Systems.Guide to fig-Forth

C. H, Ting mo

OFFETE ENTERPRISES, INC.
1986

¥

%k
B

-

oo

ﬂ*':‘lh -

.,

A

- ~~

q\ ..:Q'.

i
__L___l

M

=5 7 ¥
e e,

.

1 i
L i ™™

-
:
)

4
d

o
[
i

Systems Guide
to fig-Forth

NDT TECHNOLOGY LABORATORY

LOCKHEED MISSILES & SPACE COMPANY, INC.

OFFETE ENTERPRISES, INC.

Copyright, 1980, 1981 by C. H. Ting

Zero Edition, November 1980

First Edition, June 1981 (First Printing)
April 1982 (Second Printing)

P de gk ok v e e ok vk ok de e ok vk e ok ke ke ok ke o ke ok e ok v e ok e ke b e ok o e ok e ok e e ke ok

All rights reserved. This book, or any part
thereof, may not be reproduced in any form
without written permission from the Author.

2 S 2SS SR ES SRR RS RR SR RRRRRRRRER B

Printed in the United States of America
by

Offete Enterprices. Tuc.

1306 SOUTH "B STREET
SAN MATEO,CALIFORNIA 94402
TEL. (416) 6748260

PREFACE

FORTE was developed by Charles Moore in the 1960's. It todk the
final farm as we now know it in 1969, when Mr. Moore was at the Nationzl
Radio Astronomy Observatory, Charlottesville, Va. It was created out of his
disstisfaction with available programming toals, especially for instrument-
ation control and autanation. Distrikbution of his work to other cbservator-
ies has made FORTH the standard language for cbservatory autamation. Mr.
Moore and several assocciates formed FORTH, Inc. in 1973 far the purpose of
licensing and support of the FORTH operating syster and programming lang-
uage, and to supply application scftware to meet custamers' unigue require-

ments.,

Forth Interest Group was formed in 1978 by a group of FORTH program-
mer in Northern California. It is a non-profit orga:ﬁiation. Its purpose
is to encourage the use of FORTH lamguage by the interchamge of icdeas
through seminars and publications. It organized a Forth Implementation Team
in 1978 to develop FORTE operating systems for popular microgm ccessors fram
a common language model, now known as fig-FORTH. In early 1979, the Farth
Implementation Team published six assembly listings of £ig-FORTH for 8080,
6800, 6502, PDP-11, 9900, and PACE at $10.00 each. The quality and avail-
ability of these listings, which are placed in the public domain, made fig—
FORTH the most popular dialect in FORTH.

Most of the published materials on FORTH are manuals which teach
how to use a particular FORTH implementation on a particular camputer. Very
. few deal with the inner mechanisms on how the FORTH system operates which
is essential to the understanding and effective utilization of the FORTH
language. My intention here is to desaxribe how the FORTH system does all
these wonderful things no other language can. With a deeper understanding
of the inner mechanism, a user can have a better apreciation of many unique

features which make FORTH such a powerful programming tool.

Among other things, docuwentation on FORTH is very difficult to
read and to comprehend because FORTH def initions are short and their numbers
are many. The definitions are very hard to arrange in a logical order
to promote better or easier understanding. Far example, the glos=sary is
arranged alphabetically, which is great for reference puposes. If you know
which definition you are locking for, you can find it very corweniently in
the glossary, but how the definition is related to others and how it is to
be used are not easy to find. The sowrce codes, coded in FORTH , are also
difficult to comprehend because the def initions are ordered fram bottam up,
i. e., low level definitions must preceed the higher level def initions using
the low level definitions, I will not mention the problems in reading
codes written with postf ix notations. These are prcblamns for which FORH is
often criticized.. A bodk on the systems aspect in the fig~-FORTH Model can
help programmers to climb the learning curve and ease samewhat the growing

pain in learning this very strarge language.

ii

In this book I will attempt to explain the operation of fig-FORTH
system in a systematic fashion. The top level FORTH def initions related to
the system operations are treated in logical sequences. Most of these
Gefinitions are defined in terms of other predefined FORIH definitions;
therefore, it is required that the reader has same basic knowledge of the
elements contained in the FORTH language, such as the dictionary, the data
stack, and the return stack. However, FORTH 1angu-age is structured and
modular, so that the logical contents of a definition are not difficult to
grasp if the functions of all the low level definitions involwed are clearly
stated.

Because of the modular structures irherent in the FORTH language,
the definition of a FORTH word itself is a fine vehicle to corwvey its
functionings. In fact, the definition can be used in lieu of a flow chart.
In the following discussions, a FORTH def inition will be laid in a vertical
format. The component def initions will be written in a colum at the left
hand side of a page, and the comments and explanations will be positioned in
colums toward the right hand sicde. When a group of words of very close
relationship or a phrase appears, they may be displayed in one line to save

space.
Many FORTH words are def ined in machine codes. They are called code

Gefinitions or primitive definitions and they are the body of what is called

the " virtual FCORTH machine ". These definitions are used to convert a

iii

particular CPU into a FORTH computer. The detailed contents of these wcrids
cannot be discussed without resorting to the assembly language of the host
CPU, and we shall avoid their discussion as much as possible. In the cases
wnere it is absolutely necessary to use them in order to clarify how the
system functions, the fig-FORTH PDP-11 codes will be used because the FDP-11
instruction set is very close to what is required optimally to implement a

virtual FORTH computer.

The detailed definitions of FORTH words will strictly adhere to
those defined in the fig-FORTH model as presented in the fig~FORTH Instal-
lation Manual. This model is the most camplete and consistent documentation
defining a FORTH language system which has been inmplemented in a host of
microcomputers. The FORTH operating system written in FORTH provides the
best examples far the serious studnts to learn the FORTH language. Most
of the programming tocls provided by the FORTH system were Geveloped to
code the FCRTH system itself. By going through the FORTH system carefully,
a FORTH user can leam most programming techniques supported by the FORTH

language for his own use.

In Chapter 1, I try to lay down the formal def inition of FORTH as a
programing language. It was completed only very recently, after all other
chapters were dore. Same terms used in Chapter 1 are not quite consistent
with those used in the later chapters. The terms 'ward', 'definition', and
'instruction' are used interchangeably in later chapters are differentiated

in Chapter 1. Chapter 2 is an overview of the fig-FORTH operating system.

iv

In the rest of the book, each chapter will dwell on a particular area in the
FORTH system. The more important def initions at the highest level, which
the user will use most often are discussed first to give an overall view
of the tasks involved. The low level definitions or utility definitions
used in the high level definitions are then discussed in detail to camplete
the entire picture., Descriptive comments will be given for the low level
definitions when they appear in a high level def inition before they are
completely defined. Therefore, it will be helpful to reread a chapter
so that the knowledge gained by studying the utility def initions can fur ther
illuminate the high level def inition outlining the task involwed.

Special thanks are due to Willian F. Ragsdale, who authored the fig-
FORTH Installation Manwl and guides the Forth Interest Group fram its
inception, to John S. James, who developed the PDP-11 fig-FORTH and the PDP-
11 Assembler, and to Jchn Cassdy, who developed the 8080 fig-FORTH and the
8080 Assembler. Thanks are also due to Robert Downs, Anson Averrell, Alice
Ferrish and Albert Ting, who kindly gave me long lists of corrections and

made many helpful suggestions on the manuscript.

San Mateo, Ca.

May, 1981.

1.

2.

3.

PREFACE

SYSTEMS GUIDE TO fig~FORTH
QONTENTS

LANGUAGE DEFINITION OF FORTE

Programming Language

Words

Stanadard Instructions
User Instructions

Structures and Colon Instructions
Code Instructions
Constants, Variables, and Vocabulary

Create Defining Instructions
Conclusion

£ig-FORTH: AN OPERATING SYSTEM

Memory Map

Instruction Set

System Constants and User Variables
Simple Colon Definitions

TEXT INTERPRETER

QaLD

ABCRT, QUIT
INTERFRET

X

ADDRESS INTERPRETER

NEXT, EXECUTE

DOCOL
;S

PUSH, POP, PUT, LIT

COPILER

vi

9.

10.

ERRCR HANDLL ING

?ERRCR
ERRCR, (ABCRT)
MESSAGE, ?COMP

?EXEC, ?PAIRS, 2CSP, 7LOADING

?STACK

TERMINAL INPUT AND QUTPUT

NUMERIC

EXPECT
QUERY, WQORD
TYPE

CaINT
=TRAILING

o (G7)

-LDEI (LM)
LIST

CQIVERSIONS

HEX, OCTAL, DECIMAL
(NUMBER)

NUMBER

<%

HOLD, #

#S, SIGN, #>

CR, SPACE, SPACES
D.R, D.

R, « , 7

DoMP

DICTIONARY

VIRTUAL

HERE, ALLOT, ',
'C" ’ -FIND
VOCABULARY
DEFINITIONS
TRAVERSE

LFA, CFA, NFA, FFA
LATEST, '

FORGET

VLIST

MEMORY

BLOCKX
+BUF, BUFFER

vii

R/W 116

UPDATE 117
EMPTY-BUFFERS, DRO 118
DR1, FLUSH 119
LOAD 120
—_— 121
> i DEFINING WCRDS AND THE QODE FIELD 123
;CODE 126
(;CODE) 127
<BUILDS, DOES> 128
CQONSTANT 129
VARIABLE 130
USER 132
12, QNTRCOL STRUCTURES AND IMMEDIATE WORDS 133
COMPILE 135
[COMPILE], BRANCH 136
OBRANCH 137
IF, ENDIF 138
ELSE 139
BEGIN, BACK 140
UNTIL, AGAIN 141
WHILE 142
REPEAT 143
DO 144
(DO), I , LEAVE 145
LCOP, (LOOP) 146
+LOCP, (+LOCP) 147
13, EDITOR 149
TEXT, LINE 152
-MOVE, B, S 153
D, E 154
R,P,1 155
CLERR, CQOPY 156
MATCH 158
=TEXT, 2DROP 159
2DUP, 2SWAP, TOP 160
#LOCATE, #LEAD 160
$LAG, M 161
T, L, lLIDNE 162
FIND, DELETE 163
N,F,B, X 164
TOoL, C 165
14. ASSEMBLER 167

PDP-11 ASSEMBLER 172

viii

ENTERCQCDE, CCDE
IS, RIST

(0)3
1cp,

FIXMODE

CRMODE, ,OPERAND
B , ROP

BOP
20P

SWAPOP

IF,

IPATCH, , ENDIF, , ELSE,
BEGIN, r UNTIII[r REEATI

WHILE, , C;

NEXT,

8080 ASSEMBLER

CODE
C: .
gr ,
iMI,
3MI,
SMI,
MWI,
NOT,

LABEL
IS
2MI
4MI
MOV
LXI
IF

ENDIF, ELSE, BEGIN
UNTIL, AGAIN, WHILE
REPEAT

ix

173
174
176
177
178
179
180
181
182
183
184
185
186
187
188
188
189
190
191
192
193
194

196

197
198

199

FIGURES

Memory Map of a Typical FORTH System
The FORIH Loop

Text Interpreter Loop

Structure of a Definition

Error Handling

EXPECT

WORD

Numeric Conversion

Disc Buffers

BLOCK

28
40

60
66
72
75
87
1l
113

10,
11.

TAELES

Language Definition of FORTH

Standard Instructions

User Instructions

Creating New Def ining Instructions

Stack Instructions

Inmput Output Instructions

Memory and Dictionary Instructions

Defining Instructions and Cantrol Structures
Miscellaneous Instructions

System Constants

User Variables

. §
32
33
34
34

&

CHAPTER 1

LANGUAGE DEFINITION OF FORTH

FORTH was developed as a programming toal to solve rezl time
control problems. It has never been formally def ined as a programming
language. I think FORTH is mature enough now that it can be def ined
very rigorously. The wide-spread use of this powerful tool requires
that a common base should be established to facilitate the excharge of
programs and ideas in a standarized lamguage form. The recent publica-
tion of FORTH-79 Standard clearly reflects this necessity. To cefine
FORTH as a programing language also helps us to focus our attention on
the basic characteristics of FORTH and to understand it more fully.

In this Chapter, I will present the definition of FORTH in the
Backus Noarmal Form (BNF) notation. The basic syntax is presented in
Table I, in which the focal point is the definition of 'ward', Same
Getailed clarifications on oolon definitions and defining words are
worked out in Tables II to IV. [Explanatory notes are arranced by
sections to highlight sane prcdblems not clearly expressed in the formal

definitions,

TABLE I. LANGUAGE DEFINITION OF FORTH

<character> ::= <ASCII code>
<delimiting character> ::= NUL | CR | SP | <designated character>
<delimiter> ::= <delimiting character> |
<delimiting character><delimiter>
<word> ::= <instruction> | <number> | <string>
<string> ::= <character> | <character><string>
<number> ::= <{integer> | =<integer>
<integer> ::= <digit> | <digit><integer>
digit> 2:2=0 | 1 1 2| eec | 91 A|B | e | <base-l>
<instruction> ::= <standard instruction> | <user instructiorn>
<standard instruction> ::= <nucleus instruction> |
<interpreter instruction> |
<compiler instruction> | <device instruction>
<user instruction> ::= <cc;lon instruction> | <code instruction> |

<constant> | <variable> | <veccabulary>

PROGRAMMING LANGUAGE

A programming language is a set of symbols with rules (syntax)
of combining them to specify execution procedures to a camputer. A
programming language is used primarily to instruct a camputer to perform
specific functions, However, it can also be used by programmers to
document and to cammunicate prcblem solving procedures, The most
' essential ingredients of a programming language are therefore the symbols
it employs foar expressions and the syntax rules of combining the symbols

for man-machine or man-man communications.

FORTH uses the full set of ASCII characters as symbols. FNost
programming languages use subsets of ASCII characters, including only
numerals, upper-—case alphabets, and sane punctuation charaters. Use of
punctuation characters differs significantly fram language to language.
Non-printable characters are generally reserved exclusively for the system
and are not available for language usage. In employing the full ASCII
set of characters, FORTH thus allows the programmer a much wider range
of usable symbols to name dbjects. On the other hand, the prolific use
of munctuation characters in FORTH makes compr ehension very difficult by

mniritiated programmers.

Only four of the ASCII characters are used by FORTH for special
system functions and are not for programming usage: NUL (ASCII 0),
RUE (ASCII 127), CR (ASCII 13), and SP (ASCII 32). RIB is used to null-

ify the previously entered character. It is used at the keyboard inter-
actively to correct typing errors. NUL, CR, and SP are Gelimiting
characters to separate groups of characters to form words. All other
.Characters are used to form words and are used the same way. Non-print-
able characters are treated the same as printable characters. Because
non—printable characters are difficult to document and communicate,
their usage is discouraged in normal programning practice. However,
the non-printable characters are very useful in maintaining a securead

system.

WCORDS

Words are the basic syntactical units in FORTH. A word is a group
of characters separated fram other words by delimiting characters. With
the exception of NUL, CR, SP, and RUB, any ASCII character may be part
of a werd. Certain wards for string processings may specify a reqular
character as the delimiting character for the word immediately following
it, in order to override the delimiting effect of SP. However, the

delimiting effect of (R and NUL cannot be overridden.

The usage of 'ward' in FORTH literature is very confusing because
many quite different concepts are associated with it. Without sorting
out these different aspects of 'ward' into indeperdently identifiable
entities, it is impossible to arrive at a satisfactary description of
this language. Here the ward is defined as a syntactical unit in the

language, simply a group of characters separated fram other words by

delimiting characters. Semantically (concerning the meaning of a ward),
a ward in FORTH can be only one of three things: a string, an instruction,

or a number,

A FORTE program is thus simply a list of words. When this list
of wo;ds is given to a computer with a FORTH operating system loaded in,
the computer will be able to execute or interpret this 1list of words and
perform functions as specified by this list, The functions may incluce
compilation of new instructions into the system to perform camplicated

functions not implemented in the original operating system.

A string is merely a group of characters to be processed by the
FORTE computer. To be processed correctly, a string must be preceeded
by an instruction which specifies exactly how this string is to be
processed. The string instruction may even specify a recular character
as the delimiting character for the following string to override the
effect of SP. It is often apromiate to consider the string to be an
integral part of the preceeding instruction. This would disturb the
uniform and simple syntax rule in FORTH and it is better to consicer
strings as independent cbjects in the language.

String processings are a major component in the FORTH operating
system because FORTH is an interpretive language. Strings are needed

to supply names for new instructions, to insert comments into source

text for documentation, and to produce messages at run-time to facili-
tate human interface, The resident FORTH instructions for string pro-

cessings are all available to programmers for string manipulations.

A number is a string which causes the FORTH computer to push
a piece of data onto the data stack. Characters used in a number must
belong to a subset of ASCII characters. The total number of characters
in this subset is equal to a 'base' valwe specified by the programmer.
This subset starts framn 0 and goes up to 9. If the 'base' valwe is larger
than 10, the upper-case alphabets are used in their natural sequence.
Any reasorable 'base' wvalue can be specified and modified at run-time
by the programmer. However, a very large base value causes execssiwve
overlapping between numbers and instructions, and a 'reasonable base

value' must avoid this conflict in semantical interpretation.

A number can have a leading '~' sign to designate data of negative
value, Certain punctuation characters such as '.' are also allowed in

numbers depending upon the particular FORTH operating system.

The internal representation of numbers inside the FORTH camputer
depends upon implementation, The most common format is a 16-bit integer
number . Numbers are put on the data stack to be processed. The inter-
pretation of a nurber deperds entirely on the instruction which uses the

number, A number may be used to represent a true-cr-false flag, a 7-bit

ASCII character, an B8-bit byte, a 16-bit signed or unsigned integer, a
16-bit address, etc. Two oonsecutive numbers may be used as a 32-bit

signed or unsigned double integer, or a floating paint number.

FORTH is not a typed language in which numerical data type must
be declared and checked during compilation. Numbers are loaded on the
data stack where all numbers are represented and treated identically.
Instructions using the numbers on stack will take whatever they need
for processing and push their results back on the stack. It is the
responsibility of the programmer to put the correct data on the stack
and use the correct instructions to retrieve them. Nm-discriminating
use of mmbers on stack might seem to be a major source of errors in
using FORTH for programming. In practise, the use of stack greatly
ease the debugging process in which individual instructions can be
thoroughly exercised to spot any discrepancies in stack manipulations.
The most important advantage gained in the uniform usage of data store
on data stack is that the instructions built this way are essentially
context-free and can be repeatedly called in different enviroments to

perform the same task,

Numbers and strings are objects or nouns in a programming lan-
guage, Typed and named numbers in a program provide vital clues to the
functions and the structures in a program. The explicitly defined cbjects
or nouns make statements in a program easy to compr eherd, The implicit
use of data objects stored on the data stack makes FORTH prograts very

tight and efficient, At the same time, statements in a program deprived
of nouns are difficult to understand. For this reason, the most important
task in documenting a FORTH program is to specify the stack effects of the
" instructions, indicating what types of data are retrieved fram the stack

and what types of data are left on the stack upon exit,

STANDARD INSTRUCTIONS

Ina FORTH canputer, an instruction is best def ined as "a named,
linked, memory resident, and executable entity which can be called and
executed interactively". The entire linked list of instructions in the
computer memory is called a 'dictionary'. Instructions are known to the
programmer by their ASCII names. The names of the instructions in a FORTH
computer are wards that a programmer can use either to execute the instruc-
tion interactively or to build (compile) new instructions to solwe his

programming problem.

In FORTH literature, instructions are called 'waxds', 'definit-
ions', or 'word definitions'. The reason that I choose to called them
'instructions' is to emphasize the fact that an instruction given to the
FORTH computer causes immediate acticns performed by the computer., The
instructicns in the dictionary are an instruction set of the FORTH virtual
computer, in the same sense as the instruction set of a real CPU. The
difference is that the FORTH instructions can be executed directly and
the FORTH instructions are accessed by their ASCII names. Therefore,
FORTH can be considered as a high level assembly lamguage with an open

instruction set for interactive programming and testing. The name

'instruction' conveys more precisely the characteristics of a FORTE
instruction than 'ward' or 'definition' and leaves 'ward' to mean exclu-

sively a syntactical unit in the language definition.

Instruction set is the heart of a computer as well as of a lan-
guage. In all conventional programming languages, the instruction set is
immutable and limited in number and in scope. Programmers can circumvent
the shortcomings of a language by writing programs to perform tasks that
the native instruction set is not capable of. The instruction set in
a FORTH computer provides a basis or a skeleton fram which a more sophis-
ticated instruction set can be built and optimized to solve a particular

problem.

Because the instruction set in FORTH can be easily extended by the
user, it is rather difficult to define precisely the minimun instruction
set a FORTH camputer ought to have. The general requirement is that the
minimun set should provide an erwiroment in which typical programming
problems can be solved corveriently. FORTH-79 Standard suggested such a
minimin instruction set as summarized in Table II. These instructions
provided by the operating system are called 'standard instructions', and
are divided into nucleus instructions, interpreter instructions, campiler

instructions, and device instructions.

USER INSTRUCTIONS

Instructions created by a user are called 'user instructions'.

TABLE II. STANDARD INSTRUCTIONS

‘The list of standard instructions is basically that in FORTH-79
Standard, Minor changes are made to comfam to the instruction set

used in the fig-FCRTH Model.

<nucleus instruction> z:=1 | * | */ | */MOD | + | +! | - | -DUP | / |
/MOD [0< | 0= | 0> | 1+ | 1= | 2¢ | 2= | < | =|>| >R | €|
ABS | AND | C! | C@ | CMOVE | D+ | D< | DMINUS | DRCP | DUP |
EXBECUTE | EXIT | FILL | MAX | MIN | MOD | MOVE | NOT | OR |

OVER | R> | R | ROT | SWAP | U* | U/ | U< | XCR

<interpreter instruction> ::=# | # | #S | ' | (| “"IRAILING | . | <# |
IN | ? | AB&RT | BASE | BLK | CONI'EXT | COUNT' | CURRENT |
DECIMAL | EXPECT | FIND | FORTH | HERE | HOLD | NUMBER | PAD |
QUERY | QUIT | SIGN | SPACE | SPACES | TYFE | U. | WORD

<compiler instruction> ::=+LOCP | , | ." | : | ; | ALIOT | BEGIN |
CQMPILE | CONSTANT | CREATE | DEFINITIONS | DO | DOES> | ELSE |
ENDIF | FORGET | I | IF | IMMEDIATE | J | LEAVE | LITERAL |
LOCP | REPEAT | STATE | UNTIL | VARIAELE | VOCABULARY | WHILE |
[| [COMPILE] |]

<device instruction> ::= BLOCX | BUFFER | C(R | EMIT | EMPIY-BUFFERS |

FLUSH | KEY | LIST | LOAD | SCR | UPDATE

10

There are several classes of user instructions depending upon how they are
created. High level instructions are called 'colon instructions' because
they are generated by the special instruction ':'. Low level instructio'ns
containing machine codes of the host CPU are called 'code instructions'
because they are generated by the instruction CODE. Other user instruc-

tions include oonstants, variables, and vecabularies.

Instructions are verbs in FORTH language. They are commands given
to the camputer for execution. Instructions cause the computer to modify
memory cells, to move data fram one location to the other. Same instruc-
tions modify the size and the contents of the data stack. Implicitly
using objects on the data stack eliminates nouns in FORTH programs. It
is not uncommon to have lines of FCRTH text without a single noun. The

verbs-only FORTH text eams it the reputation of a 'write-only' language,

FORTH is an interpretive lancuage. Instructions given to the
computer are generally executed immediately by the interpreter, which can
be thought as the operating system in the FORTH computer. This interpre-
ter is called 'text interpreter' or 'outer interpreter'. A word given to
the FORTH computer is first parsed out of the input stream, and the text
interpreter searches the dictionary for an instruction with the same name
as the word given, If an instruction with matching name is found, it is
executed by the text interpreter. The text interpreter also performs the
tasks of compiling new user instructions into the dictionary. The process

of compiling new instructions is very much different fram interpreting

existing instructions. The text interpreter switches its mode of operation
from interpretation to compilaon by a group of special instructions
called 'defining instructions', which perform the functions of lamguage

“compilers in conventional computers.

Syntax of these defining instructions are more camplicated than
the normal FORTH syntax because of the special conditions required of the
compilation of aifferent types of user instructions. The syntax of the
defining instructions provided by a standard FORTE operating system is
sumnarized in Table III. The mest important def ining instruction is the
':' or colen instruction. To define colon instructions satisfactorily,
a new entity 'structure' must be introduced. This concept and many other
aspects involving defining instructions are discussed in the following

subsections.

Structures and Colon Instructions

Words are the basic syntactical units in FORTH language. During
run-time execution, each ward has only one entry point and one exit paint.
After a word is processed by the interpreter, control returns to the text
interpreter to process the next word consecutively. Campilation allows
certain words to be executed repeatedly or to be skipped selectiwely at
run-time. A set of instructions, equivalent to campiler directives in
conventional programming languages, are used to build small modules to

take care of these exceptional cases. These modules are called structures,

12

TABLE III. USER INSTRUCTIONS
The statement in paranthesis is acoording to the FORTH syntax.

COLON INSTRUCTION
<colon instruction> ::= <structure list>
(: <colon instruction> <structure list> ;)

<structure list> ::= <{structure><delimiter> |
<structure><delimiter><structure list> .

<structure> ::= <ward> | <if-else-then> | <beginm-until> |
<begimwhile-repeat> | <do-loop>

<if-else~then> ::= IF<delimiter><structure list>THEN |
IF<delimiter><structure list>ELSE<delimiter><structure list>THEN
<degin-ntil> ::= BEGIN<delimiter><structure list>UNTIL
<beginmwhile-repeat> ::= ,
BEGIN<delimiter><structure list>WHILE<delimiter><structure list>REPEAT

<do-loop structure> ::= <structure> | I | J | LEAVE

<do-loop structure list> ::= <do-loop structure><delimiter> |
<do~-locp structure><delimiter><do-locp structure list>

<do-loop> ::= DO<Kdelimiter><do-locp structure list>LOC® |
DO<delimiter><do-locp structure list>+LOCP

CODE INSTRUCTION
<code instruction> ::= <assemhly code list>
(CODE <code instruction> <assembly code list>)
<assembly code list> ::= <assembly code><delimiter> |

<assembly code><delimiter><assembly code list>
<assembly code> ::= <number><delimiter>, | <nhumber><delimiter>C,

CONSTANT INSTRUCTION
<{constant> ::= <number>
(<number> CONSTANT <constant>)

VARIABLE INSTRUCTION

<variable> ::= <address>

(VARIABLE <variable>)
<address> ::= <integer>

VOCABULARY INSTRUCTION

{context veocahulary> ::= <vocahulary>
(VOCABULARY <vocahulary>)

13

A structure is a list of wads bounded by a pair of special
compiler instructions, such as IF-THEN, BEGIN-UNTIL, or DO-LOCP. A struc-
ture, similar to an instruction, has only one entry point and one exit
-point, Within a structure, however, instruction or word sequence can be
conditionally skipped or selectively repeated at runtime. Structures
do not have names and they cannot be executed outside of the colon
instruction in which it is def ined. However, a structure can be given a
name and be defined as a new user instruction. Structures can be nested,
but two structures cannot overlap each other. This would violate the one-

entry-one-exit rule for a structure.

Structure is an extension of a word. A structure should be consig-
ered as an integral entity like a word insid a colon instruction. Words
and structures are the building blccks to create new user instructions at
2 higher level of program construct. Programming in FORTM is progressively
creating new instructions fram low level to high level. All the instruct-
ions created at low levels are available to build new instructions, The
resulting instruction set then becomes the solution to the programming
problem. This programming process contains naturally all the ingredients

of the much touted structure programming and software ergineering,

Using the definition of structures, the precise definition of a
colon instruction is: a named, executable entity equivalent to a list of

structures. When a colon instruction is invoked by the interpreter, the

14

list of structures is executed in the order the structures were laid out

in the colon instruction.

When a colon instruction is being compiled, words appearing on the
list of structures are compiled into the body of the colon instruction as
execution addresses, Thus a colon instruction is similar to a list of
subroutine calls in conventional programming languages. However, only the
addresses of the called subroutines are needed in the colon instruction
because the CALL statement is implicit. Par ameters are passed on the
data stack and the arqument list is eliminated also. Therefore, the memory
overhead far a subroutine call is reduced to a bare miminun of two bytes
in FORTH. This justifies the claim that equivalent programs written in
FORTH are shorter than those written in assembly lamguage.

Compiler instructions setting up the structures are not directly
compiled into the body of colon instructions. Instead, they set up various
mechanisms such as conditional tests and branch addresses in the compiled
codes so that execution sequence can be directed corectly at run-time, The

detailed codes that are campiled are implementation dependent.

Code Instructions

Colon instruction allows a user to extend the FORTH system
at a high level., Programs developed using only colon instructions are very
tight and memory efficient. These programs are also transportable between

different host camputers because of the bufferring of the FORTH virtual

15

computer. Nevertheless, there is an overhead in execution speed in using
colon instructions, Colon instructions are often nested for many levels
and the interpreter must go through these nested levels to find executable
_codes which are defined as code instructions. Typically the nesting and
unnesting of colon instructions (calling and returning) cost about 20% to
30% of execution time. If this execution overhead is too much to be taler-
ated in a time-critical situation, instructions can be coded in machine
codes which will then be executed at the full machine speed. Instructions
of this type are created by the CODE instruction, which is equivalent to

a machine code assembler in conventional computer systems.

Machine code representation depends on the host camputer. Each
CPU has its own machine instruction set with its particular code format.
The only universal machine code representation is by numbers. To define
code instructions in a generalized form suitable for any host computer,
only two special compiler instructions, ',' (comma), and 'C,' are needed.
C, takes a byte number and compiles it to the body of the code instruction
under construction, and ',' takes a 16-bit integer fram the data stack and
compiles it to the body of the code instruction. An assembly code is thus
a number followed by 'C,' or ','. The body of a code instruction is a list
of numbers representing a sequence of machine codes. As the code instruc-
tion is invoked by the interpreter, this sequence of machine codes will be
executed by the host CPU.

Advanced assemblers have been developed for almost all computers

16

commercially available based on this simple syntax. Most assemblers
use names of assembly memonics to define a set of assembler instructions
which facilitates coding and documenting of the code instructions. The
detailed discussion of these advanced instructions is outside the scope

of this Chapter, Examples of FORTH assembler are discussed in Chapter 14.

Constants, Variables, and Vocatulary

The defining instructions CONSTANT and VARIABLE are used to intro-
duce named numbers and named memory addresses to the FORTH system, respec-
tively. After a constant is def ined, when the text interpreter encounters
its name, the assigned valie of this constant is pushed to the data stack.
When the interpreter finds the name of 2 predef ined variable, the address
of this variable is pushed to the data stack. Actually, the constants
defined by CONSTANT and the variables cGef ined by VARIABLE are still verbs
in FORTH language. They instruct the FORTH computer to introduce new data
items to the data stack. However, their usage is equivalent to that of

numbers, and they are best described as 'pseud-nouns',

Semantically, a constant is equivalent to its preassigned number,
and a variable is equivalent to an address in the RAM memory, as shown in

Table III.

VOCABULARY creates subgroups of instructions in the dictionary as
'vocabularies', When the name of a vocabulary is called, the vocabulary is

made the 'context vocabulary' which is searched first by the interpreter,

17

Normally the dictiomary in a FORTH computer is a linearly linked 1list of
instructions. VOCABULARY creates branches to this trunk dictionary so
that the user can specify partial searches in the dictionary. Each branch
-is characterized by the erd of the linked list as a 1link address. To
execute an instruction def ined by VOCABUIARY is to store this link address
into memory loccation named CONTEXT. Hereafter, the text interpreter will
first search the dictionary starting at this link address in CONTEXT when

it receives an instruction framn the inpt stream.

Instructions defined by VOCABULARY are used to switch context
in FCRTH. If all instructions were given unique names, the text inter-
preter wauld be able to location them without any ambiguity. The problem
arises because the user might want to use the same names for different
instructions, This problen is especially acute for single character
instructions, which are favored for instructions used very often to reduce
the typing chore or to reduce the size of source text. The usable ASCII
characters is the limit of choices. Instructions of related functions can
be grouped into veocabularies using vecabulary instructions. Context will
then be switched conveniently fran one vocabulary to another. Instructions
with identical names can be used unambiguously if they are placed in dif-

ferent vocabularies.

CREATE DEFINING INSTRUCTIONS
FORTH is an interpretive language with a multitude of interpreters.

This is the reason why FORTH can afford to have such a simple syntax struc-

18

ture. An instruction is known to a user only by its name. The user needs
no information on which interpreter will actually execute the instruction,
The interpreter which interprets the instruction is specified by the inst-
ruction itself, in its code field which paints to an executable routine.
This executable routine is executed at run-time and it interprets the
information contained in the body of the instruction. Instructions created
by one defining instruction share the same interpreter. The interpreter
which executes code instructions is generally called the 'inner interpre-
ter', and the interpreter which interprets high level colon instructions
is called 'address interpreter', because a colon instruction is equivalent
to a list of addresses. Constants and variables also have their respective

interpreters.

A defining instruction must perform two different tasks when it is
used to define a new user instruction. To create a new instruction, the
defining instruction must compile the new instruction into the dictionary,
constructing the name field, 1link field, code field which point to the
appropriate interpreter, and the parameter field which contains pertinent
data making up the body of this new instruction. The defining instruction
must also contain an interpreter which will execute the new instruction
at runtime. The address of this interpreter is inserted into the code
field of all user instructions created by this defining instruction. The
defining instruction is a combination of a compiler and an interpreter in
conventional programming terminology. A defining instruction constructs

new user instructions during compilation and executes the instructions it

19

created at runtime. Because a user instruction uses the code field to
point to its interpreter, no explicit syntax rule is necessary for differ-
ent types of instructions. Each instruction can be called directly by its
~name. The user does not have to supply any rmore information except the

names, separated by delimiters.

The most exciting feature of FORTH as a programming language is
that it not only provides many resident def ining instructions as compiler-
interpreters, but also supplies the mechanism for the user to defining new
defining instructions to generate new classes of instructions or new data
structures tailcred to specific applications. This unigue feature in FORTH
amounts to the capability of extending the language by constructing new
compilers and new interpreters., Narmal programming activity in FORTH is to
build new instructions, which is similar to writing program and program
modules in conventional languages. The capability to def ine new def ining
instructions is extensibility at a high level in the FORTH language. This

unicgue feature cannot be found in any other programming languages.

There are two methods to define a new defining instruction as
shown in Table IV. The :=~BUILDS-DOES>-; construct creates a def ining
instruction with an interpreter defined by high level instructions very
similar to a structure list in a regular colon def inition. The interpreter
structure list is put between DOES> and ';'. The campilation procedure is
contained between <BUILDS and DOES>. Since the intepreter will be used to

execute all the instructions created by this def ining instruction, the

20

TABLE IV. CREATING NEW DEFINING INSTRUCTIONS

<high-level defining instruction> ::=
CREATE<delimiter><compiler structure list>{DOES>}<del imiter>
<interpreter structure list>;

(: <high-level defining instruction> CREATE <structure list> DOES>
<structure list> ;) .

<low-level defining instruction> ::=
CREATE<delimiter><compiler structure list>;CODE<delimiter>
<interpreter assembly code list>

(: <low-level defining instruction> CREATE <structure list> ;QOLE
<interpreter assembly code list>)

<compiler structure list> ::= <structure list>

{interpreter structure list> ::= <structure list>

<interpreter assembly code list> ::= <assembly code list>

interpreter is preferably coded in machine codes to increase execution
speed, This is accomplished by the :—BUILDS-;CODE- oonstruct. The
compilation procedure is specified by instructions between <BUILDS and
. ;CODE., Data following ;CODE are compiled as machine codes which will be
used as an interpreter when the new instruction defined by this &ef ining

instruction is executed at runtime.

CONCLUS ION

Computer programming is a form of art, far fram being a discipline
of science or engineering. For a specified programming prablen, there
are essentially an infinite number of solutions, entirely depending upon
the programmer as an artisan. However, we can rate a soluwtion by its
correctness, its memory requirement, and its execution speed. A soluwtion
by default must be correct. The best salution has to be the shortest
and the fastest. The only way to achieve this goal is to use a camputer
with an instruction set optimized for the prablem. Optimization of the
computer hardware is clearly impractical because of the excessive costs.
Thus ore would have to compranise by using a fixed, general purpose inst-
ruction set offered by a real computer or a language compiler. To solve a
problem with a fixed instruction set, one has to write programs to circum

vent the shortcomings of the instruction set.

The solution in FORTH is not arrived at by writing programs, but
by creating a new instruction set in the FORTH virtual computer. The new

instruction set in essence becomes 'the' solution to the programming

22

problem. This new instruction set can be optimized at various levels faor
memory space and for execution speed, including hardware optimization.
FORTH allows us to surpass the fundamental limitation of an computer,
which is the limited and fixed instruction set. This limitation is also
shared by conventional programming languages, though at a higher and more
abstract level.

FORTH as a programming language allows programmers to be more
Creative and productive, because it enables them to mold a virtual cam
puter with an instruction set best suited for the prablems at hand. 1In
this sense, FORTH is a revolutionary development in the computer science

and technology.

23

ki

CHAPTER 1I
Fig-FOPTH: AN OPERATING SYSTEM

A real computer is rather unfriendly. It can only accept instruc-
tions in the form of 2 patterm of ones and zeros. Tne instructions must be
arranged correctly in proper sequence in the core memory. Registers in the
CPU must be properly initialized. The program counter nust then be set to
point to the beginning of the program in memory. After the start signal is
given to the camputer, it runs through the program at & lightening speed,
and ends often in a unredeemable crash. An operating system is a progran
which changes the personality of a computer and makes it friendly to the
user. After the operating system is loaded into the core memory ané is
initialized, the camputer is transformed into a virtual computer, which
responds to high level commands similar to natural English lancuage and
performs specific functions according to the commands. After it completes
a set of commands, it will came back and politely ask the user for a new

set of commands. If the user is slow in responding, it will wait patiently.

An operating system also manages all the resources in a computer
system for the user. Bardware resources in a computer are the CPU time,
the core memory, the I/0 devices, and disc memory. The software resources

include editor, assembler, high level language compilers, program library,

25

apclication programs and also> data files. It is the principal interface
between a computer and its users, and it enables the user to solwe his

problem intelligently and efficiently.

Conventional operating systems in most commercial computers share
two common characteristics: monstrosity and complexity. A typical operating
system on a minicomputer occupies a volume in the order of one megabytes
and it requires a sizable disc drive for normal functioning. A small root
program is memory resident. This root program allows a user to call in
a specified program to perform a specific task. Each program called uses
a peculiar language and syntax structure. To solve a typical programming
problem, a user must learmn about six to ten different languages under a
single operating system, such as the Canmand Line Interpreter, an Editcr,
én Assembler or a Macro-assembler, one or more high level languages with
their compilers, a Linker, a Loader, a Debugger, a Librarian, a File Manager,
etc. The user is entirely at the mercy of the computer verdor as far as the

systems software is concemed.

Fig-FORTH is a complete operating system in a very small package. A
fig-FORTH system including a text interpreter, a compiler, an editor, and an
assembler usually requires only about 8 Kbytes. The whole system is memory
resident and all functions are available for immediate executicon. It provides
a friendly programming envirorment to solve a programming prcblen. The same

language and syntax rules are used in all phases of program develomment.

26

The bulk of this operating system is the dictionary, which contains
all the executable procedures or instructions and sane system parameters
necessary for the whole system to operate. After the dictionary is loaded
into the computer memory, the computer is transformed into a virtual FORTE
computer, In this virtual FORTH computer, the memory is divided into many
areas to hold different information. A memory map of a typical fig-FORTH
operating system is shown in Fig. 1, which requires about 16 Kbytes of

memory.

MEMCRY MAP

At the bottam of the memory are the dictiomary and boot-up literals.
They comprise the basic FORTH system to be loaded into memory when the system
is initialized upon power-up. The dictionary grows toward higher memory
when new definitions are compiled. Imediately above the dictionary is the
word huffer. When a text string is fed into the text interpreter, it is
first parsed out and then moved to this area to be interpreted or to be

compiled.

About 68 bytes above the dictionary are reserved for the word buffer.
Above the word buffer is the output text buffer which temporarily hclds texts
to be output to terminal or other devices. The starting address of the output
text hbuffer is contained in a user variable PAD . The text buffer is of
indefinite size as it grows toward high memory. It should be noted that
the text buffer moves upward as the dictionmary grows because PAD is
offset from the top of dictionary by 68 bytes. The information put into the
text buffer should be used before new def initions are compiled.

27

Fig. 1. Memory Map of a Typical FORTH System

System User
Constants Variables
LIMIT High Memory
- |ISE
Disc Buffers
-t——— PREY
FIRST
User Area
up
RO oo
Return Stack/ -t-—l RP
Terminal-Buffer
TIB -7] IN
SO
Data Stack
-—-—-] SP
Text Buffer S OUT
~——— PAD
Viord Buffer
-F--j DP
Dictionary
FORTH Nucleus
ORIG Boot-Up Litgrals

Low Memory

28

The next area is a memory space which can be used by the dictionary
from below or by the data stack fram above. The data stack grows downwarad
fram high memory to low memory as data are pushed on it. Data stack contracts
back to high memory as data are popped off. If too many def initions are com-
piled to the dictionary or too many data items are pushed on the data stack,
the data stack might clash against the dictionary, because the free sgace
between them is physically limited. At this paint, it is better to clean up
the dictionary. If the dictionary cannot be reduced, more memory space should
be allocated between the data stack and the dictionary, involving the recon-

figuration of the systenm.

Above the data stack is an area shared by the terminal input buffer
with the return stack, The terminal input buffer is used to store a line
of text the user typed on the console terminal. The whole line is moved into
the terminal input buffer for the text interpreter to process., The terminal
input buffer grows toward high memory and the return stack grows fram the
other end toward low memory. Usually 256 bytes are reserved for return stack
"and terminal input buffer. This space is sufficient for normal operation.
The return stack clashes into the input buffer only when the return stack is

handled improperly which would in any case cause the system to crash.
Above the return stack is the user area where many system variables
called user variables are kept. These user variables control the systen

configurations which can be modified by the user to dynamically reconfiaure

29

the system at runtime. The functions of these user variables will be

discussed later in this Chapter.

The last memory area on the top of the memory is for disc buffers.
The disc buffers are used to access the mass storage as the virtual memory
of the FORTH systenm. Data stored on disc are read in blocks into these
buffers where the FORTH system can use them much the same as data stared
in regular memory. The data in disc buffers can be modified. Modified data
or even completely new data written into the buffers can be put back to disc
for permanent storage. The sizes and the number of disc buffers deperd upon
the particular installation and the characteristics of the disc drive.

INSTRUCTICN SET

The virtual fig-FORTE coamputer recognizes a rather large set of
instructions, and it can execute these instructions interactiwvely. The
instructions most often used in programming are summarized in Tables V to IX.
They are grouped under the titles of stack instructions, input/ocutput inst-
ructions, memory and dictionary instructions, defining instructions and

control structures, and miscellaneous instructions,

The instruction set oovers a very wide spectrum of activities. At
the very lowest level, some primitive instructions manipulate bits and bytes
of data on the data stack or in the memory. These primitive instructions
are coded in the machine codes of the host computer, and they are the ones
that turn a host computer into a FORTH virtnal computer. At a higher level,

instructions can perform camplicated tasks, such as text interpretation,

30

TABLE V.

Operand Keys:

STACK INSTRUCTIONS

n 16-bit integer, u 16-bit unsigned integer, d 32-bit

signed double integer, addr 16-bit address, b 8-bit byte, ¢ 7-bit ASCII

character, and £ boolean flag.

DMINUS

SOl vaAa
n A

(n=-nn)
(=)
(nNln2-n2nl)
(nln2-nn2nl
(nMl n2 n3-n2n3
(n=-n?)
(n=)

{=n)

f = n)
(nl n2 - sum)
(dl d - sum)

(nl n2 - 4iff)
(nl n2 - prod)
(nl n2 - quot)
(nl n2 - rem)
(nl n2 - rem qwt)
(nl n2 - rem qut)
(nl n2 - qut)
(nl n2 - max)
(nl n2 -min)

(n - absolite)
(d - absolute)
(n==-n)
(d=<4)
(nl n2 - and)
(nln2-or)
(nl n2 - xor)
(nln2-f)
(nln2-f£f)
(nln2-f)
(n=-£f)
(n=-£f)

E‘-...-

Duplicate top of stack.

Discard top of stack.

Reverse top two stack items.

Copy second item to top.

Rotate third item to top.

Dwplicate only if non-zero.

Move top item to return stack.
Retrieve item fram return stack.

Copy top of return stack onto stack.
Add.

Add double-precision numbers.

Swbtract (nl-n2).

Multiply.

Divide (nl/n2).

Modulo (remainder fram division).
Divide, giving remainder and quotient.
Multiply, then divide (nl*n2/n3), with
double-precision intermediate.

Like */MOD, but give quotient only.
Maximum,

Minimum,

Absolute valie.

Absolute valwe of rbuble—-precxs:.on number,
Change sign.

Change sign of double-precision number.
Logical bitwise AND.

Logical bitwise CR.

Logical bitwise exclusive (R,

True if nl less than n2.

True if nl greater than n2.

True if nl equal to n2.

True if top number negative.

True if top number zero.

3l

TABLE VI.

INPFUT-QTPUT INSTRUCTIONS

n-)
nu-)
a~-)
du-)
=)

= 3
8=)

-)
addr u -)
addr u -)
addr - adcr+l u)
(=2)
-c)
e~)
addr u =)
c-)
addr - d)
=}
dl-d4a2)
d-00)
nd-d)
d-addr u)
=)
=3

*]

-3

Print number.

Print number, right-justified in u colum.
Print double-precision number.

Print double-precision number in u colum.
Do a carriage-return.

Type one space.

Type u spaces.

Print message (terminated by ").

Dump u numbers starting at address.
Type u characters starting at address.
Change lemgth byte string to TYFE form.
True if terminal break request present.
Read key, put ASCII valwe on stack.
Type ASCII character fram stack.

Read u characters (or until carriage-return)
from input device to address.

Read one word fram input stream, delimited
by c.

Convert string at address to double number.
Start output string.

Convert one digit of double number and add
Character to output string.

Convert 2ll significant digits of double
number to cutput string.

Insert sign of n to output string.
Terminate output string for TYEE.

Insert ASCII character into output strmg
Set decimal base.

Set hexadecimal base.

Set octal base.

32

TABLE VI. MEMORY AND DICTIONARY INSTRUCTIONS

e (addr = n) Replace word address by contents.

! (n addr -) Store second ward at address on top.

ce (addr = b) Fetch one byte only.

C! (baddr -) Store one byte only.

? (addr -) Print contents of address.

+! (naddr -) Add second number to contents of address.

QOVE (fromtou~-) Move u bytes in memory.

FILL (addr ub=-) Fill u bytes in memory with b beginning at
address.

ERASE (addr u -) Fill u bytes in memory with zeros.

BLANKS (addr u -) Fill u bytes in memory with blanks.

HERE (- addr) Return address above dictionary.

PAD (- addr) Return address of scratch area.

ALIOT (u-) Leave a gap of n bytes in the dictionary.

' {n=) Campile number n into the dictionary.

! (= addr) Find address of next string in dictionary.

FORGET (=) Delete all definitions above and including
the following definition.

DEFINITIONS (=) Set current vocabulary to context vocabulary.

VOCABULARY (-) Create new vocabulary.

FORTH (=) Set context vocabulary to Forth vocabulary.

EDITOR (=) Set context vocabulary to Editor vocabulary.

ASSEMBLER (=) Set context vocabulary to Assembler.

VLIST {=] Print names in context vocabulary.

33

TABLE VIII. DEFINING INSTRUCTIONS AND CONTROL STRUCTURES
(=) Begin a colon definition.
3 (=) End of a colon definition.
VARIABLE (n =) Create a variable with initial valwe n.
(= addr) Return addres when executed.
CONSTANT (n -) Create a constant with valwe n.
(=-n) Return the value n when executed.
CODE (=) Create assemhly-language def inition.
sOQODE (=) Create a runtime code routine in assembly codes.

<BUILDS,, .DOES>
(end+l

Create a new def ining ward, with runtime code
routine in high-level FORTH.
start -) Set up loop, given index rarnge.
Increment index, terminate loop if equal to limit.
incranent index by n. Terminate loop if outside
jmit.

ndex) Place loop index on stack.

Terminate loop at next LOCP or +LOCP.

If top of stack is true, execute true clause.
Begining of the false clause.

End of the IF-ELSE structure.

Start an indefinite loop.

Loop back to BEGIN until f is true.

Loop back to BEGIN unconditionally.

Exit loop immediately if £ is false.

TABLE VIII. MISCELLANEOUS INSTRUCTIONS

((=) Begin comment, terminated by).

RBEr (=) Error termination of execution.

Sp@ (= addr) Return address of top stack item.

LIST (screen -) List a disk screen.

LOAD (screen =) Lcad a disk screen (compile or execute).
BLOCK (block — addr) Read disk blcck to memory address.
UPDATE (-) Mark last buffer aceessed as updated.
FLUSH (=) Write all updated buffers to disk.
EMPTY-BUFFERS (=) Erase all buffers.

34

accessing virtual memory, creating new instructions, etc. All hich level
instructions ultimately refer to the primitive instructions for exscution.
This very rich instruction set allows a user to solve a programming prablen

conveniently and to optimize the solution for performance.

SYSTEM CONSTANTS AND USER VARIAEBLES
Same system coonstants defined in fig-FORTH are listed in Table X.
User variables are listed in Table XI. Most of the user variables are pcint-

ers pointing to various areas in the memory map to facilitate memcry access.

TABLE X. SYSTEM CONSTANTS
FIRST 3BEOH Addiress of the first byte of the disc buffers.
LIMIT 4000H Address of the last byte of disc buffers plus one,

pointing to the free memory not used by the FORTH
system.

B/SXR 8 _ Blocks per screen. In the fig-FORTH mocel, a block
is 128 bytes, the capacity of a disc sector. A screen

is 1024 bytes used in editcr.

B/BUF 128 Bytes per buffer.
C/L 64 Characters per line of input text.
BL 32 ASCII blank.

35

TABLE X1,

S0

- TIB

WARNING

FENCE

VOC-LINK

amr

SR
CFFSET

CURRENT
STATE

BASE

FLD
Csp

R#

USER VARIABLES

Initial value of the data stack pointer.

Initial value of the return stack painter.

Address of the terminal inputt buffer.

Error messge control number. If 1, disc is present, and
screen 4 of drive 0 is the base location of error mes=ges.
If 0, no disc is present and error messages will be presented
by number. If -1, execute (ABCRT) on error.

Address below which FORGET'ting is trgpped. To forget below
this point the user must alter ‘the contents of FENCGE .
The dictionary pointer which contains the next free memory
above the dictionary. The value may be read by HERE and
altered by ALIOT .

Address of a field in the definition of the most recently
created vccahulary. All veocabulary names are linked by
these fields to allow controcl for FORGETHing through multiple
vocakularies.

Current block number under interpretation. If 0, input is
being taken from the terminal input buffer.

Byte offset within the current input text buffer (terminal or
disc) from which the next text will be accepted. WORD uses
and moves the value of IN .

Offset in the text output buffer. Its valwe is incremented by
EMIT . The user may alter and examine OUT to control
output display formatting.

Screen number most recently referenced by LIST .

Bleck offset to disc drives. Contents of OFFSET is added
to the stack number by BLOCK .

Pointer to the vocabulary within which dictionary search
will first begin.

Podéx;éer to the vocabulary in which new definitions are to be
a . .

If 0, the system is in interpretive or executing state. If
non-zero, the system is in compiling state. The valwe itself
is implementation deperdent.

Current number base used for input and output numeric conver-
sions.

Number of digits to the right of the decimal paint on double
integer input. It may also be used to hold output colum
location of a decimal point in user generated formatting.
The default value on single number input is -1,

Field width for formatted number output.

Temporarily stored data stack painter for campilation error
checking.

Location of editor cursor in a text screen.

Address of the latest character of text during numeric output
conversion,

36

SIMPLE COLON DEFINITIONS

In the fig-FORTH model, some arithmetic and logical instructions
are FORTH high level definitions or colon definitions. They serve very well
as some simple examples in programming and in exterding the basic FORTE word

set. Same of them are listed here with their definitions:

T = —0=:
I 4 -0<;
: > SWAP < ;

: ROT DR SWAP R> SWAP ;
: =DOP DUP IF DUP ENIIF ;

Same memory operations which affect large areas of memory are also
defined at a high level as colon definitions. FILL is a basic word later
used to define many others. The definition of FILL is presented here

in the vertical farmat, which will be used extensively in our discussions.

:+ FILL agir n b —

Fill n bytes of memory beginning at adar with the same valwe

of byte b.
SHAP >R store n on the return stack
OVER C! store b in addr
DUP 1+ addr+l, to be filled with b
R 1- 1, number of bytes to be filled by QIOVE

37

CMOVE A primitive. Copy (addr) to (addr+l), (addr+l) to (addr+2),

etc , until all n locations are filled with b.

FILL is used to define ERASE which fills a memory area with zero's,
and BLANKS which fills with blanks (ASCII 32).

: ERRSE 0 FILL ;

: BLANKS BRL FILL ; Bl=32, a cGef ined constant

38

CHAPTER III
TEXT INTERPRETER

The text interpreter, or the outer interpreter, is "the" operating
system in a FORTH computer. It is absolitely essential that the reader under-
stand it completely before proceeding to other sections. Many of the proper-
ties of FORTE language, such as compactness, execution efficiency and ease in
programming and utilization, are embeddd in the text interpreter. VWhen the
FORTH computer is booted up, it immediately enters into the text interpreter.
In the default interpretive state, the FORTH computer waits for the operator
to type in commands on his conscle terminal. The command text string he tyres
on the terminal, after a carriage return beiny entered, is then parsed by the

text interpreter and apmomiate actions will be performed acoordingly.

To make the discussion of text interpreter complete, we shall start
with the definition, CQD , meaning starting the computer .frcm cold. COLD
calls ABCRT . ABORT calls QUIT which has the text interpreter, named
properly INTERPRET , embedced. These definitions are discussed in this
sequence. It is rather strange to start the text interpreter with words
like ABORT and QUIT. The reason will become apperent when we discuss
the error handling procedures. After an error is detected, the error handling

procedure will issue an appromxiate error messsge and call ABRT or QUIT

39

Fig. 2. The FORTH Loop

Clear Dictionary
Clear Disc Buffer
Activate Terminal

ABORT

Clear Data Stack
Select FORTH
Vocabulary

T
QUIT

Select Terminal
as Input Device
STATE set to O

-

Clear Return Stack
Input a Line of
Text

INTERPRET
Interpret the Text

~{ERROR)

No

Type " OK" on
Terminal

40

Gepending upon the seriousness of the error.

This major FORTH monitoring loop is schematically shown in Fig. 2.

Although nothing new is shown in the flow chart, it is hoped that a graphic

diagram will make a2 lasting impression on the reader to help him understand

more clearly the concepts discussed here.

BEMPTY-BUFFTERS

0 DENSITY !

FIRST USE !

FIRST PREV !

0 EPRINT !

12H +

UP @6 +

108 QWOVE

ORIG OCH + @

The cold start procedure.

Adjust the dictionary pointer to the minimum standard and
restart via ABCRT . May be called fran terminal to remove
application program and restart.

Clear all disc buffers by writing zero's fran FIRST to LIMIT.
Specify single density diskette drives,

Store the first buffer address in USE and PREV , precaring

for disc accessing.

Select drive 0 by setting OFFSET to 0.
Turn off the printer.

Starting address of FORTH codes, where initial user variables

are kept.

User area
Move 16 bytes of initial values over to the user area,
Initialize the terminal.

Fetch the name field addess of the last word def ined in the

41

FORTH 6 + !

ABCRT

ABCRT

Sp!

DECIMAL

xR

." £ig-FORTH"
FORTH
DEFINITIONS

QUIT

s QUIT

0 BIK !

trunk FORTH vocahulary, and

Store it in the FORTH veocabulary link. Dictionary searches
will start at the top of FORTH vocabulary. New words will be
added to FORTH vocabulary unless another vocabulary is named.
Call ABORT , the warm start procedure.

Clear the stacks and enter the interpretive state. Return
control to operator's terminal and print a sign-on message
on the terminal.

A primitive., Set the stack pointer SP to its origin SO .
Store 10 in BASE , establishing decimal number corwersions.
Output carriage return and line feed to terminal.

Print sign-on message on terminal.

Select FORTH trunk vecabulary.

Set CURRENT to CONTEXT so that new definitions will be
linked to the FORTH vocabulary.

Jump to the FORT™ loop where the text interpreter resides.

Clear the return stack, stop compilation, and return control
to terminal. This is the paint of return whenever an error
occurs in either interpretive or campilation states.

BLK contains the current disc block number under interpretion.

0 in BLK indicates the text should came fram the terminal.

42

QUERY ~

STATE @ 0=
IF

LAl

ENDIF

-

Canpile the next IMMEDIATE ward which normally is executed
even in compilation state.

Set STATE to 0, thus entér the interpretiwe state.

Starting point of the 'FORTH loop'.

A primitive. Set return stack pointer to its origin RC .
CR/LF

Input 80 characters of text fram the terminal. The
text is positioned at the address contained in TIB with
IN set to 0.

Call the text interpreter to process the input text.

Examine STATE .

STATE is 0, in the interpretive state

Type ok on terminal to indicate the line of text was success-

fully interpreted.

Loop back. Close the FORTH loop .
If the interpretation was not suceessful because of same
errors, the error handling procedure would print out an error

message and then jump to QUIT .

Fig.3 shows the text interpreter loop in which lines of text are

parsed and interpreted.

: INTERPRET

The text interpreter which sequentially executes or compiles

43

Fig

'INTERPRET'

No

4
Parse ou
a word

Search CONTEXT
Vocabulary for
Matching Name

. 3. Text Interpreter Loop

No Search CURRENT
Found? ~Vocabulary for
/,f’/’ {Matching Name
Yes
Yes
Found?
y
Push Code Field
Address to Stack No
Convert Word to
Number According
-2 to BASE
No
Success?
N
STATE=0? 2
Yes
1 r
EXECUTE Compile Code Push Compile Number
Call Address Field Address| |Number as a Literal
Interpreter to Top of to Data to Top of
Dictionary Stack Dictionary
Data Stac
Qut of Bound?
A

BEGIN
=FIND

STATE @ <
IF CFA ,
ELSE
CFA
EXECUTE

text from the input stream (terminal or disc) deperding on
STATE . If the word cannot be found after searching CONTEXT
and CURRENT, it is corverted to a number acoording to the
current base, That also failing, an error message echoing
the name with a " ?" will be printed,

Start the interpretation loop

Move the next ward fram input stream to HERE and search
the OONTEXT and then the CURRENT vccabularies for a
matching entry. If found, the dictionary entry's parameter
field address, its lemgth byte, and a boolean true flag are
left on stack. Otherwise, only a false flag is left.

A matching entry is found. Do the following:

If the lemgth byte < state , the word is to be campiled.
Campile the code field address of this word to the dictiomary
Length byte > state, this is an immediate word,

then put the code field address on the data stack and

call the address interpreter to execute this word.

ENDIF (THi= A_{)

2STACK

ELSB

NUMBER

Check the data stack., If overflow or underflow, print error
message and jump to QUIT .

No matching entry. Try to convert the text to a number.
Start of the text string on top of the dictionary.

Convert the string at HERE to a signed double number, using
current base. If a decimal point is encountered in the text,

its position is stored in DPL. If numeric conversion is not

45

possible, an error message will be given and QUIT .

DPL @ 1+ Is there a decimal paint? If there is, DPL + 1 should be
greater than zero, i. e., true.
IF Decimal paint was detected
[COMPILE] Compile the next immediate word.
CLITERAL If campiling, campile the double number on stack into a
literal, which will be pushed on stack during execution.
If executing, the number remains on stack.
ELSE No decimal point, the number should be a single 16 bit number.
CROP Discard the high order part of the double number.
[COMPILE]
LITERAL If compiling, campile the number on stack as a literal. The
number is left on stack if executing.
NDIF (THEn)
2STACK Check the data stack overflow or underflow.
ENDIF End of the IF clause after =-FIND .
AGAIN Repeat interpretion of the next text string in the input

stream.

The text interpreter seems to be in an infinite loop without an exit,

except the error handling procedures in 7?STACK and NUMBER . The

normal exit fram this loop, after suceessfully interpreting a line of text,

is buried in a mysterious, nameless word called NULL or 'X' in the FORTH

46

source code. The true name of this procedure is an ASCII NUL character,
which cannot be accessed fram the terminal. The text input procedure appends
an ASCII NUL character to the end of a text input stream in place of a
carriage return which terminates the text stream. After the text stream is
successfully processed, the text interpreter will pick up this null character

and execute the NULL procedure.

s X This name is replaced by an ASCII NUL character.
Terminate interpretation of a line of text fram terminal or
from disc buffer. Fall into the FORTH loop and print " ok"
on the terminal and wait for terminal input.
BLK @ Examine BLK to see where the input stream is fram.
IF ‘ BLE not zero, inpuat fram disc buffer.
1 _BLK +! Select the next disc buffer
0 IN! Clear IN , preparing parsing of input text.
BIK @ There are 8 disc buffers. See if the current buffer is the
last.
7 AND 0=
IF The last buffer, the end of the text blcck.
?EXEC Issue error message if not executing.
R> DROP Discard the top address on the return stack, which is the
address of ?STACK after EXECUTE in the interpretation loop.
ENDIF
ELSE BLR=0. The text is fram the terminal.
R> DROP Pop of f the top of return stack.

47

ENDIF

The top item on the return stack was thrown away. At the
end of 'X', the interpreter will not continwe to execute the
?STACK instruction, but will return to the next higher level
of nesting and execute the next word after INTERFPRET in the
FORTH loop. This is when the familiar " ok"'s are typed on
the terminal, prampting the operator for the next commands.

48

CHAFTER IV
ADIRESS INTERPRETER

The function of the text or outer interpréte: is to parse the text
fraom the input stream, to search the dictionary for the.word parsed out, and
to handle numeric corversions if dictionary searches failed. When a matching
entry is found, the text interpreter compiles its code field address into the
dictionary, if it is in a state of compilation. However, if it is in state
of execution or the entry is of the immediate type, the text interpreter just
leaves the code field address on the data stack and calls on the address
interpreter to d the real work. The address interpreter works on the machine
level in the host computer, hence it is often referred to as the inner inter-

preter.

If a ward to be executed is a high level FORTH def inition or a colon
definition, -which has a bunch of code field addresses in its parameter fielg,
the address interpreter will properly interpret these addresses and execute
them in sequence. Hence the name address interpreter. The address interpreter
uses the return stack to dig through many levels of nested colon definitions
until it finds a code definition in the FORTH nucleus. This code def inition
consisting of machine codes is then executed by the CPU. At the end of the

code definition, a jump to NEXT instruction is executed, where NEXT is

49

a2 runtime procedure returning control to the address interpreter, which will
execute the next definition in sequence in the next level of nesting. This
process goes on and on until every word involwed in every nesting level is

. executed, Finally the control is returned back to the text interpreter.

The return stack allows colon def initions to be nested indef initely,
and to correctly unnest themselwes after the primitive code definitions are
executed. The address interpreter with an independent return stack thus very
significantly contributes to the hierarchical structure in the FORTH language
which spans from the lowest machine codes to the highest possible construct

with a utnifam and consistent syntax.

To discuss the mechanisms involved in the address interpreter, it is
necessary to tauch upon the host CPU and its instruction set on which the
FORTH virtual computer is constructed., Here I have chosen to use the PDP-11
instruction set as the vehicle. The PDP-11 is a stack oriented CPU, sharing
many characteristics with the FORTH virtual machine. All the registers have
predecrementing and postincrementing facilities very corwienient to inplement
the stacks in FORTH. The assembly codes using the PDP-11 instructions thus
allow the very concise and precise def inition of functions performed by the

address interpreter.

The FORTH virtual machine uses four PDP-11 registers for stacks and

address interpretation. These registers are named as follows:

50

Data stack pointer
Return stack painter

Interpretive painter

qum

Current word pointer

The data stack pointer and the return stack pointer point to the top of their
respective stacks. The familiar stack operatars like DUP, OVER, DRCOP, etc
and arithmetic operators modify the contents as well as the number of items
on the two stacks, However, the user normally does not have access to the
interpretive pointer nor the word pointer W . IP and W are tools used by

the address interpreter.

The word NEXT is a runtime routine of the address interpreter.
IP usually points to the next word to be executed in a colon def inition,
After the current ward is executed, the contents of IP is moved
into W and now IP is incremented, pointing to the next word downstream.
W has the code field address of the word to be executed, and an indirect jmup
to the address in W starts the execution process of this word. In the mean
time, W is also incremented to point to the parameter field address of the
word being executed, All code def initions ends with the routine NEXT, which
allows the next word after this code definition to be pulled in and

executed,

In PDP-11 fig-FORTH, MNEXT is defined as a macro rather than an inde-
pendent routine, This macro is expanded at the end of all code definitions.

51

NEXT: MOV (IP)+,W Move the content of IP, which points to the next ward
to be executed, into W . Increment IP , pointing to
the second word in execution sequence.

JMP EW+ Jump indirect to code field address of the next word.
Increment W so0 it paints to the parameter field of
this ward. After the jump, the runtime routine paint-
ed to by the code field of this word will be executed.

If the first ward in the called ward is also a colon definition
one more level of nesting will be entered. If the next word is a code
definition, its code field contains the address of its parameter field, i.e.,
the code field address plus 2. Here, JMP @(W)+ will execute the codes in the
parameter field as machine instructions., Thus the code field in a word deter-

mines how this word is to be interpreted by the address interpreter.

To initiate the address interpreter, a word EXECUTE takes the address
on the data stack, which contains the code field address of the word to
be executed, and jump indirect to the routine painted to by the code field.

CODE EXBCUTE cfa ===
Execute the definition whose code field address cfa
is on the data stack.
MV (S)+,W Pop the code field address into W , the word painter
JMP @(W)+ Jump indirectly to the code routine., Increment W to

52

point to the parameter field.

In most colon definitions, the code field contains the address of a
runtime routine called DOCOL , meaning 'DO the QCLan routine', which is

the 'address interpreter' for colon def initions.

DOCOL: Runtime routine for all colon def initions.

MOV IP,~-(RP) Push the address of the next word to the return stack
and enter a lower nesting level.

MV W,IP Move the parameter field address into IP , pointing
to the first word in this definition.

MV (IP)+,W

JMP B(W)+ These two instructions are the macro NEXT .
The old IP was saved on return stack and the new
IP is pointing to the word to be executed., NEXT
will bring about the proper actions .

Using the interptive pointer 1IP alone would only allow a colon
definition to call code definitions. To achieve multilevel nesting, the
return stack is used as an extension of IP . Whan a colon definition calls
other colon definitions, the contents of IP are saved on the return stack
so that the IP can be used to call other definitions in the called colon
definition, DOOOL thus provides the machinery to nest indefinitely within

colon definitions.

53

At the end of a colon definition, execution must be returned to the
calling definition. The analogy of NEXT in colon definitions is a word

named ;S , which does the unnesting.

QODE S Return execution to the calling definition. Umest
one level.
MV (RP)+,IP Pop the return stack into IP , peointing now to the
next word to be executed in the calling definition.
NEXT Go ahead executed the ward pointed toby IP.
We shall not repeat the definition of NEXT which
is MV (IP)+,W JMP E@(W)+ .

The interplay of the four registers, IP, W, RP, and S allows
the colon definitions to nest and to unnest correctly to an indef inite &epth,
limited only by the size of the return stack allocated in the system. This
process of nesting and unnesting is a major contributor to the campactness
of the FORTH language. The overhead of a subroutine call in FORTH is only
two bytes, representing the address of the called subroutine,

A few variations of NEXT are often defined in fig-FORTH for many
microprocessors as erdings of code def initions. PDP-11 £ig-FORTH did not use
them because of the versatal ity of the PDP-11 instruction set. Nevertheless,

these endings are presented here in PDP codes for campleteness and consist-

ency.

54

PUSH:

FOP:

LIT:

MOV

0,~(8)

(8)+

0,(s)

(IP)+,S

Push the contents of the accumulator to the data
stack and return to NEXT .

Push 0 register to data stack

Discard the top item of data stack

Return

Replace the top of data stack with the contents of
the accumulator, here register 0, and

return.

Push the next word to the data stack as a literal.
Increment IP and skip this literal.

Return.

LIT is used to compile numbers into the dictionary.
At runtime, LIT pushes the in-line literal to the

data stack to be used in computations.

55

CHAPTER V

COMPILER

The FORTH computer spends most of its time waiting for the user to
type in some commands at the terminal. When it is actual ly doing samething
useful, it is doing one of two things: executing or interpreting wards with
the address interpreter, or parsing and campiling the input texts fram the
terminal or disc. These are the two 'states' of the FORITH computer when
it is executing. Intemally, the FORTH system uses an user variable STATE
to remind itself what kind of job it is supposed to be doing. I1f the contents
of STATE is zero, the system is in the executing state, and if the contents
of STATE 4is not zero, it is in the compiling state. Two instructions are
provided for the coperator to explicitly switch between the executing state
and the compiling state. They are '[', left-bracket, and ']', right-bracket.

Us=d in a colon definition in the form:

(1]
—

IS == [e] s g
Suspend compilation and execute the words following | up to
] . This allows calculation or campilation exceptions before
resuming compilation with] .

0 STATE ! Write O into the user variable STATE and switch to executing
state.
; IMMEDIATE [must be executed, not compiled.

57

Resume compilation till the end of a colon def inition.

Ll
—

COH STATE ! The text interpreter compares the valwe stored in STATE with
the value in the lergth byte of the def inition found in the
dictiomary. If the definition is an immediate word, its
length byte is greater than COH because of the precedence
and the sign bits are both set. Setting STATE to COH will
force non-immediate words to be campiled and immediate words
to be executed, thus entering into the 'compiling state'.

In either state, the text interpreter parses a text string out of the
input stream and searches the dictionary for a matching name. If an entry or
a ward of the same name is found, its code field address will be pushed to
the data stack. ;lw, if STATE is zero, the address interpreter is called in
to execute this word. If STATE is not zero, the text interpreter itself will
push this code field address to the top of dictionary, and ‘'compile' this
word into the body of a new def inition the text interpreter is working on.
Therefore, the text interpreter is the campiler in the FORTH system, and it
is very much being optimized to do campilations just as effeciently as inter-

pretations,

There are numerous instances when the campiler cannot do its job if
complicated program structures are to be built. The campiler itself can only

compile linear programs, one word after another., If pragramn stnucures

58

require branching in execution sequence, as in the BEGIN—UNTIL, IF—ELSE—
ENDIF, and DO—LOCOP types of constructs, the campiler needs lots of help fram
the address interpreter. The help is provided through wards of the
IMMEDIATE nature, which are immediately executed even when the system is in
the compiling state. These immediate words are therefore campiler directives
which direct the compiling process so that at runtime the execution sequences

may be altered.

er In this Chapter, we shall first discuss the words which create a
head’(for a new def inition in the dictionary. These are words which start the
compiling process. In Chapter 12 we shall discuss the immediate words which
construct(: conditional ogikunmrditioml branch to take care of special compi-

lation conditions.

A dictiomary entry or a word must have a header which consists of a
name field, a link field, and a code field, The body of the word is mntaméd
in the parameter field right after the code field, The header is created by
the ward CREATE and its derivatives, which are called def ining wards because
they are used to create or def ine different classes of words. All words in
the same class have the same code field address in the code fielc&s. The code
field address points to a code routine which will interpret this word
when this ward is to be executed. The structure of a def inition as campiled

in the dictiomary is shown in Fig. 4.
: CREATE Used in the form CREATE cccec

59

Fig. 4. Structure of a Definition

Name Field Addr 1| P|S | Length 'W P: Precedence Bit
(NFA) — S: Smudge Bit
0] ASCII 1
0| ASCII 2
\ HEAD of
S Definition

1! Last ASCII

Link Field Addr Link Field 1
(LFA)

Link Field 2

Code Field Addr Code Field 1

(CFA)
Code Field 2]

Parameter Field Parameter Field 1
Address (PFA)

Parameter Field 2

e BODY OF
?Definition

60

CREATE

EL WCRD

DUP C@

WIDTH €

MIN
1+ ALIOT

Useeo In Tue Form CREATE cccc
Create a dictiomary header for a new definition with name
ccee . The new word is linked to the CURRENT vocabulary. The
code field points to the parameter field, ready to campile
a code definition.

Bring the next string delimited by blanks to the top of
dictiomary.

Save dictionary pointer as name field address to be linked.
Get the length byte of the string

WIDTH has the maximum number of characters allowed in the
name field.

Use the smaller of the two, and

allccate space for name field, and advance IP to link field,

DUP OAOH TOGGLE Toggle the eighth (start) and the sixth (smudge) bits in the

length byte of the name field, Make a 'smudged' head so that
dictiomary search will not find this name .,

HERE 1- BOH TOGGLE

LATEST ,

HERE 2+ ,

-

Toggle the eighth bit in the last character of the name as a
delimiter to the name field.

Campile the name field address of the last word in the link
field, extending the linking chain.

Update contents of LA':L‘ES'I‘ in the current vocabulary.
Campile the parameter field address into code field, for the
convenience of a new code definition. For other types of
definitions, proper code routine address will be campiled
here.

6l

: CODE Create a dictiomary header far a code definition. The code
field contains its parameter field address. Assembly codes
_ are to be compiled (assembled) into the parameter field,
CREATE Create the header, nothing more to be done on the header.

[COMPILE]
ASSEMBLER Select ASSEMELER vccabulary as the CQONI'EXT vocabulary,

which has all the assembly memonics and wards pertaining to

assembly processes.

It is important to remember that the text interpreter itself is doing
the job of an assembler. Thus all the words defined in the FORTH vocabulary
are available to assist the assembling of machine codes. In fact assemhling
code definitions is much more camplicated than campiling colon def initions.
Many utility routines have to be defined in the assembler vocabulary before
the simplest of code definitions can be assemhled. This part of the
assembler vocahulary is generally called the pre-assembler, which is not
in the fig-FORTH model because it is machine deperdent. In Chapter 14
we shall discuss the details involwed in an assemhbler, based on PFDP-11

and 8080 instruction sets.

Start a oolon definition, used in the form

: cccc ——

Create a dictiomary header with name cccc as equivalent to

62

2EXEC
ICSP

the following sequence of wadgs == until the next
';' or ;OODE . The campiling process is done by the text
interpreter as long as STAIE is nomzero. The CONTEXT voca-
bulary is set to CIRRENT vccabulary , and wards with the

precedence (P) bit set are executed rather than campiled.

Issue an error message if not executing.

Save the stack painter in CSP to be checked by ';' or ;QODE .

CURRENT € CONTEXT !

+CODE

ty I:I

Make OONTEXT veocabulary the same as the CURRENT vocabulary.
Now create the header and establish linkage with the current
vocahulary.

Change STATE to non-zero. Enter campiling state and campile
the wards following till ';' or ;QODE .

End of the compiling process for ':', The following codes are
to be executed when the word cccc is called. The address

here is to be campiled into the code field of cccc .

MV IP,~(RP) Push IP on the return stack

MOV W,IP Move the parameter field adaress into IP , the next

word to be executed,

Go execute the next word.

Execution of DOCOL adds one more level of nesting. Umesting is done

(semi-colon), which should be the last word in a colon def inition.

63

£ 3 Terminate a colon definition and stop further campilation.
Return execution to the calling definition at runtime.

2CSP Check the stack pointer with that saved in CSP . 1If they
differ, issue an error mes=age.

-CCNPILE ;S Campile the code field address of the word ;S into the
dictiomary, at runtime. ;S will return execution to the
calling definition.

SMUDGE Toggle the smudge bit back to zero. Restore the lemgth byte
in the name field, thus completing the campilation of a new
ward,

[Set STATE to zero and return to the executing state.

-~

IMMEDIATE

Another ending of a colon definition ;OODE as seen in the def inition
of ':', involves an advanced concept of defining a def ining ward. The discus-
sions of this concept will be the topic of Chapter 11 on the def ining wards.
The detailed wards which manipulates information in the dictionary will be
discussed in Chapter 9. The immediate words.used in constructing branching

structures are treated in Chapter 12 of oontrol structures.,

64

CHAFTER VI
ERRCR HANIL.ING

The fig-FORTH model provides very extensive error checking procedur es
to ensure Icomp:‘.‘ler security, so that compilation results in correct and
executahble definitions. To facilitate error checking and reporting, f£ig-FORTH
model maintains an user variable WARNING and one or more disc blccks contain-

ing error messages.

The user variable WARNING contrals the actions taken after an error
is detected. If WARNING containsl, a disc is present and screen number 4
in Drive 0 is supposed to be the base location of all error messages. If
WARNING contains 0, no disc is available and error messages will be reported
simply by an error number. If WARNING oontains -1, the word (ABCRT) will
be executed. The user can modify the word (ABCRT) to def ine his own error
checking policy. In the fig-FORTH model, (ABORT) calls ABORT which restarts
the system (wamm start). The error handling process is best shown in a flow
chart in Fig. 5.

: 7ERR(R f n —
Issue error message n if the boolean flag f is true.

SWAP Test the flag £

65

Fig. 5. Error Handling

Yes

WARNING=-1?

Print Text String

Under Interpretation

No

={ABORT,

WARNING=1?

Print Error
Message on Disc

1

Print Error
Number

|

Clear Data Stack
Push IN and BLK
on Data Stack

(QUIT'

66

IF ERRCR
ELSE DROP
ENDIF

-

: (ABCRT)

ABCRT ;

True. Call ERR(R to issue error message.

No error. Dropn and return to caller.

n — in bhlk
Issue error message and restart the systen. Fig-FORTE saves
the contents in IN and BLK on stack to assist in deter-
mining the location of error.
See if WARNING is -1,

if so, abert and restart.

Print name of the offerding ward on top of the dictionary.
Ad a question mark to the terminal.
Type the error message stored on disc.

Clean the data stack.

Fetch IN and BLK on stack for the operator to lock at if
he wishes.
restart the FORTH loop.

Execute ABORT after an error when WARNING is -1. It
may be changed to a user def ined procedure.

: MESSAGE N e—

Print on the terminal n'th line of text relativwe to screen

4 of Drive 0.
WARNING @ Examine WARNING .
IF (WARNING) =1, error messages are on disc.
-DUP
IF n is not zero

4 OFFSET @ B/S®R / -

Calculate the screen number where the message resicdes.

.LINE Print out that line of error message.
ENDIF
ELSE No disc.

" OMSGE" . Print out the error number instead.

Now we have the utilities to handle error messages, we shall present

some error checking procedures def ined in f£ig-FORTH.

: 200MP Issue error message 11 if not campiling.

STATE @ Examine STATE .

0= Isit 0 72

11 ZERRCR Issue error message if STATE is 0, the executing state.

68

STATE @
12 ?ERRCR

-y

13 ?ERRCR

Csp @

14 ?ERRCR

16 ?ERRCR

-y

Issue error message 12 if not executing.
If STATE is not zero,

issue error message.

nl n2 =
Issue error message 13 if nl is not equal to n2. This error
indicates that the campiled corditionals do not match.
Campare nl and n2. If not equal,

issue error message.

Issue error message 14 if data stack painter was altered fram
that saved in CSP .

Current stack painter

Saved stack painter

If not equal,

issue error message 14.

Issue error message 16 if not loading screens.

If BLK=0, inpt is fram the terminal.

Issue error message.

69

: ?STACK Issue error message if the data stack is out of bounds.
SP@ S0 > SP is out of upper bourd, stack underflow
1 ?ERRCR Error 1.

SP@ EERE 128 + <
SP is out of lower bourd, stack overflow

7 ?ERRCR Error 7.

-

70

CHAPTER VII

TERMINAL INPUT AND OUTPUT

The basic primitives handling terminal input and output in FORTH are
REY and EMIT . The definitions of them depend on the host camputer and its
hardware configurations. It is sufficient to mention here that KEY acwepts
a keystroke from the terminal keyboard and leaves the ASCII code of the
character of this key on the data stack. EMIT pops an ASCII character fram
the data stack and transmits it to the terminal for display. BEMIT alsc

increments the variable OUT for each character it puts out.

The word that causes a line of text to be read in fram the terminal
is EXPECT . A flow chart shows graphically how EXPECT processes
characters typed in through the terminal.

s EXPECT addr n —
Transfer n characters fram the terminal to memory starting at
addr. The text may be terminated by a carriage return.

An ASCII NUL is appended to the end of text.

OVER + addr+n, the erd of text.
OVER Start of text
DO Repeat the following for n times

71

Fig. 6. EXPECT

‘EXPECT’

Char Count=0
Char Pointer
=ADDR

Get 1 Char from
Input Terminal

Yes
A BACK-SPACE?
A CARRIAGE- Yes Char Pointer
RETURN? =ADDR?
1 1
Store Char in Append a NULL Decrement Echo
Input Buffer and a BLANK Char Count BELL to
Append with a to Input Buffer Echo Backspace Terminal
ASCII NULL to Terminal
Increment Set Char Count Increment
Char Pointer to Buffer Limit Char Pointer
to Exit the Loop
Echo Char Back
to Terminal

No

Char Count=Limit?

72

I=

R 2-+

>R

ENDIF
IC!

Get one character from terminal
Make a copy
Get the ASCII code of input back-space

If the input is a back-space

Discard the back-space still on stack.

Replace it with the back-space for the output device

Copy addr -

See if the current character is the first character of text
Copy it, to be used as a flag.

Get the loop index. Decrement it by 1 if it is the starting
character, or decrement it by 2 if it is in the middle of
the text.

Put the corrected loop index back on return stack.

If the back-space is the first character, ring the bell.
Otherwise, output back-space and decrement character count.
Not a back-space

Is it a carriage-return?

Yes, it is carriage-return

Prepare to exit the loop. CR is erd of text line,

Drop CR fram the stack and replace with a blank.

Put a null on stack.

Input is a regular ASCII character. Make a copy.

Store the ASCII character into the input buffer area.

13

0I1l+! Guard the text with an ASCII NUL.

ENDIF Erd of the input loop
EMIT Echo the input character to terminal
_LOCOP Loop back if not the end of text.
DROP Discard the addr remaining on stack.
¢ QUERY Input 80 characters (or until a carriage-return) fram the

terminal and place the text in the terminal input buffer.

TIB @ TIB contains the starting address of the input terminal
buffer.

50H EXPECT Get 80 characters.

0 IN! Set the input character counter IN to 0. Text parsing

shall beginat TIB.

-

The wark horse in the text interpreter is the word WORD , which
parses a string delimited by a specified ASCII character fram the input
buffer and places the string into the word buffer on top of the dictionary.
The string in the ward buffer is in the correct form for a name field in
a new definition. It may be processed otherwise as required by the text
interpreter. A flow diagram of WORD is show in Fig, 7, followed by

a more detailed description.

: WORD C —

74

Fig. 7. WORD
No
BLK 07
Yes

Select Terminal
Input Buffer as
Source of Text

1

Read Block BLK
from Disc to
Disc Buffer

Select Disc Buffer
as Source of Text

Add Character
Offset IN to
Buffer Address

ENCLOSE:
Break out a String
Delimited by Char

on Stack

Write 34 BLANKs
on Top of
Dictionary

Move the String
with its Length
Byte to Dictionary

‘RETURN’

75

BLK @
IF
ELK €

BLOCK

TIB @
ENDIF

IN @

SWAP
ENCLOSE

Read text from the input stream until a delimiter c¢ is

encountered. Store the text string at the top of dictionary

starting at HERE . The first byte is the character count,

then the text string, and two or more blanks. If BLK is

zero input is fram the terminal; othemwise, inpt fram the

disc bleck referred to by BLK .

BLER=0?

BLK 1is not zero, go lock at the disc.

The BLOCK number

Grab a block of data fram disc and put it in a disc buffer.
Leave the buffer address on the stack. BEIOCK is the word to
access disc virtual memory.

BLK=0, input is fram terminal

Text should be put in the terminal input buffer.

IN contains the character of fset into the current input text
buffer.

Add offset to the starting address of buffer, pointing to the
next character to be read in.

Get delimiter c over the string address.

A primitive word to san the text. From the byte address and
the delimiter c , it determines the byte of fset to the first
non—delimiter character, the offset to the first delimiter
after the text string, and the coffset to the next character
after the delimiter. If the string is delimited by a N'L ,

76

HERE 22H BLANEKS
IN +!

OVER - >R
R HERE C!

HERE 1+

the last off=et is equal to the previous of fset.
(addr ¢ — addr nl n2 n3)
Write 34 blanks to the top of dictionary.
Increment IN by the charater count, pointing to the next
text string to be parsed.
Save n2-nl on return stack.
Store character count as the lerxjth byte at HERE .
Buffer address + nl, starting paint of the text string in the
text buffer.
Address after the lemgth byte on dictionary.
Get the character count back fran the return stack.

Move the string fran input buffer to top of dictionary.

The text string moved over to the top of the dictionary is in the

correct form for a new header, should a new def inition be created. It is alsc

in the right

form to be compared with other entries in the dictionary

for a matching name. After the text string is placed at HERE , the text

interpreter will be able to process it.

Following are wads far typing string data to the output terminal.

addr n —
Transmit n characters fram a text string stored at ad&
to the terminal.

77

-DUP Copy n if it is not zero.

IF n is non-zero

OVER + addr+ n , the end of text
SWAP addr, start of text

DO Loop to type n characters
IcCe Fetch character fram text
EMIT Type out

LOCP

ELSE n =0, o output

DRCP Discard addr

ENDIF

~

Since 1lots of text strings processed by the text interpreter have
a character oount as the first byte of the string, such as the name field
of a word, a special word COUNI' is def ined to prepare this type of strings
to be typed out by TYFE .

: CQUNT addrl] -— addr2 n
Push the address and byte count n of a text string at addal
to the data stack. The first byte of the text string is a
byte comnt., COUNT' is uswally followed by TYFE .

DUP 1+ addr2=addrl+l
SWAP Swap addrl over addr2 and
ce fetch the byte count to the stack.

78

If the text string contains lots of hlanks at the end, there is no

use to type them out. A utility word ~TRAILING can be used to strip off

these trailing blanks so that same I/0 time can be saved. The cammand to

type cut 2 long text string is

addr COUNT ~TRAILING TYFE

DUP 0

OVER OVER
$.1 =
Cé BL -
IF LEAVE
ELSE 1-
ENDIF

addr nl — addr n2
Adjust the character count nl of a text string at adar to

suppress trailing blanks.

Scan nl characters

Copy addr and nl

addr+nl-l, the address of the last character in the string.
See if it is a blank

Not a blank. Exit the loop.

Blank. n2=nl-l is now on the stack.

Loop back, decrementing nl until a non-blank character is

found, terminating the loop.

In a colon definition, sametimes it is necessmary to inclucée message

to be typed out at runtime to alert the operator, ar to indicate to him the

79

progress of the program. These messages can be coded inside a definition
using the command

." text string — "
The ward ." will cause the text string upto " to be typed out. The
definition of ."™ uses a runtime procedure (.") which will be discussed

first.

g (") Runtime procedure compiled by ." to type an in-line text
string to the terminal.

R Copy IP fram the return stack, which paints to the begining
of the in-line text string.

COUNT Get the lermgth byte of the string, preparing for TYFE .

DUP 1+ Length+1

R> + >R Increment IP on the return stack by lemgth+l, thus skip the
text string and paint to the next word after " , which is
the next ward to be executed,

TYPE Now type out the text string.

5 Campile an in-line text delimited by the trailing "™ ., Use
the runtime procedure (.") to type this text to the terminal,

22H ASCII valwe of the delimiter " .

STATE @ Campiling or executing?

IF Campiling state

QOMPILE (.") Campile the oode field address of (.") so it will type out

80

HERE Ce@
1+ ALIOT

ENDIF

IMMEDIATE

SFH FILL
DUP PFA LFA

PAD SWAP QOVE
PAD COUNT

text at runtime,

Fetch the text string delimited by ™ , and store it on top of
dictiomary, inmline with the campiled addresses.

Fetch the lergth of string

Move the dictionary pointer parsing the text string. Ready to
compile the next word in the same def inition.

Executing state

Get the text to HERE , on top of dictionary.

Start of text string, ready to be typed out.

This word ." must be executed immediately in the campiling
state to process the text string after it. IMMEDIATE
toggles the precedence bit in the name fieldof ." to make
it an 'immediate word'.

nfa —
Print an entry's name fram its name field addess on stack.
Output text buffer address
ASCII blank | _
Fill D with 8 blanks 95
Find the link field address
1fa-nfa, character count
Move the entire name with the lemgth byte to ED

Prepare string for output

8l

O1FH AND

SPACE

-

No more than 31 characters

Type cut the name
Arpend a space.

It is necessary to move the name to PAD for output, because
the length byte in the name field contains extra bits which
contain important information not to be disturbed by output
procedures.

The basic ward to print out text stored on disc is .LINE , which

prints out a line (64 characters) of text in a scxreen. .LINE is also used

to ocutput error messages stored on disc, and to display screens of texts in

the editcer.

(LINE)

=TRAILING TYFE

: (LINE)

>R

line scr —
Print on the terminal a line of text fram disc by its line
number and screen mumber scr given on stack. Trailing
blanks are also suppressed.
Runtime procedure to corvert the line nunber and the screen
number to disc buffer address containing the text.
Type out the text.

line s¢ — addr oount

Save scr on return stack,

82

C/L B/BUF */MOD
Calculate the character offst and the screen of fset numbers

from the line number, characters/line, and bytes/buffer,

R B/SCR *+ Calculate the block number fran scr , blocks/scr, and the
buffer number left by */MOD.

BLOCK Call BLOCK to get data fram disc to the disc buffer, and
leave the buffer address on stack.

+ Add character offset to buffer address to get the starting
address of the text.

Cc/L 64 characters/line

-

: LIST - U
Display the ASCII text of screen n on the terminal.

DECIMAL (R Switch to decimal base and output a carriage-return.
DUP SCR ! Store n into SR to be used by the editcr.

TSR E" ., Print the screen number n first.
10H 0 DO Print the text in 16 lines of 64 characters each.
CR I3 .R SPACE Print line number.

I SCR @ .LINE Call .LINE to print one line of text.
LOCP CR ; Output a carriage return after the 16th line.

83

L

CHAFTER VIII
'NUMERIC CONVERSIONS

A very important task of the text interpreter is to comwert numbers
fraomn a human readable form into a machine readable form and vice versa.
FORTH allows its operatar the luxury of using any number base, be it decimal,
octal, hexadecimal, binary, radix 36, radix 50, etc. He can also switch fram
one base to another without much effort. The secret lies in a user variable
named BASE which hold the base valwe used to corwert a machine binary
number for output, and to corwert a user input number to machine binary.
The default value stored in BASE is decimal 10. It can be changed by

: HEX 10H BASE ! to hexadecimal ,

-

:+ OCTAL 8H BASE ! to octal, and

: DECIMAL OAH BASE ! ; back to decimal.

The simple command n BASE ! can store any reasonable number into BASE to

effect numeric conversions.
The ward NUMBER is the warkhorse comverting ASCII represented
numbers to binary and pushing the result on the data stack. The word sequence

< #S #> converts a number on top of the stack to its ASCII equivalent for

85

output to terminal. These wards and their close relatives are discussed in

this Chapter.

The overall view on the process of converting a string to

its binary numeric representation is shown in Fig. 8.

: (NUMBER)

BBEGIN

1+ DUP >R
ce

BASE @
DIGIT

WHILE
SWAP
BASE @ U*
DRCP

BASE @ U*

DPL @ 1+

dl ad&l — d2 addr2
Runtime routine of number corwersion.
Convert an ASCII text beginning at addl+l according to BASE.
The result is accunulated with dl to became d2. addr2 is the
address of the first uncorwvertable digit.

Save addrl+l, address of the first digit, on return stack.
Get a digit

Get the current base

A primitive, (cnl —=n2 tf or f£ff)

Convert the character ¢ acoording to base nl to a binary
rumber n2 with a true flag on top of stack. If the digit is
an invalid character, only a false flag is left on stack.
Successful cornversion, accumlate into dl.

Get the high order part of dl to the top.

Multiply by base valwe

Drop the high order part of the product

Move the low order part of dl to top of stack

Multiply by base value

Accumulate result into dl

See if IPL is other than -1

86

Fig. 8.

‘NUMBERI

Accumulator D=0
Decimal Pointer
DPL=-1

First Digi
='_1 7

No

Numeric Conversion

Set Sign Flag
Increment DPL

ext Character
a Valid Digit?

No

A BLANK?

Yes

'Negate D

No

'RETURN’

Y

87

Yes

Convert Digit
Multiply by BASE e
Add to D i
Increment DPL if
DPL2Q

IF
1 DPL +!
ENDIF

" REPEAT

-

: NUMBER

0 0 ROT
DUP 1+ C@
2DH =

DUP >R

BEGIN

DPL is not -1, a decimal point was encountered

Increment [PL, cne more digit to right of decimal paint

Pop addrl+l back to corwert the next digit.

If an invalid digit was found, exit the loop here. Othemwise
repeat the corversion until the string is exhausted.

Pop return stack which contains the address of the first
non-convertahle digit, addr2.

addr — d
Convert character string at addr with a preceeding byte count
to signed double integer number, using the current base. If
a decimal point is encountered in the text, its position will
be given in [PL. If nureric corwersion is not possible, isswe
an error message.
Push two zero's on stack as the initial valee of d.
Get the first digit
Is it a - sign?
Save the flag on return stack.
If the first digit is -, the flag is 1, and addr+l points to
the second digit. If the first digit is not -, the flag is 0.
addr+0 remains the same, pointing to the first digit.
The initial valee of IPL

Start the comversion process

OPL !
(NUMBER)

0 ?ERR(R

REPEAT

IF DMINUS
ENDIF

~e

: <%

HD !

Store the decimal point counter

Convert one digit after another until an invalid char occowrs.
Result is accumulated into d .

Fetch the invalid digit

Is it a blank?

Nct a blark, see if it is a decimal paint

Get the digit again

Is it a decimal paint?

Not a decimal paint. It is an illegal character for a number.
Issue an error message and quit.

A decmal paint was found. Set IPL to 0 the next time.
Exit here if a bhlank was detected. Othemwise repeat the
conversion process.

Discard addr on stack

Pop the flag of - sign back

Negate d if the first digit is a - sign.

All done. A double integer is on stack.

Initialize comnversion process by setting HLD to PAD .
The conversion is done on a double integer, and praduces

a text string at PAD .

PAD is the scratch pad address for text output, 68 bytes
above the dictiomary head HERE .

HLD is a user variale holding the address of the last

89

character in the cutput text string.

-

+ HOLD c —
Used between <# and #> to insert an ASCII charater

¢ into a formatted numeric output string.

-1 HLD +! Decrement HLD .
HD @ C! Store charxter ¢ into PAD .
: # d —d4d

Divide dl by current base. The remainder is corwerted to
an ASCII character and appended to the output text string.
The quotient d2 is left on stack.

BASE @ Get the current base..

M/MOD Divide dl by base. Double integer qutient is on top of data
stack and the remainder below it.

ROT Get the remainder over to top.

9 OVER.< If remainder is greater than 9,

IF 7 + ENDIF make it an alphabet.

30H + Add 30H to form the ASCII repr esentation of a digit.
0 to 9 and A to F (or above).

HOLD Put the digit in PAD in a reversed order. HLD is decre-

mented before the digit is moved.

-

: 85

BEGIN

OVER OVER
CR 0=
UNTIL

-

: SIN

ROT 0<
IF

2DH HOLD
ENDIF

-

:

DOROP DRCP

d — a
Using # to generate the camplete ASCII string representing
the number dl until d2 is zero. Used between <§# and #> .

Convert one digit.
Copy 42
d2=0?

Exit if d2=0, conversion done. Otherwise repeat.

n 4 — 4
Store an ASCII - sign before the corwerted number string
in the text output buffer if n is negatiwe. Discard n hat
leave d on stack.

Is n negatiwe?

A& - sign to text string.

d — addr oount
Terminate mumeric corwersion by dropming off 4, leaving the
text buffer address and character count on stack to be typed.

Discard d.

ol

HLD @

PAD OVER -

: CR
ODH EMIT
0AH EMIT

: SPACE

BL EMIT ;

+ SPACES

0 MAX
=D0P
IF

0 DO

SPACE

ENDIF

-

Fetch the address of the last character in the text string.

Calculate the character count of the text string.

Transmit a carriage-return and a line-feed to terminal.
Carriage-Return

Line-Feed

Transmit an ASCII blank to the terminal,

n e
Transmit n blanks to the terminal. '
If n<0, make it 0.

DUP n only if n>0.

Do n times

Type a sggce on terminal

Now we have all the necessmry utility wards to oonstmuct an

ASCIT text representing a double integer in whatever the current base, we

92

can show some wards which type ocut numbers in different output formats.

>R

SWAP OVER

DABS

<# #5 SIN #>
254

OVER - SPACES

Other

d A ===
Print a signed double number d right justified in a field
of n characters. |
Store n on return stack.
Save the high order part of d under d, to be used by SI&N
to add a - sign to a negative number.
Convert d to its absalute valie.
Canvert the absbltte valwe to ASCII text with proper sicn.
Retrieve n fram the return stack.
Fill the output field with preceeding blanks.
Type out the number.,

rumeric output words are derived fran D.R , and not many

comments are necessary.

D.R

-e

d -—
Print a signed double integer acoording to current base,
followed by only one blank (free format).
0 field wicdth.

93

! R

>R

$->D

R> D.R

(L]

S->D

D.

-~

..
=)

-

nn n2 —
Print a signed integer nl right justified in a field of
n2 characters.
Save n2 on return stack.
A primitive ward. Exterd the single integer to a double
integer with the same sio.

Formated output.

n —
Print signed integer n in free format followed by one blark.
sign-extend the single integer.

Free format output.

addfr ——
Print the value contained in add in free format acoording
to the current base.

Fetch the number and type it out.

A very useful wad in programming and debugging a FORTH program is

the ward DUMP , which dumps out an entire area of memory as numbers for the

programmer to inspect. It is also useful in cases where large blocks of data

are stored in contiquous memory locations. These data can be dumped out on

94

the teminal.

0 DO

DUP 8 .R

8 0 DO

8 .R

2+

8 +1L0CP

addr n —
Print the oontents of n memory cells beginming at ada .
Both addresses and contents are shown in the current base.
DO n times
Start a new line,
Print the address of the first cell in this line.
Print the contents of 8 cells in one line.
Copy addr on stack.
Get the data,
Farmatted print in field of 8 characters.

Adiress of next data to be mrinted.

Increment the outer loop count by 8 and repeat.
Discard the last address on the stack.

95

CBAFTER IX
DICTIONARY

In a FORTH computer, the dictionary is a linked list of named entries
or wards which are executed when called by name. The dictionary consists
of procedures defined either in assembly codes (code definitions) or in
high level codes (colon definitions). It also contains system information as
constants and variables used by the éystan. Inside the camputer, the dic-
tiomary is maintained as a stack, growing fram low memory towards high memory
as new definitions are campiled or assanf__bled into the dictionary. When the
text interpreter parses out a text string frgr; the input stream, the text is
moved to the top of dictionary. If the text is the name of a new def inition,
it will be left there for the campiling process to continwe. If it is not a
new definition, the text interpreter will try to find a wad in the
dictionary with a name matching the string. The word found in the dictionary
will be executed or campiled depending on the state of the text interpreter.
The dictiomary is thus the bulk of a FORH system, with all the necessary

information to make the whole system work.
The dictiomry as a stack is maintained by a user variable named
DP , the dictiomary pointer, which paints to the first empty memory location

above the dictiomary. A few utility words move I[P around to effect various

97

functions involving the dictiomary.

: HERE — addr
DP @ Fetch the address of the next available memory location above

the dictiorary.

-e

: ALIOT o
DP +! Increment dictionary pointer P by n, reserving n bytes

of dictiomary memory for whatever purposes intended,

HE] 11—
Store n into the next available cell above dictionary and
advance IP by 2, i. e., campile n into the dictionary.

HERE ! Store n into dictionary

2 ALLOT Point P alove n Jjust campiled.

In fact, ',' (comma) is the most primitive kind of a campiler. With
it thecretically we can build the complete dictionary, or campile anything
and everything into the dictionary. All the compiler words and assembler
words are simple or complicated derivatives of ','. This feature is clearly
reflected in the namnemclature of assembly mmenomics in the FORTH assembler

in which all mnemonics erd with a comma.

98

For byte criented processors, C, is defined to compile a byte valwe

into the dictionary:

-

=FIND

EL WCRD

CONTEXT @ @

(FIND)

b_

Enter a byte b on dictionary and increment P by 1.

- pfa b tf ;o £f
Accept the next word delimited by blanks in the input stream
to HERE , and search the OCONTEXT and then the CURRENT
vocahularies for a matching name. If found, the entry's para-
meter field address, a lemmth byte, and a true flag are left
on stack. Otherwise only a boalean false flag is left.
Move text string delimited by blanks fram input string to the
top of dictic;rary HERE .
The address of text to be matched.
Fetch the name field address of the last word def ined in the
WI'EBEI' vecabulary and begin the dictionary search.
C}ii%?imitive. Search the dictionary starting at the ad&ess
on stack for a name matching the text at the address second

on stack. Return the parameter field address of the matching

name, its length byte, and a boolean true flag on stack for a

99

match. If no match is possible, only a boaclean false flag is
left on stack.

DUP 0= Look at the flag on stack

IF No match in CONTEXT vocabulary

DRCP Discard the false flag

HERE Get the address of text again

LATEST The name field address of the last word defined in the

CURRENT vccakulary
(FIND) Search again through the CURRENT vocabulary.

ENDIF

-

Please note the order of the two dictionary searches in -FIND .
The first search is through the CONTEXT vcocabulary. Only after no matching
word is found there, is the CURRENT vocabulary then searched. This
searching policy allows wards Of the same name to be defined in different
vecahularies, Which word gets executed or campiled by the text interpreter
will depend upon the 'context' in which the word was def ined. A sophisticated
FORTH system usually has three vocabularies: the trurk FORTH vocabulary which
contains all the system words, an EDITOR vccabulary which allows a program
mer to edit his source codes in screens, an an ASSEMELER vecabulary which
has all the appropriate assembly memomics and control structure words. The
programmer can create his own vocabulary and put all his applications words

in it to avoid conflicts in words def ined in the system.

100

A gocd example is the definition of the trunk vecahulary of all the
FORTH system wards:

VOCABULARY FORTH IMMEDIATE

All vocahularies have to be declared IMMEDIATE , so that context can be
switched during compilation. After FORTH is defined as above, whenever
FORTH .is encountered by the text interpreter, the ihterpr eter will set the
user variable COONTEXT to paint to the secord cell of the parameter field in
the FORTH definition, which maintains the name field address of the last
word defined in the FORTH vecabulary as the starting ward to be searched.

Using the phrase
FORTH DEFINITIONS

will set both the CONI'EXT and the CURRENT to paint to FORTH vecabulary
so0 that new definitions will be added to the FORTH vccabulary. The words

VOCABULARY and DEFINITIONS are def ined as:

: VOCABULARY A defining ward used in the form
VOCABULARY cccc
to create a new vocabulary with name cccc . Invaking cccc
will make it the context vocabulary which will be searched

by the text interpreter.

101

<BUILDS

OAO81H ,
CURRENT @

A ,

VCXf-LINK @ r

VOC-LINK !

DOES>

2 + CONTEXT !

-

: DEFINITIONS

CQONTEXT @
CURRENT !

Create a dictiomary entry with following text string as its
name, and the code field painting to the word after DOES .
A dumny header at vocabulary intersection.

Fetch the parameter field address painting to the last word
defined in the current vocabulary.

Store its code field addess in the secord cell in parameter

© field.

Address of vocabulary link.

Fetch the user variable VCC-LINK and insert it in the dic-
tiomary.

Update VOC-LINK with the link in this vocabulary.

This is the end in defining cccc vocabulary. The next words
are to be executed when the name cccc is invoked.

When cccc is invoked, the secord cell in its parameter field
will be stcored into the variable CONTEXT . The next diction-

ary search will begin with the cccc vecabulary.

Used in the form

cccc DEFINITIONS
Make cccc veocabulary the current vecabulary. Henee new
definitions will be added to the cccc vecabulary.

102

The header of an dictiomary entry is composed of a name field, a link
field, and a code field. The parameter field caming after the header is the
body of the entry. The name field is of variable lemgth fram 2 to 32 bytes,
depending on the 1lermgth of the name fran 1 to 31 characters in the fig-FORTH
model. The first byte in the name field is the lemgth byte. The first and
the last bytes in the name field have their most significant bits set as
delimiting indicatcrs. Therfore, knowing the address of any of the fields
in the header, one can calculate the addresses of all other field&. Different
field addresses are used for different purposes. The name field addess
is used to print out the name, the 1link field address is used in dictionary
searches, the code field address is used by the address interpreter, and the
parameter field address is used to access data stored in the parameter field.

To facilitate the corversions between the addresses, a few words are def ined

as follows:

: TRAVERSE addrl n — addr2
Move across the name field of a variable lergth name field
addrl is the address of either the length byte or the last
character. If np=1, the motion is towards high memory; if
n=1, the motion is towards low memory. add&2 is the address
of the cther end of the name field.

SWAP Get addrl to top of stack.

BEGIN

OVER + Copy n and add to addr, peinting to the next charaxter.

103

7FH
OVER C@

UNT'IL

SWAP DRCP

: LFA

: NFA

-1 TRAVERSE

-

PFA

1 TRAVERSE

-

Test number for the eighth bit of a character
Fetch the character

If it is greater than 127, the end is reached.
Loop back if not the erd.

Discard n.

pfa — 1lfa
Convert the parameter field address to link field address.

pfa — cfa
Caonvert the parameter field address to code field address.

pfa — nfa
Convert the parameter field address to name field address.
The end of name field
Move to the beginning of the name field,

nfa — pfa
Convert the name field address to parameter field address.
Move to the end of name field, |
Parameter field,

104

¢ LATEST — addr
Leave the name field address of the last word def ined in the
current vecatulary.

CURRENT € € ;

To lccate a ward in the dictionary, a special word ' (tick) is
defined to be used in the form:

to search far the name cccc in the dictionary.

] i pfa
Leave the parameter field address of a dictionary entry with

a name cccc . Used in a colon definition as a canpiler
directive, it compiles the parameter field address of the
ward into dictiomary as a literal. Isswe an error messge if
no matching name is found.

=FIND Get cccc and search the dictionary, first the context and
then current veocabularies.

0= 0 ?ERR(R Not found. Isswe error messge.

DRCP Matched. Drop the length byte.

[COMPILE]) Campile the next immediate word LITERAL to campile the

parameter field address at runtime.

105

LITERAL

-

IMMEDIATE ' must be immediate to be useful in a colon definition.

All the previous discussions are on words which add or campile data
to the dictiomary. In program development, one will came to a point that he
has to clear the dictionary of sane words no lorger needed. The word FORGET
allows him to discard same part of the dictionary to reclaim the dictionary

space for other uses.

: FORGET Used in the form:
FORGET cccc
Delete definitions defined after and including the word cccc .
The current and context vocabulary must be the same.
CURRENT @ CONTEXT @ - 18 ?ERRR

Campare current with context, if not the same, isswe an error

message.,

[COMPILE] ' Locate cccc in the dictionary.

DUP Copy the parameter field address

FENCE @ Campare with the contents in the user varisble FEINCE ,

< 15 ZERR(R If ccce is less than FENCE , do not forget. FENCE uards
the trunk FORTH vocabulary fram being accidental ly forgotten.

DUP NFA Fetch the name field address of ccce, and

DP ! store in the dictionary pointer P . Now the top of dict-
iomary is redefined to be the first byte of cccc , in effect

106

.deleting all definitions above ccce .

LFA € Get the link field address of cccc pointing to the word
just below it.

CURRENT @ ! Store it in the current vccabulary, adjusting the current
vocahulary to the fact that all def initions above (including)

cccc no longer exist.,

-

A powerful utility ward VLIST prints out the names of all entries
defined in the oontext vccabulary to allow the programmer to peek at the

definitions in the dictionary.

: VLIST List the mnames of all entries in the oontext vccabulary.
The 'break' key on temminal will terminate the listing.

80H OUT ! Initialize the output character coounter QUT to print
128 characters.

CONTEXT @ @ Fetch the name field address of the last word in the

context vocahulary.

BEGIN

QT @ Get the output character count

C/L > If it is larger than characters/line of the output device,
IF

CRO QT ! output a CR/LF and reset OUT .
ENDIF

DUP ID. Type out the name and

107

SPACE SPACE add two spaces.

PFA LFA @ Get the link pointing to previous word.

DUP 0= See if it is zero, the erd of the link,

?TERMINAL CR or if the break key on terminal was pressed,

UNT'IL Exit at the end of 1link or after break key was pressed;
otherwise continue the listing of names.

DRCP Discard the parameter field address on stack and return.

108

CHAFTER X

VIRTUAL MEMORY

In a computer system, the core memory or the semicorduct or memory
is a limited and expensive resowce which programmers wished to be infinite,
Since it is physically impossible to have infinite amount of memory insicde
a computer, the next best thing is the magnetic disc memory using hard discs
or floppy diskettes, Because the characteristics of the disc memory is very
much different from those of the core memory, the use of disc memory often
requires some device handlers to transfer data or programs between the cam-
puter and the disc. In most mainframe camputers, discs and other peripherals
are treated as files managed by the operating system, which insulates the
programmers from the devices. The usage of the disc memory in high level
language thus needs a fair amount of software overhead in terms of memory

space and execution speed.

FORTH treats the disc as a direct extension of the core memory
in blocks of B/BUF bytes. A programmer can read fram these blccks and write
to them much the same as he is reading or writing the core memory. Thus the
disc memory becomes a virtual memory of the camputer. The programmer can use
it freely without the hturdens of addressing the disc and managing the I/0.
Implementing this virtual memory concept in the FORTH systen makes available

109

the entire disc to the programmer, giving him essentially unlimited memary

space to solve his prablem.

Disc memory in FORTH is organized into blccks of B/BUF bytes. The
blocks are numbered sequentially fram 0 to the disc capacity. FORTH system
maintains an area in high memory as disc buffers. Data fram the disc are
read into the buffers, and the data in huffers can be written back to disc,
As implemented in the fig-FORTH model, each disc buffer is 132 bytes lc;rlg,
corresponding to 128 byte/sectar in disc with 4 bytes of buffer information.
The length of huffer can be changed by nodifyi}lg the constant B/BUF which
is the number of bytes the disc spits out each time it is aceessed, uswlly
one sectar. B/BUF must be a power of 2 (64, 128, 256, 512, or 1024). The
constant B/SCR contains the value of the number of blocks per screen which
is used in editing texts fram disc, B/SCR is equal to 1024 divided by
B/BUF . Disc huffers in memory are schematically shown in Fig. 9, assuming
that each bhuffer is 132 bytes lomg.

Several other user variables are used to maintain the disc buffers.
FIRST and LIMIT define the lower and upper bounds of the buffer area.
LIMIT - FIRST must be multiples of B/BUF + 4 bytes. The variable FREV
points to the address of the buffer which was most recently referenced, and
the variable USE points to the least referenced buffer, which will be used

to receive a new sector of data fram disc if requested.
The most important and the most used ward to transfer data into and

110

Fig. 9.

LIMIT

Disc Buffers

PREV—|

U [Blocks|

0

U: UPDATE Bit

UlBlockﬁ

USE—[U IBlock=

FIRST

U [Blocks

Tail

128 Bytes of Data

Head 4

Tail

128 Bytes of Data

Head 4
Tail ~
128 Bytes of Data >
Head s
Tail =
128 Bytes of Data >
Head J

111

?

)

Last Buffer

Firs

Buffer

out of the disc is BLOCK . BLOCK calls ancther ward BUFFER to
look for an available buffer. BUFFER in turn calls a primitive word R/W
to do the actual work of reading or writing the disc, These and other
related wards are to be discussed here. A flow chart of ELOCK is shown in

Fig. 10 for better compr ehension.

: BLOCK n — addr
Leave the memory address of the disc buffer containing data
from the n'th block in disc, If the blcck is not already in
memory, it is read fram disc to the least recently written
disc buffer. If the contents of this disc buffer was marked
as updated, it is written back to disc before the n'th blcck
is read and written over data in the buffer.

OFFSET @ + Add disc offset to blcck number n, allowing aceess to secord
or higher disc drives.

>R Save the bleck number on return stack.

PREV @ Get the bleck number contained in PREV, pointing to the most

recently accessed buffer.

DUP @ Get the block number painted to by FREV ,

R~ Canpare to the bleck number saved on return stack,

DUP + Discard the left most bit, which is the update indicator.

IF Block number n was not previously referenced. Prepare disc
access.

BEGIN Scan the huffers and lodk for a buffer which might contain

block n already.

112

Fig. 10. BLOCK

‘BLOCK’

Block Number
N on Stack

Yes N equal to

Block Number
‘“\x\ggi:iii~by PREV2

No

\

Examine Block
Number in Next
Disc Buffer

Equal to
Block Number Yes

Pointed to 4
by PREV? L
A11 Disc Buffers Scanned

Mone contained Block N
Write Buffer Contents to Disc
if Buffer was UPDATEd
Read Block N from Disc to
this Buffer
Store N in Block Number Cell
(Head of Disc Buffer)

No

1

W Block Number
in this Buffer2

Yes

A

Put Buffer Data
Address on Stack

' RETURN ' 113

+BUF 0= Advance a buffer

IF This buffer is pointed to by FPREV , all buffers scanned.
DRCP Discard the buffer address

R BUFFER Find the disc sector, update the sector if necessary.

DUP R 1 R/W Read one sector fran the disc,

2 - Backup to the huffer address of block n.
ENDIF
DUP @ Beginning address of the buffer, with a blcck number in it.
R=- Ccmparé to the block number n.
DUP + 0= Discard the upd&ate bit,
UNTIL Loop until buffer blocck number matches_ n.
DUP PREV ! Store the buffer address in PFREV .
ENDIF
R> DRCP Clear return stack.
2+ Get the address where. data begin.

il

To access a disc block, ane uses the cammand:

The word BLOCK leaves the address of the first cell containing data read
from the disc, and the user can now examine the information in this entire
bleck. If he alters any data in this block, he should make sure that the
update bit in the cell preceeding the data is set by using the command
UPDATE . This way new data will be written back to disc before the buffer

114

is used to access some other block of data.

B/BUF 4 +

DOP LIMIT =

DRCP FIRST

ENDIF
DUP PREV -

~-e

¢ BUFFER

USE €
DUP >R
BEGIN

+BUF

addrl -— addr2 £
Advance the disc buffer address addl to the address of the
next kuffer addr2 . Boolean f is false when add&2 is the
buffer presently pointed to by the variable FREV .,
Size of a buffer
addr2
addr2=LIMIT?
Yes, buffer out of bound.
Make addr2=FIRST

Leave boolean flag on stack.

n — addr
Obtain the next block huffer and assign it to bleck n .
If the contents of the buffer were marked as up&ted, it is
written to the disc, The bleck n is not read fram the disc.
The address left on stack is the first cell in the buffer
for data storage.
Fetch the user variable USE .

Save a copy on return stack.

Find the next buffer, avoiding the buffer painted to by PREV

115

UNTIL
USE !

R @ 0L

IF
R 2+

R @ 7FFFH AND

0 R/W

ENDIF

R PREV !
R> 2+

-

Store the address to be used the next time.

Test the first cell in the buffer. Sese if the update bit
is set.

The buffer was updated., Write its contents back to disc.
The first cell of data memory.

Discard the update bit. What's left is the block number of
the updated buffer.

Write the buffer to disc to update the disc storage.

R/W is the primitive word to read or write a sectar of disc.

Write n to address painted toby USE .
Assign this buffer as FPREV .
addr painting to the first data cell in the buffer.

addr n £ —-

This is the fig-FORTH standard disc read/write linkage. addr
specifies the source or destination bleck buffer, n is the
sequential block number on disc, and £ is a flag. £=0 for
disc write and f=1 for read. R/W calculates the physical
location of the bloack on disc, performs the read or write
operations, and does an error checking to verify the trans-
action,

R/W 1is a primitive word whose def inition depends on the CPU

116

and the disc interfacing hardwvare.

As mentioned befare, each buffer has B/BUF + 4 bytes of memory. The
first cell in the buffer contains a disc blcck number in the lower 15 bits.
Thus the FORTH system can address up to 32767 blocks of virtual memory. The
msb or 16th bit in this cell is call the 'update bit'. When this bit is set
by the ward UPDATE , the FORTH system will be notified that the contents
in this buffer were altered. When the memory space of this buffer is needed
to receive another bleck of data, the update bit when set causes the buffer
to be written back to the disc before the other blcck is read in. It is this
update bit which oontrals the disc system so that the disc always has the
data kept up to date. If the update bit is not set, the contents in the
buffer should be identical to those on the disc and there is no need to
rewrite the buffer back to disc, Hence the new block is directly read in

and overwriting the old bleck buffer.

The data of B/BUF bytes start at the secord cell in the buffer. The
last cell should always be zero, which is the stop signal to the campiler.
The programmer should be very careful not to charge this cell. If this cell
is not zero, the campiler might compile across the buffer boundaries and
most likely would cause the system to crash. A null byte in the text string
will force the text interpreter to execute the NJLL a 'X' wad, which

terminates the campiling process and returns control to the text interpr eter.

: UPDATE Mark the most recently referenced disc buffer, pointed to by

17

PREV @ @
8000H CR
PREV @ !

.
r

: EMPTY-BUFFERS

FIRST
LIMIT

-

PREV as altered. This buffer will subsequently be written
back to disc should it be required to store a different
block of data.

Fetch the first cell in the buffer painted to by FREV .
Set the upd&ate bit.

Store back.

Erase all disc buffers., Updated buffers are not written back
to disc. This ward is used in case the programmer knows that
the huffers ﬁere disturbed and he wishes to preserve the
unmodified data on disc,

Start of buffer

Erd of uffer

Length of buffer in bytes

Clear the buffers by writing zeros into thenm.

In cases where more than one disc drive is used in a system, a user

variable OFFSET is maintained so that the user can easily aceess the secord

cr higher drives as corweniently as the first driwe. OFFSET contains the

first block number of a particular drive. The words DRO and DRl are

defined to switch between disc drives:

: DROO 0 OFFSET !

-

118

DRl 2000 OFFSET !

-
e ll

In this case the first drive has 2000 sectars of starage volume.

: FLUSH Write all updated buffers back to disc,

NBUF+1 Total number of buffers + 1

0 DO "Go through all huffers

0 BUFFER Force updated buffers to be written back to disc,
DRCP Discard the buffer data address.

LOCP

-~

Disc storage is used for two principal purposes: to store program
text, and to store data. The storing and retrieving of data are topics
of application outside the scope of this bodk, Basically, the data flow
to and from disc can be contralled by the word BLOCK and its relatives as
discussed previocusly in this Chapter. On the other hand, FORTH has provided
special mechanisms to process program text stored on disc., The text inter—
preter can recognize inp;t text either fran the terminal of fram disc blccks

and it interprets or campiles them in a similar fashion.

A user variable BLK contains the bleck number if the text to be
interpreted comes fram the disc bleck of that number. If BLK contains a
zero, the interpreter will assume that the input text is fram the terminal.

The command to interpret text in bleck n is:

119

: LOAD 1§ -

Begin interpreting screen n . Laading will be terminated at
the end of the screenor at ;5 .

BIK @ >R Save BLK on return stack. BLK contains the current blcck
number under interpretation. Saving it allows one disc blcck
to load other disc blccks, the nested loading.

IN @ >R The character painter painting to the next word to be inter-
preted has to be saved also.

0 IN! Initialize IN to paint to the beginning of text blcck.
B/SQR * Find the block number fram the screen number n .

BLK ! Store the blcck number in BLK .

INTERPRET Call text interpreter to process the text block.

R> IN ! After interpreting the whole blcck, restore IN and BLK .
R> HIK ! |

As discussed in WORD , WORD takes its input fram the terminal
if BLR is zero; otherwise it calls BLOCK to bring in a blcck of text fram
disc and starts interpretation at the beginming of the block. In each disc
buffer the first cell (the head) contains a block number with its msb as the
update bit, and the last cell (the tail) contains a zero. After the text

interpreter scans over the entire block, it will eventual ly pick up the tail

120

of zero. The interpretation will be temminated at this point because the
zero forces the interpreter to execute the NULL o 'X' ward which prints
"ok” on terminal and returns contral to the terminal. To terminate the inter-
pretation before the end of a block, theword ;S should be used in a

text block.

Saving BILK and IN on the return stack allows the nesting of LOA
commands., In a block of text, n LOAD can be used to susperd temporarily
the lcading of the current bleck and start loading text fram the n'th bleck.
The general practice in most FORTH systems is to reserve a blcck containing
nothing but lcad commands. This is called a load blcck. When the load bleck
is loaded, it will load in all the blccks needed for an application, like a

bootstrap routine in a comventional computer.

In a large project the program text spreads over many blocks. If the
text is sequential over a ramge of blocks, aword =—> can be used to
continue interpretation across the block boundary to start interpretation

of the next block.

: =-—> Pronounced "rext screen". Continwe interpretation with the

next disc block.

ZLOADING Issue an error message if not loading.
0 IN ! Initialize IN , the charzter painter.
B/S(R Blocks/screen

BIK €

122

CVER MOD - Increment value to the next block.

BLK +! New block nunber stored in BLK .

IMMEDIATE The crossover of block boundary must be executed immediately.

er
If the texts are not written in sequential blocks, a loadh bleck

should be used instead of the —> command. The load black with apmropriate
comments serves also as a directory of the blccks involved in an application.

cLMBEDIATE (_H)

LATEST 4-OY TOGGLE. |

A L()ADE:"E BrLock Og ScreEN COULD Bg THEFOLLQW,N'G

26 L oAp 37 LoAD 41LoAp 42 oAD |9LoAD
Tus Line O TExT Nours Be TN SAY, ScREEN 87 So ALt
Vou Nzep To TyeE Now Wourp Be 81 LoAD

122

CHAPTER XI
DEFINING WORDS AND THE CODE FIELD

The FORTH langauage is a major synthesis of many concepts and techni-
ques used for sometime in the camputer industry, such as stacks, dictionary,
virtual memory, and the interpreter. The single most important invention by
Charles Moore in developming this language which wrapped all these elements
and rolled them into a small yet powerful operating system is the code field
in the header of a def inition. The code field contains the address of a
routine to be first executed when the def inition is called. This routine
detemmines the characteristics of the definition, and interprets the data
stored in the parameter field acoordingly. In the basic FORTH system, anly
a very small set of code field routines are defined and are used to create
many types of definitions oftén used in programming. The types of Gefini-
tions ccmmonly used are _colon def initions, code def initions, constants, and

variables,

The most interesting feature in the FORTH language is that machinery
used to define these definitons is acessible to the programer for him to
create new types of definitions. The mechamism is sinply to dGef ine new code
field routines which will oorrectly interpret a new class of words. The

freedom to create new tyres of definitions, or in a mind boggling phrase—to

123

define defining wards— was coined as the 'extensibility' of FORTH language.
The process of adding a new def inition to the dictionmary—create a header,
select the address of a code rcutine and put in the code field, and campile
data or addresses into the parameter field—is termed 'to def ine a word'.
The words like ':', CODE , CONSTANT , VARIABIE , etc., which cause a new
word to be defined or campiled into the dictionary, are thus called def ining
words. The process of generating a word of this kind, the def ining ward, is
'to define a defining ward'. Our subject in this Chapter is how to def ine

a ward which defines a class of words.

To create a definition , two things must be done properly: one must
specify how this definition is to be compiled or how the def inition is to be
constructed in the dictionary; and specify how this definition is to be
executed when it is called by the address interpreter. Cansequently,
the wcrd which creates defining wards consists of two parts, cne to be used
by the compiler to generate a definition in dictionary and the other the
routine to be executed when the definition is called. All wads generated
by this defining ward will have code field& containing the same address

pointing to the same runtime routine.

There are two ways to define new defining wards. If the runtime
routine pointed to by the code field is to be defined in machine assembly
codes, the format is:

ccece —— ;QOLE assembly memorics

124

If runtime routine is coded in high level wards as in a colon definition,

the format is:

: cccc <BHUIIDS = DOES> =— ;

In the above farmats, cccc is the name of the new defining wad, ——
denotes a series of predef ined wards, and 'assembly memonics' are assemhbly
codes if an assembler has been defined in the dictionary. If there is
no assembler in the FORTH system, machine oodes in mnumeric form can be

compiled into the dictionary to construct the runtime code routine.

Executing the new defining ward cccc in the form: -

will create a new definition nnnn in the dictionary and the words denoted
by —— up to ;O0DE or DOES> are executed to camplete the process of
building the definition in the dictionary. The code field of this new def ini-
tion will contain the address of the routine immediately following ;CODE
or DOES> . Consequently, when the newly defined ward is called by the

interpreter, the runtime routine will be executed.

The above discussion might be samewhat confusing because of the

context of defining a def ining ward. It is. The best way of explaining how

125

the concept warks is probably with a lot of examples. Here we shall start
with the fig-FORTH definitions of ;CODE r <BUILDS , and DOES ,
followed by the two simple defining woards CONSTANT and VARIABIE . The
most useful defining ward ':' was discussed previously in Chapter 5 an
compiler., It should be reviewed carefully.

: ;CODE Stop compilation and terminate a new def ining ward cccc
by compiling the runtime routine (;CODE) . Assemble the
assembly mnemonics following. Used in the form:

: cccc —— ;COLE assembly mnemornics

7CSP Check the stack puinter. Issue an error message if not equal
to what was saved in CSP by ':' .

COMPILE When ;CQODE 1is executed at runtime, the address of the
next ward will be campiled into dictionary.

(;CODE) Runtime procedure which ocompletes the definition of a new
defining ward.

[COMPILE] Campile the next immediate word instead of executing it.

[Return to executing state to assemble the following assembly
mnemonics.,

SMULDGE Toggle the smudge bit in the length byte, and complete the

new definition.

-

IMMEDIATE

The class of definitions created by using cccc in the form:

126

cccc nnnn

will have their code field painting to the code routine as assembled by
the mnemonics following ;CODE in the definition of cccc . The word nnnn
when called to be executed will first jump to this code routine and execute
this routine at runtime. What will happen aftermwards is total ly deperdent on
this code routine. The presence of the code field and hence the execution of
the code routine after the word is called gives FORTH lamguage a similarity
to an indirectly threaded coded system. The code field allows programmers
to extend FORTH language to def ine new data structures or new contral struc—
tures which are practically impossible in any other high level lamguage.
This property is called the extensibil ity of FORTH lamguage.

: (3;CODE) The runtime procedure campiled by ;CODE .
Rewrite the code field of the most recently def ined ward to
point to the following machine code sequence.
R Pop the address of the next instruction off the return stack,
which is the starting address of the runtime code routine.
LATEST Get the name field address of the word under construction.
PFA CFA ! Find the code field address and store in it the address of

the code routine to be executed at runtime.

The pair of wards <BUILDS —- DOES> is also used to éefine new

127

defining wards in the farm:

s ccee <BUILDS = DOES) =——— ;

the difference from the ;CODE construct is that <BUILDS-DOES> gives
programers the corverience of defining the code field routine in terms of
other high 1level definitions, saving them the trouble of coding these
routines in assembly memonics. Using high level words to def ine a def ining
word makes them portable to other types of camputers also speaking FORMH.
The price to be paid is the slower speed in executing wards def ined by these

defining words. This is the tradecff a programmer must weigh to his own

satisfaction.

: <BUILDS When cccc is executed, <BUILDS will create a new header
far a definition with the name taken fran the next text
in the input stream.

0 CONSTANT Create a new entry in the dictionary with a zero in its
parameter field. It will be replaced by the address of the
.code field routine after DOES> when DOES> is executed.

: DOES> Define runtime routine action within a high level d&ef ining

ward. DOES> alters the code field and the first cell in the
parameter field in the definiing ward, so that when a new

word created by this defining ward is called, the sequence

128

of wards compiled after DOES> will be executed.

B> Get the address of the first word after DOES .

LATEST Get the name field address of the new def inition under cone-
truction.

FFA ! Store the address of the runtime routine as the first para-
meter,

;CODE When DOES> is executed, it will first d the following code

routine because ;OXE puts the next addess into the code
field of CODE> .

DODOE: MOV .IP,-(RP) Push the address of the next instruction on return
| stack.
MV (W)+,IP Put the address of the runtime routine in IP .
MV W,~(S) W was incremented in the last instruction, pointing
to the parameter field, Push the first parameter on
stack.

In fig-FORTH model, there are three often used def ining wards besice
':' and CODE : OCONSTANT , VARIABIE , and USER . They are thenselves
defined:

: CONSTANT R —
Create a new word with the next text string as its name and

with n inserted into its parameter field.

129

CREATE Create a new dictiomary header with the next text string.

SMULGE Toggle the smudge bit in the lemgth byte in the name field.
" Campile n into the parameter field.
;CODE The code field of all constants defined by CONSTANT will

have the address of the following code routine:

DOOON: MOV (W) ,-(S) Push the contents of parameter field to the stack.

NEXT Return to execute the next word.
Used in the following form:
n CONSTANT cccc

to define cccc as a constant., When ccce is later called, thevalie n
will be pushed on the data stack. This is the best way to store a constant
in the dicticnary for later uses, if this constant is used often. When a
number is compiled as an in-line literal in a colon definition, 4 bytes are
used because the word LIT must be campile before the literal so that the
address interpreter would not mistakenly interpret it as a word address.
The overhead of defining a constant is 6 bytes and the bytes needed for name
field, averaging to about 10 bytes per def inition. If the constant will be
used more than thrice, savings in memory space justify the defining of a

constant.
: VARIAELE n =—

130

Define a rnew wad with the following text as its name and
its parameter field initialized to n. When the new word is
executed, the parameter field address instead of its content
is pushed on the stack.

QONSTANT Create a dictionary header with n in the parameter field.
Campiling action in def ining a variable is identical to that
of defining a constant, but runtime behavior is different.

;CODE Code field in a variable paints to following code routine.

DOVAR: MOV W,-(S) Push the parameter field address on dGata stack.
NEXT

Variables are defined by the following commands:
n VARIAELE cccc
When cccc is later executed, the address of the variale is pushed on the
data stack. To get the current valwee of this variable, cne should use the @
command :
ccce @
and to change the value to a new one nl,

nl cccc !

131

: USER N
Create a user variable with n in the parameter field. n
is a fixed off=t relative to the user area painter UP for
this user variable,

QONSTANT

;CODE The runtime code routine is labelled as DOUSE :

DOUSE: MOV (W) ,-(S) Push n on data stack.
ADD UP,(S) Ad the base address of the user area.
NEXT Return. Now the top of data stack has the address

pointing to the user variable.
After a user variable is defined as:
n USER ccce

the ward cccc can be called. When cccc is executed, UP+tn will be pushed
on the data stack and its contents can be examined by @ or modified by

132

CHAPFTER XTI
CONTRQL STRUCTURES AND IMMEDIATE WORDS

Most definitions in the FORMH dictionary are def ined by the colon
':' ward. They are called colon definitions , FORTH definitions , or higl-u
level definitions, When the text interpreter sees the word ':', it creates
a header using the text string following colon as the name and then enters
the compiling state. 1In the campiling state, the text interpr eter reads in
a text line from the input stream, parses out strings delimited by blanks,
and tries to match then with dictionary entries. If a string matches with a
dicionary entry, the code field address of the matching ward is addd to the
parameter field of the new def inition under construction. This is what we
call the compiling process. The campiling process ends when the terminating

wad ; or iQOE is detected.

When a colon definition is later executed, the word addresses in its
paraneter field are executed by the address interpreter in order. 1If it is
necessary to alter the sequential execution process at runtime, special word
has to be used in the campiling process to set up the machinery of branching
and locping, to build the control structures or program constructs in the
colon definition. These special words are equivalent to campiler directives
or assembly directives in conventional C:mpl.lte-r larguages. These words do
* TMMEDIATE ("‘"_i LATEST 4.0H ToaGLE 3

133

do not become part of the compiled definition, bkut cause specific actions
during compilation to build the control structure into the definition and
to ensure its correct execution at runtime. These special words in FORTH are
characterized by the fact that they all have a precedence bit in the length
byte of the name field set to one. Words with precedence bit set are called
immediate words because the text interpreter turns these words over to the

address interpreter for execution even dur ing campilation.

In this Chapter, we shall coneem owurselwes with the means by which
the following control structures are built in a colon def inition:
THEN
IF =—— ELSE — ENIOIF
BEGIN -— INTIL
BEGIN = WHILE -— REPEAT

and D) == I == LEWNE — IO

However, before discussing the detailed definitions of these words, a few
utility wards should be presented to make the discussions more intelligible.
The wardS COMPILE and [COMPILE] are used to handled special campiling
situations. The wards BRANCH and OBRANCH are the [SEUSLWORGS which
get compiled into the def inition to do the branching and looping.

Wards in a oolon definition are normal 1y compiled into dictiomary
or have their code field address stuffed in the parameter field of the colon
definition under compilation. Sametimes this compilation should be delayed

to the runtime, i. e., the word is to be campiled not when the colon def ini-

134

tion is being compiled, but when the colon definition is later executed. To

defer compilation until runtime, the word COMPILE must preceed the word.

: COMPILE Defer campilation until runtime. When the word containing
COMPILE is executed, the code field address of the word

following COMPILE is oopied into the dictionary at run-

time.

200MP Error if not campiling.

R> Top of return stack is painting to the next word following
COMPILE .

DUP 2+ >R Increment this pointer by 2 to paint to the second ward

following COMPILE , which will be the next word to be
executed. The word immediately following COMPILE should
be compiled, not executed,

e, Do the campilation at runtime.

Immediate wards, because of their precedence bits, are executed
during compilation., However, if one wanted to use the word sequence in an
immediate word as a regular colon def inition, i. e. to compile it in-line,
the woard [COMPILE] can be used to force the following immediate word to

be compiled into a definition. The word [COMPILE] is used in the form

T xxx = [COMPIIE] ccCC == ;

135

in which ccce is the name of an immediate ward.

: [COMPILE] Farce the compilation of the following immediate word.

- =FIND Accept next text string and search dictionary for a match.
0= 0 ?ERRCR No matching entry was found. Issue an error message.
DRCP Discard the length byte of the found name.
CFA , Convert the name field address to code field address and

compile it into the dictionary.

IMMEDIATE

The two wads changing execution sequence in a colon def inition
are BRANCH and OBRANCH , both are primitive oode definitions. They
are of such importance that I feel they should be treated fully. The codes

are from PDP-11 fig-FORTH.

CODE BRANCH The runtime procedure to branch uncorditionally. An
in-line offset is added to the interpretive painter
IP to branch forward or backward. BRANCH is
compiled by ELSE , AGAIN , and REPEAT .
ADD (IP),IP Ad the contents of the next cell painted to by IP
to IP itself. The result is put back to IP
which points to the next word to be executed., The
next ward can be out of the regular execution order.

NEXT Return to the word painted toby IP , completing

136

the unconditional branching.

CODE OBRANCH £ —-

The runtime procedure to branch comditionally. If
f on stack is false (zero), the following in-line
offset is added to i to branch forward or
backward. Campiled by IF L UNI'IL , and WHILE .

TST (S)+ Test the flag £ on stack.

BNE ZBRAl

appD (IP),IP £ is zero, do the branching.

ZBRAl: ADD $2,IP f is true, skip the in-line offset. Pick up the

werd following the of fset and continwe execution.

Conditional branching in a colon def inition uses the forms:

IF (true part) — ENIIF
or IF (true part) == EILSE (falese part) -—— ENDIF

At runtime, IF selects to execute the true part of words immediately
following it, if the top item on data stack is true (non-zero). If the flag
is false (zero), the true part will be skipped to after ELSE to execute
the false part. After executing either part, execution resumes after

ENDIF . ELSE and the false part are optional. If ELSE part is missing,

137

execution skips

s+ IF

COMPILE OBRANCH

IMMEDIATE

: ENDIF

2 ?PAIRS

to just after ENDIF .

At runtime £ o=

Campile time — addr n

It compiles OBRANCH and reserves one more cell for an
offset value at addr . addr will be used later to resolwe
the offset value for branching. n 1is set to 2 for error
checking when EISE or ENDIF is later campiled.
Campile the code field address of the runtime routine
OBRANCH into the dictionary when IF is executed,

Push dictionary address on stack to be used by ELSE or
ENDIF to calculate branching offset.

Campile a dummy zero here, later it is to be replaced by an
offset value used by OBRANCH to campute the next word
address. |

Error checking number.

IF in a colon def inition must be executed, not campiled.

Compile time addfr n —

Campute the forward branching offset fran addr to HERE
and store it at addr . Test n to match the prerious
IF or ELSE in the definition.

Issue an error message if not campiling.

ENDIF must be pairedwith IF or ESE . If n is

138

not 2, the structure was disturbed or improperly nested.

Issue an error message.

HERE Push the current dictionary address to stack.
OVER - HERE-addr is the forward branching of fset.
SWAP ! Store the offset in add , thus campleting the IF-ENDIF

or IF-ELSE-ENDIF construct.

-e

IMMEDIATE

: ELSE Canpile time addrl nl —= add2 n2
Canpile BRANCGE and reserve a cell for forward branching
offeet, Resolwe the pending forward branching fran IF
by computing the offset fran add&l to HERE and storing
it at addrl .

2 ?PAIRS Error checking for proper nesting.

COMPILE BRANCH Campile BRANCE at runtime when ELSE is executed.

HERE Push HERE on stack as ada2 .

0., Dummy zero reserving a cell for branching to ENDIF .

SWAP Move addrl to top of stack.

[COMPILE] ENDIF Call ENIIF to wak on the offset for forward

branching. EINDIF is an immediate word. To campile it the
ward [COMPILE] must be used.
2 Leave n2 on stack for error checking.

-8

IMMEDIATE

Indefinite locps are to be constructed using the following forms:

BEGIN -— UNTIL
or BEGIN -——- WHILE -—- REPEAT

BEGIN simply leaves the current dictionary address on stack for UNTIL or
REPEAT to pickup and to compute a backward branching of fset at the erd of
the locp. WHILE is similar to IF in that it skips to just after
REPEAT if the flag on stack at that paint is false, thus terminating the
indefinite locp from inside the loop. UNTIL terminates the loop only at
the end of the loop.

: BEGIN Canpile time — add& n
At compile time BBEGIN leaves the dictionary address on
stack with an error checking number n. It does not compile
anything to the dictionary.

200MP Issue an error message if not campiling.

HERE Push dictionary pointer on stack to be used to campute back-
ward branching offset.

1 Error checking number.

~

IMMEDIATE

: BACK addr —-

140

A runtime procedure computing the backward branching of fset
from HERE ¢to addr on stack, and compile this offset
value in the next in-line cell in the dictionary.

HERE - , addr-HERE, the backward branching of fset.

: UNTIL Campile time addr n —
Campile OBRANCH and an in-line offset fran HERE to
addr . n is tested. If not equal tol, there is an error
in the nesting structure.

1 ?PAIRS If n is not 1, isswe an error message.

COMPILE OBRANCE Campile OBRANCH at runtime.

BACK Campute backward branching of fset and compile the offset.

i ;

IMMEDIATE

When the colon definition containing the BEGIN-UNTIL structure is
executed, the woard OBRANCH compiled by UNTIL at the end will test the
flag on stack at that instant. If the flag is false, OBRANCE will branch
back to the ward following BEGIN . The wads between BEGIN and
UNITL will be repeatedly executed until the flag is true at UNTIL ; at
this instant, the interpreter will abort thise loop and continue executing

the words following UNTIL .

¢ AGAIN compile time addr n —

141

Similar to UNTIL but compile BRANCH instead of
OBRANCH in the dictionary to construct an infinite loop.
Execution cannot leave this loop unless the words R> DR(P
are executed in a word inside this loop.

1 ?PAIRS Error checking.

COMPILE BRANCH Campile BRANCH and an offset to BEGIN .

BACK
IMMEDIATE

The construct BEGIN-WHILE-REPEAT uses WHILE to abort a loop in the
middle of the locp. WHILE will test the flag left on stack at that paint.
If the flag is true, WHILE oontinwes the execution of following wards
until REPEAT , which then branches uncorditionally back to BEGIN .
If the flag is false, WHILE causes execution to skip the words up to

REPEAT , thus exitiné the loop structure.

: WHILE Campile time addrl nl —- addrl nl addr2 n2
Campile OBRANCH and a dummy offset for REPEAT to resalwe.
addrl and nl as left by BEGIN are also passed on to
be processed by REPEAT .

[COMPILE] IF Call IF to campile OBRANCH and the offset.

2+ Leave 4 as n2 to be checked by REPEAT .

IMMEDIATE

142

: REPEAT Campile time addrl nl addr2 n2 -—
Campile BRANCH to jump back to BEGIN . Resolve also
the branching offset required by WHILE .

>R >R Get addr2 and n2 out of the way.

[COMPILE] AGAIN Let AGAIN do the dirty work of campiling uncordi-
tiomal branch back to BEGIN .

PR Restare ad&2 and n2 .

[COMPILE] ENDIF Uss ENIOIF to resalwe the forward branching needed
by WHILE .

IMMEDIATE

The IF-ELSE-ENDIF and the BEGIN-UNTIL types of constructs simply
redirect the execution sequence inside of a colon definition. As discussed
previously, the definitons of these campiler directives are quite short and
simple, involving only branching and conditional branching. The DO-LOCP type
of construct is more complicated because additional mechamisms other than
branching are needed to keep track of the loop limits and loop counts. The
runtime functions of DO are to take the lower and upper loop limits
off the data stack, push them on the return stack, and setup the address for
LOC® to jump back. LOCP at runtime will then increment the loop count
on top of the return stack and compare its valwue to that of the loop limit
just under it on the return stack. If the loop count equals or exceeds the

loop limit, the loop is campleted and execution goes to the next word after

143

LOOP . Otherwise, LOCP will branch back to DO and continue the looping.
+I0CP behaves similarly to LOGP except that it increment the loop count
by a number supplied on the data stack.

The wards DO , IOP and +I0CP call on their respective
runtime routines to do the work. The detailed codes in these runtime

routines will be discussed also.

DO-LOCPs are set up in a colon definition in the following forms:

or BO ==mis § e ATOCP

At runtime, DO begins a sequence of repetitive executions contralled by
a locp cont and a loop limit. The starting value of the loop count and the
loop limit are taken off the data stack at run time. Upon reaching the word
LOCP ,the locp count is incremented by one. Urﬁil the new loop count equals
or exceeds the loop limit, execution loops back to the word just after DO .
Otherwise, the two locp parameters are reamoved fran the return stack and the
execution continues ahead at the word after LO® . Within a loop, the word

I will copy the loop count to data stack to be used in camputations.

: DO Runtime fHl. DR e
Campile time — addr n

COMPILE (DO) Campile the runtime routine address of (DO) into dictionary.

144

HERE Adiress addr for backward branching from LOCP or +lLOCP .
3 Number for error checking.
i
IMMEDIATE
CODE (DO) nl n2 —
MV 2(S),~(RP) Push the loop limit nl on return stack.
MWV (S),~(RP) Push the initial loop count n2 on return stack
above nl .
ADD #4,5 Adjust the stack painter to dropnl and n2 off the
data stack.
NEXT Return.
QODE I — 0
MV (RP),-(S) Copy the loop count on return stack and push
it to data stack.
NEXT
QODE LEAVE Make the 1loop limit equal to the loop count and force the

locp to teminate at LOP or +LOCP .
MWV (RP),2(RP) Copy 1loop ocount to loop limit on the return

stack.

145

addr n —

3 7PAIRS Check the number left by DO . If it is not 3, isswe an

error message. The loop is not properly nested.

COMPLIE (LOCP) Compile

BACK Campute

il

IMMEDIATE

CODE (LOCR)
INC (RP)
QP (RP),2(RP)
BQE LOCPl

ADD (IP),IP

NEXT

LOCPl: ADD +#4,RP

ADD #2,IP
NEXT

When the locop

(LOCP) at runtime when LOCP is executed.
and canpile the backward branch of fset.

Runtime routine of LOCP .
Increment the loop count on return stack.
Campare locp count with the loop limit.
Jump to LOCPl if the loop count is equal or greater
than the locp limit.
Add backward branch offset to IP and
branch back to repeat the DO-LOCP.
Exit the loop. Discard the loop parameters off the
return stack.
Advance IP over the in-line offset number and

continue executing the next word after LOCP .

count must be incremented by an amount other than

one, +LOCP should be used to close a DO-LOCP . It is used in the form:

146

3 7PAIRS

COMPILE (+LOCP)

IMMEDIATE

CODE

(+1LOCP)

ADD
TST
BLT

Runtime nl e—
Campile time addr nl —
Increment the loop index by nl on the stack and test for
loop completion. Branch back to DO if not yet done.
Check n. If it is not 3 as left by DO , isswe an error
message,

Campile the address of (+LOCP) at runtime when
the colon definition is being built.

Camnpile back branch cof fset.

n—

(S),(RP) AG n to the loop count on return stack.
(S)+ Test and pop data stack

LOQP3 If n is negative, jump to LOMP3 for special process-

ings.

2(RP) , (RP) - n is positive. Campare locp count with loop

limit.

LOGP2 If the loop is done, jump to LOCP2 to exit.

(IP) ,IP Nct yet done, return to DO .

$#4,RP Clear return stack,

$2,1IP Advance IP to the next word after +<+ILOCP .

147

Loop3: Q1P (RP),2(RP) Negative increment n . Reverse comparison.
BLE LOGP2
ADD (IP),IP Nct yet done with the loop. Return to the word after
Do .

148

CHAFTER XIII

EDITCR

In a FORTH computer, new definitions are entered or campiled into
the dictionary in a compiled form. The source text is not saved. Although
there are many different ways to recover text information fran the campiled
definitions, to 'de-compile' a definition is not the best way to write
and edit FORTH definitions. As we have discussed in Chapter 10 an virtual
memory, FORTH uses the disc storage to store source text which can be
compiled very easily using the wad LOAD . To enter sowce text
into the disc memory and to modify themn repeatedly during program develop-
ment and testing, a text editar is indispensble. As in any other lamguage
processor, the editor is the principal interface between a programmer and
the computer. A gooad editor makes the programming tasks easier, and in sane

rare cases enjoyahble.

As of now, fig-FORTH has yet to have a standardized text editor.
In the fig-FORTH model, however, there was included a sample text editor by
Bill Ragsdale. I will discuss this particular editor in this Chapter.
A text editor provides important and extensive examples in using FORTH
lancuage to handle texts and strings. It is wortlwhile for a serious stucent

of the FORTH language to go through these examples carefully, to leam

149

techniques in string manipulations.

To facilitate text editing, texts on disc are organized in blccks
of 1024 bytes (a unit of screen). Each screen is divided into 16 lines
of 64 characters each. A screenful of text thus arranged fits caomfortably
on the screen of an ordinary CRT terminal, hence the name 'screen'. The
text on a screen is most corweniently aceessed by lines, A string within
a line can be searched and its location indicated by a screen cursor for
editing actions, like inserting or deleting characters. A text editar
generally performs two quite distinguishable tasks— line editing and string
editing. In this fig-FORTH sample editor, wards are def ined separately

for these two tasks.

In the text editor, a screenful of text is maintained in the disc
buffers, or the screen buffer. The screen number which denotes the physical
location of this screen of text on disc is stored in a user variable
SR . The cursor loccation in this screen buffer is stored in ancther
user variable R# ., Text to be put into the screen buffer or deleted
from the screen buffer is temporarily stored in the text buffer area
pointed to by the ward PAD , which returns the memory address 68 bytes
above the dictiomary pointer DP . PAD is used as a 'scratch pad’
during editing processes, holding text for the screen buffer or strings
to be matched with the text in the screen buffer.

Most of the editar definitions have single character names to ease

150

the typing task during editing. Sane of these simple names clash with the
names of other def initions defined in a FORTH vocabulary. It is thus advan-
tageaus to group all the editing definitions into a separate vocabulary
called EDITOR . The EDITOR vccabulary is def ined as:

VOCABULARY EDITOR IMMEDIATE

This phrase creates the EDITOR vocabulary which is linked to the trurk
FORTH vccalulary. EDITOR when called will set the EDITOR vocabulary
to the CONTEXT wveocabulary, so that the definitions defined in EDITOR
will be readily accessible in editing screens of text. The phrase

EDITOR DEFINITIONS

makes the EDITOR vocabulary also the CQURRENT vocabulary. In this way
new definitions will be added to the EDITOR instead of being treated as
reqular definitions in the FORTH vocabulary.

Two basic utility wards are used by the editor to perform the line
editing functions. TEXT moves a line of text fram the input stream to
the text huffer area of PAD . The word LINE computes the line
address in the screen buffer. Text lines of 64 characters can then be
transferred from PAD to screen buffer or vice versa., We shall first

present these two words before getting into the line editing cammands.

151

C/L 1+ BLANKS

PAD
C/L 1+ QMOVE

-
I

: LINE

DUP FFFOH AND
17 ?ERRAR
SR @

(LINE)

DRCP

c e —
Move a text string delimited by character c¢ fram the

dictionary buffer (ward buffer) into PAD , blank-
filling the remainder of PAD to 64 characters.

Top of dictionary, beginning of ward buffer. The text
interpreter puts the text string here.

Fill word buffer with 65 blanks.

Move the text, delimited by character ¢, fran the input
stream to the word buffer.

Address of the text buffer.

Move the text, 64 bytes of text and 1 length byte, to PAD

n — addr
Leave address of the beginming of line n in the screen buf-
buf. The screen mumber is in S(R. Read the disc black fram
disc if it is not already in the disc buffers.
Make sure n is between 0 and 15.
If not, isswe an error message.
Get the screen number fram SR .
Read the screen into screen buffer which is camposed of the
disc buffers. Campute the address of the n-th line in the
screen buffer and push it on stack.
Discard the character count left on stack by (LINE) .

Only the line address is left on stack now.

152

LINE
C/L QDVE

-

m

LINE

PAD 1+

C/L DUP PAD C!
QOVE

-

(1]
wn

DoP 1-
OEH

addr n —
Copy a line of text fram addr to n—th line in the current
screen huffer.
Get the line address in screen buffer.
Move 64 characters fran addr to line n in screen buffer.
Notify the disc handler this buffer has been modified. It
will be written back to disc to update the disc storage.

n —
Copy n-th line to PAD . Hold the text there ready to be
typed out.

Get the line address.

Starting address of text in PAD .

Put 64 in the lemgth byte of ©PAD .

Move one line.

W m—
Spread n-th line with blanks. Down shift the original n—th
and subsequent lines by one line. The last line in the
screen is lost.

Lower limit of lines to be moved.

14, the last line to be shifted down.

153

I LINE Get I-th line address

I 1% Next line

-MOVE Downshift one line.
-1 +LOCP Decrement loop count and repeat till done.
E Erase the n-th line.
: D [l —

Delete the n—th line. Move subsequent lines up one line.

The delete line is held in PAD in case it is still needed.

DUP H Copy the n-th line to FAD .
OFH The last line.
DUP RCT Get n to top of stack.
DO
I 1+ LINE Next line to be moved.
I -MOVE Upshift by one line.
Logp
E Erase the last line.
: E n —

Erase the n—-th line in the screen buffer by £illing with
64 blanks.

LINE Line address.

154

C/L BLANKS

-y

L1
o

PAD 1+
SWAP -MOVE

td

1 TEXT

-

[
=

-

Fill with blanks.

n —
Replace the n~th line with text stored in BD .,

Starting address of the text in FAD .

Move text fran FRD to m—th line.

n ———
Put following text on line n. Write over its contents.
Accept the following text of C/L characters or till CR to
PAD .

Put the text into line n.

T
Insert text from PAD to n-th line. Shift the original
n—th and subsequent lines down by one line. The last line
in the screen is lost.

Spread line n and pad with blanks.

Move PAD into line n.

155

SR ¢
10H 0 DO
FCRTH I

EDITOR E

B/SR *
OFFSET @ +
SWAP B/SQR *
B/SR OVER +

SWAP DO

B
Clear the n-th screen by padding with blanks.

Store screen number n into SR .

Erase 16 lines

Get the loop count fram return stack., I was redefined by
the editor to insert line into a screen. To call the I
which gets the loop count, FORTH must be called to make
the trunk FORTH vocabulary the CONTEXT vocabulary, which
is searched first to get the correct I. This demonstrates
the use of vocabularies.

Set the CONTEXT vocabulary back to EDITOR vocabulary

to continue editing texts. E will erase the I-th line.

nl n2 -—
Copy screen nl in drive 0 to screen n2 in drive 1. This is
accomplished by reading blocks in screen nl to disc buffers
and changing block numbers to those associated with screen
n2. The disc tuffers are then flushed back to disc.
First bleck in screen n2.
Ad blcck offset for drive 1.
First bleck in sc:reen-nl.
Last block number + 1.

Go through all blocks in screen nl.

156

DUP Copy block number in screen n2.

FORTH 1 Current block number in screen nl as the loop count.
BLOCK Read the bleck fran screen nl to disc buffer.
2-1 Store the block number in screen n2 into the first cell of

the disc huffer, which contains the disc bleck number. This
tricks the system to think the blcck is in the screen

n2.
1+ T
UPDATE Set updte bit in disc buffer to be flushed back to disc.
700
DROP Discard the bleck number on stack.
FLUSH Write all disc buffers containing data fran screen nl back

to screen n2, because the bleck numbers were switched.

The above words belong to what might be called a line editor, which
handles the text by whole lines. The line editor is corwemnient in inputting
lines of texts. However, if some mistakes are discovered or only a few
characters in a line need to be chamged, the line editor is not suitable
because ore would have to retype the whole line., Here, a string editor is
more effective. The string editor uses a variable R# as a cursor painting
to a character in a string which can be accessed by the string editor most
easily. The string editor must be able to search a line or the entire
screen for a specified string and paint the cursor to this string. It must

have means to delete and modify characters neighboring the cursor.

157

A colon definition MATCH is used to search a range of text for a specified

string and move the cursor acoordingly. MATCH and a few utility words are

used here to huild up the words directly involwed in the string editor.

: MATCH

>R >R 2DUP
R> B> 2SWAP

OVER + SWAP

2DUP

FCRTH I

2

>R 2DRCP R>
- I Swap -
0 Swap

0 0 LEAVE

THEN

addrl nl add&2 n2 — f n3
The text to be searched begins at addrl and is nl bytes
long. The string to be matched begins at addr2 and is n2
bytes long. The boclean flag is true if a match is fourd.
n3 is then the cursor advancement to the erd of the found
string. If no match is found, £ will be false and n3 be 0.
Duplicate addrl and nl.
Move the copied addrl and nl to the top of the stack.
Now the stack locks like:
(addrl nl addr2 n2 addrl+nl add&l —-—)
Scan the whole source text.
Duplicate addr2 and n2.
The loop index paints to source text.
Is the source text here the same as the string at add2 ?
Yes, the string is found in the text.
Discard nl and addr2 on the stack.
Off set to the emd of the found string.
Put a boolean underneath,

Put two dumy zeros on the stack and prepare to leave the

locp.

158

SAAP 0= SWAP

-e

é

SWAP -DUP IF
OVER + SWAP

DUP Ce
FORTH I C@ -
IF 0= LEAVE

ELSE 1+ THEN

ELSE DROP 0=

-e

No match this time. Loop back.
Discard garbage on the stack.
Carrect the bodlean flag upon exit.

addrl n add&2 — f
If the strings at addl and add2 match to n characters,
return a true flag. Othemwise, retm:.n a false flag.
If nl is zero, bypass the tests.
(addrl add2+nl add&2 —)
Scan the string at addr2 .
Fetch a character fran the first string.
Bqual to the correspording character in the second string?
Nct the same. Leave the loop.

Continwe on.

n is zero . Leave a false flag. Neither address may be zero.

The 32-bit double number instructions used in MATCH and -TEXT should

be defined in the FORT trurk vecabulary as following:

DRCP DRCP ;

Discard two numbers fram the stack,

159

OVER OVER

: 25NAP
ROT >R
ROT B>

: TOP
0 R$!

-

: #LOCATE

R @
C¢/L /MOD

: #LEAD

Duplicate a double number.

Bring the second double number to the top of the stack.
Save top half of the second number.
Move bottam half and restore top half.

Move the cursor to hame, top left of the screen.

Store 0 in R# , the cursor painter.

— 0l N2
From the cursor pointer R# campute the line number n2 and
the character offset nl in line number n2.
Get the cursor location.
Divide cursor location by C/L. Line number is the quotient

and the offset is the remainder.

’

— addr n
From R# compute the line address addr in the screen buffer

an;i the offset fram addr to the cursor location n.

160

$LOCATE Get off=et and line rumber.

LINE From line number campute the line address in screen buffer.
SWAP

;

: $LAG — addr n

From R§# compute the line address addr in the screen buffer

and the off=t fran cursor location to the end of line.

$#LEAD Get the line address and the offset to cursocr.
DUP >R Save the offset.

+ The address of the cursor in screen buffer.
C/LB - The cf fset fran cursor to erd of line.

i

t M By o—

Move cursor by n characters. Print the line containing

the cursor far editing.

R$ +! Move cursor by updating R§ .

CR SPACE Start a new printing line.

$LEAD TYPE Type the text preceeding the cursor.

SFH EMIT Print a caret (") sign at the cursor location.
#LAG TYFE Print the text after the cursor.

§LOCATE . DRCP Type the line number at the end of text.

-e

161

DUP C/L *
Ré !

0OM

~-e

SCR @ LIST

oOM

-

: 1LINE

#LAG PAD CQUNT

R# +!

-8

ff e
Type the n-th line in the current screen. Save the text also
in PAD.

Character offset of n-th line in the screen.

Point the cursor to the beginning of n-th line.

Move n—th line to PAD .

Print the n—-th line on output device.

Re-list the screen under editing.
List the current screen.

Print the line containing the cursor.

-_ f
Scan a line of text beginning at the cursor location for
a string matching with one stored in PAD., Return true flag
if a matching string is found with cursor moved to the end
of the faund string. Return a false flag if no match.
Prepare addresses and charater oounts to the
requirements of MATCH .
Go matching.

Move the cursor to the erd of the matching string.

162

: FIND Search the entire screen foa a string stored in BD ,
If not faund, issue an error message. If found, move cursor
to the end of the found string.

BEGIN

3FFH R# @ < Is the cursor location > 1023?

IF Yes, outside the screen.

TOP Hame the cursor.

PAD HERE C/L 1+ QMOVE Move the string searched for to HERE
to be typed out as part of an error message.

0 ERR(R Issue an error message.

ENDIF

1LINE Scan one line for a match.

UNTIL

¢ DELETE I —

Delete n characters in front of the cursor. Move the text
from the end of line to £ill up the space. Blank fill at
the end of line.

>R Save the character count.

$LAG + Erd of line.

FORTH R - Save blank £ill location.

$LAG

R MINUS R$# +! Back up cursor by n characters.

#LEAD + New cursor location.

163

SWAP QMOVE
R> ELANKS

OM

1 TEXT

PAD C@
MINUS M

1 TEXT
FIND
PAD C@

Move the rest of line farward to fill up the delete string.
Blank £ill to the emd.

Find the next occwrence of the text already in FRD .
Matching.

If found, type ocut the whole line in which the string was
found with the cursor properly displayed. ‘

Find the first occurence of the following text string.
Put the following text string into FAD .
Find the string and type out the line.

Back the cursor to the beginming of the string just matched.
Get the lergth byte of the text string in PFAD .

Back up the cursor and type out the whole line.

Delete the following text fram the current line.
Put the text in PFAD .

Go find the string.

Get the lergth byte of the string.

164

DELETE Delete that many characters.
0OM Type the modified line.

Delete all characters fran cursor location to the erd of

:

the following text string.

$LEAD + The current cursor address.

1 TEXT _ Pu:thefollﬁwingtextin BD .
1LINE Scan the line for a match.

0= 0 ?ERROR Nlo match. Isswe an error message.

#LEAD + SWAP - The number of characters to be deleted.

DELETE Delete that many characters and move the rest of line to
fill up the space left.

0OM Type out the new line.

(g}

Spread the text at cursor to insert the following string.

Character pushed off the end of line are lost.

1 TEXT PAD CCUNT Accept text string and move to PAD .

#LAG ROT OVER MIN >R Save the smaller of the character ocount in PAD and
the number of characters after the cursor.

FORTH R Get the smaller count

R¥ +! Move the cursor by that many bytes

165

R - >R Number of characters to be saved.

DUP HERE R QMOVE Move the old text fram cursor on to HERE for
temporary storage.

HERE #LEAD + > CMOVE Move the same text back, Put at new location to

the right, leaving space to insert a string framn PFAD .

R> CMOVE Move the new string in place.
UPDATE
0M Show the new line.

166

CHAFTER XIV
ASSEMELER

An assembler which translates assembly menornics into machine codes
is equivalent to a compiler in complexity if not more complicated., Ore might
expect the assembler to be simpler because it is at a lower level of
construct. However, the large number of mnemomnic names with many different
modes of addressing make the assembling task much more difficult. In the
FORTH langquage system the assembling processes cannot be accomplished by
the text interpreter alone. All the resowrces in the FORTH system are
needed, For this reason the assembler in FORM is often defined as an
independent veccalulary, and the assembling process is controlled by the
address interpreter, in the sense that all assembly mnenomics used by the
assembler are not just names representing the machine codes hut they are
actually FORTH definitions executed by the address interpreter. These
definitions when executed will cause machine codes to be assembled to the
dictiomary as literals. The data stack and the return stack are often

used to construct proper codes and to resclve branching addresses.
Before discussing codes in the FORTH assemblers, I would like to
present assemblers in three levels of complexity:

Level O0: The programmer locks up the machine codes and assembles

167

them to the dictiomary;

Level 1: The computer translates the assembly memomics to codes with
a lookup~table, kut the programmer must f£ill in addaresses
and literals when needed; and

Level 2: The computer does all the work, with mnemonics and operands

supplied by the programmer.

The Level 0 assembler in FORTH uses only three def initions already

defined in the FCRTH Campiler:

CREATE Generate the header for a new code def inition,
' Assemble a 16 bit literal into the dictionary, and
C, Assemble a byte literal into the dictionary, used in byte

oriented processors.

These definitions were described as the most primitive mﬁiler in Chapter
9. They might Jjust as well be the most primitive assembler if the new
definition were a code definition. The programmer wauld write down the
machine codes first with the help of those small code cards supplied often
freely by CPU vendors. The machine codes are entered on the top of the data
stack and then assembled to the parameter field of the new def inition on top

of the dictionary.

The Level 1 assembler would use the defining wad CONSTANT to
define assembly mnemorics relating them to their respective machine codes.

168

The text interpreter when confronted with a mnemonic name would push the
corresponding machine code on the stack. The code will then be assemhled
to the dictiomary by the words , a C, . Anexample is:

0 CONSTANT HALT

which defines HALT as a constant of 0. During assemhly, the phrase

would assemble a BALT instruction into the dictionary. To make it easier

for himself, the programmer might want a new def inition:
: HALT, HALT , ;

Executing HALT, would then assemble the HALT instruction to the dictionary.

Historically all assembler definitions end their names with a canma
for the reason just described, indicating that the definition causes an
instruction to be assembhled to the dictionary. This corwention serves very

well todistinguish assembler definitions fram regular FORIH def initions.
This scheme in Level 1 is quite adequate if there were a one to one
mapping from mnemonics to machine codes. However, in cases where many codes

share the same mnemonic and differ only in operands or addressing mode, the

169

basic code must be augmented to accommodate cperands or address fields. It
is not difficult to modify definitions as HALT, to make the necessary
changes in the code, which has to pass the data stack anyway. To define
each assembly mnemonic individwally is messy and inelegant. A much more
appealing method is to use the <BUILDS-DOES> construct in the FORTH lamguage
to define whole classes of memomics with the same characteristics, which
brings us to the Level 2 assembler.

In the last example of the HALT instruction, instead of using
CONSTANT to relate the mnemonic name with the code, a def ining wad is

created as:

L]

OP <BUILDS , DOES> @ , ;

The instruction HALT, is then defined by the defining waxd OP as:

0 OP HALT, 1 OP WAIT, 5 OP RESET, . ..

Now, when HALT, is later processed by the text intermpreter, the code 0

is automatically assembled into the dictionary by the run-time routine

e, .

The <BUILDS-DOES> construct can be applied to all other types of

assembly mnemonics to assemble different classes of instmctions, providing

scme of the finest examples for the extensibil ity in the FORTH language.

170

No other language can possibly offer such a powerful tool to its programmers.

A syntactic problem in using the FORTH assembler is that before the
mnemonics can be executed to assemble a machine code, all the addressing
information and operands must be provided on the data stack. Therefore,
operands must preceed the instruction mnemomics, resulting in the postfix
notation. The source listing of a FORTE oode definition is therefore very
different from the corwentional assamhbly sowrce lisﬁng, where the operands
follow the assembly memomic. Using the data stack and the postf ix notation
greatly facilitates the assembling process in the FORTH assembler. This is
a very small price to pay for the capability to access the host CPU and to

make the fullest use of the resources in a camputer system.

Two assemblers will be discussed in this Chapter in an effort to
cover the widest range of micr ofr oce ssors. Oe is for the Intel 8080A
which is a byte oriented machine with a rather primitive instruction set.
On the other end is the PDP-11 instruction set, which is extensively
microcoded in a 16 bit wide code field I feel th& these two examples
should be sufficient to illustrate how FORTH assemblers for most other

microprocessors are constructed.

171

PDP-11 ASSEMBLER

The PDP-11 instruction set is typical of that for minicomputers.
With a 16 bit instruction field, much more flexible and versatile addressing
schemes are possible than those used in the 8 bit instructions of most
common microprocessors. In addition, PDP-1ll is a stack oriented machine
in which all registers can be used as stack pointers in addition to normal
accumulator and addressing functions, There are 8 registers in the PDP-11
CPU : registers 0 to 5 are general pupose registers, register 6 is a
dedicated stack pointer, and register 7 is the program counter. Registers
can be used in many different addressing modes, making it very corwerient to
host a FORTH virtual machine in the FDR-11 computer,

The following command sequence must be given first to initiate the
ASSEMBLER vecalulary and to prepare the FORTH system to build the assembler.

CCTAL PDP-11 instructions are best presented in octal base because
address fields are 6 bits wicde.

0 VARIAEBLE OLIBASE
To ease switching base to and fram octal, the currently used
base will be stored away in OLIBASE, to be restored when the
assembly process is campleted.

VOCABULARY ASSEMBLER IMMEDIATE

172

Create the assembler vccalulary to house all the assemhbly

mnemonics and other necessary def initions.

¢ ENTERQODE Invoke ASSEMELER vocabulary to start the assembly process.
[COMPILE] ASSEMBLER
Set CONTEXT to ASSEMELER to search for the mnemomics.

BASE € OLIBASE ! OCTAL
Switch base to octal. Save o0ld base to be restored after

assembly.
SPe Puwsh stack painter on stack for error checking at end.
i
¢+ CODE A more ref ined def ining ward to start a code def inition.
CREATE Create a header with the name following CODE .
ENTERCODE Invoke ASSEMHLER .

-y

ASSEMBLER DEFINITIONS
Set both ONTEXT and CURRENT vocabularies to ASSEMELER .
New definitions hereafter will be placed in the assembler

vecahulary.
Before discussing the assembler definitions, the CPU registers and
their addressing modes should be clarified. An address field uses 6 bits in

an instruction. The lower 3 bits specify a register to be referenced for

173

addressing, and the upper 3 bits specify the addressing mode. The register
and the addressing mode are cambined to form an address field which is used
to specify either a source operand or a destination operand in the assembly
instruction as required. Registers and modes are defined as follows:

: IS CONSTANT ; Short hand for CONSTANT .

OISRO 1ISRL 2ISR 3ISRB 4ISRM 5ISR 6 IS SpP

7ISPC 21ISW 3IsU 4 ISIP 51IsS 6 IS RP

: RTST r mode —-— addr-field -1
Test register r for ramge between 0 and 7. Ad r and mode
to farm address field addr-field . Also leae a flag -1 an
stack to indicate that an addess field is undemeath.

OVER Get r to top for tests.

DUP 7 > Larger than 7 ?

SWAP 0 < Smaller than 0 ?

CR IF In either case, issue an error message,

." NOT A REGISTER:"

OVER . ENDIF with the offending number appended.
+ addr-field = r + mode
-1 The flag.

The addressing modes are defined as executable def initions using

174

names similar to the operand notation used in PDP assembly language with
some twists. The stack effects are: r — addr-field, =-1 .

¢)+ 20 RIST ; Post-increment register mode.

: =) 40 RIST Pre-decrement register mode.

-

: I) 60 RIST Indexed register mode.

: @)+ 30 RIST Deferred post-increment mode.

-

: 6-) 50 RIST
: €@I) 70 RIST ; Deferred index mode.

Deferred pre-decrement mode.

The addressing mode using the program counter is samewhat different

from the modes using other general purpose registers.

2] -1 ; Immediate addressing mode.

et 37 -1 " Arsolute addressing mode.

Ll]
-

s () r =—— addr-field -1 for register deferred moce.
n = n 77 =1 far relative deferred mode.

DUP 10 UK Top of stack is between 0 and 7, a register.

IF 10 + =1 Make the address field

ELSE 77 =1 ENDIF Otherwise, top of stack is an address of fset. Make

it the relative deferred mode.

-8

The simplest instruction requires no operand. These instructions

175

can be defined by a simple defining ward:

: OP

<BUILDS

DOES>

0 OP HALT,

6 OP RIT,
261 OP SEC,
257 CP CCC,

A defining ward to def ine instructions without operards.

Create an header for a mnenomic def inition with the mnemnonic

name following OP .

Canpile the instruction code on the stack to the parameter

field in the new def inition.

When the defined mnemomic definition is executed during

assembly,

execute the following wards:

Fetch the instruction code stored in parameter field and

assemble

it to the code def inition under construction on

top of the dictionary.

1 OP WAIT,

241 Op .G,
262 OP SEV,

240 OP NCP,

2 CPRTI, 3 O0PBFT, 4CPIOT, 5 OP RESET,
242 OP CIv, 244 0P 1z, 250 OP CLN,
264 OP SEZ, 270 OP SEN, 277 OP SCC,
6400 OP MARK,

Instructions with operands are of course more involved. Those with

only one cperand are def ined by a def ining ward

many other utility definitions.

level

10P before getting

low level definitions,

e . This ward uses

However, we shall first present the high

into the nitty gritty details of the other

176

: 10P

<BUILDS , DOES>

e,

FIXMODE

HERE 2 - CRMDDE

A defining ward to define instructions with one operand.

The same def ining ward format.
When the def ined ward is executed during assembly, the basic
instruction code is fetched and assembled to the dictionary.
Take the mode packet on stack to resalwe the address field
Copy the address field.

Insert the address field into the lower 6 bit

destination field.

+OPERAND If the instruction needs a 16 bit valwe either as a literal
or as an address, assemble it after the instruction.
: FIXMODE Fix the mode packet on the data stack for ORMODE and
,OPERAND to assemble the instruction correctly.
addr-field -1 — add-field
r = [
n = n 67
DUP -1 = Tep of stack = =1 ?
IF DRCP Yes, drop -1 and leave addr-field on top.
ELSE The top of the stack might be a register or a literal.
DUP 10 SWAP U< If top of stack is larger than 7 , PC relative mode.
IF 67 INDIF Push 67 on topof n , indicating FC mode.
Otherwise, leave the register number on the stack.
ENDIF

-

177

: CRMODE

SWAP

OVER @

SWAP !

: ,OPERAND

DUP 67 =
OVER 77 =
OR IF

SWAP
HERE 2 + -
SWAP
ENDIF
DUP 27 =
OVER 37 = R

SWAP

177760 AND 60 = (R

addr-field addr —
Take the address field value add-field and insert it into
the lower 6 bit address field in the instruction code at
addr .
Move addr-field to top of the stack.
Fetch the instruction code at addr .
Insert address field,

Put the modified instruction back,

(n) addr-field —
Assemble a literal to the dictionary to complete a program
counter addressing instruction.
EC relative mode ?
Or PC relative deferred mode?
In either case,
move operard n to top of the stack,
Campute offset fran n to the next instruction address.
Put the cffset value under addr-field.

PC immediate mode ?
Or EC abksclute mode ?
Get addr-field for another test.

Or if it is index addressing mode.

178

IF , INDIF

-

100000
HERE 2 = +!

-
’

5100 1CP CLR,
5600 10P SBC,
6300 10P ASL,

: ROP

<BUILDS , DOES>
e,

In any of the three cases, assemble the literal after the
instruction code.
None of above. The instruction does not need a literal. It

is already complete,

Modify the instruction code just assembled to the dictionary
to make a byte instruction fram a cell instruction.

MSB of the byte instruction must be set.

Toggle the MSB of the instruction code on top of dictionary.
B is to be used immediately after an instruction Gef inition
like opl op2 MWV, B to move a byte fran opl to op2 .
The byte instruction can be def ined separately as MOVB, .
However, the modifier definition B is more elegant in

reducing the number of menonic definitions by 25%.

5200 10P INC, 5300 1OP DEC, 5400 1OP NEG, 5500 1OP ADC,
5700 10p TST, 6000 10P RCR, 6100 1OP RQ., 6200 1OP ASR,
6700 10P SXT, 100 10P JMP,

A defining word to define two operand instructions. The
source operand can only be a register without mode selection.
The destination address field is the lower 6 bits, and the
source register is specified by bits 6 to 8.

Make header and store instruction code.

When defined instruction is executed, assemble the basic

179

instruction code to the dictiomary.

FIXMODE Fix the destination address field.

JpP Copy the just campleted address field valiwe.

HERE 2 - Address of the instruction.

DUP >R Save a oopy of this address on the return stack to fix the

source register field undemeath it on the stack.
CRMODE Insert the destination address field into the instruction.
,OPERAND Ifl a literal operand is required, assemble it here. .
DUP 7 SWAP U< The register number must be less than 7 .
IF ." ERR-REG-B" ENDIF
The register number is too big, issue an error message.
100 * R> ORMODE Justify the source register field value and insert

it into the instruction.

74000 RCP XOR, 4000 RCP JSR,

: BP A defining ward used to define branching and conditional
branching instructions. This wad is included only for
completeness since the branchings are not structured. 1In
FORTH oode definitions, more powerful branching and loopming
structures should be used, as will be discussed shortly.

HERE - The target address is presummably on data stack., Compute

180

the off=t value far branching.
DUP 376 > If the of fset is greater than 376, isswe an error message:
IF ." ERR-BR+" . ENDIF with the out of range offset.
DUP =400 < If the coffset is less than -400, issue an error message:
IF ." ERR-BR-" . ENDIF with the out of range offset.
2 / 377 AND The correct offset valwe is then

HERE 2 = (RMDDE inserted into the instruction code.

.
’

400 BCP BR, 1000 BCP BNE, 1400 BCP BEQ, 2000 BCGP B&GE, 2400 BCP ELT,
3000 BCP BGT, 3400 BCP BLE, 100000 BCP BFL, 100400 BCP BMI,

101000 BCP BHI, 101400 BCP BLOS, 102000 BCP BVC, 102400 BCP BVS,
103000 BCP BCC, 103400 BCGP BCS, 103400 BCP BLO, 103000 BCP BHIS,

: 20P A def ining ward to def ine two operand instructions.
<BUILDS , DOES>

e .,

FIXMODE Fix the mode packet for destination field

DUP HERE 2 - Get the address of the instruction to be fixed.

DUP >R Save a copy of the instruction address on return stack.
CRMODE Insert the destination field. |

»OPERAND Assemble a literal after the instruction if reguired.
FIXMODE Now process the source mode packet.,

DUP 100 * Justify the source field valwe.

R CRMODE Insert the souwrce field into the instruction.

18l

,OPERAND Assemble a literal if required.

HERE R> - 6 = If there are two literals assemhled after the instruction,
they are in the wrorg order.

IF SWAPOP ENDIF The two literals have to be swapped.

.
r

: SWAPOP Swap the two literals after a two operand instruction. If
either literal is used for BC addressing, the offset value
will have to be adjusted to reflect the swapping.

HERE 2 - @ Push the last literal on the stack.
HERE 6 — @ This is the instruction code itself.
6700 AND 6700 = EC relative mode?

IF 2 + ENDIF Yes, increment the last literal by 2.

HERE 4 - @ Now work on the first literal,
HERE 6 - @ Get the instruction back again.
67 AND 67 = Is the destination field also of FC relative mode?

IF 2 - ENDIF If it is, decrement the branching offset by 2.
HERE 2 = ! Put the first offset last,

HERE 4 - ! ; and the last offset first.

10000 20p MOV, 20000 20p CMP, 30000 20P BIT, 40000 20P BIC,
50000 20p BIs, 60000 20P ADD, 160000 20P SUB,

Two more instructions need to be patched:

RST, 200 OR , ;
EMT, . 104000 + , ;

(1]

The branching instructions are similar to the GOTO statements in
high level languages. They are not very useful in pranoting modular and
structured programming. Therefore, their usage in FORTH code def initions
should be discouraged. Samewhat modified forms of these branch instructions
are defined in the assembler to code IF-ELSE-INDIF and BEGIN-UNTIL types
of structures. Although these structures are very similar to the structures
used in colon definitions, the functions of these words in the assmbler are
different. Thus it is a good practice to def ine them with names ending in
commas as all other mnemomric def initions. However, the comma at the ernd
does not imply that an instruction code is always assembled by these special

definitions.

The conditiomal branching instructions are def ined as constants to
be assembled by the words requiring branching. The notation is reversed

from the PDP mnemonics because of this assembling procedire.

1000 IS BQ 1400 IS NE 2000 IS LT 2400 ISGE 3000 IS LE 3400 IS GT
100000 IS MI 101000 IS LOS 101400 IS HI 102000 IS Vs 102400 IS VC
103000 IS LO 103400 IS HIS

: IF, n — adar
Take the literal n on stack and assemble it to dictionary

as a conditiomal branching instruction. Leave the ad&ess of

183

SWAP ,

-

: IPATCH,

OVER -
2 / 1= 377 AND
SWAP DUP @
ROT OR

SWAP !

: ENDIF,

HERE IPATCH,

: ELSE,

this branching instruction on the data stack to resalwe
the branching offset later.
Address of the branching instruction.

Assemble the branching instruction to the dictionary.

addrl addr2 —-
Use the addresses left on the stack to compute the forward
branching offset and patch up the instrmuction assembled by
IF; .
Byte offset fran addrl to addr2.
The 8 bit instruction of fset.
Fetch out the branching instruction at addrl .
Insert the offset into the branching instruction.

Put the completed instruction back.

addr -—=
Clo=e the corditiomal structure in a code def inition,

Call on TIPATCH, to resalwe the forward branching.

addrl — addr2

184

400 ,
HERE IPATCH,
HERE 2 -

: BEGIN,

-

HERE 2 =

SWAP IPATCH,

Assemble an unconditiomal branch instruction at HERE ,
and patch up the offset field in the instruction assembled
by IF, . Leave the addess of the current branch instruction
on the stack for ENDIF, to resalwe.

Assemble the BR, instruction to the dictionary.

Patch up the conditional branching instruction at IF, .

Leave address of BR, for ELSE, to patch up.

addr —-
Begin an indefinite loop. Push [P an stack for backward
branching.

addr n —
Assemble the oonditional branching instruction n to the
dictiomary, taking addr as the address to branch back to.
Assemble n which must be one of the conditional branching
instruction codes.
The address of the above instruction.

Patch up the offset in the branching instruction.

addrl add&2 —
UEd il’l th-e fOfm: Bmmf . ® @ WHILE; . " ® REEM!

185

inside a code definition. Assemble an unconditional branch
instruction pointing to BHGIN, at addrl, and resolve the

foarward branch offset for WHILE, at add2 .

HERE Save the P pointing to the current BR, instruction.

400 , Assemble BR, here.

ROT IFATCH, Patch the BR, instruction to branch back to BEGIN, at
addrl .

HERE This is where the conditional branch at WHILE, should
branch to on false cordition.

IPATCH, Patch up the corditional branch at WHILE, .

: WHILE, n — addr
Assemble a conditiomal jump instruction at HERE . Push the
address of this instruction addr on the stack for REPEAT,
to resolve the forward jump address.

HERE Push [P to stack.

SWAP Move n to top of stack, and

" .assemble it literally as an instruction.

£ Cr addr —-
Ending of a code definition started by ENTEROODE .

CURRENT @ CONTEXT ! Restore CONTEXT vocabulary to CURRENT . Thus

186

abandon the ASSEMBLER veccalulary to the current vocabulary
where the new coode definition was added. The programmer

can now test the new def inition.

CLIBASE @ BASE ! Restore the old base before assemhling,
SP@ 2+ = Campare the current SP with addr on the stack,
IF SMULGE if they are the same, the stack was not disturbed. Restore

the smudged header to camplete the new def inition.
EISE ." CODE ERROR, STACK DEPTH CHANGED"
Otherwise, issue an error message.

ENDIF

-e

: NEXT, The address interpreter returning execution process to the
colon definition which calls the code definition. This
must be the last word in a code def inition before C; .

IP)+ W MOV, Move the contents of IP to W. IP is incremented by 2.

W @)+ JMP, Junp to execute the instruction sequence pointed to by
the contents of W. W is incremented by 2, pointing to
the paraneté: field of the word to be executed,

-

FORTH DEFINITIONS The assembler vocabulary is now campleted. Return
to the FORTH trunk veocabulary by setting both CONTEXT
and CURRENT to FORIE .

DECIMAL Restore decimal base. The base was chamged to octal when

entering the a process of creating the assembler.

187

8080 ASSEMELER

The assembler is usually defined in an independent vocabulary
separated from the trurk FORTH veccabulary and other vocabularies. To
generate the ASSEMELER vocabulary and to make same modifications in
the FORTH vocabulary, the following wards must be executed. These words
are commands to setup the ASSEMELER vccabulary.

HEX All 8080 codes will be represented in hexadecimal base.

VOCABULARY ASSEMBLER Create a new vocabulary for assembler.

IMMEDIATE Vocahulary must. be of IMMEDIATE type to be used within
colon definitions.

' ASSEMBLER CFA Get the code field address of ASSEMELER definition, and

' ;OODE OA + ! patch up the code in ;CODE . This is to replace the word
SMUIGE with ASSEMBLER , so that the codes following
;CODE can be understoad in the context of the assemhbler.
The function of SMUDGE is deferred to the end of the

code sequence in C; .

: CODE A more fully developed def inition to start a code def inition
with error checking.
?EXBEC If not executing, isswe an error message.

CREATE Create a new dictionary header with the following name.

188

[COMPILE]
ASSEMELER

1CSP

2y

Canpile the next IMMEDIATE ward.

Switch the OINTEXT to ASSEMHELER vcocabulary to search
assembly mnemonics first before the current vocabulary.
Store current stack painter in CSP far later error
checking.

Ending of a new code def inition. Check for error and restare
the smudsed header.

CURRENT @ CONTEXT ! At the beginning of assembly, CONTEXT was switched to

ZEXEC

; IMMEDIATE

: LABEL

ZEXEC
0 VARIAELE

SMULGE

ASSEMBLER , to search for the assemhler mnemonics. After the
code definition is completed, OINTEXT must be restored to
CURRENT vecalulary to continue program Gevelomment or testing.
If not executing, isswe an error message.

If the data stack was disturbed, issie an error message.

Define a subroutine which can be called by the assembler CALL

instruction. It is not necess=ry in FORTH.

Subroutine header is defined as a variable with a dunmy
value 0. When the name is executed, the address of its
parameter field will be put on the stack to be used by the
CALL instruction.

Smudoe the header as uswal,

189

-2 ALIOT Backup the dictiomary pointer to overwrite the dummy 0 with
the subroutine.

[COMPILE] ASSEMBLER Get the assembler to process the memonics following.

ICSP Store SP fa error checking.
; IMMEDIATE
: 8" Multiply top of stack by 8.

DUP + DUP + DUP + , Faster than doing real multiplication on an 8080.

ASSEMBLER DEFINITIONS Set both the CONTEXT and CURRENT vocabularies
to ASSEMBLER . Now, all subsequent def initions are put
into the ASSEMELER vocabulary to be referenced by COLDE
and ;CQODE . The definitions up to this point went into
the FORTH vocakulary.

: IS QONSTANT : Shorthand of CONSTANT .

Following are register name defiqitions:

0ISB 1ISsC 2ISD 3ISE 4ISsH 5ISL 6IsM 71ISA

6 ISPSN 6 IS SP 2A28 IS NEXT
In 8080 fig- + NEXT was defined as a code routine
starting at address 2A28 in memory. With NEXT thus
defined as a oonstant, NEXT JMP should be the last

instruction in a code def inition before C; 5

190

: IMD A defining waxd to create single byte 8080 instructions

without operands. MI stands for machine instruction.

<BUILDS Create a header with the name following.
C, Store instruction code on the stack to the parameter field.
DOES> The following wards are to be executed when the newly

defined mnemonic name is executed during assembly.
ce C, Fetch the instruction code stored in the parameter field and
assemble it into the dictionary as a byte literal.
The following single byte instructions are defined by 1MI .

-

76 1IMI HLT 07 1MI RLC OF 1MI RRC 17 1IMI RAL 1F 1MI RAR (9 1MI RET
D8 1MI RC DO IMI RNC C8 1MI RZ CO 1MI R\Z FO 1MI RP F8 1MI RM
ESIMI RFE E0 IMIRFO 2FIMICMA 37 1MI STC 3F 1IMI CMC 27 1MI DAA
FB 1MI EI F3 1IMI DI 00 1IMI NCP ES 1MI PCHL F9 1MI SPEL E3 XTHL

EB 1MI XCHG

: 2MI A defining ward to define B080A instructions with a source
operand. The source field is the least significant 3 bits.

<BUILDS C, DOES> Create a header for the mnemonic name following.
Store the instruction code in the parameter field.

ce + C, When the memonic defined is executed, the code valwe is

pulled out from the parameter field, the number representing
the source register on the stack is addd to the code ana
the completed instruction is assembled to the dictionary.

The following 8080 instructions are defined by 2MI

-

191

80 2MI ADD 88 2MI ADC 90 2MI SUB 98 2MI SBB A0 2MI ANA A8 2MI XRA

BO 2MI ORA B8 2MI OMP

: 3MI A defining ward to def ine 8080 instructions with destination
register specified in the bits 3, 4, and 5.

<BUILDS C, DOES>

ce When the mnemonmic is executed during assemhly, the basic
code value is fetched fram the parameter field.

SWAP The operand's register number on the stack is swapped over
the code value, and

8* multiplied by 8 to line up with the destination field.

+ C, A4l the register number to the ihstrud:ion and assemble it.

-e

Following instructions are defined by 3MI :

04 3MI INR 05 3MI DAR C7 3MI RST C5 3MI PUSH Cl 3MI FOP
09 3MI DAD 02 3MI STAX OA 3MI LIAX 03 3MI INX OB 3MI DX

: 4MI A def ining ward to def ine 8080 instruction with an immediate
byte value following the instruction code.

<BUILDS C, DOES>

ce ¢, G, The instruction code is fetched fram the parameter field and

assembled into the dictionary, and the byte value given on

the stack is assembled following the instruction code.

Examples are:

e

192

C6 4MI ADI CE 4MI ACI D6 4MI SUI DE 4MI SBI E6 4MI ANI EE 4MI XRI

F6 4MI ORI FE4MICPI IB 4MI IN D3 4MI QUT

: 5MI A defining word to define 8080 instruction taking a 16 bit
value as an operand, either as an address or as an immediate
value for operations.

<BUILDS C, DOES>

ce C, When the def ined mnemonic is executed, the instruction code
is assembled to the dictionary.

. The number on the stack is assembled after the instruction.

Examples are:

C5MIJvp O SMI CALL 32 5MI STA 3ASMI LA 22 5MI SHLD 2A 5MI LHLD

The 8080 MOV instruction needs two operands to specify the source
and destination registers for data movements. The two register numbers
are pushed on the data stack for the MW definition to pick up and
assemble as one instruction code. The MI and [IXI instructions

behave similarly.

: MOV bl b2 —-
Assemble a MOV instruction to the dictionary with bl
representing source register and b2 destination register.

B* b2*8 is the destination field.

193

40

C,

-

g*

+ C,

-

8* 1+ C,

-

Basic code for a MOV instruction.
Add the soufce and destination field to the instruction.

Assemble to dictionary.

Bl b2 ~—
Assemble a MVI instruction to dictionary, with b2 specifying
the destination field and bl the immediate byte value
following the instruction.
Destination field.
Basic MVI instruction code.
Assemble the instruction.

Assemble the immediate byte value after the instruction.

n b =-—
Assemble a LXI instruction with b specifying the destination
register pair, and n as a two byte immediate value to be
loaded into the register pair.
Assemble the LXI instruction.

Assemble the two byte immediate valwe after the instruction.

The foregoing discussion oovers most of the 8080 instruction

set with the exception of corditional jump instructions. The reason is that

194

SWAP
1 ?PAIRS

Cr

1 ?PAIRS
C3C,

-8

: WHILE

Leave current P on stack for backward branching fram
the end of the loop.
Flag for error checking.

addr n b —
End of an indefinite loop. Assemhle a conditional jump
instruction b and address add&r of BEGIN far backward
branching.
Get n to top of the stack for error checking.
If n isnotl , isste an error message.
Assemble b literally as a corditional jump instruction.
Assemble the address addr of BEGIN for branching.

addir n —
End of an infinite loop. Assemble an uwnconditional jump
instruction to branch backward to add .
Check n for error.
Assemble the JMP instruction,

with the address adar .

b — adda 4

197

Abort an infinite loop from the middle insid the loop.
Assemble a conditional jump instruction b , and leave
the DP and a flag on the stack for REPEAT to resalwe the
backward jump address.

Used in the faom: BBEGIN . . . WHILE . . . REPEAT

IF Use IF to do the dirty work.

2+ The flag left by IF 1is 2. Change it to 4 for REPEAT
to verify.

: REPEAT addrl nl addr2 n2 —-

Assemble JMP addrl to dictionary to close the loop fram
BEGIN . Resolve forward jump address at addr2 as required
by WHILE .

>R >R Get addr2 and n2 out of way.

2GAIN Let AGAIN assemble the backward jump.

R R> 2- Bring back addr2 and n2. Charnge n2 back to 2.

ENDIF Check error. Resolve jump address for WHILE .

FORTH DEFINITIONS The whole ASSEMELER vocabulary is now completed.
restore the CONTEXT and CURRENT vocabularies to the
trunk FORTH vocabulary for normal programming activity.

DECIMAL Restore base fran hexadecimal .,

198

#

$>

$LAG
$LEAD
#LOCATE
#S

L}

(™)
(;CODE)
(+LOOP)
(ABORT)
(DO)
(FIND)
(LINE)
(LOOP)
(NUMBER)
+BUF
+LOOP

’
OPERAND

-=>
~FIND
-MOVE
-TEXT

-=TRAILING

«LINE
.R
OBRANCH
1LINE
1MI

10P

2MI

20P

3MI

4MI
S5MI

’

;CODE
iS

<t
<BUILDS

INDEX

199

? 94
?COMP 68
?CSP 69
2ERROR 65
?EXEC 69
?LOADING 69
?PAIRS 69
?STACK 70
ABORT 42
Address interpreter

49
AGAIN 141,197
ALLOT 98
ASCII character get
ASSEMBLER 167
B 164,179
B/BUF 35
B/SCR 35
BACK 140
BASE 36
BEGIN 140,196
BL 35
BLANKS 38
BLK 36
BLOCK 112
BOP 180
BRANCH 136
BUFFER 115
C 165
C, 99
CFA 104
Characters 3
CLEAR 156
CODE 62,173,188
Code field 59,123
Code instructions

14
COLD 41
Colon instructions

12
COMPILE 8 & L]
Compiler S
Compiler directives

133

12,20,123

CONSTANT 129
Constants 15
CONTEXT 36
Control structures
134
CoPY 156
COUNT 78
CREATE 59
CSP 36
CURRENT 36
Current word pointer
51
D 154
D. 93
D.R 93
Data stack 29
Data stack pointer
Si
DECIMAL 85
Defining Instructions
DEFINITIONS 102
DELETE 163
Dictionary 27,97
Disc memory 109
DO 145
DOCOL 53
DOCON 130
DODOE 129
DOES> 128
DOUSE 132
DOVAR 131
DP 36
DPL 36
DRO 118
DR1 119
DUMP 95
E 154
EDITOR 151
Editor 149
ELSE 139,196
ELSE, 184
EMPTY-BUFFERS 118
ENDIF 138,196
ENDIF, 184
ENTERCODE 173
ERASE 38
ERROR 67
Error handling 65
EXECUTE 52

200

EXPECT 71
F 164
FENCE 36
FILL 37
FIND 163
FIRST 35
FIXMODE 177
FLD 36
FLUSH 119
FORGET 106
FORTH 101
FORTH loop 40
H 153
Header 59
HEX 85
HLD 36
HOLD 90
I 145,155
ID. 81
IF 138,195
IF, 183
IMMEDIATE 133
Immediate words 133
IN 36
Instructions 8
Integers 6
INTERPRET 43
Interpreters 20
Interpretive pointer
51
IP 51
IS 174,190
L 162
LATEST 105
LEAVE 145
LFA 104
LIMIT 35
LINE 152
Link field 59
LIST 83
LIT 55
LOAD 120
LOOP 146
M 16l
MATCH 158
Memory map 28
MESSAGE 68
MoV 193
MVI 194
N 164

s

Name field

Nesting of colon

59

definitions 50
Nesting of structures
14
NEXT 52
NEXT, 187
NFA 104
NOT 195
NULL 47
NUMBER 88
Numbers 15
Numeric conversions
85
OFFSET 36
OP 176
ORMODE 178
ouT 36
P 155
PAD ' 27
Parameter field 59
PFA 104
POP -3
Precedence bit 58,60
PREV 36
PUSH 55
PUT 55
QUERY 74
QUIT 42
R 155
RéE 36
R/W 116
RO 36
REPEAT 143,198
REPEAT, 185
Return stack 29,53
Return stack poig{er
ROP 179
RP 51
RTST 174
S 51,153
S0 36
SCR 36
SIGN 91
SMUDGE 64
Smudge bit 60,64
SPACE 92
SPACES 92

Standard instructions

9

201

X

[
[COMPILE]

]

STATE 36,57
States 57
SWAPOP 182
System constants

35
T 162
Terminal input buffer

28,29
Terminal input output

71
TEXT 152
Text interpreter

39
TIB 36
TILL 165
TOP 160
TRAVERSE 103
TYPE 77
ONTIL 141,197
UNTIL, 185
UPDATE 117
Update bit 111,118
USE 36
USER 132
User instructions

12
User variables 36
VARIABLE 130
Variables 15
Virtual FORTE computer

8,27
Virtual memory 109
VOC-LINK 36
VOCABULARY 101
Vocabulary 17
VLIST 107
W 51
WARNING 36
WHILE 142.197
WHILE, 186

" WIDTH 36

WORD 74
Word buffer 27
Words 4

47,155,164
54

136

58

CUris MCBE’IEN,

[. MiLton OF STKALOCH,
NEWMACHAR, 95

Abeepeen, ARH.0QE.
L2t 0bs)- 223979
TEL - 01651-8%2379

ol

