

Angular
and

Deep Learning
Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY,
AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this
license grants permission to use the contents contained herein, including the
disc, but does not give you the right of ownership to any of the textual content
in the book / disc or ownership to any of the information or products contained
in it. This license does not permit uploading of the Work onto the Internet
or on a network (of any kind) without the written consent of the Publisher.
Duplication or dissemination of any text, code, simulations, images, etc.
contained herein is limited to and subject to licensing terms for the respective
products, and permission must be obtained from the Publisher or the owner
of the content, etc., in order to reproduce or network any portion of the textual
material (in any media) that is contained in the Work.

Mercury Learning and Information  (“MLI” or “the Publisher”) and
anyone involved in the creation, writing, or production of the companion disc,
accompanying algorithms, code, or computer programs (“the software”), and
any accompanying Web site or software of the Work, cannot and do not warrant
the performance or results that might be obtained by using the contents of the
Work. The author, developers, and the Publisher have used their best efforts to
insure the accuracy and functionality of the textual material and/or programs
contained in this package; we, however, make no warranty of any kind, express
or implied, regarding the performance of these contents or programs. The
Work is sold “as is” without warranty (except for defective materials used in
manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or disc, and only at the discretion of the Publisher.
The use of “implied warranty” and certain “exclusions” vary from state to state,
and might not apply to the purchaser of this product.

(Companion files are also available for downloading from the publisher at
info@merclearning.com.)

Angular
and

Deep Learning
Pocket Primer
Oswald Campesato

Mercury Learning and Information
Dulles, Virginia

Boston, Massachusetts
New Delhi

Copyright ©2021 by Mercury Learning and Information LLC. All rights re-
served.

This publication, portions of it, or any accompanying software may not be reproduced
in any way, stored in a retrieval system of any type, or transmitted by any means, me-
dia, electronic display or mechanical display, including, but not limited to, photocopy,
recording, Internet postings, or scanning, without prior permission in writing from the
publisher.

Publisher: David Pallai
Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

O. Campesato. Angular and Deep Learning Pocket Primer.
ISBN: 978-1-68392-473-9

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies.
Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an at-
tempt to infringe on the property of others.

Library of Congress Control Number: 2020946795

202122 321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corpo-
rations, etc. For additional information, please contact the Customer Service Dept. at
(800) 232-0223(toll free).

Digital versions of our titles are available at: www.academiccourseware.com and other
electronic vendors. Companion files are available from the publisher by writing to
info@merclearning.com.

The sole obligation of Mercury Learning and Information to the purchaser is to
replace the book and/or disc, based on defective materials or faulty workmanship, but
not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents –
may this bring joy and happiness into their lives.

Contents

Preface���xi

1	 Quick Introduction to Angular������������� 1–50

What You Need to Understand for Angular Applications�������������� 2
A High-Level View of Angular�� 4
A High-Level View of Angular Applications���������������������������������� 7
The Angular CLI �� 7
Features of the Angular CLI (optional)�� 10
A Hello World Angular Application �� 11
The Contents of the Three Main Files �� 16
The index.html Web Page �� 19
Exporting and Importing Packages and Classes (optional)���������� 20
Working with Components in Angular�� 21
Syntax, Attributes, and Properties in Angular������������������������������ 22
Angular Lifecycle Methods �� 23
A Simple Example of Angular Lifecycle Methods ���������������������� 24
CSS3 Animation Effects in Angular �� 26
Animation Effects via the “Angular Way” ������������������������������������ 28
A Basic SVG Example in Angular �� 31
Detecting Mouse Positions in Angular Applications�������������������� 34
Angular and Follow-the-Mouse in SVG�� 36
Angular and SVG Charts �� 38

viii • Angular and Deep Learning Pocket Primer

D3 Animation and Angular�� 45
Summary�� 49

2	 UI Controls, User Input, and Pipes�������� 51–98

The ngFor Directive in Angular�� 52
Displaying a Button in Angular �� 53
Angular and Radio Buttons �� 55
Adding Items to a List in Angular �� 56
Deleting Items from a List in Angular�� 58
Angular Directives and Child Components���������������������������������� 60
The Constructor and Storing State in Angular ���������������������������� 62
Conditional Logic in Angular �� 64
Handling User Input�� 65
Click Events in Multiple Components�� 69
Working with @Input, @Output, and EventEmitter ������������������ 71
Presentational Components�� 76
Working with Pipes in Angular �� 77
Creating a Custom Angular Pipe�� 78
Reading JSON Data via an Observable in Angular���������������������� 83
Upgrading Code from Earlier Angular Versions ������������������������ 86
Reading Multiple Files with JSON Data in Angular�������������������� 87
Reading CSV Files in Angular�� 93
Summary�� 97

3	 Forms and Services������������������������������������ 99–138

Overview of Angular Forms�� 99
An Angular Form Example��� 101
Angular Forms with FormBuilder�� 104
Angular Reactive Forms�� 106
Other Form Features in Angular�� 109
What are Angular Services?�� 110
An Angular Service Example�� 112
A Service with an EventEmitter�� 113
Searching for a GitHub User�� 117
Other Service-related Use Cases�� 121
Flickr Image Search Using jQuery and Angular������������������������ 124
HTTP GET Requests with a Simple Server������������������������������ 127

Contents • ix

HTTP POST Requests with a Simple Server ���������������������������� 129
An SVG Line Plot from Simulated Data in Angular
(optional)�� 133
Summary�� 138

4	 Deep Learning Introduction������������� 139–166

Keras and the xor Function�� 139
What is Deep Learning?�� 142
What are Perceptrons?�� 145
The Anatomy of an Artificial Neural Network (ANN) �������������� 147
What is a Multilayer Perceptron (MLP)? ���������������������������������� 151
How are Datapoints Correctly Classified?���������������������������������� 153
A High-Level View of CNNs�� 154
Displaying an Image in the MNIST Dataset ������������������������������ 158
Keras and the Mnist Dataset�� 159
Keras, CNNs, and the Mnist Dataset�� 161
CNNS with Audio Signals �� 164
Summary�� 165

5	 Deep Learning: RNNs and LSTMs����������� 167–192

What is an RNN? �� 168
Working with RNNs and Keras�� 170
Working with Keras, RNNs, and MNIST�������������������������������� 171
Working with TensorFlow and RNNs (Optional)���������������������� 174
What is an LSTM? �� 177
Working with TensorFlow and LSTMs (Optional)�������������������� 181
What are GRUs?�� 184
What are Autoencoders? �� 184
What are GANs?�� 187
Creating a GAN �� 189
Summary �� 192

6	 Angular and TensorFlow.js����������������� 193–228

What is TensorFlow.js?�� 194
Working with Tensors in TensorFlow.js�������������������������������������� 196
Machine Learning APIs in TensorFlow.js���������������������������������� 197

x • Angular and Deep Learning Pocket Primer

Linear Regression with TensorFlow.js�� 198
Angular, TensorFlow.js, and Linear Regression ������������������������ 201
Creating Line Graphs in tfjs-vis�� 204
Creating Bar Charts in tfjs-vis �� 206
Creating Scatter Plots in tfjs-vis�� 208
Creating Histograms in tfjs-vis�� 210
Creating Heat Maps in tfjs-vis�� 211
TensorFlow.js, tfjs-vis, and Linear Regression���������������������������� 213
The MNIST Dataset�� 217
Displaying MNIST Images�� 218
Training a Model with the CIFAR10 Dataset (optional)����������� 220
Deep Learning and the MNIST Dataset������������������������������������ 221
Angular, Deep Learning, and the MNIST Dataset�������������������� 224
Summary�� 227

APPENDICES

A.	 Introduction to Keras�������������������������� 229–254
B.	 Introduction to TF 2������������������������������ 255–296
C.	 TF 2 Datasets��� 297–330

Index��� 331–341

PREFACE

What is The Goal?

The goal of this book is to introduce Web developers to deep learning and
incorporate that knowledge in Angular 10 applications. This book is intended
to be a fast-paced introduction to some basic features of deep learning and
an overview of several popular deep learning classifiers and code samples.

This book will also save you the time required to search for code
samples, which is a potentially time-consuming process. In any case, if
you’re not sure whether or not you can absorb the material in this book,
glance through the code samples to get a feel for the level of complexity.

At the risk of stating the obvious, please keep in mind the following
point: you will not become an expert in deep learning or Angular 10 by
reading this book.

What Will I Learn from This Book?

The first three chapters contain a short tour of basic Angular function-
ality, such as UI components and forms in Angular applications. The
fourth chapter introduces you to concepts that you will encounter in deep
learning, such as perceptrons, hyperparameters, activation functions, loss
functions, and optimizers. Then you will learn about MLPs (Multi Layer
Perceptrons) and CNNs (Convolutional Neural Networks). The fifth
chapter discusses RNNs (Recurrent Neural Networks), LSTMs (Long
Short-Term Memory), GRUs (Gated Recurrent Units), autoencoders,
and GANs (Generative Adversarial Networks.

Preface

xii • Angular and Deep Learning Pocket Primer

The sixth chapter introduces some preliminary TensorFlow concepts
and a short introduction to TensorFlow.js (i.e., TensorFlow in modern
browsers), followed by an example of Angular with TensorFlow.js and
machine learning. The final portion of this chapter contains an exam-
ple of Angular with TensorFlow.js and deep learning that involves the
MNIST dataset. The appendices contain an introduction to Keras and
TensorFlow 2, along with some basic code samples.

Another point: although Jupyter is popular, all the code samples in
this book are Python scripts. However, you can quickly learn about the
useful features Jupyter through various online tutorials. In addition, it’s
worth looking at Google Colaboratory that is entirely online and is based
on Jupyter notebooks, along with free GPU usage.

How Much Keras Knowledge is Needed for this Book?

Some exposure to Keras is helpful, and you can read the appendix if
Keras is new to you. The Keras-related code samples involve the XOR
function, the MNIST dataset, CNNs, and RNNs. In most cases the code
samples involve some understanding of activation functions, optimizers,
and loss functions, all of which are discussed in Chapter 5.

Please keep in mind that Keras is well-integrated into TensorFlow 2
(in the tf.keras namespace), and it provides a layer of abstraction
over “pure” TensorFlow that will enable you to develop prototypes more
quickly.

Do I Need to Learn the Theory Portions of this Book?

Once again, the answer depends on the extent to which you plan to
become involved in Deep Learning. In addition to creating a model, you
will use various algorithms to see which ones provide the level of accuracy
(or some other metric) that you need for your project. If you fall short, the
theoretical aspects of Deep Learning can help you perform a “forensic”
analysis of your model and your data, and ideally assist in determining
how to improve your model.

How were the Code Samples Created?

The code samples in this book were created and tested using Python 3
and Keras that’s built into TensorFlow 2 on a MacBook Pro. Regarding

Preface • xiii

their content: the code samples are derived primarily from the author for
his Deep Learning and Keras graduate course. In some cases, there are
code samples that incorporate short sections of code from discussions in
online forums. The key point to remember is that the code samples follow
the “Four Cs”: they must be Clear, Concise, Complete, and Correct to the
extent that it’s possible to do so, given the size of this book.

Launching the Code Samples: Please Read

Since the complete code samples requires more than 10GB of disk space,
which is greater than the capacity of a DVD, all the node_modules sub-
directories have been deleted. Hence, you need to run the following com-
mand from the top-level directory of each Angular application:

npm install

The version numbers for the Angular CLI and NodeJS are displayed
in the section “Installing the Angular CLI” in Chapter 1, and they are dis-
played below for your convenience (note the version numbers for Angular
and Node):

Angular CLI: 10.1.0-next.5

Node: 12.0.0

OS: darwin x64

Angular:

...

Ivy Workspace:

Package	 Version

--

@angular-devkit/architect	 0.1001.0-next.5

@angular-devkit/core	 10.1.0-next.5

@angular-devkit/schematics	 10.1.0-next.5

@schematics/angular	 10.1.0-next.5

@schematics/update	 0.1001.0-next.5

rxjs	 6.6.2

xiv • Angular and Deep Learning Pocket Primer

You might have different versions of the Angular CLI and Node, and
if they are close to the version numbers displayed above, they will prob-
ably work as well.

Another point to keep in mind: several code samples in Chapter 3
were created with an additional manual invocation of npm, which means
that the file package.json is slightly different in those directories.
Therefore, do not copy package.json from one code sample to other
code samples.

In the event that you do overwrite package.json with another copy
of this file, the code samples that involve the extra command line invoca-
tion will have the following comment in app.component.ts, which is
shown in bold to make sure that you notice this comment:

// remember: npm install jquery --save

If the file app.component.ts does not have this type of comment
line, then you only need to invoke npm install once from the command
line.

I got an Error After Launching npm: What Can I Do?

One potential error that can occur when you launch npm install in the
code samples is shown here:

An unhandled exception occurred: Could not find mod-

ule "@angular-devkit/build-angular

The first step involves removing the file package-lock.json:

rm package-lock.json

The second step is to install the package (introduced in Angular 6)
listed in the preceding error message as a dependency, which involves the
following command:

npm install --save-dev @angular-devkit/build-angular

The third step involves the standard npm invocation:

npm install

There are other errors that can occur for various reasons (such as
different versions of the Angular CLI), and in those situations perform an
Internet search and there’s a good chance that someone else has encoun-
tered the same error, along with a solution for that error.

Preface • xv

What are the Technical Prerequisites for This Book?

For the deep learning portion of this book, some familiarity with basic
Python is helpful, and also an understanding of how to launch Python
code from the command line (in a Unix-like environment for Mac users).
In addition, a general familiarity with basic linear algebra (vectors and
matrices), probability/statistics (mean, median, standard deviation) and
rudimentary concepts in calculus (such as derivatives) will sometimes be
helpful for the material in this book.

Regarding the Angular aspect of this book, you need some famil-
iarity with TypeScript as well as RxJS and Observables. Since RxJS
is a JavaScript-based implementation of FRP (Functional Reactive
Programming), some knowledge of the latter would be especially useful.

One other prerequisite is important for understanding the code
samples in the second half of this book: some familiarity with neural net-
works, which includes the concept of hidden layers and activation func-
tions (even if you don’t fully understand them).

What are the Non-Technical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify, it’s very
important to have strong desire to learn about deep learning, along with
the motivation and discipline to read and understand the code samples.
Even simple machine language APIs can be a challenge to understand
them the first time you encounter them, so be prepared to read the code
samples several times.

Since you are probably a developer, you also know how to get addi-
tional help using online resources, such as documentation when you
don’t understand a specific detail, or stackoverflow when you
encounter an error in your code.

How do I Set up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is
to use Finder to navigate to Applications > Utilities and then
double click on the Utilities application. Next, if you already have a
command shell available, you can launch a new command shell by typing
the following command:

open /Applications/Utilities/Terminal.app

xvi • Angular and Deep Learning Pocket Primer

A second method for Mac users is to open a new command shell on
a MacBook from a command shell that is already visible simply by click-
ing command+n in that command shell, and your Mac will launch another
command shell.

If you are a PC user, you can install Cygwin (open source https://
cygwin.com/) that simulates bash commands or use another toolkit such
as MKS (a commercial product). Please read the online documentation
that describes the download and installation process. Note that custom
aliases are not automatically set if they are defined in a file other than the
main start-up file (such as .bash_login).

Companion Files

All the code samples and figures in this book may be obtained by writing
to the publisher at info@merclearning.com.

What are the “Next Steps” After Finishing This Book?

The answer to this question varies widely, mainly because the answer
depends heavily on your objectives. If you are interested primarily in
Angular, then you can learn more advanced Angular features that you can
incorporate in new Angular applications.

If you are primarily interested in deep learning, there are many
resources available, and you can perform an Internet search for those
resources. The aspects of deep learning for you to learn depend on who
you are: the needs of a deep learning engineer, data scientist, manager,
student, or software developer are all different.

� O. Campesato
� October 2020

c h a p t e r

This chapter provides a fast introduction to Angular-based applica-
tions. While many of the code samples are straightforward, please
keep in mind that you need to invest additional time and effort

to acquire a deeper understanding of Angular. Although some of fine-
grained details are discussed, you need to consult the online documenta-
tion to gain a thorough understanding of the features of Angular.

The purpose of the code samples in this book is to illustrate some fun-
damental features of Angular, and later you will learn about deep learn-
ing concepts that will enable you to incorporate deep learning in Angular
applications.

Another important factor is your learning style: you might prefer to read
the details regarding the “scaffolding” for Angular applications before you
delve into the first code sample. However, it’s perfectly acceptable to skim
the introductory portion of this chapter, quickly “get into the weeds” with
the Angular sample code, and afterward review the initial portion again.

The first part of this chapter discusses the design goals of Angular and
various features, such as components, modules, and one-way data bind-
ing. The second part of this chapter discusses the Angular CLI, which is a
command-line tool for generating Angular applications.

The Angular applications in this book are based on Angular 10, using the
ng command line utility for creating Angular applications.

There are several points to keep in mind before you read this book.
First, the code samples highlight basic coding techniques in Angular

NOTE

Quick Introduction to
Angular

1

2 • Angular and Deep Learning Pocket Primer

applications. Hence, you will not find highly detailed descriptions of
Angular concepts, design goals, and architecture that are available in 600-
page books. However, you can fill in some of those gaps via online articles.

You can learn Angular concepts in the various applications without having
previous experience with Angular, but some knowledge of Angular would
be helpful.

This chapter contains Angular applications for generating SVG-based
graphics and D3-based animation effects. Due to space constraints, this
chapter does not contain an introduction to SVG or D3. Fortunately,
there are many online tutorials that provide detailed information regard-
ing the features of SVG and D3. If you are not interested in either of these
technologies, feel free to skip the associated code samples with no loss of
continuity (and you can always return to them later).

What You Need to Understand for Angular Applications

Two important technologies in Angular are TypeScript and RxJS. In very
casual terms, TypeScript might remind you of combining JavaScript with
a classical object-oriented approach. If you are already familiar with Java,
you will probably be more comfortable with TypeScript than JavaScript.

RxJS is JavaScript-based FRP (Functional Reactive Programming)
that supports many intermediate operators, such as filter(), map(),
take(), and many other useful operators. The following subsections con-
tain some additional detail regarding TypeScript and RxJS.

Learn TypeScript

Knowledge of TypeScript is highly recommended, along with a basic pro-
ficiency in NodeJS (i.e., the npm utility) and ES6. The Angular applica-
tions have been created with node v6.14.7 and npm 12.0.0, but it’s likely
that slightly lower versions will work as well. Determine the version on
your machine with the following commands in a terminal:

node -v

npm -v

If necessary, navigate to the NodeJS home page to download a more
recent version of the node executable. If you have not worked with Node,
you can find many online tutorials that explain how to use basic npm
commands.

Quick Introduction to Angular • 3

The code samples also involve basic concepts about ES6 and TypeScript, and
their respective home pages contain plenty of information to help you get
started. In particular, learn about classes and template strings. As you will see
in subsequent chapters, Angular applications rely heavily on dynamic tem-
plates, which frequently involve interpolation (via the “{{}}” syntax) of var-
iables. In addition, the following website provides an online “playground,”
along with links for documentation and code samples about TypeScript:

https://www.typescriptlang.org/play/

Angular takes advantage of ES6 features, such as components and classes,
as well as features that are part of TypeScript, such as annotations and its
type system. TypeScript is preferred over ES6 because TypeScript sup-
ports all the features of ES6, and TypeScript provides an optional type
inferencing system that can catch many errors for you.

Learn RxJS and Observables

If you have worked with ES6, then you probably know about functions
such as the filter() function (which is handy for Angular Pipes),
and also the map() function (often used with Observables and HTTP
requests in earlier versions of Angular). Other functions, such as merge()
and flatten(), can also be useful, and you can learn about them and
other functions on an as-needed basis.

In RxJS, these functions are called “intermediate operators,” and you will
frequently encounter them in RxJS Observables. In highly
simplified terms, you can define an Observable involving one or more
intermediate operators, and then invoke the Observable via a so-called
“terminal operator.”

Different languages can support different methods as terminal operators,
and in the case of RxJS, the subscribe() method is a terminal operator.
RxJS Observables are more powerful than Promises, and knowledge of
the latter will simplify your transition to RxJS Observables. After you
learn the basic features of RxJS, the following (more advanced) article con-
tains very good information regarding the RxJS unsubscribe() method:

https://blog.bitsrc.io/6-ways-to-unsubscribe-from-observables-in-
angular-ab912819a78f

Promises versus Observables

Chapters 2 and 3 have examples of Angular applications that involve
Observables. Although you can find online code samples that use Promises,

4 • Angular and Deep Learning Pocket Primer

Angular with TypeScript favors Observables. While this book does not pro-
vide tutorial-like information regarding Observables (or Promises), you
can learn about the advantages of Observables over Promises here:

https://www.syncfusion.com/blogs/post/angular-promises-versus-
observables.aspx

There are many other online tutorials available regarding Observables,
and if necessary, you can read them on an as-needed basis in parallel with
the code samples in the next two chapters. Fortunately, the code samples
involve only a few features of Observables, so you do not need to become
highly proficient with Observables for this book.

You can develop Angular applications in Electron, Webstorm, and Visual
Studio Code. Check their respective websites for pricing and feature support.

A High-Level View of Angular

Angular was designed as a platform that supports Angular applications in a
browser and provides support for server-side rendering and Angular appli-
cations on mobile devices. Rendering Angular applications in browsers is
the focus of the chapters in this book. Angular Universal (aka server-side
rendering) is not discussed in this book, but in essence, server-side render-
ing creates the “first view” of an Angular application on a server instead of
a browser. Since browsers do not need to construct this view, they can ren-
der a view more quickly and create a faster perceived load time. Angular
applications on mobile devices are also outside the scope of this book.

Angular supports the most recent versions of Chrome and Firefox, as well
as the two most recent versions of Edge, iOS, and Safari. The full list of
supported browsers by the Angular framework is here:

https://angular.io/guide/browser-support

A Short List of Features

Angular has a component-based architecture, where components are
organized in a tree-like structure (the same is true of Angular modules).
Angular also supports powerful technologies that you will learn in order to
become proficient in writing Angular applications. Some of the important
features of Angular are listed here:

�� one-way data binding
�� “tree shaking”

Quick Introduction to Angular • 5

�� change detection
�� style encapsulation

The first two features are briefly discussed below and you should consult
the online documentation regarding style encapsulation.

One-way Data Binding in Angular

Angular provides declarative one-way binding as the default behavior (but
you can switch to two-way binding if you wish to do so). One-way binding
acts as a unidirectional change propagation that provides an improvement
in performance as well as a reduction in code complexity. Angular also sup-
ports stateful, reactive, and immutable models. The meaning of the previ-
ous statement will become clearer as you work with Angular applications.

Angular applications involve defining a top-level (“root”) module that
references a Component that in turn specifies an HTML element (via
a mandatory selector property) that is the “parent” element of the
Component. The definition of the Component involves a so-called “dec-
orator” that contains a selector property and also a template property
(or a templateUrl property).

The template property contains a mixture of HTML and custom mark-up
that you can place in a separate file and then reference that file via the
templateUrl property. In addition, the Component is immediately fol-
lowed by a TypeScript class definition that contains “backing code” that is
associated with component-related variables that appear in the template
property. These details will become much clearer after you have worked
with some Angular applications.

The templateUrl property and styleUrls property refer to files
whereas the template property and styles property refer to inline code.

New Features in Angular 10
Angular 10 introduces new features and also deprecates some earlier fea-
tures. It provides improved performance and a reduced application size.
Some of the main differentiating features in Angular 10 are listed here:

�� New Date Range Picker
�� The Ivy Renderer
�� Language Service
�� Localization
�� TypeScript 3.9
�� The --strict Option

NOTE

6 • Angular and Deep Learning Pocket Primer

In brief, the new date range picker is available in Angular Material, along
with some relatively minor changes to other features. The Ivy renderer
provides the improvements in terms of increased performance and
reduced application size.

Angular 10 was released in June 2020 and supports TypeScript 3.9. Since
TypeScript 4.0 was released in August 2020, perhaps this version (or an
even new version) will be supported in Angular 11. In case you’re inter-
ested, you can learn about TypeScript 4.0 here:

https://devblogs.microsoft.com/typescript/announcing-typescript-4-0/

One other important change in Angular 10 is its support for the --strict
option for the ng command line utility that performs stricter type check-
ing in your custom code. For instance, the following snippet compiles
successfully without the --strict option:

employees = [];

However, if you create an Angular application with the --strict option,
then the following code snippet is required because the previous snippet
is invalid:

employees : any;

These (and other) differences are noted in the Angular 10 applications in
this chapter that were created with the --strict option. Keep in mind
that the Angular 10 applications in all other chapters were created with-
out the --strict option.

The node and npm Utilities for Angular 10

If you do not have the node utility (which also contains the npm utility) on
your machine, download the distribution from this link:

https://www.npmjs.com/get-npm

Important: Angular 10 requires a version of the node executable whose
version number is in the following range (which is specified in package.
json):

"node": ">=10.9.0 <13.0.0"

All the Angular applications in this book were created with the following
version of the npm and node utilities (the version of ng is displayed later
in this chapter):

$ npm --version

6.14.7

Quick Introduction to Angular • 7

$ node --version

v12.0.0

After this book goes to print, it’s possible that higher versions of node and
npm will be compatible with Angular 10 applications: the range of version
numbers for node are available in the file package.json.

A High-Level View of Angular Applications

Angular applications consist of a combination of built-in components and
custom components (the latter are written by you), each of which is typi-
cally defined in a separate TypeScript file (with a ts extension). Each com-
ponent uses one or more import statements to include its dependencies.

There are various types of dependencies available in Angular, such as
directives and pipes. A custom directive is essentially the contents of a
TypeScript file that defines a component. Thus, a custom directive con-
sists of import statements, a Component decorator, and an exported
TypeScript class.

Angular provides built-in directives, such as *ngIf (for “if ” logic) and
*ngFor (for loops). These two directives are also called “structural direc-
tives” because they modify the content of an HTML page. Angular built-in
pipes include date and numeric (currency, decimal, number, and percent)
formats, whereas custom pipes are defined by you.

In addition, TypeScript classes use a decorator (which is a built-in
function) that provides metadata to a class, its members, or its method
arguments. Decorators are easy to identify because they always have
an @ prefix. Angular provides a number of built-in decorators, such as
@Component and @NgModule.

This concludes the high-level introduction to Angular features. The
next portion of this chapter introduces the Angular CLI, which is used
throughout this book to create Angular applications.

The Angular CLI

The ng utility is an Angular command-line utility for creating (via ng
new) Angular applications and for launching (via ng serve) Angular
applications. The Angular CLI is the official Angular application genera-
tor from Google. The ng utility generates complete Angular applications,
which includes test-related code, and (by default) launches npm install

8 • Angular and Deep Learning Pocket Primer

to install the required files in node_modules. A concise set of examples
for the Angular CLI is here:

cli.angular.io

The Angular CLI generates a configuration file called package.json to
manage the “core” dependencies and their version numbers. After gener-
ating an Angular application, navigate to the node_modules subdirectory,
and you will see an assortment of Angular subdirectories that contain files
that are required for Angular applications.

Installing the Angular CLI

If you do not have the ng utility already installed on your machine, you
can download the latest version of Angular here:

https://github.com/angular/angular/releases

If you already have the ng utility installed on your machine, you can
perform an upgrade to Angular 10 from an earlier release of Angular as
follows:

ng update @angular/cli @angular/core

The ng utility has many useful options, and you can find detailed informa-
tion regarding the ng utility here:

https://angular.io/cli

If you encounter issues during the creation of Angular 10 applications, you
might also need to uninstall an older version of the CLI and install the latest
version of the CLI. You can uninstall an older version with this command:

sudo npm uninstall -g angular-cli

npm cache clean

Next, install the new CLI with this command (note the new package
name):

[sudo] npm install -g @angular/cli

The preceding command installs the ng executable, whose location you
can find via the following command:

which ng

Quick Introduction to Angular • 9

If the preceding command displays a blank line, that means that the
directory that contains the ng executable is not included in the PATH
environment variable. In this case, type the following command in a
command shell:

export PATH=/Users/owner/.npm-global/bin:$PATH

Note that preceding command is valid for Mac OS X, Linux, bash, ksh,
zsh, and any other Unix shells that are derived from the Bourne shell. If
you are using Windows or a BSD-like shell, search online to find the cor-
rect syntax for the preceding command for your system.

Now display the versions of the various components of the CLI by invok-
ing the following command in a command shell:

ng –version

As this book goes to print, the output of the preceding command is some-
thing similar to what is shown below (version numbers might be slightly
different for you):

Angular CLI: 10.1.0-next.5

Node: 12.0.0

OS: darwin x64

Angular:

...

Ivy Workspace:

Package Version

--

@angular-devkit/architect 0.1001.0-next.5

@angular-devkit/core 10.1.0-next.5

@angular-devkit/schematics 10.1.0-next.5

@schematics/angular 10.1.0-next.5

@schematics/update 0.1001.0-next.5

rxjs 6.6.2

10 • Angular and Deep Learning Pocket Primer

Features of the Angular CLI (optional)

Although this section contains useful information, you don’t need these
details in order to create an Angular application (which you already did in
the previous section). After you have created some basic Angular applica-
tions and you want to incorporate additional functionality, you can return
to this section and read about the Angular CLI options.

In order to see the various options of the ng executable, type the follow-
ing command from a command shell (make sure that your PATH environ-
ment variable has been set correctly, as discussed in a previous section):

$ ng help

Available Commands:

�� add: Adds support for an external library to your project
�� analytics: Configures the gathering of Angular CLI usage met-

rics. See https://angular.io/cli/usage-analytics-gathering
�� build (b): Compiles an Angular app into an output directory

named dist/ at the given output path. Must be executed from within
a workspace directory.

�� deploy: Invokes the deploy builder for a specified project or for the
default project in the workspace

�� config: Retrieves or sets Angular configuration values in the
angular.json file for the workspace

�� doc (d): Opens the official Angular documentation (angular.
io) in a browser, and searches for a given keyword

�� e2e (e): Builds and serves an Angular app, then runs end-to-end
tests using Protractor

�� generate (g): Generates and/or modifies files based on a sche-
matic

�� help: Lists available commands and their short descriptions
�� lint (l): Runs linting tools on Angular app code in a given project

folder
�� new (n): Creates a new workspace and an initial Angular app
�� run: Runs an Architect target with an optional custom builder con-

figuration defined in your project
�� serve (s): Builds and serves your app, rebuilding on file changes
�� test (t): Runs unit tests in a project
�� update: Updates your application and its dependencies
�� Sio/version(v): Outputs Angular CLI version
�� xi18n (i18n-extract): Extracts i18n messages from source code

Quick Introduction to Angular • 11

For more detailed help, type ng [command name] –help.

The ng g option is equivalent to the ng generate option, which ena-
bles you to generate an Angular custom Component, an Angular Pipe
(discussed in Chapter 5), and so forth. The ng x18n option extracts i18n
messages from source code. The next section shows you an example of
generating an Angular custom Component in an application, and the con-
tents of the files that are automatically generated for you.

The default prefix is app for components (e.g., <app-root></app-
root>), but you can specify a different prefix with this invocation:

ng new app-root-name –prefix abc

Angular applications created via ng always contain the src/app directory.

Information about upgrading the Angular CLI is here:

https://github.com/angular/angular-cli

Documentation for the Angular CLI is here:

http://cli.angular.io

Now that you have an understanding of some of the features of the ng
utility, let’s create our first Angular application, which is the topic of the
next section.

A Hello World Angular Application

As you will discover, it’s possible to create many basic Angular appli-
cations with a small amount of custom code. When you are ready to
create medium-sized applications, you can take advantage of the compo-
nent-based nature of Angular applications in order to incrementally add
new components (and modules).

Now let’s create a new project called HelloWorld by navigating to a suita-
ble directory on your machine and then invoking the following command:

ng new HelloWorld

In addition, Angular 10 supports the --strict option when creating
Angular applications, an example of which is here:

ng new --strict HelloWorld

NOTE

12 • Angular and Deep Learning Pocket Primer

The preceding command results in stricter type checking in Angular 10
applications, which you will see later in this chapter. If you encounter
difficulties when you specify the preceding command-line option, you can
revert to the older style of creating Angular applications.

Only the first three Angular 10 applications in this chapter specify the
--strict switch when creating them via the ng utility.

The Angular CLI provides everything except for your custom code.
Second, the Angular CLI enables you to generate new components, rout-
ers, and so forth, which are possible with starter applications. Third, the
Angular CLI is based purely on TypeScript, and the generated application
includes the JSON files tsconfig.json, tslint.json, typedoc.json,
and typings.json.

You will see the following type of output in the command shell where you
launched the preceding command:

? Would you like to add Angular routing? No

? Which stylesheet format would you like to use? CSS

CREATE HelloWorld/README.md (1035 bytes)

CREATE HelloWorld/.editorconfig (274 bytes)

CREATE HelloWorld/.gitignore (631 bytes)

CREATE HelloWorld/angular.json (3686 bytes)

CREATE HelloWorld/package.json (1331 bytes)

CREATE HelloWorld/tsconfig.json (697 bytes)

CREATE HelloWorld/tslint.json (3205 bytes)

CREATE HelloWorld/.browserslistrc (853 bytes)

CREATE HelloWorld/karma.conf.js (1022 bytes)

CREATE HelloWorld/tsconfig.app.json (287 bytes)

CREATE HelloWorld/tsconfig.spec.json (333 bytes)

CREATE HelloWorld/src/favicon.ico (948 bytes)

CREATE HelloWorld/src/index.html (296 bytes)

CREATE HelloWorld/src/main.ts (372 bytes)

CREATE HelloWorld/src/polyfills.ts (2835 bytes)

CREATE HelloWorld/src/styles.css (80 bytes)

CREATE HelloWorld/src/test.ts (753 bytes)

CREATE HelloWorld/src/assets/.gitkeep (0 bytes)

CREATE HelloWorld/src/environments/environment.prod.ts

(51 bytes)

CREATE HelloWorld/src/environments/environment.ts

(662 bytes)

NOTE

Quick Introduction to Angular • 13

CREATE HelloWorld/src/app/app.module.ts (314 bytes)

CREATE HelloWorld/src/app/app.component.css (0 bytes)

CREATE HelloWorld/src/app/app.component.html (25725 bytes)

CREATE HelloWorld/src/app/app.component.spec.ts (952 bytes)

CREATE HelloWorld/src/app/app.component.ts (214 bytes)

CREATE HelloWorld/src/app/package.json (817 bytes)

CREATE HelloWorld/e2e/protractor.conf.js (869 bytes)

CREATE HelloWorld/e2e/tsconfig.json (294 bytes)

CREATE HelloWorld/e2e/src/app.e2e-spec.ts (643 bytes)

CREATE HelloWorld/e2e/src/app.po.ts (301 bytes)

Installing packaI...

ü Packages installed successfully.
 Successfully initialized git.

Now launch the HelloWorld application by navigating into the src sub-
directory of the HelloWorld application and then launching the ng com-
mand, as shown here:

cd HelloWorld/src

ng serve

Compiling @angular/core : es2015 as esm2015

Compiling @angular/common : es2015 as esm2015

Compiling @angular/platform-browser : es2015 as esm2015

Compiling @angular/platform-browser-dynamic : es2015 as

esm2015

chunk {main} main.js, main.js.map (main) 57.1 kB [initial]

[rendered]

chunk {polyfills} polyfills.js, polyfills.js.map (poly-

fills) 141 kB [initial] [rendered]

chunk {runtime} runtime.js, runtime.js.map (runtime)

6.15 kB [entry] [rendered]

chunk {styles} styles.js, styles.js.map (styles) 12.5 kB

[initial] [rendered]

chunk {vendor} vendor.js, vendor.js.map (vendor) 2.37 MB

[initial] [rendered]

Date: 2020-08-13T23:10:47–037Z - Hash: acec74a5d422175–701e

- Time: 21053ms

** Angular Live Development Server is listening on local-

host:4200, open your browser on http://localhost:4200/ **

: Compiled successfully.

Date: 2020-08-13T23:10:48–965Z - Hash: acec74a5d422175c701e

14 • Angular and Deep Learning Pocket Primer

5 unchanged chunks

Time: 1425ms

: Compiled successfully.

Launch a new browser session, navigate to localhost:4200, and you will
see the same contents as shown in Figure 1.1.

Figure 1.1  A “Hello World” Angular application

The Anatomy of an Angular Application

The ng command that you launched in the previous section created an
Angular application that contains more than 35,000 files, most of which
are in the node_modules subdirectory. Fortunately, you only need to
focus on a handful of files when you need to create your own Angular
applications.

Here is the list of files and directories in the root directory of the
HelloWorld Angular application:

node_modules

package-lock.json

README.md

angular.json

e2e

karma.conf.js

package.json

src

Quick Introduction to Angular • 15

tsconfig.app.json

tsconfig.json

tsconfig.spec.json

tslint.json

The most relevant files are package.json and angular.json, and the
most important directory for creating custom code is the src directory (all
of these are shown in bold in the preceding list). In general, you do not
need to modify either of these files. As you will see later in this chapter,
you need to perform an extra step from the command line when you work
with D3-based graphics.

The Main Files in the src/app Subdirectory (Overview)

The src subdirectory contains a combination of subdirectories and files,
as shown here:

app

assets

environments

favicon.ico

index.html

main.ts

polyfills.ts

styles.css

test.ts

Notice that the preceding list contains the TypeScript file main.ts, which
will be discussed later in this chapter.

Next, the src/app subdirectory contains your custom code and the src/
assets subdirectory contains other assets, such as JSON files. Later, you
will see an example of an Angular application that reads the content of
authors.json, which is located in the src/assets subdirectory.

The following list displays the contents of the src/app subdirectory:

app.component.css

app.component.html

app.component.spec.ts

app.component.ts

app.module.ts

package.json

Unless it’s noted differently, you can delete the contents of app.
component.html for every code sample in this book. The file app.

16 • Angular and Deep Learning Pocket Primer

component.ts contains TypeScript code that is specific to your Angular
application, and the file app.module.ts specifies any dependencies in
your Angular application, which can include Angular modules as well as
custom modules (you’ll see examples in Chapter 3).

The three TypeScript files main.ts, app.component.ts, and app.mod-
ule.ts are the bootstrap file, the main module, and the main component
class, respectively, for Angular applications.

Here is the condensed explanation about the purpose of these three files:
Angular uses main.ts as the initial “entry point” to bootstrap the Angular
module AppModule (defined in app.module.ts), which in turn refer-
ences the main component AppComponent (defined in app.component.
ts), as well as any other custom components (and modules) that you have
imported into AppModule.

The Contents of the Three Main Files

The preceding section briefly described the sequence in which files are
processed in Angular applications. The code samples this book involve
custom code in the TypeScript file app.component.ts and sometimes
involve updating the contents of the file app.module.ts, but there
is no need to modify the file main.ts. The following sections display
the contents of these three files and include a brief description of their
contents.

The main.ts Bootstrap File

Listing 1.1 shows the content of main.ts in the src subdirectory (not the
src/app subdirectory) that imports and bootstraps the top-level Angular
module AppModule. Angular applications have a component-based archi-
tecture, which might seem more complex than alternate frameworks.
However, this architecture enables teams of developers to work in parallel
on different parts of a complex application.

Listing 1.1: main.ts

import { enableProdMode } from '@angular/core';

import { platformBrowserDynamic } from '@angular/

platform-browser-dynamic';

import { AppModule } from './app/app.module';

import { environment } from './environments/environment';

Quick Introduction to Angular • 17

if (environment.production) {

 enableProdMode();

}

platformBrowserDynamic().bootstrapModule(AppModule)

 .catch(err => console.error(err));

The first line of code in Listing 1.1 is an import statement that is needed
for the conditional logic later in the code listing. The second import
statement appears in many Angular code samples, and it’s necessary for
launching Angular applications on desktops and laptops.

The third import statement involves the top-level module of Angular
applications, which in turn contains all the custom components and ser-
vices that are included in this Angular module. The fourth import state-
ment contains environment-related information that is used in the next
conditional logic snippet: if the current application is in production mode,
the enableProdMode() function is executed.

The final line of code is the actual bootstrapping process that involves
rendering the code in app.component.ts in a browser.

The app.component.ts File

Listing 1.2 shows the content of app.component.ts, which illustrates
the typical properties of an Angular application.

Listing 1.2: app.component.ts

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'HelloWorld';

}

Listing 1.2 starts with an import statement for the Angular @Component
decorator in order to define metadata for the class AppComponent. At a
minimum, the metadata involves two properties: selector and either tem-
plate or templateUrl. Except for routing-related components, both of

18 • Angular and Deep Learning Pocket Primer

these properties are required in custom components. In this example, the
selector property specifies the custom element app-root (which you can
change) that is in the HTML Web page index.html.

The templateURL property specifies a file that contains HTML markup
that is inserted in the custom element app-root. An alternative is the
template property that contains the HTML markup that is inserted in
the custom element app-root. The final line of code in Listing 1.2 is
an export statement that makes the AppComponent class available for
import in other TypeScript files, such as app.module.ts, which is shown
in Listing 1.3 in the next section.

Although the property templateUrl specifies an HTML Web page with
mark-up, the Angular code samples in this book use the template prop-
erty to define the layout of the HTML web page for Angular applications
(that’s why the HTML Web page app.component.html in the code sam-
ples in this book is empty).

The app.module.ts File

Listing 1.3 shows the content of app.module.ts, which displays the
dependencies of various modules in an Angular application.

Listing 1.3: app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Listing 1.3 contains import statements that import BrowserModule and
NgModule. The third import statement imports the class AppComponent

Quick Introduction to Angular • 19

that is the top-level component illustrated in Listing 1.2 in the previous
section.

Angular dependencies always contain the “@” symbol whereas custom
dependencies specify a relative path to TypeScript files.

Next, the @NgModule decorator contains an object with various properties
(discussed in the next section). These properties specify the metadata for
the class AppModule that is exported in the final line of code in Listing
1.3. The metadata in AppModule involves the following array-based prop-
erties of values: imports, providers, declarations, exports, and
bootstrap.

In Listing 1.3, the array properties declarations, imports, and boot-
strap are non-null, whereas the providers property is an empty array.
This metadata is required in order for Angular to “bootstrap” the code in
AppComponent, which in turn contains the details of what is rendered
(e.g., an <h1> element) and where it is rendered (e.g., the app-root
element in index.html).

Now let’s take a look at the contents of the HTML Web page index.
html, which contains the main Web page for our Angular application.

The index.html Web Page

Listing 1.4 shows the contents of index.html for a new Angular applica-
tion that is generated from the command line via the ng utility.

Listing 1.4: index.html

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>HelloWorld</title>

 <base href="/">

 <meta name="viewport" content="width=device-width,

initial-scale=1">

 <link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>

 <app-root></app-root>

NOTE

20 • Angular and Deep Learning Pocket Primer

</body>

</html>

Listing 1.4 is minimalistic: only the custom <app-root> element (which
is specified in the selector property in app.component.ts) gives you
an indication that this Web page is part of an Angular application.

The Angular CLI automatically inserts JavaScript dependencies in index.
html during the “build” of the project.

Before we delve into the TypeScript files in an Angular application,
let’s take a quick detour to understand how import statements work in
Angular applications. Feel free to skip the next section if you are already
familiar with import and export statements in Angular.

Exporting and Importing Packages and
Classes (optional)

Every TypeScript class that is imported in a TypeScript file must be
exported in the TypeScript file where that class is defined. You will see
many examples of import and export statements: in fact, this is true of
every Angular application in this book.

There are two common types of import statements: one type involves
importing packages from Angular modules, and the other type involves
importing custom classes (written by you). Here is the syntax for both
types:

import {some-package-name} from 'some-angular-module';

import {some-class } from 'my-custom-class';

Here is an example of both types of import statements:

import { NgModule } from '@angular/core';

import {EmpComponent} from './emp.component';

In the preceding code snippet, the NgModule package is imported
from the @angular/core module that is located in the node_modules
directory. The EmpComponent class is a custom class that is defined and
exported in the TypeScript file emp.component.ts.

In the second import statement, the “./” prefix is required whenever a
custom class is imported from a TypeScript file: notice the omission of the
“.ts” suffix.

NOTE

Quick Introduction to Angular • 21

Working with Components in Angular

As you have already learned, an Angular application is a tree of nested com-
ponents, where the top-level component is the application. The components
define the UI elements, screens, and routes. In general, organize Angular
applications by placing each custom component in a TypeScript file and then
import that same TypeScript file in the “main” file (which is often named
app.component.ts) that contains the top-level component.

The MetaData in Components

Angular components are often a combination of an @Component deco-
rator and a class definition that can optionally contain a constructor. A
simple example of an @Component decorator is here:

import { Component } from '@angular/core';

import {EmpComponent} from './emp/emp.component';

@Component({

 selector: 'app-container',

 template: '<tasks>{{message}}</tasks>',

 directives: [EmpComponent]

})

The preceding @Component decorator contains several properties, some
of which are mandatory and others that are optional. Let’s look at both
types in the preceding code block.

The selector property is mandatory, and it specifies the HTML element
(whether it’s an existing element or a custom element) that serves as the
“root” of an Angular application.

Next, the template property (or a templateUrl property) is mandatory,
and it contains a mixture of markup, interpolated variables, and TypeScript
code. One important detail: the template property requires “backticks”
when its definition spans multiple lines. The directives property is an
optional property that specifies an array of components that are treated as
nested components. In this example, the directives property specifies the
component EmpComponent, which is also imported (via an import state-
ment) near the beginning of the code block. Notice that the import statement
does not contain a “@” symbol, which means that EmpComponent is a custom
component defined in the file emp/emp.component.ts.

22 • Angular and Deep Learning Pocket Primer

Stateful versus Stateless Components in Angular

In high-level terms, a stateful component retains information that is relevant
to other parts of the same Angular application. Stateless components do not
maintain the application state, nor do they request or fetch data: they are data
passed via property bindings from another component (such as its parent).

The code samples in this book can be a combination of stateful compo-
nents, stateless components, and sometimes also “value objects.” which
are instances of custom classes that “model” different entities (such as an
employee, customer, student, and so forth).

There is an example of a presentational component in Chapter 2. A good
article that delves into stateful and stateless components is here:

https://toddmotto.com/stateful-stateless-components#stateful

Syntax, Attributes, and Properties in Angular

Angular introduced the square brackets “[]” notation for attributes and
properties, as well as round parentheses “()” notation for functions that
handle events. This syntax is actually valid HTML5 syntax. Here is an
example of a code snippet that specifies an attribute and a function:

<foo [bar]= "x+1" (baz)="doSomething()">Hello World</foo>

An example that specifies a property and a function is here:

<button [disabled]="!inputIsValid" (click)="authenti-

cate()">Login </button>

An example of a data-related element with a custom element is here:

<my-chart [data]="myData" (drag)="handleDrag()"></

my-chart>

The new syntax in the preceding code snippet eliminates the need for
many built-in directives.

Attributes versus Properties in Angular

Keep in mind the following distinction: a property can specify a complex
model, whereas an attribute can only specify a string. For example, in
Angular 1.x you can write the following:

<my-directive foo="{{something}}"></my-directive>

Quick Introduction to Angular • 23

The corresponding code in Angular (which does not require interpola-
tion) is here:

<my-directive [foo]="something"></my-directive>

Before delving into code samples that show you how to create graphics
and animation effects, let’s look at the Angular lifecycle methods.

Angular Lifecycle Methods

Angular applications have lifecycle methods that are executed in a pre-de-
fined sequence. Hence, you can place custom code in those methods
in order to handle various events (such as application start, run, and so
forth). The “Lifecycle Hook” interfaces are defined in the @angular/
core library, and they are listed here:

�� OnInit
�� OnDestroy
�� DoCheck
�� OnChanges
�� AfterContentInit
�� AfterContentChecked
�� AfterViewInit
�� AfterViewChecked

Each interface has a single method whose name is the interface name
prefixed with ng. For example, the OnInit interface has a method named
ngOnInit. Angular invokes these lifecycle methods in the following order:

�� ngOnChanges: called when an input or output binding value changes
�� ngOnInit: after the first ngOnChanges
�� ngDoCheck: developer’s custom change detection
�� ngAfterContentInit: after the component content is initialized
�� ngAfterContentChecked: after every check of the component’s con-

tent
�� ngAfterViewInit: after the component’s view(s) are initialized
�� ngAfterViewChecked: after every check of a component’s view(s)
�� ngOnDestroy: just before the directive is destroyed

Since Angular invokes the constructor of a component when that com-
ponent is created, the constructor is a convenient location to initialize
the state for that component. However, child components must be ini-
tialized before accessing any properties or data that is defined in those

24 • Angular and Deep Learning Pocket Primer

child components. In this scenario, place custom code in the ngOnInit
lifecycle method to access data from child components.

The complete set of Angular lifecycle events is here:

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html

A Simple Example of Angular Lifecycle Methods

Copy the directory LifeCycle from the companion files into a con-
venient location. Listing 1.5 shows the content of app.component.ts,
which illustrates the sequence in which some Angular lifecycle methods
are invoked.

Listing 1.5: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: '<h2>Angular Lifecycle Methods</h2>',

})

export class AppComponent{

 ngOnInit() {

 // invoked after child components are initialized

 console.log("ngOnInit");

 }

 ngOnDestroy() {

 // invoked when a component is destroyed

 console.log("ngOnDestroy");

 }

 ngDoCheck() {

 // custom change detection

 console.log("ngDoCheck");

 }

 // => without the --strict option: ngOnChanges(changes)

 ngOnChanges(changes:any) {

 console.log("ngOnChanges");

 // Invoked after bindings have been checked

 // but only if one of the bindings has changed.

 //

Quick Introduction to Angular • 25

 // changes is an object of the format:

 // {

 // 'prop': PropertyUpdate

 // }

 }

 ngAfterContentInit() {

 // Component content has been initialized

 console.log("ngAfterContentInit");

 }

 ngAfterContentChecked() {

 // Component content has been checked

 console.log("ngAfterContentChecked");

 }

 ngAfterViewInit() {

 // Component views are initialized

 console.log("ngAfterViewInit");

 }

 ngAfterViewChecked() {

 // Component views have been checked

 console.log("ngAfterViewChecked");

 }

}

Listing 1.5 contains all the Angular lifecycle methods, and each method
contains console.log() so that you can see the order in which the meth-
ods are executed.

Launch the application by navigating to the src subdirectory of the
LifeCycle application, and invoke the following command:

ng serve

Navigate to localhost:4200 in a Chrome session and open Chrome
Inspector, after which you will see the following output in the Console
tab:

ngOnInit

ngDoCheck

ngAfterContentInit

ngAfterContentChecked

ngAfterViewInit

ngAfterViewChecked

ngDoCheck

26 • Angular and Deep Learning Pocket Primer

ngAfterContentChecked

ngAfterViewChecked

The preceding lifecycle methods are useful if you need to execute some
custom code in a specific method. The next section shows you how to add
CSS3 animation effects in Angular applications.

CSS3 Animation Effects in Angular

This section enhances the code sample in an earlier section by adding a
CSS3 animation effect. If you are unfamiliar with CSS3, there are many
online tutorials available. If you have no interest in Angular applications
with custom CSS3 code, feel free to skip this section.

Now copy the directory SimpleCSS3Anim from the companion files into
a convenient location. Listing 1.6 shows the content of app.component.
ts, which illustrates how to change the color of list items whenever users
hover over each list item with their mouse.

Listing 1.6: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: '

 <h2>Employee Information</h2>

 <li *ngFor="let emp of employees">

 {{emp.fname}} {{emp.lname}} lives in {{emp.city}}

 ',

 styles: ['

 @keyframes hoveritem {

 0% {background-color: red;}

 25% {background-color: #880;}

 50% {background-color: #ccf;}

 100% {background-color: #f0f;}

 }

Quick Introduction to Angular • 27

 li:hover {

 width: 50%;

 animation-name: hoveritem;

 animation-duration: 4s;

 }

 ']

})

export class AppComponent {

 // => without the --strict option: employees = [];

 employees : any;

 constructor() {

 this.employees = [

 {"fname":"Jane","lname":"Jones","city":"San Francisco"},

 {"fname":"John","lname":"Smith","city":"New York"},

 {"fname":"Dave","lname":"Stone","city":"Seattle"},

 {"fname":"Sara","lname":"Edson","city":"Chicago"}

];

 }

}

Listing 1.6 contains the styles property, which contains a @keyframes
definition for creating an animation effect involving color changes. The
styles property contains an li:hover selector that references the @
keyframes definition and specifies a time duration of 4 seconds for the
animation effect. The colors are specified in the @keyframes definition. If
you have worked with CSS3 animation effects, then @keyframes is prob-
ably very familiar to you.

Launch the Angular application and navigate to localhost:4200 in a
browser session. When the list of names is displayed, move your mouse
slowly over each name and watch how they change color. The text display
is shown below, but you need to launch the application to see the color-re-
lated transformations:

Employee Information

�� Jane Jones lives in San Francisco
�� John Smith lives in New York
�� Dave Stone lives in Seattle
�� Sara Edson lives in Chicago

28 • Angular and Deep Learning Pocket Primer

Instead of using CSS3 to perform animation effects, you can also do so via
Angular functionality, which is illustrated in the next section.

Animation Effects via the “Angular Way”

This section enhances the code in the previous section by creating an ani-
mation effect by means of Angular-specific functionality instead of CSS3-
based functionality. This section also requires an understanding of how to
instantiate a custom TypeScript class, which in this section is the custom
Emp class that is defined in Listing 1.7.

Now copy the directory SimpleAnimation from the companion files into
a convenient location. Listing 1.8 shows the content of app.component.
ts, which illustrates how to move the position of the elements
whenever users hover over them with their mouse.

Listing 1.7: app.component.ts

// part #1: new import statement
import { Component, Input } from '@angular/core';

import {trigger, state, style, transition, animate} from '@

angular/animations';

// part #2: new Emp class
class Emp {

 constructor(public fname: string,

 public lname: string,

 public city: string,

 public state = 'inactive') {

 }

 toggleState() {

 this.state = (this.state==='active' ? 'inactive' :

'active');

 console.log(this.fname+" "+"new state = "+this.state);

 }

}

@Component({

 selector: 'app-root',

 // part #3: new animations property
 animations: [

Quick Introduction to Angular • 29

 trigger('empState', [

 state('inactive', style({

 backgroundColor: '#eee',

 transform: 'scale(1)'

 })),

 state('active', style({

 backgroundColor: '#cfd8dc',

 transform: 'scale(1.1)'

 })),

 transition('inactive => active', animate('100ms

ease-in')),

 transition('active => inactive', animate('100ms

ease-out'))

])

],

 template: '

 <h2>Employee Information</h2>

 <li *ngFor="let emp of employees"

 [@empState]="emp.state"
 (mousemove)="emp.toggleState()">
 {{emp.fname}} {{emp.lname}} lives in {{emp.city}}

 '

})

export class AppComponent {

 // => without the --strict option: employees = [];

 employees : any;

 constructor() {

 // part #5: array of Emp objects
 this.employees = [

 new Emp("Jane","Jones","San Francisco"),

 new Emp("John","Smith","New York"),

 new Emp("Dave","Stone","Seattle"),

 new Emp("Sara","Edson","Chicago")

];

 }

}

30 • Angular and Deep Learning Pocket Primer

Listing 1.7 consists of five modifications to the code in Listing 1.6.
Specifically, the section labeled “part #1” is a new import statement that
replaces the original import statement. The section labeled “part #2” is
the newly added Emp class that holds data for each employee.

The section labeled “part #3” is the new transitions property that
defines the behavior when an animation event is triggered (which occurs
during a mousemove event “over” an element). The portion in bold
(which is not labeled, but is “part #4”) in the ngFor element essentially
binds the mousemove event to the toggleState() method in the Emp
class. Finally, the section labeled “part #5” is an array of Emp objects that
replaces the original array in which each employee is represented as a
JSON string.

Listing 1.8 shows the content of app.module.ts, which contains two
additional code snippets (shown in bold) that you must add to the default
contents of this file.

Listing 1.8: app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { BrowserAnimationsModule } from '@angular/
platform-browser/animations';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,
 BrowserAnimationsModule
],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

If you do not include the two code snippets (shown in bold) in Listing
1.8, you will see the following error message in the console of the browser
session where you launch this application:

Quick Introduction to Angular • 31

ERROR: Found the synthetic property @empState. Please include

either "BrowserAnimationsModule" or "NoopAnimationsModule"

in your application.

The two code snippets that are shown in bold in Listing 1.8 are required for
Angular 10 applications, but they are not required for Angular 8 applications.

Launch this Angular application from the command line via ng serve,
navigate to localhost:4200, and then move your mouse over each per-
son’s name and observe the “fading” effect. The output in your browser
will look like this:

Employee Information
�� Jane Jones lives in San Francisco
�� John Smith lives in New York
�� Dave Stone lives in Seattle
�� Sara Edson lives in Chicago

Although this example is simple, you can extend this code with your own
custom modifications to create other CSS3-based animation effects.

Now open the Inspector option in your browser (Chrome or Firefox) and
you will see the following type of output:

Dave new state = active

Dave new state = inactive

John new state = active

John new state = inactive

Jane new state = inactive

Jane new state = active

Jane new state = inactive

Jane new state = active

Jane new state = inactive

John new state = active

Dave new state = active

Dave new state = inactive

Sara new state = active

Sara new state = inactive

A Basic SVG Example in Angular

This section shows you how to specify a custom component that contains
SVG code for rendering an SVG element. This example serves as the

NOTE

32 • Angular and Deep Learning Pocket Primer

foundation for the SVG code in the next section, which involves dynami-
cally creating and appending an SVG element to the DOM.

Copy the directory SVGEllipse from the companion files into a conven-
ient location. Listing 1.9 shows the content of app.component.ts, which
references an Angular custom component to render an SVG ellipse.

Listing 1.9: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: '<div><my-svg></my-svg></div>'

})

export class AppComponent {}

Listing 1.9 is very straightforward: the code defines a component whose
template property contains a custom <my-svg> element inside a <div>
element.

Listing 1.10 shows the content of MyEllipse.ts, which contains the
SVG code for rendering three overlapping ellipses in SVG.

Listing 1.10: MyEllipse.ts

import {Component} from '@angular/core';

@Component({

 selector: 'my-svg',

 template: `

 <svg width="500" height="300">

 <ellipse cx="100" cy="100"

 rx="50" ry="30"

 fill="red"/>

 <ellipse cx="180" cy="100"

 rx="80" ry="40"

 fill="blue"/>

 <ellipse cx="140" cy="140"

 rx="80" ry="40"

 fill="yellow"/>

 </svg>

 `

})

export class MyEllipse{}

Quick Introduction to Angular • 33

Listing 1.10 is also straightforward: the template property contains the
code for an SVG <svg> element with width and height attributes, which
in turn contains a nested SVG <ellipse> element with hard-coded val-
ues for the required attributes cx, cy, rx, ry, and fill.

Listing 1.11 shows the content of app.module.ts with the new code
shown in bold.

Listing 1.11: app.module.ts

import {Component} from '@angular/core';

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { MyEllipse } from './MyEllipse;

@NgModule({

 imports: [BrowserModule],

 declarations: [AppComponent, MyEllipse],
 bootstrap: [AppComponent]

})

export class AppModule { }

Listing 1.11 contains generic code that you are familiar with from previ-
ous examples in this chapter, as well as a new import statement (shown in
bold) involving the MyEllipse class. The other modification in Listing
1.11 is the inclusion of the MyEllipse1 class (shown in bold) in the dec-
larations array.

Launch the Angular applica-
tion in the usual fashion. In the
browser session, you will see
three colored ellipses in SVG,
as shown in Figure 1.2.

The following links explain how
to create SVG gradients and then
how to create SVG Gradient
Effects in Angular applications:

�� https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Gradients
�� https://medium.com/@OlegVaraksin/how-to-proper-use-svg-gradi-

ents-in-angularjs-2-3241672e4de2#.oah0e9z1k

Figure 1.2  Rendering ellipses in SVG in an
Angular application

34 • Angular and Deep Learning Pocket Primer

Detecting Mouse Positions in Angular Applications

This section shows you how to detect a mouse position inside an SVG
<svg> element. Copy the directory SVGMouseMove from the companion
files into a convenient location. Listing 1.12 shows the content of app.
component.ts, which illustrates how to detect a mousemove event and
display the coordinates of the current mouse position.

Listing 1.12: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: `<svg id="svg" width="600px" height="400px"

})

class AppComponent {}

Listing 1.12 contains a template property that consists of a <div> ele-
ment that contains a nested <mouse-move> element, where the latter is
the value of the selector property in the custom component MouseMove
that is defined in the custom TypeScript file mousemove.ts. In essence,
the component AppComponent “delegates” the handling of mousemove
events to the MouseMove component, which defines the mouseMove()
function in order to handle such events.

Listing 1.13 shows the content of mousemove.ts, which illustrates how
to detect a mousemove event and to display the coordinates of the current
mouse position.

Listing 1.13: mousemove.ts

import {Component} from '@angular/core';

@Component({

 selector: 'mouse-move',

 template: `<svg id="svg" width="600px" height="400px"

 (mousemove)="mouseMove($event)">

 </svg>

 `

})

export class MouseMove{

 // => without the --strict option: mouseMove(event)

 mouseMove(event:any) {
 console.log("Position x: "+event.clientX+" y: "+event.

clientY);

Quick Introduction to Angular • 35

 }

}

Listing 1.13 contains the mouseMove() method, whose lone argument
event is an object that contains information (such as its location) about
the mouse event. The mouseMove() method contains a console.log()
statement that simply displays the x-coordinate and the y-coordinate of
the location of the mouse click event.

Make sure that you update the contents of app.module.ts to include the
MouseMove class, as shown in Listing 1.14.

Listing 1.14: app.module.ts

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { MouseMove } from './mousemove';
@NgModule({

 imports: [BrowserModule],

 declarations: [AppComponent, MouseMove],
 bootstrap: [AppComponent]

})

export class AppModule { }

Listing 1.14 imports the MouseMove class and adds this class to the dec-
larations property (both of which are shown in bold).

Now launch this Angular application. In a new browser session, navigate to
View -> Developer -> JavaScript Console (for a Chrome browser)
to display the console. As you move your mouse around the screen, you
will see the following type of output displayed in the console:

 Position x: 506 y: 254 mousemove.ts:12:13

 Position x: 505 y: 255 mousemove.ts:12:13

 Position x: 505 y: 258 mousemove.ts:12:13

 Position x: 504 y: 259 mousemove.ts:12:13

 Position x: 503 y: 261 mousemove.ts:12:13

 Position x: 502 y: 262 mousemove.ts:12:13

 Position x: 501 y: 263 mousemove.ts:12:13

 Position x: 505 y: 263 mousemove.ts:12:13

 Position x: 510 y: 262 mousemove.ts:12:13

 Position x: 515 y: 261 mousemove.ts:12:13

 Position x: 520 y: 260 mousemove.ts:12:13

 Position x: 526 y: 259 mousemove.ts:12:13

36 • Angular and Deep Learning Pocket Primer

The next section combines SVG graphs with mouse movements to render
a set of “follow the mouse” SVG ellipses.

Angular and Follow-the-Mouse in SVG

The code sample in this section relies on mouse-related events to cre-
ate dynamic graphics effects. Copy the directory SVGFollowMe from the
companion files into a convenient location.

Listing 1.15 shows the content of app.component.ts, which illustrates
how to reference a custom Angular component that renders an SVG
<ellipse> element at the current mouse position.

Listing 1.15: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: '<div><mouse-move></mouse-move></div>'

})

export class AppComponent {}

As you can see, the template property in Listing 1.15 specifies a <div>
element that contains a custom <mouse-move> element.

Listing 1.16 shows the content of MouseMove.ts, which illustrates how to
reference a custom Angular component that renders an SVG <ellipse>
element at the current mouse position.

Listing 1.16: MouseMove.ts

import {Component} from '@angular/core';

@Component({

 selector: 'mouse-move',

 template: `<svg id="svg" width="600" height="400"

 (mousemove)="mouseMove($event)">

 </svg>

 `

})

export class MouseMove {

 radiusX = "25";

 radiusY = "50";

Quick Introduction to Angular • 37

 // mouseMove(event:any) {

 var svgns = "http://www.w3.org/2000/svg";

 var svg = document.getElementById("svg");

 var colors = ["#ff0000", "#88ff00", "#3333ff"];

 var sum = Math.floor(event.clientX+event.clientY);

	 var ellipse = document.createElementNS(svgns,

"ellipse");

 ellipse.setAttribute("cx", event.clientX);

 ellipse.setAttribute("cy", event.clientY);

 ellipse.setAttribute("rx", this.radiusX);

 ellipse.setAttribute("ry", this.radiusY);

	 ellipse.setAttribute("fill", colors[sum % colors.

length]);

 svg.appendChild(ellipse);
 }

}

Listing 1.16 contains a template property that defines an SVG <svg>
element. The (mousemove) event handler is executed whenever
users move their mouse, which in turn executes the custom method
mouseMove().

Notice that the mouseMove method accepts an event argument, which is
an object that provides the coordinates of the location of each mousemove
event. The coordinates of the current point are specified by event.cli-
entX and event.clientY, which are the x-coordinate and the y-coordi-
nate, respectively, of the current mouse position.

The next code block in the mouseMove method dynamically creates an
SVG <ellipse> method, sets the values of the five required attributes
(see the previous section for the details), and then appends the newly
created SVG <ellipse> method to the DOM. This functionality creates
the “follow the mouse” effect when you launch the Angular application
code in this section.

Note that the final line of code in the mouseMove method appends an
SVG <ellipse> element directly to the DOM, which is better to avoid if
it’s possible to do so.

Listing 1.17 shows the content of app.module.ts. The new contents of
app.component.ts are shown in bold.

38 • Angular and Deep Learning Pocket Primer

Listing 1.17: app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';

import { MouseMove } from './MouseMove';

@NgModule({

 declarations: [AppComponent, MouseMove],
 imports: [

 BrowserModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

The code in Listing 1.17 follows a familiar pattern: start with the “base-
line” code, add an import statement that references an exported
TypeScript class (which is
MouseMove in this example) and
also add that same TypeScript class
to the declarations array.

Launch the Angular application in
the usual manner, and then slowly
move your mouse to see differ-
ent colored SVG ellipses rendered
near your mouse. Figure 1.3 shows
a sample of the output that can be
generated in this application.

In case you are looking for ideas for
enhancing this code sample, modify the code in MouseMove.ts so that
new SVG ellipses are “centered” underneath your mouse.

Angular and SVG Charts

This section creates a child component and also uses mouse-related
events in order to create dynamic graphics effects. The graphics effects
are very rudimentary; however, they provide a starting point from which
you can add custom enhancements.

Figure 1.3  Ellipses in a “Follow-the-
Mouse” in SVG in an Angular Application

Quick Introduction to Angular • 39

Now copy the directory SVGCharts from the companion files into a conven-
ient location. Listing 1.18 shows the content of app.component.ts, whose
template code specifies a <div> element that contains a custom <mycharts>
element (as a child element) in which the SVG-based charts are rendered.

When you launch this application, you will see a blank screen. However,
each time you click inside the screen, you will see a different bar chart,
scatter chart, and line graph.

Listing 1.18: app.component.ts

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 template: '<div><mycharts></mycharts></div>'

})

export class AppComponent { }

Listing 1.18 shows the content of app.component.ts, whose template
property specifies a custom <mycharts> element as a child of a <div>
element. The charts and graphs in this code sample are rendered inside
the <mycharts> element.

Listing 1.19 shows the content of app.module.ts, which specifies the
custom component MyGraphics that contains the SVG-based code.

Listing 1.19: app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';

import { MyGraphics } from './MyGraphics';

@NgModule({

 declarations: [

 AppComponent,

 MyGraphics
],

 imports: [

 BrowserModule

],

 providers: [],

 bootstrap: [AppComponent]

NOTE

40 • Angular and Deep Learning Pocket Primer

})

export class AppModule { }

Listing 1.19 contains a code snippet to import the MyGraphics class and
updates the declarations property to include the MyGraphics class.
The remaining code in Listing 1.19 is the same as the code in previous
code samples.

Listing 1.20 shows the content of MyGraphics.ts, which contains the
SVG-based code for rendering a line graph, scatter plot, and a bar chart.

Listing 1.20: MyGraphics.ts

import { BrowserModule } from '@angular/platform-browser';

import {Component} from '@angular/core';

@Component({

 selector: 'mycharts',

 template: `<svg id="svg" width="600" height="600"

 (click)="drawCharts($event)">

 </svg>

 `

})

export class MyGraphics {

 public scatterWidth:number = 400;

 public scatterHeight:number = 400;

 public scatterCount:number = 40;

 public offsetX:number = 0;

 public offsetY:number = 0;

 public clickCount:number = 0;

 public radius:number = 5;

 public barCount:number = 15;

 public barWidth:number = 30;

 public barHeight:number = 50;

 public maxBarHeight:number = 200;

 public barHeights:any = [];

 public polyPts:any = "";

 public colors = ["#ff0000","#00ff00","#ffc800","#0000ff"];

	 public svgns = "http://www.w3.org/2000/svg";

	 private generateBarHeights() {

 for(let i=0; i<this.barCount; i++) {

Quick Introduction to Angular • 41

 this.barHeights[i] = ""+Math.random()*this.

maxBarHeight;

 }

 }

 drawCharts(event) {

 this.generateBarHeights();

 this.drawBarChart();

 this.drawScatterPlot();

 this.drawLineGraph();

 this.clickCount += 1;

 }

 private drawBarChart() {

 var svg = document.getElementById("svg");

 var gElem = document.createElementNS(this.svgns, "g");

 svg.appendChild(gElem);

 for(let i=0; i<this.barCount; i++) {

 var rect = document.createElementNS(this.svgns,

"rect");

 rect.setAttribute("x", ""+i*this.barWidth);

 rect.setAttribute("y", ""+(200-this.

barHeights[i]));

 rect.setAttribute("width", ""+this.barWidth);

 rect.setAttribute("height", ""+this.barHeights[i]);

 rect.setAttribute("fill", this.colors[i%this.

colors.length]);

 gElem.appendChild(rect);

 }

 svg.appendChild(gElem);

 }

 private drawLineGraph() {

 var svg = document.getElementById("svg");

 var gElem = document.createElementNS(this.svgns, "g");

 svg.appendChild(gElem);

 // construct a line graph

 for (let i = 0; i < this.barCount; i++) {

42 • Angular and Deep Learning Pocket Primer

 this.polyPts += (i*this.barWidth).toString() + "," +

 (600-this.barHeights[i]) + " ";

 }

 var polyline = document.createElementNS(this.svgns,

"polyline");

 polyline.setAttribute("points", ""+this.polyPts);

 polyline.setAttribute("style",

 "fill:none;stroke:blue;stroke-width:3");

 gElem.appendChild(polyline);

 svg.appendChild(gElem);

 }

 private drawScatterPlot() {

 var svg = document.getElementById("svg");

 var gElem = document.createElementNS(this.svgns, "g");

 svg.appendChild(gElem);

 // construct circles

 for(let i=0; i<this.scatterCount; i++) {

 var circle = document.createElementNS(this.svgns,

"circle");

 this.offsetX = this.scatterWidth*Math.random();

 this.offsetY = 200*Math.random();

 circle.setAttribute("cx", ""+this.offsetX);

 circle.setAttribute("cy", ""+(200+this.offsetY));

 circle.setAttribute("r", ""+this.radius);

 circle.setAttribute("fill", this.colors[i%this.

colors.length]);

 gElem.appendChild(circle);

 }

 svg.appendChild(gElem);

 }

}

Listing 1.20 starts with the usual import statements, followed by a tem-
plate property that specifies an SVG <svg> element whose width and
width attributes are both 600 pixels (and you can specify different values
if you need to do so). Notice that the SVG <svg> element also specifies an
Angular (click) attribute, as shown here:

template: `<svg id="svg" width="600" height="600"

Quick Introduction to Angular • 43

 (click)="drawCharts($event)">

 </svg>

 `

When users click anywhere inside the SVG <svg> element, the draw-
Charts() method is executed, whose contents are reproduced here:
drawCharts(event) {

 this.generateBarHeights();

 this.drawBarChart();

 this.drawScatterPlot();

 this.drawLineGraph();

 this.clickCount += 1;

}

Notice that the drawCharts() method also receives an event argument,
which is actually an object that contains information about the location of the
mouse event. This method invokes five other methods, starting with the gen-
erateBarHeights() method that populates the barHeights array with a
set of random numbers that represent the height of each bar element in the
bar chart.

Next, the drawCharts() method invokes the drawBarChart() method,
which starts by obtaining a reference to the existing <svg> element (spec-
ified in the template property), creating a new SVG <g> element called
gElem, and then appending the newly created SVG <g> element to the
SVG <svg> element, as shown here:

var svg = document.getElementById("svg");

var gElem = document.createElementNS(this.svgns, "g");

svg.appendChild(gElem);

Although it’s not absolutely necessary, it’s a good idea to place the bar
chart inside an <g> element as a way to “modularize” the graphics (the
same thing is done for the scatter plot and the line graph).

The next code block consists of a for loop that creates an SVG <rect>
element, populates its attributes appropriately, and then appends the
SVG <rect> element to the existing SVG <g> element, as shown here:

for(let i=0; i<this.barCount; i++) {

 var rect = document.createElementNS(this.svgns, "rect");

 rect.setAttribute("x", ""+i*this.barWidth);

 rect.setAttribute("y", ""+(200-this.barHeights[i]));

 rect.setAttribute("width", ""+this.barWidth);

44 • Angular and Deep Learning Pocket Primer

 rect.setAttribute("height", ""+this.barHeights[i]);

 rect.setAttribute("fill", this.colors[i%this.colors.

length]);

 gElem.appendChild(rect);

}

svg.appendChild(gElem);

Next, the drawCharts() method invokes the drawScatterPlot()
method, that also starts with the same code block as drawBarChart() that
pertains to the SVG <svg> element. This method also contains a for loop
that creates a set of SVG <circle> elements, populates their attributes
appropriately, and then appends them to the third <g> element.

Finally, the drawCharts() method invokes the drawLineGraph()
method, which also starts with the same code block as drawBarChart()
that pertains to the SVG <svg> element. This method contains a for loop
that updates the string polyPts with the x-coordinate and y-coordinate of
the top-level vertex of each bar element, as shown here:

for (let i = 0; i < this.barCount; i++) {

 this.polyPts += (i*this.barWidth).toString() + "," +

 (600-this.

barHeights[i]) + " ";

}

The next portion of the drawLin-
eGraph() method creates a new
SVG <polyline> element, sets its
points attribute equal to the content
of polyPts, and then appends the
SVG <polyline> element to the SVG
<svg> element.

Launch this Angular application. Then,
in the new browser session, click any-
where on the screen to see a rudimen-
tary bar chart, scatter plot, and line
graph, as shown in Figure 1.4.

Figure 1.4  An SVG bar chart, scatter
plot, and line graph in an Angular
Application

Quick Introduction to Angular • 45

D3 Animation and Angular

The previous two sections provided examples of Angular applications with
SVG, and this section shows you how to create D3 animation effects with
Angular. Note that the code sample in this section also appends the SVG
elements directly to the DOM.

D3 is an open source toolkit that provides a JavaScript-based layer of
abstraction over SVG. Fortunately, the attributes of every SVG element
have the same name in D3 (so your work is cut in half).

Copy the directory D3Anim from the companion files into a convenient
location. Listing 1.21 shows the content of app.component.ts, which
illustrates how to use D3 to render basic SVG graphics in an Angular
application.

Listing 1.21: app.component.ts

import { Component, ViewChild, ElementRef } from '@angular/

core';

import * as d3 from 'd3';

// remember: npm install d3 --save

@Component({

 selector: 'app-root',

 template: '<app-root><mysvg></mysvg></app-root>',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 constructor() {

 var width = 800, height = 500, duration=2000;

 var radius = 30, moveCount = 0, index = 0;

 var circleColors = ["red", "yellow", "green", "blue"];

 var svg = d3.select("body")

 .append("svg")

 .attr("width", width)

 .attr("height", height);

46 • Angular and Deep Learning Pocket Primer

 svg.on("mousemove", function() {

 index = (++moveCount) % circleColors.length;

 var circle = svg.append("circle")

 .attr("cx", (width-100)*Math.random())

 .attr("cy", (height-100)*Math.random())

 .attr("r", radius)

 .attr("fill", circleColors[index])

 .transition()

 .duration(duration)

 .attr("transform", function() {

 return "scale(0.5, 0.5)";

 //return "rotate(-20)";

 })

 });

 }

}

Listing 1.21 starts with two import statements, followed by a comment
block that summarizes the key points for using D3.js in Angular applica-
tions. The template property contains a <div> element that is available
in the ngAfterContentInit method, which in turn simply invokes the
createSVG() method that populates an SVG <svg> element with four
2D shapes: a circle, an ellipse, a rectangle, and a line segment.

Note the @ViewChild decorator that defines the variable mysvg that has
type ElementRef. This variable “links” the <div> element in the tem-
plate property with the variable svgElement that is defined in the cre-
ateSVG() method:

let svgElement = this.mysvg.nativeElement;

Notice how the various SVG elements are dynamically created and how
their mandatory attributes (which depend on the SVG element in ques-
tion) are assigned values via the attr()method, as shown here (and in the
preceding code block, as well):

// append a circle

svg.append("circle")

 .attr("cx", cx)

 .attr("cy", cy)

 .attr("r", radius1)

 .attr("fill", colors[0]);

Quick Introduction to Angular • 47

After you learn the mandatory attribute names for SVG elements, you
can use the preceding syntax to create and append such elements to the
DOM.

Listing 1.22 shows the content of app.module.ts with the new code in
bold.

Listing 1.22: app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';

import { NO_ERRORS_SCHEMA } from '@angular/core';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule

],

 providers: [],

 schemas: [NO_ERRORS_SCHEMA],

 bootstrap: [AppComponent]

})

export class AppModule { }

Listing 1.22 contains code that is already familiar to you, along with the
following new import statement:

import { NO_ERRORS_SCHEMA } from '@angular/core';

The preceding code snippet allows us add any element that is created
in the D3-based code without generating an error message. Notice that
the schemas property in Listing 1.22 must also be updated to include
NO_ERRORS_SCHEMA.

Launch this Angular application. Then, in the new browser session, click
anywhere on the screen to see a “cascade” of animated circles.

Launch the Angular application in the usual manner, and then slowly
move your mouse to see different colored SVG ellipses rendered near
your mouse. Figure 1.5 shows a sample of the output that can be gener-
ated in this application.

48 • Angular and Deep Learning Pocket Primer

Figure 1.5  Rendering circles with D3 in an Angular application

You can also find many similar code samples involving SVG and Angular
(with older beta-version Angular code) here:

https://github.com/ocampesato/angular2-svg-graphics

D3 and SVG Animation in Angular

The following code block illustrates how to add D3-based animation effects
to the SVG <circle> element in the D3Angular Angular application:

svg.on("mousemove", function() {

 index = (++moveCount) % circleColors.length;

 var circle = svg.append("circle")

 .attr("cx", (width-100)*Math.random())

 .attr("cy", (height-100)*Math.random())

 .attr("r", radius)

 .attr("fill", circleColors[index])

 .transition()
 .duration(duration)
 .attr("transform", function() {
 return "scale(0.5, 0.5)";
 //return "rotate(-20)";
 })
});

The code inside the preceding event handler is executed during each
mousemove event, accompanied by the dynamic creation of an SVG
<ellipse> element. The new functionality involves the transition()

Quick Introduction to Angular • 49

method and the duration() method, and it also sets the transform
attribute, all of which is shown in bold in the preceding code block.

The transform attribute is set to a scale() value, which sets the width
and height to 50% of their initial value during an interval of 2 seconds
(which equals 2000 milliseconds), thereby creating an animation effect.

Summary

This chapter started with a description overview of Angular and its hierar-
chical component-based structure. Next, you learned about the Angular
CLI utility ng and how to create an Angular “Hello world” application
with the ng utility.

You also learned about the TypeScript files app.component.ts and app.
module.ts that contain the TypeScript code for Angular applications.
Finally, you learned about creating Angular applications for rendering
SVG-based ellipses and charts, followed by D3-based animation effects.

c h a p t e r

This chapter contains Angular applications with an assortment of UI
Controls, along with code samples that involve user input. Note
that the Angular applications in this chapter render UI Controls

using standard HTML syntax instead of using functionality that is specific
to Angular. In addition, the last section in this chapter contains links to
toolkits that provide Angular UI components.

The first part of this chapter contains a simple example of displaying a
hard-coded list of strings, followed by an Angular application that sup-
ports click events on a button. The second part of this chapter shows how
to manage lists of items, which includes displaying, adding, and deleting
items from a list. You will also learn about Controls and ControlGroups.

The third section contains two examples of displaying a list of user names:
the first retrieves user names that are stored as strings in a JavaScript
array, and the second retrieves user names that are stored in object literals
in a JavaScript array. The third section goes a step further: you learn how
to define a custom user component that contains user-related information
(also contained in a JavaScript array). Later in this chapter, we make an
HTTP GET request to retrieve data (such as user-related information) to
populate a list of items.

The fourth part of this chapter discusses Angular Pipes. There is an
Angular application that uses async pipes, which can eliminate the need
for defining instance variables and reduce the likelihood of memory leaks
in Angular applications.

UI Controls, User Input,
and Pipes

2

52 • Angular and Deep Learning Pocket Primer

Now let’s create a simple Angular application that displays a hard-coded
list of strings via the ngFor directive, as discussed in the next section.

The ngFor Directive in Angular

The code sample in this section displays a hard-coded list of strings via the
*ngFor directive. This simple code sample is a starting point from which
you can create more complex Angular applications.

Copy the directory SimpleList from the companion files into a convenient
location. Listing 2.1 shows the content of app.component.ts, which illus-
trates how to display a list of items using the *ngFor directive in Angular.

Listing 2.1: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: `<div *ngFor="let item of items">

 {{item}}

 </div>`

})

export class AppComponent {

 items : any;

 constructor() {

 this.items = ['one','two','three','four'];

 }

}

Listing 2.1 contains a Component annotation that in turn contains the
standard selector property. Next, the template property consists of
a <div> element that contains the ngFor directive that iterates through
the items array and also displays each item in that array. Notice that
the items array is initialized as an empty array in the AppComponent
class, and then its value is set to an array consisting of four strings in the
constructor method.

Launch the application in this section and you will see the following out-
put in a browser session:

one
two

UI Controls, User Input, and Pipes • 53

three
four

The next section contains a code sample involving a <button> element,
which is probably one of the most common UI controls in HTML Web
pages. The file app.component.ts contains the required custom
code, and the file app.component.ts contains auto-generated code
that does not require any modification.

Displaying a Button in Angular

Copy the directory ButtonClick from the companion files into a con-
venient location. The file app.component.ts in this section contains
all the custom code for this Angular application. Listing 2.2 shows the
content of app.component.ts, which illustrates how to render a
<button> element and respond to click events by displaying the num-
ber of times that users have clicked the <button> element during the
current session.

Listing 2.2: app.component.ts

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 template: `<div>

 <button (click)="clickMe()">ClickMe</button>

 <p>Click count is now {{clickCount}}</p>

 </div>`,

 styles: [` button {

 color: red;

 }`

]	

})

export class AppComponent {

 clickCount = 0;

 clickMe() {

 ++this.clickCount;

 console.log("click count: "+this.clickCount);

 }

}

54 • Angular and Deep Learning Pocket Primer

Listing 2.2 starts with an import statement followed by the required
selector property. Next, the template property contains a <but-
ton> element that responds to click events and a <p> element whose
contents are updated whenever users click on the <button> element.
The value of the term (click) is the clickMe() function (defined in
the AppComponent class) that increments and then displays the value of
the clickCount variable.

In addition, the styles property specifies a value of red for the <but-
ton> element. The styles property is an example of component style,
which means that the styles only apply to the template of the given com-
ponent. In effect, Angular applies CSS locally instead of globally by gener-
ating unique attributes that are visible when you click on the Elements
tab in Chrome Inspector.

More detailed information regarding component styles in Angular is here:

https://angular.io/docs/ts/latest/guide/component-styles.html

The next portion of Listing 2.2 is the definition of the AppComponent
class that contains the click-
Count variable that is incre-
mented in the clickMe()
function. Now launch the Angular
application whose output is dis-
played in Figure 2.1 (after it has
been clicked three times).

Since the file app.module.ts
contains auto-generated code that
does not require any modification, there is no need to display its contents
because they have already been discussed in Chapter 1.

Element versus Property

In Listing 2.2, the selector property matched the element <app-
root></app-root> in the HTML page index.html:

selector: 'app-root'

However, you can also specify a property instead of an element. For exam-
ple, suppose that index.html contains the following element:

<div app-root>Loading. . .</div>

Figure 2.1  A <button> element that
responds to click events

UI Controls, User Input, and Pipes • 55

In this scenario, you also need to modify the selector property as fol-
lows (and notice the square brackets):

selector: '[app-root]'

The next section contains an Angular application keeps track of the radio
button that users have clicked. After that we’ll see how to use a <but-
ton> element in order to add new user names to a list of users.

Once again, the file app.module.ts contains auto-generated code that
does not require any modification, so there is no need to display its con-
tents because they have already been discussed in Chapter 1.

Angular and Radio Buttons

Copy the directory RadioButtons from the companion files into a con-
venient location. Listing 2.3 shows the content of app.component.
ts, which illustrates how to render a set of radio buttons and also keep
track of the one that users have clicked.

Listing 2.3: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: `

 <h2>{{radioTitle}}</h2>

 <label *ngFor="let item of radioItems">

 <input type="radio" name="options"

 (click)="model.options = item"

 [checked]="item === model.options">

 {{item}}

 </label>

 <p><button (click)="model.options='option1'">Set Option

#1</button>

 `

})

export class AppComponent {

 radioTitle = "Radio Buttons in Angular";

 radioItems = ['option1','option2','option3','option4'];

 model = { options: 'option3' };

}

56 • Angular and Deep Learning Pocket Primer

Listing 2.3 defines the AppComponent component whose template
property contains three parts: a <label> element, an <input> ele-
ment, and a <button> element. The <label> element contains an
ngFor directive that displays a set of radio buttons by iterating through
the radioItems array that is defined in the AppComponent class.

By default, the first radio button is highlighted. However, when users
click on the <button> element, the (click) attribute of the
<input> element sets the current item to the value of model.
options, and then the [checked] attribute of the <input> ele-
ment sets the checked item to the current value of model.options.
The <input> element in Listing 2.3 contains functionality that is
more compact than using JavaScript to achieve the same results.

Now launch the Angular
application to see the output
that is displayed in Figure
2.2.

The file app.module.
ts contains auto-generated
code that does not require
any modification, so we’ll skip
the discussion of its contents.

Adding Items to a List in Angular

The code sample in this section shows how to update a list of strings
whenever users click on a button. Copy the directory AddListButton
from the companion files into a convenient location. Listing 2.4 shows
the content of app.component.ts, which illustrates how to append
strings to an array of items whenever users click on a button.

Listing 2.4: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: `

 <div>

 <input #fname>

Figure 2.2  A set of radio buttons that respond
to click events

UI Controls, User Input, and Pipes • 57

 <button (click)="clickMe(fname.value)">ClickMe</

button>

 <li *ngFor="let user of users">

 {{user}}

 </div>`

})

export class AppComponent {

 users = ["Jane", "Dave", "Tom"];

 clickMe(user) {

 console.log("new user = "+user);

 this.users.push(user);

/*

 // prevent empty user or duplicates

 if(user is non-null) {

 if(user is duplicate) {

 // display alert message

 } else {

 // display alert message

 }

 } else {

 // display alert message

 }

*/

 }

}

Listing 2.4 contains code that is similar to Listing 2.3 that displays a list
of strings. In addition, the template property in Listing 2.4 contains an
<input> element so that users can enter text. When users click on the
<button> element, the clickMe() method is invoked with fname.
value as a parameter, which is a reference to the text in the <input>
element.

Notice the use of the #fname syntax as an identifier for an element,
which in this case is an <input> element. Thus, the text that users enter
in the <input> element is referenced via fname.value. The follow-
ing code snippet provides this functionality:

58 • Angular and Deep Learning Pocket Primer

<input #fname>

<button (click)="clickMe(fname.value)">ClickMe</button>

The clickMe() method in the AppComponent component contains a
console.log() statement to display the user-entered text (which is
optional) and then appends the new text to the array user. The final
section in Listing 2.4 consists of a commented-out block of pseudocode
that prevents users from entering an empty string or a duplicate string.
This code block involves “pure” JavaScript, and the actual code is left as
an exercise for you.

Now, launch the Angular
application and you
will see the output that
is displayed in Figure
2.3 when you enter the
string “Sara” and click
the button element.

In addition, the file app.
module.ts contains
auto-generated code that
does not require any modification.

Deleting Items from a List in Angular

This section enhances the code in the previous section by adding a new
<button> element next to each list item. Now copy the directory
DelListButton from the companion files into a convenient location.
Listing 2.5 shows the content of app.component.ts, which illus-
trates how to delete individual elements from an array of items whenever
users click on a button that is adjacent to each array item.

Listing 2.5: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: `

 <div>

 <input #fname>

Figure 2.3  Adding a text string to a list

UI Controls, User Input, and Pipes • 59

 <button (click)="clickMe(fname.value)">ClickMe</

button>

 <li *ngFor="let user of users">

 <button (click)="deleteMe(user)">Delete</button>

 {{user}}

 </div>`

})

export class AppComponent {

 users = ["Jane", "Dave", "Tom"];

 deleteMe(user) {

 console.log("delete user = "+user);

 var index = this.users.indexOf(user);

 if(index >=0) {

 this.users.splice(index, 1);

 }

 }

 clickMe(user) {

 console.log("new user = "+user);

 this.users.push(user);

/*

 // prevent empty user or duplicates

 if(user is non-null) {

 if(user is duplicate) {

 // display alert message

 } else {

 // display alert message

 }

 } else {

 // display alert message

 }

*/

 }

}

Listing 2.5 contains an ngFor directive that displays a list of “pairs” of
items, where each “pair” consists of a <button> element followed by a
user that is defined in the users array.

60 • Angular and Deep Learning Pocket Primer

When users click on any <button> element, the “associ-
ated” user is passed as a parameter to the deleteMe() method, which
simply deletes that user from the users array in the AppComponent
class. The content of deleteMe() is written in standard JavaScript
code for removing an item from an array. You can replace the block
of pseudocode in Listing 2.5 with the same code that you added in
Listing 2.4 that prevents users from entering an empty string or a
duplicate string.

The file app.module.ts contains auto-generated code that does
not require any modification, so there is no need to discuss its familiar
content.

Angular Directives and Child Components

The code sample in this section shows you how to create a child compo-
nent in Angular that you can reference in an Angular application. Copy
the directory ChildComponent from the companion files into a con-
venient location. Listing 2.6 shows the content of app.component.
ts, which illustrates how to import a custom component (written by
you) in an Angular application.

Listing 2.6: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: ̀ <div>Goodbye<child-comp></child-comp>World!</

div>`

})

export class AppComponent {}

Listing 2.6 contains a template property that consists of a <div>
element that contains a nested <child-comp> element, where the
latter is the value of the selector property in the child component
ChildComponent.

Notice that Listing 2.6 does not import the ChildComponent class: this
class is imported in app.module.ts in Listing 2.8 (shown later).

Listing 2.7 shows the content of child.component.ts in the app
subdirectory.

UI Controls, User Input, and Pipes • 61

Listing 2.7: child.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'child-comp',

 template: `<div>Hello World from ChildComponent!</div>`

})

export class ChildComponent{}

Listing 2.7 is straightforward: the template property specifies a text
string that is displayed inside the <child-comp> element that is nested
inside the <div> element in Listing 2.7.

This is the first code sample in this chapter that involves modifying the
auto-generated contents of the file app.module.ts.

Listing 2.8 shows the modified content of app.module.ts, which must
import the class ChildComponent from child.component.ts and
also specify the class ChildComponent in the declarations prop-
erty. These additions to the default contents of app.module.ts are
shown in bold in Listing 2.8.

Listing 2.8: app.module.ts

import { NgModule }	 from '@angular/core';

import { BrowserModule }	 from '@angular/platform-browser';

import { AppComponent }	 from './app.component';

import { ChildComponent }	from './child.component';

@NgModule({

 imports: [BrowserModule],

 declarations: [AppComponent, ChildComponent],

 bootstrap: [AppComponent]

})

export class AppModule { }

Listing 2.8 contains a new import statement (shown in bold) that
imports the ChildComponent component from the Typescript file
child.component.ts. The second modification is the inclusion
of ChildComponent (shown in bold) in the declarations array.

Listing 2.8 involves two very simple updates in order to include a child
component in an Angular application. With practice, you will become
familiar with the sequence of steps that are illustrated in this section.

NOTE

62 • Angular and Deep Learning Pocket Primer

The Constructor and Storing State in Angular

This section contains a code sample that illustrates how to initialize a
variable in a constructor and then reference the value of that variable
via interpolation in the template property. Now copy the directory
StateComponent from the companion files into a convenient location.
Listing 2.9 shows the content of app.component.ts, which displays
various attributes of an “employee.”

Listing 2.9: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: '<h3>My name is {{emp.fname}} {{emp.lname}}</

h3>'

})

export class AppComponent {

 public emp = {fname:'John',lname:'Smith',city:'San

Francisco'};

 public name = 'John Smith'

 constructor() {

 this.name = 'Jane Edwards'

 this.emp = {fname:'Sarah',lname:'Smith',city:'San

Francisco'};

 }

}

Listing 2.9 contains a constructor() method that initializes the var-
iable name as well as the literal object emp. The emp variable is shown
in bold in the template property and also in two other places inside the
AppComponent class.

Question: Which name will be displayed when you launch the application?

Answer: The value that is assigned to the emp variable in the con-
structor. This behavior is the same as OO-oriented languages such
as Java.

Launch this application to see the following output displayed in a Web
browser:

UI Controls, User Input, and Pipes • 63

My name is Sarah Smith
Keen-eyed readers will notice how we “slipped in” the TypeScript
keyword public in the declaration of the emp and name variables.
Other possible keywords include private and protected; all
three keywords have the same semantics that they have in Java. If you
are unfamiliar with these keywords, you can find online TypeScript
tutorials that explain their purpose. There is another handy TypeScript
syntax for TypeScript variables that is discussed in the next section.

Private Arguments in the Constructor: a Shortcut

TypeScript provides a short-hand notation for initializing private variables
via a constructor. Consider the following TypeScript code block:

class MyStuff {

 private firstName: string;

 constructor(firstName: string) {

 this.firstName = firstName;

 }

}

A simpler and equivalent TypeScript code block is here:

class MyStuff {

 constructor(private firstName: string) {

 }

}

TypeScript support for the private keyword in a constructor is a con-
venient feature that reduces some boilerplate code and also eliminates a
potential source of error (i.e., misspelled variable names).

As another example, the constructor() method in the following
code snippet populates an employees object with data retrieved from an
EmpService component (defined elsewhere and not important here):

constructor(private empService: EmpService) {

 this.employees = this.empService.getEmployees();

}

The next section shows you how to use the *ngIf directive for condi-
tional logic in Angular applications.

64 • Angular and Deep Learning Pocket Primer

Conditional Logic in Angular

Although previous examples contain a template property with a sin-
gle line of text, Angular enables you to specify multiple lines of text. If
you place interpolated variables inside a pair of matching “back ticks,”
Angular will replace (“interpolate”) the variables with their values.

Now copy the directory IfLogic from the companion files into a con-
venient location. Listing 2.10 shows the content of app.component.
ts, which illustrates how to use the *ngIf directive.

Listing 2.10: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: `

 <h3>Hello everyone!</h3>

 <h3>My name is {{emp.fname}} {{emp.lname}}</h3>

 <button (click)="moreInfo()">More Details</button>

 <div *ngIf="showMore === true">

 <h3>I live in {{emp.city}}</h3>

 </div>

 <div (click)="showDiv = !showDiv">Toggle Me</div>

 <div *ngIf="showDiv"

 style="color:white;background-color:blue;

width:25%">Content1</div>

 <div *ngIf="showDiv"

 style="background-color:red;

width:25%;">Content2</div>

 `

})

export class AppComponent {

 public emp = {fname:'John',lname:'Smith',city:'San

Francisco'};

 public showMore = false;

 public showDiv = false;

 moreInfo() {

 this.showMore = true;

 }

}

UI Controls, User Input, and Pipes • 65

Listing 2.10 contains some new code in the template property: a
<button> element that invokes the method moreInfo() whenever
users click on the button. After the click event, a <div> element with
city-related information inside an <h3> element is rendered. Notice that
this <div> element is only rendered when showMore is true, which is
controlled via the ngIf directive that checks for the value of showMore.
The initial value of showMore is false, and right after users click the
<button> element, its value is set to true, after which the <div> ele-
ment is displayed.

The new code in AppComponent involves a Boolean variable show-
More (whose initial value is false) and the method moreInfo() that
initializes showMore to true.

The file app.module.ts contains auto-generated code that does not
require any modification, so we’ll omit its contents in this section.

Handling User Input

The code sample in this section shows you how to handle user input and
introduces the notion of a service in Angular. This code sample contains
custom code in the file app.component.ts and some updates to the
file app.module.ts, along with these three custom files (all of which
are discussed in this section):

�� todoservice.ts
�� todolist.ts
�� todoinput.ts

The “source of truth” for a dynamically updated list of todo items is the
TypeScript todos array that is defined in todoservice.ts; this array
is accessed indirectly in the other two TypeScript classes. This coding
style conforms to object-oriented programming (OOP). If you are unfa-
miliar with OOP, it’s worthwhile to learn this methodology and also highly
recommended for moderate and large Angular applications.

Before we look at the custom code, recall that Angular enables you to
create a reference to an HTML element, as shown here:

<input type="text" #user>

The #user syntax creates a reference to the <input> element that ena-
bles you to reference {{user.value}} to see its value or {{user.
type}} to see the type of the input. Moreover, you can use this refer-
ence in the following code block:

66 • Angular and Deep Learning Pocket Primer

<p (click)="user.focus()">

 Get the input focus

</p>

<input type="text" #user (keyup)>

{{user.value}}

Whenever users click on the <input> element, the focus() method
is invoked, and the (keyup) property updates the value in the input
during the occurrence of a keyup event.

Now copy the directory TodoInput from the companion files into a con-
venient location. Listing 2.11 shows the content of app.component.
ts,which illustrates how to reference a component that appends user
input to an array in Angular.

Listing 2.11: app.component.ts

import {Component} from '@angular/core';

@Component({

 selector: 'app-root',

 template: `<div>

 <todo-input></todo-input>

 <todo-list></todo-list>

 </div>`

})

export class AppComponent {}

Listing 2.11 contains a standard import statement. The template
property specifies a <div> element that contains placeholders for the
TodoInput and TodoList components.

Listing 2.12 shows the content of todoinput.ts, which illustrates
how to display an <input> field and a <button> element to capture
user input in Angular.

Listing 2.12: todoinput.ts

import {Component} from '@angular/core';

import {TodoService } from './todoservice';

@Component({

 selector: 'todo-input',

 template: `

 <div>

UI Controls, User Input, and Pipes • 67

 <input type="text" #myInput>

 <button (click)="mouseEvent(myInput.value)">Add Item</

button>

 </div>`

})

export class TodoInput{

 constructor(public todoService:TodoService) {}

 mouseEvent(value) {

 if((value != null) && (value.length > 0)) {

 this.todoService.todos.push(value);

 console.log("todos: "+this.todoService.todos);

 } else {

 console.log("value must be non-null");

 }

 }

}

Listing 2.12 contains a template property that consists of a <div> ele-
ment that contains an <input> element for user input, followed by a
<button> element for handling mouse click events.

The TodoInput class defines an empty constructor that also initializes an
instance of the custom TodoService that is imported near the beginning
of todoinput.ts. This instance contains an array todos that is updated
with new to-do items whenever users click on the <button> element,
provided that the new to-do item is not the empty string.

Now let’s look at the custom files, starting with Listing 2.13, which displays
the content of todolist.ts that keeps track of the items in a to-do list.

Listing 2.13: todolist.ts

import {Component} from '@angular/core';

import {TodoService} from './todoservice';

@Component({

 selector: 'todo-list',

 template: `<div>

 <li *ngFor="let todo of todoService.todos">

 {{todo}}

68 • Angular and Deep Learning Pocket Primer

 </div>`

})

export class TodoList {

 constructor(public todoService:TodoService) {}

}

Listing 2.13 contains a template property whose contents are a <div>
element that contains an unordered list of items called todos (and
defined in Listing 2.14), along with an empty constructor that initializes
an instance of the TodoService custom component. This instance is
used in the template property in order to iterate through the elements
in the todos array.

Listing 2.14 shows the content of todoservice.ts, which keeps
track of the current contents of a to-do list.

Listing 2.14: todoservice.ts

export class TodoService {

 todos = [];

}

Listing 2.14 contains a todos array that is updated with new to-do items
when users click on the <button> element in the root component.

Finally, update the contents of app.module.ts to include the class
shown in bold in Listing 2.15.

Listing 2.15: app.module.ts

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { TodoInput } from './todoinput';

import { TodoList } from './todolist';

import { TodoService } from './todoservice';

@NgModule({

 imports: [BrowserModule],

 providers: [TodoService],

 declarations: [AppComponent, TodoInput, TodoList],

 bootstrap: [AppComponent]

})

export class AppModule { }

UI Controls, User Input, and Pipes • 69

As you probably expected, Listing 2.15 imports three todo-related
classes and adds them to the providers property and the declara-
tions property (shown in bold). Although the number of custom modifi-
cations to app.module.ts in this section is greater than in the Angular
applications that you have seen earlier in this chapter, the updates make
sense and are straightforward.

The output for this Angular application is similar to that shown in Figure
2.3, so it is not reproduced here. Keep in mind that although the output
looks similar, the important point regarding the code sample in this sec-
tion is its focus on Angular services and that it defines them following the
methodology of object oriented programming.

Click Events in Multiple Components

An Angular application can contain multiple components, each of which
can declare event handlers with the same name. The Angular application
in this section shows you how to add click events to different elements in
an Angular application.

Copy the directory ClickItems from the companion files into a con-
venient location. Listing 2.16 shows the content of app.component.
ts, which declares an onClick() event handler for each item in a list
of items.

Listing 2.16: app.component.ts

import {Component} from '@angular/core';

import {ClickItem} from './clickitem';

@Component({

 selector: 'app-root',

 styles: [`li { display: inline; }`],

 template: `

 <div>

 <img (click)="onClick(100)"

 width="100" height="100" src="src/sample1.

png">

 <img (click)="onClick(200)"

 width="100" height="100" src="src/sample2.

png">

70 • Angular and Deep Learning Pocket Primer

 <img (click)="onClick(300)"

 width="100" height="100" src="src/sample3.

png">

 </div>

 `

})

export class AppComponent {

 onClick(id) {

 console.log("you clicked me: "+id);

 }

}

The template property in Listing 2.16 displays an unordered list in
which each item is a clickable PNG-based image. Whenever users click
on one of the images, the onClick() method is invoked that simply
displays a message via console.log().

Listing 2.17 shows the content of clickitem.ts, which declares an
onClick() event handler for each item in a list of items.

Listing 2.17: clickitem.ts

import {Component} from '@angular/core';

@Component({

 selector: 'cclick',

 styleUrl: [` li { inline: block } `],

 template: `

 <div>

 <img (click)="onClick(100)"

 width="100" height="100" src="assets/sam-

ple1.png">

 <img (click)="onClick(200)"

 width="100" height="100" src="assets/sam-

ple2.png">

 <img (click)="onClick(300)"

 width="100" height="100" src="assets/sam-

ple3.png">

 </div>

 `

UI Controls, User Input, and Pipes • 71

})

export class ClickItem {

 onClick(id) {

 console.log("app.component.ts: you clicked me: "+id);

 }

}

Listing 2.17 is very similar to Listing 2.16 in terms of functionality, so we
won’t repeat those details. In addition, the file app.module.ts con-
tains the auto-generated code, along with two new code snippets. The
first snippet is the following import statement that references the file
clickitem.ts:

import { ClickItem } from './clickitem';

The second code snippet
specifies the preceding class
in the providers ele-
ment, as shown here:

providers: [ClickItem]

Now launch the application
to see the three images that
are displayed in Figure 2.4.

 Click on the left-most image, then the middle image, and then the right-
most image. Open the inspector for the current browser session, and you
will see these messages:

you clicked me: 100

you clicked me: 200

you clicked me: 300

Working with @Input, @Output, and EventEmitter

Angular supports the @Input and @Output annotations to pass val-
ues between components. The @Input annotation is for variables that
receive values from a parent component, whereas the @Output annota-
tion sends (or “emits”) data from a component to its parent component
whenever the value of the given variable is modified.

The output from this code sample is anti-climatic in the sense that there is a
lot of code to produce the following output that is visible in the Inspector tab:

constructor parentValue = 77

Figure 2.4  Clicking on images in an Angular
application

72 • Angular and Deep Learning Pocket Primer

However, the purpose of this code sample is to draw your attention to
some of the non-intuitive code snippets (especially in app.module.
ts). Moreover, this code sample works correctly for version 2.1.5 of the
TypeScript compiler, but it’s possible that future versions will require
modifications to the code (so keep this detail in mind).

Copy the directory ParentChildEmitters from the companion files
to a convenient location. Listing 2.18 shows the content of app.compo-
nent.ts, which updates the value of a property of a child component
from a parent component.

Listing 2.18: app.component.ts

import {Component} from '@angular/core';

import {EventEmitter} from '@angular/core';

import {ChildComponent} from './childcomponent';

@Component({

 selector: 'app-root',

 providers: [ChildComponent],

 template: `

 <div>

 <child-comp [childValue]="parentValue"

 (childValueChange)="reportValueChange($event)">

 </child-comp>

 </div>

 `

})

export class AppComponent {

 public parentValue:number = 77;

 constructor() {

 console.log("constructor parentValue = "+this.

parentValue);

 }

 reportValueChange(event) {

 console.log(event);

 }

}

The template property in Listing 2.18 has a top-level <div> element
that contains a <child-comp> element that has two attributes, as
shown here:

UI Controls, User Input, and Pipes • 73

<child-comp [childValue]="parentValue"

 (childValueChange)="reportValueChange($event)">

</child-comp>

The [childValue] attribute assigns the value of parentValue to
the value of childValue. Notice that the variable parentValue
is defined in AppComponent, whereas the variable childValue is
defined in ChildComponent. This code shows how to pass a value from
a parent component to a child component.

Next, the childValueChange attribute is assigned the value that is
returned from ChildComponent to the current (“parent”) component.
The attribute childValueChange is updated only when the value of
childValue (in the child component) is modified. This code shows how
to pass a value from a child component to a parent component.

Keep in mind the following point: the child component must define a
variable of type EventEmitter (such as childValueChange) in
order to “emit” a modified value from the child component to the parent
component.

The next portion of Listing 2.18 is a simple constructor, followed by the
method reportValueChange that contains a console.log()
statement.

Listing 2.19 displays the contents of childcomponent.ts that shows
you how to update the value of a property of a child component from a
parent component.

Listing 2.19: childcomponent.ts

import {Component} from '@angular/core';

import {Input} from '@angular/core';

import {Output} from '@angular/core';

import {EventEmitter} from '@angular/core';

@Component({

 selector: 'child-comp',

 template: `

 <button (click)="decrement();">Subtract</button>

 <input type="text" [value]="childValue">

 <button (click)="increment();">Add</button>

 `

})

74 • Angular and Deep Learning Pocket Primer

export class ChildComponent {

 @Input() childValue:number = 3;

 @Output() childValueChange = new EventEmitter();

 constructor() {

 console.log("constructor childValue = "+this.

childValue);

 }

 increment() {

 this.childValue++;

 this.childValueChange.emit({

 value: this.childValue

 })

 }

 decrement() {

 this.childValue--;

 this.childValueChange.emit({

 value: this.childValue

 })

 }

}

Listing 2.19 contains a template property that specifies three elements:
a “decrement” <button> element, an <input> field where users
can enter a number, and an “increment” <button> element. The first
<button> element increments the value <input> field whereas the
second <button> element decrements the value.

The exported class ChildComponent class contains the numeric vari-
able childValue that is decorated via @Input() and whose value is
set by the parent.

As you can see, the methods increment() and decrement()
increase and decrease the value of childValue, respectively. In both
cases, the modified value of childValue is then “emitted” back to the
parent with this code block:

this.childValueChange.emit({

 value: this.childValue

})

UI Controls, User Input, and Pipes • 75

Update the content of app.module.ts as shown in Listing 2.20 (which
is different from the content of this file in previous examples in this
chapter).

Listing 2.20: app.module.ts

import { NgModule } from '@angular/core';

import {CUSTOM_ELEMENTS_SCHEMA} from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { ChildComponent } from './childcomponent';

@NgModule({

 imports: [BrowserModule],

 providers: [ChildComponent],

 declarations: [AppComponent],

 bootstrap: [AppComponent],

 schemas: [CUSTOM_ELEMENTS_SCHEMA]

})

export class AppModule { }

When you launch the Angular application in this section, the value that is
displayed in the <input> element is 77, which is the value in the parent
component, and not the value that is assigned in the child component
(which is 3). Open the inspector for the current browser session and you
will see the following output:

constructor parentValue = 77

Keep in mind that if you specify ChildComponent in the declara-
tions property instead of the providers property, you will probably
see this error message:

"Can't bind to <child-comp> since it isn't a known
native property"

Listing 2.20 contains three code snippets shown in bold, all of which are
required for this code sample. If you do not include them, you will see
the following type of error message in the Inspector tab of your browser:

Error: Template parse errors:

Can't bind to 'childValue' since it isn't a known property

of 'child-comp'.

76 • Angular and Deep Learning Pocket Primer

1)	 If child-comp is an Angular component and it has childValue
input, then verify that it is part of this module.

2)	 If child-comp is a Web Component then add CUSTOM_ELE-
MENTS_SCHEMA to the @NgModule.schemas of this component
to suppress this message.

3)	 To allow any property add NO_ERRORS_SCHEMA to the @NgMod-
ule.schemas of this component. (<div> <child-comp
[ERROR ->][childValue]="parentValue" (childVal-
ueChange)="reportValueChange($event)"> </child-
comp): ng:///AppModule/AppComponent.html@2:18

Presentational Components

Presentational components receive data as input and generate views as
outputs (so they do not maintain the application state). Consider the fol-
lowing component:

@Component({

 selector: 'student-info',

 template: `<h2>{{studentDetails?.status}}</h2>

 <div class="container">

 <table class="table">

 <tbody>

 <tr *ngFor="let student of students">

 <td>{{student.fname}}</td>

 <td>{{student.lname}}</td>

 </tr>

 </tbody>

 </table>

</div>`

})

export class StudentDetailsComponent {

 @Input()

 studentDetails:StudentDetails;

}

The StudentDetailsComponent component has primarily pres-
entational responsibilities: the component receives input data and dis-
plays that on the screen. As a result, this component is reusable.

By contrast, application-specific components (also called “smart” compo-
nents) are tightly coupled to a specific Angular application. Thus, a smart
component would have a presentation component (but not the converse).

UI Controls, User Input, and Pipes • 77

Since data is passed to this component synchronously (not via an
Observable), the data might not be present initially, which is the
reason for including the so-called Elvis operator (i.e., the “?” in the
template).

Working with Pipes in Angular

Angular supports something called a pipe that is somewhat analogous to
the Unix pipe “|” command. Angular pipes enable you to specify condi-
tional logic that filters data, which is to say, you can display a subset of data
items that is based on your conditional logic.

Angular supports built-in pipes, asynchronous pipes, and support for
custom pipes. The next two sections show you some example of built-in
pipes, followed by a description of asynchronous pipes. A separate section
shows you how to define a custom Angular pipe.

Working with Built-in Pipes

Angular supports various built-in pipes, such as DatePipe,
UpperCasePipe, LowerCasePipe, CurrencyPipe, and
PercentPipe. Each of these intuitively named pipes provides the
functionality that you would expect: the DatePipe supports date val-
ues, the UpperCasePipe converts strings to uppercase, and so forth.

As a simple example, suppose that the variable food has the value pizza.
Then the following code snippet displays the string PIZZA:

<p> I eat too much {{ food | UppercasePipe }} </p>

You can also parameterize some Angular pipes, an example of which is
shown here:

</p> My brother's birthday is {{ birthday | date:"MM/dd/yy" }}

</p>

In fact, you can even chain pipes, as shown here:

My brother's birthday is {{ birthday | date | uppercase}}

In the preceding code snippet, birthday is a custom pipe (written by
you). As another example, suppose that an Angular application contains
the variable employees array that contains JSON-based data. You can
display the contents of the array with this code snippet:

<div>{{employees | json }}</div>

78 • Angular and Deep Learning Pocket Primer

The AsyncPipe

The Angular AsyncPipe accepts a Promise or Observable as input
and subscribes to the input automatically, eventually returning the emit-
ted values. Moreover, AsyncPipe is stateful: the pipe maintains a sub-
scription to the input Observable and keeps delivering values from
that Observable as they arrive.

The following code block gives you an idea of how to display stock quotes,
where the variable quotes$ is an Observable:

@Component({

 selector: 'stock-quotes',

 template: `

 <h2>Your Stock Quotes</h2>

 <p>Message: {{ quotes$ | async }}</p>

`

})

Keep in mind that the AsyncPipe provides two advantages. First,
AsyncPipe reduces boilerplate code. Second, there is no need to sub-
scribe or to unsubscribe from an Observable (the latter feature can
help avoid memory leaks).

Angular does not provide pipes for filtering or sorting lists (i.e., there
is no FilterPipe or OrderByPipe) because both can be compute
intensive, which would adversely affect the perceived performance of an
application.

The code sample in the next section shows you how to create a custom
pipe that displays a filtered list of users based on conditional logic that is
defined in custom code.

Creating a Custom Angular Pipe

Copy the directory SimplePipe from the companion files into a con-
venient location. Listing 2.21 shows the content of app.component.
ts, which illustrates how to define and use a custom pipe in an Angular
application that displays a subset of a hard-coded list of users.

Listing 2.21: app.component.ts

import { Component } from '@angular/core';

import {User} from './user.component';

UI Controls, User Input, and Pipes • 79

import {MyPipe} from './pipe.component';

@Component({

 selector: 'app-root',

 template: `

 <div>

 <h2>Complete List of Users:</h2>

 <li

 *ngFor="let user of userList"

 (mouseover)='mouseEvent(user)'

 [class.chosen]="isSelected(user)">

 {{user.fname}}-{{user.lname}}

 <h2>Filtered List of Users:</h2>

 <li

 *ngFor="let user of userList|MyPipe"

 (mouseover)='mouseEvent(user)'

 [class.chosen]="isSelected(user)">

 {{user.fname}}-{{user.lname}}

 </div>

 `

})

export class AppComponent {

 user:User;

 currentUser:User;

 userList:User[];

 mouseEvent(user:User) {

 console.log("current user: "+user.fname+" "+user.

lname);

 this.currentUser = user;

 }

 isSelected(user: User): boolean {

80 • Angular and Deep Learning Pocket Primer

 if (!user || !this.currentUser) {

 return false;

 }

 return user.lname === this.currentUser.lname;

 //return true;

 }

 constructor() {

 this.userList = [

 new User('Jane','Smith'),

 new User('John','Stone'),

 new User('Dave','Jones'),

 new User('Rick','Heard'),

]

 }

}

Listing 2.21 imports the User custom class and the MyPipe custom
class, where the latter is specified in the array of values for the pipes
property.

Next, the template property displays two unordered lists of user names.
The first list displayed the complete list, and whenever users hover (with
their mouse) over a user in the first list, the current user is set equal to
that user via the code in the mouseEvent() method (defined in the
AppComponent class).

Note that the constructor in the AppComponent class (shown at the bot-
tom of Listing 2.21) initializes the userList array with a set of users,
each of which is an instance of the User custom component.

The second list displays a filtered list of users based on the conditional
logic in the custom pipe called MyPipe. Listing 2.22 shows the content
of pipe.component.ts, which defines the custom pipe MyPipe that
is referenced in Listing 2.25.

Listing 2.22: pipe.component.ts

import {Component} from '@angular/core';

import {Pipe} from '@angular/core';

@Pipe({

 name: "MyPipe"

})

UI Controls, User Input, and Pipes • 81

export class MyPipe {

 transform(item) {

 return item.filter((item) => item.fname.startsWith("J"));

 //return item.filter((item) => item.lname.endsWith("th"));

 //return item.filter((item) => item.lname.contains("n"));

 }

}

Listing 2.22 contains the MyPipe class that contains the transform()
method. There are three examples of how to define the behavior of the
pipe, the first of which returns the users whose first name starts with an
uppercase J (which is admittedly somewhat contrived, but nevertheless
illustrative of pipe-related functionality).

Listing 2.23 shows the content of the custom component user.com-
ponent.ts for creating User instances, which is also referenced via an
import statement in app.component.ts.

Listing 2.23: user.component.ts

import {Component} from '@angular/core';

import { Inject } from '@angular/core';

@Component({

 selector: 'my-user',

 template: '<h1></h1>'

})

export class User {

 fname: string;

 lname: string;

 constructor(@Inject(String) fname: string,

 @Inject(String) lname: string) {

 this.fname = fname;

 this.lname = lname;

 }

}

The contents of Listing 2.23 are straightforward: there is a User
class comprising the fields fname and lname for the first name and
last name, respectively, for each new user, both of which are speci-
fied in the constructor whenever a new instance of the User class is
created.

82 • Angular and Deep Learning Pocket Primer

Finally, we need to update the contents of app.module.ts, as shown
in Listing 2.24, where the modified contents are shown in bold.

Listing 2.24: app.module.ts

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { MyPipe } from './pipe.component';

import { User } from './user.component';

@NgModule({

 imports: [BrowserModule],		

 declarations: [AppComponent, MyPipe, User],

 bootstrap: [AppComponent]

})

export class AppModule { }

Listing 2.24 contains two new import statements so that the custom
components MyPipe and User can be referenced in the declarations
property. In addition, the declarations element includes MyPipe
and User in its array of values.

Launch the application, navigate to localhost:4200 in a browser ses-
sion, and after a few moments, you will see the following output:

Complete List of Users:

�� Jane-Smith
�� John-Stone
�� Dave-Jones
�� Rick-Heard

Filtered List of Users:

�� Jane-Smith
�� John-Stone

In the last portion of the preceding output, this Angular application per-
forms a filtering operation that “filters out” the users whose first name
does not start with the capital letter J.

Now that you understand how to define a basic Pipe in Angular, you
can experiment with custom Pipes that receives data asynchronously.
This type of functionality can be very useful when you need to display

UI Controls, User Input, and Pipes • 83

data (such as a list or a table) whenever it’s updated without the need for
“polling” the source of the data.

Additional information regarding Angular pipes is here:

https://angular.io/docs/ts/latest/guide/pipes.html

This concludes the portion of the chapter regarding Pipes in Angular.
The next section discusses Services in Angular applications.

Reading JSON Data via an Observable in Angular

This section shows you how to read data from a file that contains JSON-
based data. Copy the directory ReadJSONFile from the companion files
into a convenient location. Listing 2.25 shows the content of app.compo-
nent.ts, which illustrates how to make an HTTP request (which returns
an Observable) to read a JSON -based file with employee information.

Listing 2.25: app.component.ts

import { Component } from '@angular/core';

import { Observable} from 'rxjs';

import { Inject } from '@angular/core';

import { HttpClient } from '@angular/common/http';

import { HttpHeaders } from '@angular/common/http';

declare var $: any;

@Component({

 selector: 'app-root',

 template: `

 <button (click)="httpRequest()">Employee Info</button>

 <li *ngFor="let emp of employees">

 {{emp.fname}} {{emp.lname}} lives in {{emp.city}}

 `

})

export class AppComponent {

 employees : any;

//OLD STYLE: constructor(@Inject(Http) public http:Http)

{}

84 • Angular and Deep Learning Pocket Primer

 constructor(@Inject(HttpClient) public http:HttpClient)

{}

 httpRequest() {

 this.http.get('assets/employees.json')

 .subscribe(

 // this function runs on success

 data => this.employees = data,

 // this function runs on error

 err => console.log('error reading data: '+err),

 // this function runs on completion

 () => this.userInfo()

);

 }

 userInfo() {

 //console.log("employees = "+JSON.stringify(this.

employees));

 }

}

The template property in Listing 2.25 starts with a <button> ele-
ment for making an HTTP GET request to retrieve information about
employees from a JSON file. The template property also contains a
 element for displaying an unordered list of employee-based data.

The AppComponent class contains the variable employees, followed
by a constructor that initializes the http variable that is an instance of
the Http class. The httpRequest() method contains the code for
making the HTTP GET request that returns an Observable. The sub-
scribe() method contains the usual code, which in this case also ini-
tializes the employees array from the contents of the file employees.
json in the subdirectory src/assets.

Listing 2.26 shows the content of employees.json, which contains
employee-related information. This file is located in the src/assets
subdirectory.

Listing 2.26: employees.json

[

{"fname":"Jane","lname":"Jones","city":"San Francisco"},

{"fname":"John","lname":"Smith","city":"New York"},

UI Controls, User Input, and Pipes • 85

{"fname":"Dave","lname":"Stone","city":"Seattle"},

{"fname":"Sara","lname":"Edson","city":"Chicago"}

]

Listing 2.27 shows the content of app.module.ts, which imports the
Angular HttpModule.

Listing 2.27: app.module.ts

import { NgModule }	 from '@angular/core';

import { BrowserModule }	 from '@angular/platform-browser';

import { HttpClientModule }	from '@angular/common/http';

import { AppComponent }	 from './app.component';

@NgModule({

 imports: [BrowserModule, HttpClientModule],

 declarations: [AppComponent],

 bootstrap: [AppComponent]

})

export class AppModule { }

Listing 2.27 contains the familiar set of import statements, along with
HttpClientModule that is listed in the array of elements in the
imports property that is inside the @NgModule decorator.

Launch the Angular application and you will see a button element (not
shown here) that you can click, after which you will see the following text:

�� Jane Jones lives in San Francisco
�� John Smith lives in New York
�� Dave Stone lives in Seattle
�� Sara Edson lives in Chicago

Angular applications prior to Angular 8 required two additional code snip-
pets, the first of which is an import statement for the map() operator,
as shown here:

import { map } from 'rxjs/operators';

The second code snippet involves an invocation of the map() operator
immediately following the invocation of the get() method, as shown
here:

this.http.get('assets/employees.json')

//.map(res => res.json()) redundant in Angular 8 and 9 and 10

86 • Angular and Deep Learning Pocket Primer

However, the map() operator is automatically invoked for us, so it’s no
longer required; moreover, if you do include this code snippet, you see an
error message.

Upgrading Code from Earlier Angular Versions

Although Angular 10 is mostly backward compatible with earlier versions
of Angular, sometimes code modifications are required, especially code
that involves HTTP requests.

In particular, the previous section showed you that the invocation of the
map() operator is no longer required in Angular 9 or in Angular 10.
Another change pertains to a redundant import statement and a modi-
fication to another import statement.

Specifically, suppose that you see the following error messages when you
compile an Angular application:

Error: Can't resolve 'rxjs/Rx'

Module not found Error: Can't resolve '@angular/http'

Error: Unexpected value 'HttpClient' imported by the module

'AppModule'. Please add a @NgModule annotation.

You need to update the code in app.component.ts as well as app.
module.ts with the appropriate code for Angular 10, as shown here for
app.component.ts:

// import { Observable } from 'rxjs/Observable'; // old

import { Observable } from 'rxjs'; // new

// import { Http } from '@angular/http'; // old

import { Http } from '@angular/common/http'; // new

import { HttpClient } from '@angular/common/http'; //

new

import { HttpHeaders } from '@angular/common/http'; //

new

// import 'rxjs/Rx'; // old

Here are the changes to app.module.ts:

//import {HttpModule} from '@angular/http'; // old

UI Controls, User Input, and Pipes • 87

import {HttpClientModule} from '@angular/common/http'; //

new

imports: [

 BrowserModule,

 HttpClientModule, // new

],

declarations: [

 AppComponent,

 HttpClientModule // new

],

The preceding changes to app.component.ts and app.module.
ts are precisely the changes that have been made to the Angular appli-
cation ReadJSONFile (discussed in the previous section) to upgrade to
an Angular 10 application. In the ideal scenario, these changes will work
for your application as well, saving you some debugging effort. However,
please keep in mind that you might need to make other modifications to
the code in your Angular application.

Reading Multiple Files with JSON Data in Angular

This section shows you how to read data from several files that contain
JSON-based data. Copy the directory ReadMultipleJSONFiles
from the companion files into a convenient location. Listing 2.28 shows
the content of app.component.ts, which illustrates how to make
multiple HTTP requests (which returns an Observable) to read a JSON
-based files with customer information, employee information, and
relative information.

Listing 2.28: app.component.ts

import { Component } from '@angular/core';

import { Observable } from 'rxjs';

import { HttpClient } from '@angular/common/http';

@Component({

 selector: 'app-root',

 styleUrls: ['./app.component.css'],

 template:`

 <h2>Angular HTTP and Observables</h2>

 <h3>Some of our Employees</h3>

88 • Angular and Deep Learning Pocket Primer

 <li *ngFor="let emp of employees">

 {{emp.fname}} {{emp.lname}} lives in {{emp.city}}

 <h3>Some of our Customers</h3>

 <li *ngFor="let cust of customers">

 {{cust.fname}} {{cust.lname}} lives in {{cust.city}}

 <h3>Some of our Relatives</h3>

 <li *ngFor="let rel of relatives">

 {{rel.fname}} {{rel.lname}} lives in {{rel.city}}

 `

})

export class AppComponent {

 public employees : any = [];

 public customers : any = [];

 public relatives : any = [];

 constructor(private http:HttpClient) {

 //this.getCustomers();

 //this.getEmployees();

 //this.getRelatives();

 this.getEveryone();

 }

 getCustomers() {

 this.http.get('assets/customers.json')

 .subscribe(

 // this function runs on success

 data => { this.customers = data },

 // this function runs on error

 err => console.log('error reading customer data:

'+err),

 // this function runs on completion

 () => console.log('Loading customers completed')

);

 }

UI Controls, User Input, and Pipes • 89

 getEmployees() {

 this.http.get('assets/employees.json')

 .subscribe(

 // this function runs on success

 data => { this.employees = data },

 // this function runs on error

 err => console.log('error reading employee data:

'+err),

 // this function runs on completion

 () => console.log('Loading employees completed')

);

 }

 getRelatives() {

 this.http.get('assets/relatives.json')

 .subscribe(

 // this function runs on success

 data => { this.relatives = data },

 // this function runs on error

 err => console.log('error reading relatives data:

'+err),

 // this function runs on completion

 () => console.log('Loading relatives completed')

);

 }

 getEveryone() {

 this.getCustomers();

 this.getEmployees();

 this.getRelatives();

 }

 infoResults() {

 console.log('inside infoResults');

 console.log('this.customers:',this.customers);

 console.log('this.employees:',this.employees);

 console.log('this.relatives:',this.relatives);

 }

}

90 • Angular and Deep Learning Pocket Primer

The template property in Listing 2.28 contains three very similar
blocks of code that all use ngFor to display information about custom-
ers, employees, and relatives. Since each code block resembles the code
with ngFor in Listing 2.25, read the associated description for the details
about their contents.

The AppComponent class contains the array-based variables customers,
employees, and relatives. Next, a constructor initializes the http var-
iable that is an instance of the HttpClient class, as shown here:

constructor(private http:HttpClient) {

 //this.getCustomers();

 //this.getEmployees();

 //this.getRelatives();

 this.getEveryone();

}

The constructor contains three commented-out methods, and these three
methods retrieve data from the JSON-based files customers.json,
employees.json, and relatives.json. In addition, the getE-
veryone() method is a convenience method that invokes the other
three methods to retrieve all three types of data.

Although these three methods are similar to the code in Listing 2.25, let’s
take a look at the contents of the getCustomers() method:

getCustomers() {

 this.http.get('assets/customers.json')

 .subscribe(

 // this function runs on success

 data => { this.customers = data },

 // this function runs on error

 err => console.log('error reading customer

data:'+err),

 // this function runs on completion

 () => console.log('Loading customers completed')

);

}

The preceding code makes an HTTP GET request when the subscribe()
method is invoked, and if it’s successful, the variable customers is popu-
lated with the contents of the file customers.json. In fact, these are the
only two lines that you need to modify in the getEmployees() method
(which involves the employees.json file) and the getRelatives()
method (which involves the relatives.json file).

UI Controls, User Input, and Pipes • 91

The httpRequest() method contains the code for making the HTTP
GET request that returns an Observable. The subscribe() method
contains the usual code, which in this case also initializes the employees
array from the contents of the file employees.json in the subdirec-
tory src/assets.

Listing 2.29, Listing 2.30, and Listing 2.31 show the contents of the JSON-
based files customers.json, employees.json, and relatives.
json, respectively.

Listing 2.29: customers.json

[
{"fname":"Paolo","lname":"Friulano","city":"Maniago"},

{"fname":"Luigi","lname":"Napoli","city":"Vicenza"},

{"fname":"Miko","lname":"Tanaka","city":"Yokohama"},

{"fname":"Yumi","lname":"Fujimoto","city":"Tokyo"}

]

Listing 2.30: employees.json

[

{"fname":"Jane","lname":"Jones","city":"San Francisco"},

{"fname":"John","lname":"Smith","city":"New York"},

{"fname":"Dave","lname":"Stone","city":"Seattle"},

{"fname":"Sara","lname":"Edson","city":"Chicago"}

]

Listing 2.31: relatives.json

[

{"fname":"Beppi","lname":"Guarda","city":"Vicenza"},

{"fname":"Paolo","lname":"Fermi","city":"Padova"},

{"fname":"Antonio","lname":"Gatto","city":"Brescia"},

{"fname":"Pasquale","lname":"Fritto","city":"Verona"}

]

Listing 2.32 shows the content of app.module.ts, which imports the
Angular HttpModule.

Listing 2.32: app.module.ts

import { BrowserModule } from '@angular/

platform-browser';

import { NgModule } from '@angular/core';

92 • Angular and Deep Learning Pocket Primer

import { AppComponent } from './app.component';

import { HttpClientModule } from '@angular/common/http';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 HttpClientModule,

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Listing 2.32 contains the standard set of import statements, along with
HttpClientModule that is listed in the array of imports in the @
NgModule decorator.

Launch this Angular application to see the following output displayed in
a browser session:

Angular HTTP and Observables

Some of our Employees

�� Jane Jones lives in San Diego
�� John Smith lives in New York
�� Dave Stone lives in Seattle
�� Sara Edson lives in Chicago

Some of our Customers

�� Paolo Friulano lives in Maniago
�� Luigi Napoli lives in Vicenza
�� Miko Tanaka lives in Yokohama
�� Yumi Fujimoto lives in Tokyo

Some of our Relatives

�� Beppi Guarda lives in Vicenza
�� Paolo Fermi lives in Padova

UI Controls, User Input, and Pipes • 93

�� Antonio Gatto lives in Brescia
�� Pasquale Fritto lives in Verona

The JSON files in Angular applications are located in the src/assets sub-
directory, and in this example, there are three JSON files. These files are
referenced in each of the three methods getCustomers(), getEm-
ployees(), and getRelatives(), with the following code snippets:

this.http.get('assets/customers.json')

this.http.get('assets/employees.json')

this.http.get('assets/relatives.json')

As you can probably infer, the prefix assets in the preceding code snip-
pet refers to the subdirectory src/assets in an Angular application. If
you see a blank screen when you launch an Angular application, you most
likely did not place your JSON files in the correct subdirectory.

Reading CSV Files in Angular

The code sample in this section shows you how to read the contents of a
CSV file and display the contents of that file. This Angular application is
very useful in Chapter 6 for a machine learning task that involves reading
the contents of a dataset from a CSV file.

Copy the directory ReadWineCSV from the companion files into a con-
venient location. Listing 2.33 shows the content of app.component.
ts, which illustrates how to read the contents of assets/wine.csv
and then display the data in tabular form.

Listing 2.33: app.component.ts

import { Component } from '@angular/core';

import { Inject } from '@angular/core';

import { HttpClient } from '@angular/common/http';

import { Observable } from 'rxjs';

@Component({

 selector: 'app-root',

 styleUrls: ['./app.component.css'],

 template: `

 <table>

 <thead>

 <tr>

94 • Angular and Deep Learning Pocket Primer

 <th>{{headers[0]}}</th>

 <th>{{headers[1]}}</th>

 <th>{{headers[2]}}</th>

 </tr>

 </thead>

 <tbody>

 <tr *ngFor="let record of records;let i = index;">

 <td> {{record[0]}} </td>

 <td> {{record[1]}} </td>

 <td> {{record[2]}} </td>

 </tr>

 </tbody>

 </table>

 `,

})

export class AppComponent {

 public headers: any = [];

 public records: any = [];

 public csvUrl = 'assets/wine.csv';

 constructor(@Inject(HttpClient) public http:HttpClient)

{

 this.readCsvData ();

 }

 readCsvData () {

 this.http.get(this.csvUrl, {responseType: 'text'})

 .subscribe(

 data => { this.extractData(data) },

 err => { console.log(err) }

);

 }

 private extractData(res: any) {

 let csvData = res || '';

 let allTextLines = csvData.split(/\r\n|\n/);

 // headers: Alcohol, Malic acid, class

 this.headers = allTextLines[0].split(',');

 // console.log("headers: "+this.headers)

 let lines = [];

 // skip the header row: start from index 1

UI Controls, User Input, and Pipes • 95

 for (let i=1; i < allTextLines.length; i++) {

 // split content based on comma

 let data = allTextLines[i].split(',');

 if (data.length == headers.length) {

 let tarr = [];

 for (let j = 0; j < headers.length; j++) {

 tarr.push(data[j]);

 }

 lines.push(tarr);

 }

 }

 // console.log("lines: "+lines)

 this.records = lines;

 }

}

Listing 2.33 contains an assortment of import statements, some stand-
ard properties, and a template property that consists of two parts. The
first part displays header-related information, and the second part con-
tains a loop that iterates through the data that was retrieved from the CSV
file wine.csv.

The next portion of Listing 2.33 defines a constructor that invokes the
readCsvData() method, which in turn makes an HTTP GET request
in order to read the contents of the CSV file wine.csv in the src/
assets subdirectory.

After the HTTP GET request has completed, the code invokes the
extractData() method that contains a loop that creates a one-dimen-
sional array for each row of data in the CSV file wine.csv. Each array
is appended to the lines array, and when the loop has completed, the
records array is initialized with the contents of the lines array.

Take a look at the template property in Listing 2.33 to see a loop in the
<tbody> element that creates and displays a <tr> element for each row
in the records array.

Listing 2.34 shows the updated content of app.module.ts, which
contains the usual code that you have seen in previous code samples.

Listing 2.34: app.module.ts

import { BrowserModule } from '@angular/

platform-browser';

96 • Angular and Deep Learning Pocket Primer

import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';

import { HttpClientModule } from '@angular/common/http';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 HttpClientModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

There are two additions to the auto-generated file app.module.ts that
are shown in Listing 2.34: the first snippet is an import statement and
the second snippet references HttpClientModule in the imports
element.

Launch this Angular application. In the browser session, you will see the
following output:

Alcohol Malic acid class

14.23 1.71 1

13.2 1.78 1

13.16 2.36 1

14.37 1.95 1

13.24 2.59 1

// detailed omitted for brevity

13.71 5.65 3

13.4 3.91 3

13.27 4.28 3

13.17 2.59 3

14.13 4.1 3

The output above is a “bare bones” display consisting of three columns of
numeric data. Feel free to define CSS-related code for better styling of
the output.

UI Controls, User Input, and Pipes • 97

Summary

This chapter showed you how to use UI Controls in Angular applications.
You saw how to render buttons, how to render lists of names, and also how
to add and delete names from those lists. You also learned about condi-
tional logic and how to create child components.

Then you learned about communicating between parent and child com-
ponents, followed by a discussion of presentational components. In addi-
tion, you were briefly introduced to Angular Pipes and code samples that
illustrate how to use them in Angular applications. Finally, you learned
how to make HTTP GET requests from an Angular application to retrieve
the contents of a JSON file as well as the contents of a CSV file that are in
the src/assets subdirectory.

c h a p t e r

This chapter shows you how to create Angular applications that use
Angular Forms and Services. The code samples rely on an under-
standing of functionality that is discussed in the previous chapter,

such as how to make HTTP requests in Angular.

The first section in this chapter contains Angular applications that use
Angular Controls and Control Groups. This section also provides an
example of an Angular application that contains a form that makes HTTP
GET requests.

The second part of this chapter contains code samples that retrieve data
from an external endpoint. Specifically, this section shows you how to
retrieve GitHub details for a hard-coded user, and also how to provide a
GitHub user name in a text field and then search GitHub for additional
details regarding that user.

The focus of the code samples in this book is on Angular-specific features,
which means that there is a “no frills” approach to the UI portion of the
applications. Hence, the UI portion is minimalistic, but you can enhance
the UI by providing your own custom code.

Overview of Angular Forms

An Angular FormControl represents a single input field, a FormGroup
consists of multiple logically related fields, and an NgForm component
represents a <form> element in an HTML Web page. The ngSubmit
action for submitting a form has this syntax:

(ngSubmit)="onSubmit(myForm.value)".

Forms and Services

3

100 • Angular and Deep Learning Pocket Primer

Note that NgForm provides the ngSubmit event, whereas you must define
the onSubmit() method in the component class. The expression myForm.
value consists of the key/value pairs in the form. Later in the chapter, you
will see examples involving these controls, as well as FormBuilder that
supports additional useful functionality.

Angular also supports template-driven forms (with a FormsModule) and
reactive forms (with a ReactiveFormsModule), both of which belong to
@angular/forms. However, reactive forms are synchronous whereas
template-driven forms are asynchronous.

Reactive forms

Reactive forms involve the explicit management of the data flowing
between a non-UI data model and a UI-oriented form model that retains
the states and values of the HTML controls on screen. Reactive forms
offer the ease of using reactive patterns, testing, and validation.

Reactive Forms involve the creation of a tree of Angular form control
objects in the component class app.component.ts, which are also bound
them to native form control elements in the component template app.
component.html.

The component class has access to the data model and the form control
structure, which enables you to propagate data model values into the form
controls and also retrieve user-supplied values in the HTML controls.
The component can observe changes in the form control state and react
to those changes.

One advantage of working with form control objects directly is that value
and validity updates are always synchronous and under your control.
You won’t encounter the timing issues that sometimes plague a tem-
plate-driven form and reactive forms are easier to unit test. Since reac-
tive forms are created directly via code, they are always available, which
enables you to immediately update values and “drill down” to descendant
elements.

Template-driven forms

Template-driven forms involve placing HTML form controls (such as
<input>, <select>, and so forth) in the component template. In addi-
tion, the form controls are bound to the data model properties in the
component via directives such as ngModel. Note that Angular directives

Forms and Services • 101

create Angular form objects based on the information in the provided
data bindings. Angular uses ngModel to handle the transfer of data val-
ues, and also updates the mutable data model with user changes as they
happen. Consequently, the ngModel directive does not belong to the
ReactiveFormsModule.

Before delving into the material in this section, you should access the
Angular application MasterForm that has the form-related code on the
companion files. Although this code sample does not use an FormGroup,
you might find some useful features in the code.

The next section shows you how to use the Angular ngForm component to
create a form “the Angular way.” Then you will see an example that shows
you how to use an Angular FormGroup in an Angular Application.

An Angular Form Example

This section contains a simple example of creating a form in an Angular
application. Copy the directory NGForm from the companion files into a
convenient location. Listing 3.1 shows the content of app.component.ts,
which illustrates how to use <input> elements with an ngModel attribute
in an Angular application.

Listing 3.1: app.component.ts

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 template: `

 <div>

 <h2>A Sample Form</h2>

 <form #f="ngForm"

 (ngSubmit)="onSubmit(f.value)"

 class="ui form">

 <div class="field">

 <label for="fname">fname</label>

 <input type="text"

 id="fname"

 placeholder="fname"

 name="fname" ngModel>

 <label for="lname">lname</label>

102 • Angular and Deep Learning Pocket Primer

 <input type="text"

 id="lname"

 placeholder="lname"

 name="lname" ngModel>

 </div>

 <button type="submit">Submit</button>

 </form>

 </div>

 `

})

export class AppComponent {

 myForm: any;

 onSubmit(form: any): void {

 console.log('you submitted value:', form);

 }

}

Listing 3.1 defines a template property that contains a <form> element
that contains two <div> elements, each of which contains an <input>
element. The first <input> element is for the first name and the second
<input> element is for the last name of a new user.

Angular provides the NgModel directive that enables you to use the
instance variable myForm in an Angular form. For example, the following
code snippet specifies myForm as the control group for the given form:

<form [ngModel]="myForm"

 (ngSubmit)="onSubmit(myForm.value)"

Notice that onSubmit specifies myForm and that a Control is bound to
the input element.

Add the attribute novalidate to the <form> element to disable the browser
validation.

Listing 3.2 shows the content of app.module.ts, which imports a
FormsModule and includes it in the imports property.

Listing 3.2: app.module.ts

import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

NOTE

Forms and Services • 103

@NgModule({

 imports: [BrowserModule, FormsModule],

 declarations: [AppComponent],

 bootstrap: [AppComponent]

})

export class AppModule { }

Listing 3.2 is straightforward: it contains two lines (shown in bold) involv-
ing the FormsModule that is required for this code sample.

Launch this application and navigate to localhost:4200 in a browser
session, where you will see a simple form with two input fields labeled
fname and lname. Enter a pair of values – let’s say tom and jones – for
these two fields. Open the inspector for this browser session to see the
following information displayed:

you submitted value: Object { fname: "tom", lname:

"jones" }

you submitted value: Object { fname: "tom", lname:

"jones" }

Data Binding and ngModel

Angular supports three types of binding in a form: no binding, one-way
binding, and two-way binding. Here are some examples:

<!-- no binding -->

<input name="fname" ngModel>

<!-- one-way binding -->

<input name="fname" [ngModel]="fname">

<!-- two-way binding -->

<input name="fname" [ngModel]="fname"

 (ngModelChange)="fname=$event">

<!-- two-way binding -->

<input name="fname" [(ngModel)]="fname">

The one-way binding example looks for the fname property in the asso-
ciated component and initializes the <input> field with the value of the
fname property.

The two-way binding example fires the ngModelChange event when
users alter the value of the <input> field, which causes an update to the
fname property in the component, thereby ensuring that the input value

104 • Angular and Deep Learning Pocket Primer

and its associated component value are the same. You can also replace the
value of ngModelChange with the output of a function (e.g., capitalizing
the text string that users enter in the input field).

The second example of two-way data binding uses the “banana in a box”
syntax, which is a shorthand way of achieving the same result as the first
two-way data binding example. However, this syntax does not support the
use of a function that is possible with the longer syntax for two-way data
binding.

The next section in this chapter shows you how to work with forms in the
“Angular way.”

Angular Forms with FormBuilder

The FormBuilder class and the FormGroup class are built-in Angular
classes for creating forms. FormBuilder supports the control() func-
tion for creating a FormControl and the group() function for creating a
FormGroup.

Copy the directory FormBuilder from the companion files to a conven-
ient location. Listing 3.3 shows the content of app.component.ts, which
illustrates how to use an Angular form in an Angular application.

Listing 3.3: app.component.ts

import { Component } from '@angular/core';

import { FormBuilder } from '@angular/forms';

import { FormGroup } from '@angular/forms';

@Component({

 selector: 'app-root',

 template: `

 <div>

 <h2>A FormBuilder Form</h2>

 <form [formGroup]="myForm"

 (ngSubmit)="onSubmit(myForm.value)"

 class="ui form">

 <div class="field">

 <label for="fname">fname</label>

 <input type="text"

 id="fname"

Forms and Services • 105

 placeholder="fname"

 [formControl]="myForm.controls['fname']">

 </div>

 <div class="field">

 <label for="lname">lname</label>

 <input type="text"

 id="lname"

 placeholder="lname"

 [formControl]="myForm.controls['lname']">

 </div>

 <button type="submit">Submit</button>

 </form>

 </div>

 `

})

export class AppComponent {

 myForm: FormGroup;

 constructor(fb: FormBuilder) {

 this.myForm = fb.group({

 'fname': ['John'],

 'lname': ['Smith']

 });

 }

 onSubmit(value: string): void {

 console.log('you submitted value:', value);

 }

}

Listing 3.3 contains a <form> element with two <div> elements, each
of which contains an <input> element. The first <input> element is for
the first name and the second <input> element is for the last name of a
new user.

In Listing 3.3, FormBuilder is injected into the constructor, which
creates an instance of FormBuilder that is assigned to the fb variable
in the constructor. Next, myForm is initialized by invoking the group()
method that takes an object of the key/value pairs. In this case, fname
and lname are keys, and both of them appear as <input> elements in
the template property. The values of these keys are optional initial
values.

106 • Angular and Deep Learning Pocket Primer

Launch this application and navigate to localhost:4200 in a browser
session, where you will see a simple form with two input fields labeled
fname and lname that are pre-populated with the values John and Smith,
respectively. Open the inspector for this browser session to see the follow-
ing information displayed:

you submitted value: Object { fname: "John", lname:

"Smith" }

Obviously, you can add many other properties inside the group() method
(such as address-related fields). Moreover, you can add a different form
for each new entity. For example, you could create separate forms for a
Customer, PurchaseOrder, and LineItems.

Angular Reactive Forms

This section contains a code sample for creating a reactive Angular form,
whose purpose will become clear after you see the Form-related code in
Listing 3.6.

Copy the directory ReactiveForm from the companion files to a con-
venient location. Listing 3.4 shows the content of app.component.ts,
which illustrates how to define a reactive Angular form in an Angular
application.

Listing 3.4: app.component.ts

import { Component } from '@angular/core';

import { FormBuilder } from '@angular/forms';

import { FormGroup } from '@angular/forms';

import { FormControl } from '@angular/forms';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 userForm: FormGroup;

 disabled:boolean;

 constructor(fb: FormBuilder) {

 this.userForm = fb.group({

 name: 'Jane',

Forms and Services • 107

 email: 'jsmith@yahoo.com',

 address: fb.group({

 city: 'San Francisco',

 state: 'California'

 })

 });

 }

 onFormSubmitted(theForm : FormGroup) {

 console.log("name = "+theForm.controls['name'].

value);

 console.log("email = "+theForm.controls['email'].

value);

 console.log("city = "+theForm.get('address.city').

value);

 console.log("city = "+theForm.get('address.state').

value);

 }

}

Listing 3.4 contains the usual import statements, and notice how the var-
iable userForm, which has type FormBuilder, is initialized in the con-
structor. In addition to two text fields, userForm contains the address
element, which also has type FormBuilder.

Listing 3.5 shows the contents of app.module.html with an Angular
form that contains <input> elements that correspond to the fields in the
userForm variable.

Listing 3.5: app.component.html

<form [formGroup]="userForm" (ngSubmit)="onFormSubmit-

ted(userForm)">

 <label>

 Name

 <input type="text" formControlName="name" placehold-

er="Name" required>

 </label>

 <div>

 <label>

 Email

 <input type="email" formControlName="email" place-

holder="Email" required>

108 • Angular and Deep Learning Pocket Primer

 </label>

 </div>

 <div formGroupName="address">

 <div>

 <label>

 City

 <input type="text" formControlName="city" place-

holder="City" required>

 </label>

 </div>

 <label>

 Country

 <input type="text" formControlName="state" placehold-

er="State" required>

 </label>

 </div>

 <input type="submit" [disabled]="userForm.invalid">

</form>

Listing 3.5 contains very simple HTML markup that enables users to
change the default values for each of the input fields.

Listing 3.6 shows the updated content (shown in bold) of app.module.
ts, which involves just two code snippets.

Listing 3.6: app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { ReactiveFormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 FormsModule,

 ReactiveFormsModule

],

Forms and Services • 109

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Listing 3.6 contains one new import statement for ReactiveFormsModule
(which can be combined with the import statement for FormsModule)
that is also referenced in the imports property.

Launch this application and navigate to localhost:4200 in a browser
session, where you will see a simple form with several pre-populated
input fields. Click the submit button. When you open the inspector for
this browser session, you will see the following information displayed:

name = Jane

email = jsmith@yahoo.com

city = San Francisco

state = California

FormGroup versus FormArray

A FormGroup aggregates the values of FormControl elements into
one object, where the control name is the key. Angular also supports
FormArray (a “variation” of FormGroup) that aggregates the values of
FormControl elements into an array.

FormGroup data is serialized as an array, whereas FormArray data is seri-
alized as an object). If you do not know how many controls are in a given
group, consider using a FormArray (otherwise use a FormGroup). The
following link contains an example of using a FormArray:

https://alligator.io/angular/reactive-forms-formarray-dynamic-fields/

Other Form Features in Angular

The preceding section gave you a glimpse into the modularized style of
Angular forms, and this brief section highlights some additional form-re-
lated features in Angular, such as the following:

�� Form validation
�� Custom validators
�� Nested forms
�� Dynamic forms
�� Template-driven forms

110 • Angular and Deep Learning Pocket Primer

Validators enable you to perform validation on form fields, such specifying
mandatory fields the minimum and maximum lengths of fields. You can
also specify a regular expression that a field must match, which is very
useful for zip codes, email addresses, and so forth. Alternatively, you can
also specify validators programmatically.

Angular forms provide event listeners that detect various events pertain-
ing to the state of a form, as shown in the following code snippets:

{{myform.form.touched}}

{{myform.form.untouched}}

{{myform.form.pristine}}

{{myform.form.dirty}}

{{myform.form.valid}}

{{myform.form.invalid}}

For example, the following element is displayed if one or more
form fields is invalid:

The Form is Invalid

You can also display error messages using the *ngIf directive to display
the status of a specific field, as shown here:

<label>

 First Name

 <input type="text" formControlName="fname" placehold-

er="First Name">

 <p *ngIf="userForm.controls.fname.errors">

 This value is invalid

 </p>

</label>

An example of a dynamic Angular form is here:

https://angular.io/docs/ts/latest/cookbook/dynamic-form.html

Instead of using plain CSS for styling effects for field-related error mes-
sages, consider using something like Bootstrap.

What are Angular Services?

This section contains a brief description of Angular Services, along with a
list of some built-in services, followed by an example of defining a custom
service in Angular in a subsequent section.

Forms and Services • 111

Sometimes the front-end of Web applications contains a combination of
presentation logic and some business logic. Angular components com-
prise the presentation tier and services belong to the business-logic tier.
Define your Angular services in such a way that they are decoupled from
the presentation tier.

Angular services are classes that implement some business logic and are
designed so that they can be used by components, models, and other services.
In other words, services can be providers for other parts of an application.

Because of the “dependency injection” mechanism in Angular, services
can be invoked in other sections of an Angular application. Moreover,
Angular ensures that services are singletons, which means that each ser-
vice consumer accesses the same instance of the service class.

A sample Angular custom service is shown here:

@Injectable()

export class UpperCaseService {

 public upper(message: string): string {

 return message.toUpperCase();

 }

}

The preceding class UpperCaseService is a service with one method
that takes a string as an argument and returns the uppercase version of
that string. The @Injectable() decorator is required so that this class
can be injected as a dependency. Although this decorator is not manda-
tory in all cases, it’s a good idea to mark your services in this manner. Use
the @Injectable decorator only when a service (or class) receives an
injection.

app.component.ts, which invokes the method in the preceding service,
is here:

import {UpperCaseService} from "./path/to/service/

UpperCaseService";

@Component({

 selector: "convert",

 template: "<button (click)='greet()'>Greet</button>";

})

export class UpperComponent {

 // inject the custom service in the constructor

 constructor(private upperCaseService: UpperCaseService {

112 • Angular and Deep Learning Pocket Primer

 }

 // invoke the method in the uppercaseService class

 public greet(): void {

 alert(this.upperCaseService.upper("Hello world"));

 }

}

The preceding code block imports the UpperCaseService class (shown
in bold) via an import statement and then injects an instance of this class
into the constructor of the UpperComponent class. Next, the template
property contains a <button> element with a click handler that invokes
the greet() method defined in the preceding code block. The greet()
method displays an alert whose contents are the result of invoking the
upper() method in the custom UpperCaseService class.

Built-in Angular services

Angular supports various built-in services that are organized in different
modules. For example, the http module (in @angular/common/http)
contains support for HTTP requests that involve typical verbs, such as GET,
POST, PUT, and DELETE. In fact, you saw examples of HTTP-based requests
in Chapter 2. In addition, the routing module (in @angular/router)
provides routing support, which includes HTML5 and hash routing.
The form module (in @angular/forms) provides form-related services.
Check the Angular documentation for a complete list of built-in services.

An Angular Service Example

Copy the directory ServiceExample from the companion files into a con-
venient location. Listing 3.7 shows the content of app.component.ts,
which contains an example of defining a basic custom service in Angular.

Listing 3.7: app.component.ts

import {Component} from '@angular/core';

import {Injectable} from '@angular/core';

@Injectable()

class Service {

 somedata = ["one", "two", "three"];

 constructor() { }

 getData() { return this.somedata; }

Forms and Services • 113

 toString() { return "From toString"; }

}

@Component({

 selector: 'app-root',

 providers: [Service],

 template: `Here is the data: {{ service.getData() }}`

})

export class AppComponent {

 constructor(public service: Service) { }

}

Listing 3.7 contains a Service class that is preceded by the @Injectable
decorator, which enables us to inject an instance of the Service class in
the constructor of the AppComponent class in Listing 3.7.

Launch this application and navigate to localhost:4200 in a browser
session, where you will see the following information displayed:

Data from the service: one,two,three

A Service with an EventEmitter

This section contains a code sample that uses EventEmitters for com-
municating between a component and its child component. Now copy the
directory UserServiceEmitter from the companion files to a convenient
location. Listing 3.8 shows the content of user.component.ts, which
defines a custom component for an individual user.

Listing 3.8: user.component.ts

import {Component} from '@angular/core';

import { Inject } from '@angular/core';

@Component({

 selector: 'user',

 template: '<h2></h2>'

})

export class User {

 fname: string;

 lname: string;

 imageUrl: string;

 constructor(@Inject(String) fname: string,

 @Inject(String) lname: string,

114 • Angular and Deep Learning Pocket Primer

 @Inject(String) imageUrl: string) {

 this.fname = fname;

 this.lname = lname;

 this.imageUrl = imageUrl;

 }

}

Listing 3.8 is straightforward: the custom User class has a constructor
with three arguments that represent the first name, last name, and image
url for a single user.

Listing 3.9 shows the content of user.service.ts, which creates a list
of users, where each user has a first name, last name, and an associated
PNG file.

Listing 3.9: user.service.ts

import {Component} from '@angular/core';

import {User} from './user.component';

@Component({

 selector: 'user-comp',

 template: '<h2></h2>'

})

export class UserService {

 userList:User[];

 constructor() {

 this.userList = [

 new User('Jane','Smith','assets/sample1.

png'),

 new User('John','Stone','assets/sample2.

png'),

 new User('Dave','Jones','assets/sample3.

png'),

]

 }

 getUserList() {

 return this.userList;

 }

}

Listing 3.9 imports the User custom component (shown in Listing 3.11)
and then defines the UserService custom component that uses the
userList array of User elements to keep track of users. This array is

Forms and Services • 115

initialized in the constructor, and it contains three new User instances
that are created and populated with data. The getUserList() method
performs the “service” that returns the userList array.

Listing 3.10 shows the content of app.component.ts, which references
the two preceding custom components and renders user-related informa-
tion in an unordered list.

Listing 3.10: app.component.ts

import {Component} from '@angular/core';

import {EventEmitter} from '@angular/core';

import {UserService} from './user.service';

import {User} from './user.component';

@Component({

 selector: 'app-root',

 providers: [User, UserService],

 template: `

 <div class="ui items">

 <user-comp

 *ngFor="let user of userList; let i=index"

 [user]="user"

 (mouseover)='mouseEvent(user)'

 [class.chosen]="isSelected(user)">

 USER {{i+1}}: {{user.fname}}-{{user.lname}}

 <img class="user-image" [src]="user.imageUrl"

 (mouseenter)="mouseEnter(user)"

 width="50" height="50">

 </user-comp>

 </div>

 `

})

export class AppComponent {

 user:User;

 currentUser:User;

 userList:User[];

 onUserSelected: EventEmitter<User>;

 mouseEvent(user:User) {

 console.log("current user: "+user.fname+" "+user.

lname);

 this.currentUser = user;

116 • Angular and Deep Learning Pocket Primer

 this.onUserSelected.emit(user);

 }

 mouseEnter(user:User) {

 console.log("image name: "+user.imageUrl);

 alert("Image name: "+user.imageUrl);

 }

 isSelected(user: User): boolean {

 if (!user || !this.currentUser) {

 return false;

 }

 return user.lname === this.currentUser.lname;

 //return true;

 }

 constructor(userService:UserService) {

 this.onUserSelected = new EventEmitter();

 this.userList = userService.getUserList();

 }

}

Listing 3.10 contains a template property that displays the current list
of users (i.e., the three users that are initialized by executing the code in
the constructor in Listing 3.10). Notice the syntax to display information
about each user in the list of users:

USER {{i+1}}: {{user.fname}}-{{user.lname}}

<img class="user-image" [src]="user.imageUrl"

 (mouseenter)="mouseEnter(user)"

 width="50" height="50">

Whenever users move their mouse over the displayed list, the
mouseEvent() method is invoked to set currentUser to refer to the
current user. In addition, when users move their mouse over one of the
images, the mouseEnter() method is invoked, which displays a message
via console.log() and also displays an alert.

Listing 3.11 shows the content of app.module.ts, which references the
custom component and custom service.

Listing 3.11: app.module.ts

import { NgModule } from '@angular/core';

import {CUSTOM_ELEMENTS_SCHEMA} from '@angular/core';

Forms and Services • 117

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { UserService } from './user.service';

@NgModule({

 imports: [BrowserModule],

 providers: [UserService],

 declarations: [AppComponent],

 bootstrap: [AppComponent],

 schemas: [CUSTOM_ELEMENTS_SCHEMA]

})

export class AppModule { }

Listing 3.11 has essentially the same contents as the example in Chapter
2 that contains the schemas property. The lines shown in bold are the
modifications that are required for the code sample in this section. You
can refresh your memory by reading the comments that follow Listing
2.20 in Chapter 2 that pertain to the code snippets that are shown in bold
in Listing 3.11.

Searching for a GitHub User

This section shows you how to read a GitHub user name from an input
field, perform a GitHub search for that user, and then append a subset of
the details pertaining to that user in a list.

Copy the directory SearchGithubUsers from the companion files into a
convenient location. Listing 3.12 shows the content of app.component.
ts, which illustrates how to make an HTTP GET request to retrieve infor-
mation about GitHub users.

Listing 3.12: app.component.ts

import { Component } from '@angular/core';

import { Inject } from '@angular/core';

import { HttpClient } from '@angular/common/http';

import { UserComponent } from './user.component';

import { Observable } from 'rxjs';

@Component({

 selector: 'app-root',

 template: `

 <div>

118 • Angular and Deep Learning Pocket Primer

 <form>

 <h3>Search GitHub For User:</h3>

 <div class="field">

 <label for="guser">GitHub Id</label>

 <input type="text" #guser>

 </div>

 <button (click)="findGitHubUser(guser)">

 >>> Find User <<<

 </button>

 </form>

 <div id="container">

 <div class="onerow">

 <h3>List of Users:</h3>

 <li *ngFor="let user of users"

 (mouseover)="currUser(user)">

 {{user.field1}} {{user.field2}}

 </div>

 </div>

 </div>

 `

})

export class AppComponent {

 currentUser:UserComponent = new UserComponent('ABC',

'DEF', '');

 users: UserComponent[];

 GitHubUserInfo : any;

 GitHubUserJSON:JSON;

 user:UserComponent;

 userStr:string = "";

 guserStr:string = "";

 constructor(@Inject(HttpClient) public http:HttpClient)

{

 this.users = [

 new UserComponent('Jane', 'jsmith', ''),

 new UserComponent('John', 'jstone', ''),

];

 }

 currUser(user) {

Forms and Services • 119

 console.log("fname: "+user.field1+" lname: "+user.

field2);

 this.currentUser = new UserComponent(user.field1,

 user.field2,

 user.field3);

 }

 findGitHubUser(guser: HTMLInputElement): boolean {

 if((guser.value == undefined) || (guser.value == "")) {

 alert("Please enter a user name");

 return;

 }

 // guser.value is not available in the 'subscribe'

method

 this.guserStr = guser.value;

 this.http.get('https://api.GitHub.com/users/'+guser.

value)

 .subscribe(data => {

 this.GitHubUserInfo = data;

 //console.log("GitHub info = "+JSON.stringify(data));

 // create a new User instance:

 this.user = new UserComponent(this.GitHubUserInfo.

name,

 this.guserStr,

 this.GitHubUserInfo.

created_at);

 // append new User instance to list of users:

 this.users.push(this.user); },

 err => {

 console.log("Lookup error: "+err);

 alert("Lookup error: "+err);

 }

);

 // reset the input field to an empty string

 guser.value = "";

 // prevent a page reload:

 return false;

 }

}

120 • Angular and Deep Learning Pocket Primer

Listing 3.12 contains the usual import statements, followed by an @
Component decorator that contains the usual selector property and an
extensive code block for the template property.

The template property consists of a top-level <div> element that con-
tains a <form> element and another <div> element. The <form> element
contains an <input> element where users can enter a GitHub username,
whereas the <div> element contains a element that in turn ren-
ders the list of current users. Notice that each element in the
element handles a mouseover event by setting the current user to the
element that users have highlighted with their mouse.

The next portion of Listing 3.12 defines the exported class AppComponent
that initializes some instance variables, followed by a constructor that ini-
tializes the users array with two hard-coded users. Next, the currUser()
method “points” to the user that users have highlighted with their mouse.
This functionality is not essential, but it’s available in case you need to
keep track of the user that is currently highlighted.

The findGitHubUser() method displays an alert if there the <input>
element is empty (which prevents a redundant invocation of the http()
method). If a user is specified in the <input> element, the code invokes
an HTTP GET request from the GitHub website and appends the new
user (as an instance of the UserComponent class) to the users array. In
addition, an alert is displayed if there is no GitHub that matches the input
string.

Another small but important detail is the following code snippet that
keeps track of the user-specified input string:

this.guserStr = guser.value;

The preceding snippet is required because of the context change that
occurs inside the invocation of the get() method, which loses the refer-
ence to the guser argument.

Listing 3.13 shows the content of user.component.ts, which contains
three strings for keeping track of three user-related fields.

Listing 3.13: user.component.ts

import {Component} from '@angular/core';

import { Inject } from '@angular/core';

@Component({

 selector: 'current-user',

Forms and Services • 121

 template: '<h1></h1>'

})

export class UserComponent {

 constructor(@Inject(String) private field1: string,

 @Inject(String) private field2: string,

 @Inject(String) private field3: string) {

 this.field1 = field1;

 this.field2 = field2;

 this.field3 = field3;

 }

}

Listing 3.13 contains the string properties field1, field2, and field3
for keeping track of three attributes from the JSON-based string of infor-
mation for a GitHub user. The property names in the UserComponent
class are generic so that you can store different properties from the JSON
string, such as followers, following, and created_at.

You now have a starting point
for displaying additional details
regarding a user, and you can
improve the styling of the out-
put by using Bootstrap or some
other toolkit for UI-related
layouts.

Figure 3.1 shows the output
from launching this Angular
application and adding infor-
mation about GitHub users.
One thing to notice is that
duplicates are allowed in the
current sample (the code for preventing duplicates is an exercise for you).

Other Service-related Use Cases

As you saw in the previous section, services are useful for retrieving exter-
nal data. In addition, there are other situations that involve sharing data
and services in an Angular application. In particular, one Angular appli-
cation might need multiple instances of a service class, whereas another
Angular application might need to enforce a single instance of a service
class. Yet another situation involves sharing data between components in
an Angular application.

Figure 3.1  Search and display GitHub users
in a list

122 • Angular and Deep Learning Pocket Primer

These three scenarios are discussed briefly in the following subsections,
and they are based on a very simple UserService class that is defined as
follows:

export class UserService {

 private users: string[];

 adduser(user: string) {

 this.users.push(user);

 }

 getUsers() {

 return this.users;

 }

}

Multiple Service Instances

Suppose that UserService, MyComponent1, and MyComponent2 are
defined in the TypeScript files user.service.ts, component1.ts, and
component2.ts, respectively. If you need a different instance of the
UserService class in each component, inject this class in their construc-
tors, as shown here:

// component1.ts

export class MyComponent1 {

 constructor(private userService: UserService) {

 }

}

// component2.ts

export class MyComponent2 {

 constructor(private userService: UserService) {

 }

}

In the preceding code block, the instance of the UserService class in
MyComponent1 is different from the instance of the UserService class
in MyComponent2.

Single Service Instance

Consider the situation in which two Angular components must share the
same instance of the UserService class. For simplicity, let’s assume that

Forms and Services • 123

the two components are children of the root component. In this scenario,
perform the following sequence of steps:

1)	 Create a new service component (ng g s service).
2)	 Include UserService in the providers array in app.module.ts.
3)	 Import MyComponent1 and MyComponent2 in service.component.

ts.

4)	 Remove the UserService class from the providers array in MyCom-
ponent1.

5)	 Remove the UserService class from the providers array in MyCom-
ponent2.

Step #2 ensures that the UserService class is available to all compo-
nents in this Angular application, and there is only one instance of the
UserService class throughout the application.

Services and Inter-Component Communication

There are three steps required to send a new user from MyComponent1
to MyComponent2.

Step #1: Define a variable sendUser that is an instance of EventEmitter
and a sendNewUser() method in UserService:

export class UserService {

 sendUser = new EventEmitter<string>();

 ...

 sendNewUser(user:string) {

 this.sendUser.emit(user);

 }

}

Step #2: Define an onSend() method in MyComponent1 to send a new
user to MyComponent2:

onSend(user:string) {

 this.userService.sendNewUser(user);

}

Step #3: Define an Observable in MyComponent2 to “listen” for data that
is emitted from MyComponent1:

ngOnInit() {

 this.userService.subscribe(...);

}

124 • Angular and Deep Learning Pocket Primer

Another way to summarize the logical flow in the preceding code blocks
is shown here:

�� Users click a button to add a new user.
�� The UserService instance sends the data to Component1.
�� The Component1 instance “emits” the new user.
�� The Component2 instance “listens” for the new user via an Observ-

able.

Injecting Services into Services

You have seen how to use DI to inject a service into a component via its
constructor. In addition, you can inject services into other services. In
order to do so, use the @Injectable decorator in the “injected service”:

@Injectable

@Component({

})

export MyService(…)

DI in Angular only works in classes that have a suitable decorator as part
of the class definition.

Flickr Image Search Using jQuery and Angular

The code sample in this section shows you how to use jQuery in an Angular
application, which is relevant for existing HTML Web pages that perform
HTTP GET requests via jQuery.

Copy the directory SearchFlickr from the companion files into a con-
venient location. Now “cd” inside this application and install jQuery as
shown here:

npm install jquery –save

Listing 3.14 shows the content of app.component.ts, which illustrates
how to make an HTTP GET request to retrieve images from Flickr that
are based on text string that users enter in a search box.

Listing 3.14: app.component.ts

import {Component} from '@angular/core';

// remember: npm install jquery --save

import * as $ from "jquery";

@Component({

NOTE

Forms and Services • 125

 selector: 'app-root',

 template: `

 Enter a word and search for related images:

 <input id="searchterm" />

 <button (click)="httpRequest()">Search</button>

 <div id="images"></div>

 `

})

export class AppComponent {

 imageCount = 4;

 url = "http://api.flickr.com/services/feeds/photos_pub-

lic.gne?jsoncallback=?";

 constructor() {}

 httpRequest() {

 $.getJSON(this.url,

 {

 tags: $("#searchterm").val(),

 tagmode: "any",

 format: "json"

 },

 function(data) {

 $.each(data.items, function(i,item){

 $("").attr("src", item.media.m).

prependTo("#images");

 //if (i == this.imageCount) return false;

 });

 });

 }

}

Listing 3.14 contains a standard import statement, followed by this code
snippet:

import * as $ from "jquery";

The preceding snippet is necessary for TypeScript to “find” jQuery, which
is possible after you have installed via the npm command. However, keep
in mind that if you remove the preceding code snippet, you will see the
following error (or something similar):

ERROR ReferenceError: "$ is not defined"

126 • Angular and Deep Learning Pocket Primer

The code in this section works for Angular 6 onward, whereas the code for
Angular 4 requires a different syntax.

The next portion of Listing 3.14 is the @Component decorator, whose tem-
plate property contains <input>, <button>, and <div> elements to a
capture user’s search string, perform a search with that string, and display
the results of the search, respectively.

The next portion of Listing 3.14 is the exported class @AppComponent that
defines the url variable that is initialized with a hard-coded string value
that “points” to the Flickr website.

Next, an empty constructor is defined, followed by the httpRequest()
method that is invoked when users click on the <button> element. This
method invokes the jQuery getJSON() method that performs a Flickr
image search based on the text string entered in the <input> element
because of this code snippet:

tags: $("#searchterm").val()

When the matching images are retrieved, they are available via data.
items, and the jQuery each() method iterates through the list of images.
Each image is dynamically inserted in the <images> element via this
snippet:

$("").attr("src" item.media.m).prependTo("#images");

Take a minute to absorb the compact manner in which jQuery achieves
the desired result.

Figure 3.2 shows the output from launching this Angular application and
searching Flickr with the keyword pasta.

Figure 3.2  A partial list of figures with pasta

NOTE

Forms and Services • 127

HTTP GET Requests with a Simple Server

This section shows you how to work with the command line utility json-
server that can serve JSON-based data. This program performs the
function of a very simple server: clients can make GET requests to retrieve
JSON data from a server. Moreover, a simple command in the console
where json-server was launched enables you to save the in-memory
data to a file.

Although json-server does not perform the functions of a Node-based
application that contains Express and MongoDB, json-server is a con-
venient program that helps you learn how an Angular application can
interact with a file server.

You need to perform the following steps before you launch the Angular
application in this section:

�� Step 1: Install json-server.
�� Step 2: Launch json-server.
�� Step 3: Launch the Angular application.

Install json-server via the following command:

[sudo] npm install –g json-server

Navigate to the src/assets directory that contains the JSON file posts.
json and invoke this command:

json-server posts.json

The preceding command launches a file server at port 3000 and reads the
contents of posts.json into memory, making that data available to HTTP
GET requests.

Now copy the directory JSONServerGET from the companion files into a
convenient location. Listing 3.15 shows the content of app.component.
ts, which illustrates how to make an HTTP GET request to retrieve data
from a file server.

Listing 3.15: app.component.ts

import {Component} from '@angular/core';

import {Inject} from '@angular/core';

import {HttpClient} from '@angular/common/http';

import {HTTP_BINDINGS} from '@angular/common/http';

@Component({

 selector: 'app-root',

128 • Angular and Deep Learning Pocket Primer

 template: `

 <button (click)="httpRequest()">Get Information</

button>

 <div>

 <li *ngFor="let post of postData">

 {{post.author}}

 {{post.title}}

 </div>

 `

})

export class AppComponent {

 postData = "";

 constructor(@Inject(HttpClient) public http:HttpClient)

{

 }

 httpRequest() {

 this.http.get('http://localhost:3000/posts')

 .subscribe(

 data => this.postData = JSON.stringify(data),

 err => console.log('error'),

 () => this.postInfo()

);

 }

 postInfo() {

 //--

 // the 'eval' statement is required to

 // convert the data retrieved from json-server

 // to an array of JSON objects (else an error)

 //--

 var myObject = eval('(' + this.postData + ')');

 console.log("myObject = "+JSON.stringify(myObject));

 this.postData = myObject;

 }

}

Listing 3.15 contains code that is similar to earlier code samples. The first
difference involves the details of the unordered list that is displayed in the
template property.

Forms and Services • 129

The second difference is the endpoint http://localhost:3000/posts
in the HTTP GET request. This endpoint provides JSON data via the json-
server that is listening on port 3000.

Listing 3.16 shows the content of posts.json, which is retrieved during
the HTTP GET request in Listing 3.15.

Listing 3.16: posts.json

{

 "posts": [

 {"id": 100,"title": "json-server","author": "smartguy"},

 {"id": 200,"title": "pizza-maker","author": "chicago"},

 {"id": 300,"title": "good-beer", "author": "escondido"}

]

}

The next section shows you how to make an HTTP POST request to a local
file server in an Angular application.

HTTP POST Requests with a Simple Server

The Angular application in this section makes an HTTP POST request with
the utility json-server that can serve JSON-based data. Keep in mind
that the server in this code sample only handles basic data requests: “uni-
versal” JavaScript (sometimes also called “isomorphic” JavaScript) is not
covered in this chapter.

Please note that this application is not production-ready code, partly
because the ID value is based on a randomly generated integer.

Copy the directory JSONServerPOST from the companion files into a con-
venient location. Navigate to the src/assets subdirectory, which con-
tains the JSON file authors.json, and launch this command:

json-server authors.json

The preceding command launches a file server at port 3000 and reads
the contents of authors.json into memory, making that data available
to HTTP GET requests.

You must launch json-server before you launch the Angular application
in this section.NOTE

130 • Angular and Deep Learning Pocket Primer

Listing 3.17 shows the content of app.component.ts, which illustrates
how to make an HTTP POST request to a local file server.

Listing 3.17: app.component.ts

import { Component } from '@angular/core';

import {Inject} from '@angular/core';

import {HttpClient} from '@angular/common/http';

// remember: npm install jquery --save

import * as $ from "jquery";

@Component({

 selector: 'app-root',

 template: `

 <button (click)="getEmpData()">Click to Display Author

Info</button>

 <div>

 <table>

 <thead *ngIf="foundData">

 <th>AUTHORID</th>

 <th>Title</th>

 <th>Author</th>

 </thead>

 <tbody>

 <tr *ngFor="let author of authorData">

 <td>{{author.id}}</td>

 <td>{{author.title}}</td>

 <td>{{author.author}}</td>

 </tr>

 </tbody>

 </table>

 <button (click)="postAuthorData()">Click to Add New

Author Info</button>

 </div>

 `

})

export class AppComponent {

 foundData = false;

 authorData : any;

 currData = {};

 idIncr = 100;

 newAuthorId = 0;

Forms and Services • 131

 newTitle = "";

 newAuthor = "";

 largestId = 0;

 constructor(@Inject(HttpClient) public http:HttpClient)

{}

 postAuthorData() {

 this.newAuthorId = 0+this.largestId+this.idIncr;

 this.newTitle = "The Book of "+this.newAuthorId;

 this.newAuthor = "My New Title"+this.newAuthorId;

 var postNewAuthor = {id:this.newAuthorId,

 title:this.newTitle,

 author:this.newAuthor};

//console.log("postNewAuthor: "+JSON.

stringify(postNewAuthor));

 $.post("http://localhost:3000/authors",

 postNewAuthor,

 function(result, textStatus, jqXHR) {

 //console.log("2returned result: "+JSON.stringify(result));

 this.authorData.push(postNewAuthor);

 }.bind(this),"json")

 .fail(function(jqXHR, textStatus, errorThrown) {

 console.log("error: "+errorThrown+" textStatus:

"+textStatus);

 });

 }

 getAuthorData() {

 this.http.get('http://localhost:3000/authors')

 .subscribe(

 data => this.authorData = data,

 err => console.log('error'),

 () => this.authorInfo()

);

 }

 authorInfo() {

 this.largestId =

 parseInt(this.authorData[this.authorData.length-1].

id,10);

132 • Angular and Deep Learning Pocket Primer

 //console.log("largestId = "+ this.largestId);

 //console.log("authorData1 = "+ JSON.stringify(this.

authorData));

 this.foundData = true;

 }

}

Listing 3.17 contains the usual import statements, followed by a tem-
plate property that displays a table of author-based data. When users
click on the <button> element, the postAuthorData() adds a hard-
coded new author to the list of authors. This method performs a stand-
ard jQuery POST request instead of using an Observable. Note that this
method increments the value of the id property of each author so that
they are treated as distinct authors (even though the names of the new
users are almost the same).

On the other hand, the getAuthorData() method does involve an
Observable for retrieving author-related data (shown in Listing 3.18)
from the file server that is running on port 3000.

The browser is reloaded after each invocation of the postAuthorData()
method, so you need to click the “Author Info” button to see the new-
ly-added author. However, you can prevent a page reload by issuing either
of the following commands from the command line:

ng serve --live-reload false OR

ng serve --no-live-reload

Listing 3.18 shows a portion of the contents of authors.json, whose
contents are given in this Angular application.

Listing 3.18: authors.json

{

 "authors": [

 {

 "id": 100,

 "title": "json-server",

 "author": "typicode"

 },

 {

 "id": 200,

 "title": "pizza-maker",

 "author": "chicago"

Forms and Services • 133

 },

// sections omitted for brevity

 {

 "id": "900",

 "title": "The Book of 900",

 "author": "My New Title900"

 }

]

}

Listing 3.18 is a very simple collection of JSON-based data items, where
each item contains the elements id, title, and author.

An SVG Line Plot from Simulated Data in Angular
(optional)

The Angular application in this section reads the contents of a CSV file
(located in the src/assets subdirectory) and then uses that data to dis-
play an SVG-based line graph. However, if you are not interested in gen-
erating SVG-based line graphs, then you can skip this section with no loss
of continuity.

Copy the directory ReadDataCSVLRPlot from the companion files into a
convenient location. Listing 3.19 shows the content of app.component.
ts, which illustrates how to read the contents of assets/wine.csv and
then display the data in tabular form.

Listing 3.19: app.component.ts

import { Component } from '@angular/core';

import { Inject } from '@angular/core';

import { Observable } from 'rxjs';

import { HttpClient } from '@angular/common/http';

@Component({

 selector: 'app-root',

 styleUrls: ['./app.component.css'],

 template: `

 <svg width="600" height="200">

 <rect x="0" y="0" width="600" height="200"

 stroke="black" stroke-width="4" fill="white" />

 <polyline [attr.points]="polyPts"

134 • Angular and Deep Learning Pocket Primer

 style="fill:none;stroke:red;stroke-width:4"

/>

 </svg>

 <table>

 <tbody>

 <p>Data points for this line graph:</p>

 <tr *ngFor="let record of records;let i = index;">

 <td> {{record[0]}} </td>

 <td> {{record[1]}} </td>

 </tr>

 </tbody>

 </table>

 `,

})

export class AppComponent {

 public xValue:number = 0;

 public yValue:number = 0;

 // points for an SVG polyline

 public polyPts : any = "";

 // populate an array with CSV data

 public records : any = [];

 public csvUrl = 'assets/rand20.csv';

 public allTextLines:any = "";

 constructor(@Inject(HttpClient) public http:HttpClient)

{

 this.readCsvData ();

 }

 readCsvData () {

 this.http.get(this.csvUrl, {responseType: 'text'})

 .subscribe(

 data => { this.extractData(data) },

 err => { console.log(err) }

);

 }

 //---

 // After the readCsvData reads the CSV file in the

 // assets directory, the extractData method is invoked

 // to populate an array with that CSV data.

Forms and Services • 135

 // This method also invokes constructLineGraph, which

 // constructs a line graph of the set of datapoints

 //---

 private extractData(res: any) {

 let csvData = res || '';

 this.allTextLines = csvData.split(/\r\n|\n/);

 let lines = [];

 let onerow = this.allTextLines[0].split(',');

 let columnCount = onerow.length;

 for (let i = 0; i < this.allTextLines.length-1; i++) {

 // split content based on comma

 let data = this.allTextLines[i].split(',');

 let tarr = [];

 for (let j = 0; j < columnCount; j++) {

 tarr.push(data[j]);

 }

 lines.push(tarr);

 }

 this.records = lines;

 this.constructLineGraph();

 }

 private constructLineGraph() {

 // construct a line graph

 for (let i = 0; i < this.records.length; i++) {

 //console.log("this.xValue:", this.records[i][0]);

 //console.log("this.yValue:", this.records[i][1]);

 // append current point to the SVG polyline:

 this.polyPts += this.xValue.toString() + "," +

 this.yValue.toString() + " ";

 this.xValue += +this.records[i][0];

 this.yValue = +this.records[i][1];

 }

 }

}

Listing 3.19 starts with the usual import statements, followed by the
template property that contains two main parts. The first part consists of
an SVG <svg> element, as shown here:

136 • Angular and Deep Learning Pocket Primer

<svg width="600" height="200">

 <rect x="0" y="0" width="600" height="200"

 stroke="black" stroke-width="4" fill="white" />

 <polyline [attr.points]="polyPts"

 style="fill:none;stroke:red;stroke-width:4" />

</svg>

The SVG <svg> element in the preceding code block has a width of 600
pixels and a height of 200 pixels, both of which you can adjust if you need
to do so. In addition, the SVG <svg> element contains an SVG <rect>
element that is essentially just an outer border, followed by an SVG
<polyline> element that represents a line graph.

The second portion of the <template> property displays header informa-
tion about the data in the CSV file, followed by an ngFor code block that
displays the contents of the CSV file.

Next, the constructor invokes the readCsvData() method, which in turn
involves an Observable that reads the content of the CSV file rand20.
csv, which is in the src/assets subdirectory.

After the data is successfully read from the CSV file, the extractData()
method is invoked to populate the records variable with an array of val-
ues from the retrieved data. This step is necessary because the data that is
retrieved in the readCsvData() is simply a collection of strings, each of
which contains comma-separated values. Keep in mind that each row in
the records array consists of a pair of numbers that is treated as an (x,y)
point in the plane.

The final code snippet in the readCsvData() method invokes the method
constructLineGraph() that appends each row in the records array to
the variable polyPts, which constructs a contiguous set of line segments
that is rendered as a line graph. This technique works because the values
in rand20.csv are sorted in increasing order, based on the values in the
first column.

Listing 3.20 shows a portion of the contents of rand20.csv, which is
located in the src/assets subdirectory.

Listing 3.20: rand20.csv

46,8

46,13

70,40

92,55

Forms and Services • 137

174,74

// details omitted for brevity

536,204

543,208

553,220

572,246

596,247

Figure 3.3 shows the output from launching the Angular application in
this section.

Figure 3.3  A line graph from a list of numbers

138 • Angular and Deep Learning Pocket Primer

Summary

This chapter showed you how to create Angular applications with HTML5
Forms, as well as Forms that contain Angular Controls and FormGroups.
You also saw how to save form-based data in local storage. Next you
learned about Angular Pipes, along with an example that showed you
how to implement this functionality.

You also learned about Angular Services and worked through an exam-
ple that illustrated how to use Services. Next, you saw an example of
the http() method (which returns an Observable) of the Http class to
retrieve data for any GitHub user and display portions of that data in a list
of users. Finally, you saw how to read a CSV file with numeric data that
was used to generate and display an SVG line graph.

c h a p t e r

This chapter introduces you to deep learning, which includes
MLPs (MultiLayer Perceptrons) and CNNs (Convolutional Neural
Networks). Chapter 5 contains information about more complex

deep learning architectures, such as RNNs (Recurrent Neural Networks)
and LSTMs (Long Short Term Memory). Most of this chapter contains
descriptive content, along with some Keras-based code samples that
assume you have read the Keras material in the previous chapters. This
chapter is meant to be a cursory introduction to a diverse set of topics,
along with suitable links to additional information.

If you are new to deep learning, many topics in this chapter will probably
require additional study for you to become comfortable with them: think
of this chapter as a modest step of toward your mastery of deep learning.

The first portion of this chapter briefly discusses deep learning, the prob-
lems it can solve, and the challenges for the future. The second part of
this chapter briefly introduces perceptrons, which are essentially the core
building blocks for neural networks. ANNs, MLPs, RNNs, LSTMs, and VAEs
are all based on multiple layers that contain multiple perceptrons.

The third part of this chapter provides an introduction to CNNs, followed
by an example of training a Keras-based CNN with the MNIST dataset: this
code sample will make more sense if you have read the section pertaining
to activation functions in Chapter 5.

Keras and the xor Function

The XOR function is a well-known function that is not linearly separable
in the plane. The truth table for the XOR (“exclusive OR”) function is
straightforward: given two binary inputs, the output is 1 if at most one

Deep Learning Introduction

4

140 • Angular and Deep Learning Pocket Primer

input is a 1; otherwise, the output is 0. If we treat XOR as the name of a
function with two binary inputs, here are the outputs:

XOR(0,0) = 0

XOR(1,0) = 1

XOR(0,1) = 1

XOR(1,1) = 0

We can treat the output values as labels that are associated with the input
values. Specifically, the points (0,0) and (1,1) are in class 0 and the points
(1,0) and (0,1) are in class 1. Draw these points in the plane, and you have
the four vertices of a unit square whose lower-left vertex is the origin.
Moreover, each pair of diagonal elements belongs to the same class, which
makes the XOR function non-linear separable in the plane. If you’re skepti-
cal, try to find a linear separator for the XOR function in the Euclidean plane.

Listing 4.1 shows the content of tf2_keras_xor.py, which illustrates
how to create a Keras-based NN to train the XOR function.

Listing 4.1: tf2_keras_xor.py

import tensorflow as tf

import numpy as np

Logical XOR operator and "truth" values:

x = np.array([[0., 0.],[0., 1.],[1., 0.],[1., 1.]])

y = np.array([[0.], [1.], [1.], [0.]])

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Dense(2, input_dim=2,

activation='relu'))

model.add(tf.keras.layers.Dense(1))

print("compiling model...")

model.compile(loss='mean_squared_error', optimizer='adam')

print("fitting model...")

model.fit(x,y,verbose=0,epochs=1000)

pred = model.predict(x)

Test final prediction

print("Testing XOR operator")

p1 = np.array([[0., 0.]])

p2 = np.array([[0., 1.]])

Deep Learning Introduction • 141

p3 = np.array([[1., 0.]])

p4 = np.array([[1., 1.]])

print(p1,":", model.predict(p1))

print(p2,":", model.predict(p2))

print(p3,":", model.predict(p3))

print(p4,":", model.predict(p4))

Listing 4.1 initializes the NumPy array x with four pairs of numbers that
are the four combinations of 0 and 1, followed by the NumPy array y that
contains the logical OR of each pair of numbers in x.

The next portion of Listing 4.1 defines a Keras-based model with two
Dense layers. Next, the model is compiled, trained, and then the variable
pred is populated with a set of predictions based on the trained model.

The next code block initializes the points p1, p2, p3, and p4 and then
displays the values that are predicted for those points. The output from
launching the code in Listing 4.1 is here:

compiling model...

fitting model...

Testing XOR operator

[[0. 0.]] : [[0.36438465]]

[[0. 1.]] : [[1.0067574]]

[[1. 0.]] : [[0.36437267]]

[[1. 1.]] : [[0.15084022]]

Experiment with different values for epochs and see how they affect
the predictions. Use the code in Listing 4.1 as a template for other logi-
cal functions. The only modification to Listing 4.1 that is required is the
replacement of the variable y in Listing 4.1 with the variable y that is
specified as the labels for several other logic gates that are listed below.

The labels for the NOR function:
y = np.array([[1.], [0.], [0.], [1.]])

The labels for the OR function:
y = np.array([[0.], [1.], [1.], [1.]])

The labels for the XOR function:
y = np.array([[0.], [1.], [1.], [0.]])

The labels for the ANDR function:
y = np.array([[0.], [0.], [0.], [1.]])

mnist = tf.keras.datasets.mnist

142 • Angular and Deep Learning Pocket Primer

The preceding code snippets are the only required code changes to
Listing 4.1 needed to train a model for a different logical function. If
you are familiar with the NOR, OR, and AND functions, you can easily
modify the values in the y vector in Listing 4.1 to create the corresponding
Python code samples.

Now that you have seen an example of the limitations of a neural network
with a single hidden layer, the usefulness of architectures with multiple
hidden layers makes more sense.

What is Deep Learning?

Deep learning is a subset of machine learning that focuses on neural
networks and algorithms for training neural networks. Deep learning
comprises many types of neural networks, such as CNNs, RNNs, LSTMs,
GRUs, Variational Autoencoders (VAEs), and GANs. A deep learning model
requires at least two hidden layers in a neural network (“very deep learn-
ing” involves neural networks with at least 10 hidden layers).

From a high-level perspective, deep learning with supervised learning
involves defining a model (aka neural network) as well as

�� making an estimate for a datapoint
�� calculating the loss or error of each estimate
�� reducing the error via gradient descent

We also need to initialize variables for the training data (often named
x_train and y_train) and the test-related data (often named x_test
and x_test), which is typically an 80/20 or 75/25 split between the train-
ing data and test data.

What are Hyperparameters?

Deep learning involves hyperparameters, which are sort of like knobs and
dials whose values are initialized by you prior to the actual training process.
For instance, the number of hidden layers and the number of neurons in
hidden layers are examples of hyperparameters. You will encounter many
hyperparameters in deep learning models, some of which are listed here:

�� Number of hidden layers
�� Number of neurons in hidden layers
�� Weight initialization
�� An activation function
�� A loss function

Deep Learning Introduction • 143

�� An optimizer
�� A learning rate
�� A dropout rate

The first three hyperparameters in the preceding list are required for the
initial set-up of a neural network. The fourth hyperparameter is required
for forward propagation. The next three hyperparameters (i.e., the loss
function, optimizer, and learning rate) are required to perform backward
error propagation (aka backprop) during supervised learning tasks. This
step calculates a set of numbers that are used to update the values of the
weights in the neural network to improve the accuracy of the neural net-
work. The final hyperparameter is useful if you need to reduce overfitting
in your model. In general, the loss function is the most complex of all
these hyperparameters.

During back propagation, the vanishing gradient problem can occur,
after which some weights are no longer updated, in which case the neu-
ral network is essentially inert (and debugging this problem is generally
non-trivial). Another consideration involves deciding whether a local min-
ima is good enough and preferable to expending the additional time and
effort that is required to find an absolute minima.

Deep Learning Architectures

As discussed previously, deep learning supports various architectures,
including MLPs, CNNs, RNNs, and LSTMs. Although there is overlap in terms
of the types of tasks that these architectures can solve, each one has a
specific reason for its creation. As you progress from MLPs to LSTMs, the
architectures become more complex. Sometimes combinations of these
architectures are well-suited for solving tasks. For example, capturing
video and making predictions typically involves a CNN (for processing each
input image in a video sequence) and an LSTM to make predictions of the
position of objects that are in the video stream.

In addition, neural networks for NLP (natural language processing) can
contain one or more CNNs, RNNs, LSTMs, and biLSTMs (bidirectional LSTMs).
The combination of reinforcement learning with these architectures is
called deep reinforcement learning. Note that the Transformer architec-
ture and the Reformer architecture (both created by Google) are two
more recent architectures for NLP whose performance results are state
of the art.

Although MLPs have been popular for a long time, they suffer from two
disadvantages: they are not scalable for computer vision tasks, and they

144 • Angular and Deep Learning Pocket Primer

are somewhat difficult to train. However, CNNs do not require adjacent
layers to be fully connected. Another advantage of CNNs is called the
translation invariance, which means that an image (such as a digit, cat,
dog, and so forth) is recognized as such, regardless of where it appears
in a bitmap.

Problems that Deep Learning Can Solve

Back propagation involves updating the weights of the edges between
consecutive layers, which is performed in a right-to-left fashion (i.e.,
from the output layer toward the input layer). The updates involve the
chain rule (a rule for computing derivatives) and an arithmetic product of
parameters and gradient values. There are two anomalous results that can
occur: the product of terms approaches zero (which is called the vanish-
ing gradient problem) or the product of terms becomes arbitrarily large
(which is called the exploding gradient problem). The former problem
can arise with the sigmoid activation function.

Deep learning can mitigate both of these problems via LSTMs. Deep
learning models usually replace the sigmoid activation function with the
ReLU activation function. ReLU is a very simple continuous function that
is differentiable (with a value of 1 to the right of the y-axis and a value
of -1 to the left of the y-axis) everywhere except the origin. Hence, it’s
necessary to perform some tweaking to make things work nicely at the
origin (such as ELU instead of ReLU).

Challenges in Deep Learning

Although deep learning is powerful and has produced impressive results
in many fields, there are some important on-going challenges that are
being explored, including:

�� Bias in algorithms
�� Susceptibility to adversarial attacks
�� Limited ability to generalize
�� Lack of explainability
�� Correlation but not causality

Algorithms can contain unintentional bias, and even if the bias is removed
from an algorithm, there can be unintentional bias in the data. For exam-
ple, one neural network was trained on a dataset containing pictures
of Caucasian males and females. The outcome of the training process

Deep Learning Introduction • 145

determined that males were physicians and that females were housewives
and did so with a high probability. The reason was simple: the dataset
depicted males and females almost exclusively in those two roles. The
following article contains more information regarding bias in algorithms:

ht tps : / /www. t echno logyrev i ew.com/ s /612876 / th i s - i s -how-
ai-bias-really-happensand-why-its-so-hard-to-fix

Deep learning focuses on finding patterns in datasets, but generalizing
those results is a difficult task. There are some initiatives that attempt to
provide explainability for the outcomes of neural networks, but such work
is still in its infancy. Deep learning finds patterns and can determine cor-
relation, but it’s incapable of determining causality.

Now that you have a bird’s eye view of deep learning, let’s rewind and dis-
cuss an important cornerstone of machine learning called the perceptron,
which is the topic of the next section.

What are Perceptrons?

DNNs (deep neural networks)
contain at least two hidden lay-
ers, and they can solve logistic
regression problems as well as
classification problems. In fact,
the output layer of a model for
classification problems actually
consists of a set of probabilities
(one for each class in the dataset)
whose sum equals 1.

Figure 4.1 shows a perceptron
with incoming edges that have
numeric weights.

The next section delves into the details of perceptrons, and how they form
the backbone of MLPs.

Definition of the Perceptron Function

A perceptron involves a function f(x) where the following holds:

f(x) = 1 if w*x + b > 0 (otherwise f(x) = 0)

Figure 4.1  An example of a perceptron

146 • Angular and Deep Learning Pocket Primer

In the previous expression, w is a vector of weights, x is an input vector, b
is a vector of biases. The product w*x is the inner product of the vectors
w and x, and activating a perceptron is an all-or-nothing decision (e.g., a
light bulb is either on or off, with no intermediate states).

Notice that the function f(x) checks the value of the linear term w*x+b,
which is also specified in the sigmoid function for logistic regression.
The same term appears as part of the calculation of the sigmoid value, as
shown here:

1/[1 + e^(w*x+b)]

Given a value for w*x+b, the preceding expression generates a numeric
value. However, in the general case, W is a weight matrix, and x and b are
vectors.

The next section digresses slightly in order to describe artificial neural
networks, after which we’ll discuss MLPs.

A Detailed View of a Perceptron

A neuron is essentially a building block for neural networks. In general,
each neuron receives multiple inputs (which are numeric values), each
of which is from a neuron that belongs to a previous layer in a neural
network. The weighted sum of the inputs is calculated and assigned to
the neuron.

Specifically, suppose that a neuron N’ (N “prime”) receives inputs whose
weights are in the set {w1, w2, w3, . . . , wn}, where these numbers specify
the weights of the edges that are connected to neuron N’. Since forward
propagation involves a flow of data in a left-to-right fashion, this means
that the left endpoint of the edges are connected to neurons {N1, N2, . . .,
Nk} in a preceding layer, and the right endpoint of these edges is N’. The
weighted sum is calculated as follows:

x1*w1 + x2*w2 + . . . + xn*wn

After the weighted sum is calculated, it’s “passed” to an activation function
that calculates a second value. This step is required for artificial neural
networks, and it’s explained later in the chapter. This process of calculat-
ing a weighted sum is repeated for every neuron in a given layer, and then
the same process is repeated on the neurons in the next layer of a neural
network.

Deep Learning Introduction • 147

The entire process is called forward propagation (also called forward
prop), which is complemented by the backward error propagation step
(also called backward prop). During the backward error propagation step,
new weight values are calculated for the entire neural network. The com-
bination of forward prop and backward prop is repeated for each data
point (e.g., each row of data in a CSV file). The goal is to finish this training
process so that the finalized neural network (also called a model) accu-
rately represents the data in a dataset and can also accurately predict val-
ues for the test data. Of course, the accuracy of a neural network depends
on the dataset in question, and the accuracy can be higher than 99%.

The Anatomy of an Artificial Neural Network (ANN)

An ANN consists of an input layer, an output layer, and one or more hid-
den layers. For each pair of adjacent layers in an ANN, neurons in the
left layer are connected with neurons in the right layer via an edge that
has a numeric weight. If all neurons in the left layer are connected to all
neurons in the right layer, it’s called an MLP (discussed later).

Keep in mind that the perceptrons in an ANN are stateless: they do not
retain any information about previously processed data. Furthermore, an
ANN does not contain cycles (hence ANNs are acyclic). By contrast, RNNs
and LSTMs do retain state and they do have cycle-like behavior, as you will
see later in this chapter.

Incidentally, if you have a mathematics background, you might be tempted
to think of an ANN as a set of contiguous bipartite graphs in which data
flows from the input layer (think “multiple sources”) toward the output
layer (“the sink”). Unfortunately, this viewpoint doesn’t prove useful for
understanding ANNs. A better way to understand ANNs is to think of their
structure as a combination of the hyperparameters in the following list:

1)	 the number of hidden layers
2)	 the number of neurons in each hidden layer
3)	 the initial weights of edges connecting pairs of neurons
4)	 the activation function
5)	 a loss function
6)	 an optimizer (used with the loss function)
7)	 the learning rate (a small number)
8)	 dropout rate (optional)

Figure 4.2 shows the contents of an ANN (there are many variations: this is
simply one example).

148 • Angular and Deep Learning Pocket Primer

Figure 4.2  An example of an ANN

Since the output layer of the ANN in Figure 4.2 contains more than one
neuron, we know that it’s a model for a classification task.

The Model Initialization Hyperparameters

The first three parameters in the list of bullet items in the previous sec-
tion are required for initializing the neural network. The hidden layers are
intermediate computational layers, each of which is composed of neurons.
The number of edges between each pair of adjacent layers is flexible and
determined by you. More information about network initialization is here:

http://www.deeplearning.ai/ai-notes/initialization/

The edges that connect neurons in each pair of adjacent layers (including
the input layer and the output layer) have numeric weights. The initial
values of these weights are often small random numbers between 0 and 1.
Keep in mind that the connections between adjacent layers can affect the
complexity of a model. The purpose of the training process is to fine-tune
edge weights to produce an accurate model.

An ANN is not necessarily fully connected, which is to say that some edges
between pairs of neurons in adjacent layers might be missing. By contrast,
neural networks such as CNNs share edges (and their weights), which can
make them more computationally feasible (but even CNNs can require sig-
nificant training time). Note that the Keras tf.keras.layers.Dense()
class handles the task of fully connecting two adjacent layers. As discussed
later, MLPs are fully connected, which can greatly increase the training
time for such a neural network.

Deep Learning Introduction • 149

The Activation Hyperparameter

The fourth parameter is the activation function that is applied to weights
between each pair of consecutive layers. Neural networks with many lay-
ers typically involve different activation functions. For instance, CNNs use
the ReLU activation function on feature maps (created by applying filters
to an image), whereas the penultimate layer is connected to the output
layer via the softmax function (which is a generalization of the sigmoid
function).

The Loss Function Hyperparameter

The fifth, sixth, and seventh hyperparameters are required for the back-
ward error propagation that starts from the output layer and moves in a
right-to-left toward the input layer. These hyperparameters perform the
heavy lifting of machine learning frameworks: they compute the updates
to the weights of the edges in neural networks.

The loss function is a function in multi-dimensional Euclidean space. For
example, the MSE loss function is a bowl-shaped loss function that has a
global minimum. In general, the goal is to minimize the MSE function in
order to minimize the loss, which in turn helps us maximize the accuracy
of a model (but this is not guaranteed for other loss functions). However,
sometimes a local minimum might be considered good enough instead
of finding a global minimum: you must make this decision (i.e., it’s not a
purely programmatic decision).

Alas, loss functions for larger datasets tend to be very complex, which is
necessary in order to detect potential patterns in datasets. Another loss
function is the cross-entropy function, which involves maximizing the
likelihood function (contrast this with MSE). Search for online articles for
more details about loss functions.

The Optimizer Hyperparameter

An optimizer is an algorithm that is chosen in conjunction with a loss func-
tion, and its purpose is to converge to the minimum value of the loss func-
tion during the training phase (see the comment in the previous section
regarding a local minimum). Different optimizers make different assump-
tions regarding the manner in which new approximations are calculated
during the training process. Some optimizers involve only the most recent
approximation, whereas other optimizers use a rolling average that takes
into account several previous approximations.

150 • Angular and Deep Learning Pocket Primer

There are several well-known optimizers, including SGD, RMSprop,
Adagrad, Adadelta, and Adam. Check online for details regarding the
advantages and trade-offs of these optimizers.

The Learning Rate Hyperparameter

The learning rate is a small number, usually between 0.001 and 0.05,
which affects the magnitude of a number that is added to the current
weight of an edge in order to train the model with these updated weights.
The learning rate has a sort of throttling effect. If the value is too large,
the new approximation might overshoot the optimal point; if it’s too small,
the training time can increase significantly. By analogy, imagine you are in
a passenger jet and you’re 100 miles away from an airport. The speed of
the airplane decreases as you approach the airport, which corresponds to
decreasing the learning rate in a neural network.

The Dropout Rate Hyperparameter

The dropout rate is the eighth hyperparameter, which is a decimal value
between 0 and 1, typically between 0.2 and 0.5. Multiply this decimal value
with 100 to determine the percentage of randomly selected neurons to
ignore during each forward pass in the training process. For example, if
the dropout rate is 0.2, then 20% of the neurons are selected randomly
and ignored during each step of the forward propagation. A different set of
neurons is randomly selected whenever a new datapoint is processed in the
neural network. Note that the neurons are not removed from the neural
network: they still exist, and ignoring them during forward propagation has
the effect of thinning the neural network. In TF 2, the Keras tf.keras.
layers.Dropout class performs the task of thinning a neural network.

There are additional hyper parameters that you can specify, but they are
optional and not required in order to understand ANNs.

What is Backward Error Propagation?

An ANN is typically drawn in a left-to-right fashion, where the left-most
layer is the input layer. The output from each layer becomes the input for
the next layer. The term forward propagation refers to supplying values
to the input layer and the progress through the hidden layers toward the
output layer. The output layer contains the results (which are estimated
numeric values) of the forward pass through the model.

Deep Learning Introduction • 151

Here is a key point: backward error propagation involves the calcula-
tion of numbers that are used to update the weights of the edges in the
neural network. The update process is performed by means of a loss
function (and an optimizer and a learning rate), starting from the output
layer (the right-most layer) and then moving in a right-to-left fashion
to update the weights of the edges between consecutive layers. This
procedure trains the neural network, which involves reducing the error
between the estimated values at the output layer and the true values (in
the case of supervised learning). This procedure is repeated for each
data point in the training portion of the dataset. Processing the dataset is
called an epoch, and many times a neural network is trained via multiple
epochs.

The previous paragraph did not explain what the loss function is or
how it is chosen: that’s because the loss function and the optimizer and
the learning rate are hyperparameters that are discussed in previous
sections. However, two commonly used loss functions are MSE and
cross entropy; a commonly used optimizer is the Adam optimizer (and
SGD and RMSprop and others); and a common value for the learning
rate is 0.01.

What is a Multilayer Perceptron (MLP)?

A multilayer perceptron (MLP) is a feed forward artificial neural network
that consists of at least three layers of nodes: an input layer, a hidden layer,
and an output layer. An MLP is fully connected: given a pair of adjacent
layers, every node in the left layer is connected to every node in the right
layer. Apart from the nodes in the input layer, each node is a neuron and
each layer of neurons involves a nonlinear activation function. In addition,
MLPs use backward error propagation for training, which is also true for
CNNs (Convolutional Neural Networks).

Figure 4.3 shows the contents of an MLP with two hidden layers.

One point to keep in mind: the non-linear activation function of an MLP
differentiates an MLP from a linear perceptron. In fact, an MLP can handle
data that is not linearly separable. For instance, the OR function and the
AND function involve linearly separable data, so they can be represented
via a linear perceptron. However, the XOR function involves data that is
not linearly separable, and therefore requires a neural network such as
an MLP.

152 • Angular and Deep Learning Pocket Primer

Figure 4.3  An example of an MLP

Activation Functions

An MLP without an activation function between any adjacent pair of layers
is a linear system: at each layer, simply multiply the vector from the previ-
ous layer with the current matrix (which connects the current layer to the
next layer) to produce another vector.

It’s straightforward to multiply a set of matrices to produce a single matrix.
Since a neural network without activation functions is a linear system, we can
multiply those matrices (one matrix for each pair of adjacent layers) together
to produce a single matrix: the original neural network is thereby reduced to
a two-layer neural network consisting of an input layer and an output layer,
which defeats the purpose of having a multi-layered neural network.

In order to prevent such a reduction of the layers of a neural network, an
MLP must include a nonlinear activation function between adjacent layers
(this is also true of any other deep neural network). The choice of the non-
linear activation function is typically sigmoid, tanh (which is a hyperbolic
tangent function), or ReLU (Rectified Linear Unit).

The output of the sigmoid function ranges from 0 to 1, which has the
effect of squashing the data values. Similarly, the output of the tanh func-
tion ranges from -1 to 1. However, the ReLU activation function (or one of
its variants) is preferred for ANNs and CNNs, whereas sigmoid and tanh
are used in LSTMs.

Several upcoming sections contain the details of constructing an MLP,
such as how to initialize the weights of an MLP, storing weights and biases,
and how to train a neural network via backward error propagation.

Deep Learning Introduction • 153

How are Datapoints Correctly Classified?

A datapoint refers to a row of data in a dataset, which can be a data-
set for real estate, a dataset of thumbnail images, or some other type of
dataset. Suppose that we want to train an MLP for a dataset that contains
four classes (aka labels). In this scenario, the output layer must also con-
tain four neurons, where the neurons have index values 0, 1, 2, and 3
(a ten-neuron output layer has index values from 0 to 9, inclusive). The
sum of the probabilities in the output layer always equals 1 because of
the softmax activation function that is used when transitioning from the
penultimate layer to the output layer.

Find the index of the largest probability and the index of the "1" in the
one-hot encoding of the label (of the current datapoint) and compare
them. If the index values are equal, then the NN has correctly classified
the current datapoint (otherwise, it’s a mismatch).

For example, the MNIST dataset contains images of hand-drawn digits
from 0 through 9, inclusive, which means that a NN for the MNIST data-
set has ten outputs in the final layer, one for each digit. Suppose that an
image containing the digit 3 is currently being passed through the NN.
The one-hot encoding for 3 is [0,0,0,1,0,0,0,0,0,0], and the index
value with the largest value in the one-hot encoding is also 3. Now sup-
pose that output layer of the NN is [0.05,0.05,0.2,0.6,0.2,0.2,0.1
,0.1,0.238] after processing the digit 3. As you can see, the index value
with the maximum value (which is 0.6) is also 3. In this scenario, the NN
has correctly identified the input image. One other point: the TF API
tf.argmax() is used to calculate the total number of images that have
been correctly labeled by a NN.

A binary classifier involves two outcomes for handling tasks, such as
determining spam/not-spam, fraud/not-fraud, or stock increase/decrease
(or temperature, or barometric pressure). Predicting the future value of a
stock price is a regression task, whereas predicting whether the price will
increase or decrease is a classification task.

In machine learning, the multi-layer perceptron is a NN for supervised
learning of binary classifiers (and it’s a type of linear classifier). However,
single layer perceptrons are only capable of learning linearly separable
patterns. In fact, a famous book entitled Perceptrons by Marvin Minsky
and Seymour Papert (written in 1969) showed that it was impossible for
these classes of network to learn an XOR function. However, an XOR func-
tion can be learned by a two-layer perceptron.

154 • Angular and Deep Learning Pocket Primer

A High-Level View of CNNs

CNNs are deep NNs (with one or more convolutional layers) that are well-
suited for image classification, along with other use cases, such as audio
and NLP.

Although MLPs were successfully used for image recognition, they do not
scale well because every pair of adjacent layers is fully connected, which
in turn can result in massive neural networks. For large images (or other
large inputs) the complexity becomes significant and adversely affects
performance.

Figure 4.4 displays the contents of a CNN (there are many variations: this
is simply one example).

	 Figure 4.4  An example of a CNN

A Minimalistic CNN

A production quality CNN can be very complex, comprising many hidden
layers. However, in this section, we’re going to look at a minimalistic

Deep Learning Introduction • 155

CNN (essentially a “toy” neural network), which consists of the following
layers:

�� Conv2D (a convolutional layer)
�� ReLU (activation function)
�� Max Pooling (reduction technique)
�� Fully Connected (FC) Layer
�� Softmax activation function

The next subsections briefly explain the purpose of each bullet point in
the preceding list of items.

The Convolutional Layer (Conv2D)

The convolutional layer is typically labeled as Conv2D in Python and TF
code. The Conv2D layer involves a set of filters, which are small square
matrices whose dimensions are often 3x3 but can also be 5x5, 7x7, or even
1x1. Each filter is scanned across an image (think of tricorders in Star
Trek movies), and at each step, an inner product is calculated with the
filter and the portion of the image that is currently underneath the filter.
The result of this scanning process is called a feature map that contains
real numbers.

Figure 4.5 shows a 6x6 grid of numbers and the inner product of a 2x2
filter with a 2x2 subregion that results in the number -4 that appears in
the feature map.

Figure 4.5  Performing a convolution

156 • Angular and Deep Learning Pocket Primer

The ReLU Activation Function

After each feature map is created, it’s possible that some of the values in
the feature map are negative. The purpose of the ReLU activation function
is to replace negative values (if any) with zero. Recall the definition of the
ReLU function:

ReLU(x) = x if x >=0 and ReLU(x) = 0 if x < 0

If you draw a 2D graph of ReLU, it consists of two parts: the horizontal axis
for x less than zero and the identity function (which is a line) in the first
quadrant for x greater than or equal to 0.

The Max Pooling Layer

The third step involves max pooling, which is simple to perform: after pro-
cessing the feature map with the ReLU activation function in the previous
step, partition the updated feature map into 2x2 rectangles, and select the
largest value from each of those rectangles. The result is a smaller array that
contains 25% of the feature map (i.e., 75% of the numbers are discarded).
There are several algorithms that you can use to perform this extraction:
the average of the numbers in each square; the square root of the sum of
the squares of the numbers in each square; or the maximum number in
each square.

In the case of CNNs, the algorithm for max pooling selects the maximum
number from each 2x2 rectangle. Figure 4.6 shows the result of max pool-
ing in a CNN.

	 Figure 4.6  An example of max pooling in a CNN

Deep Learning Introduction • 157

The result is a small square array whose size is only 25% of the previous
feature map. This sequence is performed for each filter in the set of filters
that were chosen in the Conv2D layer. This set can have 8, 16, 32, or more
filters (usually a power of 2).

If you feel puzzled or skeptical about this technique, consider the analogy
involving compression algorithms, which can be divided into two types:
lossy and lossless. In case you didn’t already know, JPEG is a lossy algo-
rithm (i.e., data is lost during the compression process), and yet it works
just fine for compressing images. Think of max pooling as the counterpart
to lossy compression algorithms, and perhaps that will persuade you of the
efficacy of this algorithm.

However, your skepticism is valid. In fact, Geoffrey Hinton (often called
the “godfather” of deep learning) proposed a replacement for max pool-
ing called capsule networks. This architecture is more complex and more
difficult to train, and also beyond the scope of this book (you can find
online tutorials that discuss capsule networks in detail). However, cap-
sule networks tend to be more resistant to GANs (Generative Adversarial
Networks).

Repeat the previous sequence of steps (as in LeNet), and then per-
form a rather non-intuitive action: flatten all these small arrays so that
they are one-dimensional vectors, and concatenate these vectors into
one (very long) vector. The resulting vector is then fully connected with
the output layer, where the latter consists of 10 buckets. In the case of
MNIST, these placeholders are for the digits from 0 to 9, inclusive. Note
that the Keras tf.keras.layers.Flatten class performs this flatten-
ing process.

The softmax activation function is applied to the long vector of numbers
to populate the 10 buckets of the output layer. The result is that the 10
buckets are populated with a set of non-zero (and non-negative) numbers
whose sum equals one. Find the index of the bucket containing the largest
number, and compare this number with the index of the one-hot encoded
label associated with the image that was just processed. If the index values
are equal, then the image was successfully identified.

More complex CNNs involve multiple Conv2D layers, multiple FC (fully
connected) layers, different filter sizes, and techniques for combining
previous layers (such as ResNet) to boost the data values’ current layer.
Additional information about CNNs is here: https://en.wikipedia.org/wiki/
Convolutional_neural_network

158 • Angular and Deep Learning Pocket Primer

Now that you have a high-level understanding of CNNs, let’s look at a code
sample that illustrates an image in the MNIST dataset (and the pixel values
of that image), followed by two code samples that use Keras to train a
model on the MNIST dataset.

Displaying an Image in the MNIST Dataset

Listing 4.2 shows the content of tf2_keras-mnist_digit.py, which
illustrates how to create a neural network in TensorFlow that processes
the MNIST dataset.

Listing 4.2: tf2_keras-mnist_digit.py

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(X_train, y_train), (X_test, y_test) = mnist.load_data()

print("X_train.shape:",X_train.shape)

print("X_test.shape: ",X_test.shape)

first_img = X_train[0]

uncomment this line to see the pixel values

#print(first_img)

import matplotlib.pyplot as plt

plt.imshow(first_img, cmap='gray')

plt.show()

Listing 4.2 starts with some import statements and then populates the
training data and test data from the MNIST dataset. The variable first_
img is initialized as the first entry in the X_train array, which is the first
image in the training dataset. The final block of code in Listing 4.2 dis-
plays the pixel values for the first image. The output from Listing 4.2 is
here:

X_train.shape: (60000, 28, 28)

X_test.shape: (10000, 28, 28)

Figure 4.7 shows the contents of the first image in the MNIST dataset.

Deep Learning Introduction • 159

Figure 4.7  The first image in the Mnist dataset

Keras and the Mnist Dataset

When you read code samples that contain Keras-based models that use
the MNIST dataset, the models use a different API in the input layer.

Specifically, a model that is not a CNN flattens the input images into a
one-dimensional vector via the tf.keras.layers.Flatten() API, an
example of which is here (see Listing 4.3 for details):

tf.keras.layers.Flatten(input_shape=(28,28))

A CNN uses the tf.keras.layers.Conv2D() API, an example of which is
here (see Listing 4.4 for details):

tf.keras.layers.Conv2D(32,(3,3),activation='relu',input_

shape=(28,28,1))

Listing 4.3 shows the content of keras_mnist.py, which illustrates how
to create a Keras-based neural network in TensorFlow that processes the
MNIST dataset.

Listing 4.3: keras_mnist.py

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()

160 • Angular and Deep Learning Pocket Primer

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([

 tf.keras.layers.Flatten(input_shape=(28, 28)),

 tf.keras.layers.Dense(512, activation='relu'),

 tf.keras.layers.Dropout(0.2),

 tf.keras.layers.Dense(10, activation='softmax')

])

model.summary()

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test, y_test)

Listing 4.3 starts with some import statements and then initializes the
variable mnist as a reference to the built-in MNIST dataset. Next, the
training-related and test-related variables are initialized with their respec-
tive portions of the MNIST dataset, followed by a scaling transformation
for x_train and x_test.

The next portion of Listing 4.3 defines a very simple Keras-based model
with four layers that are created from classes in the tf.keras.layers
package. The next code snippet displays a summary of the model defini-
tion, as shown here:

Model: "sequential"

Layer (type)	 Output Shape	 Param #

flatten (Flatten)	 None, 784)	 0

dense (Dense)	 (None, 512)	 401920

dropout (Dropout)	 None, 512)	 0

dense_1 (Dense)	 (None, 10)	 5130

Total params: 407,050

Trainable params: 407,050

Non-trainable params: 0

Deep Learning Introduction • 161

The remaining portion of Listing 4.3 compiles, fits, and evaluates the
model, which produces the following output:

Epoch 1/5

60000/60000 [====================] - 14s 225us/step - loss:

0.2186 - acc: 0.9360

Epoch 2/5

60000/60000 [====================] - 14s 225us/step - loss:

0.0958 - acc: 0.9704

Epoch 3/5

60000/60000 [====================] - 14s 232us/step - loss:

0.0685 - acc: 0.9783

Epoch 4/5

60000/60000 [====================] - 14s 227us/step - loss:

0.0527 - acc: 0.9832

Epoch 5/5

60000/60000 [====================] - 14s 225us/step - loss:

0.0426 - acc: 0.9861

10000/10000 [====================] - 1s 59us/step

The final accuracy for this model is 98.6%, which is a respectable value.

Keras, CNNs, and the Mnist Dataset

Listing 4.4 shows the content of keras_cnn_mnist.py, which illustrates
how to create a Keras-based neural network in TensorFlow that pro-
cesses the MNIST dataset.

Listing 4.4: keras_cnn_mnist.py

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) =

tf.keras.datasets.mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 1))

test_images = test_images.reshape((10000, 28, 28, 1))

Normalize pixel values: from the range 0-255 to the range 0-1

train_images, test_images = train_images/255.0,

test_images/255.0

162 • Angular and Deep Learning Pocket Primer

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Conv2D(32, (3, 3), activa-

tion='relu', input_shape=(28, 28, 1)))

model.add(tf.keras.layers.MaxPooling2D((2, 2)))

model.add(tf.keras.layers.Conv2D(64, (3, 3),

activation='relu'))

model.add(tf.keras.layers.MaxPooling2D((2, 2)))

model.add(tf.keras.layers.Conv2D(64, (3, 3),

activation='relu'))

model.add(tf.keras.layers.Flatten())

model.add(tf.keras.layers.Dense(64, activation='relu'))

model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.summary()

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=1)

test_loss, test_acc = model.evaluate(test_images,

test_labels)

print(test_acc)

predict the label of one image

test_image = np.expand_dims(test_images[300],axis = 0)

plt.imshow(test_image.reshape(28,28))

plt.show()

result = model.predict(test_image)

print("result:", result)

print("result.argmax():", result.argmax())

Listing 4.4 initializes the training data and labels, as well as the test data
and labels, via the load_data() function. Next, the images are reshaped
so that they are 28x28 images, and then the pixel values are rescaled from
the range 0-255 (all integers) to the range 0-1 (decimal values).

The next portion of Listing 4.4 uses the Keras Sequential() API to
define a Keras-based model called model, which contains two pairs of
Conv2D and MaxPooling2D layers, followed by the Flatten layer, and
then two consecutive Dense layers.

Next, the model is compiled, trained, and evaluated via the compile(),
fit(), and evaluate() methods, respectively. The final portion of

Deep Learning Introduction • 163

Listing 4.4 successfully predicts the image whose label is 4, which is then
displayed via Matplotlib. Launch the code in Listing 4.4 to see the fol-
lowing output on the command line:

Model: "sequential"

Layer (type)	 Output Shape	 Param #

conv2d (Conv2D)	 (None, 26, 26, 32)	 320

max_pooling2d (MaxPooling2D)	 (None, 13, 13, 32)	 0

conv2d_1 (Conv2D)	 (None, 11, 11, 64)	 18496

max_pooling2d_1 (MaxPooling2	 (None, 5, 5, 64)	 0

conv2d_2 (Conv2D)	 (None, 3, 3, 64)	 36928

flatten (Flatten)	 (None, 576)	 0

dense (Dense)	 (None, 64)	 36928

dense_1 (Dense)	 (None, 10)	 650

Total params: 93,322

Trainable params: 93,322

Non-trainable params: 0

60000/60000 [========================] - 54s 907us/sample

- loss: 0.1452 - accuracy: 0.9563

10000/10000 [========================] - 3s 297us/sample -

loss: 0.0408 - accuracy: 0.9868

0.9868

Using TensorFlow backend.

result: [[6.2746993e-05 1.7837329e-03 3.8957372e-04

4.6143982e-06 9.9723744e-01

 1.5522403e-06 1.9182076e-04 3.0044283e-04 2.2602901e-05

5.3929521e-06]]

result.argmax(): 4

Figure 4.8 shows the image that is displayed when you launch the code
in Listing 4.4.

164 • Angular and Deep Learning Pocket Primer

	 Figure 4.8  An image in the Mnist dataset

You might be asking yourself how the model in Listing 4.4 can achieve
such a high accuracy when every input image is flattened into a one-di-
mensional vector, which loses the adjacency information that is available
in a two-dimensional image. Before CNNs became popular, one technique
involved using MLPs and another technique involved SVMs as models for
images. In fact, if you don’t have enough images to train a model, you can
still use an SVM. Another option is to generate synthetic data using a GAN
(which was its original purpose).

CNNS with Audio Signals

In addition to image classification, you can train CNNs with audio signals,
which can be converted from analog to digital. Audio signals have vari-
ous numeric parameters (such as decibel level and voltage level) that are
described here:

https://en.wikipedia.org/wiki/Audio_signal

If you have a set of audio signals, the numeric values of their associated
parameters become the dataset for a CNN. Remember that CNNs have no
“understanding” of the numeric input values: the numeric values are pro-
cessed in the same fashion, regardless of the source of the numeric values.

One use case involves a microphone outside of a building detects and
identifies various sounds. Obviously, it’s important to identify the sound of
a backfire from a vehicle versus the sound of a gunshot. In the latter case,

Deep Learning Introduction • 165

the police should be notified about a potential crime. There are compa-
nies that use CNNs to identify different types of sounds; other companies
are exploring the use of RNNs and LSTMs instead of CNNs.

Summary

In this chapter, you got a brief introduction to deep learning, how it dif-
fers from machine learning, and some of the problems it can solve. You
learned about the challenges that exist in deep learning, which includes
bias in algorithms, susceptibility to adversarial attacks, limited ability
to generalize, lack of explainability in neural networks, and the lack of
causality.

Next you learned about the XOR function, which is an example of a
non-linearly separable set of four points in the plane. Despite its sim-
plicity in the 2D case, the XOR function cannot be solved with a single
layer shallow network: instead, two hidden layers are required. Next you
learned about perceptrons, which are essentially the core building blocks
of neural networks.

You also saw a Keras-based code sample for training a neural network on
the MNIST dataset. In addition, you learned how CNNs are constructed,
along with a Keras-based code sample for training a CNN with the MNIST
dataset: this code sample will make more sense after you have read the
section pertaining to activation functions in Chapter 5.

c h a p t e r

This chapter extends the introduction from Chapter 4 by discussing
RNNs (Recurrent Neural Networks) and LSTMs (Long Short Term
Memory). Although most of this chapter contains descriptive con-

tent regarding these architectures, there are Keras-based code samples.
Hence, this would be a good point to read the Keras material in the asso-
ciated appendix in case you haven’t already done so.

The first part of this chapter introduces you to the architecture of RNNs,
BPTT (back propagation through time), and a short Keras-based code
sample. As you will see, RNNs can keep track of information from earlier
time periods, which makes them useful for a variety of tasks, including
NLP tasks.

The second part of this chapter introduces you to the architecture of
LSTMs, which is more complex than RNNs. Specifically, LSTMs includes a
forget gate, an input gate, and an output gate, as well as a long-term mem-
ory cell. We also discuss the advantages of LSTMs over RNNs. In addition,
we cover bi-directional LSTMs that are used in some well-known NLP-
related models (see Chapter 6).

The third part of this chapter introduces you to the architecture of auto-
encoders and the rationale for using them, as well as an introduction to
variational autoencoders.

Please keep in mind that the code samples in this chapter assume that you
have some familiarity with Keras (discussed in one of the appendices).

Deep Learning: RNNs and
LSTMs

5

168 • Angular and Deep Learning Pocket Primer

What is an RNN?

An RNN is a Recurrent Neural Network, which is a type of architecture
that was developed during the 1980s. RNNs are suitable for datasets that
contain sequential data and also for NLP tasks, such as language mode-
ling, text generation, or auto-completion of sentences. In fact, you might
be surprised to learn that you can even perform image classification (such
as MNIST) via an RNN. Figure 5.1 shows the contents of a simple RNN.

Figure 5.1  An example of an RNN

In addition to simple RNNs, there are more powerful constructs, such as
LSTMs and GRUs. A basic RNN has the simplest type of feedback mecha-
nism (described later), and involves a sigmoid activation function.

RNNs (which includes LSTMs and GRUs) differ from ANNs in several impor-
tant ways, as listed here:

�� Statefulness (all RNNs)
�� Feedback mechanism (all RNNs)
�� A sigmoid or tanh activation function
�� Multiple gates (LSTMs and GRUs)
�� BPTT (Back Propagation Through Time)
�� Truncated BPTT (simple RNNs)

First, ANNs and CNNs are essentially “stateless,” whereas RNNs are “state-
ful” because they have an internal state. Hence, RNNs can process more
complex sequences of inputs, which makes them suitable for tasks such as
handwriting recognition and or speech recognition.

Deep Learning: RNNs and LSTMs • 169

Anatomy of an RNN

Consider the RNN in Figure 5.1. Suppose that the sequence of inputs is
labeled x1, x2, x3, ... , x(t), and also that the sequence of “hidden
states” is labeled h1, h2, h3, ..., h(t). Note that each input sequence and
hidden state is a 1xn vector, where n is the number of features.

At time period t, the input is based on a combination of h(t-1) and x(t),
after which an activation function is applied to this combination (which
can also involve adding a bias vector).

Another difference is the feedback mechanism for RNNs that occurs
between consecutive time periods. Specifically, the output at a previous
time period is combined with the new input of the current time period in
order to calculate the new internal state. Let’s use the sequence {h(0),
h(1), h(2), . . . h(t-1), h(t)} to represent the set of internal states
of an RNN during time periods {0, 1, 2, ... , t-1, t}, and let’s also
suppose that the sequence {x(0) , x(1), x(2), ... , x(t-1), x(t)} is
the input during the same time periods.

The fundamental relationship for an RNN at time period t is here:

h(t) = f(W*x(t) + U*h(t-1))

In the preceding formula, W and U are weight matrices and f is typically
the tanh activation function.

Here is a code snippet of a TF 2 Keras-based model that is based on the
tf.keras.layers.SimpleRNN class:

import tensorflow as tf

...

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.SimpleRNN(5, input_shape=(1,2),

batch_input_shape=[1,1,2], stateful=True))

...

Perform an online search for more information and code samples involv-
ing Keras and RNNs.

What is BPTT?

BPTT (back propagation through time) in RNNs is the counterpart to back-
prop for CNNs. The weight matrices of RNNs are updated during to train
the neural network.

170 • Angular and Deep Learning Pocket Primer

However, there is a problem called the exploding gradient that can occur
in RNNs, which is to say that the gradient becomes arbitrarily large (ver-
sus the gradient becoming arbitrarily small in the vanishing gradient sce-
nario). One way to deal with the exploding gradient problem is to use a
truncated BPTT, which means that BPTT is computed for a small number
of steps instead of all time steps. Another technique is to specify a maxi-
mum value for the gradient, which involves simple conditional logic.

The good news is that there is another way to overcome both the explod-
ing gradient and vanishing gradient problem, which involves LSTMs that
are discussed later in this chapter.

Working with RNNs and Keras

Listing 5.1 shows the contents of keras_rnn_model.py, which illus-
trates how to create a simple Keras-based RNN model.

Listing 5.1: keras_rnn_model.py

import tensorflow as tf

timesteps = 30

input_dim = 12

number of units in RNN cell

units = 512

number of classes to be identified

n_classes = 5

Keras Sequential model with RNN and Dense layer

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.SimpleRNN(units=units,

 dropout=0.2,

 input_shape=(timesteps, input_dim)))

m o d e l . a d d (t f . k e r a s . l a y e r s . D e n s e (n _ c l a s s e s ,

activation='softmax'))

model loss function and optimizer

model.compile(loss='categorical_crossentropy',

 optimizer=tf.keras.optimizers.Adam(),

 metrics=['accuracy'])

model.summary()

Deep Learning: RNNs and LSTMs • 171

Listing 5.1 first initializes the variables timesteps (the number of time
steps), input_dim (the number of elements in each input vector of
numbers), units (the number of hidden units in the RNN neuron), and
n_classes (the number of classes in the dataset).

The next portion of Listing 5.1 creates a Keras-based model that looks
similar to earlier Keras-based models, with the exception of the code
snippet for the RNN layer, as shown here:

model.add(tf.keras.layers.SimpleRNN(units=units,

 dropout=0.2,

 input_shape=(timesteps, input_dim)))

The preceding code snippet adds an instance of the SimpleRNN class as
well as the variables that are defined in the preceding code block.

The final portion of code invokes the compile() method, followed by the
summary() method to display the structure of the model.

Launch the code in Listing 5.1 to see the following output:

Model: "sequential"

Layer (type)	 Output Shape	 Param #

simple_rnn (SimpleRNN)	 (None, 512)	 268800

dense (Dense)	 (None, 5)	 2565

Total params: 271,365

Trainable params: 271,365

Non-trainable params: 0

Now that you see how easy it is to create an RNN-based model in
Keras, let’s look at an example of an RNN-based model in Keras that
will be trained on the MNIST dataset, which is the topic of the next
section.

Working with Keras, RNNs, and MNIST

Listing 5.2 displays the contents of keras_rnn_mnist.py that illustrates
how to create a simple Keras-based RNN model that is trained on the
MNIST dataset.

172 • Angular and Deep Learning Pocket Primer

Listing 5.2: keras_rnn_mnist.py

this code works with TensorFlow 2.1 and Python 3.6

import tensorflow as tf

import numpy as np

get an instance of the TF 2 built-in mnist dataset:

mnist = tf.keras.datasets.mnist

load the mnist dataset and split into training and test:

(x_train, y_train), (x_test, y_test) = mnist.load_data()

compute the number of training labels:

num_labels = len(np.unique(y_train))

make sure that all labels are one-hot encoded:

y_train = tf.keras.utils.to_categorical(y_train)

y_test = tf.keras.utils.to_categorical(y_test)

resize the training and test data x_train and x-test

and then divide pixel values by 255 (normalization)

image_size = x_train.shape[1]

x_train = np.reshape(x_train,[-1, image_size, image_size])

x_test = np.reshape(x_test,[-1, image_size, image_size])

x_train = x_train.astype('float32') / 255

x_test = x_test.astype('float32') / 255

initialize some standard parameters:

input_shape = (image_size, image_size)

batch_size = 128

units = 256

dropout = 0.2

create a Keras RNN model with:

256 units

input is 28-dimensional vector

having 28 timesteps

with a few simple layers

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.SimpleRNN(units=units,

 dropout=dropout,

 input_shape=input_shape))

model.add(tf.keras.layers.Dense(num_labels))

model.add(tf.keras.layers.Activation('softmax'))

model.summary()

Deep Learning: RNNs and LSTMs • 173

tf.keras.utils.plot_model(model, to_file='my-rnn-mnist.

png', show_shapes=True)

loss function for one-hot vector: sgd optimizer

accuracy is good metric for classification tasks

model.compile(loss='categorical_crossentropy',

 optimizer='sgd',

 metrics=['accuracy'])

train the network: increase epochs for better results

model.fit(x_train, y_train, epochs=5, batch_size=batch_size)

loss, acc = model.evaluate(x_test, y_test,

batch_size=batch_size)

print("\nTest accuracy: %.1f%%" % (100.0 * acc))

Listing 5.2 contains the usual import statements, followed by the ini-
tialization of the mnist variable as a reference to the MNIST dataset,
after which the four variables for the training data and the test data are
initialized.

The next portion of Listing 5.2 ensures that the training images and test
images are resized as 28x28 images, after which the pixel values (which
are in the range of 0 to 255) in these images are scaled down so that they
are in the range of 0 to 1. The next portion of Listing 5.2 is very similar to
Listing 5.1: some hyperparameters are initialized and then an RNN-based
model in Keras is created.

At this point we have new code, starting with the code snippet that saves
the model structure in the rnn-mnist.png file. A second new code block
invokes the compile() method to sync up the model with the training
data, followed by the fit() method that trains the model.

	 The final portion of Listing 5.2 evaluates the trained model on the
test data and displays the values of loss and acc that correspond to the
loss and the accuracy, respectively, of the model on the test data. Launch
the code in Listing 5.2 to see the following output:

Model: "sequential"

Layer (type)	 Output Shape	 Param #

simple_rnn (SimpleRNN)	 (None, 256)	 72960

dense (Dense)	 (None, 10)	 2570

activation (Activation)	 (None, 10)	 0

174 • Angular and Deep Learning Pocket Primer

Total params: 75,530

Trainable params: 75,530

Non-trainable params: 0

Epoch 1/5

60000/60000 [==============================] - 33s 542us/

sample - loss: 0.8198 - accuracy: 0.7605

Epoch 2/5

6528/60000 [==>...........................] - ETA: 27s -

loss: 0.4661 - accuracy: 0.8627

60000/60000 [==============================] - 34s 559us/

sample - loss: 0.3724 - accuracy: 0.8917

Epoch 3/5

60000/60000 [==============================] - 33s 545us/

sample - loss: 0.2764 - accuracy: 0.9183

Epoch 4/5

60000/60000 [==============================] - 33s 545us/

sample - loss: 0.2269 - accuracy: 0.9327

Epoch 5/5

60000/60000 [==============================] - 34s 561us/

sample - loss: 0.1983 - accuracy: 0.9407

10000/10000 [==============================] - 2s 237us/

sample - loss: 0.1396 - accuracy: 0.9577

Test accuracy: 95.8%

Working with TensorFlow and RNNs (Optional)

The code sample in this section is optional because it’s based on
TensorFlow 1.x. Currently TensorFlow 2.3 is available, and TensorFlow
1.x is considered legacy code (starting from late 2019 for a period of one
additional year). Keep this in mind when you encounter any other code
samples in this book that involve TensorFlow 1.x.

However, this code sample does provide some low-level details regarding
the output and the state for each hidden layer in an RNN neuron, which
can give you some insight into how the calculations are performed and
the values that are generated. Keep in mind that the data for the two time
steps is simulated, which is to say that the data does not reflect any mean-
ingful use case. The purpose of the simplified data is to help you focus on
the way in which calculations are performed.

Listing 5.3 shows the content of dynamic_rnn_2TP.py, which illustrates
how to create a simple TensorFlow-based RNN model.

Deep Learning: RNNs and LSTMs • 175

Listing 5.3: dynamic_rnn_2TP.py

import tensorflow as tf

import numpy as np

n_steps = 2 # number of time steps

n_inputs = 3 # number of inputs per time unit

n_neurons = 5 # number of hidden units

X_batch = np.array([

 # t = 0 t = 1

 [[0, 1, 2], [9, 8, 7]], # instance 0

 [[3, 4, 5], [0, 0, 0]], # instance 1

 [[6, 7, 8], [6, 5, 4]], # instance 2

 [[9, 0, 1], [3, 2, 1]], # instance 3

])

#sequence_length <= # of elements in each batch

seq_length_batch = np.array([2, 1, 2, 2])

X = tf.placeholder(dtype=tf.float32, shape=[None, n_steps,

n_inputs])

seq_length = tf.placeholder(tf.int32, [None])

basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X,

sequence_length=seq_length, dtype=tf.float32)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 outputs_val, states_val = sess.run([outputs, states],

 feed_dict={X:X_batch, seq_length:seq_length_batch})

 print("X_batch shape:", X_batch.shape) # (4,2,3)

 print("outputs_val shape:", outputs_val.shape) # (4,2,5)

 print("states_val shape:", states_val.shape) # (4,5)

 print("outputs_val:",outputs_val)

 print("----------------------------\n")

 print("states_val: ",states_val)

###

outputs => output of ALL RNN states

states => output of LAST ACTUAL RNN state (ignores zero

vector)

state = output[1] for full sequences

state = output[0] for short sequences

###

176 • Angular and Deep Learning Pocket Primer

Listing 5.3 starts by initializing n_steps (the number of time steps),
n_inputs (the number of inputs), and n_neurons (the number of neu-
rons) to 2, 3, and 5, respectively.

Next the NumPy array X_batch is a 4x2x3 array that is initialized with inte-
gers. As you can see from the comment line, the first column of values is
for time step 0, and the second column of values is for time step 1. You
can also think of each row of data in X_batch as an instance of data for
both time steps.

Next, the variable seq_length_batch is a one-dimensional vector of
integers, each of which specifies that number of time steps that appear
to the left of a vector consisting of purely zero values. As you can see, this
vector contains the value 2 for instances number 0, 2, and 3, and the value
0 for instance number 1.

The next portion of Listing 5.3 defines the placeholder X that can hold an
arbitrary number of arrays whose shape is [n_steps, n_inputs]. Now we’re
ready to define an RNN cell and specify its outputs and states, as shown here:

basic_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neu-

rons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X,

sequence_length=seq_length, dtype=tf.float32)

The key point to remember is that the final output value from the right-
most hidden unit is the value that is passed to the next neuron.

Launch the code in Listing 5.3 to see the following output, where the
value of the interest is shown in bold:

#----------------------------

#outputs_val:

#[[[-0.09700205	 0.7671716	 0.6775758	 0.01522888	

0.5460828]

# [0.92776424	 -0.5916748	 0.67824966	 0.99423325	

0.9999991]]

#

# [[0.24040672	 0.81568515	 0.8890421	 0.780813	

0.99762475]

# [0.	 0.	 0.	 0.	 0.

]]

#

# [[0.5282535	 0.8549201	 0.9647311	 0.9692446	

0.99999046]

Deep Learning: RNNs and LSTMs • 177

# [0.9725177	 -0.7165484	 0.46688017	 0.9411293	

0.9999323]]

#

# [[0.81080747	 -0.9926888	 0.56612366	 0.9561879	

0.9997731]

# [0.48786768	 -0.7099759	 -0.7283263	 0.76442945	

0.9971904]]]

#----------------------------

#states_val:

#[[0.92776424	 -0.5916748	 0.67824966	 0.99423325	

0.9999991]

# [0.24040672	 0.81568515	 0.8890421	 0.780813	

0.99762475]

# [0.9725177	 -0.7165484	 0.46688017	 0.9411293	

0.9999323]

# [0.48786768	 -0.7099759	 -0.7283263	 0.76442945	

0.9971904]]

#----------------------------

In the preceding output, notice that the row count of the rows shown in
bold is 2, 1, 2, and 2, which includes exactly the same values as in seq_
length_batch. As you can see, these highlighted rows appear (also in
bold) in the array labeled states_val.

Listing 5.3 is a very small and artificial example of an RNN, and hopefully this
example gives you a better understanding of the inner workings of an RNN.
There are many variants of RNNs, and you can read about some of them here:

https://en.wikipedia.org/wiki/Recurrent_neural_network

What is an LSTM?

LSTMs are a special type of RNN, and they are well-suited for many use
cases, including NLP, speech recognition, and handwriting recognition.
LSTMs are well-suited for handling the long term dependency, which refers
to the distance gap between the relevant information and the location
where that information is required. This situation arises when information
in one section of a document needs to be “linked” to information that is in
a more distant location of the document.

LSTMs were developed in 1997 and went on to exceed the accuracy per-
formance of state-of-the-art algorithms. LSTMs also began revolutionizing
speech recognition (circa 2007). Then, in 2009, an LSTM won pattern

178 • Angular and Deep Learning Pocket Primer

recognition contests, and in 2014, Baidu used RNNs to exceed speech
recognition records. The following site has an example of an LSTM:
https://commons.wikimedia.org/w/index.php?curid=60149410

Anatomy of an LSTM

LSTMs are “stateful” and they contain three gates (forget gate, input gate,
and an output gate) that involve a sigmoid function, and also a cell state
that involves the tanh activation function. At time period t, the input to
an LSTM is based on a combination of the two vectors h(t-1) and x(t).
This pair of inputs is combined, after which a sigmoid activation function
is applied to this combination (which can also include a bias vector) in the
case of the forget gate, input gate, and the output gate.

The processing that occurs at time step t is the “short term” memory of
an LSTM. The internal cell state of LSTMs maintains “long term” mem-
ory. Updating the internal cell state involves the tanh activation function,
whereas the other gates use the sigmoid activation function, as mentioned
in the previous paragraph. Here is a TF 2 code block that defines Keras-
based model for an LSTM (with the LSTM shown in bold):

import tensorflow as tf

. . .

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.LSTMCell(6,batch_input_

shape=(1,1,1),kernel_initializer='ones',stateful=True))

model.add(tf.keras.layers.Dense(1))

. . .

You can learn about the difference between an LSTM and an LSTMCell
here:

ht tps : / / s t ackover f l ow.com/ques t i ons /48187283 /what s - the -
difference-between-lstm-and-lstmcell

Additional information about LSTMs and how to define a custom LSTM cell
can be found at the following sites:

�� https://en.wikipedia.org/wiki/Recurrent_neural_network
�� https://stackoverflow.com/questions/54231440/define-custom-lstm-

cell-in-keras

BiDirectional LSTMs

In addition to one-directional LSTMs, you can also define a “bi-directional”
LSTM that consists of two “regular” LSTMs: one LSTM for the forward

Deep Learning: RNNs and LSTMs • 179

direction and one LSTM in the backward or opposite direction. You might
be surprised to discover that bi-directional LSTMs are well-suited for solv-
ing NLP tasks.

For instance, ELMO is a deep word representation for NLP tasks that uses
bi-directional LSTMs. An even newer architecture in the NLP world is
called a transformer, and bidirectional transformers are used in BERT,
which is a very well-known system (released by Google in 2018) that can
solve complex NLP problems.

The following TF 2 code block contains a Keras-based model that involves
bidirectional LSTMs:

import tensorflow as tf

. . .

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Bidirectional(LSTM(10,

return_sequences=True), input_shape=(5,10)))

model.add(tf.keras.layers.Bidirectional(LSTM(10)))

model.add(tf.keras.layers.Dense(5))

model.add(tf.keras.layers.Activation('softmax'))

model.compile(loss='categorical_crossentropy',

optimizer='rmsprop')

. . .

The previous code block contains two bidirectional LSTM cells, both of
which are shown in bold.

LSTM Formulas

The formulas for LSTMs are more complex than the update formula for
a simple RNN, but there are some patterns that can help you understand
those formulas.

Visit the following site to see the formulas for an LSTM:

https://en.wikipedia.org/wiki/Long_short-term_memory#cite_note-
lstm1997-1

The formulas show you how the new weights are calculated for the for-
get gate f, the input gate i, and the output gate i during time step t. In
addition, the preceding link shows you how the new internal state and the
hidden state (both at time step t) are calculated.

Notice the pattern for gates f, i, and o: all of them calculate the sum
of two terms, each of which is a product involving x(t) and h(t), after

180 • Angular and Deep Learning Pocket Primer

which the sigmoid function is applied to that sum. Specifically, here’s the
formula for the forget gate at time t:

f(t) = sigma(W(f)*x(t) + U(f)*h(t) + b(f))

In the preceding formula, W(f), U(f), and b(f) are the weight matrices
associated with x(t), the weight matrix associated with h(t), and the bias
vector for the forget gate f, respectively.

Notice that the calculations for i(t) and o(t) have the same pattern as
the calculation for f(t).The difference is that i(t) has the matrices W(i)
and U(i), whereas o(t) has the matrices W(o) and U(o). Thus, f(t),
i(t), and o(t) have a parallel construction.

The calculations for c(t), i(t), and h(t) are based on the values for
f(t), i(t), and o(t), as shown here:

c(t) = f(t) * c(t-1) + i(t) * tanh(c'(t))

c'(t) = sigma(W(c) * x(t) + U(c) * h(t-1))

h(t) = o(t) * tanh(c(t))

The final state of an LSTM is a one-dimensional vector that contains the
output from all the other layers in the LSTM. If you have a model that con-
tains multiple LSTMs, the final state vector for a given LSTM becomes the
input for the next LSTM in that model.

LSTM Hyperparameter Tuning

LSTMs are also prone to overfitting, and here is a list of considerations if
you are manually optimizing hyperparameters for LSTMs:

�� overfitting (use regularization, such as L1 or L2)
�� larger networks are more prone to overfitting
�� more data tends to reduce overfitting
�� train the networks over multiple epochs
�� the learning rate is vitally important
�� stacking layers can be helpful
�� use softsign instead of softmax for LSTMs
�� RMSprop, AdaGrad, or momentum are good choices
�� Xavier weight initialization

Perform an online search to obtain more information about the optimiz-
ers in the preceding list.

Deep Learning: RNNs and LSTMs • 181

Working with TensorFlow and LSTMs (Optional)

Listing 5.4 shows the content of dynamic_lstm_2TP.py, which illustrates
how to create a simple LSTM model with TensorFlow 1.x code.

Listing 5.4: dynamic_lstm_2TP.py

import tensorflow as tf

import numpy as np

n_steps = 2 # number of time steps

n_inputs = 3 # number of inputs per time unit

n_neurons = 5 # number of hidden units

X_batch = np.array([

 # t = 0 t = 1

 [[0, 1, 2], [9, 8, 7]], # instance 0

 [[3, 4, 5], [0, 0, 0]], # instance 1

 [[6, 7, 8], [6, 5, 4]], # instance 2

 [[9, 0, 1], [3, 2, 1]], # instance 3

])

seq_length_batch = np.array([2, 1, 2, 2])

X = tf.placeholder(dtype=tf.float32,shape=[None,n_steps,

n_inputs])

seq_length = tf.placeholder(tf.int32, [None])

basic_cell = tf.nn.rnn_cell.

BasicLSTMCell(num_units=n_neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X,

sequence_length=seq_length, dtype=tf.float32)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 outputs_val, states_val = sess.run([outputs, states],

 feed_dict={X:X_batch, seq_length:seq_length_batch})

 print("X_batch shape:", X_batch.shape) # (4,2,3)

 print("outputs_val shape:", outputs_val.shape) # (4,2,5)

 print("states: ", states_val) #

LSTMStateTuple(...)

182 • Angular and Deep Learning Pocket Primer

 print("outputs_val:",outputs_val)

 print("----------------------------\n")

 print("states_val: ",states_val)

The first half of Listing 5.4 is identical to the first half of Listing 5.3, and
the first line of code that is different involves defining basic_cell as an
LSTM (shown in bold), which is reproduced here:

basic_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=

n_neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X,

sequence_length=seq_length, dtype=tf.float32)

Notice that outputs and states in Listing 5.4 are initialized in exactly the
same fashion as shown in Listing 5.3. The next portion of code is a tf.
Session() code block that is the training loop.

Another difference to notice in Listing 5.4 is that during each com-
putation in the training loop, states_val is actually an instance of
LSTMStatesTuple, whereas states_val in Listing 5.3 is a 4x5 tensor.
Launch the code in Listing 5.4 to see the following output:

('X_batch shape:', (4, 2, 3))

('outputs_val shape:', (4, 2, 5))

('states: ', LSTMStateTuple(c=array(

 [[-1.0492262 , -0.1059267 , -0.27163735, -0.64399946,

0.06018598],

 [-0.7445494 , 0.00723887, -0.11805946, -0.26550752,

0.21816696],

 [-1.4126835 , 0.05187892, -0.07408151, -0.66379607,

0.1348486],

 [-0.5987958 , 0.24536057, -0.16916996, -0.8177415 ,

0.39747238]],

 dtype=float32), h=array(

 [[-7.33636796e-01, -6.07701950e-02, -1.40444040e-01,

 -2.65002381e-02, 5.37334010e-04],

 [-4.83454257e-01, 3.39480606e-03, -3.36034223e-02,

 -2.59866733e-02, 4.49425131e-02],

 [-7.36429453e-01, 2.63450593e-02, -4.42487188e-02,

 -1.05846934e-01, 5.22684120e-03],

 [-3.73311013e-01, 1.35892674e-01, -9.72046256e-02,

 -2.79455721e-01, 5.36275432e-02]], dtype=float32)))

Deep Learning: RNNs and LSTMs • 183

('outputs_val:', array([

 [[-1.39581457e-01, -8.17378387e-02, -8.70967656e-02,

 -3.05497926e-02, 1.16406225e-01],

 [-7.33636796e-01, -6.07701950e-02, -1.40444040e-01,

 -2.65002381e-02, 5.37334010e-04]],

 [[-4.83454257e-01, 3.39480606e-03, -3.36034223e-02,

 -2.59866733e-02, 4.49425131e-02],

 [0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

 0.00000000e+00, 0.00000000e+00]],

 [[-6.21303201e-01, 4.13885061e-03, -6.17417134e-03,

 -8.89408588e-03, 4.83810157e-03],

 [-7.36429453e-01, 2.63450593e-02, -4.42487188e-02,

 -1.05846934e-01, 5.22684120e-03]],

 [[-1.01410240e-01, 4.99857590e-02, -9.47358180e-03,

 -3.74739647e-01, 9.64458846e-03],

 [-3.73311013e-01, 1.35892674e-01, -9.72046256e-02,

 -2.79455721e-01, 5.36275432e-02]]], dtype=float32))

('states_val: ', LSTMStateTuple(c=array(

 [[-1.0492262 , -0.1059267 , -0.27163735, -0.64399946,

0.06018598],

 [-0.7445494 , 0.00723887, -0.11805946, -0.26550752,

0.21816696],

 [-1.4126835 , 0.05187892, -0.07408151, -0.66379607,

0.1348486],

 [-0.5987958 , 0.24536057, -0.16916996, -0.8177415 ,

0.39747238]],

 dtype=float32), h=array(

 [[-7.33636796e-01, -6.07701950e-02, -1.40444040e-01,

 -2.65002381e-02, 5.37334010e-04],

 [-4.83454257e-01, 3.39480606e-03, -3.36034223e-02,

 -2.59866733e-02, 4.49425131e-02],

 [-7.36429453e-01, 2.63450593e-02, -4.42487188e-02,

 -1.05846934e-01, 5.22684120e-03],

 [-3.73311013e-01, 1.35892674e-01, -9.72046256e-02,

 -2.79455721e-01, 5.36275432e-02]], dtype=float32)))

There are two things in particular to notice about the output. First, exam-
ine the middle portion displayed in bold in the preceding output, and

184 • Angular and Deep Learning Pocket Primer

notice that these are the same values that are displayed in the final output
block in the output section labeled states_val.

Next, the second code block that is displayed in bold contains two vectors:
a non-zero vector followed by a zero vector, which corresponds to the data
labeled instance 1 in Listing 5.4.

What are GRUs?

A GRU (Gated Recurrent Unit) is an RNN that is a simplified type of LSTM.
The key difference between a GRU and an LSTM is that a GRU has two gates
(reset and update gates) whereas an LSTM has three gates (reset, output,
and forget gates). The reset gate in a GRU performs the functionality of
the input gate and the forget gate of an LSTM.

Keep in mind that GRUs and LSTMs both have the goal of tracking long-
term dependencies effectively, and they both address the problem of van-
ishing gradients and exploding gradients. Visit the following site to see an
example of a GRU:

https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_
type.svg

Visit the following site to see the formulas for a GRU (which are similar to
the formulas for an LSTM):

https://en.wikipedia.org/wiki/Gated_recurrent_unit

What are Autoencoders?

An autoencoder (AE) is a neural network that is similar to an MLP, where
the output layer is the same as the input layer. The simplest type of AE
contains a single hidden layer that has fewer neurons than either the
input layer or the output layer. However, there are many different types
of AEs in which there are multiple hidden layers, sometimes contain-
ing more neurons than the input layer (and sometimes containing fewer
neurons).

An AE uses unsupervised learning and back propagation to learn efficient
data encoding. Their purpose is dimensionality reduction: AEs set the
input values equal to the inputs and then try to find the identity function.
Figure 5.2 shows a simple AE that involves a single hidden layer.

Deep Learning: RNNs and LSTMs • 185

Figure 5.2  A basic autoencoder

In essence, a basic AE compresses the input to an intermediate vector
with fewer dimensions than the input data, and then transforms that vec-
tor into a tensor with the same shape as the input. Several use cases for
AEs are listed below:

�� document retrieval
�� classification
�� anomaly detection
�� adversarial autoencoders
�� image denoising (generating clear images)

An example of using TensorFlow and Keras with an autoencoder to per-
form fraud detection is here:

https://www.datascience.com/blog/fraud-detection-with-tensorflow

AEs can also be used for feature extraction because they can yield better
results than PCA. Keep in mind that AEs are data-specific, which means
that they only work with similar data. However, they differ from image
compression (and are mediocre for data compression). For example, an
autoencoder trained on faces would work poorly on pictures of trees. In
summary, an AE involves the following:

�� “squeezing” the input to a smaller layer
�� learning a representation for a set of data
�� is typically used for dimensionality reduction (PCA)
�� keeps only the middle compressed layer

186 • Angular and Deep Learning Pocket Primer

As a high-level example, consider a 10x10 image (100 pixels), and an AE
that has 100 neurons (10x10 pixels), a hidden layer with 50 neurons, and
an output layer with 100 neurons. Hence, the AE compresses 100 neu-
rons to 50 neurons.

As you saw earlier, there are numerous variations of the basic AE, some
of which are listed below:

�� LSTM autoencoders
�� Denoising autoencoders
�� Contractive autoencoders
�� Sparse autoencoders
�� Stacked autoencoders
�� Deep autoencoders
�� Linear autoencoders

The following site contains a wide assortment of autoencoders, including
those that are mentioned in this section:

https://www.google.com/search?sa=X&q=Autoencoder&tbm=isch&-
source=univ&ved=2ahUKEwjo-8zRrIniAhUGup4KHVgvC10QiR-
56BAgMEBY&biw=967&bih=672

Perform an online search for code samples and more details regarding
AEs and their associated use cases.

Autoencoders and PCA

The optimal solution to an autoencoder is strongly related to principal
component analysis (PCA) if the autoencoder involves linear activations or
only a single sigmoid hidden layer.

The weights of an autoencoder with a single hidden layer of size p (where p
is less than the size of the input) span the same vector subspace as the one
spanned by the first p principal components.

The output of the autoencoder is an orthogonal projection onto this sub-
space. The autoencoder weights are not equal to the principal compo-
nents, and are generally not orthogonal, yet the principal components
may be recovered from them using the singular value decomposition.

What are Variational Autoencoders?

In very brief terms, a variational autoencoder is sort of an enhanced “reg-
ular” autoencoder in which the “left side” acts as an encoder, and the

Deep Learning: RNNs and LSTMs • 187

“right side” acts as a decoder. Both sides have a probability distribution
associated with the encoding and decoding process.

In addition, both the encoder and the decoder are actually neural net-
works. The input for the encoder is a vector x of numeric values, and
its output is a hidden representation z that has weights and biases. The
decoder has input a (i.e., the output of the encoder), and its output is the
parameters of a probability distribution of the data, which also has weights
and biases. Note that the probability distributions for the encoder and the
decoder are different.

Figure 5.3 shows a high-level and simplified VAE that involves a single
hidden layer.

Figure 5.3  A variational autoencoder

Another interesting model architecture is a combination of a CNN and a
VAE, which you can read about here:

https://towardsdatascience.com/gans-vs-autoencoders-compari-
son-of-deep-generative-models-985cf15936ea

In the next section, you will learn about GANs, and also how to combine a
VAE with a GAN.

What are GANs?

A GAN is an acronym for Generative Adversarial Network whose original
purpose was to generate synthetic data, typically for augmenting small
datasets or unbalanced datasets. One use case pertains to missing persons:

188 • Angular and Deep Learning Pocket Primer

supply the available images of those persons to a GAN in order to gener-
ate an image of how those people might look today. There are many other
use cases for GANs, some of which are listed here:

�� Generating art
�� Creating fashion styles
�� Improving images of low quality
�� Creating artificial faces
�� Reconstructing incomplete/damaged images

Ian Goodfellow (who has a PhD in machine learning from the University
of Montreal) created GANs in 2014. Yann LeCun (the AI research direc-
tor at Facebook) called adversarial training “the most interesting idea in
the last 10 years in ML.” (Incidentally, Yann LeCun was one of the three
recipients of the Turing Award in 2019: Yoshua Bengio, Geoffrey Hinton,
and Yann LeCun.)

GANs are becoming increasingly common and people are finding creative
(unexpected?) uses for them. Alas, GANs have been used for nefarious pur-
poses, such as circumventing image-recognition systems. GANs can gener-
ate counterfeit images from valid images by changing the pixel values to
deceive neural networks. Since those systems rely on pixel patterns, they
can be deceived via adversarial images, which are images whose pixel val-
ues have been altered.

Visit the following site to see an example of a GAN that distorts the image
of a Panda: https://arxiv.org/pdf/1412.6572.pdf

An article that delves into details of adversarial examples (including the
misclassified Panda) is here:

https://openai.com/blog/adversarial-example-research/

According to an MIT paper, the modified values that trigger misclassi-
fications exploit precise patterns that the image system associates with
specific objects. The researchers noticed that data sets contain two types
of correlations: patterns that are correlated with the dataset data and
non-generalizable patterns in the dataset data. GANs successfully exploit
the latter correlations to deceive image-recognition systems. Details of
the MIT paper are here: https://gandissect.csail.mit.edu

Can Adversarial Attacks be Stopped?

Unfortunately, there are no long-term solutions to adversarial attacks,
and given their nature, it might never be possible to completely defend

Deep Learning: RNNs and LSTMs • 189

against them. Although various techniques are being developed to thwart
adversarial attacks, their effectiveness tends to be short-lived: new GANs
are created that can outwit those techniques. The following article con-
tains more information about adversarial attacks:

https://www.technologyreview.com/s/613170/emtech-digital-dawn-
song-adversarial-machine-learning

Interestingly, GANs can have problems in terms of convergence, just like
other neural networks. One technique for addressing this problem is
called minibatch discrimination, the details of which are here:

https://www.inference.vc/understanding-minibatch-discrimination-
in-gans/

Please note that the preceding link involves Kullback-Leibler divergence and
JS divergence, which are more advanced topics (for more information, visit
https://gist.github.com/fhuszar/a91c7d0672036335c1783d02c3a3dfe5).

If you’re interested in working with GANs, GitHub contains Python and
TensorFlow code samples for constructing attacks and defenses:

https://github.com/tensorflow/cleverhans

Creating a GAN

A GAN has two main parts: a generator and a discriminator. The generator
can have a CNN-like architecture for the purpose of generating images,
whereas the discriminator can have a CNN-like architecture to detect
whether an image (provided by the generator) is real or fake. By way
of analogy, a generator is analogous to a person who makes counterfeit
money, and a discriminator is analogous to a law enforcement officer who
tries to distinguish between valid currency and counterfeit currency.

The generator (which has previously been initialized) sends fake images
to the discriminator (already trained but no longer updateable) for anal-
ysis. If the discriminator is highly accurate in terms of detecting real and
fake images, then the generator needs to be modified to improve the qual-
ity of fake images that are produced. The modification to the generator is
performed by backward error propagation. If the discriminator performs
poorly, then the generator is generating high quality fake images, and
therefore the generator does not require significant modification.

Listing 5.5 shows the content of keras_create_gan.py, which defines a
Python function for creating a GAN.

190 • Angular and Deep Learning Pocket Primer

Listing 5.4: keras_create_gan.py

import tensorflow as tf

def build_generator(img_shape, z_dim):

 model = tf.keras.models.Sequential()

 # Fully connected layer

 model.add(tf.keras.layers.Dense(128, input_dim=z_dim))

 # Leaky ReLU activation

 model.add(tf.keras.layers.LeakyReLU(alpha=0.01))

 # Output layer with tanh activation

	 model.add(tf.keras.layers.Dense(28 * 28 * 1,

activation='tanh'))

 # Reshape the Generator output to image dimensions

 model.add(tf.keras.layers.Reshape(img_shape))

 return model

def build_discriminator(img_shape):

 model = tf.keras.models.Sequential()

 # Flatten the input image

	 model.add(tf.keras.layers.Flatten(input_shape=img_shape))

 # Fully connected layer

 model.add(tf.keras.layers.Dense(128))

 # Leaky ReLU activation

 model.add(tf.keras.layers.LeakyReLU(alpha=0.01))

 # Output layer with sigmoid activation

	 model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

 return model

def build_gan(generator, discriminator):

 # ensure that the discriminator is not trainable

 discriminator.trainable = False

 # the GAN connects the generator and descriminator

 gan = tf.keras.models.Sequential()

 # start with the generator:

 gan.add(generator)

 # then add the discriminator:

 gan.add(discriminator)

 # compile gan

 opt = tf.keras.optimizers.Adam(lr=0.0002, beta_1=0.5)

 gan.compile(loss='binary_crossentropy', optimizer=opt)

 return gan

Deep Learning: RNNs and LSTMs • 191

gen = build_generator(...)

dis = build_discriminator(...)

gan = build_gan(gen, dis)

The Python function in Listing 5.5 contains three Python methods for
build_generator(), build_discriminator(), and build_gan() for
creating a generator, a discriminator, and a GAN, respectively.

The GAN is initialized with a generator and then a discriminator, both of which
are parameters for this function. Notice that the discriminator in the build_
gan() method is not trainable, which is ensured with this code snippet:

discriminator.trainable = False

Another point to notice is that the preceding Python functions do not
create CNN-like architectures. A different way to create a discriminator is
shown in the following code block (details are omitted):

dis = build_discriminator(...)

gen_model = tf.keras.models.Sequential()

gen_model.add(tf.keras.layers.Dense(...)

gen_model.add(tf.keras.layers.LeakyReLU(alpha=0.2))

gen_model.add(tf.keras.layers.Reshape(...)

code for upsampling

gen_model.add(tf.keras.layers.Conv2DTranspose(...)

gen_model.add(tf.keras.layers.LeakyReLU(...)

...

gen_model.add(tf.keras.layers.Reshape(...)

gen_model.add(tf.keras.layers.LeakyReLU(...)

output layer

gen_model.add(tf.keras.layers.Conv2D(...))

The preceding code block involves the Conv2D() class and the
LeakyReLU() class (similar to ReLU), but notice that there is max pool-
ing code. Check online documentation for an explanation of upsampling
and the purpose of the TensorFlow/Keras classes LeakyReLU() and
Conv2DTranspose().

A High-Level View of GANs

In general, creating GANs involves the following high-level sequence of steps:

1)	 Select a dataset (ex: MNIST or cifar10).
2)	 Define and train the discriminator model.

192 • Angular and Deep Learning Pocket Primer

3)	 Define and use the generator model.
4)	 Train the generator model.
5)	 Evaluate GAN model’s performance.
6)	 Use the final generator model.

There are numerous types of GANs, such as DCGANs (deep convolutional
GANs). Another detail to keep in mind is that GANs do differ from CNNs.
First, the convolution often has a stride of (2, 2), which is to say that the
convolutional filter moves two columns at a time, and then shifts down-
ward two rows at a time. They do not contain a ReLU activation function
nor do they perform max pooling. Another detail about GANs is the use of
upscaling, which in a sense is like the opposite of downscaling (i.e., max
pooling).

The VAE-GAN Model

Another interesting model is the VAE-GAN model, which is a hybrid of a
VAE and a GAN, and details about this model are here:

https://towardsdatascience.com/gans-vs-autoencoders-compari-
son-of-deep-generative-models-985cf15936ea

GANs are superior to VAEs, but they are also difficult to work with and
require a lot of data and tuning. A GAN tutorial (by the same author) is
available here:

https://github.com/mrdragonbear/GAN-Tutorial

Summary

In this chapter, you learned about the architecture of an RNN, saw some
tasks that you can solve due to its stateful architecture, and worked with
a Keras-based code sample. Next you saw the architecture of an LSTM, as
well as a basic code sample.

In addition, you saw a TensorFlow 1.x code sample for an LSTM cell whose
output shows you the path of some of the internal calculations that are
performed. In addition, you learned about variational autoencoders and
some of their use cases.

Finally, you got an introduction to GANs, a high-level description of how to
construct them, and how they are trained.

c h a p t e r

This chapter provides a very fast-paced introduction to TensorFlow.
js. It includes various code samples that use TensorFlow.js and
tfjs-vis for data visualization, along with a code sample that uses

TensorFlow.js to perform linear regression in an Angular 10 application.
After learning the basic sequence of steps for creating machine learn-
ing models in TensorFlow.js, you can learn how to create more complex
models from online blog posts and tutorials. If you are familiar with TF 2/
Keras, then the TensorFlow.js code in this chapter should look familiar
to you.

The first part of this chapter provides a quick introduction to TensorFlow.js,
along with some of its features. You will learn about the TensorFlow.js
APIs that are needed to create, compile, and train a machine learning
model in TensorFlow.js, as well as an API for making predictions. You will
see an example of how to use TensorFlow.js to perform linear regression
in an HTML Web page.

The second part of this chapter contains examples of rendering various
charts and graphs with tfjs-vis, including a line graph, bar chart, scat-
ter plot, and a heat map. The third portion of this chapter contains a code
sample that combines TensorFlow.js and tfjs-vis to perform linear
regression in an HTML Web page. The final portion of this chapter shows
you how to combine TensorFlow.js and tfjs-vis in an Angular appli-
cation to perform linear regression, render the data points, and make a
prediction.

Please keep in mind a few details before you read this chapter. First, you
do need a basic understanding of HTML and JavaScript. You also need
to be comfortable with the keywords async and await used in the code

Angular and TensorFlow.js

6

194 • Angular and Deep Learning Pocket Primer

samples. This chapter does not provide any tutorial-like material for these
topics, but you can easily find many online tutorials that explain HTML
and JavaScript .

Second, we assume that you have read the material in earlier chapters
pertaining to linear regression, as well as the Keras-related material in
the appendix. Specifically, you need at least a basic understanding of acti-
vation functions, optimizers, MSE, SGD, loss functions, and metrics, all
of which are discussed in Chapter 4.

Third, the code samples in this chapter are not product-ready code:
you need to follow the best practices for TensorFlow.js. The descrip-
tion of each code sample is cursory, and a minimal set of TensorFlow.js
APIs is discussed in this chapter. If you want to delve more deeply into
TensorFlow.js, please visit the official website containing the TensorFlow.
js APIs:

https://js.tensorflow.org/api/latest/

What is TensorFlow.js?

TensorFlow.js is TensorFlow for modern browsers, which includes
Chrome and Firefox, and most of the features of TensorFlow are available
in TensorFlow.js. This chapter illustrates an example of TensorFlow.js in a
stand-alone HTML Web page as well as how to use TensorFlow.js as part
of an Angular application.

Before delving into more details about TensorFlow.js, please keep in mind
that Google is in the process of releasing TensorFlow.js 2.x as this book
goes to print. Additionally, Google is working on TensorFlow.js 3.x, but so
far, a release date has not been announced. Google will publish release
notes with complete details to perform the upgrade process.

Some of the modifications are straightforward. Specifically, the current
version of TensorFlow.js uses this type of code:

import * as tf from @tensorflow/tfjs

TensorFlow.js 2.x uses the following code:

import {max, div, mul, depthToSpace} from @tensorflow/tjfs

TensorFlow.js leverages the power of WebGL to train models in a browser
session. Some of the methods return a Promise, and some methods are
synchronous.

Angular and TensorFlow.js • 195

In addition, there are two other important APIs: the tf.tidy() method
and the tf.dispose() method. The tf.tidy() method essentially acts
like a garbage collector, which is unavailable in WebGL. The tf.dis-
pose() method performs a similar functionality for objects that contain
tensors.

Incidentally, one convenient aspect of TensorFlow.js APIs is that there are
package names that are parallel to the corresponding APIs in TensorFlow.
For instance, the TensorFlow package tf.keras.layers corresponds
to the TensorFlow.js package tf.layers. Hence, the TensorFlow.js API
tf.layers.dense corresponds to the API tf.keras.layers.Dense in
TensorFlow.

Although it’s not necessary right now, it’s worth your while to spend some
time perusing the detailed list of the TensorFlow.js APIs at this URL:

https://js.tensorflow.org/api/latest/

ML Models in TensorFlow.js

TensorFlow.js gives you several options for working with TensorFlow
models in a browser:

�� import trained models
�� retrain models
�� create models in a browser

If you already have a TensorFlow model, you can convert that model to
the TensorFlow.js format and then use that model in a Web browser. The
details of model conversion are here:

https://www.tensorflow.org/js/guide/conversion

Another possibility is to take advantage of transfer learning: you start with
a previously trained model and then perform some (hopefully minimal)
additional training with your own data.

The code samples in this chapter involve models that have been developed
in a browser (and tested in Firefox version 75.0.1).

A Simple HTML Web Page with TensorFlow.js

Listing 6.1 shows the content of tfjs-hello.html, which illustrates
how to reference the JavaScript code that pertains to TensorFlow.js and
display a simple message.

NOTE

196 • Angular and Deep Learning Pocket Primer

Listing 6.1: tfjs-hello.html

<html>

 <head>

 <!-- Load TensorFlow.js -->

 <script

 src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/

dist/tf.min.js">

 </script>

 </head>

 <body>

 Hello

 </body>

</html

Listing 6.1 contains a <script> element that references the TensorFlow.
js code, which does nothing in this example. The Web page displays the
word Hello and nothing more.

Working with Tensors in TensorFlow.js

TensorFlow.js provides several methods for working with tensors. The
tensor() method supports multi-dimensional data points, but does not
indicate the dimensionality of the data. However, TensorFlow.js provides
dimension-specific APIs: the tensor2d() method is for 2D data points,
the tensor3d() method is for 3D data points, and so forth, up to the
tensor6d() method for data points of dimension 6.

For example, the following code snippet defines a 2D tensor that has a
“shape” of 4x1:

const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);

The shape refers to the dimensionality of the elements in a tensor. Thus,
the preceding code snippet specifies four samples, each of which contains
a single value.

Returning to linear regression, you learned in the machine learning
chapters that linear regression involves a set of data points and a set of
labels.

For example, suppose we define the following array of input values:

var inputV = [[1,3], [2,6], [3,9]];

Angular and TensorFlow.js • 197

The corresponding tensor would be defined like the following:

const inputT = tf.tensor2d(inputV, [inputV.length, 1]);

Similarly, suppose that the corresponding labels are defined as follows:

var labelV = [[10], [20], [30]];

The corresponding tensor for the labels would be defined like the following:

const labelT = tf.tensor2d(labelV, [labelV.length, 1]);

As you can see in the definition of input and labelT, the first argument is
the actual data and the second argument specifies the shape of the data.

Machine Learning APIs in TensorFlow.js

This section contains some of the TensorFlow.js APIs for defining machine
learning models in TensorFlow.js. As you learned from earlier chapters,
there are several steps involved in training a machine learning model that
are illustrated with Keras-based APIs in the appendix. In this section,
we’ll see an example of creating a very rudimentary model in TensorFlow.
js that implements the sequence of steps that are shown below:

�� define a model
�� add one or more layers to the model
�� compile the model
�� initialize some data values
�� fit (train) the model
�� make some predictions

Let’s see how to implement the preceding steps, starting with the simplest
definition of a model in TensorFlow.js:

const model = tf.sequential();

The tf.sequential() API is for a model whose outputs from one
layer are the inputs to the next adjacent layer (in a left-to-right direc-
tion). TensorFlow.js also supports another model via the tf.model()
API, and you can learn about this model from the TensorFlow.js
documentation.

Next, the following code snippet adds a dense (i.e., fully connected) layer
to the defined model:

model.add(tf.layers.dense({units: 32, inputShape: [64]}));

198 • Angular and Deep Learning Pocket Primer

The first layer (which is the preceding code snippet) must specify the
input shape, which in this case is 64. TensorFlow.js uses automatic shape
inference in order to determine the shape of subsequent layers in a model.

Now initialize the tensors xs and ys that represent the input and output
values, respectively:

const xs = tf.tensor2d([1,2,3,4,5,6,7,8,], [8,1]);

const ys = tf.tensor2d([3,6,9,12,15,18,21,24],[8,1]);

Now we can train this sequential model by invoking the fit() method,
as shown here:

model.fit(xs, ys);

At this point, our model has been trained with the training data, so we can
make a prediction with this code snippet:

model.predict(tf.tensor2d([10], [1, 1])).print()

You now know the basic sequence of steps that are necessary to create,
compile, and train a model in TensorFlow.js, and also make predictions
with that trained model.

Now let’s look at an HTML Web page that uses TensorFlow.js to train a
linear regression model and displays the result, which is the topic of the
next section.

Linear Regression with TensorFlow.js

Listing 6.2 shows the content of tfjs-linreg1.html, which illustrates
how to perform a linear regression with TensorFlow.js.

Listing 6.2: tfjs-linreg1.html

<html>

 <head>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs/dist/tf.min.js"> </script>

 <title>Hello from TensorFlowJS!</title>

 </head>

 <body>

 <h3>Linear Regression and Some Predictions</h3>

 <ul id="mylist">

 <script>

Angular and TensorFlow.js • 199

 async function LinearRegression(){

 // 1) DEFINE THE MODEL:

 const model = tf.sequential();

 model.add(

 tf.layers.dense({

 units:1,

 inputShape:[1],

 bias: true

 })

);

 // 2) COMPILE THE MODEL:

 // specify the loss, optimizer, and metrics:

 model.compile({

 loss:'meanSquaredError',

 optimizer: 'sgd',

 metrics: ['mse']

 });

 // 3) FIT/TRAIN THE MODEL:

 // y = 2*x+1 (relationship between xs and ys)

 const xs = tf.tensor1d([1,2,3,4,5,6,7,8,9,10]);

 const ys = tf.tensor1d([3,5,7,9,11,13,15,17,19,21]);

 await model.fit(xs, ys, {epochs:100});

 // 4) MAKE SOME PREDICTIONS

 // 4a) PREDICT Y for X=-30:

 var list1 = document.getElementById('mylist');

 var item1 = document.createElement('li');

 var pred1 = model.predict(tf.tensor1d([-30])).

dataSync();

 var data1 = document.createTextNode("Predict(-30):"+pred1);

 item1.appendChild(data1);

 list1.appendChild(item1);

 // 4a) PREDICT Y for X=50:

 var item2 = document.createElement('li');

 var pred2 = model.predict(tf.tensor1d([50])).

dataSync();

 var data2 = document.createTextNode("Predict(50):"+pred2);

 item2.appendChild(data2);

 list1.appendChild(item2);

 // 4c) PREDICT Y for X=100:

200 • Angular and Deep Learning Pocket Primer

 var item3 = document.createElement('li');

 var pred3 = model.predict(tf.tensor1d([100])).

dataSync();

 var data3 = document.createTextNode("Predict(100):"+pred3);

 item3.appendChild(data3);

 list1.appendChild(item3);

 }

 LinearRegression();

 </script>

 </body>

</html>

Listing 6.2 starts with a <script> element that references the TensorFlow.
js code, followed by a <body> element that contains four main sections,
as shown here:

// 1) DEFINE THE MODEL:

// 2) COMPILE THE MODEL:

// 3) FIT/TRAIN THE MODEL:

// 4) MAKE SOME PREDICTIONS

The first section defines the variable model as an instance of the
TensorFlow.js Sequential model, which resembles tf.keras.layers.
Sequential (discussed in the Keras-related appendix). Next, the model
variable adds a single layer via the dense API in TensorFlow.js.

The second section specifies three parameter values, as shown here:

model.compile({

 loss:'meanSquaredError',

 optimizer: 'sgd',

 metrics: ['mse']

});

The purpose of these parameters has been discussed in previous chapters,
and you can review that material if you need to refresh your memory.

The third section initializes the variables xs and ys and then invokes the
fit() method of the model variable in order to train this model.

The fourth section contains three predictions for the value of Y when the
value of X is -30, 50, and 100. The key idea is to invoke the predict()
method of the model variable, once for each of the preceding values of
X. For instance, this code snippet predicts the value of Y when the value
of X is -30:

Angular and TensorFlow.js • 201

var pred1 = model.predict(tf.tensor1d([-30])).dataSync();

If need be, you can enhance the HTML code to create a more aestheti-
cally pleasing effort (or you can simplify the code).

Launch this Web page in a browser and you will see the following output:

Linear Regression and Some Predictions

�� Predict(-30):-61.6697998046875
�� Predict(50):104.10870361328125
�� Predict(100):207.7202606201172

According to the formula y = 2*x + 1, the correct values for -30, 50, and
100 are -59, 101, and 201, respectively. As you can see, the predictions are
less accurate for larger positive (and negative) values of X.

Let’s see how to combine TensorFlow.js with Angular, which is the topic
of the next section.

Angular, TensorFlow.js, and Linear Regression

This section contains an example of combining TensorFlow.js with
Angular, and then training a model via linear regression. Copy the direc-
tory NGTFJSLinReg from the companion files into a convenient location.
Listing 6.3 shows the content of app.component.ts, which uses a good
portion of the code from the previous section.

Listing 6.3: app.component.ts

import { Component } from '@angular/core';

import * as tf from '@tensorflow/tfjs';

// remember: npm install @tensorflow/tfjs -–save

@Component({

 selector: 'app-root',

 styleUrls: ['./app.component.css'],

 template: '

 <h3>Prediction for Value 50:</h3>

 <div id="mydiv">

 {{predict}}

 </div>

 ',

})

export class AppComponent {

202 • Angular and Deep Learning Pocket Primer

 title = 'NGTFJSLinReg';

 public predict = "";

 constructor() {

 this.LinearRegression();

 }

 private async LinearRegression(){

 // 1) DEFINE THE MODEL:

 const model = tf.sequential();

 model.add(

 tf.layers.dense({

 units:1,

 inputShape:[1]

 })

);

 // 2) COMPILE THE MODEL:

 // specify the loss, optimizer, and metrics:

 model.compile({

 loss:'meanSquaredError',

 optimizer: 'sgd',

 metrics: ['mse']

 });

 // 3) FIT/TRAIN THE MODEL:

 // y = 2*x+1 (relationship between xs and ys)

 const xs = tf.tensor1d([1,2,3,4,5,6,7,8,9,10]);

 const ys = tf.tensor1d([3,5,7,9,11,13,15,17,19,21]);

 await model.fit(xs, ys, {epochs:100});

 // 4) MAKE SOME PREDICTIONS

 // 4a) PREDICT Y for X=50:

 var mydiv = document.getElementById('mydiv');

 mydiv.innerText += model.predict(tf.tensor1d([50]));

 }

}

Listing 6.3 contains the standard import statement, followed by a com-
ment that contains the correct npm command to install TensorFlow.js
in this Angular application. The next section contains boilerplate code,
except for the template property, which includes an HTML <div> ele-
ment that is populated with the output from the prediction (performed
in step 4 below).

Angular and TensorFlow.js • 203

The next portion of Listing 6.3 defines an empty constructor that invokes
a private method that contains all the TensorFlow-related functionality.
Notice that the method LinearRegression (which is invoked in the con-
structor) is defined with the following signature:

private async LinearRegression(){. . .}

The preceding signature is slightly different from what you saw in the
previous section, as shown here:

function async LinearRegression(){. . .}

The LinearRegression method has four main sections, as shown here:

// 1) DEFINE THE MODEL:

// 2) COMPILE THE MODEL:

// 3) FIT/TRAIN THE MODEL:

// 4) MAKE SOME PREDICTIONS

The first section defines the variable model as an instance of the TensorFlow.
js Sequential model, which resembles tf.keras.layers.Sequential
(discussed in the Keras-related appendix). Next, the model variable adds
a single tf.layers.dense layer that specifies an input shape of size 1.

Notice that the tf.layers.dense API does not support the bias prop-
erty that is specified in the code in the preceding section.

The second section specifies three parameter values, as shown here:

model.compile({

 loss:'meanSquaredError',

 optimizer: 'sgd',

 metrics: ['mse']

});

The purpose of these parameters has been discussed in previous chapters,
and you can review that material if you need to refresh your memory.

The third section initializes the variables xs and ys and then invokes the
fit() method of the model variable in order to train this model. The
fourth section contains a prediction for the value of Y when the value of
X is 50 by invoking the predict() method of the variable model. Now
launch this Web page in a browser to see the following output.

Prediction for Value 50:
Tensor
[[104.7459564],]

204 • Angular and Deep Learning Pocket Primer

According to the formula y = 2*x + 1, the correct value for 50 is 101,
and the predicted value differs from the exact value by more than three.

Depending on the environment of your machine, you might encounter
the following error during the compilation step:

ERROR in ../node_modules/@types/webgl2/index.d.ts:582:13 -

error TS2403: Subsequent variable declarations must have

the same type. Variable 'WebGL2RenderingContext' must

be of type '{ new (): WebGL2RenderingContext; prototype:

WebGL2RenderingContext; readonly ACTIVE_ATTRIBUTES: num-

ber; readonly ACTIVE_TEXTURE: number; ... 556 more ...; rea-

donly WAIT_FAILED: number; }', but here has type '{ new ():

WebGL2RenderingContext; prototype: WebGL2RenderingContext;

readonly ACTIVE_ATTRIBUTES: number; readonly ACTIVE_

TEXTURE: number; ... 557 more ...; readonly MAX_CLIENT_

WAIT_TIMEOUT_WEBGL: number; }'.

582 declare var WebGL2RenderingContext: {

                ~~~~~~~~~~~~~~~~~~~~~~

  ../node_modules/typescript/lib/lib.dom.d.ts:16316:13

    16316 declare var WebGL2RenderingContext: {

                      ~~~~~~~~~~~~~~~~~~~~~~

 'WebGL2RenderingContext' was also declared here.

If you do see the preceding error, there are several ways to resolve this
issue, one of which involves adding this snippet to tsconfig.json in the
src subdirectory of your Angular application:

"skipLibCheck": true,

Now that you know how to create basic code samples with TensorFlow.
js and also how to combine TensorFlow.js in an Angular application, let’s
look at tfjs-vis, which gives you the ability to display line graphs, bar
charts, histograms, and so forth in an HTML Web page.

Creating Line Graphs in tfjs-vis

Listing 6.4 shows the content of tfjsvis-linegraph.js, which con-
tains the data for a line graph. Listing 6.5 shows the content of tfjs-
vis-linegraph.html, which illustrates how to use tfjs-vis to display
a line graph.

Angular and TensorFlow.js • 205

Listing 6.4: tfjsvis-linegraph.js

// define the data points

values = [

 [{x: 10, y: 20}, {x: 20, y: 30}, {x: 30, y: 5}, {x: 40,

y: 12}],

 [{x: 10, y: 40}, {x: 20, y: 0}, {x: 30, y: 50}, {x: 40,

y: -5}]

];

// legend-related information

let series = ['Dataset1', 'Dataset2'];

// render the line graph

tfvis.render.linechart(document.getElementById('plot1'),

{values, series}, {

 xLabel: 'x-axis',

 yLabel: 'y-axis'

});

Listing 6.4 defines the variables values with data points and the variable
series that contains the strings to display in a legend. The final portion
of Listing 6.4 invokes the tfvis API for rendering a line graph in the
HTML <div> element whose class value is plot.

Listing 6.5: tfjsvis-linegraph.html

<html>

 <head>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@latest"> </script>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs-vis@latest"> </script>

 <style>

 .plot {

 display: inline-block;

 width: 50%;

 margin: 10px;

 }

 </style>

 </head>

206 • Angular and Deep Learning Pocket Primer

 <body>

 <div class="plot" id="plot1"></div>

 </body>

 <script src="tfjsvis-barchart.js"> </script>

</html>

Listing 6.5 contains a <head> element with two <script> elements that
reference the necessary tfjs-vis JavaScript code for rendering charts
and graphs. The <style> element specifies some properties for layout
purposes.

The next portion of Listing 6.5 defines a <div> element where the line
graph is rendered, and the final code snippet in Listing 6.5 is a <script>
element that references the code in tfjsvis-barchart.js.

Figure 6.1 shows the line graph that is displayed when you launch the
code in Listing 6.5.

Figure 6.1  A line graph

Creating Bar Charts in tfjs-vis

Listing 6.6 shows the content of tfjsvis-barchart.js, which contains
the data for a bar chart. Listing 6.7 shows the content of tfjsvis-bar-
chart.html, which illustrates how to use tfjs-vis to display a bar chart.

Listing 6.6: tfjsvis-barchart.js

// define the data points

const data = [

 {index: 'foo', value: 1}, {index: 'bar', value: 7},

 {index: 3, value: 3}, {index: 5, value: 6}];

// render the bar chart

Angular and TensorFlow.js • 207

tfvis.render.barchart(document.getElementById('plot1'),

data, {

 yLabel: 'y-axis',

 width: 400

});

Listing 6.6 defines the variables values with data points and the data
series that contains the strings to display in a legend. The final portion of
Listing 6.6 invokes the tfvis.render.barchart API for rendering a bar
chart in the HTML <div> element whose class value is plot.

Listing 6.7: tfjsvis-barchart.html

<html>

 <head>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@latest"> </script>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs-vis@latest"> </script>

 <style>

 .plot {

 display: inline-block;

 width: 50%;

 margin: 10px;

 }

 </style>

 </head>

 <body>

 <div class="plot" id="plot1"></div>

 </body>

 <script src="tfjsvis-barchart.js"> </script>

</html>

Listing 6.7 contains a <head> element with two <script> elements that
reference the necessary tfjs-vis JavaScript code for rendering charts and
graphs. The <style> element specifies some properties for layout purposes.

The next portion of Listing 6.7 defines a <div> element where the line
graph is rendered, and the final code snippet in Listing 6.7 is a <script>
element that references the code in tfjsvis-barchart.js.

Figure 6.2 shows the bar chart that is displayed when you launch the code
in Listing 6.7.

208 • Angular and Deep Learning Pocket Primer

Figure 6.2  A bar chart

Creating Scatter Plots in tfjs-vis

Listing 6.8 shows the content of tfjsvis-scatterplot.js, which
contains the data for a scatter plot. Listing 6.9 shows the content of the
HTML Web page tfjsvis-scatterplot.html, which illustrates how
to use tfjs-vis to display a scatter plot.

Listing 6.8: tfjsvis-scatterplot.js

// define the data points

const data = [

 {index: 'foo', value: 1}, {index: 'bar', value: 7},

 {index: 3, value: 3}, {index: 5, value: 6}];

// render the bar chart

tfvis.render.barchart(document.getElementById('plot1'),

data, {

 yLabel: 'y-axis',

 width: 400

});

Listing 6.8 defines the variables values with data points and the data
series that contains the strings to display in a legend. The final portion of
Listing 6.8 invokes the tfvis.render.barchart API for rendering a bar
chart in the HTML <div> element whose class value is plot.

Listing 6.9: tfjsvis-scatterplot.html

<html>

 <head>

Angular and TensorFlow.js • 209

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@latest"> </script>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs-vis@latest"> </script>

 <style>

 .plot {

 display: inline-block;

 width: 50%;

 margin: 10px;

 }

 </style>

 </head>

 <body>

 <div class="plot" id="plot1"></div>

 </body>

 <script src="tfjsvis-barchart.js"> </script>

</html>

Listing 6.9 contains a <head> element with two <script> elements that
reference the necessary tfjs-vis JavaScript code for rendering charts
and graphs. The <style> element specifies some properties for layout
purposes.

The next portion of Listing 6.9 defines a <div> element where the scatter
plot is rendered, and the final code snippet in Listing 6.8 is a <script>
element that references the code in tfjsvis-scatterplot.js.

Figure 6.3 shows the scatter plot that is displayed when you launch the
code in Listing 6.9.

Figure 6.3  A scatter plot

210 • Angular and Deep Learning Pocket Primer

Creating Histograms in tfjs-vis

Listing 6.10 shows the content of tfjsvis-histogram.js, which con-
tains the data for a histogram. Listing 6.11 shows the content of the
HTML Web page tfjsvis-histogram.html, which illustrates how to
use tfjs-vis to display a histogram.

Listing 6.10: tfjsvis-histogram.js

// define the data points

data = [1, 5, 12, 12, 5, 10, -2, -8];

// render the histogram

tfvis.render.histogram(document.getElementById('plot1'),

data, {

 maxBins: 5,

 width: 400

});

Listing 6.10 defines the variables values with data points and the data
series that contains the strings to display in a legend. The final portion of
Listing 6.10 invokes the tfvis.render.histogram API for rendering a
histogram in the HTML <div> element whose class value is plot.

Listing 6.11: tfjsvis-histogram.html

<html>

 <head>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@latest"> </script>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs-vis@latest"> </script>

 <style>

 .plot {

 display: inline-block;

 width: 50%;

 margin: 10px;

 }

 </style>

 </head>

 <body>

 <div class="plot" id="plot1"></div>

 </body>

Angular and TensorFlow.js • 211

 <script src="tfjsvis-histogram.js"> </script>

</html>

Listing 6.11 contains a <head> element with two <script> elements that
reference the necessary tfjs-vis JavaScript code for rendering charts
and graphs. The <style> element specifies some properties for layout
purposes.

The next portion of Listing 6.11 defines a <div> element where the histo-
gram is rendered, and the final code snippet in Listing 6.10 is a <script>
element that references the code in tfjsvis-histogram.js.

Figure 6.4 shows the histogram that is displayed when you launch the
code in Listing 6.11.

Figure 6.4  A histogram

Creating Heat Maps in tfjs-vis

Listing 6.12 shows the content of tfjsvis-heatmap.js, which contains
the data for a histogram. Listing 6.13 shows the content of the HTML
Web page tfjsvis-heatmap.html, which illustrates how to use tfjs-
vis to display a heat map.

Listing 6.12: tfjsvis-heatmap.js

// render the heat map

tfvis.render.heatmap(document.getElementById('plot1'), {

 values: [[1,0,0], [0,0.5,0.8], [0,0.8,0.5]],

 xTickLabels: ['Tall', 'Medium', 'Short'],

 yTickLabels: ['Tall', 'Medium', 'Short']

}, {

212 • Angular and Deep Learning Pocket Primer

 width: 500,

 height: 500,

 xLabel: 'TypeA',

 yLabel: 'TypeB',

 colorMap: 'reds'

});

Listing 6.12 defines the variable values with data points and two strings
to display in the horizontal and vertical axes of the heat map. The final por-
tion of Listing 6.12 invokes the tfvis.render.heatmap API for render-
ing a heat map in the HTML <div> element whose class value is plot.

Listing 6.13: tfjsvis-heatmap.html

<html>

 <head>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@latest"> </script>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs-vis@latest"> </script>

 <style>

 .plot {

 display: inline-block;

 width: 50%;

 margin: 10px;

 }

 </style>

 </head>

 <body>

 <div class="plot" id="plot1"></div>

 </body>

 <script src="tfjsvis-heatmap.js"> </script>

</html>

Listing 6.13 contains a <head> element with two <script> elements that
reference the necessary tfjs-vis JavaScript code for rendering charts
and graphs. The <style> element specifies some properties for layout
purposes.

The next portion of Listing 6.13 defines a <div> element where the heat
map is rendered, and the final code snippet in Listing 6.13 is a <script>
element that references the code in tfjsvis-heatmap.js.

Angular and TensorFlow.js • 213

Figure 6.5 shows the heat map that is displayed when you launch the code
in Listing 6.13.

Figure 6.5  A heat map

This concludes the portion of the chapter pertaining to some of the data
visualization functionality that is available in tfjs-vis. The next portion
of the chapter contains a code sample that combines TensorFlow.js and
tfjs-vis in an Angular application that performs linear regression.

TensorFlow.js, tfjs-vis, and Linear Regression

Listing 6.14 shows the content of tfjs-vis-linreg1.html, which illus-
trates how to generate a set of random-like values and then use machine
learning and linear regression to determine the best-fitting line.

Listing 6.14: tfjs-vis-linreg1.html

<html>

 <head>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@latest">

214 • Angular and Deep Learning Pocket Primer

 </script>

 <script

 src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-

vis@latest">

 </script>

 <style>

 .plot {

 width: 100%;

 height: 40%;

 margin: 4px;

 }

 .btn {

 display: float-left;

 }

 </style>

 </head>

 <body>

 <div id="mydiv"></div>

 <div>

 <button class="btn" type="button"

onclick="trainLinearModel()">Train the Model</button>

 </div>

 <!-- the scatterplot is displayed here: -->

 <div class="plot" id="plot1"></div>

 </body>

 <script>

 async function trainLinearModel() {

 //----------------------------------

 // define a simple model that has:

 // 1) a single input (numeric value)

 // 3) a connection to the output layer

 // 4) an output layer of one neuron

 //----------------------------------

 const model = tf.sequential();

 model.add(tf.layers.dense({units: 1, inputShape:

[1]}));

 model.compile({

 loss: 'meanSquaredError',

 optimizer: 'sgd'

Angular and TensorFlow.js • 215

 });

 var epochs = 100

 var maxRand = 30

 var count = 100

 items1 = []

 itemsX = []

 itemsY = []

 values = []

 // define the data points

 for(var i=0; i<count; i++) {

 x = i

 y = 2*x + 1 + Math.random()*maxRand

 items1.push({"x":x, "y":y})

 itemsX.push(x)

 itemsY.push(y)

 }

 values.push(items1)

 const xs = tf.tensor1d([1,2,3,4,5,6,7,8,9,10]);

 const ys = tf.tensor1d([3,5,7,9,11,13,15,17,19,21]);

 // legend-related information

 let series1 = ['Dataset1', 'Dataset2'];

 // render the scatter plot in the 'plot1' element:

 tfvis.render.scatterplot(document.getElementBy-

Id('plot1'), {values,series1}, {

 width: 600,

 xLabel: 'x-axis',

 yLabel: 'y-axis'

 })

 // train the model:

 await model.fit(xs, ys, {epochs: epochs});

 // predict the value of y when x = 52.5:

 var mydiv = document.getElementById('mydiv');

 mydiv.innerText += "Prediction for 52.5: "+

 model.predict(tf.tensor1d([50]));

 }

 </script>

</html>

216 • Angular and Deep Learning Pocket Primer

Listing 6.14 contains a <head> element with <script> elements that ref-
erence the necessary tfjs-vis JavaScript code for rendering charts and
graphs and for the TensorFlow.js code. The <style> element specifies
some properties for layout purposes.

The next portion of Listing 6.14 defines a <div> element that contains
a <button> element for invoking the training process. Another <div>
element specifies where the scatter plot is rendered for the data points in
this example.

The next portion of Listing 6.14 contains a <script> element with the
function trainLinearModel(), which contains all the code to perform
linear regression. The next block of code defines the variable model, adds
a single layer, and then compiles the model, just like you have seen in
previous code samples.

Before we can train the model via the fit() method, we need to gen-
erate some data values. In this example, a for loop iterates through the
x values, which are the integers from 1 to 100, and then calculates the
corresponding y values, as shown here:

// define the data points

for(var i=0; i<count; i++) {

 x = i

 y = 2*x + 1 + Math.random()*maxRand

 items1.push({"x":x, "y":y})

 itemsX.push(x)

 itemsY.push(y)

}

The arrays itemsX and itemsY contain the x values and y values, respec-
tively, and the array items1 contains the value pairs (x,y).

The next portion of Listing 6.14 contains the code for rendering a scatter
plot, which is virtually identical to the code that you saw in an earlier
example.

The next code snippet trains the model via the fit() method, in exactly
the same way as previous code samples, as shown here:

await model.fit(xs, ys, {epochs: epochs});

Finally, the last portion of Listing 6.14 invokes the predict() method of
the variable model to predict the value of y when the value of x is 52.5,
and then populates this value in the appropriate <div> element, as shown
here:

Angular and TensorFlow.js • 217

// predict the value of y when x = 52.5:

var mydiv = document.getElementById('mydiv');

mydiv.innerText += "Prediction for 52.5: "+

 model.predict(tf.tensor1d([50]));

Figure 6.6 shows the contents of the Web page after you launch the code
in Listing 6.14 and you click on the top-most button.

Figure 6.6  A machine learning prediction

The MNIST Dataset

In a subsequent section, you will learn how to train a deep learning model
in TensorFlow.js using the MNIST dataset. In fact, this dataset is fre-
quently one of the first datasets that people encounter when they begin
their study of deep learning.

The MNIST (Modified NIST) dataset contains 70,000 greyscale images of
handwritten digits (0 through 9, inclusive), where each image has dimen-
sions 28x28. Hence, each image consists of 784 pixels values, and a pixel
value is a number between 0 and 255, inclusive, which corresponds to the
range of numbers in each component of the (R,G,B) color model.

Every image in the MNIST dataset has a label that corresponds to the
digit that is displayed in each image. Hence, the images that display the
digit 0 will have the label 0, the images that display the digit 1 will have
the label 1, and so forth. Since there are 10 possible digits, there are 10
distinct labels, and roughly 10% of the dataset belongs to each of the 10
labels. Keep in mind that the images in the MNIST dataset contain a sin-
gle digit (i.e., no images contain multiple digits).

218 • Angular and Deep Learning Pocket Primer

Displaying MNIST Images

This section contains a minimalistic example of displaying some MNIST
images in an HTML Web page. The necessary files are from the following
online tutorial:

https://www.tensorflow.org/js/tutorials/training/handwritten_digit_cnn

There are three files that you need in this section, all of which are included
in the mnistimages subdirectory for this chapter:

�� index.html
�� data.js
�� script.js
�� mysimpleserver.py

The HTML Web page index.html contains boilerplate code and the
required <script> elements in order to load TensorFlow.js into the Web
page. This Web page also references the JavaScript files data.js and
script.js that contain custom code.

The JavaScript file data.js contains the JavaScript code to load a ran-
domly selected subset of 20 images from the MNIST dataset.

The JavaScript file script.js contains the JavaScript code that renders
the randomly selected images in the HTML Web page.

Listing 6.15 shows the content of mysimpleserver.py, which acts as a
simple web server for Python 3.x.

Listing 6.15: mysimpleserver.py (for Python 3.x)

import http.server

import socketserver

PORT = 8080

Handler = http.server.SimpleHTTPRequestHandler

with socketserver.TCPServer(("", PORT), Handler) as httpd:

 print("serving at port", PORT)

	 httpd.serve_forever()

Now open a command shell, navigate to the directory that contains the
Python script mysimpleserver.py, and enter the following command:

python mysimpleserver.py

Angular and TensorFlow.js • 219

The preceding command launches a Web server on port 8080, which is
the value of the port variable in the Python script. If need be, you can
change the value of the port variable to a different number.

Python 2.x provides SimpleHTTPServer, whereas Python 3.x provides
the http.server module.

Important: Firefox has a CORS (Cross Origin Resource Sharing) restric-
tion whereby file:/// requests result in the following error:

Cross-Origin Request Blocked: The Same Origin Policy dis-

allows reading the remote resource at file:///Users/owner/

mercury-learning/Ang10DL/manuscript/ch6-tfjs/mnistimages/

data.js. (Reason: CORS request not http).

If you want to see more details regarding Firefox and CORS issues, visit

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS/Errors/
CORSRequestNotHttp

The simplest solution for the preceding CORS error is to launch index.
html in Safari and then disable the CORS restriction by navigating from
the menu bar as follows:

Developer > Disable Cross Origin Restrictions

Now open a browser session and navigate to the following URL:

http://localhost:8080/index.html

Wait a few moments to see a set of images (these are shown in Figure 6.7).

Figure 6.7  MNIST images

For your convenience, the next (optional) section is a quick review of
a Keras-based code sample that defines a model for training on the

NOTE

220 • Angular and Deep Learning Pocket Primer

CIFAR10 dataset. Feel free to skip this section if you are ready for the
code sample that involves TensorFlow.js and the MNIST dataset.

Training a Model with the CIFAR10 Dataset (optional)

In Chapter 5, you learned about CNNs (Convolutional Networks) and
Appendix A contains the code sample keras_cnn_cifar10.py, which
trains a CNN with the cifar10 dataset.

The code for training a neural network on the CIFAR10 dataset is similar
to training on an MNIST dataset that you will see in the next section.
However, the Keras-based code is somewhat more compact than the cor-
responding TensorFlow.js code, so it’s useful to keep this code in mind
when you look at the TensorFlow.js code.

Listing 6.16 shows a portion of the code from the Python script keras_
cifar10_cnn.py, located in Appendix A.

Listing 6.16: keras_cifar10_block.py

// NOTE: THE COMPLETE FILE IS LISTING A-5 in Appendix A

import tensorflow as tf

batch_size = 32

num_classes = 10

epochs = 100

num_predictions = 20

cifar10 = tf.keras.datasets.cifar10

The data, split between train and test sets:

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

some details omitted

keep in mind the structure of this code block:

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Conv2D(32, (3, 3), padding='same',

 input_shape=x_train.shape[1:]))

model.add(tf.keras.layers.Activation('relu'))

model.add(tf.keras.layers.Conv2D(32, (3, 3)))

model.add(tf.keras.layers.Activation('relu'))

model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))

model.add(tf.keras.layers.Dropout(0.25))

Angular and TensorFlow.js • 221

model.add(tf.keras.layers.Dense(num_classes))

model.add(tf.keras.layers.Activation('softmax'))

use RMSprop optimizer to train the model

model.compile(loss='categorical_crossentropy',

 optimizer=opt,

 metrics=['accuracy'])

some details omitted

model.fit(x_train, y_train,

 batch_size=batch_size,

 epochs=epochs,

 validation_data=(x_test, y_test),

 shuffle=True)

evaluate and display results from test data

scores = model.evaluate(x_test, y_test, verbose=1)

print('Test loss:', scores[0])

print('Test accuracy:', scores[1])

Note that a “vanilla” CNN involves a convolutional layer, followed by the
ReLU activation function, and a max pooling layer. In addition, the final
layer of the Keras model is the softmax activation function, which con-
verts the 10 numeric values in the fully connected layer to a set of 10
non-negative numbers between 0 and 1, whose sum equals 1 (this gives
us a probability distribution).

Now let’s proceed to the next section that shows you how to use
TensorFlow.js to define and train a neural network on the MNIST
dataset.

Deep Learning and the MNIST Dataset

In Chapter 5, you learned about CNNs and how to create a Keras-based
model for a CNN. In this section, we’ll create and train such a model on the
MNIST dataset by performing the following steps:

�� Step 1: Load the data from the MNIST dataset
�� Step 2: Create a deep learning model using TensorFlow.js
�� Step 3: Train the deep learning model
�� Step 4: Use the trained model for inferencing on new MNIST images

There are four files that you need in this section, all of which are included
in the mnistimages2 subdirectory for this chapter:

222 • Angular and Deep Learning Pocket Primer

�� index.html
�� data.js
�� script.js
�� mysimpleserver.py (same code as previous section)

The details for Step 1 are discussed in an earlier section of this chapter, so
we don’t need to duplicate those details.

Step 2 is performed in the JavaScript file script.js, whose first portion
is the same as the script.js file in the previous section. The code for cre-
ating a model consists of the following steps that are listed as a comment
block in script.js:

// the getModel() function creates a model:

// 1) define the variable model of type tf.sequential()

// 2) add a conv2d layer

// 3) add a max pooling layer

// 4) add a conv2d layer

// 5) add a max pooling layer

// 6) add a flatten layer

// 7) add a dense layer

// 8) compile the model with an 'adam' optimizer

Step 3 is performed by the JavaScript train() function that is defined in
the JavaScript file script.js.

Important: If you haven’t already done so, please read the previous sec-
tion regarding the CORS (Cross Origin Resource Sharing) restriction in
Firefox and how to use Safari instead of Firefox.

Now open a command shell, navigate to the directory that contains the
Python script mysimpleserver.py, and enter the following command:

python mysimpleserver.py

The preceding command launches a Web server on port 8080. If need be,
you can change the value of the port variable to a different port number
in the Python script.

Python 2.x provides SimpleHTTPServer, whereas Python 3.x provides
the http.server module.

Next, open a (Safari) browser session and enter the following URL:

http://localhost:8080/index.html

Figure 6.8 shows the first of three images for this example, and it displays
the model architecture that is defined in the JavaScript file script.js.

NOTE

Angular and TensorFlow.js • 223

Figure 6.8  Model architecture

Figure 6.9 shows the second of three images for this example, and it dis-
plays a graph with the loss values and the accuracy values at the end of
each batch of data.

Figure 6.9  Loss and accuracy graph

Figure 6.10 shows the third of three images for this example, and it dis-
plays a graph with the loss values and the accuracy values at the end of
each epoch.

224 • Angular and Deep Learning Pocket Primer

Figure 6.10  Loss and accuracy values for each epoch

The final section of this chapter creates an Angular application that incor-
porates the functionality of the preceding example.

Angular, Deep Learning, and the MNIST Dataset

The example in this section is culmination of the code samples in the
preceding two sections: you will learn how to create an Angular appli-
cation that creates, compiles, and trains a deep learning model on the
MNIST dataset.

You might be surprised to discover that there is very little new code
required for the code sample in this section: almost all the code is from
two files that are in the previous section. Specifically, place a copy of data.
js in the src/app subdirectory, and include the contents of script.js in
the file app.component.ts.

There are several updates in the file app.component.ts that are required,
as well as one update for the data.js file, as summarized below.

Step 1: Include the following code block at the top of app.component.ts:
import { Component } from '@angular/core';

import * as tf from '@tensorflow/tfjs';

Angular and TensorFlow.js • 225

import * as tfvis from '@tensorflow/tfjs-vis';

import {MnistData} from './data.js';

Step 2: Remember to invoke the following pair of npm commands:
// remember: npm install @tensorflow/tfjs -–save

// remember: npm install @tensorflow/tfjs-vis --save

Step 3: Update the constructor with the following code snippet:
constructor() {

 this.run();

}

Step 4: Remove the addEventListener code snippet (at the bottom of
script.js).

Step 5: Remove the “function” keyword from the following functions:
async function showExamples(data)

async function run()

function getModel()

async function train(model, data)

Step 6: Include the “this” keyword in the following code snippets:

await this.showExamples(data);

const model = this.getModel();

await this.train(model, data);

Step 7: You also need to add the following code snippet at the top of the
file data.js, and make sure it’s placed above the copyright notice:

import * as tf from '@tensorflow/tfjs';

Now copy the directory NGTFJSCNN from the companion files into a con-
venient location. Listing 6.16 shows the initial portion of the file app.
component.ts that trains a CNN in TensorFlow.js.

Listing 6.16: app.component.ts

import { Component } from '@angular/core';

import * as tf from '@tensorflow/tfjs';

import * as tfvis from '@tensorflow/tfjs-vis';

import {MnistData} from './data.js';

// remember: npm install @tensorflow/tfjs -–save

// remember: npm install @tensorflow/tfjs-vis --save

@Component({

226 • Angular and Deep Learning Pocket Primer

 selector: 'app-root',

 styleUrls: ['./app.component.css'],

 template: '

 <h2>Train a CNN with TensorFlow.js</h2>

 ',

})

export class AppComponent {

 title = 'NGTFJSCNN';

 constructor() {

 this.run();

 }

 // the remaining code is from script.js

 // the required changes are listed above

 // the full code is in the companion files

}

Listing 6.16 contains a small portion of app.component.ts, with some of
the required changes shown in bold.

Next, open a browser session and enter the following URL:

http://localhost:8080/index.html

After a few moments, you will see the same output as you saw in the pre-
vious section, which are shown in Figure 6.8, Figure 6.9, and Figure 6.10.

Possible Compilation Error

During the compilation step for this Angular application, you might
encounter the following error message:

ERROR in node_modules/@types/webgl2/index.d.ts:582:13 -

error TS2403: Subsequent variable declarations must have

the same type. Variable 'WebGL2RenderingContext' must

be of type '{ new (): WebGL2RenderingContext; prototype:

WebGL2RenderingContext; readonly ACTIVE_ATTRIBUTES: num-

ber; readonly ACTIVE_TEXTURE: number; ... 556 more ...; rea-

donly WAIT_FAILED: number; }', but here has type '{ new ():

WebGL2RenderingContext; prototype: WebGL2RenderingContext;

readonly ACTIVE_ATTRIBUTES: number; readonly ACTIVE_

TEXTURE: number; ... 557 more ...; readonly MAX_CLIENT_

WAIT_TIMEOUT_WEBGL: number; }'.

Angular and TensorFlow.js • 227

582 declare var WebGL2RenderingContext: {

                ~~~~~~~~~~~~~~~~~~~~~~    

  node_modules/typescript/lib/lib.dom.d.ts:16535:13

    16535 declare var WebGL2RenderingContext: {

                      ~~~~~~~~~~~~~~~~~~~~~~

 'WebGL2RenderingContext' was also declared here.

One solution for the preceding error is to update the section labeled
compilerOptions in the file tsconfig.json with the following code
snippet:

"skipLibCheck": true,

Additional information is available here:

https://www.tensorflow.org/js/tutorials/setup#typescript

Summary

This chapter started with a quick overview of TensorFlow.js, along with
an example of performing linear regression in an HTML Web page with
TensorFlow.js.

Next, you saw an assortment of examples of charts and graphs using tfjs-
vis, including a line graph, a bar chart, a scatter plot, and a heat map.

In addition, you learned how to combine TensorFlow.js and tfjs-vis to
perform linear regression in an HTML Web page. Then you saw how to
display MNIST images in an HTML Web page, followed by an example
of training a neural network on the MNIST dataset.

Finally, you learned how to create an Angular application that uses
TensorFlow.js to create, compile, and train a deep learning model on the
MNIST dataset, along with graphs that display the values of the loss and
accuracy during each batch of every epoch.

A ppendi x

This appendix introduces you to Keras, along with code samples
that illustrate how to define basic neural networks and deep neural
networks with various datasets with as MNIST and Cifar10.

The first part of this appendix briefly discusses some of the important
namespaces (such as tf.keras.layers) and their contents, as well as a
simple Keras-based model.

The second section contains an example of performing linear regression
with Keras and a simple CSV file. It includes Keras-based MLP neural
network that is trained on the MNIST dataset.

The third section contains a simple example of training a neural network
with the cifar10 dataset. This code sample is similar to training a neural
network on the MNIST dataset and requires a very small code change.

The final section contains two examples of Keras-based models that per-
form early stopping, which is convenient when the model exhibits min-
imal improvement (that is specified by you) during the training process.

What is Keras?

If you are already comfortable with Keras, you can skim this section to
learn about the new namespaces and what they contain, and then proceed
to the next section that contains details for creating a Keras-based model.

If you are new to Keras, you might be wondering why this section is
included in this appendix. First, Keras is well-integrated into TF 2, and
it’s in the tf.keras namespace. Second, Keras is well-suited for defining

Introduction to Keras

A

230 • Angular and Deep Learning Pocket Primer

models to solve a myriad of tasks, such as linear regression and logistic
regression, as well as deep learning tasks involving CNNs, RNNs, and
LSTMs that are discussed in the Appendix.

The next sub-sections contain lists of bullet items for various Keras-
related namespaces, and they will be very familiar if you have worked with
TF 1.x. If you are new to TF 2, you’ll see examples of some of the classes
in subsequent code samples.

Working with Keras Namespaces in TF 2

TF 2 provides the tf.keras namespace, which in turn contains the fol-
lowing namespaces:

�� tf.keras.layers
�� tf.keras.models
�� tf.keras.optimizers
�� tf.keras.utils
�� tf.keras.regularizers

The preceding namespaces contain various layers in Keras models, dif-
ferent types of Keras models, optimizers (Adam et al), utility classes, and
regularizers (such as L1 and L2), respectively.

Currently there are three ways to create Keras-based models:

�� The Sequential API
�� The Functional API
�� The Model API

The Keras-based code samples in this book use primarily the Sequential
API (it’s the most intuitive and straightforward). The Sequential API ena-
bles you to specify a list of layers, most of which are available in the tf.
keras.layers namespace (discussed later).

The Keras-based models that use the functional API involve specifying
layers that are passed as function-like elements in a pipeline-like fashion.
Although the functional API provides some additional flexibility, you will
probably use the Sequential API to define Keras-based models if you are
a TF 2 beginner.

The model-based API provides the greatest flexibility, and it involves
defining a Python class that encapsulates the semantics of your Keras
model. This class is a subclass of the tf.model.Model class, and you must

Introduction to Keras • 231

implement the two methods __init__ and call to define a Keras model
in this subclass.

Perform an online search for more details regarding the Functional API
and the Model API.

Working with the tf.keras.layers Namespace

The most common (and also the simplest) Keras-based model is the
Sequential() class that is in the tf.keras.models namespace. This
model is comprised of various layers that belong to the tf.keras.layers
namespace, as shown here:

�� tf.keras.layers.Conv2D()
�� tf.keras.layers.MaxPooling2D()
�� tf.keras.layers.Flatten()
�� tf.keras.layers.Dense()
�� tf.keras.layers.Dropout()
�� tf.keras.layers.BatchNormalization()
�� tf.keras.layers.embedding()
�� tf.keras.layers.RNN()
�� tf.keras.layers.LSTM()
�� tf.keras.layers.Bidirectional (ex: BERT)

The Conv2D() and MaxPooling2D() classes are used in Keras-based
models for CNNs, which are discussed in Chapter 5. Generally speaking,
the next six classes in the preceding list can appear in models for CNNs as
well as models for machine learning. The RNN() class is for simple RNNS
and the LSTM class is for LSTM-based models. The Bidirectional()
class is a bi-directional LSTM that you will often see in models for solv-
ing NLP (Natural Language Processing) tasks. One very important NLP
model is BERT (from Google), which is based on the Transformer archi-
tecture (also from Google).

Working with the tf.keras.activations Namespace

Machine learning and deep learning models require activation functions.
For Keras-based models, the activation functions are in the tf.keras.
activations namespace, some of which are listed here:

�� tf.keras.activations.relu
�� tf.keras.activations.selu
�� tf.keras.activations.linear

232 • Angular and Deep Learning Pocket Primer

�� tf.keras.activations.elu
�� tf.keras.activations.sigmoid
�� tf.keras.activations.softmax
�� tf.keras.activations.softplus
�� tf.keras.activations.tanh

The ReLU/SELU/ELU functions are closely related, and they often
appear in ANNs (Artificial Neural Networks) and CNNs. Before the
ReLU() function became popular, the sigmoid() and tanh() functions
were used in ANNs and CNNs. However, they are still important and they
are used in various gates in GRUs and LSTMs. The softmax() function
is typically used in the pair of layers consisting of the right-most hidden
layer and the output layer.

Working with the keras.tf.datasets Namespace

For your convenience, TF 2 provides a set of built-in datasets in the tf.
keras.datasets namespace, some of which are listed here:

�� tf.keras.datasets.boston_housing
�� tf.keras.datasets.cifar10
�� tf.keras.datasets.cifar100
�� tf.keras.datasets.fashion_mnist
�� tf.keras.datasets.imdb
�� tf.keras.datasets.mnist
�� tf.keras.datasets.reuters

The preceding datasets are popular for training models with small data-
sets. The mnist dataset and fashion_mnist dataset are both popular
when training CNNs, whereas the boston_housing dataset is popular for
linear regression. The Titanic dataset is also popular for linear regres-
sion, but it’s not currently supported as a default dataset in the tf.keras.
datasets namespace.

Working with the tf.keras.experimental Namespace

The contrib namespace in TF 1.x has been deprecated in TF 2, and
it’s successor is the tf.keras.experimental namespace, which contains
the following classes (among others):

�� tf.keras.experimental.CosineDecay
�� tf.keras.experimental.CosineDecayRestarts

Introduction to Keras • 233

�� tf.keras.experimental.LinearCosineDecay
�� tf.keras.experimental.NoisyLinearCosineDecay
�� tf.keras.experimental.PeepholeLSTMCell

If you are a beginner, you probably won’t use any of the classes in the
preceding list. Although the PeepholeLSTMCell class is a variation of the
LSTM class, there are limited use cases for this class.

Working with Other tf.keras Namespaces

TF 2 provides a number of other namespaces that contain useful classes,
some of which are listed here:

�� tf.keras.callbacks		 (early stopping)
�� tf.keras.optimizers	 (Adam et al)
�� tf.keras.regularizers	 (L1 and L2)
�� tf.keras.utils		 (to_categorical)

The tf.keras.callbacks namespace contains a class that you can use
for early stopping, which is to say that it’s possible to terminate the train-
ing process if there is an insufficient reduction in the cost function in two
successive iterations.

The tf.keras.optimizers namespace contains the various optimizers
that are available for working in conjunction with cost functions, which
includes the popular Adam optimizer.

The tf.keras.regularizers namespace contains two popular regular-
izers: the L1 regularizer (also called LASSO in machine learning) and the
L2 regularizer (also called the Ridge regularizer in machine learning).
L1 is for the MAE (Mean Absolute Error) and L2 is for the MSE (Mean
Squared Error). Both of these regularizers act as penalty terms that are
added to the chosen cost function to reduce the influence of the features
in a machine learning model. Note that LASSO can drive values to zero,
with the result that features are actually eliminated from a model, and
hence it is related to the feature selection in machine learning.

The tf.keras.utils namespace contains an assortment of functions,
including the to_categorical() function for converting a class vector
into a binary class.

Although there are other namespaces in TF 2, the classes listed in all the
preceding subsections will probably suffice for the majority of your tasks
if you are a beginner in TF 2 and machine learning.

234 • Angular and Deep Learning Pocket Primer

TF 2 Keras versus “Standalone” Keras

The original Keras is actually a specification, with various backend frame-
works such as TensorFlow, Theano, and CNTK. Currently, standalone
Keras does not support TF 2, whereas the implementation of Keras in
tf.keras has been optimized for performance.

Standalone Keras lives in perpetuity in the keras.io package, which is
discussed in detail at the Keras website: keras.io.

Now that you have a high-level view of the TF 2 namespaces for Keras
and the classes that they contain, let’s find out how to create a Keras-
based model, which is the subject of the next section.

Creating a Keras-Based Model

The following list of steps describes the high-level sequence involved in
creating, training, and testing a Keras model:

Step 1: Determine a model architecture (the number of hidden layers,
various activation functions, and so forth).

Step 2: Invoke the compile() method

Step 3: Invoke the fit() method to train the model

Step 4: Invoke the evaluate() method to evaluate the trained model

Step 5: Invoke the predict() method to make predictions

Step 1 involves determining the values of a number of hyperparameters,
including

�� The number of hidden layers
�� The number of neurons in each hidden layer
�� The initial values of the weights of edges
�� The cost function
�� The optimizer
�� The learning rate
�� The dropout rate
�� The activation function(s)

Steps 2 through 4 involve the training data, whereas Step 5 involves the
test data, which are included in the following more detailed sequence of
steps for the preceding list:

Introduction to Keras • 235

�� Specify a dataset (if necessary, convert data to numeric data).
�� Split the dataset into training data and test data (usually 80/20 split).
�� Define the Keras model (such as the tf.keras.models.Sequen-

tial() API).
�� Compile the Keras model (the compile() API).
�� Train (fit) the Keras model (the fit() API).
�� Make a prediction (the prediction() API).

Note that the preceding bullet items skip some steps that are part of a real
Keras model, such as evaluating the Keras model on the test data, as well
as dealing with issues such as overfitting.

The first bulleted item states that you need a dataset, which can be as
simple as a CSV file with 100 rows of data and just 3 columns (or even
smaller). In general, a dataset is substantially larger: it can be a file with
1,000,000 rows of data and 10,000 columns in each row. We’ll look at a
concrete dataset in a subsequent section.

A Keras model is in the tf.keras.models namespace, and the simplest
(and also very common) Keras model is tf.keras.models.Sequential.
In general, a Keras model contains layers that are in the tf.keras.lay-
ers namespace, such as tf.keras.Dense (which means that two adjacent
layers are completely connected).

The activation functions that are referenced in Keras layers are in the
tf.nn namespace, such as the tf.nn.ReLU for the ReLU activation
function.

Here’s a code block of the Keras model that’s described in the preceding
paragraphs (which covers the first four bullet points):

import tensorflow as tf

model = tf.keras.models.Sequential([

 tf.keras.layers.Dense(512, activation=tf.nn.relu),

])

We have three more bulleted items to discuss, starting with the compila-
tion step. Keras provides a compile() API for this step, an example of
which is here:

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

236 • Angular and Deep Learning Pocket Primer

Next we need to specify a training step, and Keras provides the fit()
API (as you can see, it’s not called train()), an example of which is here:

model.fit(x_train, y_train, epochs=5)

The final step is the prediction that is performed via the predict() API,
an example of which is here:

pred = model.predict(x)

Keep in mind that the evaluate() method is used for evaluating an
trained model, and the output of this method is accuracy or loss. The
predict() method makes predictions from the input data.

Listing A.1 shows the content of tf2_basic_keras.py, which combines
the code blocks in the preceding steps into a single code sample.

Listing A.1: tf2_basic_keras.py

import tensorflow as tf

NOTE: we need the train data and test data

model = tf.keras.models.Sequential([

 tf.keras.layers.Dense(1, activation=tf.nn.relu),

])

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test, y_test)

Listing A.1 contains no new code, and we’ve essentially glossed over some
of the terms such as the optimizer (an algorithm that is used in conjunc-
tion with a cost function), the loss (the type of loss function), and the
metrics (how to evaluate the efficacy of a model).

The explanations for these details cannot be condensed into a few para-
graphs (alas), but the good news is that you can find a plethora of detailed
online blog posts that discuss these terms.

Keras and Linear Regression

This section contains a simple example of creating a Keras-based model
in order to solve a task involving linear regression: given a positive number
representing kilograms of pasta, predict its corresponding price. Listing

Introduction to Keras • 237

A.2 shows the content of pasta.csv and Listing A.3 shows the content of
keras_pasta.py that perform this task.

Listing A.2: pasta.csv

weight,price

5,30

10,45

15,70

20,80

25,105

30,120

35,130

40,140

50,150

Listing A.3: keras_pasta.py

import tensorflow as tf

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

price of pasta per kilogram

df = pd.read_csv("pasta.csv")

weight = df['weight']

price = df['price']

model = tf.keras.models.Sequential([

 tf.keras.layers.Dense(units=1,input_shape=[1])

])

MSE loss function and Adam optimizer

model.compile(loss='mean_squared_error',

 optimizer=tf.keras.optimizers.Adam(0.1))

train the model

history = model.fit(weight, price, epochs=100, verbose=False)

graph the # of epochs versus the loss

plt.xlabel('Number of Epochs')

plt.ylabel("Loss Values")

plt.plot(history.history['loss'])

plt.show()

print("Cost for 11kg:",model.predict([11.0]))

print("Cost for 45kg:",model.predict([45.0]))

238 • Angular and Deep Learning Pocket Primer

Listing A.3 initializes the Pandas Dataframe df with the contents of the
CSV file pasta.csv, and then initializes the variables weight and cost
with the first and second columns, respectively, of df.

The next portion of Listing A.3 defines a Keras-based model that con-
sists of a single Dense layer. This model is compiled and trained, and then
a graph is displayed that shows the “number of epochs” on the horizontal
axis and the corresponding value of the loss function for the vertical axis.
Launch the code in Listing A.3 to see the following output:

Cost for 11kg: [[41.727108]]

Cost for 45kg: [[159.02121]]

Figure A.1 displays a graph of epochs versus loss during the training
process.

Figure A.1  A graph of epochs versus loss

Keras, MLPs, and MNIST

This section contains a simple example of creating a Keras-based MLP
neural network that will be trained with the MNIST dataset. Listing A.4
shows the content of keras_mlp_mnist.py that performs this task.

Introduction to Keras • 239

Listing A.4: keras_mlp_mnist.py

import tensorflow as tf

import numpy as np

instantiate mnist and load data:

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

one-hot encoding for all labels to create 1x10

vectors that are compared with the final layer:

y_train = tf.keras.utils.to_categorical(y_train)

y_test = tf.keras.utils.to_categorical(y_test)

image_size = x_train.shape[1]

input_size = image_size * image_size

resize and normalize the 28x28 images:

x_train = np.reshape(x_train, [-1, input_size])

x_train = x_train.astype('float32') / 255

x_test = np.reshape(x_test, [-1, input_size])

x_test = x_test.astype('float32') / 255

initialize some hyper-parameters:

batch_size = 128

hidden_units = 128

dropout_ratea = 0.20

define a Keras-based model:

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Dense(hidden_units,

input_dim=input_size))

model.add(tf.keras.layers.Activation('relu'))

model.add(tf.keras.layers.Dropout(dropout_rate))

model.add(tf.keras.layers.Dense(hidden_units))

model.add(tf.keras.layers.Activation('relu'))

model.add(tf.keras.layers.Dense(10))

model.add(tf.keras.layers.Activation('softmax'))

model.summary()

model.compile(loss='categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

240 • Angular and Deep Learning Pocket Primer

train the network on the training data:

model.fit(x_train, y_train, epochs=10,

batch_size=batch_size)

calculate and then display the accuracy:

loss, acc = model.evaluate(x_test, y_test,

batch_size=batch_size)

print("\nTest accuracy: %.1f%%" % (100.0 * acc))

Listing A.4 contains the usual import statements and then initializes the
variable mnist as a reference to the MNIST dataset. The next portion of
Listing A.4 contains some typical code that populates the training dataset
and the test dataset and converts the labels to numeric values via the tech-
nique known as “one-hot” encoding.

Next, several hyperparameters are initialized, and a Keras-based model is
defined that specifies three Dense layers and the ReLu activation function.
This model is compiled and trained, and the accuracy on the test dataset is
computed and then displayed. Launch the code in Listing A.4 to see the
following output:

Model: "sequential"

Layer (type)	 Output Shape	 Param #

dense (Dense)	 (None, 256)	 200960

activation (Activation)	 (None, 256)	 0

dropout (Dropout)	 (None, 256)	 0

dense_1 (Dense)	 (None, 256)	 65792

activation_1 (Activation)	 (None, 256)	 0

dropout_1 (Dropout)	 (None, 256)	 0

dense_2 (Dense)	 (None, 10)	 2570

activation_2 (Activation)	 (None, 10)	 0

Total params: 269,322

Trainable params: 269,322

Non-trainable params: 0

Train on 60000 samples

Epoch 1/10

60000/60000 [====================] - 4s 74us/sample - loss:

0.4281 - accuracy: 0.8683

Epoch 2/10

60000/60000 [====================] - 4s 66us/sample - loss:

0.1967 - accuracy: 0.9417

Introduction to Keras • 241

Epoch 3/10

60000/60000 [====================] - 4s 63us/sample - loss:

0.1507 - accuracy: 0.9547

Epoch 4/10

60000/60000 [====================] - 4s 63us/sample - loss:

0.1298 - accuracy: 0.9600

Epoch 5/10

60000/60000 [====================] - 4s 60us/sample - loss:

0.1141 - accuracy: 0.9651

Epoch 6/10

60000/60000 [====================] - 4s 66us/sample - loss:

0.1037 - accuracy: 0.9677

Epoch 7/10

60000/60000 [====================] - 4s 61us/sample - loss:

0.0940 - accuracy: 0.9702

Epoch 8/10

60000/60000 [====================] - 4s 61us/sample - loss:

0.0897 - accuracy: 0.9718

Epoch 9/10

60000/60000 [====================] - 4s 62us/sample - loss:

0.0830 - accuracy: 0.9747

Epoch 10/10

60000/60000 [====================] - 4s 64us/sample - loss:

0.0805 - accuracy: 0.9748

10000/10000 [====================] - 0s 39us/sample - loss:

0.0654 - accuracy: 0.9797

Test accuracy: 98.0%

Keras, CNNs, and cifar10

This section contains a simple example of training a neural network with
the cifar10 dataset. This code sample is similar to training a neural
network on the MNIST dataset, and requires a very small code change.

Keep in mind that images in MNIST have the dimensions 28x28, whereas
images in cifar10 have the dimensions 32x32. Always ensure that images
have the same dimensions in a dataset, otherwise the results can be
unpredictable.

Make sure that the images in your dataset have the same dimensions NOTE

242 • Angular and Deep Learning Pocket Primer

Listing A.5 shows the content of keras_cnn_cifar10.py, which trains a
CNN with the cifar10 dataset.

Listing A.5: keras_cnn_cifar10.py

import tensorflow as tf

batch_size = 32

num_classes = 10

epochs = 100

num_predictions = 20

cifar10 = tf.keras.datasets.cifar10

The data, split between train and test sets:

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

print('x_train shape:', x_train.shape)

print(x_train.shape[0], 'train samples')

print(x_test.shape[0], 'test samples')

Convert class vectors to binary class matrices

y_train = tf.keras.utils.to_categorical(y_train,

num_classes)

y_test = tf.keras.utils.to_categorical(y_test, num_classes)

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Conv2D(32, (3, 3), padding='same',

 input_shape=x_train.shape[1:]))

model.add(tf.keras.layers.Activation('relu'))

model.add(tf.keras.layers.Conv2D(32, (3, 3)))

model.add(tf.keras.layers.Activation('relu'))

model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))

model.add(tf.keras.layers.Dropout(0.25))

you can also duplicate the preceding code block here

model.add(tf.keras.layers.Flatten())

model.add(tf.keras.layers.Dense(512))

model.add(tf.keras.layers.Activation('relu'))

model.add(tf.keras.layers.Dropout(0.5))

model.add(tf.keras.layers.Dense(num_classes))

model.add(tf.keras.layers.Activation('softmax'))

use RMSprop optimizer to train the model

model.compile(loss='categorical_crossentropy',

Introduction to Keras • 243

 optimizer=opt,

 metrics=['accuracy'])

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

model.fit(x_train, y_train,

 batch_size=batch_size,

 epochs=epochs,

 validation_data=(x_test, y_test),

 shuffle=True)

evaluate and display results from test data

scores = model.evaluate(x_test, y_test, verbose=1)

print('Test loss:', scores[0])

print('Test accuracy:', scores[1])

Listing A.5 contains the usual import statement and then initializes the
variable cifar10 as a reference to the cifar10 dataset. The next section
of code is similar to the contents of Listing A.4: the main difference is that
this Keras-based model defines a CNN instead of an MLP. Hence, the
first layer is a convolutional layer, as shown here:

model.add(tf.keras.layers.Conv2D(32, (3, 3), padding='same',

 input_shape=x_train.shape[1:]))

Note that a “vanilla” CNN involves a convolutional layer (which is the
purpose of the preceding code snippet), followed by the ReLU activation
function, and a max pooling layer, both of which are displayed in Listing
A.5. In addition, the final layer of the Keras model is the softmax acti-
vation function, which converts the 10 numeric values in the “fully con-
nected” layer to a set of 10 non-negative numbers between 0 and 1, whose
sum equals 1 (this gives us a probability distribution).

This model is compiled and trained, and then evaluated on the test data-
set. The last portion of Listing A.5 shows the value of the test-related loss
and accuracy, both of which are calculated during the preceding evalua-
tion step. Launch the code in Listing A.5 to see the following output (note
that the code was stopped after partially completing the second epoch):

x_train shape: (50000, 32, 32, 3)

50000 train samples

10000 test samples

244 • Angular and Deep Learning Pocket Primer

Epoch 1/100

50000/50000 [==============================] - 285s 6ms/

sample - loss: 1.7187 - accuracy: 0.3802 - val_loss: 1.4294

- val_accuracy: 0.4926

Epoch 2/100

 1888/50000 [>.............................] - ETA: 4:39 -

loss: 1.4722 - accuracy: 0.4635

Resizing Images in Keras

Listing A.6 shows the content of keras_resize_image.py, which illus-
trates how to resize an image in Keras.

Listing A.6: keras_resize_image.py

import tensorflow as tf

import numpy as np

import imageio

import matplotlib.pyplot as plt

use any image that has 3 channels

inp = tf.keras.layers.Input(shape=(None, None, 3))

out = tf.keras.layers.Lambda(lambda image: tf.image.

resize(image, (128, 128)))(inp)

model = tf.keras.Model(inputs=inp, outputs=out)

model.summary()

read the contents of a PNG or JPG

X = imageio.imread('sample3.png')

out = model.predict(X[np.newaxis, ...]) 

fig, axes = plt.subplots(nrows=1, ncols=2)

axes[0].imshow(X)

axes[1].imshow(np.int8(out[0,...]))

plt.show()

Listing A.6 contains the usual import statements and then initializes the
variable inp so that it can accommodate a color image, followed by the
variable out that is the result of resizing inp so that it has dimensions
28x23. Next, inp and out are specified as the values of inputs and out-
puts, respectively, for the Keras model, as shown in this code snippet:

model = tf.keras.Model(inputs=inp, outputs=out)

Introduction to Keras • 245

Next, the variable X is initialized as a reference to the result of reading
the contents of the image sample3.png. The remainder of Listing A.6
involves displaying two images: the original image and the resized image.
Launch the code in Listing A.6 to see a graph of an image and its resized
image as shown in Figure A.2.

Figure A.2  A graph of an image and its resized image

Keras and Early Stopping (1)

After specifying the training set and the test set from a dataset, you also
decide on the number of training epochs. A value that’s too large can lead
to overfitting, whereas a value that’s too small can lead to underfitting.
Moreover, model improvement can diminish and subsequent training
iterations become redundant.

Early stopping is a technique that allows you to specify a large value for
the number of epochs, and yet the training stops if the model perfor-
mance improvement drops below a threshold value.

There are several ways that you can specify early stopping, and they
involve the concept of a callback function. Listing A.7 shows the content
of tf2_keras_callback.py, which performs early stopping via a call-
back mechanism.

Listing A.7: tf2_keras_callback.py

import tensorflow as tf

import numpy as np

246 • Angular and Deep Learning Pocket Primer

model = tf.keras.Sequential()

model.add(tf.keras.layers.Dense(64, activation='relu'))

model.add(tf.keras.layers.Dense(64, activation='relu'))

model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),

 loss='mse', # mean squared error

 metrics=['mae']) # mean absolute error

data = np.random.random((1000, 32))

labels = np.random.random((1000, 10))

val_data = np.random.random((100, 32))

val_labels = np.random.random((100, 10))

callbacks = [

 # stop training if "val_loss" stops improving for over 2

epochs

 tf.keras.callbacks.EarlyStopping(patience=2,

monitor='val_loss'),

 # write TensorBoard logs to the ./logs directory

 tf.keras.callbacks.TensorBoard(log_dir='./logs')

]

model.fit(data, labels, batch_size=32, epochs=50,

callbacks=callbacks,

 validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

Listing A.7 defines a Keras-based model with three hidden layers and then
compiles the model. The next portion of Listing A.7 uses the np.random.
random function to initialize the variables data, labels, val_data, and
val_labels.

The interesting code involves the definition of the callbacks variable
that specifies tf.keras.callbacks.EarlyStopping class with a value
of 2 for patience, which means that the model stops training if there is
an insufficient reduction in the value of val_loss. The callbacks varia-
ble includes the tf.keras.callbacks.TensorBoard class to specify the
logs subdirectory as the location for the TensorBoard files.

Next, the model.fit() method is invoked with a value of 50 for the
epochs (shown in bold), followed by the model.evaluate() method.
Launch the code in Listing A.7 to see the following output:

Introduction to Keras • 247

Epoch 1/50

1000/1000 [===============] - 0s 354us/sample - loss:

0.2452 - mae: 0.4127 - val_loss: 0.2517 - val_mae: 0.4205

Epoch 2/50

1000/1000 [===============] - 0s 63us/sample - loss: 0.2447

- mae: 0.4125 - val_loss: 0.2515 - val_mae: 0.4204

Epoch 3/50

1000/1000 [===============]- 0s 63us/sample - loss: 0.2445

- mae: 0.4124 - val_loss: 0.2520 - val_mae: 0.4209

Epoch 4/50

1000/1000 [===============] - 0s 68us/sample - loss: 0.2444

- mae: 0.4123 - val_loss: 0.2519 - val_mae: 0.4205

1000/1000 [===============] - 0s 37us/sample - loss: 0.2437

- mae: 0.4119

(1000, 10)

Notice that the code stopped training after four epochs, even though 50
epochs are specified in the code.

Keras and Early Stopping (2)

The previous section contains a code sample with minimalistic function-
ality with respect to the use of callback functions in Keras. However, you
can also define a custom class that provides finer-grained functionality
that uses a callback mechanism.

Listing A.8 shows the content of tf2_keras_callback2.py, which per-
forms early stopping via a callback mechanism (the new code is shown in
bold).

Listing A.8: tf2_keras_callback2.py

import tensorflow as tf

import numpy as np

model = tf.keras.Sequential()

model.add(tf.keras.layers.Dense(64, activation='relu'))

model.add(tf.keras.layers.Dense(64, activation='relu'))

model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),

 loss='mse', # mean squared error

 metrics=['mae']) # mean absolute error

248 • Angular and Deep Learning Pocket Primer

data = np.random.random((1000, 32))

labels = np.random.random((1000, 10))

val_data = np.random.random((100, 32))

val_labels = np.random.random((100, 10))

class MyCallback(tf.keras.callbacks.Callback):

 def on_train_begin(self, logs={}):

 print("on_train_begin")

 def on_train_end(self, logs={}):

 print("on_train_begin")

 return

 def on_epoch_begin(self, epoch, logs={}):

 print("on_train_begin")

 return

 def on_epoch_end(self, epoch, logs={}):

 print("on_epoch_end")

 return

 def on_batch_begin(self, batch, logs={}):

 print("on_batch_begin")

 return

 def on_batch_end(self, batch, logs={}):

 print("on_batch_end")

 return

callbacks = [MyCallback()]

model.fit(data, labels, batch_size=32, epochs=50,

callbacks=callbacks,

 validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

The new code in Listing A.8 differs from Listing A.7. It is limited to the
code block that is displayed in bold. This new code defines a custom
Python class with several methods, each of which is invoked during the
appropriate point during the Keras lifecycle execution. The six methods
consist of three pairs of methods for the start event and end event associ-
ated with training, epochs, and batches, as listed here:

�� def on_train_begin()
�� def on_train_end()
�� def on_epoch_begin()

Introduction to Keras • 249

�� def on_epoch_end()
�� def on_batch_begin()
�� def on_batch_end()

The preceding methods contain just a print() statement in Listing A.8,
and you can insert any code you wish in any of these methods. Launch the
code in Listing A.8 to see the following output:

on_train_begin

on_train_begin

Epoch 1/50

on_batch_begin

on_batch_end

 32/1000 [...................] - ETA: 4s - loss: 0.2489 -

mae: 0.4170on_batch_begin

on_batch_end

on_batch_begin on_batch_end

// details omitted for brevity

on_batch_begin

on_batch_end

on_batch_begin

on_batch_end

992/1000 [==================>.] - ETA: 0s - loss: 0.2468 -

mae: 0.4138on_batch_begin

on_batch_end

on_epoch_end

1000/1000 [=====================] - 0s 335us/sample - loss:

0.2466 - mae: 0.4136 - val_loss: 0.2445 - val_mae: 0.4126

on_train_begin

Epoch 2/50

on_batch_begin

on_batch_end

 32/1000 [..............................] - ETA: 0s - loss:

0.2465 - mae: 0.4133on_batch_begin

on_batch_end

on_batch_begin

on_batch_end

// details omitted for brevity

on_batch_end

on_epoch_end

1000/1000 [======================] - 0s 51us/sample - loss:

0.2328 - mae: 0.4084 - val_loss: 0.2579 - val_mae: 0.4241

on_train_begin

250 • Angular and Deep Learning Pocket Primer

 32/1000 [....................] - ETA: 0s - loss: 0.2295 -

mae: 0.4030

1000/1000 [====================] - 0s 22us/sample - loss:

0.2313 - mae: 0.4077

(1000, 10)

Keras and Metrics

Many Keras-based models only specify accuracy as the metric for evalu-
ating a trained model, as shown here:

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

However, there are many other built-in metrics available, each of which
is encapsulated in a Keras class in the tf.keras.metrics namespace.
Some of these metrics are as follows:

�� class Accuracy: how often predictions match labels
�� class BinaryAccuracy: how often predictions match labels
�� class CategoricalAccuracy: how often predictions match labels
�� class FalseNegatives: the number of false negatives
�� class FalsePositives: the number of false positives
�� class Mean: the (weighted) mean of the given values
�� class Precision: the precision of the predictions with respect to the

labels
�� class Recall: the recall of the predictions with respect to the labels
�� class TrueNegatives: the number of true negatives
�� class TruePositives: the number of true positives

Earlier in this chapter, you learned about the confusion matrix that pro-
vides numeric values for TP, TN, FP, and FN, and each of these val-
ues has a corresponding Keras class: TruePositive, TrueNegative,
FalsePositive, and FalseNegative, respectively. Perform an online
search for code samples that use the metrics in the preceding list.

Saving and Restoring Keras Models

Listing A.9 shows the content of tf2_keras_save_model.py, which
creates, trains, and saves a Keras-based model, and then creates a new
model that is populated with the data from the saved model.

Introduction to Keras • 251

Listing A.8: tf2_keras_save_model.py

import tensorflow as tf

import os

def create_model():

 model = tf.keras.models.Sequential([

 tf.keras.layers.Flatten(input_shape=(28, 28)),

 tf.keras.layers.Dense(512, activation=tf.nn.relu),

 tf.keras.layers.Dropout(0.2),

 tf.keras.layers.Dense(10, activation=tf.nn.softmax)

])

 model.compile(optimizer=tf.keras.optimizers.Adam(),

 loss=tf.keras.losses.sparse_categorical_crossentropy,

 metrics=['accuracy'])

 return model

Create a basic model instance

model = create_model()

model.summary()

checkpoint_path = "checkpoint/cp.ckpt"

checkpoint_dir = os.path.dirname(checkpoint_path)

Create checkpoint callback

cp_callback = tf.keras.callbacks.

ModelCheckpoint(checkpoint_path,

save_weights_only=True, verbose=1)

=> model #1: create the first model

model = create_model()

mnist = tf.keras.datasets.mnist

(X_train, y_train),(X_test, y_test) = mnist.load_data()

X_train, X_test = X_train / 255.0, X_test / 255.0

print("X_train.shape:",X_train.shape)

model.fit(X_train, y_train, epochs = 2,

 validation_data = (X_test,y_test),

 callbacks = [cp_callback]) # pass callback to

training

=> model #2: create a new model and load saved model

model = create_model()

loss, acc = model.evaluate(X_test, y_test)

252 • Angular and Deep Learning Pocket Primer

print("Untrained model, accuracy: {:5.2f}%".format(100*acc))

model.load_weights(checkpoint_path)

loss,acc = model.evaluate(X_test, y_test)

print("Restored model, accuracy: {:5.2f}%".format(100*acc))

Listing A.8 starts with the create_model() Python function that cre-
ates and compiles a Keras-based model. The next portion of Listing A.8
defines the location of the file that will be saved as well as the checkpoint
callback, as shown here:

checkpoint_path = "checkpoint/cp.ckpt"

checkpoint_dir = os.path.dirname(checkpoint_path)

Create checkpoint callback

cp_callback = tf.keras.callbacks.

ModelCheckpoint(checkpoint_path,

save_weights_only=True, verbose=1)

The next portion of Listing A.8 trains the current model using the MNIST
dataset, and also specifies cp_callback so that the model can be saved.

The final code block in Listing A.8 creates a new Keras-based model by
invoking the Python method create_model() again, evaluating this new
model on the test-related data, and displaying the value of the accuracy.
Next, the model is loaded with the saved model weights via the load_
weights() API. The relevant code block is reproduced here:

model = create_model()

loss, acc = model.evaluate(X_test, y_test)

print("Untrained model, accuracy: {:5.2f}%".format(100*acc))

model.load_weights(checkpoint_path)

loss,acc = model.evaluate(X_test, y_test)

print("Restored model, accuracy: {:5.2f}%".format(100*acc))

Now launch the code in Listing A.8 to see the following output:

on_train_begin

Model: "sequential"

Layer (type	 Output Shape	 Param #

flatten (Flatten)	 (None, 784)	 0

dense (Dense)	 (None, 512)	 401920

Introduction to Keras • 253

dropout (Dropout)	 (None, 512)	 0

dense_1 (Dense)	 (None, 10)	 5130

Total params: 407,050

Trainable params: 407,050

Non-trainable params: 0

Train on 60000 samples, validate on 10000 samples

Epoch 1/2

59840/60000 [===============>.] - ETA: 0s - loss: 0.2173 -

accuracy: 0.9351

Epoch 00001: saving model to checkpoint/cp.ckpt

60000/60000 [==================] - 10s 168us/sample - loss:

0.2170 - accuracy: 0.9352 - val_loss: 0.0980 - val_accu-

racy: 0.9696

Epoch 2/2

59936/60000 [===============>.] - ETA: 0s - loss: 0.0960 -

accuracy: 0.9707

Epoch 00002: saving model to checkpoint/cp.ckpt

60000/60000 [============] - 10s 174us/sample - loss:

0.0959 - accuracy: 0.9707 - val_loss: 0.0735 - val_accu-

racy: 0.9761

10000/10000 [==================] - 1s 86us/sample - loss:

2.3986 - accuracy: 0.0777

Untrained model, accuracy: 7.77%

10000/10000 [==============================] - 1s 67us/

sample - loss: 0.0735 - accuracy: 0.9761

Restored model, accuracy: 97.61%

Th directory where you launched this code sample contains a new subdi-
rectory called checkpoint, whose contents are shown here:

-rw-r--r-- 1 owner staff 1222 Aug 17 14:34 cp.ckpt.index

-rw-r--r-- 1 owner staff 4886716 Aug 17 14:34 cp.ckpt.

data-00000-of-00001

-rw-r--r-- 1 owner staff 71 Aug 17 14:34 checkpoint

Summary

This appendix introduced you to some of the features of Keras and an
assortment of Keras-based code samples involving basic neural networks

254 • Angular and Deep Learning Pocket Primer

with the MNIST and Cifar10 datasets. You learned about some of the
important namespaces (such as tf.keras.layers) and their contents.

Next, you saw an example of performing linear regression with Keras and
a simple CSV file. Then, you learned how to create a Keras-based MLP
neural network that is trained on the MNIST dataset.

In addition, you saw examples of Keras-based models that perform early
stopping, which is convenient when the model exhibits minimal improve-
ment (that is specified by you) during the training process.

A ppendi x

Welcome to TensorFlow 2! This chapter introduces you to var-
ious features of TensorFlow 2 (abbreviated as TF 2), as well
as some of the TF 2 tools and projects that are covered under

the TF 2 umbrella. This appendix includes TF 2 code samples that illus-
trate new TF 2 features (such as tf.GradientTape and the @tf.function
decorator), plus code samples that show how to write code “the TF 2
way.”

Despite the simplicity of many topics in this chapter, they provide you
with a foundation for TF 2. You can think of this appendix appendix as
your starting point for learning about T 2, in conjunction with the appen-
dix that discusses Keras.

Keep in mind that the TensorFlow 1.x releases are considered legacy
code after the production release of TF 2. Google will provide only
security-related updates for TF 1.x (i.e., no new code development),
and support TensorFlow 1.x for at least another year beyond the ini-
tial production release of TF 2. For your convenience, TensorFlow
provides a conversion script to facilitate the automatic conversion of
TensorFlow 1.x code to TF 2 code in many cases (details provided later
in this chapter).

This appendix contains several sections regarding TF 1.x, all of which are
placed near the end of this appendix. If you do not have TF 1.x code,
these sections are optional (and they are labeled as such).

The first part of this appendix briefly discusses some TF 2 features and
some of the tools that are included under the TF 2 umbrella. The second
section of this appendix shows you how to write TF 2 code involving TF
constants and TF variables.

Introduction to TF 2

B

256 • Angular and Deep Learning Pocket Primer

The third section digresses a bit: you will learn about the new TF 2 Python
function decorator @tf.function that is used in many code samples in this
appendix. Although this decorator is not always required, it’s important to
become comfortable with this feature, and there are some non-intuitive
caveats regarding its use that are discussed in this section.

The fourth section of this appendix shows you how to perform typical arith-
metic operations in TF 2, how to use some of the built-in TF 2 functions,
and how to calculate trigonometric values. If you need to perform scien-
tific calculations, see the code samples that pertain to the type of precision
that you can achieve with floating point numbers in TF 2. This section also
shows you how to use for loops and how to calculate exponential values.

The fifth section contains TF 2 code samples involving arrays, such as creating
an identity matrix, a constant matrix, a random uniform matrix, and a trun-
cated normal matrix, along with an explanation about the difference between
a truncated matrix and a random matrix. This section also shows you how to
multiply 2nd order tensors in TF 2 and how to convert Python arrays to 2nd
order tensors in TF 2. The sixth section contains code samples that illustrate
how to use some of the new features of TF 2, such as tf.GradientTape.

Although the TF 2 code samples in this book use Python 3.x, it’s possible
to modify the code samples to run under Python 2.7. Also make note of
the following convention in this book (and only this book): TF 1.x files
have a “tf” prefix and TF 2 files have a “tf2” prefix.

With all that in mind, the next section discusses a few details of TF 2, its
architecture, and some of its features.

What is TF 2?

TF 2 is an open source framework from Google that is the newest version
of TensorFlow. The TF 2 framework is a modern framework that’s well-
suited for machine learning (ML) and deep learning (DL), and it’s availa-
ble through an Apache license. Interestingly, TensorFlow surprised many
people, perhaps even members of the TF team, in terms of the creativity
and plethora of use cases for TF in areas such as art, music, and medicine.
For a variety of reasons, the TensorFlow team created TF 2 with the goal
of consolidating the TF APIs, eliminating duplication of APIs, enabling
rapid prototyping, and making debugging an easier experience.

There is good news if you are a fan of Keras: improvements in TF 2 are
partially due to the adoption of Keras as part of the core functionality of

Introduction to TF 2 • 257

TF 2. In fact, TF 2 extends and optimizes Keras so that it can take advan-
tage of all the advanced features in TF 2.

If you work primarily with deep learning models (CNNs, RNNs, LSTMs,
and so forth), you’ll probably use some of the classes in the tf.keras
namespace, which is the implementation of Keras in TF 2. Moreover,
tf.keras.layers provides several standard layers for neural networks.
As you’ll see later, there are several ways to define Keras-based models,
via the tf.keras.Sequential class, a functional style definition, and via
a subclassing technique. Alternatively, you can still use lower-level opera-
tions and automatic differentiation if you wish to do so.

Furthermore, TF 2 removes duplicate functionality, provides a more
intuitive syntax across APIs, and also compatibility throughout the
TF 2 ecosystem. TF 2 even provides a backward compatibility mod-
ule called tf.compat.v1 (which does not include tf.contrib), and
a conversion script tf_upgrade_v2 to help users migrate from TF 1.x
to TF 2.

Another significant change in TF 2 is eager execution as the default mode
(not deferred execution), with new features such as the @tf.function
decorator and TF 2 privacy-related features. Here is a condensed list of
some TF 2 features and related technologies:

�� support for tf.keras: a specification for high-level code for ML and
DL

�� tensorflow.js v1.0: TF in modern browsers
�� TensorFlow Federated: an open source framework for ML and

decentralized data
�� Ragged Tensors: nested variable-length (“uneven”) lists
�� TensorFlow Probability: probabilistic models combined with deep

learning
�� Tensor2Tensor: a library of DL models and datasets

TF 2 also supports a variety of programming languages and hardware
platforms, including

�� Support for Python, Java, C++
�� Desktop, server, mobile device (TF Lite)
�� CPU/GPU/TPU support
�� Linux and Mac OS X support
�� VM for Windows

Navigate to the TF 2 home page, where you will find links to many
resources for TF 2: https://www.tensorflow.org

258 • Angular and Deep Learning Pocket Primer

TF 2 Use Cases

TF 2 is designed to solve tasks that arise in a plethora of use cases, some
of which are listed here:

�� Image recognition
�� Computer vision
�� Voice/sound recognition
�� Time series analysis
�� Language detection
�� Language translation
�� Text-based processing
�� Handwriting Recognition

The preceding list of use cases can be solved in TF 1.x as well as TF 2, and
in the latter case, the code tends to be simpler and cleaner compared to
their TF 1.x counterpart.

TF 2 Architecture: The Short Version

TF 2 is written in C++ and supports operations involving primitive values
and tensors (discussed later). The default execution mode for TF 1.x is
deferred execution whereas TF 2 uses eager execution (think “immediate
mode”). Although TF 1.4 introduced eager execution, the vast majority of
TF 1.x code samples that you find online use deferred execution.

TF 2 supports arithmetic operations on tensors (i.e., multi-dimensional
arrays with enhancements) as well as conditional logic, for loops, and
while loops. Although it’s possible to switch between eager execution
mode and deferred mode in TF 2, all the code samples in this book use
eager execution mode.

Data visualization is handled via TensorBoard (discussed in Chapter 2)
that is included as part of TF 2. As you will see in the code samples in this
book, TF 2 APIs are available in Python and can therefore be embedded
in Python scripts.

Let’s learn how to install TF 2, which is the topic of the next section.

TF 2 Installation

Install TensorFlow by issuing the following command from the command
line:

pip install tensorflow==2.0.0-beta1

Introduction to TF 2 • 259

When a production release of TF 2 is available, you can issue the follow-
ing command from the command line (which will be the most current
version of TF 2):

pip install --upgrade tensorflow

If you want to install a specific version (let’s say version 1.13.1) of
TensorFlow, type the following command:

pip install --upgrade tensorflow==1.13.1

You can also downgrade the installed version of TensorFlow. For exam-
ple, if you have installed version 1.13.1 and you want to install version
1.10, specify the value 1.10 in the preceding code snippet. TensorFlow
will uninstall your current version and install the version that you speci-
fied (i.e., 1.10).

As a sanity check, create a Python script with the following three lines
of code to determine the version number of TF that is installed on your
machine:

import tensorflow as tf

print("TF Version:",tf.__version__)

print("eager execution:",tf.executing_eagerly())

Launch the preceding code to see something similar to the following
output:

TF version: 2.3.0

eager execution: True

As a simple example of TF 2 code, place this code snippet in a text file:

import tensorflow as tf

print("1 + 2 + 3 + 4 =", tf.reduce_sum([1, 2, 3, 4]))

Launch the preceding code from the command line to see the following
output:

1 + 2 + 3 + 4 = tf.Tensor(10, shape=(), dtype=int32)

TF 2 and the Python REPL

In case you aren’t already familiar with the Python REPL (read-eval-print-
loop), it’s accessible by opening a command shell and then typing the fol-
lowing command:

python

260 • Angular and Deep Learning Pocket Primer

As a simple illustration, access TF 2-related functionality in the REPL by
importing the TF 2 library as follows:

>>> import tensorflow as tf

Now check the version of TF 2 that is installed on your machine with this
command:

>>> print('TF version:',tf.__version__)

The output of the preceding code snippet is shown here (the number that
you see depends on which version of TF 2 that you installed):

TF version: 2.0.0-beta1

Although the REPL is useful for short code blocks, the TF 2 code sam-
ples in this book are Python scripts that you can launch with the Python
executable.

Other TF 2-based Toolkits

In addition to providing support for TF 2-based code on multiple devices,
TF 2 provides the following toolkits:

�� TensorBoard for visualization (included as part of TensorFlow)
�� TensorFlow Serving (hosting on a server)
�� TensorFlow Hub
�� TensorFlow Lite (for mobile applications)
�� Tensorflow.js (for Web pages and NodeJS)

TensorBoard is a graph visualization tool that runs in a browser. Launch
TensorBoard from the command line as follows: open a command shell
and type the following command to access a saved TF graph in the subdi-
rectory /tmp/abc (or a directory of your choice):

tensorboard –logdir /tmp/abc

Note that there are two consecutive dashes (“-”) that precede the logdir
parameter in the preceding command. Now launch a browser session and
navigate to this URL: localhost:6006

After a few moments you will see a visualization of the TF 2 graph that
was created in your code and then saved in the directory /tmp/abc.

TensorFlow Serving is a cloud-based flexible, high-performance serving
system for ML models that is designed for production environments.
TensorFlow Serving makes it easy to deploy new algorithms and experi-
ments, while keeping the same server architecture and APIs. More infor-
mation is here: https://www.TF 2.org/serving/

Introduction to TF 2 • 261

TensorFlow Lite was specifically created for mobile development (both
Android and iOS). Please keep in mind that TensorFlow Lite supersedes
TF 2 Mobile, which was an earlier SDK for developing mobile appli-
cations. TensorFlow Lite (which also exists for TF 1.x) supports on-de-
vice ML inference with low latency and a small binary size. Moreover,
TensorFlow Lite supports hardware acceleration with the Android Neural
Networks API. More information about TensorFlow Lite is here:

https://www.tensorflow.org/lite/

A more recent addition is tensorflow.js, which provides JavaScript
APIs to access TensorFlow in a Web page. The tensorflow.js toolkit
was previously called deeplearning.js. You can also use tensorflow.
js with NodeJS. More information about tensorflow.js is here:

https://js.tensorflow.org

TF 2 Eager Execution

TF 2 eager execution mode makes TF 2 code much easier to write com-
pared to TF 1.x code (which used deferred execution mode). You might
be surprised to discover that TF introduced eager execution as an alter-
native to deferred execution in version 1.4.1, but this feature was vastly
underutilized. With TF 1.x code, TensorFlow creates a dataflow graph
that consists of 1) a set of tf.Operation objects that represent units of
computation and 2) tf.Tensor objects that represent the units of data
that flow between operations.

TF 2 evaluates operations immediately without instantiating a session
object or a creating a graph. Operations return concrete values instead
of creating a computational graph. TF 2 eager execution is based on the
Python control flow instead of graph control flow. Arithmetic operations
are simpler and intuitive, as you will see in code samples later in this
chapter. Moreover, TF 2 eager execution mode simplifies the debugging
process. However, keep in mind that there isn’t a 1:1 relationship between
a graph and eager execution.

TF 2 Tensors, Data Types, and Primitive Types

In simplified terms, a TF 2 tensor is an n-dimensional array that is similar
to a NumPy ndarray. A TF 2 tensor is defined by its dimensionality, as
illustrated here:

scalar number: a zeroth-order tensor

vector: a first-order tensor

262 • Angular and Deep Learning Pocket Primer

matrix: a second-order tensor

3-dimensional array: a 3rd order tensor

The next section discusses some of the data types that are available in
TF 2, followed by a section that discusses TF 2 primitive types.

TF 2 Data Types

TF 2 supports the following data types (similar to the supported data
types in TensorFlow 1.x):

�� tf.float32
�� tf.float64
�� tf.int8
�� tf.int16
�� tf.int32
�� tf.int64
�� tf.uint8
�� tf.string
�� tf.bool

The data types in the preceding list are self-explanatory: two floating point
types, four integer types, one unsigned integer type, one string type, and
one Boolean type. As you can see, there is a 32-bit and a 64-bit floating
point type, and integer types that range from 8-bit through 64-bit.

TF 2 Primitive Types

TF 2 supports tf.constant() and tf.Variable() as primitive types.
Notice the capital “V” in tf.Variable(): this indicates a TF 2 class (which
is not the case for a lowercase initial letter, such as tf.constant()).

A TF 2 constant is an immutable value, and a simple example is shown
here:

aconst = tf.constant(3.0)

A TF 2 variable is a trainable value in a TF 2 graph. For example, the
slope m and y-intercept b of a best-fitting line for a dataset consisting of
points in the Euclidean plane are two examples of trainable values. Some
examples of TF variables are shown here:

b = tf.Variable(3, name="b")

x = tf.Variable(2, name="x")

z = tf.Variable(5*x, name="z")

Introduction to TF 2 • 263

W = tf.Variable(20)

lm = tf.Variable(W*x + b, name="lm")

Notice that b, x, and z are defined as TF variables. In addition, b and x
are initialized with numeric values, whereas the value of the variable z is
an expression that depends on the value of x (which equals 2).

Constants in TF 2

Here is a short list of some properties of TF 2 constants:

�� initialized during their definition
�� cannot change their value (“immutable”)
�� can specify their name (optional)
�� the type is required (ex: tf.float32)
�� are not modified during training

Listing B.1 shows the content of tf2_constants1.py, which illustrates
how to assign and print the values of some TF 2 constants.

Listing B.1: tf2_constants1.py

import tensorflow as tf

scalar = tf.constant(10)

vector = tf.constant([1,2,3,4,5])

matrix = tf.constant([[1,2,3],[4,5,6]])

cube =

tf.constant([[[1],[2],[3]],[[4],[5],[6]],[[7],[8],[9]]])

print(scalar.get_shape())

print(vector.get_shape())

print(matrix.get_shape())

print(cube.get_shape())

Listing B.1 contains four tf.constant() statements that define TF 2
tensors of dimension 0, 1, 2, and 3, respectively. The second part of
Listing B.1 contains four print() statements that display the shape of
the four TF 2 constants that are defined in the first section of Listing B.1.
The output from Listing B.1 is here:

()

(5,)

(2, 3)

(3, 3, 1)

264 • Angular and Deep Learning Pocket Primer

Listing B.2 shows the content of tf2_constants2.py, which illustrates
how to assign values to TF 2 constants and then print those values.

Listing B.2: tf2_constants2.py

import tensorflow as tf

x = tf.constant(5,name="x")

y = tf.constant(8,name="y")

@tf.function

def calc_prod(x, y):

 z = 2*x + 3*y

 return z

result = calc_prod(x, y)

print('result =',result)

Listing B.2 defines a decorated (shown in bold) Python function calc_
prod()with TF 2 code that would otherwise be included in a TF 1.x
tf.Session() code block. Specifically, z would be included in a sess.
run() statement, along with a feed_dict that provides values for x and
y. Fortunately, a decorated Python function in TF 2 makes the code look
like normal Python code.

Variables in TF 2

TF 2.0 eliminates global collections and their associated APIs, such as
tf.get_variable, tf.variable_scope, and tf.initializers.

global_variables. Whenever you need a tf.Variable in TF 2, con-
struct and initialize it directly, as shown here:

tf.Variable(tf.random.normal([2, 4])

Listing B.3 shows the content of tf2_variables.py, which illustrates
how to compute values involving TF constants and variables in a with
code block.

Listing B.3: tf2_variables.py

import tensorflow as tf

v = tf.Variable([[1., 2., 3.], [4., 5., 6.]])

print("v.value():", v.value())

print("")

Introduction to TF 2 • 265

print("v.numpy():", v.numpy())

print("")

v.assign(2 * v)

v[0, 1].assign(42)

v[1].assign([7., 8., 9.])

print("v:",v)

print("")

try:

 v[1] = [7., 8., 9.]

except TypeError as ex:

 print(ex)

Listing B.3 defines a TF 2 variable v and prints its value. The next portion
of Listing B.3 updates the value of v and prints its new value. The last por-
tion of Listing B.3 contains a try/except block that attempts to update
the value of v[1]. The output from Listing B.3 is here:

v.value(): tf.Tensor(

[[1. 2. 3.]

 [4. 5. 6.]], shape=(2, 3), dtype=float32)

v.numpy(): [[1. 2. 3.]

 [4. 5. 6.]]

v: <tf.Variable 'Variable:0' shape=(2, 3) dtype=float32,

numpy=

array([[2., 42., 6.],

 [7., 8., 9.]], dtype=float32)>

'ResourceVariable' object does not support item assignment

This concludes the quick tour involving TF 2 code that contains various
combinations of TF constants and TF variables. The next few sections
delve into more details regarding the TF primitive types that you saw in
the preceding sections.

The tf.rank() API

The rank of a TF 2 tensor is the dimensionality of the tensor, whereas the
shape of a tensor is the number of elements in each dimension. Listing
B.4 shows the content of tf2_rank.py, which illustrates how to find the
rank of TF 2 tensors.

266 • Angular and Deep Learning Pocket Primer

Listing B.4: tf2_rank.py

import tensorflow as tf # tf2_rank.py

A = tf.constant(3.0)

B = tf.fill([2,3], 5.0)

C = tf.constant([3.0, 4.0])

@tf.function

def show_rank(x):

 return tf.rank(x)

print('A:',show_rank(A))

print('B:',show_rank(B))

print('C:',show_rank(C))

Listing B.4 contains familiar code for defining the TF constant A, followed
by the TF tensor B, which is a 2x3 tensor in which every element has the
value 5. The TF tensor C is a 1x2 tensor with the values 3.0 and 4.0.

The next code block defines the decorated Python function show_rank()
that returns the rank of its input variable. The final section invokes show_
rank() with A and then with B. The output from Listing B.4 is here:

A: tf.Tensor(0, shape=(), dtype=int32)

B: tf.Tensor(2, shape=(), dtype=int32)

C: tf.Tensor(1, shape=(), dtype=int32)

The tf.shape() API

The shape of a TF 2 tensor is the number of elements in each dimension
of a given tensor.

Listing B.5 shows the content of tf2_getshape.py, which illustrates
how to find the shape of TF 2 tensors.

Listing B.5: tf2_getshape.py

import tensorflow as tf

a = tf.constant(3.0)

print("a shape:",a.get_shape())

b = tf.fill([2,3], 5.0)

print("b shape:",b.get_shape())

Introduction to TF 2 • 267

c = tf.constant([[1.0,2.0,3.0], [4.0,5.0,6.0]])

print("c shape:",c.get_shape())

Listing B.5 contains the definition of the TF constant a whose value is
3.0. Next, the TF variable b is initialized as a 1x2 vector with the val-
ues [[2,3], 5.0], followed by the constant c, whose values are
[[1.0,2.0,3.0],[4.0,5.0,6.0]]. The three print() statements dis-
play the values of a, b, and c. The output from Listing B.5 is here:

a shape: ()

b shape: (2, 3)

c shape: (2, 3)

Shapes that specify a 0-D Tensor (scalar) are numbers (9, -5, 2.34, and so
forth), [], and (). As another example, Listing B.6 shows the content of tf2_
shapes.py, which contains an assortment of tensors and their shapes.

Listing B.6: tf2_shapes.py

import tensorflow as tf

list_0 = []

tuple_0 = ()

print("list_0:",list_0)

print("tuple_0:",tuple_0)

list_1 = [3]

tuple_1 = (3)

print("list_1:",list_1)

print("tuple_1:",tuple_1)

list_2 = [3, 7]

tuple_2 = (3, 7)

print("list_2:",list_2)

print("tuple_2:",tuple_2)

any_list1 = [None]

any_tuple1 = (None)

print("any_list1:",any_list1)

print("any_tuple1:",any_tuple1)

any_list2 = [7,None]

any_list3 = [7,None,None]

print("any_list2:",any_list2)

print("any_list3:",any_list3)

268 • Angular and Deep Learning Pocket Primer

Listing B.6 contains simple lists and tuples of various dimensions to illus-
trate the difference between these two types. The output from Listing B.6
is probably what you would expect, and it’s shown here:

list_0: []

tuple_0: ()

list_1: [3]

tuple_1: 3

list_2: [3, 7]

tuple_2: (3, 7)

any_list1: [None]

any_tuple1: None

any_list2: [7, None]

any_list3: [7, None, None]

Variables in TF 2 (Revisited)

TF 2 variables can be updated during backward error propagation. TF 2
variables can also be saved and then restored at a later point in time. The
following list contains some properties of TF 2 variables:

�� initial value is optional
�� must be initialized before graph execution
�� updated during training
�� constantly recomputed
�� they hold values for weights and biases
�� in-memory buffer (saved/restored from disk)

Here are some simple examples of TF 2 variables:

b = tf.Variable(3, name='b')

x = tf.Variable(2, name='x')

z = tf.Variable(5*x, name="z")

W = tf.Variable(20)

lm = tf.Variable(W*x + b, name="lm")

Notice that the variables b, x, and W specify constant values, whereas the
variables z and lm specify expressions that are defined in terms of other
variables. If you are familiar with linear regression, you undoubtedly
noticed that the variable lm (linear model) defines a line in the Euclidean
plane. Other properties of TF 2 variables are listed below:

�� a tensor that’s updateable via operations
�� exist outside the context of session.run

Introduction to TF 2 • 269

�� like a “regular” variable
�� holds the learned model parameters
�� variables can be shared (or non-trainable)
�� used for storing/maintaining state
�� internally stores a persistent tensor
�� you can read/modify the values of the tensor
�� multiple workers see the same values for tf.Variables
�� the best way to represent shared, persistent state manipulated by

your program

TF 2 also provides the method tf.assign()to modify values of TF 2
variables; be sure to read the relevant code sample later in this chapter so
that you learn how to use this API correctly.

TF 2 Variables versus Tensors

Keep in mind the following distinction between TF variables and TF
tensors: TF variables represent your model’s trainable parameters (ex:
weights and biases of a neural network), whereas TF tensors represents
the data fed into your model and the intermediate representations of that
data as it passes through your model.

In the next section, you will learn about the @tf.function “decorator”
for Python functions and how it can improve performance.

What is @tf.function in TF 2?

TF 2 introduced the @tf.function “decorator” for Python functions that
defines a graph and performs session execution: it’s sort of a successor to
tf.Session() in TF 1.x. Since graphs can still be useful, @tf.function
transparently converts Python functions into functions that are backed
by graphs. This decorator also converts tensor-dependent Python control
flow into the TF control flow and also adds control dependencies to order
read and write operations to the TF 2 state. Remember that @tf.func-
tion works best with TF 2 operations instead of NumPy operations or
Python primitives.

In general, you won’t need to decorate functions with @tf.function;
use it to decorate high-level computations, such as one step of training or
the forward pass of a model.

Although TF 2 eager execution mode facilitates a more intuitive user
interface, this ease-of-use can be at the expense of the performance (the

270 • Angular and Deep Learning Pocket Primer

performance decreases). Fortunately, the @tf.function decorator is a
technique for generating graphs in TF 2 code that execute more quickly
than eager execution mode.

The performance benefit depends on the type of operations that are
performed: matrix multiplication does not benefit from the use of @tf.
function, whereas optimizing a deep neural network can benefit from
@tf.function.

How Does @tf.function Work?

Whenever you decorate a Python function with @tf.function, TF 2
automatically builds the function in graph mode. If a Python function
that is decorated with @tf.function invokes other Python functions
that are not decorated with @tf.function, then the code in those
“non-decorated” Python functions is also included in the generated
graph.

Another point to keep in mind is that a tf.Variable in eager mode is
actually a “plain” Python object: this object is destroyed when it’s out of
scope. A tf.Variable object defines a persistent object if the function
is decorated via @tf.function. In this scenario, eager mode is disabled
and the tf.Variable object defines a node in a persistent TF 2 graph.
Consequently, a function that works in eager mode without annotation
can fail when it is decorated with @tf.function.

A Caveat about @tf.function in TF 2

If constants are defined before the definition of a decorated Python
function, you can print their values inside the function using the Python
print() function. If constants are defined inside the definition of a deco-
rated Python function, you can print their values inside the function using
the TF 2 tf.print() function. Consider this code block:

import tensorflow as tf

a = tf.add(4, 2)

@tf.function

def compute_values():

 print(a) # 6

compute_values()

Introduction to TF 2 • 271

output:

tf.Tensor(6, shape=(), dtype=int32)

The correct result is displayed (shown in bold). However, if you define
constants inside a decorated Python function, the output contains types
and attributes but not the execution of the addition operation. Consider
the following code block:

import tensorflow as tf

@tf.function

def compute_values():

 a = tf.add(4, 2)

 print(a)

compute_values()

output:

Tensor("Add:0", shape=(), dtype=int32)

The zero in the preceding output is part of the tensor name and not an
outputted value. Specifically, Add:0 is output zero of the tf.add() oper-
ation. Any additional invocation of compute_values() prints nothing. If
you want actual results, one solution is to return a value from the function,
as shown here:

import tensorflow as tf

@tf.function

def compute_values():

 a = tf.add(4, 2)

 return a

result = compute_values()

print("result:", result)

The output from the preceding code block is here:

result: tf.Tensor(6, shape=(), dtype=int32)

A second solution involves the TF tf.print() function instead of the
Python print() function, as shown in bold in this code block:

@tf.function

def compute_values():

 a = tf.add(4, 2)

 tf.print(a)

272 • Angular and Deep Learning Pocket Primer

A third solution is to cast the numeric values to Tensors if they do not
affect the shape of the generated graph, as shown here:

import tensorflow as tf

@tf.function

def compute_values():

 a = tf.add(tf.constant(4), tf.constant(2))

 return a

result = compute_values()

print("result:", result)

The tf.print() Function and Standard Error

There is one more detail to remember: the Python print() function
sends output to the standard output that is associated with a file descrip-
tor whose value is 1; on the other hand, tf.print() sends output to the
standard error that is associated with a file descriptor whose value is 2. In
programming languages such as C, only errors are sent to the standard
error, so keep in mind that the behavior of tf.print() differs from the
convention regarding standard out and standard error. The following code
snippets illustrate this difference:

python3 file_with_print.py 1>print_output

python3 file_with_tf.print.py 2>tf.print_output

If your Python file contains both print() and tf.print(), you can cap-
ture the output as follows:

python3 both_prints.py 1>print_output 2>tf.print_output

However, keep in mind that the preceding code snippet might also redi-
rect real error messages to the file tf.print_output.

Working with With @tf.function in TF 2

The preceding section explained how the output differs depending on
whether you use the Python print() function or the tf.print() func-
tion in TF 2 code, where the latter function also sends output to the
standard error instead of the standard output.

This section contains several examples of the @tf.function decorator in
TF 2 to show you some nuances in behavior that depend on where you
define constants and whether you use the tf.print() function or the

Introduction to TF 2 • 273

Python print() function. Also keep in mind the comments in the pre-
vious section regarding @tf.function, as well as the fact that you don’t
need to use @tf.function in all your Python functions.

An Example Without @tf.function

Listing B.7 shows the content of tf2_simple_function.py, which
illustrates how to define a Python function with TF 2 code.

Listing B.7: tf2_simple_function.py

import tensorflow as tf

def func():

 a = tf.constant([[10,10],[11.,1.]])

 b = tf.constant([[1.,0.],[0.,1.]])

 c = tf.matmul(a, b)

 return c

print(func().numpy())

The code in Listing B.7 is straightforward: a Python function func()
defines two TF 2 constants, computes their product, and returns that
value.

Since TF 2 works in eager mode by default, the Python function func()
is treated as a “normal” function. Launch the code to see the following
output:

[[20. 30.]

 [22. 3.]]

An Example With @tf.function

Listing B.8 shows the content of tf2_at_function.py, which illustrates
how to define a decorated Python function with TF code.

Listing B.8: tf2_at_function.py

import tensorflow as tf

@tf.function

def func():

 a = tf.constant([[10,10],[11.,1.]])

 b = tf.constant([[1.,0.],[0.,1.]])

274 • Angular and Deep Learning Pocket Primer

 c = tf.matmul(a, b)

 return c

print(func().numpy())

Listing B.8 defines a decorated Python function: the rest of the code is
identical to Listing B.7. However, because of the @tf.function annota-
tion, the Python func() function is wrapped in a tensorflow.python.
eager.def_function.Function object. The Python function is assigned
to the .python_function property of the object.

When func() is invoked, the graph construction begins. Only the Python
code is executed, and the behavior of the function is traced so that TF 2 can
collect the required data to construct the graph. The output is shown here:

[[20. 30.]

 [22. 3.]]

Overloading Functions With @tf.function

If you have worked with programming languages such as Java and C++,
you are already familiar with the concept of overloading a function. If this
term is new to you, the idea is simple: an overloaded function is a function
that can be invoked with different data types. For example, you can define
an overloaded “add” function that can add two numbers as well as “add”
(i.e., concatenate) two strings.

If you’re curious, overloaded functions in various programming languages
are implemented via name mangling, which means that the signature (the
parameters and their data types for the function) are appended to the
function name to generate a unique function name. (This happens “under
the hood,” which means that you don’t need to worry about the imple-
mentation details.)

Listing B.9 shows the content of tf2_overload.py, which illustrates
how to define a decorated Python function that can be invoked with dif-
ferent data types.

Listing B.9: tf2_overload.py

import tensorflow as tf

@tf.function

def add(a):

 return a + a

Introduction to TF 2 • 275

print("Add 1: ", add(1))

print("Add 2.3: ", add(2.3))

print("Add string tensor:", add(tf.constant("abc")))

c = add.get_concrete_function(tf.TensorSpec(shape=None,

dtype=tf.string))

c(a=tf.constant("a"))

Listing B.9 defines a decorated Python function add() that is preceded
by a @tf.function decorator. This function can be invoked by passing an
integer, a decimal value, or a TF 2 tensor, and the correct result is calcu-
lated. Launch the code to see the following output:

Add 1:	 tf.Tensor(2, shape=(), dtype=int32)

Add 2.3:	 tf.Tensor(4.6, shape=(), dtype=float32)

Add string tensor: � tf.Tensor(b'abcabc', shape=(),

dtype=string)

c:	� <tensorflow.python.eager.function.ConcreteFunction

object at 0x1209576a0>

What is AutoGraph in TF 2?

AutoGraph refers to the conversion from Python code to its graph rep-
resentation, which is a significant new feature in TF 2. AutoGraph is auto-
matically applied to functions that are decorated with @tf.function; this
decorator creates callable graphs from Python functions.

AutoGraph transforms a subset of Python syntax into its portable,
high-performance and language agnostic graph representation, thereby
bridging the gap between TF 1.x and TF 2.0. In fact, autograph allows you
to inspect its auto-generated code with this code snippet. For example, if
you define a Python function called my_product(), you can inspect its
auto-generated code with this snippet:

print(tf.autograph.to_code(my_product))

In particular, the Python for/while construct in implemented in TF
2 via tf.while_loop (break and continue are also supported). The
Python if construct is implemented in TF 2 via tf.cond. The “for _ in
dataset” is implemented in TF 2 via dataset.reduce.

AutoGraph also has some rules for converting loops. A for loop is con-
verted if the iterable in the loop is a Tensor, and a while loop is converted
if the while condition depends on a Tensor. If a loop is converted, it is
dynamically unrolled with tf.while_loop, as well as the special case of

276 • Angular and Deep Learning Pocket Primer

a for x in tf.data.Dataset (the latter is transformed into tf.data.
Dataset.reduce). If a loop is not converted, it is statically unrolled.

AutoGraph supports the control flow that is nested arbitrarily deep, so
you can implement many types of ML programs.

Arithmetic Operations in TF 2

Listing B.10 shows the content of tf2_arithmetic.py, which illustrates
how to perform arithmetic operations in a TF 2.

Listing B.10: tf2_arithmetic.py

import tensorflow as tf

@tf.function # repłace print() with tf.print()

def compute_values():

 a = tf.add(4, 2)

 b = tf.subtract(8, 6)

 c = tf.multiply(a, 3)

 d = tf.math.divide(a, 6)

 print(a) # 6

 print(b) # 2

 print(c) # 18

 print(d) # 1

compute_values()

Listing B.10 defines the decorated Python function compute_values()
with simple code for computing the sum, difference, product, and quo-
tient of two numbers via the tf.add(), tf.subtract(), tf.mul-

tiply(), and the tf.math.divide() APIs, respectively. The four
print() statements display the values of a, b, c, and d. The output from
Listing B.10 is here:

tf.Tensor(6, shape=(), dtype=int32)

tf.Tensor(2, shape=(), dtype=int32)

tf.Tensor(18, shape=(), dtype=int32)

tf.Tensor(1.0, shape=(), dtype=float64)

Caveats for Arithmetic Operations in TF 2

You can also perform arithmetic operations involving TF 2 constants and
variables. Listing B.11 shows the content of tf2_const_var.py, which

Introduction to TF 2 • 277

illustrates how to perform arithmetic operations involving a TF 2 constant
and a variable.

Listing B.11: tf2_const_var.py

import tensorflow as tf

v1 = tf.Variable([4.0, 4.0])

c1 = tf.constant([1.0, 2.0])

diff = tf.subtract(v1,c1)

print("diff:",diff)

Listing B.11 computes the difference of the TF variable v1 and the TF
constant c1, and the output is shown here:

diff: tf.Tensor([3. 2.], shape=(2,), dtype=float32)

However, if you update the value of v1 and then print the value of diff,
it will not change. You must reset the value of diff, just as you would in
other imperative programming languages.

Listing B.12 shows the content of tf2_const_var2.py, which illustrates
how to perform arithmetic operations involving a TF 2 constant and a
variable.

Listing B.12: tf2_const_var2.py

import tensorflow as tf

v1 = tf.Variable([4.0, 4.0])

c1 = tf.constant([1.0, 2.0])

diff = tf.subtract(v1,c1)

print("diff1:",diff.numpy())

diff is NOT updated:

v1.assign([10.0, 20.0])

print("diff2:",diff.numpy())

diff is updated correctly:

diff = tf.subtract(v1,c1)

print("diff3:",diff.numpy())

Listing B.12 re-computes the value of diff in the final portion of Listing
B.11, after which it has the correct value. The output is shown here:

diff1: [3. 2.]

diff2: [3. 2.]

diff3: [9. 18.]

278 • Angular and Deep Learning Pocket Primer

TF 2 and Built-in Functions

Listing B.13 shows the content of tf2_math_ops.py, which illustrates
how to perform additional arithmetic operations in a TF graph.

Listing B.13: tf2_math_ops.py

import tensorflow as tf

PI = 3.141592

@tf.function # repłace print() with tf.print()

def math_values():

 print(tf.math.divide(12,8))

 print(tf.math.floordiv(20.0,8.0))

 print(tf.sin(PI))

 print(tf.cos(PI))

 print(tf.math.divide(tf.sin(PI/4.), tf.cos(PI/4.)))

math_values()

Listing B.13 contains a hard-coded approximation for PI, followed by the
decorated Python function math_values() with five print() statements
that display various arithmetic results. Note in particular the third output
value is a very small number (the correct value is zero). The output from
Listing B.13 is here:

1.5

tf.Tensor(2.0, shape=(), dtype=float32)

tf.Tensor(6.2783295e-07, shape=(), dtype=float32)

tf.Tensor(-1.0, shape=(), dtype=float32)

tf.Tensor(0.99999964, shape=(), dtype=float32)

Listing B.14 shows the content of tf2_math-ops_pi.py, which illus-
trates how to perform arithmetic operations in TF 2.

Listing B.14: tf2_math_ops_pi.py

import tensorflow as tf

import math as m

PI = tf.constant(m.pi)

@tf.function # repłace print() with tf.print()

def math_values():

 print(tf.math.divide(12,8))

Introduction to TF 2 • 279

 print(tf.math.floordiv(20.0,8.0))

 print(tf.sin(PI))

 print(tf.cos(PI))

 print(tf.math.divide(tf.sin(PI/4.), tf.cos(PI/4.)))

math_values()

Listing B.14 is almost identical to the code in Listing B.13: the only
difference is that Listing B.14 specifies a hard-coded value for PI,
whereas Listing B.14 assigns m.pi to the value of PI. As a result, the
approximated value is one decimal place closer to the correct value
of zero. The output from Listing B.14 is here. Notice how the output
format differs from Listing B.13 due to the Python print() function:

1.5

tf.Tensor(2.0, shape=(), dtype=float32)

tf.Tensor(-8.742278e-08, shape=(), dtype=float32)

tf.Tensor(-1.0, shape=(), dtype=float32)

tf.Tensor(1.0, shape=(), dtype=float32)

Calculating Trigonometric Values in TF 2

Listing B.15 shows the content of tf2_trig_values.py, which illus-
trates how to compute values involving trigonometric functions in TF 2.

Listing B.15: tf2_trig_values.py

import tensorflow as tf

import math as m

PI = tf.constant(m.pi)

a = tf.cos(PI/3.)

b = tf.sin(PI/3.)

c = 1.0/a # sec(60)

d = 1.0/tf.tan(PI/3.) # cot(60)

@tf.function # this decorator is okay

def math_values():

 print("a:",a)

 print("b:",b)

 print("c:",c)

 print("d:",d)

math_values()

280 • Angular and Deep Learning Pocket Primer

Listing B.14 is straightforward: there are several of the same TF 2 APIs
that you saw in Listing B.13. In addition, Listing B.14 contains the
tf.tan() API, which computes the tangent of a number (in radians).
The output from Listing B.14 is here:

a: tf.Tensor(0.49999997, shape=(), dtype=float32)

b: tf.Tensor(0.86602545, shape=(), dtype=float32)

c: tf.Tensor(2.0000002, shape=(), dtype=float32)

d: tf.Tensor(0.57735026, shape=(), dtype=float32)

Calculating Exponential Values in TF 2

Listing B.15 shows the content of tf2_exp_values.py, which illustrates
how to compute values involving additional trigonometric functions in TF 2.

Listing B.15: tf2_exp_values.py

import tensorflow as tf

a = tf.exp(1.0)

b = tf.exp(-2.0)

s1 = tf.sigmoid(2.0)

s2 = 1.0/(1.0 + b)

t2 = tf.tanh(2.0)

@tf.function # this decorator is okay

def math_values():

 print('a: ', a)

 print('b: ', b)

 print('s1:', s1)

 print('s2:', s2)

 print('t2:', t2)

math_values()

Listing B.15 starts with the TF 2 APIs tf.exp(), tf.sigmoid(), and
tf.tanh() that compute the exponential value of a number, the sigmoid
value of a number, and the hyperbolic tangent of a number, respectively.
The output from Listing B.15 is here:

a: tf.Tensor(2.7182817, shape=(), dtype=float32)

b: tf.Tensor(0.13533528, shape=(), dtype=float32)

s1: tf.Tensor(0.880797, shape=(), dtype=float32)

s2: tf.Tensor(0.880797, shape=(), dtype=float32)

t2: tf.Tensor(0.9640276, shape=(), dtype=float32)

Introduction to TF 2 • 281

Working with Strings in TF 2

Listing B.16 shows the content of tf2_strings.py, which illustrates how
to work with strings in TF 2.

Listing B.16: tf2_strings.py

import tensorflow as tf

x1 = tf.constant("café")

print("x1:",x1)

tf.strings.length(x1)

print("")

len1 = tf.strings.length(x1, unit="UTF8_CHAR")

len2 = tf.strings.unicode_decode(x1, "UTF8")

print("len1:",len1.numpy())

print("len2:",len2.numpy())

print("")

String arrays

x2 = tf.constant(["Café", "Coffee", "caffè", " "])

print("x2:",x2)

print("")

len3 = tf.strings.length(x2, unit="UTF8_CHAR")

print("len2:",len3.numpy())

print("")

r = tf.strings.unicode_decode(x2, "UTF8")

print("r:",r)

Listing B.16 defines the TF 2 constant x1 as a string that contains an accent
mark. The first print() statement displays the first three characters of x1,
followed by a pair of hexadecimal values that represent the accented “e”
character. The second and third print() statements display the number
of characters in x1, followed by the UTF8 sequence for the string x1.

The next portion of Listing B.16 defines the TF 2 constant x2 as a 1st
order TF 2 tensor that contains four strings. The next print() statement
displays the contents of x2, using UTF8 values for characters that contain
accent marks.

The final portion of Listing B.16 defines r as the Unicode values for the
characters in the string x2. The output from Listing B.14 is here:

x1: tf.Tensor(b'caf\xc3\xa9', shape=(), dtype=string)

282 • Angular and Deep Learning Pocket Primer

len1: 4

len2: [99 97 102 233]

x2: tf.Tensor([b'Caf\xc3\xa9' b'Coffee' b'caff\xc3\xa8'

b'\xe5\x92\x96\xe5\x95\xa1'], shape=(4,), dtype=string)

len2: [4 6 5 2]

r: <tf.RaggedTensor [[67, 97, 102, 233], [67, 111, 102,

102, 101, 101], [99, 97, 102, 102, 232], [21654, 21857]]>

Chapter 2 contains a complete code sample with more examples of a
RaggedTensor in TF 2.

Working with Tensors and Operations in TF 2

Listing B.17 shows the content of tf2_tensors_operations.py, which
illustrates how to use various operators with tensors in TF 2.

Listing B.17: tf2_tensors_operations.py

import tensorflow as tf

x = tf.constant([[1., 2., 3.], [4., 5., 6.]])

print("x:", x)

print("")

print("x.shape:", x.shape)

print("")

print("x.dtype:", x.dtype)

print("")

print("x[:, 1:]:", x[:, 1:])

print("")

print("x[..., 1, tf.newaxis]:", x[..., 1, tf.newaxis])

print("")

print("x + 10:", x + 10)

print("")

print("tf.square(x):", tf.square(x))

print("")

print("x @ tf.transpose(x):", x @ tf.transpose(x))

m1 = tf.constant([[1., 2., 4.], [3., 6., 12.]])

print("m1: ", m1 + 50)

print("m1 + 50: ", m1 + 50)

Introduction to TF 2 • 283

print("m1 * 2: ", m1 * 2)

print("tf.square(m1): ", tf.square(m1))

Listing B.17 defines the TF tensor x that contains a 2x3 array of real num-
bers. The bulk of the code in Listing B.17 illustrates how to display prop-
erties of x by invoking x.shape and x.dtype, as well as the TF function
tf.square(x). The output from Listing B.17 is here:

x: tf.Tensor(

[[1. 2. 3.]

 [4. 5. 6.]], shape=(2, 3), dtype=float32)

x.shape: (2, 3)

x.dtype: <dtype: 'float32'>

x[:, 1:]: tf.Tensor(

[[2. 3.]

 [5. 6.]], shape=(2, 2), dtype=float32)

x[..., 1, tf.newaxis]: tf.Tensor(

[[2.]

 [5.]], shape=(2, 1), dtype=float32)

x + 10: tf.Tensor(

[[11. 12. 13.]

 [14. 15. 16.]], shape=(2, 3), dtype=float32)

tf.square(x): tf.Tensor(

[[1. 4. 9.]

 [16. 25. 36.]], shape=(2, 3), dtype=float32)

x @ tf.transpose(x): tf.Tensor(

[[14. 32.]

 [32. 77.]], shape=(2, 2), dtype=float32)

m1: tf.Tensor(

[[51. 52. 54.]

 [53. 56. 62.]], shape=(2, 3), dtype=float32)

m1 + 50: tf.Tensor(

[[51. 52. 54.]

 [53. 56. 62.]], shape=(2, 3), dtype=float32)

m1 * 2: tf.Tensor(

[[2. 4. 8.]

 [6. 12. 24.]], shape=(2, 3), dtype=float32)

284 • Angular and Deep Learning Pocket Primer

tf.square(m1): tf.Tensor(

[[1. 4. 16.]

 [9. 36. 144.]], shape=(2, 3), dtype=float32)

2nd Order Tensors in TF 2 (1)

Listing B.18 shows the content of tf2_elem2.py, which illustrates how
to define a 2nd order TF tensor and access elements in that tensor.

Listing B.18: tf2_elem2.py

import tensorflow as tf

arr2 = tf.constant([[1,2],[2,3]])

@tf.function

def compute_values():

 print('arr2: ',arr2)

 print('[0]: ',arr2[0])

 print('[1]: ',arr2[1])

compute_values()

Listing B.18 contains the TF constant arr1 that is initialized with the
values [[1,2],[2,3]]. The three print() statements display the value
of arr1, the value of the element whose index is 1, and the value of the
element whose index is [1,1]. The output from Listing B.18 is here:

arr2: tf.Tensor(

[[1 2]

 [2 3]], shape=(2, 2), dtype=int32)

[0]: tf.Tensor([1 2], shape=(2,), dtype=int32)

[1]: tf.Tensor([2 3], shape=(2,), dtype=int32)

2nd Order Tensors in TF 2 (2)

Listing B.19 shows the content of tf2_elem3.py, which illustrates how
to define a 2nd order TF 2 tensor and access elements in that tensor.

Listing B.19: tf2_elem3.py

import tensorflow as tf

arr3 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])

Introduction to TF 2 • 285

@tf.function # repłace print() with tf.print()

def compute_values():

 print('arr3: ',arr3)

 print('[1]: ',arr3[1])

 print('[1,1]: ',arr3[1,1])

 print('[1,1,0]:',arr3[1,1,0])

compute_values()

Listing B.19 contains the TF constant arr3 that is initialized with the val-
ues [[[1,2],[2,3]],[[3,4],[5,6]]]. The four print() statements
display the value of arr3, the value of the element whose index is 1, the
value of the element whose index is [1,1], and the value of the element
whose index is [1,1,0]. The output from Listing B.19 (adjusted slightly
for display purposes) is here:

arr3: tf.Tensor(

[[[1 2]

 [2 3]]

 [[3 4]

 [5 6]]], shape=(2, 2, 2), dtype=int32)

[1]: tf.Tensor(

[[3 4]

 [5 6]], shape=(2, 2), dtype=int32)

[1,1]: tf.Tensor([5 6], shape=(2,), dtype=int32)

[1,1,0]: tf.Tensor(5, shape=(), dtype=int32)

Multiplying Two 2nd Order Tensors in TF

Listing B.20 shows the content of tf2_mult.py, which illustrates how to
multiply 2nd order tensors in TF 2.

Listing B.20: tf2_mult.py

import tensorflow as tf

m1 = tf.constant([[3., 3.]]) # 1x2

m2 = tf.constant([[2.],[2.]]) # 2x1

p1 = tf.matmul(m1, m2) # 1x1

@tf.function

def compute_values():

 print('m1:',m1)

286 • Angular and Deep Learning Pocket Primer

 print('m2:',m2)

 print('p1:',p1)

compute_values()

Listing B.20 contains two TF constant m1 and m2 that are initialized with
the values [[3., 3.]] and [[2.],[2.]]. Due to the nested square
brackets, m1 has shape 1x2, whereas m2 has shape 2x1. Hence, the prod-
uct of m1 and m2 has shape (1,1).

The three print() statements display the value of m1, m2, and p1. The
output from Listing B.20 is here:

m1: tf.Tensor([[3. 3.]], shape=(1, 2), dtype=float32)

m2: tf.Tensor(

[[2.]

 [2.]], shape=(2, 1), dtype=float32)

p1: tf.Tensor([[12.]], shape=(1, 1), dtype=float32)

Convert Python Arrays to TF Tensors

Listing B.21 shows the content of tf2_convert_tensors.py, which
illustrates how to convert a Python array to a TF 2 tensor.

Listing B.21: tf2_convert_tensors.py

import tensorflow as tf

import numpy as np

x1 = np.array([[1.,2.],[3.,4.]])

x2 = tf.convert_to_tensor(value=x1, dtype=tf.float32)

print ('x1:',x1)

print ('x2:',x2)

Listing B.21 is straightforward, starting with an import statement for
TensorFlow and one for NumPy. Next, the x_data variable is a NumPy
array, and x is a TF tensor that is the result of converting x_data to a TF
tensor. The output from Listing B.21 is here:

x1: [[1. 2.]

 [3. 4.]]

x2: tf.Tensor(

[[1. 2.]

 [3. 4.]], shape=(2, 2), dtype=float32)

Introduction to TF 2 • 287

Conflicting Types in TF 2

Listing B.22 shows the content of tf2_conflict_types.py,

which illustrates what happens when you try to combine

incompatible tensors in TF 2.

Listing B.22: tf2_conflict_types.py

import tensorflow as tf

try:

 tf.constant(1) + tf.constant(1.0)

except tf.errors.InvalidArgumentError as ex:

 print(ex)

try:

 tf.constant(1.0, dtype=tf.float64) + tf.constant(1.0)

except tf.errors.InvalidArgumentError as ex:
print(ex)

Listing B.22 contains two try/except blocks. The first

block adds two constants 1 and 1.0, which are compati-

ble. The second block attempts to add the value 1.0 that’s

declared as a tf.float64 with 1.0, which are not compatible

tensors. The output from Listing B.22 is here:

cannot compute Add as input #1(zero-based) was expected to

be a int32 tensor but is a float tensor [Op:Add] name: add/

cannot compute Add as input #1(zero-based) was expected to

be a double tensor but is a float tensor [Op:Add] name: add/

Differentiation and tf.GradientTape in TF 2

Automatic differentiation (i.e., calculating derivatives) is useful for imple-
menting ML algorithms, such as back propagation, for training various
types of NNs (Neural Networks). During eager execution, the TF 2 con-
text manager tf.GradientTape traces the operations for computing gra-
dients. This context manager provides a watch() method for specifying a
tensor that is differentiated (in the mathematical sense of the word).

The tf.GradientTape context manager records all forward-pass opera-
tions on a tape. Next, it computes the gradient by playing the tape back-
ward, and then discards the tape after a single gradient computation.
Thus, a tf.GradientTape can only compute one gradient: subsequent

288 • Angular and Deep Learning Pocket Primer

invocations throw a runtime error. Keep in mind that the tf.Gradient-
Tape context manager only exists in eager mode.

Why do we need the tf.GradientTape context manager? Consider
deferred execution mode, where we have a graph in which we know how
nodes are connected. The gradient computation of a function is per-
formed in two steps: 1) backtracking from the output to the input of the
graph and 2) computing the gradient to obtain the result.

By contrast, in eager execution, the only way to compute the gradient of a
function using automatic differentiation is to construct a graph. After con-
structing the graph of the operations executed within the tf.Gradient-
Tape context manager on some watchable element (such as a variable),
we can instruct the tape to compute the required gradient. If you want a
more detailed explanation, the tf.GradientTape documentation page
contains an example that explains how and why tapes are needed.

The default behavior for tf.GradientTape is to “play once and then dis-
card.” However, it’s possible to specify a persistent tape, which means that
the values are persistant and therefore the tape can be played multiple
times. The next section contains several examples of tf.GradientTape,
including an example of a persistent tape.

Examples of tf.GradientTape

Listing B.23 shows the content of tf2_gradient_tape1.py, which illus-
trates how to invoke tf.GradientTape in TF 2. This example is one of
the simplest examples of using tf.GradientTape in TF 2.

Listing B.23: tf2_gradient_tape1.py

import tensorflow as tf

w = tf.Variable([[1.0]])

with tf.GradientTape() as tape:

 loss = w * w

grad = tape.gradient(loss, w)

print("grad:",grad)

Listing B.23 defines the variable w, followed by a with statement that
initializes the variable loss with expression w   w. Next, the variable grad is
initialized with the derivative that is returned by the tape, and then eval-
uated with the current value of w.

Introduction to TF 2 • 289

As a reminder, if we define the function z = w   w, then the first derivative
of z is the term 2   w , and when this term is evaluated with the value of
1.0 for w, the result is 2.0. Launch the code in Listing B.23 to see the
following output:

grad: tf.Tensor([[2.]], shape=(1, 1), dtype=float32)

Using the watch() Method of tf.GradientTape

Listing B.24 shows the content of tf2_gradient_tape2.py, which
also illustrates the use of tf.GradientTape with the watch() method
in TF 2.

Listing B.24: tf2_gradient_tape2.py

import tensorflow as tf

x = tf.constant(3.0)

with tf.GradientTape() as g:

 g.watch(x)

 y = 4 * x * x

dy_dx = g.gradient(y, x)

Listing B.24 contains a similar with statement as Listing B.23, but this
time, a watch() method is also invoked to watch the tensor x. As you saw
in the previous section, if we define the function y = 4*x*x, then the first
derivative of y is the term 8*x; when the latter term is evaluated with the
value 3.0, the result is 24.0.

Launch the code in Listing B.24 to see the following output:

dy_dx: tf.Tensor(24.0, shape=(), dtype=float32)

Using Nested Loops with tf.GradientTape
Listing B.25 shows the content of tf2_gradient_tape3.py, which illus-
trates how to define nested loops with tf.GradientTape to calculate the
first and the second derivative of a tensor in TF 2.

Listing B.25: tf2_gradient_tape3.py

import tensorflow as tf

x = tf.constant(4.0)

with tf.GradientTape() as t1:

290 • Angular and Deep Learning Pocket Primer

 with tf.GradientTape() as t2:

 t1.watch(x)

 t2.watch(x)

 z = x * x * x

 dz_dx = t2.gradient(z, x)

d2z_dx2 = t1.gradient(dz_dx, x)

print("First dz_dx: ",dz_dx)

print("Second d2z_dx2:",d2z_dx2)

x = tf.Variable(4.0)

with tf.GradientTape() as t1:

 with tf.GradientTape() as t2:

 z = x * x * x

 dz_dx = t2.gradient(z, x)

d2z_dx2 = t1.gradient(dz_dx, x)

print("First dz_dx: ",dz_dx)

print("Second d2z_dx2:",d2z_dx2)

The first portion of Listing B.25 contains a nested loop, where the outer
loop calculates the first derivative and the inner loop calculates the sec-
ond derivative of the term x*x*x when x equals 4. The second portion of
Listing B.25 contains another nested loop that produces the same output
with a slightly different syntax.

In case you’re a bit rusty regarding derivatives, the next code block shows
you a function z, its first derivative z', and its second derivative z'':

z = x*x*x

z' = 3*x*x

z'' = 6*x

When we evaluate z, z', and z'' with the value 4.0 for x, the result is
64.0, 48.0, and 24.0, respectively. Launch the code in Listing B.25 to see
the following output:

First dz_dx:	 tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2:	 tf.Tensor(24.0, shape=(), dtype=float32)
First dz_dx:	 tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2:	 tf.Tensor(24.0, shape=(), dtype=float32)

Other Tensors with tf.GradientTape

Listing B.26 shows the content of tf2_gradient_tape4.py, which illus-
trates how to use tf.GradientTape to calculate the first derivative of an
expression that depends on a 2x2 tensor in TF 2.

Introduction to TF 2 • 291

Listing B.26: tf2_gradient_tape4.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape() as t:

 t.watch(x)

 y = tf.reduce_sum(x)

 print("y:",y)

 z = tf.multiply(y, y)

 print("z:",z)

 z = tf.multiply(z, y)

 print("z:",z)

the derivative of z with respect to y

dz_dy = t.gradient(z, y)

print("dz_dy:",dz_dy)

In Listing B.26, y equals the sum of the elements in the 3x3 tensor x,
which is 9.

Next, z is assigned the term y*y and then multiplied again by y, so the
final expression for z (and its derivative) is here:

z = y*y*y

z' = 3*y*y

When z’ is evaluated with the value 9 for y, the result is 3   9   9, which
equals 243. Launch the code in Listing B.26 to see the following output
(slightly reformatted for readability):

y: tf.Tensor(9.0, shape=(), dtype=float32)

z: tf.Tensor(81.0, shape=(), dtype=float32)

z: tf.Tensor(729.0, shape=(), dtype=float32)

dz_dy: tf.Tensor(243.0, shape=(), dtype=float32)

A Persistent Gradient Tape

Listing B.27 shows the content of tf2_gradient_tape5.py, which illus-
trates how to define a persistent gradient tape with tf.GradientTape to
calculate the first derivative of a tensor in TF 2.

Listing B.27: tf2_gradient_tape5.py

import tensorflow as tf

x = tf.ones((3, 3))

292 • Angular and Deep Learning Pocket Primer

with tf.GradientTape(persistent=True) as t:

 t.watch(x)

 y = tf.reduce_sum(x)

 print("y:",y)

 w = tf.multiply(y, y)

 print("w:",w)

 z = tf.multiply(y, y)

 print("z:",z)

 z = tf.multiply(z, y)

 print("z:",z)

the derivative of z with respect to y

dz_dy = t.gradient(z, y)

print("dz_dy:",dz_dy)

dw_dy = t.gradient(w, y)

print("dw_dy:",dw_dy)

Listing B.27 is almost the same as Listing B.26: the new sections are dis-
played in bold. Note that w is the term y*y, and therefore the first deriv-
ative w ‘ is 2*y. Hence, the values for w and w ‘ are 81 and 18, respectively,
when they are evaluated with the value 9.0. Launch the code in Listing
B.27 to see the following output (slightly reformatted for readability),
where the new output is shown in bold:

y: tf.Tensor(9.0, shape=(), dtype=float32)

w: tf.Tensor(81.0, shape=(), dtype=float32)

z: tf.Tensor(81.0, shape=(), dtype=float32)

z: tf.Tensor(729.0, shape=(), dtype=float32)

dz_dy: tf.Tensor(243.0, shape=(), dtype=float32)

dw_dy: tf.Tensor(18.0, shape=(), dtype=float32)

Google Colaboratory

Depending on the hardware, GPU-based TF 2 code can sometimes be
about 15 times faster than CPU-based TF 2 code. However, the cost of a
good GPU can be a significant factor. Although NVIDIA provides GPUs,
those consumer-based GPUs are not optimized for multi-GPU support
(which is supported by TF 2).

Fortunately, Google Colaboratory is an affordable alternative that pro-
vides free GPU and TPU support, and also runs as a Jupyter notebook
environment. In addition, Google Colaboratory executes your code in the
cloud and involves zero configuration, and it’s available here:

Introduction to TF 2 • 293

https://colab.research.google.com/notebooks/welcome.ipynb

This Jupyter notebook is suitable for training simple models and test-
ing ideas quickly. Google Colaboratory makes it easy to upload local
files, install software in Jupyter notebooks, and even connect Google
Colaboratory to a Jupyter runtime on your local machine.

Some of the supported features of Colaboratory include TF 2 execution
with GPUs, visualization using Matplotlib, and the ability to save a copy
of your Google Colaboratory notebook to Github by using File > Save
a copy to GitHub.

Moreover, you can load any .ipynb on GitHub by just adding the
path to the URL colab.research.google.com/github/ (see the
Colaboratory website for details).

Google Colaboratory has support for other technologies, such as HTML
and SVG, enabling you to render SVG-based graphics in notebooks that
are in Google Colaboratory. One point to keep in mind: any software
that you install in a Google Colaboratory notebook is only available on
a per-session basis. If you log out and log in again, you need to perform
the same installation steps that you performed during your earlier Google
Colaboratory session.

As mentioned earlier, there is one other very nice feature of Google
Colaboratory: you can execute code on a GPU for up to twelve hours
per day for free. This free GPU support is extremely useful for people
who don’t have a suitable GPU on their local machine (which is probably
the majority of users). Now they can launch TF 2 code to train neural
networks in less than 20 or 30 minutes, which would otherwise require
multiple hours of CPU-based execution time.

You can launch Tensorboard inside a Google Colaboratory notebook with
the following command (replace the specified directory with your own
location):

%tensorboard --logdir /logs/images

Keep in mind the following details about Google Colaboratory. First,
whenever you connect to a server in Google Colaboratory, you start what’s
known as a session. You can execute the code in a session with a GPU or a
TPU, and you can execute your code without any time limit for your ses-
sion. However, if you select the GPU option for your session, only the first
12 hours of GPU execution time are free. Any additional GPU time during
that same session incurs a small charge (see the website for those details).

294 • Angular and Deep Learning Pocket Primer

The other point to keep in mind is that any software that you install in a
Jupyter notebook during a given session will not be saved when you exit
that session. For example, the following code snippet installs TFLearn in
a Jupyter notebook:

!pip install tflearn

When you exit the current session and later start a new session, you need
to install TFLearn again, as well as any other software (such as Github
repositories) that you also installed in any previous sessions.

Incidentally, you can run TF 2 code and TensorBoard in Google
Colaboratory, with support for CPUs and GPUs (and support for TPUs
will be available later). The following link has more information:

https://www.tensorflow.org/tensorboard/r2/tensorboard_in_

notebooks

Other Cloud Platforms

GCP (Google Cloud Platform) is a cloud-based service that enables you to
train TF 2 code in the cloud. GCP provides deep learning images (similar
in concept to Amazon AMIs) that are available here:

https://cloud.google.com/deep-learning-vm/docs

The preceding link provides documentation and a link to DL images
based on different technologies, including TF 2 and PyTorch, with GPU
and CPU versions of those images. Along with support for multiple ver-
sions of Python, you can work in a browser session or from the command
line.

GCP SDK

Install GCloud SDK on a Mac-based laptop by downloading the software
at this link: https://cloud.google.com/sdk/docs/quickstart-macos

You should receive $300 worth of credit (over one year) if you have never
used Google cloud.

Introduction to TF 2 • 295

Summary

This appendix introduced you to TF 2, a very brief view of its architecture,
and some of the tools that are part of the TF 2 family. Then you learned
how to write basic Python scripts containing TF 2 code with TF constants
and variables. You also learned how to perform arithmetic operations and
also some built-in TF functions.

Next, you learned how to calculate trigonometric values, how to use for
loops, and how to calculate exponential values. You also saw how to per-
form various operations on 2nd order TF 2 tensors. In addition, you saw
code samples that illustrate how to use some of the new features of TF 2,
such as the @tf.function decorator and tf.GradientTape.

Then you got an introduction to Google Colaboratory, which is a cloud-
based environment for machine learning and deep learning. This environ-
ment is based on Jupyter notebooks, with support for Python and various
other languages. Google Colaboratory also provides up to 12 hours of free
GPU use on a daily basis, which is a very nice feature.

A ppendi x

This appendix discusses the TF 2 tf.data.Dataset namespace
and the classes therein that support a rich set of operators for pro-
cessing very large datasets (i.e., datasets that are too large to fit in

memory). This chapter includes lazy operators (such as filter() and
map()) that you can invoke via method chaining to extract a desired sub-
set of data from a dataset. In addition, you’ll learn about TF 2 Estimators
(in the tf.estimator namespace) and TF 2 layers (in the tf.keras.
layers namespace).

Please note that a dataset in this appendix refers to a TF 2 class in the
tf.data.Dataset namespace. Such a dataset acts as a wrapper for actual
data, where the latter can be a CSV file or some other data source. This
appendix does not cover TF 2 built-in datasets of “pure” data, such as
MNIST, CIFAR, and IRIS, except for cases in which they are part of code
samples that involve TF 2 lazy operators.

Familiarity with lambda expressions (discussed later) and Functional
Reactive Programming are helpful for this appendix. The code samples
appendix here are straightforward if you already have experience with
Observables in RxJS, RxAndroid, RxJava, or some other environment
that involves lazy execution.

The first part of this appendix briefly introduces you to TF 2 Datasets and
lambda expressions, along with some simple code samples. You will learn
about iterators that work with TF 1.x tf.data.Datasets and TF 2
generators (which are Python functions with a @tf.function decorator).

The second part of this appendix discusses TextLineDatasets, which
are convenient for working with text files. As explained previously, the

TF 2 Datasets

C

298 • Angular and Deep Learning Pocket Primer

TF 2 code samples in this section use TF 2 generators instead of iterators
(which work with TF 1.x).

The third part of this appendix discusses various lazy operators, such
as filter(), map(), and batch() operators, and also briefly describes
how they work (and when you might need to use them). You’ll also learn
method chaining for combining these operators, which results in powerful
code combinations that can significantly reduce the complexity of your
TF 2 code.

The final portion of the appendix briefly discusses TF 2 estimators in the
tf.estimator namespace (which are a layer of abstraction above tf.
keras.layers), as well as TF 2 layers that provide an assortment of
classes for DNNs (Dense Neural Networks) and CNNs (Convolutional
Neural Networks) that are discussed in Chapter 5.

The TF 2 tf.data.Datasets

Before we delve into this topic, we need to make sure that the following
distinction is clear: a dataset contains rows of data (often in a flat file),
where the columns are called features and the rows represent an instance
of the dataset. In contrast, a TF 2 Dataset refers to a class in the tf.
data.Dataset namespace that acts like a wrapper around a “regular”
dataset that contains rows of data.

You can also think of a TF 2 Dataset as being analogous to a Pandas
DataFrame. Again, if you are familiar with Observables in Angular (or
something similar), you can perform a quick knowledge transfer as you
learn about TF 2 Datasets.

TF 2 tf.data.Datasets are well-suited for creating asynchronous and
optimized data pipelines. In brief, the TF 2 Dataset API loads data
from the disk (both images and text), applies optimized transformations,
creates batches, and sends the batches to the GPU. In fact, the TF 2
Dataset API is well-suited for better GPU utilization. In addition, use
tf.functions in TF 2.0 to fully utilize dataset asynchronous prefetch-
ing/streaming features.

According to the TF 2 documentation, “a dataset can be used to represent
an input pipeline as a collection of elements (nested structures of tensors)
and a logical plan of transformations that act on those elements.”

A TF 2 tf.data.Dataset is designed to handle very large datasets. A
TF 2 Dataset can also represent an input pipeline as a collection of

TF 2 Datasets • 299

elements (i.e., a nested structure of tensors), along with a logical plan
of transformations that act on those elements. For example, you can
define a TF 2 Dataset that initially contains the lines of text in a text
file, then extract the lines of text that start with a “#” character, and then
display only the first three matching lines. Creating this pipeline is easy:
create a TF 2 Dataset and then chain the lazy operators filter() and
take(), which is similar to an example that you will see later in this
appendix.

Creating a Pipeline

Think of a dataset as a pipeline that starts with a source, which can be
a NumPy array, tensors in memory, or some other source. If the source
involves tensors, use tf.data.Dataset.from_tensors() to combine
the input, otherwise use tf.data.Dataset.from_tensor_slices()
if you want a separate row for each input tensor. On the other hand, if
the input data is located on disk in a TFRecord format (which is recom-
mended), construct a tf.data.TFRecordDataset.

The difference between the first two APIs is shown below:

#combine the input into one element => [[1, 2], [3, 4]]

t1 = tf.constant([[1, 2], [3, 4]])

ds1 = tf.data.Dataset.from_tensors(t1)

#a separate element for each item: [1, 2], [3, 4]

t2 = tf.constant([[1, 2], [3, 4]])

ds2 = tf.data.Dataset.from_tensor_slices(t2)

for item in ds1:

 print("1item:",item)

print("--------------")

for item in ds2:

 print("2item:",item)

The output from the preceding code block is here:

1item: tf.Tensor(

[[1 2]

 [3 4]], shape=(2, 2), dtype=int32)

2item: tf.Tensor([1 2], shape=(2,), dtype=int32)

2item: tf.Tensor([3 4], shape=(2,), dtype=int32)

300 • Angular and Deep Learning Pocket Primer

The TF 2 from_tensors() API also requires compatible dimensions,
which means that the following code snippet causes an error:

exception: ValueError: Dimensions 10 and 9 are not

compatible

ds1 = tf.data.Dataset.from_tensor_slices(

 (tf.random_uniform([10, 4]), tf.random_uniform([9])))

On the other hand, the TF 2 from_tensor_slices() API does not have a
compatibility restriction, so the following code snippet works correctly:

ds2 = tf.data.Dataset.from_tensors(

 (tf.random_uniform([10, 4]), tf.random_uniform([9])))

Another situation in which there are differences in these two APIs involves
the use of lists, as shown here:

ds1 = tf.data.Dataset.from_tensor_slices(

 [tf.random_uniform([2, 3]), tf.random_uniform([2, 3])])

ds2 = tf.data.Dataset.from_tensors(

 [tf.random_uniform([2, 3]), tf.random_uniform([2, 3])])

print(ds1) # shapes: (2, 3)

print(ds2) # shapes: (2, 2, 3)

In the preceding code block, the TF 2 from_tensors() API creates a 3D
tensor whose shape is (2,2,3), whereas the TF 2 from_tensor_slices()
API merges the input tensor and produces a tensor whose shape is (2,3).

As a further illustration of these two APIs, consider the following code
block:

import tensorflow as tf

ds1 = tf.data.Dataset.from_tensor_slices(

 (tf.random.uniform([3, 2]), tf.random.uniform([3])))

ds2 = tf.data.Dataset.from_tensors(

 (tf.random.uniform([3, 2]), tf.random.uniform([3])))

print('-----------------------------')

for i, item in enumerate(ds1):

 print('elem1: ' + str(i + 1), item[0], item[1])

print('-----------------------------')

for i, item in enumerate(ds2):

 print('elem2: ' + str(i + 1), item[0], item[1])

print('-----------------------------')

TF 2 Datasets • 301

Launch the preceding code to see the following output:

elem1: 1 tf.Tensor([0.965013 0.8327141], shape=(2,), dtype=-

float32) tf.Tensor(0.03369963, shape=(), dtype=float32)

elem1: 2 tf.Tensor([0.2875235 0.11409616], shape=(2,),

dtype=float32) tf.Tensor(0.05131495, shape=(),

dtype=float32)

elem1: 3 tf.Tensor([0.08330548 0.13498652], shape=(2,),

dtype=float32) tf.Tensor(0.3145547, shape=(), dtype=float32)

elem2: 1 tf.Tensor(

[[0.9139079 0.13430142]

 [0.9585271 0.58751714]

 [0.4501326 0.8380357]], shape=(3, 2), dtype=float32)

tf.Tensor([0.00776255 0.2655964 0.61935973], shape=(3,),

dtype=float32)

Basic Steps for TF 2 Datasets

Perform the following three steps to create and process the contents of a
TF 2 Dataset:

1)	 Create or import data.
2)	 Define a generator (Python function).
3)	 Consume the data.

There are many ways to populate a TF 2 Dataset from multiple sources.
For simplicity, the code samples in the first part of this appendix perform
the following steps: start by creating a TF 2 Dataset instance with an
initialized NumPy array of data; second, define a Python function to iterate
through the TF 2 Dataset; and third, access the elements of the dataset
(and in some cases, supply those elements to a TF 2 model).

As a side note: keep in mind that TF 1.x combines Datasets with itera-
tors, whereas TF 2 uses generators with Datasets. TF 2 uses generators
because eager execution (the default execution mode for TF 2) does not
support iterators.

A Simple TF 2 tf.data.Dataset

Listing C.3.1 shows the content of tf2_numpy_dataset.py, which illus-
trates how to create a very basic TF 2 tf.data.Dataset from a NumPy

302 • Angular and Deep Learning Pocket Primer

array of numbers. Although this code sample is minimalistic, it’s the initial
code block that appears in other code samples in this appendix.

Listing C.3.1: tf2_numpy_dataset.py

import tensorflow as tf

import numpy as np

x = np.arange(0, 10)

make a dataset from a numpy array

ds = tf.data.Dataset.from_tensor_slices(x)

Listing C.3.1 contains two familiar import statements and then initializes
the variable x as a NumPy array with the integers from 0 through 9, inclu-
sive. The variable ds is initialized as a TF 2 Dataset that’s based on the
contents of the variable x.

Note that nothing else happens in Listing C.3.1, and no output is gener-
ated. Later, you will see more meaningful code samples involving TF 2
Datasets.

What are Lambda Expressions?

In brief, a lambda expression is an anonymous function. Use lambda
expressions to define local functions that can be passed as arguments,
returned as the value of function calls, or used as “one-off” function
definitions.

Informally, a lambda expression takes an input variable and performs
some type of operation (specified by you) on that variable. For example,
here’s a “bare bones” lambda expression that adds the number 1 to an
input variable x:

lambda x: x + 1

The term on the left of the “:” is x, and it’s just a formal variable name that
acts as the input (you can replace x with another string that’s convenient
for you). The term on the right of the “:” is x+1, which simply increments
the value of the input x.

As another example, the following lambda expression doubles the value
of the input parameter:

lambda x: 2*x

TF 2 Datasets • 303

You can also define a lambda expression in a valid TF 2 code snippet, as
shown here (ds is a TF 2 Dataset that is defined elsewhere):

ds.map(lambda x: x + 1)

Even if you are unfamiliar with TF 2 Datasets or the map() operator, you
can still understand the preceding code snippet. Later in this appendix,
you’ll see other examples of lambda expressions that are used in conjunc-
tion with lazy operators.

The next section contains a complete TF 2 code sample that illustrates
how to define a generator (which is a Python function) that adds the num-
ber 1 to the elements of a TF 2 Dataset.

Working with Generators in TF 2

Listing C.3.2 shows the content of tf2_plusone.py, which illustrates
how to use a lambda expression to add the number 1 to the elements of
a TF 2 Dataset.

Listing C.3.2: tf2_plusone.py

import tensorflow as tf

import numpy as np

x = np.arange(0, 10)

def gener():

 for i in x:

 yield (i+1)

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

#for value in ds.take(len(x)):

for value in ds:

 print("1value:",value)

for value in ds.take(2*len(x)):

 print("2value:",value)

Listing C.3.2 initializes the variable x as a NumPy array consisting of the
integers from 0 through 9, inclusive. Next, the variable ds is initialized
as a TF 2 Dataset that is created from the Python function gener(),
which returns the input value incremented by 1. Notice that the Python
function gener() does not have a @tf.function() decorator: even so,

304 • Angular and Deep Learning Pocket Primer

this function is treated as a generator because it’s specified as such in the
from_generator() API.

The next portion of Listing C.3.2 contains two for loops that iterate
through the elements of ds and displays their values. Since the first for
loop does not specify the number of elements in ds, that for loop will
process all the numbers in ds.

Here’s an important detail regarding generators in TF 2: they only emit
a single value when they are invoked. This means that the for loop in
the Python gener() function does not execute 10 times: it executes only
once when it is invoked, and then it “waits” until the gener() function is
invoked again.

In case it’s helpful, you can think of the gener() function as a “writer”
that prints a single value to a pipe, and elsewhere there is some code that
acts like a “reader” that reads a data value from the pipe. The code that
acts as a reader is the first for loop that is reproduced here:

for value in ds:

 print("1value:",value)

How does the preceding code block invoke the gener() function when
it doesn’t even appear in the code? The answer is simple: the preceding
code block indirectly invokes the gener() function because it’s specified
in the definition of ds, as shown here in bold:

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

To summarize, each time that the preceding for loop executes, it invokes
the Python gener() function, which in turn prints a value and then waits
until it is invoked again.

The second for loop also acts as a reader, and this time the code invokes
the take() operator (it takes data from the dataset) that specifies twice
the length of the NumPy array x. Why would anyone specify a length that is
greater than the number of elements in the underlying array? There may
be various reasons (perhaps it was accidental), so it’s good to know what
happens in this situation (see if you can correctly guess the result). The
output from launching the code in Listing C.3.2 is here:

1value: tf.Tensor(1, shape=(), dtype=int64)

1value: tf.Tensor(2, shape=(), dtype=int64)

1value: tf.Tensor(3, shape=(), dtype=int64)

1value: tf.Tensor(4, shape=(), dtype=int64)

1value: tf.Tensor(5, shape=(), dtype=int64)

TF 2 Datasets • 305

1value: tf.Tensor(6, shape=(), dtype=int64)

1value: tf.Tensor(7, shape=(), dtype=int64)

1value: tf.Tensor(8, shape=(), dtype=int64)

1value: tf.Tensor(9, shape=(), dtype=int64)

1value: tf.Tensor(10, shape=(), dtype=int64)

2value: tf.Tensor(1, shape=(), dtype=int64)

2value: tf.Tensor(2, shape=(), dtype=int64)

2value: tf.Tensor(3, shape=(), dtype=int64)

2value: tf.Tensor(4, shape=(), dtype=int64)

2value: tf.Tensor(5, shape=(), dtype=int64)

2value: tf.Tensor(6, shape=(), dtype=int64)

2value: tf.Tensor(7, shape=(), dtype=int64)

2value: tf.Tensor(8, shape=(), dtype=int64)

2value: tf.Tensor(9, shape=(), dtype=int64)

2value: tf.Tensor(10, shape=(), dtype=int64)

The next section contains a code sample that illustrates how to concate-
nate two TF 2 Datasets.

Concatenating TF 2 tf.Data.Datasets

Listing C.3.3 shows the content of tf2_concatenate.py, which illus-
trates how to concatenate two TF 2 Datasets.

Listing C.3.3: tf2_concatenate.py

import tensorflow as tf

import numpy as np

x1 = np.array([1,2,3,4,5])

x2 = np.array([6,7,8,9,10])

ds1 = tf.data.Dataset.from_tensor_slices(x1)

ds2 = tf.data.Dataset.from_tensor_slices(x2)

ds3 = ds1.concatenate(ds2)

try:

 for value in ds3.take(20):

 print("value:",value)

except tf.errors.OutOfRangeError:

 pass

Listing C.3.3 contains two NumPy arrays, x1 and x2, followed by the
TF 2 Datasets ds1 and ds2 that act as containers for x1 and x2,

306 • Angular and Deep Learning Pocket Primer

respectively. Next, the dataset ds3 is defined as the concatenation of
ds1 and ds2.

The next portion of Listing C.3.3 is a try/except block that contains a
for loop to display the contents of ds3. The output from launching the
code in Listing C.3.4 is here:

ds3 value: tf.Tensor(1, shape=(), dtype=int64)

ds3 value: tf.Tensor(2, shape=(), dtype=int64)

ds3 value: tf.Tensor(3, shape=(), dtype=int64)

ds3 value: tf.Tensor(4, shape=(), dtype=int64)

ds3 value: tf.Tensor(5, shape=(), dtype=int64)

ds3 value: tf.Tensor(6, shape=(), dtype=int64)

ds3 value: tf.Tensor(7, shape=(), dtype=int64)

ds3 value: tf.Tensor(8, shape=(), dtype=int64)

ds3 value: tf.Tensor(9, shape=(), dtype=int64)

ds3 value: tf.Tensor(10, shape=(), dtype=int64)

One other point to keep in mind: different structures cannot be concate-
nated. For example, consider the variables y1 and y2:

y1 = { (8, 9), (10, 11), (12, 13) }

y2 = { 14.0, 15.0, 16.0 }

If you create a TF 2 Dataset from y1 and y2, the resulting datasets can-
not be concatenated to ds1.

The TF 2 reduce() Operator

The TF 2 reduce() operator performs a reduction on its input until a
single value is produced. For example, you can use the reduce() opera-
tor to add all the numbers in an array. Listing C.3.4 shows the content of
tf2_reduce.py, which illustrates how to use the reduce() API in TF 2.

Listing C.3.4: tf2_reduce.py

import tensorflow as tf

import numpy as np

x1 = tf.data.Dataset.range(8).reduce(np.int64(0),lambda x,

_: x + 1)

x2 = tf.data.Dataset.range(8).reduce(np.int64(0),lambda x,

y: x + y)

TF 2 Datasets • 307

print("x1:",x1)

print("x2:",x2)

Listing C.3.4 defines the variables x1 and x1 as instances of tf.data.
Dataset, which in turn is based on the digits from 0 to 7, inclusive. Notice
that x1 and x1 specify different lambda expressions. The lambda expres-
sion for x1 returns its input value incremented by one. Since the largest
number in the input set of values is 7, the last output value is 8.

On the other hand, x2 defines a lambda expression that returns the sum
of two consecutive input values. The initial sum is 0, so the final output
equals the sum of the numbers 1, 2, . . ., and 7, which equals 28. The out-
put from launching the code in Listing C.3.4 is here:

x1: tf.Tensor(8, shape=(), dtype=int64)

x2: tf.Tensor(28, shape=(), dtype=int64)

Working with Generators in TF 2

Earlier in the appendix, you were introduced to TF 2 generators, which
are Python functions (for our code samples, let’s just name this function
gener()) that work somewhat like a “pipe.” For example, you read a sin-
gle value each time that the gener() function is invoked. You can also
think of a TF 2 generator as a function that emits one value when the
function is invoked. [If you are familiar with the Go programming lan-
guage, this is essentially the same as a channel.]

After emitting the last available value, the pipe no longer returns any val-
ues. Contrary to what you might expect, no error message is displayed
when the pipe is empty.

Now that you understand the underlying behavior of a generator in
TF 2, let’s look at the following code snippet (which you’ve seen already)
that shows you how to define a TF 2 tf.data.Dataset that involves a
generator:

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

If you read the previous code snippet in English, it would be as follows:
“the Dataset ds obtains its values from the Python function gener()
that emits a value of type tf.int64.” If you iterate through the values
of ds via a for loop, the gener() function is invoked and yields a single
value. Hence, the number of times your code iterates through the values
of ds equals the number of times that the gener() function is invoked.

308 • Angular and Deep Learning Pocket Primer

Listing C.3.5 shows the content of tf2_generator1.py, which illus-
trates how to define a generator in TF 2 that yields a value that is three
times its input value.

Listing C.3.5: tf2_generator1.py

import tensorflow as tf

import numpy as np

x = np.arange(0, 10)

def gener():

 for i in x:

 yield (3*i)

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

for value in ds.take(len(x)):

 print("value:",value)

for value in ds.take(2*len(x)):

 print("value:",value)

Listing C.3.5 contains the NumPy variable x, which contains the digits
from 0 to 9, inclusive. The next portion of Listing C.3.4 defines the Python
function gener(), which contains a for loop that iterates through the
values in x. Notice that it’s not necessary to specify a @tf.function dec-
orator because the definition of ds specifies the Python function gener()
as a generator.

However, recall that the yield keyword performs a parsimonious oper-
ation: it yields only a single value. In this example, the variable i ranges
from 0 to 9, but the first invocation of gener() returns only the value 3 0
because i equals 0.

The next invocation of gener() returns the value 3 1 because i equals
1. Each subsequent invocation of gener() returns the sequence of values
3 2, 3 3, . . . , 3 9. In a sense, the for loop in the gener() function is a
stateful loop because it “remembers” the current value of i during subse-
quent invocations of the gener() function.

The output from launching the code in Listing C.3.5 is here:

value: tf.Tensor(0, shape=(), dtype=int64)

value: tf.Tensor(3, shape=(), dtype=int64)

value: tf.Tensor(6, shape=(), dtype=int64)

value: tf.Tensor(9, shape=(), dtype=int64)

TF 2 Datasets • 309

value: tf.Tensor(12, shape=(), dtype=int64)

value: tf.Tensor(15, shape=(), dtype=int64)

value: tf.Tensor(18, shape=(), dtype=int64)

value: tf.Tensor(21, shape=(), dtype=int64)

value: tf.Tensor(24, shape=(), dtype=int64)

value: tf.Tensor(27, shape=(), dtype=int64)

value: tf.Tensor(0, shape=(), dtype=int64)

value: tf.Tensor(3, shape=(), dtype=int64)

value: tf.Tensor(6, shape=(), dtype=int64)

value: tf.Tensor(9, shape=(), dtype=int64)

value: tf.Tensor(12, shape=(), dtype=int64)

value: tf.Tensor(15, shape=(), dtype=int64)

value: tf.Tensor(18, shape=(), dtype=int64)

value: tf.Tensor(21, shape=(), dtype=int64)

value: tf.Tensor(24, shape=(), dtype=int64)

value: tf.Tensor(27, shape=(), dtype=int64)

The TF 2 filter() Operator (1)

The filter() operator uses Boolean logic to filter the elements in an
array to determine which elements satisfy the Boolean condition. As an
analogy, if you hold a piece of smoked glass in front of your eyes, the glass
will filter out a portion of the light spectrum. A filter in TF 2 performs an
analogous function: it generally results in a subset of the original set. [A
filter that returns every input element is technically possible, but it’s also
pointless.]

As a simple example, suppose that we have a NumPy array [1,2,3,4] and
we want to select only the even numbers in this array. The result is [1,2],
whose contents are a subset of the original array. Listing C.3.6 shows the
content of tf2_filter.py, which illustrates how to use the filter()
operator in TF 2.

Listing C.3.6: tf2_filter.py

import tensorflow as tf

import numpy as np

#def filter_fn(x):

return tf.reshape(tf.not_equal(x % 2, 1), [])

x = np.array([1,2,3,4,5,6,7,8,9,10])

ds = tf.data.Dataset.from_tensor_slices(x)

310 • Angular and Deep Learning Pocket Primer

ds = ds.filter(lambda x: tf.reshape(tf.not_equal(x%2,1),

[]))

#ds = ds.filter(filter_fn)

for value in ds:

 print("value:",value)

Listing C.3.6 initializes the variable x as a NumPy array consisting of the
integers from 1 through 10, inclusive. Next, the variable ds is initialized
as a TF 2 Dataset that is created from the contents of the variable x.
The next code snippet invokes the filter() operator, inside of which a
lambda expression returns only even numbers because of this expression:

tf.not_equal(x%2,1)

The next portion of Listing C.3.6 is a for loop that iterates through the
elements of the dataset ds. The output from launching the code in Listing
C.3.6 is here:

value: tf.Tensor(2, shape=(), dtype=int64)

value: tf.Tensor(4, shape=(), dtype=int64)

value: tf.Tensor(6, shape=(), dtype=int64)

value: tf.Tensor(8, shape=(), dtype=int64)

value: tf.Tensor(10, shape=(), dtype=int64)

The TF 2 filter() Operator (2)

Listing C.3.7 shows the content of tf2_filter2.py, which illustrates
another example of the filter() operator in TF 2.

Listing C.3.7: tf2_filter2.py

import tensorflow as tf

import numpy as np

ds = tf.data.Dataset.from_tensor_slices([1,2,3,4,5])

ds = ds.filter(lambda x: x < 4) # [1,2,3]

print("First iteration:")

for value in ds:

 print("value:",value)

"tf.math.equal(x, y)" is required for equality comparison

def filter_fn(x):

 return tf.math.equal(x, 1)

TF 2 Datasets • 311

ds = ds.filter(filter_fn)

print("Second iteration:")

for value in ds:

 print("value:",value)

Listing C.3.7 defines the variable ds as a TF 2 Dataset that is created
from the array [1,2,3,4,5]. The next code snippet invokes the fil-
ter() operator, inside of which a lambda expression returns numbers
that are less than 4. The for loop prints the numbers in the ds variable,
which consists of the filtered list of digits 1, 2, and 3.

The next portion of Listing C.3.7 is the decorated Python function filter_
fn() that is specified as part of the new definition of ds, as shown here:

ds = ds.filter(filter_fn)

The preceding code snippet executes the decorated Python function
filter_fn() in the second for loop in Listing C.3.7. The output from
launching the code in Listing C.3.7 is here:

First iteration:

value: tf.Tensor(1, shape=(), dtype=int32)

value: tf.Tensor(2, shape=(), dtype=int32)

value: tf.Tensor(3, shape=(), dtype=int32)

Second iteration:

value: tf.Tensor(1, shape=(), dtype=int32)

The TF 2 batch() Operator (1)

The batch(n) operator processes a batch of n elements during each iter-
ation. Listing C.3.8 shows the content of tf2_batch1.py, which illus-
trates how to use the batch() operator in TF 2.

Listing C.3.8: tf2_batch1.py

import tensorflow as tf

import numpy as np

x = np.arange(0, 34)

ds = tf.data.Dataset.from_tensor_slices(x).batch(3)

for value in ds:

 print("value:",value)

312 • Angular and Deep Learning Pocket Primer

Listing C.3.8 initializes the variable x as a NumPy array consisting of the
integers from 0 through 33, inclusive (note that this array contains 34
numbers). Next, the variable ds is initialized as a TF 2 Dataset that is a
container for the contents of the variable x. Notice that the definition of x
involves method chaining by “tacking on” the batch(3) operator as part
of the definition of ds.

The final portion of Listing C.3.8 contains a loop that iterates through the
elements of the dataset ds. Now launch the code in Listing C.3.8 to see
the output in its entirety, as shown here:

tf.Tensor([0 1 2], shape=(3,), dtype=int64)

tf.Tensor([3 4 5], shape=(3,), dtype=int64)

tf.Tensor([6 7 8], shape=(3,), dtype=int64)

tf.Tensor([9 10 11], shape=(3,), dtype=int64)

tf.Tensor([12 13 14], shape=(3,), dtype=int64)

tf.Tensor([15 16 17], shape=(3,), dtype=int64)

tf.Tensor([18 19 20], shape=(3,), dtype=int64)

tf.Tensor([21 22 23], shape=(3,), dtype=int64)

tf.Tensor([24 25 26], shape=(3,), dtype=int64)

tf.Tensor([27 28 29], shape=(3,), dtype=int64)

tf.Tensor([30 31 32], shape=(3,), dtype=int64)

tf.Tensor([33], shape=(1,), dtype=int64)

The TF 2 batch() Operator (2)

Listing C.3.9 shows the content of tf2_generator2.py, which illus-
trates how to use a generator function to display batches of numbers.

Listing C.3.9: tf2_generator2.py

import tensorflow as tf

import numpy as np

x = np.arange(0, 12)

def gener():

 i = 0

 while(i < len(x/3)):

 yield (i, i+1, i+2)

 i += 3

ds = tf.data.Dataset.from_generator(gener,

(tf.int64,tf.int64,tf.int64))

TF 2 Datasets • 313

third = int(len(x)/3)

for value in ds.take(third):

 print("value:",value)

Listing C.3.9 initializes the variable x as a NumPy array consisting of the
integers from 0 through 12, inclusive. The Python function gener()
return a triple of three consecutive numbers from the NumPy array x.
Since the next code snippet invokes the from_generator() API with the
gener() function, the latter is treated as a generator (you saw an example
of this behavior earlier in this appendix).

The final portion of Listing C.3.9 contains a for loop that iterates through
the elements of ds, printing three consecutive values during in each
print() statement. The output from launching the code in Listing C.3.9
is here:

value: (<tf.Tensor: id=34, shape=(), dtype=int64, numpy=0>,

<tf.Tensor: id=35, shape=(), dtype=int64, numpy=1>, <tf.

Tensor: id=36, shape=(), dtype=int64, numpy=2>)

value: (<tf.Tensor: id=40, shape=(), dtype=int64, numpy=3>,

<tf.Tensor: id=41, shape=(), dtype=int64, numpy=4>, <tf.

Tensor: id=42, shape=(), dtype=int64, numpy=5>)

value: (<tf.Tensor: id=46, shape=(), dtype=int64, numpy=6>,

<tf.Tensor: id=47, shape=(), dtype=int64, numpy=7>, <tf.

Tensor: id=48, shape=(), dtype=int64, numpy=8>)

value: (<tf.Tensor: id=52, shape=(), dtype=int64, numpy=9>,

<tf.Tensor: id=53, shape=(), dtype=int64, numpy=10>, <tf.

Tensor: id=54, shape=(), dtype=int64, numpy=11>)

The companion files contains tf2_generator1.py and tf2_gener-

ator3.py, which illustrate variations of the preceding code sample.
Experiment with the code by changing the hard-coded values and then
see if you can correctly predict the output.

The TF 2 map() Operator (1)

The map() operator is often defined as a projection, and while this is tech-
nically correct, the actual behavior might not be clear. Here’s the basic
idea: when you provide a list or an array of values as input for the map()
operator, this operator applies a lambda expression to each input element.

For example, the lambda expression lambda x: x*2 returns twice its
input value x, whereas the lambda expression lambda x: x/2 returns

314 • Angular and Deep Learning Pocket Primer

half its input value x. In both lambda expressions, the input list and the
output list have the same number of elements. In many cases, the size
of these two lists is the same, but there are many exceptions. For exam-
ple, the lambda expression lambda x: x%2 returns the value 0 for even
numbers and the value 1 for odd numbers, so the output consists of, at
most, two numbers, whereas the input list can be arbitrarily large. Listing
C.3.10 shows the content of tf2_map.py, which illustrates a complete
example of the map() operator in TF 2.

Listing C.3.10: tf2_map.py

import tensorflow as tf

import numpy as np

x = np.array([[1],[2],[3],[4]])

ds = tf.data.Dataset.from_tensor_slices(x)

ds = ds.map(lambda x: x*2)

for value in ds:

 print("value:",value)

Listing C.3.10 initializes the variable x as a NumPy array consisting
of four elements, where each element is a 1x1 array consisting of the
numbers 1, 2, 3, and 4. Next, the variable ds is initialized as a TF 2
Dataset that is created from the contents of the variable x. Notice
how ds.map() then defines a lambda expression that doubles each
input value (which takes the value of each integer from 1 to 4) in this
example.

The final portion of Listing C.3.10 contains a for loop that iterates
through the element of ds and displays their values. The output from
launching the code in Listing C.3.10 is here:

value: tf.Tensor([2], shape=(1,), dtype=int64)

value: tf.Tensor([4], shape=(1,), dtype=int64)

value: tf.Tensor([6], shape=(1,), dtype=int64)

value: tf.Tensor([8], shape=(1,), dtype=int64)

The TF 2 map() Operator (2)

Listing C.3.11 shows the content of tf2_map2.py, which illustrates two
techniques for defining a dataset, as well as how to invoke multiple occur-
rences of the map() operator in TF 2.

TF 2 Datasets • 315

Listing C.3.11: tf2_map2.py

import tensorflow as tf

import numpy as np

a simple NumPy array

x = np.array([[1],[2],[3],[4]])

make a dataset from a NumPy array

dataset = tf.data.Dataset.from_tensor_slices(x)

METHOD #1: THE LONG WAY

a lambda expression to double each value

#dataset = dataset.map(lambda x: x*2)

a lambda expression to add one to each value

#dataset = dataset.map(lambda x: x+1)

a lambda expression to cube each value

#dataset = dataset.map(lambda x: x**3)

METHOD #2: A SHORTER WAY

dataset = dataset.map(lambda x: x*2).map(lambda x: x+1).

map(lambda x: x**3)

for value in ds:

 print("value:",value)

Listing C.3.11 initializes the variable x as a NumPy array consisting of four
elements, where each element is a 1x1 array consisting of the numbers 1,
2, 3, and 4. Next, the variable dataset is initialized as a TF 2 Dataset
that is created from the contents of the variable x.

The next portion of Listing C.3.11 is a commented out code block that
consists of three lambda expressions, followed by a code snippet (shown
in bold) that uses method chaining in order to produce a more compact
way of invoking the same three lambda expressions:

dataset = dataset.map(lambda x: x*2).map(lambda x: x+1).

map(lambda x: x**3)

The preceding code snippet transforms each input value by first doubling
the value, then adding one to the output from the first lambda expression,
and then cubing the output from the second lambda expression.

Although method chaining is a concise way to combine operators, invok-
ing many lazy operators in a single (very long) line of code can also become
difficult to understand, whereas writing code using the longer way would
be easier to debug.

316 • Angular and Deep Learning Pocket Primer

A suggestion: start with each lazy operator in a separate line of code, and
after you are satisfied that the individual results are correct, then use
method chaining to combine the operators in a single line of code (per-
haps up to a maximum of four or five lazy operators).

The final portion of Listing C.3.11 contains a for loop that iterates
through the transformed values and displays their values. The output
from launching the code in Listing C.3.11 is here:

value: tf.Tensor([27], shape=(1,), dtype=int64)

value: tf.Tensor([125], shape=(1,), dtype=int64)

value: tf.Tensor([343], shape=(1,), dtype=int64)

value: tf.Tensor([729], shape=(1,), dtype=int64)

The TF 2 flatmap() Operator (1)

In addition to the TF 2 map() operator, TF 2 also supports the TF 2
flat_map() operator. However, the TF 2 map() and TF 2 flat_map()
operators expect functions with different signatures. Specifically, map()
takes a function that maps a single element of the input dataset to a single
new element, whereas flat_map() takes a function that maps a single
element of the input dataset to a Dataset of elements.

Listing C.3.12 shows the content of tf2_flatmap1.py, which illustrates
how to use the flatmap() operator in TF 2.

Listing C.3.12: tf2_flatmap1.py

import tensorflow as tf

import numpy as np

x = np.array([[1,2,3], [4,5,6], [7,8,9]])

ds = tf.data.Dataset.from_tensor_slices(x)

ds.flat_map(lambda x: tf.data.Dataset.

from_tensor_slices(x))

for value in ds.take(3):

 print("value:",value)

Listing C.3.12 initializes the variable x as a NumPy array consisting of three
elements, where each element is a 1x3 array of numbers. Next, the varia-
ble ds is initialized as a TF 2 Dataset that is a container for the contents
of the variable x.

TF 2 Datasets • 317

The final portion of Listing C.3.12 contains a for loop that iterates
through the element of dataset and displays their values. Once again,
note that the try/except block is unnecessary, even if the take()
method specifies a number that is greater than the number of ele-
ments in ds. The output from launching the code in Listing C.3.12 is
here:

value: tf.Tensor([1 2 3], shape=(3,), dtype=int64)

value: tf.Tensor([4 5 6], shape=(3,), dtype=int64)

value: tf.Tensor([7 8 9], shape=(3,), dtype=int64)

The TF 2 flatmap() Operator (2)

The code in the previous section works fine, but there is a hard-coded
value 3 in the code block that displays the elements of the dataset. The
code sample in this section removes the hard-coded value.

Listing C.3.13 shows the content of tf2_flatmap2.py, which illustrates
how to use the flatmap() operator in TF 2, and then iterate through the
elements of the dataset.

Listing C.3.13: tf2_flatmap2.py

import tensorflow as tf

import numpy as np

x = np.array([[1,2,3], [4,5,6], [7,8,9]])

ds = tf.data.Dataset.from_tensor_slices(x)

ds.flat_map(lambda x: tf.data.Dataset.

from_tensor_slices(x))

for value in ds:

 print("value:",value)

Listing C.3.13 initializes the variable x as a NumPy array consisting of three
elements, where each element is a 1x3 array of numbers. Next, the vari-
able ds is initialized as a TF 2 Dataset that is created from the contents
of the variable x.

The final portion of Listing C.3.13 iterates through the element of ds and
displays their values. The for loop iterates through the elements of ds.
The output from launching the code in Listing C.3.13 is the same as the
output from Listing C.3.12:

318 • Angular and Deep Learning Pocket Primer

value: tf.Tensor([1 2 3], shape=(3,), dtype=int64)

value: tf.Tensor([4 5 6], shape=(3,), dtype=int64)

value: tf.Tensor([7 8 9], shape=(3,), dtype=int64)

The TF 2 flat_map() and filter() Operators

Listing C.3.14 shows the content of comments.txt and Listing C.3.15
shows the content of tf2_flatmap_filter.py, which illustrate how to
use the filter() operator in TF 2.

Listing C.3.14: comments.txt

#this is file line #1

#this is file line #2

this is file line #3

this is file line #4

#this is file line #5

Listing C.3.15: tf2_flatmap_filter.py

import tensorflow as tf

filenames = ["comments.txt"]

ds = tf.data.Dataset.from_tensor_slices(filenames)

1) Use Dataset.flat_map() to transform each file

as a separate nested ds, then concatenate their

contents sequentially into a single "flat" ds

2) Skip the first line (header row)

3) Filter out lines beginning with "#" (comments)

ds = ds.flat_map(

 lambda filename: (

 tf.data.TextLineDataset(filename)

 .skip(1)

 .filter(lambda line: tf.not_equal(tf.strings.

substr(line,0,1),"#"))))

for value in ds.take(2):

print("value:",value)

Listing C.3.15 defines the variable filenames as an array of text file-
names, which consists of just one text file named comments.txt (whose
contents are shown in Listing C.3.14). Next, the variable dataset is ini-
tialized as a TF 2 Dataset that contains the contents of comments.txt.

TF 2 Datasets • 319

The next section of Listing C.3.15 is a comment block that explains the
purpose of the subsequent code block that defines the variable ds. As you
can see, ds involves a small set of operations that are executed via method
chaining in order to perform various transformation on the contents of
the variable ds.

Specifically, the flat_map() operator flattens whatever is returned by the
nested lambda expression, which involves several transformations. The
first transformation involves passing each input filename, one at a time, to
the tf.data.TextLineDataset class. The second transformation skips
the first line of text from the current input file. The third transformation
invokes a filter() operator that specifies another lambda expression
with conditional logic, as shown here:

tf.not_equal(tf.strings.substr(line,0,1),"#"))

The preceding code snippet returns the current line of text (from the cur-
rently processed text file) if, and only if, the character in the first position
of the line of text is not the character #; otherwise, nothing is returned
(i.e., the line of text is skipped). These transformations can be summa-
rized as follows: “for each input file, skip the first line, and print any sub-
sequent lines that do not start with the character #.”

The final portion of Listing C.3.15 prints two lines of output, which might
seem anti-climatic after defining such a fancy set of transformations!
Launch the code in Listing C.3.15 to see the following output:

value: tf.Tensor(b'this is file line #3 ', shape=(),

dtype=string)

value: tf.Tensor(b'this is file line #4 ', shape=(),

dtype=string)

The TF 2 repeat() Operator

The repeat(n) operator simply repeats its input values n times. Listing
C.3.16 shows the content of tf2_repeat.py, which illustrates how to
use the repeat() operator in TF 2.

Listing C.3.16: tf2_repeat.py

import tensorflow as tf

ds = tf.data.Dataset.from_tensor_slices(tf.range(4))

ds = ds.repeat(2)

for value in ds.take(20):

 print("value:",value)	

320 • Angular and Deep Learning Pocket Primer

Listing C.3.16 initializes the variable ds1 as a TF 2 Dataset that is cre-
ated from the integers between 0 and 3 inclusive. The next code snippet
attaches the repeat() operator to ds, which has the effect of appending
the contents of ds to itself. Hence, ds contains 8 numbers: the numbers
from 0 through 3, inclusive, and again the numbers 0 through 3, inclusive.

The final portion of Listing C.3.16 contains a for loop that iterates through
the elements of the dataset ds. Although the take() method specifies the
number 20, the loop is only executed twice because the repeat() oper-
ator specifies the value 2. The output from launching the code in Listing
C.3.16 is here:

value: tf.Tensor(0, shape=(), dtype=int32)

value: tf.Tensor(1, shape=(), dtype=int32)

value: tf.Tensor(2, shape=(), dtype=int32)

value: tf.Tensor(3, shape=(), dtype=int32)

value: tf.Tensor(0, shape=(), dtype=int32)

value: tf.Tensor(1, shape=(), dtype=int32)

value: tf.Tensor(2, shape=(), dtype=int32)

value: tf.Tensor(3, shape=(), dtype=int32)

The TF 2 take() Operator

The take(n) operator takes n input values. Listing C.3.17 shows the con-
tent of tf2_take.py, which illustrates another example of the take()
operator in TF 2.

Listing C.3.17: tf2_take.py

import tensorflow as tf

ds = tf.data.Dataset.from_tensor_slices(tf.range(8))

ds = ds.take(5)

for value in ds.take(20):

 print("value:",value)

Listing C.3.17 initializes the variable ds1 as a TF 2 Dataset that is cre-
ated from the integers between 0 and 7, inclusive. The next code snippet
attaches the take() operator to ds, which has the effect of limiting the
output to the first five integers.

The final portion of Listing C.3.17 contains a for loop that iterates
through the elements of the dataset ds. See the code in the preceding

TF 2 Datasets • 321

section for an explanation of the how the output is generated. The output
from launching the code in Listing C.3.17 is here:

value: tf.Tensor(0, shape=(), dtype=int32)

value: tf.Tensor(1, shape=(), dtype=int32)

value: tf.Tensor(2, shape=(), dtype=int32)

value: tf.Tensor(3, shape=(), dtype=int32)

value: tf.Tensor(4, shape=(), dtype=int32)

Combining the TF 2 map() and take() Operators

Listing C.3.18 shows the content of tf2_map_take.py, which illustrates
how to use method chaining to invoke the map() operator three times,
using three different lambda expressions, followed by the take() opera-
tor in TF 2.

Listing C.3.18: tf2_map_take.py

import tensorflow as tf

import numpy as np

x = np.array([[1],[2],[3],[4]])

make a ds from a numpy array

ds = tf.data.Dataset.from_tensor_slices(x)

ds = ds.map(lambda x: x*2).map(lambda x: x+1).map(lambda

x: x**3)

for value in ds.take(4):

 print("value:",value)

Listing C.3.18 initializes the variable x as a NumPy array consisting of four
elements, where each element is a 1x1 array consisting of the numbers 1,
2, 3, and 4. Next, the variable dataset is initialized as a TF 2 Dataset
that is created from the contents of the variable x. The next portion of
Listing C.3.18 involves three lambda expressions that are shown in bold
and reproduced here:

ds = ds.map(lambda x: x*2).map(lambda x: x+1).map(lambda

x: x**3)

The preceding code snippet transforms each input value by first doubling
the value, then adding one to the first result, and then cubing the second
result.

322 • Angular and Deep Learning Pocket Primer

The final portion of Listing C.3.18 takes the first four elements from the
variable dataset and displays their contents, as shown here:

value: tf.Tensor([27], shape=(1,), dtype=int64)

value: tf.Tensor([125], shape=(1,), dtype=int64)

value: tf.Tensor([343], shape=(1,), dtype=int64)

value: tf.Tensor([729], shape=(1,), dtype=int64)

Combining the TF 2 zip() and batch() Operators

Listing C.3.19 shows the content of tf2_zip_batch.py, which illus-
trates how to combine the zip() and batch() operators in TF 2.

Listing C.3.19: tf2_zip_batch.py

import tensorflow as tf

ds1 = tf.data.Dataset.range(100)

ds2 = tf.data.Dataset.range(0, -100, -1)

ds3 = tf.data.Dataset.zip((ds1, ds2))

ds4 = ds3.batch(4)

for value in ds.take(10):

 print("value:",value)

Listing C.3.19 initializes the variables ds1, ds2, ds3, and ds4 as TF 2
Datasets that are created successively, starting from ds1 that contains
the integers between 0 and 99 inclusive. The variable ds2 is initialized
via the range() operator that starts from 0 and decreased to -99, and the
variable ds3 is initialized via the zip() operator that processes two ele-
ments at a time, in a pairwise fashion. Next, the variable ds3 is initialized
by invoking the batch() operator on the variable ds3. The final portion
of Listing C.3.19 prints three lines of batched output, as shown here:

value: (<tf.Tensor: id=20, shape=(4,), dtype=int64, numpy-

=array([0, 1, 2, 3])>, <tf.Tensor: id=21, shape=(4,),

dtype=int64, numpy=array([0, -1, -2, -3])>)

value: (<tf.Tensor: id=24, shape=(4,), dtype=int64, numpy-

=array([4, 5, 6, 7])>, <tf.Tensor: id=25, shape=(4,),

dtype=int64, numpy=array([-4, -5, -6, -7])>)

value: (<tf.Tensor: id=28, shape=(4,), dtype=int64, numpy-

=array([8, 9, 10, 11])>, <tf.Tensor: id=29, shape=(4,),

dtype=int64, numpy=array([-8, -9, -10, -11])>)

TF 2 Datasets • 323

value: (<tf.Tensor: id=32, shape=(4,), dtype=int64, numpy-

=array([12, 13, 14, 15])>, <tf.Tensor: id=33, shape=(4,),

dtype=int64, numpy=array([-12, -13, -14, -15])>)

value: (<tf.Tensor: id=36, shape=(4,), dtype=int64, numpy-

=array([16, 17, 18, 19])>, <tf.Tensor: id=37, shape=(4,),

dtype=int64, numpy=array([-16, -17, -18, -19])>)

value: (<tf.Tensor: id=40, shape=(4,), dtype=int64, numpy-

=array([20, 21, 22, 23])>, <tf.Tensor: id=41, shape=(4,),

dtype=int64, numpy=array([-20, -21, -22, -23])>)

value: (<tf.Tensor: id=44, shape=(4,), dtype=int64, numpy-

=array([24, 25, 26, 27])>, <tf.Tensor: id=45, shape=(4,),

dtype=int64, numpy=array([-24, -25, -26, -27])>)

value: (<tf.Tensor: id=48, shape=(4,), dtype=int64, numpy-

=array([28, 29, 30, 31])>, <tf.Tensor: id=49, shape=(4,),

dtype=int64, numpy=array([-28, -29, -30, -31])>)

value: (<tf.Tensor: id=52, shape=(4,), dtype=int64, numpy-

=array([32, 33, 34, 35])>, <tf.Tensor: id=53, shape=(4,),

dtype=int64, numpy=array([-32, -33, -34, -35])>)

value: (<tf.Tensor: id=56, shape=(4,), dtype=int64, numpy-

=array([36, 37, 38, 39])>, <tf.Tensor: id=57, shape=(4,),

dtype=int64, numpy=array([-36, -37, -38, -39])>)

For your convenience, here is a slightly more condensed and clearer ver-
sion of the output from Listing 3.19:

[0, 1, 2, 3], [0, -1, -2, -3]

[4, 5, 6, 7], [-4, -5, -6, -7]

[8, 9, 10, 11], [-8, -9, -10, -11]

[12, 13, 14, 15], [-12, -13, -14, -15]

[16, 17, 18, 19], [-16, -17, -18, -19]

[20, 21, 22, 23], [-20, -21, -22, -23]

[24, 25, 26, 27], [-24, -25, -26, -27]

[28, 29, 30, 31], [-28, -29, -30, -31]

[32, 33, 34, 35], [-32, -33, -34, -35]

[36, 37, 38, 39], [-36, -37, -38, -39]

[40, 41, 42, 43], [-40, -41, -42, -43]

[44, 45, 46, 47], [-44, -45, -46, -47]

. . . .

[96, 97, 98, 99], [-96, -97, -98, -99]

324 • Angular and Deep Learning Pocket Primer

Combining the TF 2 zip() and take() Operators

The zip() operator processes two elements at a time, in a pairwise fash-
ion. Think of two lines of people waiting at the entrance to a movie the-
atre with double doors. After opening the doors, a pair of people – one
from each line – enters the theater.

Listing C.3.20 shows the content of tf2_zip_take.py, which illustrates
how to combine the zip() and take() operators in TF 2.

Listing C.3.20: tf2_zip_take.py

import tensorflow as tf

import numpy as np

x = np.arange(0, 10)

y = np.arange(1, 11)

create dataset objects from the arrays

dx = tf.data.Dataset.from_tensor_slices(x)

dy = tf.data.Dataset.from_tensor_slices(y)

zip the two datasets together

d2 = tf.data.Dataset.zip((dx, dy)).batch(3)

for value in d2.take(8):

 print("value:",value)

Listing C.3.20 initializes the variables x and y as a range of integers from
0 to 9 and from 1 to 10, respectively. Next, the variables dx and dy are
initialized as TF 2 Datasets that are created from the contents of the
variables x and y, respectively.

The next code snippet defines the variable d2 as a TF 2 Dataset that
combines the elements from dx and dy in a pairwise fashion via the zip()
operator, as shown here:

d2 = tf.data.Dataset.zip((dx, dy)).batch(3)

Notice how method chaining is performed by “tacking on” the batch(3)
operator as part of the definition of dcomb.

The final portion of Listing C.3.20 contains a loop that executes 15 times,
and during each iteration, the loop prints the current contents of the var-
iable iterator. Each line of output consists of two blocks of numbers,
where a block consists of three consecutive integers. The output from
launching the code in Listing C.3.20 is here:

TF 2 Datasets • 325

value: (<tf.Tensor: id=16, shape=(3,), dtype=int64,

numpy=array([0, 1, 2])>, <tf.Tensor: id=17, shape=(3,),

dtype=int64, numpy=array([1, 2, 3])>)

value: (<tf.Tensor: id=20, shape=(3,), dtype=int64,

numpy=array([3, 4, 5])>, <tf.Tensor: id=21, shape=(3,),

dtype=int64, numpy=array([4, 5, 6])>)

value: (<tf.Tensor: id=24, shape=(3,), dtype=int64,

numpy=array([6, 7, 8])>, <tf.Tensor: id=25, shape=(3,),

dtype=int64, numpy=array([7, 8, 9])>)

value: (<tf.Tensor: id=28, shape=(1,), dtype=int64, numpy-

=array([9])>, <tf.Tensor: id=29, shape=(1,), dtype=int64,

numpy=array([10])>)

TF 2 tf.data.Datasets and Random Numbers

Listing C.3.21 shows the content of tf2_generator3.py, which illus-
trates how to create a TF 2 Dataset with random numbers.

Listing C.3.21: tf2_generator3.py

import tensorflow as tf

import numpy as np

x = np.random.sample((8,2))

size = x.shape[0]

def gener():

 for i in range(0,size):

 yield (x[i][0], x[i][1])

ds = tf.data.Dataset.from_generator(gener, (tf.float64,tf.

float64))

for value in ds:

 print("value:",value)

Listing C.3.21 initializes the variable x as a NumPy array consisting of 100
rows and 2 columns of randomly generated numbers. Next, the variable
ds is initialized as a TF 2 Dataset that is created from the contents of the
variable x.

The next portion of Listing C.3.21 defines the Python function gener(),
that is, a generator, for the same reason that has been discussed in previ-
ous code samples. The final portion of Listing C.3.21 prints the first line
of transformed data, as shown here:

326 • Angular and Deep Learning Pocket Primer

value: (<tf.Tensor: id=32, shape=(), dtype=float64,

numpy=0.20591749665857995>, <tf.Tensor: id=33, shape=(),

dtype=float64, numpy=0.5990477322965386>)

value: (<tf.Tensor: id=36, shape=(), dtype=float64,

numpy=0.4384201871832957>, <tf.Tensor: id=37, shape=(),

dtype=float64, numpy=0.5169209418998256>)

value: (<tf.Tensor: id=40, shape=(), dtype=float64,

numpy=0.587374875326609>, <tf.Tensor: id=41, shape=(),

dtype=float64, numpy=0.8141864916735249>)

value: (<tf.Tensor: id=44, shape=(), dtype=float64,

numpy=0.05471699195088109>, <tf.Tensor: id=45, shape=(),

dtype=float64, numpy=0.806596986559444>)

value: (<tf.Tensor: id=48, shape=(), dtype=float64,

numpy=0.8878379222956106>, <tf.Tensor: id=49, shape=(),

dtype=float64, numpy=0.9533861033011681>)

value: (<tf.Tensor: id=52, shape=(), dtype=float64,

numpy=0.4504035573049521>, <tf.Tensor: id=53, shape=(),

dtype=float64, numpy=0.6303139480618501>)

value: (<tf.Tensor: id=56, shape=(), dtype=float64,

numpy=0.84588294357816>, <tf.Tensor: id=57, shape=(),

dtype=float64, numpy=0.916291642540712>)

value: (<tf.Tensor: id=60, shape=(), dtype=float64,

numpy=0.8851826544276614>, <tf.Tensor: id=61, shape=(),

dtype=float64, numpy=0.6337544549532578>)

TF 2, MNIST, and tf.data.Dataset

In addition to creating a dataset from NumPy arrays of data or from Pandas
Dataframes, you can create a dataset from existing datasets. For exam-
ple, Listing C.3.22 shows the content of tf2_mnist.py, which illustrates
how to create a tf.data.Dataset from the MNIST dataset.

Listing C.3.22: tf2_mnist.py

tensorflow as tf

train, test = tf.keras.datasets.mnist.load_data()

mnist_x, mnist_y = train

print("mnist_x.shape:",mnist_x.shape)

print("mnist_y.shape:",mnist_y.shape)

mnist_ds = tf.data.Dataset.from_tensor_slices(mnist_x)

TF 2 Datasets • 327

#print(mnist_ds)

for value in mnist_ds:

 print("value:",value)

Listing C.3.22 initializes the variables train and test from the MNIST
dataset, and then initializes the variables mnist_x and mnist_y from the
train variable. The next code snippet initializes the mnist_ds variable as
a tf.data.Dataset that is created from the mnist_x variable. The next
portion of Listing C.3.22 contains a for loop that iterates through the
elements in mnist_ds.

The complete output from launching the code in Listing C.3.22 is very
lengthy, and you can see the full output by launching this code sample
from the command line.

The next block shows you the shape of mnist_x and mnist_y, followed
by a portion of the data (i.e., the pixel values) in the first image contained
in the MNIST dataset.

mnist_x.shape: (60000, 28, 28)

mnist_y.shape: (60000,)

value: tf.Tensor(

[[0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 0 0 3 18

18 18 126 136

 175 26 166 255 247 127 0 0 0 0]

 [0 0 0 0 0 0 0 0 30 36 94 154 170 253

253 253 253 253

328 • Angular and Deep Learning Pocket Primer

 225 172 253 242 195 64 0 0 0 0]

// output omitted for brevity

[0 0 0 0 55 172 226 253 253 253 253 244 133 11

0 0 0 0

 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 136 253 253 253 212 135 132 16 0 0

0 0 0 0

 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

 0 0 0 0 0 0 0 0 0 0]

 [0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

 0 0 0 0 0 0 0 0 0 0]], shape=(28,

28), dtype=uint8)

If you launch the code in Listing C.3.22 from the command line, you will
see the complete set of 784 (=28 x 28) pixel values.

Working with the TFDS Package in TF 2

The tensorflow_datasets package (tfds) contains utilities for loading
pre-defined datasets. Keep in mind that these are datasets that contain
data, and should not confused with tf.data.Dataset. Listing C.3.23
shows the content of tfds.py, which illustrates how to display the list of
available built-in datasets in TF 2 by means of the tfds package.

Listing C.3.23: tfds.py

import tensorflow as tf

import tensorflow_datasets as tfds

See available datasets

print(tfds.list_builders())

Construct a tf.data.Dataset

ds = tfds.load(name="mnist", split=tfds.Split.TRAIN)

Build your input pipeline

ds = ds.shuffle(1024).batch(32).prefetch(tf.data.experi-

mental.AUTOTUNE)

TF 2 Datasets • 329

for features in ds.take(1):

 image, label = features["image"], features["label"]

Listing C.3.23 contains a print() statement that displays the complete
list of built-in datasets in TF 2. The variable ds is initialized as the train-
ing-related data in the MNIST dataset. The next code snippet uses method
chaining to invoke three operators: first the shuffle() operator (to shuf-
fle the input data), then the batch() operator to specify 32 row per batch,
and then the prefetch() method to select the first batch of data. The
final code block is a for loop that takes only the first row of data from ds.
The output from launching the code in Listing C.3.23 is here:

['bair_robot_pushing_small', 'cats_vs_dogs', 'celeb_a',

'celeb_a_hq', 'cifar10', 'cifar100', 'coco2014', 'diabetic_

retinopathy_detection', 'dummy_dataset_shared_generator',

'dummy_mnist', 'fashion_mnist', 'image_label_folder',

'imagenet2012', 'imdb_reviews', 'lm1b', 'lsun', 'mnist',

'moving_mnist', 'nsynth', 'omniglot', 'open_images_

v4', 'quickdraw_bitmap', 'squad', 'starcraft_video',

'svhn_cropped', 'tf_flowers', 'wmt_translate_ende',

'wmt_translate_enfr']

As you can see, the previous output contains some well-known datasets,
including CIFAR10, CIFAR100, MNIST, and FASHION_MNIST (among others).

The CIFAR10 Dataset and TFDS in TF 2

Listing C.3.24 shows the content of tfds-cifar10.py, which illustrates
how to perform some processing on the CIFAR10 dataset and use lambda
expressions and the map() operator to train the datasets.

Listing C.3.24: tfds-cifar10.py

import tensorflow as tf

import tensorflow_datasets as tfds

loader = tfds.load("cifar10", as_supervised=True)

train, test = loader["train"], loader["test"]

train = train.map(

 lambda image, label: (tf.image.convert_image_dtype(im-

age, tf.float32), label)

).cache().map(

 lambda image, label: (tf.image.random_flip_left_right(im-

age), label)

330 • Angular and Deep Learning Pocket Primer

).map(

 lambda image, label: (tf.image.random_contrast(image,

lower=0.0, upper=1.0), label)

).shuffle(100).batch(64).repeat()

The code in this section is from the following stackoverflow post (which
contains additional details):

https://stackoverflow.com/questions/55141076/how-to-apply-data-
augmentation-in-tensorflow-2-0-after-tfds-load

Summary

This appendix introduced you to TF 2 Datasets that are well-suited for
processing the contents of normally-sized datasets as well datasets that are
too large to fit in memory. You saw how to define a lambda expression and
use that expression in a TF 2 Dataset.

Next, you learned about various lazy operators, including batch(), fil-
ter(), flatmap(), map(), take(), and zip(), and how to use them
to define a subset of the data in a TF 2 Dataset. You also learned how to
use TF 2 generators to iterate through the elements of a TF 2 Datasets.

Next, you learned how to create a TF 2 Dataset from a CSV file and then
display its contents. Then you got a brief introduction to the tf.estima-
tor namespace, which contains an assortment of classes that implement
various algorithms, such as boosted trees, DNN classifiers DNN regres-
sors, linear classifiers, and linear regressors.

Finally, you learned about various other important aspects of TF 2, such
as the tf.keras.layers namespace, which contains an assortment of
classes for DNNs (Dense Neural Networks) and CNNs (Convolutional
Neural Networks).

Index

A

activation hyperparameter, 149
Adam optimizer, 151
AddListButton directive, 56–58
adjacent layers, 148
adversarial attacks, 188–189
algorithms, 144

max pooling, 156
optimizer, 149

ANDR function, 141
Angular 10, 5–6

node and npm utilities for, 6–7
upgrading code from, 86–87

Angular-based applications
anatomy of, 14–15
Angular CLI, 7–11
Angular 10, features in, 5–6
“Angular Way,” animation effects

via, 28–31
app.component.ts file, 17–18
app.module.ts file, 18–19
attributes vs. properties, 22–23
basic SVG example in, 31–33
CSS3 animation effects in, 26–28
D3 animation effects, 45–48
deep learning concepts, 1
features of, 4–5
“first view” of, 4
and Follow-the-Mouse in SVG,

36–38
HelloWorld, 11–14
high-level view of, 4
import and export statements, 20
index.html web page, 19–20

lifecycle methods, 23–24
main.ts Bootstrap file, 16–17
MetaData, 21–22
mouse positions in, 34–36
one-way data binding in, 5
Promises vs. Observables, 3–4
RxJS Observables, 3–4
“scaffolding” for, 1
src/app subdirectory, 15–16
stateful vs. stateless components,

22
SVG animation in, 48–49
and SVG Charts, 38–44
syntax, attributes, and properties,

22–23
TypeScript, 2–3

Angular CLI, 7–9, 7–11
Angular custom service, 111
Angular Forms

FormBuilder class, 104–106
FormGroup class, 104–106
form-related features in, 109–110
NGForm directory, 101
overview of, 99–101
reactive Angular form, 106–109
reactive forms, 100
template-driven forms, 100–101

Angular HTTP and observables,
92–93

Angular lifecycle methods, 23–26
Angular pipe

AsyncPipe, 78
built-in pipes, 77

Angular services
basic custom service, 112–113

332 • Angular and Deep Learning Pocket Primer

built-in services, 112
description of, 110–112
GitHub user, 117–121
injecting services into services,

124
inter-component communication,

123–124
multiple service instances, 122
services-component

communication, 123–124
single service instance, 122–123

Angular supports
built-in Angular services, 112
built-in pipes, 77
data binding and ngModel,

103–104
@Input and @Output annotations,

71–75
Angular Universal (server-side

rendering), 4
“Angular Way,” 28–31, 104
ANNs (Artificial Neural Networks),

232
activation hyperparameter, 149
anatomy of, 147–148
backward error propagation,

150–151
dropout rate hyperparameter,

150
example of, 148
learning rate hyperparameter,

149–150
loss function hyperparameter, 149
model initialization

hyperparameters, 148
optimizer hyperparameter,

149–150
Apache license, 256
AppComponent class

clickMe() function, 54
deleteMe() method, 60

httpRequest() method, 84
mouseEvent() method, 80

app.component.html

HTML Web page, 18
reactive Angular form, 107–108

app.component.ts, 16–18, 24–26,
32

AddListButton directive, 56–58
Angular 10, code for, 86
basic custom service, 112–113
ButtonClick directive, 53–55
ChildComponent directive, 60–61
ClickItems directory, 69–70
DelListButton directive, 58–60
FormBuilder class, 104–106
FormGroup class, 104–106
GitHub user, 117–119
@Input annotation, 72–73
jQuery, 124–126
*ngFor directive, 52–53
NGForm directory, 101–102
RadioButtons directive, 55–56
reactive Angular form, 106–109
ReadDataCSVLRPlot directory,

133
ReadJSONFile directory, 83–84
ReadMultipleJSONFiles

directory, 87–89
ReadWineCSV directory, 93–96
SimplePipe directory, 78–83
StateComponent directive, 62–63
TensorFlow.js, 201–202, 201–204
TodoInput directory, 66
UserServiceEmitter directory,

115–116
application-specific components,

76–77
app.module.ts, 16, 18–19

ChildComponent directive, 60–61
@Input annotation, 75–76

Index • 333

NGForm directory, 102–103
reactive Angular form, 108–109
ReadJSONFile directory, 85–86
ReadMultipleJSONFiles

directory, 87–89
ReadWineCSV directory, 93–96
SimplePipe directory, 82–83
todoinput.ts, 66–69

array-based properties, 19
AsyncPipe, 78
attributes vs. properties, 22–23
audio signals, CNNs with, 164–165
authors.json, 132–133
autoencoder (AE), 184–186

principal component analysis, 186
variational autoencoder, 186–187

AutoGraph, 275–276

B

backward error propagation, 147,
149, 150–151

bar charts, 206–208
batch(n) operator, 311–313
Bidirectional() class, 231
bi-directional LSTMs, 178–179
binary classifier, 153
Boolean condition, 309
BPTT (back propagation through

time), 169–170
build_gan() method, 191
built-in Angular services, 112
built-in directives, 7
built-in pipes, 77
ButtonClick directive, 53–55

C

callback mechanism, 247
Caucasian males and females,

144–145

checkpoint, 253
ChildComponent directive, 60–61
child.component.ts, 60–61,

73–75
childValueChange attribute, 73
Cifar10 dataset, 220–221,

241–244
ClickItems directory, 69–70
clickMe() function, 54, 58
clickMe() method, 57, 58
Cloud platforms, 294
CNNs (Convolutional Neural

Networks)
with audio signals, 164–165
Conv2D (convolutional layer),

155
high-level view of, 154
max pooling layer, 156–158
minimalistic CNN, 154–155
ReLU activation function, 156
softmax activation function, 157
translation invariance, 144

compilation error, 226–227
compile() method, 170, 173
@Component decorator, 21
Component, definition of, 5
console.log() statement, 58
constructLineGraph() method,

136
constructor() method, 63
contrib namespace, 232
Conv2D() class, 231
convolutional layer (Conv2D), 155
CORS (Cross Origin Resource

Sharing), 219, 222
cross-entropy function, 149
CSS3 animation effects, 26–28
current time period, 169
currUser() method, 120
custom directive, 7
customers.json, 91

334 • Angular and Deep Learning Pocket Primer

D

data types, 262
data visualization, 258
D3-based animation effects, 45–48
decorated Python function, 270–271
“decorator,” 5
deep learning (DL), 256

architectures, 143–144
challenges in, 144–145
concepts of, 1
datapoint refers, 153
description of, 142
hyperparameters, 142–143
Keras-based code, 139–140
MNIST dataset, 221–224
perceptron function, 145–147
problems of, 144
right-to-left fashion, 144
XOR function, 139–142

deeplearning.js, 261
deep reinforcement learning, 143
deleteMe() method, 60
DelListButton directive, 58–60
“dependency injection” mechanism,

111
directives property, 21
discriminator, 189–191
DNNs (deep neural networks), 145
drawBarChart() method, 43, 44
draw-Charts() method, 43, 44
drawLineGraph() method, 44
drawScatterPlot() method, 44
dropout rate hyperparameter, 150
dynamic Angular form, 110
dynamic_lstm_2TP.py, 181
dynamic_rnn_2TP.py, 175

E

eager execution mode, 258, 261
element vs. property, 54–55

employees.json, 84–85, 91
EmpService component, 63
eras_cnn_cifar10.py, 220–221
Euclidean space, 140, 149
evaluate() method, 236
exploding gradient problem, 144,

170
extractData() method, 136

F

feature map, 155
feedback mechanism, 169
filter() function, 3
filter() operator, 309–311
findGitHubUser() method, 120
fit() method, 173, 200, 216
flat_map() operator, 316–319
Flickr website, 124–126
focus() method, 66
Follow-the-Mouse in SVG, 36–38
forget gate, 184
FormGroup vs. FormArray, 109
forward propagation, 147

G

GAN (Generative Adversarial
Network), 157, 187–188

adversarial attacks, 188–189
discriminator, 189–191
generator, 189–191
high-level sequence of, 191–192
keras_create_gan.py,

190–191
reset gate, 184
VAE-GAN model, 192

GCloud SDK, 294
GCP (Google Cloud Platform), 294
generateBarHeights()method, 43
generator, 189–191, 307–309
gener() function, 308

Index • 335

getAuthorData() method, 132
getCustomers() method, 90
get() method, 120
GitHub user, 117–121
Google, 194, 256
Google colaboratory, 292–294
greet() method, 112
group() method, 105, 106
GRU (Gated Recurrent Unit), 184

H

heat maps, 211–213
HelloWorld application, 11–14
Hinton, Geoffrey, 157
histograms, 210–211
HTML page index.html, 54
HTML Web page, 197, 218
HttpClient class, 90
httpRequest() method, 91, 126
hyperparameters, 142–143

activation function, 149
backward error, 150–151
dropout rate, 150
hidden layers, 148
initialization model, 148
learning rate, 149–150
loss function, 149
optimizer, 149–150

I

IfLogic directory, 64
index.html web page, 19–20
@Injectable() decorator, 111, 113,

124
injecting services into services, 124
@Input annotation, 71–73
input gate, 184
input layer (think “multiple

sources”), 147

installation
Angular CLI, 8–9
TensorFlow 2, 258–259

inter-component communication,
123–124

“intermediate operators,” 3
“isomorphic” JavaScript, 129

J

JavaScript array, 51
JavaScript-based FRP, 2
JavaScript file, 218
jQuery, 124–126

each() method, 126
getJSON() method, 126

JSON files, 91–93
json-server, 126, 129

K

Keras-based models, 139–140,
159–161

cifar10 dataset, 241–244
description of, 229–230
and linear regression, 236–238
MNIST dataset, 238–241
resizing images in, 241–245
vs. “standalone” Keras, 234
tf.keras.activations

namespace, 231–232
tf2_keras_callback.py,

245–247
tf2_keras_callback2.py,

247–250
tf.keras.callbacks

namespace, 233
tf.keras.datasets namespace,

232
tf.keras.experimental

namespace, 232–233

336 • Angular and Deep Learning Pocket Primer

tf.keras.layers namespace,
231

tf.keras.metrics namespace,
250

tf.keras namespace, 230–231
tf.keras.optimizers

namespace, 233
tf.keras.regularizers

namespace, 233
tf2_keras_save_model.py,

250–253
tf.keras.utils namespace, 233

Keras-based neural network,
161–164

keras_cnn_cifar10.py, 242
keras_cnn_mnist.py, 161–162
keras_create_gan.py, 190–191
keras_mnist.py, 159–160
keras_pasta.py, 237
keras_resize_image.py, 244
keras_rnn_mnist.py, 171–174
keras_rnn_model.py, 170–171
Keras tf.keras.layers.Dense()

class, 148, 150

L

lambda expression, 302–303
LASSO regularizer, 233
learning rate hyperparameter,

149–150
left-to-right fashion, 150
lickitem.ts, 70–71
“Lifecycle Hook” interfaces, 23
linear regression, 193–194, 236–238
LinearRegression method, 203
line graphs, 204–206, 213–217
lm (linear model), 268
load_data() function, 162
long term dependency, 177
loss function hyperparameter, 149

LSTMs (Long Short Term Memory),
167

anatomy of, 178
bi-directional LSTMs, 178–179
description of, 177–178
dynamic_lstm_2TP.py, 181
formulas for, 179–180
hyperparameter tuning, 180
“short term” memory, 178
TensorFlow 1.x code, 181–184

M

machine learning (ML) model,
197–198, 256

frameworks, 149, 153
LASSO regularizer, 233
Ridge regularizer, 233

MAE (Mean Absolute Error), 233
main.ts Bootstrap file, 16–17
map() function, 3
map() operator, 313–316
MaxPooling2D() class, 231
max pooling layer, 156–158
MetaData, 21–22
minibatch discrimination, 189
MLPs (MultiLayer Perceptrons), 143,

151
activation functions, 151
example of, 151
linear system, 152
non-linear activation function, 150
two hidden layers, 150

MNIST dataset, 153, 158, 238–241
deep learning, 221–224
displaying MNIST images,

218–220
Keras-based models, 159–161
Keras-based neural network,

161–164
keras_cnn_mnist.py, 161–162

Index • 337

keras_rnn_mnist.py, 171–174
TensorFlow.js, 217
TF 2 tf.data.Dataset

namespace, 326–328
mnistimages subdirectory, 218
model initialization hyperparameters,

148
moreInfo() method, 65
mouseEvent() method, 80, 116
mouseMove() method, 34–35, 37
mouse positions, 34–36
MSE loss function, 149
multiple service instances, 122
MyEllipse.ts, 32
MyGraphics.ts, 40–42
mysimpleserver.py, 218

N

neural networks, 142–143
ANNs (Artificial Neural Networks),

147, 150, 168, 232
autoencoder, 184
CNNs (Convolutional Neural

Networks), 144, 149, 151,
154, 164, 220

LSTMs (Long Short Term
Memory), 144, 167, 168

MLPs (MultiLayer Perceptrons),
143–144, 148, 238

RNNs (Recurrent Neural
Networks), 147, 167

neuron N’ (N “prime”), 146
*ngFor directive, 52–53
NgModel directive, 101–102
ng utility, 7, 8, 19
NLP (Natural Language Processing),

143, 231
NOR function, 141
“number of epochs,” 238, 245
NumPy array, 141

O

object-oriented programming
(OOP), 65

onClick() method, 69–70
one-dimensional vector, 180
one-way data binding acts, 5, 103
OnInit interface, 23
onSend() method, 123
optimizer hyperparameter, 149–150,

236
OR function, 141
@Output annotation, 71
output layer (“the sink”), 147
overloaded function, 274

P

package.json, 8, 15
ParentChildEmitters directory, 72
perceptron function

definition of, 145–146
detailed View of, 146–147
example of, 145

persistent gradient tape, 291–292
pipe, 77
pipe.component.ts, 80–81
“plain” Python object, 270
postAuthorData() method, 132
posts.json, 129
predict() method, 200, 203, 216,

236
prefetch() method, 328
presentational components, 76–77
previous time period, 169
principal component analysis (PCA),

186
programming languages, 274
Promises vs. Observables, 3–4
Python, 155, 189, 258
Python functions, 191, 208, 252, 264,

266, 270, 274, 301, 311, 325

338 • Angular and Deep Learning Pocket Primer

Python print() function, 271–272,
279

Python REPL (read-eval-printloop),
259–260

Python script, 218–219, 222, 259

R

RadioButtons directive, 55–56
rand20.csv, 136–137
random numbers, 325–326
readCsvData() method, 95, 136
ReadDataCSVLRPlot directory, 133
ReadJSONFile directory, 83–84
ReadMultipleJSONFiles directory,

87–92
ReadWineCSV directory, 93–96
reduce() operator, 306–307
Reformer architecture, 143
relatives.json, 91
ReLU (Rectified Linear Unit), 152
ReLU activation function, 144, 152,

156, 221
repeat(n) operator, 319–320
reset gate, 184
Ridge regularizer, 233
right-to-left fashion, 151
RNNs (Recurrent Neural Networks),

167
anatomy of, 169
BPTT (back propagation through

time), 169–170
description of, 168
feedback mechanism, 169
Keras-based RNN model, 170, 171
keras_rnn_mnist.py, 171–174
keras_rnn_model.py, 170–171
TensorFlow, 174–177

RxJS Observables, 3–4
RxJS unsubscribe() method, 3

S

scatter plots, 208–209
script.js, 218, 222
SearchGithubUsers directory,

117–121
sendNewUser() method, 123
seq_length_batch variable, 176,

177
Sequential API, 230
ser.service.ts, 114–115
ServiceExample directory, 112–113
services-component communication,

123–124
sigmoid function, 152
SimplePipe directory, 78–83
SimpleRNN class, 170
simple server

HTTP GET requests with,
127–129

HTTP POST requests with,
129–133

single service instance, 122–123
“smart” components, 76
softmax activation function, 149,

157, 221
src/app subdirectory, 15–16
src/assets subdirectory, 84
“standalone” Keras, 234
StateComponent directive, 62–63
stateful vs. stateless components,

22
“structural directives,” 7
styles property, 27
subscribe() method, 3, 90–91
summary() method, 170
SVG animation, 48–49
SVG-based line graph, 133–137
SVG Charts, 38–44
SVG Gradient Effects, 33
SVG ellipse method, 37

Index • 339

T

take(n) operator, 320–321
tanh function, 152
TensorBoard, 260, 246
tensor2d() method, 196
tensor3d() method, 196
tensor6d() method, 196
TensorFlow, 158, 161, 174–177, 185
TensorFlow 2

architecture, 258
arithmetic operations, 276–277
AutoGraph, 275–276
built-in functions, 278–279
conflicting types, 287
constants in, 263–264
convert Python arrays, 286
data types, 262
description of, 256–257
eager execution, 261
exponential values, 280
installation, 258–259
persistent gradient tape, 291–292
primitive types, 262–263
Python REPL, 259–260
2nd order TF tensor, 284–285
standard error, 272
tensors and operations, 288–284
TF 2-based toolkits, 260–261
@tf.function, 269–272
tf.GradientTape, 287–291
tf.print() function, 272
tf2_rank.py, 265–266
tf.shape() API, 266–268
tf2_strings.py, 281–282
TF 2 tensor, 261–262
trigonometric functions, 279–280
two 2nd order TF tensor, 285–286
use cases, 258
variables in, 264–265, 268–269
variables vs. tensors, 269

TensorFlow.js
app.component.ts, 201–204
bar charts, 206–208
CIFAR10 dataset, 220–221
description of, 194–195
heat maps, 211–213
histograms, 210–211
HTML Web Page with, 195–196
linear regression, 198–201
line graphs, 204–206, 213–217
machine learning APIs in, 197–

198
ML models in, 195
MNIST dataset, 217
scatter plots, 208–209
tensor() method, 196–197
tf.dispose() method, 195
tfjs-hello.html, 195–196
tf.tidy() method, 195

TensorFlow Lite, 261
TensorFlow Serving, 260
TensorFlow 1.x code, 181–184, 192
tensor() method, 196–197
“terminal operator,” 3
tf2_arithmetic.py, 276
tf2_at_function.py, 273
TF 2-based toolkits, 260–261
tf2_basic_keras.py, 236
TF code, 155
tf2_concatenate.py, 305–306
tf2_conflict_types.py, 287
tf2_constants1.py, 263
tf2_constants2.py, 264
tf2_const_var.py, 277
tf2_const_var2.py, 277
tf2_convert_tensors.py, 286
tf.dispose() method, 195
tfds-cifar10.py, 329–330
tf2_elem2.py, 284
tf2_elem3.py, 284–285

340 • Angular and Deep Learning Pocket Primer

tf2_exp_values.py, 280
@tf.function, 269–272
tf2_generator1.py, 308
tf2_getshape.py, 266–267
tf.GradientTape, 287–291
tf2_gradient_tape1.py, 288
tf2_gradient_tape2.py, 289
tf2_gradient_tape3.py, 289–290
tf2_gradient_tape4.py, 291
tf2_gradient_tape5.py, 291–292
tfjs-hello.html, 195–196
tfjs-linreg1.html, 198–200
tfjsvis-barchart.html, 207–208
tfjsvis-barchart.js, 206–207
tfjsvis-heatmap.html, 212
tfjsvis-heatmap.js, 211–212
tfjsvis-histogram.html,

210–211
tfjsvis-histogram.js, 210
tfjsvis-linegraph.html,

205–206
tfjsvis-linegraph.js, 204–205
tfjs-vis-linreg1.html, 213–215
tfjsvis-scatterplot.html,

208–209
tfjsvis-scatterplot.js, 208
tf.keras.activations

namespace, 231–232
tf2_keras_callback.py, 245–247
tf2_keras_callback2.py,

247–250
tf.keras.callbacks namespace,

233
tf.keras.datasets namespace,

232
tf.keras.experimental

namespace, 232–233
tf.keras.layers namespace, 231
tf.keras.metrics namespace, 250
tf2_keras-mnist_digit.py, 158
tf.keras namespace, 230–231

tf.keras.optimizers namespace,
233

tf.keras.regularizers
namespace, 233

tf2_keras_save_model.py,
250–253

tf.keras.utils namespace, 233
tf2_keras_xor.py, 140–141
tf2_map_take.py, 321–322
tf2_math_ops.py, 278
tf2_mult.py, 285
tf2_numpy_dataset.py, 301–302
tf2_overload.py, 274–275
tf2_plusone.py, 303–305
tf.print() function, 271–272
tf2_rank.py, 266
tf2_reduce.py, 306–307
tf.sequential() API, 197
tf2_shapes.py, 267–268
tf2_simple_function.py, 273
tf2_strings.py, 281
TF 2 tensor, 261–262
tf2_tensors_operations.py,

282–283
TF 2 tf.data.Dataset namespace

batch(n) operator, 311–313
CIFAR10 dataset, 329–330
create and process of, 301
description of, 298–299
filter() operator, 309–311
flat_map() operator, 316–319
generators, 307–309
lambda expression, 302–303
map() operator, 313–316
MNIST dataset, 326–328
pipeline, creating, 299–301
random numbers, 325–326
reduce() operator, 306–307
repeat(n) operator, 319–320
take(n) operator, 320–321

Index • 341

tensorflow_datasets package,
328–329

tf2_concatenate.py, 305–306
tf2_map_take.py, 321–322
tf2_numpy_dataset.py,

301–302
tf2_plusone.py, 303–305
zip() and batch() operators,

322–323
zip() and take() operators,

324–325
tf.tidy() method, 195
tf2_trig_values.py, 279
tf2_variables.py, 264–265
to_categorical() function,

233
TodoInput directory, 66
todoinput.ts, 66–69
todoservice.ts, 65
toggleState() method, 30
top-level (“root”) module, 5
train() function, 222
trainLinearModel() function,

216
transformer architecture, 143, 179
transform() method, 81
translation invariance, 144
trigonometric functions, 279–280
two-layer neural network, 152
two-way binding, 103
TypeScript file, 2–3, 15–16, 21
TypeScript todos array, 65

U

“universal” JavaScript, 129
UpperCaseService class, 111–112
user.component. ts

GitHub user, 120–121
SimplePipe directory, 81–82
UserServiceEmitter directory,

113–114
UserService class, 122, 123

V

VAE-GAN model, 192
vanishing gradient problem, 143
variable model, 200
variational autoencoder, 186–187

W

watch() method, 287, 289

X

XOR function, 139–142, 151, 165

Z

zip() and batch() operators,
322–323

zip() and take() operators,
324–325

	Cover
	Title page
	LICENSE
	Half Title page
	Copyright page
	Didication page
	Contents
	PREFACE
	Chapter 1: Quick Introduction to Angular
	What You Need to Understand for Angular Applications
	A High-Level View of Angular
	A High-Level View of Angular Applications
	The Angular CLI
	Features of the Angular CLI (optional)
	A Hello World Angular Application
	The Contents of the Three Main Files
	The index.html Web Page
	Exporting and Importing Packages andClasses (optional)
	Working with Components in Angular
	Syntax, Attributes, and Properties in Angular
	Angular Lifecycle Methods
	A Simple Example of Angular Lifecycle Methods
	CSS3 Animation Effects in Angular
	Animation Effects via the “Angular Way”
	A Basic SVG Example in Angular
	Detecting Mouse Positions in Angular Applications
	Angular and Follow-the-Mouse in SVG
	Angular and SVG Charts
	D3 Animation and Angular
	Summary

	Chapter 2: UI Controls, User Input,and Pipes
	The ngFor Directive in Angular
	Displaying a Button in Angular
	Angular and Radio Buttons
	Adding Items to a List in Angular
	Deleting Items from a List in Angular
	Angular Directives and Child Components
	The Constructor and Storing State in Angular
	Conditional Logic in Angular
	Handling User Input
	Click Events in Multiple Components
	Working with @Input, @Output, and EventEmitter
	Presentational Components
	Working with Pipes in Angular
	Creating a Custom Angular Pipe
	Reading JSON Data via an Observable in Angular
	Upgrading Code from Earlier Angular Versions
	Reading Multiple Files with JSON Data in Angular
	Reading CSV Files in Angular
	Summary

	Chapter 3: Forms and Services
	Overview of Angular Forms
	An Angular Form Example
	Angular Forms with FormBuilder
	Angular Reactive Forms
	Other Form Features in Angular
	What are Angular Services?
	An Angular Service Example
	A Service with an EventEmitter
	Searching for a GitHub User
	Other Service-related Use Cases
	Flickr Image Search Using jQuery and Angular
	HTTP GET Requests with a Simple Server
	HTTP POST Requests with a Simple Server
	An SVG Line Plot from Simulated Data in Angular(optional)
	Summary

	Chapter 4: Deep Learning Introduction
	Keras and the xor Function
	What is Deep Learning?
	What are Perceptrons?
	The Anatomy of an Artificial Neural Network (ANN)
	What is a Multilayer Perceptron (MLP)?
	How are Datapoints Correctly Classified?
	A High-Level View of CNNs
	Displaying an Image in the MNIST Dataset
	Keras and the Mnist Dataset
	Keras, CNNs, and the Mnist Dataset
	CNNS with Audio Signals
	Summary

	Chapter 5: Deep Learning: RNNs and LSTMs
	What is an RNN?
	Working with RNNs and Keras
	Working with Keras, RNNs, and MNIST
	Working with TensorFlow and RNNs (Optional)
	What is an LSTM?
	Working with TensorFlow and LSTMs (Optional)
	What are GRUs?
	What are Autoencoders?
	What are GANs?
	Creating a GAN
	Summary

	Chapter 6: Angular and TensorFlow.js
	What is TensorFlow.js?
	Working with Tensors in TensorFlow.js
	Machine Learning APIs in TensorFlow.js
	Linear Regression with TensorFlow.js
	Angular, TensorFlow.js, and Linear Regression
	Creating Line Graphs in tfjs-vis
	Creating Bar Charts in tfjs-vis
	Creating Scatter Plots in tfjs-vis
	Creating Histograms in tfjs-vis
	Creating Heat Maps in tfjs-vis
	TensorFlow.js, tfjs-vis, and Linear Regression
	The MNIST Dataset
	Displaying MNIST Images
	Training a Model with the CIFAR10 Dataset (optional)
	Deep Learning and the MNIST Dataset
	Angular, Deep Learning, and the MNIST Dataset
	Summary

	Appendix A: Introduction to Keras
	What is Keras?
	Creating a Keras-Based Model
	Keras and Linear Regression
	Keras, MLPs, and MNIST
	Keras, CNNs, and cifar10
	Resizing Images in Keras
	Keras and Early Stopping (1)
	Keras and Early Stopping (2)
	Keras and Metrics
	Saving and Restoring Keras Models
	Summary

	Appendix B: Introduction to TF2
	What is TF 2?
	Other TF 2-based Toolkits
	TF 2 Eager Execution
	TF 2 Tensors, Data Types, and Primitive Types
	Constants in TF 2
	Variables in TF 2
	The tf.rank() API
	The tf.shape() API
	Variables in TF 2 (Revisited)
	What is @tf.function in TF 2?
	Working with With @tf.function in TF 2
	Arithmetic Operations in TF 2
	Caveats for Arithmetic Operations in TF 2
	TF 2 and Built-in Functions
	Calculating Trigonometric Values in TF 2
	Calculating Exponential Values in TF 2
	Working with Strings in TF 2
	Working with Tensors and Operations in TF 2
	2nd Order Tensors in TF 2 (1)
	2nd Order Tensors in TF 2 (2)
	Multiplying Two 2nd Order Tensors in TF
	Convert Python Arrays to TF Tensors
	Differentiation and tf.GradientTape in TF 2
	Examples of tf.GradientTape
	Google Colaboratory
	Other Cloud Platforms
	Summary

	Appendix C: TF 2 Datasets
	The TF 2 tf.data.Datasets
	What are Lambda Expressions?
	Working with Generators in TF 2
	Concatenating TF 2 tf.Data.Datasets
	The TF 2 reduce() Operator
	Working with Generators in TF 2
	The TF 2 filter() Operator (1)
	The TF 2 filter() Operator (2)
	The TF 2 batch() Operator (1)
	The TF 2 batch() Operator (2)
	The TF 2 map() Operator (1)
	The TF 2 map() Operator (2)
	The TF 2 flatmap() Operator (1)
	The TF 2 flatmap() Operator (2)
	The TF 2 flat_map() and filter() Operators
	The TF 2 repeat() Operator
	The TF 2 take() Operator
	Combining the TF 2 map() and take() Operators
	Combining the TF 2 zip() and batch() Operators
	Combining the TF 2 zip() and take() Operators
	TF 2 tf.data.Datasets and Random Numbers
	TF 2, MNIST, and tf.data.Dataset
	Working with the TFDS Package in TF 2
	Summary

	Index

