems, 128
polar, 144, 150, 151
rectangular, 132, 138, 143, 147

COS(X) function, 133

Cosines, Law of, 139-142

CREATE command, 110

Data files, 109-121
access, 115
ASCII, 116-118
binary, 118
data storage, 115
General Electric, 115
Hewlett-Packard, 110-115
random access, 112, 118-120
Data processing, 2
arrays, 78
questionnaires, 85
tabulation, 73-77
DATA statement, 3-4, 101, 116
Debugging, 218
Decision-making, 14
DEF, 57,58
DEG(X), 133

Degrees, conversion to radians, 133

Delimiter, 73
comma, 10-11
semicolon, 10-11

265

266 Basic BASIC

De Moivre’s theorem, 152
Depressed polynomial, definition of, 169
Descartes’ Rule of Signs, 173, 175
Dimension conversions, 50-51
Dimensioning
arrays, 8586
lists, 66
DIM statement, 66, 103
two-dimensional, 85, 86, 89
Division
of polynomials, 156-158, 159
synthetic, 158
Dummy argument, definition of, 62
Dummy data; see Artificial data

E-format, 8-9
END statement, 2, 12
Enumeration
combinations, 200
factorial, 198
partitioning, 202
permutations, 198-199, 200, 202
Principle of, 197-198
Equality, matrix, 187, 190
Equals sign, 10
in IF-THEN statement, 15
as relational operator, 15
Error diagnosis, 218-224
Euclidean algorithm, 112-113
greatest common factor, 91
Event, definition of, 205
Executive program, 4
Experiment in probability, definition of,
197, 207

Exponentiation, symbols used for, 4

Factorial, 198
Factoring integers, 48~49
Factor theorem, 160
Failure in probability, definition of, 197
Fibonacci numbers, 39, 46
FILES statement, 110, 117
Flowcharting, 1314, 20
FOR—NEXT statement, 26, 28, 31, 32
Fractions, reducing, 50-51
Functions

circular, 132, 133

computer, se¢ Computer functions

G@SUB statement, 41, 45
GOT® statement, 3, 12, 18

Greatest common factor, 51, 54, 91

Identity matrix, 187
IDN, 187
IF END statement, 111
IF—THEN statement, 15, 18-19
IMAGE statement, 227
Initializing, 9-10
INPUT statement, 166
Integers
computing greatest, 47
factoring, 4849
Integral zeroes of polynomials, 159-163
INT(X) function, 47, 48, 51
INV() statement, 191192

Law of Cosines, 139-142
Law of Sines, 138-139, 141, 142
LEN() function, 103
LET statement, 5-6, 11, 56
as assignment statement, 10
Lists; see Computer list
Location principle, 163
Logical end, definition of, 69
Log-on; see Sign-on
Loops, 2425, 31-34
FOR-NEXT, 26, 28
machine-made, 26, 28-30
nested, 32

Machine-made loops, 26, 28-30

MAT instructions, 176

MAT READ, 178-179

MAT PRINT, 177, 178, 179

Matrix, 179; see also Arrays
coefficient, 192
creating zero matrix (ZER), 187
filling locations with 1 (C@N), 187
forming identity matrix (IDN), 187
identity, 187
inverse of, 190-191
transpose of, 195

Matrix addition, 186

Matrix algebra, 185-188

Matrix equality, 187, 190

Matrix inverse, 190, 191
difference from transpose, 195

Matrix multiplication, 185-136
scalar, 187

Matrix subtraction, 186

Maximum, 124

Index 267

Minimum, 124 multiplication of, 155
Modular arithmetic, 67 polynomial function, 160
addition, 70 quotient, 173
multiplication, 70 real zeros, 163, 165-167
Multiplication Remainder theorem, 159
matrix, 185-186 second-degree, 168
modular, 70 synthetic division, 158
of polynomials, 155 variation in sequence, 173
scalar, 184 Predefined process, 41
Multiplication symbol, use of, 4 Prime numbers, 48-49
Mutually exclusive events, 211, 212 Principle of Enumeration, 197-198

PRINT statement, 1, 2, 101
PRINT USING function, 61, 227
Probability
binomial trials, 210-213
“birthday problem,” 205
definition of, 197, 204
event, definition of, 205

NAME command, 16
Nested loops, 32
Nonreal zeros, 169
Numerical order, 40-41

OPEN command, 110 experiment, definition of, 197
Operands, definition of, 4 failure, definition of, 197
Opel"ators . independence, 205
arlt.hmetlc, 4 outcome, definition of, 197
assignment, 10 success, definition of, 197
_ relational, 15, 19, 20 Program, definition of, 1
Ordering routine, 65 executive, 4
Outcome, definition of, 197 Program defined functions, 55-60
Pseudo random number generator, def-
Paper tape, 215 inition of, 62
Parabola Pythagorean theorem, 132

definition of, 123

plotting, 125-131
Parentheses, 78
Partioning, 202
Pascal’s Triangle, 213
Permutations, 198-199, 200, 202
Polar axis, definition of, 144
Polar coordinate system, 151

complex numbers, 150

polar axis, 144

Quadratic formula, 122, 168
Quadratic function
definition of, 122
graph of, 123-124
quadratic formula, 122, 168
zeros of, 122-123
Questionnaire, 77, 85
Quotient polynomial, 157
storing of, 173

pole, 144

Pole, definition of, 144

Polynomials Radians, definition of, 132, 133
abbreviation of, 159 RAD(X) function, 133
complex zeros, 168-175 Random access, 115
definition of, 154 Random access files, 112, 118-120
depressed, 169 Random number generator, 6271, 206~
Descartes’” Rule of Signs, 173, 175 207
division of, 156-158, 159 dummy argument, 62
Factor theorem, 160 pseudo random number generator, 62
integral zeroes of, 159-163 RND(X), 62-63

Location Principle, 165 READ statement, 3—4

268 Basic BASIC

READ #N statement, 117
Real zeros, 163, 165-167
Records, 118
Rectangular coordinate system, 132,
138, 143
complex numbers, 147, 149
Relational operators
equals sign as, 15
“greater than,” 19
“greater than or equal to,” 20
“less than,” 19
“less than or equal,” 20
“not equal to,” 20
REM statement, 13, 16-17
Remainder, 51, 91
Remainder theorem, 159
Remote terminal, definition of, 1
Replacement operator; see Assignment
operator
RESTORE #N statement, 118, 119
RETURN statement, 41, 44-45
Right triangles, 133, 135
computing angles, 136
RND(X) function, 6263
Roots, complex numbers, 152
Rounding off, 57
Routine, ordering, 65
Row vector, definition of, 179
RUN command, 4, 5

Scalar multiplication, 187
Scientific notation, 8~9
SCR command, 4-5
SCRATCH #N statement, 117, 118
Selections, 200
Semicolon delimiter, 10-11
Sequential access, 115
SETW statement, 119
SGN(N) function, 47
Sign-on, 4
Simulation, random
random number generator, 206-207
Simultaneous linear equations
printing results, 194-195
solving, 192~193
Sines, Law of, 138-139, 141, 142
SIN{X) funciion, 133
Spacing, 58-59
comma, 10, 11
semicolon, 10, 11, 96
SQR(Y) function, 47

Statements
DATA, 34
DEF, 57, 58
DIM, 66, 85, 86
END, 2,11
FOR-NEXT, 26, 31, 32
G@SUB, 41, 45
GaT®, 3,11, 18
JF—-THEN, 15, 18-19
INPUT, 166
LET, 5-6, 10, 11, 56
READ, 3-4
REM, 13, 16-17
REST@RE, 108,110
RETURN, 41, 4445
ST@P, 59
ST@P statement, 59
Strings, 101-109
String array scheme, 106-108
String variable, 101, 103
Subroutine, 41, 45
Subscripts, 35, 103
Substring scheme, 103
Subtraction, matrix, 186
Success in probability, definition of,
197
Sum array, 186
Symmetry
axis of, 123
definition of, 124
Syntax errors, 220
Synthetic division, definition of, 158
System commands, 4-5
NAME, 16
RUN, 4,5
SCR, 4-5
Sign-on, 4

TAB(X) function, 225
Tabulating
one item, 7375
several items, 75
yes—no answers, 76-77
TAN(X) function, 133
Tape, paper, 215
Tape punch, 215
Tupe reader, 210
Transpose, of a matrix, 195
Transfer
conditional, 18
unconditional, 18

Triangle
area of, 138
Law of Cosines, 140--142
Law of Sines, 138-139
right triangles, 133, 135, 136
Trigonometric ratios, 133
Trigonometry
area of triangle, 138
circular functions, 132
complement, 135
congruence conditions, 139
Law of Cosines, 139-142
Law of Sines, 138139, 141, 142
polar coordinate system, 144, 150,
151
Pythagorean theorem, 132
radians, 132
rectangular coordinate system, 132,
138, 143
trigonometric computer functions,
133, 136
trigonometric ratios, 133

Index 269

TRN(), 195-196
Two-dimensional list; see Arrays

Unconditional transfer, 18

Variation in number sequence, defini-
tion of, 173
Vectors
column, 179
row, 179

WRITE #N statement, 117

ZER, 187

Zero subscripts, 155

Zeros of polynomials
complex zeros, 168-175
of function, 159
integral zeros, 159~163
nonreal zeros, 169
real zeros, 163, 165167

BASIC BASIC: An Introduction to Computer Programming in
BASIC Language, Second Edition

James S. Coan

“...an excellent introduction to the use of BASIC through remote
terminals and time sharing . . . clearly written and well-organized,”
said Computing Reviews about the first edition of this popular
introductory book. Anyone can learn to write computer programs
in BASIC using this book. Not only does it describe the essential
statements of BASIC and use them in sample programs, but this
new edition now includes a chapter on strings and files.

The author uses over 100 sample programs to illustrate the
essential techniques of the language and to integrate BASIC pro-
gramming with mathematics. Each language statement or capabil-
ity is clearly explained at the time that it is first used in a sample
program. Every section is followed by practice problems. Solutions
to even-numbered problems appear in the text, the remainder in
the separate Teacher’s Guide.

Other Books of Interest ...
ADVANCED BASIC: Applications and Problems

James S. Coan
This is the follow-up BASIC text for those who want to extend their
expertise. It offers advanced techniques and applications, including
coordinate geometry, area, sequences and series, polynomials,
graphing, simulations, and games. #5855-1, paper, #5856-X, cloth,
192 pages.

THE BASIC WORKBOOK: Creative Techniques for Beginning Programmers
Kenneth E. Schoman, Jr.

Here is a hands-on approach to learning BASIC and the fundamen-
tals of problem-solving using a computer. Through many exercises,
readers develop a workable BASIC vocabulary, a feeling for the
logic and intrigue of programming algorithms, and the self-confid-
ence needed to use a computer in a variety of applications. #5104-2,
paper, 128 pages.

GAME PLAYING WITH BASIC

Donald D. Spencer

Enjoy the challenge of competition by playing such computer games
and puzzles as 3-D Tic-Tac-Toe, Nim, Roulette, Black Jack, Magic
Squares, the 15 Puzzie, Go-Moko, Keno, Morra, Baccarat, and many
others. The author writes in a nontechnical style and includes the
rules of each game, how each game works, illustrative flowcharts
and diagrams, and the output produced by each program. #5109-3,

paper, 176 pages.

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

ISBN 0-8104-5106-9

