


Angular 
and 

Machine Learning
Pocket Primer



LICENSE, DISCLAIMER OF LIABILITY, 
AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this 
license grants permission to use the contents contained herein, including the 
disc, but does not give you the right of ownership to any of the textual content 
in the book / disc or ownership to any of the information or products contained 
in it. This license does not permit uploading of the Work onto the Internet 
or on a network (of any kind) without the written consent of the Publisher. 
Duplication or dissemination of any text, code, simulations, images, etc. 
contained herein is limited to and subject to licensing terms for the respective 
products, and permission must be obtained from the Publisher or the owner 
of the content, etc., in order to reproduce or network any portion of the textual 
material (in any media) that is contained in the Work.

Mercury Learning and Information  (“MLI” or “the Publisher”) and 
anyone involved in the creation, writing, or production of the companion disc, 
accompanying algorithms, code, or computer programs (“the software”), and 
any accompanying Web site or software of the Work, cannot and do not warrant 
the performance or results that might be obtained by using the contents of the 
Work. The author, developers, and the Publisher have used their best efforts to 
insure the accuracy and functionality of the textual material and/or programs 
contained in this package; we, however, make no warranty of any kind, express 
or implied, regarding the performance of these contents or programs. The 
Work is sold “as is” without warranty (except for defective materials used in 
manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and 
anyone involved in the composition, production, and manufacturing of this 
work will not be liable for damages of any kind arising out of the use of (or the 
inability to use) the algorithms, source code, computer programs, or textual 
material contained in this publication. This includes, but is not limited to, loss 
of revenue or profit, or other incidental, physical, or consequential damages 
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to 
replacement of the book and/or disc, and only at the discretion of the Publisher. 
The use of “implied warranty” and certain “exclusions” vary from state to state, 
and might not apply to the purchaser of this product.

(Companion files are also available for downloading from the publisher at
info@merclearning.com.)



Angular 
and 

Machine Learning
Pocket Primer
Oswald Campesato

Mercury Learning and Information
Dulles, Virginia 

Boston, Massachusetts 
New Delhi



Copyright ©2020 by Mercury Learning and Information LLC. All rights re-
served. 

This publication, portions of it, or any accompanying software may not be reproduced 
in any way, stored in a retrieval system of any type, or transmitted by any means, me-
dia, electronic display or mechanical display, including, but not limited to, photocopy, 
recording, Internet postings, or scanning, without prior permission in writing from the 
publisher.

Publisher: David Pallai
Mercury Learning and Information 
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

O. Campesato. Angular and Machine Learning Pocket Primer.
ISBN: 9781683924708

The publisher recognizes and respects all marks used by companies, manufacturers, and 
developers as a means to distinguish their products. All brand names and product names 
mentioned in this book are trademarks or service marks of their respective companies. 
Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an at-
tempt to infringe on the property of others.

Library of Congress Control Number: 2020934206

202122 321 Printed on acid-free paper in the United States of America

Our titles are available for adoption, license, or bulk purchase by institutions, corpo-
rations, etc. For additional information, please contact the Customer Service Dept. at 
(800) 232-0223(toll free).

Digital versions of our titles are available at: www.academiccourseware.com and other 
electronic vendors. Companion files are available from the publisher by writing to 
info@merclearning.com.

The sole obligation of Mercury Learning and Information to the purchaser is to 
replace  the book and/or disc, based on defective materials or faulty workmanship, but 
not based on  the operation or functionality of the product. 



I’d like to dedicate this book to my parents – 
may this bring joy and happiness into their lives.





Contents

Preface������������������������������������������������������������������������������������������ xi

1	 Quick Introduction to Angular............. 1–46

What You Need to Understand for Angular Applications.............  2
A High-Level View of Angular.......................................................  4
A High-Level View of Angular Applications..................................  5
The Angular CLI ............................................................................  6
Features of the Angular CLI (optional).........................................  8
A “Hello World” Angular Application ...........................................  9
The Contents of the Three Main Files........................................  12
The index.html Web Page............................................................  16
Exporting and Importing Packages and Classes (optional).........  16
Working with Components in Angular.........................................  17
Syntax, Attributes, and Properties in Angular.............................  19
Angular Lifecycle Methods..........................................................  19
A Simple Example of Angular Lifecycle Methods......................  20
CSS3 Animation Effects in Angular ............................................  22
Animation Effects via the “Angular Way”....................................  24
A Basic SVG Example in Angular................................................  27
Detecting Mouse Positions in Angular Applications...................  30
Angular and Follow-the-Mouse in SVG.......................................  32
Angular and SVG Charts..............................................................  35
D3 Animation and Angular...........................................................  41
Summary.......................................................................................  45



viii • Angular and Machine Learning Pocket Primer

2	U I Controls, User Input, and Pipes�������� 47–92

The ngFor Directive in Angular..................................................  48
Displaying a Button in Angular ...................................................  49
Angular and Radio Buttons..........................................................  51
Adding Items to a List in Angular................................................  52
Deleting Items from a List in Angular.........................................  54
Angular Directives and Child Components.................................  56
The Constructor and Storing State in Angular............................  57
Conditional Logic in Angular ......................................................  59
Handling User Input.....................................................................  61
Click Events in Multiple Components.........................................  65
Working with @Input, @Output, and EventEmitter .................  67
Presentational Components.........................................................  72
Working with Pipes in Angular ....................................................  72
Creating a Custom Angular Pipe..................................................  74
Reading JSON Data via an Observable in Angular.....................  78
Upgrading Code from Earlier Angular Versions ........................  81
Reading Multiple Files with JSON Data in Angular...................  83
Reading CSV Files in Angular......................................................  88
Summary.......................................................................................  92

3	 Forms and Services������������������������������������ 93–134

Overview of Angular Forms.........................................................  93
An Angular Form Example..........................................................  95
Angular Forms with FormBuilder ..............................................  98
Angular Reactive Forms ............................................................  100
Other Form Features in Angular...............................................  104
What are Angular Services?........................................................  105
An Angular Service Example......................................................  107
A Service with an EventEmitter.................................................  108
Searching for a GitHub User .....................................................  112
Other Service-Related Use Cases..............................................  116
Flickr Image Search Using jQuery and Angular.......................  119
HTTP GET Requests with a Simple Server..............................  122
HTTP POST Requests with a Simple Server............................  124
An SVG Line Plot from Simulated Data in Angular (optional). 128
Summary.....................................................................................  133



Contents • ix

4	 Intro to Machine Learning����������������� 135–172

What is Machine Learning?.......................................................  136
Types of Machine Learning Algorithms.....................................  138
Feature Engineering, Selection, and Extraction.......................  141
Dimensionality Reduction..........................................................  142
Working with Datasets................................................................  144
What is Regularization?..............................................................  145
The Bias-Variance Tradeoff........................................................  146
Metrics for Measuring Models...................................................  147
Other Useful Statistical Terms...................................................  149
What is Linear Regression? .......................................................  150
Other Types of Regression.........................................................  153
Working with Lines in the Plane (optional)...............................  154
Scatter Plots with NumPy and Matplotlib (1)...........................  157
Scatter Plots with NumPy and Matplotlib (2)...........................  159
A Quadratic Scatterplot with NumPy and Matplotlib...............  160
The Mean Squared Error (MSE) Formula...............................  161
Calculating the MSE Manually..................................................  163
Approximating Linear Data with np.linspace() ........................  164
Calculating MSE with np.linspace() API...................................  165
Linear Regression with Keras....................................................  167
Summary.....................................................................................  171

5	 Working with Classifiers��������������������� 173–200

What is Classification?................................................................  174
What are Linear Classifiers?.......................................................  176
What is kNN?..............................................................................  177
What are Decision Trees?...........................................................  178
What are Random Forests?........................................................  182
What are SVMs?.........................................................................  183
What is Bayesian Inference?......................................................  184
What is a Bayesian Classifier?....................................................  186
Training Classifiers......................................................................  186
Evaluating Classifiers..................................................................  187
What are Activation Functions?.................................................  188
Common Activation Functions..................................................  190
The ReLU and ELU Activation Functions................................  192



x • Angular and Machine Learning Pocket Primer

Sigmoid, Softmax, and Hardmax Similarities............................  193
Sigmoid, Softmax, and HardMax Differences...........................  194
What is Logistic Regression?......................................................  195
Keras, Logistic Regression, and Iris Dataset.............................  197
Summary.....................................................................................  200

6	 Angular and TensorFlow.js����������������� 201–226

What is TensorFlow.js?...............................................................  202
Working with Tensors in TensorFlow.js.....................................  204
Machine Learning APIs in TensorFlow.js..................................  205
Linear Regression with TensorFlow.js.......................................  206
Angular, TensorFlow.js, and Linear Regression........................  209
Creating Line Graphs in tfjs-vis.................................................  212
Creating Bar Charts in tfjs-vis....................................................  214
Creating Scatter Plots in tfjs-vis.................................................  215
Creating Histograms in tfjs-vis...................................................  217
Creating Heat Maps in tfjs-vis....................................................  219
TensorFlow.js, tfjs-vis, and Linear Regression...........................  221
Summary.....................................................................................  225

Introduction to Keras�������������������������������� 227–252

index��������������������������������������������������������������������� 253–261



PREFACE

What is the Goal?

The goal of this book is to introduce advanced beginners to basic machine 
learning and incorporate that knowledge into Angular 8 applications. This 
book is intended to be a fast-paced introduction to some basic features of 
machine learning and an overview of several popular machine learning 
classifiers. It includes code samples that are part of a university course 
taught by the author of this book. 

This book will save you the time required to search for code samples, 
which is a potentially time-consuming process. If you’re not sure whether 
you can absorb the material in this book, glance through the code samples 
to get a feel for the level of complexity.

At the risk of stating the obvious, please keep in mind the following 
point: you will not become an expert in machine learning or Angular 8 by 
reading this book.

What Will I Learn from This Book?

The first three chapters contain a short tour of basic Angular functional-
ity, such as UI components and forms in Angular applications. The fourth 
chapter introduces you to machine learning concepts, such as super-
vised and unsupervised learning, followed by the major types of machine 
learning algorithms (regression, classification, and clustering), along with 
a section discussing linear regression. The fifth chapter is devoted to 

Preface



xii • Angular and Machine Learning Pocket Primer

classification algorithms, such as kNN, Naïve Bayes, decision trees, ran-
dom forests, and SVM (Support Vector Machines).

The sixth chapter introduces basic TensorFlow concepts, followed by 
TensorFlow.js (i.e., TensorFlow in modern browsers) and some examples 
of Angular applications combined with machine learning. The appendix 
contains an introduction to Keras, along with some basic code samples.

Although Jupyter is popular, all the code samples in this book are 
Python scripts. However, you can quickly learn about the useful features 
of Jupyter through various online tutorials. In addition, it’s worth looking 
at Google Colaboratory: it is entirely online, is based on Jupyter note-
books, and offers free GPU usage.

How Much Keras Knowledge is Needed for This Book?

Some exposure to Keras is helpful, and you can read the appendix if Keras 
is new to you. If you also want to learn about Keras and logistic regression, 
there is an example in Chapter 3. This example requires some theoretical 
knowledge involving activation functions, optimizers, and cost functions, 
all of which are discussed in Chapter 4.

Please keep in mind that Keras is well-integrated into TensorFlow 2 
(in the tf.keras namespace), and it provides a layer of abstraction over 
the “pure” TensorFlow that will enable you to develop prototypes more 
quickly.

Do I Need to Learn the Theory Portions of This Book?

Once again, the answer depends on the extent to which you plan to become 
involved in machine learning. In addition to creating a model, you will use 
various algorithms to see which ones provide the level of accuracy (or some 
other metric) that you need for your project. If you fall short, the theoretical 
aspects of machine learning can help you perform a “forensic” analysis of 
your model and your data, and ideally assist in determining how to improve 
your model.

How Were the Code Samples Created?

The code samples in this book were created and tested using Python 3 and 
Keras that’s built into TensorFlow 2 on a Macbook Pro with OS X 10.12.6 
(macOS Sierra). The code samples were derived primarily from the author 



Preface • xiii

for his Deep Learning and Keras graduate course. In some cases, there are 
code samples that incorporate short sections of code from discussions in 
online forums. The key point to remember is that the code samples follow 
the “Four Cs”: they must be Clear, Concise, Complete, and Correct to the 
extent that it’s possible to do so, given the size of this book.

Launching the Code Samples: Please Read This

Since the code samples require more than 10 GB of disk space, which is 
greater than the capacity of a DVD, all the node_modules subdirectories 
have been deleted. Hence, you need to run the following command from 
the top-level directory of each Angular application:

npm install

The version numbers for the Angular CLI and NodeJs are displayed 
in the section “Installing the Angular CLI” in Chapter 1, and they are 
displayed below for your convenience:

Angular CLI: 8.3.21

Node: 13.3.0

OS: darwin x64

Angular:

...

Package                           Version

----------------------------------------------------

@angular-devkit/architect         0.803.21

@angular-devkit/core              8.3.21

@angular-devkit/schematics        8.3.21

@schematics/angular               8.3.21

@schematics/update                0.803.21

rxjs                              6.4.0

You might have different versions of the Angular CLI and Node, and 
if they are close to the version numbers displayed above, they will prob-
ably work as well.

Another point to keep in mind: several code samples in Chapter 3 
were created with an additional manual invocation of npm, which means 
that the file package.json is slightly different in those directories. 
Therefore, do not copy package.json from one code sample to other 
code samples.



xiv • Angular and Machine Learning Pocket Primer

In the event that you do overwrite package.json with another copy 
of this file, the code samples that involve the extra command line invoca-
tion will have the following comment in app.component.ts:

// remember: npm install jquery –save

If the file app.component.ts does not have this type of comment 
line, then you only need to invoke npm install once from the command 
line.

I Received An Error After Launching npm: What Can I Do?

One potential error that can occur when you launch npm install in the 
code samples is shown here:

An unhandled exception occurred: Could not find module 
"@angular-devkit/build-angular"

The first step involves removing the file package-lock.json:

rm package-lock.json

The second step is to install the package (introduced in Angular 6) 
listed in the preceding error message as a dependency, which involves the 
following command:

npm install --save-dev @angular-devkit/build-angular

The third step involves the standard npm invocation:

npm install 

There are other errors that can occur for various reasons (such as 
different versions of the Angular CLI), and in those situations, perform 
an Internet search. There’s a good chance that someone else has encoun-
tered the same error and has a solution for that error.

What are the Technical Prerequisites for This Book?

For the machine learning aspect of this book, you need some familiarity 
with Python, and also know how to launch Python code from the command 
line (in a Unix-like environment for Mac users). In addition, a mixture of 
basic linear algebra (vectors and matrices), probability/statistics, (mean, 
median, and standard deviation) and basic concepts in calculus (such as 
derivatives) will help you learn the material in this book. Some knowledge 
of NumPy and Matplotlib is also helpful, and the assumption is that you 
are familiar with their basic functionalities (such as NumPy arrays). 



Preface • xv

For the Angular aspect of this book, you need some familiarity with 
TypeScript as well as RxJS and Observables. Since RxJS is a JavaScript-
based implementation of FRP (Functional Reactive Programming), some 
knowledge of the latter would be very useful.

One other prerequisite is important for understanding the code sam-
ples in the second half of this book: some familiarity with neural networks, 
including the concepts of hidden layers and activation functions (even 
if you don’t fully understand them). Knowledge of cross entropy is also 
helpful for some of the code samples.

What are the Non-Technical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify, it’s 
very important to have strong desire to learn about machine learning, 
along with the motivation and discipline to read and understand the code 
samples. 

Even simple machine language APIs can be a challenge to under-
stand the first time you encounter them, so be prepared to read the code 
samples several times.

How Do I Set Up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is 
to use Finder to navigate to Applications > Utilities, and then 
double click on the Utilities application. Next, if you already have a 
command shell available, you can launch a new command shell by typing 
the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on 
a Macbook from a command shell that is already visible simply by click-
ing command+n in that command shell, and your Mac will launch another 
command shell.

If you are a PC user, you can install Cygwin (open source, available at 
https://cygwin.com/) that simulates bash commands, or use another tool-
kit such as MKS (a commercial product). Please read the online docu-
mentation that describes the download and installation process. Note that 
custom aliases are not automatically set if they are defined in a file other 
than the main start-up file (such as .bash_login). 



xvi • Angular and Machine Learning Pocket Primer

Companion Files

All the code samples and figures in this book may be obtained by writing 
to the publisher at info@merclearning.com.

What are the “Next Steps” After Finishing This Book?

The answer to this question varies widely, mainly because the answer 
depends heavily on your objectives. If you are interested primarily in 
Angular, then you can learn more advanced Angular features that you can 
incorporate in new Angular applications. 

If you are primarily interested in machine learning, there are many 
resources available, and you can perform an Internet search for those 
resources. The aspects of machine learning for you to learn depend on 
who you are: the needs of a machine learning engineer, data scientist, 
manager, student, and software developer are all different. 

� O. Campesato
� March 2020



c h a p t e r

This chapter provides a fast introduction to Angular-based appli-
cations. While many of the code samples are straightforward, 
you need to invest additional time and effort to acquire a deeper 

understanding of Angular. The purpose of the code samples is to illus-
trate some fundamental features of Angular. Although some fine-grained 
details are discussed, you will need to consult some online tutorials to gain 
a thorough understanding of the features of Angular.

Another important factor is your learning style: you might prefer to read 
the details regarding the “scaffolding” for Angular applications before you 
delve into the first code sample. However, it’s perfectly acceptable to skim 
the introductory portion of this chapter, quickly “get into the weeds” with 
the Angular sample code, and afterward review the initial portion again.

The first part of this chapter discusses some of the design goals of Angular 
and its various features, such as components, modules, and one-way data 
binding. The second part of this chapter discusses the Angular CLI, which 
is a command-line tool for generating Angular applications. 

The Angular applications in this book are based on Angular 8, using the 
ng command line utility for creating Angular applications.

There are several points to keep in mind before you read this short book. 
First, the code samples highlight basic coding techniques in Angular 
applications. Hence, you will not find an in-depth and highly detailed 
description of the Angular concepts, design goals, and architecture that 
are available in 600-page books. However, you can fill some of those tech-
nical gaps via online articles.

NOTE

Quick Introduction to 
Angular

1



2 • Angular and Machine Learning Pocket Primer

Second, you can learn the Angular concepts in the various applications 
without having previous experience with Angular, but obviously some 
knowledge of Angular would be helpful.

Third, this chapter contains some Angular applications for generating 
SVG-based graphics and D3-based animation effects. Due to space con-
straints, this chapter does not contain an introduction to SVG or D3. 
Fortunately, there are many online tutorials that provide detailed infor-
mation regarding the features of SVG and D3. If you are not interested in 
either of these technologies, feel free to skip the associated code samples, 
since there will be  no loss of continuity.

What You Need to Understand for Angular Applications

Two important technologies in Angular are TypeScript and RxJS. In very 
casual terms, TypeScript might remind you of combining JavaScript with 
a classical object-oriented approach. If you have an affinity for Java, you 
will probably be more comfortable with the “look-and-feel” of TypeScript 
than JavaScript.

RxJS is JavaScript-based FRP (Functional Reactive Programming) that 
supports many intermediate operators, such as filter(), map(), 
take(), and other useful operators. The following subsections contain 
some additional details regarding TypeScript and RxJS.

Learn TypeScript

Knowledge of TypeScript is highly recommended, along with a basic pro-
ficiency in NodeJS (i.e., the npm utility) and ES6. The Angular applications 
have been created with the Angular CLI (discussed later) that uses node 
v12.6.0 and npm 6.9.0, but it’s likely that slightly lower versions will work as 
well. Determine the version on your machine with the following commands:

node -v 
npm -v 

If necessary, navigate to the NodeJS home page to download a more 
recent version of the node executable. If you have not worked with Node, 
read an online tutorial to learn how to use basic npm commands.

The code samples include basic concepts about ES6 and TypeScript, and 
their respective home pages contain plenty of information to help you get 
started. In particular, learn basic concepts regarding Typescript classes 



Quick Introduction to Angular • 3

and template strings. As you will see in subsequent chapters, Angular 
applications rely heavily on dynamic templates, which frequently involve 
the interpolation (via the “{{}}” syntax) of variables. In addition, the fol-
lowing website provides an online “playground,” along with links for doc-
umentation and code samples about TypeScript:

https://www.typescriptlang.org/play/.

Angular takes advantage of ES6 features such as components and classes, 
as well as features that are part of TypeScript, such as annotations and its 
type system. TypeScript is preferred over ES6 because TypeScript sup-
ports all the features of ES6 and  TypeScript provides an optional type 
inferencing system that can catch many coding errors.

Learn RxJS and Observables

If you have worked with ES6, then you probably know about functions 
such as the filter() function (which is handy for Angular Pipes) and 
the map() function (often used with Observables and HTTP requests 
in earlier versions of Angular). Other functions, such as merge() and 
flatten(), can also be useful, and you can learn about them and other 
functions on an as-needed basis. 

In RxJS, the preceding functions are called “intermediate operators,” 
and you will frequently encounter them in RxJS Observables. In highly 
simplified terms, you can define an Observable involving one or more 
intermediate operators, and then invoke the Observable via a so-called 
“terminal operator.” 

Different languages can support different methods as terminal operators, 
and in the case of RxJS, the subscribe() method is a terminal operator. 
RxJS Observables are more powerful than Promises, and knowledge of 
the latter will simplify your transition to RxJS Observables. After you learn 
the basic features of RxJS, the following (albeit more advanced) article con-
tains very good information regarding the RxJS unsubscribe() method:

https://blog.bitsrc.io/6-ways-to-unsubscribe-from-observables-in-angu-
lar-ab912819a78f.

Promises versus Observables

In Chapter 2 and Chapter 3, you will see examples of Angular applications 
that involve Observables. Although you can find online code samples 



4 • Angular and Machine Learning Pocket Primer

that use Promises, Angular with TypeScript favors Observables. This 
book does not provide tutorial-like information regarding Observables 
(or Promises), but you can learn about the advantages of Observables 
over Promises at

https://www.syncfusion.com/blogs/post/angular-promises-versus-observ-
ables.aspx.

There are many other online tutorials available regarding Observables, 
and if necessary, you can read them on an as-needed basis in parallel with 
the code samples in the next two chapters. Fortunately, the code sam-
ples involve only a few features of Observables, so you do not need to 
become highly proficient with Observables for this book. 

You can develop Angular applications in Electron, Webstorm, and Visual 
Studio Code. Check their respective websites for pricing and feature 
support.

A High-Level View of Angular

Angular was designed as a platform that supports Angular applications 
in a browser, server-side rendering, and Angular applications on mobile 
devices. The first aspect – rendering Angular applications in browsers – 
is the focus of this book. The second aspect – Angular Universal (a.k.a., 
server-side rendering) – is not discussed in this book, but in essence, serv-
er-side rendering creates the “first view” of an Angular application on a 
server instead of a browser. Since browsers do not need to construct this 
view, they can render a view more quickly and create a faster perceived 
load time. The third aspect – Angular applications on mobile devices – is 
outside the scope of this book.

Angular has a component-based architecture, where components are 
organized in a tree-like structure (the same is true of Angular modules). 
Angular also supports powerful technologies that you will learn in order 
to become proficient in writing Angular applications. The simplest way 
to create an Angular application is to use the Angular CLI (discussed in 
detail later) that generates the required files for an Angular application. 
Some of the important features of Angular are listed here:

�� one-way data binding
�� “tree shaking”
�� change detection
�� style encapsulation 



Quick Introduction to Angular • 5

The first two features are briefly discussed below.  You can consult the 
online tutorials regarding style encapsulation.

One-way Data Binding in Angular

Angular provides declarative one-way binding as the default behavior (but 
Angular 4 enables you to switch to two-way binding if you wish to do so). 
One-way binding acts as a unidirectional change propagation that pro-
vides an improvement in performance as well as a reduction in code com-
plexity. Angular also supports stateful, reactive, and immutable models. 
The meaning of the previous statement will become clearer as you work 
with Angular applications.

Angular applications involve defining a top-level (“root”) module that 
references a Component that in turn specifies an HTML element (via 
a mandatory selector property) that is the “parent” element of the 
Component. The definition of the Component involves a so-called “deco-
rator” that contains a selector property and also a template property 
(or a templateUrl property).

The template property contains a mixture of HTML and custom 
mark-up that you can place in a separate file and then reference that file 
via the templateUrl property. In addition, the Component is imme-
diately followed by a TypeScript class definition that contains “backing 
code” that is associated with component-related variables that appear in 
the template property. These details will become much clearer after 
you have worked with some Angular applications.

The templateUrl property and styleUrls property refer to files, 
whereas the template property and styles property refer to inline code.

A High-Level View of Angular Applications

Angular applications consist of a combination of built-in components and 
custom components (the latter are written by you), each of which is typi-
cally defined in a separate TypeScript file (with a ts extension). Each com-
ponent uses one or more import statements to include its dependencies.

There are various types of dependencies available in Angular, such as direc-
tives and pipes. A custom directive is essentially the contents of a TypeScript 
file that defines a component. Thus, a custom directive consists of import 
statements, a Component decorator, and an exported TypeScript class.

NOTE



6 • Angular and Machine Learning Pocket Primer

Angular provides built-in directives, such as *ngIf (for if logic) and 
*ngFor (used in for loops). These two directives are also called “structural 
directives” because they modify the content of an HTML page. Angular 
built-in pipes include the date and numeric values (currency, decimals, 
numbers, and percent), whereas custom pipes are defined by you.

In addition, TypeScript classes use a decorator (which is a built-in 
function) that provides metadata to a class, its members, or its method 
arguments. Decorators are easy to identify because they always have an 
@ prefix. Angular provides a number of built-in decorators, such as @
Component and @NgModule.

This concludes the high-level introduction to Angular features. The 
next portion of this chapter introduces the Angular CLI, which is used 
throughout this book to create Angular applications.

The Angular CLI 

The Angular CLI is the official Angular application generator from 
Google. The Angular CLI is a command line tool called ng that generates 
complete Angular applications, which includes test-related code and also 
launches npm install in order to install the required files in node_
modules. The home page for the Angular CLI is cli.angular.io.

The Angular CLI generates a configuration file called package.json to 
manage the “core” dependencies and their version numbers. After gener-
ating an Angular application, navigate to the node_modules subdirectory, 
and you will see an assortment of Angular subdirectories that contain files 
that are required for Angular applications.

Installing the Angular CLI

You need to perform several steps in order to install the Angular CLI: 
uninstall older versions (if you have any installed) of the CLI, then install 
the latest version of the CLI, and then create a new Angular application. 

Step 1: uninstall the previous CLI (if you installed an older version) with 
the following:

sudo npm uninstall -g angular-cli
npm cache clean



Quick Introduction to Angular • 7

Step 2: install the new CLI with this command (note the new package 
name):

[sudo] npm install -g @angular/cli

The preceding command installs the ng executable, whose location you 
can find via the following command:

which ng

If the preceding command displays a blank line, that means that the direc-
tory that contains the ng executable is not included in the PATH environ-
ment variable. In this case, type the following command in a command 
shell:

export PATH=/Users/owner/.npm-global/bin:$PATH

Note that preceding command is valid for Mac OS X, Linux, bash, ksh, 
zsh, and any other Unix shells that are derived from the Bourne shell. 
If you are using Windows or a BSD-like shell (such as csh), search 
online to find the correct syntax for the preceding command for your 
system.

Now display the versions of the various components of the CLI by invok-
ing the following command in a command shell:

ng version

As this book goes to print, the output of the preceding command will 
be something similar to what is shown below (version numbers might be 
slightly different for you):

Angular CLI: 8.3.21

Node: 13.3.0

OS: darwin x64

Angular:

...



8 • Angular and Machine Learning Pocket Primer

Package                      Version

------------------------------------------------------

@angular-devkit/architect    0.803.21
@angular-devkit/core         8.3.21
@angular-devkit/schematics   8.3.21
@schematics/angular          8.3.21
@schematics/update           0.803.21
rxjs                         6.4.0

Features of the Angular CLI (optional)

Although this section contains useful information, you don’t need these 
details to create an Angular application (which you will see in the next 
section). After you have created some basic Angular applications and you 
want to incorporate additional functionality, you can return to this section 
and read about the Angular CLI options.

In order to see the various options of the ng executable, type the following 
command from a command shell (make sure that your PATH environment 
variable include the location of the ng executable, as discussed in a pre-
vious section):

$ ng help

Available Commands:

�� add — Adds support for an external library to your project.
�� analytics — Configures the gathering of the Angular CLI usage 

metrics. See v8.angular.io/cli/usage-analytics-gathering.
�� build (b) — Compiles an Angular app into an output directory 

named dist/ at the given output path. Must be executed from 
within a workspace directory.

�� config — Retrieves or sets Angular configuration values in the 
angular.json file for the workspace.

�� doc (d) — Opens the official Angular documentation (angular.io) in 
a browser, and searches for a given keyword.

�� e2e (e) — Builds and serves an Angular app, then runs end-to-end 
tests using Protractor.

�� generate (g) — Generates and/or modifies files based on a schematic.
�� help — Lists available commands and their short descriptions.
�� lint (l) — Runs linting tools on Angular app code in a given pro-

ject folder.



Quick Introduction to Angular • 9

�� new (n) — Creates a new workspace and an initial Angular app.
�� run — Runs an Architect target with an optional custom builder con-

figuration defined in your project.
�� serve (s) — Builds and serves your app, rebuilding on file changes.
�� test (t) — Runs unit tests in a project.
�� update — Updates your application and its dependencies. See 

update.angular.io/.
�� version (v) — Outputs the Angular CLI version.
�� xi18n — Extracts i18n messages from the source code.
�� version (v) — Outputs the Angular CLI version.
�� xi18n — Extracts i18n messages from the source code.

The ng g option is equivalent to the ng generate option, which ena-
bles you to generate an Angular custom Component, an Angular Pipe 
(discussed in Chapter 3), and other options. The ng x18n option extracts 
i18n messages from the source code. The next section shows you an 
example of generating an Angular custom Component in an application, 
and the contents of the files that are automatically generated for you.

The default prefix is app for components (e.g., <app-root></app-
root>), but you can specify a different prefix with this invocation:

ng new app-root-name –prefix abc 

Angular applications created via ng always contain the src/app directory.

Information about upgrading the Angular CLI is here: 

https://github.com/angular/angular-cli.

Documentation for the Angular CLI is here: 

http://cli.angular.io.

Now that you have an understanding of some of the features of the ng 
utility, let’s create our first Angular application, which is the topic of the 
next section.

A “Hello World” Angular Application 

As you will discover, it’s possible to create many basic Angular applications 
with a small amount of custom code. When you are ready to create medi-
um-sized applications, you can take advantage of the component-based 
nature of Angular applications in order to incrementally add new compo-
nents (and modules).

NOTE



10 • AngulAr And MAchine leArning Pocket PriMer

Now let’s create a new project called HelloWorld by navigating to a suita-
ble directory on your machine and then invoking the following command:

ng new HelloWorld

The Angular CLI generates everything except for your custom code. 
Second, the Angular CLI enables you to generate new components, rout-
ers, and so forth, which are possible with starter applications. Third, the 
Angular CLI is based purely on TypeScript, and the generated applica-
tion includes the JSON files tsconfi g.json, tslint.json, typedoc.
json, and typings.json.

Now launch the HelloWorld application as follows:

cd HelloWorld
ng serve

Launch a new browser session, navigate to localhost:4200, and you 
will see the same display as the content of Figure 1.1.

FIGURE 1.1 A Hello World Angular Application

Full color figures are available in the companion files.

The Anatomy of an Angular Application 

The ng command that you launched in the previous section created an 
Angular application that contains more than 35,000 files, most of which are 
in the node_modules subdirectory. Fortunately, you only need to be aware 
of a handful of files when you need to create your own Angular applications.

NOTE



Quick Introduction to Angular • 11

Here is the list of files and directories in the root directory of the 
HelloWorld Angular application:

�� tslint.json
�� README.md

�	 angular.json
�� browserslist
�� e2e
�� karma.conf.js
�� node_modules
�� package-lock.json

�	 package.json
�	 src
�� tsconfig.app.json
�� tsconfig.json
�� tsconfig.spec.json
�� tslint.json
�� .gitignore
�� .editorconfig

The most relevant files are package.json and angular.json and the most 
important directory for creating custom code in the src directory (all of 
these are shown in bold in the preceding list). In general, you will not 
need to modify either of these files. As you will see later in this chapter, 
you need to perform an extra step from the command line when you need 
to work with D3-based graphics.

The Main Files in the src/app Subdirectory (Overview)

The src subdirectory contains a combination of subdirectories and files, 
as shown here:

app

assets

environments

favicon.ico

index.html

main.ts

polyfills.ts

styles.css

test.ts



12 • Angular and Machine Learning Pocket Primer

Notice that the preceding list contains the TypeScript file main.ts, 
which will be discussed later in this chapter.

Next, the src/app subdirectory contains your custom code and the src/
assets subdirectory contains other assets, such as JSON files. Later you 
will see an example of an Angular application that reads the content of 
authors.json that is located in the src/assets subdirectory.

The following list displays the contents of the src/app subdirectory:

app.component.css
app.component.html

app.component.spec.ts
app.component.ts

app.module.ts

Unless it’s noted differently, you can delete the contents of app.com-
ponent.html for every code sample in this book. The file app.com-
ponent.ts contains TypeScript code that is specific to your Angular 
application, and the file app.module.ts specifies any dependencies in 
your Angular application, which can include Angular modules as well as 
custom modules (you’ll see examples of such in Chapter 3).

The three TypeScript files main.ts, app.component.ts, and app.
module.ts are the bootstrap file, the main module, and the main com-
ponent class, respectively, for Angular applications.

Here is the condensed one-sentence explanation about the purpose of 
these three files: Angular uses main.ts as the initial “entry point” to 
bootstrap the Angular module AppModule (defined in app.module.ts), 
which in turn references the main component AppComponent (defined 
in app.component.ts), as well as any other custom components (and 
modules) that you have imported into AppModule.

The Contents of the Three Main Files

The preceding section briefly described the sequence in which files are 
processed in Angular applications. The code samples this book involve 
custom code in the TypeScript file app.component.ts and sometimes 
involve updating the contents of the file app.module.ts, but there is no 
need to modify the file main.ts. The following subsections display the 
contents of these three files, along with a brief description of their contents.



Quick Introduction to Angular • 13

The main.ts Bootstrap File 

Listing 1.1 displays the contents of main.ts in the src subdirectory 
(not the src/app subdirectory) that imports and bootstraps the top-level 
Angular module AppModule. Although you won’t need to modify this file 
in the code samples in this book, it’s worth briefly taking a one-time look 
at the contents of this file. 

This file acts as an “entry point” from which a sequence of files is accessed 
and then launched. As you will soon see, Angular applications have a 
component-based architecture, which might seem more complex than 
alternate frameworks. However, as you become more familiar with this 
architecture, you will see that this architecture enables teams of develop-
ers to work in parallel on different parts of a complex application.

LISTING 1.1 main.ts

import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform- 
browser-dynamic';

import { AppModule }      from './app/app.module';
import { environment }    from './environments/
environment';

if (environment.production) {
  enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule)
  .catch(err => console.error(err));

The first line of code in Listing 1.1 is an import statement that is needed 
for the conditional logic later in the code listing. The second import 
statement appears in many Angular code samples, and it’s necessary for 
launching Angular applications on desktops and laptops. 

The third import statement involves the top-level module of Angular 
applications, which in turn contains all the custom components and ser-
vices that are included in this Angular module. The fourth import state-
ment contains environment-related information that is used in the next 
conditional logic snippet: if the current application is in production mode, 
the enableProdMode() function is executed. 



14 • Angular and Machine Learning Pocket Primer

The final line of code is the actual bootstrapping process that involves 
rendering the code in app.component.ts in a browser.

The app.component.ts File

Listing 1.2 displays the content of app.component.ts, which illus-
trates the typical properties of an Angular application.

LISTING 1.2 app.component.ts

import { Component } from '@angular/core';

@Component({
  selector:    'app-root',
  templateUrl: './app.component.html',
  styleUrls:   ['./app.component.css']
})
export class AppComponent {
  title = 'HelloWorld';
}

Listing 1.2 starts with an import statement for the Angular @Component 
decorator in order to define the metadata for the class AppComponent. At 
a minimum, the metadata involves two properties: selector and either 
template or templateUrl. Except for the routing-related compo-
nents, both of these properties are required in custom components. In 
this example, the selector property specifies the custom element app-
root (which you can change) that is in the HTML Web page index.
html.

The templateURL property specifies a file that contains HTML markup 
that will be inserted in the custom element app-root. An alternative 
is the template property, which contains the HTML markup that will 
be inserted in the custom element app-root. The final line of code in 
Listing 1.2 is an export statement that makes the AppComponent class 
available for import in other TypeScript files, such as app.module.ts, 
which is shown in Listing 1.3 in the next section.

Although the property templateUrl specifies an HTML Web page with 
mark-up, the Angular code samples in this book use the template prop-
erty to define the layout of the HTML web page for Angular applications 
(that’s why the HTML Web page app.component.html in the code 
samples in this book is empty).



Quick Introduction to Angular • 15

The app.module.ts File

Listing 1.3 displays the content of app.module.ts, which displays the 
dependencies of various modules in an Angular application.

LISTING 1.3 app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule }      from '@angular/core';
import { AppComponent }  from './app.component';

@NgModule({
  declarations: [
    AppComponent
  ],
  imports: [
    BrowserModule
  ],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }

Listing 1.3 contains import statements that import BrowserModule and 
NgModule that are part of Angular. The third import statement imports 
the class AppComponent that is the top-level component illustrated in 
Listing 1.2 in the previous section.

Angular dependencies always contain the “@” symbol, whereas custom 
dependencies specify a relative path to your custom TypeScript files.

Next, the @NgModule decorator contains an object with various proper-
ties (discussed in the next section). These properties specify the metadata 
for the class AppModule that is exported in the final line of code in Listing 
1.3. The metadata in AppModule involves the following array-based prop-
erties of values: imports, providers, declarations, exports, and 
bootstrap. 

In Listing 1.3, the array properties declarations, imports, and boot-
strap are non-null, whereas the providers property is an empty array. 
This metadata is required in order for Angular to “bootstrap” the code in 
AppComponent, which in turn contains the details of what is rendered 
(e.g., an <h1> element) and where it is rendered (e.g., as a child of the 
app-root element in index.html).

NOTE



16 • Angular and Machine Learning Pocket Primer

Now let’s take a look at the contents of the HTML Web page index.
html, which is the main Web page for our Angular application.

The index.html Web Page

Listing 1.4 displays the content of index.html for a new Angular appli-
cation that is generated from the command line via the ng utility.

LISTING 1.4 index.html

<!doctype html>
<html lang="en">
<head>
  <meta charset="utf-8">
  <title>HelloWorld</title>
  <base href="/">

  <meta name="viewport" content="width=device-width, 
initial-scale=1">
  <link rel="icon" type="image/x-icon" href="favicon.
ico">
</head>
<body>
  <app-root></app-root>
</body>
</html>

Listing 1.4 is minimalistic: only the custom <app-root> element (which 
is specified in the selector property in app.component.ts) gives you 
an indication that this Web page is part of an Angular application.

The Angular CLI automatically inserts JavaScript dependencies in 
index.html during the “build” of the project.

Before we delve into the TypeScript files in an Angular application, 
let’s take a quick detour to understand how import statements work in 
Angular applications. However, feel free to skip the next section if you are 
already familiar with the import and export statements in Angular.

Exporting and Importing Packages and Classes (optional)

Every TypeScript class that is imported in a TypeScript file must be 
exported in the TypeScript file where that class is defined. You will see 

NOTE



Quick Introduction to Angular • 17

many examples of import and export statements: in fact, this is true of 
every Angular application in this book. 

There are two common types of import statements: one type involves 
importing packages from Angular modules, and the other type involves 
importing custom classes (written by you). Here is the syntax for both 
types:

import {some-package-name} from 'some-angular-module';
import {some-class }       from 'my-custom-class';

Here is an example of both types of import statements:

import { NgModule }        from '@angular/core';
import {EmpComponent}      from './emp.component';

In the preceding code snippet, the NgModule package is imported from 
the @angular/core module that is located in the node_modules direc-
tory. The EmpComponent class is a custom class that is defined and 
exported in the TypeScript file emp.component.ts. 

In the second import statement, the “./” prefix is required whenever 
a custom class is imported from a TypeScript file: notice the omission of 
the “.ts” suffix.

Working with Components in Angular

As you have already learned, an Angular application is a tree of nested 
components, where the top-level component is the application. The com-
ponents define the UI elements, screens, and routes. In general, organize 
Angular applications by placing each custom component in a TypeScript 
file, and then import that same TypeScript file in the “main” file (which is 
often named app.component.ts) that contains the top-level component.

The MetaData in Components

Angular components are often a combination of an @Component deco-
rator and a class definition that can optionally contain a constructor. A 
simple example of an @Component decorator is here:

import { Component }  from '@angular/core';
import {EmpComponent} from './emp/emp.component';

@Component({ 
    selector:  'app-container',



18 • Angular and Machine Learning Pocket Primer

    template:  `<tasks>{{message}}</tasks>`,
    directives: [EmpComponent]
})

The preceding @Component decorator contains several properties, some 
of which are mandatory and others that are optional. Let’s look at both 
types in the preceding code block.

The selector property is mandatory, and it specifies the HTML ele-
ment (whether it’s an existing element or a custom element) that serves 
as the “root” of an Angular application. 

Next, the template property (or a templateUrl property) is manda-
tory, and it contains a mixture of markup, interpolated variables, and 
TypeScript code. One important detail: the template property requires 
“backticks” when its definition spans multiple lines.

The directives property is an optional property that specifies an array 
of components that are treated as nested components. In this example, 
the directives property specifies the component EmpComponent that 
is also imported (via an import statement) near the beginning of the code 
block. Notice that the import statement does not contain the “@” symbol, 
which means that EmpComponent is a custom component defined in the 
file emp/emp.component.ts.

Stateful versus Stateless Components in Angular

In high-level terms, a stateful component retains information that is rele-
vant to other parts of the same Angular application. Stateless components 
do not maintain the application state, nor do they request or fetch data: 
they pass data via property bindings from another component (such as its 
parent).

The code samples in this book include a combination of stateful compo-
nents, stateless components, and sometimes also “value objects”, which 
are instances of custom classes that “model” different entities (such as an 
employee, customer, student, and so forth).

You will see an example of a presentational component in Chapter 2. In 
the meantime, a good article that delves into stateful and stateless com-
ponents is here:

https://toddmotto.com/stateful-stateless-components#stateful.



Quick Introduction to Angular • 19

Syntax, Attributes, and Properties in Angular

Angular introduced the square bracket “[]” notation for attributes and 
properties, as well as the round parentheses “()” notation for functions 
that handle events. This new syntax is actually valid HTML5 syntax. Here 
is an example of a code snippet that specifies an attribute and a function:

<foo [bar]= "x+1" (baz)="doSomething()">Hello World</
foo>

An example that specifies a property and a function is here:

<button [disabled]="!inputIsValid" (click)="authenti-
cate()">Login </button>

An example of a data-related element with a custom element is here:

<my-chart [data]="myData" (drag)="handleDrag()"></
my-chart>

The new syntax in the preceding code snippet eliminates the need for 
many built-in directives, as you will see later in this chapter.

Attributes versus Properties in Angular

Keep in mind the following distinction: a property can specify a complex 
model, whereas an attribute can only specify a string. For example, in 
Angular 1.x, you can write the following:

<my-directive foo="{{something}}"></my-directive>

The corresponding code in Angular (which does not require interpola-
tion) is here:

<my-directive [foo]="something"></my-directive>

Before delving into code samples that show you how to create graphics 
and animation effects, let’s look at the Angular lifecycle methods.

Angular Lifecycle Methods

Angular applications have lifecycle methods that are executed in a pre-de-
fined sequence. Hence, you can place custom code in those methods in 
order to handle various events (such as application, start, run, and 



20 • Angular and Machine Learning Pocket Primer

so forth). The “Lifecycle Hook” interfaces are defined in the @angular/
core library, and they are listed here:

�� OnInit
�� OnDestroy
�� DoCheck
�� OnChanges
�� AfterContentInit
�� AfterContentChecked
�� AfterViewInit
�� AfterViewChecked

Each interface has a single method whose name is the interface name pre-
fixed with ng. For example, the OnInit interface has a method named 
ngOnInit. Angular invokes these lifecycle methods in the following order:

�� ngOnChanges: called when an input or output binding value changes
�� ngOnInit: after the first ngOnChanges
�� ngDoCheck: developer’s custom change detection
�� ngAfterContentInit: after component content initialized
�� ngAfterContentChecked: after every check of component content
�� ngAfterViewInit: after component’s view(s) are initialized
�� ngAfterViewChecked: after every check of a component’s view(s)
�� ngOnDestroy: just before the directive is destroyed

Since Angular invokes the constructor of a component when that compo-
nent is created, the constructor is a convenient location to initialize the 
state for that component. However, child components must be initialized 
before accessing any properties or data that is defined in those child com-
ponents. In this scenario, place custom code in the ngOnInit lifecycle 
method to access the data from the child components.

The complete set of Angular lifecycle events is here:

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html.

A Simple Example of Angular Lifecycle Methods

Copy the directory LifeCycle from the companion disc into a conven-
ient location. Recall that the node_modules directory was removed in 
order to fit the entire set of Angular applications on the companion disc.

Please read the section “Launching the Code” in the preface that explains 
how to generate the node_modules subdirectory.



Quick Introduction to Angular • 21

Listing 1.5 displays the content of app.component.ts, which shows 
you the sequence in which some Angular lifecycle methods are invoked.

LISTING 1.5 app.component.ts

import {Component} from '@angular/core';

@Component({
  selector: 'app-root',
  template: '<h2>Angular Lifecycle Methods</h2>',
})
export class AppComponent{
   ngOnInit() {
     // invoked after child components are initialized
     console.log("ngOnInit");
   }
   ngOnDestroy() {
     // invoked when a component is destroyed
     console.log("ngOnDestroy");
   }
   ngDoCheck() {
     // custom change detection
     console.log("ngDoCheck");
   }
   ngOnChanges(changes) {
     console.log("ngOnChanges");
     // Invoked after bindings have been checked
     // but only if one of the bindings has changed.
     //
     // changes is an object of the format:
     // {
     //   'prop': PropertyUpdate
     // }
   }
   ngAfterContentInit() {
     // Component content has been initialized
     console.log("ngAfterContentInit");
   }
   ngAfterContentChecked() {
     // Component content has been checked
     console.log("ngAfterContentChecked");
   }



22 • Angular and Machine Learning Pocket Primer

   ngAfterViewInit() {
     // Component views are initialized
     console.log("ngAfterViewInit");
   }
   ngAfterViewChecked() {
     // Component views have been checked
     console.log("ngAfterViewChecked");
   }
}

Listing 1.5 contains all the Angular lifecycle methods, and each method 
contains console.log() so that you can see the order in which the 
methods are executed.

Launch the application by navigating to the src subdirectory of the 
LifeCycle application, and invoke the following command:

ng serve

Navigate to localhost:4200 in a Chrome browser session and open 
Chrome Inspector, after which you will see the following output in the 
Console tab:

ngOnInit
ngDoCheck
ngAfterContentInit
ngAfterContentChecked
ngAfterViewInit
ngAfterViewChecked
ngDoCheck
ngAfterContentChecked
ngAfterViewChecked

The preceding lifecycle methods are useful if you need to execute some 
custom code in a specific method. The next section shows you how to add 
CSS3 animation effects in Angular applications.

CSS3 Animation Effects in Angular 

This section enhances the code sample in an earlier section by adding a 
CSS3 animation effect. If you are unfamiliar with CSS3, there are many 
online tutorials available. If you have no interest in Angular applications 
with custom CSS3 code, feel free to skip this section.



Quick Introduction to Angular • 23

Now copy the directory SimpleCSS3Anim from the companion files into 
a convenient location. Listing 1.6 displays the content of app.compo-
nent.ts, which illustrates how to change the color of list items when-
ever users hover over each list item with their mouse.

LISTING 1.6 app.component.ts

import {Component} from '@angular/core';

@Component({
   selector: 'app-root',
   template: `
     <h2>Employee Information</h2>
     <ul>
       <li *ngFor="let emp of employees">
         {{emp.fname}} {{emp.lname}} lives in {{emp.city}}
       </li>
     </ul>
    `,
    styles:  [`
      @keyframes hoveritem {
          0%   {background-color: red;}
          25%  {background-color: #880;}
          50%  {background-color: #ccf;}
          100% {background-color: #f0f;}
      }

      li:hover {
          width: 50%;
          animation-name: hoveritem;
          animation-duration: 4s;
      }
    `] 
})
export class AppComponent {
  employees = [];

  constructor() {
    this.employees = [
     {"fname":"Jane","lname":"Jones","city":"San 
Francisco"},
     {"fname":"John","lname":"Smith","city":"New York"},



24 • Angular and Machine Learning Pocket Primer

     {"fname":"Dave","lname":"Stone","city":"Seattle"},
     {"fname":"Sara","lname":"Edson","city":"Chicago"}
   ];
  }
}

Listing 1.6 contains the styles property, which contains a @keyframes 
definition for creating an animation effect involving color changes. The 
styles property also contains an li:hover selector that references the 
@keyframes definition and specifies a time duration of 4 seconds for the 
animation effect. The colors that you see are specified in the @keyframes 
definition. If you have worked with CSS3 animation effects, then @key-
frames is probably very familiar to you.

Launch the Angular application and navigate to localhost:4200 in a 
browser session. When the list of names is displayed, move your mouse 
slowly over each name and watch how they change color. The text display 
is shown below, but you need to launch the application to see the color-re-
lated transformations: 

Employee Information

�� Jane Jones lives in San Francisco 
�� John Smith lives in New York 
�� Dave Stone lives in Seattle 
�� Sara Edson lives in Chicago 

Instead of using CSS3 to perform animation effects, you can also do so via 
Angular functionality, which is illustrated in the next section.

Animation Effects via the “Angular Way”

This section enhances the code in the previous section by creating an ani-
mation effect by means of Angular-specific functionality instead of CSS3-
based functionality. This section also requires an understanding of how to 
instantiate a custom TypeScript class, which in this section is the custom 
Emp class that is defined in Listing 1.7.

Now copy the directory SimpleAnimation from the companion disc into 
a convenient location. Listing 1.7 displays the content of app.compo-
nent.ts, which illustrates how to move the position of the <li> ele-
ments whenever users hover over them with their mouse.



Quick Introduction to Angular • 25

LISTING 1.7 app.component.ts

// part #1: new import statement 
import { Component, Input } from '@angular/core';

import {trigger, state, style, transition, animate} from 
'@angular/animations';

// part #2: new Emp class 
class Emp {
  constructor(public fname: string, 
              public lname: string, 
              public city:  string, 
              public state = 'inactive') {
  }

   
  toggleState() {
    this.state = (this.state==='active' ? 'inactive' : 
'active');
    console.log(this.fname+" "+"new state = "+this.
state);
  }
}
@Component({
   selector: 'app-root',

   // part #3: new animations property 
   animations: [
     trigger('empState', [
       state('inactive', style({
         backgroundColor: '#eee',
         transform: 'scale(1)'
       })),
       state('active',   style({
         backgroundColor: '#cfd8dc',
       transform: 'scale(1.1)'
       })),
     transition('inactive => active', animate('100ms 
ease-in')),
     transition('active => inactive', animate('100ms 
ease-out'))



26 • Angular and Machine Learning Pocket Primer

     ])
   ],
   template: `
     <h2>Employee Information</h2>
     <ul>
       <li *ngFor="let emp of employees"
                   [@empState]="emp.state"
                   (mousemove)="emp.toggleState()">
         {{emp.fname}} {{emp.lname}} lives in {{emp.city}}
       </li>
     </ul>
    `
})
export class AppComponent {
  employees = [];

  constructor() {
    // part #5: array of Emp objects
    this.employees = [
     new Emp("Jane","Jones","San Francisco"),
     new Emp("John","Smith","New York"),
     new Emp("Dave","Stone","Seattle"),
     new Emp("Sara","Edson","Chicago")
   ];
  }
}

Listing 1.7 consists of five modifications to the code in Listing 1.6. 
Specifically, the section labeled “part #1” is a new import statement that 
replaces the original import statement. The section labeled “part #2” is 
the newly added Emp class that holds data for each employee. 

The section labeled “part #3” is the new transitions property that defines 
the behavior when an animation event is triggered (which occurs during a 
mousemove event “over” an <li> element). The portion in bold (which is 
not labeled, but is “part #4”) in the ngFor element essentially binds the 
mousemove event to the toggleState() method in the Emp class. Finally, 
the section labeled “part #5” is an array of Emp objects that replaces the 
original array in which each employee is represented as a JSON string.

Launch this Angular application from the command line via ng serve, 
navigate to localhost:4200, and then move your mouse over each 



Quick Introduction to Angular • 27

person’s name and observe the “fading” effect. The output in your browser 
will look like this:

Employee Information

�� Jane Jones lives in San Francisco 
�� John Smith lives in New York 
�� Dave Stone lives in Seattle 
�� Sara Edson lives in Chicago 

Although this example is simple, you can extend this code with your own 
custom modifications to create other CSS3-based animation effects.

Now open the Inspector option in your browser (Chrome or Firefox) and 
you will see the following type of output:

Dave new state = active 

Dave new state = inactive 

John new state = active 

John new state = inactive 

Jane new state = inactive 

Jane new state = active 

Jane new state = inactive 

Jane new state = active 

Jane new state = inactive 

John new state = active 

Dave new state = active 

Dave new state = inactive 

Sara new state = active 

Sara new state = inactive

A Basic SVG Example in Angular

This section shows you how to specify a custom component that contains 
SVG code for rendering an SVG element. This example serves as the basis 
for the SVG code in the next section, which involves dynamically creating 
and appending an SVG element to the DOM.

Copy the directory SVGEllipse from the companion files into a conven-
ient location. Listing 1.8 displays the content of app.component.ts, 
which references an Angular custom component in order to render an 
SVG ellipse.



28 • Angular and Machine Learning Pocket Primer

LISTING 1.8 app.component.ts

import {Component} from '@angular/core';

@Component({
   selector: 'app-root',
   template: `<div><my-svg></my-svg></div>`
})
export class AppComponent {}

Listing 1.8 is very straightforward: the code defines a component whose 
template property contains a custom <my-svg> element inside a <div> 
element.

Listing 1.9 displays the contents of MyEllipse.ts that contains the SVG 
code for rendering three overlapping ellipses in SVG.

LISTING 1.9 MyEllipse.ts

import {Component} from '@angular/core';

@Component({
   selector: 'my-svg',
   template: `
     <svg width="500" height="300">
       <ellipse cx="100" cy="100"
                rx="50" ry="30" 
                fill="red"/>
       <ellipse cx="180" cy="100"
                rx="80" ry="40"
                fill="blue"/>
       <ellipse cx="140" cy="140"
                rx="80" ry="40"
                fill="yellow"/>
     </svg> 
     `
})
export class MyEllipse{}

Listing 1.9 is also straightforward: the template property contains the 
code for an SVG <svg> element with the width and height attributes, 
which in turn contains a nested SVG <ellipse> element with hard-
coded values for the required attributes cx, cy, rx, ry, and fill.



Quick introduction to AngulAr • 29

Listing 1.10 displays the contents of app.module.ts with the new con-
tents shown in bold.

LISTING 1.10 app.module.ts

import {Component}        from '@angular/core';

import { NgModule }       from '@angular/core';

import { BrowserModule }  from '@angular/platform-browser';

import { AppComponent }   from './app.component';

import { MyEllipse }      from './MyEllipse;

@NgModule({

  imports:      [ BrowserModule ],

  declarations: [ AppComponent, MyEllipse ],

  bootstrap:    [ AppComponent ]

})

export class AppModule { }

Listing 1.10 contains generic code that you are familiar with from previ-
ous examples in this chapter, as well as a new import statement (shown 
in bold) involving the MyEllipse class. The other modification in Listing 
1.10 is the inclusion of the MyEllipse1 class (shown in bold) in the dec-
larations array.

Launch the Angular applica-
tion in the usual fashion, and in 
a browser session you will see 
three colored ellipses in SVG, as 
shown in Figure 1.2.

In case you are interested, the 
following links explain how to 
create SVG gradients and also 
how to create SVG Gradient 
Effects in Angular applications:

https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Gradients

and 

https://medium.com/@OlegVaraksin/how-to-proper-use-svg-gradients-
in-angularjs-2-3241672e4de2#.oah0e9z1k

FIGURE 1.2 Rendering Ellipses in SVG in an 
Angular Application



30 • Angular and Machine Learning Pocket Primer

Detecting Mouse Positions in Angular Applications

This section shows you how to detect a mouse position inside an SVG 
<svg> element. Copy the directory SVGMouseMove from the companion 
files into a convenient location. Listing 1.11 displays the content of app.
component.ts, which illustrates how to detect a mousemove event and 
to display the coordinates of the current mouse position.

LISTING 1.11 app.component.ts

import {Component} from '@angular/core';

@Component({
   selector: 'app-root',
   template: `<div><mouse-move></mouse-move></div>`
})
class AppComponent {}

Listing 1.11 contains a template property that consists of a <div> ele-
ment that contains a nested <mouse-move> element, where the latter is 
the value of the selector property in the custom component MouseMove 
that is defined in the custom TypeScript file mousemove.ts. 

In essence, the component AppComponent “delegates” the handling of 
the mousemove events to the MouseMove component, which defines the 
mouseMove() function in order to handle such events.

Listing 1.12 displays the content of mousemove.ts, which illustrates 
how to detect a mousemove event and display the coordinates of the cur-
rent mouse position.

LISTING 1.12 mousemove.ts

import {Component} from '@angular/core';

@Component({
 selector: 'mouse-move',
 template: `<svg id="svg" width="600px" height="400px"
              (mousemove)="mouseMove($event)">
            </svg>
           `
})
export class MouseMove{
   mouseMove(event) {



Quick Introduction to Angular • 31

     console.log("Position x: "+event.clientX+" y: 
"+event.clientY);
   }
}

Listing 1.12 contains the mouseMove() method whose lone argument 
event is an object that contains information about the mouse event (such 
as its location). The mouseMove() method contains a console.log() 
statement that simply displays the x-coordinate and the y-coordinate of 
the location of the mouse click event.

Notice the two new code snippets (shown in bold) in app.module.ts 
displayed in Listing 1.13, which includes the MouseMove class.

LISTING 1.13 app.module.ts

import { NgModule }      from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { AppComponent }  from './app.component';
import { MouseMove }     from './Mousemove';

@NgModule({
  imports:      [ BrowserModule ],
  declarations: [ AppComponent, MouseMove ],
  bootstrap:    [ AppComponent ]
})
export class AppModule { }

Listing 1.13 imports the MouseMove class and adds this class to the dec-
larations property (both of which are shown in bold).

Now launch this Angular application, and in new browser session, navi-
gate to View -> Developer -> JavaScript Console (for a Chrome 
browser) to display the console. As you move your mouse around the 
screen, you will see the following type of output displayed in the console:

  Position x: 506 y: 254 mousemove.ts:12:13
  Position x: 505 y: 255 mousemove.ts:12:13
  Position x: 505 y: 258 mousemove.ts:12:13
  Position x: 504 y: 259 mousemove.ts:12:13
  Position x: 503 y: 261 mousemove.ts:12:13
  Position x: 502 y: 262 mousemove.ts:12:13
  Position x: 501 y: 263 mousemove.ts:12:13
  Position x: 505 y: 263 mousemove.ts:12:13



32 • Angular and Machine Learning Pocket Primer

  Position x: 510 y: 262 mousemove.ts:12:13
  Position x: 515 y: 261 mousemove.ts:12:13
  Position x: 520 y: 260 mousemove.ts:12:13
  Position x: 526 y: 259 mousemove.ts:12:13

The next section combines SVG graphs with mouse movement in order to 
render a set of “follow the mouse” SVG ellipses.

Angular and Follow-the-Mouse in SVG

The code sample in this section relies on mouse-related events in order to 
create dynamic graphics effects. Copy the directory SVGFollowMe from 
the companion files into a convenient location.

Listing 1.14 displays the content of app.component.ts, which illus-
trates how to reference a custom Angular component that renders an 
SVG <ellipse> element at the current mouse position.

LISTING 1.14 app.component.ts

import {Component} from '@angular/core';

@Component({
   selector: 'app-root',
   template: `<div><mouse-move></mouse-move></div>`
})
export class AppComponent {}

As you can see, the template property in Listing 1.14 specifies a <div> 
element that contains a custom <mouse-move> element.

Listing 1.15 displays the content of MouseMove.ts, which illustrates 
how to reference a custom Angular component that renders an SVG 
<ellipse> element at the current mouse position.

LISTING 1.15 MouseMove.ts

import {Component} from '@angular/core';

@Component({
 selector: 'mouse-move',
 template: `<svg id="svg" width="600" height="400"
              (mousemove)="mouseMove($event)">



Quick Introduction to Angular • 33

            </svg>

           ` 

})

export class MouseMove {

   radiusX = "25";

   radiusY = "50";

   mouseMove(event) {

     var svgns = "http://www.w3.org/2000/svg";

     var svg   = document.getElementById("svg");

     var colors = ["#ff0000", "#88ff00", "#3333ff"];

     var sum = Math.floor(event.clientX+event.clientY); 

  var ellipse = document.createElementNS(svgns, 
"ellipse");

     ellipse.setAttribute("cx", event.clientX);

     ellipse.setAttribute("cy", event.clientY);

     ellipse.setAttribute("rx", this.radiusX);

     ellipse.setAttribute("ry", this.radiusY);

   ellipse.setAttribute("fill", colors[sum % colors.
length]);

     svg.appendChild(ellipse);

   } 

}

Listing 1.15 contains a template property that defines an SVG <svg> 
element. The (mousemove) event handler is executed whenever users 
move their mouse, which in turn executes the custom method mouse-
Move() that is defined in the MouseMove class.

Notice that the mouseMove method accepts an event argument, which 
is an object that provides the coordinates of the location of each mouse-
move event. The coordinates of the current point are specified by event.
clientX and event.clientY, which are the x-coordinate and the y-co-
ordinate, respectively, of the current mouse position.

The next code block in the mouseMove method dynamically creates an 
SVG <ellipse> method, sets the values of the five required attributes 
for an ellipse (see the previous section for the details), and then appends 
the newly created SVG <ellipse> method to the DOM. This function-
ality creates a “follow-the-mouse” effect that you can see when you launch 
the Angular application code in this section.



34 • AngulAr And MAchine leArning Pocket PriMer

Note that the final line of code in the mouseMove method appends an 
SVG <ellipse> element directly to the DOM, which is better to avoid 
if it’s possible to do so; however, this code sample is for the purpose of 
illustration.

Listing 1.16 displays the content of app.module.ts, with the new con-
tent of app.component.ts shown in bold.

LISTING 1.16 app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule }      from '@angular/core';
import { AppComponent }  from './app.component';
import { MouseMove }     from './MouseMove';

@NgModule({ 
  declarations: [ AppComponent, MouseMove ],
  imports: [ 
    BrowserModule
  ],
  providers: [], 
  bootstrap: [AppComponent]
})   
export class AppModule { }

The code in Listing 1.16 follows a familiar pattern: start with the “base-
line” code, add an import statement that references an exported 
TypeScript class (which is MouseMove in this example), and also add that 
same TypeScript class to the declarations array.

Launch the Angular application in 
the usual manner, and then slowly 
move your mouse and watch you will 
see different colored SVG ellipses 
rendered near your mouse. Figure 
1.3 shows a sample of the output that 
can be generated in this application.

In case you are looking for ideas for 
enhancing this code sample, modify 
the code in MouseMove.ts so that 
new SVG ellipses are “centered” 
underneath your mouse.

FIGURE 1.3  Ellipses in a “Follow-the-
Mouse” in SVG in an Angular Application



Quick Introduction to Angular • 35

Angular and SVG Charts

This section creates a child component and uses mouse-related events to 
create dynamic graphics effects. As you will see, the graphics effects are 
very rudimentary; however, they provide a starting point from which you 
can add custom enhancements.

Now copy the directory SVGCharts from the companion disc into a con-
venient location. Listing 1.17 displays the content of app.component.
ts, whose template code specifies a <div> element that contains a cus-
tom <mycharts> element (as a child element) in which the SVG-based 
charts will be rendered.

When you launch this application you will see a blank screen. However, 
each time you click inside the screen, you will see a different bar chart, 
scatter chart, and line graph.

LISTING 1.17 app.component.ts

import { Component } from '@angular/core';

@Component({
  selector: 'app-root',
  template: '<div><mycharts></mycharts></div>'
})    
export class AppComponent { }

Listing 1.17 displays the content of app.component.ts, whose tem-
plate property specifies a custom <mycharts> element as a child of a 
<div> element. As you will see, the charts and graphs in this code sample 
are rendered inside the <mycharts> element.

Listing 1.18 displays the content of app.module.ts, which specifies the 
custom component MyGraphics that contains the SVG-based code.

LISTING 1.18 app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule }      from '@angular/core';
import { AppComponent }  from './app.component';
import { MyGraphics }    from './MyGraphics';

@NgModule({
  declarations: [

NOTE



36 • Angular and Machine Learning Pocket Primer

    AppComponent,
    MyGraphics
  ],
  imports: [
    BrowserModule
  ],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }

Listing 1.18 contains a code snippet to import the MyGraphics class and 
also updates the declarations property to include the MyGraphics 
class. The remaining code in Listing 1.18 is the same as the code that you 
have seen in previous code samples.

Listing 1.19 displays the contents of MyGraphics.ts that contains the 
SVG-based code for rendering a line graph, scatter plot, and a bar chart.

LISTING 1.19 MyGraphics.ts

import { BrowserModule } from '@angular/platform-browser';
import {Component} from '@angular/core';

@Component({
 selector: 'mycharts',   
 template: `<svg id="svg" width="600" height="600"
              (click)="drawCharts($event)">
            </svg>
           ` 
})  
export class MyGraphics {
   public scatterWidth:number  = 400;
   public scatterHeight:number = 400;
   public scatterCount:number  = 40;
   public offsetX:number       = 0;
   public offsetY:number       = 0;
   public clickCount:number    = 0;
   public radius:number        = 5;
   public barCount:number      = 15;
   public barWidth:number      = 30;
   public barHeight:number     = 50;



Quick Introduction to Angular • 37

   public maxBarHeight:number  = 200;
   public barHeights:any       = [];
   public polyPts:any          = ""; 

   public colors = ["#ff0000","#00ff00","#ffc800","#0000ff"];
   public svgns  = "http://www.w3.org/2000/svg";

   private generateBarHeights() {
   for(let i=0; i<this.barCount; i++) { 
   this.barHeights[i] = ""+Math.random()*this.
maxBarHeight;
     }
   }

   drawCharts(event) {
      this.generateBarHeights();
      this.drawBarChart();
      this.drawScatterPlot();
      this.drawLineGraph();
      this.clickCount += 1;
   }

   private drawBarChart() {
     var svg = document.getElementById("svg");
   var gElem = document.createElementNS(this.svgns, 
"g");
     svg.appendChild(gElem);

     for(let i=0; i<this.barCount; i++) {
        var rect = document.createElementNS(this.svgns, 
"rect");
        rect.setAttribute("x",      ""+i*this.barWidth);
        rect.setAttribute("y",      ""+(200-this.
barHeights[i]));
        rect.setAttribute("width",  ""+this.barWidth);
        rect.setAttribute("height", ""+this.barHeights[i]);

        rect.setAttribute("fill", this.colors[i%this.
colors.length]);
        gElem.appendChild(rect);
     }
     svg.appendChild(gElem);
   }



38 • Angular and Machine Learning Pocket Primer

  private drawLineGraph() {

     var svg = document.getElementById("svg");

     var gElem = document.createElementNS(this.svgns, 
"g");

     svg.appendChild(gElem);

     // construct a line graph

     for ( let i = 0; i < this.barCount; i++) {

        this.polyPts += (i*this.barWidth).toString() + 
"," +

                        (600-this.barHeights[i]) + " ";

     }

     var polyline = document.createElementNS(this.svgns, 
"polyline");

     polyline.setAttribute("points", ""+this.polyPts);

     polyline.setAttribute("style",

                "fill:none;stroke:blue;stroke-width:3");

     gElem.appendChild(polyline);

     svg.appendChild(gElem);

  }

  private drawScatterPlot() {

     var svg = document.getElementById("svg");

     var gElem = document.createElementNS(this.svgns, 
"g");

     svg.appendChild(gElem);

     // construct circles

     for(let i=0; i<this.scatterCount; i++) { 

        var circle = document.createElementNS(this.svgns, 
"circle");

        this.offsetX = this.scatterWidth*Math.random();

        this.offsetY = 200*Math.random();

        circle.setAttribute("cx", ""+this.offsetX);

        circle.setAttribute("cy", ""+(200+this.offsetY));

        circle.setAttribute("r",  ""+this.radius);

        circle.setAttribute("fill", this.colors[i%this.
colors.length]);

        gElem.appendChild(circle);



Quick Introduction to Angular • 39

     }   
     svg.appendChild(gElem);
  }
}

Listing 1.19 starts with the usual import statements, followed by a tem-
plate property that specifies an SVG <svg> element whose width and 
width attributes are both 600 pixels (and you can specify different values 
if you need to do so). Notice that the SVG <svg> element also specifies 
an Angular (click) attribute, as shown here:

template: `<svg id="svg" width="600" width ="600"
              (click)="drawCharts($event)">
            </svg>
           ` 

When users click anywhere inside the SVG <svg> element, the draw-
Charts() method is executed, whose content is reproduced here:

drawCharts(event) {
   this.generateBarHeights();
   this.drawBarChart();
   this.drawScatterPlot();
   this.drawLineGraph();
   this.clickCount += 1;
}

Notice that the drawCharts() method also receives an event argument, 
which is actually an object that contains information about the location of 
the mouse event. This method invokes five other methods, starting with 
the generateBarHeights() method that populates the barHeights 
array with a set of random numbers that represent the height of each bar 
element in the bar chart.

Next, the drawCharts() method invokes the drawBarChart() method, 
which starts by obtaining a reference to the existing <svg> element 
(specified in the template property), creating a new SVG <g> element 
called gElem, and then appending the newly created SVG <g> element to 
the SVG <svg> element, as shown here:

var svg = document.getElementById("svg");
var gElem = document.createElementNS(this.svgns, "g");
svg.appendChild(gElem);



40 • AngulAr And MAchine leArning Pocket PriMer

Although it’s not absolutely necessary, it’s a good idea to place the bar 
chart inside an <g> element as a way to “modularize” the graphics (the 
same thing is done for the scatter plot and the line graph).

The next code block consists of a for loop that creates an SVG <rect>
element, populates its attributes appropriately, and then appends the 
SVG <rect> element to the existing SVG <g> element, as shown here:

for(let i=0; i<this.barCount; i++) {
   var rect = document.createElementNS(this.svgns, 
"rect");
   rect.setAttribute("x",      ""+i*this.barWidth);
   rect.setAttribute("y",      ""+(200-this.barHeights[i]));
   rect.setAttribute("width",  ""+this.barWidth);
   rect.setAttribute("height", ""+this.barHeights[i]);

   rect.setAttribute("fi ll", this.colors[i%this.colors.
length]);
   gElem.appendChild(rect);
}
svg.appendChild(gElem);

Next, the drawCharts() method invokes the drawScatterPlot()
method, that also starts with the same 
code block as drawBarChart() that 
pertains to the SVG <svg> element. 
This method also contains a for loop 
that creates a set of SVG <circle> 
elements, populates their attributes 
appropriately, and then appends them 
to the third <g> element.

Finally, the drawCharts() method 
invokes the drawLineGraph() 
method, which also starts with the 
same code block as drawBarChart() 
that pertains to the SVG <svg> ele-
ment. This method contains a for loop 
that updates the string polyPts with 
the x-coordinate and y-coordinate of 
the top-level vertex of each bar ele-
ment, as shown here:

for ( let i = 0; i < this.barCount; i++) {

FIGURE 1.4 An SVG bar chart, scatter 
plot, and line graph in an Angular 
Application



Quick Introduction to Angular • 41

   this.polyPts += (i*this.barWidth).toString() + "," +
                       (600-this.barHeights[i]) + " ";
}

The next portion of the drawLineGraph() method creates a new SVG  
<polyline> element, sets its points attribute equal to the content of 
polyPts, and then appends the SVG <polyline> element to the SVG 
<svg> element. 

Launch this Angular application, and then, in the new browser session, 
click anywhere on the screen and you will see a rudimentary bar chart, 
scatter plot, and line graph, as shown in Figure 1.4.

D3 Animation and Angular

The previous two sections showed you examples of Angular applications 
with SVG, and this section shows you how to create D3 animation effects 
with Angular. Note that the code sample in this section also appends the 
SVG elements directly to the DOM.

In case you don’t already know, D3 is an open source toolkit that pro-
vides a JavaScript-based layer of abstraction over SVG. Fortunately, the 
attributes of every SVG element have the same name in D3 (so you can 
leverage your knowledge of SVG in D3, or vice versa).

Copy the directory D3Anim from the companion disc into a convenient 
location. Listing 1.20 displays the content of app.component.ts, which 
illustrates how to use D3 to render basic SVG graphics in an Angular 
application.

LISTING 1.20 app.component.ts

import { Component, ViewChild, ElementRef } from '@
angular/core';
import * as d3 from 'd3';

// remember: npm install d3 --save

@Component({
  selector: 'app-root',
  template: `<app-root><mysvg></mysvg></app-root>`,
  styleUrls: ['./app.component.css']
})



42 • Angular and Machine Learning Pocket Primer

export class AppComponent {
  constructor() {
     var width = 800, height = 500, duration=2000;
     var radius = 30, moveCount = 0, index = 0;
     var circleColors = ["red", "yellow", "green", "blue"];

     var svg = d3.select("body")
                 .append("svg")
                 .attr("width",  width)
                 .attr("height", height);

     svg.on("mousemove", function() {
       index = (++moveCount) % circleColors.length;

       var circle = svg.append("circle")
                       .attr("cx", (width-100)*Math.
random())
                       .attr("cy", (height-100)*Math.
random())
                       .attr("r",  radius)
                       .attr("fill", circleColors[index])
                       .transition()
                       .duration(duration)
                       .attr("transform", function() {
                          return "scale(0.5, 0.5)";
                        //return "rotate(-20)";
                       })
     });
  }
}

Listing 1.20 starts with two import statements, followed by a comment 
statement that serves as a reminder that you need to install d3 in this 
Angular application. 

Next, the template property contains a <div> element that is available 
in the ngAfterContentInit method, which in turn simply invokes the 
createSVG() method that populates an SVG <svg> element with four 
2D shapes: a circle, an ellipse, a rectangle, and a line segment.

Note the @ViewChild decorator that defines the variable mysvg that 
has type ElementRef. This variable “links” the <div> element in the 



Quick Introduction to Angular • 43

template property with the variable svgElement that is defined in the 
createSVG() method:

let svgElement = this.mysvg.nativeElement;

Notice how the various SVG elements are dynamically created and how 
their mandatory attributes (which depend on the SVG element in ques-
tion) are assigned values via the attr()method, as shown here (and in 
the preceding code block, as well):

// append a circle
svg.append("circle")
   .attr("cx", cx)
   .attr("cy", cy)
   .attr("r",  radius1)
   .attr("fill", colors[0]);

After you learn the mandatory attribute names for the SVG elements, you can 
use the preceding syntax to create and append such elements to the DOM.

Listing 1.21 displays the content of app.module.ts, with the new code 
shown in bold.

LISTING 1.21 app.module.ts

import { BrowserModule }    from '@angular/platform- 
browser';
import { NgModule }         from '@angular/core';
import { AppComponent }     from ‘./app.component';
import { NO_ERRORS_SCHEMA } from ‘@angular/core';

@NgModule({

  declarations: [

    AppComponent

  ],                   

  imports: [           

    BrowserModule      

  ],                   

  providers: [],       

  schemas: [NO_ERRORS_SCHEMA],

  bootstrap: [AppComponent]

})                        

export class AppModule { }



44 • AngulAr And MAchine leArning Pocket PriMer

Listing 1.21 contains code that is already familiar to you, along with the 
following new import statement:

import { NO_ERRORS_SCHEMA } from '@angular/core';

The preceding code snippet allows us add any element that is created 
in the D3-based code without generating an error message. Notice that 
the schemas property in Listing 1.21 must also be updated to include 
NO_ERRORS_SCHEMA.

Launch this Angular application and then in the new browser session click 
anywhere on the screen and you will see a “cascade” of animated circles.

Launch the Angular application in the usual manner. Then, slowly move 
your mouse and observe the different colored SVG ellipses rendered near 
your mouse. Figure 1.5 shows a sample of the output that can be gener-
ated in this application.

FIGURE 1.5 Rendering Circles with D3 in an Angular Application

You can also find many similar code samples involving SVG and Angular 
(with an older beta-version Angular code) here: 

https://github.com/ocampesato/angular2-svg-graphics.

D3 and SVG Animation in Angular

The following code block illustrates how to add D3-based animation 
effects to the SVG <circle> element in the D3Angular Angular 
application:

svg.on("mousemove", function() {
  index = (++moveCount) % circleColors.length;



Quick Introduction to Angular • 45

  var circle = svg.append("circle")
                  .attr("cx", (width-100)*Math.random())
                  .attr("cy", (height-100)*Math.random())
                  .attr("r",  radius)
                  .attr("fill", circleColors[index])
                  .transition()
                  .duration(duration)
                  .attr("transform", function() {
                      return "scale(0.5, 0.5)";
                    //return "rotate(-20)";
                  })
});

The code inside the preceding event handler is executed during each 
mousemove event, accompanied by the dynamic creation of an SVG 
<ellipse> element. The new functionality involves the transition() 
method, the duration() method, and setting the transform attribute, 
all of which are shown in bold in the preceding code block. 

As you can see, the transform attribute is set to a scale() value, which 
sets the width and height to 50% of their initial value during an interval 
of 2 seconds (which equals 2000 milliseconds), thereby creating an ani-
mation effect.

Summary

This chapter started with a description overview of Angular and its hierar-
chical component-based structure. Next, you learned about the Angular 
CLI utility ng and how to create an Angular “Hello World” application 
with the ng utility. 

You also learned about the TypeScript files app.component.ts and 
app.module.ts, which contain the TypeScript code for Angular appli-
cations. Next you learned about creating Angular applications for ren-
dering SVG-based ellipses and charts, followed by D3-based animation 
effects.





c h a p t e r

This chapter contains Angular applications with an assortment of UI 
Controls, along with code samples that involve user input. Note 
that the Angular applications in this chapter render UI Controls 

using standard HTML syntax instead of using functionality that is specific 
to Angular.

The first part of this chapter contains a simple example of displaying a 
hard-coded list of strings, followed by an Angular application that supports 
click events on a button. The second part of this chapter shows you how 
to manage lists of items, which includes displaying, adding, and deleting 
items from a list. You will also learn about Controls and ControlGroups.

The third section contains two examples of displaying a list of user names: 
the first retrieves user names that are stored as strings in a JavaScript 
array, and the second retrieves user names that are stored in object lit-
erals in a JavaScript array. The third section goes a step further: you will 
learn how to define a custom user component that contains user-related 
information (also contained in a JavaScript array). Later in this chapter, 
you will learn how to make an HTTP GET request to retrieve data (such 
as user-related information) that you can use to populate a list of items.

The third part of this chapter discusses Angular Pipes. You will see an 
Angular application that uses async pipes, which can eliminate the need 
for defining instance variables and also reduce the likelihood of memory 
leaks in Angular applications.

Now let’s create a simple Angular application that displays a hard-coded 
list of strings via the ngFor directive, as discussed in the next section.

UI Controls, User Input, 
and Pipes

2



48 • Angular and Machine Learning Pocket Primer

The ngFor Directive in Angular

The code sample in this section displays a hard-coded list of strings via the 
ngFor directive. This simple code sample is a starting point from which 
you can create more complex (and more interesting) Angular applications.

Copy the directory SimpleList from the companion files into a conven-
ient location. Listing 2.1 displays the content of app.component.ts, 
which illustrates how to display a list of items using the *ngFor directive 
in Angular.

LISTING 2.1 app.component.ts

import {Component} from '@angular/core';

@Component({
  selector: 'app-root',
  template: `<div *ngFor="let item of items">
               {{item}}
             </div>`
})
export class AppComponent {
  items = [];

  constructor() {
    this.items = ['one','two','three','four'];
  }
}

Listing 2.1 contains a Component annotation that in turn contains the 
standard selector property. Next, the template property consists of a 
<div> element that contains the ngFor directive that iterates through the 
items array and displays each item in that array. Notice that the items 
array is initialized as an empty array in the AppComponent class, and then 
its value is set to an array consisting of four strings in the constructor 
method.

Launch the application in this section and you will see the following out-
put in a browser session:

one
two
three
four



UI Controls, User Input, and Pipes • 49

The next section contains a code sample involving a <button> element, 
which is probably one of the most common UI controls in HTML Web 
pages. The file app.component.ts contains the required custom code, 
and the file app.component.ts contains auto-generated code that does 
not require any modification.

Displaying a Button in Angular 

Copy the directory ButtonClick from the companion files into a con-
venient location. The file app.component.ts in this section contains 
all the custom code for this Angular application. Listing 2.2 displays 
the content of app.component.ts, which illustrates how to render a 
<button> element and respond to click events by displaying the num-
ber of times that users have clicked the <button> element during the 
current session.

LISTING 2.2 app.component.ts

import { Component } from '@angular/core';

@Component({
   selector: 'app-root',
   template: `<div>
	 <button (click)="clickMe()">ClickMe</button>
              <p>Click count is now {{clickCount}}</p>
              </div>`,
   styles: [` button {
                 color: red;
              }`
           ]	
})
export class AppComponent {
   clickCount = 0;

   clickMe() {
      ++this.clickCount;
      console.log(“click count: “+this.clickCount);
   }
}

Listing 2.2 starts with an import statement followed by the required 
selector property. Next, the template property contains a <button> 



50 • Angular and Machine Learning Pocket Primer

element that responds to click events and a <p> element whose contents 
are updated whenever users click on the <button> element. As you can 
see, the value of the term (click) is the clickMe() function (defined 
in the AppComponent class) that increments and then displays the value 
of the clickCount variable. 

In addition, the styles property specifies a value of red for the <but-
ton> element. The styles property is an example of component style, 
which means that the styles only apply to the template of the given com-
ponent. In effect, Angular applies CSS locally instead of globally by gen-
erating unique attributes that are visible when you click on the Elements 
tab in Chrome Inspector.

More detailed information regarding component styles in Angular is at

https://angular.io/docs/ts/latest/guide/component-styles.html.

The next portion of Listing 2.2 is the 
definition of the AppComponent class 
that contains the clickCount variable 
that is incremented in the clickMe() 
function. Now launch the Angular appli-
cation whose output is displayed in Figure 2.1 (after it has been clicked 
three times).

Since the file app.module.ts contains auto-generated code that does 
not require any modification, there is no need to display its contents 
because they have already been discussed in Chapter 1.

Element versus Property

In Listing 2.2, the selector property matched the element <app-
root></app-root> in the HTML page index.html:

selector: 'app-root'

However, you can also specify a property instead of an element. For 
example, suppose that index.html contains the following element:

<div app-root>Loading. . .</div>

In this scenario, you also need to modify the selector property as fol-
lows (notice the square brackets):

selector: '[app-root]'

Figure 2.1  A <button> Element 
that Responds to Click Events



UI Controls, User Input, and Pipes • 51

The next section contains an Angular application that keeps track of the 
radio button that users have clicked. After that, we’ll see how to use the 
<button> element to add new user names to a list of users.

Once again, the file app.module.ts contains auto-generated code that 
does not require any modification, so there is no need to display its con-
tents because they have already been discussed in Chapter 1.

Angular and Radio Buttons

Copy the directory RadioButtons from the companion files into a con-
venient location. Listing 2.3 displays the content of app.component.ts, 
which illustrates how to render a set of radio buttons and keeps track of 
the radio button that users have clicked.

LISTING 2.3 app.component.ts

import {Component} from '@angular/core';

@Component({
  selector: 'app-root',
  template: `
   <h2>{{radioTitle}}</h2>
   <label *ngFor="let item of radioItems">
      <input type="radio" name="options"
             (click)="model.options = item"
             [checked]="item === model.options">
      {{item}}
   </label>
	 <p><button (click)="model.options='option1'">Set 
Option #1</button>
  `
})
export class AppComponent {
  radioTitle = “Radio Buttons in Angular";
  radioItems = ['option1','option2','option3','option4'];
  model = { options: 'option3' };
}

Listing 2.3 defines the AppComponent component whose template 
property contains three parts: a <label> element, an <input> element, 



52 • Angular and Machine Learning Pocket Primer

and a <button> element. The <label> element contains an ngFor 
directive that displays a set of radio buttons by iterating through the 
radioItems array that is defined in the AppComponent class. 

By default, the first radio button is highlighted. However, when users 
click on the <button> element, the (click) attribute of the <input> 
element sets the current item to the value of model.options, and then 
the [checked] attribute of the <input> element sets the checked item 
to the current value of model.options. As you can see, the  <input> 
element in Listing 2.3 contains functionality that is more compact 
than using JavaScript 
to achieve the same 
results.

Now launch the Angular 
application, and you will 
see the output that is 
displayed in Figure 2.2.

The file app.module.ts contains auto-generated code that does not 
require any modification, so we’ll skip the discussion of its contents.

Adding Items to a List in Angular

The code sample in this section shows you how to update a list of strings 
whenever users click on a button. Copy the directory AddListButton 
from the companion files into a convenient location. Listing 2.4 displays 
the content of app.component.ts, which illustrates how to append 
strings to an array of items whenever users click on a button.

LISTING 2.4 app.component.ts

import {Component} from '@angular/core';

@Component({
   selector: 'app-root',
   template: `
       <div>
         <input #fname>
	� <button (click)="clickMe(fname.value)">ClickMe 

</button>
         <ul>
           <li *ngFor="let user of users">

Figure 2.2  A Set of Radio Buttons that Respond to 
Click Events



UI Controls, User Input, and Pipes • 53

             {{user}}
           </li>
         </ul>
       </div>`
})
export class AppComponent {
   users = [“Jane", “Dave", “Tom"];

   clickMe(user) {
      console.log(“new user = “+user);
      this.users.push(user);
/*
      // prevent empty user or duplicates
      if(user is non-null) {
        if(user is duplicate) {
          // display alert message
        } else {
          // display alert message
        }
      } else {
        // display alert message
      }
*/
   }
}

Listing 2.4 contains code that is similar to that in Listing 2.3, which dis-
plays a list of strings. In addition, the template property in Listing 2.4 
contains an <input> element so that users can enter text. When users 
click on the <button> element, the clickMe() method is invoked with 
fname.value as a parameter, which is a reference to the text in the 
<input> element. 

Notice the use of the #fname syntax as an identifier for an element, which 
in this case is an <input> element. Thus, the text that users enter in the 
<input> element is referenced via fname.value. The following code 
snippet provides this functionality:

<input #fname>
<button (click)="clickMe(fname.value)">ClickMe</button>

The clickMe() method in the AppComponent component contains a 
console.log() statement to display the user-entered text (which is 
optional) and then appends the new text to the array user. The final 



54 • Angular and Machine Learning Pocket Primer

section in Listing 2.4 consists of a commented-out block of pseudocode 
that prevents users from entering an empty string or a duplicate string. 
This code block involves “pure” JavaScript, and the actual code is left as 
an exercise for you.

Now launch the Angular application, and 
you will see the output that is displayed 
in Figure 2.3 when you enter the string 
“Sara” and click the button element.

In addition, the file app.module.ts 
contains auto-generated code that does 
not require any modification.

Deleting Items from a List in Angular

This section enhances the code in the previous section by adding a 
new <button> element next to each list item. Now copy the directory 
DelListButton from the companion files into a convenient location. 
Listing 2.5 displays the content of app.component.ts, which illustrates 
how to delete individual elements from an array of items whenever users 
click on a button that is adjacent to each array item.

LISTING 2.5 app.component.ts

import {Component} from '@angular/core';

@Component({
   selector: 'app-root',
   template: `
     <div>
       <input #fname>
       �<button (click)="clickMe(fname.value)">ClickMe</

button>
       <ul>
         <li *ngFor="let user of users">
	� <button (click)="deleteMe(user)">Delete</

button>
           {{user}}
         </li>
       </ul>
     </div>`
})

Figure 2.3  Adding a Text String to 
a List



UI Controls, User Input, and Pipes • 55

export class AppComponent {
   users = ["Jane", "Dave", "Tom"];

   deleteMe(user) {
      console.log("delete user = "+user);
      var index = this.users.indexOf(user);

      if(index >=0 ) {
         this.users.splice(index, 1);
      }
   }
   clickMe(user) {
      console.log("new user = "+user);
      this.users.push(user);
/*
      // prevent empty user or duplicates
      if(user is non-null) {
        if(user is duplicate) {
          // display alert message
        } else {
          // display alert message
        }
      } else {
        // display alert message
      }
*/
   }
}

Listing 2.5 contains an ngFor directive that displays a list of “pairs” of 
items, where each “pair” consists of a <button> element followed by a 
user that is defined in the users array. 

When users click on any <button> element, the “associated” user is 
passed as a parameter to the deleteMe() method, which simply deletes 
that user from the users array in the AppComponent class. The content 
of deleteMe() is standard JavaScript code for removing an item from 
an array. You can replace the block of pseudocode in Listing 2.5 with the 
same code that you added in Listing 2.4 that prevents users from entering 
an empty string or a duplicate string.

The file app.module.ts contains auto-generated code that does not 
require any modification, so there is no need to discuss its contents.



56 • Angular and Machine Learning Pocket Primer

Angular Directives and Child Components

The code sample in this section shows you how to create a child compo-
nent in Angular that you can reference in an Angular application. Copy 
the directory ChildComponent from the companion files into a conven-
ient location. Listing 2.6 displays the content of app.component.ts, 
which illustrates how to import a custom component (written by you) in 
an Angular application.

LISTING 2.6 app.component.ts

import {Component}   from '@angular/core';

@Component({
   selector: 'app-root',
	� template: `<div>Goodbye<child-comp></child-comp> 

World!</div>`
})
export class AppComponent {}

Listing 2.6 contains a template property that consists of a <div> ele-
ment that contains a nested <child-comp> element, where the lat-
ter is the value of the selector property in the child component 
ChildComponent. 

Notice that Listing 2.6 does not import the ChildComponent class: this 
class is imported in app.module.ts in Listing 2.8 (shown later).

Listing 2.7 displays the contents of child.component.ts in the app 
subdirectory.

LISTING 2.7 child.component.ts

import {Component} from '@angular/core';

@Component({
   selector: 'child-comp',
   �template: `<div>Hello World from ChildComponent!</

div>`
}) 
export class ChildComponent{}

Listing 2.7 is straightforward: the template property specifies a text 
string that will be displayed inside the <child-comp> element that is 
nested inside the <div> element in Listing 2.7.



UI Controls, User Input, and Pipes • 57

Listing 2.8 displays the modified contents of app.module.ts, which 
must import the class ChildComponent from child.component.
ts and also specify the class ChildComponent in the declarations 
property. These additions to the default contents of app.module.ts are 
shown in bold in Listing 2.8.

LISTING 2.8 app.module.ts

import { NgModule }       from '@angular/core';
import { BrowserModule }  from '@angular/platform-browser';
import { AppComponent }   from './app.component';
import { ChildComponent } from './child.component';

@NgModule({
  imports:      [ BrowserModule ],
  declarations: [ AppComponent, ChildComponent ],
  bootstrap:    [ AppComponent ]
})
export class AppModule { }

Listing 2.8 contains a new import statement (shown in bold) that imports 
the ChildComponent component from the Typescript file child.com-
ponent.ts. The second modification is the inclusion of ChildComponent 
(shown in bold) in the declarations array. 

As you can see, Listing 2.8 involves two very simple updates in order to 
include a child component in an Angular application. With practice, you will 
become familiar with the sequence of steps that are discussed in this section.

The Constructor and Storing State in Angular

This section contains a code sample that shows how to initialize a variable 
in a constructor and then reference the value of that variable via interpola-
tion in the template property. Now copy the directory StateComponent 
from the companion files into a convenient location. Listing 2.9 displays 
the content of app.component.ts, which shows you how to display var-
ious attributes of an “employee.”

LISTING 2.9: app.component.ts

import {Component} from '@angular/core';

@Component({
  selector: 'app-root', 



58 • Angular and Machine Learning Pocket Primer

  �template: '<h3>My name is {{emp.fname}} {{emp.lname}}</
h3>'

})
export class AppComponent {
  �public emp  = {fname:'John',lname:'Smith',city:'San 
Francisco'};

  public name = 'John Smith'

  constructor() {
    this.name = 'Jane Edwards'
    �this.emp  = {fname:'Sarah',lname:'Smith',city:'San 

Francisco'};
  }
}

Listing 2.9 contains a constructor() method that initializes the variable 
name as well as the literal object emp. The emp variable is shown in bold in the 
template property and in two other places inside the AppComponent class.

Question: Which name will be displayed when you launch the application? 

Answer: The value that is assigned to the emp variable in the construc-
tor. This behavior is the same as OO-oriented languages such as Java. 

Launch this application, and you will see the following output displayed 
in a Web browser:

My name is Sarah Smith
Keen-eyed readers will notice that we “slipped in” the TypeScript key-
word public in the declaration of the emp and name variables. Other 
possible keywords include private and protected; all three keywords 
have the same semantics that they have in Java. If you are unfamiliar with 
these keywords, you can find online TypeScript tutorials that will explain 
their purpose. Another handy TypeScript syntax for TypeScript variables 
that is discussed in the next section.

Private Arguments in the Constructor: a Shortcut

TypeScript provides a short-hand notation for initializing private varia-
bles via a constructor. For example, consider the following TypeScript 
code block:

class MyStuff {
   private firstName: string;



UI Controls, User Input, and Pipes • 59

   constructor(firstName: string) {
      this.firstName = firstName;
   }
}

A simpler and equivalent TypeScript code block is shown below:

class MyStuff {
   constructor(private firstName: string) {
   }
}

TypeScript support for the private keyword in a constructor is a con-
venient feature that reduces some boilerplate code and also eliminates a 
potential source of error (i.e., misspelled variable names).

As another example, the constructor() method in the following code 
snippet populates an employees object with data retrieved from an 
EmpService component (which is defined elsewhere and not impor-
tant here):

constructor(private empService: EmpService) {
   this.employees = this.empService.getEmployees();
}

The next section shows you how to use the *ngIf directive for conditional 
logic in Angular applications.

Conditional Logic in Angular 

Although previous examples contain a template property with a single 
line of text, Angular enables you to specify multiple lines of text. If you 
place interpolated variables inside a pair of matching “back ticks,” Angular 
will replace (“interpolate”) the variables with their values.

Now copy the directory IfLogic from the companion files into a conven-
ient location. Listing 2.10 displays the content of app.component.ts, 
which illustrates how to use the *ngIf directive.

LISTING 2.10 app.component.ts

import {Component} from '@angular/core';

@Component({
  selector: 'app-root', 



60 • Angular and Machine Learning Pocket Primer

  template: `
     <h3>Hello everyone!</h3>
     <h3>My name is {{emp.fname}} {{emp.lname}}</h3>
     <button (click)="moreInfo()">More Details</button>
     <div *ngIf="showMore === true">
       <h3>I live in {{emp.city}}</h3>
     </div>

    <div (click)="showDiv = !showDiv">Toggle Me</div>
    <div *ngIf="showDiv"
         �style="color:white;background-color:blue; 

width:25%">Content1</div>
    <div *ngIf="showDiv"
         �style="background-color:red; width:25%;">Content2</

div>
  `
})
export class AppComponent {
  �public emp = {fname:'John',lname:'Smith',city:'San 

Francisco'};
  public showMore = false;

  moreInfo() {
    this.showMore = true;
  }
}

Listing 2.10 contains some new code in the template property: a <but-
ton> element that invokes the method moreInfo() whenever users click 
on the button. After the click event, a <div> element with city-related 
information inside an <h3> element is rendered. Notice that this <div> 
element is only rendered when showMore is true, which is controlled 
via the ngIf directive that checks for the value of showMore. The initial 
value of showMore is false, and right after users click the <button> ele-
ment, its value is set to true, after which the <div> element is displayed.

The new code in AppComponent involves a Boolean variable showMore 
(whose initial value is false) and the method moreInfo() that initializes 
showMore to true.

The file app.module.ts contains auto-generated code that does not 
require any modification, so we’ll omit its contents in this section.



UI Controls, User Input, and Pipes • 61

Handling User Input

The code sample in this section shows you how to handle user input and 
introduces the notion of a service in Angular. This code sample contains 
custom code in the file app.component.ts and some updates to the file 
app.module.ts, along with these three custom files (all of which are 
discussed in this section):

�� todoservice.ts
�� todolist.ts
�� todoinput.ts

As you will see later, the “source of truth” for a dynamically updated list of 
to-do items is the TypeScript todos array that is defined in todoservice.
ts; this array is accessed indirectly in the other two TypeScript classes. 
This coding style conforms to object-oriented programming (OOP). If you 
are unfamiliar with OOP, it’s worthwhile to learn this methodology and 
also highly recommended for moderate and large Angular applications.

Before we look at the custom code, recall that Angular enables you to 
create a reference to an HTML element, as shown here:

<input type="text" #user>

The #user syntax creates a reference to the <input> element that ena-
bles you to reference {{user.value}} to see its value or {{user.
type}} to see the type of the input. Moreover, you can use this reference 
in the following code block:

<p (click)="user.focus()">
  Get the input focus
</p>
<input type="text" #user (keyup)>
{{user.value}}

Whenever users click on the <input> element, the focus() method is 
invoked, and the (keyup) property updates the value in the input during 
the occurrence of a keyup event.

Now copy the directory TodoInput from the companion files into a con-
venient location. Listing 2.11 displays the content of app.component.
ts, which illustrates how to reference a component that appends user 
input to an array in Angular.



62 • Angular and Machine Learning Pocket Primer

LISTING 2.11: app.component.ts

import {Component}   from '@angular/core';

@Component({
   selector: 'app-root',
   template: `<div>
                <todo-input></todo-input>
                <todo-list></todo-list>
              </div>`
})
export class AppComponent {}

Listing 2.11 contains a standard import statement. The template 
property specifies a <div> element that contains placeholders for the 
TodoInput and TodoList components.

Listing 2.12 displays the content of todoinput.ts, which illustrates 
how to display an <input> field and a <button> element in order to 
capture user input in Angular.

LISTING 2.12 todoinput.ts

import {Component}    from '@angular/core';
import {TodoService } from './todoservice';

@Component({
 selector: 'todo-input',
 template: `
   <div>
     <input type="text" #myInput>
     �<button (click)="mouseEvent(myInput.value)">Add Item 

</button>
   </div>`
}) 
export class TodoInput{
   constructor(public todoService:TodoService) {}

   mouseEvent(value) {
      if((value != null) && (value.length > 0)) {
        this.todoService.todos.push(value);
        console.log(“todos: “+this.todoService.todos);
      } else { 



UI Controls, User Input, and Pipes • 63

         console.log(“value must be non-null");
      } 
   }
}

Listing 2.12 contains a template property that consists of a <div> ele-
ment that contains an <input> element for user input, followed by a 
<button> element for handling mouse click events.

The TodoInput class defines an empty constructor that also initializes an 
instance of the custom TodoService that is imported near the beginning 
of todoinput.ts. This instance contains an array todos that is updated 
with new to-do items whenever users click on the <button> element, 
provided that the new to-do item is not an empty string.

Now let’s look at the custom files, starting with Listing 2.13, which displays 
the content of todolist.ts that keeps track of the items in a to-do list.

LISTING 2.13 todolist.ts

import {Component}   from '@angular/core';
import {TodoService} from './todoservice';

@Component({
 selector: 'todo-list',
 template: `<div>
             <ul>
               <li *ngFor="let todo of todoService.todos">
                 {{todo}}
               </li>
             </ul>
            </div>`
}) 
export class TodoList {
   constructor(public todoService:TodoService) {}  
}   

Listing 2.13 contains a template property whose contents are a <div> 
element that contains an unordered list of items called todos (and 
defined in Listing 2.14), along with an empty constructor that initializes 
an instance of the TodoService custom component. This instance is 
used in the template property in order to iterate through the elements 
in the todos array.



64 • Angular and Machine Learning Pocket Primer

Listing 2.14 displays the content of todoservice.ts, which keeps 
track of the current contents of a to-do list.

LISTING 2.14 todoservice.ts

export class TodoService {
   todos = [];
}

Listing 2.14 contains a todos array that is updated with new to-do items 
when users click on the <button> element in the root component.

Finally, update the contents of app.module.ts to include the class 
shown in bold in Listing 2.15.

LISTING 2.15 app.module.ts

import { NgModule }      from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { AppComponent }  from './app.component';
import { TodoInput }     from './todoinput';
import { TodoList }      from './todolist';
import { TodoService }   from './todoservice';

@NgModule({   
  imports:      [ BrowserModule ],
  providers:    [ TodoService ],
  declarations: [ AppComponent, TodoInput, TodoList ],
  bootstrap:    [ AppComponent ]
})
export class AppModule { }

As you probably expected, Listing 2.15 imports three to-do-related classes 
and adds them to the providers property and the declarations prop-
erty (shown in bold). Although the number of custom modifications to 
app.module.ts in this section is greater than in the Angular applications 
that you have seen earlier in this chapter, the updates make sense and are 
straightforward.

The output for this Angular application is similar to Figure 2.3, so it will 
not be reproduced here. Keep in mind that although the output looks 
similar, the important point regarding the code sample in this section is 
its focus on Angular services. It defines them following the methodology 
of object oriented programming.



UI Controls, User Input, and Pipes • 65

Click Events in Multiple Components

An Angular application can contain multiple components, each of which 
can declare event handlers with the same name. The Angular application 
in this section shows you how to add click events to different elements in 
an Angular application.

Copy the directory ClickItems from the companion files into a conven-
ient location. Listing 2.16 displays the content of app.component.ts, 
which declares an onClick() event handler for each item in a list of items.

LISTING 2.16 app.component.ts

import {Component} from '@angular/core';
import {ClickItem} from './clickitem';

@Component({
   selector: 'app-root',
   styles:   [`li { display: inline; }`],
   template: `
    <div>           
      <ul> 
       <li><img (click)="onClick(100)" 
             �width="100" height="100" src="src/sample1.

png"></li>
       <li><img (click)="onClick(200)" 
             �width="100" height="100" src="src/sample2.

png"></li>
       <li><img (click)="onClick(300)"
             �width="100" height="100" src="src/sample3.

png"></li>
      </ul>
    </div> 
    `
})
export class AppComponent {
  onClick(id) {
    console.log(“you clicked me: “+id);
  } 
}

The template property in Listing 2.16 displays an unordered list in 
which each item is a clickable PNG-based image. Whenever users click on 



66 • Angular and Machine Learning Pocket Primer

one of the images, the onClick() method is invoked that simply displays 
a message via console.log().

Listing 2.17 displays the content of the TypeScript file clickitem.ts, 
which declares an onClick() event handler for each item in a list of items.

LISTING 2.17 clickitem.ts

import {Component} from '@angular/core';

@Component({
   selector: 'cclick',
   styleUrl: [` li { inline: block } `], 
   template: `
     <div>
      <ul>
       <li><img (click)="onClick(100)" 
                �width="100" height="100" src="assets/

sample1.png"></li>
       <li><img (click)="onClick(200)" 
                �width="100" height="100" src="assets/

sample2.png"></li>
       <li><img (click)="onClick(300)" 
                �width="100" height="100" src="assets/

sample3.png"></li>
      </ul>
     </div>
    `   
})
export class ClickItem {
  onClick(id) {
     �console.log(“app.component.ts: you clicked me: 

“+id);
  }   
}

Listing 2.17 is very similar to Listing 2.16 in terms of functionality, so 
we won’t repeat those details. In addition, the file app.module.ts con-
tains the auto-generated code, along with two new code snippets. The 
first snippet is the following import statement that references the file 
clickitem.ts:

import { ClickItem }     from './clickitem';



UI Controls, User Input, and Pipes • 67

The second code snippet specifies the preceding class in the providers 
element, as shown here:

providers: [ClickItem],

Now launch the application and you will see the three images that are 
displayed in Figure 2.4.

Figure 2.4  Clicking on Images in an Angular Application

Now click on the left-most image, then the middle image, and then the 
right-most image. Now open the Inspector for the current browser ses-
sion and you will see these messages:

you clicked me: 100
you clicked me: 200
you clicked me: 300

Working with @Input, @Output, and EventEmitter 

Angular supports the @Input and @Output annotations in order to pass 
values between components. The @Input annotation is for variables that 
receive values from a parent component, whereas the @Output annota-
tion sends (or “emits”) data from a component to its parent component 
whenever the value of the given variable is modified.

The output from this code sample is “anti-climatic” in the sense that there 
is a lot of code just to produce the following output that is visible in the 
Inspector tab:

constructor parentValue = 77

However, the purpose of this code sample is to draw your attention to 
some of the non-intuitive code snippets (especially in app.module.ts). 



68 • Angular and Machine Learning Pocket Primer

Now copy the directory ParentChildEmitters from the companion 
files to a convenient location. Listing 2.18 displays the content of app.
component.ts, which shows you how to update the value of a property 
of a child component from a parent component.

LISTING 2.18 app.component.ts

import {Component}      from '@angular/core';
import {EventEmitter}   from '@angular/core';
import {ChildComponent} from './childcomponent';

@Component({
  selector: 'app-root',
  providers: [ChildComponent],
  template: `
     <div>
      <child-comp [childValue]="parentValue"
        (childValueChange)="reportValueChange($event)">
      </child-comp>
     </div>
    `
})
export class AppComponent {
  public parentValue:number = 77;

  constructor() {
    console.log(“constructor parentValue = “+this.
parentValue);
  }

  reportValueChange(event) {
    console.log(event);
  }
}

The template property in Listing 2.18 has a top-level <div> element that 
contains a <child-comp> element that has two attributes, as shown here:

<child-comp [childValue]="parentValue" 
            (childValueChange)="reportValueChange($event)">
</child-comp>

The [childValue] attribute assigns the value of parentValue to the 
value of childValue. Notice that the variable parentValue is defined 
in AppComponent, whereas the variable childValue is defined in 



UI Controls, User Input, and Pipes • 69

ChildComponent. This code shows how to pass a value from a parent 
component to a child component.

Next, the childValueChange attribute is assigned the value that is 
returned from ChildComponent to the current (“parent”) component. 
Keep in mind that the attribute childValueChange is updated only 
when the value of childValue (in the child component) is modified. 
This code shows how to pass a value from a child component to a parent 
component.

Keep in mind the following point: the child component must define a 
variable of type EventEmitter (such as childValueChange) in order 
to “emit” a modified value from the child component to the parent 
component.

The next portion of Listing 2.18 is a simple constructor, followed by 
the method reportValueChange that contains a console.log() 
statement.

Listing 2.19 displays the content of childcomponent.ts, which shows 
you how to update the value of a property of a child component from a 
parent component.

LISTING 2.19 childcomponent.ts

import {Component}    from '@angular/core';
import {Input}        from '@angular/core';
import {Output}       from '@angular/core';
import {EventEmitter} from '@angular/core';

@Component({
  selector: 'child-comp',
  template: `
     <button (click)="decrement();">Subtract</button>
     <input type="text" [value]="childValue">
     <button (click)="increment();">Add</button>
   `   
})
export class ChildComponent {
  @Input() childValue:number = 3;  
  @Output() childValueChange = new EventEmitter();

  constructor() {
    �console.log(“constructor childValue = “+this.

childValue); 



70 • Angular and Machine Learning Pocket Primer

  }
  increment() {
    this.childValue++;

    this.childValueChange.emit({
      value: this.childValue
    })
  }
  decrement() {
    this.childValue--;

    this.childValueChange.emit({
      value: this.childValue
    })
  }
}

Listing 2.19 contains a template property that specifies three elements: 
a “decrement” <button> element, an <input> field where users can 
enter a number, and an “increment” <button> element. The first <but-
ton> element increments the value <input> field, whereas the second 
<button> element decrements the value.

The exported class ChildComponent class contains the numeric variable 
childValue that is decorated via @Input(), and whose value is set by 
the parent. 

As you can see, the methods increment() and decrement() increase 
and decrease the value of childValue, respectively. In both cases, the 
modified value of childValue is then “emitted” back to the parent with 
this code block:

this.childValueChange.emit({
   value: this.childValue
})

Update the contents of app.module.ts as shown in Listing 2.20. Note 
that the content of Listing 2.20 is different from the content of this file in 
the previous examples in this chapter.

LISTING 2.20 app.module.ts

import { NgModule }       from '@angular/core';
import {CUSTOM_ELEMENTS_SCHEMA} from '@angular/core';
import { BrowserModule }  from '@angular/platform-browser';



UI Controls, User Input, and Pipes • 71

import { AppComponent }   from './app.component';
import { ChildComponent } from './childcomponent';

@NgModule({
  imports:      [ BrowserModule ],
  providers:    [ ChildComponent ],
  declarations: [ AppComponent ],
  bootstrap:    [ AppComponent ],
  schemas:      [CUSTOM_ELEMENTS_SCHEMA]
})   
export class AppModule { }

When you launch the Angular application in this section, the value that is 
displayed in the <input> element is 77, which is the value in the parent 
component, and not the value that is assigned in the child component 
(which is 3). Open the Inspector for the current browser session and you 
will see the following output:

constructor parentValue = 77

Keep in mind that if you specify ChildComponent in the declarations 
property instead of the providers property, you will probably see this 
error message:

“Can't bind to <child-comp> since it isn't a known native 
property"

Next, Listing 2.20 contains three code snippets shown in bold, all of which 
are required for this code sample. If you do not include them, you will see 
the following type of error message in the Inspector tab of your browser:

Error: Template parse errors: 
Can't bind to 'childValue' since it isn't a known prop-
erty of 'child-comp'. 
1. If 'child-comp' is an Angular component and it has 'child-
Value' input, then verify that it is part of this module.
2. If 'child-comp' is a Web Component then add 'CUSTOM_
ELEMENTS_SCHEMA' to the '@NgModule.schemas' of this 
component to suppress this message. 3. To allow any 
property add 'NO_ERRORS_SCHEMA' to the '@NgModule.sche-
mas' of this component. (“ <div> <child-comp [ERROR ->]
[childValue]="parentValue" 
(childValueChange)="reportValueChange($event)"> </
child-comp"): 
ng:///AppModule/AppComponent.html@2:18



72 • Angular and Machine Learning Pocket Primer

Presentational Components

Presentational components receive data as input and generate views as 
outputs (so they do not maintain application state). Consider the follow-
ing component:

@Component({
  selector: 'student-info',
  template: `<h2>{{studentDetails?.status}}</h2>
    <div class="container">
      <table class="table">
        <tbody>
        <tr *ngFor="let student of students">
            <td>{{student.fname}}</td> 
            <td>{{student.lname}}</td>
        </tr>   
        </tbody>
    </table>
</div>` 
})
export class StudentDetailsComponent {
   @Input()
   studentDetails:StudentDetails;
}

The StudentDetailsComponent component has primarily presenta-
tional responsibilities: the component receives input data and displays 
that on the screen. As a result, this component is reusable.

By contrast, application-specific components (also called “smart” com-
ponents) are tightly coupled to a specific Angular application. Thus, a 
smart component would have a presentation component (but not the 
converse).

Since data is passed to this component synchronously (not via an 
Observable), the data might not be present initially, which is the reason 
for including the so-called “Elvis” operator (i.e., the “?” in the template).

Working with Pipes in Angular 

Angular supports something called a pipe that is somewhat analogous 
to the Unix pipe “|” command. Angular pipes enable you to specify 



UI Controls, User Input, and Pipes • 73

conditional logic that filters data, which is to say, you can display a subset 
of data items that is based on your conditional logic. 

Angular supports built-in pipes, asynchronous pipes, and support for 
custom pipes. The next two sections show you some example of built-in 
pipes, followed by a description of asynchronous pipes. A separate section 
shows you how to define a custom Angular pipe.

Working with Built-in Pipes

Angular supports various built-in pipes, such as DatePipe, 
UpperCasePipe, LowerCasePipe, CurrencyPipe, and PercentPipe. 
Each of these intuitively named pipes provides the functionality that you 
would expect: the DatePipe supports date values, the UpperCasePipe 
converts strings to uppercase, and so forth. 

As a simple example, suppose that the variable food has the value pizza. 
Then the following code snippet displays the string PIZZA:  

<p>I eat too much {{ food | UppercasePipe }} </p>

You can also parameterize some Angular pipes, an example of which is 
shown here:

<p>My brother's birthday is {{ birthday | date:"MM/dd/
yy" }} </p>

In fact, you can even chain pipes, as shown here:

My brother's birthday is {{ birthday | date | uppercase}}

In the preceding code snippet, birthday is a custom pipe (written by you). 
As another example, suppose that an Angular application contains the var-
iable employees array that contains JSON-based data. You can display 
the contents of the array with this code snippet:

<div>{{employees | json }}</div>

The AsyncPipe

The Angular AsyncPipe accepts a Promise or Observable as input 
and subscribes to the input automatically, eventually returning the emit-
ted values. Moreover, AsyncPipe is stateful: the pipe maintains a sub-
scription to the input Observable and keeps delivering values from that 
Observable as they arrive.



74 • Angular and Machine Learning Pocket Primer

The following code block gives you an idea of how to display stock quotes, 
where the variable quotes$ is an Observable:

@Component({
  selector: 'stock-quotes',
  template: `
    <h2>Your Stock Quotes</h2>
    <p>Message: {{ quotes$ | async }}</p>
  `
})

Keep in mind that the AsyncPipe provides two advantages. First, 
AsyncPipe reduces boilerplate code. Second, there is no need to sub-
scribe or to unsubscribe from an Observable (the latter can help avoid 
memory leaks).

One other point: Angular does not provide pipes for filtering or sorting 
lists (i.e., there is no FilterPipe or OrderByPipe) because both can be 
compute-intensive, which would adversely affect the perceived perfor-
mance of an application.

The code sample in the next section shows you how to create a custom 
pipe that displays a filtered list of users based on conditional logic that is 
defined in custom code.

Creating a Custom Angular Pipe

Copy the directory SimplePipe from the companion files into a con-
venient location. Listing 2.21 displays the content of app.component.
ts, which illustrates how to define and use a custom pipe in an Angular 
application that displays a subset of a hard-coded list of users.

LISTING 2.21 app.component.ts

import { Component } from '@angular/core';
import {User}        from './user.component';
import {MyPipe}      from './pipe.component';

@Component({
  selector: 'app-root',
  template: `
    <div>
      <h2>Complete List of Users:</h2>
      <ul>



UI Controls, User Input, and Pipes • 75

       <li
       *ngFor="let user of userList"
         (mouseover)='mouseEvent(user)'
         [class.chosen]="isSelected(user)">
         {{user.fname}}-{{user.lname}}<br/>
       </li>
      </ul>

      <h2>Filtered List of Users:</h2>
      <ul>
       <li
       *ngFor="let user of userList|MyPipe"
         (mouseover)='mouseEvent(user)'
         [class.chosen]="isSelected(user)">
         {{user.fname}}-{{user.lname}}<br/>
       </li>
      </ul>
    </div>
   `
})
export class AppComponent {
  user:User;
  currentUser:User;
  userList:User[];

  mouseEvent(user:User) {
     �console.log("current user: "+user.fname+" "+user.

lname);
     this.currentUser = user;
  }

  isSelected(user: User): boolean {
    if (!user || !this.currentUser) {
      return false;
    }

    return user.lname === this.currentUser.lname;
  //return true;
  }

  constructor() {
     this.userList = [
                  new User('Jane','Smith'),
                  new User('John','Stone'),



76 • Angular and Machine Learning Pocket Primer

                  new User('Dave','Jones'),
                  new User('Rick','Heard'),
                 ]
  }
}

Listing 2.21 imports the User custom class and the MyPipe custom class, 
where the latter is specified in the array of values for the pipes property. 

Next, the template property displays two unordered lists of user names. 
The first list displayed the complete list, and whenever users hover (with 
their mouse) over a user in the first list, the current user is set equal 
to that user via the code in the mouseEvent() method (defined in the 
AppComponent class). 

Note that the constructor in the AppComponent class (shown at the bot-
tom of Listing 2.21) initializes the userList array with a set of users, 
each of which is an instance of the User custom component.

The second list displays a filtered list of users based on the conditional 
logic in the custom pipe called MyPipe. Listing 2.22 displays the content 
of pipe.component.ts, which defines the custom pipe MyPipe that is 
referenced in Listing 2.24.

LISTING 2.22 pipe.component.ts

import {Component} from '@angular/core';
import {Pipe}      from '@angular/core';

@Pipe({
  name: "MyPipe"
})
export class MyPipe {
  transform(item) {
    return item.filter((item) => item.fname.startsWith("J"));
  //return item.filter((item) => item.lname.endsWith("th"));
  //return item.filter((item) => item.lname.contains("n"));
  } 
}   

Listing 2.22 contains the MyPipe class that contains the transform() 
method. There are three examples of how to define the behavior of the 
pipe, the first of which returns the users whose first name starts with an 
uppercase J (which is admittedly somewhat contrived, but nevertheless 
illustrative of the pipe-related functionality).



UI Controls, User Input, and Pipes • 77

Listing 2.23 displays the contents of the custom component user.com-
ponent.ts for creating User instances, which is also referenced via an 
import statement in app.component.ts.

LISTING 2.23 user.component.ts

import {Component} from '@angular/core';

@Component({
  selector: 'my-user',
  template: '<h1></h1>'
})
export class User {
  fname: string;
  lname: string;

  constructor(fname:string, lname:string) {
     this.fname = fname;
     this.lname = lname;
  }
}

The content of Listing 2.23 is straightforward: there is a User class com-
prising the fields fname and lname for the first name and last name, 
respectively, for each new user, both of which are specified in the con-
structor whenever a new instance of the User class is created.

Finally, we need to update the contents of app.module.ts, as shown in 
Listing 2.24, where the modified contents are shown in bold.

LISTING 2.24 app.module.ts

import { NgModule }      from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { AppComponent }  from './app.component';
import { MyPipe }        from './pipe.component';
import { User }          from './user.component';

@NgModule({
  imports:      [ BrowserModule ],		
  declarations: [ AppComponent, MyPipe, User ],
  bootstrap:    [ AppComponent ]
})
export class AppModule { }



78 • Angular and Machine Learning Pocket Primer

As you can see, Listing 2.24 contains two new import statements so 
that the custom components MyPipe and User can be referenced in the 
declarations property. In addition, the declarations element includes 
MyPipe and User in its array of values.

Launch the application, navigate to localhost:4200 in a browser ses-
sion, and after a few moments, you will see the following output: 

Complete List of Users:

�� Jane-Smith
�� John-Stone
�� Dave-Jones
�� Rick-Heard

Filtered List of Users:

�� Jane-Smith
�� John-Stone

As you can see in the last portion of the preceding output, this Angular 
application performs a filtering operation that “filters out” the users whose 
first name does not start with the capital letter J.

Now that you understand how to define a basic Pipe in Angular, you can 
experiment with a custom Pipe that receives data asynchronously. This 
type of functionality can be very useful when you need to display data 
(such as a list or a table) whenever it’s updated without the need for “poll-
ing” the source of the data.

Additional information regarding Angular pipes is at

https://angular.io/docs/ts/latest/guide/pipes.html.

This concludes the portion of the chapter regarding Pipes in Angular. 
The next section discusses Services in Angular applications.

Reading JSON Data via an Observable in Angular

This section shows you how to read data from a file that contains JSON-based 
data. Now copy the directory ReadJSONFile from the companion files into 
a convenient location. Listing 2.25 displays the content of app.compo-
nent.ts, which illustrates how to make an HTTP request (which returns an 
Observable) to read a JSON -based file with employee information.



UI Controls, User Input, and Pipes • 79

LISTING 2.25 app.component.ts

import { Component }   from '@angular/core';
import { Observable}   from 'rxjs';
import { Inject }      from '@angular/core';
import { HttpClient }  from '@angular/common/http';
import { HttpHeaders } from '@angular/common/http';
declare var $: any;

@Component({
  selector: 'app-root',
  template: `
     <button (click)="httpRequest()">Employee Info</
button>
     <ul>
       <li *ngFor="let emp of employees">
         {{emp.fname}} {{emp.lname}} lives in {{emp.city}}
       </li>
     </ul>
  `
})
export class AppComponent {
  employees : any;

//OLD STYLE: constructor(@Inject(Http) public http:Http) 
{}
  �constructor(@Inject(HttpClient) public http:HttpCli-
ent) {}

  httpRequest() {
    this.http.get('assets/employees.json')
      .subscribe(
        // this function runs on success
        data => this.employees = data,
        // this function runs on error
        err => console.log('error reading data: '+err),
        // this function runs on completion
        () => this.userInfo()
      );
  }

  userInfo() {



80 • Angular and Machine Learning Pocket Primer

 //console.log("employees = "+JSON.stringify(this.
employees));
  }
}

The template property in Listing 2.25 starts with a <button> element 
for making an HTTP GET request to retrieve information about employees 
from a JSON file. The template property also contains a <ul> element 
for displaying an unordered list of employee-based data.

The AppComponent class contains the variable employees, followed by 
a constructor that initializes the http variable that is an instance of the 
Http class. The httpRequest() method contains the code for making 
the HTTP GET request that returns an Observable. The subscribe() 
method contains the usual code, which in this case also initializes the 
employees array from the contents of the file employees.json in the 
subdirectory src/assets.

Listing 2.26 displays the content of employees.json, which contains 
employee related information. This file is located in the src/assets 
subdirectory.

LISTING 2.26 employees.json

[
{"fname":"Jane","lname":"Jones","city":"San Francisco"},
{"fname":"John","lname":"Smith","city":"New York"},
{"fname":"Dave","lname":"Stone","city":"Seattle"},
{"fname":"Sara","lname":"Edson","city":"Chicago"}
]  

Listing 2.27 displays the content of app.module.ts, which imports the 
Angular HttpClientModule.

LISTING 2.27 app.module.ts

import { NgModule }         from '@angular/core';
�import { BrowserModule }	 from '@angular/platform- 
browser';
import { HttpClientModule } from '@angular/common/http';
import { AppComponent }     from './app.component';

@NgModule({
  imports:      [ BrowserModule, HttpClientModule ],
  declarations: [ AppComponent ],



UI Controls, User Input, and Pipes • 81

  bootstrap:    [ AppComponent ]
})
export class AppModule { }

Listing 2.27 contains a familiar set of import statements, along with 
HttpClientModule that is listed in the array of elements in the imports 
property that is inside the @NgModule decorator.

Launch the Angular application, and you will see a button element (not 
shown here) that you can click, after which you will see the following text:

�� Jane Jones lives in San Francisco 
�� John Smith lives in New York 
�� Dave Stone lives in Seattle 
�� Sara Edson lives in Chicago

One other point: earlier versions of Angular required two additional code 
snippets, neither of which is required for Angular 8 and beyond. In case 
you encounter Angular applications that use an earlier version of Angular, 
the redundant code is included below.

The first redundant code snippet is an import statement for the map() 
operator, as shown here:

import { map } from 'rxjs/operators';

The second redundant code snippet involves an invocation of the map() 
operator immediately following the invocation of the get() method, as 
shown here:

this.http.get('assets/employees.json')
//.map(res => res.json()) redundant in Angular 8

However, the map() operator is automatically invoked for us, so it’s no 
longer required; moreover, if you do include this code snippet, you will 
see an error message.

Upgrading Code from Earlier Angular Versions 

Although Angular 8 is mostly backward compatible with earlier versions 
of Angular, sometimes code modifications are required, especially code 
that involves HTTP requests. 

In particular, the previous section showed you that the invocation of 
the map() operator is no longer required in Angular 8. Another change 



82 • Angular and Machine Learning Pocket Primer

pertains to a redundant import statement and a modification to another 
import statement. 

Specifically, suppose that you see the following error messages when you 
compile an Angular 8 application:

Error: Can't resolve 'rxjs/Rx'

Module not found Error: Can't resolve '@angular/http'
Error: Unexpected value 'HttpClient' imported by the 
module 'AppModule'. Please add a @NgModule annotation.

You need to update the code in app.component.ts as well as app.mod-
ule.ts with the appropriate code for Angular 8, as shown here for app.
component.ts:

// import { Observable } from 'rxjs/Observable';    // old
import { Observable }  from 'rxjs';                 // new

// import { Http }       from '@angular/http';      // old
import { Http }	 from '@angular/common/http'; // new

import { HttpClient }	 from '@angular/common/http'; // new
import { HttpHeaders }	 from '@angular/common/http'; // new

// import 'rxjs/Rx';                                  // old

Here are the changes to app.module.ts:

//import {HttpModule}     from '@angular/http';        // old
import {HttpClientModule} from '@angular/common/http'; 
// new

imports: [
  BrowserModule,
  HttpClientModule,         // new
],
declarations: [
  AppComponent,
  HttpClientModule          // new
],

The preceding changes to app.component.ts and app.module.ts are 
precisely the changes that have been made to the Angular application 
ReadJSONFile (discussed in the previous section) in order to upgrade 
to an Angular 8 application. In an ideal scenario, these changes will work 
for your application as well, which will save you some debugging effort. 



UI Controls, User Input, and Pipes • 83

However, please keep in mind that you might need to make other modi-
fications to the code in your Angular application.

Reading Multiple Files with JSON Data in Angular

This section shows you how to read data from several files that contain 
JSON-based data. Now copy the directory ReadMultipleJSONFiles from 
the companion files into a convenient location. Listing 2.28 displays the con-
tent of app.component.ts, which illustrates how to make multiple HTTP 
requests (which returns an Observable) to read a JSON -based files with 
customer information, employee information, and relative information.

LISTING 2.28 app.component.ts

import { Component }  from '@angular/core';
import { Observable } from 'rxjs';
import { HttpClient } from '@angular/common/http';

@Component({
  selector: 'app-root',
  styleUrls: ['./app.component.css'],
  template:`
    <h2>Angular HTTP and Observables</h2>
    <h3>Some of our Employees</h3>
    <ul>
      <li *ngFor="let emp of employees">
        {{emp.fname}} {{emp.lname}} lives in {{emp.city}}
      </li>
    </ul>
    <h3>Some of our Customers</h3>
    <ul>
      <li *ngFor="let cust of customers">
        {{cust.fname}} {{cust.lname}} lives in {{cust.
city}}
      </li>
    </ul>
    <h3>Some of our Relatives</h3>
    <ul>
      <li *ngFor="let rel of relatives">
        {{rel.fname}} {{rel.lname}} lives in {{rel.city}}
      </li>



84 • Angular and Machine Learning Pocket Primer

    </ul>
  `
})
export class AppComponent {
  public employees : any = [];
  public customers : any = [];
  public relatives : any = [];

  constructor(private http:HttpClient) {
   //this.getCustomers();
   //this.getEmployees();
   //this.getRelatives();
     this.getEveryone();
  }

  getCustomers() {
    this.http.get('assets/customers.json')
      .subscribe(
        // this function runs on success
        data => { this.customers = data },
        // this function runs on error
        �err => console.log('error reading customer data: 

'+err),
        // this function runs on completion
        () => console.log('Loading customers completed')
      );
  }

  getEmployees() {
    this.http.get('assets/employees.json')
      .subscribe(
        // this function runs on success
        data => { this.employees = data },
        // this function runs on error
        err => console.log('error reading employee data: 
'+err),
        // this function runs on completion
        () => console.log('Loading employees completed')
      );
  }

  getRelatives() {
    this.http.get('assets/relatives.json')



UI Controls, User Input, and Pipes • 85

      .subscribe(
        // this function runs on success
        data => { this.relatives = data },
        // this function runs on error
        err => console.log('error reading relatives data: 
'+err),
        // this function runs on completion
        () => console.log('Loading relatives completed')
      );
  }

  getEveryone() {
    this.getCustomers();
    this.getEmployees();
    this.getRelatives();
  }

  infoResults() {
    console.log('inside infoResults');
    console.log('this.customers:',this.customers);
    console.log('this.employees:',this.employees);
    console.log('this.relatives:',this.relatives);
  }
}

The template property in Listing 2.28 contains three very similar 
blocks of code that all use ngFor to display information about custom-
ers, employees, and relatives. Since each code block resembles the code 
with ngFor in Listing 2.25, read the associated description for the details 
about their contents.

The AppComponent class contains the array-based variables customers, 
employees, and relatives. Next a constructor initializes the http vari-
able that is an instance of the HttpClient class, as shown here:

constructor(private http:HttpClient) {
 //this.getCustomers();
 //this.getEmployees();
 //this.getRelatives();
   this.getEveryone();
}

Notice that the constructor contains three commented-out methods. As 
you will see later, these three methods retrieve data from the JSON-based 



86 • Angular and Machine Learning Pocket Primer

files customers.json, employees.json, and relatives.json. The 
getEveryone() method is a convenience method that invokes the other 
three methods to retrieve all three types of data.

Although these three methods are similar to the code in Listing 2.25, let’s 
take a quick look at the contents of the getCustomers() method:

getCustomers() {
    this.http.get('assets/customers.json')
      .subscribe(
        // this function runs on success
        data => { this.customers = data },
        // this function runs on error
        err => console.log('error reading customer 
data:'+err),
        // this function runs on completion
        () => console.log('Loading customers completed')
      );
}

The preceding code makes an HTTP GET request when the subscribe() 
method is invoked, and if it’s successful, the variable customers is popu-
lated with the contents of the file customers.json. In fact, these are the 
only two lines that you need to modify in the getEmployees() method 
(which involves the employees.json file) and the getRelatives() 
method (which involves the relatives.json file). 

The httpRequest() method contains the code for making the HTTP GET 
request that returns an Observable. The subscribe() method contains 
the usual code, which in this case also initializes the employees array from 
the contents of the file employees.json in the subdirectory src/assets.

Listing 2.29, Listing 2.30, and Listing 2.31 show the contents of the JSON-
based files customers.json, employees.json, and relatives.json, 
respectively. 

LISTING 2.29 customers.json

[ 
{"fname":"Paolo","lname":"Friulano","city":"Maniago"},
{"fname":"Luigi","lname":"Napoli","city":"Vicenza"},
{"fname":"Miko","lname":"Tanaka","city":"Yokohama"},
{"fname":"Yumi","lname":"Fujimoto","city":"Tokyo"}
] 



UI Controls, User Input, and Pipes • 87

LISTING 2.30 employees.json

[
{"fname":"Jane","lname":"Jones","city":"San Francisco"},
{"fname":"John","lname":"Smith","city":"New York"},
{"fname":"Dave","lname":"Stone","city":"Seattle"},
{"fname":"Sara","lname":"Edson","city":"Chicago"}
] 

LISTING 2.31 relatives.json

[ 
{"fname":"Beppi","lname":"Guarda","city":"Vicenza"},
{"fname":"Paolo","lname":"Fermi","city":"Padova"},
{"fname":"Antonio","lname":"Gatto","city":"Brescia"},
{"fname":"Pasquale","lname":"Fritto","city":"Verona"}
]  

Listing 2.32 displays the contents of app.module.ts that imports the 
Angular HttpModule.

LISTING 2.32 app.module.ts

import { BrowserModule }    from '@angular/
platform-browser';
import { NgModule }         from '@angular/core';
import { AppComponent }     from './app.component';
import { HttpClientModule } from '@angular/common/http';

@NgModule({
  declarations: [
    AppComponent
  ],
  imports: [
    BrowserModule,
    HttpClientModule,
  ],    
  providers: [ ],
  bootstrap: [AppComponent]
})      
export class AppModule { }

Listing 2.32 contains the standard set of import statements, along 
with HttpClientModule that is listed in the array of imports in the  
@NgModule decorator.



88 • Angular and Machine Learning Pocket Primer

Launch this Angular application and you will see the following output 
displayed in a browser session:

Angular HTTP and Observables

Some of our Employees
�� Jane Jones lives in San Diego
�� John Smith lives in New York
�� Dave Stone lives in Seattle
�� Sara Edson lives in Chicago

Some of our Customers
�� Paolo Friulano lives in Maniago
�� Luigi Napoli lives in Vicenza
�� Miko Tanaka lives in Yokohama
�� Yumi Fujimoto lives in Tokyo

Some of our Relatives
�� Beppi Guarda lives in Vicenza
�� Paolo Fermi lives in Padova
�� Antonio Gatto lives in Brescia
�� Pasquale Fritto lives in Verona

One more thing: the JSON files in Angular applications are located in 
the src/assets subdirectory, and in this example, there are three JSON 
files. These files are referenced in each of the three methods getCus-
tomers(), getEmployees(), and getRelatives(), with the follow-
ing code snippets:

this.http.get('assets/customers.json')
this.http.get('assets/employees.json')
this.http.get('assets/relatives.json')

As you can probably infer, the prefix assets in the preceding code snip-
pet refers to the subdirectory src/assets in an Angular application. If 
you see a blank screen when you launch an Angular application, you prob-
ably did not place your JSON files in the correct subdirectory.

Reading CSV Files in Angular

The code sample in this section shows you how to read the contents of 
a CSV file and display the contents of that file. This Angular application 
will be very useful in Chapter 6 for the machine learning task that involves 
reading the contents of a dataset from a CSV file.



UI Controls, User Input, and Pipes • 89

Now copy the directory ReadWineCSV from the companion files into a 
convenient location. Listing 2.33 displays the content of app.compo-
nent.ts, which illustrates how to read the contents of assets/wine.
csv and then display the data in tabular form.

LISTING 2.33 app.component.ts

import { Component }   from '@angular/core';
import { Inject }      from '@angular/core';
import { HttpClient }  from '@angular/common/http';
import { Observable }  from 'rxjs';

@Component({
  selector: 'app-root',
  styleUrls: ['./app.component.css'],
  template: `
    <table>
      <thead>
       <tr>
         <th>{{headers[0]}}</th>
         <th>{{headers[1]}}</th>
         <th>{{headers[2]}}</th>
       </tr>
      </thead>
      <tbody>
        <tr *ngFor="let record of records;let i = index;">
          <td> <span>{{record[0]}}</span> </td>
          <td> <span>{{record[1]}}</span> </td>
          <td> <span>{{record[2]}}</span> </td>
        </tr>
      </tbody>
    </table>
  `,
})
export class AppComponent {
  public headers: any = [];
  public records: any = [];
  public csvUrl = 'assets/wine.csv';

  constructor(@Inject(HttpClient) public http:HttpClient) 
{
     this.readCsvData ();
  }



90 • Angular and Machine Learning Pocket Primer

  readCsvData () {
    this.http.get(this.csvUrl, {responseType: 'text'})
      .subscribe(
         data => { this.extractData(data) },
         err => { console.log(err) }
      );
  }

  private extractData(res: any) {
    let csvData = res || '';
    let allTextLines = csvData.split(/\r\n|\n/);

    // headers: Alcohol, Malic acid, class
    this.headers = allTextLines[0].split(',');
    // console.log(“headers: “+this.headers)

    let lines = []; 

    // skip the header row: start from index 1 
    for (let i=1; i < allTextLines.length; i++) {
       // split content based on comma
       let data = allTextLines[i].split(',');

       if (data.length == headers.length) {
           let tarr = [];
           for ( let j = 0; j < headers.length; j++) {
               tarr.push(data[j]);
           }
           lines.push(tarr);
       }
    }
    // console.log(“lines: “+lines)
    this.records = lines;
  }
}

Listing 2.33 contains an assortment of import statements, some standard 
properties, and a template property that consists of two parts. The first 
part displays header-related information, and the second part contains a 
loop that iterates through the data that was retrieved from the CSV file 
wine.csv.

The next portion of Listing 2.33 defines a constructor that invokes the 
readCsvData() method, which in turn makes an HTTP GET request in 



UI Controls, User Input, and Pipes • 91

order to read the contents of the CSV file wine.csv in the src/assets 
subdirectory.

After the HTTP GET request has been completed, the code invokes the 
extractData() method that contains a loop that creates a one-di-
mensional array for each row of data in the CSV file wine.csv. Each 
array is appended to the lines array, and when the loop has been 
completed, the records array is initialized with the contents of the 
lines array.

Now take a look at the template property in Listing 2.33 and you will see 
a loop in the <tbody> element that creates and displays a <tr> element 
for each row in the records array.

Listing 2.34 displays the updated contents of app.module.ts that con-
tains the usual code that you have seen in previous code samples.

LISTING 2.34 app.module.ts

import { BrowserModule }    from '@angular/platform- 
browser';
import { NgModule }         from '@angular/core';
import { AppComponent }     from './app.component';
import { HttpClientModule } from '@angular/common/http';

@NgModule({
  declarations: [
    AppComponent
  ],
  imports: [
    BrowserModule,
    HttpClientModule
  ],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }

There are two additions to the auto-generated file app.module.ts that 
are shown in bold in Listing 2.34: the first snippet is an import statement 
and the second snippet references HttpClientModule in the imports 
element.



92 • Angular and Machine Learning Pocket Primer

Now launch this Angular application, and in a browser session, you will 
see the following output:

Alcohol Malic acid      class
14.23   1.71    1
13.2    1.78    1
13.16   2.36    1
14.37   1.95    1
13.24   2.59    1
// details omitted for brevity
13.71   5.65    3
13.4    3.91    3
13.27   4.28    3
13.17   2.59    3
14.13   4.1     3

The output above is a “bare bones” display consisting of three columns of 
numeric data. Feel free to define the CSS-related code for a better styling 
of the output.

Summary

This chapter showed you how to use UI Controls in Angular applications. 
You saw how to render buttons, render lists of names, and add and delete 
names from those lists. You also learned about conditional logic and how 
to create child components. 

Then you learned about communicating between parent and child com-
ponents, followed by a discussion of presentational components. In addi-
tion, you were briefly introduced to Angular Pipes and code samples that 
illustrate how to use them in Angular applications. Finally, you learned 
how to make HTTP GET requests from an Angular application to retrieve 
the contents of a JSON file as well as the contents of a CSV file that are in 
the src/assets subdirectory.



c h a p t e r

This chapter shows you how to create Angular applications that use 
Angular Forms and Services. The code samples rely on an under-
standing of the functionality that is discussed in the previous chap-

ter, such as how to make HTTP requests in Angular.

The first section in this chapter contains Angular applications that use 
Angular Controls and Control Groups. This section also provides an 
example of an Angular application that contains a form that makes HTTP 
GET requests. 

The second part of this chapter contains code samples that retrieve data 
from an external endpoint. Specifically, this section shows you how to 
retrieve GitHub details for a hard-coded user. It also explains how to pro-
vide a GitHub user name in a text field, and then search GitHub for addi-
tional details regarding that user.

One other point to keep in mind: the focus of the code samples in this 
book is on Angular-specific features, which means a “no frills” approach 
to the UI portion of the applications. Hence, the UI portion is minimal-
istic, but you can enhance the UI by providing your own custom code.

Overview of Angular Forms

An Angular FormControl represents a single input field, a FormGroup 
consists of multiple logically related fields, and an NgForm component 

Forms and Services

3



94 • Angular and Machine Learning Pocket Primer

represents a <form> element in an HTML Web page. The ngSubmit 
action for submitting a form has this syntax:

(ngSubmit)="onSubmit(myForm.value)".

Note that NgForm provides the ngSubmit event, whereas you must 
define the onSubmit() method in the component class. The expres-
sion myForm.value consists of the key/value pairs in the form. Later 
in the chapter, you will see examples involving these controls, as well as 
FormBuilder, which supports additional useful functionality.

Angular also supports template-driven forms (with a FormsModule) and 
reactive forms (with a ReactiveFormsModule), both of which belong to 
@angular/forms. However, Reactive Forms are synchronous whereas 
template-driven forms are asynchronous.

Reactive forms

Reactive forms involve the explicit management of the data flowing 
between a non-UI data model and a UI-oriented form model that retains 
the states and values of the HTML controls on the screen. Reactive forms 
offer the ease of using reactive patterns, testing, and validation.

Reactive forms involve the creation of a tree of Angular form control 
objects in the component class app.component.ts, which are also 
bound to them natively to form control elements in the component tem-
plate app.component.html.

The component class has access to the data model and the form control 
structure, which enables you to propagate data model values into the form 
controls and also retrieve user-supplied values in the HTML controls. 
The component can observe changes in the form control state and react 
to those changes.

One advantage of working with form control objects directly is that the value 
and validity updates are always synchronous and under your control. You 
won’t encounter the timing issues that sometimes plague a template-driven 
form, and reactive forms can be easier to unit test. Since reactive forms are 
created directly via code, they are always available, which enables you to 
immediately update values and “drill down” to descendant elements.

Template-driven forms

Template-driven forms involve placing HTML form controls (such 
as <input>, <select>, and so forth) in the component template. In 



Forms and Services • 95

addition, the form controls are bound to the data model properties in the 
component via directives such as ngModel.

Note that Angular directives create Angular form objects based on the 
information in the provided data bindings. Angular uses ngModel to han-
dle the transfer of data values, and also updates the mutable data model 
with user changes as they happen. Consequently, the ngModel directive 
does not belong to the ReactiveFormsModule. 

Before delving into the material in this section, look at the Angular appli-
cation MasterForm that has form-related code on the companion files. 
Although this code sample does not use an Angular FormGroup, you 
might find some useful features in the code.

The next section shows you how to use the Angular ngForm component to 
create a form “the Angular way.” You will see an example that shows you 
how to use an Angular FormGroup in an Angular Application.

An Angular Form Example

This section contains a simple example of creating a form in an Angular 
application. Now copy the directory NGForm from the companion files 
into a convenient location. Listing 3.1 displays the content of app.com-
ponent.ts, which illustrates how to use the <input> elements with an 
ngModel attribute in an Angular application.

LISTING 3.1 app.component.ts

import { Component } from '@angular/core';

@Component({
  selector: 'app-root',  
  template: `
    <div> 
      <h2>A Sample Form</h2>  
      <form #f="ngForm"
            (ngSubmit)="onSubmit(f.value)"
            class="ui form">
        <div class="field">
          <label for="fname">fname</label>
          <input type="text"
                 id="fname"
                 placeholder="fname"
                 name="fname" ngModel>



96 • Angular and Machine Learning Pocket Primer

          <label for="lname">lname</label>
          <input type="text"
                 id="lname"
                 placeholder="lname"
                 name="lname" ngModel>
        </div>

        <button type="submit">Submit</button> 
      </form>
    </div>
   ` 
}) 
export class AppComponent {
  myForm: any;

  onSubmit(form: any): void {
    console.log('you submitted value:', form);
  }
}

Listing 3.1 defines a template property that contains a <form> element 
that contains two <div> elements, each of which contains an <input> 
element. The first <input> element is for the first name and the second 
<input> element is for the last name of a new user.

Angular provides the NgModel directive that enables you to use the 
instance variable myForm in an Angular form. For example, the following 
code snippet specifies myForm as the control group for the given form:

<form [ngModel]="myForm"
  (ngSubmit)="onSubmit(myForm.value)"

Notice that onSubmit specifies myForm and that a Control is “bound” 
to the input element. 

Add the attribute novalidate to the <form> element to disable browser 
validation.

Listing 3.2 displays the content of app.module.ts, which imports a 
FormsModule and includes it in the imports property.

LISTING 3.2 app.module.ts

import { NgModule }      from '@angular/core';
import { FormsModule }   from '@angular/forms';

NOTE



Forms and Services • 97

import { BrowserModule } from '@angular/platform-browser';
import { AppComponent }  from './app.component';
      
@NgModule({ 
  imports:      [ BrowserModule, FormsModule ],
  declarations: [ AppComponent ],
  bootstrap:    [ AppComponent ]
})        
export class AppModule { }

Listing 3.2 is straightforward: it contains two lines (shown in bold) involv-
ing the FormsModule that is required for this code sample.

Launch this application and navigate to localhost:4200 in a browser 
session, where you will see a simple form with two input fields labeled 
fname and lname. Enter a pair of values – let’s say tom and jones – for 
these two fields. Open the Inspector for this browser session and you will 
see the following information displayed:

you submitted value: Object { fname: "tom", lname: 
"jones" } 
you submitted value: Object { fname: "tom", lname: 
"jones" } 

Data Binding and ngModel

Angular supports three types of binding in a form: no binding, one-way 
binding, and two-way binding. Here are some examples:

<!-- no binding -->
<input name="fname" ngModel>

<!-- one-way binding -->
<input name="fname" [ngModel]="fname">

<!-- two-way binding -->
<input name="fname" [ngModel]="fname"
       (ngModelChange)="fname=$event">

<!-- two-way binding -->
<input name="fname" [(ngModel)]="fname">

The one-way binding example will look for the fname property in the 
associated component and initialize the <input> field with the value of 
the fname property.



98 • Angular and Machine Learning Pocket Primer

The two-way binding example fires the ngModelChange event when 
users alter the value of the <input> field, which causes an update to the 
fname property in the component, thereby ensuring that the input value 
and its associated component value are the same. You can also replace the 
value of ngModelChange with the output of a function (e.g., capitalizing 
the text string that users enter in the input field). 

The second example of two-way data binding uses the “banana in a box” syn-
tax, which is a shorthand way of achieving the same result as the first two-
way data binding example. However, this syntax does not support the use of 
a function that is possible with the longer syntax for two-way data binding.

The next section in this chapter shows you how to work with forms in the 
“Angular way.”

Angular Forms with FormBuilder 

The FormBuilder class and the FormGroup class are built-in Angular 
classes for creating forms. FormBuilder supports the control() func-
tion for creating a FormControl and the group() function for creating 
a FormGroup.

Copy the directory FormBuilder from the companion files to a conven-
ient location. Listing 3.3 displays the content of app.component.ts, 
which illustrates how to use an Angular form in an Angular application.

LISTING 3.3 app.component.ts

import { Component }   from '@angular/core';
import { FormBuilder } from '@angular/forms';
import { FormGroup }   from '@angular/forms';

@Component({
  selector: 'app-root',
  template: `
    <div>       
      <h2>A FormBuilder Form</h2> 

      <form [formGroup]="myForm"
            (ngSubmit)="onSubmit(myForm.value)"
            class="ui form">

        <div class="field">
          <label for="fname">fname</label>



Forms and Services • 99

          <input type="text"
                 id="fname"
                 placeholder="fname"
                 [formControl]="myForm.controls['fname']">
        </div>

        <div class="field">
          <label for="lname">lname</label>
          <input type="text"
                 id="lname"
                 placeholder="lname"
                 [formControl]="myForm.controls['lname']">
        </div>

        <button type="submit">Submit</button> 
      </form>
    </div>
   ` 
}) 
export class AppComponent {
  myForm: FormGroup;

  constructor(fb: FormBuilder) {
    this.myForm = fb.group({
      'fname': ['John'],
      'lname': ['Smith']
    });
  }

  onSubmit(value: string): void {
    console.log('you submitted value:', value);
  }
}

Listing 3.3 contains a <form> element with two <div> elements, each of 
which contains an <input> element. The first <input> element is for 
the first name and the second <input> element is for the last name of a 
new user.

In Listing 3.3, FormBuilder is injected into the constructor, which cre-
ates an instance of FormBuilder that is assigned to the fb variable in the 
constructor. Next, myForm is initialized by invoking the group() method 
that takes an object of the key/value pairs. In this case, fname and lname 



100 • Angular and Machine Learning Pocket Primer

are keys, and both of them appear as <input> elements in the template 
property. The values of these keys are optional initial values.

Launch this application and navigate to localhost:4200 in a browser 
session, where you will see a simple form with two input fields labe-
led fname and lname that are pre-populated with the values John and 
Smith, respectively. Open the Inspector for this browser session and you 
will see the following information displayed:

you submitted value: Object { fname: "John", lname: 
"Smith" }

Obviously, you can add many other properties inside the group() method 
(such as address-related fields). Moreover, you can add a different form 
for each new entity. For example, you could create separate forms for a 
Customer, PurchaseOrder, and LineItems.

Angular Reactive Forms 

This section contains a code sample for creating a reactive Angular form, 
whose purpose will become clear after you see the Form-related code in 
Listing 3.6. 

Now copy the directory ReactiveForm from the companion files to a 
convenient location. Listing 3.4 displays the content of app.component.
ts, which illustrates how to define a reactive Angular form in an Angular 
application.

LISTING 3.4 app.component.ts

import { Component }   from '@angular/core';
import { FormBuilder } from '@angular/forms';
import { FormGroup }   from '@angular/forms';
import { FormControl } from '@angular/forms';

@Component({
  selector:    'app-root',
  templateUrl: './app.component.html',
  styleUrls:   ['./app.component.css']
})
export class AppComponent {
   userForm: FormGroup;



Forms and Services • 101

   disabled:boolean;

   constructor(fb: FormBuilder) {
     this.userForm = fb.group({
        name:    'Jane',
        email:   'jsmith@yahoo.com',
        address: fb.group({
          city:  'San Francisco',
          state: 'California'
        })  
     }); 
   }

   onFormSubmitted(theForm : FormGroup) {
      console.log("name  = "+theForm.controls['name'].
value);
      console.log("email = "+theForm.controls['email'].
value);
      console.log("city  = "+theForm.get('address.city').
value);
      console.log("city  = "+theForm.get('address.state').
value);
   }
}

Listing 3.4 contains the usual import statements, and notice how the var-
iable userForm, which has type FormBuilder, is initialized in the con-
structor. In addition to two text fields, userForm contains the address 
element, which also has type FormBuilder.

Listing 3.5 displays the contents of app.module.html with an Angular 
form that contains <input> elements that correspond to the fields in the 
userForm variable.

LISTING 3.5 app.component.html

<form [formGroup]="userForm" (ngSubmit)="onFormSubmit-
ted(userForm)">
  <label>
    <span>Name</span>
    <input type="text" formControlName="name" placehold-
er="Name" required>
  </label>



102 • Angular and Machine Learning Pocket Primer

  <div>
    <label>
      <span>Email</span>
      <input type="email" formControlName="email" place-
holder="Email" required>
    </label>
  </div>

  <div formGroupName="address">
    <div>   
      <label>
        <span>City</span>
        <input type="text" formControlName="city" place-
holder="City" required>
      </label>
    </div>
    <label>
      <span>Country</span>
      <input type="text" formControlName="state" place-
holder="State" required>
    </label>                     
  </div>                         
    <br />
  <input type="submit" [disabled]="userForm.invalid">
</form>

Listing 3.5 contains very simple HTML markup that enables users to 
change the default values for each of the input fields.

Listing 3.6 displays the updated contents (shown in bold) of app.mod-
ule.ts that involve just two code snippets.

LISTING 3.6 app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule }            from '@angular/core';
import { FormsModule }         from '@angular/forms';
import { ReactiveFormsModule } from '@angular/forms';
import { AppComponent }        from './app.component';



Forms and Services • 103

@NgModule({
  declarations: [
    AppComponent             
  ],                         
  imports: [                 
    BrowserModule,
    FormsModule,
    ReactiveFormsModule
  ],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }

Listing 3.6 contains one new import statement for ReactiveForms- 
Module (which can be combined with the import statement for Forms 
Module) that is also referenced in the imports property.

Launch this application and navigate to localhost:4200 in a browser 
session, where you will see a simple form with several pre-populated 
input fields. Click the submit button. When you open the Inspector for 
this browser session, you will see the following information displayed:

name  = Jane 
email = jsmith@yahoo.com 
city  = San Francisco 
state = California

FormGroup versus FormArray 

As you now know, a FormGroup aggregates the values of FormControl 
elements into one object, where the control name is the key. Angular also 
supports FormArray (a “variation” of FormGroup), which aggregates the 
values of FormControl elements into an array.

FormGroup data is serialized as an array, whereas FormArray data is seri-
alized as an object). If you do not know how many controls are in a given 
group, consider using a FormArray (otherwise use a FormGroup). The 
following link contains an example of using a FormArray:

https://alligator.io/angular/reactive-forms-formarray-dynamic-fields/



104 • Angular and Machine Learning Pocket Primer

Other Form Features in Angular

The preceding section gave you a glimpse into the modularized style of 
Angular forms, and this brief section highlights some additional form-re-
lated features in Angular, such as the following:

�� form validation
�� custom validators
�� nested forms
�� dynamic forms
�� template-driven forms

Validators enable you to perform validation on form fields, such specify-
ing mandatory fields and the minimum and maximum lengths of fields. 
You can also specify a regular expression that a field must match, which is 
very useful for zip codes, email addresses, and so forth. Alternatively, you 
can also specify validators programmatically.

Angular forms also provide event listeners that detect various events per-
taining to the state of a form, as shown in the following code snippets:

{{myform.form.touched}}
{{myform.form.untouched}}
{{myform.form.pristine}}
{{myform.form.dirty}}
{{myform.form.valid}}
{{myform.form.invalid}}

For example, the following <span> element is displayed if one or more 
form fields is invalid:

<span *ngIf="!myform.form.valid">The Form is Invalid</
span>

You can also display error messages using the *ngIf directive to display 
the status of a specific field, as shown here:

<label>
  <span>First Name</span>
  <input type="text" formControlName="fname" placehold-
er="First Name">
    <p *ngIf="userForm.controls.fname.errors">
      This value is invalid
    </p>
</label>



Forms and Services • 105

An example of a dynamic Angular form is here: 

https://angular.io/docs/ts/latest/cookbook/dynamic-form.html

Instead of using plain CSS for styling effects for field-related error mes-
sages, consider using something like Bootstrap.

What are Angular Services?

This section contains a brief description of Angular Services, along with a 
list of some built-in services, followed by an example of defining a custom 
service in Angular in a subsequent section. 

As you probably know, the front-end of Web applications sometimes con-
tain a combination of presentation logic and some business logic. Angular 
components comprise the presentation tier and services belong to the 
business-logic tier. Define your Angular services in such a way that they 
are decoupled from the presentation tier.

Angular services are classes that implement some business logic, and they 
are designed so that they can be used by components, models, and other 
services. In other words, services can be providers for other parts of an 
application.

Because of the “dependency injection” mechanism in Angular, services 
can be invoked in other sections of an Angular application. Moreover, 
Angular ensures that services are singletons, which means that each ser-
vice consumer will access the same instance of the service class.

A sample Angular custom service is shown here:

@Injectable()
export class UpperCaseService {
  public upper(message: string): string {
    return message.toUpperCase();
  }
}

The preceding class UpperCaseService is a service with one method that 
takes a string as an argument and returns the uppercase version of that string. 
The @Injectable() decorator is required so that this class can be injected 
as a dependency. Although this decorator is not mandatory in all cases, it’s 
a good idea to mark your services in this manner. Use the @Injectable 
decorator only when a service (or class) “receives” an injection.



106 • Angular and Machine Learning Pocket Primer

An example of the content of app.component.ts, which invokes the 
method in the preceding service, is shown below:

import {UpperCaseService} from "./path/to/service/
UpperCaseService";

@Component({
  selector: "convert",
  template: "<button (click)='greet()'>Greet</button>";
})
export class UpperComponent {
  // inject the custom service in the constructor
  constructor(private upperCaseService: UpperCaseService 
{
  }

  // invoke the method in the uppercaseService class
  public greet(): void {
    alert(this.upperCaseService.upper("Hello world"));
  }

}
The preceding code block imports the UpperCaseService class (shown 
in bold) via an import statement and then injects an instance of this class 
into the constructor of the UpperComponent class. Next, the template 
property contains a <button> element with a click handler that invokes 
the greet() method defined in the preceding code block. The greet() 
method displays an alert whose contents are the result of invoking the 
upper() method in the custom UpperCaseService class. 

Built-in Angular services

Angular supports various built-in services that are organized in different 
modules. For example, the http module (in @angular/common/http) 
contains support for HTTP requests that involve typical verbs, such as GET, 
POST, PUT, and DELETE. In fact, you saw examples of HTTP-based requests 
in Chapter 2. In addition, the routing module (in @angular/router) pro-
vides routing support, which includes HTML5 and hash routing. The form 
module (in @angular/forms) provides form-related services. Check the 
Angular documentation for a complete list of built-in services.



Forms and Services • 107

An Angular Service Example

Copy the directory ServiceExample from the companion files into a 
convenient location. Listing 3.7 displays the content of app.component.
ts, which contains an example of defining a basic custom service in 
Angular.

LISTING 3.7 app.component.ts

import {Component}  from '@angular/core';

import {Injectable} from '@angular/core';

@Injectable()

class Service {

  somedata = ["one", "two", "three"];

  constructor() { }

  getData()  { return this.somedata; }

  toString() { return "From toString"; }

}

@Component({

  selector: 'app-root',

  providers: [ Service ],

  template: `Here is the data: {{ service.getData() }}`

})

export class AppComponent {

  constructor(public service: Service) { }

}

Listing 3.7 contains a Service class that is preceded by the @Injectable 
decorator, which enables us to inject an instance of the Service class in 
the constructor of the AppComponent class in Listing 3.7.

Launch this application and navigate to localhost:4200 in a browser 
session, where you will see the following information displayed:

Data from the service: one,two,three



108 • Angular and Machine Learning Pocket Primer

A Service with an EventEmitter

This section contains a code sample that uses EventEmitters for com-
municating between a component and its child component. Now copy the 
directory UserServiceEmitter from the companion files to a conven-
ient location. Listing 3.8 displays the content of user.component.ts, 
which defines a custom component for an individual user.

LISTING 3.8 user.component.ts

import {Component} from '@angular/core';

@Component({
  selector: 'user',
  template: '<h2></h>'
})
export class User {
  fname: string; 
  lname: string; 
  imageUrl: string;

constructor(fname:string,lname:string,imageUrl:string) 
{
     this.fname = fname; 
     this.lname = lname; 
     this.imageUrl = imageUrl; 
  }              
} 

Listing 3.8 is straightforward: the custom User class has a constructor 
with three arguments that represent the first name, last name, and image 
url, respectively, for a single user.

Listing 3.9 displays the content of user.service.ts, which creates a 
list of users where each user has a first name, last name, and an associated 
PNG file.

LISTING 3.9 user.service.ts

import {Component} from '@angular/core';
import {User}      from './user.component';



Forms and Services • 109

@Component({ 
  selector: 'user-comp',
  template: '<h2></h2>'
})
export class UserService {
  userList:User[];

  constructor() {
this.userList = [
   new User('Jane','Smith','assets/sample1.png'),
   new User('John','Stone','assets/sample2.png'),
   new User('Dave','Jones','assets/sample3.png'),
]}

  getUserList() {
     return this.userList;
  }
}

Listing 3.9 imports the User custom component (displayed in Listing 
3.11), and then defines the UserService custom component that uses 
the userList array of User elements in order to keep track of users. 
This array is initialized in the constructor, and it contains three new User 
instances that are created and populated with data. The getUserList() 
method performs the “service” that returns the userList array.

Listing 3.10 displays the contents of app.component.ts that references 
the two preceding custom components and renders user-related informa-
tion in an unordered list.

LISTING 3.10 app.component.ts

import {Component}     from '@angular/core';
import {EventEmitter}  from '@angular/core';
import {UserService}   from './user.service';
import {User}          from './user.component';

@Component({ 
  selector: 'app-root',
  providers: [User, UserService],
  template: `
     <div class="ui items">



110 • Angular and Machine Learning Pocket Primer

       <user-comp
        *ngFor="let user of userList; let i=index"
          [user]="user"
          (mouseover)='mouseEvent(user)'
          [class.chosen]="isSelected(user)">
          USER {{i+1}}: {{user.fname}}-{{user.lname}}
          <img class="user-image" [src]="user.imageUrl"
               (mouseenter)="mouseEnter(user)"
               width="50" height="50">
       </user-comp>
     </div> 
    `
})
export class AppComponent {
  user:User;
  currentUser:User;
  userList:User[];
  onUserSelected: EventEmitter<User>;

  mouseEvent(user:User) {
     console.log("current user: "+user.fname+" "+user.
lname); 
     this.currentUser = user;
     this.onUserSelected.emit(user);
  }

  mouseEnter(user:User) {
     console.log("image name: "+user.imageUrl);
     alert("Image name: "+user.imageUrl);
  }

  isSelected(user: User): boolean {
    if (!user || !this.currentUser) {
      return false;
    }

    return user.lname === this.currentUser.lname;
  //return true;
  }

  constructor(userService:UserService) {
     this.onUserSelected = new EventEmitter();
     this.userList = userService.getUserList();



Forms and Services • 111

  }
}

Listing 3.10 contains a template property that displays the current list 
of users (i.e., the three users that are initialized by executing the code in 
the constructor in Listing 3.10). Notice the syntax to display information 
about each user in the list of users:

USER {{i+1}}: {{user.fname}}-{{user.lname}}

<img class="user-image" [src]="user.imageUrl" 

     (mouseenter)="mouseEnter(user)"

     width="50" height="50">

Whenever users move their mouse over the displayed list, the 
mouseEvent() method is invoked in order to set currentUser to refer 
to the current user. In addition, when users move their mouse over one 
of the images, the mouseEnter() method is invoked, which displays a 
message via console.log() and also displays an alert.

Listing 3.11 displays the content of app.module.ts, which references 
the custom component and custom service.

LISTING 3.11 app.module.ts

import { NgModule }      from '@angular/core';

import {CUSTOM_ELEMENTS_SCHEMA} from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent }  from './app.component';

import { UserService }   from './user.service';

@NgModule({

  imports:      [ BrowserModule ],

  providers:    [ UserService ],

  declarations: [ AppComponent ],

  bootstrap:    [ AppComponent ],

  schemas:      [CUSTOM_ELEMENTS_SCHEMA]

})   

export class AppModule { }

Listing 3.11 has essentially the same contents as the example in Chapter 
2 that contains the schemas property. The lines shown in bold are the 
modifications that are required for the code sample in this section. You 



112 • Angular and Machine Learning Pocket Primer

can refresh your memory by reading the comments that follow Listing 
2.20 that pertain to the code snippets regarding schemas shown in bold 
in Listing 3.11.

Searching for a GitHub User 

This section shows you how to read a GitHub user name from an input 
field, perform a GitHub search for that user, and then append a subset of 
the details pertaining to that user in a list.

Copy the directory SearchGithubUsers from the companion files into 
a convenient location. Listing 3.12 displays the content of app.compo-
nent.ts, which illustrates how to make an HTTP GET request in order 
to retrieve information about GitHub users.

LISTING 3.12 app.component.ts

import { Component }     from '@angular/core';
import { Inject }        from '@angular/core';
import { HttpClient }    from '@angular/common/http';
import { UserComponent } from './user.component';
import { Observable }    from 'rxjs';

@Component({
  selector: 'app-root',
  template: `
    <div>
      <form> 
        <h3>Search GitHub For User:</h3>
        <div class="field">
          <label for="guser">GitHub Id</label>
          <input type="text" #guser>
        </div>

        <button (click)="findGitHubUser(guser)">
          >>> Find User <<<
        </button>
      </form>

      <div id="container">
       <div class="onerow">
        <h3>List of Users:</h3>



Forms and Services • 113

        <ul>
         <li *ngFor="let user of users"
             (mouseover)="currUser(user)">
          {{user.field1}} {{user.field2}}</li>
        </ul>
       </div>
      </div>
    </div>
  `
})
export class AppComponent {
  currentUser:UserComponent = new 
UserComponent('ABC','DEF','');
  users: UserComponent[];
  GitHubUserInfo : any;
  GitHubUserJSON:JSON;
  user:UserComponent;
  userStr:string = "";
  guserStr:string = "";

  constructor(@Inject(HttpClient) public http:HttpCli-
ent) { 
    this.users = [
      new UserComponent('Jane', 'jsmith', ''),
      new UserComponent('John', 'jstone', ''),
    ];
  }

  currUser(user) {
    console.log("fname: "+user.field1+" lname: "+user.
field2);
    this.currentUser = new UserComponent(user.field1, 
                                         user.field2, 
                                         user.field3);
  }

  findGitHubUser(guser: HTMLInputElement): boolean {
    if((guser.value == undefined) || (guser.value == "")) 
{
       alert("Please enter a user name");
       return;
    }



114 • Angular and Machine Learning Pocket Primer

    // guser.value is not available in the 'subscribe' 
method
    this.guserStr = guser.value;

    this.http.get('https://api.GitHub.com/users/'+guser.
value)
     .subscribe(data => {
        this.GitHubUserInfo = data; 
        //console.log("GitHub info = "+JSON.stringify(data));

        // create a new User instance:
        this.user = new UserComponent(this.GitHubUserInfo.
name, 
                                      this.guserStr,
                                this.GitHubUserInfo.
created_at);

        // append new User instance to list of users:
        this.users.push(this.user); },
       err => { 
         console.log("Lookup error: "+err);
         alert("Lookup error: "+err);
       } 
     );

    // reset the input field to an empty string
    guser.value = "";

    // prevent a page reload:
    return false;
  }
}

Listing 3.12 contains the usual import statements, followed by an @
Component decorator that contains the usual selector property and an 
extensive code block for the template property. 

The template property consists of a top-level <div> element that con-
tains a <form> element and another <div> element. The <form> ele-
ment contains an <input> element where users can enter a GitHub 
username, whereas the <div> element contains a <ul> element that in 
turn renders the list of current users. Notice that each <li> element in 
the <ul> element handles a mouseover event by setting the current user 
to the element that users have highlighted with their mouse.



Forms and Services • 115

The next portion of Listing 3.12 defines the exported class AppComponent 
that initializes some instance variables, followed by a constructor that ini-
tializes the users array with two hard-coded users. Next, the currUser() 
method “points” to the user that users have highlighted with their mouse. 
This functionality is not essential, but it’s available in case you need to 
keep track of the user that is currently highlighted.

The findGitHubUser() method displays an alert if the <input> element 
is empty (which prevents a redundant invocation of the http() method). 
If a user is specified in the <input> element, the code invokes an HTTP 
GET request from the GitHub website and appends the new user (as an 
instance of the UserComponent class) to the users array. In addition, 
an alert is displayed if there is no GitHub user account that matches the 
input string.

Another small but important detail is the following code snippet that 
keeps track of the user-specified input string:

this.guserStr = guser.value;

The preceding snippet is required because of the context change that 
occurs inside the invocation of the get() method, which loses the refer-
ence to the guser argument.

Listing 3.13 displays the content of user.component.ts, which con-
tains three strings for keeping track of three user-related fields.

LISTING 3.13 user.component.ts

import {Component} from '@angular/core';

@Component({
  selector: 'current-user',
  template: '<h1></h1>'
})
export class UserComponent {
  field1:string = "";
  field2:string = "";
  field3:string = "";

  constructor(field1:string, field2:string, field3:string) 
{
     this.field1 = field1;
     this.field2 = field2;



116 • Angular and Machine Learning Pocket Primer

     this.field3 = field3;
  }
}

Listing 3.13 contains the string properties field1, field2, and field3 for 
keeping track of three attributes from the JSON-based string of informa-
tion for a GitHub user. The property names in the UserComponent class 
are generic so that you can store different properties from the JSON string, 
such as followers, following, and created_at.

You now have a starting point for displaying additional details regarding 
a user, and you can improve the styling of the output by using Bootstrap 
or some other toolkit for 
UI-related layouts.

Figure 3.1 displays the 
output from launching 
this Angular application 
and adding information 
about GitHub users. 
One thing to notice 
is that duplicates are 
allowed in the current 
sample (the code for 
preventing duplicates is 
an exercise for you).

Other Service-Related Use Cases

As you saw in the previous section, services are useful for retrieving exter-
nal data. In addition, there are other situations that involve sharing data 
and services in an Angular application. In particular, one Angular appli-
cation might need multiple instances of a service class, whereas another 
Angular application might need to enforce a single instance of a service 
class. Yet another situation involves sharing data between components in 
an Angular application. 

These three scenarios are discussed briefly in the following subsections, 
and they are based on a very simple UserService class that is defined 
as follows:

export class UserService {
   private users: string[];

Figure 3.1  Search and Display GitHub Users in a List



Forms and Services • 117

   adduser(user: string) {
      this.users.push(user);
   }

   getUsers() {
      return this.users;
   }
}

Multiple Service Instances 

Suppose that UserService, MyComponent1, and MyComponent2 are 
defined in the TypeScript files user.service.ts, component1.ts, 
and component2.ts, respectively. If you need a different instance of the 
UserService class in each component, inject this class in their construc-
tors, as shown here:

// component1.ts
export class MyComponent1 {
  constructor(private userService: UserService) {
  }
}

// component2.ts
export class MyComponent2 {
  constructor(private userService: UserService) {
  }
}

In the preceding code block, the instance of the UserService class in 
MyComponent1 is different from the instance of the UserService class 
in MyComponent2.

Single Service Instance

Consider the situation in which two Angular components must share the 
same instance of the UserService class. For simplicity, let’s assume that 
the two components are children of the root component. In this scenario, 
perform the following sequence of steps:

1)	 Create a new service component (ng g s service).
2)	 Include UserService in the providers array in app.module.ts. 
3)	 Import MyComponent1 and MyComponent2 in service.component.ts.



118 • Angular and Machine Learning Pocket Primer

4)	 Remove the UserService class from the providers array in 
MyComponent1. 

5)	 Remove the UserService class from the providers array in 
MyComponent2. 

Step #2 ensures that the UserService class is available to all compo-
nents in this Angular application, and there is only one instance of the 
UserService class throughout the application.

Services and Inter-Component Communication

There are three steps required in order to send a new user from 
MyComponent1 to MyComponent2. 

Step #1: Define a variable sendUser that is an instance of EventEmitter 
and a sendNewUser() method in UserService:

export class UserService {
   sendUser = new EventEmitter<string>();
   ...
   sendNewUser(user:string) {
      this.sendUser.emit(user);
   }
}

Step #2: Define an onSend() method in MyComponent1 in order to send 
a new user to MyComponent2:

onSend(user:string) {
   this.userService.sendNewUser(user);
}

Step #3: Define an Observable in MyComponent2 in order to “listen” for 
data that is emitted from MyComponent1:

ngOnInit() {
  this.userService.subscribe(...);
}

Another way to summarize the logical flow in the preceding code blocks 
is shown here:

�� Users click a button to add a new user.
�� The UserService instance sends the data to Component1.
�� The Component1 instance “emits” the new user.
�� The Component2 instance “listens” for the new user via an Observ-

able.



Forms and Services • 119

Injecting Services into Services

You have seen how to use DI to inject a service into a component via its 
constructor. In addition, you can inject services into other services. In 
order to do so, use the @Injectable decorator in the “injected service:”

@Injectable
@Component({
}) 
export MyService(…)

DI in Angular only works in classes that have a suitable decorator as part 
of the class definition.

Flickr Image Search Using jQuery and Angular

The code sample in this section shows you how to use jQuery in an Angular 
application, which is relevant for existing HTML Web pages that perform 
HTTP GET requests via jQuery.

Copy the directory SearchFlickr from the companion files into a con-
venient location. Now type “cd” inside this application and install jQuery 
as shown here:

npm install jquery -–save

Listing 3.14 displays the content of app.component.ts, which illus-
trates how to make an HTTP GET request to retrieve images from Flickr 
that are based on text string that users enter in a search box.

LISTING 3.14 app.component.ts

import {Component} from '@angular/core';

// remember: npm install jquery --save
import * as $ from "jquery";

@Component({
   selector: 'app-root',
   template: `
       Enter a word and search for related images:
       <br />
       <input id="searchterm" />
       <button (click)="httpRequest()">Search</button>
       <div id="images"></div>
   `

NOTE



120 • Angular and Machine Learning Pocket Primer

})
export class AppComponent {
  imageCount = 4;
  url = "http://api.flickr.com/services/feeds/photos_pub-
lic.gne?jsoncallback=?";

  constructor() {} 

  httpRequest() {
    $.getJSON(this.url,
    {
      tags: $("#searchterm").val(),
      tagmode: "any",
      format: "json"
    },
    function(data) {
      $.each(data.items, function(i,item){
        $("<img/>").attr("src", item.media.m).
prependTo("#images");
      //if ( i == this.imageCount ) return false;
      });
    });
  }
}

Listing 3.14 contains a standard import statement, followed by this code 
snippet:

import * as $ from "jquery";

The preceding snippet is necessary for TypeScript to “find” jQuery, which 
is possible after you have installed it via the npm command. However, 
keep in mind that if you remove the preceding code snippet, you will see 
the following error (or something similar):

ERROR ReferenceError: "$ is not defined"

The code in this section works for Angular 6 onward, whereas the code for 
Angular 4 requires a different syntax.

The next portion of Listing 3.14 is the @Component decorator, whose 
template property contains <input>, <button>, and <div> elements 
to capture users’ search string, perform a search with that string, and dis-
play the results of the search, respectively. 

NOTE



Forms and Services • 121

The next portion of Listing 3.14 is the exported class @AppComponent 
that defines the url variable that is initialized with a hard-coded string 
value that “points” to the Flickr website.

Next, an empty constructor is defined, followed by the httpRequest() 
method that is invoked when users click on the <button> element. This 
method invokes the jQuery getJSON() method that performs a Flickr 
image search based on the text string entered in the <input> element 
because of this code snippet:

tags: $("#searchterm").val()

When the matching images are retrieved, they are available via data.
items, and the jQuery each() method iterates through the list of 
images. Each image is dynamically inserted in the <images> element via 
this snippet:

$("<img/>").attr("src", item.media.m).
prependTo("#images");

Take a minute to absorb the compact manner in which jQuery achieves 
the desired result. 

Figure 3.2 displays the output from launching this Angular application 
and searching Flickr with the keyword pasta.

Figure 3.2  A Partial List of Figures with Pasta



122 • Angular and Machine Learning Pocket Primer

HTTP GET Requests with a Simple Server

This section shows you how to work with the command line utility json-
server that can serve JSON-based data. This utility performs the function 
of a very simple server: clients can make GET requests to retrieve JSON data 
from a server. Moreover, a simple command in the console where json-
server was launched enables you to save the in-memory data to a file.

Although json-server does not perform the functions of a Node-based 
application that contains Express and MongoDB, json-server is a con-
venient program that helps you learn how an Angular application can 
interact with a file server.

You need to perform the following steps before you launch the Angular 
application in this section:

�� Step 1: Install json-server.
�� Step 2: Launch json-server.
�� Step 3: Launch the Angular application.

Install json-server via the following command:
[sudo] npm install –g json-server

Navigate to the src/assets directory that contains the JSON file posts.
json and invoke this command:

json-server posts.json

The preceding command launches a file server at port 3000 and reads the 
contents of posts.json into the memory, making that data available to 
HTTP GET requests.

Now copy the directory JSONServerGET from the companion files into 
a convenient location. Listing 3.15 displays the content of app.compo-
nent.ts, which illustrates how to make an HTTP GET request to retrieve 
data from a file server.

LISTING 3.15 app.component.ts

import {Component}      from '@angular/core';
import {Inject}         from '@angular/core';
import {HttpClient}     from '@angular/common/http';
import {HTTP_BINDINGS}  from '@angular/common/http';

@Component({
   selector: 'app-root',



Forms and Services • 123

   template: `
     <button (click)="httpRequest()">Get Information</
button>
     <div>
       <li *ngFor="let post of postData">
         {{post.author}}
         {{post.title}}
       </li>
     </div>
   `
})
export class AppComponent {
  postData = "";

  constructor(@Inject(HttpClient) public http:HttpCli-
ent) { 
  }

  httpRequest() {  
    this.http.get('http://localhost:3000/posts')
      .subscribe(
        data => this.postData = JSON.stringify(data),
        err => console.log('error'),
        () => this.postInfo()
      );
  }

  postInfo() {
     //----------------------------------------------
     // the 'eval' statement is required in order to
     // convert the data retrieved from json-server
     // to an array of JSON objects (else an error)
     //----------------------------------------------
     var myObject = eval('(' + this.postData + ')');
     console.log("myObject = "+JSON.stringify(myObject));
     this.postData = myObject;
  }
}

Listing 3.15 contains code that is similar to earlier code samples. The first 
difference involves the details of the unordered list that is displayed in the 
template property.



124 • Angular and Machine Learning Pocket Primer

The second difference is the endpoint http://localhost:3000/
posts in the HTTP GET request. This endpoint provides JSON data via 
the json-server that is listening on port 3000.

Listing 3.16 displays the contents of posts.json retrieved during the 
HTTP GET request in Listing 3.15.

LISTING 3.16 posts.json

{
  "posts": [
    {"id": 100,"title": "json-server","author": 
"smartguy"},
    {"id": 200,"title": "pizza-maker","author": "chicago"},
    {"id": 300,"title": "good-beer",  "author": "escondido"}
  ]
}  

The next section shows you how to make an HTTP POST request to a local 
file server in an Angular application.

HTTP POST Requests with a Simple Server

The Angular application in this section makes an HTTP POST request 
with the utility json-server that can serve JSON-based data. Keep in 
mind that the server in this code sample only handles basic data requests: 
“universal” JavaScript (sometimes also called “isomorphic” JavaScript) is 
not covered in this chapter.

Please note that this application is not production-ready code, specifically 
because the id value is based on a randomly generated integer.

Now copy the directory JSONServerPOST from the companion files into 
a convenient location. Navigate to the src/assets subdirectory, which 
contains the JSON file authors.json, and launch this command:

json-server authors.json

The preceding command launches a file server at port 3000 and reads the 
contents of authors.json into the memory, making that data available 
to HTTP GET requests.

You must launch json-server before you launch the Angular applica-
tion in this section.NOTE



Forms and Services • 125

Listing 3.17 displays the content of app.component.ts, which illus-
trates how to make an HTTP POST request to a local file server.

LISTING 3.17 app.component.ts

import { Component } from '@angular/core';
import {Inject}      from '@angular/core';
import {HttpClient}  from '@angular/common/http';

// remember: npm install jquery --save
import * as $ from "jquery";

@Component({
   selector: 'app-root',
   template: `
     <button (click)="getEmpData()">Click to Display 
Author Info</button>
     <div>
       <table>
         <thead *ngIf="foundData">
           <th>AUTHORID</th>
           <th>Title</th>
           <th>Author</th>
         </thead>
         <tbody>
           <tr *ngFor="let author of authorData">
             <td>{{author.id}}</td>
             <td>{{author.title}}</td>
             <td>{{author.author}}</td>
           </tr>
         </tbody>
       </table>
       <button (click)="postAuthorData()">Click to Add 
New Author Info</button>
     </div>
    `  
})
export class AppComponent {
  foundData   = false;
  authorData  : any;
  currData    = {};
  idIncr      = 100;



126 • Angular and Machine Learning Pocket Primer

  newAuthorId = 0;
  newTitle    = "";
  newAuthor   = "";
  largestId   = 0;

  constructor(@Inject(HttpClient) public http:HttpCli-
ent) {}

  postAuthorData() {
    this.newAuthorId = 0+this.largestId+this.idIncr;
    this.newTitle    = "The Book of "+this.newAuthorId;
    this.newAuthor   = "My New Title"+this.newAuthorId;

    var postNewAuthor = {id:this.newAuthorId,
                         title:this.newTitle,
                         author:this.newAuthor};

//console.log("postNewAuthor:"+JSON.stringify(post- 
NewAuthor));

    $.post("http://localhost:3000/authors",
       postNewAuthor,
       function(result, textStatus, jqXHR) {
  //console.log("2returned result: "+JSON.
stringify(result));
           this.authorData.push(postNewAuthor);
       }.bind(this),"json")
        .fail(function(jqXHR, textStatus, errorThrown) {
  console.log("error: "+errorThrown+" textStatus: 
"+textStatus);
       });
  }

  getAuthorData() {
    this.http.get('http://localhost:3000/authors')
      .subscribe(
        data => this.authorData = data,
        err => console.log('error'),
        () => this.authorInfo()
      );
  }

  authorInfo() {
     this.largestId = 



Forms and Services • 127

         parseInt(this.authorData[this.authorData.
length-1].id,10);

   //console.log("largestId   = "+ this.largestId);
   //console.log("authorData1 = "+ JSON.stringify(this.
authorData));
     this.foundData = true;
  } 
}

Listing 3.17 contains the usual import statements, followed by a tem-
plate property that displays a table of author-based data. When users 
click on the <button> element, the postAuthorData() adds a hard-
coded new author to the list of authors. This method performs a stand-
ard jQuery POST request instead of using an Observable. Note that this 
method increments the value of the id property of each author so that 
they are treated as distinct authors (even though the names of the new 
users are almost the same). 

On the other hand, the getAuthorData() method does involve an 
Observable for retrieving author-related data (shown in Listing 3.18) 
from the file server that is running on port 3000.

One other point: the browser is reloaded after each invocation of the 
postAuthorData() method, so you need to click the “Author Info” but-
ton to see the newly added author. However, you can prevent a page reload 
by issuing either of the following commands from the command line:

ng serve --live-reload false OR
ng serve --no-live-reload

Listing 3.18 displays a portion of the contents of authors.json, whose 
contents are displayed in this Angular application.

LISTING 3.18 authors.json

{
  "authors": [
    {
      "id": 100,
      "title": "json-server",
      "author": "typicode"
    },



128 • Angular and Machine Learning Pocket Primer

    {
      "id": 200,
      "title": "pizza-maker",
      "author": "chicago"
    },
// sections omitted for brevity
    {
      "id": "900",
      "title": "The Book of 900",
      "author": "My New Title900"
    }
  ]
}

As you can see, Listing 3.18 is a very simple collection of JSON-based data 
items, where each item contains the elements id, title, and author.

An SVG Line Plot from Simulated Data in Angular 
(optional)

The Angular application in this section reads the contents of a CSV file 
(located in the src/assets subdirectory) and then uses that data to dis-
play an SVG-based line graph. However, if you are not interested in gen-
erating SVG-based line graphs, then you can skip this section with no loss 
of continuity.

Now copy the directory ReadDataCSVLRPlot from the companion files 
into a convenient location. Listing 3.19 displays the content of app.
component.ts, which illustrates how to read the contents of assets/
wine.csv and then display the data in tabular form.

LISTING 3.19 app.component.ts

import { Component }  from '@angular/core';  
import { Inject }     from '@angular/core';
import { Observable } from 'rxjs';
import { HttpClient } from '@angular/common/http';

@Component({
  selector: 'app-root',
  styleUrls: ['./app.component.css'],
  template: `



Forms and Services • 129

    <svg width="600" height="200">
      <rect x="0" y="0" width="600" height="200"
            stroke="black" stroke-width="4" fill="white" />
      <polyline [attr.points]="polyPts"
                style="fill:none;stroke:red;stroke-wi
dth:4" />
    </svg>
    <table>
      <tbody>
        <p>Data points for this line graph:</p>
        <tr *ngFor="let record of records;let i = index;">
          <td> <span>{{record[0]}}</span> </td>
          <td> <span>{{record[1]}}</span> </td>
        </tr>
      </tbody>
    </table>
  `,
})
export class AppComponent {
  public xValue:number   = 0;
  public yValue:number   = 0;

  // points for an SVG polyline
  public polyPts : any = "";

  // populate an array with CSV data
  public records : any = [];
  public csvUrl  = 'assets/rand20.csv';
  public allTextLines:any = "";

  constructor(@Inject(HttpClient) public http:HttpCli-
ent) {
     this.readCsvData ();
  }

  readCsvData () {
    this.http.get(this.csvUrl, {responseType: 'text'})
      .subscribe(
         data => { this.extractData(data) },
         err => { console.log(err) }
      );
  }



130 • Angular and Machine Learning Pocket Primer

  //---------------------------------------------------
  // After the readCsvData reads the CSV file in the
  // assets directory, the extractData method is invoked
  // in order to populate an array with that CSV data.
  // This method also invokes constructLineGraph that
  // constructs a line graph of the set of datapoints
  //---------------------------------------------------
  private extractData(res: any) {
    let csvData = res || '';
    this.allTextLines = csvData.split(/\r\n|\n/);

    let lines = [];
    let onerow = this.allTextLines[0].split(',');
    let columnCount = onerow.length;

    for (let i=0; i<this.allTextLines.length-1; i++)
    {
       // split content based on comma
       let data = this.allTextLines[i].split(',');

       let tarr = [];
       for ( let j = 0; j < columnCount; j++) {
          tarr.push(data[j]);
       }
       lines.push(tarr);
    }
    this.records = lines;

    this.constructLineGraph();
  }

  private constructLineGraph() {
    // construct a line graph
    for ( let i = 0; i < this.records.length; i++) {
     //console.log("this.xValue:",  this.records[i][0]);
     //console.log("this.yValue:",  this.records[i][1]);

       // append current point to the SVG polyline:
       this.polyPts += this.xValue.toString() + "," +
                       this.yValue.toString() + " ";

       this.xValue += +this.records[i][0];
       this.yValue = +this.records[i][1];



Forms and Services • 131

    }
  }
}

Listing 3.19 starts with the usual import statements, followed by the 
template property that contains two main parts. The first part consists of 
an SVG <svg> element, as shown here:

<svg width="600" height="200">
   <rect x="0" y="0" width="600" height="200" 
         stroke="black" stroke-width="4" fill="white" />
   <polyline [attr.points]="polyPts"
             style="fill:none;stroke:red;stroke-width:4" />
</svg> 

As you can see, the SVG <svg> element in the preceding code block has 
a width of 600 pixels and a height of 200 pixels, both of which you can 
adjust if you need to do so. In addition, the SVG <svg> element contains 
an SVG <rect> element that is essentially just an outer border, followed 
by an SVG <polyline> element that represents a line graph.

The second portion of the <template> property displays the header 
information about the data in the CSV file, followed by an ngFor code 
block that displays the contents of the CSV file.

Next, the constructor invokes the readCsvData() method, which in turn 
involves an Observable that reads the contents of the CSV file rand20.
csv, which is in the src/assets subdirectory.

After the data is successfully read from the CSV file, the extractData() 
method is invoked to populate the records variable with an array of val-
ues from the retrieved data. This step is necessary because the data that is 
retrieved in the readCsvData() is simply a collection of strings, each of 
which contains a comma-separated value. Keep in mind that each row in 
the records array consists of a pair of numbers that is treated as an (x,y) 
point in the plane. 

The final code snippet in the readCsvData() method invokes the method 
constructLineGraph() that appends each row in the records array to 
the variable polyPts, which constructs a contiguous set of line segments 
that is rendered as a line graph. This technique works because the values 
in rand20.csv are sorted in increasing order, based on the values in the 
first column.



132 • Angular and Machine Learning Pocket Primer

Listing 3.20 displays a portion of the contents of rand20.csv, which is 
located in the src/assets subdirectory.

LISTING 3.20 rand20.csv

46,8
46,13
70,40
92,55
174,74
// details omitted for brevity
536,204
543,208
553,220
572,246
596,247

Figure 3.3 displays the output from launching the Angular application in 
this section.

Figure 3.3  A Line Graph from a List of Numbers



Forms and Services • 133

Summary

This chapter showed you how to create Angular applications with HTML5 
Forms as well as Forms that contain Angular Controls and FormGroups. 
You also saw how to save form-based data in local storage. Next, you 
learned about Angular Pipes, along with an example that showed you 
how to implement this functionality. 

You also learned about Angular Services and an example that illustrated 
how to use Services. Next, you saw an example of the http() method 
(which returns an Observable) of the Http class to retrieve data for any 
GitHub user and display portions of that data in a list of users. Finally, you 
saw how to read a CSV file with numeric data that was used to generate 
and display an SVG line graph.





c h a p t e r

This chapter introduces numerous concepts in machine learning, 
such as feature selection, feature engineering, data cleaning, train-
ing sets, and linear regression. 

The first part of this chapter briefly discusses machine learning and the 
sequence of steps typically required to prepare a dataset. These steps 
include “feature selection” or “feature extraction” that can be performed 
using various algorithms. 

The second section describes the types of data that you can encounter, 
issues that can arise with the data in datasets, and how to rectify them. 
You will also learn about the difference between “hold out” and “k-fold” 
when you perform the training step.

The third part of this chapter briefly discusses the basic concepts involved 
in linear regression. Although linear regression was developed more than 
200 years ago, this technique is still one of the “core” techniques for solv-
ing (albeit simple) problems in statistics and machine learning. In fact, 
the technique known as the “Mean Squared Error” (MSE) for finding a 
best-fitting line for data points in a 2D plane (or a hyperplane for higher 
dimensions) is implemented in Python and Keras to minimize so-called 
“loss” functions that are discussed later.

The fourth section in this chapter contains additional code samples involv-
ing linear regression tasks using standard techniques in NumPy. Hence, 
if you are comfortable with this topic, you can probably skim quickly 
through the first two sections of this chapter. The third section shows you 
how to solve a linear regression using Keras.

Intro to Machine Learning

4



136 • Angular and Machine Learning Pocket Primer

One point to keep in mind is that some algorithms are mentioned without 
delving into the details about them. For instance, the section pertaining 
to supervised learning contains a list of algorithms that appear later in 
the chapter in the section that pertains to classification algorithms. The 
algorithms that are displayed in bold in a list are the algorithms that are of 
greater interest for this book. In some cases, the algorithms are discussed 
in greater detail in the next chapter; otherwise, you can perform an online 
search for additional information about the algorithms that are not dis-
cussed in detail in this book.

What is Machine Learning?

In high level terms, machine learning is a subset of AI that can solve tasks 
that are infeasible or too cumbersome with “traditional” programming 
languages. A spam filter for email is an early example of machine learning. 
Machine learning generally supersedes the accuracy of older algorithms. 

Despite the variety of machine learning algorithms, the data is arguably 
more important than the selected algorithm. Many issues can arise with 
data: insufficient data, poor data quality, incorrect data, missing data, 
irrelevant data, duplicate data values, and so forth. Later in this chapter, 
you will see techniques that address many of these data-related issues.

If you are unfamiliar with machine learning terminology, a dataset is a 
collection of data values, which can be in the form of a CSV file or a 
spreadsheet. Each column is called a feature, and each row is a datapoint 
that contains a set of specific values for each feature. If a dataset con-
tains information about customers, then each row pertains to a specific 
customer.

Types of Machine Learning

Here are the main types of machine learning (combinations of these are 
also possible) that you will encounter:

�� supervised learning
�� unsupervised learning
�� semi-supervised learning
�� reinforcement learning

Supervised learning means that the datapoints in a dataset have a label 
that identifies its contents. For example, the MNIST dataset contains 



Intro to Machine Learning • 137

28x28 PNG files, each of which contains a single hand-drawn digit (i.e., 
0 through 9 inclusive). Every image with the digit 0 has the label 0; every 
image with the digit 1 has the label 1; all other images are labeled accord-
ing to the digit that is displayed in those images. 

As another example, the columns in the Titanic dataset are features about 
passengers, such as their gender, the cabin class, the price of their ticket, 
whether the passenger survived, and so forth. Each row contains infor-
mation about a single passenger, including the value 1 if the passenger 
survived. The MNIST dataset and the Titanic dataset involve a classifica-
tion task: the goal is to train a model based on a training dataset and then 
predict the class of each row (which is an image in the MNIST dataset and 
a passenger in the Titanic dataset) in a test dataset.

In general, the datasets for classification tasks have a small number of 
possible values: one of nine digits in the range of 0 through 9, one of four 
animals (dog, cat, horse, giraffe), or one of two values (survived versus 
perished, purchased versus not purchased). As a rule of thumb, if the 
number of outcomes can be displayed reasonably well in a drop-down list, 
then it’s probably a classification task.

By contrast, a dataset for real estate data contains multiple rows of data, 
where each row contains information about a specific house, such as the 
number of bedrooms, the square feet of the house, the number of bath-
rooms, the price of the house, and so forth. In this dataset, the price of the 
house is the label for each row. Notice that the range of possible prices 
is too large to fit reasonably well in a drop-down list. A real estate dataset 
involves a regression task: the goal is to train a model based on a training 
dataset and then predict the price of each house in a test dataset.

Unsupervised learning involves unlabeled data, which is typically the case 
for clustering algorithms (discussed later). Some important unsupervised 
learning algorithms that involve clustering are listed below:

�� k-Means
�� Hierarchical Cluster Analysis (HCA)
�� expectation maximization

Some important unsupervised learning algorithms that involve dimen-
sionality reduction (discussed in more detail later) are listed below:

�� PCA (Principal Component Analysis)
�� Kernel PCA 
�� LLE (Locally Linear Embedding)



138 • Angular and Machine Learning Pocket Primer

�� t-SNE (t-distributed Stochastic Neighbor Embedding)
There is one more very important unsupervised task called anomaly 
detection. This task is relevant for fraud detection and detecting outliers 
(discussed later in more detail).

Semi-supervised learning is a combination of supervised and unsuper-
vised learning: some datapoints are labeled and some are unlabeled. One 
technique involves using the labeled data to classify (i.e., label) the unla-
beled data, after which you can apply a classification algorithm.

Reinforcement learning pertains to maximizing a reward, and this type of 
learning is beyond the scope of this book.

Types of Machine Learning Algorithms

There are three main types of machine learning algorithms:

�� regression (ex: linear regression)
�� classification (ex: k-Nearest-Neighbor)
�� clustering (ex: k-Means)

Regression is a supervised learning technique to predict numerical quan-
tities. An example of a regression task is predicting the value of a par-
ticular stock. Note that this task is different from predicting whether the 
value of a particular stock will increase or decrease tomorrow (or some 
other future time period). Another example of a regression task involves 
predicting the cost of a house in a real estate dataset. Both of these tasks 
are examples of a regression task.

Regression algorithms in machine learning include linear regression and 
generalized linear regression (also called “multivariate analysis” in tradi-
tional statistics).

Classification is also a supervised learning technique, but it’s for predict-
ing categorical quantities. An example of a classification task is detecting 
the occurrence of spam, fraud, or determining the digit in a PNG file 
(such as the MNIST dataset). In this case, the data is already labeled, so 
you can compare the prediction with the label that was assigned to the 
given PNG.

Classification algorithms in machine learning include the following list of 
algorithms (they are discussed in greater detail in the next chapter):

�� decision trees (a single tree)
�� random forests (multiple trees)



Intro to Machine Learning • 139

�� kNN (k Nearest Neighbor)
�� logistic regression (despite its name)
�� Naïve Bayes
�� SVM (Support Vector Machines)

Some machine learning algorithms (such as SVMs, random forests, and 
kNN) support regression as well as classification. In the case of SVMs, the 
scikit-learn implementation of this algorithm provides two APIs: SVC for 
classification and SVR for regression.

Each of the preceding algorithms involves a model that is trained on a 
dataset, after which the model is used to make a prediction. By contrast, 
a random forest consists of multiple independent trees (the number is 
specified by you), and each tree makes a prediction regarding the value 
of a feature. If the feature is numeric, take the mean or the mode (or per-
form some other calculation) to determine the “final” prediction. If the 
feature is categorical, use the mode (i.e., the most frequently occurring 
class) as the result; in the case of a tie, you can select one of them in a 
random fashion. 

Incidentally, the following link contains more information regarding the 
kNN algorithm for classification as well as regression: 

http://saedsayad.com/k_nearest_neighbors_reg.htm

Clustering is an unsupervised learning technique for grouping similar 
data together. Clustering algorithms put data points in different clusters 
without knowing the nature of the data points. After the data has been 
separated into different clusters, you can use the SVM (Support Vector 
Machine) algorithm to perform classification.

Clustering algorithms in machine learning include the following (some of 
which are variations of each other):

�� k-Means
�� meanshift
�� Hierarchical Cluster Analysis (HCA)
�� expectation maximization

Keep in mind the following points. First, the value of k in k-Means is a 
hyper parameter, and it’s usually an odd number to avoid ties between 
two classes. Next, the meanshift algorithm is a variation of the k-Means 
algorithm that does not require you to specify a value for k. In fact, 
the meanshift algorithm determines the optimal number of clusters. 
However, this algorithm does not scale well for large datasets.



140 • Angular and Machine Learning Pocket Primer

Machine Learning Tasks

Unless you have a dataset that has already been sanitized, you need to exam-
ine the data in a dataset to make sure that it’s in a suitable condition. The 
data preparation phase involves 1) examining the rows (“data cleaning”) to 
ensure that they contain valid data (which might require domain-specific 
knowledge), and 2) examining the columns (feature selection or feature 
extraction) to determine if you can retain only the most important columns.

A high level list of the sequence of machine learning tasks (some of which 
might not be required) is shown below:

�� obtain a dataset
�� data cleaning
�� feature selection
�� dimensionality reduction
�� algorithm selection
�� train-versus-test data 
�� training a model
�� testing a model
�� fine-tuning a model
�� obtain metrics for the model

First, you obviously need to obtain a dataset for your task. In the ideal 
scenario, this dataset already exists; otherwise, you need to cull the data 
from one or more data sources (e.g., a CSV file, a relational database, a 
NoSQL database, a Web service, and so forth).

Second, you need to perform data cleaning, which you can do via the 
following techniques:

�� Missing Value Ratio
�� Low Variance Filter
�� High Correlation Filter

In general, data cleaning involves checking the data values in a dataset in 
order to resolve one or more of the following:

�� Fix incorrect values.
�� Resolve duplicate values.
�� Resolve missing values.
�� Decide what to do with outliers.

Use the Missing Value Ratio technique if the dataset has too many miss-
ing values. In extreme cases, you might be able to drop features with a 
large number of missing values. Use the Low Variance filter technique to 



Intro to Machine Learning • 141

identify and drop features with constant values from the dataset. Use the 
High Correlation filter technique to find highly correlated features, which 
increase multicollinearity in the dataset. Such features can be removed 
from a dataset (but check with your domain expert before doing so).

Depending on your background and the nature of the dataset, you might 
need to work with a domain expert, who is a person with a deep under-
standing of the contents of the dataset.

For example, you can use a statistical value (mean, mode, and so forth) 
to replace incorrect values with suitable values. Duplicate values can be 
handled in a similar fashion. You can replace missing numeric values 
with zero, the minimum, the mean, the mode, or the maximum value in 
a numeric column. You can replace missing categorical values with the 
mode of the categorical column. 

If a row in a dataset contains a value that is an outlier, you have three 
choices:

�� Delete the row.
�� Keep the row.
�� Replace the outlier with some other value (mean?).

When a dataset contains an outlier, you need to make a decision based 
on domain knowledge that is specific to the given dataset. Suppose that a 
dataset contains stock-related information. As you know, there was a stock 
market crash in 1929, which you can view as an outlier. Such an occur-
rence is rare, but it can contain meaningful information. Incidentally, the 
source of wealth for some families in the 20th century was based on buying 
massive amounts of stock at very low prices during the Great Depression.

Feature Engineering, Selection, and Extraction

In addition to creating a dataset and “cleaning” its values, you also need to 
examine the features in that dataset to determine whether you can reduce 
the dimensionality (i.e., the number of columns) of the dataset. The pro-
cess for doing so involves three main techniques:

�� feature engineering
�� feature selection
�� feature extraction (aka feature projection)

Feature engineering is the process of determining a new set of features 
that are based on a combination of existing features in order to create a 



142 • Angular and Machine Learning Pocket Primer

meaningful dataset for a given task. Domain expertise is often required 
for this process, even in cases of relatively simple datasets. Feature engi-
neering can be tedious and expensive, and in some cases, you might con-
sider using automated feature learning. After you have created a dataset, 
it’s a good idea to perform feature selection or feature extraction (or both) 
to ensure that you have a high quality dataset.

Feature selection is also called variable selection, attribute selection, or var-
iable subset selection. Feature selection involves selecting the subset of rel-
evant features in a dataset. In essence, feature selection involves selecting 
the most important features in a dataset, which provides these advantages:

�� reduced training time
�� simpler models that are easier to interpret
�� avoidance of the curse of dimensionality
�� better generalization due to a reduction in overfitting (“reduction of 

variance”)

Feature selection techniques are often used in domains where there are 
many features and comparatively few samples (or data points). Keep in 
mind that a low-value feature can be redundant or irrelevant, which are 
two different concepts. For instance, a relevant feature might be redun-
dant when it’s combined with another strongly correlated feature.

Feature selection can use three strategies: the filter strategy (e.g. infor-
mation gain), the wrapper strategy (e.g. search guided by accuracy), and 
the embedded strategy (prediction errors are used to determine whether 
the features are included or excluded while developing a model). Another 
interesting point is that feature selection can also be useful for regression 
as well as classification tasks.

Feature extraction creates new features from functions that produce com-
binations of the original features. By contrast, feature selection involves 
determining a subset of the existing features. 

Feature selection and feature extraction both result in the dimensionality 
reduction for a given dataset, which is the topic of the next section.

Dimensionality Reduction

Dimensionality reduction refers to algorithms that reduce the number of 
features in a dataset. As you will see, there are many techniques available, 
and they involve either feature selection or feature extraction. 



Intro to Machine Learning • 143

Algorithms that use feature selection to perform dimensionality reduction 
are listed here:

�� Backward Feature Elimination
�� Forward Feature Selection
�� Factor Analysis
�� Independent Component Analysis

Algorithms that use feature extraction to perform dimensionality reduc-
tion are listed here:

�� principal component analysis (PCA)
�� non-negative matrix factorization (NMF)
�� kernel PCA
�� graph-based kernel PCA
�� linear discriminant analysis (LDA)
�� generalized discriminant analysis (GDA)
�� autoencoder

The following algorithms combine feature extraction and dimensionality 
reduction:

�� principal component analysis (PCA)
�� linear discriminant analysis (LDA)
�� canonical correlation analysis (CCA)
�� non-negative matrix factorization (NMF)

These algorithms can be used during a pre-processing step before using 
clustering or some other algorithm (such as kNN) on a dataset.

Another group of algorithms involves methods based on projections, 
which includes t-Distributed Stochastic Neighbor Embedding (t-SNE) 
as well as UMAP.

This chapter discusses PCA, and you can perform an online search to find 
more information about the other algorithms.

PCA

Principal components are new components that are linear combinations 
of the initial variables in a dataset. In addition, these components are 
uncorrelated, and the most meaningful or important information is con-
tained in these new components.

There are two advantages to PCA: 1) reduced computation time due to 
far fewer features and 2) the ability to graph the components when there 



144 • Angular and Machine Learning Pocket Primer

are, at most, three components. If you have four or five components, you 
won’t be able to display them visually, but you could select subsets of 
the three components for visualization, and perhaps gain some additional 
insight into the dataset.

PCA uses the variance as a measure of information: the higher the variance, 
the more important the component. In fact, PCA determines the eigenval-
ues and eigenvectors of a covariance matrix (discussed later), and constructs 
a new matrix whose columns are eigenvectors, ordered from left-to-right 
based on the maximum eigenvalue in the left-most column, decreasing 
until the right-most eigenvector also has the smallest eigenvalue.

Covariance Matrix

As a reminder, the statistical quantity called the variance of a random 
variable x is defined as follows:

variance(x) = [SUM (x – xbar)*(x-xbar)]/n

A covariance matrix C is an nxn matrix whose values on the main diagonal 
are the variance of the variables X1, X2, . . ., Xn. The other values of C are 
the covariance values of each pair of variables Xi and Xj. 

The formula for the covariance of the variables X and Y is a generalization 
of the variance of a variable, and the formula is shown here:

covariance(X, Y) = [SUM (x – xbar)*(y-ybar)]/n

Notice that you can reverse the order of the product of the terms (mul-
tiplication is commutative), and therefore the covariance matrix C is a 
symmetric matrix:

covariance(X, Y) = covariance(Y,X)

PCA calculates the eigenvalues and the eigenvectors of the covariance 
matrix A.

Working with Datasets

In addition to data cleaning, there are several other steps that you need 
to perform, such as selecting training data versus test data, and deciding 
whether to use “hold out” or cross-validation during the training process. 
More details are provided in the subsequent sections.



Intro to Machine Learning • 145

Training Data versus Test Data

After you have performed the tasks described earlier in this chapter (i.e., 
data cleaning and perhaps dimensionality reduction), you are ready to 
split the dataset into two parts. The first part is the training set, which is 
used to train a model, and the second part is the test set, which is used for 
“inferencing” (another term for making predictions). Make sure that you 
conform to the following guidelines for your test sets:

1)	 The set is large enough to yield statistically meaningful results.
2)	 It’s representative of the data set as a whole.
3)	 Never train on test data.
4)	 Never test on training data.

What is Cross-validation?

The purpose of cross-validation is to test a model with non- overlapping 
test sets, which is performed in the following manner:

Step 1) Split the data into k subsets of equal size.
Step 2) Select one subset for testing and the others for training.
Step 3) Repeat Step 2) for the other k-1 subsets.

This process is called k-fold cross-validation, and the overall error esti-
mate is the average of the error estimates. A standard method for evalua-
tion involves ten-fold cross-validation. Extensive experiments have shown 
that ten subsets are the best choice to obtain an accurate estimate. In fact, 
you can repeat ten-fold cross-validation ten times and compute the aver-
age of the results, which helps to reduce the variance.

The next section discusses regularization, which is an important yet 
optional topic if you are primarily interested in Angular code. If you plan 
to become proficient in machine learning, you will need to learn about 
regularization.

What is Regularization?

Regularization helps to solve the overfitting problem, which occurs when a 
model performs well on training data but poorly on validation or test data.

Regularization solves this problem by adding a penalty term to the loss 
function, thereby controlling the model complexity with this penalty 
term. Regularization is generally useful for:



146 • Angular and Machine Learning Pocket Primer

1)	 a large number of variables
2)	 a low ratio of (# observations)/(# of variables) 
3)	 high multi-collinearity

There are two main types of regularization: L1 Regularization (which 
is related to the MAE, or the absolute value of differences) and L2 
Regularization (which is related to the MSE, or the square of differences). 
In general, L2 performs better than L1, and L2 is also efficient in terms 
of computation.

ML and Feature Scaling

Feature scaling standardizes the range of the features of the data. This 
step is performed during the data preprocessing step, in part because the 
gradient descent benefits from feature scaling.

The assumption is that the data conforms to a standard normal distribu-
tion, and standardization involves subtracting the mean and dividing by 
the standard deviation for every data point, which results in the N(0,1) 
normal distribution.

Data Normalization versus Standardization

Data normalization is a linear scaling technique. Let’s assume that a dataset 
has the values {X1, X2, . . . , Xn} along with the following terms:

Minx = minimum of Xi values 

Maxx = maximum of Xi values

Now calculate a set of new Xi values as follows:

Xi = (Xi – Minx)/[Maxx – Minx]

The new Xi values are now scaled so that they are between 0 and 1.

The Bias-Variance Tradeoff

Bias in machine learning can be due to an error from wrong assump-
tions in a learning algorithm. High bias might cause an algorithm to miss 
relevant relations between features and target outputs (underfitting). 
Prediction bias can occur because of “noisy” data, an incomplete feature 
set, or a biased training sample.



Intro to Machine Learning • 147

Error due to bias is the difference between the expected (or average) 
prediction of your model and the correct value that you want to predict. 
Repeat the model building process multiple times, gather new data each 
time, and perform an analysis to produce a new model. The resulting 
models have a range of predictions because the underlying data sets have 
a degree of randomness. Bias measures the extent from the predictions to 
the correct value for these models.

Variance in machine learning is the expected value of the squared devi-
ation from the mean. A high variance can/might cause an algorithm to 
model the random noise in the training data, rather than the intended 
outputs (a.k.a., overfitting)

Adding parameters to a model increases its complexity, increases the var-
iance, and decreases the bias. Dealing with bias and variance is dealing 
with underfitting and overfitting. 

Error due to variance is the variability of a model prediction for a given 
data point. As before, repeat the entire model building process, and the 
variance is the extent to which the predictions for a given point vary 
among different “instances” of the model.

Metrics for Measuring Models

One of the most frequently used metrics is R-squared, which measures 
how close the data is to the fitted regression line (regression coefficient). 
The R-squared value is always a percentage between 0 and 100%. The 
value 0% indicates that the model explains none of the variability of the 
response data around its mean. The value 100% indicates that the model 
explains all the variability of the response data around its mean. In gen-
eral, a higher R-squared value indicates a better model.

Limitations of R-Squared

Although high R-squared values are preferred, they are not necessarily 
always good values. Similarly, low R-squared values are not always bad. 
For example, an R-squared value for predicting human behavior is often 
less than 50%. Moreover, R-squared cannot determine whether the coef-
ficient estimates and predictions are biased. In addition, an R-squared 
value does not indicate whether a regression model is adequate. Thus, 
it’s possible to have a low R-squared value for a good model, or a high 



148 • Angular and Machine Learning Pocket Primer

R-squared value for a poorly fitting model. Evaluate R-squared values in 
conjunction with residual plots, other model statistics, and subject area 
knowledge.

Confusion Matrix

In its simplest form, a confusion matrix (also called an error matrix) is a 
type of contingency table with two rows and two columns that contains 
the number of false positives, false negatives, true positives, and true neg-
atives. The four entries in a 2x2 confusion matrix can be labeled as follows:

TP: True Positive
FP: False Positive
TN: True Negative
FN: False Negative

The diagonal values of the confusion matrix are correct, whereas the 
off-diagonal values are incorrect predictions. In general, a lower FP value 
is better than a FN value. For example, FP indicates that a healthy person 
was incorrectly diagnosed with a disease, whereas FN indicates that an 
unhealthy person was incorrectly diagnosed as healthy. 

Accuracy versus Precision versus Recall

A 2x2 confusion matrix has four entries that represent the various com-
binations of correct and incorrect classifications. Given the definitions in 
the preceding section, the definitions of precision, accuracy, and recall 
are given by the following formulas:

precision = TP/(TN + FP)
accuracy  = (TP + TN)/[P + N]
recall    = TP/[TP + FN]

Accuracy can be an unreliable metric because it yields misleading results in 
unbalanced data sets. When the number of observations in different classes 
are substantially different, that gives equal importance to both false positive 
and false negative classifications. For example, declaring cancer as benign is 
worse than incorrectly informing patients that they are suffering from can-
cer. Unfortunately, accuracy won’t differentiate between these two cases.

Keep in mind that the confusion matrix can be an n×n matrix and not 
just a 2×2 matrix. For example, if a class has five possible values, then the 
confusion matrix is a 5×5 matrix, and the numbers on the main diagonal 
are the “true positive” results.



Intro to Machine Learning • 149

The ROC Curve

The ROC (receiver operating characteristic) curve is a curve that plots 
the TPR, which is the true positive rate (i.e., the recall) against the FPR, 
which is the false positive rate). Note that the TNR (the true negative 
rate) is also called the specificity.

The following link contains a Python code sample using SKLearn and the 
Iris dataset, and also code for plotting the ROC:

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.
html

The following link contains an assortment of Python code samples for 
plotting the ROC:

https://stackoverflow.com/questions/25009284/how-to-plot-roc-curve- 
in-python

Other Useful Statistical Terms

Machine learning relies on a number of statistical quantities in order to 
assess the validity of a model, some of which are listed here:

�� RSS
�� TSS
�� R^2
�� F1 score
�� p-value

The definitions of RSS, TSS, and R^2 are shown below, where y^ is the 
y-coordinate of a point on a best-fitting line and y_ is the mean of the 
y-values of the points in the dataset:

RSS = sum of the squares of the residuals (y - y^)**2
TSS = total sum of the squares (y - y_)**2
R^2 = 1 - RSS/TSS

What is an F1 score?

The F1 score is a measure of the accuracy of a test, and it’s defined as the 
harmonic mean of the precision and recall. Here are the relevant formu-
las, where p is the precision and r is the recall:

p = (# of correct positive results)/(# of all positive 
results)



150 • Angular and Machine Learning Pocket Primer

r = (# of correct positive results)/(# of all relevant 
samples)

F1-score  = 1/[((1/r) + (1/p))/2]

          = 2*[p*r]/[p+r]

The best value of an F1 score is 1 and the worse value is 0. Keep in mind 
that an F1 score tends to be used for categorical classification problems, 
whereas the R^2 value is typically used for regression tasks (such as linear 
regression).

What is a p-value?

The p-value is used to reject the null hypothesis if the p-value is small 
enough (< 0.005), which indicates a higher significance. Recall that the 
null hypothesis states that there is no correlation between a dependent 
variable (such as y) and an independent variable (such as x). The thresh-
old value for p is typically 1% or 5%.

There is no straightforward formula for calculating p-values, which are 
values that are always between 0 and 1. In fact, p-values are statistical 
quantities to evaluate the so-called “null hypothesis,” and they are calcu-
lated by means of p-value tables or via spreadsheet/statistical software.

What is Linear Regression? 

The goal of linear regression is to find the best fitting line that “represents” 
a dataset. Keep in mind two key points. First, the best fitting line does not 
necessarily pass through all (or even most of) the points in the dataset. The 
purpose of a best fitting line is to minimize the vertical distance of that line 
from the points in the dataset. Second, linear regression does not determine 
the best-fitting polynomial. The latter involves finding a higher-degree pol-
ynomial that passes through many of the points in a dataset.

Moreover, a dataset in the plane can contain two or more points that lie 
on the same vertical line, which is to say that those points have the same 
x value. However, a function cannot pass through such a pair of points: if 
two points (x1,y1) and (x2,y2) have the same x value, then they must 
have the same y value (i.e., y1=y2). On the other hand, a function can 
have two or more points that lie on the same horizontal line. 



Intro to Machine Learning • 151

Now consider a scatter plot with many points in the plane that are sort of 
clustered in an elongated cloud-like shape: a best-fitting line will probably 
intersect only limited number of points (in fact, a best-fitting line might 
not intersect any of the points).

One other scenario to keep in mind: suppose a dataset contains a set of 
points that lie on the same line. For instance, let’s say the x values are in the 
set {1,2,3,...,10} and the y values are in the set {2,4,6,...,20}. 
Then the equation of the best-fitting line is y=2*x+0. In this scenario, all 
the points are collinear, which is to say that they lie on the same line.

Linear Regression versus Curve-Fitting

Suppose a dataset consists of n data points of the form (x, y), and no 
two of those data points have the same x value. Then, according to a 
well-known result in mathematics, there is a polynomial of degree less 
than or equal to n-1 that passes through those n points (if you are really 
interested, you can find a mathematical proof of this statement online). 
For example, a line is a polynomial of degree one, and it can intersect any 
pair of non-vertical points in the plane. For any triple of points (that are 
not all on the same line) in the plane, there is a quadratic equation that 
passes through those points.

In addition, sometimes a lower degree polynomial is available. For 
instance, consider the set of 100 points in which the x value equals the y 
value: in this case, the line y = x (which is a polynomial of degree one) 
passes through all 100 points.

However, keep in mind that the extent to which a line “represents” a 
set of points in the plane depends on how closely those points can be 
approximated by a line, which is measured by the variance of the points 
(the variance is a statistical quantity). The more collinear the points, the 
smaller the variance; conversely, the more “spread out” the points are, the 
larger the variance.

When are Solutions Exact Values?

Statistics-based solutions provide closed-form solutions for linear regres-
sion, whereas neural networks provide approximate solutions. This is due 
to the fact that machine learning algorithms for linear regression involve 



152 • Angular and Machine Learning Pocket Primer

a sequence of approximations that converges to optimal values, which 
means that machine learning algorithms produce estimates of the exact 
values. For example, the slope m and y-intercept b of a best-fitting line for 
a set of points a 2D plane have a closed-form solution in statistics, but they 
can only be approximated via machine learning algorithms (exceptions do 
exist, but they are rare situations). 

Keep in mind that even though a closed-form solution for “traditional” 
linear regression provides an exact value for both m and b, sometimes 
you can only use an approximation of the exact value. For instance, sup-
pose that the slope m of a best-fitting line equals the square root of 3 and 
the y-intercept b is the square root of 2. If you plan to use these values 
in source code, you can only work with an approximation of these two 
numbers. In the same scenario, a neural network computes approxima-
tions for m and b, regardless of whether or not the exact values for m and 
b are irrational, rational, or integer values. However, machine learning 
algorithms are better suited for complex, non-linear, multi-dimensional 
datasets, which is beyond the capacity of linear regression.

As a simple example, suppose that the closed form solution for a linear 
regression problem produces integer or rational values for both m and b. 
Specifically, let’s suppose that a closed form solution yields the values 2.0 
and 1.0 for the slope and y-intercept, respectively, of a best-fitting line. 
The equation of the line looks like this:

y = 2.0 * x + 1.0

However, the corresponding solution from training a neural network 
might produce the values 2.0001 and 0.9997 for the slope m and the 
y-intercept b, respectively, as the values of m and b for a best-fitting 
line. Always keep this point in mind, especially when you are training 
a neural network.

What is Multivariate Analysis?

Multivariate analysis generalizes the equation of a line in the Euclidean 
plane to higher dimensions, and it’s called a hyper plane instead of a line. 
The generalized equation has the following form:

y = w1*x1 + w2*x2 + . . . + wn*xn + b

In the case of 2D linear regression, you only need to find the value of the 
slope (m) and the y-intercept (b), whereas in multivariate analysis, you 



Intro to Machine Learning • 153

need to find the values for w1, w2, . . ., wn. Note that multivar-
iate analysis is a term from statistics, and in machine learning it’s often 
referred to as “generalized linear regression.”

Keep in mind that most of the code samples in this book that pertain to 
linear regression involve 2D points in the Euclidean plane.

Other Types of Regression

Linear regression finds the best fitting line that “represents” a dataset, but 
what happens if a line in the plane is not a good fit for the dataset? This is 
a relevant question when you work with datasets. 

Some alternatives to linear regression include quadratic equations, cubic 
equations, or higher-degree polynomials. However, these alternatives 
involve trade-offs, as we’ll discuss later.

Another possibility is a sort of hybrid approach that involves piece-wise 
linear functions, which comprises a set of line segments. If contiguous line 
segments are connected, then it’s a piece-wise linear continuous function; 
otherwise it’s a piece-wise linear discontinuous function.

Thus, given a set of points in the plane, regression involves addressing the 
following questions:

1)	 What type of curve fits the data well? How do we know?
2)	 Does another type of curve fit the data better?
3)	 What does “best fit” mean?

One way to check if a line fits the data involves a visual check, but this 
approach does not work for data points that are higher than two dimen-
sions. Moreover, this is a subjective decision, and some sample datasets 
are displayed later in this chapter. By a visual inspection of a dataset, you 
might decide that a quadratic or cubic (or even higher degree) polynomial 
has the potential of being a better fit for the data. However, visual inspec-
tion is probably limited to points in a 2D plane or in three dimensions.

Let’s defer the non-linear scenario, and let’s make the assumption that 
a line would be a good fit for the data. There is a well-known technique 
for finding the “best fitting” line for such a dataset that involves mini-
mizing the Mean Squared Error (MSE) that we’ll discuss later in this 
chapter.



154 • Angular and Machine Learning Pocket Primer

The next section provides a quick review of linear equations in the plane, 
along with some images that illustrate examples of linear equations.

Working with Lines in the Plane (optional)

This section contains a short review of lines in the Euclidean plane, so 
you can skip this section if you are comfortable with this topic. A minor 
point that’s often overlooked is that lines in the Euclidean plane have 
infinite length. If you select two distinct points of a line, then all the 
points between those two selected points is a line segment. A ray is a “half 
infinite” line: when you select one point as an endpoint, then all the points 
on one side of the line constitutes a ray.

For example, the points in the plane whose y-coordinate is 0 is a horizon-
tal line and also the x-axis, whereas the points between (0,0) and (1,0) on 
the x-axis form a line segment. In addition, the points on the x-axis that 
are to the right of (0,0) form a ray, and the points on the x-axis that are to 
the left of (0,0) also form a ray.

For simplicity and convenience, in this book we’ll use the terms “line” and 
“line segment” interchangeably. Now let’s delve into the details of lines in 
the Euclidean plane. Just in case you’re a bit fuzzy on the details, here is 
the equation of a (non-vertical) line in the Euclidean plane:

y = m*x + b

The value of m is the slope of the line and the value of b is the y-intercept 
(i.e., the place where the line intersects the y-axis). 

If need be, you can use a more general equation that can also represent 
vertical lines, as shown here:

a*x + b*y + c = 0

However, we won’t be working with vertical lines, so we’ll stick with the 
first formula.

Figure 4.1 displays three horizontal lines whose equations (from top to 
bottom) are y = 3, y = 0, and y = -3.



Intro to Machine Learning • 155

Figure 4.1  A Graph of Three Horizontal Line Segments

Figure 4.2 displays two slanted lines whose equations are y = x and y = -x,  
respectively.

Figure 4.2  A Graph of Two Diagonal Line Segments



156 • Angular and Machine Learning Pocket Primer

Figure 4.3 displays two slanted parallel lines whose equations are y = 
2*x and y = 2*x + 3, respectively.

Figure 4.3  A Graph of Two Slanted Parallel Line Segments

Figure 4.4 displays a piece-wise linear graph consisting of connected line 
segments.

Figure 4.4  A Piece-wise Linear Graph of Line Segments



Intro to Machine Learning • 157

Now let’s turn our attention to generating quasi-random data using a 
NumPy API, and then we’ll plot the data using Matplotlib.

Scatter Plots with NumPy and Matplotlib (1)

Listing 4.1 displays the content of np_plot1.py, which illustrates how 
to use the NumPy randn() API to generate a dataset and then the scat-
ter() API in Matplotlib to plot the points in the dataset.

One detail to note is that all the adjacent horizontal values are equally 
spaced, whereas the vertical values are based on a linear equation plus a 
“perturbation” value. This “perturbation technique” (which is not a stand-
ard term) is used in other code samples in this chapter in order to add a 
slightly randomized effect when the points are plotted. The advantage 
of this technique is that the best-fitting values for m and b are known in 
advance, and therefore we do not need to guess their values.

LISTING 4.1 np_plot1.py

import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn(15,1)
y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

print("x:",x)
print("y:",y)

plt.scatter(x,y)
plt.show()

Listing 4.1 contains two import statements, and then initializes the array 
variable x with 15 random numbers between 0 and 1. 

Next, the array variable y is defined in two parts: the first part is a linear 
equation 2.5*x + 5 and the second part is a perturbation value that is 
based on a random number. Thus, the array variable y simulates a set of 
values that closely approximate a line segment. 

This technique is used in code samples that simulate a line segment, 
and then the training portion approximates the values of m and b for the 
best-fitting line. Obviously, we already know the equation of the best fit-
ting-line: the purpose of this technique is to compare the trained values 



158 • Angular and Machine Learning Pocket Primer

for the slope m and y-intercept b with the known values (which in this case 
are 2.5 and 5).

A partial output from Listing 4.1 is here:

x: [[-1.42736308]
 [ 0.09482338]
 [-0.45071331]
 [ 0.19536304]
 [-0.22295205]
 // values omitted for brevity
y: [[1.12530514]
 [5.05168677]
 [3.93320782]
 [5.49760999]
 [4.46994978]
 // values omitted for brevity

Figure 4.5 displays a scatter plot of points based on the values of x and y.

Figure 4.5  A Scatter Plot of Points for a Line Segment

Why the Perturbation Technique is Useful 

You already saw how to use the perturbation technique. By way of com-
parison, consider a dataset with the following points that are defined in 
the Python array variables X and Y:



Intro to Machine Learning • 159

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]

Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

If you need to find the best fitting line for the preceding dataset, how 
would you guess the values for the slope m and the y-intercept b? In most 
cases, you probably cannot guess their values. On the other hand, the 
perturbation technique enables you to “jiggle” the points on a line whose 
value for the slope m (and, optionally, the value for the y-intercept b) is 
specified in advance.

Keep in mind that the perturbation technique only works when you intro-
duce small random values that do not result in different values for m and b. 

Scatter Plots with NumPy and Matplotlib (2)

The code in Listing 4.1 assigned random values to the variable x, whereas 
a hard-coded value is assigned to the slope m. The y values are a hard-
coded multiple of the x values, plus a random value that is calculated 
via the perturbation technique. Hence, we do not know the value of the 
y-intercept b. 

In this section, the values for trainX are based on the np.linspace() 
API, and the values for trainY involve the perturbation technique that is 
described in the previous section.

The code in this example simply prints the values for trainX and trainY, 
which correspond to data points in the Euclidean plane. Listing 4.2 dis-
plays the content of np_plot2.py, which illustrates how to simulate a 
linear dataset in NumPy.

LISTING 4.2 np_plot2.py

import numpy as np

trainX = np.linspace(-1, 1, 11)
trainY = 4*trainX + np.random.randn(*trainX.shape)*0.5

print("trainX: ",trainX)
print("trainY: ",trainY)

Listing 4.6 initializes the NumPy array variable trainX via the NumPy 
linspace() API, followed by the array variable trainY that is defined 
in two parts. The first part is the linear term 4*trainX and the second 
part involves the perturbation technique that is a randomly generated 
number. The output from Listing 4.6 is here:



160 • Angular and Machine Learning Pocket Primer

trainX:  [-1.  -0.8 -0.6 -0.4 -0.2  0.   0.2  0.4  0.6  
0.8  1. ]
trainY:  [-3.60147459 -2.66593108 -2.26491189 -1.65121314 
-0.56454605  0.22746004 0.86830728  1.60673482  2.51151543  
3.59573877  3.05506056]	

The next section contains an example that is similar to Listing 4.2, using 
the same perturbation technique to generate a set of points that approxi-
mate a quadratic equation instead of a line segment.

A Quadratic Scatterplot with NumPy and Matplotlib

Listing 4.3 displays the content of np_plot_quadratic.py, which 
illustrates how to plot a quadratic function in the plane.

LISTING 4.3 np_plot_quadratic.py

import numpy as np
import matplotlib.pyplot as plt

#see what happens with this set of values:
#x = np.linspace(-5,5,num=100)

x = np.linspace(-5,5,num=100)[:,None]
y = -0.5 + 2.2*x +0.3*x**2 + 2*np.random.randn(100,1)
print("x:",x)

plt.plot(x,y)
plt.show()

Listing 4.3 initializes the array variable x with the values that are gener-
ated via the np.linspace() API, which in this case is a set of 100 equally 
spaced decimal numbers between –5 and 5. Notice the snippet [:,None] 
in the initialization of x, which results in an array of elements, each of 
which is an array consisting of a single number. 

The array variable y is defined in two parts: the first part is a quadratic 
equation -0.5 + 2.2*x +0.3*x**2 and the second part is a perturba-
tion value that is based on a random number (similar to the code in Listing 
4.1). Thus, the array variable y simulates a set of values that approximates 
a quadratic equation. The output from Listing 4.3 is here:

x: 

[[-5.        ]



Intro to Machine Learning • 161

 [-4.8989899 ]

 [-4.7979798 ]

 [-4.6969697 ]

 [-4.5959596 ]

 [-4.49494949]

 // values omitted for brevity

 [ 4.8989899 ]

 [ 5.        ]]

Figure 4.6 displays a scatter plot of points based on the values of x and y, 
which have an approximate shape of a quadratic equation.

Figure 4.6  A Scatter Plot of Points for a Quadratic Equation

The Mean Squared Error (MSE) Formula

The MSE is the sum of the squares of the difference between an actual y 
value and the predicted y value, divided by the number of points. Notice 
that the predicted y value is the y value that each point would have if that 
point were actually on the best-fitting line.

Although the MSE is popular for linear regression, there are other error 
types available, some of which are discussed briefly in the next section.



162 • Angular and Machine Learning Pocket Primer

A List of Error Types

Although we will only discuss MSE for linear regression in this book, 
there are other types of formulas that you can use for linear regression, 
some of which are listed here:

�� MSE
�� RMSE
�� RMSPROP
�� MAE

The MSE is the basis for the preceding error types. For example, RMSE 
is the “Root Mean Squared Error,” which is the square root of the MSE.

On the other hand, the MAE is the “Mean Absolute Error,” which is the 
sum of the absolute value of the differences of the y terms (not the square 
of the differences of the y terms), which is then divided by the number of 
terms.

The RMSProp optimizer utilizes the magnitude of recent gradients to 
normalize the gradients. Specifically, RMSProp maintains a moving aver-
age over the RMS (root mean squared) gradients, and then divides that 
term by the current gradient.

Although it’s easier to compute the derivative of the MSE, it’s also true 
that the MSE is more susceptible to outliers, whereas the MAE is less 
susceptible to outliers. The reason is simple: a squared term can be signif-
icantly larger than the absolute value of a term. For example, if a differ-
ence term is 10, then a squared term of 100 is added to the MSE, whereas 
only 10 is added to the MAE. Similarly, if a difference term is -20, then 
a squared term 400 is added to the MSE, whereas only 20 (which is the 
absolute value of –20) is added to the MAE.

Non-linear Least Squares 

When predicting housing prices, where the dataset contains a wide range 
of values, techniques such as linear regression or random forests can 
cause the model to overfit the samples with the highest values in order to 
reduce quantities such as the mean absolute error. 

In this scenario, you probably want an error metric, such as relative error, 
that reduces the importance of fitting the samples with the largest values. 
This technique is called non-linear least squares, which may use a log-
based transformation of labels and predicted values.



Intro to Machine Learning • 163

The next section contains several code samples, the first of which involves 
calculating the MSE manually, followed by an example that uses NumPy 
formulas to perform the calculations. Finally, we’ll look at a Keras-based 
example for calculating the MSE.

Calculating the MSE Manually

This section contains two line graphs, both of which contain a line that 
approximates a set of points in a scatter plot. 

Figure 4.7 displays a line segment that approximates a scatter plot of 
points (some of which intersect the line segment). The MSE for the line 
in Figure 4.7 is computed as follows:

MSE = (1*1 + (-1)*(-1) + (-1)*(-1) + 1*1)/7 = 4/7

Figure 4.7  A Line Graph that Approximates Points of a Scatter Plot

Figure 4.8 displays a set of points and a line that is a potential candidate 
for the best-fitting line for the data. The MSE for the line in Figure 4.8 is 
computed as follows:

MSE = ((-2)*(-2) + 2*2)/7 = 8/7



164 • Angular and Machine Learning Pocket Primer

Figure 4.8  A Line Graph that Approximates Points of a Scatter Plot

Thus, the line in Figure 4.7 has a smaller MSE than the line in Figure 4.8, 
which might have surprised you. (Or did you guess correctly?)

In these two figures, we calculated the MSE easily and quickly, but in 
general, it’s significantly more difficult. For instance, if we plot 10 points 
in the Euclidean plane that do not closely fit a line, with individual terms 
that involve non-integer values, we would probably need a calculator. 

A better solution involves NumPy functions, such as the np.linspace() 
API, as discussed in the next section.

Approximating Linear Data with np.linspace() 

Listing 4.4 displays the content of np_linspace1.py, which illustrates 
how to generate some data with the np.linspace() API in conjunction 
with the perturbation technique.

LISTING 4.4 np_linspace1.py

import numpy as np

trainX = np.linspace(-1, 1, 6)
trainY = 3*trainX+ np.random.randn(*trainX.shape)*0.5

print("trainX: ", trainX)
print("trainY: ", trainY)



Intro to Machine Learning • 165

The purpose of this code sample is merely to generate and display a set of 
randomly generated numbers. Later in this chapter, we will use this code 
as a starting point for an actual linear regression task.

Listing 4.4 starts with the definition of the array variable trainX that is 
initialized via the np.linspace() API. Next, the array variable trainY 
is defined via the perturbation technique that you have seen in previous 
code samples. The output from Listing 4.4 is here:

trainX:  [-1.  -0.6 -0.2  0.2  0.6  1. ]
trainY:  [-2.9008553  -2.26684745 -0.59516253  0.66452207  
1.82669051  2.30549295]
trainX:  [-1.  -0.6 -0.2  0.2  0.6  1. ]
trainY:  [-2.9008553  -2.26684745 -0.59516253  0.66452207  
1.82669051  2.30549295]

Now that we know how to generate (x,y) values for a linear equation, 
let’s learn how to calculate the MSE, which is discussed in the next section.

The next example generates a set of data values using the np.lins-
pace() method and the np.random.randn() method in order to intro-
duce some randomness in the data points.

Calculating MSE with np.linspace() API

The code sample in this section differs from many of the earlier code 
samples in this chapter: it uses a hard-coded array of values for X and also 
for Y instead of the perturbation technique. Hence, you will not know 
the correct value for the slope and y-intercept (and you probably will not 
be able to guess their correct values). Listing 4.5 displays the content of 
plain_linreg1.py, which illustrates how to compute the MSE with 
simulated data.

LISTING 4.5 plain_linreg1.py

import numpy as np
import matplotlib.pyplot as plt

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]
Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

costs = []
#Step 1: Parameter initialization



166 • Angular and Machine Learning Pocket Primer

W = 0.45
b = 0.75

for i in range(1, 100):
  #Step 2: Calculate Cost
  Y_pred = np.multiply(W, X) + b
  Loss_error = 0.5 * (Y_pred - Y)**2
  cost = np.sum(Loss_error)/10

  #Step 3: Calculate dW and db
  db = np.sum((Y_pred - Y))
  dw = np.dot((Y_pred - Y), X)
  costs.append(cost)

  #Step 4: Update parameters:
  W = W - 0.01*dw
  b = b - 0.01*db

  if i%10 == 0:
    print("Cost at", i,"iteration = ", cost)

#Step 5: Repeat via a for loop with 1000 iterations

#Plot cost versus # of iterations
print("W = ", W,"& b = ",  b)
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.show()

Listing 4.5 initializes the array variables X and Y with hard-coded values, 
and then initializes the scalar variables W and b. The next portion of Listing 
4.5 contains a for loop that iterates 100 times. After each iteration of the 
loop, the variables Y_pred, Loss_error, and cost are calculated. Next, 
the values for dw and db are calculated, based on the sum of the terms in the 
array Y_pred-Y, and the inner product of Y_pred-y and X, respectively.

Notice how W and b are updated: their values are decremented by the 
terms 0.01*dw and 0.01*db, respectively. This calculation ought to look 
somewhat familiar: the code is programmatically calculating an approxi-
mate value of the gradient for W and b, both of which are multiplied by 
the learning rate (the hard-coded value 0.01). The resulting term is dec-
remented from the current values of W and b in order to produce a new 
approximation for W and b. Although this technique is very simple, it does 
calculate reasonable values for W and b. 



Intro to Machine Learning • 167

The final block of code in Listing 4.5 displays the intermediate approxi-
mations for W and b, along with a plot of the cost (vertical axis) versus the 
number of iterations (horizontal axis). The output from Listing 4.5 is here:

Cost at 10 iteration =  0.04114630674619492

Cost at 20 iteration =  0.026706242729839392

Cost at 30 iteration =  0.024738889446900423

Cost at 40 iteration =  0.023850565034634254

Cost at 50 iteration =  0.0231499048706651

Cost at 60 iteration =  0.02255361434242207

Cost at 70 iteration =  0.0220425055291673

Cost at 80 iteration =  0.021604128492245713

Cost at 90 iteration =  0.021228111750568435

W =  0.47256473531193927 & b =  0.19578262688662174

Figure 4.9 displays a 
scatter plot of points 
generated by the code 
in Listing 4.5.

The code sample 
plain-linreg2.py is 
similar to the code in 
Listing 4.5: the differ-
ence is that instead of 
a single loop with 100 
iterations, there is an 
outer loop that is exe-
cuted 100 times. During each iteration of the outer loop, the inner loop 
also is executed 100 times.

Linear Regression with Keras

The code sample in this section contains primarily Keras code in order to 
perform the linear regression. If you have read the previous examples in 
this chapter, this section will be easier for you to understand because the 
steps for linear regression are the same.

Before you proceed to the code sample, please make sure that you 
have Python 3.x installed (downloadable from https://www.python.org/ 

Figure 4.9  MSE Values with Linear Regression



168 • Angular and Machine Learning Pocket Primer

downloads) and then install TensorFlow 2 by invoking the following 
command:

pip3 install tensorflow==2

If necessary, you can install pip3 by following the instructions here:

https://pip.pypa.io/en/stable/installing/ 

Listing 4.6 displays the content of keras_linear_regression.py, 
which illustrates how to perform a linear regression in Keras.

LISTING 4.6  keras_linear_regression.py

#######################################################
#Keep in mind the following important points:
#1) Always standardize both the input features and target 
variable:
#doing so only on input features produces incorrect 
predictions
#2) Data might not be normally distributed: check the 
data and
#based on the distribution apply StandardScaler, 
MinMaxScaler,
#Normalizer, or RobustScaler
#######################################################

import tensorflow as tf
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split

df = pd.read_csv('housing.csv')
X  = df.iloc[:,0:13]
y  = df.iloc[:,13].values

mmsc = MinMaxScaler()
X  = mmsc.fit_transform(X)
y  = y.reshape(-1,1)
y  = mmsc.fit_transform(y)

X_train, X_test, y_train, y_test = train_test_split(X, 
y, test_size=0.3)



Intro to Machine Learning • 169

# this Python method creates a Keras model
def build_keras_model():
  model = tf.keras.models.Sequential()
  �m o d e l . a d d ( t f . k e r a s . l a y e r s . D e n s e ( u n i t s = 1 3 , 

input_dim=13))
  model.add(tf.keras.layers.Dense(units=1))
  �model.compile(optimizer='adam',loss='mean_squared_

error',metrics=['mae','accuracy'])
  return model

batch_size=32
epochs = 40

# specify the Python method 'build_keras_model' to cre-
ate a Keras model
# using the implementation of the scikit-learn regressor 
API for Keras
�model = tf.keras.wrappers.scikit_learn.
K e r a s R e g r e s s o r ( b u i l d _ f n = b u i l d _ k e r a s _ m o d e l , 
batch_size=batch_size,epochs=epochs)

# train ('fit') the model and then make predictions:
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
#print("y_test:",y_test)
#print("y_pred:",y_pred)

# scatter plot of test values-vs-predictions
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred)
ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_
test.max()], 'r*--')
ax.set_xlabel('Calculated')
ax.set_ylabel('Predictions')
plt.show()

Listing 4.6 starts with multiple import statements and then initializes 
the dataframe df with the contents of the CSV file housing.csv (a por-
tion of which is shown in Listing 4.7). Notice that the training set X is 
initialized with the contents of the first 13 columns of the dataset hous-
ing.csv, and the variable y contains the rightmost column of the dataset 
housing.csv. 

The next section in Listing 4.6 uses the MinMaxScaler class to calculate 
the mean and standard deviation, and then invokes the fit_transform() 



170 • Angular and Machine Learning Pocket Primer

method in order to update the X values and the y values so that they have 
a mean of 0 and a standard deviation of 1.

Next, the build_keras_mode() Python method creates a Keras-based 
model with two dense layers. Notice that the input layer has a size of 13, 
which is the number of columns in the dataframe X. The next code snip-
pet compiles the model with an adam optimizer, the MSE loss function, 
and also specifies the MAE and accuracy for the metrics. The compiled 
model is then returned to the caller.

The next portion of Listing 4.6 initializes the batch_size variable to 32 
and the epochs variable to 40, and specifies them in the code snippet that 
creates the model, as shown here:

model = tf.keras.wrappers.scikit_learn.
K e r a s R e g r e s s o r ( b u i l d _ f n = b u i l d _ k e r a s _ m o d e l , 
batch_size=batch_size,epochs=epochs)

The short comment block that appears in Listing 4.6 explains the purpose 
of the preceding code snippet, which constructs our Keras model.

The next portion of Listing 4.6 invokes the fit() method to train the 
model and then invokes the predict() method on the X_test data to 
calculate a set of predictions and initialize the variable y_pred with those 
predictions.

The final portion of Listing 4.6 displays a scatter plot in which the hori-
zontal axis includes the values in y_test (the actual values from the CSV 
file housing.csv) 
and the vertical axis 
is the set of the pre-
dicted values.

Figure 4.5 displays a 
scatter plot of points 
based on the test val-
ues and the predic-
tions for those test 
values.

Listing 4.7 displays 
the first four rows of 
the CSV file hous-
ing.csv used in the Python code in Listing 4.6.

Figure 4.10  A Scatter Plot and a Best-Fitting Line



Intro to Machine Learning • 171

LISTING 4.7 housing.csv

0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.
9,4.98,24
0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396
.9,9.14,21.6
0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,392
.83,4.03,34.7
0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,394
.63,2.94,33.4

Summary

This chapter introduced you to machine learning and concepts such as 
feature selection, feature engineering, data cleaning, training sets, and 
test sets. Next you learned about supervised, unsupervised, and semi-su-
pervised learning. Then you learned about regression tasks, classification 
tasks, and clustering, as well as the steps that are typically required to pre-
pare a dataset. These steps include feature selection or feature extraction 
that can be performed using various algorithms. Then you learned about 
issues that can arise with the data in datasets and how to rectify them.

In addition, you also learned about linear regression, along with a brief 
description of how to calculate a best-fitting line for a dataset of values 
in the Euclidean plane. You saw how to perform linear regression using 
NumPy in order to initialize arrays with data values, along with a pertur-
bation technique that introduces some randomness for the y values. This 
technique is useful because you will know the correct values for the slope 
and y-intercept of the best-fitting line, which you can then compare with 
the trained values.

You then learned how to perform linear regression in code samples that 
involve Keras. In addition, you saw how to use Matplotlib to display line 
graphs for best-fitting lines and graphs that display the cost versus the 
number of iterations during the training-related code blocks. 





c h a p t e r

This chapter presents numerous classification algorithms in 
machine learning. These algorithms include the kNN (k Nearest 
Neighbor) algorithm, logistic regression (despite its name, it is a 

classifier), decision trees, random forests, SVMs, and Bayesian classifi-
ers. The emphasis on algorithms is intended to introduce you to machine 
learning, and this chapter includes a tree-based code sample that relies on 
scikit-learn. The latter portion of this chapter contains Keras-based code 
samples for standard datasets.

Due to space constraints, this chapter does not cover other well-known 
algorithms (such as Linear Discriminant Analysis) and the k-Means algo-
rithm (which is for unsupervised learning and clustering). However, there 
are many online tutorials available that discuss these and other algorithms 
in machine learning.

With the preceding points in mind, the first section of this chapter briefly 
discusses the classifiers that are mentioned in the introductory paragraph. 
The second section of this chapter provides an overview of activation 
functions, which will be very useful if you decide to learn about deep 
neural networks. In this section, you will learn how and why they are used 
in neural networks. This section also contains a list of the TensorFlow 2/
Keras APIs for activation functions, followed by a description of some of 
their merits. 

The third section introduces logistic regression, which relies on the sig-
moid function. Although neural networks often use the ReLU activation 
function, the sigmoid function (as well as the tanh function) is used in 

Working with Classifiers

5



174 • Angular and Machine Learning Pocket Primer

RNNs (Recurrent Neural Networks) and LSTMs (Long Short Term 
Memory). The fourth part of this chapter contains a code sample involv-
ing logistic regression and the MNIST dataset. 

In order to give you some context, classifiers are one of three major types 
of algorithms: regression algorithms (such as linear regression in Chapter 
4), classification algorithms (discussed in this chapter), and clustering 
algorithms (such as k-Means, which is not discussed in this book). 

The section pertaining to activation functions does involve a basic under-
standing of the hidden layers in a neural network. Depending on your 
comfort level, you might benefit from reading some preparatory material 
before diving into this section (there are many articles available online).

Finally, if you are unfamiliar with Keras, please read the Keras-related 
appendix that contains a simple introduction to Keras.

What is Classification?

Given a dataset that contains observations whose class membership is 
known, classification is the task of determining the class to which a new 
datapoint belongs. Classes refer to categories and are also called targets or 
labels. For example, spam detection for email service providers involves 
binary classification (only 2 classes). The MNIST dataset contains a set 
of images where each image is a single digit, which means there are 10 
labels. Some applications in classification include credit approval, medical 
diagnosis, and target marketing.

What are Classifiers?

In the previous chapter, you learned that linear regression uses supervised 
learning in conjunction with numeric data. The goal is to train a model that 
can make numeric predictions (e.g., the price of stock tomorrow, the tem-
perature of a system, its barometric pressure, and so forth). By contrast, 
classifiers use supervised learning in conjunction with non-numeric classes 
of data. The goal is to train a model that can make categorical predictions.

For instance, suppose that each row in a dataset is a specific wine, and 
each column pertains to a specific wine feature (tannin, acidity, and so 
forth). Suppose further that there are five classes of wine in the dataset: 
for simplicity, let’s label them A, B, C, D, and E. Given a new data point, 
which is to say a new row of data, a classifier for this dataset attempts to 
determine the label for this wine. 



Working with Classifiers • 175

Some of the classifiers in this chapter can perform categorical classifica-
tion and also make numeric predictions (i.e., they can be used for regres-
sion as well as classification).

Common Classifiers

Some of the most popular classifiers for machine learning are listed here 
(in no particular order):

�� linear classifiers
�� kNN
�� logistic regression 
�� decision trees
�� random forests
�� SVMs
�� Bayesian classifiers
�� CNNs (deep learning)

Keep in mind that different classifiers have different advantages and dis-
advantages, which often involve a trade-off between complexity and accu-
racy, similar to algorithms in fields that are outside of AI.

In the case of Deep Learning, CNNs (Convolutional Neural Networks) 
perform image classification, which makes them classifiers (they can also 
be used for audio and text processing).

The upcoming sections provide a brief description of the ML classifiers 
that are listed in the previous list.

Binary versus Multi-Class Classification

Binary classifiers work with datasets that have two classes, whereas mul-
ti-class classifiers (sometimes called multinomial classifiers) distinguish 
more than two classes. Random forest classifiers and naïve Bayes classifi-
ers support multiple classes, whereas SVMs and linear classifiers are used 
as binary classifiers. Note that there are techniques in which SVMs can be 
used as multi-class classifiers.

In addition, some of the techniques for multi-class classification are based 
on binary classifiers: One-versus-All (OvA) and One-versus-One (OvO).

The OvA technique (also called One-versus-The-Rest) involves multiple 
binary classifiers that are equal to the number of classes. For example, 
if a dataset has five classes, then OvA uses five binary classifiers, each of 



176 • Angular and Machine Learning Pocket Primer

which detects one of the five classes. In order to classify a datapoint in 
this particular dataset, select the binary classifier that outputs the highest 
score. 

The OvO technique also involves multiple binary classifiers, but in this 
case, a binary classifier is used to train on a pair of classes. For instance, if 
the classes are A, B, C, D, and E, then 10 binary classifiers are required: 
one for A and B, one for A and C, one for A and D, and so forth, until we 
reach the last binary classifier for D and E. 

In general, if there are n classes, then n (n-1)/2 binary classifiers are 
required. Although the OvO technique requires considerably more binary 
classifiers (e.g., 190 are required for 20 classes) than the OvA technique 
(e.g., a mere 20 binary classifiers for 20 classes), the OvO technique has 
the advantage that each binary classifier is only trained on the portion of 
the dataset that pertains to its two chosen classes.

Multi-Label Classification

Multi-label classification involves assigning multiple labels to an instance 
from a dataset. Hence, multi-label classification generalizes multi-class 
classification (discussed in the previous section), where the latter involves 
assigning a single label to an instance belonging to a dataset that has mul-
tiple classes. An article involving multi-label classification that contains 
Keras-based code is here:

https://medium.com/@vijayabhaskar96/multi-label-image-classifica-
tion-tutorial-with-keras-imagedatagenerator-cd541f8eaf24

You can also perform an online search for articles that involve scikit-learn 
or PyTorch for multi-label classification tasks.

What are Linear Classifiers?

A linear classifier separates a dataset into two classes. A linear classifier is 
a line for 2D points, a plane for 3D points, and a hyper plane (a generali-
zation of a plane) for higher dimensional points. 

Linear classifiers are often the fastest classifiers, so they are often used 
when the speed of classification is of high importance. Linear classifiers 
usually work well when the input vectors are sparse (i.e., mostly zero val-
ues) or when the number of dimensions is large.



Working with Classifiers • 177

What is kNN?

The kNN (k Nearest Neighbor) algorithm is a classification algorithm. In 
brief, data points that are near each other are classified as belonging to the 
same class. When a new point is introduced, it’s added to the class of the 
majority of its nearest neighbor. For example, suppose that k equals 3, and 
a new data point is introduced. Look at the class of its 3 nearest neighbors: 
let’s say they are A, A, and B. Then by majority vote, the new data point is 
labeled as a data point of class A. 

The kNN algorithm is essentially a heuristic and not a technique with 
complex mathematical underpinnings, and yet it’s still an effective and 
useful algorithm.

Try the kNN algorithm if you want to use a simple algorithm, or when 
you believe that the nature of your dataset is highly unstructured. The 
kNN algorithm can produce highly nonlinear decisions despite being very 
simple. You can use kNN in search applications where you are searching 
for similar items.

Measure similarity by creating a vector representation of the items, and 
then compare the vectors using an appropriate distance metric (such as 
the Euclidean distance). Some concrete examples of kNN search include 
searching for semantically similar documents.

How to Handle a Tie in kNN

An odd value for k is less likely to result in a tie vote, but it’s not impossi-
ble. For example, suppose that k equals 7, and when a new data point is 
introduced, its 7 nearest neighbors belong to the set {A,B,A,B,A,B,C}. As 
you can see, there is no majority vote, because there are 3 points in class 
A, 3 points in class B, and 1 point in class C.

There are several techniques for handling a tie in kNN, as listed here:

�� Assign higher weights to closer points.
�� Increase the value of k until a winner is determined.
�� Decrease the value of k until a winner is determined.
�� Randomly select one class.

If you reduce k until it equals 1, it’s still possible to have a tie vote: there 
might be two points that are equally distant from the new point, so you need a 
mechanism for deciding which of those two points to select as the 1-neighbor.



178 • Angular and Machine Learning Pocket Primer

If there is a tie between classes A and B, then randomly select either class 
A or class B. Another variant is to keep track of the tie votes, and alternate 
round-robin style to ensure a more even distribution. 

What are Decision Trees?

Decision trees are another type of classification algorithm that involve a 
tree-like structure. In a “generic” tree-based data structure, the place-
ment of a data point is determined by conditional logic. As a simple illus-
tration, suppose that a dataset contains a set of numbers that represents 
the ages of people, and let’s also suppose that the first number is 50. This 
number is chosen as the root of the tree, and all numbers that are smaller 
than 50 are added on the left branch of the tree, whereas all numbers that 
are greater than 50 are added on the right branch of the tree. 

For example, suppose we have the sequence of numbers of {50, 25, 70, 
40}. Then we can construct a tree as follows: 50 is the root node; 25 is the 
left child of 50; 70 is the right child of 50; and 40 is the right child of 20. 
Each additional numeric value that we add to this dataset is processed to 
determine which direction to proceed (“left or right”) at each node in the 
tree.

Listing 5.1 displays the content of sklearn_tree2.py, which defines a set of 
2D points in the Euclidean plane, along with their labels, and then pre-
dicts the label (i.e., the class) of several other 2D points in the Euclidean 
plane.

LISTING 5.1 sklearn_tree2.py

from sklearn import tree

# X = pairs of 2D points and Y = the class of each point
X = [[0, 0], [1, 1], [2,2]]
Y = [0, 1, 1]

tree_clf = tree.DecisionTreeClassifier()
tree_clf = tree_clf.fit(X, Y)

#predict the class of samples:
print("predict class of [-1., -1.]:")
print(tree_clf.predict([[-1., -1.]]))

print("predict class of [2., 2.]:")
print(tree_clf.predict([[2., 2.]]))



Working with Classifiers • 179

# The percentage of training samples of the same class
# in a leaf node equals the probability of each class
print("probability of each class in [2.,2.]:")
print(tree_clf.predict_proba([[2., 2.]]))

Listing 5.1 imports the tree class from sklearn and then initializes the 
arrays X and y with data values. Next, the variable tree_clf is initialized as 
an instance of the DecisionTreeClassifier class, after which it is trained by 
invoking the fit() method with the values of X and y.

Now launch the code in Listing 5.3 and you will see the following output:

predict class of [-1., -1.]:
[0]
predict class of [2., 2.]:
[1]
probability of each class in [2.,2.]:
[[0. 1.]]

As you can see, the points [-1,-1] and [2,2] are correctly labeled with the 
values 0 and 1, respectively, which is probably what you expected.

Listing 5.2 displays the content of sklearn_tree3.py, which extends the 
code in Listing 5.1 by adding a third label, and also by predicting the label 
of three points instead of two points in the Euclidean plane (the modifi-
cations are shown in bold).

LISTING 5.2 sklearn_tree3.py

from sklearn import tree

# X = pairs of 2D points and Y = the class of each point
X = [[0, 0], [1, 1], [2,2]]
Y = [0, 1, 2]

tree_clf = tree.DecisionTreeClassifier()
tree_clf = tree_clf.fit(X, Y)

#predict the class of samples:
print("predict class of [-1., -1.]:")
print(tree_clf.predict([[-1., -1.]]))

print("predict class of [0.8, 0.8]:")
print(tree_clf.predict([[0.8, 0.8]]))

print("predict class of [2., 2.]:")
print(tree_clf.predict([[2., 2.]]))



180 • Angular and Machine Learning Pocket Primer

# The percentage of training samples of the same class
# in a leaf node equals the probability of each class
print("probability of each class in [2.,2.]:")
print(tree_clf.predict_proba([[2., 2.]]))

Now launch the code in Listing 5.2 and you will see the following output:

predict class of [-1., -1.]:
[0]
predict class of [0.8, 0.8]:
[1]
predict class of [2., 2.]:
[2]
probability of each class in [2.,2.]:
[[0. 0. 1.]]

As you can see, the points [-1,-1], [0.8, 0.8], and [2,2] are correctly labe-
led with the values 0, 1, and 2, respectively, which is probably what you 
expected.

Listing 5.3 displays a portion of the dataset partial_wine.csv, which con-
tains two features and a label column (there are three classes). The total 
row count for this dataset is 178.

LISTING 5.3 partial_wine.csv

Alcohol, Malic acid, class
14.23,1.71,1
13.2,1.78,1
13.16,2.36,1
14.37,1.95,1
13.24,2.59,1
14.2,1.76,1

Listing 5.4 displays content of tree_classifier.py, which uses a decision 
tree to train a model on the dataset partial_wine.csv.

LISTING 5.4 tree_classifier.py

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('partial_wine.csv')



Working with Classifiers • 181

X = dataset.iloc[:, [0, 1]].values
y = dataset.iloc[:, 2].values

# split the dataset into a training set and a test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, 
y, test_size = 0.25, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# ====> INSERT YOUR CLASSIFIER CODE HERE <====
from sklearn.tree import DecisionTreeClassifier
classifier = 
DecisionTreeClassifier(criterion='entropy',random_
state=0)
classifier.fit(X_train, y_train)
# ====> INSERT YOUR CLASSIFIER CODE HERE <====

# predict the test set results
y_pred = classifier.predict(X_test)

# generate the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print("confusion matrix:")
print(cm)

Listing 5.4 contains some import statements and then populates the 
Pandas DataFrame dataset with the contents of the CSV file partial_wine.
csv. Next, the variable X is initialized with the first two columns (and all 
the rows) of the dataset, and the variable y is initialized with the third 
column (and all the rows) of the dataset. 

Next, the variables X_train, X_test, y_train, and y_test are populated with 
data from X and y using a 75/25 split proportion. Notice that the variable 
sc (which is an instance of the StandardScalar class) performs a scaling 
operation on the variables X_train and X_test. 

The code block shown in bold in Listing 5.4 is where we create an instance 
of the DecisionTreeClassifier class, and then train the instance with the 
data in the variables X_train and X_test.



182 • Angular and Machine Learning Pocket Primer

The next portion of Listing 5.4 populates the variable y_pred with a set of 
predictions that are generated from the data in the X_test variable. The 
last portion of Listing 5.4 creates a confusion matrix based on the data in 
y_test and the predicted data in y_pred. 

Remember that all the diagonal elements of a confusion matrix are cor-
rect predictions (such as true positive and true negative); all the other 
cells contain a numeric value that specifies the number of predictions that 
are incorrect (such as false positive and false negative).

Now launch the code in Listing 5.4, and you will see the following output 
for the confusion matrix in which there are 36 correct predictions and 9 
incorrect predictions (with an accuracy of 80%):

confusion matrix:
[[13  1  2]
 [ 0 17  4]
 [ 1  1  6]]
from sklearn.metrics import confusion_matrix

There is a total of 45 entries in the preceding 3x3 matrix, and the diagonal 
entries are correctly identified labels. Hence, the accuracy is 36/45 = 0.80.

What are Random Forests?

Random forests are a generalization of decision trees. This classification 
algorithm involves multiple trees (and the number of trees is specified 
by you). If the data involves making a numeric prediction, the average of 
the predictions of the trees is computed. If the data involves a categorical 
prediction, the mode of the predictions of the trees is determined. 

By way of analogy, random forests operate in a manner similar to financial 
portfolio diversification: the goal is to balance the losses with higher gains. 
Random forests use a “majority vote” to make predictions, which operates 
under the assumption that selecting the majority vote is more likely to be 
correct (more often) than any individual prediction from a single tree.

You can easily modify the code in Listing 5.4 to use a random forest by 
replacing the two lines shown in bold with the following code:

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, 
criterion='entropy', random_state = 0)



Working with Classifiers • 183

Change this code, launch the code, and examine the confusion matrix to 
compare its accuracy with the accuracy of the decision tree in Listing 5.4.

What are SVMs?

Support Vector Machines involve a supervised machine learning algorithm 
and can be used for classification or regression problems. SVM can work 
with non-linearly separable data as well as linearly separable data. SVM 
uses a technique called the “kernel trick” to transform data and then finds 
an optimal boundary. The transform involves a higher dimensionality. This 
technique results in a separation of the transformed data, after which it’s 
possible to find a hyperplane that separates the data into two classes.

SVMs are more common in classification tasks than in regression tasks. 
Some use cases for SVMs include:

�� text classification tasks (category assignment)
�� detecting spam/sentiment analysis
�� image recognition (aspect-based recognition color-based classifica-

tion)
�� handwritten digit recognition (postal automation)

Tradeoffs of SVMs

Although SVMs are extremely powerful, there are tradeoffs involved. 
Some of the advantages of SVMs are listed here:

�� high accuracy
�� work well on smaller cleaner datasets
�� can be more efficient because they use a subset of training points
�� an alternative to CNNs in cases of limited datasets
�� capture more complex relationships between data points

Despite the power of SVMs, there are some disadvantages of SVMs, 
which are listed here:

�� not suited to larger datasets (the training time can be high)
�� less effective on noisier datasets with overlapping classes

SVMs involve more parameters than decision trees and random forests. 

Modify Listing 5.4 to use an SVM by replacing the two lines shown in bold 
with the following two lines shown in bold:



184 • Angular and Machine Learning Pocket Primer

from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)

You now have an SVM-based model, simply by making the previous code 
update! Make the code change, then launch the code, and examine the 
confusion matrix to compare its accuracy with the accuracy of the decision 
tree model and the random forest model earlier in this chapter.

What is Bayesian Inference?

Bayesian inference is an important technique in statistics that involves 
statistical inference and Bayes’ theorem to update the probability for a 
hypothesis as more information becomes available. Bayesian inference 
is often called “Bayesian probability,” and it’s important in the dynamic 
analysis of sequential data.

Bayes’ Theorem

Given two sets A and B, let’s define the following numeric values (all of 
them are between 0 and 1):

P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you're in B)
P(B|A) = probability of being in B (given you're in A)

Then the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the 
denominator and we get these equations:

P(B)*P(A|B) = P(Both) (#3)
P(A)*P(B|A) = P(Both) (#4)

Now set the left side of equations #3 and #4 equal to each another, which 
gives us this equation:

P(B)*P(A|B) = P(A)*P(B|A) (#5)

Divide both sides of #5 by P(B), and we get this well-known equation:

P(A|B) = P(A)*P(A|B)/P(B) (#6)



Working with Classifiers • 185

Some Bayesian Terminology

In the previous section, we derived the following relationship:

P(h|d) = (P(d|h) * P(h)) / P(d)

There is a name for each of the four terms in the preceding equation, as 
discussed below.

First, the posterior probability is P(h|d), which is the probability of 
hypothesis h given the data d. 

Second, P(d|h) is the probability of data d given that the hypothesis h 
was true.

Third, the prior probability of h is P(h), which is the probability of 
hypothesis h being true (regardless of the data). 

Finally, P(d) is the probability of the data (regardless of the hypothesis).

We are interested in calculating the posterior probability of P(h|d) from 
the prior probability p(h) with P(d) and P(d|h).

What is MAP?

The maximum a posteriori (MAP) hypothesis is the hypothesis with the 
highest probability, which is the maximum probable hypothesis. This can 
be written as follows:

MAP(h) = max(P(h|d))

or:

MAP(h) = max((P(d|h) * P(h)) / P(d))

or:

MAP(h) = max(P(d|h) * P(h))

Why Use Bayes’ Theorem?

Bayes’ Theorem describes the probability of an event based on the prior 
knowledge of the conditions that might be related to the event. If we 
know the conditional probability, we can use the Bayes’ rule to find out 
the reverse probabilities. The previous statement is the general rep-
resentation of the Bayes’ rule.



186 • Angular and Machine Learning Pocket Primer

What is a Bayesian Classifier?

A Naive Bayes (NB) classifier is a probabilistic classifier inspired by the 
Bayes’ theorem. An NB classifier assumes the attributes are conditionally 
independent and it works well even when assumption is not true. This 
assumption greatly reduces computational cost, and it’s a simple algorithm 
to implement that only requires linear time. Moreover, an NB classifier 
is easily scalable to larger datasets and good results are obtained in most 
cases. Other advantages of an NB classifier are as follows:

�� can be used for binary and multi-class classification
�� provides different types of NB algorithms
�� a good choice for Text Classification problems
�� a popular choice for spam email classification
�� can be easily trained on small datasets

As you can probably surmise, NB classifiers do have some disadvantages, 
as listed below:

�� all features are assumed unrelated
�� it cannot learn relationships between features
�� it can suffer from “the zero probability problem”

The “zero probability problem” refers to the case when the conditional 
probability is zero for an attribute, so it fails to give a valid prediction. 
However, it can be fixed explicitly using a Laplacian estimator.

Types of Naïve Bayes Classifiers

There are three major types of NB classifiers:

�� Gaussian Naive Bayes
�� Multinomial NB Naive Bayes
�� Bernoulli Naive Bayes

Details of these classifiers are beyond the scope of this chapter, but you 
can perform an online search for more information.

Training Classifiers

Some common techniques for training classifiers are:

�� holdout method
�� k-fold cross-validation



Working with Classifiers • 187

The holdout method is the most common method, which starts by divid-
ing the dataset into two partitions called train and test (80% and 20%, 
respectively). The train set is used for training the model, and the test 
data tests its predictive power.

The k-fold cross-validation technique is used to verify that the model is 
not over-fitted. The dataset is randomly partitioned into k mutually-ex-
clusive subsets, where each partition is of equal size. One partition is for 
testing, and the other partitions are for training. You iterate throughout 
the whole of the k folds.

Evaluating Classifiers

Whenever you select a classifier for a dataset, it’s obviously important 
to evaluate the accuracy of that classifier. Some common techniques for 
evaluating classifiers are:

�� Precision and Recall
�� ROC curve (Receiver Operating Characteristics)

Precision and recall are discussed in Chapter 2 and reproduced here for 
your convenience. Let’s define the following variables:

TP = the number of true positive results
FP = the number of false positive results
TN = the number of true negative results
FN = the number of false negative results

Then the definitions of precision, accuracy, and recall are given by the 
following formulas:

precision = TP/(TN + FP)
accuracy  = (TP + TN)/[P + N]
recall    = TP/[TP + FN]

The ROC (Receiver Operating Characteristics) curve is used for the visual 
comparison of classification models that shows the trade-off between the 
true positive rate and the false positive rate. The area under the ROC 
curve is a measure of the accuracy of the model. When a model is closer 
to the diagonal, it is less accurate. A model with perfect accuracy will have 
an area of 1.0.

The ROC curve plots the True Positive Rate versus the False Positive 
Rate. Another type of curve is the PR curve that plots the Precision versus 



188 • Angular and Machine Learning Pocket Primer

Recall. When dealing with highly skewed datasets (a strong class imbal-
ance), the Precision-Recall (PR) curves give good results.

Later in this chapter, you will see many of the Keras-based classes 
(located in the tf.keras.metrics namespace) that correspond to common 
statistical terms, which include some of the terms in this section. 

This concludes the portion of the chapter pertaining to statistical 
terms and techniques for measuring the validity of a dataset. Now let’s 
look at activation functions in machine learning, which is the topic of 
the next section.

What are Activation Functions?

An activation function is (usually) a non-linear function that introduces 
non-linearity into a neural network, thereby preventing a “consolidation” 
of the hidden layers in neural network. Suppose that every pair of adja-
cent layers in a neural network involves just a matrix transformation with-
out an activation function. Such a network is a linear system, which means 
that its layers can be consolidated into a much smaller system. 

First, we can use a matrix to represent the weights of the edges that con-
nect the input layer with the first hidden layer: let’s call it W1. Next, we 
can use another matrix to represent the weights of the edges that connect 
the first hidden layer with the second hidden layer: let’s call it W2. Repeat 
this process until we reach the edges that connect the final hidden layer 
with the output layer: let’s call this matrix Wk. Since we do not have an 
activation function, we can simply multiply the matrices W1, W2, …, Wk 
together and produce one matrix: let’s call it W. We have now replaced 
the original neural network with an equivalent neural network that con-
tains one input layer, a single matrix of weight W, and an output layer. In 
other words, we no longer have our original multi-layered neural network!

Fortunately, we can prevent the previous scenario from happening when 
we specify an activation function between every pair of adjacent layers. 
In other words, an activation function at each layer prevents this “matrix 
consolidation.” Hence, we can maintain all the intermediate hidden layers 
during the process of training the neural network. 

For simplicity, let’s assume that we have the same activation function 
between every pair of adjacent layers (we’ll remove this assumption 
shortly). The process for using an activation function in a neural network 
is described as follows:



Working with Classifiers • 189

1)	 Start with an input vector x1 of numbers.

2)	 Multiply x1 by the matrix of weight W1 that represents the edges that 
connect the input layer with the first hidden layer: the result is a new 
vector x2.

3)	 “Apply” the activation function to each element of x2 to create 
another vector x3.

Now we repeat Steps 2 and 3, except that we use the “starting” vector x3 
and the weights matrix W2 for the edges that connect the first hidden 
layer with the second hidden layer (or just the output layer if there is only 
one hidden layer).

After completing the preceding process, we have “preserved” the neural 
network, which means that it can be trained on a dataset. One other thing: 
instead of using the same activation function at each step, you can replace 
each activation function by a different activation function (the choice is yours).

Why do we Need Activation Functions?

The previous section outlines the process for transforming an input vector 
from the input layer and then through the hidden layers until it reaches 
the output layer. The purpose of activation functions in neural networks 
is vitally important, so it’s worth repeating here: activation functions 
“maintain” the structure of neural networks and prevent them from being 
reduced to an input layer and an output layer. 

Hence, if we include a non-linear activation function between every pair of 
consecutive layers, then the neural network cannot be reduced with a neu-
ral network that contains fewer layers unless you explicitly remove them.

Without a non-linear activation function, we simply multiply a weight 
matrix for a given pair of consecutive layers with the output vector that 
is produced from the previous pair of consecutive layers. We repeat this 
simple multiplication until we reach the output layer of the neural net-
work. After reaching the output layer, we have effectively replaced multi-
ple matrices with a single matrix that “connects” the input layer with the 
output layer. 

How do Activation Functions Work?

If this is the first time you have encountered the concept of an activa-
tion function, it’s probably confusing, so here’s an analogy that might 



190 • Angular and Machine Learning Pocket Primer

be helpful. Suppose you’re driving your car late at night and there’s 
nobody else on the highway. You can drive at a constant speed for as 
long as there are no obstacles (stop signs, traffic lights, and so forth). On 
the other hand, suppose you drive into the parking lot of a large grocery 
store. When you approach a speed bump you must slow down, cross the 
speed bump, and increase speed again, and repeat this process for every 
speed bump. 

Think of the non-linear activation functions in a neural network as the 
counterpart to the speed bumps: you simply cannot maintain a constant 
speed, which (by analogy) means that you cannot first multiply all the 
weight matrices together and “collapse” them into a single weight matrix. 
Another analogy involves a road with multiple toll booths: you must slow 
down, pay the toll, and then resume driving until you reach the next toll 
booth. These are only analogies (and hence imperfect) to help you under-
stand the need for non-linear activation functions.

Common Activation Functions

Although there are many activation functions (and you can define your 
own if you know how to do so), here is a list of common activation func-
tions, followed by brief descriptions:

�� Sigmoid
�� Tanh
�� ReLU
�� ReLU6
�� ELU
�� SELU

The sigmoid activation function is based on Euler’s constant e, with a 
range of values between 0 and 1, and its formula is shown here:

1/[1+e^(-x)]

The tanh activation function is also based on Euler’s constant e, and its 
formula is shown here:

[e^x – e^(-x)]/[e^x+e^(-x)] 

One way to remember the preceding formula is to note that the numer-
ator and denominator have the same pair of terms: they are separated by 
a “-” sign in the numerator and a “+” sign in the denominator. The tanh 
function has a range of values between -1 and 1.



Working with Classifiers • 191

The ReLU (Rectified Linear Unit) activation function is straightforward: if 
x is negative, then ReLU(x) is 0; for all other values of x, ReLU(x) equals x. 
ReLU6 is specific to TensorFlow, and it’s a variation of ReLU(x): the addi-
tional constraint is that ReLU(x) equals 6 when x >= 6 (hence its name).

ELU is Exponential Linear Unit, and it’s the exponential “envelope” of 
ReLU, which replaces the two linear segments of ReLU with an exponential 
activation function that is differentiable for all values of x (including x = 0).

SELU is an acronym for Scaled Exponential Linear Unit, and it’s slightly more 
complicated than the other activation functions (and used less frequently). 
For a thorough explanation of these and other activation functions (along 
with graphs that depict their shape), navigate to the following Wikipedia link:

https://en.wikipedia.org/wiki/Activation_function

The preceding link provides a long list of activation functions as well as 
their derivatives.

Activation Functions in Python

Listing 5.5 displays content of the file activations.py, which contains 
the formulas for the various activation functions.

LISTING 5.5 activations.py

import numpy as np

# Python sigmoid example:
z = 1/(1 + np.exp(-np.dot(W, x))) 

# Python tanh example:
z = np.tanh(np.dot(W,x))

# Python ReLU example:
z = np.maximum(0, np.dot(W, x))

Listing 5.5 contains Python code that uses NumPy methods to define a sig-
moid function, a tanh function, and a ReLU function. Note that you need 
to specify values for x and W to launch the code in Listing 5.5.

Keras Activation Functions

TensorFlow (and many other frameworks) provide implementations for 
many activation functions, which saves you the time and effort when writ-
ing your own implementation of activation functions. 



192 • Angular and Machine Learning Pocket Primer

Here is a list of TensorFlow 2/Keras APIs activation functions that are 
located in the tf.keras.layers namespace:

�� tf.keras.layers.leaky_relu
�� tf.keras.layers.relu
�� tf.keras.layers.relu6
�� tf.keras.layers.selu
�� tf.keras.layers.sigmoid
�� tf.keras.layers.sigmoid_cross_entropy_with_logits
�� tf.keras.layers.softmax
�� tf.keras.layers.softmax_cross_entropy_with_logits_v2
�� tf.keras.layers.softplus
�� tf.keras.layers.softsign
�� tf.keras.layers.softmax_cross_entropy_with_logits
�� tf.keras.layers.tanh
�� tf.keras.layers.weighted_cross_entropy_with_logits</UL>

The following subsections provide additional information regarding some 
of the activation functions in the preceding list. Keep the following point 
in mind: for general neural networks, use ReLU as your first choice.

The ReLU and ELU Activation Functions

Currently, ReLU is often the preferred activation function. Previously, 
the preferred activation function was tanh (and before tanh, it was sig-
moid). ReLU behaves similarly to a linear unit and provides the best 
training accuracy and validation accuracy.

ReLU is like a switch for linearity: it’s “off” if you don’t need it, and its 
derivative is 1 when it’s active, which makes ReLU the simplest of all 
the current activation functions. Note that the second derivative of the 
function is 0 everywhere: it’s a very simple function that simplifies optimi-
zation. In addition, the gradient is large whenever you need large values, 
and it never “saturates” (i.e., it does not shrink to zero on the positive 
horizontal axis).

Rectified linear units and generalized versions are based on the principle 
that linear models are easier to optimize. Use the ReLU activation func-
tion or one of its related alternatives (discussed later).



Working with Classifiers • 193

The Advantages and Disadvantages of ReLU

The following list contains the advantages of the ReLU activation function:

�� does not saturate in the positive region
�� very efficient in terms of computation 
�� models with ReLU typically converge faster those with other activa-

tion functions

However, ReLU does have a disadvantage when the activation value of a 
ReLU neuron becomes 0: then the gradients of the neuron will also be 
0 during back-propagation. You can mitigate this scenario by judiciously 
assigning the values for the initial weights as well as the learning rate.

ELU

ELU is an acronym for exponential linear unit that is based on ReLU: 
the key difference is that ELU is differentiable at the origin (ReLU is a 
continuous function, but it is not differentiable at the origin). However, 
keep in mind several points. First, ELUs trade computational efficiency 
for “immortality” (immunity to dying). Read the following paper for more 
details: arxiv.org/abs/1511.07289. Secondly, ReLUs are still popular and 
preferred over ELU because the use of ELU introduces an additional 
new hyper-parameter.

Sigmoid, Softmax, and Hardmax Similarities

The sigmoid activation function has an output range in (0,1), and it 
saturates and “kills” gradients for large input values (be they positive or 
negative). Unlike the tanh activation function, sigmoid outputs are not 
zero-centered. In addition, both sigmoid and softmax (discussed later) 
are discouraged for vanilla feed forward implementation (see Chapter 6 
of the online book, Deep Learning, by Ian Goodfellow et al.). However, 
the sigmoid activation function is still used in LSTMs (specifically for 
the forget gate, input gate, and the output gate), GRUs (Gated Recurrent 
Units), and probabilistic models. Moreover, some autoencoders have 
additional requirements that preclude the use of piecewise linear activa-
tion functions.



194 • Angular and Machine Learning Pocket Primer

Softmax

The softmax activation function maps the values in a dataset to another 
set of values that are between 0 and 1, and whose sum equals 1. Thus, 
softmax creates a probability distribution. In the case of image classifi-
cation with Convolutional Neural Networks (CNNs), the softmax activa-
tion function “maps” the values in the final hidden layer to the 10 neurons 
in the output layer. The index of the position that contains the largest 
probability is matched with the index of the number 1 in the one-hot 
encoding of the input image. If the index values are equal, then the image 
has been classified, otherwise it’s considered a mismatch.

Softplus

The softplus activation function is a smooth (i.e., differentiable) approx-
imation to the ReLU activation function. Recall that the origin is the only 
non-differentiable point of the ReLU function, which is “smoothed” by 
the softmax activation whose equation is here:

f(x) = ln(1 + e^x)

Tanh

The tanh activation function has a range in (-1,1), whereas the sigmoid 
function has a range in (0,1). Both of these two activations saturate, but 
unlike the sigmoid neuron, the tanh output is zero-centered. Therefore, 
in practice, the tanh non-linearity is always preferred over the sigmoid 
nonlinearity.

The sigmoid and tanh activation functions appear in LSTMs (sigmoid 
for the three gates and tanh for the internal cell state) as well as GRUs 
(Gated Recurrent Units) during the calculations pertaining to the input 
gates, forget gates, and output gates (discussed in more detail in the next 
chapter).

Sigmoid, Softmax, and HardMax Differences

This section briefly discusses some of the differences among these three 
functions. First, the sigmoid function is used for binary classification in 
the logistic regression model, as well as the gates in LSTMs and GRUs. 
The sigmoid function is used as an activation function while building 
neural networks, but keep in mind that the sum of the probabilities is not 
necessarily equal to 1.



Working with Classifiers • 195

Second, the softmax function generalizes the sigmoid function: it’s 
used for multi-classification in the logistic regression model. The soft-
max function is the activation function for the “fully connected layer” in 
CNNs, which is the right-most hidden layer and the output layer. Unlike 
the sigmoid function, the sum of the probabilities must equal 1. You can 
use either the sigmoid function or softmax for binary (n=2) classification.

Third, the so-called “hardmax” function assigns 0 or 1 to output values 
(similar to a step function). For example, suppose that we have three 
classes {c1, c2, c3} whose scores are [1, 7, 2], respectively. The 
hardmax probabilities are [0, 1, 0], whereas the softmax probabilities 
are [0.1, 0.7, 0.2]. Notice that the sum of the hardmax probabilities 
is 1, which is also true of the sum of the softmax probabilities. However, 
the hardmax probabilities are all-or-nothing, whereas the softmax prob-
abilities are analogous to receiving “partial credit.”

What is Logistic Regression?

Despite its name, logistic regression is a classifier and a linear model with a 
binary output. Logistic regression works with multiple independent varia-
bles and involves a sigmoid function for calculating probabilities. Logistic 
regression is essentially the result of “applying” the sigmoid activation 
function to linear regression in order to perform binary classification. 

Logistic regression is useful in a variety of unrelated fields. Such fields 
include machine learning, various medical fields, and social sciences. 
Logistic regression can be used to predict the risk of developing a given 
disease based on various observed characteristics of the patient. Other 
fields that use logistic regression include engineering, marketing, and 
economics.

Logistic regression can be binomial (only two outcomes for a dependent 
variable), multinomial (three or more outcomes for a dependent varia-
ble), or ordinal (dependent variables are ordered). For instance, suppose 
that a dataset consists of data that belong either to class A or to class B. If 
you are given a new data point, logistic regression predicts whether that 
new data point belongs to class A or to class B. By contrast, linear regres-
sion predicts a numeric value, such as the next-day value of a stock.

Setting a Threshold Value

The threshold value is a numeric value that determines which data points 
belong to class A and which points belong to class B. For instance, a pass/



196 • Angular and Machine Learning Pocket Primer

fail threshold might be 0.70. A pass/fail threshold for passing a written 
driver’s test in California is 0.85.

As another example, suppose that p = 0.5 is the “cutoff” probability. Then 
we can assign class A to the data points that occur with probability > 0.5 
and assign class B to data points that occur with probability <= 0.5. Since 
there are only two classes, we do have a classifier.

A similar (yet slightly different) scenario involves tossing a well-balanced coin. 
We know that there is a 50% chance of throwing heads (let’s label this out-
come as class A) and a 50% chance of throwing tails (let’s label this outcome 
as class B). If we have a dataset that consists of labeled outcomes, then we 
have the expectation that approximately 50% of them are class A and class B.

On the other hand, we have no way to determine (in advance) what per-
centage of people will pass their written driver’s test, or the percentage 
of people who will pass their course. Datasets containing outcomes for 
these types of scenarios need to be trained, and logistic regression can be 
a suitable technique for doing so.

Logistic Regression: Important Assumptions

Logistic regression requires the observations to be independent of each 
other. In addition, logistic regression requires little or no multi-collin-
earity among the independent variables. Logistic regression handles 
numeric, categorical, and continuous variables, and also assumes linearity 
of independent variables and log odds, which is defined here:

odds = p/(1-p) and logit = log(odds)

This analysis does not require the dependent and independent variables 
to be related linearly; however, another requirement is that independent 
variables are linearly related to the log odds.

Logistic regression is used to obtain the odds ratio in the presence of 
more than one explanatory variable. The procedure is quite similar to 
multiple linear regression, with the exception that the response variable is 
binomial. The result is the impact of each variable on the odds ratio of the 
observed event of interest.

Linearly Separable Data

Linearly separable data is data that can be separated by a line (in 2D), 
a plane (in 3D), or a hyperplane (in higher dimensions). Linearly 



Working with Classifiers • 197

non-separable data is data (clusters) that cannot be separated by a line or 
a hyperplane. For example, the XOR function involves data points that 
cannot be separated by a line. If you create a truth table for an XOR func-
tion with two inputs, the points (0,0) and (1,1) belong to class 0, whereas 
the points (0,1) and (1,0) belong to class 1 (draw these points in a 2D 
plane to convince yourself). The solution involves transforming the data 
in a higher dimension so that it becomes linearly separable, which is the 
technique used in SVMS (discussed earlier in this chapter).

Keras, Logistic Regression, and Iris Dataset

Listing 5.6 displays the content of tf2-keras-iris.py, which defines a 
Keras-based model to perform logistic regression.

LISTING 5.6 tf2-keras-iris.py

import tensorflow as tf
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, 
StandardScaler

iris = load_iris()
X = iris['data']
y = iris['target']

#you can view the data and the labels:
#print("iris data:",X)
#print("iris target:",y)

# scale the X values so they are between 0 and 1
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_
scaled, y, test_size = 0.2)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(activation='relu', 
input_dim=4,units=4, kernel_initializer='uniform'))



198 • Angular and Machine Learning Pocket Primer

model.add(tf.keras.layers.Dense(activation='relu', 
units=4, kernel_initializer='uniform'))

model.add(tf.keras.layers.Dense(activation='sigmoid', 
units=1,kernel_initializer='uniform'))

# m o d e l . a d d ( t f . k e r a s . l a y e r s . D e n s e ( 1 , 
activation='softmax'))

model.compile(optimizer='adam', loss='mean_squared_
error', metrics=['accuracy'])

model.fit(X_train, y_train, batch_size=10, epochs=100)

# Predicting values from the test set

y_pred = model.predict(X_test)

# scatter plot of test values-vs-predictions

fig, ax = plt.subplots()

ax.scatter(y_test, y_pred)

ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_
test.max()], 'r*--')

ax.set_xlabel('Calculated')

ax.set_ylabel('Predictions')

plt.show()

Listing 5.6 starts with an assortment of import statements, and then 
initializes the variable iris with the Iris dataset. The variable X con-
tains the first three columns (and all the rows) of the Iris dataset, and 
the variable y contains the fourth column (and all the rows) of the Iris 
dataset.

The next portion of Listing 5.6 initializes the training set and the test set 
using an 80/20 data split. Next, the Keras-based model contains three 
Dense layers, where the first two specify the ReLU activation function 
and the third layer specifies the sigmoid activation function.

The next portion of Listing 5.6 compiles the model, trains the model, and 
then calculates the accuracy of the model via the test data. Launch the 
code in Listing 5.6 and you will see the following output:

Train on 120 samples

Epoch 1/100

120/120 [==============================] - 0s 980us/sam-
ple - loss: 0.9819 - accuracy: 0.3167

Epoch 2/100



Working with Classifiers • 199

120/120 [==============================] - 0s 162us/sam-
ple - loss: 0.9789 - accuracy: 0.3083
Epoch 3/100
120/120 [==============================] - 0s 204us/sam-
ple - loss: 0.9758 - accuracy: 0.3083
Epoch 4/100
120/120 [==============================] - 0s 166us/sam-
ple - loss: 0.9728 - accuracy: 0.3083
Epoch 5/100
120/120 [==============================] - 0s 160us/sam-
ple - loss: 0.9700 - accuracy: 0.3083
// details omitted for brevity
Epoch 96/100
120/120 [==============================] - 0s 128us/sam-
ple - loss: 0.3524 - accuracy: 0.6500
Epoch 97/100
120/120 [==============================] - 0s 184us/sam-
ple - loss: 0.3523 - accuracy: 0.6500
Epoch 98/100
120/120 [==============================] - 0s 128us/sam-
ple - loss: 0.3522 - accuracy: 0.6500
Epoch 99/100
120/120 [==============================] - 0s 187us/sam
ple - loss: 0.3522 - accuracy: 0.6500
Epoch 100/100
120/120 [==============================] - 0s 167us/sam-
ple - loss: 0.3521 - accuracy: 0.6500

Figure 5.1 displays a scatter 
plot of points based on the 
test values and the predic-
tions for those test values.

The accuracy is admittedly 
poor (abysmal?), and yet it’s 
quite possible that you will 
encounter this type of situa-
tion. Experiment with a differ-
ent number of hidden layers 
and replace the final hidden 
layer with a Dense layer that specifies a softmax activation function – or some 
other activation function – to see if this change improves the accuracy.

Figure 5.1  A Scatter Plot and a Best-Fitting Line



200 • Angular and Machine Learning Pocket Primer

Summary

This chapter started with an explanation of classification and classifiers, 
followed by a brief explanation of commonly used classifiers in machine 
learning.

Next you learned about activation functions, why they are important in 
neural networks, and also how they are used in neural networks. Then 
you saw a list of the TensorFlow 2/Keras APIs for various activation func-
tions, followed by a description of some of their merits. 

You also learned about logistic regression that involves the sigmoid acti-
vation function, followed by a Keras-based code sample involving logistic 
regression.



c h a p t e r

This chapter provides a very fast-paced introduction to TensorFlow.
js. You will find various code samples that use TensorFlow.js and 
tfjs-vis for data visualization, along with a code sample that 

uses TensorFlow.js to perform linear regression in an Angular 8 appli-
cation. After learning the basic sequence of steps for creating machine 
learning models in TensorFlow.js, you can learn how to create more com-
plex models from online blog posts and tutorials. If you are familiar with 
TF 2/Keras, then the TensorFlow.js code in this chapter will look famil-
iar to you.

The first part of this chapter provides a quick introduction to TensorFlow.
js, along with some of its features. You will learn about the TensorFlow.
js APIs that are needed in order to create, compile, and train a machine 
learning model in TensorFlow.js, as well as an API for making predic-
tions. You will see an example of how to use TensorFlow.js to perform 
linear regression in an HTML Web page.

The second part of this chapter contains examples of rendering various 
charts and graphs with tfjs-vis, including a line graph, bar chart, scatter plot, 
and a heat map. The third portion of this chapter contains a code sample 
that combines TensorFlow.js and tfjs-vis to perform linear regression 
in an HTML Web page. The final portion of this chapter shows you how 
to combine TensorFlow.js and tfjs-vis in an Angular 8 application to 
perform linear regression, render the data points, and make a prediction.

Please keep in mind a few details before you read this chapter. First, you 
do need a basic understanding of HTML and JavaScript for this chapter. 

Angular and TensorFlow.js

6



202 • Angular and Machine Learning Pocket Primer

You also need to be comfortable with the keywords async and await that 
are used in the code samples. This chapter does not provide any tutori-
al-like material for these topics, but you can easily find many online tuto-
rials that explain the HTML and JavaScript used in this chapter.

Second, this chapter assumes that you have read the material in earlier 
chapters pertaining to linear regression, as well as the Keras-related mate-
rial in the appendix. Specifically, this chapter assumes that you have at least 
a basic understanding of the terms activation functions, optimizers, MSE, 
SGD, loss function, and metrics, all of which are discussed in Chapter 4.

Third, the code samples in this chapter are not intended for produc-
tion-ready code: you need to follow the best practices for TensorFlow.
js that are available online. As you will see, the description of each code 
sample is cursory, and a minimal set of TensorFlow.js APIs is discussed in 
this chapter. If you want to delve more deeply into TensorFlow.js, please 
navigate to the official website containing the TensorFlow.js APIs:

https://js.tensorflow.org/api/latest/

What is TensorFlow.js?

As you can undoubtedly guess, TensorFlow.js is TensorFlow for modern 
browsers, which includes Chrome and Firefox, and most of the features 
of TensorFlow are available in TensorFlow.js. This chapter illustrates an 
example of TensorFlow.js in a stand-alone HTML Web page, as well as 
how to use TensorFlow.js as part of an Angular 8 application.

TensorFlow.js leverages the power of WebGL to train models in a browser 
session. Some of the APIs in TensorFlow.js are listed here:

The tf.fromPixels() API that creates a Tensor from an image.
The tf.linspace() API that is the counterpart to the np.linspace() API in 
NumPy.
The tf.oneHot() API that performs a one-hot encoding.
The tf.flatten() API that is the counterpart to flatten() in tf.data.

Keep in mind that some of the Tensorflow.js APIs return a Promise, 
and some methods are synchronous. Beyond the usual set of APIs, there 
are two other important APIs that are specific to TensorFlow.js: the 
tf.tidy() method and the tf.dispose() method. The tf.tidy() 
method essentially acts like a garbage collector, which is unavailable 
in WebGL. The tf.dispose() method performs similar functionality for 
objects that contain tensors. 



Angular and TensorFlow.js • 203

Incidentally, one convenient aspect of TensorFlow.js APIs is that they 
have package names that are parallel to the corresponding APIs in 
TensorFlow. For instance, the TensorFlow package tf.keras.layers 
corresponds to the TensorFlow.js package tf.layers. You can now infer 
that the TensorFlow.js API tf.layers.dense corresponds to the API 
tf.keras.layers.Dense in TensorFlow.

Although it’s not necessary right now (perhaps at some point later in this 
chapter), it’s worth your while to spend some time perusing the detailed 
list of the TensorFlow.js APIs at this URL:

https://js.tensorflow.org/api/latest/

ML Models in TensorFlow.js

TensorFlow.js gives you several options for working with TensorFlow 
models in a browser:

�� Import trained models.
�� Retrain models.
�� Create models in a browser.

If you already have a TensorFlow model, you can convert that model to 
the TensorFlow.js format and then use that model in a Web browser. The 
details of model conversion are here:

https://www.tensorflow.org/js/guide/conversion

Another possibility is to take advantage of transfer learning: you start with 
a previously trained model and then perform some (hopefully minimal) 
additional training with your own data.

The code samples in this chapter involve models that have been developed 
in Firefox version 72.0.1.

A Simple HTML Web Page with TensorFlow.js

Listing 6.1 displays the content of tfjs-hello.html, which illustrates 
how to reference the JavaScript code that pertains to TensorFlow.js and 
display a simple message.

LISTING 6.1 tfjs-hello.html

<html>
  <head>
    <!-- Load TensorFlow.js -->

NOTE



204 • Angular and Machine Learning Pocket Primer

    <script 
   src=”https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/
dist/tf.min.js”> 
    </script>
  </head>
  <body>
      Hello
  </body>
</html

Listing 6.1 contains a <script> element that references the TensorFlow.
js code, which does nothing in this example. The Web page displays the 
word “Hello” and nothing more.

Working with Tensors in TensorFlow.js

TensorFlow.js provides several methods for working with tensors. The 
tensor() method supports multi-dimensional data points, but does not 
indicate the dimensionality of the data. Fortunately, TensorFlow.js pro-
vides dimension-specific APIs, such as the tensor2d() method for 2D 
data points, the tensor3d() method for 3D data points, and so forth, up 
to the tensor6d() method for data points of dimension 6.

For example, the following code snippet defines a 2-dimensional tensor 
that has a “shape” of 4x1:

const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);

The term “shape” refers to the dimensionality of the elements in a tensor. 
Thus, the preceding code snippet specifies 4 samples, each of which con-
tains a single value.

You learned in the machine learning chapter that linear regression 
involves a set of data points and a set of labels. For example, suppose we 
define the following array of input values:

var inputV = [[1,3], [2,6], [3,9]];

The corresponding tensor would be defined like the following:

const inputT = tf.tensor2d(inputV, [inputV.length, 1]);

Similarly, suppose that the corresponding labels are defined as follows:

var labelV = [[10], [20], [30]];



Angular and TensorFlow.js • 205

The corresponding tensor for the labels would be defined like the 
following:

const labelT = tf.tensor2d(labelV, [labelV.length, 1]);

As you can see in the definition of inputT and labelT, the first argu-
ment is the actual data and the second argument specifies the shape of 
the data.

Machine Learning APIs in TensorFlow.js

This section contains some of the TensorFlow.js APIs for defining machine 
learning models in TensorFlow.js. As you learned from earlier chapters, 
there are several steps involved in training a machine learning model (illus-
trated with Keras-based APIs in the appendix). In this section, we’ll see 
an example of creating a very rudimentary model in TensorFlow.js that 
implements the sequence of steps shown below:

�� Define a model.
�� Add one or more layers to the model.
�� Compile the model.
�� Initialize some data values.
�� Fit (train) the model.
�� Make some predictions.

Let’s see how to implement the preceding steps, starting with the simplest 
definition of a model in TensorFlow.js:

const model = tf.sequential();

The tf.sequential() API is for a model in which the outputs from 
one layer are the inputs to the next adjacent layer (in a left-to-right 
direction). TensorFlow.js also supports another model via the tf.
model() API, and you can learn about this model from the TensorFlow.
js documentation.

Next, the following code snippet adds a dense (i.e., fully connected) layer 
to the defined model:

model.add(tf.layers.dense({units:32,inputShape:[64]}));

The first layer (which is the preceding code snippet) must specify the 
input shape, which in this case is 64. TensorFlow.js uses automatic shape 
inference to determine the shape of the subsequent layers in a model.



206 • Angular and Machine Learning Pocket Primer

Now initialize the tensors xs and ys that represent the input and output 
values, respectively:

const xs = tf.tensor2d([1,2,3,4,5,6,7,8,],    [8,1]);
const ys = tf.tensor2d([3,6,9,12,15,18,21,24],[8,1]);

Now we can train this sequential model by invoking the fit() method, as 
shown here:

model.fit(xs, ys);

At this point our model has been trained with the training data, so we can 
make a prediction with this code snippet:

model.predict(tf.tensor2d([10], [1, 1])).print()

You now know the basic sequence of steps that are necessary in order to 
create, compile, and train a model in TensorFlow.js, as well as make pre-
dictions with that trained model. 

Now let’s look at an HTML Web page that uses TensorFlow.js to train a 
linear regression model and displays the result, which is the topic of the 
next section.

Linear Regression with TensorFlow.js

Listing 6.2 displays the content of tfjs-linreg1.html, which illus-
trates how to perform linear regression with TensorFlow.js.

LISTING 6.2 tfjs-linreg1.html

<html>
  <head>
    <script src="https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs/dist/tf.min.js"> </script>
    <title>Hello from TensorFlowJS!</title>
  </head>

  <body>
    <h3>Linear Regression and Some Predictions</h3>
    <ul id="mylist"></ul>

    <script>
      async function LinearRegression(){
        // 1) DEFINE THE MODEL:
        const model = tf.sequential();



Angular and TensorFlow.js • 207

        model.add(
            tf.layers.dense({
                units:1,
                inputShape:[1],
                bias: true
            })
        );

        // 2) COMPILE THE MODEL:
        // specify the loss, optimizer, and metrics:
        model.compile({
            loss:'meanSquaredError',
            optimizer: 'sgd',
            metrics: ['mse']
        });

        // 3) FIT/TRAIN THE MODEL:
        // y = 2*x+1 (relationship between xs and ys)
        const xs = tf.tensor1d([1,2,3,4,5,6,7,8,9,10]);
        const ys = tf.tensor1d([3,5,7,9,11,13,15,17,19,21]);
        await model.fit(xs, ys, {epochs:100});

        // 4) MAKE SOME PREDICTIONS
        // 4a) PREDICT Y for X=-30:
        var list1 = document.getElementById('mylist');
        var item1 = document.createElement('li');
        var pred1 = model.predict(tf.tensor1d([-30])).
dataSync();
        var data1 = document.createTextNode("Pre-
dict(-30):"+pred1);
        item1.appendChild(data1);
        list1.appendChild(item1);
        // 4a) PREDICT Y for X=50:
        var item2 = document.createElement('li');
        var pred2 = model.predict(tf.tensor1d([50])).
dataSync();
        var data2 = document.createTextNode("Predict(50):"+pred2);
        item2.appendChild(data2);
        list1.appendChild(item2);
        // 4c) PREDICT Y for X=100:
        var item3 = document.createElement('li');
        var pred3 = model.predict(tf.tensor1d([100])).
dataSync();



208 • Angular and Machine Learning Pocket Primer

        var data3 = document.createTextNode("Pre-
dict(100):"+pred3);
        item3.appendChild(data3);
        list1.appendChild(item3);
     }

     LinearRegression();
    </script>
  </body>
</html>

Listing 6.2 starts with a <script> element that references the 
TensorFlow.js code, followed by a <body> element that contains four 
main sections, as shown here:

// 1) DEFINE THE MODEL:
// 2) COMPILE THE MODEL:
// 3) FIT/TRAIN THE MODEL:
// 4) MAKE SOME PREDICTIONS

The first section defines the variable model as an instance of the 
TensorFlow.js Sequential model, which resembles tf.keras.lay-
ers.Sequential that is discussed in the Keras-related appendix. Next, 
the model variable adds a single layer via the dense API in TensorFlow.js.

The second section specifies three parameter values, as shown here:

model.compile({
    loss:'meanSquaredError',
    optimizer: 'sgd',
    metrics: ['mse']
});

The purpose of these parameters has been discussed in previous chapters, 
and you can review that material if you need to refresh your memory. 

The third section initializes the variables xs and ys and then invokes the 
fit() method of the model variable in order to train this model.

The fourth section contains three predictions for the value of Y when the 
value of X is –30, 50, and 100. The key idea is to invoke the predict() 
method of the model variable, once for each of the preceding values of 
X. For instance, this code snippet predicts the value of Y when the value 
of X is –30:

var pred1 = model.predict(tf.tensor1d([-30])).dataSync();



Angular and TensorFlow.js • 209

If need be, you can enhance the HTML code to create a more aestheti-
cally pleasing effort (or you can simplify the code as well). 

Launch this Web page in a browser and you will see the following output:

Linear Regression and Some Predictions
Predict(-30):-61.6697998046875 
Predict(50):104.10870361328125
Predict(100):207.7202606201172

According to the formula y = 2*x + 1, the correct values for –30, 50, 
and 100 are –59, 101, and 201, respectively. As you can see, the predic-
tions are less accurate for larger positive (and negative) values of X.

Now let’s see how to combine TensorFlow.js with Angular, which is the 
topic of the next section.

Angular, TensorFlow.js, and Linear Regression

This section contains an example of combining TensorFlow.js with 
Angular, and then training a model via linear regression. Copy the direc-
tory NGTFJSLinReg from the companion files into a convenient location. 
Listing 6.3 displays the content of app.component.ts, which  uses a 
good portion of the code from the previous section.

LISTING 6.3 app.component.ts

import { Component } from '@angular/core';
import * as tf       from '@tensorflow/tfjs';

// remember: npm install @tensorflow/tfjs -–save

@Component({
  selector: 'app-root',
  styleUrls: ['./app.component.css'],
  template: `
    <h3>Prediction for Value 50:</h3>
    <div id="mydiv">
     {{predict}}
    </div>
  `,  
})
export class AppComponent {



210 • Angular and Machine Learning Pocket Primer

  title = 'NGTFJSLinReg';
  public predict = ""; 

  constructor() {
     this.LinearRegression();
  }

  private async LinearRegression(){
     // 1) DEFINE THE MODEL:
     const model = tf.sequential();

     model.add(
       tf.layers.dense({
           units:1,
           inputShape:[1]
       })  
     );

     // 2) COMPILE THE MODEL:
     // specify the loss, optimizer, and metrics:
     model.compile({
        loss:'meanSquaredError',
        optimizer: 'sgd',
        metrics: ['mse']
     });

     // 3) FIT/TRAIN THE MODEL:
     // y = 2*x+1 (relationship between xs and ys)
     const xs = tf.tensor1d([1,2,3,4,5,6,7,8,9,10]);
     const ys = tf.tensor1d([3,5,7,9,11,13,15,17,19,21]);
     await model.fit(xs, ys, {epochs:100});

     // 4) MAKE SOME PREDICTIONS
     // 4a) PREDICT Y for X=50:
     var mydiv = document.getElementById('mydiv');
     mydiv.innerText += model.predict(tf.tensor1d([50]));
  }
}

Listing 6.3 contains an import statement for Component, followed by 
another import statement for the tfjs code. Note the comment with an 
npm command to install TensorFlow.js in this Angular application. 

The next section contains boilerplate code, except for the template prop-
erty, which includes an HTML <div> element that will be populated 
with the output from the prediction (performed in Step 4 below).



Angular and TensorFlow.js • 211

The next portion of Listing 6.3 defines an empty constructor that invokes 
a private method that contains all the TensorFlow-related functionality. 
Notice that the method LinearRegression (which is invoked in the 
constructor) is defined with the following signature:

private async LinearRegression(){. . .}

The preceding signature is slightly different from what you saw in the 
previous section, as shown here:

function async LinearRegression(){. . .}

The LinearRegression method has four main sections, as shown here:

// 1) DEFINE THE MODEL:
// 2) COMPILE THE MODEL:
// 3) FIT/TRAIN THE MODEL:
// 4) MAKE SOME PREDICTIONS

 The first section defines the variable model as an instance of the 
TensorFlow.js Sequential model, which resembles tf.keras.lay-
ers.Sequential (discussed in the Keras-related appendix). Next, the 
model variable adds a single tf.layers.dense layer that specifies an 
input shape of size 1.

Notice that the tf.layers.dense API does not support the bias prop-
erty that is specified in the code in the preceding section.

The second section specifies three parameter values, as shown here:

model.compile({
    loss:'meanSquaredError',
    optimizer: 'sgd',
    metrics: ['mse']
});

The purpose of these parameters has been discussed in previous chapters, 
and you can review that material if you need to refresh your memory. 

The third section initializes the variables xs and ys and then invokes 
the fit() method of the model variable in order to train this model. The 
fourth section contains a prediction for the value of Y when the value of 
X is 50 by invoking the predict() method of the variable model. Now 
launch this Web page in a browser and you will see the following output:

Prediction for Value 50:
Tensor
[[104.7459564],]



212 • Angular and Machine Learning Pocket Primer

According to the formula y = 2*x + 1, the correct value for 50 is 
101, and the predicted value differs from the exact value by more than 
three.

Now that you know how to create basic code samples with TensorFlow.
js and also how to combine TensorFlow.js in an Angular application, let’s 
look at tfjs-vis, which gives you the ability to display line graphs, bar 
charts, histograms, and so forth in an HTML Web page.

Creating Line Graphs in tfjs-vis

Listing 6.4 displays the content of tfjsvis-linegraph.js, which con-
tains the data for a line graph. Listing 6.3 displays the content of tfjs-
vis-linegraph.html, which illustrates how to use tfjs-vis to display 
a line graph. 

LISTING 6.4 tfjsvis-linegraph.js

// define the data points
values = [
  [{x: 10, y: 20}, {x: 20, y: 30}, {x: 30, y: 5},  {x: 
40, y: 12}],
  [{x: 10, y: 40}, {x: 20, y: 0},  {x: 30, y: 50}, {x: 
40, y: -5}]
];  
      
// legend-related information 
let series = ['Dataset1', 'Dataset2'];
        
// render the line graph
tfvis.render.linechart(document.getElementBy-
Id('plot1'), {values, series}, {
  xLabel: 'x-axis',
  yLabel: 'y-axis'
});

Listing 6.4 defines the variables values with data points and the variable 
series that contains the strings to display in a legend. The final portion 
of Listing 6.4 invokes the tfvis API for rendering a line graph in the 
HTML <div> element whose class value is plotted.



Angular and TensorFlow.js • 213

LISTING 6.5 tfjsvis-linegraph.html

<html>
  <head>
    <script src="https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs@latest"> </script>
    <script src="https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs-vis@latest”> </script>

    <style>
      .plot {
        display: inline-block;
        width: 50%;
        margin: 10px;
      }
    </style>
  </head> 
  <body>
    <div class="plot" id="plot1"></div>
  </body>

  <script src="tfjsvis-barchart.js"> </script>
</html>

Listing 6.5 contains a <head> element with two <script> elements that 
reference the necessary tfjs-vis JavaScript code for rendering charts and 
graphs. The <style> element specifies some properties for layout purposes.

The next portion of Listing 6.5 defines a <div> element where the line 
graph will be rendered, and the final code snippet in Listing 6.5 is a 
<script> element that references the code in tfjsvis-barchart.js.

Figure 6.1 shows a line graph that is displayed when you launch the code 
in Listing 6.5.

Figure 6.1  A Line Graph



214 • Angular and Machine Learning Pocket Primer

Creating Bar Charts in tfjs-vis

Listing 6.6 displays the content of tfjsvis-barchart.js, which con-
tains the data for a bar chart. Listing 6.7 displays the content of tfjs-
vis-barchart.html, which illustrates how to use tfjs-vis to display 
a bar chart.

LISTING 6.6 tfjsvis-barchart.js

// define the data points
const data = [
   {index: ‘foo’, value: 1}, {index: ‘bar’, value: 7}, 
   {index: 3, value: 3}, {index: 5, value: 6}];

// render the bar chart
tfvis.render.barchart(document.getElementById(‘plot1’), 
data, {
  yLabel: ‘y-axis’,
  width:  400
});

Listing 6.5 defines the variables values with data points and the data 
series that contains the strings to display in a legend. The final portion 
of Listing 6.5 invokes the tfvis.render.barchart API for rendering 
a bar chart in the HTML <div> element whose class value is plotted.

LISTING 6.7 tfjsvis-barchart.html

<html>
  <head>
    <script src=”https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs@latest”> </script>
    <script src=”https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs-vis@latest”> </script>

    <style>
      .plot {
        display: inline-block;
        width: 50%;
        margin: 10px;
      }
    </style>
  </head> 



Angular and TensorFlow.js • 215

  <body>
    <div class=”plot” id=”plot1”></div>
  </body>

  <script src=”tfjsvis-barchart.js”> </script>
</html>

Listing 6.7 contains a <head> element with two <script> elements that 
reference the necessary tfjs-vis JavaScript code for rendering charts 
and graphs. The <style> element specifies some properties for layout 
purposes.

The next portion of Listing 6.7 defines a <div> element where the line 
graph will be rendered, and the final code snippet in Listing 6.7 is a 
<script> element that references the code in tfjsvis-barchart.js.

Figure 6.2 shows a bar chart that is displayed when you launch the code 
in Listing 6.7.

Figure 6.2  A Bar Chart

Creating Scatter Plots in tfjs-vis

Listing 6.8 displays the content of tfjsvis-scatterplot.js, which 
contains the data for a scatter plot. Listing 6.9 displays the content of the 
HTML Web page tfjsvis-scatterplot.html, which illustrates how 
to use tfjs-vis to display a scatter plot.

LISTING 6.8 tfjsvis-scatterplot.js

// define the data points
const data = [



216 • Angular and Machine Learning Pocket Primer

   {index: ‘foo’, value: 1}, {index: ‘bar’, value: 7}, 
   {index: 3, value: 3}, {index: 5, value: 6}];

// render the bar chart
tfvis.render.barchart(document.getElementById(‘plot1’), 
data, {
  yLabel: ‘y-axis’,
  width:  400
});

Listing 6.8 defines the variables values with data points and the data 
series that contains the strings to display in a legend. The final portion 
of Listing 6.8 invokes the tfvis.render.barchart API for rendering 
a bar chart in the HTML <div> element whose class value is plotted.

LISTING 6.9 tfjsvis-scatterplot.html

<html>
  <head>
    <script src=”https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs@latest”> </script>
    <script src=”https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs-vis@latest”> </script>

    <style>
      .plot {
        display: inline-block;
        width: 50%;
        margin: 10px;
      }
    </style>
  </head> 

  <body>
    <div class=”plot” id=”plot1”></div>
  </body>

  <script src=”tfjsvis-barchart.js”> </script>
</html>

Listing 6.9 contains a <head> element with two <script> elements that 
reference the necessary tfjs-vis JavaScript code for rendering charts 
and graphs. The <style> element specifies some properties for layout 
purposes.



Angular and TensorFlow.js • 217

The next portion 
of Listing 6.9 
defines a <div> 
element where 
the scatter plot 
will be rendered, 
and the final code 
snippet in Listing 
6.9 is a <script>  
element that ref-
erences the code 
in tfjsvis-scatterplot.js.

Figure 6.3 shows a scatter plot that is displayed when you launch the code 
in Listing 6.9.

Creating Histograms in tfjs-vis

Listing 6.10 displays the content of tfjsvis-histogram.js, which 
contains the data for a histogram. Listing 6.11 displays the content of the 
HTML Web page tfjsvis-histogram.html, which illustrates how to 
use tfjs-vis to display a histogram.

LISTING 6.10 tfjsvis-histogram.js

// define the data points
data = [1, 5, 12, 12, 5, 10, -2, -8];

// render the histogram
tfvis.render.histogram(document.getElementBy-
Id(‘plot1’), data, {
  maxBins: 5,
  width: 400
});

Listing 6.10 defines the variables values with data points and the data 
series that contains the strings to display in a legend. The final portion 
of Listing 6.10 invokes the tfvis.render.histogram API for ren-
dering a histogram in the HTML <div> element whose class value is 
plotted.

Figure 6.3  A Scatter Plot



218 • Angular and Machine Learning Pocket Primer

LISTING 6.11 tfjsvis-histogram.html

<html>
  <head>
    <script src=”https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs@latest”> </script>
    <script src=”https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs-vis@latest”> </script>

    <style>
      .plot {
        display: inline-block;
        width: 50%;
        margin: 10px;
      }
    </style>
  </head> 

  <body>
    <div class=”plot” id=”plot1”></div>
  </body>

  <script src=”tfjsvis-histogram.js”> </script>
</html>

Listing 6.11 contains a <head> element with two <script> elements 
that reference the necessary tfjs-vis JavaScript code for rendering 
charts and graphs. The <style> element specifies some properties for 
layout purposes.

The next portion of Listing 6.11 defines a <div> element where the 
histogram will be rendered, and the final code snippet in Listing 6.10 
is a <script> 
element that 
references the 
code in tfjs-
v i s - h i s t o -
gram.js.

Figure     6.4 
shows a histo-
gram that is dis-
played when you 
launch the code 
in Listing 6.11. Figure 6.4  A Histogram



Angular and TensorFlow.js • 219

Creating Heat Maps in tfjs-vis

Listing 6.12 displays the content of tfjsvis-heatmap.js, which con- 
tains the data for a heat map. Listing 6.13 displays the content of the 
HTML Web page tfjsvis-heatmap.html, which illustrates how to use 
tfjs-vis to display a heat map.

LISTING 6.12 tfjsvis-heatmap.js

// render the heat map
tfvis.render.heatmap(document.getElementById(‘plot1’), 
{ 
  values: [[1,0,0], [0,0.5,0.8], [0,0.8,0.5]],
  xTickLabels: [‘Tall’, ‘Medium’, ‘Short’], 
  yTickLabels: [‘Tall’, ‘Medium’, ‘Short’]
}, {
  width:  500,
  height: 500, 
  xLabel: ‘TypeA’,
  yLabel: ‘TypeB’,
  colorMap: ‘reds’
});

Listing 6.12 defines the variable values with data points and two strings 
to display in the horizontal and vertical axes of the heat map. The final 
portion of Listing 6.12 invokes the tfvis.render.heatmap API for 
rendering a heat map in the HTML <div> element whose class value 
is plotted.

LISTING 6.13 tfjsvis-heatmap.html

<html>
  <head>
    <script src=”https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs@latest”> </script>
    <script src=”https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs-vis@latest”> </script>

    <style>
      .plot {
        display: inline-block;
        width: 50%;
        margin: 10px;
      }



220 • Angular and Machine Learning Pocket Primer

    </style>
  </head> 

  <body>
    <div class=”plot” id=”plot1”></div>
  </body>

  <script src=”tfjsvis-heatmap.js”> </script>
</html>

Listing 6.13 contains a <head> element with two <script> elements 
that reference the necessary tfjs-vis JavaScript code for rendering 
charts and graphs. The <style> element specifies some properties for 
layout purposes.

The next portion of Listing 6.13 defines a <div> element where the 
heat map will be rendered, and the final code snippet in Listing 6.13 is a 
<script> element that references the code in tfjsvis-heatmap.js.

Figure 6.5 shows a heat map that is displayed when you launch the code 
in Listing 6.13.

Figure 6.5  A Heat Map



Angular and TensorFlow.js • 221

This concludes the portion of the chapter pertaining to some of the data 
visualization functionality that is available in tfjs-vis. The next portion 
of the chapter contains a code sample that combines TensorFlow.js and 
tfjs-vis in an Angular application that performs linear regression.

TensorFlow.js, tfjs-vis, and Linear Regression

Listing 6.14 displays the content of tfjs-vis-linreg1.html, which 
illustrates how to generate a set of random-like values and then use 
machine learning and linear regression to determine the best-fitting line.

LISTING 6.14 tfjs-vis-linreg1.html

<html>
  <head>
    <script src="https://cdn.jsdelivr.net/npm/@tensor-
flow/tfjs@latest"> 
    </script>
    <script 
      src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-
vis@latest"> 
    </script>

    <style>
      .plot {
        width: 100%;
        height: 40%;
        margin: 4px;
      }

      .btn {
        display: float-left;
      }
    </style>
  </head>

  <body>
    <div id="mydiv"></div>

    <div>
    <button class="btn" type="button" onclick="trainLin-
earModel()">Train the Model</button>



222 • Angular and Machine Learning Pocket Primer

    </div>
    <!-- the scatterplot is displayed here: -->
    <div class="plot" id="plot1"></div>
  </body>

  <script>
   async function trainLinearModel() {
     //----------------------------------
     // Define a simple model that
     // 1) has a single input (numeric value)
     // 3) is connected to the output layer
     // 4) is an output layer of one neuron
     //----------------------------------

     const model = tf.sequential();
     model.add(tf.layers.dense({units: 1, inputShape: 
[1]}));
     model.compile({
        loss: 'meanSquaredError',
        optimizer: 'sgd'
     });

     var epochs  = 100
     var maxRand = 30
     var count   = 100
     items1 = []
     itemsX = []
     itemsY = []
     values = []

     // define the data points
     for(var i=0; i<count; i++) {
       x = i
       y = 2*x + 1 + Math.random()*maxRand

       items1.push({"x":x, "y":y})
       itemsX.push(x)
       itemsY.push(y)
     }

     values.push(items1)

     const xs = tf.tensor1d([1,2,3,4,5,6,7,8,9,10]);
     const ys = tf.tensor1d([3,5,7,9,11,13,15,17,19,21]);



Angular and TensorFlow.js • 223

     // legend-related information
     let series1 = ['Dataset1', 'Dataset2'];

     // render the scatter plot in the 'plot1' element:
     tfvis.render.scatterplot(document.getElementBy-
Id('plot1'), {values,series1}, {
       width:  600,
       xLabel: 'x-axis',
       yLabel: 'y-axis'
     })

     // train the model:
     await model.fit(xs, ys, {epochs: epochs});

     // predict the value of y when x = 52.5:
     var mydiv = document.getElementById('mydiv');
     mydiv.innerText += "Prediction for 52.5: "+
                   model.predict(tf.tensor1d([50]));
   }
  </script>
</html>

Listing 6.14 contains a <head> element with <script> elements that 
reference the necessary tfjs-vis JavaScript code for rendering charts 
and graphs and for the TensorFlow.js code. The <style> element speci- 
fies some properties for layout purposes.

The next portion of Listing 6.14 defines a <div> element that contains a 
<button> element for invoking the training process. Another <div> ele- 
ment specifies where the scatter plot will be rendered for the data points 
in this example.

The next portion of Listing 6.14 contains a <script> element with the 
function trainLinearModel(), which contains all the code to perform 
linear regression. As you can see, the next block of code defines the varia-
ble model, adds a single layer, and then compiles the model, just like you 
have seen in previous code samples.

Before we can train the model via the fit() method, we need to generate 
some data values. In this example, a for loop iterates through the x val-
ues, which are the integers from 1 to 100, and then calculates the corre-
sponding y values, as shown here:

// define the data points
for(var i=0; i<count; i++) {



224 • Angular and Machine Learning Pocket Primer

   x = i
   y = 2*x + 1 + Math.random()*maxRand

   items1.push({"x":x, "y":y})
   itemsX.push(x)
   itemsY.push(y)
}

The arrays itemsX and itemsY contain the x values and y values, respec-
tively, and the array items1 contains the value pairs (x,y).

The next portion of Listing 6.13 contains the code for rendering a scatter 
plot, which is virtually identical to the code that you saw in an earlier 
example.

The next code snippet trains the model via the fit() method, in exactly 
the same way as previous code samples, as shown here:

await model.fit(xs, ys, {epochs: epochs});

Finally, the last portion of Listing 6.14 invokes the predict() method of 
the variable model in order to predict the value of y when the value of x 
is 52.5, and then populates this value in the appropriate <div> element, 
as shown here:

// predict the value of y when x = 52.5:
var mydiv = document.getElementById('mydiv');
mydiv.innerText += "Prediction for 52.5: "+
                       model.predict(tf.tensor1d([50]));

Figure 6.6 displays the contents of the Web page after you launch the 
code in Listing 6.14 and click on the top-most button.

Figure 6.6  A Machine Learning Prediction



Angular and TensorFlow.js • 225

Summary

This chapter started with a quick introduction to some aspects TensorFlow.
js, along with an example of performing linear regression in an HTML 
Web page with TensorFlow.js.

Next, you saw an assortment of examples of charts and graphs using tfjs-
vis, including a line graph, a bar chart, a scatter plot, and a heat map. 

In addition, you learned how to combine TensorFlow.js and tfjs-vis to 
perform linear regression in an HTML Web page. Finally, you saw how 
to combine TensorFlow.js and tfjs-vis in an Angular 8 application to 
perform linear regression, render the data points, and make a prediction.





A p p e n d i x

This appendix introduces you to Keras, along with code samples 
that illustrate how to define basic neural networks and deep neural 
networks with various datasets, such as MNIST and cifar10.

The first part of this appendix briefly discusses some of the important 
namespaces (such as tf.keras.layers) and their contents, as well as a 
simple Keras-based model.

The second section contains an example of performing linear regression 
with Keras and a simple CSV file. You will also see a Keras-based MLP 
neural network that is trained on the MNIST dataset.

The third section contains a simple example of training a neural network 
with the cifar10 dataset. This code sample is similar to training a neural 
network on the MNIST dataset, and requires a very small code change. 

The final section contains two examples of Keras-based models that 
perform early stopping, which is convenient when the model exhibits 
minimal improvement (that is determined by you) during the training 
process.

What is Keras? 

If you are already comfortable with Keras, you can skim this section to 
learn about the new namespaces and what they contain. Then proceed to 
the next section that contains details for creating a Keras-based model.

Introduction to Keras

A



228 • Angular and Machine Learning Pocket Primer

If you are new to Keras, you might be wondering why this section is 
included in this appendix. First, Keras is well-integrated into TF 2, and 
it’s in the tf.keras namespace. Second, Keras is well-suited for defin-
ing models to solve a myriad of tasks, such as linear regression and logis-
tic regression, as well as deep learning tasks involving the CNNs, RNNs, 
and LSTMs.

The next several subsections contain lists of bullet items for various 
Keras-related namespaces, and they will be very familiar if you have 
worked with TF 1.x. If you are new to TF 2, you’ll see examples of some of 
the classes in subsequent code samples.

Working with Keras Namespaces in TF 2

TF 2 provides the tf.keras namespace, which in turn contains the fol-
lowing namespaces:

�� tf.keras.layers
�� tf.keras.models
�� tf.keras.optimizers
�� tf.keras.utils
�� tf.keras.regularizers

The preceding namespaces contain various layers in Keras models, dif-
ferent types of Keras models, optimizers (Adam et al.), utility classes, and 
regularizers (such as L1 and L2).

Currently, there are three ways to create Keras-based models, via the

�� Sequential API
�� Functional API
�� Model API

The Keras-based code samples in this book use primarily the Sequential 
model (it’s the most intuitive and straightforward). The Sequential 
model enables you to specify a list of layers, most of which are available 
in the tf.keras.layers namespace (discussed later). 

The Keras-based models that use the functional API involve specifying 
layers that are passed as function-like elements in a pipeline-like fashion. 
Although the functional API provides some additional flexibility, you will 
probably use the Sequential API to define Keras-based models if you are 
a TF 2 beginner.

The model-based API provides the greatest flexibility, and it involves 
defining a Python class that encapsulates the semantics of your Keras 



Introduction to Keras • 229

model. This class is a subclass of the tf.model.Model class, and you 
must implement the two methods __init__ and call in order to define 
a Keras model in this subclass. 

Perform an online search for more details regarding the Functional API 
and the Model API.

Working with the tf.keras.layers Namespace

The most common (and also the simplest) Keras-based model is the 
Sequential() class that is in the tf.keras.models namespace. This 
model is comprised of various layers that belong to the tf.keras.lay-
ers namespace, as shown here:

�� tf.keras.layers.Conv2D()
�� tf.keras.layers.MaxPooling2D()
�� tf.keras.layers.Flatten()
�� tf.keras.layers.Dense()
�� tf.keras.layers.Dropout()
�� tf.keras.layers.BatchNormalization()
�� tf.keras.layers.embedding()
�� tf.keras.layers.RNN()
�� tf.keras.layers.LSTM()
�� tf.keras.layers.Bidirectional

The Conv2D() and MaxPooling2D() classes are used in Keras-based 
models for CNNs. Generally speaking, the next six classes in the preced-
ing list can appear in models for CNNs as well as models for machine 
learning. The RNN() class is for simple RNNs and the LSTM class is 
for LSTM-based models. The Bidirectional() class is a bi-direc-
tional LSTM that you will often see in models for solving NLP (Natural 
Language Processing) tasks. Two very important NLP frameworks that 
use bidirectional LSTMs were released as open source (on GitHub) in 
2018: ELMo from Facebook and BERT from Google. 

Working with the tf.keras.activations Namespace

Machine learning and deep learning models require activation functions. 
For Keras-based models, the activation functions are in the tf.keras.
activations namespace, some of which are listed here:

�� tf.keras.activations.relu
�� tf.keras.activations.selu
�� tf.keras.activations.linear



230 • Angular and Machine Learning Pocket Primer

�� tf.keras.activations.elu
�� tf.keras.activations.sigmoid
�� tf.keras.activations.softmax
�� tf.keras.activations.softplus
�� tf.keras.activations.tanh 

The ReLU/SELU/ELU functions are closely related, and they often appear 
in ANNs (Artificial Neural Networks) and CNNs. Before the relu() func-
tion became popular, the sigmoid() and tanh() functions were used 
in ANNs and CNNs. However, they are still important, and they are used 
in various gates in GRUs and LSTMs. The softmax() function is typically 
used in the pair of layers consisting of the right-most hidden layer and 
the output layer. 

Working with the keras.tf.datasets Namespace

For your convenience, TF 2 provides a set of built-in datasets in the tf.
keras.datasets namespace, some of which are listed here:

�� tf.keras.datasets.boston_housing
�� tf.keras.datasets.cifar10
�� tf.keras.datasets.cifar100
�� tf.keras.datasets.fashion_mnist
�� tf.keras.datasets.imdb
�� tf.keras.datasets.mnist
�� tf.keras.datasets.reuters

The preceding datasets are popular for training models with small data-
sets. The mnist dataset and fashion_mnist dataset are both popular 
when training CNNs, whereas the boston_housing dataset is pop-
ular for linear regression. The Titanic dataset is also popular for linear 
regression, but it’s not currently supported as a default dataset in the tf.
keras.datasets namespace.

Working with the tf.keras.experimental Namespace

The contrib namespace in TF 1.x has been deprecated in TF 2, and its 
successor is the tf.keras.experimental namespace, which contains 
the following classes (among others):

�� tf.keras.experimental.CosineDecay
�� tf.keras.experimental.CosineDecayRestarts
�� tf.keras.experimental.LinearCosineDecay



Introduction to Keras • 231

�� tf.keras.experimental.NoisyLinearCosineDecay
�� tf.keras.experimental.PeepholeLSTMCell

If you are a beginner, you probably won’t use any of the classes in the 
preceding list. Although the PeepholeLSTMCell class is a variation of 
the LSTM class, there are limited use cases for this class.

Working with Other tf.keras Namespaces

TF 2 provides a number of other namespaces that contain useful classes, 
some of which are listed here:

�� tf.keras.callbacks     (early stopping)
�� tf.keras.optimizers    (Adam et al.)
�� tf.keras.regularizers  (L1 and L2)
�� tf.keras.utils         (to_categorical)

The tf.keras.callbacks namespace contains a class that you can use 
for early stopping, which is to say that it’s possible to terminate the train-
ing process if there is an insufficient reduction in the loss function in two 
successive iterations.

The tf.keras.optimizers namespace contains the various optimizers 
that are available for working in conjunction with the loss functions, which 
includes the popular Adam optimizer.

The tf.keras.regularizers namespace contains two popular reg-
ularizers: the L1 regularizer (also called LASSO in machine learning) 
and the L2 regularizer (also called the Ridge regularizer in machine 
learning). L1 is for the MAE (Mean Absolute Error) and L2 is for the MSE 
(Mean Squared Error). Both of these regularizers act as penalty terms 
that are added to the chosen loss function to reduce the influence of 
the features in a machine learning model. Note that LASSO can drive 
values to zero, with the result that features are actually eliminated 
from a model. Hence, it is related to the feature selection in machine 
learning.

The tf.keras.utils namespace contains an assortment of functions, 
including the to_categorical() function for converting a class vector 
into a binary class.

Although there are other namespaces in TF 2, the classes listed in all the 
preceding subsections will probably suffice for the majority of your tasks 
if you are a beginner at TF 2 and machine learning.



232 • Angular and Machine Learning Pocket Primer

TF 2 Keras versus “Standalone” Keras

The original Keras is actually a specification, with various backend 
frameworks such as TensorFlow, Theano, and CNTK. Currently, Keras 
standalone does not support TF 2, whereas the implementation of Keras 
in tf.keras has been optimized for performance. 

Keras standalone will live in perpetuity in the keras.io package, which 
is discussed in detail at the Keras website: keras.io.

Now that you have a high-level view of the TF 2 namespaces for Keras 
and the classes that they contain, let’s find out how to create a Keras-
based model, which is the subject of the next section.

Creating a Keras-Based Model

The following list of steps describe the high-level sequence involved in 
creating, training, and testing a Keras model:

Step 1: Determine a model architecture (the number of hidden layers, 
various activation functions, and so forth).
Step 2: Invoke the compile() method.
Step 3: Invoke the fit() method to train the model.
Step 4: Invoke the evaluate() method to evaluate the trained model.
Step 5: Invoke the predict() method to make predictions.

Step 1 involves determining the values of a number of hyperparameters, 
including:

�� the number of hidden layers
�� the number of neurons in each hidden layer
�� the initial values of the weights of the edges
�� the loss function
�� the optimizer
�� the learning rate
�� the dropout rate
�� the activation function(s)

Steps 2 through 4 involve the training data, whereas Step 5 involves the 
test data, which are included in the following, more detailed, sequence of 
steps for the preceding list: 

�� Specify a dataset (if necessary, convert the data to numeric data).
�� Split the dataset into training data and test data (usually an 80/20 split).



Introduction to Keras • 233

�� Define the Keras model (such as the tf.keras.models.Sequen-
tial() API).

�� Compile the Keras model (the compile() API).
�� Train (fit) the Keras model (the fit() API).
�� Make a prediction (the prediction() API)

Note that the preceding bullet items skip some steps that are part of a 
real Keras model, such as evaluating the Keras model on the trained 
model, as well as dealing with issues such as overfitting.

The first bullet item states that you need a dataset, which can be as simple 
as a CSV file with 100 rows of data and just 3 columns (or even smaller). In 
general, a dataset is substantially larger: it can be a dataset with 1,000,000 
rows of data and 10,000 columns in each row. We’ll look at a concrete 
dataset in a subsequent section.

Next, a Keras model is in the tf.keras.models namespace, and the 
simplest (and also very common) Keras model is tf.keras.models.
Sequential. In general, a Keras model contains layers that are in the tf.
keras.layers namespace, such as tf.keras.Dense (which means 
that two adjacent layers are completely connected). 

Here’s a code block of the Keras model that’s described in the preceding 
paragraphs (which covers the first four bullet points):

import tensorflow as tf

model = tf.keras.models.Sequential([
  tf.keras.layers.Dense(512,activation=tf.keras.activa-
tions.relu),
])

We have three more bullet items to discuss, starting with the compilation 
step. Keras provides a compile() API for this step, an example of which 
is here:

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

Next we need to specify a training step, and Keras provides the fit() 
API (as you can see, it’s not called train()), an example of which is here:

model.fit(x_train, y_train, epochs=5)

The final step is the prediction that is performed via the predict() API, 
an example of which is here:



234 • Angular and Machine Learning Pocket Primer

pred = model.predict(x_test)

Keep in mind that the evaluate() method is used for evaluating a 
trained model, and the output of this method is accuracy or loss. The 
predict() method makes predictions from the input data.

Listing A.1 displays the content of tf2_basic_keras.py, which com-
bines the code blocks in the preceding steps into a single code sample.

LISTING A.1 tf2_basic_keras.py

import tensorflow as tf

# NOTE: we need the train data and test data

model = tf.keras.models.Sequential([
  tf.keras.layers.Dense(1, activation=tf.nn.relu),
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Listing A.1 contains no new code, and we’ve essentially glossed over some 
of the terms, such as the optimizer (an algorithm that is used in conjunc-
tion with a loss function), the loss (the type of loss function) and the met-
rics (how to evaluate the efficacy of a model). 

The explanations for these details cannot be condensed into a few para-
graphs (alas), but the good news is that you can find a plethora of detailed 
online blog posts that discuss these terms.

Keras and Linear Regression

This section contains a simple example of creating a Keras-based model 
to solve a task involving linear regression: given a positive number rep-
resenting kilograms of pasta, predict its corresponding price. Listing A.2 
displays the content of pasta.csv and Listing A.3 displays the content of 
keras_pasta.py that performs this task. 

LISTING A.2 pasta.csv

weight,price
5,30



Introduction to Keras • 235

10,45
15,70
20,80
25,105
30,120
35,130
40,140
50,150

LISTING A.3 keras_pasta.py

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# price of pasta per kilogram
df = pd.read_csv("pasta.csv”)

weight = df['weight']
price  = df['price']

model = tf.keras.models.Sequential([
   tf.keras.layers.Dense(units=1,input_shape=[1])
])

# MSE loss function and Adam optimizer
model.compile(loss='mean_squared_error',
              optimizer=tf.keras.optimizers.Adam(0.1))

# train the model
history = model.fit(weight, price, epochs=100, 
verbose=False)

# graph the # of epochs versus the loss
plt.xlabel('Number of Epochs')
plt.ylabel("Loss Values”)
plt.plot(history.history['loss'])
plt.show()

print("Cost for 11kg:”,model.predict([11.0]))
print("Cost for 45kg:”,model.predict([45.0]))

Listing A.3 initializes the Pandas Dataframe df with the contents of 
the CSV file pasta.csv, and then initializes the variables weight and 
cost with the first and second columns, respectively, of df. 



236 • AngulAr And MAchine leArning Pocket PriMer

The next portion of Listing A.3 defines a Keras-based model that consists 
of a single Dense layer. This model is compiled and trained, and then a 
graph is displayed that shows the number of epochs on the horizontal 
axis and the corresponding value of the loss function for the vertical axis. 
Launch the code in Listing A.3 and you will see the following output:

Cost for 11kg: [[41.727108]]
Cost for 45kg: [[159.02121]]

Figure A.1 displays a graph of the epochs versus the loss during the train-
ing process.

FIGURE A.1 A Graph of epochs versus Loss

Keras, MLPs, and MNIST

This section contains a simple example of creating a Keras-based model 
that will be trained with the MNIST dataset. Listing A.4 displays the con-
tent of keras_mlp_mnist.py that performs this task. 

LISTING A.4 keras_mlp_mnist.py

import tensorfl ow as tf
import numpy as np

# instantiate mnist and load data:
mnist = tf.keras.datasets.mnist



Introduction to Keras • 237

(x_train, y_train), (x_test, y_test) = mnist.load_data()

# one-hot encoding for all labels to create 1x10
# vectors that are compared with the final layer:
y_train = tf.keras.utils.to_categorical(y_train)
y_test  = tf.keras.utils.to_categorical(y_test)

image_size = x_train.shape[1]
input_size = image_size * image_size

# resize and normalize the 28x28 images:
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test  = np.reshape(x_test, [-1, input_size])
x_test  = x_test.astype('float32') / 255

# initialize some hyper-parameters:
batch_size = 128
hidden_units = 128
dropout_ratea = 0.20

# define a Keras-based model:
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(hidden_units, 
input_dim=input_size))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dropout(dropout_rate))
model.add(tf.keras.layers.Dense(hidden_units))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dense(10))
model.add(tf.keras.layers.Activation('softmax'))

model.summary()

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

# train the network on the training data:
model.fit(x_train, y_train, epochs=10, 
batch_size=batch_size)

# calculate and then display the accuracy:
loss, acc = model.evaluate(x_test, y_test, 
batch_size=batch_size)
print("\nTest accuracy: %.1f%%” % (100.0 * acc))



238 • Angular and Machine Learning Pocket Primer

Listing A.4 contains the usual import statements and then initializes the 
variable mnist as a reference to the MNIST dataset. The next portion of 
Listing A.4 contains some typical code that populates the training dataset 
and the test dataset and converts the labels to numeric values via the tech-
nique known as one-hot encoding.

Next, several hyperparameters are initialized, and a Keras-based model 
is defined that specifies three Dense layers and the relu activation func-
tion. This model is compiled and trained, and the accuracy on the test 
dataset is computed and then displayed. Launch the code in Listing A.4 
and you will see the following output:

Model: "sequential"

_______________________________________________________

Layer (type)               Output Shape          Param #   

=======================================================

dense (Dense)              (None, 256)           200960    

_______________________________________________________

activation (Activation)    (None, 256)             0         

_______________________________________________________

dropout (Dropout)          (None, 256)             0         

_______________________________________________________

dense_1 (Dense)            (None, 256)            65792     

_______________________________________________________

activation_1 (Activation)  (None, 256)             0         

_______________________________________________________

dropout_1 (Dropout)        (None, 256)             0         

_______________________________________________________

dense_2 (Dense)            (None, 10)              2570      

_______________________________________________________

activation_2 (Activation)  (None, 10)              0         
=======================================================
Total params: 269,322
Trainable params: 269,322
Non-trainable params: 0

Train on 60000 samples
Epoch 1/10
60000/60000 [==============================] - 4s 74us/
sample - loss: 0.4281 - accuracy: 0.8683
Epoch 2/10



Introduction to Keras • 239

60000/60000 [==============================] - 4s 66us/
sample - loss: 0.1967 - accuracy: 0.9417

Epoch 3/10

60000/60000 [==============================] - 4s 63us/
sample - loss: 0.1507 - accuracy: 0.9547

Epoch 4/10

60000/60000 [==============================] - 4s 63us/
sample - loss: 0.1298 - accuracy: 0.9600

Epoch 5/10

60000/60000 [==============================] - 4s 60us/
sample - loss: 0.1141 - accuracy: 0.9651

Epoch 6/10

60000/60000 [==============================] - 4s 66us/
sample - loss: 0.1037 - accuracy: 0.9677

Epoch 7/10

60000/60000 [==============================] - 4s 61us/
sample - loss: 0.0940 - accuracy: 0.9702

Epoch 8/10

60000/60000 [==============================] - 4s 61us/
sample - loss: 0.0897 - accuracy: 0.9718

Epoch 9/10

60000/60000 [==============================] - 4s 62us/
sample - loss: 0.0830 - accuracy: 0.9747

Epoch 10/10

60000/60000 [==============================] - 4s 64us/
sample - loss: 0.0805 - accuracy: 0.9748

10000/10000 [==============================] - 0s 39us/
sample - loss: 0.0654 - accuracy: 0.9797

Test accuracy: 98.0%

Keras, CNNs, and cifar10

This section contains a simple example of training a neural network with 
the cifar10 dataset. This code sample is similar to training a neural net-
work on the MNIST dataset and requires a very small code change. 

Keep in mind that images in MNIST have the dimensions 28x28, whereas 
images in cifar10 have the dimensions 32x32. Always ensure that 
images have the same dimensions in a dataset, otherwise the results will 
be unpredictable.



240 • Angular and Machine Learning Pocket Primer

Make sure that the images in your dataset have the same dimensions. 

Listing A.5 displays the content of keras_cnn_cifar10.py, which 
trains a neural network with the cifar10 dataset. 

LISTING A.5 keras_cnn_cifar10.py

import tensorflow as tf

batch_size = 32
num_classes = 10
epochs = 100
num_predictions = 20

cifar10 = tf.keras.datasets.cifar10

# The data, split between the train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices
y_train = tf.keras.utils.to_categorical(y_train, 
num_classes)
y_test = tf.keras.utils.to_categorical(y_test, 
num_classes)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32,(3,3),padding= 
'same',input_shape=x_train.shape[1:]))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Conv2D(32, (3, 3)))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 
2)))
model.add(tf.keras.layers.Dropout(0.25))

# you can also duplicate the preceding code block here

model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(512))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dropout(0.5))

NOTE



Introduction to Keras • 241

model.add(tf.keras.layers.Dense(num_classes))
model.add(tf.keras.layers.Activation('softmax'))

# use RMSprop optimizer to train the model
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          validation_data=(x_test, y_test),
          shuffle=True)

# evaluate and display results from test data
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])

Listing A.5 contains the usual import statement and then initializes the 
variable cifar10 as a reference to the cifar10 dataset. The next section 
of code is similar to the contents of Listing A.4: the main difference is that 
this Keras-based model defines a CNN instead of an MLP. Hence, the 
first layer is a convolutional layer, as shown here:

model.add(tf.keras.layers.Conv2D(32,(3,3),padding= 
'same',input_shape=x_train.shape[1:]))

Note that a “vanilla” CNN involves a convolutional layer (which is the 
purpose of the preceding code snippet), followed by the ReLU activa-
tion function, and a max pooling layer, both of which are displayed in 
Listing A.5. In addition, the final layer of the Keras model is the soft-
max activation function, which converts the 10 numeric values in the fully 
connected layer to a set of 10 non-negative numbers between 0 and 1, 
whose sum equals 1 (this gives us a probability distribution).

This model is compiled and trained, and then evaluated on the test data-
set. The last portion of Listing A.5 displays the value of the test-related 
loss and accuracy, both of which are calculated during the preceding 



242 • Angular and Machine Learning Pocket Primer

evaluation step. Launch the code in Listing A.5 and you will see the fol-
lowing output (note that the code was stopped after partially completing 
the second epoch):

x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples 

Epoch 1/100
50000/50000 [==============================] - 285s 6ms/
sample - loss: 1.7187 - accuracy: 0.3802 - val_loss: 
1.4294 - val_accuracy: 0.4926
Epoch 2/100
 1888/50000 [>.............................] - ETA: 4:39 
- loss: 1.4722 - accuracy: 0.4635

Resizing Images in Keras

Listing A.6 displays the content of keras_resize_image.py, which 
illustrates how to resize an image in Keras. 

LISTING A.6: keras_resize_image.py

import tensorflow as tf
import numpy as np
import imageio
import matplotlib.pyplot as plt

# use any image that has 3 channels
inp = tf.keras.layers.Input(shape=(None, None, 3))
out = tf.keras.layers.Lambda(lambda image: tf.image.
resize(image, (128, 128)))(inp)

model = tf.keras.Model(inputs=inp, outputs=out)
model.summary()

# read the contents of a PNG or JPG
X = imageio.imread('sample3.png')

out = model.predict(X[np.newaxis, ...])

fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].imshow(X)
axes[1].imshow(np.int8(out[0,...]))

plt.show()



introduction to kerAs • 243

Listing A.6 contains the usual import statements and then initializes 
the variable inp so that it can accommodate a color image, followed by 
the variable out that is the result of resizing inp so that it has dimen-
sions 28x23. Next, inp and out are specified as the values of inputs
and outputs, respectively, for the Keras model, as shown in this code 
snippet:

model = tf.keras.Model(inputs=inp, outputs=out)

Next, the variable X is initialized as a reference to the result of reading 
the contents of the image sample3.png. The remainder of Listing A.6 
involves displaying two images: the original image and the resized image. 
Launch the code in Listing A.6 and you will see a graph of an image and 
its resized image, as shown in Figure A.2.

FIGURE A.2 A Graph of an image and its Resized image

Keras and Early Stopping (1)

After specifying the training set and the test set from a dataset, you also 
specify the number of training epochs. A value that’s too large can lead 
to overfitting, whereas a value that’s too small can lead to underfitting. 
Moreover, model improvement can diminish and subsequent training 
iterations will become redundant.

Early stopping is a technique that allows you to specify a large value for 
the number of epochs, and yet the training will stop if the model perfor-
mance improvement drops below a threshold value.

There are several ways that you can specify early stopping, and they 
involve the concept of a callback function. Listing A.7 displays the con-
tent of tf2_keras_callback.py, which performs early stopping via a 
callback mechanism.



244 • Angular and Machine Learning Pocket Primer

LISTING A.7 tf2_keras_callback.py

import tensorflow as tf
import numpy as np

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(64, activation='relu'))
m o d e l . a d d ( t f . k e r a s . l a y e r s . D e n s e ( 1 0 , 
activation='softmax'))

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
              loss='mse',       # mean squared error
              metrics=['mae'])  # mean absolute error

data   = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data   = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

callbacks = [
  # stop training if "val_loss" stops improving for over 
2 epochs
  tf.keras.callbacks.EarlyStopping(patience=2, 
monitor='val_loss'),
  # write TensorBoard logs to the ./logs directory
  tf.keras.callbacks.TensorBoard(log_dir='./logs')
]

model.fit(data, labels, batch_size=32, epochs=50, 
callbacks=callbacks,
          validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

Listing A.7 defines a Keras-based model with three hidden layers and 
then compiles the model. The next portion of Listing A.7 uses the np.ran-
dom.random function in order to initialize the variables data, labels, 
val_data, and val_labels.

The interesting code involves the definition of the callbacks variable 
that specifies the tf.keras.callbacks.EarlyStopping class with a 
value of 2 for patience, which means that the model will stop training if 
there is an insufficient reduction in the value of val_loss. The callbacks 
variable includes the tf.keras.callbacks.TensorBoard class to spec-
ify the logs subdirectory as the location for the TensorBoard files.



Introduction to Keras • 245

Next, the model.fit() method is invoked with a value of 50 for the 
epochs (shown in bold), followed by the model.evaluate() method. 
Launch the code in Listing A.7, and you will see the following output:

Epoch 1/50
1000/1000 [==============================] - 0s 354us/
sample - loss: 0.2452 - mae: 0.4127 - val_loss: 0.2517 - 
val_mae: 0.4205
Epoch 2/50
1000/1000 [==============================] - 0s 63us/
sample - loss: 0.2447 - mae: 0.4125 - val_loss: 0.2515 - 
val_mae: 0.4204
Epoch 3/50
1000/1000 [==============================] - 0s 63us/
sample - loss: 0.2445 - mae: 0.4124 - val_loss: 0.2520 - 
val_mae: 0.4209
Epoch 4/50
1000/1000 [==============================] - 0s 68us/
sample - loss: 0.2444 - mae: 0.4123 - val_loss: 0.2519 - 
val_mae: 0.4205
1000/1000 [==============================] - 0s 37us/
sample - loss: 0.2437 - mae: 0.4119
(1000, 10)

Notice that the code stopped training after four epochs, even though 50 
epochs are specified in the code.

Keras and Early Stopping (2)

The previous section contains a code sample with minimalistic function-
ality with respect to the use of the callback function in Keras. However, 
you can also define a custom class that provides a finer-grained function-
ality that uses a callback mechanism. 

Listing A.8 displays the content of tf2_keras_callback2.py, which 
performs early stopping via a callback mechanism (the new code is 
shown in bold).

LISTING A.8 tf2_keras_callback2.py

import tensorflow as tf
import numpy as np



246 • Angular and Machine Learning Pocket Primer

model = tf.keras.Sequential()

model.add(tf.keras.layers.Dense(64, activation='relu'))

model.add(tf.keras.layers.Dense(64, activation='relu'))

m o d e l . a d d ( t f . k e r a s . l a y e r s . D e n s e ( 1 0 , 
activation='softmax'))

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),

              loss='mse',       # mean squared error

              metrics=['mae'])  # mean absolute error

data   = np.random.random((1000, 32))

labels = np.random.random((1000, 10))

val_data   = np.random.random((100, 32))

val_labels = np.random.random((100, 10))

class MyCallback(tf.keras.callbacks.Callback):

  def on_train_begin(self, logs={}):

    print("on_train_begin")

  def on_train_end(self, logs={}):

    print("on_train_begin")

    return

  def on_epoch_begin(self, epoch, logs={}):

    print("on_train_begin")

    return

  def on_epoch_end(self, epoch, logs={}):

    print("on_epoch_end")

    return

  def on_batch_begin(self, batch, logs={}):

    print("on_batch_begin")

    return

  def on_batch_end(self, batch, logs={}):
    print("on_batch_end")
    return

callbacks = [MyCallback()]

model.fit(data,labels,batch_size=32,epochs=50,call-
backs=callbacks,validation_data=(val_data,val_labels))

model.evaluate(data, labels, batch_size=32)



Introduction to Keras • 247

The new code in Listing A.8 differs from Listing A.7, and the difference 
is the code block that is displayed in bold. This new code defines a custom 
Python class with several methods, each of which is invoked during the 
appropriate point during the Keras lifecycle execution. The six methods 
consist of three pairs of methods for the start event and end event associ-
ated with the training, epochs, and batches, as listed here:

�� def on_train_begin()
�� def on_train_end()
�� def on_epoch_begin()
�� def on_epoch_end()
�� def on_batch_begin()
�� def on_batch_end()

The preceding methods contain just a print() statement in Listing A.8, 
and you can insert any code you wish in any of these methods. Launch the 
code in Listing A.8 and you will see the following output:

on_train_begin
on_train_begin
Epoch 1/50
on_batch_begin
on_batch_end
  32/1000 [..............................] - ETA: 4s - 
loss: 0.2489 - mae: 0.4170on_batch_begin
on_batch_end
on_batch_begin on_batch_end
// details omitted for brevity
on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
992/1000 [============================>.] - ETA: 0s - 
loss: 0.2468 - mae: 0.4138on_batch_begin
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s 335us/
sample - loss: 0.2466 - mae: 0.4136 - val_loss: 0.2445 - 
val_mae: 0.4126
on_train_begin
Epoch 2/50
on_batch_begin



248 • Angular and Machine Learning Pocket Primer

on_batch_end
 32/1000 [..............................] - ETA: 0s - 
loss: 0.2465 - mae: 0.4133on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
// details omitted for brevity 
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s 51us/
sample - loss: 0.2328 - mae: 0.4084 - val_loss: 0.2579 - 
val_mae: 0.4241
on_train_begin
 32/1000 [..............................] - ETA: 0s - 
loss: 0.2295 - mae: 0.4030
1000/1000 [==============================] - 0s 22us/
sample - loss: 0.2313 - mae: 0.4077
(1000, 10)

Keras and Metrics

Many Keras-based models only specify “the accuracy” as the metric for 
evaluating a trained model, as shown here:

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

However, there are many other built-in metrics available, each of which is 
encapsulated in a Keras class in the tf.keras.metrics namespace. A 
list of many such metrics are displayed in the following list:

�� class Accuracy: how often the predictions match the labels
�� class BinaryAccuracy: how often the predictions match the labels
�� class CategoricalAccuracy: how often the predictions match the labels
�� class FalseNegatives: the number of false negatives
�� class FalsePositives: the number of false positives
�� class Mean: the (weighted) mean of the given values
�� class Precision: the precision of the predictions with respect to the 

labels
�� class Recall: the recall of the predictions with respect to the labels
�� class TrueNegatives: the number of true negatives
�� class TruePositives: the number of true positives



Introduction to Keras • 249

Perform an online search for code samples that use the metrics in the 
preceding list.

Saving and Restoring Keras Models

Listing A.9 displays the content of tf2_keras_save_model.py, which 
creates, trains, and saves a Keras-based model, then creates a new model 
that is populated with the data from the saved model.

LISTING A.8 tf2_keras_save_model.py

import tensorflow as tf

import os

def create_model():

  model = tf.keras.models.Sequential([

    tf.keras.layers.Flatten(input_shape=(28, 28)),

    tf.keras.layers.Dense(512, activation=tf.nn.relu),

    tf.keras.layers.Dropout(0.2),

    tf.keras.layers.Dense(10, activation=tf.nn.softmax)

  ])

model.compile(optimizer=tf.keras.optimizers.Adam(), 
loss=tf.keras.losses.sparse_categorical_crossentropy,-
metrics=['accuracy'])

  return model

# Create a basic model instance

model = create_model()

model.summary()

checkpoint_path = "checkpoint/cp.ckpt"

checkpoint_dir = os.path.dirname(checkpoint_path)

# Create checkpoint callback

cp_callback = tf.keras.callbacks.
ModelCheckpoint(checkpoint_path,

save_weights_only=True, verbose=1)

# => model #1: create the first model

model = create_model()

mnist = tf.keras.datasets.mnist

(X_train, y_train),(X_test, y_test) = mnist.load_data()



250 • Angular and Machine Learning Pocket Primer

X_train, X_test = X_train / 255.0, X_test / 255.0

print("X_train.shape:",X_train.shape)

model.fit(X_train, y_train,  epochs = 2,

          validation_data = (X_test,y_test),

          callbacks = [cp_callback])  # pass callback to 
training

# => model #2: create a new model and load saved model
model = create_model()
loss, acc = model.evaluate(X_test, y_test)
print("Untrained model, accuracy: {:5.2f}%".
format(100*acc))

model.load_weights(checkpoint_path)
loss,acc = model.evaluate(X_test, y_test)
print("Restored model, accuracy: {:5.2f}%".
format(100*acc))

Listing A.8 starts with the create_model() Python function that cre-
ates and compiles a Keras-based model. The next portion of Listing A.8 
defines the location of the file that will be saved, as well as the checkpoint 
callback, as shown here:

checkpoint_path = "checkpoint/cp.ckpt"

checkpoint_dir = os.path.dirname(checkpoint_path)

# Create checkpoint callback

cp_callback=tf.keras.callbacks.ModelCheckpoint 
(checkpoint_path,save_weights_only=True,verbose=1)

The next portion of Listing A.8 trains the current model using the MNIST 
dataset, and also specifies cp_callback so that the model can be saved.

The final code block in Listing A.8 creates a new Keras-based model 
by invoking the Python method create_model() again, evaluating 
this new model on the test-related data, and displaying the value of the 
accuracy. Next, the model is loaded with the saved model weights via the 
load_weights() API. The relevant code block is reproduced here:

model = create_model()

loss, acc = model.evaluate(X_test, y_test)

print("Untrained model, accuracy: {:5.2f}%".
format(100*acc))

model.load_weights(checkpoint_path)



Introduction to Keras • 251

loss,acc = model.evaluate(X_test, y_test)
print("Restored model, accuracy: {:5.2f}%".
format(100*acc))

Now launch the code in Listing A.8, and you will see the following output:

on_train_begin

Model: "sequential"

_______________________________________________________

Layer (type)                 Output Shape              Param #   

=======================================================

flatten (Flatten)            (None, 784)               0         

_______________________________________________________

dense (Dense)                (None, 512)               401920    

_______________________________________________________

dropout (Dropout)            (None, 512)               0         

_______________________________________________________

dense_1 (Dense)              (None, 10)                5130      

=======================================================

Total params: 407,050

Trainable params: 407,050

Non-trainable params: 0

Train on 60000 samples, validate on 10000 samples

Epoch 1/2

59840/60000 [============================>.] - ETA: 0s - 
loss: 0.2173 - accuracy: 0.9351  

Epoch 00001: saving model to checkpoint/cp.ckpt

60000/60000 [==============================] - 10s 
168us/sample - loss: 0.2170 - accuracy: 0.9352 - val_
loss: 0.0980 - val_accuracy: 0.9696

Epoch 2/2

59936/60000 [============================>.] - ETA: 0s - 
loss: 0.0960 - accuracy: 0.9707 

Epoch 00002: saving model to checkpoint/cp.ckpt

60000/60000 [==============================] - 10s 
174us/sample - loss: 0.0959 - accuracy: 0.9707 - val_
loss: 0.0735 - val_accuracy: 0.9761

10000/10000 [==============================] - 1s 86us/
sample - loss: 2.3986 - accuracy: 0.0777

Untrained model, accuracy:  7.77%



252 • Angular and Machine Learning Pocket Primer

10000/10000 [==============================] - 1s 67us/
sample - loss: 0.0735 - accuracy: 0.9761
Restored model, accuracy: 97.61%

The directory where you launched this code sample contains a new sub-
directory called checkpoint whose contents are shown here:

-rw-r--r--  1 owner  staff     1222 Aug 17 14:34 cp.ckpt.
index
-rw-r--r--  1 owner  staff  4886716 Aug 17 14:34 cp.ckpt.
data-00000-of-00001
-rw-r--r--  1 owner  staff       71 Aug 17 14:34 checkpoint

Summary

This appendix introduced you to some of the features of Keras and an 
assortment of Keras-based code samples involving basic neural networks 
with the MNIST and cifar10 datasets. You learned about some of the 
important namespaces (such as tf.keras.layers) and their contents.

Next, you saw an example of performing linear regression with Keras and 
a simple CSV file. Then you learned how to create a Keras-based MLP 
neural network that is trained on the MNIST dataset.

In addition, you saw examples of Keras-based models that perform early 
stopping, which is convenient when the model exhibits miznimal improve-
ment (that is specified by you) during the training process. 



@ symbol, 15, 18

A

accuracy, 187
formula of, 148

activation function, 188–189
ELU, 191, 193
hardmax, 195
Keras, 191–192
need for, 189
in Python, 191
ReLU, 191, 192–193
SELU, 191
sigmoid, 190, 193, 194
softmax, 194, 195, 241
softplus, 194
tanh, 190, 194
working of, 189–190

add command, 8
AddListButton directory, 52
algorithms, machine learning

classification. See classification 
algorithms

clustering, 139
regression, 138

analytics command, 8
Angular

architecture, 4
combining TensorFlow.js with, 

209–212
Component decorator, 5, 9, 17–18
components in. See components
dependencies, 5, 15
features, 4–5
forms. See forms

one-way data binding in, 5
pipes. See pipes
services. See services
SVG code/element. See SVG 

code/element
SVGCharts directory, 35–41
UI Controls. See UI Controls

Angular applications, 2–4
app.component.ts file. See app.

component.ts file
app.module.ts file, 15–16, 52, 

54, 55, 56
click events in multiple 

components, 65–67
CSV files, reading, 88–92
detecting mouse positions in, 

30–32
“Hello World,” 10–12
high-level view of, 5–6
lifecycle methods, 19–22
main.ts bootstrap file, 13–14

Angular CLI, 6, 10, 16
commands, 8–9
features, 8–9
installing, 6–8

animation effects
CSS3, 22–24
D3-based, 41–45
via Angular way, 24–27

anomaly detection, 138
app.component.ts file, 14, 49, 55

button element, rendering, 49–50
child components, 56
conditional logic, 59–60
custom pipe, creation of, 

74–76

INDEX



254 • Angular and Machine Learning Pocket Primer

list
adding items to, 52–54
deleting items from, 54–55

radio buttons, rendering, 51–52
reactive forms, 100–102
reading CSV files, 88–89
reading multiple files with JSON 

data, 83–86
application-specific components, 72
app.module.ts file, 15–16, 52, 54, 55

child components, 56
AsyncPipe, 73–74
attribute selection, 142
attributes, 19

properties vs., 19

B

bar charts, creation in tfjs-vis, 
214–215

Bayes’ Theorem, 184, 185
Bayesian inference, 184–185

terminology, 185
bias, in machine learning, 146–147
binary classifiers, 175
binding, data

one-way, 97
two-way, 98

build(b) command, 8
built-in directives, 6
built-in pipes, 6, 73
built-in services, 106
buttons

click events, 65–67
displaying, 49–51
radio, 51–52

C

child components, directives and, 
56–57

ChildComponent directory, 56

cifar10 dataset, 239–242
classification algorithms, 138–139, 

174
binary vs. multi-class, 175–176
decision trees, 178–182
kNN (k Nearest Neighbor), 

177–178
multi-label, 176
random forests, 182–183
Support Vector Machines, 139, 

183–184
classifiers, 174–175

binary, 175
evaluating, 187–188
linear, 176
Naive Bayes, 186
training, 186–187

click events, handling, 65–67
clickMe( ) method, 50, 53
clustering algorithms, 139
CNNs (Convolutional Neural 

Networks), 175, 194, 
239–242

code, updation from earlier Angular 
versions, 81–83

Communication, inter-component, 
services and, 118–119

Component decorator, 5, 9, 17–18, 
120

components
application-specific, 72
child, directives and, 56–57
metadata in, 17–18
presentational, 72
stateful vs. stateless, 18
styles, 50

conditional logic, 59–60
config command, 8
confusion/error matrix, 147
constructLineGraph() method, 

131
constructor() method, 59



Index • 255

NgModule, 15
deleteMe() method, 55
DelListButton directory, 54
dependencies, 5, 15
“dependency injection” mechanism, 

105
dimensionality reduction, 142–143
directives

built-in, 6
and child components, 56–57
custom, 5
ngFor, 6, 48–49, 55, 131
ngIf, 6, 104
ngModel, 95, 96

directives property, 18
doc(d) command, 8
dynamic forms, 105

E

each() method, 121
e2e(e) command, 8
ELU (Exponential Linear Unit) 

activation function, 191, 193
embedded strategy, feature selection, 

142
error matrix, 147
ES6, 2, 3
Euclidean plane, lines in, 152, 

154–157
EventEmitters, 67–71

service with, 108–112

F

F1 score, 149–150
feature extraction, 142

algorithms, to perform 
dimensionality reduction, 
143

feature scaling, machine learning 
and, 146

constructors, 57–59
private arguments in, 58–59

control() method, 98
covariance matrix, 144
cross-validation

dataset, 145
k-fold, 145, 187

CSS3 animation effect, 22–24
CSV files, 128, 131

reading, 88–92
CurrencyPipe, 73
curve-fitting, linear regression vs., 

151
custom directive, 5

D

data binding, and ngModel directive, 
97–98

data cleaning, 140
data normalization, 146
dataset, 136

cifar10, 239–242
cross-validation, 145
data cleaning in, 140–141
dimensionality reduction, 

142–143
feature engineering, 141–142
feature extraction, 142
feature selection, 142
and linear regression. See linear 

regression
MNIST, 136–137, 174, 236–239
in plane, 150
test set, 145
training set, 145
working with, 144–145

DatePipe, 73
decision trees, 178–182
decorators, 6

Component, 5, 9, 17–18, 120
@Injectable(), 105, 119



256 • Angular and Machine Learning Pocket Primer

feature selection, 142
algorithms, to perform 

dimensionality reduction, 
143

filter strategy, feature selection, 142
flickr image, search using jQuery, 

119–121
FormArray class, 103
FormBuilder class, 94

forms with, 98–100
FormControl class, 93, 98, 103
FormGroup class, 93, 103
forms

dynamic, 105
example, 95–98
features, 104–105
with FormBuilder class, 98–100
overview of, 93–94
reactive, 94
template-driven, 94–95

FRP (Functional Reactive 
Programming), 2

G

generalized linear regression, 138, 
153

generate(g) command, 8
get() method, 81
getAuthorData() method, 127
getEveryone() method, 86
getJSON() method, 121
GitHub user, searching, 112–116
group() method, 98, 100

H

hardmax activation function, 195
heat maps, creation in tfjs-vis, 

219–221
“Hello World” Angular application, 

10–12

anatomy of, 10–11
src/app subdirectory, 11–12

help command, 8
High Correlation filter technique, 

141
histograms, creation in tfjs-vis, 

217–218
holdout method, 187
HTTP GET request, 47, 80, 86, 90–91, 

119
with simple server, 122–124

HTTP POST request, 124–128
httpRequest() method, 80, 86, 121
hyper plane, 152

I

IfLogic directory, 59
image resizing, in Keras, 242–243
import statements, 5, 13, 81, 82

types of, 17
index.html web page, 16
@Injectable() decorator, 105, 119
@Input, 67–71
Inter-component communication, 

sources and, 118–119
intermediate operators, 3
isomorphic JavaScript, 124

J

JavaScript, 2
array, 47
dependencies, 16
universal/isomorphic, 124

jQuery
each() method, 121
getJSON() method, 121
usage of, 119–121

JSON-based data, 78–81
reading multiple files with, 83–88

json-server



Index • 257

line segment, 154
linear classifiers, 176
linear data, approximation with 

np.linspace() API, 164–165
linear regression, 138, 150–153, 

221–224
alternatives, 153
combining TensorFlow.js with 

Angular, 209–212
generalized, 138, 153
goal of, 150
with Keras, 167–171
MSE for. See Mean Squared 

Error (MSE)
multivariate analysis, 152–153
statistics-based solutions, 

151–152
with TensorFlow.js, 206–209
vs. curve-fitting, 151

linearly separable data, 196–197
lines, in Euclidean plane, 152, 

154–157
lint(l) command, 8
list

adding items to, 52–54
deleting items from, 54–55

logistic regression, 195
assumptions, 196
Keras-based model to perform, 

197–200
linearly separable data, 196–197
threshold value, setting, 195–196

“loss” functions, 135
Low Variance filter technique, 

140–141
LowerCasePipe, 73

M

machine learning (ML), 135
algorithms. See algorithms, 

machine learning

HTTP GET requests with, 
122–124

HTTP POST requests with, 
124–128

K

k-fold cross-validation, 145, 187
k-Means algorithm, 139
Keras, 135, 227–252

activation function, 191–192
CNNs and, 239–242
and early stopping, 243–248
and linear regression, 167–171, 

234–236
and logistic regression, 197–199
and metrics, 248–249
model

creation of, 232–234
MNIST dataset and, 236–239
saving and restoring, 249–252

overview, 227–228
resizing images in, 242–243
standalone, 232
TF2, namespaces in. See TF 2 

Keras, namespaces in
keras.tf.datasets namespace, 230
keywords

private, 58
protected, 58
public, 58

kNN (k Nearest Neighbor), 177
handling tie in, 177–178

L

L1 Regularization, 146
L2 Regularization, 146
lifecycle methods, 19–20

example of, 20–22
line graphs, creation in tfjs-vis, 

212–213



258 • Angular and Machine Learning Pocket Primer

APIs in TensorFlow.js, 205–206
bias in, 146–147
data normalization vs. 

standardization, 146
and feature scaling, 146
metrics for measuring models. See 

metrices
models in TensorFlow.js, 203
reinforcement, 138
semi-supervised, 138
statistical quantities, 149–150
supervised, 136–137
tasks, 140–141
terminology, 136
unsupervised, 137–138
variance in, 147

MAE. See Mean Absolute Error 
(MAE)

main.ts bootstrap file, 13–14
MAP hypothesis. See maximum a 

posteriori (MAP) hypothesis
map() operator, 81
Matplotlib

quadratic scatterplot with,
160–161
scatter plots with, 157–160

maximum a posteriori (MAP) 
hypothesis, 185

Mean Absolute Error (MAE), 162
Mean Squared Error (MSE), 135

calculation with np.linspace() 
API, 165–167

error types, 162
formula, 161
manual calculation, 163–164

meanshift algorithm, 139
metadata, in components, 17–18
metrices

confusion/error, 147
Keras and, 248–249
R-squared, 147–148

Missing Value Ratio technique, 140
MNIST dataset, 136–137, 174

Keras-based model and, 236–239
mouse

follow-the-mouse event, 32–34
position, detection of, 30–32

mouseEvent() method, 111
mouseMove() method, 31
multi-class classification, 175–176
multi-label classification, 176
multivariate analysis, 138, 152–153

N

Naive Bayes (NB) classifier, 186
namespaces, in TF 2 Keras, 228–229

keras.tf.datasets, 230
tf.keras.activations, 229–230
tf.keras.callbacks, 231
tf.keras.experimental, 230–231
tf.keras.layers, 229
tf.keras.optimizers, 231
tf.keras.regularizers, 231
tf.keras.utils, 231

new(n) command, 9
ng command, 8, 9, 10
ng generate option, 9
ng x18n option, 9
ngFor directive, 6, 48–49, 55, 131
NgForm, 93–94
ngIf directive, 6, 104
ngModel directive, 95, 96

data binding and, 97–98
NgModule decorator, 15
ngSubmit, 94
NodeJS, 2
non-linear least squares, 162–163
np.linspace() API

linear data approximation with, 
164–165

MSE calculation with, 165–167
null hypothesis, 150
NumPy

quadratic scatterplot with, 160–161
scatter plots with, 157–160



Index • 259

Q

quadratic scatterplot, with NumPy 
and Matplotlib, 160–161

R

R-squared, 147–148
radio buttons, 51–52
RadioButtons directory, 51–52
random forests, 182–183
ray, 154
reactive forms, 94, 100–103
ReactiveForm directory, 100
readCsvData() method, 131
recall, 187

formula of, 148
regression algorithms, 138
regularization, 145–146
reinforcement machine learning, 138
ReLU (Rectified Linear Unit) 

activation function, 191, 
208–209

RMSE. See Root Mean Squared 
Error (RMSE)

RMSProp optimizer, 162
ROC (receiver operating 

characteristic) curve, 149, 
187–188

Root Mean Squared Error (RMSE), 
162

run command, 9
RxJS, 2

intermediate operators, 3
Observables, 3–4
Promises, 3–4
subscribe() method, 3
terminal operators, 3
unsubscribe() method, 3

S

scatterplots, 151

O

Observables, 3–4, 127
AsyncPipe and, 73–74
JSON-based data, reading, 78–81

onClick() method, 65–66
One-versus-All (OvA) technique, 

175–176
One-versus-One (OvO) technique, 

176
one-way binding, 5, 97
@Output, 67–71

P

p-value, 150
package.json file, 6
PCA. See principal component 

analysis (PCA)
PercentPipe, 73
perturbation technique, 157, 

158–159
pipes, 72–73

AsyncPipe, 73–74
built-in, 73
custom, creation of, 74–78

postAuthorData() method, 127
posterior probability, 185
precision, 187

formula of, 148
prediction bias, 146
presentational components, 72
principal component analysis (PCA), 

143–144
private keyword, 58

in constructor, 59
Promise, 3–4

AsyncPipe and, 73
properties, 19

attributes vs., 19
protected keyword, 58
public keyword, 58
Python, activation function in, 191



260 • Angular and Machine Learning Pocket Primer

creation in tfjs-vis, 215–217
with NumPy randn(), 157–159
quadratic, 160–161

SearchFlickr directory, 119
SearchGithubUsers directory, 112
selector property, 5, 18, 50
SELU (Scaled Exponential Linear 

Unit), 191
semi-supervised machine learning, 

138
serve(s) command, 9
services, 105–106

built-in, 106
custom, 105
with EventEmitter, 108–112
example, 107
injecting services into, 119
and inter-component 

communication, 118–119
multiple instances, 117
single instance, 117–118

shape, 204
sigmoid activation function, 190, 

193, 194
smart components, 72
softmax activation function, 194, 

195, 241
softplus activation function, 194
square bracket ([ ]), 19
src/app subdirectory, 11–12
standalone Keras, 232
stateful component vs. stateless 

component, 18
stateless component, stateful 

component vs., 18
statistical quantities, machine 

learning
F1 score, 149–150
p-value, 150

statistics-based solutions, 151–152
styles property, 5, 50
styleUrls property, 5

subscribe() method, 3, 80, 86
supervised machine learning, 

136–137
Support Vector Machines (SVM), 

139, 183
tradeoffs of, 183–184

SVG code/element, 27–29
D3-based animation effects to, 

44–45
follow-the-mouse event, 32–34
line plot from simulated data, 

128–132
mouse position detection, 

30–32
SVGCharts directory, 35–41
SVM. See Support Vector Machines 

(SVM)
syntax, 19

T

tanh activation function, 190, 194
template-driven forms, 94–95
template property, 5, 18, 30, 49–50, 

57, 80, 85, 96, 106, 111, 131
templateUrl property, 5, 18
tensor() method, 204
tensor2d() method, 204
tensor3d() method, 204
tensor6d() method, 204
TensorFlow.js, 191–192, 202–203, 

221–224
combining with Angular, 209–212
HTML Web page with, 203–204
linear regression with, 206–209
machine learning APIs in, 205–

206
ML models in, 203
working with tensors in, 204–205

terminal operators, 3
test set, 145
test(t) command, 9



Index • 261

U

UI Controls
buttons, 49–51
constructors, 57–59
list. See lists
radio buttons, 51–52

universal JavaScript, 124
unsubscribe() method, 3
unsupervised machine learning, 

137–138
update command, 9
UpperCasePipe, 73
UpperCaseService class, 105–106
user inputs, handling, 61–64
UserService class, 116–118

V

validators, forms, 104
variable selection/variable subset 

selection, 142
variance, in machine learning, 147, 

151
version(v) command, 9

W

wrapper strategy, feature selection, 
142

X

xi18n command, 9
XOR function, 197

Z

zero probability problem, 186

TF 2 Keras, namespaces in, 228–229
keras.tf.datasets, 230
tf.keras.activations, 229–230
tf.keras.callbacks, 231
tf.keras.experimental, 230–231
tf.keras.layers, 229
tf.keras.optimizers, 231
tf.keras.regularizers, 231
tf.keras.utils, 231

tf.dispose() method, 202
tf.flatten() API, 202
tf.fromPixels() API, 202
tfjs-vis, 221–224

bar charts creation in, 214–215
heat maps creation in, 219–221
histograms creation in, 217–218
line graphs creation in, 212–213
scatter plots creation in, 215–217

tf.keras.activations namespace, 
229–230

tf.keras.callbacks namespace, 231
tf.keras.experimental 

namespace, 230–231
tf.keras.optimizers namespace, 231
tf.keras.regularizers 

namespace, 231
tf.keras.utils namespace, 231
tf.linspace() API, 202
tf.oneHot() API, 202
tf.sequential() API, 205
tf.tidy() method, 202
threshold value, 195–196
training classifiers, 186–187
training set, 145
two-way binding, 98
TypeScript, 2–3

custom directive, 5
decorators, 6
import statements, 5, 13, 17, 81, 82
initializing private variables via 

constructor, 58–59
keywords, 58




	Cover
	Half-Title
	License
	Title page
	Copyright
	Dedication
	Contents
	Preface
	Chapter 1: Quick Introduction toAngular
	What You Need to Understand for Angular Applications
	A High-Level View of Angular
	A High-Level View of Angular Applications
	The Angular CLI
	Features of the Angular CLI (optional)
	A “Hello World” Angular Application
	The Contents of the Three Main Files
	The index.html Web Page
	Exporting and Importing Packages and Classes (optional)
	Working with Components in Angular
	Syntax, Attributes, and Properties in Angular
	Angular Lifecycle Methods
	A Simple Example of Angular Lifecycle Methods
	CSS3 Animation Effects in Angular
	Animation Effects via the “Angular Way”
	A Basic SVG Example in Angular
	Detecting Mouse Positions in Angular Applications
	Angular and Follow-the-Mouse in SVG
	Angular and SVG Charts
	D3 Animation and Angular
	Summary

	Chapter 2: UI Controls, User Input,and Pipes
	The ngFor Directive in Angular
	Displaying a Button in Angular
	Angular and Radio Buttons
	Adding Items to a List in Angular
	Deleting Items from a List in Angular
	Angular Directives and Child Components
	The Constructor and Storing State in Angular
	Conditional Logic in Angular
	Handling User Input
	Click Events in Multiple Components
	Working with @Input, @Output, and EventEmitter
	Presentational Components
	Working with Pipes in Angular
	Creating a Custom Angular Pipe
	Reading JSON Data via an Observable in Angular
	Upgrading Code from Earlier Angular Versions
	Reading Multiple Files with JSON Data in Angular
	Reading CSV Files in Angular
	Summary

	Chapter 3: Forms and Services
	Overview of Angular Forms
	An Angular Form Example
	Angular Forms with FormBuilder
	Angular Reactive Forms
	Other Form Features in Angular
	What are Angular Services?
	An Angular Service Example
	A Service with an EventEmitter
	Searching for a GitHub User
	Other Service-Related Use Cases
	Flickr Image Search Using jQuery and Angular
	HTTP GET Requests with a Simple Server
	HTTP POST Requests with a Simple Server
	An SVG Line Plot from Simulated Data in Angular(optional)
	Summary

	Chapter 4: Intro to Machine Learning
	What is Machine Learning?
	Types of Machine Learning Algorithms
	Feature Engineering, Selection, and Extraction
	Dimensionality Reduction
	Working with Datasets
	What is Regularization?
	The Bias-Variance Tradeoff
	Metrics for Measuring Models
	Other Useful Statistical Terms
	What is Linear Regression?
	Other Types of Regression
	Working with Lines in the Plane (optional)
	Scatter Plots with NumPy and Matplotlib (1)
	Scatter Plots with NumPy and Matplotlib (2)
	A Quadratic Scatterplot with NumPy and Matplotlib
	The Mean Squared Error (MSE) Formula
	Calculating the MSE Manually
	Approximating Linear Data with np.linspace()
	Calculating MSE with np.linspace() API
	Linear Regression with Keras
	Summary

	Chapter 5: Working with Classifiers
	What is Classification?
	What are Linear Classifiers?
	What is kNN?
	What are Decision Trees?
	What are Random Forests?
	What are SVMs?
	What is Bayesian Inference?
	What is a Bayesian Classifier?
	Training Classifiers
	Evaluating Classifiers
	What are Activation Functions?
	Common Activation Functions
	The ReLU and ELU Activation Functions
	Sigmoid, Softmax, and Hardmax Similarities
	Sigmoid, Softmax, and HardMax Differences
	What is Logistic Regression?
	Keras, Logistic Regression, and Iris Dataset
	Summary

	Chapter 6: Angular and TensorFlow.js
	What is TensorFlow.js?
	Working with Tensors in TensorFlow.js
	Machine Learning APIs in TensorFlow.js
	Linear Regression with TensorFlow.js
	Angular, TensorFlow.js, and Linear Regression
	Creating Line Graphs in tfjs-vis
	Creating Bar Charts in tfjs-vis
	Creating Scatter Plots in tfjs-vis
	Creating Histograms in tfjs-vis
	Creating Heat Maps in tfjs-vis
	TensorFlow.js, tfjs-vis, and Linear Regression
	Summary

	Appendix A: Introduction to Keras
	What is Keras?
	Creating a Keras-Based Model
	Keras and Linear Regression
	Keras, MLPs, and MNIST
	Keras, CNNs, and cifar10
	Resizing Images in Keras
	Keras and Early Stopping (1)
	Keras and Early Stopping (2)
	Keras and Metrics
	Saving and Restoring Keras Models
	Summary

	INDEX



