

TABLE OF CONTENTS

ABOUT THE AUTHOR

FOREWORD by Charles H. Moore
ABOUT THIS BOOK
ACKNOWLEDGEMENTS

INTRODUCTIONS
Introduction for Beginners
Introduction for Professionals

1 FUNDAMENTAL FORTH
A Living Language
All This and ... Interactive!
The Dictionary:
Say What?
The ‘Stack: FORTH's Worksite for Arithmetic
Postfix Power
--Keep Track of Your Stack
Review of Terms
Problems

2 HOW TO GET RESULTS
FORTH Arithmetic—Calculator Style
For Adventuresome Newcomers Sitting at a Terminal
Postfix Practice Problems (Quizzie 2-a)
FORTH Arithmetic ~— Definition Style
Definition-style Practice Problems (Quizzie 2-b)
The Division Overators
Stack Maneuvers
Stack Manipulation and Math Definitions (Quizzie 2-c)
"Playing Doubles
Review of Terms
Problems

3 THE EDITOR (AND STAFF)
Another Look at the Dictionary
How FORTH Uses the Disk
Dear EDITOR
Character Editing Commands
The Find Buffer and the Insert Buffer
Line Editing Commands
Miscellaneous EDITOR Commands
Getting [LOAD|€d ‘
Review ot Terms
Problems

xiii

vii
ix

xi

W

4 DECISIONS, DECISIONS, ... 89

The Conditional Phrase 89
The Alternative Phrase 92
Nested [IE]..._ ‘I Statements 93
A Closer Look at - 95
A Little Logic 97
Two Words with Built-in [IF|s 101
Review of Terms . 104
Problems ’ 105
5 THE PHILOSOPHY OF FIXED- POINT T 107
Quickie Operators 107
Miscellaneous Math Operators 108
The Return Stack 109
An Introduction to Floating-Point Arithmetic 113
Why FORTH Programmers Advocate leed—?omt 114
Star-slash the Scalar . 116
Some Perspective on Scaling - - _' 119
Using Rational Approximations 121
Review of Terms ') . o 124
Problems ; o 125
6 THROW IT FOR A LOOP - . 127
Definite Loops - ...-LOO o . 127
Getting [IF]fy b : « 131
Nested Loops 132
+LOOP) 133
DOjing It -- FORTH Style 135
Indefinite Loops 138
The Indefinitely Definite Loop 140
Review of Terms 144
Problems e 145
7 A NUMBER OF KINDS OF NUMBERS . o 149
I. FOR BEGINNERS 150
Signed vs. Unsigned Numbers - 150
Arithmetic Shift ' o 153
An Introduction to Double- length ‘Numbers 154
Other Number Bases 155
The ASCII Character Set . 156
Bit Logic 158
II. FOR EVERYBODY ‘ 160
Signed and Unsigned Numbers 160
Number Bases 162
Double-length Numbers 164
Number Formatting -—- Double-length Unsigned 166
Number Feormatting —- Signed and Single-length 170
Double-length Operators 173
Mixed-length Operators 174
Numbers in Definitions 176
Review of Terms 180
Problems 181

xiv

11 EXTENDING THE COMPILER:
DEFINING WORDS AND COMPILING WORDS
Just a Question of Time
How to Define a Defining Word
Defining Words You Can Define Yourself
How to Control the Colon Compiler
More Compiler-controlling Words
An Introduction to FORTH Flowcharts
Curtain Calls
Review of Terms

Problems
12 T:Fh~_ EXAMPLES
w- M Game

‘Fl_i.L!: Away!
No Weighting
Review of Terms

APPENDICES
1. Answers to Problems
2. Further Features of polyFORTH
3. FORTH-79 Standard

4. Summary of FORTH Words

TABLE OF HANDY HINTS

A Non-Destructive Stack Print

When a Block Won't

A Better Non-Destructive Stack Print

How to Clear the Stack

- S0l and

A Lcfinition for BINARY — or Any-ARY

How to a Source Definition

A Random Number Generator

Two Convenient Additions to the Editor
Entering Long Definitions from Your Terminal

Xvi

289
289
290
293
299
303
307
309
314
315

317
318
328
341
348

1 FUNDAMENTAL FORTH

In this chapter we'll acquaint you with some of the unique
properties of the FORTH language. After a few introductory pages
we'll have you sitting at a FORTH terminal. If you don't have a
FORTH terminal, don't worry. We'll show you the result of each
step along the way.

A Living Language

Imagine that you're an office manager and you've just hired a
new, eager assistant. On the first day, you teach the assistant
the proper format for typing correspondence. (The assistant
already knows how to type.) By the end of the day, all you have
to say is "Please type this."

On the second day, you explain the filing system. It takes all
morning to explain where everything goes, but by the afternoon
all you have to say is "Please file this.”

By the end of the week, you can communicate in a kind of
shorthand, where "Please send this letter" means "Type it, get me
to sign it, photocopy it, file the copy, and mail the original.”
Both you and your assistant are free to carry out your business
more pleasantly and efficiently.

Good organization and effective communication require that you
1. define useful tasks and give each task a name, then

2. group related tasks together into larger tasks and give
each of these a name, and so on.

FORTH lets you organize your own procedures and communicate them
to a computer in just this way (except you don't have to say
"Please").

As an example, imagine a microprocessor-controlled washing
machine programmed in FORTH. The ultimate command in your
example is named WASHER. Here is the definition of WASHER, as
written in FORTH:

8 Starting FORTH

: WASHER WASH SPIN RINSE SPIN ;

In FORTH, the colon indicates the beginning of a new definition.
The first word after the colon, WASHER, is the name of the new
procedure. The remaining words, WASH, SPIN, RINSE, and SPIN,
comprise the "definition" of the new procedure. Finally, the
semicolon indicates the end of the definition.

i

——

e
)

S
s WA Rk
= Y,

Each of the words comprising the definition of WASHER has
already been defined in our washing-machine application. For
example, let's look at our definition of RINSE:

: RINSE FILL AGITATE DRAIN ;

As you can see, the definition of RINSE consists of a group of
words: FILL, AGITATE, and DRAIN. Once again, each of these
words has been already defined elsewhere in our washing-machine
application. The definition of FILL might be

: FILL FAUCETS OPEN TILL-FULL FAUCETS CLOSE ;

In this definition we are referring to things (faucets) as well as
to actions (open and close). The word TILL-FULL has been
defined to create a "delay loop"” which does nothing but mark
time until the water-level switch has been activated, indicating
that the tub is full.

If we were to trace these definitions back, we would eventually
find that they are all defined in terms of a group of very useful
commands that form the basis of all FORTH systems. For example,
polyFORTH includes about 300 such commands. Many of these
commands are themselves "colon definitions"” just like our example
words; others are defined directly in the machine language of the
particular computer. In FORTH, a defined command is called a
"word." T

T For 01d Hands

This meaning of "word" is not to be associated with a l6-bit
value, which in the FORTH community is referred to as a "cell.”

18 Starting FORTH

Say What?

In FORTH, a word is a character or group of characters that have
a definition. Almost any characters can be used in naming a
word. The only characters that cannot be used are:

return because the computer thinks you've
finished entering,T

backspace because the computer thinks you're trying
to correct a typing error,

space because the computer thinks it's the end of
the word, and

caret (T or 7 because the editor (if you're using it)
thinks you mean something else. We'll
discuss the editor in Chap. 3.

Here is a FORTH word whose name consists 6f two punctuation
marks. The word is [."] and is pronounced dot-quote. You can use

[7] inside a definition? to type a "string" of text at your
terminal. Here's an example:

: GREET ." HELLO, I SPEAK FORTH " ;GEITIJ)_ ok

We've just defined a word called GREET. 1Its definition consists
of just one FORTH word, [."], followed by the text we want typed.
The quotation mark at the end of the text will not be typed; it
marks the end of the text. It's called a "delimiter.”

tFor Philosophers

No, the computer doesn't "think." Unfortunately, there's no
better word for what it really does. We say "think" on the
grounds that it's all right to say, "the lamp needs a new light
bulb." Whether the lamp really needs a bulb depends on whether
it needs to provide light (that is, incandescence is its karma).
So let's just say the computer thinks.

IFORTH-79 Standard

In systems that conform to the Standard, [.] will execute outside
of a colon definition as well.

20 Starting FORTH

Box A Box B Name of Next
4 5 I Operation

——the number 4 is stored into a second place (called Box B).

Box ﬁ Name of Next

7 Operation

-—the calculator performs the operation that is stored in the
"Next Operation" Box on the contents of the number boxes and
leaves the result in Box A.

Many calculators and computers approach arithmetic problems in a
way similar to what we've just described. You may not be aware
of it, but these machines are actually storing numbers in various
locations and then performing operations on them.

In FORTH, there is one central location where numbers are
temporarily stored before being operated on. That location is
called the "stack." Numbers are "pushed onto the stack," and
then operations work on the numbers on the stack.

The best way to explain the stack is to illustrate it. If you
enter the following line at your terminal:

34+ .CEMD 7 ok

here's what happens, key by key.

Recall that when you enter a nu'i2r at your terminal, the text
interpreter hands it over to .JMBER|, who runs it to some
location. That location, it can now be told, is the stack. 1In
short, when you enter the number three from the terminal, you
push it onto the stack.

22 Starting FORTH

QEE;AE

The next word, [, is also found in the dictionary. It has been
previously defined to take the number off the stack and print it
at the terminal.

Postfix Power

Now wait, you say. Why does FORTH want you to type
34+
instead of
3+ 4
which is more familiar to most people?
FORTH uses "postfix" notation (so called because the operator is
affixed after the numbers) rather than "infix" notation (so

called because the operator is affixed in-between the numbers) so
that all words which "need" numbers can get them from the stack.T

tFor Pocket-calculator Experts

Hewlett-Packard calculators feature a stack and postfix arithmetic.

1 FUNDAMENTAL FORTH 23

For example:
the word gets two numbers from the stack and adds them;
the word E] gets one number from the stack and prints it;

the word [SPAC..” gets one number from the stack and prints
that many spaces;

the word |[EMIT| gets a number that represents a character and
prints that character;

even the word STARS, which we defined ourselves, gets a
number from the stack and prints that many stars.

When all operators are defined to work on the values that are
already on the stack, interaction between many operations
remains simple even when the program gets complex.

Earlier we pointed out that FORTH lets you execute a word in
either of two ways: by simply naming it, or by putting it in the
definition of another word and naming that word. Postfix is part
of what makes this possible.

Just as an example, let's suppose we wanted a word that will
always add the number 4 to whatever number is on the stack (for
no other purpose than to illustrate our point). Let's call the
word

FOUR-MORE
We could define it this way:

: FOUR-MORE 4 + ;CEIOID
and test it this way:

3 FOUR-MORE .CETED 7 ok
and again:

-10 FOUR-MORE .@@XM@y -6 ok
The "4" inside the definition goes onto the stack, just as it
would if it were outside a definition. Then the adds the two
numbers on the stack. Since always works on the stack, it
doesn't care that the "4" came from inside the definition and the
three from outside.
As we begin to give some more complicated examples, the value of
the stack and of postfix arithmetic will become increasingly
apparent to you. The more operators that are involved, the more

important it is that they all be able to "communicate" with each
other.

24 Starting FORTH

Keep Track of Your Stack

We've just begun to demonstrate the philosophy behind the stack
and postfix notation. Before we continue, however, let's look
more closely at the stack in action and get accustomed to its
peculiarities.

FORTH's stack is described as "last-in, first-out" (LIFO). You can
see from the earlier illustration why this is so. The three was
pushed onto the stack first, then the four pushed on top of it.
Later the adding machine took the four off first because it was
on top. Hence "last-in, first-out."

In general, the only accessible value at any given time is the
top value. Let's use another operation, the [] to further
demonstrate. Remember that each removes one number from the
stack and prints it. Four dots, therefore, remove four numbers

and print them. . ,

2468CEMD 8 642 ok

N

n

|

The system reads input from left to right and executes each word
in turn.

For input, the rightmost value on the screen will end up on
top of the stack.

For output, the rightmost value on the screen came from the
bottom of the stack.

Let's see what kind of trouble we can get outselves into. Type:

10 20 30

(that's four dots) then RETURN. What you get is:

1 FUNDAMENTAL FORTH 27

Here's a list of the FORTH words you've learned so far, including
their stack notations ("n" stands for number; "c¢c" stands for
character):

XXX YYY (—) Creates a new definition with
the name xxx, consisting of
word or words yyy.

CR (—) Performs a carriage return and
line feed at your terminal.

SPACES (n —) Prints the given number of
blank spaces at your terminal.

SPACE {(—) Prints one blank space at your
terminal.

EMIT (c —) Transmits a character to the

output device.
oxxx" (-—) Prints the character string
XXX at your terminal. The "
character terminates the

string.
+ (nl n2 - sum) Adds.
(n ——) Prints a number, followed by

one space.

In the next chapter we'll talk about getting the computer to
perform some fancier arithmetic.

Review of Terms

Compile to generate a dictionary entry in computer
memory from source text (the written-out form
of a definition). Distinct from "execute."

Dictionary in FORTH, a list of words and definitions
including both "system" definitions
(predefined) and "user" definitions (which you
invent). A dictionary resides in computer
memory in compiled form.

28

Execute

Extensibility

Glossary

Infix notation

Input stream

Interpret

LIFO

Postfix notation

Stack

Stack overflow

Stack underflow

Word

Starting FORTH

to perform. Specifically, to execute a word is
to perform the operations specified in the
compiled definition of the word.

a characteristic of a computer language which
allows a programmer to add new features or
modify existing ones.

a list of words defined in FORTH, showing their
stack effects and an explanation of what they
do, which serves as a reference for
programmers.

the method of writing operators between the
operands they affect, as in "2 + 5."

the text to be read by the text interpreter.
This may be text that you have just typed in at
your terminal, or it may be text that is stored
on disk. ’

(when referring to FORTH's text interpreter) to
read the input stream, then to find each word
in the dictionary or, failing that, to convert
it to a number.

(last-in, first-out) the type of stack which
FORTH uses. A can of tennis balls is a LIFO
structure; the last ball you drop in is the one
you must remove first.

the method of writing operators after the
operands they affect, as in "2 5 +" for "2 + 5."
Also known as Reverse Polish Notation.

in FORTH, a region of memory which 1is
controlled in such a way that data can be
stored or removed in a last—in, first-out (LIFO)
fashion.

the error condition that occurs when the entire
area of memory allowed for the stack is
completely filled with data.

the error condition that occurs when an
operation expects a value on the stack, but
there is no valid data on the stack.

in FORTH, the name of a definition.

34 Starting FORTH

The order of numbers stays the same. Let's try a division
problem:

204 /. 5 ok

The word [/] is defined to divide the second number on the stack
by the top number:

MR & DVpER

N

What do you do if you have more than one operator in an
expession, like:

4 + (17 * 12)
you ask? Let's take it step-by-step: the parentheses tell you to
first multiply seventeen by twelve, then add four. So in FORTH
you would write:

17 12 * 4 + . 208 ok

and here's why:

36 Starting FORTH

17 20 + 132 + 3 + 9 + ,.181 ok

17 20 . e - 132
20| 37 132 169
il 37

169 % 79
g—ﬁ\

Now here's an interesting problem:

(3+9) * (4+6)

To solve it we have to add three to nine first, then add four to
six, then finally multiply the two sums. In FORTH, we can write

39+46+ * ., 120 ok

and here's what happens:

319 4 6
%
3 4
49
= 2

Notice that we very conveniently saved the sum twelve on the
stack while we went on about the business of adding four to six.

Remember that we're not concerned yet with writing definitions.
We are simply using FORTH as a calculator.

If you're like most beginners, you probably would like to try your
hand at a few practice problems until you feel more comfortable
with postfix.

38 . . Starting-.FORTH

FORTH Arithmetic =-- Definition Style

In Chap. 1 we saw that we could
define new words in terms of
numbers and other pre-defined
words. Let's explore some further
possibilities, using some of our
newly-learned math operators.

T
1]
)

00
N\
D

v

Let's say we want to convert various measurements to inches. We

know that .
1 yard = 36 inches "
and
1 foot = 12 inches

so we.can define these two words:

: YARDS>IN 36 * : ok
: FT>IN 12 * ; ok

where the names symbolize "yards-to-inches" and "feet-to-
inches." Here's what they do:

10 YARDS>IN . 360 ok
2 FT>IN . 24 ok

If we always want our result to be in inches, we can define:
: YARDS 36 * ; ok

: FEET 12 * ; ok
: INCHES ; ok

so that we can use the phrase
10 YARDS 2 FEET + 9 INCHES + . 393 ok

Notice that the word INCHES doesn't do anything except remind
the human user what the nine is there for. If we really want to
get fancy, we can add these three definitions:

: YARD YARDS ; ok

: FOOT FEET ; ok
: INCH ; ok

so that the user can enter the singular form of any of these
nouns and still get the same result:

40 Starting FORTH

17 20 132 3 9 5#SUM ._ 181 ok

If we were going to keep 5#SUM for future use, we could enter it
into our ever-growing glossary, along with a note that it
"expects five arguments"? on the stack, which it will add
together.

Here's another equation to write a definition for:t

(a +b) *c

As we saw in Quizzie 2-a, this expression can be written in
postfix as

cab+*
Thus we could write our definition
: SOLUTION + * 5 ok

as long as we make sure that we enter the arguments in the proper
order:

c a b SOLUTION

TFor Semantic Freaks

In mathematics, the word "argument" refers to an independent
variable of a function. Computer linguists have borrowed this
term to refer to numbers being operated on by operators. They
have also borrowed the word "parameters" to describe pretty much
the same thing.

‘For Beginners Who Like
Word-problems

If a jet plane flies at an ?@

average air speed of 600 mph and =

if it flies with a tail wind of 25 =

mph, how far will it travel in X
five hours?)”‘”_v’g'

If we define

: FLIGHT-DISTANCE + * ;

we could enter

5 600 25 FLIGHT-DISTANCE . 3125 ok

Try it with different values, including head winds (negative
values).

Sy e T K T L Sta'l_‘t._l_ng"]J'(jl('l'“ ‘

T i sk et i o o 1T MR bt AT P s T 70

The Division Operators

The word [ZT is FORTH's simplest division operator. Slash supplies
~only the quotient; any remainder is lost. If you type:

224 /. 5 ok
_You get only the quotient five, not the remainder two.

If you're thinking of a pocket calculator's per-cent 7
operator, then five is not the full answer. o

.Bm;_m-is.only one of severalrdivision operators supplied by
FORTH to give you the flexibility to tell the computer exactly
what you want it to do.

For example, let's say you want to solve this problem: "How many
dollar bills can I get in exchange for 22 quarters?" The real
answer, of course, is exactly 5, not 5.5. A computerized money
changer, for example, would not know how to give you 5.5 dollar
bills.

Here are two more FORTH division operators:

pronounced:
/MOD (ul u2 -—-- Divides. Returns (Slash-mod
u-rem u-quot) the remainder
and guotient.
MOD (ul u2 -~ u-rem) Returns the mod
remainder from
division.
The "u" stands for "unsigned." We'll see what this

means in the chapter on computer numbers. For now
though, it means that the numbers can't be negative.

gives both the remainder and the quotient; gives the
remainder only.T (For ZMODI, the stack notation in the table
indicates that the quotient will be on the top of the stack, and
the remainder below. Remember, the rightmost represents the
topmost.)

tFor the Curious

MOD refers to the term "modulo," which basically means
"remainder."

a4 Starting FORTLH

" Stack Maneuvers

If you worked Prob. 6 in the last set, you discovered that the
infix equation

a->o
c

cannot be solved with a definition unless there is some way to
rearrange values on the stack.

Well, there is a way: by using a "stack manipulation operator"”

called ."wAP|.

SWAP

The word [SWAP] is defined to switch the order of the top two
stack items:

. .with the other stack manipulation operators, you can test
. +3P| at your terminal in "calculator style"; that is, it doesn't
nave to be contained within a definition.

46 Starting FORTH

DUP

The next stack manipulation operator on the list, [DUP|, simply
makes a second copy (duplicate) of the top stack item.

For example, if we have "a" on the stack, we can compute:
a2

as follows:
Dup *

in which the following steps occur:

Contents
Operation of Stack

DUP a a

48 Starting FORIH

The fourth stack manipulator on the list is (pronounced
rote), which is short for "rotate." Here's what does to the
top three stack values:

For example, if we need to
evaluate the expression:

ab - bc
we should first factor out the "b"s:
b * (a - c¢)
Now if our starting-stack order is this:
(cba=--)
we can use:
ROT - *

in which the following steps will occur:

50 Starting FORYU

A _landy Iint

A Non-destructive Stack Print

Beginners who are just learning to manipulate numbers on the
stack in useful ways very often find themselves typing a series of
dots to see what's on the stack after their manipulations. The
problem with dots, though, is that they don't leave the numbers
on the stack for future manipulations.

Here is the definition of a very useful word for such beginners.
.S prints out all the values that happen to be on the stack
"non-destructively"; that is, without removing them. Type the
definition in as shown here, and don't worry about how it works.

.S CR '§ 80@2-DO I@. -2+LOOP ; ok

Let's test it, first with nothing on the stack:

.5
0 ok

As you can see, in this version of .S, we always see at least one
number as a reference for the bottom of the stack; that is, the
same number we see when we type a El and get

G 0 . STACK EMPTY

Now let's try it with numbers on the stack:

52

Playing DoublesT

Starting FORTH

The next four stack manipulation operators should look vaguely

familiar:
25WAP (dl 42 -- 42 4l Reverses the top
two pairs of num-
bers.
2DUP | (@ --4d a) Duplicates the top

=

pair of numbers.

20VER (d1 42 -- 41 @2 d1) Makes a copy of
the second pair of
! numbers and pushes

) it on top.

2DROP (@ -~) Discards the top
pair of numbers.

The prefix "2" indicates that these
stack manipulatign operators handle
numbers in pairs.+ The letter "d" in
the stack effects column stands for
"double." "Double" has a special
significance that we will discuss when
we discuss "n" and "u."

The "2"-manipulators listed above are
so straightforward, we won't even bore
you with examples.

One more thing: there are still some
stack manipulators we haven't talked
about yet, so don't go crazy by trying
too much fancy footwork on the stack.

TFORTH~79 Standard

These words are part of the Standard's

which is optional in a Standard system.

tPor 014 Hands

Guess who.

"Dnvhle Number Word Set,"
z_. is included.

They can also be used to handle double-length (32-bit) numbers.

54

“Review of Terms

Double~length
numbers

Single-length
numbers

Starting FORTH

r

integers which encompass a range of over -2
billion to +2 billion (and which we'll
introduce officially in-Chap. 7). ‘

integers which fall within the range of -32768
to +32767: the only numbers which are valid as
the arguments or results of any of the
operators ‘'we've discussed so far. (This
seemingly arbitrary range comes from the way
computers are designed, as we'll see later on.)

3 THE EDITOR (AND STAFF)

Up till now you've been compiling new definitions into the
dictionary by typing them at your terminal. This chapter
introduces an alternate method, using disk storage. .

Let's begin with some observations that specifically concern the
dictionary.

Another Look at the Dictionary

If you've been experimenting at a real live terminal, you may
have discovered some things we haven't mentioned yet. In any
case, it's time to mention them.

Discovery One: You can define the same word more than once
in different ways—only the most recent definition will be
executed.

For example, if yoﬁ have entered:
: GREET ." HELLO. I SPEAK FORTH. " ; ok
then you should get this result: b

GREET HELLO. I SPEAK FORTH. ok

and if you redefine: <
: GREET ." HI THERE! " ; ok
you get the most recent definition:

GREET HI THERE! ok

Has the first GREET been erased? - No, it's still there, but the
most recent GREET is executed because of the search order. The
text interpreter always starts at the "back of the dictionary”
where the most recent entry is. The definition he fir 71— fir-" is
the one you defined last. This is the one he shows to

‘o
L et

57

58) e i emumen. . .Starting FORTH ..

R+ M T A e ¢

We can prove that the old GREET is still there. Try this:
FORGET GREET ok
and

GREET HELLO. I SPEAX FORTH. ok

(the 0ld GREET againt!)

. FORGET
...t YOU EVER
~" 5 SAW ME!

The word looks up the given word in the dictionary and,
in effect, removes it from the dictjor=rv _along with anything you
may have defined since that word. _._ET|, like the interpreter,
searches starting from the back; he only removes the most
recently defined version of the word (along with any words that
follow). So now when you type GREET at the terminal, the
interpreter finds the original GREET.

FORGET| is a good word to know; he helps you to weed out your
dictionary so it won't overflow. (The dictionary takes up memory
space, so as with any other use of memory, you want to conserve
it.) ’

Discovery Two: When you enter definitions from the terminal
(as you have been doing), your source textT is not saved.

Only the compiled form of your definition is saved in the dic-

TPor Beginners

The "source text" is the original version of the definition, such
as:

: FOUR-MORE 4 + ;

which the compiler translates into a dictionary entry.

60

Starting FORTH

perfect place to store source text, however, is on the disk, which

__1s what FORTH does.

You can either send source text directly

" from the keyboard to the interpreter (as you have been doing), or
you can save your source text on the disk and then later read it
off the disk and send it to the text interpreter.

SOVRCE TEXT

DISK
MEMORY

DICT-
[ONARY

(COMPUTER
MEMORY)

IN

Disk memory is divided into units called "blocks."
Many professional FORTH development systems have 500
blocks available (250 from each disk drive).
block holds 1,024 characters of source text. The 1,024 NI
characters are divided for display into 16 lines of 64 .—%1;
characters each, to fit conveniently on your terminal oM

screen.

188 LIST

UoNOTUDhWN-Q

e~

-

LARGE LETTER-F)

STAR 42 EMIT

STARS 8 DO STAR LOOP ;
MARGIN CR 38 SPACES ;

BLIP MARGIN STAR ;

BAR MARGIN S STARS ;

F BAR BLIP BAR BLIP BLIP CR

Each o4

e e m e - Starting .FORTH —

}T;;:};«g\"w;‘a,ham"}.mc.,, 73 T4 PRI SRR L PR

Here are a few additional ways:to make your blocks easy to read:

1. Separate the name from the contents of a definition by
three spaces. "

2. Break definitions up into phrases, separated by double
spaces. :

3. If the definition takes more than one line, indent all
but the first line.

4, Don't put more than one definition on a single line

unless the definitions are very short and logically
related.

To summarize, the three commands we've learned so far that
concern disk blocks are: :

LIST (n —) Lists a disk block.

LOAD (n —) Loads a disk block
(compiles or executes).
(xxx) (. -—) Causes the string xxx
« e =, =.-. ~ to be ignored by the text -~
interpreter. The character)
' ' is the delimiter. ~ . l

3 THE EDITOR (AND STAFF) 63

Dear EDITORT

Now you're ready to learn how to put your text on the disk.
First find an empty block? and list it, using the form:

180 LIST
When you list an empty block, you'll see sixteen line numbers (0 -
15) running down the side of the screen, but nothing on any of
the lines. The "ok" on the last line is the signal that the text
interpreter has obeyed your command to list the block.

By listing a block, you also select that block as the one you're
going to work on.

180 LIST w

YOU ARE HERE:

CURRENT
BLOCK

180

A "pointer" in computer

The terminal

memory (RAM).

Now that you've made a block "current," you can list it by simply
typing the word

L

Unlike {LIST], does not want to be préceded by a block number;
instead, it lists the current block.

tFor Those Whose EDITOR Doesn't Follow These Rules

The FORTH-79 Standard does not specify editor commands. Your
system may use a different editor; if so, check your system
documentation.

IFor People at Terminals

If you're using someone else's system, ask them which blocks are
available. If you're using your own system, try 180. It should be
free (empty). :

64 Starting FORTH

YOU ARE HERE :

CURRENT
BLOLK

/180

-.Now that you have a current block, it's time to select a current
line by using the word [T]. Suppose we want to write something on
line 3. Type:

|
=

lets you select the current line.T It also performs a carriage
return, then types the given line (which so far contains nothing).
At the end of the line, it reminds you which line you're on:

3T

~

3 ok

(Remember, we're underlining the computer's output for the sake of
clarity.) The caret at the beginning of the line is the EDITOR's
cursor, which points to your current character position. On your
terminal the caret might look like this: 1

tFor the Curious

Actually, the cursor position, not the line number, serves as the
pointer. More on this in a future footnote.

Sk ARLE

66 E VRN
Starting FORTH

Character Editing Commands

In this section, we'll show i
wltrin A T ot ’ you how to insert and delete text

@
Befgre_e You can insert or delete bFext, you wmunt he oalibye o
position the HDITOR'S curszor bo the podunt ot Dionee ooy oy

delation. Suppose line 3 now gontain
IF MUSIC BE THE FOD OF LOVE

and you want to insert the second "O" in "FOOD," you must first
position the cursor after the "FO" like this:

IF MUSIC BE THE FO"D OF LOVE
To position the cursor, use the command , followed by a string,
as in

F FOCEID

searches forward from the current position of the cursor until
it finds the given string (in this case "FO"), then places the

cursor right after it.

F FOCEITD

>

~IF MUSIC BE THE FOD OF LOVE

N/g
IF MUSIC BE THE FOD OF LOVE
2
(Thercé{é@b
IF MUSIC BE THE FOID OF LOVE

If you don't know the starting position of the cursor, first type
"3 T" to reset the cursor to the start of the line. then types

the line, showing where the cursor is:

IF MUSIC BE THE FO"D OF LOVE 3 ok

68 Starting FORTH

IF ROCK™ BE THE FOOD OF LOVE 3 ok

O

The command [D] finds and deletes a string. It is a combination
of and ' . giving you two commands for the price of one. For
example, ir your cursor is here:

IF ROCK™ BE THE FOOD OF LOVE
then you can delete "FOOD" by simply typing:

D FOODCEID
IF ROCK BE THE

~

OF LOVE 3 ok

Once again, you can insert text at the new cursor position:

I CHEESEBURGERSCEI
IF ROCK BE THE CHEESEBURGERS™ OF LOVE 3 ok

Using [0 is a little more dangerous than using and then [E.
With the two-step method, you know exactly what you're going to
erase before you erase it.

I

The command @ replaces a string that you've already found. It
is a combination of B and {I. For instance:

F NEED ACHEILD
COMPU" NRED A" TERMINAL 2 ok
RCAN E)
COMPUThxo> UAN BE" TERMINAL 2 ok

[R] is great when you want to make an insertion in front of a
certain string. For example, if your line 0 is missing an "E":

(SAMPLE I [NITIONS) MPTY 0 ok

then it's not easy to your way through all those spaces to get
the cursor over to the space before MPTY. Better you should use
the following method:

F MPTYCET

then

R EMPTYQEITD

3 THE EDITOR (AND STAFF) 69

TILL
is the most powerful command for deletion. It deletes
everything from the current cursor position up till and including
the given string. For example, if you have the line:
BREVITY IS THE SOUL", THE ESSENCE, AND THE VERY SPARK OF WIT.
{note the cursor position)u, then the phrase:

TILL SPARKCEILI
or even just

TILL KGRI

{since there's only one "K") will produce

BREVITY IS THE SQUL "OF WIT 5 ok

Has a nicer ring, doesn't it?

The Find Buffer and the Insert Buffer

In order to use the EDITOR effectively, you really have to
understand the workings of its "find buffer" and its "insert
buffer." |

|
You may not have known it, but when you typed :

F MUSICCAITD

the first thing did was to move the string "MUSIC" into
something called the "find buffer." A buffer, in computer
parlance, is a temporary storage place for data. The find buffer
is located in computer memory (RAM).

70 Starting FORTH

YOU ARE HERE!

CURRENT CURRENT CURBOR
BLOCK POSITION

¢ ; f
00 | 1208

F MLSIC

FIND BUFFER

& MUSIC

Then proceeded to search the line for the contents of the find
buffer.

Now you will be able to understand the following variation on [F:
F (3D
that is, [F] followed immediately by a return.

This variation causes to search for the string that is already
in the find buffer, left over from the last time you used .

?NHND BUFFER
S FREAED rusic

tPor the Curious
By keeping the current cursor position, the editor doesn't need
to keep a separate pointer for the current line. It simply uses
the word |/MOD}. Since there are 64 characters per line, the
phrase

208 64 /MOD . . 3 16 ok

shows the cursor is located at the l6th character in line 3.

3 THE EDITOR (AND STAFF) 71

What good is this? It lets you find numerous occurrences of the
same string without retyping the string. For example, suppose
line 8 contains the profundity:

“THE WISDOM OF THE FUTURE IS THE HOPE OF THE AGES

with the cursor at the beginning, and you want to erase the "THE"
near the end. Start by typing

F THEY CEAITD .
THE "WISDOM OF THE FUTURE IS THE HOPE OF L AGES 8 ok

Now that "THE)6" is in the find buffer, you can simply type a
series of single [Es:

Vi REVURN
™™ WISDOM OF THE "FUTURE IS 1: _HOPE OF THE AGES 8 ok
13 sarTun
.... wISDOM OF THE FUTURE IS THE "HOPE OF THE AGES 8 ok

etc., until yo find the "THE" you want, at which time you can
erase it with

By the way, if you were to try entering one more time, you'd
get:

F THE NONE

This time cannot find a match for the find buffer, so it
returns the word "THE" to you, with the error message "NONE."

Remember we said that [D] is a combination of and ." well,
that means that [D] also uses the find buffer.

With the cursor positioned at the beginning of the line and with
"THEA" in the find buffer, you can delete all the "THE"s with
single [Ds: e

5] RETURN]
“WISDOM OF _.&1 FUTURE IS ...1 HOPE OF '.. AGES 8 ok
D)
W.. 1 OF "FUTURE IS THE HOPE OF THE AGES 8 ok
|
winnoM OF FUTURE IS "HOPE OF THE AGES 8 ok
il AT |
wiovuM OF FUTURE IS HOPE OF "AGES 8 ok

tFor the Curious

counts the number of characters in the find buffer and deletes
that many characters preceding the cursor.

e Starting FORTH

The other buffer is called the "insert buffer." It is used by [I.
Simply typing: -

L REZUBN]

will insert the contents of the insert buffer at the current
cursor position. The following experiment will demonstrate how
you might use both buffers at the same time. Suppose line 14
~contains.. .. .

“THE YON. °, '~"% DANUBE, AND THE MAX 14 ok

Now position the cursor:

F THEYCEILD
THE “YONDER, THE DANUBE, AND THE MAX 14 ok

and insert:

I BLUEAGEILD
THE BLUE "YONDER, THE DANUBE, AND THE MAX 14 ok

You have now loaded both buffers like so:

] | _FIND BUFFER
S Y

INSERT BUFFER
\ DUUE ¥

Now type: L

il RETUEN

THE BLUE YONDER, THE "DANUBE, THE MAX 14 ok
and:

ICED

THE BL'". YONDER, THE BLUE "DANBUE, THE MAX 14 ok

and again:

FEETD

™7 RLUE_YONI ., THE BLUE DANUBE, THE "MAX 14 ok
133230
+nr BLUE YONDER, THE BLUE DANUBE, THE BLUE "MAX 14 ok

This is what a computer scientist would call "spiffy."

74 Starting IFORIH

If you move your cursor to line 2 with:

2T
"BROWN 3 ok

and then type:

U CARLINECED ok
U COOPERELEILD ok

you'll get:

RDAMS
BROWN
CARLIN
COOPER
CUDRRY
DAVIS
ELMER

INSERT BUFFER

COOPER

NS W

o

L.

i O i e

Instead of replacing the current line, squeezes the contents of
the insert buffer in below the current line, pushing all the lines
below it down. If there were anything in line 15, it would roll
off and disappear.

It's easier to use than [P] when you're adding successive lines.
For example:

1 T P ADAMSEEII ok
U BROWNCEIEID ok

U CUDAHYEHEITT ok

U DAVISEITD ok
etc.

The three ways of using [P| also apply to [U.

is the opposite of [U]; it extracts the current line. Using the
above example, if you make line 3 current (with the phrase "3 T"),
then by entering:

XGETD

you extract line 3 and move the lower lines up.

76 .) ~Starting FORYH
- : B T Tl pop e AT , PR

and

When you type the word [N], vou

add one to the current block

number. ‘

Thus the combination:

YOU ARE HERE .
N L — -
‘ E
causes the next block to be / l"‘ /
listed. \‘_’;]I /

Similarly, the word [Bl subtracts
one from the current block

number. YOU ARE HERE:

Thus the combination: T~ - W i T CURRE
! — [_BV CURSOR.

e 7
B L 1160

lets you list one block back.

We can't say too much about this word until we discuss how the
FORTH "operating system" converses with the disk, but for now you
should know this: [FL__3|t assures you that any change you've
made to a block really gets written to the disk.

Say you've made some changes to a block,
then you turn off the computer. When you
come back tomorrow and list the block, it
may seem as though you never made the
changes at all. The operating system
simply didn't get around to writing the
corrected block to the disk before you
turned off the computer. The same thing
could happen if you were to load your
application and then crash the system
before it could write the changes to disk.

TFORTH-79 Standard

In the Standard, the name for this word is [SAVE-BUFF

3 THE EDITOR (AND STAFF) 77

So always enter |[FLUSH| before removing the disk, cycling power,
or trving something dangerous. Some programmers habitually
[E‘L'.._ after every change without even thinking about it.

COPY

The word [COPY| lets you copy one block to another, displacing
whatever was in the destinatiopn block. You use it in this form:

from to COPY
For example, entering:

153 200 COPY
will copy whatever is in block 153 into block 200.
Make it a habit to [FL ... after every .

is an expanded version of {F|. It lets you search for a given
string in and beyond your current block into the following
blocks, up to the block that you specify.

For example, if your current block is 180, and you type:
185 S TREASURE]

then [§] will search for "TREASURE" in blocks 180 thru 184." If it
finds "TREASURE" in, say, block 183, it will type:

THIS MOMENT ...AT WE TREASURE" TOGEI:..} 7 183 ok

giving both the block and the line number.

The block number with which you precede the word [S] represents
the next block after the last one you want searched. There is a
reason for this, but it won't make sense until a later chapter.

18 o Starting FORLH

lets you move an individual line (or group of lines) from one
block to another. To move a line to another block, first make
the line current with

182 LIST
then
7T
“I SHOT A LINE 1'.) THE AIR 7 ok

Then enter the destination block and the number of the line
under which you want the line inserted, followed by the word [M]:

190 2 M

3 T SHOT A LINE INTO THE AR,

7 1 SHOT ALINE INTO THE AR, |

N

The line of text in the current block (block 182) moves down to
the next line. So to move three consecutive lines, simply enter

190 2 M7
190 3 M7 L
190 4 M{TEIT

J THE EDITOR (AND STAFF) 79

il

You can type the caret character instead of RETURN to indicate
the end of a character string, so that you can get more than one
command on a line.

For example, you could type:

D FRUIT" I NUTSGEILD

“

all on the same line, and get the same result as if you had typed:

D FRUITGEITD
and:

I NUTSCEILD

That's it for the EDITOR commands. Because FORTH is naturally
flexible, and because users can define their own EDITOR commands
if they want to, the set of EDITOR commands in your System may
vary from the set presented here. This chapter closes with a
review of all the commands we've talked about.

One final observation about the EDITOR: it is not a program, as
it might be in another language. It is rather a collection of
words. The EDITOR, in fact, is called a "vocabulary." We'll
discuss the significance of vocabularies in a later chapter.

Getting [LOADled ‘ .

Now that you've learned to edit your definitions into a block,
it's time to load them. But consider, for a moment: each time you
load definitions, you increase the size of your dictionary...

For example, let's say you write a definition for something you
call 1FUNCTION, edit it into an available block, and load it. You
test it and realize you forgot a [£n.:P[. So you fix the source
text with the EDITOR commands, then load the block again. It
works! .

Now in the same block you edit in a definition of something you
call 2FUNCTION and load the block again. This time, you get it
right on the first try. But what does your dictionary look like?
From loading this block three times, .you've got three versions of
lFUNCTION in there. The simplest way to avoid this problem is to
use the word :

80) Starting FORTH

EMPTY

"forgets" all the
definitions that you yourself
have defined (not system
definitions). If you put * >TY]

““at"the beginning of the block,
you will start with a clean slate
each time you load.

~.For..example:

B (SOLUTIONS -- QUIZZIE 2-B) EMPTY
5 1 Z2B1 * +
,,EZ:EBE 4 x - 6 7/ + ;
G
L
[

Sometimes you don't want to get rid of your whole application,
only part of it. Suppose you were to write a word processing
application (so you can enter text, edit it in memory, then output
it to a printer). After you've finished the basic application,
you want to add variations, so it can use one format for
correspondence, another format for magazine articles, and
another format for address labels.

DICTIONARY

SYSTEM
{ DEFINITIONS

WORD
PROCESSING
APPLICATION

‘ N ‘U :

~

LETTER | [ARTICLE LABEL
FORMAT | | FORMAT FORMAT

tFor People on a Multiprogrammed System

T v 5TY] "forgets" your own personal extension of the dictionary,
1oL anyone else's.

82 Starting FORTH

A Handy Hint — When a Block Won't |[LOAD

On some FORTH systems, the following scenario may sometimes
happen to you: you load some new definitions from a block, but
when you try to execute them, FORTH doesn't seem to have ever
“"heard of them (responding with a "?").

First you want to check whether any or all of your definitions
were actually compiled into the dictionary. To do this, enter an
apostrophe followed by a space, then the name of the word, then
a [, as in

' THINGAMAJIG .G

If [] prints a number, then the definition is compiled, but if
FORTH responds

THINGAMAJIG ?

then it isn't. There are two possible reasons for part of a block
not getting compiled:

1) You made a typing error that keeps FORTH from being able to
recognize a word. For instance, you may have typed

(COMMENT LINE)

without a space after . This type of error is easy to find and
correct because FORTH prints the name of any word it doesn't
understand, like this:

180 LOADCHEIED (COMMENT ?
2) There is a non-printing character (one you can't see)t

somewhere in the block. To find a non-printing character, enter.
this:

etc.

If a line contains any non-printing characters, the "ok" at the
end of the line will not line up with the "ok"s at the ends of
the other lines, because non-printing characters don't print
spaces. For any such line, reenter the entire line (using).

tFor Experts

The "null" character (ASCII 0) is the culprit. On most FORTH
systems, null is actually a defined word, synonymous with [EXIT|, a
word we will discuss in Chap. 9.

84

Here's a list of the

A e s e Ll

Starting ORI

FORTH words we've covered in this chapter:

LIST

LOAD

(xxx)

FLUSH

CoPY

WIPE

FORGET xxx

EMPTY

Editing Commands —-

(source dest --

)

Line Operators

T

o or

P xxx

(n -)

(-

(block line --

)

Lists a disk block.

Loads a disk block (compiles
or executes).

Causes the string xxx to be
ignored by the text inter-
preter. The character) is
the delimiter.

Forces-any modifications
that have been made to a
block to be written to disk.

Copies the contents of the
source block to the desti-
nation block.

Sets the contents of the
current blocksto blanks. - LR

Forgets all definitions back.
to and including xxx.

- .- L - ~ v
Forgets the entire contents

of the user's dictionary.

Types the line. _ . . .

Copies the given string, if
any, into the insert buffer,
then puts a copy of the in-
sert buffer in the current
line.

Copies the given string, if
any, into the insert buffer,
then puts a copy of the in-
sert buffer in the line under
the current line.

Copies the current line into
the insert buffer, and moves
a copy of the insert buffer
into the line under the spe-
cified line in the desti-
nation block.

N E e

J THE EDITOR (AND STAFF)

85

Editing Commands -

Copies the current line into
the insert buffer and ex-

tracts the line from the

block.

String Operators

F or
F xxx

S or
S xxx

D or
D XXX

TILL or
TILL xxx

I xxx

R or
R xxx

T or

{

Copies the given string, if
any, into the find buffer,
then finds the string in the
current block.

Copies the given string, if
any, into the find buffer,
then searches the range of
blocks, starting from the
current block and ending
with n-1, for the string.

To be used after F. Erases
as many characters as are
currently in the find buffer,
going backwards from the
cursor.

Copies the given string, if
any, into the find buffer,
finds the next occurrence of
the string within the current
line, and deletes it.

Copies the given string, if
any, into the find buffer,
then deletes all characters
starting from the current
cursor position up till and

:-including the string.

Copies the given string, if
any, into the insert buffer,
then inserts the contents of
the insert buffer at the
point just behind the cursor.

Combines the commands E and
I to replace a found string
with a given string or the
contents of the insert

- buffer.

‘"Indicates the end of the

string to be placed in a
buffer.

8o

Review of Terms

Block

Buffer

~Disk: :

EDITOR

Find buffer

Insert Buffer

Load block

Null Definition

Overlay

Pointer

Source text

Starting FORII

JE e L T o NI - e g

in FORTH, a division of disk memory containing
up to 1024 characters of source text.

a temporary storage area for data.

a disk that has been coated with a magnetic
material so that, as in a tape recorder, a
"head" can write or read data on its surface as
the disk spins

a vocabulary which allows a user to enter and
modify text on the disk.

in FORTH's EDITOR, a memory location in which
the string that is to be searched for is stored.

used by [, [E, O, FILL, and 3.

in FORTH's EDITOR, a memory location in which
the string that is to be inserted is stored.
Used by , (B}, and [U]. In addition, moves
the line that it deletes into the insert buffer.

one block which, when loaded, itself loads the
rest of the blocks for an application.

a definition that does nothing, written in the
form:

: NAME ;

that is, a name only will be compiled into the
dictionary. A null definition serves as a
"bookmark" in the dictionary, for [FOF ~ 1] to
find.

a portion of an application which, when
loaded, replaces another portion in the
dictionary.

a location in memory where a number can be
stored (or changed) as a reference to something
else.

in FORTH, the written-out form of a definition
or definitions in English-like words and
punctuation, as opposed to the compiled form
that is entered into the dictionary.

4 DECISIONS, DECISIONS, ...

In this chapter we'll learn how to program the computer to make
"decisions." This is the moment when you turn your computer into
something more than an ordinary calculator.

The Conditional Phrase

Let's see how to write a simple decision-making statement in
FORTH. Imagine we are programming a mechanical egg-carton
packer. Some sort of mechanical device has counted the eggs on
the conveyor belt, and now we have the number of eggs on the
stack. The FORTH phrase:

12 = IF FILL-CARTON THEN
tests whether the number on the stack is equal to 12, and if it is,

the word FILL-CARTON is executed. If it's not, execution moves
right along to the words that follow [TE....

=>
The word E] takes two and compares them to see
values off the stack whether they are equal.

89

90 ettt gt s .. Starting FORTH,

T IFE= FILL CARTON [/” FILL-CARTON TR |

If the condition is true, - But if the condition is

allows the flow of false, causes the flow

execution to continue with of execution to skip to
—the next word in the definition. [THEN], from which point

execution will proceed.

Let's try it. Define this example word:

: PFULL 12 = IF ," IT'S FULL " THEN ; ok
N 11 ?FULL ok
12 ?FULL IT'S FULL ok

Notice: an [IF)...[TE""" statement must be contained within a colon
definition. You can't just enter these words in "calculator
style."

Don't be misled by the traditional English meanings-of th® FORTH™
words and . The words that follow <r> executed if
the condition is true. The words that follow [1.°.' are always
executed, as though you were telling the computer, "After you
make the choice, then continue with the rest of the definition.”
(In this example, the only word after is [}, which ends the
definition.)

Let's look at another example. This definition checks whether
the temperature of a laboratory boiler is too hot. It expects to
find the temperature on the stack:

: ?TOO-HOT 220 > IF ." DANGER —— REDUCE HEAT " THEN ; ok

If the temperature on the stack is greater than 220, the danger
message will be printed at the terminal. You can execute this
one yourself, by entering the definition, then typing in a value
Just before the word.

290 ?TOO-HOT DANGER -- REDUCE HEAT ok
130 ?TOO-HOT ok

{ DECISIONS, DECISIONS, ... 91

| NOW PRONOUNCE
You [IF] AND [THEN].

Remember that every needs a [THEN
to come home to. Both words must be in

the same definition.

Here is a partial list of comparison
operators that you can use before an
i)

..THEN| statement:

]

less- thon

Zero-less-than

ie
The words and expect the same stack order as the arithmetic
operators, that is:

Infix Postfix
2 <10 is equivalent to . 2 /lP< 1
17 > -39 is equivalent to 17 39 >

The words [0=], [0<], and expect only one value on the stack.
The value is compared with zero. ’

Another word, [NOT|, doesn't test any value at all; it simply
reverses whatever condition has just been tested. For example,
the phrase:

... = NOT IF ...

will execute the words after [IF], if the two numbers on the stack
are not equal.

92 Starting FORTH

The Alternative Phrase

FORTH allows you to provide an alternative phrase in an
statement, with the word [ELSE|.

The following example is a definition which tests whether a
—given number is a valid day of the month:

: ?DAY 32 < IF ." LOOKS GOOD " ELSE ." NO WAY " THEN ;

If the number on the stack is less than thirty-two, the message
"LOOKS GOOD" will be printed. Otherwise, "NO WAY" will be
printed.

"._.' "b
"Lo0Kks Goob”

S 0 O
“NO WAY "

Imagine that pulls a railroad-track switch, depending on the
outcome of the test. Execution then takes nne of two routes, but
either way, the tracks rejoin at the word [TE ..

By the way, in computer terminology, this whole business of
rerouting the path of execution is called "branching."T

Here's a more useful example. You know that dividing any number
by zero is impossible, so if you try it on a computer, you'll get
an incorrect answer. We might define a word which only performs
division if the denominator is not zero. The following
definition expects stack items in this order:

TFor 0ld Hands

FORTH has no GOTO statement. If you think you can't live without
GOTO, just wait. By the end of this book you'll be telling your
GOTO where to GOTO.

¢ DECISIONS, DECISIONS, ... 93

(numerator denominator -~)

: /CHECK DUP 0= IF ." INVALID " DROP
ELSE / THEN ; T

Wotice that we first have to the denominator because the
phrase

0= IF
will destroy it in the process.
Also notice that the word removes the denominator if

division won't be performed, so that whether we divide or not,
the stack effect will be the same.

Nested [IF|...".i.... Statements

statement inside another THE., statement. In fact, you van
E*_ns complicated as you like, so long as every has one
TL .

It's possible to put an... T 9| (or [IE]...[ELSE]...[TH.T.
[1E...

Consider the following definition, which determines the size of
commercial eggs (extra large, large, etc.), given their weight in
ounces per dozen:

EGGSIZE DUP 18 < IF .“ REJECT " ELSE
DUP 21 < IF ." SMALL " ELSE
DUP 24 < IF ." MEDIUM " ELSE
DUP 27 ¢ IF ." LARGE " ELSE
DUP 38 < IF ." EXTRA LARGE " ELSE
" ERROR “ 1

THEN THEN THEN THEN THEN DROP

tFor Experts

There are better ways to do this, as We'll see,

{For People at Terminals

Because this definition is fairly long, we suggest you load it
from a disk block.

94 : . " e Starting FORTH,

T ————- it s 2 e menamn s .

Once EGGSIZE has been loaded, here are some results you'd get:

23 EGGSIZE MEDIUM ok
29 EGGSIZE_EXTRA LARGE ok
40 EGGSIZE_ERROR o-

wWe'd like to point out a few things about EGGSIZE:

The entire definition is a series of "nested" [IF]...[THEN]"

statements. The word "nested" does not refer to the fact that
we're dealing with eggs, but to the fact that the statements nest

_inside one another, like a set of mixing bowls.

The five [I..!; at the bottom close off the five [IF]s in reverse
order; that I-:

IF

IF

IF
IF

IF

\

THEN THEN THEN THEN THEN

Also notice that a [DROP| is necessary at the end of the
definition to get rid of the original value.

Finally, notice that the definition is visually organized to be
read easily by human beings. Most FORTH programmers would
rather waste a little space in a block (there are plenty of

blocks) than let things get any more confused than they have to
be.

tFor Trivia Buffs
Here is the official table on which this definition is based:

Extra Large 27-30
Large 24-27
Medium 21-24
Small 18-21

B

+ BICISIONS, DECISIONS, ... 95

\ Closer Look at [IF]

#ow does the comparison operator
4, [, 3]s or whichever) let
inow whether the condition is true
or false? By simply leaving a one
9¢ a 2ero on the stack. A one
acans that the condition is true;
2 zero means that the condition is

false.

In computer jargon, when one piece of program leaves a value as
a signal for another piece of program, that value is called a

'flag- "

Tcy entering the following phrases at the terminal, letting D
ghow you what's on the stack as a flag.

(It's okay to use comparison operators directly at your terminal

like this, but remember that an [IF]...[THEN] statement must be
wholly contained within a definition because it involves

branching.)

will take a one as a flag that means true and a zer» as a flag
that means false. Now let's take a closer look at ‘. IT], which
reverses the flag on the stack.

0 NOT . 1 ok
1 NOT . O ok .

Now we'll let you in on a little secret: will take any
non-zerc value to mean true.t So what, you ask? Well, the fact

-

tror the Doubting Few

Just to prove it, try entering this test:
+

:+ TEST IF ." NON-ZERO " ELSE ." ZERO " THEN ; +
Even though there is no comparison operator in the above
definition, you'll still get 0 TEST_"7"10 ok
1 TEST :. &L _. .. _~k
-400. TEST ivuix L_') ok
IFor Memory-Misers Who Read the above Footnote

: TEST IF ." NON-" THEN ." ZERO " ;

96 Starting TFORTH

that an arithmetic zero is identical to a flag that means "false"
leads to some interesting results.

For one thing, if all you want to test is whether a number is
zero, you don't need a comparison operator at all. For example,
_a_slightly simpler version of /CHECK, which we saw earlier, could
be '

: /CHECK DUP IF / ELSE ." INVALID " DROP THEN ;

Here's another interesting result. Say

L4
you want to test whether a number is an g.ﬂ_ﬁ_‘z”" u}’j—?"-’ v
even multiple of ten, such” as 10, 20, 30, Telne wsZY
40, etc. You know that the phrase * < 2 w

10 MOD

divides by ten and returns the
remainder only. An even multiple of
ten would produce a zero remainder, so
the phrase

10 MOD 0=

gives the appropriate "true" or "false"
flag.

If you think about it, both and do exactly the same
thing: they change zeros to ones and non-zeros to zeros. They
have different names because one makes more sense dealing with
numbers, the other with flags.

Still another interesting result is that you
can use [(minus) as a comparison operator

which tests whether two values are "not ﬂé}
equal." When you subtract two equal

numbers, you get zero (false); when you Dﬂ@
subtract two unequal numbers, you get a —

non-zero value (true). @

And a final result is described in the next
section.

98 e e e . Starting: FORTH

[
b

a
%-@-

2

.3.@
i

Lo and behold, the result flag is true if either or both
conditions are true. In this example, the result is one, which
means "true." If the input number had been -30, then both
conditions would have been true and the sum would have been two.
Two is, of course, non-zero. So as far as is concerned, two is
as true as one. B . -

Our simple-minded definition, then, would be:

: VEGETABLE DUP 0< SWAP 10 MOD 0= +
IF ." ARTICHOKXE " THEN : = -

Here's an improved version of a previous example called ?DAY.

The old ?DAY only caught entries over thirty-one. But negative
numbers shouldn't be allowed either. How about this:

: ?PDAY DUP 1 < SWAP 31 > +
IF ." NO WAY " ELSE ." THANK YOU " THEN ;

The above two examples will always work because any "true" flags

will always be exactly "1." 1In some cases, however, a flag may
be any non-zero value, not just "1," in which case it's dangerous
to add them w1th . For example,

-

1 -1+.0 0ok

gives us a mathematically correct answer but not the answer we
want if 1 and -1 are flacs.

For this reason, FORTH supplies a word called [OR], which will
return the correct flag even in the case of 1 and -1. An "or
decision” is the computer term for the kind of flag combination
we've been discussing. For example, if either the front door or
the back door is open (or both), flies will come in.~

Another kind of decision is called an "and" decision. 1In an

é JZCISIONS, DECISIONS, ... 99

*ynd" decision, both conditions must be true for the result to be
vrve, For example, the front door and the back door must both be
open for a breeze to come through. If there are three or more
conditions, they must all be true.

How can we do this in FORTH? By using the handy word [AND|.
Here's what would do with the four possible combinations of
{lags we saw earlier:

and) | 0); _E]/@

@

P

In other words, only the combination "1 1 AND" produces a result
of one.

Let's say we're looking for a cardboard box that's big enough to
fit a disk drive which measures: i

height 6"
width 19"

length 22"

The height, width, and length reéuirements all must be satisfied
for the box to be big enough. If we have the dimensions of a box
on the stack, then we can define:

TFor the Curious Newcomer

The use of words like "or" and "and" to structure part of an
application is called "logic." A form of notation for logical
statements was developed in the nineteenth century by George
Boole; it is now called Boolean algebra. Thus the term "a
Boolean flag" (or even just "a Boolean") simply refers to a flag
that will be used in a logical statement.

--100..... B Starting .FORTH -~

: BOXTEST (length width height —)
6 > ROT 22 > ROT 19 > AND AND
IF ." BIG ENOUGE " THEN ;

Notice that we've put a comment inside the definition, to remind
us of stack effects. This is particularly wise when the stack,
order is potentially confusing or hard to remember.

“You can test BOXTEST with the phrase:

23 20 7 BOXTEST BIG ENOUGH ok

—As your applications become .more sophisticated, you will be able
to write statements in FORTH that look like postfix English and
are very easy to read. Just define the individual words within
the definition to check some condition somewhere, then leave a
flag on the stack.

An example is:

: SNAPSHOT ?LIGHT ?FILM AND IF PHOTOGRAPH THEN ;
which checks that there is available light and that there is film
in the camera before taking the picture. Another example, which
might be used in a computer-dating application, is:

il “ - ~ w3

:'™MATCH = HUMOROUS SENSITIVE AND :
ART.LOVING MUSIC.LOVING OR AND SMOKING NOT AND

IF ." I HAVE SOMEONE YOU SHOULD MEET " THEN ;

where words like HUMOROUS and SENSITIVE have been defined to
check a record in a disk file that contains information on other
applicants of the appropriate sex.

4 DECISIONS, DECISIONS, ... 10l

question—dupe

Two Words with Built-in [IF|s

abort-quote

The word duplicates the top stack value only if it is
non-zero. This can eliminate a few surplus words. For example,
the definition

: /CHECK DUP IF / ELSE DROP THEN ;

can be shortened to:

: /CHECK ?DUP IF / THEN ;

‘

It may happen that somewhere in
a complex application an error
might occur (such as division by
zero) way down in one of the
low-level words. When this
happens you don't just want the
computer to keep on going, and
you also don't want it to leave
anything on the stack.

If you think such an error might
occur, you can use the word
. expects a flag
on the stack: a "true" flag
tells it to "abort," which in
turn clears the stack and returns
execution to the terminal,
waiting for someone to type
something. also prints
the name of the last interpreted
word, as well as whatever
message you want. T

Let's illustrate. We hope you're not sick of /CHECK by now,
because here is yet another version:.

: JCHECK DUP O= ABORT" ZERO DENOMINATOR " / ;

fFORTH-79 Standard -
The Standard includes the word |[ABORT|, which differs from

only in that it does not issue an error message.

w02 Starting FORTH

In this version, if the denominator is zero, any numbers that
happen to be on the stack will be dropped and the terminal will
show:

8 0 /CHECK_/CHECK ZERO : ')MINATOR

Just as an experiment, try putting /CHECK inside another
definition:

: ENVELOPE /CHECK ." THE ANSWER IS " .
and. try

8 4 ENVELOPE_ ™" Z'. WEP ™7 2 ok

8 0 ENVELOPE_ ":7ELucE ¢ - _DENOMINATOR

The point is that when /CHECK aborts, the rest of ENVELOPE is
skipped. Also notice that the name ENVELOPE, not /CHECK, is
printed.

A useful word to use in conjunction with [ABi | is [2STACK|, which
checks for stack underflow and returns a true flag if it finds it,
Thus the phrase:

?STACK ABORT" STACK EMPTY "
aborts if the stack has underflowed.

FORTH uses the identical phrase, in fact. But it waits until all
of yc~ definitions have stopped executing before it performs the
?STA__ test, because checking continuously throughout execution
would needlessly slow down the computer.™ VYou're free to insert
a [?STACK| [ABORT"| phrase at any critical or not-yet-tested
portion of your application.

t For Computer Philosophers

FORTH provides certain error checking automatically. But because
the FORTH operating system is so easy to modify, users can
readily control the amount of error checking their system will
do. This flexibility lets users make their own tradeoffs between
convenience and execution speed.

4 DECISIONS, DECISIONS, ...

103

Here's a list of the FORTH words we've covered in this chapter:

IF xxx IF: (f —)
ELSE yyy
THEN zzz
= (nl n2 — £
- (nl n2 —— n-diff)
< (nl n2 ——- £f)
> (nl n2 —— f)
0= (n — 6
0< (n — £)
0> (n —— £
NOT (£ =—- £)
AND (nl n2 ~~ and)
OR (nl n2 -- or)
?DUP (n == nn) or
(0 — 0)
ABORT" xxx " (£ -~)
?STACK (== £)

If £ is true (non-zero) exe-
cutes xxx; otherwise executes
YYY;: continues with zzz
regardless. The phrase ELSE
Yyy is optional.

Returns true if nl and n2 are
equal.

Returns true (i.e., the
non-zero difference) if nl
and n2 are not equal.

Returns true if nl is less
than n2.

Returns true if nl is greater
than n2.

Returns true 1f n is zero
(i.e., reverses the truth
value).

Returns true if n is nega-~
tive.

Returns true if n is positive.

Reverses the result of the
previous test; equivalent to
0=,

Returns the logical AND.
Retiirns the logical OR.

Duplicates only if n is non-
zero.

If the flag is true, types out
the last word interpreted,
followed by the text. Also
clears the user's stacks and
returns control to the
terminal. If false, takes no
action.

Returns true if a stack
underflow condition has
occurred.

104

Review of Terms

Abort

"And" decision

Branchihg

Comparison
Operator

Conditional
operator

Flag

Logic

Nesting

"Or" decision

Starting FORTH

as a general computer term, to abruptly cease
execution if a condition occurs which the
program is not designed to handle, in order to
avoid producing nonsense or possibly doing
damace.

two conditions that are combined such that if
both of them are true, the result is true.

breaking the normally straightforward flow of
execution, depending on conditions in effect
at the time of exection. Branching allows the
computer to respond differently to different
conditions.

in general, a command that compares one value
with another (for example, determines whether
one is greater than the other) and sets a flag
accordingly, which normally will be checked by
a conditional operator. In FORTH, a
comparison operator leaves the flag on the
stack.

a word, such as EEL which routes the flow of
execution differently depending on some
condition (true or false).

as a general computer term, a valie stored in
memory which serves as a signal as to whether
some known condition is true or false. Once
the "flag is set," any number of routines in
various parts of a program may check (or reset)
the flag, as necessary.

in computer terminology, the system of
representing conditions in the form of "logical
variables," which can be either true or false,
and combining these variables using such
"logical operators" as "and," "or," and "not,'
to form statements which may be true or false.

placing a branching structure within an outer
branching structure.

two éonditions that are combined such that if
either of them is true, the result is true.

4 DECISIONS, DECISIONS, ... 105

Problems — Chapter 4

(answers in the back of the book)

1.

What will the phrase
0= NOT

leave on the stack when the argument is
1?2

07
2007

Explain what an artichoke has to do with any of this.

Define a word called CARD which, given a person's age on the

stack, prints out either of these two messages (depending on
the relevant laws in your area):

ALCOHOLIC BEVERAGES PERMITTED or
UNDER AGE

Define a word called SIGN.TEST that will test a number on
the stack and print out one of three messages:

POSITIVE or
ZERO or
NEGATIVE

In Chap. 1, we defined a word called STARS in such'a way
that it always prints at least one star, even if you say

0 STARS * ok

Using the word STARS, define a new version of STARS that
corrects this problem. *

Write the definition for a word called WITHIN which expects
three arguments:

(n low-limit hi-limit --)
and leaves a "true" flag only if "n" is within the range

low-limit < n < hi-limit

106

Starting FORTH

e e e TN L S NESTINT LW T

Here's a number-guessing game (which you may enjoy writing
more than anyone will enjoy playing). First you secretly
enter a number onto the stack (you can hide your number
after entering it by executing the word PAGE, which clears
the terminal screen). Then you ask another player to enter a

guess followed by the word GUESS, as in

100 GUESS

The computer will either respond "TOO HIGH," "TOO LOW," or

— . "CORRECT!" Write the definition of GUESS, making sure that’

the answer-number will stay on the stack through repeated
guessing until the correct answer is guessed, after which the
stack should be clear.

Using nested tests and [IF)...[ELSE]...[THEN] statements, write a
definition called SPELLER which will spell out a number that

it finds on the stack, from -4 to 4. If the number is outside
this range, it will print the message "OUT OF RANGE." For
example:

2 SPELLER TWO ok
-4 SPELLER NEGATIV® WNOUR ok
7 SPELLER OUT OF n~s'. 3 Ok

Make it as short as possible. (Hint: the FORTH word [ABS],,

gives the absolute value of a number on the stack.)

. Using your definition of WITHIN from Prob. 5, write another

number—-guessing game, called TRAP, in which you first enter a
secret value, then a second player tries to home in on it by
trapping it between two numbers, as in this dialogue:

0 1000 TRAP-]“ﬂm-_._-_- . ..-:&-
330 660 TRAP. Ak
440 550 TRAP :.__ E I ok

330 440 TRAP BETWEL ok
and so on, until the player guesses the answer:

391 391 TRAP_YOU GOT IT! ok

Hint: you may have to modify the arguments to WITHIN so
that TRAP does not say "BETWEEN" when only one argument is
equal to the hidden value.

¥

5 THE PHILOSOPHY OF FIXED POINT

s this chapter we'll introduce a new batch of arithmetic
sperators. Along the way we'll tackle the problem of handling
decimal points using only whole-number arithmetic.

4sickie Operators

wet's stait with the real easy stuff. You should have no trouble
figuring out what the words in the following table do.t ‘

pronounced:
& 1
t it (n -— n+l) Adds one.
: 1- (n —— n-1) Subtracts one. ohe - minus
2+ (n —— n+2) Adds two.

i- (n == n-2) Subtracts two. fwo- minus
P2 (n =~ n*2) Multiplies by two{ +wo-star
; (arithmetic left
: shift).

j 2/ (n —— n/2) Divides by two
£ (arithmetic right
shift).

S

The reason they have been defined as words in your FORTH system
is that they are used very frequently in most applications and
even in the FORTH system itself.

fPor Beglnners

¥e'll explain what "arithmetic left shift" is later on.

107

108 Starting FORTH

There are three reasons to use a word such as [IF], instead of one
and [*], in your new definitions. First, you save a little
dictionary space each time. Second, since such words have been
specially defined in the "machine language" of each individual
type of computer to take advantage of the computer's
architecture, they execute faster than one and . Finally, you
save a little time during compilation.

Miscellaneous Math Operators

Here's a table of four miscellaneous
math operators. Like the quickie
operators, these functions should be
obvious from their names.

Aunt Min and Uncle Max

ABS (n = |n)) Returns the absolute value.
NEGATE (n == -n) Changes the sign.

MIN (nl n2 —- n-min) Returns the minimum.

MAX (nl n2 -~ n-max) Returns the maximum.

Here are two simple word problems, using and [MIN:

Write a definition which computes the difference between two
numbers, regardless of the order in which the numbers are
entered.

: DIFFERENCE - ABS
This gives the same result whether we enter

52 37 DIFFERENCE . 15 ok or
37 52 DIFFERENCE . 15 ok

t THE PHILOSOPHY OF FIXED POINT 109

P
N

Xtite a definition which computes the commission that furniture
. s3lespeople will receive if they've been promised $50 or 1/10 of
e sale price, whichever is less, on each sale they make.

: COMMISSION 10 / 50 MIN ;
Theee different values would produce these results:

600 COMMISSION . 50 ok

450 COMMISSION . 45 ok
50 COMMISSION . 5 ok

The Return Stack

we mentioned before that there were still some stack manipulation
operators we hadn't discussed yet. Now it's time.

Up till now we've been talking about "the stack" as if there were
only one. But in fact there are two: the "parameter stack" and
the "return stack." The parameter stack is used more often by
PORTH programmers, so it's simply called "the stack" unless there
is cause for doubt.

As you've seen, the parameter stack holds parameters (or
"arguments") that are being passed from word to word. The return
stack, however, holds any number of "pointers" which the FORTH
system uses to make its merry way through the maze of words that
are executing other words. We'll elaborate later on.

You the user can employ the return stack as a kind of "extra
hand" to hold values temporarily while you perform operations on
the parameter stack.

PARA- RETURN []
METER g STACK T
STACK 2 .

‘

Starting FORTH _

e T TR TR

The return stack is a last-in first-out structure, just like the
parameter stack, so it can hold many values. But here's the
“catch: whatever you put on the return stack you must remove
again before you get to the end of the definition (the
semicolon), because at that point the FORTH system will expect to
find a pointer there. You cannot use the return stack to pass
.parameters from one word to another. L

The following table lists the words associated with the return
stack. Remember, the stack notation refers to the parameter
stack.

£l
I
I

>R . Takes a value off
T T e - : the parameter
. stack and pushes
it onto the return
stack.

R> { —n) Takes a value off
the return stack
and pushes it onto
the parameter
stack.

I (= n) Copies the top of
the return stack
without affecting

- it,

I (--n) Copies the second
item of the return
stack without af-
fecting it.

J . (— n) Copies the third
item of the return.
stack without af-

[fecting it.

5 THE PHILOSOPHY OF FIXED POINT 111

The words and transfer a value to and from the return
stack, respectively. In the cartoon above, where the stack
effect was:

231L~--321
This is the phrase that did it:

>R SWAP R>
Each [>R] and its corresponding [R>] must be used together in the

same definition or, if executed interactively, in the same line of
input (before you hit the RETURN Kkey).

The other three words—[T], [I7, and [J--only copy values from the
return stack without removing them. Thus the phrase:

>R SWAP I
would produce the same result as far as it goes, but unless you

clean up your trasht before the next semicolon (or return key),
you will crash the system.

To see how [>R], [R>], and might be used, imagine you are so
unlucky as to need to solve the equation:

24 bx +c

ax
with all four values on the stack in the following order:
(@abcx —)

(remember to factor out first).

tYou might call such an error in your program a "litter bug."

112 © Starting FORTH

Parameter Return
Operator Stack . Stack
abcx
>R abc X
SWAP ROT cba X
I cbax b
* c b ax x
+ c (ax + b) T x
R> * c x(ax+b)
+ x(ax+b)+c

Go ahead and try it. Load the following definition:

: QUADRATIC (abcx~-n)
>R SWAP ROT I * + R> * + ;

Now test it:
27 9 3 QUADRATIC 48 ok

One more note (it's a little off the subject, but this is the first
chance we've had to note it): you have now learned two different
words with the name (remember the EDITOR's "insert" word?).
The reason the same name can refer to two separate definitions,
depending on the context, is that the words are in different
vocabularies.

We briefly mentioned earlier that the EDITOR is a vocabulary.
You can get into the EDITOR vocabulary automatically by using
certain EDITOR commands, such as [T]. Another vocabulary is
called FORTH, which contains all the other predefined words
we've covered so far. You can get back into the FORTH
vocabulary by starting to compile a new definition (that is, when
the interpreter sees the word [:)).

We mention all this now simply to amaze and impress you. The
real discussion of vocabularies comes in a future chapter.

5 THE PHILOSOPHY OF FIXED POINT 113

An Introduction to Floating-Point Arithmetic

There are many controversies surrounding FORTH. Certain
principles which FORTH programmers adhere to religiously are
considered foolhardy by the proponents of more traditional
langquages. One such controversy is the question of "fixed-point
representation" versus "floating-point representation."”

If you already understand these terms, skip ahead to the next
section, where we'll express our views on the controversy. If
you're a beginner, you may appreciate the following explanation.

First, what does floating point mean? Take a pocket calculator,
for example. Here's what the display looks like after each entry:

You enter: Display reads:
1 .5 0 x 1.5
2 . 2 3 2.23
= 3.345

The decimal point "floats" across the display as necessary. This
is called a "floating point display."

"Floating point representation" is a way to store numbers in
computer memory using a form of scientific notation. 1In
scientific notation, twelve million is written: |

12 x 108

since ten to the sixth power equals one million. In many
computers twelve million could be stored as two numbers: 12 and
6, where it is understood that 6 is the power of ten to be
multiplied by 12, while 3.345 could be stored as 3345 and--3. ~

The idea of floating-point representation is that the computer
can represent an enormous range of numbers, from atomic to
astronomic, with two relatively small numbers.

What is fixed-point representation? It is simply the method of
storing numbers in memory without storing the positions of each
number's decimal point. For example, in working with dollars and
cents, all values can be stored in cents. The program, rather
than each individual number, can remember the location of the
decimal point.

For example, let's compare fixed=-point and floating-point
representations of dollars-and-cents values.

R AR LIPCY RTON S R RV YO LV S IO T N S |

114" o ‘ ’ Starting FORTH

T T TSN TR ORI S A E Y TS 1R
Real-world Fixed-point Floating-point
Value Representation Representation
1.23 123 123(-2)
10.98 1098 | Lo 1098(-2)
100.00 10000 1(2)
58.60 5860 , 1586 (-1) .

As you can see, with fixed-point all the values must conform to

the same "scale." The decimal points must be properly "aligned"
—(in—this case two places in from the right) even though they are- .’

not actually represented. With fixed-point, the computer treats

all the numbers as through they were integers. If the program

needs to print out an answer, however, it simply inserts the

decimal point two places in from the right before it sends the
““number to the terminal or to the printer.

Why FORTH Programmers Advocate Fixed-Point . . R

Many respectable languages and many distinguished programmers
use floating-point arithmetic as a matter of course. Their
opinion might be expressed.like this: ""Why should I have to
worry about moving decimal points around? That's what computers
are for."

That's a valid question--in fact it expresses the most significant
advantage to floating-point implementation. For translating a
mathematical equation into program code, having a floating-point
language makes the programmer's life easier.

The typical FORTH programmer, however, perceives the role of a
computer differently. A FORTH programmer is most interested in
maximizing the efficiency of the machine. That means he or she
wants to make the program run as fast as possible and require as
little computer memory as possible.

To a FORTH programmer, if a problem is worth doing on a computer
at all, it is worth doing on a computer well. The philosophy is,
"If you just want a quick answer to a few calculations, you might
as well use a hand-held calculator." You won't care 1if the
calculator takes half a second to display the result. But if you
have invested in a computer, you probably have to repeat the
same set of calculations over and over and over again.
Fixed-point arithmetic will give you the speed you need.

Is the extra speed that noticeable? Yes, it is. A floating-point
multiplication or division can take three times as long as its
equivalent fixed-point calculation. The difference is really
noticeable in programs which have to do a lot of calculations

5 THE PHILOSOPHY OF FIXED POINT 115

before sending results to a terminal or taking some action.T
Most mini- and microcomputers don't "think" in floating-point;
you pay a heavy penalty for making them act as though they do.

Here are some of the reasons you might prefer to have
floating-point capability.

1. You want to use your computer like a calculator on
floating-point data.

2, You value the initial programming time more highly than
the execution time spent every time the calculation is
performed.

3. You want a number to be able to describe a very large
dynamic range (greater than -2 billion to +2 billion).

4, Your system includes a discrete hardware floating-point
multiply (a separate "chip" whose only job is to perform
floating-point multiplication at super high speeds).

tFor Experts

Many professional FORTH programmers who have been writing .
complex applications for years have never had to use
floating-point. And their applications often involve solutions
of differential equations, Fast Fourier Transforms, non-linear
least squares fitting, linear regression, etc. Problems that
traditionally required a main-frame have been done on slower
minicomputers and microprocessors, in some cases with an overall
increase in computation rate. |

Most problems with physical inputs and outputs, including weather
modeling, image reconstruction, automated electrical
measurements, and the like all involve input and output variables
that inherently have a dynamic range of no more than a few
thousand to one, and thus fit comfortably into a 16-bit integer
word. Intermediate calculation steps (such as summation) can be
handled by the judicious use of scaling and double-length
integers where required. For example, one common calculation
step might involve multiplying each data point by a parameter (or
by itself) and summing the result. In fixed point, this would be a
16 x 16-bit multiply and 32-bit summation. In floating-point,
numbers are likely stored as 24-bit mantissa and 8-bit exponents.
The 24-bit multiply will take about 1.5 times longer and the 32-bit
addition 3-10 times longer than in fixed point. There is also the
overhead of floating all the input data and fixing all the output
data, approximately equal to one floating-point addition each.
When these operations are performed thousands or millions of
times, the overall saving by remaining in integer form is
enormous.

1lo Starting FORTH

All of these are valid reasons. Even Charles Moore, perhaps the
staunchest advocate of simplicity in the programming community,
has occasionally employed floating-point routines when the
hardware supported it. Other FORTH programmers have written
floating-point routines for their mini- and microcomputers. But
the mainstream FORTH philosophy remains: "In most cases, you
don't need to pay for floating-point."

FORTH backs its philosophy by supplying the programmer with a
unique set of high-level commands called "scaling operators.”
We'll introduce the first of these commands in the next section.
(The final example in Chap. 12 illustrates the use of scaling
techniques.)

Star-slash the Scalar

Here's a math operator that is as useful as it is unusual: [¥/].

*/ (nl n2 n3 -- Multiplies, then di-
n-result) vides (nl*n2/n3). Uses
a 32-bit intermediate

result.

As its name implies, performs multi-
plication, then division. For example,
let's say that the stack contains these
three numbers:

(225 32 100 ——)

will first multiply 225 by 32, then
divide the result by 100.

This operator is particularly useful as an
integer-arithmetic solution to problems
such as percentage calculations.

¥/

For example, you could define the word % like this:
: % 100 */ ;
so that by entering the number 225 and then the phrase:

32 %

4 THE PHEILOSOPHY OF FIXED POINT 117

you'd end up with 32% of 225 (that is, 72) on the stack.T

37 is not just a and a [/] thrown together, though. It uses a
*double~length intermediate result." What does that mean, you
ask?

Say you want to compute 34% of 2000. Remember that
single-precision operators, like and [/], only work with
arguments and results within the range of -32768 to +32767. If you
vere to enter the phrase:

2000 34 * 100 /

you'd get an incorrect result, because the "intermediate result"
{in this case, the result of multiplication) exceeds 32767, as
ghown in the left column in this pictorial simulation.

2000 34 * 100 / 2000 34 100 */

sin3|e~len3th douleeLlength
ﬁ

2060 2000
34 38
580003550, (%) 68000
[200] 100

garbage. /) 680

But uses a double-length intermediate result, so that its
range will be large enough to hold the result of any two
single-length numbers multiplied together. The phrase:

2000 34 100 */

returns the correct answer because the end result falls within the
range of single-length numbers.

tPor the curious .

- 2
The method of first multiplying two integers, /’512
then dividing by 100 is identical to the i
approach most people take in solving such '

45
problems on paper. W

118 oo+ s e o - Starting FORTH .

st A — e

The previous example brings up another question: how to round
off.

Let's assume that this is the problem:

<= If 32% -of the-students eating at the school cafeteria usual’ly
buy bananas, how many bananas should be on hand for a crowd
of 2257 Naturally, we are only interested in whole bananas,
so we'd like to round off any decimal remainder.

As our definition now stands, any value to the right of the
decimal is simply dropped. In other words, the result is
"truncated."

32% of: Result:
225 = 72,00 72 -~ exactly correct
226 = 72.32 72 == correct, rounded down
(truncated)
227 = 72.64 . 72 -— truncated, not rounded.

There is a way, however, with any decimal value of .5 or higher,
to round upwards to the next whole banana. We could define the
word R%, for "rounded percent," like this:

: R 10 */ 5+ 10/ ;
so that the phrase:

227 32 R% .

will give you 73, which is correctly rounded up.

Notice that we first divide by 10 rather than 100. This gives us- "
an extra decimal place to work with, to which we can add five:

Stack
Operation Contents

227 32 10 |
*/ 726
5 + 731
10 / 73

5 THE PHILOSOPHY OF FIXED POINT 1195

The final division by ten sets the value to its rightful decimal
position. Try it and see.T

A disadvantage to this method of rounding is that you lose one
decimal place of range in the final result; that is, it can only
go as high as 3,276 rather than 32,767. But if that's a problem,
you can always use double-length numbers, which we'll introduce
later, and still be able to round.

Some Perspective on Scaling

Let's back up for a minute. Take the simple problem of computing
two-thirds of 171. Basically, there are two ways to go about it.

1. We could compute the value of the fraction 2/3 by
dividing 2 by 3 to obtain the repeating decimal .666666,
etc. Then we could multiply this value by 171. The
result would be 113.9959999, etc., which is not quite right
but which could be rounded up to 114.

2. We could multiply 171 by 2 to get 342. Then we could
divide this by 3 to get 114.

Notice that the second way is simpler and more accurate.
Most computer languages support the first way. "You can't have a
fraction like two-thirds hanging around inside a computer," it is

believed, "you must express it as .666666, etc."

FORTH supports the second way. lets you have a fraction like
two-thirds, as in:

1712 3 */

Now that we have a little perspectivé, let's take a slightly more
complicated example:

tFor Experts
An even faster definition:

:R& 50 / 1+ 2/ ;

120)) Starting FCF™

We want to distribute $150 in proportion to two values:T

7,105 ?
T S S
12, 150

Again, we could solve the problem this way:

(7,105 / 12,250) x 150
and
(5,145 / 12,250) x 150

but for greater accuracy; we should say:

(7,105 x 150) / 12,250
and
(5,145 x 150) / 12,250

which in FORTH is written:

7105 150 12250 */ . 87 ok
then
5145 150 12250 */ . 63 ok

It can be said that
the values 87 and 63 . o~
are "scaled" to 7105

and 5145, Calculating Lo T
percentages, as we
did earlier, is also a
form of scaling. For
this reason, is
called a "scaling
operator.”

TFor Beginners Who Like Word-problems

Here's a word-problem for the above example:

The boss says he'll divide a $150 bonus between the two_.
top-selling marketing representatives according to their monthly
commissions. When the receipts are counted, the top two
commissions are $7,105 and $5,145. How much of the bonus does
each marketing rep get?

5 THE PHILOSOPHY OF FIXED POINT 121

Another scaling operator in FORTH is [*/MOD]:

* /MOD (ul u2 u3 — Multiplies, then !
u-rem u-result) divides (ul*u2/u3).

Returns the re-

mainder and the

quotient. Uses a

double-length in-

termediate result.

mod

We'll let you dream up a good example for yourself.

Using Rational Approximatio nsT

So far we've only used scaling operations to work on rational
numbers. They can also be used on rational approximations of

irrational constants, such as pil.or the square rcot of two. _For

example, the real value of pi is
3.14159265358, etc.

but to stay within the bounds of single-length arithmetic, we
could write the phrase:

31416 10000 */
and get a pretty good approximation.

Now we can write a definition to compute the area of a circle,
given its radius. We'll translate the formula:

Tr2

into FORTH. The value of the radius will be on the stack, so we
[DUP it and multiply it by itself, then star-slash the result:

"TFor Math-block Victims:

You can skip this section if it starts making your brain itch. But
if you're feeling particularly smart today, we want you to know
-that ...

A rational number is a whole number or a fraction in which the
numerator and denominator are both whole numbers. Seventeen is
a rational number, as is 2/3. Even 1.02 is rational, because it's
the same as 102/100. -2, on the other hand, is irrational.

star-slgsh-

122 - Starting FORTH

: PI DUP * 31416 10000 */ ;
M ‘ ™
Try it with a circle whose radius is ten inches: .

10 PI . 314 ok’
But for even more accuracy, we might wonder if there is a pair of’
integers besides 31416 and 10000 that is a closer approximation to
pi. Surprisingly, there is... The fraction:

355 113 %/ . _—)

is_accurate to more than six places. beyond the decimal, as
opposed to léss than four places with 31416.

Our new and improved definition, then, is:
: PI DUP * 355 113 */ ;

It turns out that you can approximate nearly any constant by

many different pairs of 18ntegers, all numbers less than 32768, with
an error of less than 107°.T : . -

tFor Really Dedicated Mathephiles

Here's a handy table of rational approximations to various
constants:

Number Approximation Error
T o= 3.141 ... 355/ 113 8.5 x 10°
VT = 1.414 ... 19601/13860 1.5 x 109
VAT 18817/10864 1.1 x 107
e = 2,715 ... 28667/10546 5.5 x 10°
VIO = 3.162 ... 22936/ 7253 5.7 x 10°
Y2 = 1.059 ... 26797/25293 10 x 14°
logy, 2/1.6384 = 0.183 ... 2040/11103 1.1 x 10°
In2/16.384 = 0.042 ... 485/11464 1.0 x 107
.001° /22-bit rev = 0.858 ... 18118721109 1.4 x 10°
arc-sec/22-bit rev = 0.309 ... 9118/29509 1.0 x 10°
c = 2.9976248 24559/ 8192 -6 x 10°

5 THE PHILOSOPHY OF FIXED POINT

Here's a list of the

123

FORTH words we've covered in this chapter:

1+ -
1-
2+
27—

2*

)

ABS
NEGATE
MIN
MAX

>R

R>

Il

*/

*/MOD

(n — n+l)

(n -—— n-1)

(n == n+2)

(n == n-2)

(n -~ n*2)

(n == n/2)

(n == |n|)

(n == -n)

(nl n2 -~ n-min)

(nl n2 —— n-max)

(n —)

(—n

(== n)

(—— n)

(== n)

(nl n2 n3 -
n-result)

(ul u2 u3 -

u-rem u-result)

Adds one.
Subtracts one.
Adds two.
Subtracts two.

Multiplies by two (arithmetic
left shift)

Divides by two (arithmetic
right shift)

Returns the absolute value.
Changes the sign.

Returns the minimum.

Returns the maximum.

Takes a value off the
parameter stack and pushes it
onto the return stack.

Takes a value off the return
stack and pushes it onto the

parameter stack.

Copies the top of the return
stack without affecting it.

Copies the second item of
the return stack without
affecting it.

Copies the third item of the
return stack without af-
fecting it.

Multiplies, then divides (ul*
n2/n3). Uses a 32-bit interme-
diate result.

Multiplies, then divides (ul*
u2/u3). Returns the remain-
der and the quotient. Uses a
double-length intermediate
result.

124

Review of Terms

Double-length
intermediate
result

Fixed-point
arithmetic

Floating-point
arithmetic

Parameter Stack

Return stack

Scaling

Starting FORTH

a double-~-length value which is created
temporarily by a two-part operator, such as ,
so that the "intermediate result" (the result of
the first operation) is allowed to exceed the
range of a single-length number, even though
the initial arguments and the final result are
not.

arithmetic which deals with numbers which do
not themselves indicate the location of their
decimal points. Instead, for any group of
numbers, the program assumes the location of
the decimal point or keeps the decimal
location for all such numbers as a separate
number.

arithmetic which deals with numbers which
themselves indicate the location of their
decimal points. The program must be able to
interpret the true value of each individual
number before any arithmetic can be performed.

in FORTH, the region of memory which serves as
common ground between various operations to
pass arguments (numbers, flags, or whatever)
from one operation to another.

in FORTH, a region of memory distinct from the
parameter stack which the FORTH system uses to
hold "return addresses" (to be discussed in
Chap. 9), among other things. The user may
keep values on the return stack temporarily,
under certain conditions.

the process of multiplying (or dividing) a
number by a ratio. Also refers to the process
of multiplying (or dividing) a number by a
power of ten so that all values in a set of
data may be represented as integers with the
decimal point assumed to be in the same place
for all values.

5 THE PHILOSOPHY OF FIXED POINT 125

Problems -- Chapter 5

1.

Translate the following algebraic expression into a FORTH
definition:

ab
c

given (a b c —)
Given these four numbers on the stack:
(6 70 123 45 —)

write an expression that prints the largest value.

Practice in Scaling

3

4,

In "calculator style,"” convert the following temperatures,
using these formulas:

oc = °F - 32
1.8

OF =(°Cc x 1.8) + 32
Ok =°C + 273

(For now, express all arguments and results in whole
degrees.)

a) 0° F in Centigrade “

b) 212° F in Centigrade -
c) -32° F in Centigrade

d) 16° C in Fahrenheit

e) 233° K in Centigrade

Now define words to perform the conversions in Prob. 3.
Use the following names:

F>C F>XK C>F C>K K>F K>C

Test them with the above values.

6 THROW IT FOR A LOOP

In Chap. 4 we learned to program the computer to make
"decisions"” by branching to different parts of a definition
depending on the outcome of certain tests. Conditional
branching is one of the things that make computers as useful as
they are.

In this chapter, we'll see how to write definitions in which
execution can conditionally branch back to an earlier part of
the same definition, so that some segment will repeat again and
again. This type of control structure is called a "loop." The
ability to perform loops is probably the most significant thing
that makes computers as powerful as they are. If we can program
the computer to make out one payroll check, we can program it to
make out a thousand of them.

For now we'll write loops that do simple things like printing

numbers at your terminal. In later chapters, we'll learn to do
much more with them.

Definite Loops — [DOl...[LOOP

One type of loop structure is called a "definite loop." You, the
programmer, specify the number of times the loop will loop. In
FORTH, you do this by specifying a beginning number and an
ending number (in reverse order) before the word [DO. Then you
the words which you want to have repeated between the words

and |LOOP|. For example
: TEST 10 0 DO CR ." HELLO " LOOP ; ~

will print a carriage return and "HELLO" ten times, because zero
from ten is ten.

127

128 e eempaie—ta e oo ,.. Starting FORTH., .

TEST

HELLO

HELLO
~——-— - HELLO
HELLO
HELLO
HELLO
HELLO
"HELLO
HELLO
~7~ HELLO ok

Like an [IF|...[THEN| statement, which also involves branching, a
LOOP| statement must be contained within a (single)
-definition.

The ten is called the "limit" and the zero is called the "index."

FORMULA:

limit index DO ... LOOPT

Here's what happens inside a [DOJ...[LOOE):

-~ — - oo JE

' z
First [DO]* puts the index and the limit on the return stack.

T For the Timid Beginner
Go ahead! Nobody's looking.
: TEST 1000 0 DO ." I'M GOING LOOPY! " LOOP ;

Go on, execute it! How often have you been able to tell anyone
to do something a thousand times?

Inalf-brother of the DODO bird.

s VHROW IT FOR A LOOP 129

il Y O e O B A AR

- [wer]

Then execution proceeds to the up till the word .T

vords inside the loop,
IR

0 0 0 B S]z

A

O

If the i1..+ = is less than the and adds a one to the
limit, I[* "7 reroutes execution index.
back to DO,

LATER®

’ -\ -
) v
10
4 28\ A S
o B e U0 A €530) T g e

Eventually the index reaches ten, and [LOOP| lets execution move
on to the next word in the definition.

f(who just emerged from its loophole) .

130 e Starting. FORTH -

Remember that the FORTH word copies the top of the return
stack onto the parameter stack. You can use EJ to get hold of the
current value of the index each time around. Consider the
definition

- : DECADE 10 0 pO I . LOOP ;
_which executes like this: . .

DECADE 0 1 2 3456 7 8 9 ok

Of course, you could pick any range of numbers (within the range
of -32768 to +32767): .

: SAMPLE ~243 -250 DO I . LOOP ;

SAMPLE -250 =249 -248 -247 -246 =245 -244 ok

Notice that even negative numbers increase by one each time.
The limit is always higher than the index.

You can leave a number on the stack to serve as an argument to
something inside a loop. For instance,

: MULTIPLICATIONS CR 11 1 DODUP I * , LOOP DROP ;
will produce the following results:

7 MULTIPLICATIONS
7 14 21 28 35 42 49 56 63 70 ok

Here we're simply multiplying the current value of the index by
seven each time around. Notice that we have to the seven
inside the loop so that a copy will be available each time and
that we have to [P} it after we come out of the loop.

A compound interest problem gives us the opportunity to
demonstrate some trickier stack manipulations inside a loop.

Given a starting balance, say $1000, and an interest rate, say 6%,
let's write a definition to compute and print a table like this:

1000 6 COMPOUND
YEAR 1 BALANCE 1060
YEAR 2 BALANCE 1124
YEAR 3 BALANCE 119..
etc.

for twenty years.

First we'll load R%, our previously-defined word from Chap. 5,
then we'll define

% THROW IT FOR A LOOP 131

: COMPOUND (amt int —)
SWAP 21 1 DO ." YEAR " I . 3 SPACES
2DUP R% + DUP ." BALANCE " . CR LOOP 2DROP ;

I3 i BALANCE

RATE

INTEREST
R
EARNED

RUNNING R renvr —
i P BAcANCE BALANCE
NreResT RATE

RATE RATE RATE

Each time through the loop, we do a [2DUP| so that we always
maintain a running balance and an unchanged interest rate for
the next go-round. When we're finally done, we [2DROP| them.

Getting [TF] fy

The index can also serve as a condition for an statement. In
this way you can make something special happen on certain passes
through the loop but not on others. Here's a simple example:!'
: RECTANGLE 256 0 DO I 16 MOD 0= IF
CR THEN ." *" LOOP ;

RECTANGLE will print 256 stars, and“at every sixteenth star it
will also perform a carriage return at your terminal. The result
should look like this:

K 3K 3K 3 3K 3 K K 3K 3K HOK K
HOK oK K HOK 3 K KK HOK HOK
0K K KK 3K K 3K K KK K KK 3K K
0K K K KK K 3K KK e K oK K 3K K
K 3K K 3K 3K K KKK 3K K HOK K
KKK oK K 3K K KK K oK K 3K 3K
4K oK KK K KK K KK 3K K 3 K K
K K K 3K K K 3K K KK K 3K K 3K
AN K K K K 3K KK 3K K KK K
K oK K K KK K HOHOK K
RO K oK K K K KK K K K K
O oK K 3K K oK HOK XK
0K K K K 3K 3K 3K oK 3K 3K 3K K
ET T 3 33233332344
KKK HC KK OR HOHCOK KK K OK KO
K oK K A K R KK K K KO

A RO Dot L B CWIWE L0 taleak? O Lk e MM L ehdani Rk Ak s e e

kB2 it i oo e - .« ..-~:~.-~, ., Starting FORTH

And here's an example from the world of nursery rhymes. We'll
let you figure this one out.

+ POEM CR111DOZXI. ." LITTLE " .

I 3 MOD 0= IF ." INDIANS " CR THEN LOOP
." INDIAN BOYS. " ;

Nested Loops

In the last section we defined a word called MULTIPLICATIONS,

which contained a [DQ...[LOOP|. If we wanted to, we could put
~MULTIPLICATIONS inside another [DQ...[LOOP], like this:

. TABLE CR 11 1 DO I MULTIPLICATIONS LOOP ;

Now we'll get a multiplication table that looks like this:

12345678910 . .-
2'4 681012 14 16 18 20
369121518 21 24 27 30

etc.
10 20 30 40 50 60 70 80 90 100

because the in the outer loop supplies the argument for
MULTIPLICATIONS.

- P - - -~

“ .

You can ‘also nest loops inside one another all in the same
definition:

: TABLE CR 1l 1 DO .
111 p0OIJ* 5UR LOOP CR LOOP ; ~) '

Notice this phrase in the inner loop:
T * T |index

In Chap. 5 we mentioned that the word
copies the third item of the return stack
onto the parameter stack. It so happens
that in this case the third item on the
return stack is the index of the outer loop.

=

&
5
2

Thus the phrase "I J *" multiplies the two lf;_,
indexes to create the values in the table.

Now what about this phrase? gé
e ——
5 U.R . .

s THROW IT FOR A LOOP 133

This is nothing more than a fancy E] that is used to print numbers
in table form so that they line up vertically. The five
tepresents the number of spaces we've decided each column in the
table should be. The output of the new table will look like this:

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 g 12 15 18 21 24 27 30 etc.

Each number takes five spaces, no matter how many digits it
contains. ([U.R stands for "unsigned number-print, right
justified." The term "unsigned," you may recall, means you
cannot use it for negative numbers.)

+L00P,

If you want the index to go up by some number other than one

cach time around, you can use the word [+LOOP] instead of [LOOP]. T
expects on the stack the number by which you want the
index to change. For example, in the definition

: PENTAJUMPS 50 0 DOI. 5 +LOOP ;
the index will go up by five each time, with this result:

PENTAJUMPS_0 5 10 15 20 25 30 35 40 45 ok

while in
: FALLING -10 0 DO I. -1 +LOQP ;
the index will go down by one each time, with this result:

FALLING 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 ok

The argument for [+LOOP|, which is called the "increment,” can
come from anywhere, but it must be put on the stack each time

around. Consider this experimental example:

: INC-COUNT DO I . DUP +LOOP DROP ;

tFor the Curious

A third loop ending word is introduced in Chap. 7.

134 Starting FORTH_ .

There is no increment inside the definition; instead, it will have
to be on the stack when INC-COUNT is executed, along with the:
limit and index. Watch this:

Step up by one:

o105 0 -INC~COUNT 0 1 2 3 4 ok "
Step up by two:
25 0 INC-COUNT 0 2 4 ok
Step down by three:

-3 -10 10 INC-COUNT 10 7 4 1 -2 -5 -8 ok

Our next example demonstrates an increment that changes each
time through the loop.

: DOUBLING 32767 1 DO I . I +LOOP ;

Here the index itself is used as the increment (I +LOOP), so that
starting with one, the index doubles each time, like this:

DOUBLING
1 248 16 32 64 128 256 512 1024 2048 4096 8192 16384 ok

(We chose 32767 as our limit because it is our highest allowable
number in single-length.)

Notice that in this example we don't ever want the argument for
+LL_ __, to be zero, because if it were we'd never come out of the
loop. We would have created what is known as an "infinite loop."

» THROW IT FOR A LOOP 135

»0ing It — FORTH style

There are a few things to remember before you go off and write
some loops of your own.

Pirst, keep this simple guide in mind:

Reasons for Termination

Execution makes its exit from a loop when ...

going up ...

... the index has reached or passed the limit.

going down ... ,%_ A},ﬂf/

... the index has passed the limit--not when it has
merely reached it.

But a loop always executes at least once:
: TEST 100 10 DO I . -1 +LOOP .;
TEST 10 ok -

Second, remember that the words and [LOOP| are branching
commands and that therefore they can only be executed inside a

136 o Starting FORTH

definition. This means that you cannot design/test your loop
definitions in "calculator style" unless you simulate the loop
yourself: ’

Let's see how a fledgling FORTH programmer might go about
design/testing the definition of COMPOUND (from the first section
of this chapter). Before adding the [Zj messages, the programmer
might begin by jotting down this version on a piece of paper:

: COMPOUND (amt int —)
SWAP 21 1 DO I . 2DUP R% + DUP . CR LOOP 2DROP ;

The programmer might test this version at the terminal, using E]
or .S to check the result of each step. The "conversation” might
look like this:

1000 6 SWAP .SEEIED

6 1000 ok

T e—— .
First 2DUP .SEITT™ .| 1In simulation, the programmer
time 6 1000 6 1... ok omits the "limit index DO"
thru phrase, as well as any

reference to I.
R% .S - -
6 1000 60 ok

In simulation, the programmer

+ .SEEIM -
6 1060 o}\'/ can omit the "DUP ." phrase.

second 2DUP R% + .ST7mm
time 6 1124 ok «

2DROP .S Everything seems to be work-
EMPTY ok ing, so the programmer
- pretends the last loop has
finished and checks that the
stack is clear.

130 ' ‘ Starting FORD

Indefinite Loops

While loops are called definite loops, FORTH also supports
"indefinite" loops. This type of loop will repeat indefinitely
or until some event occurs. A standard form of indefinite loop is

BEGIN ... UNTIL

The [BEGIN|...[UNTIL] loop repeats until a condition is "true."

The useage is

——BEGIN xxx f UNTIL
where "xxx" stands for the words that you want to be repeated,
and "f" stands for a flag. As long as the flag is zero (false),

—the loop will continue to loop, but when the flag becomes |
non~-zero (true), the loop will end. '

LAWY

lw t
S W

An example of a definition that uses a [BEGIN|...[UNTIL| statement
is one we mentioned earlier, in our washing machine example:

: TILL-FULL BEGIN ?FULL UNTIL ;
which we used in the higher-level definition
: FILL FAUCETS OPEN TILL-FULL FAUCETS CLOSE ;

?FULL will be defined to electronically check a switch in the
washtub that indicates when the water reaches the correct level.
It will return zero if the switch is not activated and a one if it
is. TILL-FULL does nothing but repeatedly make this test over
and over (thousands of times per second) until the switch is
finally activated, at which time execution will come out of the
loop. Then the ;] in TILL-FULL will return the flow of execution
to the remaining words in FILL, and the water faucets will be
turned off.

Sometimes a programmer will deliberately want to create an
infinite loop. In FORTH, the best way is with the form

+ viadn IT FOR A LOOP 139

BEGIN xxx 0 UNTIL

he zero supplies a "false" flag to the word [UNTIL], so the loop
#:il repeat eternally.

2ejinners usually want to avoid infinite loops, because executing
gne means that they lose control of the computer (in the sense
sxat only the words inside the loop are being executed). But
infinite loops do have their uses. For instance, the text
interpreter is part of an-infinite loop called [QUIT], which waits
{or input, interprets it, executes it, prints "ok," then waits for
taput once again. In most microprocessor-controlled machines,
the highest-level definition contains an infinite loop that

Jefines the machine's behavior.
raother form of indefinite loop is used in this format:
BEGIN xxx f£ WHILE yyy REPEAT
Here the test occurs halfway through the loop rather than at the
end. As long as the test is true, the flow of execution continues

vith the rest of the loop, then returns to the beginning again.
If the test is false, the loop ends.

Notice that the effect of the 'test is opposite that in the
[BEGIN]...[UNTIL] construction. Here the loop repeats while
something is true (rather than until it's true).

The indefinite loop structures lend themselves best to cases in
which you're waiting for some external event to happen, such as
the closing of a switch or thermostat, or the setting of a flag by
another part of an application that is running simultaneously.
So for now, instead of giving examples, we just want you to
remember that the indefinite loop structures exist.

140 Starting ForLN

The Indefinitely Definite Loop

There is a way to write a definite loop so that it stops short of
the prescribed limit if a truth condition changes state, by using
the word [LEAVE|. [LEAVE causes the loop to end on the very next

or [+LOO¥F.

Sometime during the course of the loop (while is
asleep at the switch), the word [LEAVE| sets the limit to
[LOOF]

equal the index. Now the next time [LOOP| is executed, the
loop will terminate.

[~ — — - =

Watch how we rewrite our earlier definition of COMPOUND,
Instead of just letting the loop run twenty times, let's get it to
quit after twenty times or as soon as our money has doubled,
whichever occurs first. .

We'll simply add this phrase:

2000 > IF LEAVE THEN

like this:
DOUBLED 6 16P@ 21 1 DO CR
" YEARAR ™ I 2R
2DUP RX% + nyr " BALANCE "
DUP 2888 > IF CR CR ." MORE THAN DOUBLED IN "
I . ." YEARS *» LEAVE THEN

LOOP 2DROP ;

The result will look like this:

« iR0W IT FOR A LOOP 141

DOUBLED

YEAR 1 BALANCE 1868
YEAR 2 BALANCE 1124
YEARR 3 BALANCE 1191
YEAR 4 BALANCE 1262
YEAR S BALANCE 1338
YEAR 6 BALANCE 1418
YEAR 7 BALANCE 1583
YEAR 8 BARLANCE 1593
YEARR 9 BRLANCE 1689

YEAR 1@ BALANCE 1790
YEAR 11 BARLANCE 1897
YEARR 12 BALANCE 2811

MORE THAN DOUBLED IN 12 YEARS ok

One of the problems at the end of this chapter asks you to rework
DOUBLED so that it expects the parameters of interest and
starting balance, and computes by itself the doubled balance that
will try to reach.

142 o Starting FORTH

Two Handy Hints: [PA ™ and [QUIT]

e . : c R

To give a neater appearance to your loop outputs (such as tables
and geometric shapes), you might want to clear the screen first"

by using the word [PAGE|. You can execute [PAGE| interactively
—like this: : :

PAGE RECTANGLE

which will clear the screen before printing the rectangle that we
defined earlier in this chapter. Or you could put [PA '~ at the
beginning of the definition, like this:

¢+ RECTANGLE PAGE 256 0 DO
I 16 MOD 0= IF CR THEN ." *" LOOP ;
If you don't want the "ok" to appear upon completion of
execution, use the word [QUIT|. Again, you can use [QUIT

interactively:
RECTANGLE QUIT

or you can make the last word in the definition (just before
the semicolon).

6 THROW IT FOR A LOOP

143

dere's a list of the FORTH words we've covered in the chapter:

poma—

i

¢

JTE——

po ... LOOP

po ... +LOOP

LEAVE
BEGIN ...

UNTIL

BEGIN xxx
WHILE yyy
REPEAT

U.R

PAGE

QUIT

DO: (limit
index -)
LOOP: (—)

DO: (limit
index —)
+LOOP: (n —)

UNTIL: (£ -)

WHILE: (f ——)

(u width -)

Sets up a finite loop, given
the index range.

Like DO ... LOOP except adds
the value of n (instead of
always one) to the index.

Terminates the loop at the
next LOOP or +LOOP.

Sets up an indefinite loop
which ends when f is true.

Sets up an indefinite loop
which always executes xxx
and also executes yyy if f is
true. Ends when f is false.

Prints the unsigned single-
length number, right-
justified within the field
width. ‘

Clears the terminal screen
and resets the terminal's
cursor to the upper left-hand

. corner.

Terminates execution for the
current task and returns
control to the terminal.

144

Review of Terms

Definite loop

Infinite loop

Indefinite loop

Starting LIorru

a loop structure in which the words contained
within the loop repeat a definite number of
times. In FORTH, this number depends on the
starting and ending counts (index and limit)
which are placed on _the stack prior to the
execution of the word .

a loop structure in which the words contained
within the loop continue to repeat without any
chance of an external event stopping them,
except for the shutting down or resetting of
the computer.

a loop structure in which the words contained
within the loop continue to repeat until some
truth condition changes state (true-to-false or
false-to-true). In FORTH, the indefinite loops
begin with the word [BEGIN|.

o THROW IT FOR A LOOP 145

Problems — Chapter 6

In Problems 1 through 6, you will create several words which will
print out patterns of st-~3 ‘- ~“erisks). These will involve the

use of loops and [BEG.l,..., » L] loops.

L

First create a word named STARS which will print out n stars
on the same line, given n on the stack:

10 STARS [EILIJ *****x**xx* ok

Next define BOX which prints out a rectangle of stars, given
the width and height (number of lines), using the stack order
(width height --).

10 3 BOX
Kk kK kK kK kK

kkkkkhkhkkkk
khkkkkkhkkhkk Sl

Now create a word named \STARS which will print a skewed
array of stars (a rhomboid), given the height on the stack.
Use a loop and, for simplicity, make the width a constant
ten stars.

3 \STARS
Kk kkkhk kK k
Ik hkkkhkkkkk
kkkkkkkkkk ol i

Now create a word which slants the stars the other direction;
call it /STARS. It should take the .ght as a stack input
and use a constant ten width. Use a __, loop.

Now redefine this last word, usiig a [BEGIN...[UNTIL] loop.

140 Starting rornt

6. Write a definition called DIAMONDS which will print out the
given number of diamonds shapes, as shown in this example:

2 DIAMONDS #

b 2N
SO R KK 3K K K
3 K A K % 34 KK
MK KO AN SRR NOK
34 SO NN MY ENOK
4¢ 20 5K K K K 3 R e M oK K K RO K
90 90 98¢ K 3 00N A R S KK MK KK K
300K K K 0 S Ok 5K KK K KKK
¢ 0K 5 R K K € 3¢ K M OOk K
2 4K 3 3K Sk Bl K K ke kK A K o .
A3 ROK K ROK K K K
HCOR O WO NENOR
RO RO YR

WO A DN

KK MK 3 e XK
MO RO NEC PYSHSIS 3

SKOK KKK M PIESSISLS 4
3 5K 2K KOOk 5K 31 3 NOO RONCK
5K 3K SR KK Sl K N K K KK K
45K 516 5 0 Ok 3K K ¢ ke K 2 Ok oK R K
453 K S M Ol i KK ROk K
K ¢ A RON K K 2K K XK KR
K O K K K 3K O KKK
3K O HCOROE N 3 NN N

7. In our discussion of we gave an example which
computed 6% compound interest on a starting balance of $1000
for 20 years or until the balance had doubled, whichever
came first. Rewrite this definition so that it will expect a
starting balance and interest rate on the stack and will
when this starting balance has doubled.

156 Starting FORTH

or simply 7BAl.

Octal numbers use only the numerals 0 through 7. Because
nowadays most computers use hexadecimal representation,
we'll skip an octal conversion example

We'll have more on conversions in the section titled "Number
Conversions" later in this chapter.

The ASCII Character Set

If the computer uses binary notation to store numbers, how does it
store characters and other symbols? Binary, again, but in a
special code that was adopted as an industry standard many years
ago. The code is called the American Standard Code for
Information Interchange code, usually abbreviated ASCII.

Table 7-1 shows each tharacter in the system and’ its numerical
equivalent, both in hexadecimal and in decimal form.

The characters in the first column (ASCII codes 0-1F hex) are
called "control characters" because they indicate that the
terminal or computer is supposed to do something like ring its
bell, backspace, start a new line, etc. The remaining characters
are called "printing characters" because they produce visible
characters including letters, the numerals zero through nine, all
available symbols and even the blank space (hex 20). The only
exception is DEL (hex 7F) which is a signal to the computer to
ignore the last character sent.

In Chap. 1 we introduced the word [EMIT|. _.MI[T] takes an ASCII
code on the stack and sends it to the teriminal so that the
terminal will print it as a character. For example,

65 EMIT_A ok
66 EMIT B ok

etc. (We're using the decimal, rather than the hex, equivalent
because that's what your computer is most likely expecting right
now.)t

Why not test [EMIT| on every printing character, "automatically"?

: PRINTABLES 127 32 DO I EMIT SPACE LOOP ;

fFor Experts

Why are you snooping on the beginner's section?

7 A NUMBER OF KINDS OF NUMBERS 159

the low-order byte. The effect on the second argument in this
example is that the low-order eight bits are kept but the
high-order eight bits are all set to zero. Here the first
argument is being used as a "mask," to mask out the high-order
byte of the second argument.

The word [OF also uses bit logic. For example,
1000100100001001

0000001111001000 [OR]
1000101111001001

a "l" in either argument produces a "1" in the result. Again,
each column is treated separately, with no carries.

By clever use of masks, we could even use a 16-bit value to hold
sixteen separate flags. For example, we could find out whether

this bit

1011101010011100
A

is "1" or "O" by masking out all other flags, like this:

1011101010011100
0000000000010000 {AND
0000006000010000

Since the bit was "1," the result is "true." Had it been "0," the
result would have been "0" or "false."

We could set the flag to "O" without affecting the other flags by
using this technique:

1011101010011100
1111111111101111 E—..‘.’
1011101010001100

A

We used a mask that contains all "l1l"s except for the bit we
wanted to set to "0." We can set the same flag back to "1" by
using this technique:

1011101010001100
0000000000010000
1011101010011100

A

160 Starting FORIU

SECTION II —— FOR EVERYBODY

Signed and Unsigned Numbers .

Back in Chap. 1 we introduced the word °." MBER|.

If the word [INTERPRET| can't find an incoming string in the
dictionary, it hands it over to the word [NUMBER. [NUMBER| then
attempts to ¢ - rert the string into a number expressed in binary
form. If [NUM 3 succeeds, it pushes the binary equivalent onto
the stack.

NUMBER| does not do any range-checking.? Because of this,
NUMBER| can convert either signed or unsigned numbers.

For instance, if you enter any number between 32768 and 65535,
NUMBER| will convert it as an unsigned number. Any value
between -32768 and -1 will be stored as a two's-complement
integer.

This is an important point: the stack can be used to hold either
signed or unsigned integers. Whether a binary value is
interpreted as signed or unsigned depends on the operators that
you apply to it. You decide which form is better for a given
situation, then stick to your choice.

tFor Beginners

This means that [NUMBER does not check whether the number you've
entered as a single-length numher exceeds the proper range. If
you enter a giant number, [NUMI__, converts it but only saves the
least significant sixteen digits.

7 A NUMBER OF KINDS OF NUMBERS 161

We've introduced the word [J, which prints a value on the stack as
a signed number:

65535 . -1 ok

The word prints the same binary representation as an unsigned
number:

65535 U._ 65535 ok

U. a -~) Prints the unsigned U=
single-length number, | dot
followed by one space.]

In this book the letter "n" signifies signed single-length

numbers, while the letter "u" signifies unsigned single-
length numbers. (We've already introduced |U.R|, which
prints an unsigned number right-justified within a given
column width.)

Here is a table of additional words that use unsigned numbers:

U* (ul u2 -~ ud) Multiplies two 16-bit
numbers. Returns a
32-bit result. All
values are unsigned.

U/MOD (ud ul —— u2 u3) Divides a 32-bit by a
16~bit number. Returns
a 16-bit quotient and
remainder. All values
are unsigned.

U< (ul w2 -- f) Leaves true if ul < u2,
where both are treated
as 1l6-bit unsigned

integers.
DO ... /LOOPT DO: (u-limit Like DO ... +LOOP ex-
u-index —-) cept uses an unsigned
/LOOP: (u —) limit, index, and

increment.

TFORTH-79 Standard

LOOP| is included in the optional Reference Word Set.

;L,6_2 Starting. FORTH

[N S

LOOP| is similar to [+LOOP|, in that it terminates a loop and

that it takes an incrementing value. The difference is that with

LOOP|, the index and limit may range from zero to 65535, and the

increment must be positive. O0P| executes somewhat faster than

Number Bases

When you first load FORTH, all number conversions use base ten
(decimal) for both input and output.

You can eaéily change the base by executing one of the following
comands:

HEX (--) Sets the base to sixteen.

OCTAL (-) Sets the base to eight
(available on some sys-
tems).Tt

DECIMAL { -—) Returns the base to ten.

TFor Experts

OCTAL| is omitted unless the design of the particular processor
compels its use.

¥ A NUMBER OF KINDS OF NUMBERS 163

¥hen you change the number base, it stays changed until you
change it again. So be sure to declare |[DECIMAL| as soon as
you're done with another number base.T

These commands make it easy to do number conversions in
*calculator style."

Por example, to convert decimal 100 into hexadecimal, enter
DECIMAL 100 HEX . 64 ok

To convert hex F into decimal (remember you are already in hex),
enter

OF DECIMAL . 15 ok

Make it a habit, starting right now, to precede each hexadecimal
value with a zero, as in

oA 0B OF

This practice avoids mix-ups with such predefined words as [B], (D,
or [F] in the EDITOR vocabulary.

A Handy Hint
A Definition of BINARY -- or Any-ARY
Beginners who want to see what numbers look like in binary
notation may enter this definition:

: BINARY 2 BASE ! ;

The new word BINARY will operate just like |[OCTAL] or [HEX] but
will change the ~—~ber base to two. On systems which do not
have the word [O(. 0], experimenters may define

: OCTAL 8 BASE ! ;

tFor People Using Multiprogrammed Systems

When you change the number base, you change it for your terminal
task only. Every terminal task uses a separate number base.

164 Starting FORTH

Double-length Numbers

Double-length numbers provide a range of +2,147,483,647. Most
FORTH systems support double-length numbers to some degree.T!?
Normally, the way to enter a double-length number onto the stack
(whether from the keyboard or from a block) is to punctuate it
with one of these five punctuation marks: '

;e /) =
For example, when you type

200,000CF -

recognizes the comma as a signal that this value should
be converted to double-length. |[NUMB' - then pushes the value
onto the stack as two consecutive "cells™ (cell is the FORTH term
for sixteen bits), the high order cell on top.

tFor polyFORTH Users:

pOolyFORTH includes double-length routines, but they are
"electives," which means that they are written in the group of
blocks which you must load each time the system is booted. This
arrangement gives you the flexibility to either load these
routines or delete them from your load block, according to the
needs of your application.

{ FORTH-79 Standard
The Standard requires only three double-length arithmetic

primitives. The optional Double Number Word Set includes many
more double-length operators.

7 A NUMBER OF KINDS OF NUMBERS 165

the FORTH word prints a double-length number without any
punctuation.

’ i
D. (d -—) Prints the signed [4-
double~length number, (dot
followed by one space.

In this book, the letter "d" stands for a double~length signed
integer.

for example, having entered a double-length number, if you were
now to execute [D.], the computer would respond:

D. 200000 ok

Notice that all of the following numbers are converted in exactly
the same way:

12345. D. 12345 ok
123.45 D. 12345 ok
1-2345 D. 12345 ok
1/23/45 D. 12345 ok
1:23:45 D. 12345 ok

But this is not the same:

-12345
because this value would be converted as a negative,
single—length number. (This is the only case in which a hyphen
is interpreted as a minus sign and not as punctuation.)
In the next section we'll show you how to define your own

equivalents to which will print whatever punctuatlon you want
along with the number.

166 o e e

[BRI

Starting FORTH

Number Formatting —- Double-length Unsignedt

$200.00 12/31/80 372-8493 6:32:59 98.6
The above numbers represent the kinds of output you can create
by defining your own "number-formatting words" in FORTH. This
section will show you how.

The simplest number-formatting definition we could write would be

+ UD. <$# #S #> TYPE ;

UD. will print an unsigned double-length number. The words
and (respectively pronounced bracket-number and
number-bracket) signify the beginning and the end of the
number-conversion process. In this definition, the entire
conversion is being performed by the single word (pronounced
numbers). converts the value on the stack into ASCII
characters. It will only produce as many digits as are necessary
to represent the number; it will not produce leading zeroes. But
it always produces at least one digit, which will be zero if the
“value was zero. TFor example: T : :

12,345 UD. 123450k
12. UD. 120k
0 UD. Ook . . - -

The word [TYPE| prints the characters that represent the number at
your terminal. Notice that there is no space between the number
and the "ok." To get a space, you would simply add the word

[SPACE], like this:
: UD. <# #S #> TYPE SPACE ;

Now let's say we have a phone number on the stack, expressed as a
32-bit unsigned integer. For example, we may have typed in

372-8493

(remember that the hyphen tells [NUMBER| to treat this as a
double~-length value). We want to define a word which will format
this value back as a phone number. Let's call it .PH# (for "print
the phone number") and define it thus:

TFor Those Whose Systems Do Not Have Double-length Routines
Loaded

The examples used in this and the next section won't do what you
expect. The principles remain the same, however, so read these
two sections carefully, then read the note on page 172.

* A NUMBER OF KINDS OF NUMBERS 167

: JPHE <# & # # # 45 HOLD #S #> TYPE SPACE ;

Jur definition of .PH#% has
¢verything that UD. has, and more.
The FORTH word Pi—] (pronounced
number) produces a single digit
only. A number-formatting
definition is reversed from the
order in which the number will be
printed, so the phrase

¥ F#

produces the right-most four digits
of the phone number.

Now it's time to insert the hyphen. Looking up the ASCII value
for hyphen in the table in the beginner's section of this
chapter, we find that a hyphen is represented by decimal 45. The
FORTH word takes this ASCII code and inserts it into the
formatted number character string.

We now have three digits left. We might use the phrase

###

but it's easier to simply use the word [#S|, which will
automatically convert the rest of the number for us.

If you are more familiar with ASCII codes represented in
hexadecimal form,.you can use this definition instead: i

HEX : .PH§ <4 # # # # 2D HOLD #S 4#> TYPE SPACE ;
DECIMAL

Either way, the compiied definition will be exactly the same.

L

Now let's format an unsigned double-
length number as a date, in the
following form:

7/15/80

Here is the definition:

.DATE <# # # 47 HOLD # # 47 HOLD #S #> TYPE SPACE ;

Let's follow the above definition, remembering that it is written
in reverse order from the output. The phrase

168 a Starting FORLII

47 HOLD

produces the right-most two digits (representing the year) and
the right-most slash. The next occurrence of the same phrase
produces the middle two digits (representing the day) and the
left-most slash. Finally, produces the left-most two digits-
(representing the month).

"We could have just as easily defined
47 HOLD

as its own word and used this word twice in the definition of
.DATE. '

Since you have control over the conversion process, you can
actually convert different digits in different number bases, a
feature which is useful in formatting such numbers as hours and
minutes. For example, let's say that you have the time in seconds
on the stack, and you want a word that will print hh:mm:ss. You
might define it this way:

: SEXTAL 6 BASE | ; T
: :00 # SEXTAL # DECIMAL 58 HOLD ;
: SEC <# :00 :00 #S #> TYPE SPACE ;

We will use the word :00 to format the
seconds and the minutes. Both seconds and
minutes are modulo-60, so the right digit
can go as high as nine, but the left digit
can only go up to five. Thus in the
definition of :00 we convert the first digit
(the one on the right) as a decimal number,
then go into "sextal" (base 6) and convert
the left digit. Finally, we return to
decimal and insert the colon character.
After :00 converts the seconds and the
minutes, converts the remaining hours.

For example, if we had 4500 seconds on the
stack, we would get

4500. SEC 1:15:00 ok

Table 7-2 summarizes the FORTH words that
are used in number formatting. (Note the
"KEY" at the bottom, which serves as a
reminder of the meanings of "n," "4d," etc.)

tFor Beginners

See the Handy Hint on page 163.

4 wJMBER OF KINDS OF NUMBERS 169

<t

s

¢ HOLD

SIGN

§>

TABLE 7-2 -— NUMBER FORMATTING

Begins the number conversion process.
Expects an unsigned double-length number on

the stack. { brqcket-numgeT

Converts one digit and puts it into an
output character string. always pro-
duces a digit--if you're out of significant
digits, you'll still get a zero for every [#.
humper
Converts the number until the result is zero.
Always produces at least one digit (0 if the
value is zero).

humbers

Inserts, at the current position in the
character string being formatted, a
character whose ASCII value is on the stack.
(or a word that uses [HOLD]) must be
used between and [f3].

Inserts a minus sign in the output string if
the third number on the stack is negative.
Usually used immediately before for a
leading minus sign.

Completes number conversion by leaving the
character count and address on the stack
(these are the appropriate arguments for

TYPE|). number- bracket

Stack effects for number formatting + 4

phrase
< ... #>

<# ... SIGN #> (n |d| — adr v 32-bit signed (where n is

<
stack type of arguments

(d =— adr u) or 32-bit unsigned
(u0 — adr v 16-bit unsigned

or the high-order cell of 4
and |d| is the absolute
value of d).

(n|n] 0 —— adr w) 16-bit signed (where |n| is
the absolute value).

KEY

n, nl ...
d, di, ...
u, Ul, cos

16-bit signed numbers - adr address
32~-bit signed numbers. c ASCII char-
16~-bit unsigned numbers acter value

170 By Gtarting FORIN

Number Formatting == Signed and Single-length

So far we have formatted only unsigned double~length numbers,
The [<H...[>] form expects only unsigned double-length numbers,
but we can use it for other types of numbers by making certain
arrangements on the stack.

JFor instance, let's look at a simplified version of the system
definition of [D.] (which prints a signed double-length number):

: D. SWAP OVER DABS <# #8S SIGN #> TYPE SPACE ;

The word [§1 :7. which must be situated within the [<%...[f>] phrase,
inserts a minus sign in the character string only if the third
number on the stack is negative. So we must put a copy of the
high-order cell (the one with the sign bit) at the bottom of the
stack, by using the phrase

SWAP OVER

=== |

[" e M
i ANEA

i O

| ma [
ey Lo

C - . ")
— neh
= —

Because expects only unsigned double-length numbers, we must
take the absolute value of our double-length signed number, with
the word [DABS]. We now have the proper arrangement of arguments

on the stack for the [<#]...[{>] phrase. The word [S. .. like [HOLD],

will insert the minus sign at whatever point withi. cue character
string we situate it. Since we want our minus sign to appear at
the left, we include at the right of our [<fl...[f>] phrase.
In some cases, such as accounting, we may want a negative number
to be written '

12345~

in which case we would place the word at the left side of
our [<f]...[f>] phrase, like this:

.+ HBER OF KINDS OF NUMBERS 171

<; SIGN #S #>

.et's define a word which will print a signed
iouble-length number with a decimal point and
w0 decimal places to the right of the decimal.
3ince this is the form most often used for
vriting dollars and cents, let's call it .$ and
define it like this:

.$ SWAP OVER DABS
<# # # 46 HOLD #S SIGN 36 HOLD #> TYPE SPACE ;

Let's try it:
2000.00 .$_$2000.00 ok

or even
2,000.00 .$ $2000.00 ok

We recommend that you save .$, since we'll be using it in some
future examples.

"You can also write special formats for single-length numbers. For
example, if you want to use an unsigned single-length number,
simply put a zero on the stack before the word [<#]. This
effectively changes the single-length number into a
double~length number which is so small that it has nothing (zero)
in the high-order cell.

To format a signed single-length number, again you must supply a
zero as a high—order cell. But you also must leave a copy of the

signed number in the third stack position for [S] .. and you must
leave the absolute value of the number in tne second stack
position. The phrase to do all of this is

DUP ABS 0

172 | Starting PORIUI

Here are the "set-up" phrases that are needed to print various
kinds of numbers:

Number to be printed Precede (<i| by
32-bit, unsigned (nothing needed)
31-bit, plus sign . SWAP OVER DABS

(to save the sign in the
third stack position for

R . SIGN))
16-bit, unsigned 0
(to give a dummy
high-order part)
. 15-bit, plus sign DUP ABS 0

(to save the sign)

If Your System Does Not Have Double-length Routines Loaded

In this case the set-up phrases are different, as follows:

Number to be printed Precede [<#] by
16-bit, unsigned DUP
15-bit, plus sign DUP ABS DUP

Even though still expects two cells on the stack, in this
case the significant cell must be on top (where normally the

high-order cell is found). The contents of the second stack
position are not used.

A »UMBER OF KINDS OF NUMBERS 173

. «..0-length Operators

zeze is a list of double-length math operators:t I

o+ (dl d2 — d-sum) Adds two 32-bit numbers.

D (dl 42 —- 4d-diff) Subtracts two 32-bit !

numbers (di-d2). Ca_:minus
' !DNEGATE (@ -- -4) Changes the sign of a

32-bit number.

i DABS (d - |d)) Returns the absolute
; value of a 32-bit
number.

[DMAX (dl-d2 -- d-max) Returns the maximum of i

.' two 32-bit numbers.

| DMIN (dl 42 — d-min) Returns the minimum of
two 32-bit numbers. -

D= (d1 d2 — 1) Returns true if 4l and
d2 are equal.
DO= (@ — f) Returns true if d is
| zZero.

D< (dl d2 -—= £) Returns true if dl is
less than d2.

DU (udl ud2 -- f) Returns true if udl is
less than ud2. Both
numbers are unsigned.

D.R (d width -) Prints the signed 3Z2-bit

number, right-justified

within the field width.

tFor polyFORTH Users
The double-length routines must be loaded.
{FORTH-79 Standard B

Except for [D+#, [D<], and [DNEGZ . which are required, these words
are part of the optional Double iumber Word Set.

174 Starting FORTH

The initial "D" signifies that these operators may only be used
for double-lenqth operations, whereas the initial "2," as in
25WAP| and [...P], signifies that these operators may be used
either for double-length numbers or for pairs of single-length
numbers.

Here's an example using [DH:
200,000 300,000 D+ D. 500000 ok

A warning for experimenters: you can write definitions that
contain double-precision operators, but you cannot include a
punctuated, double~precision) ser inside a definition. 1In the
next chapter we'll explain what 10 do instead. :

Mixed-Length Operators

Here's 'a table of very-useful FORTH words which operate on a %

combination of single- and double-length numbers:t

M+ ‘(d n -—— d-sum) Adds a 32-bit number to a
: 16-bit number. Returns a 32-bit

- . o . result, - .

M/ (d n = n-quot) Divides a 32~bit number by a

16-bit number. Returns a 1l6-bit
result. All values are signed.

M* (nl n2 —~ d-prod) Multiplies two 1l6-bit numbers.
Returns a 32-bit result. All
values are signed.

M*/ @nn -~ Multiplies a 32-bit
d-result) number by a 16-bit number and

divides the triple-length

result by a l6-bit number

(@*n/n). Returhs a 32-bit

result. All values are signed.

t FORTH~79 Standard

The mixed-length operators are not included in either the
Required or the Double Number Word Set.

7 A NUMBER OF KINDS OF NUMBERS 175

Here's an example using [M+]:
200,000 7 M+ D. 200007 ok

Or, using Mfz, we can redefine our earlier version of % so that
it will accept a double-length argument:

: % 100 M*/ ;
as in
200.50 15 % D. 3007 ok

If you have loaded the definition of .$ which we gave in the last
Handy Hint, you can enter

200.50 15 % .$_$30.07 ok

We can redefine our earlier definition of R% to get a rounded
double-length result, like this:

: R% 10 M*/ 5 M+ 10 M/ ;
then

987.65 15 R% .$ $30.08 ok
Notice that is the only ready-made FORTH word which
performs multiplication on a double-length argument. To multiply
200,000 by 3, for instance, we must supply a "1" as a dummy
denominator:

200,000 3 1 M*/ D. 600000 ok

since

e
,

is tnhe same as 3.

is also the only ready-made FORTH word that performs__
division with a double-length result. So to divide 200,000 by 4,
for instance, we must supply a "1" as a dummy numerator:

200,000 1 4 M*/ D. 50000 ok

176 Starting FORTH

Numbers in Definitions

When a definition contains a number, such as

: SCORE-MORE 20 + ;

the number is compiled into the dictionary in binary form, just as

0011000000111001)

it looks on the stack.

The number's binary value depends on the number base at the time
you compile the definition. For example, if you were to enter

HEX : SCORE-MORE 14 + ; DECIMAL

the dictionary definition would contain the hex value 14, which
is the same as the decimal value 20 (16 + 4). Henceforth,
SCORE-MORE will always add the equivalent of decimal 20 to the
value on the stack, regardless of the current number base.

If, on the other hand, you were to put the word inside the
definition, then you would change the number base when you
execute the definition.

For example, if you were to define:

DECIMAL
: EXAMPLE HEY 20 . DECIMAL ;

the numbe Quld be compiled as the binary equivalent of decimal
20, since [DECIMAL| was current at compilation time.
At execution time, here's what happens:

EXAMPLE 14 ok

The number is output in hexadecimal.

7 A NUMBER OF KINDS OF NUMBERS

177

Por the record, a number that appears inside a definition is

called a "literal."

taken literally.)

(Unlike the words in the rest of the
definition which allude to other definitions, a number must be

Here is a list of the FORTH words we've covered in this chapter:

Unsigned operators

U.

U*

U/MOD

U<

DO ... /LOOP

W -

)

(ul u2 — ud)

(ud ul — u2 u3)

(ul u2 — £

DO: (u-limit
u-index --

/LOOP: (u —

)

)

Prints the unsigned
single-length number,
followed by one space.

Multiplies two 16-bit num-
bers. Returns a 32-bit
result. All values are
unsigned.

Divides a 32-bit by a 1l6-
bit number. Returns a
16-bit quotient and re-
mainder. All values are
unsigned.

Leaves true 1f ul < u2,
where both are treated as
16-bit unsigned integers.

Like DO +LOOP except
uses an unsigned limit,
index, and increment.

Number bases

HEX

OCTAL

DECIMAL

(

X

Sets the base to sixteen.
‘Sets the base to eight
(available on some 'sys-—-
tems).

Returns the base to ten.

Number formatting operators

<#

Begins the number conversion process.
Expects an unsigned double-length number on
the stack.

Converts one digit and puts it into an output
character string. always produces a
digit--if you're out of significant digits,
you'll still get a zero for every [#].

Starbing ror

Converts the number until the result is zero.
Always produces at least one digit (0 if the

value is zero).

e ~e~HOLD

Inserts, at the current position in the

character string being formatted, a character

whose ASCII va' '~

word that uses

and [#3].

is on the stack. [HOLD| (or a
"_LD]) must be used between

Inserts a minus sign in the output string if
the third number on the stack is negative.
Usually used immediately before [#>] for a

leading minus sign.

Completes number conversion by leaving the
character count and address on the stack
(ther=e are the appropriate arguments for

(7Y

Stack effects for number formatting

.phrase
<# ... #>

"<# ... SIGN #>

D+

D_
DNEGATE
DABS

DMAX

Double-length operators

stack

(d —— adr uv) or
(u 0 — adr u)

(n |d] — adr u)
or

(n|n| 0 == adr u)

(dl d2 -- d-sum)

(dl d2 -- d-diff)
(d — =d)
(d --|d)

(dl d2 —- d-max)

type of arguments

32-bit unsigned
16-bit unsigned

32-bit signed (where n is
the high-order cell of d
and |d| is the absolute
value of 4d).

16-bit signed (where |n| is
the absolute value).

(Optional in FORTH-79 Standard)

Adds two 32-bit numbers.

Subtracts two 32-bit
numbers (d1-d2).

Changes the sign of a
32-bit number.

Returns the absolute value
of a 32-bit number.

Returns the maximum of two
32-bit numbers.

7 A NUMBER OF KINDS OF NUMBERS 179

l DMIN (dl d2 -- d-min) Returns the minimum of two

32-ipit numbers.

D= - “(dl d2 -- f) Returns true if dl1l and 42
are equal.

{ DO: (d —— £) Returns true if d 1s zero.
o< T (dl d2 -~ f) Returns true if dl is less
than dZ2.

DU< (udl ud2 -- f) Returns true if udl is less
than ud2. Both numbers are
unsigned.

DU< Prints the signed 32-bit

PR numper, followed by one
space.

I D.R (@ width —) Prints the signed 32-bit

number, right-justified
within the field width.

Mixed-length operators (Not required by FORTH-79 Standard)

M+ (d n == d-sum) Adds a 32-bit number to aT
16-bit number. Returns a
32-pit result.

M/ (d n - n-quot) Divides a 32-bit number by
: a 16-bit number. Returns a
16-bit result. All values

are signed.

M* (nl n2 -- d-prod) Multiplies two 1l6-bit
numbers. Returns a 32-bit
result. All values are

signed.
M*/ dnn-— Multiplies a 32-bit number
d-result) by a l6-bit number and

divides the triple-length
result by a l6-bit number
' (d*n/n). Returns a 32-bit
: result. All values are

KEY

n, nl ... 16-bit signed numbers b 8-bit byte

d, di, ... 32-bit signed numbers £ Boolean flag

u, ul, ... 16-bit unsigned numbers. ¢ ASCII character

value
ud, udl, ... 32-bit unsigned numbers adr address

180

Review of Terms

Arithmetic left
and right shift

ASCII

Binary

Byte

Cell
Decimal’
Hexadecimal

Literal

Mask

Number
formatting

Octal

Sign bit,
high-order bit

Two's
complement

Unsigned number

a ' Starting FORTH

the process of shifting all bits in a number,
except the sign bit, to the left or right, in

effect dbubling or halving the number,
resnectively.

a standardized system of representing input/
output characters as byte values. Acronym for
American Standard Code for Information
Interchange. (Pronounced ask-key.)

number base 2.

the standard term for an 8-bit value.

the FORTH term for a 16-bit value.

number base 10.

number base 16.

in general, a number or symbol which represents—--

only itself; in FORTH, a number that appears
inside a definition.

a value which can be "superimposed" over

another, hiding certain bits and revealing
only those bits that we are interested in.

the process of printing a number, usually in a
special form such as 3/13/8l or $47.93.

number base 8.

the bit which, for a signed number, indicates
whether it is positive or negative and, for an
unsigned number, represents the bit of the
highest magnitude.

for any number, the number of equal absolute
value but opposite sign. To calculate 10 - 4, -
the computer first produces the two's comple-
ment of 4 (i.e., -4), then computes 10 + (-4),

a number which is assumed to be positive.

¢ A NUMBER OF KINDS OF NUMBERS 181

sasigned single-

ieng

word

th number an integer which falls within the range 0 to
65535.
in FORTH, a defined dictionary entry;

elsewhere, a term for a 1l6-bit value.

Problems —— Chapter 7

FOR BEGINNERS

1

Veronica Wainwright couldn't remember the upper limit for a
signed single-length number, and she had no book to refer
to, only a FPORTH *erminal. So she wrote a definition called
N-MAX, using a [E.__N|...[UNTIL| loop. When she executed it,
she got

32767 ok
What was her definition?

Since you now know that and emnloy bit logic,

explain why the following example must use _ ., instead of :
: MATCH HUMOROUS SENSITIVE AND

ART-LOVING MUSIC~-LOVING OR AND SMOKING NOT AND

IF ." I HAVE SOMEONE YOU SHOULD MEET " THEN ;

Write a definition that "rings" your terminal's bell three
times. Make sure that there is enough of a delay between
the bells so that they are distinguishable. Each time the
bell rings, the word "BEEP" should appear on the terminal
screen.

(Problems 4 and 5 are practice in double—length math.)

4,

a. Rewrite the temperature conversion definitions which you
created for the problems in Chap. 5. This time assume
that the input and resulting temperatures are to be
double-length signed integers which are scaled (i.e.,
multiplied) by ten. For example, if 10.5 degrees is
entered, it is a 32-bit integer with a value of 105.

b. Write a formatted output word named .DEG which will
display a 32-bit signed integer scaled by ten as a string
of digits, a decimal point,. and one fractional digit.

" For example:

12.3 .DEG (EED 12.3 ok

182 o Starting FORTH

“Problem 4, continued

c. Solve the following conversions:

0.0° F in Centigrade
212.0° F in Centigrade
20.5° F in Centigrade . v
16.0° C in Fahrenheit
-40.0° C in Fahrenheit
100.0° K in Centigrade
100.0° K in Fahrenheit
233.0° K in Centigrade
233.0° X in Fahrenheit
S. a. Write a routine which evaluates the quadratic equation

7%% + 20x + 5

given x, and returns a double-length result.
b. How large an x will work without overflowing thirty-two
bits as a signed number?

FOR EVERYONE - - - - - - -
6. Write a word which prints the numbers O through 16 (decimal)
in decimal, hexadecimal, and binary form in three columns.
E.g.,
DECIMAL O EEX 0 BINARY 0
DECIMAL 1 HEX 1 BINARY 1 . e am e,

T DECIMAL "2~ HEX 2°° BINARY 10
DECIMAL 16 HEX 10 BINARY 10000
7. If you enter
R AERUBN]

(two periods not separated by a space).and the system
responds "ok," what does this tell you?

8. Write a definition for a phone-number formatting word that
will also print the area code with a slash if and only if the
number includes an area code. E.qg.,

555-1234 .PH#_555-1234 ok
213/372-8493 .PHT 213/372-8493 ok

8 VARIABLES, CONSTANTS, AND ARRAYS

As we have seen throughout the previous seven chapters, FORTH
programmers use the stack to store numbers temporarily while they
perform calculations or to pass arguments from one word to
another, When programmers need to store numbers more
permanently, they use variables and constants.

In this chapter, we'll learn how FORTH treats variables and
constants, and in the process we'll see how to directly access

locations in memory.

Variables

Let's start with an example of a situation in which you'd want to
use a variable--to store the day's dated First we'll create a

variable called DATE. We do this by saying
VARIABLE DATE
If today is the twelfth, we now say

12 DATE !

that is, we put a twelve on the stack, then give the name of the
variable, then finally execute the word m, which is pronounced
store. This phrase stores the number twelve into the variable

DATE.

Conversely, we can say ..~

Tror Beginners

Suppose your computer generates bank statements all day, and
every statement must show the date. You don't want to keep the
date on the stack all the time, and you don't want the date to be
part of a definition that you'd have to redefine every day. You

want to use a variable.

183

L - Starting FORTI

e S = e e T SIS T ARSI T IS

DATE @

that is, we can name the variable, then execute the word @,-
which is pronounced fetch. This phrase fetches the twelve and
puts it on the stack. Thus the phrase

rarconrn DATE_€ o 12 OK : e

prints the date.

To make matters even easier, there is a FORTH word whose
definition is this:

HI Q. ; b
_So_instead of "DATE-fetch-dot," we could simply type
DATE ? 12 ok ,

The value of DATE will be twelve until we change it. To change
it, we simply store a new number:

- — 13 DATE ! ok
DATE ? 13 ok

Conceivably we could define additional variables for the mont
and year:._ . _ . - — . , o - o S

VARIABLE DATE VARIABLE MONTH VARIABLE YEAR

then define a word called !DATE (for "store-the-date") like this:
: IDATE YEAR ! DATE ! MONTH ! ;

to be used like this:
7 31 80 !DATE ok

then define a word called .DATE (for "print-the-date") like this:

: .DATE MONTH ? DATE ? YEAR ? ;
Your FORTH system already has a number of variables defined; one

is called [BASE. contains the number base that you're
currently worki - in. In fact, the definitions of and

IMAL| (and {OC ..}, if your system has it) are simply

: DECIMAL 10 BASE ! ;
: HEX 16 BASE ! ;
: OCTAL 8 BASE |

. IAAIABLES, CONSTANTS, AND ARRAYS 185

{3, can work in any number base by simply storing it into BASE|.|

mmewhere in the definitions of the system words which perform
~sput and output number conversions, you will find the phrase

BASE @

gecause the current value of |BASE| is used in the conversion
;tocess. Thus a single routine can convert numbers in any base.
mis leads us to make a formal statement about the use of

«sriables:

HHNNHNNHOHNNNHHNNHO"’{

In FORTH, variables are appropriate for any 3=
value that is used inside a definition 3=

0

=

which may need to change at any time after
the definition has already been compiled.

H00000000000000000800000800 %

A Closer Look at Variables

When you create a variable such as DATE by using the phrase
VARIABLE DATE

you are really compiling a new word, called DATE, into the
dictionary. A simplified view would look like this:

TFor Experts

A three-letter code such as an airport terminal name, can be
stored as a single-length unsigned number in base 36. For
example: .

: ALPHA 36 BASE ! ; ok
ALPHA ok
ZAP U. 2AP ok

199 V L e ~Starting FORTH

L LU,

DATE

‘ instruction code
appropriate for
variables

f space for the
\ actual value
B to be stered

| s

DATE is like any other word in your dictionary except that you
defined it with the word instead of the word [f. As a
result, you d4*°~'t have to define what your definition would do;
the word |VAL..._LE| itself spells out what is supposed to happen.
And here is what happens:

When you say

12 DATE !

Ve

[S——
[—"
¢ =
Twelve goes onto then the text and, finding it,
the stack, interpreter looks points it out

up DATE in the to < UTE

dictionary

+
'For Experts

In the next chapter we'll show you what a dictionary entry really
looks like in memory.

8 VARIABLES, CONSTANTS, AND ARRAYS 187

DATE ﬁﬁﬁ

code for 5?93?4
variables ‘rL
em T.‘y I
ccPH 2076 Edr). BN
——e]

executes a variable by copying the address of the

variabie's "empty" cell (where the value will go) onto the stack.T

DATE

code for
variables

2076

The word EI takes the ad- value into that location.
dress (on top) and the value Whatever number used to be
(underneath), and stores the at that address is replaced

by the new number.

(To remember what order the arguments belong in, think of setting
down your parcel, then sticking the address label on top.)

TFor Beginners

In computer terminology, an address is a number which identifies
a location in computer memory. For example, at address 2076
(addresses are usually expressed as hexadecimal, unsigned
numbers), we can have a l6-bit representation of the value 1l2.
Here 2076 is the "address"; 12 is the "contents."

{4

188) Starting FORTH
S ST T s e L e Tt

AR TR Fe T L

The word [] expects one argument only: an address, which in this
case is supplied by the name of the variable, as in

DATE @

DATE

: code for

T (7 A variables

l;.; ,é\.\"‘ qg
‘ NI He ¥
’_. ' & [eda 2076
Using the value on the stack as an address, the word pushes

the contents of that location onto the stack, "dropping" the
address. (The contents of the location remain intact.)

2

. -
-~ — - — e —— = —_

Using ‘a Variable as a Counter

In _FORTH, a variable
1s ideal for keeping
a count of something.
To reuse our egg-
packer example, we
might keep track of ~
how many eggs go
down the conveyor
belt in a single day.
(This example will
work at your terminal,
so enter it as we go.)

516, 517, 518 ...

First we can define
VARIABLE EGGS

to keep the count in. To start with a clean slate every morning,
we would store a zero into EGGS by executing a word whose
definition looks like this:

: RESET 0 EGGS ! ;
Then somewhere in our egg-packing application, we would define a
word which executes the following phrase every time an egg

8 VARIABLES, CONSTANTS, AND ARRAYS 189

passes an electric eye on the conveyor:
1 EGGS +!

The word [+!] adds the given value to the contents of the given
address.T (It doesn't bother to tell you what the contents are.)

Thus the phrase
1 EGGS +!

increments the count of eggs by one. For purposes of
illustration, let's put this phrase inside a definition like this:

: EGG 1 EGGS +! ;
At the end of the day, we would say

EGGS ?
to find out how many eggs went by since morning.
Let's try it:

RESET ok

EGG ok

EGG ok

EGG ok
EGGS ? 3 ok

Here's a review of the words we've covered in the chapter so far:

TFor the Curious

+1| is usually defined in assembly language, but an equivalent
high-level definition is

: +1 DUP @ ROT + SWAP [;

100 Stavting mowr

VARIABLE xxx (=-—) Creates a variable[ygria
e named XXX;
xxx: (- adr) the word xxx returns l/
its address when
executed. v

! (n adr ——) Stores a 16-bit number sto?f
into the address. '

e (adr =- n) . Replaces the address foteh
with its contents. =~

? (adr -=) Prints the contents of
) the address, followed ™
by one space.

+1! (n adr ——) Adds a 16-bit number to

address.

Constants

While variables are normally used for
values that may change, constants are used

for values that won't change. In FORTH, we LiMIT

create a constant and set its value at the instruction code

same time, like this: appropriate for
constants

220 CONSTANT LIMIT

Here we have defined a constant named 220
LIMIT, and given it the value 220. Now we
can use the word LIMIT in place of the
value, like this:

: ?TOO0.HOT LIMIT > IF ." DANGER —-- REDUCE HEAT " THEN ;

If the number on the stack is greater than 220, then the warnins
message will be printed.

Notice that when we say
LIMIT

we get the value, not the address. We don't need the "fetch"™

8 VARIABLES, CONSTANTS, AND ARRAYS 191

This is an important difference between variables and constants.

The reason for the difference is that with variables, we need the
address to have the option of fetching or storing. With
constants, we always want the value; we almost never store.

One use for constants is to name a hardware address. For
example, a microprocessor—controlled camera application mlght
contain this definition:

: PHOTOGRAPH SHUTTER OPEN TIME EXPOSE SHUTTER CLOSE ;
Here the word SHUTTER has been defined as a constant so that

execution of SHUTTER returns the hardware address of the
camera's shutter. It might, for example, be defined:

HEX
3E27 CONSTANT SHUTTER
DECIMAL
The words OPEN and CLOSE might be defined simply as

: OPEN 1 SWAP ! ;
: CLOSE 0 SWAP ! ;

so that the phrase

SHUTTER OPEN
writes a "1" to the shutter address, causing the shutter to open.
Here are some situations when it's good to define numbers as

constants: !

1. When it's important that you make your application more
readable. One of the elements of FORTH style is that
definitions should be self-documenting, as is the
definition of PHOTOGRAPH “above.

1‘Fox: People Who Intend to Use polyFORTH's Target Compiler™M

In your case the difference is more profound. A constant's value
will be compiled into PROM; a variable compiles into PROM a
reference to a location in RAM.

n

- i e StALting FORTA o

20 When it's more convenient to use a name instead of the
number. For example, if you think you may have to
change the value (because, for instance, the hardware
might get changed) you will only have to change the

———— value once--in the block where the constant is
defined--then recompile your application.

3. When yoﬁ are using the same value many times in your
. application. In the compiled form of a definition,
reference to a constant requires less memory space.T‘

CONSTANT xxx (n —) Creates a constant named
I xxx: (= n) xxxX with the value n; the
’ word xxx returns n when
executed.

TFor polyFORTH Users

Because of reason 3, polyFORTH includes constant-definitions of
two often-used numbers:

0 CONSTANT 0
1 CONSTANT 1

§ VARIABLES, CONSTANTS, AND ARRAYS 193

pouble-length Variables and ConstantsT

You can define a double-length variable by using the word

2VARIABLE|. For example,

2VARIABLE DATE

Now you can use the FORTH words (pronounced two-store) and
(two-fetch) to access this double-length variable. You can
store a double-length number into it by simply saying

800,000 DATE 2!
and fetch it back with
DATE 2@ D. 800000 o’k
Or you can store the full month/date/year into it, like this:
7/16/81 DATE 2!
and fetch it back with
DATE 2@ .DATE 7/16/81 ok

assuming that you've loaded the version of .DATE we gave in the
last chapter.?!

von ~an Aefine a double-length constant by using the FORTH word
.. . [Z. . like this:

200,000 2CONSTANT APPLES

Now the word APPLES will place the double~length number on the
stack.

APPLES D. 200000 ok R

TFORTH-79 Standard

The words described in this section are not required except in
the Double Number Word Set.

iFor polyFORTH Users

polyFORTH uses an even-more-clever arrangement to store the date
as one single-length integer.

194 Starting TORMH

Use of [2CC* [‘ANT becomes necessary when you need to include a

double~leng s value inside a definition. In FORTH the only way

to_“-_this is by first defining the double-length value as a

2C(*: TANT]. For example, to define a word which adds 400,000 to
~~a double-length value on the stack, we must define

4007000 2CONSTANT MUCH
: MUCH~-MORE MUCH D+ ;

in 6rder to be able to say
APPLES MUCH-MORE D._600000 ok T
TTASTERE prefix "2" reminds us, we can also use [2CONSTANT] to
define a pair of single-length numbers. The reason for putting
two numbers under the same name is a matter of convenience and
of saving space in the dictionary.
As an example, recall (from Chap. 5) that we can use the phrase

355 113 */

to multiply a number by an avoroximation of pi. We could store
these two integers as a [2C'. _ANT| as follows:

355 113 2CONSTANT PI
then simply use the phrase
PI */
as in
10000 PI */ . 31415 ok

Here is a review of the double-length data-structure words:

T For polyFORTH Users

polyFORTH includes the following definition for a double -length
zero for convenient use inside a colon definition:

0. 2CONSTANT 0.

; YARIABLES, TURSTILNTS, LND LZRATS

2VARIABLE xxx (

—_ d)

)

Creates a double-length
variable named xxx;

the word xxx returns
its address when exe-
cuted.

Creates a double-length
constant named xxx
with the value d;

the word xxx returns
the value d when exe-
cuted.

Stores a double-length
number into the ad-
dress.

two -
Store

Returns the double-
length contents of the
address.

5 XXX (
|
H
1
| 2cONSTANT xxx (4 —)
i
xxx: |
2! (d adr —
2@ (adr — @)
Arrays

As you know, the phrase

VARIABLE DATE

creates a definition which conceptually looks like this: |

DATE

code

room for a

single-length value

Now if you say

2 ALLOT

an additional two bytes are alloﬁted in the definition, like this:

196) A _ Starcting FORTH

i |
[DATE |

. code 4(~ .

room for a
single-length value)

room for two éingle length values
i (or one double-length value)

ditto

-

The result is the same as if you had used |[2VARIABLE|. By
ALLOT|,

changing the argument to however, you can define any
number of variables under the same name. Such a group of
variables is called an "array.'

For ‘example, let's say that in our laboratory, we have not just
one, but five burners that heat various_kinds of liquids.

'% -
L7 3
S| ¢l

We can make our word ?TOO-HOT check that all five burners have
not exceeded their individual limit if we define LIMIT using an
array rather than a constant. :

Let's give the array the name LIMITS, like this:

VARIABLE LIMITS 8 ALLOT 3 -

At . . -

The phrase "8 ALLOT" gives the array an extra elght bytes or
four cells (five cells in all).

8§ VARIABLES, CONSTANTS, AND ARRAYS

Suppose we want the limit for burner 0 to be 220.

LIMITS

code

room for
burner-0's limit

room for
burner-1's limit

room for
burner-2's limit

room for
burner-3's limit

room for
burner-4's limit

this value by simply saying

220 LIMITS !

addresses

l
t

3162

3164

3166

31868

316A

197

We can store

because LIMITS returns the address of the first cell in the array.
We can store

this value by adding 2 bytes to the address of the original cell,

Suppose we want the limit for burner 1 to be 340.

like this:

340 LIMITS 2+ !

340 LIMITS
340 3162 3164
340|| || |340
=|F7

LiMITS

code

220

340

3162

364

3166

198

e

Starting FORTN

e - N) . o o, v e . . - g
We can store limits for burners 2, 3, and 4 by adding the

"offsets" 4, 6, and 8, respectively, to the original address.
Since the offset is always double the burner number, we can
define the convenient word

: LIMIT 2% LIMITS + ;

to take a burner number on the stack and compute an address that
reflects the appropriate offset.t

Now

if we want the value 170 to be the limit for burner 2, we

simply say

170 2 LIMIT !

or similarly, we can fetch the limit for burner 2 with the phrase

This
that

2 LIMIT ?2_170 ok

technigue increases the usefulness of the word LIMIT, so
we can redefine ?TOO.HOT as follows:

: ?TO0.HOT (burner# temp --)
LIMIT @ > IF ." DANGER -~ REDUCE HEAT " THEN ;

which works like this:

210 0 ?TOO.HOT_ ok
230 0 ?TOO.HOT_DANGER -- . .! UCE HEAT ok
300 1 ?TOO0.HOT ok
350 1 ?TOO.HOT DANGER -- REDUCE HEAT ok

etc.

+ .

For Beginners

a) Some people call the "offset" an "index," and some people
say that one uses an offset to "index into" an array.

b) The reason we number our burners 0 through 4 instead of 1

through 5 is so that we can use the burner number itself
(doubled for byte addressing) as the offset.

A thing which most people would call the "first" in a series,
programmers think of as the "zeroth." Still, if you need to
call the burner on the left "burner 1," you can simply
change LIMIT to say

¢ LIMIT 1- 2* LIMITS + ;

Sy

8 VARIABLES, CONSTANTS, AND ARRAYS 199

Another Example — Using an Array for Counting

Meanwhile, back at the egg ranch:

Here's another example of an array. In this example, each
element of the array is used as a separate counter. Thus we can
keep track of how many cartons of "extra large" eggs the machine
has packed, how many "large," and so forth.

Recall from our previous definition of EGGSIZE (in Chap. 4) that
we used four categories of acceptable eggs, plus two categories
of "bad eggs."

REJECT
SMALL
MEDIUM
LARGE
EXTRA LARGE
ERROR

U WO HO

S0 let's create an array that is six cells long:

VARIABLE COUNTS 10 ALLOT
The counts will be incremented using the word [+1], so we must be
able to set all the elements in the array to zero before we begin
counting. The phrase

COUNTS 12 0 FILL
will £ill twelve bytes, starting at the address of COUNTS, with
zeros. If your FORTH system includes the word [ERASE|,? it's
better to use it in this situation. |ERASE| fills the given number
of bytes with zeroes. Use it like this:

COUNTS 12 ERASE y

FILL (adr n b ==) Fills n bytes of memory,
" beginning at the address,
with value b.

ERASE (adr n —) Fills n bytes of memory,
beginning at the address,
with zeroes.

t FORTE-79 Standard

..-ASE| is included in the optional Reference Word Set.

200 o .. Starting FORTIL_.

e LT Vi TR, TS T,
= AN o PRIt

e s L TR A

—For—convenience, we can put the phrase inside a definition, like’
this:

: RESET COUNTS 12 ERASE ;

Now let's define a word which wili give u;:.‘the address of one of
the counters, depending on the category number it is given (0.
through 5), like this:

: COUNTER 2* COUNTS +

~—and-another word which will add one to the counter whose' number
is given, like this:

: TALLY COUNTER 1 SWAP +! :

""" The "1" serves as the increment for [+I], and [SWAP puts the
arguments for in the order they belong, i.e., (n adr ==).

Now, for instance, the phrase

v ‘ 1 - N o !

3 TALLY

will increment the counter that corresponds to large eggs.
" Now Tet's define a word which converts the weight per dozen into
a category number:

CATEGORY DUP 18 < IF B ELSE
DURP 21 < IF 1 ELSE
DU 24 < IF 2 ELSE
Dup 27 < IF 3 ELSE | J
Dur 236 < IF 4 ELSE
S
- THEN THEN THEN THEN THEN SWAP DROP 7t v

(By the time we get to the phrase "SWAP DROP," we will have two
values on the stack: the weight which we have been [DUPBing and
the category number, which will be on top. We want only the
category number; "SWAP DROP" eliminates the weight.)

t For Experts

We'll see a simpler definition at the end of this chapter.

8 VARIABLES, CONSTANTS, AND ARRAYS 201

For instance, the phrase
25 CATEGORY

will leave the number 3 on the stack. The above definition of
CATEGORY resembles our old definition of EGGSIZE, but, in the
true FORTH style of keeping words as short as possible, we have
removed the output messages from the definition. Instead, we'll
define an additional word which expects a category number and
prints an output message, like this:

LABEL DUP 8= IF ." REJECT " ELSE
DUP 1 = IF .' SmMALL " ELSE
DUP 2 = IF ." MEDIUM " ELSE
DUP 3 = IF ." LARGE " ELSE
DUP 4 = IF ." EXTRA LARGE " ELSE
" ERROR "

THEN THEN TGEN THEN THEN DROP 3t
For example:
1 LABEL SMALL ok
Now we can define EGGSIZE using three of our own words:
: EGGSIZE CATEGORY ‘DUP LABEL TALLY ;
Thus the phrase
23 EGGSIZE
will print
MEDIUM ok
at your terminal and update the counter for medium eggs.

How will we read the counters at the end of the day? We could
check each cell in the array separately with a phrase such as

3 COUNTER ?

(which would tell us how many "large" cartons were packed). But
let's get a little fancier and define our own word to print a
table of the day's results in this format:

TFor Experts

We'll see a more elegant version of this definition in the next
chapter. .

202 ' \ Starting FORTII

T e T T VTR e 8 e SRR AT T VT AT T
e———-QUANTITY SIZE T Rt I e T
1 REJECT
112 SMALL
132 MEDIUM
143 LARGE :
159 EXTRA LARGE
0 ERROR

Since we have already devised category numbers, we can simply
use a loop and index on the category number, like this:

! REPORT PAGE . QUANTITY SIZE" CR CR

a e 6 8 DO I COUNTER @. S U.R .v. . IR
7 SPACES I LABEL CR LOOP ;

(The phrase

I COUNTER @ 5 U.R

takes the category number given by , indexes into the array,
and prints the contents of the proper element in a five-column
‘field.)

- - et oy —~

Factoring Definitions

This is a good time to talk about factoring as it applies to
FORTH definitions. We've just seen an example in which factoring
simplified our problem.

Our first definition of EGGSIZE, from Chap. 4, categorized eggs by
weight and printed the name of the categories at the terminal.
In our present version we factored out the "categorizing" and the
"printing" into two separate words. We can use the word
CATEGORY to provide the argument either for the prirnting word or
the counter-tallying word (or both). And we can use the printing
word, LABEL, in both EGGSIZE and REPORT.

As Charles Moore, the inventor of FORTH, has written:
A good FORTH vocabulary contains a large number of small

words. It is not enough to break a problem into small
pieces. The object is to isolate words that can be reused.

For example, in the recipe:

8 VARIABLES, CONSTANTS, AND ARRAYS 203

Get can of tomato sauce.
Open can of tomato sauce.
Pour tomato sauce into pan.
Get can of mushrooms.

Open can of mushrooms.

Pour mushrooms into pan.

you can "factor out" the getting, opening, and pouring, since
they are common to both cans. Then you can give the
factored-out process a name and simply write:

TOMATOES ADD
MUSHROOMS ADD

and any chef who's graduated from the Postfix School of Cookery
will know exactly what you mean.

Not only does factoring make a program easier to write (and fix!),
it saves memory space, too. A reusable word such as ADD gets
defined only once. The more complicated the application, the
greater the savings.

Here's another thought about FORTH style before we leave the egg
ranch. Recall our definition of EGGSIZE

: EGGSIZE CATEGORY DUP LABEL TALLY ;

CATEGORY gave us a value which we wanted to pass on to both
LABEL and TALLY, so we include the [DUP|. To make the definition
“cleaner," we might have been tempted to take the out and
put it inside the definition of LABEL, at the beginning. Thus we
might have written ‘

: EGGSIZE CATEGORY LABEL TALLY ;

where CATEGORY passes the value to LABEL, and LABEL passes it on
to TALLY. Certainly this approach would have worked. But then,
when we defined REPORT, we would have had to say '

I LABEL DROP
instead of simply

I LABEL
FORTH programmers tend to follow this convention: when possible,
words should des their own parameters. In general, it's

better to put the [DUP| inside the "calling definition" (EGGSIZE,
here) than in the "called" definition (LABEL, here).

204 . Starting LORLU
P TSI ST TL e 31 © s b e v e W v e T

Another Example — "Looping" through an Array

We'd like to introduce a little technique that is relevant to

arrays. We can best illustrate this technique by writing our own

definition of a FORTH word called [DUMP|.t [DUMP] is used to print
_.out the contents of a series of memory addresses. The usage is..

adr count DUMP
For instance, we could enter

‘COUNTS 12 DUMP)

to print out the contents of our egg-counting array calle

—COUNTS. Since is primarily designed as a programming tool
to print out the contents of memory locations, it prints either
byte-by-byte or cell-by-cell, depending on the type of
addressing the computer uses. Our version of [DUMPL will print
cell-by-cell.

Obviously our will involve a loop. The question is:
what should we use for an index? Although we might use the count
itself (0 - 6) as the loop index, it's better to use the address as
_the index. - - - .

The address of COUNTS will be the starting index for the loop,
while the address plus the count will serve as the limit, like
this:

— ——

: DUMP OVER + SWAP DOCRI@ 5 U.R 2 /LOOP ; }
The key phrase here is
OVER + SWAP

which immediately precedes the [BOQ].

TFORTH-79 Standard
The Standard does not require [DUMP).
{FPor Those Whose Systems Do Not Have

Substitute [+LOOP].

¥

§ VARIABLES, CONSTANTS, AND ARRAYS \ 205

(OVER] B | (GwAP]

T | I e———— |
Starting ending starting
count address address address
Startin starting ending
addresg count address address
starti ,
address —
e

The ending and starting addresses are now_on the stack, ready to
serve as the limit and index for the loop. Since we are
"indexing on the addresses," once we are inside the loop we
merely have to say

I@ 50U.R
to print the contents of each element in the array. Since we are
examining bytes in pairs (because fetches a 16-bit value), we
increment the index by two each time, by using

2 /LOOP

200 Starting FORTI __

oSy, AT RSTRTRISEPENLE R RS Y

“"ByteTArrays

FORTH lets you create an array in which each element consists of
--a single byte rather than a full cell. This is useful any time
you are storing a series of numbers whose range fits into that

which can be expressed within eight bits.

o+
o~

S

&
N
~
o

9n p

e g

~N
™

Y]
~

)

N

P

i

L

~~The-range of an unsigned 8-bit number 'is 0 to 255. Byte arrays
are also used to store ASCII character strings. The benefit of
using a byte array instead of a cell array is that you can get
the same amount of data in half the memory space.

The mechanics of using a byte array are the same as using a cell
array except that .

— Rl R b . RARY -

1. you don't have to double the offset, since each element
corresponds to one address, and

- ~2. -you -must-use-—the words and instead™of [I] and [@. "
These words, which operate on byte values only, have
been given the prefix "C" because their typical use is
accessing ASCII characters. :

|
C! (b adr —) Stores an 8-bit ([c-
value into the \Store
' address. ’
ca (adr -— b) Fetches an 8-bit (-
value from the |fetch
address. :

8 VARIABLES, CONSTANTS, AND ARRAYS 207

Initializing an Array

Many situations call for an array Wwhose values never change
during the operation of the application and which may as well be
stored into the array at the same time that the array is created,
just as [CONSTANT|s are. FORTH provides the means to accomplish
this through the two words and [[] (pronounced create and
comma) . -

Suppose we want permanent values in our LIMITS array. Instead of
saying

VARIABLE LIMITS 8 ALLOT
we can say
CREATE LIMITS 220 , 340 , 170, 100, 190,

Usually the above line would be loaded from a disk block, but it
also works interactively.

Like the word [VARIABLE|, [CREATE] puts a new name in the
dictionary at compile time and returns the address of that
definition when it is executed. But it does not "allot" any
bytes for a value.

The word [takes a number off the stack and stores it into the
array. So each time you express a number and follow it with .
you add one cell to the array.f

LIMITS | 220(3] 340 (3]

LIMITS LIMITS LIMITS
code for code for code for
CREATE CREATE CREATE

220 220
340

dictionar‘y

T For Newcomers .

Ingrained habits, learned from English writing, lead some
newcomers to forget to type the final [in the line. Remember
that [] does not separate the numbers, it compiles them.

R IR w1 AR T L e T et B R et O i

208 Starting FORTH
IR S S

e s
IR - e e TR STREL T PTaa 3 T Radt i

You can access the elements in a [CREATE array just as you would’
the elements in a [VARIARBLE| array. Ior example:

LIMITS 2+ @ 340 ok

You can even store new values into the array, just as you would

into a |VARIABLE| array, as long as you don't do this in an,

application that you someday hope to target compile.f

To initialize a byte-array that has been defined with [CE' ' [E|,
you can use the word (c=comma).f For instance, we could swore
each of the values used in our egg-sorting definition CATEGORY as
follows:

- -~

CREATE SIZES 18 C, 21 C, 24 C, 27¢C, 30 ¢C, 255 C,

This would allow us to redef:- __CATEGORY usiné a loop rather
than a series of nested [IF|..._ " . statements, as followst¥

:'CATEGORY 6 0 DO DUP SIZES I + C@
: < IF DROP I LEAVE THEN LOOP ; i

Note that we:have added a maximum-(255) to:the array to.simpXify
our definition regarding category 5. .

e YadUE o) +
Includlng the inifialization of the SIZES array, thlS version
_takes only three lines of source text as opposed to six.and takes
less space in the dictionary, too.

\TFor People Who Intend to Use polyFORTH's Target Compiler ..

In a target-compiled application, [VARIABLE| arrays will reside in
RAM; tables defined by [CREATE| and initialized by [] or will
reside, fixed, in PROM.

!FORTH-79 Standard
is included in the optional Reference Word Set.

tFor People Who Don't Like Guessing How It Works

The idea here is this: since there are five p0551ble categorles,
we can use the category numbers as our loop index. Each time
around, we compare the number on the stack against the element
in SIZES, offset by the current loop index. As soon as the
weight on the stack is greater than one of the elements in the
array, we leave the loop and use to tell us how many times we
had looped before we "left." Since this number is our offset
into the array, it will also be our category number.

8 VARIABLES, CONSTANTS, AND ARRAYS

209

Here is a list of the FORTH words we've covered in this chapter:

CONSTANT xxx

VARIABLE xXXx

CREATE XXX

ce

FILL

BASE

(n —)
Xxx: (=-- n)

xxx: (=-- adr)
xxx:' (=-- adr)

(n adr —)
(adr == n)

(adr ==)

5

(b adr —)

(adr -- b)

(adr n b —)

(n —)

Creates a constant named
XXX with the value n; the
word Xxx returns n when
executed.

Creates a variable named
xxX; the word xxx returns
its address when executed.

Creates a dictionary entry
(head and code pointer

only) named xxx; the word
xxx returns its address when
executed.

Stores a 1l6-bit number into
the address.

Replaces the address with its
contents.

Prints the contents of the
address, followed by one
space.

Adds a 16-bit number to the
contents of the address.

Adds n bytes to the para-
meter field of the most
recently defined word.”’

Compiles n into the next
available cell in the dic-

‘tionary.

Stores an 8-bit value into
the address.

Fetches an 8-bit value from
the address.

Fills n bytes of memory,
beginning at the address,
with value b.

‘A variable which contains
.the value of the number base

being used by the system.

210

Tt —————

Starting FORTH

2VARIABLE xxx

2CONSTANT xxx

2@

Double-length Operators

(=)

xxx: (-- adr)
(d--)

xxx: (== d)
(d adr ——P)
(adr -— d)

(Optional in FORTH-79 Standard)

Creates a double-length
variable named xxX;

the word xxx returns its
address when executed.

Creates a double-length
constant named xxx with
the value d;

the word xxx returns the
value d when executed.

Stores a double-length
number into the address.

Returns the double-length
contents of the address.

c,

DUMP

ERASE

Words Included in the FORTH-79 Standard Reference Word Set

(b~)

(adr u =~)

(adr n ——)

Compiles b into the next
available byte in the
dictionary.

Displays u bytes of memory,
starting at the address. .

Stores zeroes into n bytes
of memory, beginning at
adr.

Additional Words Available in Some Systems

0 (-0 Returns the constant zero.

1 (— 1 Returns the constant one.

0. ({ —00 Returns the double-length
constant zero.

KEY

n, nl ... 16-bit signed numbers b 8-bit byte

4, 41, ... 32-bit signed numbers £ Boolean flag

u, ul, ... 16-bit unsigned numbers c ASCII character

ud, udl, ... 32-bit unsigned numbers adr address |

value

s VARIABLES, CONSTANTS, AND ARRAYS 211

Review of Terms

Array

Constant

Factoring

Fetch
Initialize

Offset

Store

Variable

a series of memory locations with a single
name. Values can be stored and fetched into
the individual locations by giving the name of
the array and adding an offset to its address.

a value which has a name. The value is stored
in memory and usually never changes.

as it applies to programming in FORTH,
simplifying a large job by extracting those
elements which might be reused and defining
those elements as operations.

to retrieve a value from a given memory
location. |

to give a variable (or array) -its initial
value(s) before the rest of the program begins.

a number which can be added to the address of
the beginning of an array to produce the
address of the desired location within the
array.

to place a value in a given memory location.

a location in memory which has a name and in
which values are frequently stored and fetched.

212

Starting FORTH

-—-Problems — Chapter 8-

1.

a) Write two words called BAKE-PIE and EAT-PIE. The first
word increases the number of available PIES by one. The
second decreases the number by one and thanks you for the
pie. But if there are no pies, it types "What pie?"
(Make sure you start out with no pies.)

EAT-PIE WHAT PIE?
BAKE-PIE ok
EAT-PIE THANK YOU! ok

b) Write a word called" FREEZE-PIES which takes all the
available pies and adds them to the number of pies in the
freezer. Remember that frozen pies cannot be eaten.

BAKE-PIE BAKE-PIE FREEZE-PIES ok
PIES ?_0_ _ <
FROZEN-P__' ?_2 ok

Define a word called .BASE which prints the current value of
the variable in decimal. Test it by first changing
[BASE| to_some value other than. ten., (This one's trickjer
than it may seem.))

DECIMAL .BASE 10 ok
HEX .BASE 16 ok

Define a number-formatting word called M. which prints a
double-length number with a decimal point. The position of
the decimal point within the number is movable and depends

on the value of a variable that you will define as PLACES.
For example, if you store a "1" into PLACES, you will get

200,000 M. 20000.0 ok

that is, with the decimal point one place from the right. A
zero in PLACES should produce no decimal point at all.

§ VARIABLES, CONSTANTS, AND ARRAYS 213

In order to keep track of the inventory of colored pencils
in your office, create an array, each cell of which contains
the count of a different colored pencil. Define a set of
words so that, for example, the phrase

RED PENCILS.

returns the address of the cell that contains the count of
red pencils, etc. Then set these variables to indicate the
following counts:

23 red pencils

15 blue pencils
12 green pencils
0 orange pencils

A histogram is a graphic representation of a series of
values. Each value is shown by the height or length of a
bar. In this exercise you will create an array of values and
print a histogram which displays a line of "*"s for each
value. First create an array with about ten cells.
Initialize each element of the array with a value in the
range of zero to seventy. Then define a word PLOT which
will print a line for each value. On each line print the
number of the cell followed by a number of "*"s equal to the
contents of that cell. :

For example, if the array has four cells and contains the
values 1, 2, 3, and 4, then PLOT would produce:

1 *

D k%

3 kEk*

4 kkxK 0

2 e e e T T - Starting -FORTH-—

6. Create an application that displays a tic-tac~toe board, so
that two human players can make their moves by entering them
from the keyboard. For example, the phrase

4 X!

puts an "X" in box 4 (counting starts with 1) and produces
this display:

Then the phrase
3 0!

puts an "O" in box 3 and prints the display:

Use a byte array to remember the contents of the board, with
the value 1 to signify an "X," a -1 to signify a "O," and a 0
to signify an empty box.

(NOTE: until we explain more about vocabularies, avoid

naming =rything "X," since this may conflict with the
editor's .i.)

9 UNDER THE HOOD

Let's stop for a chapter to lift FORTH's hood and see what goes
on inside.

Some of the information contained herein we've given earlier,
but, at the risk of redundancy, we're now going to view the FORTH
"machine" as a whole, to see how it all fits together.

Inside [17.........0

Back in the first ~hanter we learned that the text interpreter,
whose name is [INT . _..J|, picks words out of the input stream and

tries to _find *hei. uefinitions in the dictionary. If it finds a
word, [INTERE, I has it executed.

[E 142 32 Print_an asterisk |

o
°

2 3 spaers—
OO MO M OR O OATOAN

We can perform these separate operations ourselves hv using
words that perform the component functions of [INTERE.._f]. For
instance, the word [Y] (an apostrophe, but pronounced tick) finds a
definition in the dictionary and returns its address. If we have
defined GREET as we did in Chap. 1, we can now say

' GREET U. 25520 ok

and discover the address of GREET (whatever it happens to be).

216 . o - . 4e-. . Starting FORTH .

We may also directly use [EXECUTE|. [EXECUTE] will execute a
definition, given its address on the stack. Thus we can say

' GREET EXECUTE HELLO I SPEAK FORTH ok

and accomplish the same thing as if we had merely said GREET,
only in a more roundabout way.

If tick cannot find a word in the dictionary, it executes [ABORT"
and prints a question mark.

FORTH's text interpreter uses a word related to tick that returns
a zero flag if the word is found. The name and usace of the word
varies, 1 but the conditional structure of the [IN = ! 7 phrase
always looks like this:

(£ind the word) IF (convert to a number) N
ELSE (execute the word)
THEN

fagan

that is. if the string is not a defined word in the dictionary,
INTERE - [] tries to convert it as a number. If it is a defined

word, |1 . RPRET| executes it.

The word [] has several uses. For instance, you can use the
phrase

' GREET .

to find out whether GREET has been defined, without actually
having to execute it (it will either print the address or respond
"?"). In systems that only save the first three characters of 2
name, you can also use the above phrase to determine whether a
name that you want to give to a new definition will conflict with
a predefined name.

tPORTH~79 Standard

The word [FIND| attempts to find the next word in the input strear
in the dictionary and then returns its address or, if not found, #

zero.
{For polyFORTH Users

The word B attempts to find the next word in the input strea
the dictionary. If the search is successful, [-'] leaves
parameter field address and false; if unsuccessful, leaves |

and true.

9 UNDER THE HOOD 217

You can also use the address to [DUMP| the contents of the
definition, like this:

' GREET 12 DUMP

Or you can change the value of a constant by first finding its
address, then storing the new value into it, like this:

110 ' LIMIT !

Or you can use tick to implement something called "vectored
execution." Which brings us to the next section ...

Vectored Execution

While it sounds hairy, the idea of vectored execution is really
quite simple. Instead of executing a definition directly, as we
did with the phrase

' GREET EXECUTE

we can execute it indirectly by keeping its address in a
variable, then executing the contents of the variable, like this:

' GREET POINTER !
POINTER @ EXECUTE

The advantage is that we can change the pointer later, so that a
single word can be made to perform different things at different
times. - !

Here is an example that you can try yourself:

1 HELLO . HELLO ™

2 GOODBYE . GOODBYE "

2 UARIABLE ’ALOHA

4 ALOHA ‘ALOHA @ EXECUTE
S

& 7 HELLO "ALOHR |

In the first two lines, we've simply created words which print the
strings "HELLO" and "GOODBYE." 1In line 3, we've defined a
variable called 'ALOHA. This will be our pointer. In line 4,
we've defined the word ALOHA to-execute the definition whose
address 1s in 'ALOHA. In line 6, we store the address of HELLO
into 'ALOHA. ’ '

Now if we execute ALOHA, we will get

- 210 TERSCTT e T TR

SRS 838U AL ook, % M+ 0 e T e B

.-, .Starting FORTH...

ALOHA HELLO ok
Alternatively, if we executé the phrase
' GOODBYE 'ALOHA !
-—to store the address of GOODBYE into 'ALOHA, we will get
. ALOHA GOODBYE ok
—Thus the same word, ALOHA, cén do two different things.
Notice that we named our pointer 'ALOHA (which we would
“"pronounce tick-aloha). Since tick provides an address, we use it
as a prefix to suggest "the address of" ALOHA. It is a FORTH

naming convention to use this prefix for vectored execution
pointers.

Tick always goes to the next word in the input stream.t What if
we put tick inside a definition? When we execute the definition,
tick will find the next word in the input stream, not the next
word in the definition. Thus we could define

: SAY ' 'ALOHA ! ;
then enter

SAY HELLO ok
ALOHA HELLO ok

or

SAY GOODBYE ok
ALOHA GOODBYE ok

to store the address of either .HELLO or GOODBYE into 'ALOHA.
But what if we want tick to use the next word in the definition?,

We must use the word (bracket-tick-bracket) instead of tick.*
For example:

: COMING ['] HELLO 'ALOHA ! ;
": GOING ['] GOODBYE 'ALOHA ! ;

TFORTH-79 Standard

The behavior of tick as described by the Standard differs
somewhat from that explained here. See Appendix 3.

iFor Some Small-system, Non-polyFORTH, Users

If your keyboard doesn't have a "[" or "]" key, the documentation
that came with your FORTH system should indicate substitutes.

9 UNDER THE HOOD 219

Now we can say

COMING ok
ALOHA_HELLO ok
GOING ok
ALOHA_GOODBYE ok

Here's an example of vectored execution that can be found on
certain FORTH systems. When FORTH is first loaded, the word
can only convert single-length numbers. But after
double-length routines are loaded, can convert
double-length or single-length numbers. It would not be enough
to simply redefine [NUMBER], because then you would also have to
redefine [INTERPRET] and anv other word which uses [NUMBER|.
Instead, the definition of [N.* -IR] is something like

: NUMBER 'NUMBER @ EXECUTE ;

where is the variable used as a pointer. When FORTH is
first loaded, this variable contains the address of the
single~length version. But when the dc -"e-length routines are
loaded, a new definition called [(NUME._..,|, with double-length
capability, is added to the dictionary. On the line below the
definition in the load block is the phrase

' (NUMBER) 'NUMBER !

When is executed in the future, whether by or
whomever, the contents of |'NUMR®R are fetched and this
definition is executed, giving [NU“ - _- new-found double-length
capability.

Here are the commands we've covered so far:t

' XXX (-- adr) Attempts to find the(+ick
.« address of xxx (the

word that follows in

the input stream) in the

dictionary.
] compile time: Used only in a colon
(-) definition, compiles tick-
run time: the address of the brc;ccket
(-— adr) i next word in the

definition as a literal.

T FORTH-79 Standard

See Appendix 3.

ety o e . . N A

220 ... Starting FORTH

The Structure of a Dictionary Entry

All definitions, whether they have been defined by [, by
[VARIABLE|, by [CREATE], or by.any other "defining word," share
these basic parts:

name field

link field

code pointer field
parameter field

Using the variable DATE .as an example, here's how these
components are arranged within each dictionary entry in systems
that have a three-character-maximum name field. In this diagram,
each horizontal line represents one cell in the dictionary:

precedence
bit
(previous definition)
4 n
name
A T
link
code pointer
parameter |
field |

Systems that allow thirty-one-character-maximum name fields
usually follow the same pattern, but the name field may take
anywhere from two to thirty-two bytes, depending on the name.
The order of the four components may also vary.

f FORTH-79 Standard

The FORTH-79 Standard allows thirty-one-character-maximum name
fields, but does not specify the order of the field within the
dictionary entry. The order is considered implementation-
dependent.

9 UNDER THE HOOD 221

In this book, we're only concerned with the functions of the four
components, not with their order inside a dictionary entry.
We'll use the three-character version as our example because it's
the simplest. .

Name

In our example, the first byte contains the number of characters
in the full name of the defined word (there are four letters in
DATE). The next three bytes contain the ASCII representations of
the first three letters in the name of the defined word. In a
three-character system, this is all the information that tick or
bracket-tick-bracket have to go on in matching up the name of a
definition with a word in the input stream.

(Notice in the diagram that the sign bit of the "count" byte is
called the "precedence bit." This bit is used during compilation
to indicate whether the word is supposed to be executed during
compilation, or to simply be compiled into the new definition.
More on this matter in Chap. 11.)

Link

The "link" cell contains the address of the previous definition
in the dictionary list. The link cell is used in searching the
dictionary. To simplify things a bit, imagine that it works this
way: ‘

[g
-

]
UGH ::]
ME —
CAVE — Each time the compiler adds a
YOU =1 new word to the dictionary, he
47 "sets the link field to point to
PLOW the address of the previous
cITY _:! definition. Here he is setting
- the link field of CUISINART to
NATION . point to the definition of CAR.

CAR

l
-
l_ CUISINART

it
$e

5\

Lﬁ,

e

i

e ey e s
B S S A o g

222 e . . . Starting FORILH._..

3

{

{
QL
Nl

UGH '
ME _l:]
At search t:.me, tick (or CAVE —~_—]“
bracket-tick-bracket, ete.) starts YOU I
with the most recent word and -]
" s PLOW
follows the "chain" backwards, :] .
using the address in each link ' cITY -
cell to locate the next dEflnl— NATION R
-tion back. g i
V cAR il (tick)
| CUISINART -

The link field of the first definition in the dictionary contains
a zero, which tells tick to give up; the word is not in the
dictionary.

Code pointer

Next is the "code pointer." The address contained in this
p01nter is what dlstlngulshes a variable from_a constant or a |
colon deéfinition. It is’'the address of theé instruction that'is
executed first when the particular type of word is executed. For
example, in the case of a variable, the pointer points to code
that pushes the address of the variable onto the stack. In the
case of a constant, the pointer points to code that pushes the
contents of the constant onto the stack. In the case of a colon
definition, the pointer points to code that executes the rest of
the words in the colon definition.

The code that is pointed to is called the "run-time code"
because it's used when a word of that type is executed (not when
a word of that type is defined or compiled).

9 UNDER THE HOOD 223

VARIABLE DATE 4 D | Y- ABLE
r .- ‘ime code
A T (when executed,
link pushes the
- address of a
code pointer : variable onto
12 the stack).
CONSTANT LIMIT 5 L CONSTANT]
I M run-time code
link (when executed,
- pushes the
code pointer contents of a
220 constant onto
the stack).
: EGGSIZE 7 E
G G [run-time code
- (when executed,
fink executes the
code pointer words that
comprise the
(rest of definition) definition).
VARIABLE ‘'ALOHA 6 ’
A L
link
code pointer
2AE4 |

All variables have the same code pointer; all constants have the
same code pointer of their own, and so on.

Parameter field

Following the code pointer is the parameter field. In variables
and constants, the parameter field is only one cell. In a
[2CONSTANT] or (2VARIABLE|, the parameter field is two cells. In
an array, the parameter field can be as long as you want it. In
a colon definition, the length of the parameter field depends on

the length of the definition, as we'll explain in the next
section. -

The address that is supplied by tick and expected by is
the address of the beginning of the parameter field, called the
parameter-field address (pfa).

224 T Starting FORTH

count)
T 2 7T Y head
link
e - code pointer

pta B body

. paramoter {
field R
: J

By the way, the name and link fields are often called the "head'
of the entry; the code pointer and parameter fields are called
the "body."

The Basic Structure of a Colon Definition

While the format of the head and code pointer is the same for a'.
types of definitions, the format of the parameter field varic.
from type to type. Let's look at the parameter field of a colon
definition.

The parameter field of a colon definition contains the addresser
of the previously defined words which comprise the definition.’
Here is the dictionary entry for the definition of PHOTOGRAPY,
which we defined as:

: PHOTOGRAPH SHUTTER OPEN TIME EXPOSE SHUTTER CLOSE ;

When PHOTOGRAPH is executed, the definitions that are located a:
the successive addresses are executed in turn. The mechani:"
which reads the list of addresses and executes the definitions at
each address is called the "address interpreter.”

tror Experts

The addresses that comprise the body of a colon definition are
usually code-field addresses (cfa), not parameter-field addresscs.

9 UNDER THE HOOD

225

10

P

The word [}] at the end of the
definition compiles the

H

o

address of a word called

link

EXIT|. As you can see in the
figure, the address of |EXIT

code pointer

resides in the last cell of

adr of SHUTTER

the dictionary entry. The

adr of OPEN

address interpreter will
execute |[EXIT| when it gets to

adr of TIME

this address, just as it

parameter

field adr of EXPOSE

executes the other words in
the definition. EXIT

adr of SHUTTER

terminates execution of the

adr of CLOSE

address interpreter, as we
will see in the next section.

adr of EXIT

Nested Levels of Execution

The function of [EXIT| is to return the flow of execution to the
next higher-level definition that refers to the current
definition. Let's see how this works in simplified terms.

Suppose that DINNER consists of three courses:

: DINNER SOUP ENTREE DESSERT ;

and that tonight's ENTREE consists simply of

: ENTREE CHICKEN RICE ;

DINNER

Interpreter
pointer

We are executing DINNER and we have
just finished the SOUP. The pointer
that is used by the address
interpreter is called the "interpreter
pointer" ([I). Since the next course
after SOUP is the ENTREE, our
interpreter pointer is pointing to the
cell that contains the address of
ENTREE.

226

adr of
ENTREE

odr of

DESSERT

Now we begin to execute

ENTREE.

execute

The first thing we
is ENTREE's

"code," i.e., the code that
is pointed to by the "code
field," common to all colon
definitions.

This code does two things:

First,

it saves the con-

tents of the interpreter
pointer on the return stack

DINNER

DESSERT

ENTREE

 DINNER

StartinT ;-

Before we go off and execute ENTI
we first increment the interprets
.pointer so that when we come Lad
will be pointing to DESSERT,

o | ENTREE| €

.

adr of

CHICKEN

code for - :

, ~ jﬁ Codt 11
ENTREE critein.

DESSERT ﬁki

then it put-
address of it§ oy
parameter fia’
address (pfa! int
interpreter point:*
Now the interpret::
pointer is pointits
to CHICKEN.
address interp:
gets ready to 5t
up the chicken.

Gm wi.

9 UNDER THE HOOD 227

DINNER
ENTREE CHicken| 7 | @
HiT
ik
older l——— | SR L«——EEE-L

I ‘z\ﬂi‘f CHICKEN Cr ffq
elasst T DESSERT RICE = ¥

But first, as we did with ENTREE, we increment the pointer so that
when we return it will be pointing to RICE. Then CHICKEN's code
saves this pointer on the return stack and puts CHICKEN's own pfa
into the interpreter pointer.

DINNER

ENTREE CHICKEN

|

W L
DESSERT RICE g r

' EXIT

W

L5

Finally we have our chicken, as the above process contiunes all
down the line to the lowest-level definition inveolved in the

"ing of the succulent poultry. Sooner or later we come to the
. ~.[T) in CHICKEN.

DINNER

ENTREE EXIT] takes the
number off the top of
mmm— IEE— the return stack and
puts it in the inter-

preter pointer. Now
R

the address inter-

CHICKEN ; .

preter continues with
oid DESSERT T [BT7| RICE the execution of
1 E— s = RICE.

= EXIT

228 Starting FORTH - -

DINNER | !

Eventually, of course, the [EXIT in
ENTREE will put the value on the return

.l"‘ DESSERT stack into the interpreter pointer. At
IT last we're ready for DESSERT.
14

One Step Beyond

Perhaps you're wondering: what happens
when we finally execute the [EXIT] in
DINNER? Whose return address is on the QuIT ¢
stack? What do we return to? J

Well, rememher that DINNER has just been
executed by _ -~ ICUTE|, which is a component INTERPRET
of [INTERPRE.,. [INTERPRET] is a loop which ’
checks the entire input stream. Assuming ‘

that we entered after DINNER, then EXECUTE
there is nothing more to interpret. So l !
when we exit , where does that l

leave us? In the outermost definition for |

each terminal, called [QUIT. DINNER

QUIT|, in simplified form, looks like this:

: QUIT BEGIN (clear return stack) (accept input)
INTERPRET ." ok"™ CR 0 UNTIL ;

covered.) We can see that after the word [INTERPF comes a
dot-quote message, "ok," and a , which of course are what we
see after interpretation has been completed.

(The parenthetical comments represent words and %hre not yet

Next is the phrase
0 UNTIL

which unconditionally returns us to the beginning of the loop,
where we clear the return stack and once again wait for input.

If we execute [QUIT| at any level of execution, we will

9 UNDER THE HOOD 229

immediately cease execution of our application and re-enter
. T's loop. The return stack will be cleared (regardless of how
many levels of return addresses we had there, since we could
never use any of them now), and the system will wait for input.
You can see why |[QUIT| can be used to keep the message "ok" from
appearing at our terminal.

The definition of |ABORT"| uses [QUIT|. ;

Abandoning The Nest

It's possible to skip one level of execution simply by removing
one return address from the return stack. For example, consider
the three levels of execution associated with DINNER, shown here:

\

DINNER
N\
def. ~
of SOuP ENTREE : " [DESSERT EXIT
DINNER V) \ i
def. \ /"\ /-\
of CHICKEN RICE EXIT
ENTREE v]

Now suppose that the definition ENTREE is changed to:
: ENTREE CHICKEN RICE R> DROP ;

The phrase "R> DROP" will drop from the return stack the return
address of DESSERT, which was put on just prior to the execution
of ENT. i, If we reload these definitions and execute DINNER,
the _~.., on the third level will take us directly back to the
first level. We'll get SOUP, CHICKEN, and RICE but we'll skip
DESSERT, as you can see here:

\
DINNER EXIT

\ .
SOUUP ENTREE DESSERT EXIT

CHICKEN RICE R> DROP EXIT
\v) \ %4 v \)

Ty T TR P By

230

We're not necessarily éuggesting that you use "R> DROP" in an
applicatlion, just illustrating a point.

We've mentioned that the word [EXIT] removes a return address from
atop. the return . stack and puts it into the interpreter pointer.
The address interpreter, which gets its bearings from the
interpreter pointer, begins looking at the next level up.
possible to include [EXIT] in the middle of a definition.
__example, if we were to redefine ENTREE as follows:

: ENTREE

then when we subsequently execute DINNER, we will exit right
after CHICKEN and return to the next course after'the ENTREE,

i.e., DESSERT.

CHICKEN EXIT RICE ;

Starting ORI

——

- LRI
N -

n

! DINNER

EXIT

. py T = +—

T~
SQEP ENTREE

DESSERT

EXIT

CHICKEN
A\

-

This time we get DESSERT but no RICE.

is commonly used in a disk block to keep the remainder of

the block from being loaded.

6 and beyond will not get compiled.

For example, if you edit into
the end of line 5 of a block and load it, any definitions in line

EXIT (—)

QUIT ¢ ==

When compiled within a
colon definition,
terminates execution of
that definition at that
point. When executed from
a load block, terminates
interpretation of the block
at that point.

Clears both stacks and
returns control to the
terminal. No message is
given.

It's
For

%

EXM:CE EXIT
et g - vy : it BN T

e~
Fowebat

FORTH

HE HOOD

Ly
Y
3

Geography

LOW
MEMORY

HIGH
MEMORY

PRE-COMPILED
FORTH

SYSTEM
VARIABLES

ELECTIVE
DEFINITIONS

USER
DICTIONARY

P S
PARAMETFR STACK

-+ {~H

INPUT 3E
Ri

RETURN STACK

USER
VARIABLES

BUFFERS

231

This is a "memory map"T of a
typical single-user FORTH system.
Multiprogrammed systems such as
polyFORTH are more complicated, as
we will explain later on. For now
let's take the simple case and ex-
plore each region of the map, one
at a time.

Precompiled Portion

In low memory resides the only
precompiled portion of the system
(already compiled into dictionary
form). On some systems this code is
kept on disk (often blocks 1 - 8) and
automatically loaded into low RAM
when you start up or "boot" the
computer. On other systems the
precompiled portion resides per-
manently in PROM, where it is active
as soon as you power up the com-
puter.

The precompiled portion usually
includes most of the single-length
math operators and number-
formatting words, single-length
stack manipulation operators, editor
commands, branching and structure-
control words, the assembler, all
the defining words we've covered so

fFor Beginners

A "memory map" depicts how computer
memory 1s divided up for various
purposes in a particular system.
Here, low-numbered addresses begin
at the top ("low memory") and in-
crease as the map goes down. Memory
space is measured in groups of 1,024
bytes. This quantity is called a
"K" (from "kilo-," meaning a
thousand, which is close enough).

232 p Starting FORLH
; RS Saaad ek a2

far, and, of course, the text and address interpreters.t

———— [

System Variables

The next section of memory contains "system variables" which are
. .created by the precompiled portion and used by the entire

system. They are not generally used by the user. ['NUMBER|,
__which we discussed earlier, is a system variable. .

Elective Definitions

The portion of the FORTH system that is not precompiled is kept
on disk in source-text form. You can elect to load or not to load
any number of these definitions to better control use of your
computer's memory space. The load block for all "electives" is
called the "electives block," usually block 9. To compile the
electives after you "boot," simply enter

9 LOAD
(or whichever block is the electives block for your system).

For example, in polyFORTH electives include double- and
mixed-length operators, extended editor commands, date and time
commands, and the ability to add new multiprogrammed tasks
including additional terminals. You can mask any of these
~electives out of the electives block simply by inserting
parentheses.

If your electives block contains this line:
(32-BIT ARITHMETIC) 30 LOAD 31 LOAD 32 LOAD

you can avoid loading the double-length routines by changing the
line to .

(32-BIT ARITHMETIC 30 LOAD 31 LOAD 32 LOAD)

If you want to change the electives block after you have already
loaded it, you must reload the system (by rebooting) before you
can reload the electives. (The word T~"70AD|, available on some
systems, will reload the system and not wue electives.)

1For Experts

To give you an idea of how compact FORTH can be, all of
polyFORTH's precompiled portion resides in less than 8K bytes.

9 UNDER THE HOOD 233

User Dictionary

The dictionary will grow into higher memory as you add your own
definitions within the portion of memory called the "user
dictionary." The next available cell in the dictionary at any
time is pointed to by a variable called . During the process
of compilation, the pointer is adjusted cell-by=-cell (or
byte-by-byte) as the entry is being added to the dictionary.
Thus is the compiler's bookmark; it points to the place in the
dictionary where the compiler can next compile.

is also used by the word [ALLOT]|, which advances by the
number of bytes given. For example, the phrase

10 ALLOT

adds ten to so that the compiler will leave room in the
dictionary for a ten-byte (or five-cell) array.

A related word is ._ .., which is simply defined
: HERE HG@G ;

to put the value of on the stack. The word [] (comma), which
stores a single-length value into the next available cell in the
dictionary, is simply defined

HE HERE | 2 ALLOT ;

that is, it stores a value into and advances the dictionary
pointer two bytes to leave room for it.

You can use [E . I to determine how much memory ary vart of your
applicaticr r-yuires, simply by comparing the [HE:., from before
with the [E ., after compiling. For example:

HERE 220 LOAD HERE SWAP - . 196 ok

-

indicates that the definitions loaded by block 220 - £filled 196
bytes of memory space in the dictionary.

234 Starting FORTH
oy e L e L R T PETE LR ¢ oKL g 0. L TEIE

The Pad

At a certain distance from HERD in your dlctlonary, you will find
a small region of memory called the "pad." Like a scratch pad,
it is usually used to hold ASCII character strings that are being
manipulated prior to being sent out to a terminal. For example,
the number-formatting words use the pad to hold the ASCII
numerals during the conversion process, prior to [TYPE.

The size of the pad is indefinite. 'In most systems there are
hundreds or even thousands of bytes between the beginning of the
—~pad and the top-of the parameter stack.

-—Since the pad's beginning address is defined relative to the last
dictionary entry, it moves every time you add a new definition or
execute {FORGET| or [EMPTY|. This arrangement proves safe,
however, because the pad is never used when any of these events
are occurring. The word returns the current address of the
beginning of the pad. It is defined simply:

: PAD HERE 34 + ; Lo

that is, *“* returns an address that is a fixed number of bytes
beyond [:] (The actual number may vary.)

Parameter Stack

Far above'l the pad in memory is the area reserved for the
parameter stack. Although we like to imagine that values
actually move up and down somewhere as we "pop them off" and
"push them on," in reality nothing moves. The only thing that
changes is a pomter to the "top" of the stack

i

As you can see below, when we "put a number on the stack,"'what
really happens is that the pointer is "decremented" (so that it
points to the next location toward low memory), then our number
is stored where the pointer is pointing., When we "remove a
number from the stack," the number is fetched from the location
where the pointer is pointing, then the pointer is incremented.
Any numbers above the stack pointer on our map are meaningless.

tFor Beginners

"above" refers to the higher memory addresses, which are "lower"
on our map.

+ JADER THE HOOD 235

r empty stack after enterinﬁ i after entering 2
Pl
| memary i8 is 18
| 2349 2349 2T
987 L aoiear 1
stack 0

bottom — |

pomter‘

0
L] L

[0
Ny

-—

3 StaCk
d pointer

stack
0 poianter

As new values are added to the stack, it "grows toward low
memory." ’

The stack pointer is fetched by the word (pronounced’ tick-S).
Since provides the address of the top stack location, the
phrase

'S @

fetches the contents of the top of the stack. This operation, of
course, is identical to that of [DUP|. If we had five values on
the stack, we could copy the fifth one down with the phrase

'S 8 + @

(but this is generally not considered good programming practice).

236 ‘ Starting FORLIL

The bottom of the stack is pointed to
by a variable called . {S-zero). 1
always contains the address of the next = -
cell below the "empty stack" cell.

For examples of good uses of ['S and
__[50], review the definitions of |LsPTH] q[stack
and of that we gave in the Handy Sllpointer

Hint at the end of Chap. 3.)

Notice that with double-length numbers,
- the high-order cell is stored at ‘the’ :
lower memory address whether on the
stack or in the dictionary. The
operators and keep the order of
—..cells consistent, as you can see here.

Ol N iCa

(Y O

low I
- " memory 4 | N
AM
fink
code
- high nigh
memory e
] oW
\ 1

Input Message Buffer

also contains the starting address for the "input message
buffer," which grows toward high memory (the same direction as
the pad). When you enter text from the terminal, it gets stored
into this buffer where the text interpreter will scan it.

Return Stack

Above the buffer resides the return stack, which operates
identically to the parameter stack. There are no high-level
FORTH words analogous to or that refer to the return
stack.

9 UNDER THE HOOD 237

User Variables

=

variables include and many others that we'll cover in
an upcoming section.

The next section nf ~-mory contains "user variables." These
-,

Block Buffers

At the high end of memory reside the block buffers. Each buffer
provides 1,024 bytes for the contents of a disk block. Whenever
you access a block (by listing or loading it, for example) the
system copies the block from the disk into the buffer, where it
can be modified by the editor or interpreted by [LOAD]. We'll
discuss the block buffers in Chap. 10.

This completes our journey across the memory map of a typical
single-user FORTH system. Here are the words we've just covered
that relate to memory regions in the FORTH system.

H (-—- adr) Returns the address of
the dictionary pointer.

HERE (=-- adr) Returns the next
available dictionary
location.

PAD (- adr) ' Returns the beginning

address of a scratch
area used to hold
character strings for
intermediate pro-

cessing.
'S (-— adr) Returns the address of
< the top of the stack

before 'S is executed.

S0 (—adr) . Contains the address of
: the bottom of the
parameter stack.

TFORTE-79 Standard -

{H, ['S), and are not required by the Standard.

234 ' uL.:u:Llng LORYH
[PR TR T TR g U R e AT i - o S A A R BEG

The Geography of a ‘Multi-tasked FORTH system

LOW
MEMORY R L - - e -
: ’ USER
PRE-COMPILED
FORTH DICTIONARY ‘
SYSTEM | S—
VARIABLES R
PAD
- . ELECTIVE . .
. DEFINITIONS
User Area - ‘
PARAMETER STACK ‘ (Terminal task)
USER AREA 1 INPUT MESSAGE |
(terminal task) B}\’_i;ER J'
USER AREA 2
(terminal task)
-7 N RETURN STACK ’)
USER AREA 3
(terminal task) USER
VARIABLES
USER AREA 4 .))
(control task) ’ .
. S
" PARAMETER STACK 5 -
OPERATOR : . — User Area -
(Contro! task)
BLOCK . RETURN STACK -
HIGH | nieena | VAR
MEMORYL BUFFERS ARIABLES

Some FORTH systems (such as polyFORTH) can be multitasked, so
that any number of additional tasks can be added. A task may be

tFor Beginners

The term "multitasked" describes a system in which numerous tasks
operate concurrently on the same computer without interference
from one another.

9 UNDER THE HOOD 239

either a "terminal task," which puts the full interactive power of
FORTH into the hands of a human at a terminal, or a "control
task,". which controls a hardware device that has no terminal.

Either type of task requires its own "user area." The size and
contents of a user area depends on the type of task, but typical
configurations for the two types of tasks are shown in the figure.

Each terminal task has its own private dictionary, pad, parameter
stack, input message buffer, return stack, and user variables.
This means that any words that you define at your terminal are
normally not available to other terminals. Similarlv, each task
has its own copies of the user variables, such as [Bi.. .

Each control task has a pair of stacks and a small set of user
variables. Since a control task uses no terminal, it doesn't need
a dictionary of its own; nor does it need a pad or a message
buffer.

Following the initial boot there is only one task, called
[OPERATOR. Loading the electives block will allocate space for
the various terminal and control-task partitions. Thus it is
possible to reconfigure the subtasks within a system by altering
the electives block and reloading it. But it's beyond the scope
of this book to explain how.

“3:10 . - T T Start;ng:,FORTI s

User Variables

The following list shows most of the user variables. Some we.
won't ever mention again. Don't try to memorize this table. Just
remember where you can find it.

S0 Pointer to the bottom of the parameter stack
and, for terminal tasks, the start of the input
message buffer.

SCR For thé editor, a pointer to the current block
number (set by LIST and used by Lj).

R# Current character position in the editor,

BASE Number conversion base.

H Dictionary pointer. Pointer to the next

available byte.

CONTEXT Contains up to four lndexes for vocabularles
to be searched. - :

CURRENT Contains the index of the vocabulary to which
new definitions will be llnked.
T>IN o W‘Pglnter to the current position in the 1n0ut
stream.
BLK If non-zero, a pointer(to the block being

interpreted by LOAD. A zero indicates
1nterpretatlon from the termlnal (via the
input message buffer). ‘ ‘

OFFSET Block offset to disk drives. The content of
OFFSET is added to the stack number by BLOCK. {'s

/«\7‘

User variables are not like ordinary varlables. With an ordinary
variable (one defined by the word [VARIABLE|), the value is kept
in the parameter field of the dlctlonary entry .

S

9 UNDER THE HOOD 241

Each user variable, on the other hand, is kept in an array called
the "user table." The dictionary entry for each user variable is
located elsewhere; it contains an offset into the user table.
When you execute the name of a user variable, such as [H, this
offset is added to the beginning address of the user table. This
gives you the address of in the array, allowing you to use

or 1] in the normal way.

VARIABLE USER USER Tabie
run-time run-time
code . code

YEAR Q H
link Jj link /
code code
1981 10 \‘>
1

The main advantage of user variables is that any number of tasks
can use the same definition of a variable and each get its own
value. Each task that executes

o o O Hh N O

value of H

BASE @

gets the value for BASE from its own user table. This saves a lot
of room in the system while still allowing each task to execute
independently.

User variables are defined by the word [USER]. The sequence of
user variables in the table and their offset values vary from one
system to another.

To summarize, there are three kinds of variables: System
variables contain values used by the entire FORTH system. User
variables contain values that are unigue for each task, even
though the definitions can be used by all tasks in the system.
Regular variables can be accessible either system-wide or within
a single task only, depending upon whether they are defined
within or within a private task.

242 . o R o _Starting roryLin

Vocabularies

Earlier we mentioned that the reason the in the editor doesn't
conflict with the [I] used in a loop Is that they belong to
separate "vocabularies." 1In a simple FORTH system there are
“three standard vocabularies: FORTH, the editor, and the
assembler.

All the words that we've covered so far belong to the FORTH
vocabulary, except for the editor commands which belong to the
editor vocabulary. The assembler vocabulary contains commands
that are used to write assembly-language code for your particular
computer. Since assembly code varies from computer to computer,
and since assembly language programming is a whole dlfferent
subject, we won't cover it in this book.

All definitions are added

to the same dictionary in ~_T

the order in which they QUARTERBACK

are compiled, regardless of COURT

which vocabulary they ‘
b&long~to: So vocabularies © [DRIBBLE - e e
are not subdivisions of the INNING I
dictionary; rather they are

independently linked lists CENTER

that weave through it. ~ GOALPOST - R B
For example, in the figure _ ump _
shown here, there are three STRIKE

vocabularies: football,

baseball, and basketball. CENTER é\m
All three are co-resident CENTER — I
im the same dictionary, but — _

when tick follows the PLACEKICK —

basketball chain, for SHORTSTOP

instance, it only finds DUNK

words in the basketball

vocabulary. -Even though HUDDLE T

each vocabulary has a word FREETHROW

called CENTER, tick will

find whichever version is

appropriate for the
context.

2
%

TFor the Curious

See Appendix 2.

9 UNDER THE HOOD 243

There is another advantage besides exclusivity, and that is speed
of searches. If we are talking about basketball, why waste time
hunting through the football and baseball words?

You can change the context in which the dictionary is searched
bv .sruting any of the three commands [FORTH|, [EDIT(_.. , or
[B. ...l . For example, if you enter

you know for sure that the search context is the FORTH
vocabulary.

Ordinarily, however, the FORTH system automatically changes the
context for you. Here's a typical scenario:

The system starts out with FORTH being the context. Let's say
you start entering an application into a block. Certain editor
commands switch the context to the editor vocabulary. You will
stay in the editor vocabulary until you load the block and begin
compiling definitions. The word [;] will automatically reset the
context to what it was before-~FORTH. -

Different versions of FORTH have different ways of implementing
vocabularies. Still, we can make a few general statements that
will cover most systems.

The vocabularv to be searched is specified by a u--—-_variable

¢ 'ed [T +T]. As we said, the commands [FORTH|, .. ITOR|, and
(2.7, IMBI. . ‘change the search context.

There is another kind of vocabulary "context": the vocabulary
to which new definitions will be linked. The link vocabulary is
specified by another variable called [CT, -. ... Because [CUF -. 1]

normally specifies the FORTH vocabula:.y, new definitions are
normally linked to the FORTH vocabulary.

But how does the system compilé words into the e4ditor and
assembler vocabularies? By using the word [DEFINIT.. .., as in

EDITOR DEFINITIONS

We know that *he word __ ITOR| sets |[CONTEXT| to "EDITOR." The
word [DEFINITI(". coOpies whatever is in [CONTEXT] into [CU . _..J.

The definition o. DEFINITIONS is simply

: DEFINITIONS CONTEXT @ CURRENT ! ;

" "Having entered

EDITOR DEFINITIONS

any words that you compile henceforth will belong to the editor

244 sta l:lti ng FORUIL

AT I LRI B R ST (4 AR £ I

vocabulary until you enter

' FORTH DEFINITIONS

to reset [CURF -] to "FORTH."T

We've presented this introduction to vocabularies mainly to:
satisfy your curiosity, not to encourage you to add new
—~vrocabularies-ofyour own. The problem of defining different:
subsets of application words with conflicting names is better
handled by the use of overlays, which we discussed in Chap. 3.

Crmma foia

- - i P —~—- . - | -

TFor Curious polyFORTH Users

polyFORTH allows several vocabularies to be chained in sequence.
CONTEXT| specifies the search order.

The polyFORTH dictionary is comprised of eight "linked lists"
which do not correspond with the vocabularies. At compile time a
hashing function, based on (usually) the first letter of the word
being defined, computes a "hashing index." This index 1is

combined with the "current" vocabulary to produce an index into
one of the eight lists. .o : ' N .

Thus a single list may contain words from many vocabularies, but
any words with identical names belonging to separate
vocabularies will be linked to separate lists. . The distribution
of entries in each chain is balanced, and an entire vocabulary
can be searched by searching only one-eighth of the dictionary.

9 UNDER THE HOOD 245

A Handy Hint
How to [LOCATE| a Source Definition

Some FORTH systems, such as polyFORTH, feature a very useful
word called [LOCATE|. If you enter

LOCATE EGGSIZE

FORTH will list the block that contains the definition of
EGGSIZE. The only requirements are that the word must be
resident (currently in the dictionary) and that the word must
have been loaded from a block. You therefore can locate
system electives and words in your application, but you can't
locate words in the precompiled portion.

246

EYSERE 3=t P T T W i b+ b byl

-~ . Starting FORTH -

' oxxX (-- adrn) " Attempts to £ind the
) address of xXxx (the word
that follows in the input

stream) in the dictionary.

INTERPRET (-) Interprets the input
- " stream, indexed by >IN,
until exhausted.

EXECUTE (adr —-) Executes the dictionary
entry whose parameter
field address is on the
stack.

EXIT () When compiled within a
colon definition, termi-
nates execution of that
definition at that point.
When executed from ‘a load
block, terminates inter-
pretation of the block at
that point.

QUIT (=) Clears both stacks and
returns control to the
terminal. No message is
given.

HERE (=-— adr) Returns the next available
dictionary location.

PAD (=-- adr) Returns the beginning
address of a scratch area
used to hold character
strings for intermediate

processing.

FORTH (=) Makes FORTH the CONTEXT
vocabulary.

EDITOR (—) Makes the editor
vocabulary the CONTEXT
vocabulary.

ASSEMBLER (-=) Makes the assembler
vocabulary the CONTEXT
vocabulary.

DEFINITIONS (-~) Sets CURRENT to the

CONTEXT vocabulary so that
subsequent definitions will
be linked to this
vocabulary.

9 UNDER THE HOOD 247

Common User Variables

(Some not required by the FORTH-79 Standard.)

S0

SCR

R#

BASE

CONTEXT

CURRENT

>IN

BLK

OFFSET

Pointer to the bottom of the parameter stack and,
for terminal tasks, the start of the input message
buffer.

For the editor, a pointer to the current block
number (set by LIST and used by L).

Current character position in the editor.
Number conversion base.

Dictionary pointer. Pointer to the next
available byte. :

Contains up to four indexes for vocabularies to be
searched.

Contains the index of the vocabulary to which new
definitions will be linked.

Pointer to the current position in the input
stream.

If non-zero, a pointer to the block being
interpreted by LOAD. A zero indicates
interpretation from the terminal (via the input
message buffer). :

Block offset to disk drives. The content of
OFFSET is added to the stack number by BLOCK.

I

Additional Words Available in Some Systems

[']

compile time: Used only in a colon
(-—) definition, compiles
run time: the address of the
(=-- adrn) ’ next word in the definition

as a literal.

(-- adr) Returns the address of the
. top of the stack before 'S
is executed.

248

TN o SRV VIR SRV P A B e

Review of Terms

Address
interpreter

Cfa

Control task

Code pointer
field

Defining word

Electives

Head

Input message
buffer

Starting I'ORLU

R e S

B R S e e e, ey V.
- - bt . I o Ll ! 3 IS

the second of FORTH's two interpreters, ‘the one
which executes the list of addresses found in
the dictionary entry of a colon definition.
The address interpreter also handles the
nesting of execution levels for words within
words,

the code and parameter fields of a FORTH
dictionary entry.

simply, to load the precompiled portion of
FORTH into the computer so that you can talk to
the computer in FORTH. This happens
automatically when you turn the computer on or
press "Reset."

code field address; the address of & dictionary
entry's code pointer field.

on a multitasked system, a task which cannot
converse with a terminal. Control tasks usually
run hardware devices.

the cell in a dictionary entry which contains
the address of the run~time code for that’
particular type of definition. For example, in
a dictionary entry created by [, the field
points to the address interpreter.

a FORTH word which cr: . ' 2 dictionary entry.
Examples include [, [C .. -7 ', [VARIABLE], etc.. -

the set of FORTH definitions that come with a
system but not in the precompiled portion. The
"electives block" loads the blocks that
contain the elective definitions; the block can
be modified as the user desires.

the name and link fields of a FORTH dictionary
entry. .. s

the region of memory within a terminal task
that is used to store text as it arrives from a

terminal. Incoming source text is interpreted
here.

9 UNDER THE HOOD

Link field

Name field

Pad

Parameter field

Pfa

Precompiled
portion

Run-time code

System variable

249

the cell in a dictionary entry which contains
the address of the previous definition, used in
searching the dictionary. (On systems which
use multiple chains, the link field contains the
address of the previous definition in the same
chain.)

the area of a dictionary entry which contains
the name (or abbreviation thereof) of the
defined word, along with the number of
characters in the name.

.the region of memory within a terminal task

that is used as a scratch area to hold
character strings for intermediate processing.

the area of a dictionary entry which contains
the "contents" of the definition: for a
CONSTANT|, the value of the constant; for a
FV[—.,-_;ABLE, the value of the variable; for a
colon definition, the list of addresses of
words that are to be executed in turn when the

definition is executed. Depending on its use,
the length of a parameter field varies.

parameter field address; the address of the
first cell in a dictionary entry's parameter
field (or, if the parameter field consists of
only one cell, its address).

the part of the FORTH system which is resident
in object form immediately after the power-up
or boot operation. The precompiled portion
usually includes the text interpreter and the
address interpreter; defining, branching, and
structure-control words; single-length math and
stack operators; single-length number
conversion and formatting commands; the
editor; and. the assembler. :

a routine, compiled in memory, which specifies
what happens when a member of a given class of
words is executed. The run-time code for a
colon definition is the address interpreter;
the run-time code for a variable pushes the
contents of the variable's pfa onto the stack.

one of a set.of variables provided by FORTH
which are referred to system-wide (by any
task). Contrast with "user variable."

250

e e i oL VU ROREIPNIIREPS SRS L Y

Task

Terminal task

User variable

Vectored
execution

Vocabulary

Starting FORTH

N A b ek < S €

in FORTH, a partition in memory that contains
at minimum a parameter and a return stack and a
set of usecr variables.

on a multitasked system, a task which can
converse with a human being using a terminal;
i.e., one which has a text interpreter,
dictionary, etc.

one of a set of variables provided by FORTH,
whose wvalues are unique for each task.
Contrast with "system variable."

the method of specifying code to be executed
by providing not the address of the code itself
but the address of a location which contains
the address of the code. This location is
often called the "wvector." As circumstances
change within the system, the vector can be
reset to point to some other piece of code.

an independently linked subset of the FORTH
dictionary.

KRR

9 UNDER THE HOOD 251

Problems —— Chapter 9

First review Chap. 2, Prob. 6. Without changing any of those
definitions, now write a word called COUNTS which will allow
the judge to optionally enter the number of counts for any
crime. For instance, the entry

CONVICTED-OF BOOKMAKING 3 COUNTS TAX-EVASION
WILL-SERVEGIILD 17 YEARS ok

will compute the sentence for one count of bookmaking .and
three counts of tax evasion.

What is the beginning address of your private dictionary?

In your system, how far is the pad from the top of your
private dictionary?

Assuming that DATE has been defined by |[VARIABLE|, what is
the difference between these two phrases:

DATE .
and
' DATE .

What is the difference between these two phrases:

BASE .
and

' BASE .
In this exercise you will create a "vectored execution
array," that is, an array which contains addresses of FORTH'
words. You will also create an operation word which will
execute one word stored in the array when the operation
word 1s executed.

Define a one-dimensional array of two-byte elements which

. will return the nth element's address when given a preceding:

subscript n. Define several words which output something at
your terminal and take no inputs. Store the addresses of

_these output words in various elements of the array. Store

the address of a do-nothing word in any remaining elements

252, ‘ , , Starting FORTH

of the array. Define a wo{d which will take a valid array
index and execute the word whose address is stored in the
referenced element.

" For example,

- 1 DO-SOMETHING_HELLO, I SPEAK FORTH, ok
2 DO-SOMETHING 1 2 3 4 5 6 7 8 0 10 ok
T3 DO=SOMETHING -
kkkkkkkkhk
hkkkkkkkkk
ok Kok ok ok ok ok ok
‘**********
kkkkkkkhkk -

4 DO-SOMETHING ok
5 DO-SOMETHING_ ok . '

10 I/0 AND YOU

In this chapter we'll explain how FORTH handles I/OT of
character strings to and from the block buffers and the terminal.

Specifically, we'll discuss disk-access commands, output commands,
string-manipulation commands, input commands, and number-input
conversion. . .

Block Buffer Basics

The FORTH system is designed so that you don't usually need to
think about the mechanics of the block buffers. But sooner or
later you will, so here's how it works.

As we mentioned earlier, each buffer is large enough to hold the
contents of one block (1024 bytes) in RAM so that it can be
edited, loaded, or generally accessed in any way. While we can
imagine that we're communicating directly to the disk, in reality,
the system brings the data from the disk into the buffer where we
can read it. We can also write data to the buffer, and the
system will send it along to the disk.

tFor Beginners

I/0 is an abbreviation for "input-output," which refers to data,
text, or signals that are sent or received by the computer. I/O
devices include terminals, printers, disk drives, push buttons,
etc. ’

253

254 Starting FORYH

@ oA T Ve el T T E T TTREY

Disk Block Buffer Your terminal

This arrangement is called "virtual memory" because the mass
storage memory is made to act like computer memory.

Many FORTH systems use as few as two block buffers, even when the
system is multiprogrammed. Let's see how this is possible.

200 [LsT] 201 LisT] 202 [LI5T]
Buffer _
- 2 2
Dick Disk - Disk
2 Block Block
5201 201
| L T

Suppose there are two buffers in your system. Now imagine the
following scenario:

First you list block 200. The system reads the disk and transfers
the block to buffer 1, from which displays it.

Now you list block 201. The system copies block 201 from the disk
into the other buffer.

Now you list block 202. The system copies block 202 from the disk
into the less-recently used buffer, namely buffer 1.

What happened to the former contents of buffer 1? They were
simply overwritten (erased) by the new contents. This is no loss
because block 200 is still on the disk. But what if you had
edited block 200? Would your changes be lost? No. Here's what
would happen when you listed block 202: .

10 I/0 AND YOU 255

202

N (o) | (b)
mck I Block
&= J200] ¢ 202
Disk Disk
Block i Block
201 : 201

First the modified contents of block 200 would be sent to the disk
to update the former contents of 200 there, then the contents of
202 would be brought into the buffer.

The magic word is [UPDATE|, which sets a flag that indicates that
the contents of the most recently accessed buffer should be sent
back to disk, rather than erased, the next time that the buffer is
needed. All editor commands that change the cc¢~*ents of a
block, whether adding or deleting, include [UPDA . in their
definitions.

Every time you or the system try to access a block, the system
first checks whether the block is already in a buffer. If it is,
fine. If not, then the system finds the earliest buffer to have
been accessed. If the contents of this buffer have been
[UPDATE|d, the system copies the contents back onto disk, then
finally copies the newly-accessed block into the buffer.

This arrangement lets you modify the contents of the block any
number of times without activating the disk drive each time.
Since conversing with the disk takes longer than conversing with
RAM, this can save a lot of time.

On the other hand, when there are several users on a single
system, this arrangement allows all of them to get by with as few
as two buffers (2K of memory), even though each may be accessing
a different block.

Some FORTH systems give their owners the option to have as many
block buffers as they like, depending on the memory size and the
frequency of disk transfers in their own setups.

The word [FLUSH|T forces all updated buffers to be written to disk

TFORTH-79 Standard

The Standard's name for [FLUSH| is [SAVE-BUFFERS]|.

256 ' Starting IFORIH

immediately. Now that you know about the buffers, you can see-
why we need [FLUSH|: merely updating a buffer doesn't get it
written to disk.

You should also know that when you [FLU °, the system "forgets"
that it has your block in a buffer and c.ears the buffer's update
flag. If you list or load the block again, FORTH will have to
“read it from the disk again.

TTHe effective opposite of [FLUSH| is '~ 2>TY-BUFFERS|, which also
makes the system "forget" any block .. uas and clears any update
-f'l-ag - [EMPTY-BUFFERS] is useful if you've accidently got
"garbage"t in a buffer (e.g., you've deleted some important lines
. and forgotten what you had originally, or generally messed up)
and you don't want it to get forced onto the "“-k. When you list
your block again, after enterlng I'*"TY-BUFFE . the system won't
know it ever had your block in meinory and will bring it in off
the disk anew.?

Each buffer has an associated cell in memory called the "buffer
status cell." It contains the number of the block (e.g., 180).%
The system uses it to tell whether a requested block is already in
memory. When you a block, all you are really doing is
changing the number of the block in the buffer status cell and
_updating the buffer. When it's time for the buffer to be written |
to disk,. it will be written to the new block.

The basic word that brings a block in from the disk, afteéer first -
finding an available buffer and storing its contents on disk if

necessary, is [BLOCK|. For instance, if you say

205 BLOCK

the system will copy block 205 from disk into one of the buffers.
BLOCK| also leaves on the stack the address of the beglnnlng of
the buffer that it used. We'll learn how to use this address in a
few sections.

TFor Beginners

"Garbage" is computer jargon for data which is wrong,
meaningless, or irrelevant for the use to which it is being put.

IFor Those Using a Multiprogrammed System

Careful! [EMPTY-BUFF empties everyone's buffers.

i For the Curious

”"I"he sign bit of the buffer status‘cell: serves)as tl"lel "ypdate

flag." If the number in the bufifer status cell tests as negative
by [0<|, then the buffer has been "updated."

10 I/0 AND YOU 257

If your application requires writing a lot of data to the disk
without reading what's on the disk already (e.g., to initialize a
disk, write r=»w data, transfer tape to disk, etc.), then you'll want
to use [BUFI. . .

is used by RTO™™ to assign a block number to the next
available buffer. |wJFF dnesn't read the contents of the disk
into the buffer. Also, [BUFEF docesn't check to see whether the
block number has already beeun assigned to a buffer, so you have
to make sure that no two buffers get assigned to the same number.

UPDATE (-~) Marks the most recently
referenced block as
modified. The block will
later be automatically
transferred to mass storage
if its buffer is needed to
store a different block or
if FLUSH is executed.

EMPTY-BUFFERS (-) Marks all block buffers as
empty without necessarily
affecting their actual
contents. Updated blocks
are not written to mass
storage.

BLOCK (u =~ adr) Leaves the address of the
first byte in block u. If
the block is not already in
memory, it is transferred
from mass storage into
whichever memory buffer
has been least recently
accessed. If the block

.Ooccupying that buffer has
been updated (i.e.,
modified), it is rewritten
onto mass storage before
block u is read into the
buffer.

BUFFER (u -= adr) Obtains the next block
buffer, assigning it to
block u. The block is not
read from mass storage.

258 . Starting ORI

e s A A e+ . — v

p——)

Qutput Operators

The word [EMIT| takes a single ASCII representation on the stack,
using the low-order byte only, and prints the character at your
terminal. For example, in decimal:

65 EMIT Aok
66 EMIT 3ok

The word [TYPE| prints an entire string of characters at your
terminal, given the starting address of the string in memory and
the count, in this form: .

(adr u —)

We've already seen [TYPE| in our number-formatting definitions
without worrying about the address and count, because they are
automatically supplied by [#>].

Let's give an address that we know contains a character
string. Remember that the starting address of the input message
buffer is kept by the user variable ? Suppose we enter the
following command:

S0 @ 12 TYPE

This will type twelve characters from the input message buffer,
which contains the command we just entered:

S0 @ 12 TYPECEITISO @ 12 TYPEok

Let's digress for a moment to look at the operation of E At
compile time, when the compiler encounters a dot-quote, it
compiles the ensuing string right into the dictionary,
letter-by-letter, up to the delimiting double-~guote. To keep
track of things, it also compiles the count of characters into the
dictionary entry. Given the definition

: TEST " SAMPLE " ;

and looking at bytes in the dictionary horizontally rather than
vertically, here is what the compiler has compiled:

~
Fa

(T Els Tk e 17 S AP L E]

|
address of
run-time code
PRI S

e [
or j

.+ I/0 AND YOU 259

if we wanted to, we could type the word "SAMPLE" ourselves
without executing TEST) with the phrase

' PEST 3 + 7 TYPE
where

' TEST
gives us the pfa of TEST,

3+

offsets us past the address and the count, to the beginning of
the string (the letter "S"), and

7 TYPE

types the string "SAMPLE."

That little exercise may not seem too useful. But let's go a step
further.

Remember how we A4e”" =2d LABEL in our egg-sizing application,
using . :ed [IF... . . statements? We can rework our definition
using _ V 'E|. First iet's make all the labels the same length and
"string them together"” within a single definition as a string
array.” (We can abbreviate the longest label to "XTRA LRG" so
that we can make each label eight characters long, including

trailing spaces.)
: "LABEL"
." REJECT SMALL MEDIUM LARGE XTRA LRGERROR "o,

Once we enter

' "LABEL" 3 +

to get the address of the start of the string, we can type any
particular label by offsetting into the array. For example, if we
want label 2, we simply add sixteen (2 x 8) to the starting
address and type the eight characters of the name:

16 + 8 TYPE

Now let's redefine LABEL so that it takes a category-number from
zero through five and uses it to index into the string array, like
this:

: LABEL 8 * ['] "LABEL" 3 + + 8 TYPE SPACE ;

Recall that the word is just like [] except that it may only
be used inside a definition to compile the address of the next

260 . Starting FORTH __

word in the definition (in this case, "LABEL").T Later, when we

execute LABEL, bracket-tick-bracket will push the pfa of "LABEL"

onto the stack. The number three is added, then the string offset

is added to compute the address of the particular label name that
" Wwe want. ‘

—Thig~kind-of string array is sometimes called a "suberstring " As
a naming convention, the name of the superstrlng usually has
—quotes around it. . : .

Our new version of LABEL will run a little faster because it does
not have to perform a series of comparison tests before it hits
upon the number that matches the argument. Instead it uses the
argument to compute the address of the appropriate string to be
typed.

Notice, though, that if the argument to LABEL exceeds the range

..zero through five, you'll be typing garbage. If LABEL is only
going to be used within EGGSIZE in the application, there's no
problem. But if an "end user,” meaning a person, is going_to use
it, you'd better "clip" the index, like this: '

: LABEL 0 MAX 5 MIN LABEL ; - : - ST

TYPE (adr u —) Transmits u characters,
beginning at address, to

. the current output device.

tPORTH-79 Standard

See Appendix 3. -

10 1/0 AND YOU 261

Qutputting Strings from Disk

We mentioned before that the word copies a given block
into an available buffer and leaves the address of the buffer on
the stack. Using this address as a starting-point, we can index
into one of the buffer's 1,024 bytes and type any string we care
to. For example, to print line 0 of block 214, we could say

CR 214 BLOCK 64 TYPEQGEILD
(THIS IS BLOCK 214) ‘ ok

To print line eight, we could add 512 (8 x 64) to the address, like
this:

CR 214 BLOCK 512 + 64 TYPE

Before we give a more interesting example, it's time to introduce
two words that are closely associated with [TYPE|.

~TRAILING (adr ul - Eliminates trailing
adr u?) blanks from the string trqi“ng
that starts at the
address by reducing the
count from ul (original.
byte count) to u2
(shortened byte count).

>TyPET (adr u —) Same as TYPE excep t{hmeket-
that the output string type
is moved to the pad
prior to output. Used
in multiprogrammed
systems to output
strings from disk
blocks.

—TRAILING| can be used immediately before the |[TYPE| command to
adjust the count so that trailing blanks will not be printed. For
instance, inserting it into our first example above would give us

CR 214 BLOCK 64 -TRAILING TYPE(CEILD
(.5 IS BLOCK 214) ok

TFORTH-79 Standard

>TYPE| is not required.

202 Starting rowrn

IS ol st

s -

The word is only used on multiprogrammed systems to print
strings from disk buffers. Instead of typing the string directly
from the address given, it first moves the entire string into the
pad, then types it from there. Because all users share rhe same
buffers, the system cannot guarantee that by the time: /E| has
finished typing, the buffer will still contain the same block. It
~Can .guarantee, however, that the buffer will contain the same
block during the move to the pad.f Since each task has its own

pad, can safely type from there.

The following example uses |TYPE|, but you may substitute >TYPE} if
need be.

231 LIST
{ BUZZPHRASE GENERATOR —-- VER. 1) EMPTY
181 LOAD (RANDOM NUMBERS)

B8

1

2

3

4 ¢ BUZZ 232 BLOCK 18 CHOOSE 64 x + 2B —-TRAILING TYPE
5 : 1ADJ 8 BUZZ ;

6 I 2ADJ 23 BUZZ ;

7 NOUN 48 BUZZ ;

g PHRASE 1ADJ SPACE 2ADJ SPACE NOUN ;

9 PARAGRAPH

i@

CR ," BY USING " PHRASE ." COORDINATED WITH
i1 CR PHRASE ." IT IS POSSIBLE FOR EVEN THE MoOsST "
iz CR PHRASE ." TO FUNCTION AS "

13 CR PRRASE ." WITHIN THE CONSTRRINTS OF "
14 CR PRREAST " . v

15 PARARAGRAPH

(continued)

tFor Experts

In a multiprogrammed system, a task only releases control of the
CPU to the next task during I/O or upon explicit command, a
command which is deliberately left out of the definition of the
word which moves strings.

10 I/0 AND YOU

232 LIST

INTEGRATED
TOTAL
SYSTEMATIZED
PARALLEL
FUNCTIONRL
RESPONSIVE
OPTIMAL
SYNCHRONIZED
COMPATIBLE
QUALIFIED

18 PRRTIAL

11

iz

13

14

i5

VONOTUDWBN—®

MANAGEMENT
ORGANIZATION
MONITORED
RECIPROCAL
DIGITARL
LOGISTICARL
TRANSITIONAL
INCREMENTARL
THIRD GENERATION
POLICY
DECISION

263

CRITERIA
FLEXIBILITY
CAPABILITY
MOBILITY
PROGRAMMING
CONCEPTS
TIME PHASING
PROJECTIONS
HARDWARE
THROUGH-PUT
ENGINEERING

Upon loading the application block (in this case block 231), we
get something like the following output, although some of the
_words will be different every time we execute PARAGRAPH.

BY USING INTEGRATED POLICY THROUGH-PUT COORDINATED WITH

COMPATIBLE ORGANIZATION CAPRBILITY IT IS POSSIBLE FOR EUVEN THE MOST
OPTIMAL THIRD GENERATION PROGRAMMING TO FUNCTION AS

SYSTEMATIZED MONITORED CRITERIR WITHIN THE CONSTRQINTS oF

RESPONSIUVE POLICY HARDWARE.

of

As you can see, the definition of PARAGRAPH consists of a series
f_rﬂ strings interspersed with the word PHRASE.
PHRASE alone, we get

If we execute

PHRASE SYSTEMATIZED MANAGEMENT MOBILITY ok

that is, one word chosen randomly from column 1 in block 232, one
word from column 2, and one from column 3.

Looking at the definition of PHRASE, we see that it consists of
three application words, 1ADJ, 2ADJ, and NOUN, each of which in
turn consists of an offset and the application word BUZZ. The
offset indicates which column we want to choose a particular word

from; that is, the number of bytes in from the left margin- of—
block 232 that the column begins.

down as follows:

232 BLOCK

“The definition of BUZZ breaks

m?@. A prerErOnp e - Mg e e S AL ting-FORTH. ;-

moves block 232 into an available buffer and returns the address
of the buffer's beginning byte.

The word

+

iy [P L L T ’ e e

adds the offset (0, 20, or 40) to offset us into the approplriate
column in the block.

10 CHOOSE

.returns a random numbert between 0 and 10 to determine, which
line to take our word from.

64 * +

multiplies the random number by 64 (theé -length of one line) and
adds this number to the buffer address, to offset into the

appropriate line. The address on the stack is the address .of the
word we are going to type.

- - - - -

20 -TRAILING TYPE

adjusts the maximum count of 20 downwards so that the count
excludes any trailing blanks after the character string and types
the string. - - -

t

TThe random number generator - is given 'in the following Handy
Hint.

i) I/0 AND YOU 265

A Handy Hint

A Random Number Generator

This simple random number generator can be useful for games,
although for more sophisticated applications such as simulations,
better versions are available.

J

181 LIST
8 (RANDOM NUMBER GENERATOR -- HIGH LEVEL?>
1 UARIABLE RND HERE RND !
2 ¢ RANDOM RND @ 31421 % 6927 + DUP RND !t ;
3 : CHOOSE ¢ ul1 -—= u2
4 RANDOM Ux SWAP DROP ;
5
6 (where CHOOSE returns a random integer within the range
7 8 = or < u2 < wuil.)
8
9

Here's how to use it:

To choose a random number between zero and ten (but exclusive of
ten) simply enter

10 CHOOSE

and CHOOSE will leave the random number on the stack.

266

Starting FORIH

[——tY

Internal String Operators

D —

The commands for moving character strings
very simple. Each requires three arguments:

destination address, and a count.

- R —

movet (adrl adr2 u -—
CMOVE (adrl adr2 u -
<CMOVE (adrl adr2 u —

)

Copies a region of
memory u bytes long,
cell-by=-cell beginning
at adrl, to memory
beginning at adr2. The

move begins with the

contents of adrl and

proceeds toward high

memory.

Copies a region of
memory u bytes long,

byte-by-byte beginning

at adrl, to memory
beginning at adr2. The
move begins with the
contents of adrl and
proceeds toward high
memory. :

Copies a region of
memory u bytes long,
beginning at adrl, to
memory beginning at
adr2, but starts at the
end of the string and
proceeds toward low
memory.

TFORTH-79 Standard

The Standard's [MOVE| expects a cell count.

required.

or data arrays are
a source address, a

is not

.0 I/0 AND YOU 267

Notice that these commands follow certain conventions we've seen
before:

1. When the arguments include a source and a destination
(as they do with [COPY|), the source precedes the
destination.

2. When the arg' 1ts include an address and a count (as
they do with |[... E|), the address precedes the count.

And so with these three words the arguments are

(source destination count ~—)

To move the entire contents of a buffer into the pad, for
example, we would write

210 BLOCK PAD 1024 CMOVE

although on cell-address machines the move might be made faster
if it were cell-by-cell, like this:

210 BLOCK PAD 1024 MOVE

The word [<CMOVE| lets you move a string to a region that is
higher in memory but that overlaps the source region.

TFor beginners

Let's say that you want to move a string one byte to'the "right"
in memory (e.g., when you use the editor command l to insert a
character).

Using [CMOVE] Using

Ny If you were to use |[CMOVE], Y v

¥ - ¥
N the first letter of the N
stri would get copied to
IHIETL!PI { thensgecond b%/te, bﬁtethat Tﬂﬂl’ IPI I

would "clobber"
letter of the string.

the second
The

MR [RIE[L[PIPL

during the move.

~ final result would be a L
TRIH[H[P[| | string composed of a single | |H|E [L[L]P]
i ~ character. THIE/I\E ILIF‘—F
["Ml”“‘ﬂll Using in this |
i tuati k th tri
HIHRIHIHL | o i haneaing. ety |LHIHIEILIP]

268 ..Starting FORLH .

T BB SRR g, Y ,,
A o

To blank an array, we can use the word [FILL], which we introduced
earlier. For example, to store blanks into 1024 bytes of the pad,
we say

PAD 1024 32 FILL
Thirty-two is the ASCII representation-of blank.T ,

" Single-character Input

The word [KEY] awaits the ehtry of a single key from your terminal
keyboard and leaves the character's ASCII equlvalent on the
stack in the low-order byte.. ‘) - ’

To execute it directly, you must follow it with a return, like
this:

KEYLETD

-The -cursor will. advance a space, but the terminal will no¥® print ~
"ok"; it is waiting for your input. Press the letter "A," for

example, and the screen will "echo" the letter "A," followed by -
the "ok." The ASCII value is now on the stack, so enter []

- - . - . -

"KEY Aok
LAED ’650k

This saves you from having to look in the table to determlne a
character's ASCII code.

You can also include inside a definition. Execution of the
definition will stop, when is encountered, until an input
character is received. For example, the following definition-
will list a given number of blocks in series, starting with the
current block, and wait for you to press any key before it lists
the next one:

: BLOCKS (count --)
SCR @+ SCR @DO I LIST KEY DROP LOOP ;

TFor polyFORTH Users : ‘ '

PAD 1024 BLANK _ . R

{0 I/0 AND YOU 269

! A Handy Hint

Two Convenient Additions to the Editor

You might want to make the following two additions to your
editor vocabulary. The use of these words is a matter of
preference; they may or may not already be included with your
system.

EDITOR DEFINITIONS

+ K #I PAD 132 MOVE PAD #F 66 MOVE ;

: WIPE SCR @ BLOCK DUP 1024 32 FILL O SWAP ! UPDATE ;
FORTH DEFINITIONS

The word K will swap the contents of the find buffer with that
of the insert buffer. Here's an example of its use:

"YOU HAVF " ' RL". TO SILENT REMAIN. ok
DppSTLENT A

K

F AIN{EID

YOU HAVE THE RIGHT TO REMAIN".) ok
I

YOU HAVE THE RIGHT TO REMAIN SILENT. ok

Use of [put "SILENT" in the find buffer, and K put it into the
insert buffer so that you could insert it where it belongs.

Or if you've just inserted a string in the wrong place, you can
put the string into the find buffer with K and then erase it
from the line with a simple [E].

The word WIPE blanks the current block and stores two nulls in
the first two character positions. (On most systems, nulls in
the block act just like the word [EXIT, to immediately terminate
interpretation of the block, should it be loaded.)

270 S Starting-FORTH

In this case we the value left by because we do not
-care what it is. ' S o : :

-Or- we might add a feature that allows us either to leave the loop .
at any time by pressing return or to continue by pressing any
.other key, such as space. In this c¢- _we will perform a
conditional test on the value returned by . [i.

: BLOCKS (count --)
SCR @+ SCR@DO I LIST
KEY 0= (CR) IF LEAVE THEN LOOP ;

Note that in most FORTH systems, the carriage~return key is
received as a null (zero).

KEY { —) Returns the ASCII value of
the next available
character from the current

. input device.

String Input Commands, from the Bottom up

There are several words involved with string input. We'll start
with the lowest-level of these and proceed to some higher-level
words. Here are the words we'll cover in this section:

EXPECT (adr u -) Awaits u characters (or a
carriage return) from the
terminal keyboard and
stores them, starting at

“"the address. o

WORD (c == adr) Reads one word from the
input stream, using the
character (usually blank) T
as a delimiter. Moves the
string to the address
(HERE) with the count in
the first byte, leaving the
address on the stack.

TEXT (c -) Reads a string from the
input stream, using the
character as a delimiter,
then sets the pad to blanks
and moves the string to the
pad. !

0 1/0 AND YOU 271

The word stops execution of the task and waits for input
from your Keyboard. It expects a given number of keystrokes or a
carriage return, whichever comes first. The incoming text is
stored beginning at the address given as an argument.

[o] {ole] [=l>[-]

For example, the phrase
S0 @ 80 ExPECT 1

will await up to eighty characters and store them in the input
message buffer.

This phrase is the one used in the definition of [QUIT to- get the

input for [INT.

In most svstems, when you press return or when the limit is
reached, +2ECT| stores a null (zero) into the string to mark the
end, then allows execution to continue.i

t FORTH-79 Standard
This phrase is equivalent to the Standard word [QU....7.
IFor Experts '

You can use to accept data from a serial line, such as a
measuring device. Since.you supply the address and count,.such.
data can be read directly into an array. In a single-user
environment, you may read data into a buffer for storage on disk.
In a multi-user environment, however, you must use and later
move the data :Lnto the buffer, since another task may use "your"“
- buffer. ’

272 Starting lfOR’I.‘H)

N - TSI

Let's move on to the next higher-level string-input operator.
We've just explained that [QUIT| contains the phrase .

... SO @ 80 EXPECT INTERPRET ...

But how does the text interpreter scan the input message buffer
and pick out each individual word there? With the phrase

32 WORD

The_Aecimal number 32 is the ASCII representation for "space."
W .—| scans the input stream looking for the given delimiter, in
this case space, and moves the sub-string into a different buffer
of its own, with the count in the first byte of the buffer.
Fir. lly, it leaves the address of its buffer on the stack, so that
.*. IRPRET| (or anyone else) knows where to find it. [WORD|'s"
buffer usually begins at , the dictionary pointer, so the

address given is [HERE!. ‘

D i

@
.,J\ - E ‘: - —_—

A S0 -

’ R STACK

"|INPUT INPUT (}3 AR slp A,;Jg
e aorrer K2 18] 30 s
v v
Wi " | looks for the given A and_ " ses the the sub-string-
derwumiter in the input to . _J|'s buffer, with the
message buffer, . ‘ count in the first byte._

When you are executing words directly from a terminal, will
scan the input buffer, starting at . As it goes along, it
radvances the inout buffer pointer, called [>IN], so that each time
you execute W], you scan the next word in the input stream.

is a "relative pointer"; that is, it does not contain the
actual address but rather an offset that is to.be added to- the
actual address, which in this case is [S0]. For example, after
- RD| has scanned the string "STAR," the value of is five.

.. 2/0 AND YOU 273

[S[7[AR] [3Jo] [slP
InPut Message Buffer

ignores initial occurrences of the delimiter (until any
other character is encountered). You could type

SO
.

AclEls]

PBYESTAR
(that is, STAR prereded by several spaces) and get exactly the
same string in [WC._,'s buffer as shown above.

When [WORD] moves the sub=-string, it includes a blank at the end
but does not include it in the count.

We'll get back to later on in this chapter. For now,
though, let's look at a word that uses w.RD| and that is more
useful for handling string input.

[TEXT],t like [WORD], takes a delimiter and scans the input stream
until it finds the string delimited by it. It then moves the
string to the pad. What is especially nice about is that
before it moves the string, it blanks the pad for at least
sivtv-four spaces. This makes it very convenient for use with
[I.”7". Here's a simple example:

CREATE MY-NAME 40 ALLOT
: I'M 32 TEXT PAD MY-NAME 40 CMOVE ;

In the first line we define an array called MY-NAME. 1In the
second line we define a word called I'M which will allow us to

enter

I'M EDWARD ok

tFor Those Who Don't Seem to Have ...{T

is not required by the FORTH-79 Standard. Its definition,
however, is

: TEXT PAD 72 32 FILL WORD COUNT PAD SWAP <CMOVE ;

If you have a polyFORTH syster—_n; the electives block normally
does not load the block (usually 34) that contains [TEXT|. In this™
case you must add "34 LOAD" to your electives block and reload
it.

214 - .‘:’Lar Lulg l‘ OR¥L

The definition of I'M bréaks down as follows: the phrase
32 TEXT ’ ' b

——scans the remainder of the input stream looking for a space or
for-the end of the line, whichever comes first. (The delimiter

—that-we give as an argument to is actually weed by [WORD,
which is included in the definition of [TEXT.) [T . then moves
—the_phrase to a nice clean "pad." .

__The phrase
* PAD MY-NAME 40 CMOVE

moves forty bytes from the pad into the array called MY-NAME,
where it will safely stay for as long as we need it.

— We could now define GREET as follows:

: GREET ." HELLO, " MY-NAME 40 -TRAILING TYPE .
." , I SPEAK FORTH. " ; .

i

so that by executing GREET, we get

w. ~ GREET_HELLO, EDWARD, I SPEAK, FORTH. ok- - o -

Unfortunately, our definition of I'M is looking for a space as its

delimiter. This means that a person named Mary Kay will not get
. her full name into MY-NAME. : . .
To get the complete input stream, we don't want to "see" any
delimiter at all, except the end of the line. Instead of "32
TEXT," we should use the phrase

1 TEXT
ASCII 1 is a control character that can't be sent from the
keyboard and therefore won't ever appear in the input buffer.
Thus "1 TEXT" is a convention used to read the entire input
buffer, up to the carriage return. By redefining I'M in this way,')
Mary Kay can get her name into MY-NAME, space and all. '

By using other delimiters, such as commas, we can "expect" a -
series of strings and store each of them into a different array
for different purposes. Consider this example, in which the word
VITALS uses commas as delimiters to separate three input fields:

.0 1/0 AND YOU 275

233 LIST
g (FORM LOVE LETTER) EMPTY
1 VARIABLE NAME 12 ALLOT UARIABLE EYES 1@ ALLOT

2 VARIABLE ME 12 ALLOT
VITALS 44 TEXT ¢ ,) PAD NAME 14 MOVE

3

4 44 TEXT PAD EYES 12 MOVE

5 1 TEXT PAD ME 14 MOVE

6

7 + LETTER PAGE

B . DEAR " NAME 14 -TRAILING TYPE ." ,"

9 CR ." I GO TO HEAUVEN WHENEVER I SEE YOUR DEEP "

i@ EYES 12 -TRAILING TYPE ." EYES. CAN "
il CR ." ¥YOU GO TO THE MOVIES FRIDAY? "

i2 CR 38 SPACES ." LOVE,"

13 CR 38 SPACES ME 14 -TRAILING TYPE
i4 CR ." P.S. WEAR SOMETHING " EYES 12 -TRAILING TYPE

iS5 . TO SHOW OFF THOSE EYES!

which allows you to enter
VITALS ALICE,BLUE,FRED pk
then enter
LETTER
It works every time.

So far all of our input has been "FORTH style"; that is, numbers
precede commands (so that a command will find its number on the
stack) and strings follow commands (so that a command will find
its string in the input stream). This style makes use of one of
FORTH's unique features: it awaits your commands; it does not
prompt you. ’ t

But if you want to, you may put inside a definition so
that it will request input from you under control of the
definition. For example, we could combine the two words I'M and
GREET into a single word which "prompts" users to enter their
names. For example,

GREET _
WHAT'S YOUR NAME?

at which point execution stops so the user can enter a name:

GREET__ "
WHAT'S YOUR NZ:'"? TRAVIS MC GEE
HELLO, TRAVIS - GEE, I SPEAK FORTH. ok

276 Starting PORYU

’f.:;'i‘j‘.jj:i‘.f' 1wy
v g N

7 o~ gyt g e I

We could do this as follows:

+ GREET CR ." WHAT'S YOUR NAME?" S0 @ 40 EXPECT
0 >IN ! 1 TEXT CR ." HELLO, "
PAD 40 -TRAILING TYPE ." , I SPEAK FORTH. " ;

< :

We've explained all the phrases in the above definition except
this one:

=0 SIN

Remember that [TEXT], because it uses [WORD], always uses as
its reference point. But when the user enters the word GREET to
execute this definition, the string "GREET" will be stored in the .
“rrut message buffer anA />IN will be pointing beyond "GREET".
_ % 'ECT| does not use >.., as its reference, so it will store-the
dser's nama heginning at [S0], on top of GREET. If you were to
execute [T.%I] now, it would miss the first five letters of the
user's name. It's necessary to reset to zero so that
will look where [EXPECT| has put the name.

10 I/0 AND YOU 277

Number Input Conversions

When you type a number at your terminal, FORTH automatically
converts this character string into a binary value and pushes it
onto the stack. FORTH also provides two commands which let you
convert a character string that begins at any memory location
into a binary value.f

>BINARY or (dl adrl —- Converts the text be-

CONVERT d2 adr2) ginning at adrl+l to a
binary value with re-
gard to BASE. The new
value is accumulated
into dl, being left as
d2; adr2 is the address
of the first non-
convertible character.

NUMBER (adr =~ n or d) Converts the text be-
‘ ginning at adr+l, with
regard to BASE, to a
binary value that is
single-length if no
valid punctuation oc-
curs and double-length
if valid punctuation
does occur. The string
may contain a pre-
ceding negative sign;
adr may contain a
count, which will be
ignored.

exists on most syst and is usually the simpler to use.
Here's an example that uses . -A£BERj: .

:+ PLUS 32 WORD NUMBER + ." =" . ;

PLUS allows us to prove to any skeptic that PORTH could use infix
notation if it wanted to. We can enter

T FORTH-79 Standard

The Standard specifies the name [CONV _ [} instead of [>BINARY].
In FORTH systems which use three-chara. -’ 'r.queness, however,
this choice conflicts with the name [Ci_..1x_|; hence the name

SBINARY| is used instead. [NUMBER| is not required by the
Standard.

.21 e e+ e e o Starting- FORTH,

2 PLUS 13GEMD_= 15 ok

“When PLUS is executed, the "2" wili‘be on thé‘ stéék ln binary
_form, while the "3" will still be in the .input stream as a string.
The phrase

" 32 WORD

reads the string; [NUMBER| converts it to binary and puts the
value on the stack; adds the two values; and [J] prints the sum.

. expects on the stack the address of the strlng that is to
Lt vonverted, with the count in the first byte =nd one trailing
~blank, so it's most appropriate for use after [WC’ " INUMBER! does
not actually use the count, however; it only adds one byte to the

*iresg before beginning the conversion. Thus you can use
o %..73 on a string that does not contain the count in the first

byte, simply by subtracting one byte from the starting address of
the string.

is a more nrimitive definition, being used in the
definition of [NUML ~ . You can use [>BINARY| to create your own
specialized number .u.put conversion routines. Since
returns the address of the first non-convertible character, you
can make decisions based on whether the character is a hyphen,
dot, or whatever. You can also make decisions based on the
.location of the non-convertible character within the number: For. :
instance, you can write a routine that lets you enter a number -
with a decimal point in it and then scales it accordingly.

To give a good exi = le of the use of [>BINARY|, Figure 10-1 shows
‘a definition of L _MBER|. This version reads any of the
characters '

4

as valid punctuation characters which cause the value to be
returned on the stack as a double-length integer. If none of
these characters appear in the string, the value is returned as
single—length.T This definition_uses the word WITHIN as we.
defined it in the problems for Chap. 4.

- C-—

Here we use the variable PUNCT to contain a flag that indicates
whether punctuation was encountered. We suggest that you use an
available user variable instead. i '

fFor polyFORTH Users L o -

Your version of NUMBER behaves similarly and in addition leaves -
in the user variable PTR the number of characters that were
converted since the last punctuation was encountered.

10 I/O AND YOU 279

FIGURE 10-1. A DEFINITION OF NUME....

VARIABLE PUNCT Creates a flag that will contain true
if the number contains valid
punctuation.

: NUMBER (adr —— n or d)

0 PUNCT ! Initializes flag: no punctuation has
occurred.

DUP 1+ C@ Gets the first digit.

A45 (=) = Is it a minus sign?

DUP >R Saves the flag on the return stack.

+ If the first character is "-", adds 1

(the flag itself) to the address,
setting it to point to the first digit.

0 0 ROT Provides a double-length zero as an
accumulator.

BEGIN >BINARY Begins conversion; converts untll an
invalid digit.

DUP C@ Fetches the invalid digit.

32 - WHILE While it is not a blank, checks if it
is valid punctuation; that is, ‘

DUP C@ DUP 58 = a colon, or)

SWAP 44 48 WITHIN + a comma, hyphen, period, or slash.

DUP PUNCT | Sets PUNCT to indicate whether valid

. punctuation has occurred.
NOT ABORT" 2 " .= Otherwise issues an error message.
REPEAT Exits here if a blank is detected;

otherwise repeats conversion.
DROP Discards the address on the stack.

R> IF DNEGATE THEN If the flag on the return stack is
- true, negates d.
PUNCT @ NOT IF a

DROP THEN ; If there was no punctuation, returns a
. single-length value by dropplng the
high-order cell.

280 Starting FORLU

e corm s b b~

A Closer Look at {WORD)

So far we have only talked about using to scan the iniut

message buffer (which holds the characters that are |[EXPECT|ed
from the terminal). But if we recall that the phrase

32 WORD

is used by the text interpreter, we realize that |WORD| actually
scans the input stream, which is either the input message buffer
or a block buffer that is being |[LOADled.

To achieve this flexibility, uses another pointer in
addition to [>IN], called (pronounced b-1-k). [BLK| acts both
as a flag and as a pointer. If [BLK] conf=ins zero, then
scans _the input message buffer (that is, . _offset by [>IN)). But
if contains a non-zero number, then |WORD is referring to a
block buffer and the number in (BLK! is the number of the block.
Here are two examples:

contents of | address currently used by WORD:
BLK
0 sc e >IN@ +
(>IN bytes into the message buffer)
200 200 BLOCK >IN @ +
(>IN bytes into the block buffer)

Every time a word is interpreted during a |[LOAD| operation, [WORD
makes sure that the appropriate block is still in a buffer.

A useful word to use in conjunction with [WORD] is [COUNT]. Recall -
that leaves the length of the word in the first byte of
[WORD|'s buffer and also leaves the address of this byte on the
stack.

addr [sTH[E]L][L]o] |

The word [COUNT| puts the count on the stack and increments the
address, like this:

10 I/0 AND YOU 281

S
addr+i

[sE[zL{L]o] |

leaving the stack with a string address and a count as

appropriate arguments for [TYPE}, |[CMOVE|, etc.
COUNT| is used in the definition of |TEXT) which we gave in a

footnote earlier.

COUNT (adr —— adr+l u) Converts a character
string, whose length is
contained in its first
byte, into the form
appropriate for TYPE, by
leaving the address of the
first character and the
length on the stack.

We will further illustrate the use of (Wi -.| in one of the examples
in Chap. 12. .

String Comparisons

Here is a FORTH word that you can use to compare character
strings:

-TEXT (adrl u adr2 --— Compares two strings
£) that start at adrl and
adr2, each of length u.
Returns false if they
match; true if no match
(positive if binary
string 1 > 2, negative
if 1 < 2).

Starting FORTH .

28 2 B as A AR i do i Y e o s e il
i AR gy ooy T——r ; RSN K]

Bt i o et

"F % can be used to test either whether two character strings
_are_equal or whether one is alphabetically greater or lesser than

the other.tt Chap. 12 includes an example of using [=TEXT] to
Gdetermine whether strings match exactly. . . S e

Since for speed [-1 1 [] compares cell-by-cell, you must take care
on cell-address macu.ies to give even cell addresses only.
For example, if you want to compare a string that is being
—entered-—as—input-with a string that is in an array, bring the
input string to the pad (using rather than) because .
is an even address. Similarly, if you want to test a string
that is in a block buffer, you must either guarantee that the
_string’'s_address is even or, if you cannot know for sure, move .the
string to an even address (using [CMOVE]) before making the test.

By the way, the hyphen in is as close as ASCII comes to

"4", the logical symbol meaning "not." This is why we
conventionally use this prefix for words which return a "negative

true" flag. (Negative true means that a zero represents true and
_.a non-zero represents false.) We pronounce such words not-text,
" etc. '

—_— - - e et g A

TFor Users of Intel, DEC, and Zilog Processors

To make the "alphabetical" test, you must first reverse the order
of bytes.

'
*FORTH-79 Standard
-TEXT| is not included in the Standard. If your system does not
have [-TEXT ou can load the high-level definition below. Of
course, |-TEXT| is written in assembler code on all polyFORTH
systems, for speed.

: =TEXT 2DUP + SWAP DO DROP 2+

DUP 2- @ I @ - DUP IF DUP ABS /. LEAVE THEN.
2 +LOOP SWAP DROP ; '

10 I/0 AND YOU 283

Here's a list of the FORTH words covered in this chapter.

UPDATE (—) Marks the most recently
referenced block as
modified. The block will
later be automatically
transferred to mass storage
if its buffer is needed to
store a different block or
if FLUSH is executed.

EMPTY-BUFFERS (

|
-

Marks all block buffers as
empty without necessarily
affecting their actual
contents. Updated blocks
are not written to mass
storage.

BLOCK (u —— adr) Leaves the address of the
first byte in block u. If
the block is not already in
memory, it is transferred
from mass storage into
whichever memory buffer
has been least recently
accessed. If the block
occupying that buffer has
been updated (i.e.,
modified), it is rewritten
onto mass storage before
block u is read into the
buffer.

BUFFER (u == adr) Obtains the next block
buffer, assigning it to
block u. The block is not

B read from mass storage.

TYPE (adr u —) Transmits u characters,
beginning at address, to
the current output device.

-TRAILING (adr ul — Eliminates trailing blanks
adr u2) from the string that starts
. at the address by reducing
the count from ul (original
byte count) to u?2
(shortened byte count).

284

Starting FORTH

-

MOVE

CMOVE

KEY |

EXPECT

WORD

TEXT

>BINARY or
CONVERT

(adrl adr2 u —-

(adrl adr2 u —

(— ¢

(adr u ==)

(c =~ adr)

(c —)

(dl adrl --
d2 adr2)

)

Copies a region of memory
u bytes long, cell-by-cell
beginning at adrl, to
memory beginning at adr2.
The move begins with the
contents of adrl and
proceeds toward high
memory.

Copies a region of memory
u bytes long, byte-by-byte
beginning at adrl, to
memory beginning at adr2.
The move begins with the
contents of adrl and
proceeds toward high
memory.

Returns the ASCII value of
the next available
character from the current
input device.

Awaits u characters (or a
carriage return) from the
terminal keyboard and
stores them, starting at
the address.

Reads one word from the
input stream, using the
character (usually blank)
as a delimiter. Moves the
Sstring to the address
(HERE) with the count in
the first byte, leaving the
address on the stack.

Reads a string from the
input stream, using the
character as a delimiter,
then sets the pad to blanks
and moves the string to the
pad.

Converts the text begin-
ning at adrl+l to a binary
value with regard to BASE.
The new value 1ig
accumulated into dl, being
left as d2; adr2 is the
address of the first
non-convertible character.

10 1/0 AND YOU 285

NUMBER (adr =~ n or 4) Converts the text
beginning at adr+l, with
regard to BASE, to a binary
value that is single~length
if no valid punctuation
occurs, and double-length
if valid punctuation does
occur. The string may
contain a preceding
negative sign; adr may
contain a count, which will
be ignored.

COUNT (adr —— adr+l u) Converts a character
string, whose length is
contained in its first
byte, into the form
appropriate for TYPE, by
leaving the address of the
first character and the
length on the stack.

Additional Words Available in Some Systems

>TYPE (adr u —) Same as TYPE except that
the output string is moved
to the pad prior to output.
Used in multiprogrammed
systems to output strings
from disk blocks.

<CMOVE (adrl adr2 u =~) Copies a region of memory
‘ u bytes long, beginning at
adrl, to memory beginning

at adr2, but starts at the

end of the string and

“ proceeds toward low|-

memory.
-TEXT (adrl u adr2 —- Compares two strings
£) that start at adrl and

adr2, each of length u.
Returns false if they
match; true if no match
(positive if binary string 1
> 2, negative if 1 < 2).

BLANK (adr n ==) S5tores ASCII blanks into n
"' bytes of memory, beginning
at adr. st o]

280

Starting TORTH

.-

.. Review of Terms ..

““Buffer
status cell

¢

in the FORTH operating system, a cell in
resident memory associated with each block
buffer (usually directly preceding it in memory)
which contains the number of the block

RelatviVe pointer
“"Superstring

|
MR 08N] A ARyt
|

Virtual memory

currently stored in the buffer and a flag (the
sign bit) which indicates whether the buffer
has been updated.

a variable which specifies ‘a location in
relation to the beginning of an array or string
--not the absolute address.

in FORTH, 'a character array which ‘contains a
number of strings. Any one strlng may be
accessed by indexing into the array.

the treatment of mass storage (such as the disk)

as though it were'resident memory; also the '

mechanisms of the operating system which make
this treatment possible.

'

10 I/0 AND YOU 287

Problems ——- Chapter 10

1,

Enter some famous gquotations into an available block, say
228. Now define a word called CHANGE which takes two ASCII
values and changes all occurrences within block 228 of the
first character into the second character. For example,

65 69 CHANGE
will change all the "A"s into "E"s.

Define a word called FORTUNE which will print a prediction
at your terminal, such as "You will receive good news in the
mail." The prediction should be chosen at random from a
list of sixteen or fewer predictions. Each prediction is
sixty—-four characters, or less, long.

According to Oriental legend, Buddha endows all persons born
in each year with special, helpful characteristics
represented by one of twelve animals. A different animal
reigns over each year, and every twelve years the cycle
repeats itself. For instance, persons born in 1900 are said
to be born in the "Year of the Rat. The art of
fortune—telllng based on these influences of the natal year
is called "Juneeshee."

Here is the order of the cycle:

Rat Ox Tiger Rabbit Dragon Snake
Horse Ram Monkey Cock Dog Boar

Write a word called .ANIMAL that types the name of the
animal corresponding to its position in the cycle as listed
here; e.q.,

0 .ANIMAL RAT ok

Now write a word called (JUNEESHEE) which takes as an
argument a year of birth and prints the name of the

associated animal. (1900 is the year of the Rat, 1901 is the
Ox, etc.)

Finally, write a word called JUNEESHEE which prompts the
user for his/her year of birth and prints the name of the
person's Juneeshee animal. Define it so the user won't have
to press "return" after entering the year.

Rewrite the definition of LETTER that appears in this
chapter so that it uses names and personal descriptions that
have been edited into a .block, rather than entered into
character arrays. In this way, you can keep a file on many
"prospects" and produce a letter for any one person with the

288

Starting IFORTII

appropriate descriptioné, just by supplying an argument to
LETTER, as in -

1 LETTER

Now define LETTERS so that it prints one letter for each
person in your file.

In this exercise you will create and use a virtual array,
that is, an array which resides on the disk but which is
referenced like a memory-resident array (with [@) and [1]).

First select an unused block in your range of assigned
blocks. There can be no text on this block; binary data will
be stored in it. Put this block number in a variable. Then
define an access word which accepts a cell subscript from
the stack, then computes the block number corresponding to
this subscript, calls and returns the memary address
of the subscripted cell. This access word should also call
UPDA.. . Test your work so far.

Next use the first cell as a count of how many data items are
stored in the array. Define a word PUT which will store a
value into the next available cell of the array. Define a
display routine which will print the stored elements in the
array.

Now use this virtual array facility to define a word ENTER
which will accept pairs of numbers and store them in the
array.

Finally, define TABLE to print the data entered above, eight
numbers per line.

11 EXTENDING THE COMPILER:
DEFINING WORDS AND COMPILING WORDS

In comparison with traditional languages, FORTH's compiler is
completely backwards. Traditional compilers are huge programs
designed to translate any foreseeable, legal combination of
available operators into machine language. In FORTH, however,
most of the work of compilation is done by a single definition,
only a few lines long. Special structures like conditionals and
loops are not compiled by the compiler but by the words being
compiled ([IF], [DJ, etc.).

Lest you scoff at FORTH's simple ways, notice that FORTH is
unique among languages in the ease with which you can extend the
compiler. Defining' new, specialized compilers is as easy as
defining any other word, as you will soon see.

When you've got an extensible compiler, you've got a very
powerful language! ’

Just a Question of Time

Before we get fully into this chapter, let's review one particular
concept that can be a problem to beginning FORTH programmers.
It's a question of time. |
We have used the term *run time" when referring to things that
occur when a word is executed and "compile time" when referring
to things that happen when a word is compiled. So far so good.-—
But things get a little confusing when a single word has both a
run-time behavior and a compile-time behavior.

In general there are two classes of words which behavé in both .
ways. For purposes of this discussion, we'll call these two
classes "defining words" and "compiling words."

A defining word is a word which, when executed, compiles a new
definition. A defining word specifies the compile~time-—and—
run-time behavior of each member of the "7 ~ily" of words that it

defines. Using the defining word |[CONSTZ .. as an example, when
we say

80 CONSTANT MARGIN -

289

20 estarting FORII .

H

‘we_are executing the compile-time behavior of [Ci .. ~7T; that is,

text string into the dictionary entry with the count in the first

e e TR DIYCEE DL T s e TR T LI R TR Samres s ST aion U OTRE R

1

CONSTANT) is compiling a new constant-type dic...nary entry
called MARGIN and storing the value 80 into its parameter field.'’
But when we say

MARGIN

we_Aare executing the run-time behavior of [CONSTANT|; that is,
[C°7IANT] is pushing the value 80 onto the stack. We'll pursue
delining words further in the next few sections.

The other type of word which possesses dual behaviof is the
"compiling word." A compiling word is a word that we use inside

~a -colon definition and that actually does something during

compilation of that definition.

. . . R 3y
One example is the word [["], which at compile time compiles a
byte, and at run time types it. Other examples are I
control-structure words like and [LOOP}, which also have
compile-time behaviors distinct from their run-time behaviors.
We'll explore compiling words after we've discussed defining
words. - - - ‘

How to Define a Defining Word

Here are the standard FORTH defining words we've covered so far:

VARIABLE

2VARIABLE

CONSTANT

2CONSTANT ’
CREATE

USER

What do they all have in common? Each of them is used to define
a set of words with similar compile-time and run-time
characteristics.

And how are all these defining words defined? First we'll answer
this question metaphorically. . .

~Let's say you're in the ceramic salt-shaker business.. If you plan

to make enough salt shakers, you'll find it's easiest to make a
mold first. A mold will guarantee that all your shakers will be
of the same design, while allowing you to make each shaker'a
different color.

11 EXTENDING THE COMPILER 291

In making the mold, you must consider two things:

1. How the mold will work. (E.g., how will you get the clay
into and out of the mold without breaking the mold or
letting the seams show?)

2. How the shaker will work. (E.g., how many holes should
there be? How much salt should it hold? Etc.)

To bring this analogy back to FORTH, the definition of a defining
word must specify two things: the compile-time behavior and the
run-time behavior for that type of word.

Hold that thought a moment while we look at the most basic of the
defining words in the above list: [CREATE|. At compile time,

CREATE| takes a name from the input stream and creates a
dictionary heading for it.

[CREATE] EXAMPLE

7 E

- [CREATE| run-time
X A code (when
link executed, pushes
the potential
pfa onto the
stack).

code pointer

At run time, [CREATE| pushes the pfa of EXAMPLE onto the stack.

What happens if we use {CREATE “inside a definition? Consider
this example, which is the definition for [VARIABLE]:

: VARIABLE CREATE 2 ALLOT ;

292 Starting FORTH

When we execute [VARIABLE] as in
VARIABLE ORANGES

we are indirectly using [CREATE] to create a dictionary head_with
the name ORANGES and a code pointer that points to [ChunlEl's
“run=time code. Then we are allotting two bytes for the variable
itself.

Since the run-time behavior of a variable is identical to that of
_a word defined by [CREATE], [VARIABLE| does not need to have
run-time code of its own; it can use [CREATE|'s run-time code.

“How—do~we specify a diff_gren‘c run-time behavior in a defining
word? By using the word DTLE>], as shown here:

: DEFINING-WORD CREATE (compile-time operatlons)
‘ DOES> {run—-time operations) :

To illustrate, the following could be a valid definition for

CONSTANT| (although in fact {CONSTANT| is usually defined in
machine code):
: CONSTANT CREATE , DOES> @ ;

- -

To see how this definition works, imagine we're using it to define
a constant named TROMBONES, like this:

76 CONSTANT TROMBONES

CREATE Creates a new dictionary entry
compile- (e.g., TROMBONES).
time
portion ’ Compiles the value (e.g., 76) for
the constant from the stack
into the constant's parameter
field.
DOES> Marks the end of the
compile-time behavior and the
run- beginning of the run-time
time behavior. At run time,
portion ’ will leave the pfa of the word

being defined on the stack.

@ Fetches the contents of the
constant, using the pfa that
wlill be on the stack at run
time.

il EXTENDING THE COMPILER 293

The words that precede |[DOES>| specify what the mold will do; the
words that follow [DOES>] specify what the product of the mold
will do.

DOES> run time: Used in creating a
(== adr) defining word; marks
the end of its compile-
time portion and the
beginning of its run-
Ll'ne portion. The run-
time operations are
stated in higher-level
FORTH. At run time, the
pfa of the defined word
will be on the stack.

does

Defining Words You Can Define Yourself

Here are some examples of defining words that you can create
yourself.

Recall that in our discussion of "String Input Commands" in Chap.
10, we gave an example that employed character-string arrays
called NAME, EYES, and ME. Every time we used one of these
names, we followed it with a character count. In the input
definition, we wrote '

. PAD NAME 14 MOVE .

and in the output definition we wrote
. NAME 14 -TRAILING TYPE ...~
and so on.

Let's eliminate the count by creating a defining word called
CHARACTERS, whose product definitions will leave the address and
count on.the stack when executed. T
We'll use it like this: if we say’

20 CHARACTERS ME

we will create an array called ME with twenty bytes avallable
for the character string. . R

When we execute ME, we'll get the address of the array and the

294

Starting "ORIU

count on the stack. Now we can write:

PAD ME MOVE-
instead of
PAD ME 20 MOVE

or.

ME -TRAILING TYPE

—

instead of

— e

ME 20 -TRAILING TYPE

Here's how we might define CHARACTERS:

: CHARACTERS

CREATE

DUP , ALLOT
compilé~—"""" -
time
portion

run—
time
portion

DU»?

2+

SWAP @

(

Creates a new‘diétionafy
entry (e.g., ME).

Compiles the count (e.g.,
twenty) into the first cell
of the array for future
reference. Then allots an
additional twenty bytes be-

“yond the~count fo¥ the
string.

Marks the beginning of
run-time code, leaving the
pfa of the product-word on
the stack at run time.

Copies the pfa.

Advances the address to

point past the count, . to the-

start of the character

string. -
Swaps the string address with
the count address and
fetches the count. The stack

. now holds (adr count —--).

11 EXTENDING THE COMPILER 295

We've just extended our compiler! Our new word CHARACTERS is a
defining word that creates a data structure and procedure that we
find useful. CHARACTERS not only simplifies our input and output
definitions, it also allows us to change the length of any string,
should the need arise, in one place only (i.e., where we define
it).

Our next example could be useful in an application where a large
number of byte arrays are needed. Let's create a defining word
called STRING as follows: '

: STRING CREATE ALLOT DOES> + ;
to be used in the form
30 STRING VALVE

to create an array thirty bytes in length. To access any byte in
this array, we merely say:

6 VALVE C@

which would give us the current setting of hydraulic valve 6 at
an oil-pumping statinn. 2% run time, VALVE will add the argument
6 to the pfa left by L. ___], producing the correct byte address.

If our application requires a large number of arrays to be
initialized to zero, we might include the initialization in an
alternate defining word called O0STRING:

: ERASED HERE OVER ERASE ALLOT ;
: O0STRING CREATE ERASED DOES> + ;

First we define ERASED to ®RASE| the given number of bytes,
starting at [E i, before [ALL__ :ing the given number of bytes.

Then we simply substitute ERASED for |ALLOT| in our new version.

By changing the definition of a defining word, you can change
the characteristics of all the member words of that family. This
ability makes program development much easier. For instance, you
can incorporate certain kinds of error checking while you are
developing the program, then eliminate them after you are sure
that the program runs correctly.

Here is a version of STRING which, at run time, guarantees that
the index into the array is valid:

: STRING CREATE DUP , ALLOT
DOES> 2DUP @ U< NOT ABORT" RANGE ERROR " + 2+ ;

296 . S ~—Starting FORTH.

Hrwhi‘ch breaks down as follows:

A ———y T ft——

DUP , ALLOT Compiles the count and.
- allots the given number of
bytes.

DOES> 2DUP @ At run time, given the
argument on the stack,
produces:

(arg pfa arg count --).

U< NOT - Tests that the argument is
not less than the maximum,
i.e., the stored count.
Since is an unsigned
. compare, negative
—— | arguments will appear -as-
E very high numbers and thus
(will also fail the test.

ABORT" RANGE ERROR" Aborts 1f the comparison
- i check fails.

+ 2+ Otherwise adds the argu-
ment to the pfa, plus an
additional two to skip over
the cell that contalns the

b D R count.

Here's another way that the use of defining words can help during
development. Let's say you suddenly decide that all of the
arrays you've defined with STRING are too large to be kept in
computer memory and should be kept on disk instead. AlL you have
to do is redefine the run-time portion of STRING. This new
STRING will compute which block on the disk a given byte would
be contained in, read the block into a buffer using , and
return the address of the desired byte within the buffer. A
string defined in this way could span many consecutive blocks
(using the same technique as in Prob. 5, Chap. 10).

You can use defining words to create all kinds of data structures.
Sometimes, for instance, it's useful to create multi-dimensional
arrays. Here's an example of a defining word which creates
stwo-~dimensional byte arrays of given size:

11 EXTENDING THE COMPILER 297

: ARRAY (#rows #cols —)
CREATE OVER , * ALLOT
DOES> (member: row col ——)
DUP @ ROT * + + 2+ ;t

columns

0 1 P 3 To create an array four bytes by

four bytes, we would say

0 4 4 ARRAY BOARD
LOWS . To access, say, the byte in row 2,
2 ? column 1, we could say
3 , 2 1 BOARD C@
Here's how our ARRAY works in column: 0 1 2 3
general terms. Since the
computer only allows us to have 0 4 8 |12
one-dimensional arrays, we must
simulate the second dimension. 1 5 9.113
While our imaginary array look
like this: > 2 6 |10 |14
3 7 111 |15

our real array looks like this:

column 0 1 2 3

If you want the address of the byte in row 2, column 1, it can be..
computed by multiplying your column number (1) by the number of
rows in each column (4) and then adding your row number (2), which
indicates that you want the sixth byte in the real array. - —

i For Optimizers
This version will run even faster:

: ARRAY OVER CONSTANT HERE 2+ , * ALLOT
DOES> 2@ ROT * + + ;

294 starting 1'(.)1('1 11

e eSS S ©erme PE ST S A T e P R T

e

This calculation is what members of ARRAY must do at run time.’

You'll notice that, to perform this calculation, each member word

_heeds to know how many rows are. in each column of its particular

array. For this reason, ARRAY must store this value into the
beginning of the array at compile time.

For the curious, here are the stack effects of.the.run—time

portion of ARRAY:

Contents
—- | Operation of Stack

row col pfa

_DUP @ row col pfa #rows ..
ROT row pfa firows col

row pfa col-index

+ + address

2+ corrected-address

- N - ~ - ~.

It is necessary to add two to the computed address because the
"first cell of the array contains the number of columns.

‘Our -final example is the most visually exciting, If not the most
useful.

(SHRPES, USING R DEFINING WORD) EMPTY

8
1
2 STAR 42 EMIT

3 ¢ .ROW CR B © DO DUP 128 AND - -
4 IF STANMN ELSE SPACE THEN

S 2% LOOP DROP

6
7
8

SHAPE CRERTE B8 B DO C., LOOP -
DOES> DUP 7 + DO I C@ .ROW -1 +LOOP CR ;

e

18 HEX 18 18 3C 5R 99 24 24 24 SHAPE MAN i

11 81 42 24 18 18 24 42 81 SHAPE EQUIS (

12 AR AR FE FE 38 38 38 FE SHAPE CASTLE ~) ' :
i3 DECIMHL

ROW prints a pattern of stars and spaces that correspond to the

8-bit number on the stack. For instance:

11 EXTENDING THE COMPILER 299

2 BASE !_ak
90111881 .ROW__
_kk%k X QK
DECIMAL _ok

Our defining word SHAPE takes eight arguments from the stack and
defines a shape which, when executed, prints an 8-by-8 grid that
corresponds to the eight arguments. For example:

MAN

ok

In summary, defining words can be extremely powerful tools. When
you create a new defining word, you extend your compiler.
Traditional languages do not provide this flexibility because
traditional compilers are inflexible packages that say, "Use my
instruction set or forget it!"

The real power of defining words is that they can simplify your
problem. Using them well, you can shorten your programming time,
reduce the size of your program, and improve readability.
FORTH's flexibility in this regard is so radical in comparison to
traditional languages that many people don't even believe it.
Well, now you've seen it.

The next section introduces still another way to extend the
ability of FORTH's compiler.

How to Control the Colon Compiler

Compiling words are words used inside colon definitions to do
something at compile time. The most obvious examples of
compiling words are control-structure words such as [IF|, [THEN],
(D9, , etc. Because FORTH programmers don't often change
the way these particular words work, we're not going to study
them any further. Instead we'll examine the group of words that
control the colon compiler and thus can be used to create any
type of compiling word. ’

Recall that the colon compiler ordinarily looks up each word of a
source definition and compiles each word's address into the
dictionary entry--that's all. But the colon compiler does not

300 Starting FORUIIL
5 LT T Ty g

e T A T TN TR 4, T YT L R A T

TS
T

LAt A

compile the address of a compiling word--it executes it.
How does the colon compiler know the difference? By checking
the definition's "precedence bit." 1If the bit is "off," the

—address of the word is compiled. If the bit is "on," the word is’
executed immediately; such words are called "immediate" words.

The word {IMMEDIATE| makes a word "immediate." It is used in the
form .
! name definition ; IMMEDIATE

that is, it is executed right after the compilation of the
definition. v

To give an immediate example, let's define
¢ SAY-HELLO ." HELLO " ; IMMEDIATE

We can execute SAY-HELLO interactively, just as we could if it
were not immediate.

SAY-HELLO HELLO ok

But if we put SAY-HELLO inside another definition, it will
execute at compile time:

: GREET SAY-HELLO ." I SPEAX FORTH " ; HELLO ok
ra{:her than at execution time:

GREET I SPEAK FORTH ok

Before we go on, let's clarify our terminology. FORTH folks
adhere to a convention regarding the terms "run time" and
"compile time." In this example, the terms are defined relative
to GREET. Thus we would say that SAY-HELLO has a "compile-time
behavior" but no "run-time behavior." Clearly, SAY-HELLO does
have run-time behavior of its own, but relative to GREET it does
not.

To keep our levels straight, let's call GREET in this example the
"compilee"; that is, the definition whose compilation we're
referring to. SAY-HELLO has no run-time behavior in relation to
its compilee.

Here's an example of an immediate word ‘ : you're familiar with:
the definition of the compiling word [E NJ. It's simpler than
you might have thought:

: BEGIN HERE ; IMMEDIATE

BEGIN| simply saves the address of [E I] at compile time on the

11 EXTENDING THE COMPILER 301

stack. Why? Because sooner or later an [UNTIL} or {REPEAT is
going to come along, and either has to know what address in the
dictionary to return to in the event that it must repeat. This is
the address that left on the stack.

BEGIN|'s compile-time behavior is leaving ~.._3E| on the stack. But
BEGIN| compiles nothing into the compilee; there is no run-time

behavior for [BEGIN|.

Unlike [BEGIN|, most compiling words do have a run-time behavior.
To have a run—-time behavior, a word has to compile into the
compilee the address of the run-time behavior, which must already
have been defined as a word.

A good example is [DC]. Like _~ "N, must provide, at comnile
time, a {HERE] for [LOOP| or [+L. . to return to. But unlike [E__2_N],
also has a run~time behavior: it must push the limit and the
index onto the return stack.

The run-~time behavior of [P is defined by a lower-level word,

sometimes called or [2>n. The definition of is this:

: DO COMPILE 2>R HERE ; IMMEDIATE
The word finds the address of the 2>R
next word in the definition (in this case
[2>R|) and compiles its address into the T
compilee definition, so that at run time .
will be executed.T compilee definition

fFor the Very Curious

Another example is the definition of E] At compile time, semicolon
must do two things:

1. compile the address of [EXIT| into the dictionary entry being
compiled, and N

2. leave compilation mode.

Here's the definition of semicolon:

HEH COMPILE EXIT R> DROP ; IMMEDIATE
The first phrase compiles _: .T], providing the run-time behavior. The
second phrase, which is tue compile-time behavior, gets us out of the
compiler. The top return address at _this: 1t is pointing inside the
colon compiler, which is simply a [E7~L] loop. When semicolon
has finished bein . ed, execuuiun will return not to the colon._.___
compiler, but to ﬁ . -

Don't worry about how we can use a semicolon to end the very
definition that defines it. The explanation requires an understanding
of polyFORTH's Target Compiler, which is beyond the scope of this book
(see Appendix 2).

Starting FORYI
e AT R R T B PR Byt T g

e 1

G4

Another compiler-controlling word is [[COMPILE]).] This word can
be used to compile an immediate word as though it were not
immediate. Given our previous example, in which SAY-HELLO is an
immediate definition, we might define

ARG L1305 - it e ==

: GREET [COMPILE] SAY-HELLO ." I SPEAK FORTH " ; ok

to force SAY-HELLO to be compiled rather than executed at
compile time. Thus:

GREET HELLO I SPEAX FORTH ok

Be sure you understand the difference between and
- {{COMPILE]|]. {COMPILE| "compiles the address of any
(non-immediate) word into a compilee definition; think of it as
.deferred compilation. compiles the address of any -
immediate word into the definition currently being defined; this
is ordinary compilation, but of an immediate word which otherwise:
would have been executed.

To review, here are three words which are useful in‘creating new
compiling words:

- N - . Bl R Ml .
- U S — L. : - - - AR

- IMMEDIATE (—) Marks the _most recently o

defined word as one which,
~when encountered during P

compilation, will be executed
rather than be compiled.

COMPILE xxx (—) Used in the definition of a)
compiling word. When the— |~ "
compiling word, in turn, is '
used in a source definition,
the code field address of xxx
will be compiled into the |. .
dictionary entry so that when
the new definition is exe-
cuted, xxx will be executed.

[COMPILE] xxx (=-—) Used in a colon definition,
causes the immediate word xxx
to be compiled as though it
were not immediate; xxx will
be executed when the .defini-
tion is executed.

TFor Some Small-system, Non-polyFORTH, Users

See footnote, page 218.

11 EXTENDING THE COMPILER 303

More Compiler-controlling Words

As you may recall, a number that appears in a colon definition is
called a "literal."™ An example is the "4" in the definition

: FOUR-MORE 4 + ;

The use of a literal in a colon

definition requires two cells. 9 F
The first contains the address

of a routine which, when 0 U
executed, will push the contents link

of the second cell (the number

itself) onto the stack.ft code pointer .
The name of this routine may (LITERAL)
vary; let's call it the "run-time 4
code for a literal," or simply T
((LITERAL)]. When the colon

compiler encounters a number, it EXIT

first compiles the run-time code
for a literal, then compiles the
number itself.

The word you will use ; _t often to compile a literal is [LITERAL
(no parentheses). [LIT.. iI] compiles both the run-time code and
the value itself. To illustrate:

4 : FOUR-MORE LITERAL + ;

Here the word [LITERAL| will compile as a literal the "4" that we
put on the stack before beginning compilation. We get a
dictionary entry that is identical to the one shown above.

For a more useful application of [LITERAL|, recall that in Chap. 8
we created an array called LIMITS that consisted of five cells,
each of which contained the temperature limit for a different
burner. To simplify access to this array, we created a word
called LIMIT. The two definitions looked like this:

tFor Memory Conservationists

While a literal requires two cells, a reference to a constant
requires only one cell. Since a constant takes only five cells
to define, you can see that if you're going to use the same value
six times or more, you will save memory by defining the value as
a constant. There is hardly any difference between the time
required to execute a constant.and a literal.

i S Starting FORIH .

PREVIRA IS T rusutt e b

"7 VARIABLE LIMITS 8 ALLOT
: LIMIT 2% LIMITS +-;

NGW 1et's assime that we will ‘cinfly access the ar'rayf throhgh the
word LIMIT. We can eliminate the head of the array (eight bytes)
~—by-using- this-construction instead:

-z

HERE 10 ALLOT I
: LIMIT 2% LITERAL + ;

In the firet line we put’the address of the beginning of the
array ([E__-I) on the stack. In the second line, we compile this
TTaddress as a literal into the definition of LIMIT.

old
Veran | head for
LIMITS
5 \ Because we had to
cells add an extra cell
for the literal to
- — “the definition of
LIMITS, our net
head f saving is three
ead ror cells.
LIMIT
2% | ‘
;
P LIMITS | L
4 *
EXIT

There are two other compiler control words you should know. The
words [[] and [[] can be used inside a colon definition to stop
compilation and start it again, respectively. Whatever words

appear between them will be executed "immediately," i.e., at
compile time.

Consider this example:

: SAY-HELLO ." HELLO " ;
: GREET [SAY-HELLO] ." I SPEAK FORTH "

; HELLO ok
GREET I SPEAK FORTH ok

11 EXTENDING THE COMPILER 305

In this example, SAY-HELLO is not an immediate word, vet when we
compile GREET, SAY-HELLO executes "immediately."

For a better example, imagine a colon definition in which we
need to type line 3 of block 180. To get the address of line 3,
we could use the phrase

180 BLOCK 3 64 * +
but it's time-consuming to execute

364 *
every time we use this definition. Alternatively, we could write

180 BLOCK 192 +

but it's unclear to human readers exactly what the 182 means.

The best 'solution is to write -
(LITERAL)

180 BLOCK [3 64 *] LITERAL +
. . 192
Here the arithmetic is performed only once,
at compile time, and the result is compiled o e e
as a literal.

Here's a silly example which may give you some ideas for more
practical applications. This definition must be loaded from a
disk block: '

: LIST-THIS [BLK @] LITERAL LIST ;

When you execute LIST-THIS, you will list whichever block
LIST-THIS is defined in. (At compile time, [BLK| contains the
number of the block being loaded. [LITERAIL]| compiles this number
into the definition as a literal, so that it will serve as the
argument for at run time.)

By the way, here's the definition of [LITERALl:
. : LITERAL COMPILE (LITERAL) , ; IMMEDIATE

First it compiles the address of the run-time code, then it
compiles the value itself (using comma).

306 Starting YORY
R S e - T TR R TRAEI T T re

o summarize, here are the additional compiler control words we
_introduced in this section: -

LITERAL compile time: - - Used only inside a W
(n -) colon definition. At
run time: compile time, compiles
(-~ n a value from the stack

into the definition as
. a literal. At run time,
I the value will be
pushed onto the stack.:

! (=) Leaves compile mode.

] (—) Enters compile mode.

e U U

A Handy Hint"

Entering Long Definitions from Your Terminal

Let's say you want to enter a definition from your terminal, but
the definition won't all fit on one line. The problem is, if
you hit "return” in the middle of a colon definition, you will
leave _compilation mode. (Even if.you don't hit "return,"
EXI__[| only accepts eighty characters.)

How can you get FORTH to resume éompllation as you enter
subsequent lines? By starting them with m For example:

: BOXTEST 6 > ROT 22 > ROT 19 > AND ANDCITEY ok
] IF ." BIG ENOUGH " THEN ;GEILD ok

(Some FORTH systems stay in compilation mode.until a [j] is|
encountered; on such systems the right bracket is unnecessary.)

11 EXTENDING THE COMPILER 307

An Introduction to FOF... Flowcharts

Flowcharts provide a way to visualize the logical structure of a
definition, to see where the branches branch and where the loops
loop. Old-fashioned flowcharting techniques haven't been
adequate for describing FORTH's structured organization. Instead,
various FORTH programmers have devised alternate schemes. ’

The question of which diagramming approach works best for FORTH
remains open; programmers use whatever methods work best for
them. The subject of flowcharting could occupy a chapter of its
own, but we're running out of chapters.

The diagrams that we will use are loosely based on a type of
flowchart called the "D-chart," invented by Prof. Edsger W.
Dijkstra. Here's how our diagrams work:

Sequential statements are written one below the other, without
lines or boxes: ‘

statement
next statement
next statement

Lines are used to show non-sequential control paths (conditional
branches and loops). The FORTH statement

condition IF true ELSE false THEN statement

would be diagrammed

condition
true false -
1
statement

If either phrase is omitted, a vertical line is drawn in its
place: - L

308 Starting FORTU

R

et ; condition

trt'.ze
\/“

e statement

"It is immaterial whether "true" is left or right.

«..|[UNTIL| structure is diagfammed like this:

A BEGIN

e

—r e i - | —— - - 4)

1
o - condition -

'S - - -
w

The entire loop structure is shifted to the right from the
"normal" flow of execution, connected by a horizontal line at
the top. If additional levels of nested loops.were to_be shown,
they would be shifted still further to the right.

The black dot is the symbol for the end of the loop. It
indicates that control is returned to the return point, symbolized
by the circled X. The condition will cause the loop either to be
repeated or to be exited. The diagonal line sloping down to the
left indicates the return to the outer level of execution.

A [E_"N...[WHILE... = =AT] loop is similar:

11 EXTENDING THE COMPILER 309

first phrase

condition

second phrase

O

We've given this brief introduction to FORTH flowcharts so that
we can visualize the structure of two very important words.

\

Curtain Calls

This section gives us a
chance to say "Goodbye" to
the text interpreter and the
colon compiler and perhaps
to see them in a new light.

Here is the definition of
INTERF™T7 as it is found in
many FuxiH systems (see page
216 for a discussion of
possible variations):

: INTERPRET BEGIN -' IF NUMBER ELSE EXECUTE ~——
?STACK ABORT" STACK EMPTY" THEN 0 UNTIL ;

We've already covered each of ihe words contained in this
definition; we can describe [INTEZRPRET| in English by simply
"translating" its definition, like this:

310 ' Starting FORTH

J e T R T

Begin a loop. Within the loop, try to look up the next word
from the input stream. If it's not defined, try to convert it
as a number. If it is defined, execute it, then check to see
whether the stack is empty. (If it is, exit the loop and
print "STACK EMPTY.") Then repeat the infinite loop.

Now let's 'apply our flowcharting techniques to this definition.

.Juntil end of line

T

found

EXECUTE
NUMBER
?STACK _
]

ABORT"

As you can see, the FORTH text interpreter is a simple yet
powerful structure. Now let's compare its structure with that of
the colon compiler:

fPor the Very Curious

You may have wondered, if [IN{ .-. RET] is an infinite loop, how do
we exit it and get back tou (wUIT|? The answer varies for
different implementations of FORTH, but the most common answer is
this:

When you enter a line of text from the terminal and press
"return," the word places a "null" (zero) at the end of
the input stream. This null ig a~tually a defined FORTH word; its
code field points directly to _ .7 TI. The result: when [INT ~>-
gets to the end of the line, it finds null in the dictionary aud

executes it. [EXIT] immediately transports us up to [QUIT. Simple
and fast.

11 EXTENDING THE COMPILER 311

s] BEGIN -' IF (NUMBER) LITERAL
ELSE (check precedence bit) IF EXECUTE ?STACK
ABORT" STACK EMPTY"
ELSE 2- , THEN THEN O UNTIL ;

The first thing you probably noticed is that the name of the
colon compiler is not [:] but . The definition of [{] invokes [J]

after creating the dictionary head and performing a few other
odd jobs.

The next thing you may have noticed is that the compiler is
somewhat similar to the interpreter. Let's translate the above
definition into English:

Begin a loop. Within the loop, try to look up the next word
from the input stream. If it's not defined, try to convert it
as a number T and, if it is a number, compile it as a literal.

If it is defined, then treat it as a word. If the word is
immediate, then execute it and check to see if the stack is
empty. If it is not immediate, change the pfa to a cfa

(code-field address) and compile this address. Then repeat
the infinite loop.

Picture it this way: m
[_ until [or ; @
found
immediate
(NUMBER)
EXECUTE cfa
I |
?STACK N LITERAL
ABORT"
TE‘or the Curious
The version of . . iRl that the ‘colon compiler uses is the-16-bit—=

version. That's wuy you can't have a double-length literal in a
colon definition (except by making it two single-length literals).

e e L e TR NN

“Compare” this to the diagram of and you'll see that []
could be called an interpreter with the ability to decide whether

~to.execute or to.compile any given word. It is the simplicity of
this design that lets you add new compiling words so easily.

“In summary, we've shown two ways to extend the FORTH compiler:

1. A4d hew, specialized compilers, by creating new

defining words.)

2. Extend the existing colon compiler by creating new
. compiling words.

_While traditional compilers £ry to be universal tools, the FORTH

compiler is a collection of separate, simple tools ... with room
_for more. Which. approach seems more useful:

COMPLEXITY or SIMPLICITY ?

.. Starting FORTH .-

K

P
.

11 EXTENDING THE COMPILER

313

Here's a summary of the words we've covered in this chapter:

DOES>' : run time:
(== adr)
IMMEDIATE (—)

COMPILE xxx (—)

[COMPILE] xxx (-)

LITERAL compile time:
(n —)
run time:

(=-n)

Used in creating a de-
fining word; marks the end
of its compile-time portion
and the beginning of its
run~time portion. The run-
time operations are stated
in higher-level FORTH. At
run time, the pfa of the
defined word will be on
the stack.

Marks the most recently
defined word as one which,
when encountered during,
compilation, will be exe-
cuted rather than be
compiled.

Used in the definition of a
compiling word. When the
compiling word, in turn, is
used in a source defini-
tion, the code field ad-
dress of xxx will be com-
piled into the dictionary
entry so that when the new
definition is executed, xXxx
will be executed.

Used in a colon definition,
causes the immediate word
XXX to be compiled as
though it were not imme-
diate; xxx will be executed
when the definition is
cxecuted.

Used only inside a colon
definition. At compile
time, compiles a value
from the stack into the
definition as a literal. At
run time, the value will be
pushed onto the stack.

Leaves compile mode.

- Enters compile mode.

314

Review of Terms

Compile-time
behavior

Compilee

'

mégmbiiing word

Defining word

Flowcharts

Precedence bit

Run-time
behavior

1. when referring to defining words:

Starting FORYH

the

sequence of instructions which will be carried
out when the defining word is executed--these
instructions perform the compilation of the

member words;

2. when referring to compiling words:

the

behavior of a compiling word, contained within
a colon definition, during compilation of the

definition.

a definition being compiled.

In relation to a

compiling word, the compilee is the definition

whose compilation the compiling word affects.

a word used inside a colon definition to take
some action during the compilation process.

a word which, when executed, compiles a new,

dictionary entry.

A defining word specifies

the compile-time and run-time behavior of each

member of the
defines.

"family"

of words that it

a graphic representation of the logical

structure of a program or,

definition.

in FORTH, of a

in FORTH dictionary entries, a bit which

indicates whether a word should be executed
rather than be compiled when it is encountered
during compilation.

1. when referring to defining words:

the

sequence of instructions which will be carried
out when any member word is executed;

2. when referring to compiling words: a
routine which will be executed when the

compilee is executed.

have run-time behavior.

Not all compiling words

11 EXTENDING THE COMPILER 315

Problems —— Chapter 11

Define a defining word named LOADED-BY that will define
words which load a block when they are executed. Example:

6000 LOADED-BY CORRESPONDENCE

would define the word CORRESPONDENCE. When CORRESPONDENCE
is executed, block 6000 would get loaded.

Define a defining word BASED. which will create number
output words for specific bases. For example,

16 BASED. H.

would define H. to be a word which prints the top of the
stack in hex but does not permanently change [BASE[. -

DECIMAL
17 DUP H. QMDD 11 17 ok

Define a defining word called PLURAL which will take the
address of a word such as or STAR and create its plural
form, such as CRS or STARS. You'll provide PLURAL with the
address of the singular word by using tick. For instance,
the phrase

' CR PLURAL CRS
will define CRS in the same way as though you had defined it
: CRS ?DUP IF 0 DO CR LOOP THEN ;

The French words for and [LOOP are TOURNE and RETOURNE.

Using the words and [LOOP|, define TOURNE and RETOURNE
as French "aliases." ©Now fest them by writing yourself a
French loop.

The FORTH~79 Standard Reference Word Set contains a word
called ASCII that can be used to make certain definitions
more readable. Instead of using a numeric ASCII code within
a definition, such as

: STAR 42 EMIT ;
you can use
: STAR ASCITI * EMIT ;
The word ASCII reads the next character in the input stream,

then compiles its ASCII equivalent into the definition as a
literal. When the definition STAR is executed, the ASCII

B i w . wen. . Starting FORTH,_..

bt e e et

ESTTIRATITTTITE T I

value is pushed onto the stack.
——— Define the word ASCII.

be.Write a word called LOOPS which will-cause the remainder of
the input stream, up to the carriage return, to be executed

. the number of times specified by the value on the stack. For
example,

7 LOOPS 42 EMIT SPACEGEIT) * * * * * * * ok

12 THREE EXAMPLES

Programming in FORTH is more of an "art" than programming in any
other language. Like painters drawing brushstrokes, FORTH
programmers have complete control over where they are going and
how they will get there. Charles Moore has written, "A good
programmer can do a fantastic job with FORTH; a bad programmer
can do a disastrous job." A good FORTH programmer must be
conscious of "style."

FORTH style is not easily taught; it's a subject that deserves a
book of its own. Some elements of good FORTH style include:

simplicity,

the use of many short definitions rather than a few longer
ones,

a correspondence between words and easy-to-understand
actions or data structures,

well-chosen names, and
well laid-out blocks, clearly commented.

One good way to learn style, aside from trial and error, is to
study existing FORTH applications, including FORTH itself. In
this book we've included the definitions of many FORTH system
words, and we encourage you to continue this study on your own.

This chapter introduces three applications which should serve as
examples of good FORTH style.

The first example will show you the typical process of
programming in FORTH: starting out with a problem and working
step-by-step towards the solution.

The second example involves a more complex application already
written: you will see the use of well-factored definitions and
the creation of an application-specific "language."

The third example demonstrates the way to translate a
mathematical equation into a FORTH definition; you will see how
speed and compactness can be increased by using fixed-point
arithmetic. oy

317 T

—318--.. .. Stacting LORLL

-WORD Game

The example in this section is a refinement of the buzzphrase
generator which we programmed .back in Chap. 10. (You might want
to review that version before reading this section.) The
previous version did not keep track of its own carriage returns,
causing us to force [CRls into the definition and creating a very
ragged right margin. The job of deciding how many whole words
can fit on a line is a reasonable application for a computer and
not a trivial one.

The problem is this: to draft a "brief" which consists of four
paragraphs, each paragraph consisting of an appropriate
introduction and sentence. Each sentence will consist of four
randomly-chosen phrases linked together by fillers to create
gramatically logical sentences and a period at the end.

The words and phrases have already been edited into blocks 234,
235, and 236 in the listing at the end of this section. Look at
these blocks now, without looking at the two blocks that follow
them (we're pretending we haven't written the application yet).

‘Block 234 contains the four introductions. They must be used in
sequence. Block 235 contains four sets of fillers. The four sets
must be used in sequence, but any of the three versions within a
set may be chosen at random. Block 236 contains the three
columns of buzzwords from our previous version, with some added
words.

You might also look at the sample output that precedes the
listing of the application, to get a better idea of the desired
result.

"Top-down design" is a widely accepted approach to programming

that can help to reduce development time. The idea is that you.

first study your application as a whole, then break the problem
into smaller processes, then break these processes into still
smaller units. Only when you know what all the units should do,
and how they will connrect together, do you begin to write code.

The FORTH language encourages top-down design. But in FORTH you
can actually begin to write top-level definitions immediately.
Already we can imagine that the "ultimate word" in our
application might be called PAPER, and that it will probably be
defined something like this:

: PAPER 4 0 DO T INTRO SENTENCE LOOP ;

where INTRO uses the loop index as its argument to select the
appropriate introduction. SENTENCE could be defined

: SENTENCE 4 0 DO I FILLER PHRASE LOOP ;

12 THREE EXAMPLES 319

where FILLER uses the loop index as its argument to select the
appropriate set, then chooses at random one of the three versions
within the set. The function of ‘PHRASE will be the same as
before. ’

Using FORTH's editor, we can enter these top-level definitions
into a block. Of course we can't load the block until we have
written our lower-level definitions.

In complicated applications, FORTH programmers often test the
logic of their top-level definitions by using "stubs" for the
lower-level words. A stub is a temporary definition. It might
simply print a message to let us know its been executed. Or it
may do nothing at all, except resolve the reference to its name
in the high~level definition.

While the top-down approach helps to organize the programming
process, it isn't always feasible to code in purely top-down
fashion. Usually we have to find out how certain low-level
mechanisms will work before we can design the higher-level
definitions.

The best compromise is to keep a perspective on the problem as a
whole while looking out for low-level problems whose solutions
may affect the entire application. ,
In our example application, we can see that it will no longer be
possible to force [CR|s at predictable points. Instead we've got
to invent a mechanism whereby the computer will perform carriage
returns automatically.

The only way to solve this problem is to count every character
that is typed. Before each word is typed, the application must
decide whether there is room to type it on the current line or do
a carriage return first.

So let's define the variable LINECOUNT to keep the count and the
constant RMARGIN with the value 78, to represent the maximum
count per line. Each time we type a word we will add its count
to LINECOUNT. Before typing each word we will execute this
phrase: :

(length of next word) LINECOUNT @ + RMARGIN > IF CR
that is, if the length of the next word added to the current
length of the line exceeds our right margin, then we'll do a

carriage return.

But we have another problem: how do we isoletes words with a
known count for each word? You got it, we use [W! .

Let's write out a "first draft" of this low-level part of our
application. It will type a single word, making appropriate

btarting FORYH

TTTRA T Tl
b o b TR sl o an s e L

RDURL RV

5

e e P SO T ST L

FOTTR e el

——~calculations-for-carriage returnsi ™ Hn HEITTTEET

32 WORD " Finds one word delimited by
a space. .
COUNT DUP : Leaves the count and a copy

of the count on ' the stack,
with the address of the first

e L character beneath.
———-LINECOUNT @ + . Computes how long the
. current line would be if the
~ word were to be included on
e e et i 1+ . g

—n-er. RMARGIN > Decides if it woulld exceed
o the margin.

IF CR 0 LINECOUNT ! If so, resets the carriage
and the count.®

__ELSE SPACE THEN _ R Otherwise, leaves-a space-
‘ ' between the words.

~-—=DUP—~1+-LINECOUNT #+! - ~®2 '~ 1Increases the count by the
length of the word to be
typed, plus one for the

space.
TYPE Types the word using the
count and._the address left.
e) by COUNT.

Now the problem is getting [WORD| to look at the strings on disk.
WORD| gets its bearings from [BLK] and [>IN], so if we say,

234 BLK ! 0 >IN |

then will begin scanning block,234, starting at the top
(byte zero).

X
TFor polyFORTH Users

The user variables >IN and are adjacent to each other in
the user table. This design allows you to fetch and store both:
together with 2@ and Z.. For example,

234 0 >IN 2!

12 THREE EXAMPLES 321

This causes another problem: by storing new values into the
input stream pointers, we've destroyed the old values. If we now
execute a definition that contains the above phrase, the
interpreter will not come back to us when it's done; it will
continue trying to interpret the rest of block 234. To solve this
problem, our definition must save the pointer values somewhere
before it changes them, then restore them Jjust before it's done.
Let's define a double-length variable called HOMEBASE, so we
have a place to save the pointers. Then let's write a word whose
job it will be to save the pointers in HOMEBASE. Finally, let's
write a word which will restore the pointers.

VARIABLE HOMEBASE 2 ALLOT
: <WRITE BLK @ >IN @ HOMEBASE 2! ;
: WRITE> HOMEBASE 2@ >IN ! BLK ! ;

Now we have to modify our highest-level definition slightly, by
editing in <WRITE at the beginning and WRITE> at the end:

: PAPER <WRITE 4 0 DO I INTRC SENTENCE LOOP WRITE> ;

The next guestion i1s: how do we know when we've gotten to the
end of the string?

Since we are typing word by word, we have to check whether
has advanced sixty-four places from its startlng point every time
we have found a new word. But the limit is not always sixty-four
places; in the case of the buzzwords, the limit is twenty places.

For this reason, we should probably make the limit be an argurnent
to a word. For example, the phrase

64 WORDS

should type out the contents of the 64-byte string, word by word,
performing carriage returns where necessary.

How should we structure our definition of WORDS? Let's
re~examine what it must do:

1. Determine whether there is still a word in the string to
be typed.

2. If there is, type the word (with margin checking), then
repeat. If there isn't, exit.

The two part nature of this structure suggests that we need a
BEGIN|...[WHILE]...[REPEAT| loop. Let's write our problem this way,
if only to understand it better.

... BEGIN ANOTHER WHILE .WdRD REPEAT ...

322 - Starting FORTH __

£
N

ANOTHER will do step 1; .WORD will do step 2.

How should ANOTHER determine whether there is still a word to be B
typed from the string? It must scan for the next word in the
block, by using the phrase

32 WORD
then compare the new value of against the limit for [3IN],

and finally return a "true" if the value is less than or equal to
the limit. This flag will serve as the argument for [WHILEL

How do we compute the limit for [>IN|? Before we can begin the
above loop, we have to add the argument (sixty-four or whatever)
to the beginning value of m and save this limit on the stack
for ANOTHER to use each time through the loop. Thus our
definition of WORDS might be

: WORDS ({u--) >IN @ + BEGIN ANOTHER WHILE
.WORD REPEAT 2DROP ;

We need the [2DROP| because, when we exit the loop, we will have
the address of |WORD|'s buffer and the limit for on the stack,
neither of which we need any longer.

Now we can define ANOTHER. We've already decided that the first
thing it must do is find the next word, by using the phrase

32 WORD

At this point, there will be two values on the stack:
limit adr

We can perform the comparison with the phrase
OVER >IN @ < NOT

By using [OVER| we save the limit on the stack for future loops.
Remember that the phrase

< NOT

is the same as "greater than or equal to." Our definition of
ANOTHER, then, might be

32 CONSTANT BL
: ANOTHER (limit —-- limit adr)
BL WORD OVER >IN @ < NOT ;

12 THREE EXAMPLES 323

(The abbreviation BL is a common l'nnemonic-r for "blank." We have
uged it here to improve program readability.)

How do we define .WORD? Actually, we've defined it already, a
few pages back, with the exception that

32 WORD

should be omitted from the beginning of the definition, since it
will have been performed in ANOTHER,

Now we have our word-typing mechanism. But let's see if we're
overlooking anything. For example, consider that every time we
start a new paragraph, we must remember to reset LINECOUNT to
zero. Otherwise our .WORD will think that the current line is full
when it isn't. We should ask ourselves this question: is there
ever a case in this application where we would want to perform a
CR[without resetting LINECOUNT? The answer is no, by the very
nature of the application. For this reason we can define

- “CR CR 0 LINECOUNT ! ; - - - - -
to create a version of that is appropriate for this
application. We can use this in our definition of .WORD.

We should also consider our handling of spaces between words.
By using the phrase

IF CR ELSE SPACE THEN

before typing each word, we guarantee that there will be a space
between each pair of words on the same line but no space at the
beginning of successive lines. And since we are typing a space
before each word rather than after, we can place a period
immediately after a word, as we must at the end of a sentence.

But there's still a problem with this logic: at the beginning of
‘a new paragraph, we will always get one space before the first
word. Our solution: to redefine so that it will be
sensitive to whether.or not we're at the beginning .of a line, and
will not space if we are: o

: SPACE’ LINECOUNT @ IF SPACE THEN ;

If LINECOUNT is "0" then we know we are at the beginning of a
line, because of the way we have redefined [CR.

T -For Beginners

As a general term, a "mnemonic" is a symbol or abbreviation
chosen as an aid in remembering.

uLdLLLl\(_] IOI H_I.

O fireg

WO, .+ DA BTSRRI GEn 7 1oh TT

e, 0T G e ke e s S e e O

While we are redefining SPACE, it would be logical to include the
phrase .

1 LINECOUNT +!

in the redefinition. Again our reasoning is that we should never
wwperform a .space without incrementing the count. Now we can
eliminate the word [1#] from the definition of .WORD, thereby
_eliminating a bug in the previous .WORD, namely that LINECOUNT
was getting incremented even at the beginning of the line:

Let's assume that we have edited our definitions into a block.
(In fact, we've done this already in block 237.) Notice that we

~nhad-very little typing to do, compared with the amount of
thinking we've done. FORTH source tends to be concise.T

Now we can define our in-between-level words--words like INTRO

_and PHRASE that we have already used in our highest~level words,

‘but which we didn't define because we didn't have the low-level
mechanism.

Let's start with INTRO. First we must set our input-stream
“pointers. . The introductions are all in block 234, so the phrase

234 BLK !

- takes care of_them. _Since each line is sixty-four_bytes long, we
‘can calculate the desired 6ffset into the block oy multiply 1ng
the loop index by sixty-four, then storing the offset into

Now we're ready to use WORDS to type all the words in the next
~sixty-four-bytes. The finished definition of INTRO looks like.
this:

: INTRO (u--)64 * >IN 1 234 BLK ! CR 64 WORDS ;

Our mechanism has given us a very easy way to select strings.
Unfortunately we cannot test this definition by itself, because it
does not reset the input-stream pointers to their original values
when it's done. But we can get around this by wrltlng ourselves a

definition called TEST, as follows: S

~

: TEST CR ' <WRITE EXECUTE WRITE> SPACE:

Now we can say .) .

-4

TFor Experts

On the other hand, FORTH is not as compressed.as APL, which. in,.
our opinion is not nearly as readable as FORTH.

12 THREE EXAMPLES 325

0 TEST INTRO

IN ..:S PAPER WE WILL DEM(. [R? AT ok

The "tick" in TEST will find the next word in the input stream,
INTRO, which will then be executed "between" <WRITE and WRITE>.
Notice that we put the argument to INTRO on the stack first.

The definition for FILLER will be a little more complicated.
Since we are dealing with sets, not lines, and since the sets are
four lines apart, we must multiply the loop index not by 64, but
by (64 * 4). To pick one of the 3 versions within the set, we must
choose a random number under three and multiply it by 64, then
add this result to the beginning of the set. Recalling our
discussion of compile-time arithmetic in Chap. 1ll., we can define

: FILLER (u -) [464 *] LITERAL *
3 CHOOSE 64 * + >IN ! 235 BLK ! 64 WORDS ;

Again, we can test this definition by writing

3 TEST FILLER
TO FUNCTION A5 ok

The remaining words in the application are similar to their
previous counterparts, stated in terms of the new mechanism.

Here is a sample‘ of the output, followed by our finished listing.
(We've added block 239 as an afterthought so that we'd be able to
print the same paper more than once.)

IN THIS PAPER WE WILL DEMONSTRATE THAT BY APPLYING AVAILABLE
RESOURCES TOWARDS FUNCTIONAL DIGITAL CAPABILITY COORDINATED WITH
COMPATIBLE ORGANIZATIONAL UTILITIES IT IS POSSIBLE FOR EVEN THE
MOST RESPONSIVE DIGITAL OUTFLOW TO AVUOID TRANSIENT UNILATERAL
MOBILITY.

ON THE ONE HAND, STUDIES HAUE SHOWN THAT WITH STRUCTURED DEPLOYMENT
OF TOTAL FAIL-SAFE MOBILITY BALANCED BY SYSTEMATIZED UNILATERAL
THROUGH-PUT IT BECOMES NOT UNFEASABLE FOR ALL BUT THE LEARST RANDOM
ORGANIZATIONAL PROJECTIONS TO AVUOID RESPONSIVE LOGISTICAL CONCEPTS.

ON THE OTHER HAND, HOWEVER, PRACTICAL EXPERIENCE INDICATES THAT
WITH STRUCTURED DEPLOYMENT OF QUALIFIED TRANSITIONAL MOBILITY
BALANCED BY REPRESENTATIVE LOGISTICAL THROUGH-PUT IT IS NECESSARY
FOR RLL REPRESENTATIVUE UNILATERRL ENGINEERING TO FUNCTION AS
OPTIONAL DIGITAL SUPERSTRUCTURES.

IN SUMMARY, THEN, WE PROPOSE THAT WITH STRUCTURED DEPLOYMENT OF
RANDOM MANRGEMENT FLEXIBILITY BALANCED BY STAND-ALONE DIGITAL
CRITERIA IT IS NECESSARY FOR ALL QUALIFIED FAIL-SAFE OUTFLOW TO
AVOID PARTIAL UNDOCUMENTED ENGINEERING.

. Starting FORIH

e AT RO R T

el T ok o Wl AP N i e

234 LIST
@ IN THIS PAPER WE WILL DEMONSTRATE THAT
1 ON THE ONE HAND, STUDIES HAVE SHOWN THAT
2 ON THE OTHER HAND, HOWEUER, PRACTICAL EXPERIENCE INDICATES THAT
—3—IN SUMMARY, THEN, WE PROPOSE THAT :
4
s
&6
7
8 J—
9
19
11
12
13 »
14
15
235 LIST
@ BY USING
1 BY APPLYING AVAILABLE RESOURCES TOWARDS - S
2 WITH STRUCTURED DEPLOYMENT OF
3
~ 4 COORDINATED WITH - -
S TO OFFSET
e B, BALANCED BY - - - . -
7
8 IT IS POSSIBLE FOR EVEN THE MOST
~ 9.IT BECOMES-NOT-UNFEASABLE FOR ALL- BUT THELEAST" - -—
18 IT IS NECESSARY FOR ALL
11
12 TO FUNCTION AS
13 TO GENERATE A HIGH LEVEL OF
14 TO AUOID -
15
236 LIST
@ INTEGRATED MANAGEMENT CRITERIA
1 TOTAL ORGANIZATIONAL FLEXIBILITY
2 SYSTEMATIZED MONITORED CAPABILITY
3 PARNLLEL PECIPROCAL MODILITY
4 FUNCTIONAL DIGITAL PROGRAMMING
5 RESPONSIVE LOGISTICAL CONCEPTS
& OPTIMAL TRANSITIONAL TIME PHASING
7 SYNCHRONIZED INCREMENTAL PROJECTIONS
8 COMPATIBLE THIRD GENERATION HARDWARE
9 QUALIFIED POLICY THROUGHK-PUT
16 PARTIAL DECISION ENGINEERING
11 STAND-ALONE UNDOCUMENTED OUTFLOW
12 RANDOM CONTEXT SENSITIVE SUPERSTRUCTURES
13 REPRESENTATIVE FAIL-SAFE INTERACTION
14 OPTIONAL OMNIRANGE CONGRUENCE
15 TRANSIENT UNILATERAL UTILITIES
Copyright FORTH, Inc. 3/86/81 Starting FORTH

11:43

12 THREE EXAMPLES 327

237 LIST
B (BUZZPHRASE GENERATOR II -- MARGIN SETTING) EMPTY
1 181 LOAD (RANDOM NUMBERS)
2 32 CONSTANT BL 78 CONSTANT RMARGIN
3 VARIABLE LINECOUNT VARIABLE HOMEBASE 2 ALLOT
4 : <WRITE BLK @ >IN @ HOMEBASE 2!
S ! WRITE> HOMEBASE 2@ >IN ! BLK 1t 3
6
7 + CR CR @ LINECOUNT ! ;
8 : SPACE LINECOUNT @ 1IF SPACE { LINECOQUNT +! THEN ;
S ! .WORD (adr) COUNT DUP LINECOUNT @ + RMARGIN >
10 IF CR ELSE SPACE THEN
i1 DUP LINECOUNT +! TYPE ;
12 : ANOTHER (¢ lim -- 1lim adr) BL WORD OVER >IN @ < NOT ;
13 : WORDS Cu)
14 >IN @ + BEGIN ANOTHER WHILE .WORD REPEAT 2DROP ;
15 238 LOAD 23S LOAD
238 LIST
@ (BUZZPHRASE GENERATOR -- HIGH LEUEL WORDS)
i
2 : BUZZ 16 CHOOSE 64 * + >IN | 236 BLK ! 28 WORDS
3 ¢ 4RDJ @ BUZZ ;
4 1 2RDJ 26 BUZZ
5 ¢ NOUN 49 BUZZ ;
6 : PHRASE 1ADJ 2ADJ NOUN ;
7 ¢ FILLER ¢ u) L 4 64 % 1 LITERAL %
8 3 CHOOSE 64 * + >IN ! 235 BLK ! 64 WORDS ;
S : SENTENCE 4 9 DO I FILLER PHRASE LOOP .*" ." CR ;
18 : INTRO [QETD] 64 * >IN ! 234 BLK | CR 64 WORDS :
11
iz * PAPER <WRITE CR CR 4 @ DO I INTRO SENTENCE LOQOP WRITE>
13
14

15 : TEST CR * <WRITE EXECUTE WRITED> SPACE

239 LIST

¢ RETRIEUAL OF MORE SUCCESSFUL PAPERS)

VARIABLE SEED

4POSTERITY RND @ SEED !
execute BEFORE producing a paper)

REDO SEED @ RND ! ;
execute AFTER a paper, to reprant it,
Usage: REDO PAPER]

[Vl es MRS AR T I N VD R AVl o]
~ ~

Copyright FORTH, Inc. 3786-81 11:44 Starting FORTH

328 o e v Starting FORTH
File Away!
— Cewe o, LI

Our second example consists of a simple filing system.)r It is a
. powerful and useful application, and a good one to learn FORTH
style from. We have divided this section into four parts:

[ORRR

i7 A "How to" for the end user. This will give you an idea
of what the application can do.

2, Notes on the way the application 1s structured and the
: way certain definitions work.

A glossary of all tRe definitions in the application.

R A listing of the application, including the ‘blocks that
contain the files themselves.

How to Use the Simple File System

—_— - Do e e e - - -

This computer filing system lets you store and retrieve
information quickly and.easily. Af, thesmomenty it is set up~to
handle people's names, occupations, and phone numbers.! Not
only does it allow you to enter, change, and remove records, it..
also allows you to search the file for any piece of information.
For example, if you have a phone number, you can find the
person's name; or, given a name, you can find the person's job,
etc.

[L -

- e ——— - N Lo r

For each person there is a "record" which contains four "fields."
The names which specify each of these four fields are

SURNAME GIVEN JOB PHONE . .

"

("Given," of course, refers to the person's given name, or first

name.)

TE‘oy: Serious File-Users
FORTH, Inc. offers a very powerful File Management Option. -
! For Programmers

You can easily change these categories or extend the number of
fields the system will handle.

12 THREE EXAMPLES 329

File Retrieval

You can search the file for the contents of any field by using
the word FIND, followed by the field-name and the contents, as in

FIND JOB NEWSCASTERCEILD DAN RATHER ok

If any "job" field contains the string "NEWSCASTER," then the
system prints the person's full name. If no such file exists, it
prints "NOT IN FILE."

Once you have found a field, the record in which it was found
becomes "current." You can get the contents of any field in the
current record by using the word GET. For instance, having
entered the line above, you can now enter

GET PHONEQILD. __-9876 ok

The FIND command will only find the first instance of the field
that you are looking for. To find out if there is another
instance of the field that you last found, use the command
ANOTHER. For example, to find another person whose "job" is
"NEWSCASTER," enter

ANOTHERGEITD JESSICA SAVITCH ok

and

ANOTHERCEAIIDD FRANK REYNOLDS ok

When there are no more people whose job is "NEWSCASTER" in the
file, the ANOTHER command will print "NO OTHER."

To list all names whose field contains the string that was last
found, use the command ALL:

ALLCELD
I- . /. HER

N QAVIT™"

FRI. _ NO0Luw

ok

Since the surname and given name are stored separately, you can
use FIND to search the file on the basis of either one. But if
you know the person's full name, you can often save time by
locating both fields at once, by using the word FULLNAME.
FULLNAME expects the full name to be entered with the last name
first and the two names separated by a comma, as in

FULLNAME WONDER,STEVIEGHEILD STEVIE WONDER ok R —

(There must not be a space after the comma, because the comma
marks the end of the first field and the beginning of the second
Tfield.y" Tike FIND and ANOTHER, FULLNAME repeats the name to
indicate that it has been found.

- e e i U NI . R o
Rt AT T oA B 5 s e o mm s e - — ;

You can actually find any pair of fields by using the word.PAIR.

=Y-ou~must-specify—both the field names and their contents,
separated by a comma. For example, to find a newscaster whose
_given name_is Dan, enter

PAIR JOB NEWSCASTER,GIVEN DAN{IZILD DAN RATHER ok

File Maintenance

_To enter a new record, use the command ENTER, followed by the
surname, given name, job, and phone, each separated by a comma
only. For example,

ENTER NUREYEV,RUDOLF,BALLET DANCER,555-123ACEIED ok .

To change the contents of a single field within the current
-record; - use~the command CHANGE followed by the name of the
field, then the new string. For example,

v e a Rair el

CHANGE JOB CHOREOGRAPHEREETID ok

To completely Temdve the current record, use the command REMOVE: ™~

REMOVECETN ok

-After adding, changing, or removing records, and -before turni-hg
off the computer or changing disks, be sure to use the word

FLUSH ok

Comments

This section is meant as a guide, for the novice FORTH
programmer, to the glossary and listing which follow. We'll
describe the structure of this application and cover some of the

more complicated definitions. As you.read.this section, study the. '

glossary and listing on your own, and try to understand as much
as you can. -

_ ... Starting FORTH ___

12 THREE EXAMPLES 331

Turn to the listing now and look at block 242, This block
contains the definitions for all nine end-user commands we've
just discussed. Notice how simple these definitions are, compared
to their power!

This is a characteristic of a well-designed FORTH application.
Notice that the word -FIND, the elemental file-search word, is
factored in such a way that it can be used in the definitions of
FIND, ANOTHER, and ALL, as well as in the internal word, (PAIR),
which is used by PAIR and by FULLNAME.

We'll examine these definitions shortly, but first let's look at
the overall structure of this application.’

One of the basic characteristics of this application is that each
of the four fields has a name which we can enter in order to
specify the particular field. For example, the phrase

SURNAME PUT

will put the character string that follows in the input stream
into the "surname" field of the current record. The phrase.

SURNAME .FIELD

will print the contents of the "surname" field of the current
record, etc.

There are two pieces of information that are needed to identify
each field: the field's starting address relatlve to the
beginning of a record and the length of the field. }

\
In this application, a record is laid out like this:

0 16 28 52 64
surname given ‘ job phone
9 — ~—— — ~——
12 24 1T

For instance, the "job" field starts twenty-eight bytes in from
the beginning of every record and continues for twenty-four
bytes.

We chose to make a record exactly sixty-four bytes long so that
the fields will line up in columns when we the file. This
was for our convenience in programming, but this system could be

332 Starting FORTU

ITET TR T - PR TRy DuP =G ERICHPY R O MRS PR A

)

"modified ‘to hold records of any‘length ahd any number of fields.T

We've taken the two pieces of information
for each field and put them into a
double-length table associated with each
field name. Cur definition of JOB,

therefore, is 3 - J
CREATE JOB 28 , 24 , . o . B -

Thus when we enter the name of a field, we link

are putting on the stack the address of the ° " code pointer

table that describes the "job" field. We 28 -

can fetch either or“both pieces of

information relative to this address. B 24

Let's call each of these entries é "field

specifying table," or a "spec table" for . . . vl

short.

T TTA e GRS L ¥, e T H

T v a——— _

For Those Who Want to MGdify This File System

' To chafgé the Pardmeters of the fields, just make sure that the

beginning byte ("tab") for each field is consistent with the

. .lengths.of. the .fields that . precede it. .Forvexample, if the first

field is thirty bytes long, as in
CREATE 1FIELD 0, 30, .

then make the tab for the second field thirty, as in
CREATE 2FIELD 30, 12,

ete. Finally, set the value of R-LENGTH .in line 4 to the length
of the entire record (the last field's tab plus its length). Using
R-LENGTH, the system automatically computes the-number of records
that can fit into a single block (1024 R-LENGTH /) and defines the
constant REC/BLK accordingly. . © .

You may also change the location of the new file (e.q., to create
several different files) by changing the value of the constant
FILE in line 5. You may also change the maximum number of blocks,,
that your file can contain by replacing the "2" in the same line.
This value will be converted into a maximum number of records, by
being multiplied by REC/BLK, and kept as'the constant MAXRECS.,

12 THREE EXAMPLES 333

Part of the design for this application is derived from the
requirements of FIND, ANOTHER, and ALL; that is, FIND not only
has to find a given string within a given type of field, but also
needs to "remember" the string and the type of field so that
ANOTHER and ALL can search for the same thing.

We can specify the kind of field with just one value, the address
of the spec table for that type of field. This means that we can
"remember" the type of field by storing this address into KEEP.

KIND was created for this purpose, to indicate the "kind" of
field.

To remember the string, we have defined a buffer called WHAT to
which the string can be moved. (WHAT is defined relative to the
pad, where memory can be reused, so as not to waste dictionary
space.)

The word KEEP serves the dual purpose of storing the given field
type into KIND and the given character string into WHAT. If you
look at the definition of the end-user word FIND, you will see
that the first thing it does is KEEP the information on what is
being searched for. Then FIND executes the internal word -FIND,
which uses the information in KIND and WHAT to find a matching
string.

ANOTHER and ALL also use -FIND, but they don't use KEEP. Instead

they look for fields that match the one most recently "kept" by
FIND. -

So that we can GET any piece of information from the record
which we have just "found," we need a pointer to the "current"
record. This need is met with the variable #RECORD. The
operations of the words TOP and DOWN in block 240 should be
fairly obvious to you.

The word RECORD uses #RECORD to compute the absolute address
(the computer-memory address, somewhere in a disk buffer) of the
beginning of the current record. Since RECORD executes [BLOCK],
it also guarantees that the record really is in a buffer.

Notice that RECORD allows the file to continue over a range of
blocks.- divides the value of #RECORD by the number of’
records per block (sixteen in this case, since each record is
sixty-four bytes long). The guotient indicates which block the
record will be in, relative to the first block; the remainder
indicates how far into that block this record will be.

While a spec table contains the relative address of the field and
its length, we usually need to know the field's absolute address
and length for words such as [TYPE|, [MOVE|, and [-TEXT]. Look at~
the definition of the word FIELD to see how it converts the
address of a spec table into an absolute address and length.

3

oy
A I 7 e - e e W e n i « M SN SR Y PR ARAD PRI

-Starting FORTH——

Then examine how FIELD is 'applied in the definition of .FIELD.
The word PUT also employs FIELD., Its phrase ‘
T TPADTSWAP 'FIELD
~~leaves ormrthe stack the argumendté e
———adr—-of-PAD— absolute-adr-of-£field. count

~—for- “IVE| to move the string from the pad into the appropriate,
fiel. uf the current record.

There are two things worth hoting about the definition of FREE in
block 241. The first is the method used to determine whether a

~record is empty. We've made the assumption that if the first byte
of a record is empty, then the whole record is empty, because of

—.the 'way ENTER works. If the first byte contains a character
whose ASCII value is less than thirty-three (thirty-two is blank),
then it is not a printing character and the line is empty.
(Sometimes an empty block will contain all nulls, other times all
blanks; either way, such records will test.as "empty.") As soon.
.as an empty record is found, LEAVE ends the loop. #RECORD will
contain the number of the free record.)
Another thing worth noting about FREE is that it aborts if the
file is full, that is, if it runs through all the records without
finding one empty. We can use a loop to run through all the
records, but how can we tell that the loop has run out before it
has found an empty record?

The best way is to leave a "l1" on the stack, to serve as a flag,
before beginning the loop. If an empty record is found, we can
change the flag to zero (with the word [NOT|) before we leave the
loop. When we come out of the loop, we'll have a "1" if we never
found an empty record, a "0" if we did. This flag will be the .
argument for ABORTf .

We use a similar technique in the definition of -FIND. -FIND must
return a flag to the word that executed it: FIND, ANOTHER, ALL,
or (PAIR). The flag indicates whether a match was found before
the end of the file was reached. Each of these outer words needs .
to make a different decision based on the state of this flag.
This flag is a "1" if a match is not found (hence the name -FIND).
The decision to use negative logic was based on the way -FIND is
used.

Because the flag needs to be a "1" if a match is not found, the
easiest way to design this word is to start with a "1" on the,
stack and change it to a "0" only if a match is found. But
notice: while the loop is running, there are two values on the.;
stack: the flag we just mentioned and the spec table address for
the type of field to be searched. Since we need the address

12 THREE EXAMPLES 335

every time through the loop and the flag only once, if at all, we
have decided to keep the address on top of the stack and the
flag underneath. For this reason, we use the phrase

SWAP NOT SWAP

By the way, we could have avoided the problem of carrying both
values on the stack by putting the phrase

KIND @ FIELD
inside the loop, instead of

KIND @
at the beginning and

DUP FIELD
inside. But we didn't, because we always try to keep the number
of instructions inside a loop to a minimum. Naturally, it is the
loops that take the most time running. .
Now that-you understand the basic desién of this application, you

should have no trouble understanding the rest of the listing,
using the glossary as a guide.t

T e oottt .

TFor polyFORTH Users

This type of glossary is generated by an application called
DOCUMENTOR, which is included in the File Management Option.

336 Starting FORTH _

s 4 o (7 T N ANt

FORTH, Inc. : Page 1 37867814
SIMPLE FILES GLOSSARY . e
WORD VOCARBULRRY BLOCK STACK EFFECTS
HRECORD FORTH 248 ¢ -- adr)
AR variable that points tc the current record.
(PAIR) FORTH 241 ¢ adr)
Starting from the top, attempts to find.a match on the contents
‘of WHRT, using KIND to indicate the type of field., If a match
is made, then attempts tc match a second field, whose type is
indicated by adr, with the contents of PAD. If both match, :
prints the name; otherwise repeats until a match is made or
until the end of the file is reached, in which case prints
an error message. - e ’
~FIND FORTH 241 (-~ f) .
Beginning with HRECORD and proceeding down., compares the contents
0f the field indicated by KIND against the contents of WHRT.
JFIELD FORTH 242 ¢ adr)
From the current record, types the contents of the field that is
associated with the field-specifying table at adr.
. NAME FORTH 240
From the current record, types the name, first name first.
ALL FORTH 242
Beginning at the top of the file, uses KIND to determine type of
field and finds all matches on WHAT. Types the full name(s),
ANOTHER FORTH 242
Beginning with the next record after the current one, and using
KIND to determine type of field, attempts to find a match on WHAT,
If successful, types the name; otherwise an error message.
CHANGE FORTH 242
Changes the contents of the given field in the current record.
usage: CHANGE field-name new-contents
DOWN FORTH 2493
Moves the record pointer down one record.
ENTER FORTH 242
Finds the first free record, then moves fpur strings separated
by commas intoc the surname, given, job, and phone fields of
that record.
FIELD FORTH 240 (adr -~ adr length)
Given the address of a field-specifying table, insures that
the associated field in the current record is in a disk buffer
and returns the address of the field in the buffer along with
its length.
FILES FORTH 249 ¢ —-= u

The number of the block where the files begin.

12 THREE EXAMPLES 337

FORTH, Inc. Page 2 3786781
SIMPLE FILES GLOSSARY

WORD UOCABULARY BLOCK STACK EFFECTS

FIND FORTH 242

Finds the record in which there is a match between the caontents
of the given field and the given string.
Usage: FIND field-name string

FREE FORTH 241
Starting at the top of the file, finds the first record that is
free, that is, whose first byte contains a blank or zero.
Aports if the file 1s full.

FULLNAME FORTH 242
Finds the record in which there is a match aon both the first and
last names given. Usage: FULLNAME lastname,firstname

GET FORTH 242
Prints the contents of the given type of field from the current
record.

GIVEN FORTH 248 (== adr)

Returns the address of the field-specifying table for the
"given" (first name) field.

JOB FORTH 248 (¢ —— adr)
Returns the address of the field-specifying table for the
"job" field.

KEEP FORTH 241 ¢ adr)

Moves a character string, delimited either by a comma or by a
carriage return, from the input stream into WHAT, and saves the
address of the given field-specifying table in KIND, for future
use by -FIND.

KIND FORTH 240 ¢ == adr)
A variable that contains the address of the field-specifying
table for the type of field that was last searched for by FIND.

MAXRECS FORTH 240 ¢ == u)
The maximum number of records to be allowed in the system.

MISSING FORTH 241 -
Prints the message "NOT IN FILE.”

PAIR FORTH 242
Finds the record in which there is a match between both the
contents of the first given field and the first given string, and
and also the contents of the second given field and the second
given string. Comma is the delimiter.
Usage: PRAIR fieldl stringl,f:eld2 stringe

PHONE FORTH 248 ¢ ~— adr)
Returns the address of the field-specifying table for the
“phone" field.

.

338 Starting FORIH
oo T T e T e a2 148 v ke B% et vt s ST e v e s ey sl
e e s % = Tyeen S A T
FORTH, Inc. ' T Page 3 3/86/81
SIMPLE FILES GLOSSARY
WORD VOCABULARY BLOCK STACK EFFECTS
PUT FORTH 241 (adr)

“MoUesd character string, delimited either by a comma or by a
carriage return, from the input stream into the field whose
i @105 pR-C-i-fYing- table address is given on the stack.: e T

R-LENGTH FORTH 2492 ¢ == u)
e Thelenmgthin” bytes of a single record.

READ FORTH 241
- Moves a character string, delimited either by a comma or by a
carriage return, from the input stream into PAD.

REC/BLK FORTH 243 ¢ - u)
The number of records that will fit in a single block.,
given MAXRECS.

__RECORD FORTH 240 (== adr) S
Insures that the current record is in a disk buffer, and
returns the address of the first byte of that record.

REMOUVE FORTH 242
Erases the current record.

Fp— -

SURNAME FORTH 240 (== adr)
Returns the address of the field-specifying table for the
"surname' (last name) field.

TOP - FORTH 240 : -
Resets the record pointer to the top of the file.

WHAT FORTH 248 ¢ -— adry
Returns the address of a buffer that contains the string that
is being searched for, or was last searched for., by FIND.

12 THREE EXAMPLES

248 LIST
8 (SIMPLE FILES) EMPTY
1 ¢ tab length) ¢ tab length)
2 CREATE SURNARME g . 16 CRERTE GIVEN 16 , 12 ,
3 CREATE JOB 28 » 24 , CREATE PHONE 352 , 12 ,
4 64 CONSTANT R-LENGTH 1824 R~LENGTH ~/ CONSTANT REC~/BLK
5 243 CONSTANT FILES 2 REC/BLK x CONSTANT MAXRECS
& UARIABLE HRECORD UARIABLE KIND
7 ¢ WHRT (—- adr3} PAD 8@ +
8 : RECORD (-— first adr of current record)
S HRECORD @ REC/BLK /MOD FILES + BLOCK SWAP R-LENGTH x +
i8 FIELD (field —-adr length) 2@ RECORD + SWAP ;
11 TOP 8 HRECORD ! 3
12 DOWN i HRECORD +! ;
13 .FIELD (field) FIELD ~TRAILING TYPE SPACE ;
14 . NAME GIVEN .FIELD SURNAME .FIELD
15 241 LORD 242 LOAD
241 LIST
8 (SIMPLE FILES., CONT’'D)
i : RERD 44 TEXT 3
2 PUT ¢ field) READ PAD SWAP FIELD MOUE UPDATE
3 . KEEP { fi1eld) DUP KIND !
4 2+ @ RERD PARD WHAT ROT MOVE
5 : FREE 1 MAXRECS 8 DO I HRECORD ! RECORD cCe@
6 { ASCII) 33 < If NOT LEAVUE THEN LOOP ABORT'" FILE FULL
7
8 : =~FIND C ~=) 1 KIND @ MRXRECS HRECORD €@ DO
S I HRECORD ! DUP FIELD WHAT =~TEXT NOT IF
18 SWAP NOT SWAP LEAUE THEN LOOP DROP ;
11 MISSING " NOT IN FILE "
i2 (PAIR) ¢ field) MAXRECS 8 DO I HRECORD !
13 ~FIND IF MISSING LERUE ELSE DUP FIELD PAD -TEXT NOT
i4 IF .NAME LERVE THEN THEN LOOP DROP ;
15 |
242 LIST
8 (SIMPLE FILES =- END USER WORDS)
1)
2 ENTER FREE SURNAME PUT GIVEN PUT
3 JOB PUT PHONE PUT
4 : REMOVE RECORD R~LENGTH 32 FILL UPDATE ;
5 ! CHANGE > PUT
6
7 ¢ FIND ’ KEEP TOP —-FIND IF MISSING ELSE .NAME THEN ;
8 ! GET * L.FIELD 3
9
i@ ANOTHER DOWN =FIND IF . NO OTHER " ELSE .NAME THEN
11 ALL TOP BEGIN CR —-FIND NOT WHILE .NAME DOWN REPEART
12
13 ¢ PRIR ’ KEEP / READ (PAIR)
14 ' FULLNAME SURNAME KEEP GIVEN READ (PAIR) 3
15

Copyright FORTH, Inc.

3/06-81

11:44 Starting FORTH

339

’

;

340

243 LIST

@ FILLMORE

1 LINCOLN

2 BRONTE

3 RATHER

4 FITZGERALD
S SAVITCH

6 MC CARTHNEY
7 WASHINGTON
‘B8-REYNOLDS

g sILLS

1@ FORD

11 DEWHURST
12 WONDER

13 FULLER

14 RAWLES

1S TRUDERU

244 LIST

UAN BUREN
ABZUG
THOMPSON
SINATRA
JABBAR

MC GEE
DIDION
FRAZETTA
HENSON

o,
QUVOVNDDUVDSE LN

-
n

13
14
15

24S LIST

SO NOTUNAWN R~

Copyright FORTH,

Inc.

MILLARD’
ABRAHAM
EMILY
DAN
ELen
£ssICA
PALL
GEORGE
FRANK
AEVTFLY
HONTY
COLTEN
STCVTE
BUCKMINSTER
JOHN
GARRY

ABIGATL
BELLR
HUNTER S.
FRANK

SEEE

T e

Start

AL P T et

PRESIDENTw»~ - - . .

PRESIDENT
WRITCR
NEWSCASTER
SINGER
NEWSCASTER
SONGHRITER
PRESIDENT
NEWSCASTER
OPERA STAR
CAPITALIST
ACTRESS
SONGNRITER
WORLD ARCHITECT
PHILOSOPHER
CARTOCNIST

COLUMNIST
POLITICIAN

GONZO JOURNALIST
SINGER

KARCCIM ABDULBASKETBALL PLAYER
FICTITIOUS DETECTIVE

TRAVIS
JOAN
FRONK
JIn

2/86781

WRITER
ARTIST
PUPPETEER

11:44

ing FFORI'H

NO. PHONE
NO PHONE
NQ PHONE
555-9876
555~6789
555-9653
555-1212
NQ PHONE
555-876S"
555-9876
NO PHONE
555-3876
555-8a97
S55-7604
S55-8721
555-2832

555-8743
§55-4443
SE5-9R54
S55-9412
555-44389
§55-8887
555-8009
555-8991

555-8001

Starting FORTH

12 THREE EXAMPLES 341

No Weighting

Our final example is a math problem which many people would
assume could only be solved by using floating point. It will
illustrate how to handle a fairly complicated equation with
fixed-point arithmetic and demonstrate that for all the
advantages of using fixed-point, range and precision need not
suffer.

In this example we will compute the weight of a cone-shaped pile
of material, knowing the height of the pile, the angle of the
slope of the pile, and the density of the material.

To make the example more "concrete," let's weigh several huge
piles of sand, gravel, and cement. The slepe of each pile,
called the "angle of repose," depends on the type of material.
For example, sand piles itself more steeply than gravel.

cernllmeet e

sand cement loose gravel

(In reality these values vary widely, depending on many factors;
we have chosen approximate angles and densities for purposes of
illustration.)

Here is the formula for computing the weight of a conical pile h
feet tall with an angle of repose of 8 degrees, where D is the
density of the material in pounds per cubic foot:

tFor Skeptics

The volume of a cone, V, is given by

- L2
V—37rbh

where b is the radius of the base and h is the height. We can
compute the base by knowing the angle or, more specifically, the
tangent of the angle. The tangent of an angle is simply the
ratio of the segment marked h to the segment marked b in this

drawing:
h E‘

Rk’ T b, beka o e d AR SRR 0 T GEAGEALTLT T KB e ¢ o e+ e - et atd el

(continued...)

342 . __Starting FORTH. .

e e r— T T e S ST TS e ek A A .

sty - Thi3Dp e
ety
3 tan?(8)

~This-will-be.the-formula-which-we must express in—FORTH.

—let's design_our_application so that we can enter the name of a
material first, such as

N s

‘DRY-SAND

"Tthen enter the height of a pile and get the
result for dry sand
Let's assume that for any one type of

—material the density and angle of repose
never vary. We can store both of these
values for each type of material into a CEMENT
table. Since we ultimately need each 1319
angle's tangent, rather than the number of
degrees, we will store the tangent. For 700 .
instance, the angle of repose for a pile of

. cement. is 35°, for which the tangent is
.700.. We will store this as the integer 700.

e . e

‘Bear in mind that our goal ig not jUSt to° get an answer, we are
programming a computer or device to get the answer for us in_the’
- fastest, most efficlent; and most accurate way p0551ble As we
indicated in Chap. 5, to write equations using fixed-point
arithmetic.requires-an extra. amount of thought. ~But™the effort”
pays off in two ways:

For Skeptics (continued)

If we call this angle "6" (theta), then . e - ’ o

_h
tane—g

Thus we can compute the radius of the base with

h . Coe . Gt e T ST S

'Ab=tan6

When we substitute this into the expre551on for V, and then
multiply the result by the density D in pounds per cubic foot, we.
get the formula shown above.

12 THREE EXAMPLES 343

1. wvastly improved run-time speed, which can be very
important when there are millions of steps involved in a
single calculation, or when we must perform thousands of
calculations every minute. Also,

2. program size, which
would be critical if,
for instance, we wanted
to put this application
in a hand-held device
specifically designed
as a pile-measuring
calculator. FORTH is
often used in this type
of instrument.

Let's approach our problem by first considering scale. The
height of our piles ranges from 5 to 50 feet. By working out our
equation for a pile of cement 50 feet high, we find that the
weight will be nearly 35,000,000 pounds.

But because our piles will not be shaped as perfect cones and
because our values are averages, we cannot expect better than
four or five decimal places of accuracy.T If we scale our result
to tons, we get about 17,500, This value will comfortably fit
within the range of a single-length number. For this reason,
let's write this application entirely with single-length
arithmetic operators. !

Applications which require greater accuracy can be written using
double-length arithmetic; to illustrate we've even written a
second version of this application using 32-bit math, as you'll
see later on. But we intend to show the accuracy that FORTH can

achieve even with 16-bit math. ‘

By running another test with a pile 40 feet high, we find that a
difference of one-tenth of a foot in height can make a
difference of 25 tons in weight. So we decide to scale our input
to feet and inches rather than merely to whole feet.

t For Math Experts:
In fact, since our 'height will be expressed in three--digits,we

can't expect greater than three-digit precision. But for purposes
of our example, we'll keep better than four-digit precision. N——

344 - bLartlng l‘OR’l‘li -

e T U T TN R b AR T

WiE awmaw Bawe w IO T ST

S e i naanan e dUNRP -

We'd like the user to be able to enter

15 FOOT 2 INCH PILD

-where the words FOOT and INCH will convert the feet and inches
into tenths of an inch, and PILE will do the calculatlon. Here's
how we might define FOOT and INCH: :

FOOT 10 * ;
INCH 100 12 */ 5 + 10/+;

The use of INCH is optional.

(By the way, we could as easily have designed input to be in
tenths of an inch with a decimal point, like this:

15.2

In this case, NUMBER would convert the input as a double-length
value. Since we are only doing single-length arithmetic, PILE
could simply begin with [DROP|, to eliminate the high-order byte.)

In writing the definition of PILE, we must try to maintain the
maximum number of places of precision without overflowing 15
bits. According to the formula, the first thing we must do is
cube the argument. But let's remember that we will have an
argument which may be as high as 50 feet, which will be 500 as a
scaled integer. Even to square 500 produces 250,000, which
exceeds the capacity of single-length arithmetic.

We might reason that, sooner or later in this calculation, we're
going to have to divide by 2000 to yield an answer in tons. Thus
the phrase

DUP DUP 2000 */

will square the argument and convert it to tons at the same time,
taking advantage of [*/]'s double-length intermediate result.
Using 500 as our test argument, the above phrase will yield 125.

But our pile may be as small as 5 feet, which when squared is only
25. To divide by 2000 would produce a zero in integer arithmetic,
which suggests that we are scaling down too much.

To retain maximum accuracy, we should scale down no more than
necessary. 250,000 can be safely accommodated by dividing by 10.
Thus we will begin our definition of PILE with the phrase

DUP DUP 10 */

The integer result at this stage will be scaled to one place to
the right of the decimal point (25000 for 2500.0).

12 THREE EXAMPLES 345

Now we must cube the argument. Once again, straight
multiplication will produce a double-length result, so we must use
[*/] to scale down. We find that by using 1000 as our divisor, we
can stay just within single-length range. Our result at this stage
will be scaled to one place to the left of the decimal point
(12500 for 125000.) and still accurate to 5 digits.

According to our formula, we must multiply our argument by pi. We
know that we can do this in FORTH with the phrase

355 113 */

We must also divide our argument by 3. We can do both at once
with the phrase

355 339 */
which causes no problems with scaling.

Next we must divide our argument by the tangent squared, which we
can do by dividing the argument by the tangent twice. Because
our tangent is scaled to 3 decimal places, to divide by the
tangent we multiply by 1000 and divide by the table value. Thus
we will use the phrase

1000 THETA @ */

Since we must perform this twice, let's make it a definition,
called /TAN (for divide-by-the-tangent) and use the word /TAN
twice in our definition of PILE. Our result at this point will
still be scaled to one place to the left of the dec1mal (26711 for
267110, using our maximum test values).

All that remains is to multiply by the density of the material, of
which the highest is 131 pounds per cubic foot. To avoid
overflowing, let's try scaling down by two decimal places with
the phrase .

DENSITY @ 100 */
But by testing, we find that the result at this point for a 50-foot

pile of cement will be 34,991, which just exceeds—the-l5=bit.limit...
Now is a good time to take the 2000 into acc0unt. Instead of

DENSITY @ 100 */
we can say
DENSITY @ 200 */ -

and our answer will now be scaled to whole tons.

You will find this version in the listing of block 246 that

346 S S .. Starting FORTH

s
s T TS Y TR TR T R RS G T v AT T My e AT

follows. As we mentioned, we have also written this application
using double-~length arithmetic, in block 248. In this version you

Tenter the Height as a double-length number scaled to tenths of a
foot, followed by the word FEET, as in 50.0 feet.

geirand,

By using double-length integer arithmetic, we are able to compute
wemtDe.Weight of .the .pile to the nearest whole pound. The range of

double-length integer arithmetic compares with that of most
..floating-point arithmetic. Below is a comparison of the results
" obtained using a l0-decimal-digit calculator, single-length
. FORTH, and double-length FORTH. The test assumes a 50-foot pile
~™of cement; using the table values.

in pounds in tons
calculator 34,995,634 17,497.817
. FORTH 16-bit -— 17,495
FORTH 32-bit 34,995,634 17,497.817

\’ . = . A
h

Here's a sample of our application's output:

- ‘;N 'E B ‘?v‘ ' v‘ﬁ‘.‘v-f
246 LOAD_ok)
CEMENT ok = A T s =
10 FOOT PILE = 138 Tv*' ' OF CEM '7T ok
10 FOOT 3 INCH PILE = .ol TONS- .. CEMENT ok - - .7
DRY-SAND ok

10 FOOT PILE = 81 TONS OF DRY SAND ok
248 LOAD CEMENT ok o

10.0 FEET = 279939 POUNDS OF CEMENT OR 139.969 T('.' ok

A note on "

The defining word MATERIAL takes three arguments for each
material, one of which is the address of a string. .SUBSTANCE
uses this address to type the name of the material.

To put the string in the dictionary and to give an address to
MATERIAL, we have defined a word called ". As you can see from
its definition, " compiles the string (delimited by a second
quotation mark, ASCII 34) into the dictionary, with the count in
the first byte, and leaves its address on the stack for MATERIAL.
To compile the count and string into the dicti ' iry, we simply .
have to execute [WORD|, since. ffer is I wWe get the

string's address as a fillip, since |WORD| also leaves

All that remains is to [ALLOT| the appropriate number of bytes.
-This number is obtained by fetching the count from the first byte
of the string and adding one for the count's byte.

12 THREE EXAMPLES

246

247

248

Copyright FORTH, Inc. 386,81 11:45

LIST

B (WEIGHY OF CONICAL PILES -- SINGLE-LENGTH)
1 VRRIABLE DENSITY VARIABLE THETR VRRIABLE
2 34 CONSTRNT QUOTE
HER QUOTE WORD DUP C@ 1+ RLLOT ;

. SUBSTANCE STRING @ COUNT TYPE SPACE

MRTERIAL ¢ STRING DENSITY THETA) CREATE
DOES)> DUP @ THETA ! 2+ DUP @ DENSITY !

W oo, Ul bW

: FOOT 18 %

18 © INCH 108 12 %~ S 4+ 18 ~ +
11

i2 ¢ /TAN 1888 THETA @ %/ ;

13 : PILE DUP DUP 1@ %~/ 188@ %~/ 355 339 *x/ /TRN /TAN

EMPTY

STRING

]

2+ @ STRING

14 DENSITY @ 288 x/ oz . . TONS OF *

1S 247 LORD

LIST

@ (TRBLE OF MATERIALS)

1 ¢ STRING-RDDRESS DENSITY THETA)

2 " CEMENT" 131 780 MRTERIAL CEMENT

3 " LOOSE GRAVEL" S3 648 MRTERIAL LOOSE-GRAVEL
4 " PRCKED GRAVEL" 180 704a MATERIRL PACKED~GRAVEL
S ' DRY SAND" S8 754 MRTERIAL DRY-SAND

& " WET SRARND" 118 380 MATERIAL WET-SAND
7" CLAY" 128 727 MRTERIAL CLRAY

8

9
1ia
i1
1

13

14 CEMENT
15
LIST

@ (WEIGHT OF CONICAL PILES —=- DOUBLE-LENGTH) EMPTY

1 VARIABLE DENSITY VARIABLE THETA UARIABLE STRING

2 34 CONSTANT GQUOTE N

a " QUOTE WORD DUP Cc@ 1+ ALLOT ;

4 . SUBSTARNCE STRING @ COUNT TYPE SPACE

S ¢ u.3 < # # # 46 HOLD #S #H> TYPE SPACE ;

6 : MATERIAL (STRING DENSITY THEYA) CRERTE yos s

7 DCES)> DUP @ THETAR ! 2+ DUP @ DENSITY ! 2+ @ STRING
8

9 : CUBE (d -- d) 2DUP OVER 18 Mx/ DROP 10 Mx/ ;

18 ¢ /TAN (d--d) 1888 THETAR @ Mx/ ;

11 ¢ FEET (d -~ d) CUBE 355 339 Mx/ DENSITY @ 1 Mx/
12 ZTRN /TRN S M+ 1 10 Mx/

13 2DLUP "oz " D. L' POUNDS OF " . SUBSTANCE

14 12 Mxs ORI U3 . TONS 3

1S 247 LOAD

’

347

.SUBSTRNCE 3

Starting FORTH

’

Review of Terms

. Stub

Top-down
e OPZCOWIL
‘programming

Starting FORTH

in FORTH, a temporary definition created
solely to allow testing of a higher-level
definition. : ‘ : :

a programming methodology by which a large
application is divided into smaller units,
which may be further subdivided as neceéssary.
The design process starts with the overview, or
"top," and proceeds down to the lowest level
of detail. Coding of the low-level units
begins only after the entire structure of the
application has been designed.

APPENDIX 1
ANSWERS TO PROBLEMS

Chapter 1
1. : GIFT ." BOOKENDS " ;
: GIVER . STEPHANIE " ;
: THANKS ." DEAR " GIVER ." , THANKS FOR THE "
GIFT .ll .o ;
2. : TEN-LESS -10 + ; or

: TEN-LESS 10 - ;

3. When THANKS was compiled, the definition included a
reference to the first version of GIFT (the only version of
GIFT at that time). Thus THANKS will always execute the same
version of GIFT.

Chapter 2
1. DUP DUP: 12-—-1222
2DUP: 12-—-1212
2. SWAP 2SWAP SWAP
3. : 3DUP DUP 20VER ROT ;
4, : 2-4 OVER + * + ;
5. : 2-5 2DUP - ROT ROT + / ;
6. : CONVICTED-OF 0 ; : HOMICIDE 20 +
: WILL-SERVE., . ." YEARS " ; : ARSON 10 + ;
: BOOKMAKING 2 +
; : TAX-EVASION 5+ ;
7. : EGG.CARTONS 12 /MOD . ." CARTONS AND "

. ." LEFTOVERS " ;

Chapter 4

1. 1 0= NOT . 1 ok
0 0= NOT . 0 ok

200 0= NOT . 1 ok

2. Don't ask.

1-1

1-2 Answers Starting FORTH
DOl A S T

- . . preet e N “-n-"pmx» ‘ n,,,,,n T g & e T

s KTy
e r L RTINS At L vt <t rovmaman . = sy oy ST MR

3. (assuming the legal age is 18 or over:)

e : CARD 17 > IF ." ALCOHOLIC BEVERAGES PERMITTED "
ELSE ." UNDER AGE " THEN ;

4. : SIGN,TEST DUP 0= IF ." ZERO " ELSE
DUP 0<_ IF ."_NEGATIVE " ELSE.__ -

." POSITIVE " THEN THEN DROP ;
(or anything else that works)

5. : STARS ?DUP IF STARS THEN ;

5. : <ROT ROT ROT ;
+-WITHIN <ROT OVER‘ > NOT <ROT > AND ;
Or here's a more efficient version, using tr:.cks :Lntroduced in
—.the next chapter:
: WITHIN >R 1- OVER < SWAP R> < AND

—

7. : GUESS (answer guess — answer or —)

2DUP = IF ." CORRECT! " 2DROP ELSE

2DUP < IF ." TOO HIGH " ELSE ." TOO LOW "

THEN DROP THEN ;

.- — - B - . M - T v o]
" 8. ': SPELLER DUP ABS 4 > IF ."OUT OF RANGE " ELSE
~DUP 0< IF ." NEGATIVE " ABS THEN
DUP 0- ." ZERO " ELSE

—— —

DUD L = Ir' ." ONE " ELSE
T T pup 2 =" CIF LY TWO "TURLSE ’
DUP 3 = IF ." THREE " BLSE

e e et e - . FOUR " L« - ~ TR
THEN THEN THEN THEN THEN DROP ’

- -
- —— -

9. assuming <ROT and WITHIN are still loaded:
3DUP DUP 20VER ROT ;

TRAP (answer low-try hi-try -- answer or =~ --
3DUP OVER = <ROT = AND IF ." YOU GOT IT! " DROP ELSE
3DUP SWAP 1 + SWAP WITHIN IF ." BETWEEN "

ELSE ." NOT BETWEEN " THEN THEN 2DROCP ;

Chapter 5
1. */ MINUS 4, : F>C 32 - 1018 */ ;
: C>F 18 10 */° 32 + ;
2. MAX MAX MAX . : K>C 273 - ;
s C>K 273 + ; -
3. ay 032- 1018 */, -17 ok : F>K F>C C>K ;
by 212 32 - 10 18 */ ., 100 ok : K>XF K>C- C>F ;

c) -3232- 1018 */ . -35 ok
d 16 18 10 */ 32 + . 60 ok
e) 233 273 - . ~40 ok

APPENDIX 1 Answers 1-3

186 LIST
(
(

WONOUMORN-E

woNOOUBRWON-B

el el
Ubwn -8

188 LIST

—~ e o

WONOUDWN-E

ANSWERS, CHAP. 6) EMPTY
PROBLEMS 1 - 6)
STRARS B DO ." %" LOOP ;
BOX 8 DO CR DUP STARS LOOP DROP ;
\STRARS (#i-of-lines) B8 DO CR I SPACES 18 STARS LOOP ;
/STARS (B-of-lines) 1 SWAP DO CR I SPACES 18 STARS
-1 +LOOP
(USING BEGIN & UNTIL FOR /STARS :)
A/STARS (#-of-lines) BEGIN CR DUP SPRCES 18 STARS
i~ DUP 8= UNTIL DROP ;

DIAMONDS DEFINED IN TWO STRGES:)
TRIANGLE DO CR 9 I - SPRCES
I 2x 1+ STARS DUP +LOOP DROP
DIAMONDS 8 DO 1 16 8 TRIANGLE
-1 8 3 TRIANGLE LOOP ;

ANSWERS, CHAP. 6, CONT’D) EMPTY

PROB. 7)
R% 18 x/ S5 + 18 7 ;
DOUBLED C AMT INT --)
OVER 2% ROT ROT SWAP 21 i1 DO

CR ." YEAR " I 2 U.R 3 SPACES
2DUP R% + DUP ." BAL " .
DUP Z20VER DROP > IF
CR CR .” MORE THAN DOUBLED IN " I . .'" YEARS " LERVE

THEN LOOP 2ZDROP DROP ;

PROB. 8)
KK i- ?DUP IF
OVER ROT ROT © DO OVER x LOOP SWAP DROP THEN

ANSKWERS, CHAP. 7) EMPIY
PROB. 1) -
N-MAX B BEGIN i+ DUP 8< UNTIL 1~ ., ;

Keeps incrementing the number on the stack by one until
it looks negative, which means the limit has been passed.
The final 1i- sets it back to what it was just before it
surpassed the l1imit.)
PROB. 2 ~- Assume that HUMOROUS and SENSITIVE are
both true. The "anded" result is "1"”. Now assume
that ART-LOUVING and MUSIC-LOUVING are alsoc both true.
If we “+” their flags instead of "“OR"ing them, we get "2."
But 2881 Conel
ANDed with 8812 ftwol
gives 0088, which is false.)

Copyright FORTH., Inc. 3/86/81 11:48 Starting FORTH

1-4 Answers _Starting FORTH.

M, F Y AMGPRAR Y e 3 T e e meemg et et st e

189 LIST
@ (_ANSWERS, CHAP. 7 ~-- CONT’D) EMPTY -
1 (PROB. 3)
2 : BEEP . BEEP " 7 EMIT ;
-3 @ DELRY 20088 © DO LOOP
4 : 3BELLS BEEP DELAY BEEP DELAY BEEP ;
.-._..__...._..,5_..__* b
‘ 6 ¢ PROB. 4-a)
7t F>C -329 M+ 18 18 Mx/ ;
B : CYF 18 1@ Mxs 320 M+ ;
g : K>C -2732 M+
18 @ COK 2732 M+

11 ¢ FOK F»C C>K 3
12 ¢ K>F K>C CO>F

- 13 (PROB., 4-h) >
14 : .DEG SWAP OVER DABS
1S <# # 46 HOLD #S SIGN #> TYPE SPACE
P Wi 1« < onbern s
198 LIST
B (ANSWERS, CHAP. 7 -—- CONT’D)
1 ¢ PROB. 5)
2 ¢ DPOLY C x == dw
3 DUP 7 Mx 28 M+ ROT 1 Mx/ 5 M+ ;
) PDMAX @ BEGIN i+ DUP DPOLY ©® @ D<C UNTIL 1- .
5 (?DMAX srets 17543 ok -- this takes a while)
6 - .
S
8 (PROB. &)
9 ! BINARY 2 BASE !t ;
18 3~BASES
1t 17 @ DO CR .” DECIMAL" DECIMAL I 4 U.R 8 SPACES
12 LUOHEN HEX I 3 U.R 8 SPRCES
i3 LY BINARYY BINARY I 8 U.R 8 SPRCES
14 LOOP DECIMAL
15
191 LIST
B (ANSWERS, CHAP. 7 -- CONT’D)
1 ¢ PROB. 7 -- It tells you thnat double-length routines are
2 lpaded. Twe dots are interpreted as a double-length zero,)
3
4 (PROB. 83
S ! .PHH <H H# # H H 45 HOLD # # #
6 QUVER IF 47 HOLD #S THEN #> TYPE SPACE ;
7 (OVER supplies IF with the low-order cell of thne
a8 number being converted., This cell] contains zero only
9 when conversion has completely "used up'" the number.)
1@
11
12
13
14

Copyright FORTH., Inc. 3/66/81 11:4@ Starting FORTH

APPENDIX 1 Answers 1-5

192 LIST
, @ (ANSWERS, CHAP. 8) EMPTY
i1 ¢ PROB. i1-a)
2 VARIARBLE PIES @ PIES !
3 ¢ BAKE-PIE 1 PIES +!
4 : EAT-PIE PIES @ 1IF -1 PIES +! O THANK You
S ELSE ." WHAT PIE? " THEN
6 (PROB 1-~b)
7 UARIABLE FROZEN-PIES 8 FROZEN-PIES !
8 FREEZE~PIES PIES @ FROZEN-PIES +! ® PIES '
9 (PROB. 2)
18 ! ,BASE BASE @ DUP DECIMAL . BRASE |
11 ¢ PROB. 3O
12 VARIABLE PLACES @ PLACES !
13 ¢ M. SWAP OQVER DABS «#
14 PLACES @ ?DUP IF © DO # LOOP 46 HOLD THEN
15 #S SIGN #> TYPE SPACE 3
193 LIST
8 (ANSWERS, CHAP. B -- CONT’D) EMPTY
1
2 (Prob. 4)
3 VUARIABLE HPENCILS 6 ALLOT
4 8 CONSTANT RED 2 CONSTANT BLUE
S 4 CONSTANT GREEN 6 CONSTANT ORANGE
&6
7 4 PENCILS HPENCILS + - - e -
8
S 23 RED PENCILS !

18 15 BLUE PENCILS !
11 12 GREEN PENCILS !
12 @ ORANGE PENCILS !

13
14 (Jo test, we can enter
15 BLUE PENCILS ? 15 ok)
194 LOAD -
PLOT
194 LIST @
1 %
@ (ANSWERS, CHAP. 8., CONT’D) EMPTY 2 ok
1 -~ 3 Ak~ —
2 (PROB. 5) 4 KooK
3 CREATE ’SAMPLES 28 ALLOT (18 CELLS) S Raolonok
4 STARS ?DUP IF @ DO 42 EMIT LOOP THEN 6 hkHkA K
5 SAMPLES ¢ indexH# -- adr) 2x *SAMPLES + ; 7
BN - INIT-SAMPLES ¢ -= : g% .
7 14 @ PO I 7 MOD I SAMPLES ! LOOP ; 9 ok
8 18 oK
9 : PLOT ¢ -=-
18 11 8 D0 CR I 2 U.R SPACE I SAMPLES @ STARS LOOP CR ;
11 R
12 INIT-SAMPLES
13 '
14 ’
15

Copyright FORTH, Inc. 3786781 11:44 Starting FORTH

TTTTTTOT MR R anTe T N v

195 LIST

@ (ANSHWERS., CHAP., B8) EMPTY
1 (PROB. &)
—2- VARIABLLE BOARD 7 ALLOT ‘
3 CLERR BOARRD 18 B FILL ; CLEAR
4 ! SQR BOARD + ;
5 BAR S
. =] DASHES CR 9 @ DO ," =" LOOP CR :
g/ — e BOX ___SOR. C@ DUP 8= IF 2 SPACES ELSE
' 8 DUP ¢ = IF ." X " ELSE ‘
Q 0o THEN THEN DROP ;
e 3 @3 DISPLAY CR 9 8 DO
11 I IF I 3 MOD B8z IF DASHES ELSE BAR THEN THEN
12 I .BOX Loonr CR QUIT ;
T T3 eLay 1- @ MAX 8 MIN SOR C! ;
14 X! 1 SWAP PLAY DISPLAY
15 ot ~1 SWARP PLAY DISPLAY
196 LIST
. @ (ANSWERS, CH. 9) EMPTY . o
.1 (PROB. 1) : c e
2 : COUNTS ’ ROT ROT 8 DO OVUER EXECUTE LOOP SWAP DROP ;
.3 - —- -
4 (PROB. 29 '
S (You can find out by entering
-6~ EMPTY —-HERE S) - - -~ Y
7 ’ -
8 (PROB. 3)
"9 (“YouTcam find dut by entering . . ‘3 e e PR
1@ PAD HERE - . B
-_;- -..’..1 v — - RN - hd T, - ' >
12 (PROB. 4) " ' T e ! .
13 (a. No difference. A UARIABLE returns its own pfa.
14 b. R user variable returns the address of a cell in the user
15 table, The dictionary entry, which ’ finds, is elsewhere.)
197 LIST
@ (ANSWERS, CHAP. 9, CONT'D)
1 (PROB. 5, SOLUTION H#1)
.2 UARIABLE *TO-DO 1@ ALLOT ¢ 6 CELLS) .o I
3 : T0O-DO ¢ 1ndex -—- adr) 1- 2% 'TO-DO +
4
5 : GREET " HELLO, I SPEAK FORTH., " ; T b
6 : SEQUENCE 11 £ DO I . LOOP ;
K TILE 1@ 5 DOX (see answers, Ch. 6) N
B8 NOTHING
9
18 * GREET i TO-DO ! .! SEQUENCE., 2 To-DO !
11 7 TILE 3 TO-DO ! ’ NOTHING 4 T0-DO !
12 ’ NOTHING S TO-DO !, ’ NOTHING &6 T0-DO '._. ~
13 '
14 DO-SOMETHING (index ==) T0-DO @ EXECUTE ;
15 , - -
Copyright FORTH. Inc.: 3/86-81 --11:41 Starting-FORTH « -

Starting.: FORTH:.

APPENDIX 1 Answers

158

199

2088

LIST

B8 (ANSMWERS, CHAP. 8, CONT’D)

1 ¢ PROB. S, SOLUTION #2)

2 UARIABLE ’T0O-DO 18 ALLOT (6 CELLS)

3 ¢ TO-DO (i1ndex -- adr) 1- 2% ’TO-DO + ;

4

S GREET . HELLO, I SPEAK FORTH. "

6 SEQUENCE 11 1 DO I . LOOP ;

7 TILE 18 5 BOX ; (see answers, Ch. 8)

8 NOTHING

9

18 ¢ INIT"TO-DO" (-=) 7 1 DO [”]1 NOTHING I TO-DO ! L.OOP
11 [’} GREET 1 TO-DO ! €’] SEQUENCE & TO0-DO !
12 [’} TILE 3 TO~DO ! H

13 INIT“TO-DO"

14

15 © DO-SOMETHING ¢ index --) TO0-DO @ EXECUTE
LIST

B (ANSWERS, CHRAP. 1@) EMPTY

1

2 (PROB. 1)

3 CHANGE (cl c2 -~ (changes ci1 to ¢2)

4 SWAP 228 BLOCK 1824 OUER + SWAP DO

S 2DUP I C@ = IF I C! ELSE DROP THEN
6 LOOP 2DROP ;

7

8 (PROB. 2)

9 181 LOAD (RANDOM NUMBERS)

18 @ FORTUNE CR 16 CHOOSE 64 % (block#) BLOCK +

11 64 ~TRAILING TYPE SPACE

12 ¢ You’ll have to :invent your own "fortunes". Edit them
13 into an available block., one per line. Then edit the

14 block number into line 11 above, where indicated.)

List

8 (ANSWERS, CHAP. 18, CONT.D)

it (PROB. 3)

2 ¢ ANIMALS " RAT oXx TIGER RABBITDRAGONSNAKE HORSE RAM
3 ONKEYCOCK DOG BOAR "

4 @ LANIMAL «Cu -~ R

S 6 % [’] ANIMALS 3 + + 6 -TRAILING TYPE

6 (.ANIMAL takes an argument from 8 to 11.)

7

8 ! (JUNEESHEE) C yr ==

g 1988 - 12 MOD
18 . YOU WERE BORN IN TRE YEARR OF THE " .ANIMAL

11 46 EMIT ¢ dot) CR

12

13 + JUNEESHEE CR .
14 . IN WHAT YEAR WERE YOU BORN? "
15 S8 @ 4 EXPECT B >IN ! 1 WORD NUMBER CR (JUNEESHEE)

Copyright FORTH. Inc. 376,81 1i:42 Starting FORTH

’

1-7

L

RSWeEg™ ™I T T T T T T T e S arting T FORTH T

Db g S - e e o PN S vy

2@1 LIST
® (ANSWERS, CHAP., 1@, CONT’D) EMPTY
1 (PROB. 4)
2
s D! NAME 64 x 282 BLOCK + 24 -TRAILING TYPE ;
4 1 HAIR 64 % 202 DLOCK + 24 + 2@ -TRAILING TYPE ';
5 EYES 64 * 282 BLOCK + 44 + 2@ -TRAILING TYPE ;
e
7 LETTER CR CR DUP DUP
8 .” DEAR ™ NAME ., (R
9 CR .” YQU’RE THE ONLY ONE FOR ME. LET ME RUN MY FINGERS *
1@ CR . THROUGH YOUR NICE " HRIR .” HAIR, LET ME LOOK INTO *
——-11.CR ." YOUR DEEP " EYES . EYES. "
12 o .
13 : LETTERS 4 8 DO I LETTER LOOP ;
14
15
282 LIST
2 LATICIA BLRCK BROWN
1 ALICE SLONDE BLUE
2 STACEY BROWN HAZEL
3 BARBARRA BROWN GREEN
4 .
3
6
7
=]
9
10
11
12
13
14
15
203 LISsT

(ANSWERS, CHAP. 18, CONT’D) EMPTY
(PROB. 5)
UVURRIABLE HSTART 222 HSTART ! (file begins at block 222)
ELEMENT ¢ index -- adr)
2% 1824 s/MOD HSTRRT @ + BLOCK + UPDRTE ;
(Test virtual array:)
¢ INIT-ARRAY $98 @ DO I I ELEMENT ' LOOP ;
. ARRAY 8 DO CR I . SPRCE I ELEMENT 7 LOOP ;

: ARURILABLE ¢ -= adr) HSTART @ BLOCK UPDRTE ;
AURILABLE ! ’
Redefine ELEMENT to skip over AURILABLE:)
ELEMENT (index -=- adr)
1+ 2% 1024 /MOD HSTART @ + BLOCK + UPDRTE ;

-~

2
1
2
3
4
S
6
7
8
9 (Now make the virtual array into a file:!)
10
11
12
13
14
18

Copyright FORTH, Inc. 3/706/81 t1:142 Starting FORTH

APPENDIX 1 Answers 1-9

284 LIST
8 (ANSWERS, CHAP. 18, CONT’D)
1 ¢ PROB. S, CONT’'D)}
2
3 PUT (value -~) AURILABLE @ ELEMENT ! 1 AVARILRBLE +! H
4
5 SHOM ¢ == AVAILABLE ¢ 2 DO CR I
& I ELEMENT 7 LOOPr ;
7
8 : ENTER (valuel value2 --) SWRP PUT PUT
9
18 TRBLE AURILABLE @ ?DUP IF
i1 CR 8 Do I 8 MOD Q= IF CR THEN
12 I ELEMENT @ 8 U.R LOOP CR
13 THEN ;
14
15
285 LIST
@ (ANSWERS, CHRP. 11) EMPTY
{ ¢ PROB. 1)
2 : LORDED-BY CRERTE , DOES> @ LOAD
3
4 ¢ PROB. 2)
5 : BRSED. CRERTE DOES> @ BRSE @ SWRP BASE !
6 SWRP . BASE ! ;
7
8 (PROB. 3)
9 ! PLURAL (adr ==) CREATE
18 DOES> @ SWRP ?DUP IF @B DO DUP EXECUTE LOOP THEN DROP ;
11 ’ CR PLURAL CRS
12 5 CRS
13 : BEEP ?7 EMIT 288066 8 DO LOOP ’ BEEP PLURRL BEEPS
14 4 BEEPS
i5
286 LIST
B (ANSKERS, CHRP. 11, CONT’D)
1 . . . -« - e s st
2 (PROB. 4) .
3 ¢ TURNE [COMPILE] DO ; IMMEDIATE
4 : RETURNE [COMPILE] LOOP ; IMMEDIATE
5 ¢ TRY 18 B8 TURNE I ., - RETURNE ;
6
7 (PROB. 5>
8 @ RSCII 32 WORD 1+ C@ [COMPILE] LITERAL IMMEDIARTE
9 ! STRR °~ ASCII *x EMIT ; v e . T ST
10
11 (PROB. 6)
12 © LOOPS >IN @ SWARP 8 DO DBUP >IN ! INTERPRET LOOP DROP
13 18 LOOPS CR 38 SPRCES STRR
14
1S -

Copyright FORTH, Inc. 3786781 11:42 Starting FORTH

APPENDIX 2
FURTHER FEATURES OF polyFORTH

polyFORTH is a total software development environment designed
especially for the professional programmer. polyFORTH is
currently available for the most popular minicomputers and
microprocessors.

In this book we've covered all the polyFORTH commands that might
be used in a high-level, single-task application. We've left out
several categories of words that are also included in polyFORTH.
These categories are:

The Assembler
All versions of FORTH, not just polyFORTH, include an assembler
vocabulary. Using the assembler, it is possible to code directly
in the assembly language of a particular processor.

The assembler is primarily used to code time-critical words in a
real-time application. Often an entire application can be coded
in high-level FORTH, then after the application has been tested,
critical low-level words can be redefined in machine code.

polyFORTH's assembler vocabulary includes interrupt-handling
capability.

Printing Utility

polyFORTH provides a multiprogrammed task that sends output to a
printer instead of your terminal. Among the printing utility
commands are several which list disk blocks in the standard
format of three to a page. <

Date and Time Support

The current date and, when supported by a system clock, time of
day are maintained by the system.

C e s cmei e A

2—-1

2=2__ e Starting FORTH .
.- ~ T T p: by N

St e i e

The Multiprogrammer

As many tasks as are needed, either terminal or control tasks, can
be easily added. A single command builds a new task, given
certain size parameters. Another command activates the task and
gives it a specified behavior.

Disking Utility

_PolyFORTH includes commands for copying entire disks or portions
thereof, for error checking, and for formatting when it is needed
by the system.

—Target Compiler

PolyFORTH provides the capability to develop an application that
ultimately will run on a different processor, in some cases even a
different variety of processor. The compiled code can either be
executed directly or be compressed and burned into ROM.

" FORTH, Inc., which liceénses and sells polyFORTH, was founded in
1973 by the inventor of FORTH, Charles H. Moore, and his
-associates. —FORTH, Inc. also.provides full-documentatior,
hot-line support, educational services in all parts of the
cauntry, software options, and custom application programming.
For further information write or call FORTH, Inc., 2309 Pacific
Coast Hwy., Hermosa Beach, CA, 90254, 213/372-8483, TWX 910
344-6408.

APPENDIX 3
FORTH~79 STANDARD

The purpose of FORTH-79 Standard is to allow transportability of

“standard FORTH programs in source form among standard FORTH
systems. A program written according to the Standard will run
equivalently on any FORTH system that adheres to the Standard.

The current Standard was developed by the FORTH Standards Team.
(The Standards Team is not affiliated with FORTH, Inc., but the
_company does have three voting members on the team.) This
Standard i1s a descendant of FORTH-78 (proposed by the FORTH
International Standards Team) and before that of FORTH-77 (the
“work of an informal group of European and American FORTH users).
Efforts at standardization go back as far as 1973, at Kitt Peak
Observatory in Arizona.

Having voted to accept the FORTH-79 Standard, FORTH, Inc.
revised its product line to adopt most of the Standard's features
-and naming conventions. Of course the Standard attempts to
cover only a minimal system. Therefore it doesn't address many
powerful words and features included in FORTH, Inc.'s polyFORTH,
which represents the state-of-the-art in FORTH implementations.
In this book we've included many words which we feel are likely
*to be adopted by future Standards.

A small number of issues raised by the FORTH-79 Standard remain
controversial. In a few cases, the functions of words as
described in this book don't follow the FORTH-79 Standard, but
rather the FORTH, Inc. product line. Most of these discrepancies
have been marked with.footnotes; however, a few are more general
in nature and deserve special discussion. i

The most noticeable difference is in the length of the namé field™
for each dictionary entry. The Standard specifies that

dictionary entries include up*to 31 characters of the name to

avoid "collisions." FORTH, Inc. implementations use'a count and

three characters not only to save memory, but also to support—
dictionary search routines that are significantly faster than any

31 character implementation seen to date. FORTH, Inc. is _
presently researching algorithms which may offer users greater

flexibility in naming, without unacceptable sacrifice in

- performance. C o s

-The FORTH-79 Standard includes a few words which change~»th~e<i~r—i
behavior depending on a variable called STATE, which indicates
whether the user is in "compile mode." One is [."]. In FORTH,

- 3-1

3-2 Slarting FORTH

SN e v —— ~o———

Inc. implementations, [j is a compiling word, and therefore it
may only be used inside a colon definition. In FORTH-79
languages, it has two functions: if the system is'in-execution™"
‘mode, it will type the string which follows it at the terminal
from which it was just entered.

A more significant controversy related to STATE is the behavior
of the word [] (tick). In FORTH, Inc. languages, tick always reads
the next word in the input stream when tick is executed. The
Standard tick however, has two behaviors: when the system is in
execution mode, it behaves in the normal way, but in compile
mode it behaves like [[']] (bracket-tick-bracket); that is, ‘it
compiles the address of the next word in the definition as a
literal. To define a word which must "tick" the next word in the
input stream when the word is executed, you must use the phrase

[COMPILE] '
if you're using the Standard tick .

There's one other difference worth mentioning here. The FORTH-79 .
Standard does not make the assumption that the [DO] loop index

and limit will be kept on the return stack. Presumably a'system

may have a third stack. For this reason, the Standard includes

‘the word-R@—to—-copy the top value from the return stack onto the,
parameter stack. In all systems that we know of, however, R@

would be-identical to.the FORTH [I.

For more information or for copies of the FORTH-79 Standard,
write to the FORTH Interest Group (FIG), P.O. Box'1105, San Carlos,
CA 94070.

o

word

ARITHMETIC

Single-length

* 1+

/
/MOD
MOD
*/
*/MOD
U'k
U/MOD
1+

l_

2+

2_

2*

2/
ABS
NEGATE

Double-length

D+

D_
DNEGATE
DABS

Mixed-length

M+
M/
M*
M*/

ASCII CHARA™™

AND BQUIVAL_". . ~

APPENDIX 4

SUMMARY OF FORTH WORDS

page

123

178
178
178
178

179
179
179
179

See table on p. 157

word

CHARACTER INPUT

KEY
EXPECT
WORD
TEXT

COUNT

CHARACTER OUTPUT

CR
SPACE
SPACES
EMIT

n

PAGE
TYPE
>TYPE
-TRAILING

COMPARISONS

Single-length

<
U<
>
0=
0<
0>
MIN
MAX

Double~length

D=
DO=
D<
DU<

page

284
284
284
284

285

27
27
27
27
27
143
283
285
283

103

123

179
179
179
179

4-2

word

DMIN
DMAX

String
~-TEXT

COMPILATION

’

C,

(']

DOES>
IMMEDIATE
COMPILE
[COMPILE]
LITERAL

[

1.

CONSTANTS = 7~
0w = -

1
c0ee - -

DEFINING WORDS

CONSTANT
VARIABLE
CREATE
2VARIABLE
2CONSTANT

page

179
178

285

209
210
247
313
313
313
313
313
313

o313

210
210
210

27

27
209
209
209
210
210

DICTIONARY MANAGEMENT

FORGET
EMPTY
ALLOT
HERE

84
84
209
246

starting FORTH

e e R g P G M et < e epenmeyey | 19T O YA

word page

EDITOR COMMANDS

All appear on pp. 84,5

. INTERPRETATION
(84
A 246
INTERPRET 246
.. LOGIC
NOT . 103
AND " 103
OR 103
MEMORY , - - >
o R C e 209 L e
e ’ ©209 '
+) 209
cr o 209
ce 209 .. .
21 - : © 210 7o
2@ 210
. . MOVE . -.284 7,0
CMOVE 284"
<CMOVE 285
FILL 209
ERASE . 210
BLANK ' © 260

DUMP 210

NUMBER INPUT CONVERSION

>BINARY or
CONVERT 284
NUMBER 285
NUN™ : OUTPUT
. 27
U.R 143
u. 177
o b. . 179
D.R 179

Starting FORTH

word

page

NUMBER FORMATTING

<# 177
177
S 178
HOLD 178
SIGN 178
#> 178
OPERATING SYSTEM
Commands
ABORT" 103
?STACK 103
EXECUTE 246
QUIT 246
EXIT 246
HEX 177
OCTAL 177
DECIMAL 177
HERE 246
PAD 246
'S 247
FORTH 246
EDITOR 246
ASSEMBLER 246
DEFINITIONS 246
User Variables
S0 247
SCR 247
R 247
BASE 247
H 247
CONTEXT 247
CURRENT 247
>IN 247
BLK 247
OFFSET 247
11" JRN STACK

" >R 123
R> 123
I 123
I 123

S o 2123

word

page

STACK MANIPULATION

Single-length

SWAP
DUP
OVER
ROT
DROP
?2DUP

Double~length

2SWAP
2DUP

20VER
2DROP

53

53
53
53
103

STRUCTURE CONTROL

IF
ELSE
THEN
DO
LOOP
+LOOP
/LOQP
LEAVE
BEGIN
UNTIL
WHILE
REPEAT

VIRTUAL MEMORY

LIST

ZOAD

FLUSH

COPY

‘lA! J P I_.:

UPDATE
EMPTY~BUFFERS
BLOCK

BUFFER

LXIT

103
103
103
143
143
143
177
143
143
143
143
143

	LeoBrodie-StartingForth-00-TOC
	0-Starting Forth.max-si.pdf
	Page 1

	LeoBrodie-Forth-00-TOC.xif-si.pdf
	Page 1
	Page 2
	Page 3
	Page 4

	LeoBrodie-StartingForth-01-Fundamental Forth
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

	LeoBrodie-StartingForth-02-How To Get Results
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

	LeoBrodie-StartingForth-03-The Editor
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31

	LeoBrodie-StartingForth-04-Decisions
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18

	LeoBrodie-StartingForth-05-Philosophy Of Fixed Point
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

	LeoBrodie-StartingForth-06-Throw It For A Loop
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21

	LeoBrodie-StartingForth-07-A Number Of Kinds Of Numbers
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

	LeoBrodie-StartingForth-08-Variables, Constants, And Arrays
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

	LeoBrodie-StartingForth-09-Under The Hood
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38

	LeoBrodie-StartingForth-10-IO
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

	LeoBrodie-StartingForth-11-Extending The Compiler
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

	LeoBrodie-StartingForth-12-Examples
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

	LeoBrodie-StartingForth-A1-Answers To Problems
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

	LeoBrodie-StartingForth-A2-Further Features Of polyFORTH
	Page 1
	Page 2

	LeoBrodie-StartingForth-A3-FORTH79 Standard
	Page 1
	Page 2

	LeoBrodie-StartingForth-A4-Summary Of Forth Words
	Page 1
	Page 2
	Page 3

