
CLASSIC GAME DESIGN
Second Edition

Classic Game Design 2E_Ch00_FM_2nd Pass.indd 1 5/2/2019 5:06:56 PM

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants permission
to use the contents contained herein, but does not give you the right of ownership to any
of the textual content in the book or ownership to any of the information or products
contained in it. This license does not permit uploading of the Work onto the Internet or
on a network (of any kind) without the written consent of the Publisher. Duplication or
dissemination of any text, code, simulations, images, etc. contained herein is limited to and
subject to licensing terms for the respective products, and permission must be obtained
from the Publisher or the owner of the content, etc., in order to reproduce or network any
portion of the textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved in
the creation, writing, or production of the companion disc, accompanying algorithms, code, or
computer programs (“the software”), and any accompanying Web site or software of the Work,
cannot and do not warrant the performance or results that might be obtained by using the
contents of the Work. The author, developers, and the Publisher have used their best efforts
to insure the accuracy and functionality of the textual material and/or programs contained in
this package; we, however, make no warranty of any kind, express or implied, regarding the
performance of these contents or programs. The Work is sold “as is” without warranty (except
for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be liable for
damages of any kind arising out of the use of (or the inability to use) the algorithms, source
code, computer programs, or textual material contained in this publication. This includes, but
is not limited to, loss of revenue or profit, or other incidental, physical, or consequential dam-
ages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of
the book, and only at the discretion of the Publisher. The use of “implied warranty” and certain
“exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files on the disc are also available by writing to the publisher at info@mer-
clearning.com.

Classic Game Design 2E_Ch00_FM_2nd Pass.indd 2 5/2/2019 5:06:56 PM

CLASSIC GAME DESIGN
From Pong to Pac-Man with Unity

Second Edition

Franz Lanzinger

Mercury Learning and Information
Dulles, Virginia | Boston, Massachusetts | New Delhi

Classic Game Design 2E_Ch00_FM_2nd Pass.indd 3 5/2/2019 5:06:56 PM

Table o f Cont ent s — v

Copyright ©2019 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, any companion materials, or its derivations, may not be
reproduced in any way, stored in a retrieval system of any type, or transmitted by any means,
media, electronic display or mechanical display, including, but not limited to, photocopies,
recordings, Internet postings, or scans, without prior permission in writing from the
publisher.

Publisher: David Pallai

Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

This book is printed on acid-free paper.

Franz Lanzinger. Classic Game Design. From Pong to Pac-Man with Unity, Second Edition.

ISBN: 978-1-68392-385-5

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies.
Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an
attempt to infringe on the property of others.

Library of Congress Control Number: 2019939379

192021 321

Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc . For additional information, please contact the Customer Service Dept.
at 1-(800) 232-0223.

The sole obligation of Mercury Learning and Information to the purchaser is to replace
the disc, based on defective materials or faulty workmanship, but not based on the
operation or functionality of the product.

Classic Game Design 2E_Ch00_FM_2nd Pass.indd 4 5/2/2019 5:06:56 PM

Table o f Cont ent s — v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION���1
	 Who Are You? . 1
	 What are Classic Arcade Video Games? . 2
	 Unity, Blender, Gimp, and Audacity . 4
	 How to Use This Book . 6

CHAPTER 2: TOOLS OF THE TRADE��� 8
	 Installing Unity . 8
	 Hello World! . 10
	 Programming with C# . 17
	 Using GIMP to Make an Image . 22
	 Using Blender to Make a 3D Object . 25
	 Using Audacity to Make a Sound Effect . 28
	 Using Unity: My First Demo . 31

CHAPTER 3: PONG ���40
	 Before Pong . 40
	 Pong, Atari (1972) . 42
	 Coin-op, the Real Atari . 44
	 Pong Sequels and Clones . 44
	 Bitmasters, Day One . 44
	 Pong at Forty . 45

CHAPTER 4: CLASSIC PADDLE GAME ���46
	 Getting Ready . 46
	 Version 0.01: The Playfield . 46
	 Version 0.02: The Paddles . 52
	 Version 0.03: The Ball . 57
	 Version 0.04: A Better Playfield . 59
	 Version 0.05: Audio . 61
	 Version 0.06: Scoring . 64
	 Version 1.0: First Release! . 67

Classic Game Design 2E_Ch00_FM_2nd Pass.indd 5 5/2/2019 5:06:56 PM

vi — Clas s i c Game Des ign , Second Edi t ion Table o f Cont ent s — vii

	 Postmortem . 68
	 Exercises��� 69

CHAPTER 5: BREAKOUT���71
	 Woz ���71
	 Breakout, Atari (1976) . 71
	 Breakout Sequels . 74
	 Where Are They Now? . 75

CHAPTER 6: CLASSIC BRICK GAME���76
	 Paddle Game for One��� 76
	 Version 0.01: The Playfield . 77
	 Version 0.02: The Player . 80
	 Version 0.03: Basic Ball Movement . 83
	 Version 0.04: Collisions . 86
	 Version 0.05: Bricks . 91
	 Version 0.06: First Playable . 95
	 Version 0.07: Scoring . 96
	 Version 0.08: Title Screen . 99
	 Version 1.0: First Release and Postmortem . 102
	 Exercises���103

CHAPTER 7: SPACE INVADERS���104
	 Huge Money, Huge . 104
	 The Design of Space Invaders, Taito (1978) . 104
	 Score Equals Skill . 105
	 Going Strong 41 Years Later . 107

CHAPTER 8: CLASSIC GAME PROJECT THREE:
VERTICAL SHOOTER���108
	 Designing a Shooter . 108
	 Version 0.01: The Playfield . 108
	 Version 0.02: The Spaceship . 112
	 Version 0.03: Sprites . 117
	 Version 0.04: Aliens . 126
	 Version 0.05: Alien Shots . 133

Classic Game Design 2E_Ch00_FM_2nd Pass.indd 6 5/2/2019 5:06:56 PM

Table o f Cont ent s — vii

	 Version 0.06: Scoring and Lives . 138
	 Version 0.07: Alien Death Sequence . 149
	 Version 0.08: Sound . 153
	 Version 0.09: Levels . 156
	 Version 1.0: Release and Postmortem . 162
	 Exercises���163

CHAPTER 9: SCRAMBLE���165
	 Scrolling Shooter . 165
	 Experts Rule . 166
	 Scramble Sequels . 167

CHAPTER 10: CLASSIC GAME PROJECT FOUR:
SCROLLING SHOOTER ���169
	 Designing a Scrolling Shooter . 169
	 Version 0.01: The Playfield . 171
	 Version 0.02: Spaceship Part 1: Modeling . 179
	 Version 0.03: Spaceship Part 2: Texturing . 186
	 Version 0.04: Spaceship Control . 191
	 Version 0.05: Level 1 . 196
	 Version 0.06: Rockets . 200
	 Version 0.07: Flying Rockets . 204
	 Version 0.08: Shots . 212
	 Version 0.09: Flying Saucers . 217
	 Version 0.10: Level Design . 223
	 Version 0.11: Audio . 229
	 Version 0.12: Scoring . 231
	 Version 1.00: Release and Postmortem . 233
	 Exercises���234

CHAPTER 11: PAC-MAN���236
	 The First Maze Game . 236
	 Cutscenes . 237
	 Pac-Man Fever . 238
	 Ending Rule . 238
	 Pac-Man AI . 239
	 Pac-Man Sequels and Maze Games . 240

Classic Game Design 2E_Ch00_FM_2nd Pass.indd 7 5/2/2019 5:06:56 PM

vii i — Clas s i c Game Des ign , Second Edi t ion

CHAPTER 12: CLASSIC GAME PROJECT FIVE: MAZE GAME������������244
	 Designing a Maze Game . 244
	 Version 0.01: The Maze . 245
	 Version 0.02: The Player . 251
	 Version 0.03: Nasty Enemies . 254
	 Version 0.04: Dots . 258
	 Version 0.05: Audio . 259
	 Version 0.06: Scoring and Levels . 262
	 Version 0.07: Tuning . 268
	 Version 1.00: Release and Postmortem . 270
	 Exercises���271

EPILOGUE���272
	 So Many Games, So Few Pages . 272
	 Novelty���273
	 How Modern Games are Influenced by the Classics . 273

APPENDIX I: INTRODUCTION TO C# FOR BEGINNERS �����������������������276
	 Programming Is Easy . 276
	 Interpreted or Compiled? . 277
	 Numbers and Strings . 278
	 Variables and Variable Names . 279
	 Whitespace . 281
	 Statements and Semicolons . 281
	 Computations . 282
	 Functions and Function Calls . 282
	 Looping���283
	 Learning to Code . 284
	 The Code in this Book . 284

APPENDIX II: EIGHT RULES OF CLASSIC GAME DESIGN�������������������286

APPENDIX III: ABOUT THE DVD���287

INDEX ���288

Classic Game Design 2E_Ch00_FM_2nd Pass.indd 8 5/2/2019 5:06:56 PM

Acknowledgments — ix

Acknowledgments

I’d like to thank just some of the many people who made this book possible.

Most significantly, Eric Ginner and Robert Jenks read and worked through large
portions of the book in draft form and gave voluminous feedback and suggestions.
This book would be less without their valuable contributions.

Special thanks to Mark Robichek, Karl Anderson, Mark Alpiger, Sam Mehta,
Brian McGhie, Desiree McCrorey, Joe Cain, Eugene Polonsky, Bob Jones, Aaron
Hightower, Ed Logg, Dave O’Riva, Steve and Susan Woita, and everyone at Atari
coin-op.

David Pallai, my fantastic publisher, helped every step of the way and is always
kind and supportive.

A big word of thanks to my parents, Klaus and Aida Lanzinger, for their human-
ity and love.

And last, but not least, a giant hug and thank you to my wife, Susan Lanzinger,
for helping throughout the years. I couldn’t have done this without you.

Classic Game Design 2E_Ch00_FM_2nd Pass.indd 9 5/2/2019 5:06:56 PM

x — Clas s i c Game Des ign , Second Edi t ion

About the Author

Franz Lanzinger is the owner of Lanzinger Studio, an
independent game development and music studio in
Sunnyvale, California. He began his career in game
programming in 1982 at Atari Games Inc., where he
designed and programmed the classic arcade game
Crystal Castles. In 1989 he joined Tengen, where he
was a programmer and designer for Ms. Pac-Man
and Toobin’ on the NES. Mr. Lanzinger co-founded
Bitmasters, where he designed and coded games
including Rampart and Championship Pool for the NES and SNES, and NCAA
Final Four Basketball for the SNES and Sega Genesis. In 1996 Mr. Lanzinger
founded Actual Entertainment, publisher and developer of the Gubble series
for PC and IOS. Mr. Lanzinger has a B.Sc. in mathematics from the University
of Notre Dame and attended graduate school at the University of California at
Berkeley. In 1980 he started playing arcade games, and at one time held the
arcade world record scores on Centipede and Burgertime. Franz Lanzinger is a
professional accompanist, piano teacher, and avid golfer. He continues to design
and code games.

Classic Game Design 2E_Ch00_FM_2nd Pass.indd 10 5/2/2019 5:06:56 PM

Chapt er 1  — Introduct ion — 1

CHAPTER

1 Introduction
IN TH IS CHAPTER

This is a hands-on book about game design, and what better way to learn about
game design than to study and emulate the classics. You’re going to make some
games, not just read about them. Assimilating the classics is a time-honored
tradition. Pianists play Bach, writers read Shakespeare, and painters copy the
Mona Lisa. It’s not just about experiencing them; it’s about creating something
very similar and grasping the process of creation that brings the most benefit.

WHO ARE YOU?
This book is for everyone who loves to play and make games, preferably in that

order. You should be somewhat computer literate, but it’s OK if you’ve never written
a line of code, never taken an art class, and you’re tone deaf.

Maybe you’re a student concentrating your studies on programming, art, or design.
This book can teach you about the basics of classic game design and introduce you to
the major classic games and design techniques that every game developer should
know. It’s these classics that led the way and showed future generations of designers
how to make games.

Maybe you’re a fan of the old games, the ones that started it all. It’s just plain fun
and relatively easy to recreate the old games using modern tools. Maybe you own a
few classic arcade games and you like to change the option switches to see what hap-
pens. This book will allow you to do a lot more than that. Not only are the sample
games fun by themselves, you’ll learn how to make changes to them without being a

Classic Game Design 2E_Ch01_2nd Pass.indd 1 4/25/2019 10:16:13 AM

2 — Clas s i c Game Des ign , Second Edi t ion Chapt er 1  — Introduct ion — 3

professional programmer. With a little bit of effort you’ll learn the basics of how to add
new features, change the way the scoring works, and replace the graphics and sounds
with something entirely different.

Possibly you’re just interested in learning Unity, Blender, GIMP, or Audacity.
These development tools are the basis of this hands-on approach and enable you to
get started making your own games right away. These tools are free to use. GIMP,
Audacity, and Blender are open-source software, which means that you can use them
any way you wish, no strings attached. As of 2019, Unity is available in three versions,
two of which cost money. In this book you will be using the free version. See the Unity
website for details. These four tools are extremely powerful. By using Unity, Blender,
GIMP, and Audacity to make a few games you’ll gain a good introductory under-
standing of the entire process. You’ll then be able to more easily tackle a myriad of
advanced topics in game design and development. Installation instructions are avail-
able later in this chapter.

Just as composers need to listen to music, artists should look at art, and writers
had better read, so game designers ought to play games, especially their own games.
There’s a word for it, “dogfooding,” which literally means that if you’re making dog
food, you need to eat it too. In the classic era of the ‘70s and ‘80s, it was possible to
keep up with the industry and play all the top games. Nowadays you have to pick and
choose, but that’s no excuse for not playing at all. Whether you’re a newbie designer
or a forty-year veteran with dozens of credited titles, you need to also be a player.

WHAT ARE CLASSIC ARCADE VIDEO GAMES?
Arcade games are coin-operated machines, where players pay money in the form

of coins or tokens to play a game. They are sometimes called coin-op games for short.
The early arcade games were built and designed to be played in arcades and street
locations such as restaurants, movie theaters, or airports. Arcade video games work
as a business because they provide a game experience that’s hard to duplicate at
home. Ever since home console and PC video games became hugely popular in the
late ‘80s arcade video games have been relegated to the few remaining arcades and

Classic Game Design 2E_Ch01_2nd Pass.indd 2 4/25/2019 10:16:13 AM

Chapt er 1  — Introduct ion — 3

street locations. Thirty years later there has been renewed and often nostalgic inter-
est in arcade games by collectors and hobbyists, but the days of manufacturing tens
of thousands of arcade cabinets for the latest arcade hit are over.

From a game design perspective, arcade video games are no different from
the console games of today, for the most part. Some coin-specific features such as

“add-a-coin” or dealing with a ticket dispenser only apply to arcade games, but the
basics of controlling a character on a rectangular screen haven’t really changed
since 1972 and apply to arcade games, computer games, console games, and even
mobile games.

The heyday of these types of games started in 1972 and ended in about 1984 when
the arcade game industry collapsed in the United States. New arcade games are still
manufactured today, but in much lower numbers than in the ‘80s.

What is meant by a classic? A classic should be of high quality, timeless, and influ-
ential. These are somewhat subjective criteria, but they’ll have to do. Amazingly, a
very large proportion of the top-selling arcade video games from the heyday of arcade
video games fit this description. This almost seemed inevitable. There weren’t that
many arcade games made when compared to the huge number of new games released
in the following decades. In the ‘80s this art form was so new and resulted in such
huge growth that almost any reasonable idea would get reused countless times in
the coming years. It was much easier to create an influential game back then com-
pared to the present day. The high quality and timeless aspects were more difficult to
achieve, especially because the technology was new and often cumbersome. Still, the
‘70s and early ‘80s were nothing less than the golden age of video game design.

In this book you will take a detailed look at five classic arcade video games: Pong,
Breakout, Space Invaders®, Scramble™, and Pacman™. In the interest of learning the
basics well rather than doing a comprehensive survey, the scope of this book is limited
to those five featured games. There are probably several dozen other classic arcade
video games that are similarly influential and important, games such as Asteroids,
Missile Command, Galaxian, Defender, Joust, Frogger®, and Pole Position, just to

Classic Game Design 2E_Ch01_2nd Pass.indd 3 4/25/2019 10:16:13 AM

4 — Clas s i c Game Des ign , Second Edi t ion Chapt er 1  — Introduct ion — 5

name a few. It is left up to you to look at, play, and learn from the many other classic
arcade video games out there.

Each of the featured games is responsible for countless imitators. They pioneered
some of the most important game categories. The games you will be creating come
from five categories: a paddle game, a brick game, a vertical shooter, a scrolling
shooter, and a maze game. Furthermore, you’ll be looking at some of the methods and
design decisions that go into making these types of games.

This is a book about design, so it won’t dwell too much on the now outdated tech-
nologies used to make the original featured games. Rather, it’ll try to answer some
very basic design questions that every game designer needs to tackle: What do the
players do? What’s their motivation? What are the strategies and tactics? What are
the basic design elements?

The influence of classic arcade video games on modern games is undeniable. When
you see a player getting points for running into something, or dying when colliding
with something, it’s because some arcade video game in the ‘70s or ‘80s pioneered it.
Much of the history of these early days is lost, so it’s difficult to give proper credit to
the people and companies who are responsible.

The real fun comes when you try to reconstruct some of the game elements from
the classics. The paddles in Pong, the bombs in Scramble, the shots in Space Invaders:
these are basic game elements that every video game designer needs to understand.
There’s no better way to gain this understanding than by building some simple games
that use these elements.

In the next section, you’ll be taking a closer look at the tools you’ll be using to
make your own classic games.

UNITY, BLENDER, GIMP, AND AUDACITY
Yes, you’ll dive right in and use professional tools to make your games. Here are

free to use, modern, professional game development tools: Blender for 3D graphics,
GIMP for 2D graphics, Audacity for sound, and Unity for creating the logic for the

Classic Game Design 2E_Ch01_2nd Pass.indd 4 4/25/2019 10:16:14 AM

Chapt er 1  — Introduct ion — 5

games and putting it all together. These are some of the same tools that many profes-
sional game developers use when making commercial games. Just a few years ago it
would have cost many thousands of dollars to get access to game development tools
of this caliber. Via the generous efforts of these open-source projects and the free ver-
sion of Unity, even the smallest of budgets is sufficient to make a good-looking, good-
sounding, and high-quality video game.

Next, it’s time to look at how to work with these tools as illustrated in Figure 1.1.

You’ll be using GIMP to make 2D graphics assets for your projects. You paint
something in GIMP, export to the asset directory used by your Unity project, and

In the next chapter, you’ll install the following software on your Mac or Windows PC.

Unity 2018.3.0f2 or later, Unity Personal version at unity.com

Blender 2.79b or later at blender.org

GIMP 2.10.2 or later at gimp.org

Audacity 2.3.0 or later at audacityteam.org

NOTE

 FIGURE 1.1 Unity, Blender, GIMP, and Audacity Workflow.

Classic Game Design 2E_Ch01_2nd Pass.indd 5 4/25/2019 10:16:14 AM

6 — Clas s i c Game Des ign , Second Edi t ion Chapt er 1  — Introduct ion — 7

then you’re immediately ready to use the graphics in your Unity project. Unity auto-
matically imports the graphics. This allows you to make changes to your graphics
in GIMP, export, and immediately test the changes in Unity. If you prefer you may
use another paint program of your choosing. You merely need to export to one of the
many supported graphics file formats such as .png, .tif, or .jpg. Alternatively, you
could use a camera or scanner to make graphics files. Do you want to put a picture of
yourself or your pet into the game? No problem. Just take a digital photo and put it
into our Images directory. You’ll also have the option of using GIMP to add effects to
your images.

When making 3D art, the pipeline is a little more complex. You will start with
making some 2D images, use them to make textured 3D models in Blender, and then
use them in Unity. Blender allows you to create 3D models to be used directly in
Unity. You’ll use the textures from your Images directory to make the 3D models look
better. Strictly speaking, you don’t really have to have textures, especially for really
simple games. But to make your games look more realistic you’ll want to use textures.

Each graphic asset gets imported into Unity. Whether it’s a spaceship, an alien, or
an elaborate scene, it all goes through the art pipeline in order to be usable by Unity.
Unity will be described in much more detail in the next chapter.

But hold on, don’t forget about sound! You’ll be adding some simple sound effects
to your classic games. You’ll be using the open-source tool Audacity to help make
the sound effects. It would be easy to use a bunch of sound effects from an effects
library. However, in the spirit of classic gaming, you’ll be creating your sound effects
from scratch.

HOW TO USE THIS BOOK
This book is intended to be read cover to cover, all the while carefully following the

hands-on step-by-step instructions. This will give you a good foundation in the basics
of classic game design and development. Along the way you’ll learn some of the his-
tory and gain an appreciation of the pioneering arcade games that launched the video
game industry.

Classic Game Design 2E_Ch01_2nd Pass.indd 6 4/25/2019 10:16:14 AM

Chapt er 1  — Introduct ion — 7

If you’re an experienced programmer and game developer, you might be able to
dive right into the projects in the later chapters. You could also just load the projects
as starting points for your own experiments.

The projects are all available on the companion DVD for this book.

If you’re just interested in the programming aspects of these projects, you can just
use the art and sound assets and follow along with the programming steps. Similarly,
if you want to learn how we made the graphics, you can skip our programming and
sound discussions.

You can just read the chapters about the featured classic games and learn about
design without worrying about the technical implementations. However, it’s recom-
mended that you work through one or two of the classic game projects. The best way
to learn anything is “learning by doing.” This is especially true for the daunting task
of learning how to be a game designer.

In the next chapter, you’ll get started by taking the software out for a quick spin.

ON THE DVD

Classic Game Design 2E_Ch01_2nd Pass.indd 7 4/25/2019 10:16:14 AM

Chapt er 2  — Tool s o f the Trade — 98 — Clas s i c Game Des ign , Second Edi t ion

CHAPTER

2 Tools of the Trade
IN TH IS CHAPTER

The goal for this chapter is to create a small demo application with 3D graphics
and sound. You’ll install Unity, Audacity, Blender, and GIMP. You’ll create assets
in GIMP, Blender, and Audacity. Finally, you’ll see how these applications fit
together by importing assets into Unity and setting up the demo.

INSTALLING UNITY
If you haven’t done so already, go ahead and install Unity on your computer.

None of the software tools in this book require a high-end system, but it’s a good
idea to use your fastest system with the best monitor setup. In order to run the tools
in this book, you need access to a relatively recent PC or Mac. You’re probably OK
with a system built after 2015. If your computer is older, it may still be compatible
depending on the particular capabilities of the system. To find out, go to the Systems
Requirements webpage on the Unity website for details. Once you’ve determined
that your system meets or exceeds those requirements, the next step is to install
Unity version 2018.3.0f or later at www.unity.com. If you qualify for it, select the
personal edition, which is free to use. This book is also compatible with the paid
versions of Unity.

If you are using a somewhat later version of Unity there’s a good chance that you
can follow the steps in this book, with possibly some minor adjustments along the way.
Be aware that the screenshots in this book may not match your screen if you do that.

Classic Game Design 2E_Ch02_3rd Pass.indd 8 4/26/2019 1:49:17 PM

Chapt er 2  — Tool s o f the Trade — 9

If you are reading this book several years after 2019, then you’ll be best off installing
the exact version recommended above, or look at www.classicgamedesign.com for
updated information on compatibility with the latest version of Unity.

This book supports both PCs and Macs. The projects in this book were origi-
nally developed on a PC and then tested on a Mac. The step-by-step instructions are
designed to work on both PCs and Macs. The screen shots used to generate the illus-
trations in this book were captured on a PC, so if you’re using a Mac you might notice
some cosmetic differences between your screen and the PC screen shots in the book.
When necessary, the book explains differences in performing the steps on a PC vs. on
a Mac.

It is highly recommended that you use an HD monitor, preferably with a resolu-
tion of 1920x1080 or better. A dual or even triple monitor setup is definitely a plus and
well worth it, considering the relatively low cost. Another possible setup is a laptop
with an external second monitor to be used when convenient. It is also recommended
that you connect a three-button mouse with a scroll wheel. Using a touchpad on a
laptop is very cumbersome. For Blender, a full keyboard with a numeric keypad is
much better than smaller keyboards. There is a workaround by configuring Blender
for laptop use. Instructions on how to do that can be found online by searching for

“configuring Blender for laptop.”

If you’re using a high DPI (dots per inch) monitor, you might find that the Unity
fonts are too small to read. There is currently no setting inside of Unity to increase
the font size, but you can do this in Windows 10 by going to the display settings and
adjusting “Change the size of text, apps, and other items” to something higher than
100%. This screenshots for this book were produced on a Windows 10 machine with a
4K monitor and a 250% text size setting. You may need to make a similar font adjust-
ment if you’re using a Mac with a high-end 4K or better monitor.

The next section describes how to make a minimal coding application in Unity,
which traditionally is called a “Hello World” program.

Classic Game Design 2E_Ch02_3rd Pass.indd 9 4/26/2019 1:49:17 PM

10 — Clas s i c G ame Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 11

HELLO WORLD!
Before you create the demo application it’s a good idea to make something even

simpler. The phrase “Hello World” has taken on a special meaning for programmers.
It is customary for programmers to make a “Hello World” application when first
encountering a new programming language or development environment. A “Hello
World” application simply displays the words “Hello” and “World.” This is about as
simple as it gets, and yet it can take quite a bit of time and effort to get this done. It’s
not intended to be a true test of the power of Unity. Rather, it’s a simple exercise to
make sure you can do something very basic.

This is the first step-by-step process in the book. There are a bunch of them, so get
ready to follow along on your own computer. It’s easy to get lost, skip a step, or to not
quite follow the instructions exactly as written, so please read each step very carefully
before trying the step on your own.

After the initial description of a step, there often follows a more detailed
explanation. You may wish to read the explanations before doing the associated
steps. It is often a good idea to read ahead by several steps to get a sense of where
you’re headed.

Step 1: Start Unity.

Make sure you’ve successfully installed Unity 2018.3.0f2 or later on either your
PC or your Mac as described in the previous section. Later, or even slightly earlier
versions of Unity will probably work as well, though you might need to make some
adjustments.

Step 2: Click on New

This icon is near the upper right corner of the window.

Step 3: Under Project name replace “New Unity Project” with “HelloWorld.”

You don’t need to enter the quotes, just the letters. There’s no space between Hello
and World.

Classic Game Design 2E_Ch02_3rd Pass.indd 10 4/26/2019 1:49:17 PM

Chapt er 2  — Tool s o f the Trade — 11

Step 4: For Template, select 2D, for Location a directory of your choice.

For the location it’s a good idea to use a newly created empty directory called CGD,
short for Classic Game Design. The idea is that you aim to put all projects from this
book together into this directory for easy reference. In the location box you can click
on the three dots to browse for a good location on your computer.

Step 5: Click on Create project.

Depending on the speed of your computer, you’ll now need to wait a minute or two
while Unity creates the project. You’ll see several messages while this is happening.

Step 6a: Click on Layout and select Revert Factory Settings…

If you’re an experienced Unity user and wish to keep your existing settings intact,
simply select the Project and Scene tabs instead.

Step 7: In the Scene panel, look for the 2D icon and click on it if it’s not highlighted.

Your screen should look similar to the screenshot in Figure 2.1.

 FIGURE 2.1 The Unity Blank Project.

Classic Game Design 2E_Ch02_3rd Pass.indd 11 4/26/2019 1:49:18 PM

12 — Clas s i c G ame Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 13

Step 8: Click on the Layout drop-down menu and select the Default layout, if not
already selected.

If you wish, go ahead and try out the other layouts, but switch back to the Default
layout before continuing on. Notice the text on the top middle or top left of the window.
It should say something similar to:

Unity 2018.3.0f2 Personal – SampleScene.unity - HelloWorld – PC,

Mac & Linux Standalone <DX11>

This text on the title bar of the window gives you some basic info such as the
name of the current project and the version of Unity. The <DX11> text is the version
of DirectX used by Unity in this project. DirectX is only used on Windows computers.
On a Mac you’ll likely see <Metal> instead of <DX11>.

In Steps 9 through 13, you will create the “Hello World” text object.

Step 9: Click on GameObject – UI – Text.

Step 10: In the Hierarchy panel, highlight Text.

Step 11: In the Inspector Panel, Set Pos X and Pos Y to 0.

You do this by clicking the number entry boxes and typing 0 for each. This moves
the text object to the center of the camera view.

Step 12: Move the mouse to the Scene panel, and press the f key to focus on the text.

Your screen now looks like Figure 2.2.

If the Scene panel is blank, try clicking on “Text” in the Hierarchy, and repeat
Step 12.

Before you move on and create the Hello World text, take a closer look at the
Unity window. These last steps caused a great many changes to the screen. The next
several paragraphs explain the layout of the Unity editor in more detail.

First, the window title now has a star at the end of it (PC version only). This is an
indication that something has changed since you last did a save. Earlier in Step 8, you
were asked to select the Default layout. If for some reason you have a different layout

Classic Game Design 2E_Ch02_3rd Pass.indd 12 4/26/2019 1:49:18 PM

Chapt er 2  — Tool s o f the Trade — 13

 FIGURE 2.2 Creating a GUI Text Object.

selected, please change it back to “Default” so your screen more closely matches the
screen shots in the book.

There are four panels displayed currently: Hierarchy, Scene, Inspector, and Proj-
ect. There are also unselected tabs for the Game, the Console, and the Asset Store
panels. Each panel is displayed if you click on the corresponding tab.

On the top left of the Unity editor window is the Hierarchy panel. It displays four
game objects in the current scene: “Main Camera,” “Canvas,” “Text,” and “Event-
system.” The Text object is a subobject of the Canvas and is highlighted because
it is currently selected. The Scene panel is the big, dark grey panel in the middle.
It contains a graphical view of the current scene from the developer’s perspective.
There are four blue dots surrounding the Text game object and a string of charac-
ters with the current value of “New Text.” In the next step you will change the text
to “Hello World!”.

Classic Game Design 2E_Ch02_3rd Pass.indd 13 4/26/2019 1:49:19 PM

14 — Clas s i c G ame Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 15

The Game panel is at the same location as the Scene panel depending on the tab
selection. It shows the game as it appears to the players. The players don’t need to see
the blue dots. They just see the text in the middle of the screen.

Next, on the right side of the window you have the Inspector panel. It shows the
properties of the currently selected game object. Here is where you change the proper-
ties of your game objects by pointing, clicking, and typing.

The bottom section of the window shows the Project panel. It consists of a list of
Favorites, Assets, and Packages. The Assets are shown in more detail in the subpanel
to the right. This panel works much like the Windows File Explorer built into Win-
dows. Try clicking on Favorites, then Assets, and then Packages. Now go back and
click on Assets again. You will be using the Assets view throughout this book.

The Project panel shows items that make up the project. Currently, there’s just
one item in the project, the Scenes folder. You can double-click on the Scenes folder to
reveal the one and only scene in the project, called SampleScene. Notice that there’s
a slider at the bottom right of the Project panel. Sliding this makes the asset names
appear larger or smaller. Also, notice that the Inspector panel changes when you
select items in the Project panel. To see the Text properties again you need to click on
Text in the Hierarchy panel.

The Console panel is currently hidden behind the Project panel. To view it, click
on the Console tab to select it. This is a panel used to display system messages. Unity
prints error messages here, as well as debug messages generated by scripts. Click on
the Project tab again to go back to displaying the Project panel.

You’re now ready to change the text in the Text object. Click on Text in the Hierar-
chy panel if necessary. In the Inspector panel near the middle you’ll see the property
named “Text” with the value “New Text” in an editable box nearby.

Step 13: In the Inspector panel, click on “New Text” and change it to Hello World!

Notice that when you’re making edits there, the display of the Text object
changes in real time in the Scene panel and that the line that you’re editing is high-
lighted in blue.

Classic Game Design 2E_Ch02_3rd Pass.indd 14 4/26/2019 1:49:19 PM

Chapt er 2  — Tool s o f the Trade — 15

You could stop right now, but it’s just too tempting to experiment with some other
properties in the Inspector panel.

You want to make the text larger, so that means you change the font size.

Step 14: In the Text section look for Font Size and change it from 14 to 60.

This has the effect of making the text disappear! To get it back change the over-
flow settings as follows:

Step 15: Change Horizontal and Vertical Overflow to Overflow. Click on the
Game tab.

You see that the text is much larger. The Game panel should look like Figure 2.3.

Next you will “run” the application inside of Unity. This application doesn’t do
much, but that’s OK. Recall that the goal is to test running a very simple application
in Unity.

Step 16: Select the Scene panel, then click on the play button above the
Scene panel.

Unity automatically switches to the Game panel when the game is running. The
game itself doesn’t do anything yet other than display your Hello World! text. Currently,

 FIGURE 2.3 Big Hello World! in the Game panel.

Classic Game Design 2E_Ch02_3rd Pass.indd 15 4/26/2019 1:49:19 PM

16 — Clas s i c G ame Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 17

it looks identical to the view of the Game panel when the game isn’t running. You can
tell that the game is running by seeing that the play button is highlighted.

Step 17: While the game is running, go to the Inspector panel and change Pos X
position to 100.

You can change the properties of objects while the game is running. This is one
of the amazing and useful features of Unity that make game development quick and
interactive, but watch out! These changes are only temporary.

Step 18: To stop running the application, click on the play button again.

The Scene panel just came back, but notice that the Pos X is back at 0, which is
where it was before you started running the game.

Step 19: Run the application again by clicking on the play button.

You can see that when you run the game now, the text is again the middle of the
screen, just as before.

Step 20: Click the play button yet again to stop the application.

Step 21: Click on File – Save Project.

If you should forget to save before exiting, Unity will remind you to save.

Step 22: Exit Unity.

Unity will remind you to save your scene if you forget to save. It’s a good idea to
save your scenes and your project frequently. The most recent scene that you worked
on will be automatically loaded next time you start up Unity with the same project.

This HelloWorld project is a test to see if you can do the very basics of Unity. Of
course, Unity can do much more than display text, but you took your first steps. This
philosophy of trying out the simple features first before moving on to more complex
and difficult ones fits in with a recurring theme in software development: Test every-
thing early and often.

You might have noticed that there was no coding necessary yet. It’s time to try
some programming.

PROGRAMMING WITH C#
Before you get started with programming in Unity, it’s time for a quick history

lesson. Unity initially supported three programming languages: C# (pronounced
C sharp), JavaScript, and Boo. The first edition of this book used only JavaScript.
Recently, Unity has stopped supporting JavaScript and Boo. Thus, you will be coding
in C#. C# is a simple, modern, powerful, general-purpose, object-oriented language.
Learning all of C# is a daunting task, but it’s fine to use just the basic features of C#
when getting started.

You’re going to dive right in and write a small program. Your first goal is to add 2
and 2 and to display the result on the Hello World game panel.

Step 1: Look at Appendix I, Introduction to C# for Beginners, near the back of
this book.

If you’re very new to programming, it’s recommended that you carefully read that
appendix before continuing. If you’re an experienced C# programmer, you can safely
skim through that appendix and move on to the next step.

Step 2: Open Unity and load the HelloWorld project.

Step 3: Click on the triangle next to Canvas and then on Text in the Hierarchy
panel.

The Inspector will once again show the properties of the Text object. At the bot-
tom of the Inspector panel, there’s an “Add Component” box. You’ll be using that box
to add a small C# program to this object. You may need to scroll the Inspector panel
down to see the “Add Component” box, depending on the size and resolution of the
Unity window.

Step 5: Click on the Add Component box.

Step 6: Click on New Script at the bottom, and then change the name of the script
to Testing123, and click on Create and Add.

Step 8: Click on Testing123 in the Assets panel.

Classic Game Design 2E_Ch02_3rd Pass.indd 16 4/26/2019 1:49:19 PM

Chapt er 2  — Tool s o f the Trade — 17

PROGRAMMING WITH C#
Before you get started with programming in Unity, it’s time for a quick history

lesson. Unity initially supported three programming languages: C# (pronounced
C sharp), JavaScript, and Boo. The first edition of this book used only JavaScript.
Recently, Unity has stopped supporting JavaScript and Boo. Thus, you will be coding
in C#. C# is a simple, modern, powerful, general-purpose, object-oriented language.
Learning all of C# is a daunting task, but it’s fine to use just the basic features of C#
when getting started.

You’re going to dive right in and write a small program. Your first goal is to add 2
and 2 and to display the result on the Hello World game panel.

Step 1: Look at Appendix I, Introduction to C# for Beginners, near the back of
this book.

If you’re very new to programming, it’s recommended that you carefully read that
appendix before continuing. If you’re an experienced C# programmer, you can safely
skim through that appendix and move on to the next step.

Step 2: Open Unity and load the HelloWorld project.

Step 3: Click on the triangle next to Canvas and then on Text in the Hierarchy
panel.

The Inspector will once again show the properties of the Text object. At the bot-
tom of the Inspector panel, there’s an “Add Component” box. You’ll be using that box
to add a small C# program to this object. You may need to scroll the Inspector panel
down to see the “Add Component” box, depending on the size and resolution of the
Unity window.

Step 5: Click on the Add Component box.

Step 6: Click on New Script at the bottom, and then change the name of the script
to Testing123, and click on Create and Add.

Step 8: Click on Testing123 in the Assets panel.

Classic Game Design 2E_Ch02_3rd Pass.indd 17 4/26/2019 1:49:19 PM

18 — Clas s i c G ame Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 19

Depending on your window resolution, you might notice that the script name is
truncated to something like “Testing1…”. The ellipsis (the three dots) appears if the
asset name is too long to fit underneath the asset icon. To see the full asset name,
slide the icon slider at the bottom right of the Assets panel all the way to the left, or
all the way to the right.

There is now a default script in the Inspector right below the label “Imported
Object,” consisting of the following:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class Testing123 : MonoBehaviour {

// Start is called before the first frame update

Void Start()

{

}

// Update is called once per frame

void Update()

{

}

}

If you are reading this book in color, rather than on a black-and-white device, you
will notice that there are blue, green, teal, and black words in the code as printed in
this book. This is called color coding and it can be very helpful when editing code. For
example, keywords are blue, class names are teal, comments are green, numbers and
operators are black. The colors may be different on your computer. There is no color
coding in the Inspector panel.

Classic Game Design 2E_Ch02_3rd Pass.indd 18 4/26/2019 1:49:19 PM

Chapt er 2  — Tool s o f the Trade — 19

This is the code where you’ll insert additional code to compute 2+2. You’ll be edit-
ing this script in the following steps.

Step 9: Double click on Testing123 in the Assets panel.

After a delay of several seconds, the Visual Studio window should appear. It con-
tains the same code you saw earlier, but now it’s editable and color coded. If Visual
Studio doesn’t start up, try reinstalling Visual Studio Community Edition. It should
have been installed when you installed Unity.

It may be helpful for you to know that in earlier versions of Unity an application
called Monodevelop was used instead of Visual Studio. This is the reason for the
rather esoteric term “MonoBehaviour.” It is still possible for you to use Monodevelop
instead of Visual Studio if you prefer. This book uses Visual Studio for code editing.

Step 10: Edit the script so it looks like the following:
using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class Testing123 : MonoBehaviour {

// Use this for initialization

void Start()

{

}

// Update is called once per frame

void Update () {

}

// Testing out C# in Unity

Classic Game Design 2E_Ch02_3rd Pass.indd 19 4/26/2019 1:49:19 PM

20 — Clas s i c Game Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 21

private void OnGUI()

{

int result = 2 + 2;

GUI.Box(new Rect(10, 10, 240, 40), "Result is " + result);

}

}

This is the first time you’re editing text into Unity, so it’s time to do some experi-
mentation. In the following steps you’ll test the code to see if it’s working.

Step 11: Save the code! Use File – Save or the keyboard shortcut Ctrl-S on the PC,
Command-S on the Mac. This is a truly important step and you can easily get bitten
if you forget to do this. This is a good keyboard shortcut to learn because you’ll need
to save frequently.

Step 12: Run the game by clicking on the play arrow.

If you’re somewhat lucky, you’ll see the message telling you that “Result is 4.” If
you’re not so lucky, you’ll get some kind of error message. Carefully check all of your
code and make sure that it exactly matches the text in the book, and that you saved
your file in Visual Studio.

If nothing is happening at all, check the function name OnGUI for typos. If, for
example, you typed OnGui instead, you’ll get no error messages and no output from
the function.

Now you’ll carefully go through the code and attempt to fully understand it. The
using statements are automatically generated by Unity when editing a new C# file.
They can be safely ignored for now, except that they need to be there in order for the
code to work. The public class statement sets up the Testing123 class. The
name in the code needs to match the filename. This is important to know when you
copy a file, change the name of the file, but then forget to change the name of the class.
The Start and Update functions are blank for now. This is where you would insert
code for initialization and updating of animations and game logic.

Classic Game Design 2E_Ch02_3rd Pass.indd 20 4/26/2019 1:49:19 PM

Chapt er 2  — Tool s o f the Trade — 21

The OnGUI function is a built-in feature of Unity and gets executed periodically
to display user interface items. As stated above, if you have a typo in that name
you won’t get an error message, but the function then just sits there and doesn’t get
executed. Try temporarily changing the name to OnGui, for instance, and watch how
suddenly the GUI message is no longer displayed when you run your code.

The variable name result is one that you made up. It could have easily been
something else, such as WeirdValue. The only thing that matters is that the two
occurrences of the name in your code match each other exactly. And, of course, there
are rules for which characters can or cannot be part of a variable name. These rules
differ among programming languages. The rules for C# are the same as for C and
C++: variable names may have letters, digits, and the underscore character (_). The
first character must be a letter. Case matters, and C# keywords such as class may
not be used as variable names. Notice that it’s not OK to use spaces. This is why
WeirdValue is fine but Weird Value is not a valid variable name.

The GUI.Box line creates the output that you see in your window. The numbers
10, 10, 240, 40 are coordinates of the rectangle that contains your output. The
"Result is " string gets displayed together with the value of the result vari-
able. The plus sign before result is not addition but string concatenation, an opera-
tion that takes two strings and merges them together one after the other. Notice
the space at the end of the "Result is " string. Without it the output would be
Result is4.

The result variable contains an integer but automatically gets converted to a
string when concatenated with another string. The last line contains a single curly
bracket. It closes an earlier open curly bracket. The two brackets contain the code for
the OnGUI function.

Step 12: Experiment with the code by changing some things and seeing what
happens.

This is a somewhat free-form step. Keep your changes small and make sure to
undo them when you’re done. Some possible examples: multiplication with the star

Classic Game Design 2E_Ch02_3rd Pass.indd 21 4/26/2019 1:49:19 PM

22 — Clas s i c Game Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 23

character, such as 12*12, or change the string from "Result is " to "I can put
any old string in here ".

If you’ve been lucky enough to avoid compiler error messages, this would be a
good time to try out what happens when you do something wrong, such as forgetting
a semicolon or a bracket.

Step 13: Save the scene and project.

It’s time to move on and create some graphics.

USING GIMP TO MAKE AN IMAGE
GIMP is a fully featured, open-source, free program for creating and manipulat-

ing graphic images. If you haven’t done so already, go to www.gimp.org and install
GIMP on your system. If you have GIMP installed already, please verify that you
have version 2.10 or later. If you have a later version, or a slightly older version, your
installation should still be compatible, but that can’t be guaranteed. In the following
steps, you’ll take GIMP for a quick spin and make an image.

Step 1: Start up GIMP.

Take a look at the main window. The title of the window is GNU Image Manipu-
lation Program. GIMP is an abbreviation of that. It looks like Figure 2.4. Your colors
and icon sizes may be different.

Depending on your previous usage of GIMP you may see additional windows.
These additional windows are called “Dockable Dialogs.” In this book, Single-Window
mode will be used, a mode where these dialogs become panels on the right and left
side of the main window.

Step 2a: Select Windows – Single-Window Mode from the main window.

Before you move on, you’ll adjust the visual appearance of GIMP.

Step 2b: Adjust Preferences as explained below.

The Preferences window is found by clicking on the drop-down menu under Edit
(GIMP-2.10 on a Mac). Find the Interface section and click on Theme. If you want

Classic Game Design 2E_Ch02_3rd Pass.indd 22 4/26/2019 1:49:19 PM

Chapt er 2  — Tool s o f the Trade — 23

 FIGURE 2.4 GIMP main window.

to match the theme used when producing this book, choose the Default theme
(Light on a Mac). You may wish to try out the other themes and choose one to your
liking. The icons on the left and right of the GIMP window may possibly be too small
for you, depending on which monitor you’re using. In that case you can increase their
size by clicking on the Icon Theme and select Custom Icon Size with an icon size
setting of Large or Huge. This book uses the Color Icon Theme.

You’re now ready to start using GIMP.

Step 3: Select the File menu and select New….

Step 4: Set the Width to 1024, Height to 768, Units to px (pixels).

Step 5: Click OK.

A solid white image appears. That’s where you’ll create the image. Next, you’ll
need the Tool Options dialog. The next step is only necessary if you don’t have that
dialog visible.

Classic Game Design 2E_Ch02_3rd Pass.indd 23 4/26/2019 1:49:19 PM

24 — Clas s i c Game Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 25

Step 6: Select Windows – Dockable Dialogs – Tool Options.

If you have the Tool Options already visible, they will flash twice to show you
where they are.

Now comes the fun part. You’re going to fill your image with dried mud.

Step 7: Select Bucket Fill Tool in the Tool box.

It’s the icon that looks like a paint bucket. Once you have it selected, the Tool
Options area will change to show the options for the Bucket Fill tool.

Step 8: Select a Fill Type of Pattern Fill.

There are three fill types, FG color fill, BG color fill, and Pattern fill. FG stands for
foreground, BG is background.

Step 9: Select the Dried Mud built-in pattern.

To select the pattern, first clear the text entry box immediately below the Pattern
Fill text. Then start typing the name of the pattern (this is case sensitive) and hit
return once the autocomplete shows the words “Dried mud.” Move the mouse into the
image area and notice that the mouse now has a paint bucket icon to let you know
that you’re about to do a bucket fill.

Step 10: Click anywhere inside of the image.

Your image fills with dried mud and should look like Figure 2.5.

This is going to be your texture image for your demo application. In this book, tex-
tures are saved in png format. PNG stands for Portable Network Graphics. This is a
good format for textures because it has alpha channel support. It was designed to be
an improved and unpatented replacement for GIF.

Step 11: Do File – Export… with name MudBackground.png.

Use the default export settings and use the Assets folder in your Unity project for
HelloWorld. You just created a new image containing a repeating dried mud texture.
Later on, you’ll use GIMP to do some basic drawing with brushes and to manipulate
existing images.

Classic Game Design 2E_Ch02_3rd Pass.indd 24 4/26/2019 1:49:19 PM

Chapt er 2  — Tool s o f the Trade — 25

 FIGURE 2.5 Image filled with the “Dried Mud” pattern.

Step 12: Do File – Quit to exit GIMP and Discard Changes.

You did an export, so there’s no need to save the project as well.

In the next section, you’ll get introduced to yet another tool, Blender, and use it to
make a 3D object for your demo.

USING BLENDER TO MAKE A 3D OBJECT
Blender is an incredibly powerful, useful, and free program that allows you to

make 3D objects for your games. If you haven’t done so yet, install the latest stable
version of Blender. It can be downloaded at www.blender.org. If you already have
Blender installed, make sure that you have version 2.79b or later. You need to be
aware that Blender made a very significant upgrade at version 2.8. This book was cre-
ated using version 2.79b because at the time, 2.8 was still in beta and not fully compat-
ible with Unity. If you are using version 2.8 or later go to www.classicgamedesign.com
for the latest compatibility information. Version 2.8 has some fantastic user interface
improvements, but if you are new to Blender you may wish to use version 2.79b in
order to more easily follow the instructions in this book.

Classic Game Design 2E_Ch02_3rd Pass.indd 25 4/26/2019 1:49:20 PM

26 — Clas s i c Game Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 27

Step 1: Run Blender and left-click the mouse to dismiss the splash screen.

If you’re an advanced Blender user, you may skip the following step.

Step 2: Click on File – Load Factory Settings.

Your screen should look similar to Figure 2.6.

The loading of the factory settings isn’t really necessary if you just installed
Blender, but if you’ve used this particular installation of Blender before it’s a good
idea to go back to the factory settings so your settings match the ones used by the book.

Before you start to use Blender, please be aware that the instructions in this
book assume that you’re using a three-button mouse with a scroll wheel and an
extended keyboard with a numeric keypad. If you’re using a trackpad or a smaller
keyboard, for example, you can still follow along by learning how to change the user
preferences. Instructions for this can be found on the internet. Mac users sometimes
need to use different keyboard shortcuts because Mac keyboards are different from
Windows keyboards.

 FIGURE 2.6 Blender initial screen.

Classic Game Design 2E_Ch02_3rd Pass.indd 26 4/26/2019 1:49:20 PM

Chapt er 2  — Tool s o f the Trade — 27

 FIGURE 2.7 Blender monkey Suzanne.

Step 3: Delete the cube by moving the mouse to the center of the window, press the
x key and hit the Enter key.

Blender has this default cube set up every time you start the program. You don’t
need the cube this time, so you can start by deleting it from your 3D world.

Step 4: Click on Add – Mesh – Monkey.

Yes, Blender has a monkey object built in. Her name is Suzanne. You’ll put this
monkey into your application.

Step 5: Move the mouse cursor back into the 3D panel, then hit the 1 key on your
numeric keypad.

Step 6: Use the mouse scroll wheel to enlarge the view of the monkey head.

Your screen should now display Suzanne, as shown in Figure 2.7.

Blender is an enormous program. This book only scratches the surface. You
can try out one of the more popular and powerful features of Blender by doing the
following step.

Classic Game Design 2E_Ch02_3rd Pass.indd 27 4/26/2019 1:49:21 PM

28 — Clas s i c Game Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 29

Step 8: Save the file and name it monkey.blend. Make a note of where the file is
on your system. You’ll be using the monkey.blend file later in this chapter when you
bring it into Unity.

Step 9: Exit Blender

Now take a look at Audacity, the free audio editor and use it to make a cool
sound effect.

USING AUDACITY TO MAKE
A SOUND EFFECT

Audacity is free, open-source, cross-platform audio software. Audacity is a mul-
titrack audio-editor and recorder for Windows, Mac OS X, GNU/Linux, and other

Step 7, PC only: Hit Control-2 to add a Subdivision Surface Modifier. Another way
to get the same effect is this:

Step 7: Click on the wrench icon (Object Modifiers), click on Add Modifier – Sub-
division Surface.

The monkey head magically looks much smoother. It’s not really magic, but just
a mathematical algorithm that inserts more faces for a smoother appearance. The
smooth monkey head is shown in Figure 2.8.

 FIGURE 2.8 Smooth monkey head.

Classic Game Design 2E_Ch02_3rd Pass.indd 28 4/26/2019 1:49:21 PM

Chapt er 2  — Tool s o f the Trade — 29

operating systems. Audacity can be downloaded at www.audacityteam.org. If you
already have Audacity installed on your system, please verify that you have version
2.3.0 or later.

It’s surprisingly easy to make sound effects with Audacity.

Step 1: Start Audacity.

Step 2: Click on Generate – Pluck….

If there are two Plucks in your version of Audacity, select the upper one.

You will be using one of the built-in sound effects, a synthetic plucking sound.

Step 3: Set the Pluck MIDI pitch to 32.

Step 4: Set the Fade-out type to gradual.

Step 5: Set the Duration to 4.0 seconds and click OK.

You just made a very cool looking audio waveform. Make sure that you have
speakers or headphones attached to your computer and that the volume is set to a
medium level.

Step 6: Click on Play .

You should hear four seconds of a distorted sound effect, just what you want. If
you don’t hear anything, test out your computer with some other sound source, such
as an online video.

This sound is a good start, but it’s too long.

Step 7: Select the right two seconds of the waveform with the mouse.

You select portions of the waveform by clicking and holding the left mouse but-
ton, then dragging the mouse, then letting go of the left mouse button. The selected
portion of the waveform is now highlighted. It’s OK to overshoot and select past the
four-second mark.

Step 8: Press the delete key on your keyboard.

The remaining waveform should be about two seconds long.

Classic Game Design 2E_Ch02_3rd Pass.indd 29 4/26/2019 1:49:21 PM

30 — Clas s i c Game Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 31

Step 9: Click on Skip to Start , then Play .

Make the sound more interesting.

Step 10: Click on Select – All, Effect – Wahwah… and Apply, Close, then click on
the Play arrow to listen to it.

Your window now shows the new waveform as illustrated by Figure 2.9. If your
window looks much darker than that, you have the dark theme installed. To use the
light theme, go to Edit – Preferences (Audacity – Preferences on a Mac),
click on Interface, and choose the Light theme.

Step 11: Click on File – Export – Export as WAV and use the filename
monkeysound.wav. Use the Assets directory from the Unity HelloWorld project.
You will see a Metadata entry window while saving the file. You may safely ignore
that, leave the fields blank, and click on OK.

 FIGURE 2.9 Audacity window showing Sound Effect Waveform.

Classic Game Design 2E_Ch02_3rd Pass.indd 30 4/26/2019 1:49:22 PM

Chapt er 2  — Tool s o f the Trade — 31

Step 12: Exit Audacity.

The program will ask you if you want to save your work. That may seem strange
because you just exported the sound effect. You may save now if you wish, but strictly
speaking it’s not necessary because the exported .wav file is all you need.

As you saw when you selected the Effect menu, Audacity has a large number of
effects. Don’t be afraid to try a few of them to see what they do. You’re always just a
few clicks away from creating something weird and brand new. It’s also fun to record
sound effects with a microphone and to then apply some effects on the recordings.
More details on how to use Audacity for making realistic and strange sound effects
will be discussed later on in this book.

Next, you’re going to put the texture image, 3D object, and sound effect together
in a demo Unity project.

USING UNITY: MY FIRST DEMO
In this section, you’ll be making a demo application in Unity. The plan is to

have the monkey head from Blender bouncing up and down on a textured playfield.
You’ll insert the sound effect and have it looping just because it’s very easy to do that.
This isn’t a game yet, but simply a demo of how the development tools interact with
each other.

Step 1: Start up Unity.

Unity shows a list of recent projects.

Step 2: Click on New

Step 3: Enter ClassicProjectDemo as the Project Name, 3D Template
The HelloWorld project was 2D, this one is 3D.

Step 4: Click on Create Project.

It may take some time for Unity to create your project. When it’s done, your screen
should look like Figure 2.10.

Classic Game Design 2E_Ch02_3rd Pass.indd 31 4/26/2019 1:49:22 PM

32 — Clas s i c Game Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 33

If your screen looks different from this, it might be because you have a different
layout selected. Make sure that you are using the “Default” layout. If the top right
box in your Unity window doesn’t say Default, click there and select Default from the
drop-down menu.

First, you’ll create your playfield. It starts out as a cube and then you’ll stretch it
and rename it.

Step 6: Click on GameObject – 3D Object – Cube.

Step 7: In the Inspector panel, change the Position X value to 0, Y value to 0, and Z
value also to 0, if necessary.

Those positions are probably at 0 already, but if they’re not, change them to 0.

Step 8a: Change the Scale X to 10, leave Y at 1, and change Z to 10.

Step 8b: Rename the Cube to Playfield in the Inspector.

Giving your objects meaningful names is an important habit. Don’t get lazy and
skip this step! Yes, your game will still run with default names, but you’ll quickly get

 FIGURE 2.10 Getting started with Unity demo project.

Classic Game Design 2E_Ch02_3rd Pass.indd 32 4/26/2019 1:49:22 PM

Chapt er 2  — Tool s o f the Trade — 33

 FIGURE 2.11 A stretched cube acting as the Playfield.

lost and confused with too many names like cube and sphere! By the way, the name
for this object in the first edition of this book is Cube…

Step 9: Hover the mouse over the Scene panel. Press the f key, and scroll the
mouse scroll wheel up to make the playfield larger.

Your Unity window should look similar to Figure 2.11.

You’re now ready to start importing assets. The word “asset” refers to pieces of
graphics, code, or sound that might be used in your scenes. The assets are all listed in
the Project panel in the Assets subpanel. It’s easy to add assets to a project. Just drag
them into the Project panel from another window using the mouse.

Step 10: Use Windows File Explorer to find the file MudBackground.png and drag
it into the Assets panel. On a Mac, use Finder instead of Windows Explorer.

This is the texture file that you created using GIMP a couple of sections ago. The
Assets panel should now list two items, the Scenes folder and MudBackground.

Classic Game Design 2E_Ch02_3rd Pass.indd 33 4/26/2019 1:49:23 PM

34 — Clas s i c Game Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 35

Step 11: Drag the MudBackground asset on top of the Playfield object in the
Hierarchy.

Now the playfield is textured with dried mud! Notice that you now have a Materi-
als folder in the Assets panel. This folder was created automatically when the mud-
background texture was assigned to the Playfield.

The texture is hard to see, so you will change the tiling factor for the texture in
the next step.

Step 12: Select the Playfield, expand MudBackground at the bottom of the
Inspector panel and change the Tiling to 0.5 for both X and Y in the Inspector panel.

To expand the MudBackground, click on the triangle below the brown sphere in
the Inspector panel. You can use the Tab key to move from the X text entry to the Y
text entry.

Step 13: Select the Playfield again, move the mouse into the Scene panel, and scroll
the mouse wheel to adjust the zoom level on the playfield so that you see all of the
playfield.

After all that, your screen should look similar to Figure 2.12.

Your next asset is the monkey. Even though this is a very different file from the
mud texture file, the importing of this asset works the same way.

Step 14: Drag the file monkey.blend into the Assets panel.

Step 15: Drag the monkey asset from the project panel to the Scene and drop it near
the center of the playfield.

Step 16: With the monkey still highlighted, change the X Position to 0, Y Position
to 5, and the Z Position to 0. Also, change the Y Rotation to 180, and leave the X
Rotation at –90.

You can use the Tab key to quickly move through these text entry fields. It’s pos-
sibly to click on the X Position text entry first, the enter the rest of the numbers using
just the keyboard.

Classic Game Design 2E_Ch02_3rd Pass.indd 34 4/26/2019 1:49:23 PM

Chapt er 2  — Tool s o f the Trade — 35

Step 17: Right Click on the scene gizmo and select Back Perspective.
Press f to focus on the monkey.

The scene gizmo is in the upper right corner of the Scene panel. Try out the dif-
ferent built-in views just for fun, but use the Back Perspective view when you’re done.
Next, you’ll change the color of the monkey to green.

Step 18a: Create a new Material in the Assets panel and rename it to
MonkeyMaterial.

In the project panel there’s a Create dropdown menu. Use it to select Material.

Step 18b: In the Inspector, change the color of Albedo to green

When you click on the Albedo color, a color dialog allows you to change the color.
When you exit the color dialog, the MonkeyMaterial icon in the Assets panel should
appear to be green.

 FIGURE 2.12 Texturing the Playfield.

Classic Game Design 2E_Ch02_3rd Pass.indd 35 4/26/2019 1:49:24 PM

36 — Clas s i c Game Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 37

Step 19: Click on the layout drop-down menu in the upper-right corner of the window,
currently at Default, and select 2 by 3.

The 2 by 3 layout with two views of the monkey is shown in Figure 2.14. Your view
of the Scene panel may be zoomed in more than in the Figure. You can adjust this
view with the mouse scroll wheel as in the previous step.

Step 20: In the Game panel, select Maximize on Play.

Step 21: Click on Play .

Running the demo right now causes the Game panel to cover the entire screen.
The monkey sits there and doesn’t do anything. The next few steps will animate the
monkey by enabling the built-in physics engine of Unity.

Step 18c: Drag the MonkeyMaterial on top of the monkey in the Scene
panel. Press f again and scroll the scroll wheel on your mouse to get a good view
of the monkey.

When you do this, the monkey turns green even before you let go of the mouse
button.

You should now see a green monkey head in the Scene panel as shown in
Figure 2.13.

 FIGURE 2.13 Green monkey.

Classic Game Design 2E_Ch02_3rd Pass.indd 36 4/26/2019 1:49:24 PM

Chapt er 2  — Tool s o f the Trade — 37

 FIGURE 2.14 2 by 3 layout featuring Suzanne.

Step 22: Stop running the game by clicking on Play again.

This next step removes the animation that Unity automatically imported from
Blender. You don’t need this animation as it doesn’t do anything.

Step 23: Expand SampleScene in the Hierarchy and highlight the monkey.
Click on the small star on the right side of the Animator component and select
Remove Component.

Next you will add a Rigidbody component to the monkey to give it gravity and
have Unity’s built-in physics engine move the monkey for you.

Step 24: Select Component – Physics – Rigidbody.

Now when you play the demo, the monkey falls right through your playfield into a
bottomless pit. That’s better, but the monkey should collide with the playfield.

Step 25: Click on Component – Physics – Sphere Collider.

Now the monkey falls to the playfield and gets stuck slightly above it. Your goal
is to make it bounce.

Classic Game Design 2E_Ch02_3rd Pass.indd 37 4/26/2019 1:49:25 PM

38 — Clas s i c Game Des ign , Second Edi t ion Chapt er 2  — Tool s o f the Trade — 39

First, you need to create a Physic material. This unusual terminology refers to a
set of physical properties.

Step 26: Click on Create in the Project panel and select Physic Material.

Step 27: Rename the new Physic material to Bounce in the Assets panel.

When you created the Physic Material, its name was highlighted in blue. You can
immediately rename it at that point by just typing the new name. This method of
renaming items in Unity works anytime you create something. To rename something
later on you need to click on the name, wait a second or more, then click on the name
again and type the new name.

Step 28: Find the Bounciness property in the Inspector and change it to 1.

You might as well remove the friction as well, so do this:

Step 29: Change the Dynamic Friction and Static Friction to 0.

Step 30: Drag the Bounce material from the Assets panel on top of the monkey.

You can drag it to the green monkey in the Scene panel, or the monkey in the
Hierarchy. Note that the Sphere Collider now lists Bounce as the Material. To see
this in the Inspector, you’ll need to select the monkey.

Now the monkey bounces but the bouncing is very damped, and the bouncing
stops very quickly. This is OK, but it would be more fun to have the playfield be
bouncy as well.

Step 31: Drag the Bounce material onto the Playfield in the Hierarchy panel.

Now when you run the demo the monkey bounces and keeps on bouncing. The
monkey doesn’t quite reach the playfield when it bounces, but it’s close enough for
this demo.

Finally, you’ll add some sound. Again, you’re going to simply drag your sound
asset, monkeysound.wav, into the Project panel.

Step 32: Find the file monkeysound.wav in the Assets folder of HelloWorld and
drag it into the Assets panel of this project.

Classic Game Design 2E_Ch02_3rd Pass.indd 38 4/26/2019 1:49:25 PM

Chapt er 2  — Tool s o f the Trade — 39

Having an asset in your project doesn’t actually do anything. To activate it do the
following:

Step 33: Select the Playfield object and click on Component – Audio – Audio
Source.

Step 34: Drag the monkeysound asset on top of the Playfield in the hierarchy
panel.

Step 35: Click on Playfield, then Check the Loop property in the Inspector.

The loop property is part of the Audio Source section in the Inspector panel. You
may need to scroll down to see it. The loop property makes your sound repeat over
and over. Notice that the “Play on Awake” property is already checked. That means
that the sound will start looping as soon as you press play. Later on in this book you’ll
learn how to trigger sounds when objects collide with each other.

Step 36: Play the program and admire your handiwork.

Step 37: Save your scene and project, then exit Unity.

Now you know the very basics of running the tools and creating some assets with
them. In the next chapter, you’ll take a quick look at the early history of video games
and a closer look at the arcade video game that started it all, Pong.

Classic Game Design 2E_Ch02_3rd Pass.indd 39 4/26/2019 1:49:25 PM

Chapt er 3  — Pong — 4140 — Clas s i c Game Des ign , Second Edi t ion

CHAPTER

3 Pong
IN TH IS CHAPTER

Pong is generally considered to be the first successful commercial video game.
Released in 1972 by a then unknown company, Atari, it had a great name and was
an instant hit. Pong is truly the game that launched the commercial video game
industry. In this chapter, you’ll look at the history and design of Pong from various
perspectives. You’ll also get introduced to our first two classic game design rules.

BEFORE PONG
Before Pong there were tennis and table tennis, also known as Ping Pong. Both

are Olympic sports with hundreds of years of history. More importantly, in the ‘70s
both tennis and table tennis enjoyed great popularity around the world. Back then a
majority of the US population knew the basic rules and had at least some experience
with trying to play these games.

Pong wasn’t the first video game. There’s
some debate on which one was in fact first, but
the first commercial arcade video game was
Computer Space, shown in Figure 3.1.

Amazingly, eight years before Asteroids,
this game had Asteroids controls! You’re fly-
ing a space ship with a thrust and two rotation
buttons and you shoot at flying saucers.

 FIGURE 3.1 Computer Space screenshot.

Classic Game Design 2E_Ch03_2nd Pass.indd 40 4/25/2019 10:16:50 AM

Chapt er 3  — Pong — 41

Computer Space was created in 1971 by Nolan Bushnell and Ted Dabney, who
would soon found Atari. Computer Space was not a big commercial success, probably
because it was too difficult to learn. The screen also looks a bit busy, in great contrast
to its much simpler and better-looking successors.

According to Nolan Bushnell, “Sure, I loved it, and all my friends loved it, but all
my friends were engineers. It was a little too complicated for the guy with the beer in
the bar.”

Going farther back in time, Spacewar!
(see Figure 3.2) is very similar to Computer
Space. It was developed on a PDP-1 main-
frame computer at MIT in 1962 by Steve
Russell and others. DEC distributed this
game with all PDP-1’s and consequently it
ended up at a large number of universities.
Even more amazing, this game also had
Asteroids controls.

Another well-worn quote by Nolan Bushnell is:

“Easy to learn and hard to master” has become a mantra for many game design-
ers, especially arcade game designers in the ‘70s and ‘80s. Arcade games times aver-
age three minutes, so there just isn’t much time for potential players to learn the
games. Ideally the players would watch someone else play the game for a minute or
two and would immediately feel that they, too, could do that.

All this led up to Pong. If Pong isn’t easy to learn nothing is.

 FIGURE 3.2 Spacewar! PDP-1 (1962).

All the best games are easy to learn and difficult to master. They should reward the first quarter
and the hundredth.

Classic Game Design 2E_Ch03_2nd Pass.indd 41 4/25/2019 10:16:50 AM

42 — Clas s i c Game Des ign , Second Edi t ion Chapt er 3  — Pong — 43

PONG, ATARI (1972)
The gameplay for Pong is incredibly simple,

even for 1972. Two players each control a pad-
dle with a knob and try to keep the bouncing
ball in play. Pong ’s only differences from Ping
Pong are that it takes place on a TV screen, the
physics are simplified, and the players control
their paddles with knobs instead of holding a
physical paddle.

When you first encounter the screen, it
looks like Figure 3.3.

The design elements consist of just six items: two scores for the players, two pad-
dles, a ball, and a net. Figure 3.4 illustrates the design elements.

 FIGURE 3.4 Pong design elements.

The players control the paddles and they have nothing else to do but to move the
paddles up and down and try to make contact with the ball. The scoring is very famil-
iar and self-explanatory.

 FIGURE 3.3 Pong, Atari 1972.

Classic Game Design 2E_Ch03_2nd Pass.indd 42 4/25/2019 10:16:50 AM

Chapt er 3  — Pong — 43

The physics are simple and a bit unrealistic. There is no gravity, no friction, and
no spin effect. Basically it’s like Ping Pong in space. None of that matters though. In
fact, it’s partly because of the clean look and feel that the game was so successful.

This book introduces eight classic game design rules. Here is the first one:

Simplicity is the hallmark of great design, and not just in games. The iPhone,
Pong, the four-note theme for Beethoven’s fifth symphony, Ernie Els’s golf swing, and
the pyramids of Egypt: all have a startlingly similar elegance. Designers often arrive
at this simplicity via an arduous and complex path. Only rarely does the final design
appear fully formed. Rather, years of development are needed to get there.

The enemy of Rule 1 is featuritis, a disease that can afflict even the best designers.
Looking at the sequels of hit games, it’s often apparent that the addition of features
merely dilutes and spoils the original game. There are exceptions, of course, but great
care must be taken when trying to improve upon a successful product.

Examples of why Rule 1 is important are everywhere. Consider Apple’s iPod,
iPhone, and iPad. Their phenomenal success is often attributed to their optimally
simple user interface.

Here’s the second rule:

All too many modern games break this rule. People are impatient. They don’t
want to wait around, or read a bunch of rules. They want to start playing the game
right away.

It takes some judgment to deal with this rule. A good way to look at it is this:
Estimate the duration of the playing session, and allow for about 5% of that time for

Classic Game Design Rule 1: The Simple Rule: Keep it simple.

Classic Game Design Rule 2: Immediate Gameplay Rule: Start gameplay immediately.

Classic Game Design 2E_Ch03_2nd Pass.indd 43 4/25/2019 10:16:50 AM

44 — Clas s i c Game Des ign , Second Edi t ion Chapt er 3  — Pong — 45

instructions, cut-scenes, or the traversing of menus before starting with the actual
gameplay. In the coin-op days of the ‘80s, 3-minute game times were the norm, which
is 180 seconds; thus, the games wouldn’t go over 9 seconds of introduction or instruc-
tion before allowing people to play.

Ideally, as in Pong for instance, the players would insert a coin and start playing
just a few seconds afterwards.

It’s tempting to write more rules now, but that would be a violation of Rule 1!

COIN-OP, THE REAL ATARI
Pong was the first product made by Atari. The people who made the games

were hardware engineers. There were no programmers because the game was made
entirely in hardware. It would take several more years until commercial games were
programmed by game programmers rather than designed by hardware engineers.

In the mid-‘70s Atari split into two groups: coin-op and consumer. The coin-op
group always considered itself the “Real Atari” because most of the big hits originated
as coin-op games. The consumer group, however, would soon be responsible for the
vast majority of revenues.

PONG SEQUELS AND CLONES
Predictably, Pong led to a whole slew of arcade sequels and clones including

Pong Doubles (1973), Super Pong (1974), and Quadrapong (1974), all by Atari. Pong
Doubles added two more paddles so that four players could play. Atari also got into
the home video game business with the Home Pong console. If you haven’t done so
already, this would be a good time for you surf the web and look at some images and
videos of Pong and its sequels.

BITMASTERS, DAY ONE
Over 20 years later, in 1994, Bitmasters got a development contract to do a bas-

ketball game for Mindscape on the Genesis and SNES home video game systems. Bit-
masters was a small game development company located in Sunnyvale, California,

Classic Game Design 2E_Ch03_2nd Pass.indd 44 4/25/2019 10:16:50 AM

Chapt er 3  — Pong — 45

just a few miles from the old Atari buildings. This was no coincidence, because several
of the people at Bitmasters were ex-Atari employees, including Eric Ginner, Dave
O’Riva, and the author of this book, Franz Lanzinger.

Day One of the basketball project was also Day One for several new programmers.
None of them had ever seen a SNES system, much less programmed for it. So what
would be the best way to teach them the basics? They all spent the day programming
Pong using 65816 assembly language and proprietary Bitmasters software tools devel-
oped for previous SNES games. Amazingly, it took just one day for the new program-
mers to get a very good version of Pong up and running on their development systems.

PONG AT FORTY
Is Pong still a viable game forty years later? Yes! In 2012, Atari held a high pub-

licity contest called the Pong Indie Developer Challenge. The winning entry was
Pong World, published in November of 2012, four decades after the first Pong hit the
arcades. This modern sequel is a much more complex game than the original, but the
basic ideas behind Pong are still there.

What can you learn from this? Just as good literature, music, and art continue to
thrive tens or even hundreds of years after their creation, so do the great classic video
games. All game developers should keep this in mind when negotiating contracts
with publishers.

It’s also good to consider the far future when designing games. Can you imag-
ine what a game console will look like in fifty years? Chances are the resolution will
be higher, the processors faster, the storage larger. The controls will be different,
maybe even unrecognizable. The constants are the rules, the product trademarks, the
characters, the stories, and to some extent the basic game mechanics. A reasonable
attempt to future-proof your game would include the following: stay away from fad
controls, avoid cultural references to current events, and develop your art assets in a
resolution-independent way.

In the next chapter, you’ll start by developing your very own paddle game inspired
by Pong.

Classic Game Design 2E_Ch03_2nd Pass.indd 45 4/25/2019 10:16:50 AM

Chapt er 4  — Clas s i c Paddle Game — 4746 — Clas s i c Game Des ign , Second Edi t ion

CHAPTER

4 Classic Paddle
Game

IN TH IS CHAPTER

In this chapter, you’re going to build your first game, a two-player paddle game
similar to Pong. It’s an exercise in building a prototype from scratch using
Unity.

GETTING READY
As you can see, the title is Classic Paddle Game. This is a working title, intended

to be replaced by the real title as some point. It is up to you to create a better title.
Working titles are often chosen to be intentionally unusable for a commercial product,
and this one’s no different. You’re going to do a game that’s a very abstract version of
Ping Pong. There are two players, and all they do is control their respective paddles
to hit a ball back and forth across the screen. If a player misses hitting the ball, the
other player gets a point. The first player to get to 11 points wins. That’s the game in
a nutshell, and this description is a rough guideline. You’re perfectly free to change
some things along the way. This game, unlike Pong, will use a physics engine and,
just for fun, it’ll be in color with 3D lighting effects.

VERSION 0.01: THE PLAYFIELD
Your first goal is to display the playfield. This is a very common first step in mak-

ing games. Whether it’s a detailed world in Skyrim™ or a blank canvas in Pong, you
always need some kind of background. Your background in this game will be a green,
rectangular shape with borders on the top and bottom.

Classic Game Design 2E_Ch04_2nd Pass.indd 46 4/25/2019 10:17:06 AM

Chapt er 4  — Clas s i c Paddle Game — 47

Step 1: Create a new Unity project with the name “ClassicPaddleGame” in your
Unity projects directory. Keep the default 3D Template.

Step 2: Use the 2 by 3 layout.

Upon startup, there is a blank workspace as shown in Figure 4.2. You should see
the text “2 by 3” in the upper right-hand corner of the window. If you don’t, activate
the layout drop-down menu and select “2 by 3.” You’re now ready to create your game.

Step 3: Click on GameObject – 3D Object – Cube from the main menu and rename
the Cube to Playfield.

Renaming can be done either in the Hierarchy or in the Inspector.

Step 4: Set the Position of the Playfield to (0, 0, 0) in the Inspector panel.

If it’s at (0, 0, 0) already you don’t have to do anything.

Step 5: Use the Top Isometric view.

To do this, right-click on the Scene Gizmo in the upper right corner of the Scene
panel. Select Top and turn off Perspective.

Step 6: Select the Playfield object, hover the mouse over the Scene panel, and then
press the f key.

You should now see a white square in the Scene Panel, shown in Figure 4.1. The
“f  ” key focuses the view in the Scene panel on the currently selected object. It’s very
useful for finding your current game object when it’s gotten lost off-screen someplace,
or if the zoom level is much too large or too small.

This is your starting point for the playfield. Make the Playfield larger by changing
the scale.

Step 6: Set the Scale of the Playfield to (30, 30, 1).

This is done by clicking on X, Y, and Z in the Scale section of the Inspector win-
dow and entering the new values for X and Y. The Z Scale is already set to 1. You can
speed this up by using the Tab key, as explained earlier in the book.

Classic Game Design 2E_Ch04_2nd Pass.indd 47 4/25/2019 10:17:06 AM

48 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 49

Step 7: Use the Front view and focus on the Playfield.

Just as you did with the top view, right-click on the Scene Gizmo and select front.

Next, you’ll change the color of the playfield object. You’ll do this by creating a
material, assigning it to the object, and adjusting the color of the material.

Step 8: Click on Create in the Project panel and select Material and give it the
name Mat Playfield.

Rather than renaming the material later, it’s possible to immediately type the
new name after creating the material with the default name “New Material.”

Step 9: Change the Albedo of Mat Playfield to a slightly dark shade of green.

As you might recall from Chapter 2, to change color, click on the rectangle to
the right of “Albedo” in the Inspector. Then use the pop-up Color Dialog to select a
slightly dark green color. To set this color, first select green in the rainbow circle, and

 FIGURE 4.1 Creating a cube in Unity.

Classic Game Design 2E_Ch04_2nd Pass.indd 48 4/25/2019 10:17:06 AM

Chapt er 4  — Clas s i c Paddle Game — 49

then select a dark green color shade from the main
square as shown in Figure 4.2.

Step 10: Assign the Mat Playfield material to
the Playfield.

This is done by dragging the material with your
mouse from the Assets panel to the Playfield in the
Hierarchy panel or alternately in the Scene panel.

Step 11: Click on Main Camera and move it to
(0, 0, -30).

Step 12: Change the Type of the Directional Light
to Point Light, move it to (0, 0, -10), and change
the Range to 100. Then rename it to “Main Light.”

Step 13: Select the Top view in the Scene panel.

Step 14: Select the Main Camera object by click-
ing on it.

You should now get a good view of what’s hap-
pening as shown in Figure 4.3.

 FIGURE 4.2 Setting the color for the
Playfield.

 FIGURE 4.3 Camera moved back to reveal the entire playfield.

Classic Game Design 2E_Ch04_2nd Pass.indd 49 4/25/2019 10:17:07 AM

50 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 51

Step 15: Experiment with the Field of View slider.

Be sure that the “Main Camera” is still selected. The top view shows that the cam-
era is in front of the playfield and the view lines emerging from the camera encom-
pass the entire playfield. You can move the “Field of View” slider with your mouse to
see the effect of changing the field of view. When you’re done playing with the slider,
put it back at 60 degrees.

You’ve done quite a bit of work and all you have is a green square! Still, this is a
good point to test the game, just to test if you can see the green square when you hit
the play button.

Step 16: Turn on Maximize on Play in the Game panel, if it’s not already on.

Step 17: Click on Play. Then click on it again to stop play mode.

Step 18: Save and Exit Unity.

Your next goal is to create boundaries at the top and bottom of the playfield. Also,
please note that from here on the instructions are slightly less detailed, now that
you’re getting more familiar with the Unity interface.

Step 19: Launch Unity. You should see the scene just as you left it when you saved it.

Exiting and starting up again is a good way to ensure that the project is saved
properly. If you need to take a break it’s a good idea to save and exit rather than to
just let the computer sit there. This brings up a related issue, version control. Ver-
sion control is a way to automatically keep track of multiple versions of your projects.
This book keeps things simple by avoiding the added complications brought about by
installing and using version control. With very small projects it’s unnecessary to use
version control. As your project grows you may wish to periodically save your project
with a new version number appended to the filename. This allows you to restart your
development at an older version if and when something goes wrong.

Step 20: Create a Cube, Position (0, 15, 0), Scale (30, 1, 1) with name
BoundaryUpper.

Classic Game Design 2E_Ch04_2nd Pass.indd 50 4/25/2019 10:17:07 AM

Chapt er 4  — Clas s i c Paddle Game — 51

There are two Create menus, one below the Project tab, and one below the Hierar-
chy tab. In this case you’ll use the Hierarchy Create, or you could use the GameObject
menu instead.

Step 21: Select the Back view in the Scene panel.

Step 22: Select Playfield and give it a new Z Position of 1.1 instead of 0.

The playfield just got a cool 3D quality to it. Your screen should look like Figure 4.4.

 FIGURE 4.4 Upper boundary positioned at the top of the Playfield.

Why did the instructions direct you to move the playfield back? The ball is going
to have a z-coordinate of 0, so you want the playfield behind it rather than at the same
position. Notice the subtle 3D effect of the boundary because it is no longer overlap-
ping with the playfield.

Step 23: Select BoundaryUpper, then right-click and select Duplicate.

Step 24: Rename the newly created duplicate to BoundaryLower.

Step 25: Select BoundaryLower and change the Y Position to -15.

Classic Game Design 2E_Ch04_2nd Pass.indd 51 4/25/2019 10:17:07 AM

52 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 53

Step 26: Save your work then exit Unity.

This is about as simple a playfield as you can have in a game. Commercial game
projects spend millions of dollars developing just the playfields for their large worlds,
but essentially, they are all just the stage and background for the true stars of the
games, the animated characters. While it’s certainly possible to skip making the play-
field entirely, it’s usually a good idea to have a simple playfield in place before doing
anything else.

For the next version, you’ll add the paddles for your paddle game and control
them with your computer keyboard.

VERSION 0.02: THE PADDLES
The paddles are the player characters in this two-player game. They will be cre-

ated using our usual technique of starting with cubes and scaling them.

Step 1: Launch Unity and load the project.

Step 2: Create a Cube and name it PaddleLeft.

Step 3: Change the Position of PaddleLeft to (-14, 0, 0) and the Scale to (1, 4, 1).

In case you’re wondering, the 14 was determined by trial and error. The playfield
is 30 units wide, so you’d think that -15 would be the correct x position, but you want
the paddle to be offset a little bit away from the edge, so -14 seems about right.

Next, let’s make the paddle red.

Step 4: Create a Material in the Project panel, name it Mat Paddle.

Step 5: Change the Albedo of Mat Paddle to red.

Step 6: Drag Mat Paddle onto PaddleLeft.

The paddle should now be red instead of grey. Next, you need to make the other
paddle.

Step 7: Duplicate PaddleLeft.

This is done by selecting it, right clicking, and selecting “Duplicate” from the menu.

Classic Game Design 2E_Ch04_2nd Pass.indd 52 4/25/2019 10:17:07 AM

Chapt er 4  — Clas s i c Paddle Game — 53

Step 8: Rename the duplicate to PaddleRight.

Step 9: Move PaddleRight to (14, 0, 0).

The Scene panel now shows the two new paddles, ready for action, as shown in
Figure 4.5. You can use the Hand Tool icon in the top left corner to center the view in
the Scene panel if necessary.

 FIGURE 4.5 Two paddles and a Playfield.

What just happened? Well, you made two red paddles out of cubes and placed
them on the playfield. You’re now ready to make the paddles move in response to
player inputs.

Step 10: Save.

This step isn’t really necessary, but it’s a good habit to periodically save your work
in case something goes wrong.

Step 11: In the Project Panel, click on Create – C# Script and rename it P1 instead
of NewBehaviour.

Classic Game Design 2E_Ch04_2nd Pass.indd 53 4/25/2019 10:17:07 AM

54 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 55

This is where you start putting in some code to make the left paddle move up
and down.

Step 12: Select P1 and click on Open… in the Inspector

A new window opens up. This is Microsoft Visual Studio, your chosen code editor
for Unity. You’ll be editing your code in this window, as shown in Figure 4.6.

 FIGURE 4.6 Microsoft Visual Studio code editor.

You should see 19 lines of code. There are two functions, Start and Update, and
they are empty. These are placeholder functions to help you get started. You will be
editing the file P1.cs. You can see the name of the file in the top left tab above the code.

Classic Game Design 2E_Ch04_2nd Pass.indd 54 4/25/2019 10:17:07 AM

Chapt er 4  — Clas s i c Paddle Game — 55

Step 13: Enter the following code to replace the Update function:
// Update is called once per frame

void Update ()

{

if (Input.GetKey("w"))

{

 transform.Translate (0, 20 * Time.deltaTime, 0);

}

if (Input.GetKey("s"))

{

 transform.Translate(0, -20 * Time.deltaTime, 0);

}

}

The code editor does a lot of work for you, but it takes some getting used to. Watch
the screen as you type, and you’ll see that Visual Studio balances parentheses, does
smart indentation, and guesses keywords for you. It also warns you with red under-
lines if it thinks you made a mistake. These features can best be learned by diving in
and typing code.

Step 14: Click on File – Save Assets\P1.cs in the Visual Studio Window. This saves
your editing work in Visual Studio.

Always save your code right away. Notice that the filename P1.cs has a star next
to it whenever there are unsaved changes present. On a Mac it’s not a star but a small
circle.

This Update function periodically checks the keyboard. When the “w” key is
pressed down, it moves the current object by a few units of distance. In this case, the
“w” key makes the object move up. The “s” key makes it go down.

Step 15: Drag the P1 script onto PaddleLeft.

You’ll need to click on the Unity window to make it the active window before
doing this.

Classic Game Design 2E_Ch04_2nd Pass.indd 55 4/25/2019 10:17:07 AM

56 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 57

Step 16: Click on Play and press the w and s keys. If you did everything correctly the
keys should move the left paddle up and down.

There’s a chance that you made a typo or some other mistake along the way. If so,
you’ll probably get an error message. To fix the error, go back to Visual Studio, fix the
problem using the error message as a guide, save your changes, and try again. You
may need to do this several times. This is normal, even for experienced programmers,
so don’t give up if it doesn’t work for you right away.

Step 17: Exit Play mode.

Now do this all again for the other paddle in the following steps.

Step 18: Create another C# Script, call it P2, and open it.

You’ll be back in Visual Studio and see two tabs for the two script files, P1.cs
and P2.cs.

Step 19: Select the P1.cs tab, do Edit – Select All, then copy it using Edit – Copy.

Step 20: Select the P2.cs tab, again select all the code, then do Edit – Paste.

Both P1.cs and P2.cs should now contain the same code.

Step 21: Change “w” to “up” and “s” to “down” in P2.cs. Also change P1 to P2 on line 5.

The “up” and “down” refer to the up arrow and down arrow keys on your key-
board. The class name needs to match the file name for this to work. This is why you
need to change P1 to P2 on line 5.

Step 22: Save the file in Visual Studio.

Step 23: In Unity, drag P2 from the Project window on top of PaddleRight.

It’s very important that you leave play mode by deselecting the play arrow before you make
changes that you wish to be permanent. If you forget to do this, everything you do during play
mode will be lost when you finally remember to stop play mode! This is a nasty surprise waiting to
happen. As long as you have "Maximize on Play" selected it’s much less of a problem, so be sure
to continue to use Maximize on Play when possible.

Classic Game Design 2E_Ch04_2nd Pass.indd 56 4/25/2019 10:17:07 AM

Chapt er 4  — Clas s i c Paddle Game — 57

Step 24: Play the game and try out the new controls.

You can now control both paddles.

Step 25: Save and exit Unity.

VERSION 0.03: THE BALL
It’s time to create a ball to knock around with your paddles. Fortunately, this is

really easy to do in Unity.

Step 1: Start up Unity and load your project.

Step 2: Create a Sphere in the Hierarchy panel and name it Ball.

Step 3: Select Ball and change the Position to (0, 0, 0), if necessary.

Step 4: Make it yellow by creating the material Mat Ball, making it yellow, and
dragging it onto the Ball game object.

The code for the ball is a little tricky. You’ll launch the ball from the middle of the
playfield in a somewhat random direction.

Step 5: Create a new C# Script, call it BallScript, and assign it to the Ball object.
Then type in the following code:

void Start()

{

Rigidbody rigidb = GetComponent<Rigidbody>();

if (rigidb)

{

rigidb.freezeRotation = true;

}

StartCoroutine("Waitforit");

}

// Update is called once per frame

void Update()

{

}

Classic Game Design 2E_Ch04_2nd Pass.indd 57 4/25/2019 10:17:07 AM

58 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 59

IEnumerator Waitforit()

{

Rigidbody rigidb = GetComponent<Rigidbody>();

yield return new WaitForSeconds(3);

if(rigidb)

{

 rigidb.AddForce(Random.Range(6, 8), Random.Range(-4, -3), 0);

}

}

This code needs some explanation. The idea is to freeze the rotation of the ball in
the Start function to make the physics behave the way you want. Then you wait for
3 seconds, followed by launching the ball in a randomized direction. You can look at the
Unity documentation for more details on Coroutines. To adjust the launch direction
vector, you can experiment with the numbers in the Random.Range function calls.

If you were to try and run the code right now, the ball wouldn’t launch because the
ball doesn’t have a Rigidbody component yet. Here’s how to do that:

Step 6: Select Ball in the Hierarchy. Click on Component – Physics – Rigidbody.

Step 7: In the Inspector uncheck Use Gravity and set the Mass to 0.01.

It’s critical that you enter the mass correctly, or the ball will behave strangely. For
example, with a mass of 0.1, the ball would move much too slowly in response to the
AddForce function call.

Step 8: Create a Bouncy Physic Material in the Asset panel just as you did in
Chapter 2. Both Frictions are set to 0 and the Bounciness is 1.

Step 9: In the Sphere Collider of Ball, click on the small circle next to the Material
box. A new window will pop up. Assign the Bouncy material to the Sphere Collider.
This makes the ball bouncy.

Step 10: Drag the Bouncy material onto both paddles and both boundaries.

Step 11: Test your game!

You should be able to play the game now, with the ball bouncing back and forth.
You might try this with a friend. If you’re on your own, you can use your left hand on
the w and s keys with the right hand on the arrow keys.

Step 12: Save and Exit

You have reached a major milestone. The game is now playable! There’s still quite
a bit of work left to do, but you’ve made a good start. The ball is bouncing off the walls
and the paddles as long as you keep the ball in play. You do have a problem in that
if the ball gets by one of the players, you have to restart the game if you want to play
again. You’ll fix this in the next section.

VERSION 0.04: A BETTER PLAYFIELD
You’ve reached your first major milestone, but there are still missing elements.

You also have some problems with the game. There are two separate philosophies
on how to proceed in such a situation. Do you fix what you have, or do you add more
features and fix the problems later?

It’s usually best to fix your problems early. This has the main advantage that it’s
easier to fix problems while your project is still small. It’s just a better feeling to have
a working game rather than a broken game. This also allows you to do more early
testing. A large, broken game is difficult or impossible to test.

So, rather than adding scoring or audio, you’re going to first fix this problem of the
ball flying off into space when a player misses it.

Step 1: Start up Unity and load the ClassicPaddleGame project. Make sure you’re
still using the 2 by 3 layout.

When you change layouts, the view in the Scene panel might get changed as well.
If necessary, reset the view to Back Perspective and focus on the Playfield.

You’re now going to create an empty object and manually add a box collider to it.

Step 2: GameObject – Create Empty.

Classic Game Design 2E_Ch04_2nd Pass.indd 58 4/25/2019 10:17:07 AM

Chapt er 4  — Clas s i c Paddle Game — 59

You should be able to play the game now, with the ball bouncing back and forth.
You might try this with a friend. If you’re on your own, you can use your left hand on
the w and s keys with the right hand on the arrow keys.

Step 12: Save and Exit

You have reached a major milestone. The game is now playable! There’s still quite
a bit of work left to do, but you’ve made a good start. The ball is bouncing off the walls
and the paddles as long as you keep the ball in play. You do have a problem in that
if the ball gets by one of the players, you have to restart the game if you want to play
again. You’ll fix this in the next section.

VERSION 0.04: A BETTER PLAYFIELD
You’ve reached your first major milestone, but there are still missing elements.

You also have some problems with the game. There are two separate philosophies
on how to proceed in such a situation. Do you fix what you have, or do you add more
features and fix the problems later?

It’s usually best to fix your problems early. This has the main advantage that it’s
easier to fix problems while your project is still small. It’s just a better feeling to have
a working game rather than a broken game. This also allows you to do more early
testing. A large, broken game is difficult or impossible to test.

So, rather than adding scoring or audio, you’re going to first fix this problem of the
ball flying off into space when a player misses it.

Step 1: Start up Unity and load the ClassicPaddleGame project. Make sure you’re
still using the 2 by 3 layout.

When you change layouts, the view in the Scene panel might get changed as well.
If necessary, reset the view to Back Perspective and focus on the Playfield.

You’re now going to create an empty object and manually add a box collider to it.

Step 2: GameObject – Create Empty.

Classic Game Design 2E_Ch04_2nd Pass.indd 59 4/25/2019 10:17:07 AM

60 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 61

Step 3: Rename to BoundaryLeft.

Step 4: Move BoundaryLeft to position (-15, 0, 0).

Step 5: Component – Physics – Box Collider.

Step 6: Change the Size of the Box Collider to (1, 35, 1).

You now see a green outline of a skinny vertical box on the left border of the
Playfield in the Scene panel. You didn’t change the Y Scale in the Transform
section, although that would have had the same effect as scaling the Box collider.
The height of 35 was chosen to extend the box somewhat beyond the upper and lower
boundaries.

Step 7: Check the Is Trigger box in the Inspector.

You’ll see the effect of the trigger checkbox later, when you code your collision
script. You now have a box much like the upper and lower boundaries on the left side
of the playfield, except that it’s invisible! You’ll be using this invisible box as a way to
detect when the ball is out of bounds.

Step 8: Create a C# Script, call it BallRelaunch. Then insert the following code
after the Update function:

private void OnTriggerEnter(Collider other)

{

other.transform.position = new Vector3(0, 0, 0);

}

This code is a private function of the class BallRelaunch. In order to reset the
position of the colliding ball you created a new 3D vector with coordinates set to 0,
then you assigned the position of the other object to this new vector.

Step 9: Save the code and drag the BallRelaunch script to the BoundaryLeft
Object.

Step 10: Duplicate BoundaryLeft, rename it BoundaryRight, and move it to
(15, 0, 0).

Now, if you test the game (and you should), you’ll see that the ball gets magically
transported to the middle of the screen whenever it gets by one of the players.

Step 11: Save and Exit Unity.

Feel free to keep the Visual Studio application running or not, but make sure that
you don’t have any unsaved editing left there.

You’ve just made the game quite a bit better but you’re still missing a couple of
major features: audio and scoring.

VERSION 0.05: AUDIO
In this section, you’ll add a simple sound effect to your game using Audacity.

Step 1: Open Audacity.

Step 2: Select Generate – Pluck… from the drop-down menu.

If there are two Plucks in this menu, choose the first one.

Step 3: Select a Pluck MIDI pitch of 80, Fade-out type Abrupt, Duration 1
second, and click on OK.

Classic Game Design 2E_Ch04_2nd Pass.indd 60 4/25/2019 10:17:07 AM

Chapt er 4  — Clas s i c Paddle Game — 61

Now, if you test the game (and you should), you’ll see that the ball gets magically
transported to the middle of the screen whenever it gets by one of the players.

Step 11: Save and Exit Unity.

Feel free to keep the Visual Studio application running or not, but make sure that
you don’t have any unsaved editing left there.

You’ve just made the game quite a bit better but you’re still missing a couple of
major features: audio and scoring.

VERSION 0.05: AUDIO
In this section, you’ll add a simple sound effect to your game using Audacity.

Step 1: Open Audacity.

Step 2: Select Generate – Pluck… from the drop-down menu.

If there are two Plucks in this menu, choose the first one.

Step 3: Select a Pluck MIDI pitch of 80, Fade-out type Abrupt, Duration 1
second, and click on OK.

 FIGURE 4.7 Audacity used to create a simple sound effect.

Classic Game Design 2E_Ch04_2nd Pass.indd 61 4/25/2019 10:17:08 AM

62 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 63

Compare your Audacity window with Figure 4.7. Your blue waveform should look
the same and the duration should be one second. Other panels and icons may be dif-
ferent depending on your computer.

If you play this sound, you’ll hear that it can work as a collision sound in your
game, which is what you want.

Step 4: Select File – Export – Export as WAV, give the file the name pluck.wav,
and save it to the Assets folder of the ClassicPaddleGame Unity project.

Just as you did earlier in the book, the metadata can be safely left blank. One of
the convenient features of Unity is that by saving your externally generated files into
the Assets folder, they automatically get imported into Unity. Try out this feature
right now.

Step 5: Exit Audacity and don’t bother saving.

When you exit Audacity, it asks if you want to save. You may do that, if you wish.
This will generate an .aup file which you can later load to get back the current state
of Audacity. You likely won’t need to do that for this very simple sound effect, so you
can skip the save step.

Step 6: Open the Unity project and look for pluck.wav in the Assets panel.

If everything went according to plan, the pluck audio file should be in the Assets
panel, ready for inspection. You may need to scroll down in the Assets panel to see the
pluck.wav file near the bottom.

Step 7: Select the pluck asset, then click on pluck at the very bottom of the Inspector
panel.

This will display a small preview pane as shown in Figure 4.8.

You can now test the sound effect in Unity by clicking on the play triangle above
in the upper right corner of the preview pane for pluck. That was pretty easy so far. Of
course, you could have used any other short .wav file instead of pluck.wav.

Your next goal is to have your sound effect play when the ball collides with some-
thing. This takes a few steps:

Classic Game Design 2E_Ch04_2nd Pass.indd 62 4/25/2019 10:17:08 AM

Chapt er 4  — Clas s i c Paddle Game — 63

Step 8: Select Ball in the Hierarchy. Then do Component – Audio – Audio Source.

This makes the ball a source of audio by adding an Audio Source component to it.

Step 9: Drag the pluck sound from the Assets Panel on top of the Ball object.

The pluck sound appears as the AudioClip in the Inspector panel. Next, you need
to change the code for the BallScript.

Step 10: Add the following line of code at the beginning of BallScript. Insert after
the three “using” statements at the top of the file as follows:

[RequireComponent(typeof(AudioSource))]

This statement tells the Unity system that the object associated with this script
must have an AudioSource component. You just added this component two steps
back, so no problem. This step isn’t really necessary, but it help diagnose potential
errors if you mistakenly associate this script with an object without an AudioSource
component.

Step 11: Add the following function at the end of BallScript:

private void OnCollisionEnter(Collision collision)

{

AudioSource audio = GetComponent<AudioSource>();

audio.Play();

}

 FIGURE 4.8 The pluck sound effect moved into Unity.

Classic Game Design 2E_Ch04_2nd Pass.indd 63 4/25/2019 10:17:08 AM

64 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 65

Step 12: Save the BallScript.cs file in Visual Studio.

Step 13: Save your work, then test.

During testing, you discover that the sound plays for no apparent reason on
startup. To fix this unwanted behavior, do the following:

Step 14: Select the Ball object in the Hierarchy panel and uncheck Play On Awake
in the Inspector.

Step 15: Save, Test, and Exit.

Audio for the older classic arcade games is famous for being extremely primitive.
The basic formula for sound design was to have a few simple sound effects when
something collided with something else. Recorded music and speech didn’t become
common until later. In this book, you’ll stick with very simple sound effects in keeping
with the spirit of early classic gaming.

In the next section, you’ll finally add scoring to your game.

VERSION 0.06: SCORING
Your paddle game isn’t really a game unless you add scoring. In the classic era, all

games had numbers as scores. As games migrated to home systems, numerical scor-
ing became less important, so it was either made irrelevant or dropped altogether,
like in many of today’s first person shooters.

Step 1: Start Unity and load ClassicPaddleGame.

Step 2: GameObject – Create Empty, name it Score.

Step 3: Add a new script component to Score with the name Scoring and enter the
following code for the Scoring class after the three using declarations:

public class Scoring : MonoBehaviour

{

public static int scorep1;

public static int scorep2;

Classic Game Design 2E_Ch04_2nd Pass.indd 64 4/25/2019 10:17:08 AM

Chapt er 4  — Clas s i c Paddle Game — 65

// Use this for initialization

void Start()

{

scorep1 = 0;

scorep2 = 0;

}

// Update is called once per frame

void Update()

{

}

private void OnGUI()

{

GUI.Box(new Rect(10, 10, 200, 30), "Player 1 Score: " +

� scorep1);

GUI.Box(new Rect(Screen.width - 250, 10, 200, 30),

 "Player 2 Score: " + scorep2);

}

}

A few words of explanation are in order. “scorep1” and “scorep2” are integer
variables that store the score for the two players. Our “Start” function automatically
gets called at the beginning of the game, so that’s a good place to initialize the scores
to zero.

The OnGUI function is similar to the code you used for the HelloWorld project.
This is where you display the two scores plus labels.

If you now run the game, you’ll see that scores are always 0! To make them update
according to the gameplay, you also need to add some code to do this. Change the
“BallRelaunch” script as follows:

Classic Game Design 2E_Ch04_2nd Pass.indd 65 4/25/2019 10:17:08 AM

66 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 67

Step 4: Edit the OnTriggerEnter function in BallRelaunch to look like this:

private void OnTriggerEnter(Collider other)

{

if (other.transform.position.x > 0)

 Scoring.scorep1++;

else

 Scoring.scorep2++;

other.transform.position = new Vector3(0, 0, 0);

}

The “++” operator in C# increments the preceding variable by 1. This code runs
every time the box collider on the left and right boundaries collides with something,
presumably the ball. The code then tests the x-coordinate of the ball. If it’s greater
than 0, it’s on the right side of the screen, which means that the ball was missed by
player 2. With this somewhat convoluted logic we conclude that in this case Player 1
gets a point, else Player 2 gets the point.

Step 5: Play the game to test it out. Stop running it, Save, then exit Unity.

Figure 4.9 shows the game in action.

VERSION 1.0: FIRST RELEASE!
Is this game ready for release? Probably not, but you’re going to release it anyway!

It’s an old joke among developers to say “ship it” right after fixing a bug or adding a
feature. For you, in this book, release means something a little different. It merely
means that you’re done with the main development of the game and ready to move on
to other things. Of course, if your game is fun and people like it, then the first release
is just the beginning of development.

The classic arcade video games that you’re studying in this book were developed
in an environment where games were tested extensively before release. This testing
would happen in focus groups and field tests. For this first game in your book you’re
going to be lazy with the testing because this game wasn’t really intended to be a real
product. It’s basically a prototype and an exercise to get you started. Your testing con-
sists of making sure the game is playable and runs as expected when you build it. In
subsequent games, you’ll be tougher during testing.

So how do you release this game? This is really easy in Unity. You simply select
File – Build Settings... and you will see a new Window as shown in Figure 4.10.

Keep the PC and Mac & Linux Standalone Platform, click on Add Open Scenes to
add the current scene, click on Build and Run, and select a folder. It’s best to create
a new, empty folder for this. You will then have to wait a while for the game to build,
though this should take less than a minute, depending on the speed of your computer.

You’ll then be able to try out the game in various environments, different graphics
settings, and different window sizes. It might also be interesting to take the resulting
game and move it to a different computer to see if or how it runs. You’ll need to copy
the entire build directory, not just the .exe file. On a Mac it works to just copy the .app
file. When you run the game with the Very Low graphics quality the lighting of the
Playfield is flat, but the game still plays. Apparently point lights don’t work in this
setting. This is all part of testing the release. You need to test what the game looks
like and plays like in different environments. So far you can conclude that your game
is still playable even in the lowest quality setting.

 FIGURE 4.9 Gameplay Screenshot of Classic Paddle Game.

Classic Game Design 2E_Ch04_2nd Pass.indd 66 4/25/2019 10:17:08 AM

Chapt er 4  — Clas s i c Paddle Game — 67

VERSION 1.0: FIRST RELEASE!
Is this game ready for release? Probably not, but you’re going to release it anyway!

It’s an old joke among developers to say “ship it” right after fixing a bug or adding a
feature. For you, in this book, release means something a little different. It merely
means that you’re done with the main development of the game and ready to move on
to other things. Of course, if your game is fun and people like it, then the first release
is just the beginning of development.

The classic arcade video games that you’re studying in this book were developed
in an environment where games were tested extensively before release. This testing
would happen in focus groups and field tests. For this first game in your book you’re
going to be lazy with the testing because this game wasn’t really intended to be a real
product. It’s basically a prototype and an exercise to get you started. Your testing con-
sists of making sure the game is playable and runs as expected when you build it. In
subsequent games, you’ll be tougher during testing.

So how do you release this game? This is really easy in Unity. You simply select
File – Build Settings... and you will see a new Window as shown in Figure 4.10.

Keep the PC and Mac & Linux Standalone Platform, click on Add Open Scenes to
add the current scene, click on Build and Run, and select a folder. It’s best to create
a new, empty folder for this. You will then have to wait a while for the game to build,
though this should take less than a minute, depending on the speed of your computer.

You’ll then be able to try out the game in various environments, different graphics
settings, and different window sizes. It might also be interesting to take the resulting
game and move it to a different computer to see if or how it runs. You’ll need to copy
the entire build directory, not just the .exe file. On a Mac it works to just copy the .app
file. When you run the game with the Very Low graphics quality the lighting of the
Playfield is flat, but the game still plays. Apparently point lights don’t work in this
setting. This is all part of testing the release. You need to test what the game looks
like and plays like in different environments. So far you can conclude that your game
is still playable even in the lowest quality setting.

Classic Game Design 2E_Ch04_2nd Pass.indd 67 4/25/2019 10:17:08 AM

68 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 69

It’s a good idea to test your game on several different computers before releasing
it to a large audience. You’d be amazed how frequently additional problems surface
during this process. This would also a good time to show the game to some fresh play-
ers and to get their feedback.

POSTMORTEM
A postmortem is a medical term having to do with studying a medical case after

the patient has died. Literally, it is Latin for “after death.” This word is also used

in the game development community to take a look back at a project after it’s been
released and to try to learn what went wrong and what went right. You’re now going
to do that for your first classic game project.

Here’s what went right. You designed, built, and tested a prototype for a very
simple paddle game. It works. It compiles and doesn’t crash. It looks way better than
the original paddle games from the seventies, but that’s not really saying much. All
you had to do is add color and use a 3D engine. The game feels pretty good and it took
very little code.

What went wrong? Well the obvious problem is that you’re not really done yet.
There’s no game over, no title screen, and there’s no “Player x wins” message. This
is somewhat deliberate. After all, this is just a prototype. You do have a worse prob-
lem, though: the physics aren’t quite right. When the ball hits the paddle, the player
doesn’t really feel like he can control where he wants the ball to go. In real table tennis
you can control how fast and where the ball goes. You’d like to have that in this game.
Oh well, that’s what sequels are for.

EXERCISES
There’s always more that can be done to a game. Here are a few exercises for read-

ers who would like to reinforce what they just learned in this chapter.

	 1.	� Adjust the speed of the ball to make it faster, thus making the game more
difficult. Hint: adjust the mass.

	 2.	� Adjust the speed of the paddles to make them slower. Experiment with
slower and faster speeds. What is the effect of a very fast paddle speed? A
very slow speed?

	 3.	 Add two more paddles to make it a four-player game.
	 4.	� Create a new and different sound effect using Audacity and use it in the

game.
	 5.	� Add a circular obstacle in the middle of the playfield. Try adding several

obstacles. Is the game better or worse when you do that? Explain.

 FIGURE 4.10 Building the game.

Classic Game Design 2E_Ch04_2nd Pass.indd 68 4/25/2019 10:17:09 AM

Chapt er 4  — Clas s i c Paddle Game — 69

in the game development community to take a look back at a project after it’s been
released and to try to learn what went wrong and what went right. You’re now going
to do that for your first classic game project.

Here’s what went right. You designed, built, and tested a prototype for a very
simple paddle game. It works. It compiles and doesn’t crash. It looks way better than
the original paddle games from the seventies, but that’s not really saying much. All
you had to do is add color and use a 3D engine. The game feels pretty good and it took
very little code.

What went wrong? Well the obvious problem is that you’re not really done yet.
There’s no game over, no title screen, and there’s no “Player x wins” message. This
is somewhat deliberate. After all, this is just a prototype. You do have a worse prob-
lem, though: the physics aren’t quite right. When the ball hits the paddle, the player
doesn’t really feel like he can control where he wants the ball to go. In real table tennis
you can control how fast and where the ball goes. You’d like to have that in this game.
Oh well, that’s what sequels are for.

EXERCISES
There’s always more that can be done to a game. Here are a few exercises for read-

ers who would like to reinforce what they just learned in this chapter.

	 1.	� Adjust the speed of the ball to make it faster, thus making the game more
difficult. Hint: adjust the mass.

	 2.	� Adjust the speed of the paddles to make them slower. Experiment with
slower and faster speeds. What is the effect of a very fast paddle speed? A
very slow speed?

	 3.	 Add two more paddles to make it a four-player game.
	 4.	� Create a new and different sound effect using Audacity and use it in the

game.
	 5.	� Add a circular obstacle in the middle of the playfield. Try adding several

obstacles. Is the game better or worse when you do that? Explain.

Classic Game Design 2E_Ch04_2nd Pass.indd 69 4/25/2019 10:17:09 AM

70 — Clas s i c Game Des ign , Second Edi t ion Chapt er 4  — Clas s i c Paddle Game — 70

	 6.	� Implement two ball speeds. Have the speed depend on a button press by
one of the players.

		 Which player should control the ball speed? Why?

Advanced Exercises for experienced Unity users:
	 7.	 Make it a one-player game by adding AI to player 2.
	 8.	� After completing the previous exercise, add a menu to select one-player or

two-player.
	 9.	� Add graphics for the net in the middle by adding a texture to the Playfield

object. Create the texture using GIMP.
  10.	� Make the score display look more like the original Pong with large

segmented digits.
11*.	�This one is tough, good luck! Build the project again, from scratch, without

looking at the book. Change some things along the way, just for fun. For
example, make the ball bigger, change the colors, change the lighting, make
the paddles a different shape. Save your work often and create different
save files as you progress.

Classic Game Design 2E_Ch04_2nd Pass.indd 70 4/25/2019 10:17:09 AM

Chapt er 5  — Breakout — 71

CHAPTER

5 Breakout
IN TH IS CHAPTER

Breakout is the first successful single-player arcade video game. It’s a good example
of a simple game with the kind of addictive quality that foreshadowed the golden age
of arcade gaming in the early ‘80s. With Breakout, it’s just you against the machine,
an experience similar to golf or bowling, where you try to outdo your own past efforts.

WOZ
Steve Wozniak, aka Woz, built a working prototype of this game in four days,

together with Steve Jobs. Jobs was a brand new technician at Atari and had been
assigned the task of making this game. He immediately enlisted his friend and hard-
ware guru, Woz. Getting little sleep, the duo worked nonstop to pull off this stunning
feat. Nowadays, games such as Breakout can be implemented in software in just a
few hours, but this was 1976. In order to keep costs reasonable, the game needed to
be built using custom hardware.

This is one of the earliest anecdotes of people working crazy overtime hours to
make a video game. Things haven’t changed, and it’s still very common for game
developers to work late into the night. On the other hand, there are plenty of success-
ful and even famous designers who work normal hours and have a life.

BREAKOUT, ATARI (1976)
Just like Pong, Breakout is a ball and paddle game, but with the goal of breaking

the bricks in a wall. Every time the ball hits a brick it would magically disappear, and

Classic Game Design 2E_Ch05_2nd Pass.indd 71 4/25/2019 10:17:53 AM

72 — Clas s i c Game Des ign , Second Edi t ion Chapt er 5  — Breakout — 73

you would score points. You would start
with three balls and you’d lose a ball every
time you’d miss hitting it with the paddle.
Breakout gets more difficult as the game
progresses by speeding up the ball and
making the paddle smaller. You can see a
game design diagram of the original coin-op
Breakout in Figure 5.1.

The text in the diagram isn’t in the orig-
inal. The colors were changed to make the
diagram easier to see in print. The original
background color was black and the digits
were white. The number of bricks in the
original Breakout coin-op version was 14
columns across and 8 rows high.

The details of the difficulty progression
are interesting. The paddle gets smaller when the ball hits the top boundary for the
first time. The ball speeds up after it hits the paddle 4 times and again after it hits
the paddle 16 times. Also, the angle of the ball path changes after it hits the paddle 4,
8, 12, and 16 times.

The reason those numbers are powers of two, or related to powers of two (i.e., 12 =
8 + 4) has to do with the efficiency and cost of the hardware, not just because the game
designers liked powers of two.

The scoring is fairly simple, rewarding the player with 1, 3, or 5 points depending
on the color of the brick. In the original arcade game, the color was faked by putting a
colored overlay on top of the black-and-white monitor.

The difficulty resets every time the player loses a ball, giving a moment of relief
to the player. On the other hand, there’s a slow difficulty progression happening in
the background because every time a brick gets destroyed, the difficulty increases

 FIGURE 5.1 Breakout, Atari, 1976.

Classic Game Design 2E_Ch05_2nd Pass.indd 72 4/25/2019 10:17:53 AM

Chapt er 5  — Breakout — 73

slightly. When there are fewer bricks out there, it’s more likely that the ball will hit
the back border, which dramatically increases the difficulty due to the much smaller
paddle.

Difficulty ramping is a central concept of classic game design and deserves its own
design rule:

Almost all games need to deal with
the issue of how fast to ramp difficulty,
if at all. Pong had no ramping, at least
not explicitly. In multiplayer games, the
ramping usually happens by having your
opponents getting better with practice.
Successful single-player games almost
always ramp difficulty at a steady pace,
with periods of relief thrown in to reward
the players. Look at Figure 5.2 for a way
to visualize this.

How are you to know if a game is difficult or easy? Game developers tend to have
tunnel vision when it comes to their own games. They may think it’s easy when it’s
actually hard, especially for novices. The next rule:

It’s just that easy. You need to test the game. In the days of custom hardware,
testing was an expensive proposition. Now that video games are developed using

Classic Game Design Rule 3: Difficulty Ramping Rule: Ramp difficulty from easy to hard.

Classic Game Rule 4: Test Rule: Test the game to make sure it’s fun.

 FIGURE 5.2 Typical Difficulty Ramping in Single-Player
Games.

Classic Game Design 2E_Ch05_2nd Pass.indd 73 4/25/2019 10:17:54 AM

74 — Clas s i c G ame Des ign , Second Edi t ion Chapt er 5  — Breakout — 75

incredibly powerful software tools, it’s much easier and cheaper to test. You need to
test early and often. People have careers consisting of testing video games. Mostly,
the career video game testers look for bugs and try to figure out how to duplicate
them. But even more important than bug testing is testing for fun and suitability. Is
the game too easy or too hard? Or even both? These questions can only be answered
by extensive testing, preferably by representatives of the target customers.

It’s critically important to test new video games first on yourself, but then with
children, expert players, casual players, players of all sizes, ages, and abilities. In
the old days of arcade game development, this was a common practice. Arcade game
companies put prototype games into arcades and street locations. They carefully mea-
sured how many quarters each game earned when compared to the other popular
arcade games. If a game didn’t have top earnings, the project would be cancelled.

In these days of internet distribution, testing is very easy, but it still takes some
effort. Just release the game as a beta, or in a limited geographic region, and gather
statistics on how long people play the games, where they have trouble, and how far
they get into the game. It’s also a good idea to talk to the players.

BREAKOUT SEQUELS
It’s no surprise that Breakout inspired sequels, including Super Breakout™, Atari

(1978) and Arkanoid™, Taito (1986).

In the sequels, the basic control stays the same. You still try to break the bricks,
and if you break all of them, you move on to the next screen.

In Super Breakout, you have multiple balls and a progressive mode where the
bricks shift down the screen at you.

In Arkanoid, various powerups are introduced which make the game much more
interesting. For example, you get a capture powerup which, when enabled, lets you
catch the ball and have it stick to the paddle. When you’re ready, you can then release
the ball with the launch button.

Classic Game Design 2E_Ch05_2nd Pass.indd 74 4/25/2019 10:17:54 AM

Chapt er 5  — Breakout — 75

In 2017, the major app stores started to carry dozens of brick and ball games.
If you search the internet for “bricks balls game” videos, you’ll get a quick sense of
what’s out there. These games can definitely be viewed as Breakout sequels.

WHERE ARE THEY NOW?
Right after their Breakout adventure, Steve Jobs and Steve Wozniak founded

Apple Computer, Inc. Steve Jobs was largely responsible for growing Apple Computer
into one of the most valuable companies on the planet. Apple Computer dropped the

“Computer” in its name and is called just Apple, Inc. as of 2007. Woz continues to be
an iconic presence in Silicon Valley.

Classic Game Design 2E_Ch05_2nd Pass.indd 75 4/25/2019 10:17:54 AM

Chapt er 6  — Clas s i c Br ick Game — 7776 — Clas s i c Game Des ign , Second Edi t ion

CHAPTER

6 Classic Brick Game

PADDLE GAME FOR ONE
This is going to be your first one-player game, building upon what you learned in

the classic paddle game project. You will be starting “from scratch,” even though it’s
tempting to reuse the framework from your first project. The two projects are differ-
ent enough that it’s better to just start over. This is a good lesson, by the way. When
in doubt, just make a fresh start. Often the baggage from an old project is more of a
hindrance than a help.

This game is a combination of Pong and pinball. There will be a paddle at the
bottom of the screen and a wall of bricks. There’s the familiar bouncing ball, and the
goal is to keep the ball bouncing, much like in a pinball game. You start with 3 balls,
and if you lose all of them, it’s game over. In a way, this is a very simple pinball game
without the gravity.

This project has another big difference with the paddle project. You’ll be using
“fake” physics rather than the physics engine built into Unity. It’s good to remember
that all the classic games of the ‘70s and ‘80s didn’t use physics engines, but instead
used custom code to move and animate game objects. This was due to the very limited
computer resources available at the time. It wasn’t until the ‘90s that floating point
computations were commonly used in games, and even then, there was a large speed
cost associated with them. Today, floating point operations are about the same speed
as their integer counterparts, so the world has really changed in this regard. In the
classic era, integers were king, and the whole idea of using a floating point physics
engine was a distant dream.

In your project, you will use the classic technique of updating your object positions
using explicit code, and you’ll do collision reaction explicitly as well. The object posi-
tions will be represented using floating point numbers, just because it’s easier to do it
that way in Unity.

VERSION 0.01: THE PLAYFIELD
Once again, your first goal is to design and display the playfield. This is an easy

step for you now because you just built something similar in the previous project.

Step 1: Run Unity and create a new 3D project with the name ClassicBrickGame.

Step 2: Use the 2 by 3 layout.

Step 2: GameObject – 3D Object – Cube, rename it Playfield.

Step 3: Select the Playfield, hover the mouse over the Scene Panel, then type f.

You should now see a cube in the Scene panel. This is your starting point for the
playfield. Next, you’ll make the playfield larger:

Step 4: Change the Scale of Playfield to (30, 30, 1). The Position should already
be (0, 0, 0).

Step 5: Use the Scene Gizmo to select the Front iso view and refocus with the f key.

Right-click on the Scene Gizmo and uncheck perspective, if necessary, to enable
the isometric view. The Scene panel should now look like Figure 6.1.

Next, you’ll change the color of the playfield. Just as in ClassicPaddleGame, you’ll
do this by creating a material, assigning it to the object, and adjusting the color of the
material.

Step 6: Click on Create in the Project panel, click on Material, and immediately
type the new name for it: Mat Playfield.

The text entry is highlighted in blue to tell you that you can type a new material
name, if you wish.

Step 7: In the Inspector panel change Albedo to a dark green color.

Classic Game Design 2E_Ch06_3rd Pass.indd 76 4/26/2019 11:56:59 AM

Chapt er 6  — Clas s i c Br ick Game — 77

In your project, you will use the classic technique of updating your object positions
using explicit code, and you’ll do collision reaction explicitly as well. The object posi-
tions will be represented using floating point numbers, just because it’s easier to do it
that way in Unity.

VERSION 0.01: THE PLAYFIELD
Once again, your first goal is to design and display the playfield. This is an easy

step for you now because you just built something similar in the previous project.

Step 1: Run Unity and create a new 3D project with the name ClassicBrickGame.

Step 2: Use the 2 by 3 layout.

Step 2: GameObject – 3D Object – Cube, rename it Playfield.

Step 3: Select the Playfield, hover the mouse over the Scene Panel, then type f.

You should now see a cube in the Scene panel. This is your starting point for the
playfield. Next, you’ll make the playfield larger:

Step 4: Change the Scale of Playfield to (30, 30, 1). The Position should already
be (0, 0, 0).

Step 5: Use the Scene Gizmo to select the Front iso view and refocus with the f key.

Right-click on the Scene Gizmo and uncheck perspective, if necessary, to enable
the isometric view. The Scene panel should now look like Figure 6.1.

Next, you’ll change the color of the playfield. Just as in ClassicPaddleGame, you’ll
do this by creating a material, assigning it to the object, and adjusting the color of the
material.

Step 6: Click on Create in the Project panel, click on Material, and immediately
type the new name for it: Mat Playfield.

The text entry is highlighted in blue to tell you that you can type a new material
name, if you wish.

Step 7: In the Inspector panel change Albedo to a dark green color.

Classic Game Design 2E_Ch06_3rd Pass.indd 77 4/26/2019 11:56:59 AM

78 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 79

Step 8: Drag the Mat Playfield material onto the Playfield game object.

The Playfield game object now appears to be dark green in the Scene panel. The
Game panel is a lighter shade of green.

Step 9: Move Main Camera to (0, 0, -30).

The Game panel now shows the entire playfield.

Step 10: Delete the Directional Light. In the Hierarchy Create a Point Light at
(0, 0, -10) and change its Range to 100 in the Inspector panel.

Just as in the paddle game, this is a good time to do your first test.

Step 11: Select Maximize on Play in the Game panel. Then hit the Play arrow.

Just as in the Paddle game there’s no animation yet, just a still view of the Play-
field. You might have noticed that these initial steps are almost exactly the same as
in the Paddle game.

Step 12: Stop play mode by clicking on the Play arrow again.

Step 13: Save.

 FIGURE 6.1 The Playfield rescaled.

Classic Game Design 2E_Ch06_3rd Pass.indd 78 4/26/2019 11:57:00 AM

Chapt er 6  — Clas s i c Br ick Game — 79

Saving here isn’t truly necessary, but it’s a good habit to save your work at a good
stopping point. Your next goal is to create the boundaries of the playfield. For this
game, the boundaries are at the top, left, and right, with an open area at the bottom.

Step 14: Create a Cube with Position (0, 15, 0) and Scale (30, 1, 1).

Step 15: Rename it BoundaryUpper.

The Scene panel is still using the Top view, which isn’t what you want any more.

Step 16: Select the Back Isometric view in the Scene panel using the Scene Gizmo.

To get the Isometric view, uncheck Perspective in the Scene Gizmo menu. Alter-
natively, you can click on the label below the Gizmo to switch between Isometric and
Perspective views.

Step 17: Select Playfield, hover the mouse in the Scene panel, and press f. Then
zoom in on the playfield with your scroll wheel.

It’s a little strange that you’re looking at the Playfield from the back, but that’s
what you need to do because there are negative Z coordinates for the Point Light and
the Main Camera.

Step 18: Enter a new Z Position of 1.1 instead of 0. Note that the position is 1.1
instead of 1, just as you did in the previous project.

Step 19: Right-click on BoundaryUpper, click on Duplicate, and rename the
duplicate to BoundaryLeft.

Step 20: Set BoundaryLeft Position to (-15.5, -0.5, 0) and Scale to (1, 32, 1).

Step 21: Duplicate BoundaryLeft, rename the duplicate to BoundaryRight and
change the X Position to 15.5.

Compare your Scene panel to Figure 6.2.

Step 22: Save.

In the next section, you’ll add the player character, which for this game is a paddle
at the bottom of the playfield.

Classic Game Design 2E_Ch06_3rd Pass.indd 79 4/26/2019 11:57:00 AM

80 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 81

VERSION 0.02: THE PLAYER
Just as in the ClassicPaddleGame project, the player character is a paddle, but

this time it moves left to right, and there’s only one of them.

Step 1: If necessary, start up Unity and load the project.

Step 2: Create a Cube and name it Paddle at Position (0, -15, 0), Scale (4, 1, 1).

The origin of the coordinate system is at the center of the playfield, so to move the
paddle to the bottom requires a negative Y Position.

Step 3: Create a Material in the Project panel, rename it Mat Paddle, make it red.

Step 4: Drag Mat Paddle on top of Paddle.

The paddle should now be red instead of grey. You’re ready to create a script for
the paddle so it’s controlled by the player.

Step 5: Select Paddle and create a C# Script for it using Add Component with
name PlayerScript. Then type in the following Update function:

 FIGURE 6.2 The playfield for the Brick game.

Classic Game Design 2E_Ch06_3rd Pass.indd 80 4/26/2019 11:57:00 AM

Chapt er 6  — Clas s i c Br ick Game — 81

// Update is called once per frame

void Update()

{

if (Input.GetKey("left"))

{

transform.Translate(-20 * Time.deltaTime, 0, 0);

}

if (Input.GetKey("right"))

{

transform.Translate(20 * Time.deltaTime, 0, 0);

}

}

This Update function is pretty much the same as in ClassicPaddleGame except it
moves the paddle from left to right instead of up and down. It does this by changing
the x coordinate in the Translate calls instead of the y coordinate.

Step 6: Save the file in Visual Studio and run the game. Test the left and right arrow
keys. When you’re done testing, click on the play arrow again to stop play mode.

 FIGURE 6.3 The red paddle controlled by arrow keys.

Classic Game Design 2E_Ch06_3rd Pass.indd 81 4/26/2019 11:57:00 AM

82 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 83

The arrow keys should move the paddle left and right and your Game panel
should look similar to Figure 6.3.

Controlling the paddle using arrow keys is not nearly as much fun as using the
mouse, so you’ll add that feature. The arrow controls can stay, just because they don’t
do any harm and you never know, maybe there’s players out there who would prefer
the arrow keys.

Step 7: Insert the following two lines at the end of the Update function:

float h;

h = 30.0f * Time.deltaTime * Input.GetAxis("Mouse X");

transform.Translate(h,0,0);

The h variable is an abbreviation for horizontal offset. It is calculated by tak-
ing the output of the Input.GetAxis call and multiplying it by a time factor and a
speed factor of 30. The f after the 30.0 is necessary for floating point constants in
C#. This code could have been squeezed into a single statement by inserting that long
expression for h into the Translate call. You avoided that in order to make the code
clearer.

The mouse pointer shouldn’t really be on the screen when the game is getting
played like this, so here is a one-line fix.

Step 8: Insert the following code into the Start function:
Cursor.visible = false;

The mouse cursor can be turned back on by the player with the “Esc” key. It’s a bit
strange to allow both arrow and mouse controls at the same time, but it really doesn’t
matter.

Step 9: Test, Save, and exit Unity.

Classic Game Design 2E_Ch06_3rd Pass.indd 82 4/26/2019 11:57:00 AM

Chapt er 6  — Clas s i c Br ick Game — 83

VERSION 0.03: BASIC BALL MOVEMENT
The ball in this game is pretty much the same as in the Paddle game.

Step 1: Start up Unity and load your project, if necessary.

Step 2: Create a Sphere in the Hierarchy window, rename to Ball with Position
(0, -7, 0).

This is the initial ball position. It’s a little lower on the screen to make room for
the bricks.

Step 3: Make the Ball yellow using a new material called Mat Ball.

As before, you create the material “Mat Ball,” make the material yellow, and drag
it on top of the Ball.

Step 4: Select Ball, do Add Component with name BallScript, and enter the fol-
lowing code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

[RequireComponent(typeof(AudioSource))]

public class BallScript : MonoBehaviour

{

public AudioClip Beepsound;

public static float launchtimer;

public static float xspeed;

public static float yspeed;

public static bool collflag;

// Use this for initialization

void Start()

{

Classic Game Design 2E_Ch06_3rd Pass.indd 83 4/26/2019 11:57:00 AM

84 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 85

launchtimer = 2.0f;

xspeed = 8.0f;

yspeed = 8.0f;

collflag = true;

}

// Update is called once per frame

void Update()

{

launchtimer -= Time.deltaTime;

if (launchtimer <= 0.0f)

{

transform.Translate(

new Vector3(

xspeed * Time.deltaTime,

yspeed * Time.deltaTime,

0));

launchtimer = 0.0f;

}

}

private void OnTriggerEnter(Collider other)

{

AudioSource audio = GetComponent<AudioSource>();

audio.Play();

}

}

Your screen should look like Figure 6.4. In that figure the Inspector panel was
scrolled down to show the text for BallScript.

The Time.deltaTime variable is a built-in Unity variable that returns the
amount of time, in seconds, since the last time the Update function was called. For
more information on this and many other Unity features, do Help – Scripting Refer-
ence and do a search.

Classic Game Design 2E_Ch06_3rd Pass.indd 84 4/26/2019 11:57:00 AM

Chapt er 6  — Clas s i c Br ick Game — 85

Step 5: Save your work and start testing.

The ball should be stationary for two seconds and then move up towards the upper
right and off the screen without bouncing. The audio isn’t working yet.

This is a great example of incremental development. You eventually want the
ball to bounce off the boundaries, but first you just want it to sit there and then move
along the specified velocity vector with the components xspeed and yspeed.

This is about as much code as you should ever write all at once without test-
ing. There are software developers out there who spend days, weeks, or even months
writing thousands of lines of code without testing any of them. Then they start test-
ing. Odds are very high that they will have countless bugs. Needless to say, that is a
horrible situation. How can you find, fix, or even test such a mess of buggy code? It’s
much better to write a little, test a lot, fix, and repeat.

While you were at it, you added audio code. This is an example of what not to
do, but people often do this anyway. It would have been cleaner and better to keep

 FIGURE 6.4 Unity workspace showing the Paddle, Ball, and BallScript.

Classic Game Design 2E_Ch06_3rd Pass.indd 85 4/26/2019 11:57:01 AM

86 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 87

it simple and to not yet add dead code (code that’s not used right now). Even though
you added some code for audio, the audio isn’t working yet, which is what you would
expect because you don’t even have your audio asset yet, nor is it connected to the
Ball object.

Next, you’ll get the audio working by reusing the pluck.wav file from the Assets
folder of the previous project.

Step 6: Assets – Import New Asset… and use the pluck.wav file from the previ-
ous project. Test the asset by previewing it.

Step 7: Assign the pluck sound to the Ball object by dragging it.

Step 8: Test.

You should hear the pluck sound at the beginning, but then never again.

Step 9: Uncheck Play on Awake.

Step 10: Save and Exit.

Because you unchecked Play on Awake, there’s no audio at all in the game now.
That’s because there are no collisions triggering it. You’ll need to remember to test
the audio when you add collisions in the next section. You might have been better off
adding the audio code after implementing collisions.

VERSION 0.04: COLLISIONS
To do collision with the playfield, you’ll start by writing a short script for the right

and left boundaries.

Step 1: Start Unity and load the project.

Step 2: Create a C# Script and call it WallScript. Insert the following code:

private void OnTriggerEnter(Collider other)

{

BallScript.xspeed = -BallScript.xspeed;

BallScript.collflag = true;

}

Classic Game Design 2E_Ch06_3rd Pass.indd 86 4/26/2019 11:57:01 AM

Chapt er 6  — Clas s i c Br ick Game — 87

Step 3: Drag it on top of BoundaryLeft and BoundaryRight.

This isn’t quite it yet. It’s easy to forget to set the triggers and rigidbody setting.

Step 4: Select the Ball, and select Component – Physics – Rigidbody.

Step 5: Uncheck Use Gravity.

The physics engine supports gravity by default, but in this game there’s no
gravity.

Step 6: Select BoundaryRight and check the Is Trigger box in the Box Collider in
the Inspector panel. Do the same for BoundaryLeft.

Now you should be able to run the game and have the ball bounce off the right
wall. Also, you should hear the Pluck sound when that happens. Of course, because
you haven’t put in the collision code for the upper boundary, the ball will behave
strangely when hitting it. The next steps add proper collision for the upper boundary.

Step 7a: Create a C# Script and name it WallTopScript.

Step 7b: Open it and copy the code from WallScript.cs into it.

One fast way to do this is to open WallScript.cs in another tab, Edit – Select All,
Edit – Copy, select the WallTopScript tab, Edit – Select All, and Edit – Paste. It’s even
faster if you use the keyboard shortcuts.

Step 8a: Replace both instances of xspeed with yspeed in the OnTriggerEnter
function. Your code should look like this:

private void OnTriggerEnter(Collider other)

{

BallScript.yspeed = -BallScript.yspeed;

BallScript.collflag = true;

}

You’re not done yet!

Step 8b: If the class name in WallTopScript.cs is WallScript, make the class name
WallTopScript!

Classic Game Design 2E_Ch06_3rd Pass.indd 87 4/26/2019 11:57:01 AM

88 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 89

This step is necessary if you actually copied the entire contents of the WallScript.
cs file, rather than just the OnTriggerEnter function. The class name must match the
name of the associated file.

Step 9: Save WallTopScript in Visual Studio and assign the script to Boundary­
Upper.

Step 10: Select BoundaryUpper and check Is Trigger in the Box Collider com-
ponent.

When the game is played now, the ball should bounce off the right, top, and left
boundary, and then fall through the bottom. Also, it acts weirdly when it hits the
paddle.

There are two more collision cases to deal with, ball vs. lower boundary and ball
vs. paddle. First, you’ll create the lower boundary as an invisible barrier.

Step 11: Select GameObject – Create Empty, rename it BoundaryLower. Move
it to Position (0, -17, 0) with Scale (35, 1, 1).

Step 12: Select Component – Physics – Box Collider and check the Is Trigger
box in the Inspector.

This invisible box is a way to detect when the ball has escaped from the playfield
at the bottom.

The Scene panel should now look like Figure 6.5.

Notice that BoundaryLower is visible in the Scene panel but not in the Game
panel, which is exactly how you want it. Next, you need to write a script that handles
what to do when the ball hits that lower boundary.

Step 13: Create a C# Script, rename it to BallRelaunch. Then open the script and
enter the following code:

private void OnTriggerEnter(Collider other)

{

other.transform.position = new Vector3(0, -7, 0);

BallScript.xspeed = 8.0f;

Classic Game Design 2E_Ch06_3rd Pass.indd 88 4/26/2019 11:57:01 AM

Chapt er 6  — Clas s i c Br ick Game — 89

BallScript.yspeed = -8.0f;

BallScript.launchtimer = 1.0f;

}

Step 14: Assign BallRelaunch to BoundaryLower.

This script deserves some explanation. The variable other is the object that
collides with our lower boundary. This code magically repositions that object, pre-
sumably the ball, to its starting position and resets the speed. It also resets the
BallScript.launchtimer variable to one second so that the player has a little bit
of time to get ready for more action. You can and should test this right now, or you can
wait until after the next two steps.

To add collision with the paddle, first make the Paddle object a trigger:

Step 15: Select Paddle and check the Is Trigger checkbox in the Box Collider.

 FIGURE 6.5 Scene Panel showing BoundaryLower.

Classic Game Design 2E_Ch06_3rd Pass.indd 89 4/26/2019 11:57:01 AM

90 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 91

Step 16: Enter the following function at the bottom of PlayerScript:

private void OnTriggerEnter(Collider other)

{

BallScript.yspeed = -BallScript.yspeed;

BallScript.collflag = true;

}

This happens to be the exact same code you just entered into WallTopScript.cs.
Go ahead and try it. You now have a bare bones brick game without the bricks. The
ball bounces the way it’s supposed to, and the player character works. You even have
rudimentary sound.

There’s one serious flaw in your current code, and it won’t really become appar-
ent until later. You don’t have any way of controlling what the ball does when it hits
the paddle. In real table tennis, you would have smashes, strange spin shots, and of
course, you’d have some way of aiming where the ball goes.

There are countless ways to implement ball control, but the simple way in the
original arcade Breakout is a good starting point: If the ball hits the left side of the
paddle, it bounces to the left, and if it hits the right side, it bounces to the right. The
following modified trigger code does that.

Step 17: In PlayerScript modify the OnTriggerEnter function as follows:

private void OnTriggerEnter(Collider other)

{

BallScript.yspeed = -BallScript.yspeed;

if (�other.transform.position.x >

gameObject.transform.position.x)

{

 BallScript.xspeed = Mathf.Abs(BallScript.xspeed);

}

else

Classic Game Design 2E_Ch06_3rd Pass.indd 90 4/26/2019 11:57:01 AM

Chapt er 6  — Clas s i c Br ick Game — 91

{

 BallScript.xspeed = -Mathf.Abs(BallScript.xspeed);

}

BallScript.collflag = true;

}

The Mathf.Abs function is the absolute value function that returns the posi-
tive value of a number. The code checks to see if the ball is on the right side of the
paddle. If it’s on the right, then the x component of the ball velocity is set to be positive,
otherwise it’s set to be negative. In either case, the y component of the ball velocity is
reversed.

The variable other.transform.position.x looks complicated. You read it
from back to front like this: the x-coordinate of the position of the transform of the
other object. That’s a long way of saying the x coordinate of the colliding object, which
happens to be the ball.

This is a great example of the kind of “fake” physics that is prevalent in clas-
sic games. Real physics requires compute power that wasn’t yet feasible at the time.
Much of the development time and effort was spent on technical issues such as this.

Step 18: Test it, save it, exit Unity.

It’s time to add some bricks. After all, this is a brick game.

VERSION 0.05: BRICKS
You’re ready for a more advanced programming technique. How can you add an

array of bricks to your playfield? It’s tempting to create them the same way as you’ve
been creating all of your objects, but this would be very time consuming. Instead,
you’ll be creating a “BrickMaker” object and create your bricks using a double loop in
the associated script.

First, you’ll create the display of the bricks. Then, you’ll add collision handling so
that the bricks actually disappear when they get hit by the ball.

Classic Game Design 2E_Ch06_3rd Pass.indd 91 4/26/2019 11:57:01 AM

92 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 93

Step 1: Start up Unity and load the project.

Step 2: Click on GameObject – Create Empty with name BrickMaker.

Step 3: Create MakeBricksScript, assign it to BrickMaker, and enter:

void Start()

{

for (int y = 0; y < 8; y++)

for (int x = 0; x < 15; x++)

{

GameObject cube =

GameObject.CreatePrimitive(PrimitiveType.Cube);

cube.transform.position =

new Vector3(x * 2 - 14, y - 1, 0);

cube.transform.localScale =

new Vector3(1.9f, 0.9f, 1);

// cube.AddComponent<BrickScript>();

Material m_material =

cube.GetComponent<Renderer>().material;

m_material.color = Color.yellow;

cube.GetComponent<Collider>().isTrigger = true;

}

}

That’s quite a bit of new code all at once! You’ll run this code first, and then care-
fully read through it and try to understand it.

Step 4: Run the game.

The Game panel now looks like Figure 6.6.

Classic Game Design 2E_Ch06_3rd Pass.indd 92 4/26/2019 11:57:01 AM

Chapt er 6  — Clas s i c Br ick Game — 93

Pretty amazing! Just a few lines of code and you generated 120 bricks. They don’t
do anything yet, but you can see them, and that’s a good start. Let’s go through the
code together and try to understand what it does.

The two for statements set up the 2-dimensional array of bricks. The y variable
traditionally keeps track of vertical position. Here you have 8 rows of bricks and the
y variable ranges from row 0 to row 7 (which adds up to 8 rows). Programmers like to
count starting at zero because that usually makes the geometrical formulas simpler
and thus, more efficient. The x variable keeps track of the 15 horizontal brick loca-
tions, ranging from column 0 to column 14.

Inside of your double loop you create a brick using the CreatePrimitive statement.
Then you compute the position and scale of each brick. The position depends on the x and
y variables. The scale is set to make your bricks a width of slightly less than 2 and height
slightly less than 1. The depth is 1 as always for all of your objects in this game.

 FIGURE 6.6 Bricks made by the BrickMaker object.

Classic Game Design 2E_Ch06_3rd Pass.indd 93 4/26/2019 11:57:02 AM

94 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 95

The two slashes on the next line indicate a comment. This means that the line
doesn’t get used, but is just there for future reference. You’ll be “uncommenting” this
line later on by simply deleting the slashes. The following two lines set the brick color
to yellow. The last line in the loop turns on the “Is Trigger” property for the bricks.

You’re now going to change Point Light to a directional light in order to get flat
lighting. This is a cosmetic style choice and doesn’t affect the gameplay.

Step 5: Delete the Point Light, create a Directional Light, rename it to Light,
and in the inspector change the Intensity to 0.63. Verify that the Rotation is (50,
-30, 0).

You now have a much more cartoon-like look. You can have a more dramatic color
change from row to row by setting different colors for different rows of bricks.

Step 6: Replace the m_material.color statement with the following code:

if (y < 2)

m_material.color = Color.yellow;

else if (y < 4)

m_material.color = Color.cyan;

else if (y < 6)

m_material.color = Color.blue;

else if (y < 8)

m_material.color = Color.red;

When you run the game now it should look like Figure 6.7.

You used some of the built-in colors of Unity. You could also explicitly set the RGB
values of each color using the Color function.

Step 7: Save your work, exit Unity.

In this section, you saw the amazing power of programming. Rather than creating
all those bricks manually, you wrote just a few lines of code that do the same thing.
You were also able to set various properties of the bricks in code.

In the next section, you’ll make the game playable.

Classic Game Design 2E_Ch06_3rd Pass.indd 94 4/26/2019 11:57:02 AM

Chapt er 6  — Clas s i c Br ick Game — 95

 FIGURE 6.7 Effect of color code on brick color.

VERSION 0.06: FIRST PLAYABLE
It’s time to make those bricks disappear when the ball hits them.

Step 1: Start up Unity and load the project.

In the MakeBrickScript, there’s a green line. It’s commented out because it would
cause an error otherwise. Each of those bricks will have a script, so first, let’s write it.

Step 2: Create a C# Script and call it BrickScript. Enter the following code:
private void OnTriggerEnter(Collider other)

{

if (BallScript.collflag == true)

{

BallScript.yspeed = -BallScript.yspeed;

BallScript.collflag = false;

Destroy(gameObject);

}

}

Classic Game Design 2E_Ch06_3rd Pass.indd 95 4/26/2019 11:57:02 AM

96 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 97

Step 3: Delete the slashes at the beginning of the commented line in MakeBricks
Script.

Step 4: Save the changes for both files in Visual Studio and try running the game.

Magically, the game is now playable.

The BallScript.collflag variable is a bool variable which is true when you want
collisions to be active and false when you don’t. The idea is that after the ball hits
the first brick you don’t want the ball colliding with other bricks but to instead have
it immediately bounce back to the player or a wall. This is a somewhat weird piece
of logic, but it works and it’s simple. The original Breakout used similar logic, but the
sequels went for something more realistic.

Once the script has determined that the collision should be done, it flips the y
component of the ball velocity, turns off the collision flag, and finally destroys the
brick that called it.

You can now better understand the reason behind the collflag statements in
WallScript and WallTopScript. Those statements turn collisions on again when a ball
hits a wall, thus allowing the ball to bounce back and forth between walls and bricks.

Step 5: Save and quit.

You now have a playable prototype. You even have some sound, just because it
was easy to put in. If you’re not hearing any sound, turn on your computer speakers,
turn up the volume, and verify that you’re getting the pluck sound every time there’s
a collision between the ball and something else.

In the next section, you’ll add scoring to your game because a game without scor-
ing isn’t much of a game.

VERSION 0.07: SCORING
In this section, you’ll create the score display, design the scoring rules, and finally

implement them in your code. In general, it’s good practice to make your games play-
able first. Only then does it make sense to add the scoring code.

Classic Game Design 2E_Ch06_3rd Pass.indd 96 4/26/2019 11:57:02 AM

Chapt er 6  — Clas s i c Br ick Game — 97

Step 1: Start Unity and load the Project.

Step 2: Create a Score object by selecting GameObject – Create Empty, name it
Score.

Step 3: Create a new C# Script, call it Scoring, and enter the following code:
public class Scoring : MonoBehaviour

{

public static int score;

public static int lives;

// Use this for initialization

void Start()

{

score = 0;

lives = 3;

}

// Update is called once per frame

void Update()

{

}

private void OnGUI()

{

GUI.Box(new Rect(10, 10, 90, 30),

"Score: " + score);

GUI.Box(new Rect(Screen.width - 100, 10, 90, 30),

"Lives: " + lives);

}

}

Step 4: Assign the Scoring script to the Score object as usual by dragging.

Classic Game Design 2E_Ch06_3rd Pass.indd 97 4/26/2019 11:57:02 AM

98 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 99

To make the scores update, you now need to find a place in your code where the
bricks get destroyed. You just wrote that code in the previous section.

Step 5: Edit BrickScript by inserting a single new line of code as follows:

private void OnTriggerEnter(Collider other)

{

if (BallScript.collflag == true)

{

BallScript.yspeed = -BallScript.yspeed;

BallScript.collflag = false;

Destroy(gameObject);

Scoring.score += 10;

}

}

The “+=” command in C# adds the following number to the preceding variable. In
this instance, 10 gets added to the score. You just added simple scoring but now it’s
time to update the lives counter. This is also very easy.

Step 6: Insert the following line of code at the beginning of the OnTriggerEnter func-
tion in the BallRelaunch script:

Scoring.lives--;

The two minus signs are the decrement operator in C#. This has the effect of
decreasing the number of lives by 1.

Step 7: Save your work, test it, and exit Unity.

You should see the lives display in the upper-right corner of the game count down
when you lose a ball off the bottom of the screen.

That’s a good start, but there’s a problem. You don’t have a game over screen!
Instead the lives counter goes negative. That’s definitely a bug. The next section fixes
this and along the way introduces the concept of multiple Scenes in Unity.

Classic Game Design 2E_Ch06_3rd Pass.indd 98 4/26/2019 11:57:02 AM

Chapt er 6  — Clas s i c Br ick Game — 99

VERSION 0.08: TITLE SCREEN
In this section, you’ll build a very simple title screen. It’ll be a single image with

the instruction to press a key to start the game. Pressing any key will go to the game.
When the game is over, this title screen will appear again. That’s about as simple as
it gets, but because you’re building everything from the ground up, it still takes some
careful work to have this happen.

Step 1: Run GIMP and create a new image with dimensions 256 x 240 pixels.

Any dimension will do, but these dimensions were selected as a reminder of this
common and very low resolution that was used by raster arcade games of the early ‘80s.

Step 2: Add the text “Brick Game, press any key” using the Text tool in GIMP.

It doesn’t really matter how you do this as long as the text is legible.

Step 3: Export the image into the Assets folder of your Unity game project. The
image should be in .png format and have the name BrickTitleImage.

Step 4: Exit GIMP.

The exported .png file is what will be used by Unity. You may wish to save to the
GIMP native .xcf file format too, if you wish, but it’s not necessary. It could be useful
to have this .xcf file available as a starting point in a future GIMP session, but .xcf
files aren’t used by Unity, so you don’t need to create it.

Step 5: Open Unity and load the ClassicBrickGame project.

Notice that BrickTitleImage automatically shows up in the Assets panel.

Step 6: Do File – New Scene, then right-click on Untitled in the Hierarchy and save
the scene as BrickTitleScene. Move this new scene into the Scenes folder.

Step 7: Create a new C# Script with name MainTitle. Enter the code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.SceneManagement;

Classic Game Design 2E_Ch06_3rd Pass.indd 99 4/26/2019 11:57:02 AM

100 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 101

public class MainTitle : MonoBehaviour

{

public Texture backGroundTexture;

private void OnGUI()

{

GUI.DrawTexture(

new Rect(

0,

0,

Screen.width,

Screen.height),

backGroundTexture);

if (Input.anyKeyDown)

{

Debug.Log("A key or mouse click has been detected");

SceneManager.LoadScene("BrickScene");

}

}

}

Notice that there is a fourth using statement at the top of this file. This is
necessary for the LoadScene statement. The Debug.Log statement sends a message
to the Console. This is a useful method of keeping track of what’s happening during
testing.

Step 8: Assign the MainTitle script to the Main Camera game object.

Step 9: Select Main Camera and drag BrickTitleImage to the slot next to Back-
ground Texture in the inspector.

Running the game now will display the image, but when you press a key you will
get an error because you haven’t yet included both scenes in the build settings for the
project. You also need to rename SampleScene with BrickScene.

Classic Game Design 2E_Ch06_3rd Pass.indd 100 4/26/2019 11:57:02 AM

Chapt er 6  — Clas s i c Br ick Game — 101

Step 10: Save BrickTitleScene.

Step 11: Select File – Build Settings... and add the current scene to the build set-
tings by clicking on the Add Open Scenes button.

Step 12: Go to Assets in the Project panel, double-click on the Scenes directory,
right-click on SampleScene, and rename it to BrickScene.

Step 13: Add this scene to the Build Settings just like Step 11.

You’ll now have two scenes in the current build settings for this project.

Step 15: Double-Click on BrickTitleScene in the Assets panel to select it. Run
the game and press any key after the title screen appears.

You’re now ready to go back to solving the problem that started all this. What
should happen when the player runs out of lives? You just go back to the title screen.

Step 16: Insert this code into the BallRelaunch script:
if (Scoring.lives == 0)

{

SceneManager.LoadScene("BrickTitleScene");

}

You’ll also need to add
using UnityEngine.SceneManagement;

at the top of the file where you see all those “using” statements;

Notice the two equal signs next to one another. That’s not a typo. You need both
of those equal signs. Unlike in mathematics, in C# and most other modern program-
ming languages, one equal sign is used for assignment, but two are needed when
testing for equality.

Step 17: Test it by losing on purpose and then playing a second game.

Well, guess what, there’s a bug! By the way, the automatic answer when someone
says this is “Just one?” The nature of programming, and especially game program-
ming, is that there’re going to be bugs. A lot of bugs. The best defense against having
buggy code is to test frequently and to fix all known bugs as soon as possible.

Classic Game Design 2E_Ch06_3rd Pass.indd 101 4/26/2019 11:57:02 AM

102 — Clas s i c Game Des ign , Second Edi t ion Chapt er 6  — Clas s i c Br ick Game — 103

The bug is this: When you start a game, the ball gets launched up instead of down
and bounces off of a brick. This isn’t really a big deal. It could even be called a feature,
but you should fix it, because it’s easy to do.

Step 18: Make sure you’ve exited play mode.

Step 19: In the Start function of BallScript, change the initialization for yspeed
to -8.0.

Step 20: Test, save, and exit.

This game is in pretty good shape now, so now you can release it.

VERSION 1.0: FIRST RELEASE
AND POSTMORTEM

There’s a relatively new adage in the game business: release early and release
often. So, you’re releasing this game even though it’s still very basic. The procedure
for releasing this game in Unity is pretty much the same as for the Classic Paddle
Game, so the instructions won’t be repeated here.

Releasing early and often wasn’t really an option in the classic era. Arcade games
had to be manufactured, sent to the distributors, and then to the arcades. Sending
software updates to all those arcade machines was possible, but expensive. A lot of
effort went into making the games bug-free and fun before the first release. Home
games were typically manufactured as ROM cartridges. In that case the penalty for
having a bug was extremely large. Hundreds of hours of testing were needed before
the first release. Even so, disastrous releases did occur when products were rushed to
market without sufficient testing.

It’s time for a quick postmortem of the Brick game. Here’s what went right. You
made a simple brick game and it works. It sure looks a lot like the many similar brick
games from the ‘70s and ‘80s, though the graphics are much better with the nice 3D
effect of the bricks. The best part is that you learned quite a bit about how to make
this kind of game in Unity.

Classic Game Design 2E_Ch06_3rd Pass.indd 102 4/26/2019 11:57:02 AM

Chapt er 6  — Clas s i c Br ick Game — 103

What went wrong? Well, the game isn’t very fun yet. There’s no difficulty ramp-
ing and the game is just too simple, even by the standards of 1976. Nevertheless, the
following exercises will help with this.

EXERCISES
1.	 Adjust the speed of the ball to make it faster, thus making the game more

difficult. Put in a counter that increases the speed of the ball after the ball has
had 8 collisions.

2.	Adjust the numbers in the mouse control code and see what happens. What
happens to playability if the mouse control is too sensitive or not sensitive
enough?

3.	Add a second paddle just above the first paddle and have the mouse control it
simultaneously with the first. Try using different mouse sensitivities with the
two paddles.

4.	 Create several different sound effects in Audacity and have different sounds
for different types of collisions. If you did Exercise 1, increase the pitch of the
collisions when the ball speed increases.

5.	The title screen text is fuzzy. Experiment with the texture import settings in
Unity to improve this. Hint: try the different filter settings.

Advanced Exercises for experienced Unity users:
6.	Make it a two-player game by adding a second paddle of a different color and

have the second paddle be controlled by a different set of keys.
7.	Create a texture in GIMP and use it in the playfield.

Classic Game Design 2E_Ch06_3rd Pass.indd 103 4/26/2019 11:57:02 AM

Chapt er 7  — Space Invaders — 105

CHAPTER

7

104 — Clas s i c Game Des ign , Second Edi t ion

Space Invaders
IN TH IS CHAPTER

Space Invaders is the first mega-successful video game, surpassing everything
before it exponentially. The success is a result of great design that made the
game much deeper than anything before. It was the first arcade video game that
celebrated the skill of the players, a game where millions of players would play
every day to get better and better, get higher scores in the process, and feel a sense
of accomplishment much like in golf, bowling, or pinball.

HUGE MONEY, HUGE
In terms of money, Space Invaders broke new ground. By some estimates, Space

Invaders grossed a coin drop of two billion dollars by 1982, making it the highest-
grossing entertainment product of all time. It is also the top-selling arcade game of all
time, having sold 300,000 units in Japan alone and being responsible for a shortage
of 100-yen coins.

It’s easy to forget the huge impact of this game. It showed that the public was will-
ing to spend serious cash on video games.

THE DESIGN OF SPACE INVADERS, TAITO (1978)
Space Invaders is the first vertical shooter. You control a laser gun with a two

buttons and you shoot at a horde of alien attackers by pressing the fire button. To
give the player a better chance to survive early on, there are four destructible barriers
near the bottom of the screen, as depicted in Figure 7.1.

Classic Game Design 2E_Ch07_2nd Pass.indd 104 4/25/2019 10:18:27 AM

Chapt er 7  — Space Invaders — 105

This game is still fun to play over forty
years later. It introduced the basic gameplay
formula of having three lives and getting an
extra life after reaching a point goal. Count-
less games after it imitated the style of hav-
ing a character move side to side and shoot up
at an onslaught of enemies. Even today’s FPS
extravaganzas can be viewed as fancy sequels
to Space Invaders.

This game was also the first major video
game to get people to really care about their
score.

SCORE EQUALS SKILL

In Space Invaders, having a score higher than your friends was meaningful, just
like in pinball. It also introduced the High Score display at the top of the screen. Fur-
thermore, Space Invaders didn’t forget about the expert players and made the score
mean something even for the elite players. Breakout has no meaningful world record
because, well, if you’re an advanced player then it’s no problem for you to get the
maximum possible score of 896. On the other hand, Space Invaders requires expert
skill to get a world-class score.

There are at least three major ways that Rule 5 is violated by designers: capping
the score, allowing marathoning, and allowing score milking. Here’s a look at all of
these in turn.

Capping the score means there is an easily achievable and known maximum
score for the game, for example, the maximum score of 896 in single-player Breakout.

Classic Game Design Rule 5: Score Rule: Score equals skill.

 FIGURE 7.1 Space Invaders Game Design
Diagram.

Classic Game Design 2E_Ch07_2nd Pass.indd 105 4/25/2019 10:18:27 AM

106 — Clas s i c Game Des ign , Second Edi t ion Chapt er 7  — Space Invaders — 107

Claiming to have the world record on this game is somewhat misleading because
thousands of players have achieved it.

Marathoning is the practice of playing arcade games up to the limits of human
endurance. Achieving a large score is more an indication of the ability to keep playing
rather than a measure of skill. This happened with major games such as Asteroids
and Missile Command and countless others.

Score milking occurs when players easily build up their score indefinitely with-
out actually playing the game as intended. This was uncommon in arcade games, but
it is frequently possible in home games, for example, Super Mario Brothers.

One of the great achievements of Space Invaders is that the scoring was, for the
first time in an arcade game, truly meaningful. Unfortunately, the game doesn’t quite
live up to that achievement since there are a few experts who are able to marathon
the game. Achieving a world record on this game is a combination of endurance and
skill. In a world record run, the game is pretty much the same for hour upon hour
of gameplay. You can see for yourself by searching the internet for videos of world
records.

Now remember Rule 4? How are you going to test your scoring system? Well, for
starters, it’s important to get yourself an advanced player playing the game for a few
weeks to see if he’s still breaking his own scores and still has the desire to improve. If
you don’t have access to a top player or two, make sure that you’re ready to respond
when your game gets into their hands after you’ve released your game!

In Space Invaders, each wave of enemies would start a little bit lower on the
screen compared to the previous wave. This simple device is a great way to ramp up
difficulty and is a verification of the Difficulty Ramping Rule. The majority of classic
arcade games, starting with Space Invaders, would use this device. Compare this to
Breakout where, if you finished the first wave of bricks, you were handed another
wave without any ramping.

Classic Game Design 2E_Ch07_2nd Pass.indd 106 4/25/2019 10:18:27 AM

Chapt er 7  — Space Invaders — 107

GOING STRONG 41 YEARS LATER
Even though the arcade business faded away in the ‘80s and ‘90s, Space Invad-

ers sequels continue to be sold. The latest version is Space Invaders Infinity Gene™
released for IOS in 2009, Xbox Live Arcade and PlayStation Network in 2010, and
Android in 2011.

The Space Invaders characters are really the first video game characters to
achieve iconic stature in popular culture. The aliens have been featured in street art,
t-shirts, and even furniture.

Space Invaders changed video games from casual to hardcore, from diversion to
hobby. We owe a debt of gratitude to game designer Tomohiro Nishikado and Taito.
It’s hard to imagine how video games would have evolved without the seminal influ-
ence of Space Invaders.

Classic Game Design 2E_Ch07_2nd Pass.indd 107 4/25/2019 10:18:27 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 109

CHAPTER

8

108 — Clas s i c Game Des ign , Second Edi t ion

Classic Game Project
Three: Vertical Shooter

DESIGNING A SHOOTER
The third classic project is going to be quite a bit more ambitious if the size of this

chapter is any indication. Your goal is to build a simple vertical shooter, similar to the
great many arcade vertical shooters from the ‘70s and ‘80s. You’re going to start by
sketching the basic layout of the game.

The setting is an outer space battle where you control a spaceship near the bot-
tom of the screen and shoot at alien spaceships and creatures that are attacking you.
You are seeing the beginnings of some story elements here, but don’t be too concerned
about telling the story. Classic games are all about the
gameplay.

Take a look at Figure 8.1. It’s a very rough sketch
of the layout. You’ll want to display the score and the
level, the enemies and the playfield, barriers to block the
enemy shots, and, of course, the player character. The
sketch doesn’t include the scrolling star background.

In the next section, you’ll start by building the play-
field.

VERSION 0.01: THE PLAYFIELD
Because the game is set in outer space, you’ll choose to display the playfield as

black with a background of scrolling stars. There are two approaches to displaying

 FIGURE 8.1 Game sketch of vertical
shooter.

Classic Game Design 2E_Ch08_2nd Pass.indd 108 4/25/2019 10:18:45 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 109

a star field, both valid: each star can be its own
object, or you can simply display an image of the
star field created in a paint program or captured
with a camera.

Step 1: Run Unity and create a new 2D project
with name ClassicVerticalShooter.

This project is done in 2D, mainly to try out
the very basics of developing a 2D game in Unity.
You will draw a star field image in GIMP using
the mouse. You may instead use the one provided
on the DVD. Figure 8.2 shows what the star field on the DVD looks like.

Step 2: Create the following subfolders of the Assets folder: Sprites, Prefabs,
Scripts, and Sounds.

The Scenes subfolder is already there as a default folder when you create a new
project.

Step 3: Create a Star Field using GIMP. Make the size 1024 x 1024 pixels and export
it to starfield.png in the newly created Sprites subfolder.

It’s OK to leave Unity open while you do this. It’s up to you how you want to draw
the starfield. It should be mostly black with some outer space objects on it like stars
of varying colors and sizes. The starfield on the DVD was created using a large brush
of size 20 and a smaller brush of size 5. The colors are white, light yellow, light red,
and light blue.

The size of 1024 by 1024 is no accident. Today’s 3D hardware has an easier time
displaying textures with dimensions that are powers of two. It probably doesn’t mat-
ter much in this case, but it’s a good habit to use powers of two for image sizes in
games and 3D applications. The reason for this has to do with “mipmapping,” a tech-
nique used by 3D display hardware to efficiently display textured objects that are far
away from the camera. Yes, it’s true that this project is using the 2D template, but
Unity may still use 3D hardware when displaying graphics on 3D platforms.

 FIGURE 8.2 Star field for the classic vertical
shooter.

Classic Game Design 2E_Ch08_2nd Pass.indd 109 4/25/2019 10:18:45 AM

110 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 111

In this game, the playfield will be scrolling, but first you’ll just display it.

Step 4: Select starfield in Assets/Sprites panel, then GameObject – 2D Object –
Sprite, name it background.

Step 5: For background, set Position (0, 0, 1), Rotation (0, 0, 0), Scale (1, 1, 1).

You are moving the background to a Z position of 1 so it will be behind the other
sprites later on.

Step 6: Place Main Camera at Position (0, 0, -10) and Rotation (0, 0, 0). Set the
Projection to Orthographic. Change the Size to 3.5.

The Size controls the zoom factor of the orthographic camera.

Step 7: Use 2 by 3 layout, then select and focus on the background using the f
key.

Step 8: Rename ScampleScene to mainscene. Save.

Step 9: Double-click on the Scripts folder to select it and create a new C# Script
called starfield_scroller. Then open the script and enter the following code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class starfield_scroller : MonoBehaviour

{

public float scrollspeed;

// Start is called before the first frame update

void Start()

{

}

// Update is called once per frame

void Update()

Classic Game Design 2E_Ch08_2nd Pass.indd 110 4/25/2019 10:18:45 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 111

{

transform.Translate(0,scrollspeed * Time.deltaTime,0);

if (transform.position.y < -10.0f)

{

transform.Translate(0, 20.48f, 0);

}

}

}

Step 10: Save the script and assign it to the background object.

Step 11: Select background and set Scrollspeed to -2 in the Inspector.

Step 12: Test

You’ll see the starfield scroll down the screen but there’s a gap above it before it
reemerges. This is fixed in the next step:

Step 13: Duplicate background, rename to background_duplicate, set Posi-
tion Y to 10.24.

This has the effect of placing a duplicate of the background immediately above.
When you run the game now you should get a seamless vertical scroll. Compare your
Scene and Game panels to Figure 8.3.

Those “magic numbers” of 10.24 and 20.48 deserve an explanation. 10.24 is the
vertical size of the starfield divided by the Pixels per Unit setting in the starfield
Import Settings. That number is the vertical size of the background sprite in world
units. Of course, 20.48 is twice that. The starfield_scroller script moves the
starfield up by two starfield heights once the sprite is completely scrolled below cam-
era view. You can watch this in action by running the game and turning off Maximize
on Play.

Step 13: Save and exit Unity.

In summary, in this section you created a background object and assigned a
starfield texture to it. Then you used a clever technique to scroll the background in an
endlessly repeating animation.

Classic Game Design 2E_Ch08_2nd Pass.indd 111 4/25/2019 10:18:45 AM

112 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 113

 FIGURE 8.3 Duplicated background to achieve seamless scrolling.

VERSION 0.02: THE SPACESHIP
Now that you have a playfield, it’s time to make your main player character, the

spaceship. Here’s the plan for this section. You’re going to draw a spaceship in GIMP
and then display it in Unity. The spaceship is going to be a nonanimated 2D sprite
with alpha. Let’s first explain what that is.

Nonanimated is simple enough. You just have a single image for your spaceship.
There’s really no need to animate the spaceship because it’s a solid object without
moving parts. The word sprite just means that the image can be moved on the screen.
In the early days of video game development, the hardware commonly supported both
sprites and stamps. Stamps, as opposed to sprites, were rectangular chunks of graph-
ics that couldn’t be moved relative to each other, though it was typically possible to
move all the stamps as a unit.

Classic Game Design 2E_Ch08_2nd Pass.indd 112 4/25/2019 10:18:45 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 113

Alpha is a term used to describe transparency. The spaceship will fit into a 32 x
32 grid. Some of the pixels in the grid will be used to display the spaceship, whereas
other pixels will be transparent. The transparent pixels will have an alpha value of
0, the solid pixels 1. It’s possible to have an alpha value in between. For example, an
alpha of 0.5 would mean that the pixel colors are intended to be combined with the
background graphics, giving a translucent effect.

Step 1: Run GIMP.

Step 2: Select Windows – Dockable Dialogs – Channels.

Step 3: File – New and choose an image size of 32 x 32 pixels.

Your screen should look something like Figure 8.4.

Notice that you have three channels: Red, Green, and Blue. Soon you’ll have an
Alpha channel as well. The image looks tiny, so zoom in on it so you can better see
what’s happening.

Step 4: Select View – Zoom – 8:1.

 FIGURE 8.4 The Channels dialog in GIMP.

Classic Game Design 2E_Ch08_2nd Pass.indd 113 4/25/2019 10:18:46 AM

114 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 115

Feel free to zoom in even more. This depends on your screen resolution.

Step 5: Select the Pencil tool (the tool that looks like a diagonal pencil).

As the mouse hovers over the tools on the left side of the screen you will see pop-
ups that tell you more about each icon.

Step 6: In the Tool Options dialog, make the Size 1 pixel.

Step 7: Choose a foreground color of dark green.

This is done on the color selection area at the bot-
tom of the toolbox. The foreground box is the upper-
left rectangle. Click on it to get the color selection
dialog. Then use the color selection dialog to choose
a dark shade of green. Don’t make it took dark, so it
contrasts with the black starfield.

Step 8: Use the mouse and the left mouse button to
draw a shape like the one shown in Figure 8.5. This
is the right half of your spaceship.

It’s not important that your drawing matches the book’s version pixel for pixel.
Feel free to draw something else that looks similar to a top view of a spaceship. This
is just a starting point. The first thing you’re going
to improve is the symmetry. Your goal is to take the
right half, flip it, and copy it on top of the left half of
the image. Here’s one way to do this.

Step 9: Use the Rectangle Select Tool, the upper-
left tool in the tool box, and select the right half of the
image. The size of the selection should be 16 x 32.

You can watch the bottom of the window to see
the size change as you drag the mouse. This looks like
Figure 8.6.

 FIGURE 8.5 Starting to draw the
spaceship in GIMP.

 FIGURE 8.6 Selecting the right half of
the spaceship.

Classic Game Design 2E_Ch08_2nd Pass.indd 114 4/25/2019 10:18:46 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 115

Step 10: Edit – Copy. Make sure you’re still using
the Rectangle Select tool and select the left half of
the image. Then Edit – Paste As – New Layer.

This is a tricky step. If you did it correctly your
new image looks like Figure 8.7

You’re now ready to flip the left half of the image.

Step 11: Select the Flip tool as shown in Figure 8.8.
Check that the Transform is set to Layer, that the

Direction is Horizontal, and that Clipping is
set to Adjust.

Step 12: Click on the left half of the image.

This last click flips the left half of the image.
This is quite an improvement! Symmetry is
the secret to making great-looking pixel art. It
often doesn’t matter how well you can draw, as
long as you incorporate symmetry.

You’re not done yet. The left half of the
image is still sitting in a separate layer. You
need to merge the layers.

Step 13: Select the Rectangle tool, click on the right
half of the image, and do Layer – Merge Down.

Your image should now look like Figure 8.9.

Next, you’ll use the “Cartoon” filter to add a nice
black edge to your spaceship.

Step 14: Select Filters – Artistic – Cartoon… and
use a Mask radius of 1.3 and Percent black of 0.5.

 FIGURE 8.7 Duplicating the right half
of the spaceship.

 FIGURE 8.8 Using the Flip tool.

 FIGURE 8.9 Basic spaceship.

Classic Game Design 2E_Ch08_2nd Pass.indd 115 4/25/2019 10:18:46 AM

116 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 117

Feel free to experiment with these values or even
to try some of the other filters. Your result should
look something like Figure 8.10.

You’re now ready to add alpha to your 2D image.
You might have noticed that the Channels dialog
now displays an Alpha channel, but it doesn’t have
any content yet.

Adding alpha to this particular image is really
easy because you didn’t use white when drawing
your spaceship.

Step 15: Select – By Color, set Threshold to 70, and
click on the white background area of the image.

You have just selected the white background,
plus some light grey pixels near the spaceship.

Step 16: Do Colors – Color to Alpha and make sure
that the From color is white, which is the default.

You now have an outline of the spaceship in the
Alpha channel in the Channels dialog as shown in
Figure 8.11.

The spaceship itself now has a checkerboard
background to indicate transparency. It should look
like Figure 8.12.

Next, you’ll save your work. There are two files
that you want to save, .xcf and .png.

Step 17: Click on File – Save As and use the name
ship.xcf in the directory “ClassicVerticalShooter/
Assets/Sprites.”

 FIGURE 8.10 2D spaceship, no alpha.

 FIGURE 8.11 RGB plus Alpha channel
for the spaceship.

 FIGURE 8.12 Final 2D spaceship with
alpha.

Classic Game Design 2E_Ch08_2nd Pass.indd 116 4/25/2019 10:18:47 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 117

Step 18: Do File – Export to save ship.png in the same directory. IMPORTANT:
Use compression level 0.

This is a very small file so there’s no need to compress it. If you use compression
with small sprites, you can easily get noticeable artifacts when displaying them in
your game later on.

Step 19: Exit GIMP.

Step 20: Run Unity and double-click on the Assets/Sprites folder.

Step 21: Click on ship in the Assets panel and look at the Inspector panel. Set the
Filter Mode to Point (no filter) and Wrap Mode to Clamp, then Apply.

Step 22: Drag the ship asset into the Hierarchy panel.

Step 23: Set Position to (0, 0, 0), Rotation to (0, 0, 0).

You can now see the ship in the starfield. To see the ship in the Scene panel, focus
on it.

Step 24: Save your work, then exit Unity.

In the next section, you’ll continue with your development of the sprites in this
game.

VERSION 0.03: SPRITES
You just made a single 2D sprite for your spaceship, which was a good first step.

Next, you’ll create additional sprites, the shots, and you’ll learn how to dynamically
create and destroy them. This is necessary so that when a shot hits something the
shot disappears, and when the player hits a “Fire” button a shot is created. You’ll
start by drawing a shot in GIMP. This is similar to drawing the spaceship.

Step 1: Open GIMP and create a new image with a width of 8 pixels and height
of 16 pixels.

This is a tiny image, so zoom in on it by repeatedly pressing the “+” key.

Classic Game Design 2E_Ch08_2nd Pass.indd 117 4/25/2019 10:18:47 AM

118 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 119

Step 2: Select the pencil tool and set the size to 1. Zoom in on
the image, make the foreground color yellow and draw an
arrow pointing up as displayed in Figure 8.13.

Step 3a: Layer – Transparency – Add Alpha Channel

This step is necessary for this image because there is only
one layer. Earlier, when you made the ship, the alpha channel
was added automatically when you created a second layer.

Step 3b: Select – By Color and click on the white background.

Step 3c: Add the alpha by doing Colors – Color to Alpha…
and then draw a white border at the top and fins at the bot-
tom as shown in Figure 8.14.

You’re getting a taste of how all graphics were created in
the early days of video games. That’s right, the artist, or pos-
sibly even the programmer, drew every piece of graphics one
pixel at a time. That was an advance over even earlier days,
when programmers typed in numbers to create the graphics.
Things have come a long way since then.

Step 4: Save the image to arrow.xcf and export to arrow.
png, and put both files into the Assets/Sprites folder of your
Unity project, once again making sure to use compression
level 0.

You can now go straight into Unity and use this new png
file to make an arrow sprite.

Step 5: Open the ClassicVerticalShooter project in Unity. Zoom in on the Scene
panel to approximately match the Game panel. Check that you have a png file called
arrow, plus the xcf file for it in the Assets/Sprites folder.

Step 6: Set the Filter Mode for the arrow to Point (no filter) and Apply.

Step 7: Drag the arrow into the Hierarchy panel.

 FIGURE 8.13 Arrow
skeleton.

 FIGURE 8.14 Arrow with
alpha and fins.

Classic Game Design 2E_Ch08_2nd Pass.indd 118 4/25/2019 10:18:47 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 119

Step 8: Set the Position to (0, -2.8, 0.5). Put the ship at the same position with Z
of 0.

The -2.8 was determined by trial and error. Make sure that the Main Camera is
at (0, 0, -10), or you might be placing the ship off-screen. Our goal is to have the ship
and the arrow near the bottom edge of the Game panel.

Of course, the arrow shouldn’t be just sitting out there in space. It should be shoot-
ing out of the front of the spaceship. To make that happen, you need to create a prefab.
Prefabs are a great feature of Unity. They are templates that enable users to easily
make linked copies (also called instances) of objects. Earlier you made a Prefabs folder
to store them.

You should have Prefabs, Scenes, Scripts, Sounds, and Sprites folders in the
Assets folder.

Step 9: Drag the arrow gameobject into the Prefabs folder and rename it arrow-
prefab.

Dragging objects from the Hierarchy back to the Assets folder or an Assets sub-
folder automatically creates a prefab.

Step 10: Drag the arrowprefab back into the Scene.

Step 11: Repeat the previous step a few times, placing arrows at different locations.

The Game panel should now have a few
arrows in it as displayed in Figure 8.15.

Step 12: Run the game, then stop run-
ning it.

The ship and the arrowprefabs are sta-
tionary, whereas the stars are scrolling.

Step 13: Delete all arrowprefabs and
the arrow in the Hierarchy panel. Care-
ful: Don’t delete the arrowprefab in the
Prefabs folder. FIGURE 8.15 Testing the arrow prefab.

Classic Game Design 2E_Ch08_2nd Pass.indd 119 4/25/2019 10:18:47 AM

120 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 121

You only need to keep the prefab itself in the Prefabs folder. You’re now ready to
use this prefab in your scripting.

Step 14: Save the scene and project.

Next, you’ll create the code to control the ship.

Step 15: Select the Scripts folder and create a new C# Script with name ship-
script. Enter the following code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class shipscript : MonoBehaviour

{

public float shipSpeed;

// Start is called before the first frame update

void Start()

{

transform.position = new Vector3(0,-2.8f,0);

}

// Update is called once per frame

void Update()

{

if (Input.GetKey("right"))

{

 transform.Translate(shipSpeed * Time.deltaTime, 0, 0);

}

if (Input.GetKey("left"))

{

 transform.Translate(-shipSpeed * Time.deltaTime, 0, 0);

}

}

}

Classic Game Design 2E_Ch08_2nd Pass.indd 120 4/25/2019 10:18:47 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 121

Step 16: Save the code and drag it onto the ship object.

Step 17: Set Ship Speed to 5 in the Inspector panel and test out the code.

Notice that Unity displays the variable named shipSpeed in the code as Ship
Speed in the Inspector panel. The extra space and the capitalization are added
for cosmetic reasons. You’re now controlling the ship with the arrow keys on the
keyboard. You could also add mouse control as was done in the brick game, but
that might make the game too easy, so that option will be left for later experimen-
tation.

Next, you’ll add a boundary check to make sure the ship doesn’t disappear.

Step 18: Add the screenBoundary variable below the shipSpeed variable declara-
tion as follows:

public float screenBoundary;

Step 19: At the end of the Update function, add the following lines:
if (transform.position.x < -screenBoundary)

 transform.position = new Vector3(

-screenBoundary,

transform.position.y,

transform.position.z);

if (transform.position.x > screenBoundary)

 transform.position = new Vector3(

screenBoundary,

transform.position.y,

transform.position.z);

You might be wondering why you need to create a whole new vector rather than
just setting the x coordinate of the position directly. This is a result of the way C#
implements vectors, so the short answer is that C# won’t let you do that. If you try
that you’ll get an error message.

Step 20: Save the new version of shipscript and set the screen Boundary to 3 in
the Inspector.

Classic Game Design 2E_Ch08_2nd Pass.indd 121 4/25/2019 10:18:47 AM

122 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 123

Step 21: Try out the game and test to see what happens at both edges of the screen
and adjust the Screen Boundary accordingly so the ship can move close to the edge.

The ship should act like it’s hitting an invisible wall. You should be able to move
the ship closer to the edge, so try 4 for the Screen Boundary. You could make that num-
ber slightly larger, but for now 4 is good. You are taking tiny steps here, adding small
improvements, and immediately testing them. Next, you’ll add code to shoot arrows.

Step 22: Create a new C# Script in the Scripts folder and rename it to shotscript.
Open the script and enter the following code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class shotscript : MonoBehaviour

{

public float shotSpeed;

// Start is called before the first frame update

void Start()

{

}

// Update is called once per frame

void Update()

{

transform.Translate(0, shotSpeed * Time.deltaTime, 0);

}

}

Step 26: Save the file in Visual Studio.

Step 27: Select arrowprefab in the Prefabs folder, click on Open Prefab, if necessary.
Do Add Component – Scripts – Shotscript. Then set the Shot Speed to 4 in the
Inspector.

Classic Game Design 2E_Ch08_2nd Pass.indd 122 4/25/2019 10:18:47 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 123

You just created a script for the arrows, but you have no arrows in your scene
right now to test. Just drag an arrow back into the scene, and test out the shot code
as follows:

Step 28a: In the Hierarchy panel, click on the arrow next to arrowprefab

This step should bring back the mainscene hierarchy that was temporarily miss-
ing when you edited the arrowprefab.

Step 28b: Drag an arrowprefab into the Hierarchy panel and run the game.

The arrow should fly up and away at a fairly rapid speed. This is as good a time as
any to deal with the arrow after it flies off the top of the screen. You want to destroy
the arrow when that happens. This is a one-liner.

Step 29: Stop running the game, then insert the following code to shotscript Update
function.

if (transform.position.y > 6.0f) Destroy(gameObject);

Step 30: Save your change and test the code again.

How can you tell if it’s working? Running the game looks exactly the same. There
are several ways to do this.

Step 31: Change the 6.0 to a 1.0 in shotscript. Test, and then undo the change.

You now see how the arrow disappears when it hits a y coordinate of 1.0. This is a
reasonable way to test your code, but there is a better way.

Step 32: Turn off Maximize on Play and run the game. Stop the game and turn
on Maximize on Play.

When the game is running look at the Hierarchy panel. You’ll see the “arrowpre-
fab” object disappear soon after the arrow disappears from the top of the screen. You
can also zoom out in the Scene panel and actually see the arrow disappear above the
playfield area.

Why is it important to have this cleanup code even though there’s no discernible
difference when you play the game? You’ll be creating many new shots while you’re

Classic Game Design 2E_Ch08_2nd Pass.indd 123 4/25/2019 10:18:47 AM

124 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 125

playing the game, and every shot uses up computing and memory resources. It’s a
good idea to destroy shots that aren’t needed any more so that you don’t run out of
resources, or slow down your game, or both.

Practically speaking, it would take many thousands of shots, maybe even millions,
before you’d notice a difference. Nevertheless, it’s a good habit to clean up after yourself.
In the classic era, when memory was relatively expensive, a great deal of effort had to
be put into managing memory. Even then, it was common to hear the phrase: memory
is cheap. Thankfully, memory is orders of magnitude cheaper forty years later.

Speaking of cleaning up after yourself:

Step 33: Delete the temporary arrowprefab instance in the Hierarchy. CARE-
FUL: Don’t delete the arrowprefab itself in the Prefabs directory!

You’re now ready to launch the arrows under player control.

Step 34: In shipscript add the variable “shot” by adding the following line:
public GameObject shot;

Step 35: In the Update function, add the following code:
if (Input.GetKeyDown("space"))

{

 Instantiate(

shot,

new Vector3(

transform.position.x,

transform.position.y,

0.5f),

Quaternion.identity

);

}

What’s going on here? The Instantiate function creates a shot at the same position
as the ship. The Quaternion.identity sets the rotation to be unchanged, which
means that the arrow is pointing up.

Classic Game Design 2E_Ch08_2nd Pass.indd 124 4/25/2019 10:18:47 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 125

Step 36: Save the file in Visual Studio, then select ship in the Hierarchy.

Step 37: Drag arrowprefab from the Assets panel into the Shot property of Ship-
script in the Inspector panel. Run the game and test.

This is pretty easy to test. Pound on the space bar and move the ship. Your game
panel should look similar to Figure 8.16.

Look at all those arrows in the Hierarchy panel. When the game is paused, you
can click on each one and look at the properties. This technique can be very helpful
when debugging.

Step 38: Save your Scene and Project and exit Unity.

In this section, you learned about prefabs and how to use them to create and
destroy sprites dynamically using the Instantiate function. In the next section,
you’ll create sprites for aliens.

 FIGURE 8.16 Ship shooting four Arrows.

Classic Game Design 2E_Ch08_2nd Pass.indd 125 4/25/2019 10:18:48 AM

126 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 127

VERSION 0.04: ALIENS
Now that you have a spaceship and shots, you need something to shoot at. True to

your 2D design for this game, you’ll make 2D animated sprites to display the aliens.
The design for the aliens is quite simple. They’ll be walking left and right in their
formation using a four-frame walk animation.

You’ll be looking at 3D animation techniques later on, but for now you’ll do ani-
mation the old-fashioned way: one frame at a time. This section introduces Unity’s
2D animation features. First, you will create three frames of an animation in GIMP.
Then you will use Unity to animate the frames.

Step 1: Open GIMP and open a new image with size 32 x 32 pixels. Select a red
pencil of size 3 and draw a red blob like the head shape in Figure 8.17.

If the background color isn’t white, use the bucket fill tool to make it white.

Step 2: Draw yellow and black eyes, blue antennas, and blue legs.

You might wish to achieve symmetry using the flip tool as described earlier in
this chapter. It’s OK if your drawing doesn’t match the one from the figure as long as

 FIGURE 8.17 Alien drawing.

Classic Game Design 2E_Ch08_2nd Pass.indd 126 4/25/2019 10:18:48 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 127

you draw something similar. Keep in mind that the white color will be converted to
alpha just as you did earlier for the spaceship and arrow graphics, so don’t use white
for anything other than the background.

Step 3a: Layer – Transparency – Add Alpha Channel

Step 3b: Select – By Color and click on the white background.

Step 3c: Colors – Color to Alpha, save the file in the Assets/Sprites directory as
alien1.xcf and then export to alien1.png using compression level 0.

Step 4: Fill the bottom alpha area with white, then redraw the legs as in Figure 8.18.

Step 5: Select – By Color, click on white, Colors – Color to Alpha, save and
export to alien2 as in Step 3c.

Step 6: Repeat Steps 4 and 5 using Figure 8.19 and name alien3.

Next, you’ll bring this simple animation into Unity.

Step 7: Run Unity with the ClassicVerticalShooter project.

Step 8: Select the alien1 sprite. Choose Point (no filter) Filter Mode and Apply.

Step 9: Repeat the previous step for alien2 and alien3.

 FIGURE 8.18 Alien frame 2. FIGURE 8.19 Alien frame 3.

Classic Game Design 2E_Ch08_2nd Pass.indd 127 4/25/2019 10:18:48 AM

128 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 129

Step 10: Drag the alien1 sprite into the Hierarchy panel.

If you wish, you can run the game like this and shoot at the alien. Of course, the
alien doesn’t get destroyed yet, nor does he move or shoot back at you.

Step 11: Select alien1 in the Hierarchy panel and then do Window – Animation –
Animation

This is the first time you’re using the Animation window. This very useful Unity
feature makes it easy to do 2D animations without writing code. You may need to
expand the right panel to expose the Create box.

Step 12: Click on the Create box in the Animation window. Name the animation
alien.anim.

Step 13: Drag alien1 to time 0, alien2 to time 0:15, alien1 to 0:30, alien3 to 0:45 and
alien1 to 1:00.

Step 14: Run the game. Be sure to have Maximize on Play selected when you do this.

You should see alien1 doing an animation in the Game panel. Notice that alien1
now has an Animator component.

Just as you did with the arrow object, you’re going to make a prefab, so you can
easily create multiple aliens using a script.

Step 15: Select the Prefabs folder in the Assets panel and drag the alien1 object
into it.

Step 16: Rename the alien1 prefab to alienprefab.

Recall that dragging an object into the Assets folder automatically turns it into a
prefab.

Step 17: Test the prefab by making a few test instances in the Scene. Run the game
to check out the test prefabs. Stop running the game.

Step 18: Delete any alien objects in the Hierarchy panel, including the original
alien1 and any objects with the name alienprefab.

Classic Game Design 2E_Ch08_2nd Pass.indd 128 4/25/2019 10:18:48 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 129

You’ve encountered this before and it bears repeating. Be sure to only delete Hier-
archy objects and keep the prefab itself in the Assets/Prefabs folder.

You’re now ready to build your grid of aliens. This is done using a technique simi-
lar to your creation of the bricks in the Classic Brick Game.

Step 19: Save

This step is unnecessary, but it’s a good idea to save your progress often. You can
rename the project by adding version numbers into the project name. That way, if
you need to, you can go back to a previous version rather than starting from the very
beginning if things go awry.

Note for advanced users: It might be time to start using version control. Unity
supports several possible version control systems. Feel free to explore this further on
your own.

Now that you have an alien prefab you will write code to generate an array of
aliens.

Step 20: GameObject – Create Empty with name alienfactory. Assign to it the
new C# Script with name alienfactoryscript and move it to the Scripts folder. Then
enter this code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class alienfactoryscript : MonoBehaviour

{

public GameObject alien;

public void MakeAliens()

{

for (int i = 0; i < 15; i++)

for (int j = 0; j < 6; j++)

Classic Game Design 2E_Ch08_2nd Pass.indd 129 4/25/2019 10:18:48 AM

130 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 131

{

GameObject al = Instantiate(

alien,

new Vector3((i - 7) * 0.5f, (j - 2) * 0.8f, 0),

Quaternion.identity);

}

}

// Use this for initialization

void Start()

{

MakeAliens();

}

}

Step 21: Save your file in Visual Studio.

Step 22: Assign alienprefab to Alien in the Inspector for alienfactory and try out
the game.

The game panel should now look like Figure 8.20. This is a good time to go through
the code in alienfactoryscript. You didn’t bother to keep the Update function because
it won’t be needed. This script simply creates the grid of aliens at the start of each
level. There is nothing left to do during gameplay. The MakeAliens function consists
of a double loop. It generates 15 columns of 6 aliens. The numbers inside the Vector3
call control the positions of the aliens.

You’re making some good progress. As you know, those shots from the spaceship
aren’t doing any damage to those pesky aliens. It’s time to add collision detection
between arrows and aliens.

In previous projects, it was OK to just detect collisions with any other type of
object. But here you want to detect only objects of a specific type. For this you’re going
to use the “tag” feature of Unity.

Step 23: Create a C# script called alienscript and assign it to alienprefab.

Classic Game Design 2E_Ch08_2nd Pass.indd 130 4/25/2019 10:18:48 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 131

Step 24: Insert the following OnTriggerEnter function at the end of alienscript:
private void OnTriggerEnter(Collider other)

{

if (other.tag == "shot")

{

 Destroy(gameObject);

 Destroy(other.gameObject);

}

}

This function checks to see if your alien is colliding with a shot. If so, it destroys
itself and the shot. In order to make this code work, you’ll set up the tags for the shots.
You’re using Visual Studio, of course, to enter this code. Don’t forget to save when
you’re finished editing. You can run the game now, but it still won’t have collisions
between arrows and aliens because the tag isn’t set up yet.

 FIGURE 8.20 A grid of aliens.

Classic Game Design 2E_Ch08_2nd Pass.indd 131 4/25/2019 10:18:49 AM

132 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 133

Step 25: Select and open arrowprefab and notice that it is untagged.

You can see this by looking at the Tag property at the top of the Inspector panel.
As you might guess, tags are a way to group objects together and, thus, making some
scripting tasks easier. Before you can tag your arrowprefab with the “shot” tag, you
need to create the “shot” tag.

Step 26: Click on Untagged and choose Add Tag at the bottom.

This activates the TagManager. That’s where you create or otherwise manage the
tags for your project.

Step 27: Click on the plus sign below the text “List is Empty”. Give the new tag a
name of “shot”, and save.

Step 28: Click on arrowprefab in the Prefabs panel, and Open Prefab. This closes the
tagmanager.

Step 29: Select the shot tag from the drop-down menu next to the Tag property.

If you’re expecting your collision detection to work now, you’re mistaken. You still
have to carefully add some physics and collider components to your prefabs to make
this work.

Step 31: Make sure that the arrowprefab is still selected and do Component –
Physics – Rigidbody. Uncheck Use Gravity because the game is in outer space
after all. Now do Component – Physics – Box Collider, check Is Trigger, and
make the Size (0.08, 0.16, 10).

You put a box collider around your sprite and made it very narrow in the x direc-
tion and full size in the y direction. The 10 in the z direction is somewhat arbitrary.
It’s there to make sure that the arrow collides with anything that overlaps with it in
the x and y directions.

Step 32: Select and open the alienprefab and add a box collider for it as well,
but no rigid body. The Size of this box collider is (0.32, 0.32, 10) and also check Is
Trigger.

Classic Game Design 2E_Ch08_2nd Pass.indd 132 4/25/2019 10:18:49 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 133

Step 33: Test it, save, and exit.

Finally! You can shoot the aliens. It took much more of an effort this time, but you
once again added just enough features to make the game playable. Well, you don’t
really have a playable game just yet, but you’re getting a feel for what it might be like
to play the game, even though those aliens are just sitting there. In the next section,
you’ll turn things around and introduce alien shots.

VERSION 0.05: ALIEN SHOTS
It wouldn’t be fair to just shoot at the aliens without having them shoot back. This

is somewhat familiar territory because you just did something similar in the previous
section.

Step 1: Open GIMP and load arrow.xcf from the Sprites folder in your Unity proj-
ect. Zoom in using the plus key on your Numpad, if necessary.

Step 2: Click on the Flip Tool in the tool grid and click on the Vertical radio button
for the Direction in the Tool Options dialog.

Step 3: Click on the arrow it to make it point down instead of up. Then make some
minor changes to it using the pencil tool. Feel free to get creative. You may need
to do an Anchor Layer command in the Layer menu to get
access to drawing on top of transparent pixels.

When you’re done, you should see a downward pointing
arrow somewhat like Figure 8.21. You may choose your own
colors, but make them bright, so the arrow can be easily seen
by the player.

Step 4: Save as ashot.xcf and export ashot.png using
compression level 0.

Step 5: Run Unity and load the ClassicVerticalShooter.

Once again, you’ll bring in your new graphics into Unity,
just as you did for the arrow.

 FIGURE 8.21 Alien shot.

Classic Game Design 2E_Ch08_2nd Pass.indd 133 4/25/2019 10:18:49 AM

134 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 135

Step 6: Click on the ashot sprite and select a Filter Mode of Point (no filter), and
then Apply. Drag the ashot sprite into the Scene panel somewhere and use the f
key to focus on it.

The alien shot looks clean and pristine, due to your choice of filter. Your Scene
should look like Figure 8.22.

As before, the next step turns the alien shot into a prefab.

Step 7: Click on the Prefabs folder and drag ashot into it. Rename it to ashotpre-
fab.

Step 8: Create a new script, call it ashotscript, assign it to ashotprefab, and
enter the following code for it:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class ashotscript : MonoBehaviour

{

public float ashotSpeed;

// Use this for initialization

 FIGURE 8.22 The alien shot in the Unity scene.

Classic Game Design 2E_Ch08_2nd Pass.indd 134 4/25/2019 10:18:50 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 135

void Start()

{

}

// Update is called once per frame

void Update()

{

transform.Translate(0, ashotSpeed * Time.deltaTime, 0);

if (transform.position.y < -16) Destroy(gameObject);

}

}

This code simply moves the alien shot down the screen and destroys the shot if it
falls off the bottom of the screen.

Step 9: Save your script code and set the ashotspeed to -5 for the ashotprefab.

Step 10: Test it.

Here’s one way to test this. Drag a couple of ashotprefabs into the Scene panel
and run the game. The shots should fly down the screen and disappear at the bot-
tom. To verify that the “Destroy” is working, run the game without the “Maximize
on Play” enabled and monitor the Hierarchy. Because all those aliens are clogging
up the Hierarchy display, you can temporarily remove them by commenting out the
MakeAliens() call in alienfactoryscript as follows:

void Start() {

// MakeAliens();

}

Just be sure to remove those slashes and bring back the aliens when you’re done
debugging.

This kind of testing, where you modify the source code in order to test, is called
“white box testing.” If you don’t modify anything, and don’t even look at the source
code while testing, you’re doing “black box testing.”

Classic Game Design 2E_Ch08_2nd Pass.indd 135 4/25/2019 10:18:50 AM

136 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 137

Now it’s time to make those aliens shoot at you.

Step 12: Insert the following code into the Update function in alienscript:
// shoot sometimes

if (Mathf.FloorToInt(Random.value * 10000.0f) % 900 == 0)

{

Instantiate(

ashot,

new Vector3(transform.position.x,transform.

� position.y,0.5f),

Quaternion.identity

);

}

This code creates a random float between 0 and 10000, converts it to an inte-
ger, then tests if it’s a multiple of 900. If it is, then the alien shoots straight down.
That magic number of 900 can be adjusted to make the aliens shoot more or less fre-
quently. This is a quick and dirty way of getting randomized shooting by the aliens.
Of course, there are many other possible ways of doing this. For example, you could
randomly select N number of aliens every M frames and have them shoot, with N and
M depending on the level. Can you think of any other ways to implement randomized
alien shooting? Maybe it shouldn’t be random at all? You can leave these possibilities
for future versions. It’s better not to get overly distracted with too many brainstorms
along the way but rather to get the quick and dirty code to actually work!

Step 13: Insert the variable ashot at the beginning of the script like this:
public GameObject ashot;

Step 16: Save the script file, select alienprefab, and drag ashotprefab to the
Ashot property in the Inspector.

Step 17: Run the game.

You’ll be getting shot at, but of course, you don’t have the collision detect working yet
so the alien shots go right through you without damage.

Classic Game Design 2E_Ch08_2nd Pass.indd 136 4/25/2019 10:18:50 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 137

You’ll do the collision handling pretty much the same way as for arrows hitting
aliens.

Step 18: Add the following OnTriggerEnter function to shipscript:
private void OnTriggerEnter(Collider other)

{

if (other.tag == "ashot")

{

Destroy(gameObject);

Destroy(other.gameObject);

}

}

Once again. you’ll be using tags here. This time you’ll have the tag “ashot” assigned
to the ashotprefab.

Step 19: Save the shipscript file and select ashotprefab.

Step 20: Click on Untagged in the Inspector panel.

Step 21: Select Add Tag from the drop-down menu, use the plus icon to add the
ashot tag, click on ashotprefab, and select ashot as the tag for this prefab.

Just as you had to do for the arrow prefab, it’s necessary to add box collider and
rigidbody components.

Step 22: Component – Physics – Rigidbody and uncheck Use Gravity.

Step 23: Component – Physics – Box Collider and set the Size to (0.08, 0.16, 10).
Check the Is Trigger Box.

You also need to have a box collider for your ship.

Step 24: Select ship in the Hierarchy panel, do Component – Physics – Box Col-
lider, and change the Size to (0.32, 0.32, 10).

You’re finally ready to test the collision code.

Step 25: Run the game and watch what happens when an alien shot hits the ship.

Both the shot and the ship disappear. It’s game over. This is a bit severe. Just one life!

Classic Game Design 2E_Ch08_2nd Pass.indd 137 4/25/2019 10:18:50 AM

138 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 139

You’ve “found the fun” just now. That’s right, this game is fun just the way it is.
Try to kill all the aliens. It’s not exactly easy. If you think it’s too easy, you can change
shot speed or the rate the aliens are firing to make the game harder.

Step 26: Save your progress, take a break, you deserve it.

In the next section, you’ll put some structure to the game and add multiple lives.

VERSION 0.06: SCORING AND LIVES
As the name implies, in this section you’ll add scoring and lives. You’ll use a tech-

nique called “finite state machines” or FSM for short. This is a common coding tech-
nique that goes way back to the early days of game development, yet is still used
today. It’s somewhat surprising how few of the old techniques have become obsolete
many decades later.

Before you get into finite state machines, you’ll put in a simple display of scoring
and lives, just as in your previous projects.

Step 1: Create an empty GameObject named scoring. Assign the new C# Script
named scoringscript with the following code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class scoringscript : MonoBehaviour

{

public static int score;

public static int lives;

void InitializeGame()

{

score = 0;

lives = 3;

}

Classic Game Design 2E_Ch08_2nd Pass.indd 138 4/25/2019 10:18:50 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 139

// Use this for initialization

void Start()

{

InitializeGame();

}

private void OnGUI()

{

GUI.Box(new Rect(10, 10, 200, 30), "Score: " + score);

GUI.Box(new Rect(Screen.width - 200, 10, 200, 30), "Lives: "

+ lives);

}

}

Step 2: Run the game, pause it, and compare it to Figure 8.23.

You’re displaying the score and the lives, though they still aren’t functional. Also,
take a look at the Scripts folder. You now have seven scripts: alienfactory, alienscript,

 FIGURE 8.23 Initial scoring in Classic Vertical Shooter.

Classic Game Design 2E_Ch08_2nd Pass.indd 139 4/25/2019 10:18:51 AM

140 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 141

ashotscript, scroringscript, shipscript, shotscript, and starfield_scroller. If you’re
seeing something else in the Scripts folder, chances are your scripts are residing at
the top level of Assets. This would be a good time to move any stray scripts into the
Scripts folder.

Your Scene panel may look different depending on the zoom and pan setting.
Figure 8.23 is zoomed in quite a bit, so you’re seeing just a portion of the aliens. While
the game is paused it is possible for you to zoom and pan in the Scene panel without
affecting the game itself. This can be an effective debugging technique.

In the next step you’ll get the scoring working.

Step 3: Add the following line in alienscript at the correct spot:
scoringscript.score += 10;

This code adds 10 to the score using the += operator. There are several other
similar operators in C#, for example -= which subtracts the right side from the left
side. You will find it instructive to search the Internet for the documentation for the
+= operator in C#. This will lead you to a more detailed explanation.

Can you guess where you should put the scoring update code in Step 3? Think
about it before reading on. Usually the scoring code gets put where the action hap-
pens that you’re trying to reward, in this case the destruction of the alien. Thus, the
correct spot is in the OnTriggerEnter function, anywhere inside the curly brackets
after the if statement, because that’s where you’re destroying the alien and the shot
too. You could, of course, get much fancier with the scoring, but for now it’s a good
start. If you test the game right now you will see the score increase by 10 every time
an alien is destroyed.

Next, you’ll create finite state machine to handle the various states of the game.

Step 4: Create an empty GameObject, name GameState, script name GameSta-
teScript assigned to GameState, and enter the following code:

using System.Collections;

using System.Collections.Generic;

Classic Game Design 2E_Ch08_2nd Pass.indd 140 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 141

using UnityEngine;

public class GameStateScript : MonoBehaviour

{

public static int state;

public const int PressStart = 1;

public const int StartingPlay = 2;

public const int GamePlay = 3;

public const int Dying = 4;

public const int GameOver = 5;

public const int NextLevel = 6;

// Use this for initialization

void Start()

{

state = PressStart;

}

}

The const declarations define states that your game can be in. They are set to
be constants so that C# doesn’t accidentally change them. Here is a more detailed
description:

PressStart is the state where a press start message is displayed. During this
state, the game waits for the player to hit a key to start the game. When that hap-
pens, the game enters the StartingPlay state.

StartingPlay is the state where the game is initialized and there are no user
inputs being accepted yet. When the initializations are done, the game enters the
GamePlay state.

GamePlay is the main state where the player is playing the game. If at any time
the player gets hit by a shot, you go to the Dying state. If all aliens get killed, you go
to NextLevel.

Classic Game Design 2E_Ch08_2nd Pass.indd 141 4/25/2019 10:18:51 AM

142 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 143

Dying is a state where the ship enters a death sequence, the aliens celebrate, etc.
At the end of the death sequence, if there are no lives left, you go to GameOver, or else
to StartingPlay.

GameOver is the state where a “GAME OVER” message is displayed. The mes-
sage will time out and you go to PressStart next.

NextLevel is the state where a new wave of aliens is created, presumably differ-
ent and more difficult.

It’s now your job to start to implement these states according to this informal
description.

Step 5: Run the game, then stop running the game.

The first step is, what else, to test the code to make sure it compiles and doesn’t
break anything. The GameState object doesn’t do anything except initialize the “state”
variable. This seems silly at first, but it’s a valuable lesson. It takes about 30 seconds
to test the game, so why not do it? After you’re finished with your very short testing,
implement the first state, PressStart.

Step 6: In scoringscript, insert the following lines into the OnGUI function:
if (GameStateScript.state == GameStateScript.PressStart)

{

if (GUI.Button (new Rect (Screen.width/2 - 150,

Screen.height/2 - 50,

300, 50),"Click Me to Start"))

{

GameStateScript.state = GameStateScript.StartingPlay;

}

}

// for debugging

GUI.Box (new Rect (Screen.width/2 - 30,10,90,30),

 "State: "+GameStateScript.state);

Classic Game Design 2E_Ch08_2nd Pass.indd 142 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 143

This creates the “Click Me” button in the middle of the screen. It doesn’t work
quite how you want yet, but at least you can look at it. You added a debug output box
to display the current game state. Unfortunately, the game state needs to be a static
variable, and static variables can’t easily be displayed in the Inspector, so you’re using
a GUI box to display the current state instead. When the game is released, you’ll dis-
able this debug display.

Displaying property values using the application is a time-honored tradition and
goes way back to the old days of developing code using punch cards and line printers.
It’s still a useful method to use as an alternative to other debugging methods.

It’s time to fix the next big problem, which is that the game is active during the
PressStart state. This is pretty easy to fix. First, look at alienfactoryscript. The aliens
are getting initialized in the start function, which is not where you want it.

Step 7: In alienfactoryscript, delete the call to MakeAliens in the Start function.

The Start function now looks like this:
void Start()

{

}

You could even remove the Start function completely, but it’s easier to just leave
it there for future use. Now, when you run the game, the aliens are gone. You’ll get
them back as follows.

Step 8: Open shipscript.cs and add the following variable declaration at the top:
public alienfactoryscript alienfactory;

Step 9: Change the name of the Update function to ShipControl, and insert the
following new Update function below the end of ShipControl:

void Update()

{

if (GameStateScript.state == GameStateScript.GamePlay)

 ShipControl();

Classic Game Design 2E_Ch08_2nd Pass.indd 143 4/25/2019 10:18:51 AM

144 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 145

if (GameStateScript.state == GameStateScript.StartingPlay)

{

 alienfactory.MakeAliens();

 GameStateScript.state = GameStateScript.GamePlay;

}

}

Step 10: Save the file, select ship and assign alienfactory to the new Alienfactory
variable in the Shipscript (Script) section in the Inspector panel.

Do this by dragging alienfactory from the Hierarchy into the Alienfactory prop-
erty in the Inspector. If the Alienfactory property isn’t there, be sure to save your edit-
ing in Visual Studio and run the game once to bring in the new version of shipscript.

It’s instructive to follow the new logic in the Update function. You are only allowing
the player to control the ship during the GamePlay state, and you initialize the aliens
during the StartingPlay state, immediately followed by a transition to the GamePlay
state. If you test the game right now, you can click on the “Click me to Start” button
and play the game after that. Your next step is to make the lives counter work.

Step 11: Enter this new OnTriggerEnter function for shipscript:
private void OnTriggerEnter(Collider other)

{

if (other.tag == "ashot")

{

 scoringscript.lives--;

 if (scoringscript.lives == 0)

 {

 Destroy(other.gameObject);

 GameStateScript.state = GameStateScript.GameOver;

 }

}

}

Classic Game Design 2E_Ch08_2nd Pass.indd 144 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 145

Instead of destroying the ship every time it gets hit by an alien shot, you now
decrease the lives counter. When the lives counter reaches zero, rather than destroy-
ing the ship, you change state to GameOver.

Step 12: Save the shipscript file and now add the following code fragment to the
OnGUI function in scoringscript.cs:

if (GameStateScript.state == GameStateScript.GameOver)

{

if (GUI.Button(new Rect(Screen.width / 2 - 200,

Screen.height / 2 - 50,

400, 50), "Game Over, Try again"))

{

 InitializeGame();

 GameStateScript.state = GameStateScript.PressStart;

}

}

The game structure almost works now, but there’s a tricky bug. At the end of the
game, you need to clean up after yourself and delete all the leftover aliens.

Step 13: Add the following code to the Update function in alienscript.cs:
if (GameStateScript.state == GameStateScript.GameOver)

{

 Destroy(gameObject);

}

This code is particularly interesting. It makes all aliens destroy themselves when
the game state is GameOver. Now save all your script files and try out the game. It
still has some problems, but it’s basically playable.

Make the following minor adjustment. You’re killing off the leftover aliens too
soon. If you wait until you enter the PressStart state, it’ll look a little better.

Step 14: In alienscript replace the GameOver with a PressStart as follows:

Classic Game Design 2E_Ch08_2nd Pass.indd 145 4/25/2019 10:18:51 AM

146 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 147

if (GameStateScript.state == GameStateScript.PressStart)

{

 Destroy(gameObject);

}

Now the aliens disappear after you click on the “Game Over” message.

Your next goal is to have the ship disappear and reappear depending on the game
state. First, fix the bug where the lives counter reaches -1. It’s bad enough that you
can have zero lives left, but you don’t even want to think about what it would mean
to have negative lives.

Step 15: In shipscript.cs, add the following line at the beginning of the OnTrig-
gerEnter function, immediately before the tag test:

if (GameStateScript.state == GameStateScript.GamePlay)

This assures that you have no ship-vs.-alien shot collisions except during gameplay.

You’re now ready to add the death sequence for the ship. Currently, when the
ship gets hit, it either has no reaction or, if you’re on the last life, it just freezes and
it’s game over. What you really want is some kind of animation that shows the ship
got hit, have the ship disappear for a while, and then you either go into the game over
state or you try again with another ship. Here is where the “Dying” state gets used.

Step 16: Add a deathtimer variable declaration to shipscript.cs immediately
above the Start function as follows:

float deathtimer;

Step 17: Add the following code fragment to the Update function:
if (GameStateScript.state == GameStateScript.Dying)

{

transform.Rotate(0, 0, Time.deltaTime * 400.0f);

deathtimer -= 0.1f;

if (deathtimer < 5.0f)

{

 GetComponent<Renderer>().enabled = false;

Classic Game Design 2E_Ch08_2nd Pass.indd 146 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 147

}

if (deathtimer < 0)

{

 GameStateScript.state = GameStateScript.GamePlay;

 transform.position = new Vector3(

 0.0f,

 transform.position.y,

 0.0f);

 transform.rotation = Quaternion.identity;

 GetComponent<Renderer>().enabled = true;

}

}

Step 18: Change the OnTriggerEnter funtion as follows:
private void OnTriggerEnter(Collider other)

{

if (GameStateScript.state == GameStateScript.GamePlay)

if (other.tag == "ashot")

{

 scoringscript.lives--;

 deathtimer = 10.0f;

 GameStateScript.state = GameStateScript.Dying;

 if (scoringscript.lives == 0)

 {

 Destroy(other.gameObject);

 GameStateScript.state = GameStateScript.GameOver;

 }

}

}

The only change in the OnTriggerEnter function was to initialize the death-
timer and to change the state to Dying. Notice that when the lives counter hits zero,
you bypass the Dying state and go directly to GameOver. This isn’t quite what you
want but it’s good enough for now.

Classic Game Design 2E_Ch08_2nd Pass.indd 147 4/25/2019 10:18:51 AM

148 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 149

When you test this code, the ship does a rotation animation when hit, disappears,
and then reappears, sometimes with disastrous consequences because it might get
resurrected right on top of an alien shot! The fix for this is to have the aliens stop
shooting when the ship is in its death sequence.

Step 19: Add the following line in alienscript:
if (GameStateScript.state == GameStateScript.GamePlay)

as the first statement in the Update function.

Now clean up what’s happening with the ship right before Game Over. When you
detect a collision with an alien shot, you go into the Dying state, regardless of how
many lives are left.

This has the effect of simplifying the OnTriggerEnter function.

Step 20: In shipscript.cs, replace the OnTriggerEnter function with the follow-
ing code:

private void OnTriggerEnter(Collider other)

{

if (GameStateScript.state == GameStateScript.GamePlay)

if (other.tag == "ashot")

{

 scoringscript.lives--;

 deathtimer = 10.0f;

 GameStateScript.state = GameStateScript.Dying;

 Destroy(other.gameObject);

}

}

Step 21: Also in shipscript.cs, edit the Dying section at the bottom of the Update
function to look like this:

if (GameStateScript.state == GameStateScript.Dying)

{

transform.Rotate(0, 0, Time.deltaTime * 400.0);

deathtimer -= 0.1;

if (deathtimer < 5.0)

{

GetComponent<Renderer>().enabled = false;

}

if (deathtimer < 0)

{

GameStateScript.state = GameState.GamePlay;

Transform.position = new Vector3(

0,transform.position.y,0);

Transform.rotation = Quaternion.identity;

GetComponent<Renderer>().enabled = true;

if (scoringscript.lives == 0)

{

GameStateScript.state = GameStateScript.GameOver;

}

}

}

Step 22: Save your files, test, and exit Unity.

In this section, you developed a finite state machine to handle the basic structure
of your game. In the next section, you’ll implement a death animation for the aliens
by creating a small finite state machine for each alien.

VERSION 0.07: ALIEN DEATH SEQUENCE
Your next goal is to have the aliens go through a death animation when they get

hit by an arrow and then disappear. This is pretty similar to what you just did with
the player character, so it will seem like familiar territory. The main difference is that
you are now dealing with an entire array of aliens.

Step 1: Run Unity, take a look at the code below and then edit alienscript.cs to match.
There are some underlines on the left side of this code listing to indicate new lines.

Classic Game Design 2E_Ch08_2nd Pass.indd 148 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 149

deathtimer -= 0.1;

if (deathtimer < 5.0)

{

GetComponent<Renderer>().enabled = false;

}

if (deathtimer < 0)

{

GameStateScript.state = GameState.GamePlay;

Transform.position = new Vector3(

0,transform.position.y,0);

Transform.rotation = Quaternion.identity;

GetComponent<Renderer>().enabled = true;

if (scoringscript.lives == 0)

{

GameStateScript.state = GameStateScript.GameOver;

}

}

}

Step 22: Save your files, test, and exit Unity.

In this section, you developed a finite state machine to handle the basic structure
of your game. In the next section, you’ll implement a death animation for the aliens
by creating a small finite state machine for each alien.

VERSION 0.07: ALIEN DEATH SEQUENCE
Your next goal is to have the aliens go through a death animation when they get

hit by an arrow and then disappear. This is pretty similar to what you just did with
the player character, so it will seem like familiar territory. The main difference is that
you are now dealing with an entire array of aliens.

Step 1: Run Unity, take a look at the code below and then edit alienscript.cs to match.
There are some underlines on the left side of this code listing to indicate new lines.

Classic Game Design 2E_Ch08_2nd Pass.indd 149 4/25/2019 10:18:51 AM

150 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 151

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class alienscript : MonoBehaviour

{

public GameObject ashot;

__ public int state;

__ public float timer;

// Start is called before the first frame update

void Start()

{

}

// Update is called once per frame

void Update()

{

if (GameStateScript.state == GameStateScript.GamePlay)

if (Mathf.FloorToInt(Random.value * 10000.0f) % 900 == 0)

{

 Instantiate(

 ashot,

 new Vector3(

 transform.position.x,

 transform.position.y,

 0.5f),

 Quaternion.identity

);

}

Classic Game Design 2E_Ch08_2nd Pass.indd 150 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 151

__ // if it’s dying go through the death sequence

__ if (state == 1)

__ {

__ transform.Rotate(0, 0, Time.deltaTime * 400.0f);

__ transform.Translate(

__ 0.3f * Time.deltaTime,

__ 3.0f * Time.deltaTime,

__ 0, Space.World);

__ transform.localScale = transform.localScale * 0.99f;

__ timer -= 0.1f;

__ if (timer < 0.0f)

__ {

__ Destroy(gameObject);

__ }

__ }

 if (GameStateScript.state == GameStateScript.PressStart)

 {

 Destroy(gameObject);

 }

}

private void OnTriggerEnter(Collider other)

{

if (other.tag == "shot")

{

 scoringscript.score += 10;

__ state = 1;

__ timer = 5.0f;

 Destroy(other.gameObject);

}

}

}

Classic Game Design 2E_Ch08_2nd Pass.indd 151 4/25/2019 10:18:51 AM

152 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 153

Don’t forget to delete the “Destroy(gameObject)” line at the end of OnTrigger-
Enter!

Step 2: We also need to initialize the alien state to 0 in alienfactoryscript. Replace
the MakeAliens function with the following code:

public void MakeAliens()

{

for (int i = 0; i < 15; i++)

 for (int j = 0; j < 6; j++)

 {

 GameObject al = Instantiate(

 alien,

 new Vector3((i - 7) * 0.5f, (j - 2) * 0.8f, 0),

 Quaternion.identity);

 al.GetComponent<alienscript>().state = 0;

 }

}

That looks like a lot of code, but most of it got entered earlier in this chapter. This
is a good time to review it, try to understand it, and to make sure your old code didn’t
get changed somehow. The new code has to do with the state and timer variables. The
initialization in alienfactoryscript is just one line. The alienscript changes are more
substantial, but also straightforward.

The strangest thing is the line with the 0.99 in it. That line makes your object
smaller by 1 percent. The effect is that the aliens appear to shrink as they spin off
the top of the screen. Notice that you have two state variables affecting the aliens,
the game state and the alien state. The alien state is very simple. If it’s 0, it’s alive
and kicking, if it’s 1, it’s dying. Those constants in the code, numbers such as 0.99,
400.0, 3.0, and 0.3, are commonly called fudge factors. Yes, really. It’s fun to change
the numbers and watch the effect on the death sequence in the aliens. In production

Classic Game Design 2E_Ch08_2nd Pass.indd 152 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 153

code it’s a good idea to replace the fudge factors by more meaningful variables and to
document the effects. Sometimes though, it makes the code easier to deal with and to
understand if the fudge factors are “hardwired” into the code, such as in the current
version of alienscript.

Step 3: Test, save, and exit.

The game is starting to look pretty good, but you still don’t have sound!

VERSION 0.08: SOUND
Designing the sound for a game can be a full-time job for several people in a major

title. For you, it’s a small section in a large chapter. The classic approach to sound
effects in games is to just throw some simple effects in there without too much plan-
ning, experiment a little bit, and don’t worry about being realistic.

The vacuum of outer space is completely silent. This hasn’t stopped countless sci-
fi movies from adding sound effects to their space battles. You’re going to keep things
extremely simple and just do two sound effects and no music in this game. You need
a sound effect for when the arrow gets launched, and another for when aliens get hit.
Most space shooters use some kind of laser “bleep” for shots and an explosion sound
when an alien gets hit.

Step 1: Start Audacity.

Step 2: Tracks – Add New – Stereo Track.

Step 3: Generate – Chirp with the settings Frequency Start 440, End 1320,
Amplitude Start 0.8, End 0.1, Interpolation Linear and Duration 1 second.

Step 4: Apply the Wahwah effect with settings LFO Frequency (Hz): 1.5, LFO
Start Phase (deg.): 0, Depth (%) 70, Resonance 2.5, Wah Frequency Offset (%)
30 and Output Gain (db) -6.0.

Your wave forms should look like Figure 8.24.

That sounds pretty weird. You want your sound effect to be shorter.

Classic Game Design 2E_Ch08_2nd Pass.indd 153 4/25/2019 10:18:51 AM

154 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 155

Step 5: Select everything after 0.30 and delete it. Listen to what’s left, then
Save the project to cshot.aup and export to cshot.wav to the Assets/Sounds folder
of your Unity project. Exit Audacity.

Next, you’ll make a simple explosion sound.

Step 6: Start Audacity, add a new stereo track, Generate – Noise with Noise
type: Pink, Amplitude 0.7 and Duration of 1 second. Do Effect – FadeOut and
the Effect – WahWah with the same settings as the cshot sound effect.

This sound effect is even stranger, just what you want. Of course, feel free to
make your own different and bizarre sound effects. The only thing that really mat-
ters is that they are about 0.3 seconds and 1 second in duration, and even that can be
changed quite a bit.

 FIGURE 8.24 Wahwah sound effect.

Classic Game Design 2E_Ch08_2nd Pass.indd 154 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 155

Step 7: Save this “explosion” sound effect to cexplo.aup and export to cexplo.wav,
both in the Assets/Sounds folder of your Unity project.

Was there any method to this madness? Not really. Just as in the old days when
technology was much more primitive, game designers simply fiddled with the num-
bers until they liked what they heard. Today, many independent game developers
still make sound effects this way, mainly because it’s cheap and fun.

Step 8: Open Unity and load the ClassicVerticalShooter project.

Step 9: Verify that the sounds are in the Assets/Sounds folder. Preview them.

Step 10: In shipscript.cs, in the section where you test for the space key, right after
the Instantiate, insert

gameObject.GetComponent<AudioSource>().Play();

Step 11: Add an AudioSource component to the ship, select cshot as the Audio-
Clip, and uncheck Play on Awake.

Step 12: Test and Save.

If everything worked, your cshot sound will play every time you fire a shot with
the space bar. One fun slider to play with is the Pitch in the Audio Source section.

Step 13: Set the Pitch in the Audio Source section to 1.4.

That was pretty much the same procedure you used in your previous projects. For
the explosion sound the procedure is very similar.

Step 14: Do Step 10 but insert the code in alienscript immediately after the score is
increased by 10.

Step 15: Add an Audiosource component to alienprefab, select cexplo as the Audio-
Clip and uncheck Play on Awake.

Step 16: Save, test, and exit Unity.

Additional sound effects are certainly possible for this game. Feel free to add
your own sounds for aliens shooting, game over, and maybe even a speech sound for

Classic Game Design 2E_Ch08_2nd Pass.indd 155 4/25/2019 10:18:51 AM

156 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 157

starting the game. Check out the exercises at the end of this chapter for more pos-
sibilities for sound.

In the next section you’ll put in level handling.

VERSION 0.09: LEVELS
So far one of the truly defining features of classic gaming has been ignored: dif-

ficulty ramping implemented as levels. A large majority of video games increase the
difficulty of the game depending on the progress of the players. This is only logical.
The players would get bored if the games didn’t continue to challenge them as they
got farther along.

In your vertical shooter, you’ll increase the difficulty with each wave of aliens.
You’ll keep it simple and increase the rate of shots getting fired. In preparation for
this, you need to think about how to test it. It would be a lot simpler if there were
fewer aliens.

Step 1: Run Unity and in alienfactoryscript change the 15 and the 6 to 2 and 2
and save the file.

You should now see just four aliens instead of 90. It’s now a lot easier to shoot all
the aliens.

The next thing to think about is how to detect when you have no more aliens on
the screen. That’s going to be your trigger for starting the next level. To do this you
create a variable to count how many aliens exist at any given moment.

Step 2: Declare the aliencounter variable at the beginning of scoringscript as
follows:

public static int score;

public static int lives;

public static int aliencounter;

You’re declaring it in scoringscript rather than in alienscript because it’s a single
global variable, and that’s a good place for it. The initialization needs to happen when
you create the aliens, which is in alienfactoryscript.

Classic Game Design 2E_Ch08_2nd Pass.indd 156 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 157

Step 3: In the MakeAliens function, at the beginning, just before the double loop,
insert the line

scoringscript.aliencounter = 0;

Step 4: Inside the double loop, before the Instantiate statement, immediately
after the opening bracket, insert the following line:

scoringscript.aliencounter++;

Step 5: Save the file in Visual Studio.

To see that it’s working, change your debug display.

Step 6: In scoringscript, change the debug display code as follows:
GUI.Box(new Rect(Screen.width / 2 - 60, 10, 120, 30),

"Aliencounter: " + scoringscript.aliencounter);

You had to make the rectangle larger to fit the longer label.

Step 7: Save all your changes in Visual Studio and run the game.

You should see an aliencounter of 4 displayed at the top center of the game screen.
Next, make the counter decrease when aliens get destroyed. This is easy to do in
alienscript.

Step 8: In alienscript.cs, insert the following code immediately after the
Destroy(gameObject) statement at the end of the death sequence code:

scoringscript.aliencounter--;

Step 9: Save your work and try it out.

The aliencounter variable should now decrement whenever an alien disap-
pears. What’s next? How about another small change with big consequences!

Step 10: At the beginning of scoringscript, insert a new level variable as follows:

public static int score;

public static int lives;

public static int level;

public static int aliencounter;

Classic Game Design 2E_Ch08_2nd Pass.indd 157 4/25/2019 10:18:51 AM

158 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 159

Step 11: Add the following

if (scoringscript.aliencounter == 0)

{

GameStateScript.state = GameStateScript.StartingPlay;

scoringscript.level++;

}

immediately after scoringscript.aliencounter-- in alienscript.cs.

Step 12: Back in scoringscript.cs, initialize level in the InitializeGame
function:

void InitializeGame()

{

score = 0;

lives = 3;

level = 0;

}

Step 13: You also want to display the level, so change the debug display to this:
// for debugging

GUI.Box (new Rect (Screen.width/2 - 60,10,120,30),

"Level: "+scoringscript.level);

Step 14: Save all your changed script files and try out the game.

Your level should be displayed, and it should increment every time you clobber
those four aliens. Also, merely by transitioning to the StartingPlay state in Step
11, you automatically get a new batch of aliens via the Update function in shipscript.

Now do some cleanup. You started with level 0, but that was a mistake. People
want to start at level 1.

Step 15: Change the initialization of level to 1 in scoringscript.cs.

Step 16: The comment “// for debugging” is incorrect at the bottom of the scor-
ing script, so replace it with “// level display”. Save your changes and test again.

Classic Game Design 2E_Ch08_2nd Pass.indd 158 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 159

In the old days, many decades ago, programmers were encouraged, or even
required by their employers, to put lots of comments into their code. Years of experi-
ence have taught us that comments are often incorrect, especially when the code gets
reworked and changed a lot. The modern bias is to write code so well and so clearly
that comments become mostly unnecessary.

You can never test enough, and this is a great example. You have a pretty serious
bug. If you wish, you can try to duplicate it by dying right as you shoot the last alien.
Guess what, your ship never comes back even though you get advanced to the next
level. It takes some patience to do this, or you can increase the shot rate of the aliens
to make testing easier.

What’s going on here? Well, the player is still in the death sequence when we’re
changing state, which doesn’t work. To fix it, do the following:

Step 17: Take the following code section from alienscript.cs:
if (scoringscript.aliencounter == 0)

{

 GameStateScript.state = GameStateScript.StartingPlay;

 scoringscript.level++;

}

and move it to the Update function in shipscript.cs, immediately after the call to
ShipControl. Use cutting and pasting to do this edit fairly quickly.

The beginning of that Update function should now look like this:
if (GameStateScript.state == GameStateScript.GamePlay)

{

 ShipControl();

 if (scoringscript.aliencounter == 0)

 {

 GameStateScript.state = GameStateScript.StartingPlay;

 scoringscript.level++;

 }

}

Classic Game Design 2E_Ch08_2nd Pass.indd 159 4/25/2019 10:18:51 AM

160 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 161

The effect of this change to your code is that you’re only advancing to the next
level during GamePlay, not during the Dying state.

Step 18: Save your changes in both of the affected files and test again, making sure
that you can die and advance to the next level after the death sequence completes.

This was a nasty and subtle bug that can only be revealed by thorough testing.
You’re lucky that it was found now, rather than after release.

Finally, you’ll make use of the level variable and increase the difficulty of the
game depending on the level. A simple start is to change the firing rate of the aliens
depending on the level.

Step 19: Add the following statement at the beginning of the alienscript class in
alienscript.cs:

int[] levelarr = { 50, 30, 20, 10 };

This creates an array of tuning numbers for the first four levels of the game.

Step 20: Replace the beginning of the Update function with:
// shoot sometimes

int levindex;

levindex = scoringscript.level - 1;

if (levindex > 3) levindex = 3;

if (levindex < 0) levindex = 0;

if (GameStateScript.state == GameStateScript.GamePlay)

 if (Mathf.FloorToInt(Random.value * 10000.0f) %

 (

 levelarr[levindex]

 * scoringscript.aliencounter) == 0)

{

 Instantiate(

 ashot,

 new Vector3(

 transform.position.x,

Classic Game Design 2E_Ch08_2nd Pass.indd 160 4/25/2019 10:18:51 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 161

 transform.position.y, 0.5f),

 Quaternion.identity

);

}

This code looks at the array levelarr and, depending on which level we’re at,
shoots alien shots at that level’s shooting rate. The shooting rate also depends on the
aliencounter in order to make the game get more aggressive when there are fewer
aliens on screen.

Additional difficulty ramping possibilities are explored in the exercises at the end
of the chapter.

Step 21: Save your edits, test the game.

Wow, this game is difficult at level 4, and you haven’t even brought back the origi-
nal 90 aliens.

Step 22: In alienfactoryscript, bring back the 15 and 6 in the loop statements.
Test and tune. Save and exit.

You have a pretty good game here with a world of potential for expansion and
enhancements. The time has come to release it. Figure 8.25 shows a screenshot.

 FIGURE 8.25 Screenshot of released classic vertical shooter.

Classic Game Design 2E_Ch08_2nd Pass.indd 161 4/25/2019 10:18:52 AM

162 — Clas s i c Game Des ign , Second Edi t ion Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 163

VERSION 1.0: RELEASE AND POSTMORTEM
You’ve reached an important milestone. You now know enough basic game devel-

opment techniques to make some interesting 2D and 3D games. You know how to
make graphics, animations, sounds, collisions, and basic game logic.

The game is ready for release the way it is, but, of course, there’s always room
for improvement. The biggest and most obvious problem is that you’re not matching
the initial design sketch very well. There are several missing elements such as the
barriers. This is perfectly OK. Also, you didn’t put in the ending yet. What matters
is that the game is fun and makes sense. It’s up to you to take it from here and add
the missing elements, or to invent your own enhancements. Check out the exercises
for additional development practice and ideas for where to take the game from here.

The best part is that it’s really fun to play, and you have a mechanism in place to
tune the difficulty ramping. It’s still a very small game by today’s standards, but it
wouldn’t be that difficult to make it larger. The colors are vivid and the sound effects
are weird and fit the game well.

The development of the game was a valuable learning experience. You used
GIMP, Audacity, and Unity, and saw how the different parts fit together and inter-
act. You also did much more programming this time around, but it was relatively easy
compared to production coding. The built-in functions of Unity do much of the heavy
lifting. On the negative side, it all seemed just a little more difficult than it should
have been. This is the nature of technical work. As great and useful as the tools are,
there are still hoops to jump through and hurdles to overcome to make it all happen
the way you want. It seemed tedious to have to type all that code. There really ought
to be an easier way, but the sad reality is that real game development can be tedious
at times, especially when you’re doing something new.

The single most important lesson from this chapter is simply this: Take small
steps, test each step along the way whenever possible, and then fix any problems and
bugs right away. All in all, it felt good to create this game. If you did all the steps in

Classic Game Design 2E_Ch08_2nd Pass.indd 162 4/25/2019 10:18:52 AM

Chapt er 8  — Clas s i c Game Pro jec t Three : Ver t i ca l Shoot er — 163

this chapter and finished with a playable game, congratulations! Now keep going,
because this is just the beginning.

EXERCISES
	 1.	� Make the starfield scroll horizontally instead of vertically. Then, make the

starfield scroll in different directions depending on the level of the game.
	 2.	� Create a second starfield in GIMP and use alpha to make the background

transparent. Display the second starfield on top of the original starfield and
scroll it at a different vertical rate.

	 3.	� Draw a more detailed starship in GIMP using a 64 x 64 texture. Give it a
different color scheme. Integrate the new starship into your game by using
a variable named “shiptype” and setting it to 1 for the original ship, 2 for
the new ship. At the beginning of the game, allow the user to choose which
ship to use by pressing a key on the keyboard. Integrate a text display that
explains which keys to use for which ship type.

	 4.	� Use GIMP to draw an animated arrow with 4 frames using the same
technique you used to animate the aliens. Replace the arrow in the game
with the animated arrow and animate it in Unity.

	 5.	� Rearrange the aliens into a grid of 12 by 4 aliens. Change the layout of the
aliens so they cover the entire top half of the screen.

	 6.	� Change the “shoot sometimes” code to something less random. Add a shot
timer to each alien and have each alien shoot after the timer expires. Then
reset the timer based on a random range of values.

	 7.	� Create a sound effect for the loss of a life by the ship using Audacity and
make it work in the game.

	 8.	� Use a recording device to record your own voice saying, “Game Over.” Use
Audacity to edit the sound and integrate the sound into the game using Unity.

	 9.	� Make the aliens move left and right, similar to the movement in Space
Invaders.

Classic Game Design 2E_Ch08_2nd Pass.indd 163 4/25/2019 10:18:52 AM

164 — Clas s i c Game Des ign , Second Edi t ion

  10.	� Add barriers at the bottom of the screen and have them block shots both by
you and by the aliens. Have the barriers show destruction every time they
get hit by somebody. When they get destroyed, have them disappear from
the screen entirely. Optional: Animate the barriers so that they move left to
right.

  11.	� Make the scoring fairer by increasing the score value of the aliens
depending on the level. Change the graphics of the aliens depending on the
level.

  12.	� Create two more alien types by drawing them in GIMP and putting them
into the game. Arrange the different alien types row by row, so that the top
two rows have different aliens than the next two rows, etc. Make the new
aliens more valuable by increasing the score awarded for hitting them.

  13.	� Create a flying saucer at the top of the screen, have it move left to right.
Make it difficult to hit and make it worth 1000 points when the player
shoots it.

  14.	� Show the high score on top of the screen at all times. Optional: Save the
high score in a file every time it changes and load it from that file when the
game starts.

15*.	� Use Blender to make a 3D model of the arrow. Make a spinning animation
of the arrow and save the animation in a series of eight .png files. Redo
Exercise 4 with these graphics instead of the hand-drawn GIMP graphics.
This technique is called pre-rendering.

16*.	�Use the pre-rendering technique from Exercise 15 to make animations for
the ship, the aliens, and the flying saucer in Exercise 13. Use them in the
game.

Classic Game Design 2E_Ch08_2nd Pass.indd 164 4/25/2019 10:18:52 AM

Chapt er 9  — Scramble — 165

CHAPTER

9 Scramble
IN TH IS CHAPTER

Scramble is one of the first scrolling arcade shooters, developed by Konami and
distributed by Stern in the United States in 1981. It introduced millions of players
to forced scrolling backgrounds, checkpoints, and the concept of level design.

SCROLLING SHOOTER
Scramble was, in its day, one of the major arcade games. The game is still a lot of

fun today, decades later, and well worth a closer look. In Scramble, the player moves a
spaceship along in a forced scroll, shoots aliens while trying to stay alive, and explores
new levels on the way to the goal of destroying a well-fortified base.

Figure 9.1 shows the basic screen
layout of Scramble.

Movement is always to the right,
and the screen scrolls at a constant
speed. The player character can
move anywhere within the confines
of the camera view. Controlling the
movement of the spaceship is criti-
cal. If the ship touches the ground
or any other solid object, the player
loses a life.

 FIGURE 9.1 Scramble screen layout.

Classic Game Design 2E_Ch09_2nd Pass.indd 165 4/25/2019 10:19:15 AM

166 — Clas s i c Game Des ign , Second Edi t ion Chapt er 9  — Scramble — 167

to stop beginners from getting through them, but short enough to allow experts to zip
through.

Some years later, level-select was replaced with add-a-coin, a feature that con-
tributed to the demise of the entire coin-op industry! The add-a-coin feature simply
allowed people to add a coin at game over and keep playing at essentially the same
point of the game. This encouraged players to put a lot of coins into a new game to
see how far they could go. Eventually, they would run out of time and money and go
home. The next time, in order to get to the same spot in the game, they would have to
put in a lot of quarters again, so usually there wouldn’t be a next time.

Level-select, also used in Atari’s Millipede, led to a better experience for the play-
ers. They would put in a few quarters to reach a point where they were challenged but
not frustrated. The starting level would stabilize and players would then play many
games at that stabilized starting level.

Why did add-a-coin lead to the demise of coin-op? It’s simple. Games that incor-
porated add-a-coin would make good money in the first week or two at a location,
but then the earnings would drop dramatically. Needless to say, this was not good
business. Of course, the rise of home consoles is generally seen as the real culprit, but
add-a-coin didn’t help.

SCRAMBLE SEQUELS
Konami’s official sequel to Scramble is Super Cobra (1981), a very similar game

when compared to Scramble. The player character in Super Cobra is a helicopter and
there’s more of the same design elements. There are eleven sections per level instead
of six in Scramble, and there’s a larger variety of enemies, including tanks that move.
In general, the game is more difficult than Scramble, and there’s more territory to
explore, but the controls are the same, and the quest for fuel still dominates the game-
play.

Later on, Gradius, Parodius, and Xevious®, while not officially sequels of Scram-
ble, share significant design elements with Scramble. The arcade shooter genre was

There are two weapons, a laser to the right and a bomb to the right and down.
Each weapon is controlled by its own button. An eight-way arcade joystick controls
movement.

EXPERTS RULE
Scramble uses the idea of a checkpoint. Checkpoints are invisible spots in the ter-

rain. When a player dies, he continues the game from the closest checkpoint, provided
the player has previously crossed that checkpoint.

This feature can be generalized to the following rule:

It’s boring to repeat the same levels over and over, especially for experts. This
realization has led to several advances in game design such as checkpoint systems,
level-select, and secret warps. But it all boils down to keeping players interested in
the game, regardless of their skill level or familiarity with the game.

Scramble ramps difficulty in a subtle way for the benefit of experts. After the
base is destroyed, the six levels repeat, but the rate of fuel consumption is increased.
After the third base, the game stops ramping difficulty. The designers decided that
the game was difficult enough at that point. They were correct, in a way, except that
many top experts had no difficulty playing the game all day long.

In the early ‘80s, Atari coin-op used the phrase “lunatic fringe” for the players
who could play arcade games for hours on a single quarter. The feeling was that there
weren’t very many players like that so they didn’t really matter. Later on, arcade
game designers realized that the top experts do matter because they would tie up
machines for too long. This led to the invention of level-select, first used in Tempest.
Level-select allows a player to select a starting level at the beginning of the game,
and at the end of a game the player could start another game at the beginning of the
most recently completed level group. Level groups were designed to be long enough

Rule 6: Experts Rule: Keep experts interested.

Classic Game Design 2E_Ch09_2nd Pass.indd 166 4/25/2019 10:19:15 AM

Chapt er 9  — Scramble — 167

to stop beginners from getting through them, but short enough to allow experts to zip
through.

Some years later, level-select was replaced with add-a-coin, a feature that con-
tributed to the demise of the entire coin-op industry! The add-a-coin feature simply
allowed people to add a coin at game over and keep playing at essentially the same
point of the game. This encouraged players to put a lot of coins into a new game to
see how far they could go. Eventually, they would run out of time and money and go
home. The next time, in order to get to the same spot in the game, they would have to
put in a lot of quarters again, so usually there wouldn’t be a next time.

Level-select, also used in Atari’s Millipede, led to a better experience for the play-
ers. They would put in a few quarters to reach a point where they were challenged but
not frustrated. The starting level would stabilize and players would then play many
games at that stabilized starting level.

Why did add-a-coin lead to the demise of coin-op? It’s simple. Games that incor-
porated add-a-coin would make good money in the first week or two at a location,
but then the earnings would drop dramatically. Needless to say, this was not good
business. Of course, the rise of home consoles is generally seen as the real culprit, but
add-a-coin didn’t help.

SCRAMBLE SEQUELS
Konami’s official sequel to Scramble is Super Cobra (1981), a very similar game

when compared to Scramble. The player character in Super Cobra is a helicopter and
there’s more of the same design elements. There are eleven sections per level instead
of six in Scramble, and there’s a larger variety of enemies, including tanks that move.
In general, the game is more difficult than Scramble, and there’s more territory to
explore, but the controls are the same, and the quest for fuel still dominates the game-
play.

Later on, Gradius, Parodius, and Xevious®, while not officially sequels of Scram-
ble, share significant design elements with Scramble. The arcade shooter genre was

Classic Game Design 2E_Ch09_2nd Pass.indd 167 4/25/2019 10:19:15 AM

168 — Clas s i c Game Des ign , Second Edi t ion

eventually replaced by first-person shooters as the favorite for hard-core gamers, but
there’s a little bit of Scramble in every modern FPS.

The forced scrolling mechanic lives on as a popular control mechanism in plat-
formers. While it’s true that platformers mostly allow the player to control scrolling,
it’s a nice change of pace to include a few forced scrolling levels, for example, the
underwater levels in the Super Mario Bros.® series.

Years later, the concept of a rail shooter emerged, which is basically any shoot-
ing game or level in a shooting game where your main path is on a rail, though your
specific movement might be controllable within the confines of the main path. There
are too many games in this genre to mention here, but they all can trace their origins
to the early forced scrollers.

In the next chapter, you’ll be designing and developing a side scrolling game
inspired by the scrollers of the ‘80s but implemented using Unity’s 3D engine.

Classic Game Design 2E_Ch09_2nd Pass.indd 168 4/25/2019 10:19:15 AM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 169

CHAPTER

10 Classic Game Project
Four: Scrolling Shooter

DESIGNING A SCROLLING SHOOTER
In the fourth classic project, you’ll make a scrolling shooter in the spirit of Scram-

ble. In the early ‘80s, scrolling shooters typically would scroll in a horizontal direction
with the playfield scrolling to the left, which makes the player character appear to be
moving to the right. Soon thereafter vertical scrolling shooters would become com-
monplace with the playfield scrolling down, making the player character appear to be
moving up. Regardless of the scroll direction, this really opened up great possibilities
and challenges. The big design issues with these types of games revolve around the
backgrounds, the enemies, the weapons, and the player controls.

Once again, you’ll start by making a simple sketch of the game screen. Take a
look at Figure 10.1. It shows a spaceship flying along an alien planet getting attacked
by rockets launched from the
ground and flying enemies
above ground. The spaceship
has bombs and horizontal
shots as weapons to fight back
against its enemies.

Sometimes it’s easier to
just use GIMP instead of paper
to make the sketch. To put all

 FIGURE 10.1 Game sketch of scrolling shooter.

Classic Game Design 2E_Ch10_2nd Pass.indd 169 4/25/2019 12:55:35 PM

170 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 171

those identical rockets into your sketch, you can make a separate image and save it as
a custom brush. This is enough of a concept to get you started, even though the sketch
doesn’t show everything, such as scoring.

You could choose to use Unity’s 2D mode as in Chapter 8 to make this game, but
here is a great opportunity to move to 3D, especially because both Blender and Unity
are designed to make 3D art and games. In the early ‘80s, real-time 3D was just get-
ting invented and very costly, so for most arcade game developers that wouldn’t have
been a practical option.

It’s important to distinguish between a 3D tool chain and 3D gameplay. Our tool
chain fully embraces 3D technology, including 3D models, a perspective view, and
3D lighting. Contrast that with the gameplay, which is firmly rooted in 2D. Over the
years, this way of developing classic games and their sequels has become very popular
with game developers.

The basic idea for using 3D technology on a 2D game is simple: Make a 3D game
but give the player 2D controls. Usually this is done by limiting the location of the
player character to a 2D plane and putting the camera at a fixed distance from that
plane. The camera looks in a direction that’s perpendicular to that plane. That’s the
setup you used in your Classic Paddle Game and Brick Game. This time around you’re
going to move the camera, which will result in a scrolling effect.

The advantages of using 3D tech vs. 2D tech are numerous. First and foremost,
3D technology is more easily ported among the various platforms. It is resolution
independent and can be adjusted to handle the graphics capabilities of high-end gam-
ing PCs, low-end phones, and anything in between. Another huge advantage is this:
Most developers use 3D tech for their 3D games already, so for them it’s less of a
learning curve to adapt that technology for 2D gameplay.

There are, however, some real disadvantages to 3D tech as well. The graphic look
may appear less clean, memory usage might be larger, and the graphics processing
power needed to adequately display your scenes may not be available on some of the

Classic Game Design 2E_Ch10_2nd Pass.indd 170 4/25/2019 12:55:35 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 171

target game systems. Still, the advantages usually outweigh the disadvantages, espe-
cially when targeting consoles or PCs. The choice of 2D vs. 3D is ultimately up to the
designer.

It’s time to get started. As always, you’ll build the playfield first.

VERSION 0.01: THE PLAYFIELD
The plan for this section is to create the playfield in Blender, but first you’ll create

the Unity project and set up the folder structure. This really should be done with all
of your Unity projects so that you have a place to save your assets.

Step 1: Start up Unity and create a project with the name ClassicScrollingShooter.
Use the 3D Template.

Step 2: Create the following folders in the Assets panel: Materials, Models, Scripts,
Prefabs, Sounds.

The Models folder will be used to store our various Blender files. The other folders
contain the usual assets. You should now have six folders in the Assets panel, includ-
ing the Scenes folder that was there already.

Step 3: Rename the SampleScene to mainscene. To do this, go to the Scenes folder
in Assets, click on SampleScene to select it, click on the name of SampleScene, then
type the new name. Save and Exit.

Next, you’ll use Blender to make the terrain for your game. The terrain will con-
sist of a 3D mesh, built using some very powerful features built into Blender.

The following steps will be used to create a section of terrain in Blender. The plan
is to create a 2D grid, shape it, and then extrude it into the third dimension.

Step 4: Start Blender.

Step 5: Click on the Splash Screen to remove it. Hit the “Delete” key and then the
“Enter” key to remove the default cube. Note to Mac Users: you may need to use the
x key instead of the Delete key.

Classic Game Design 2E_Ch10_2nd Pass.indd 171 4/25/2019 12:55:35 PM

172 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 173

Step 6: Add – Mesh – Grid.

If, perchance, the Grid doesn’t appear in the center of the screen, then you might
have accidentally moved the cursor away from the center. This is easy to do. To fix
this, do Object – Snap – Cursor to Center, then repeat this step.

Step 7: Press the t key twice to turn the Tools panel off and back on.

That shows you where the Tools panel is, on the left side. At the bottom of the
Tools panel you’ll see text entry boxes for X Subdivisions and Y Subdivisions for the
Grid object.

Step 8: Enter 100 for X Subdivisions, 3 for Y Subdivisions.

Step 9: Right-click on the new grid, then type 5 and 7 into the numeric keypad. If
you don’t have a numeric keypad, enable “Emulate Numpad” in User Preferences –
Input, which allows you to use numbers on your keyboards instead.

You should now see the Top Ortho view of the Grid object. The text “Top Ortho” is
displayed in the top-left corner of the 3D View.

On the numeric keypad, the “5” key switches between the orthographic and per-
spective views, the “7” key selects the top view, the “1” selects the front view, and the
“3” key selects the right view. These are the bread-and-butter keys in Blender to get to
a known view. You can also zoom in and out with the plus and minus keys.

Step 10: Use the <Tab> key to enter Edit mode.

The <Tab> key toggles between the two major modes of Blender, Edit mode and
Object mode. In Edit mode, you have the ability to edit the currently selected object at
a low level. In Object mode, you work with multiple objects, create new objects, delete
objects, etc.

Step 11: Use the Scroll Wheel on your mouse to zoom in on the grid.

Your Blender Screen should look like Figure 10.2. You might have Blender Ren-
der selected instead of Cycles Render. That’s OK.

Next, you’ll delete the unnecessary lower half of the Grid object.

Classic Game Design 2E_Ch10_2nd Pass.indd 172 4/25/2019 12:55:35 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 173

Step 12: Press a to deselect everything.

The “a” key flips between selecting and deselecting every part of the Grid object.
The orange color highlights the edges of the selected items. The “a” key is very useful
and worth remembering.

Step 13: Press b to enter Border select mode, also sometimes called box mode. Draw
a box around all of the vertices of the bottom edge of the square.

The grid should now look like Figure 10.3.

Box mode lets you select everything inside a box. Your goal is to delete all those
vertices, so do this:

Step 14: Press x and select Vertices to delete all the vertices of the bottom edge.

Not only does this delete the selected vertices, it also deletes all connected edges
and faces.

It’s time to save your work. After that you’re going to experiment with this piece
of geometry and put the result into Unity to see what it looks like there. Then you’ll
get back to this point and start over.

 FIGURE 10.2 Initial grid used by scrolling shooter playfield.

Classic Game Design 2E_Ch10_2nd Pass.indd 173 4/25/2019 12:55:35 PM

174 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 175

Step 15: Save the file in ClassicScrollingShooter/Assets/Models using the name
BasicGrid.blend.

Next, we’ll enable Propor-
tional Editing to make the top
edge look like terrain. Look at
Figure 10.4 to find the icon and
Figure 10.5 to see the goal, and then do this:

Step 16: Click on the Proportional editing icon below the 3D view and select
Enable.

Proportional editing is a feature in Blender which, when enabled, causes nearby
vertices, edges, and faces to be affected when you edit something. You’ll see this effect
in the next few steps.

 FIGURE 10.3 Using Box mode to select the bottom edge of the grid.

 FIGURE 10.4 Proportional editing icon, circular shape in the middle.

Classic Game Design 2E_Ch10_2nd Pass.indd 174 4/25/2019 12:55:36 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 175

 FIGURE 10.5 Proportional editing result.

Step 17: Press b to enter Border select mode. Using the mouse and the left mouse
button, select a few vertices from the middle of the top edge by dragging.

Step 18: Press g to grab the vertices, press y to restrict the movement to the y axis.

Step 19: Scroll the mouse wheel to adjust the size of the circle. The circle indicates
the area of influence for proportional editing and needs to be smaller.

Step 20: Move the mouse down a short distance, and then left-click to finalize the
new vertex positions.

That was a lot of steps for doing basically one thing. Your result may look different
than the figure, but you’re just testing so you don’t need to match the figure exactly.

Step 21: Press a to deselect the vertices.

Step 22: Repeat Steps 17–21 a few times, using different selections of vertices.

You’ll end up with something like Figure 10.6. The next steps turn the distorted
grid into a piece of terrain.

Step 23: Press a to select all vertices.

If you forgot to do Step 21, you’ll need to type “a” a second time. Your goal is to
color every vertex and line orange.

Classic Game Design 2E_Ch10_2nd Pass.indd 175 4/25/2019 12:55:36 PM

176 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 177

 FIGURE 10.6 Distorted grid, the result of multiple proportional edits.

Step 24: Press 1 on your numeric keypad to get a front view.

If you get a blank screen, you’ll need to zoom out until you see a horizontal
orange line. Then zoom in and pan (with Shift – Middle Mouse Button drag) to center
the line.

Step 25: Press e to start extruding.

Step 26: Type 0.2 and <Enter> to set the amount of extrusion.

The user interface for this last step may seem a little unusual. You’re typing in
numbers and they magically show up below the 3D panel at the lower left. When
extruding, or doing similar operations, you have a choice of setting the parameter of
the operation with the mouse or by typing in numbers.

Step 27: Press 5 on the numeric keypad to get to Front Perspective view.

For this next step, you’ll take a closer look at the effect of the extrusion.

Step 28: Press and hold the middle mouse button, and while holding that button
move the mouse to rotate the view to match Figure 10.7. Alternatively, you can
type the “6” and “8” keys on the numeric keypad to rotate the view in discrete steps.

Classic Game Design 2E_Ch10_2nd Pass.indd 176 4/25/2019 12:55:36 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 177

The “2” and “4” keys can be used to rotate the view back if you went too far. Another
useful technique is to hold the Shift key while dragging the middle mouse button to
pan the view.

 FIGURE 10.7 Extrusion.

Step 29: Press 5 and 7 on the numeric keypad to get back to the Top Ortho view.

Step 30: File – Save As… in the Assets/Models folder using the name GridTest.

Next, you’re going to look at your piece of terrain in Unity. You can leave Blender
open because we’re going back to it in a few steps. Or, you can close it now and load
the GridTest file at that time.

Step 31: In Unity, find GridTest in the Models folder and drag it into the Hierar-
chy (not the Scene panel) panel.

This is a common situation. We want the object to be placed exactly at (0, 0, 0).
This is easier to do by just dragging it into the Hierarchy panel, rather than the Scene

Classic Game Design 2E_Ch10_2nd Pass.indd 177 4/25/2019 12:55:36 PM

178 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 179

panel. Notice that the X Rotation of GridTest is −90, so make it 0 instead in the fol-
lowing step.

Step 31: Select GridTest and in the Inspector, enter 0 for Rotation X.

Step 32: Use a Front Perspective view by right-clicking the Scene Gizmo and
selecting Front and Perspective.

Remember that clicking on the Gizmo text toggles Perspective and Ortho view in
the Scene panel in Unity. This is the equivalent of the “5” key in Blender.

Step 33: Press f to focus on GridTest.

Your Scene and Game panels should now look like Figure 10.8. The f key only
works if the mouse curser is hovering in the Scene panel. Alternatively, double-
clicking on the object in the Hierarchy panel has the same effect.

 FIGURE 10.8 GridTest in Unity.

Classic Game Design 2E_Ch10_2nd Pass.indd 178 4/25/2019 12:55:37 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 179

Step 34: Save the scene and project in Unity. Then exit Unity.

You’re not done with the playfield yet, but this test is a start. You’ll complete the
construction of your playfield later on in this chapter. You’ll use Blender to make
several different terrain pieces and assemble them to form a much larger playfield.

Rather than spending time creating the playfield right now in its entirety, you’d
like to have some basic gameplay first. So, you’ll move on to the next gameplay ele-
ment. In the next section, you’ll be modeling the scrolling spaceship.

VERSION 0.02: SPACESHIP
PART 1: MODELING

In this section, you’ll be using Blender to make the mesh for the scrolling ship. In
the next section, Version 0.03, you’ll use Blender’s texture painting mode to paint the
ship, and after that you’ll bring it into Unity. If you wish, you may skip ahead and
copy the .blend file from the DVD instead.

The ship starts out as a cube and you’ll do some 3D editing to turn it into a space-
ship. This technique is called box modeling. In box modeling you start with a primi-
tive shape, such as a cube or a cylinder, and proceed to modify your model step by
step, gradually converging toward the desired result. If you’re new to 3D modeling,
this technique is the one to learn first. After a little bit of practice with box modeling,
you’ll be ready to explore other, more advanced 3D modeling methods on your own.

Step 1a: In Blender, select File – New, accept the “Reload Start-Up File” prompt.

Step 1b: Your 3D View panel should show the default starting cube of Blender. If you
don’t see the starting cube, it’s due to a modified start-up file. Do File – Load Fac-
tory Settings to restore it.

 This has the effect of resetting your User Preferences, so review File – User Pref-
erences and manually change any User Preferences you wish to use for this project.
For example, if you don’t have a numeric keypad on your keyboard, you’ll need to
check the Emulate Numpad option in the Input section.

Step 1c: File – Save As… with the name ScrollingShip in the Assets/Models folder.

Classic Game Design 2E_Ch10_2nd Pass.indd 179 4/25/2019 12:55:37 PM

180 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 181

Yes, this cube doesn’t look anything like a spaceship. It’s a good habit to save your
work with the intended filename as soon as possible. That way you can just do a quick
save later on without having to think of the name.

Step 2: Right-click on the starting cube, toggle into Edit mode (with <Tab>), and
click on Subdivide in the Tool panel (on the left). You may need to scroll the Tool
panel to see the Subdivide button. It’s in the Mesh Tools Add section.

The cube appears to be cut into eight smaller cubes.

Step 3: Type 7 and 5 in the numeric keypad to get into the Top Ortho view.

Step 4: Type a to deselect everything.

Step 5: Type z to toggle into wireframe mode.

Step 6: Type b. Then border-select the bottom three vertices and delete them.
You can use the x key to delete. Depending on your keyboard, the Delete key may
also work.

Step 7: Type z to turn off wireframe mode. Then type 5 on the numpad. This gets
a solid perspective mode. Then hold the middle mouse button and move the
mouse. Then let go of the middle mouse button when you get a good view of the
mesh. Scroll the mouse scroll wheel to zoom in.

If you don’t have a middle mouse button, you can type 2 2 2 4 4 ++ on the numeric
keypad to rotate the view and zoom in using your keyboard instead. For Blender it is
highly recommended that you use a three-button mouse. These mice are cheap and
can be plugged into any PC or Mac, desktop or laptop.

Aim to have your view of the half-cube similar to Figure 10.9.

Step 8: Type z to toggle back into wireframe viewport shading.

Step 9: Type a to select everything, click on Subdivide again, and set the Number
of Cuts to 2 in the Tool panel.

You just created the basic framework for the spaceship, even though it doesn’t
look like it just yet.

Classic Game Design 2E_Ch10_2nd Pass.indd 180 4/25/2019 12:55:37 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 181

Step 10: Click on the Object Modifiers icon (the seventh icon, which looks like a
wrench) in the Properties panel on the right and click on Add Modifier – Mirror.

This didn’t appear to do anything yet, but watch what happens next.

Step 11: In the Axis section in the Properties panel, check Y and uncheck X.

You are now using the Mirror modifier along the Y axis. The half of the cube you
deleted is now a mirror of the other half.

Step 12: Type a twice to make sure everything is selected.

Step 13: Type s x 3.0 <Enter> to scale the mesh by a factor of 3 along the x axis.

Step 14: Type 7 and 5 on the numeric keypad to get to Top Ortho view.

Depending on your screen dimensions, you may need to zoom out using the mouse
wheel, or the plus and minus keys on your numeric keypad, so you can see the entire
mesh. If needed, pan the view to center the mesh. You pan by holding Shift – Middle
Mouse Button and then moving the mouse.

 FIGURE 10.9 Half of a cube.

Classic Game Design 2E_Ch10_2nd Pass.indd 181 4/25/2019 12:55:37 PM

182 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 183

Step 15: Type a to deselect everything, and then type b and border-select the right
three vertices.

Your screen mesh should look like Figure 10.10. The cursor should still be at
(0,0,0). The cursor is that red and white circle in the middle of the mesh. If you acci-
dentally moved it, which is very easy to do, this is a good time to reset it. Do Mesh –
Snap – Cursor to Center.

 FIGURE 10.10 Stretched and mirrored cube, Top Ortho view.

Step 16: Type 1 on the numeric keypad to get to the Front Ortho view. Pan and zoom
to center if necessary.

Step 17: Type s z 0.3 <Enter> to scale the front of our scrolling ship, restricted to
the z axis.

Step 18: Type z to get Solid Viewport shading, 5 to use perspective view. Spin and
Zoom the view of the scene until you have the front of the ship facing you, as shown
in Figure 10.11.

To do the spin, type 8, and then 6 several times, or use the mouse with the middle
mouse button as before. You may need to zoom out to see the entire mesh. Again, if
necessary, you can pan the view by holding Shift Middle Mouse Button and moving
the mouse.

Classic Game Design 2E_Ch10_2nd Pass.indd 182 4/25/2019 12:55:37 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 183

Step 19: Use Face Select mode by clicking on the Face Select icon.

You can find the Face Select icon below the 3D panel. Hovering the mouse over an
icon gets a pop-up text description. Notice that the faces now have dots in the center
of them. Those are just face indicators that only appear during Edit mode and don’t
get rendered in the game. Your ship should now look like Figure 10.12.

 FIGURE 10.11 Front of the ship.

 FIGURE 10.12 Front of the ship in Face Select mode.

Classic Game Design 2E_Ch10_2nd Pass.indd 183 4/25/2019 12:55:39 PM

184 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 185

The next steps will create the wings of your spaceship. The plan is to select two
faces and pull them away from the fuselage. This is called extruding. Take a look at
Figure 10.13 to see your goal.

 FIGURE 10.13 The result of extruding.

Step 20: Type a to deselect the faces at the nose of the fuselage.

Step 21: Right-click on the side face, second position from the bottom, third position
from the front, then <Shift>-right-click on the adjacent face farther away from the
front. These are the faces where the main wing attaches to the fuselage.

Use Figure 10.13 to help locate these particular faces.

Step 22: Type e 2, creating a wing. Left-click to stop the extrusion. Instead of typing
the 2 you could move the mouse and adjust the amount of the extrusion to your liking.

Amazingly, the wing on the other side of the ship is also there because you still
have the Mirror Modifier active. To get a better view, use the 8 and the 2 keys on your
numeric keypad.

Step 23: Type g x −1 to pull the wings away from the front somewhat. Left-click to
stop the move.

The letter g stands for “grabbing.” This is also a very popular modeling command
in Blender.

Classic Game Design 2E_Ch10_2nd Pass.indd 184 4/25/2019 12:55:39 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 185

Step 24: Right-click on a single side face at the back of the fuselage, third position
from the bottom, and make a wing out of it just like you did in the previous two steps.
Use an extrusion distance of 1 and a slant distance of 0.5.

Step 25: Right-click and Shift-right-click on two faces on the top of the fuselage,
extrude, and slant back as in the previous steps. Your goal is to create something
similar to Figure 10.13.

Step 26: Add Modifier – Subdivision Surface in the Object Modifiers panel. Set
the View Subdivisions to 2.

You now have two modifiers active, the Mirror and the Subsurf modifiers. The
Object Modifiers panel shows all the currently active modifiers.

Step 27: Select Blender Render, then Render – Render Image.

Blender supports three renderers. To select Blender Render, look for the engine
selector near the top of your window in the middle. Then click on it to choose the ren-
derer. If you are using the Factory default settings, Blender Render will already be
selected.

 FIGURE 10.14 Blender Render of the Spaceship.

Your render should look similar to Figure 10.14. Those are beautifully curved
wings, and it didn’t take much effort at all. When you’re done looking at the render,
do Render – Show/Hide Render View to exit the render view.

Classic Game Design 2E_Ch10_2nd Pass.indd 185 4/25/2019 12:55:39 PM

186 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 187

Step 27: File – Save. The name of your model should still be ScrollingShip.

The mesh for the spaceship is now complete, so it’s time to give it a good texture.
In the next section, we’ll use Blender’s texture paint mode to do that.

VERSION 0.03: SPACESHIP
PART 2: TEXTURING

Most 3D creation tools such as Blender have a great feature that allows the user
to paint directly onto the 3D model using the mouse. The beginning of this section
is optional, so if you wish, you can skip to Step 24 and use the unpainted version of
ScrollingShip instead. You can also copy the textured version of ScrollingShip from
this book’s DVD, but that would be cheating. Even if you’re not an artist, it can be
very educational for you to go through these steps and learn a little bit about the
world of 3D modeling and texturing.

Step 1: Load the saved work from the previous section, if necessary.

Step 2: Do the Split Area command as described below.

This is a simple step, but it requires some explanation for the uninitiated. Care-
fully move the mouse to the top edge of the 3D view until the mouse icon turns into
a vertical double arrow. Then, right-click to bring up the “Area Options” menu. Click
on the “Split Area” menu item, move the mouse horizontally to select a balanced split,
and left-click to complete the split. Your screen should look like Figure 10.15.

Alternatively, you could have split the area by dragging the lower-left corner of
the area like you did previously. Notice that the right view of the ship is clipped in
Figure 10.14. This depends on the monitor resolution, so your screen may look a bit
different.

Step 3: In the right panel, select the UV/Image Editor type.

You select the Editor type by clicking on the shaded cube icon, the one with arrows
immediately to the right. There are two of these icons on your screen, one for each of
the split areas. They are located in the bottom-left corner of each area.

Classic Game Design 2E_Ch10_2nd Pass.indd 186 4/25/2019 12:55:39 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 187

 FIGURE 10.15 Blender split area.

You should now see one scrollingship on the left and the render result in the UV/
Image Editor. In case you’re curious, the UV has nothing to do with ultraviolet rays.
It’s a naming convention for texture coordinates.

Step 4: Hover the mouse over the spaceship on the left and type a to deselect the cur-
rently selected faces, if necessary. Then type a again to select all faces.

Your goal is to have all the faces appear orange. Some of the faces are partially
obscured because of the subdivision modifier. You should verify that you are still in
Edit mode and Face Select mode. You can tell that you’re in Face Select mode because
the faces have dots in the center.

Step 5: Change Edit mode to Texture Paint in the 3D View.

You’ll now see an error message at the top left with the message “Missing Data.”
There are two things you need to do to fix this. There are missing UVs and a missing
Texture.

Step 6: Click on Add Paint Slot – Diffuse Color

Classic Game Design 2E_Ch10_2nd Pass.indd 187 4/25/2019 12:55:40 PM

188 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 189

This sets up a paint slot for texture painting. The default 1024x1024 size is OK.
The default black color is not what you want. A light blue color is a better choice
for now.

Step 7: Click on Color, and use the color
dialog to make a light blue color. Uncheck
Alpha, as you don’t need an alpha channel
here, and then click on OK. Your ship now
looks like Figure 10.16.

The ship actually appears a bit darker
than the base light blue color, but it’s good
enough for now. You still have missing UVs.

Step 8: Click on Add simple UVs in the
Tool panel.

Step 9: in the UV Image editor panel, link to Material Diffuse Color

You do this by clicking on the image browse icon at the bottom of the UV Image
editor and then selecting the Material Diffuse Color image. Your screen now looks
like Figure 10.17.

 FIGURE 10.16 Light blue spaceship.

 FIGURE 10.17 UV unwrap in action.

Classic Game Design 2E_Ch10_2nd Pass.indd 188 4/25/2019 12:55:40 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 189

You may need to zoom out a bit by using the scroll wheel to see the entire image.
You are now ready to texture paint by selecting colors in the color wheel and drawing
on the model with your mouse. Give it a try! You can undo your drawing by hitting
Control-z (Command-z on a Mac).

Step 10: Decorate your ship by selecting different colors and painting with them.
You can rotate the ship while you’re doing this using the middle mouse button or the
numpad keys.

Notice that the Mirror Modifier is still in effect, even for texture painting. You can
paint in the image editor as well as directly on the 3D model, but you need to change
the View mode to Paint mode in the image editor to enable that. You can compare
your creation with Figure 10.18.

 FIGURE 10.18 A Painted Ship.

There are just a few more steps to finalize your vehicle. First, do a render just as
you did before to admire your handiwork. When you’re happy with the result, move
on to the next steps.

Step 11: In the UV/Image Editor, click on Image – Save As Image. Use the name
shiptexture.png and store it in the Models directory.

Classic Game Design 2E_Ch10_2nd Pass.indd 189 4/25/2019 12:55:41 PM

190 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 191

Step 12: File – Save As with the name ScrollingShipTextured.

You’re keeping the old untextured ship, just in case you want to redo the texture
painting later on with a fresh start, or if you wish to skip the texturing altogether.

You just finished the textured spaceship. Next, you’ll look at it in Unity. Fortu-
nately, this part is going to be very easy.

Step 13: Go to Unity. Load ClassicScrollingShooter.

Step 14: Select the ScrollingShipTextured asset in the Models folder.

There might be one or more ScrollingShip assets with white icons there as well.
You can ignore them, as they are just the backup files used by Blender.

Step 15: Change the Normals from Import to Calculate and then click on Apply.

This last step has only a minimal effect because of the smooth nature of this
model.

Step 16: Drag ScrollingShipTextured into the Hierarchy panel.

You’re not seeing the texture yet.

Step 17: Drag the shiptexture from the Models panel on top of the ScrollingShipTex-
tured object.

The ship is much too large in relation to the playfield. There’s a simple remedy:

Step 18: Change the Scale from 1 to 0.02 for X, Y, and Z.

Step 19: Change the Position to (0, 1, 0).

Step 20: Change the Position of GridTest to (0,0,0), if necessary.

Step 21: Change the View in the Scene panel to Front Perspective.

Step 22: Focus on Gridtest and zoom in.

Your Scene panel should look like Figure 10.19.

If your ship overlaps the GridTest mesh, move it up to make it visible.

Classic Game Design 2E_Ch10_2nd Pass.indd 190 4/25/2019 12:55:41 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 191

Step 22: Save.

You just learned a useful technique for texturing 3D models. The scrolling space-
ship looks much more interesting as a result. Next, you’ll make the spaceship fly.

VERSION 0.04: SPACESHIP CONTROL
Controlling the ship can be implemented in a number of ways. You’re going to opt

for a very simple solution: constant speed in the left-right direction and user control
in the up-down direction. First, though, you need to set up the camera and lighting so
you can see what you’re doing.

Step 1: Select Main Camera and set Position to (0, 1, 1.3), Rotation to (0, −180, 0).

Step 2: In the Scene panel, continue to use Front Perspective View.

Step 3: Select Directional Light and set the Rotation to (30, 0, 45) and Position
to (0, 0, 0).

The position has no effect on the game itself with a directional light, but it does
determine the location of the associated gizmo. The next step will allow you to control
the size of the gizmos.

 FIGURE 10.19 ScrollingShip in Scene panel.

Classic Game Design 2E_Ch10_2nd Pass.indd 191 4/25/2019 12:55:41 PM

192 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 193

Step 4: Click on Gizmos in the Scene panel and adjust the size by sliding the size
slider at the top right of the Gizmo panel.

This step is cosmetic, but it allows you to control the appearance of gizmos in the
Scene panel. It’s useful to know about this to avoid clutter and giant gizmos.

Speaking of cosmetic changes, this next one is truly remarkable and really
improves the appearance of your game. You’re going to add a better skybox. Skyboxes
are a common and easy technique for making 3D games look realistic. Rather than
creating and rendering individual objects that are far away, such as clouds, moun-
tains, or thousands of trees, a few large textures are displayed in the background. It’s
called a box because the texture is pasted on the inside of a very large box so that no
matter where the camera is pointing, there’s always a visible background texture.

Your project currently uses the default skybox. That blue sky in the background
with a slightly curved horizon is the skybox. To get a better one you’re going to down-
load one from the asset store.

Step 5: Account – Go to Account

You should see your basic account information in a new browser window. This
would be a good time to review your account and make any changes you wish to make.
When you’re done, you may wish to close the browser window.

Step 6: Use the Tall layout.

This prepares you to get a better view of the Asset Store. You were probably using
the 2 by 3 layout. To switch to the Tall layout, click on the Layout selector in the upper
right corner of your window and select it.

Step 7: Window – Asset Store

This should open a view of the Unity Asset Store where the Scene panel used to
be. You’ll need to be connected to the internet for this to work.

Step 8: Search for TGU Skybox in the Asset Store panel and select the TGU Skybox
Pack.

Classic Game Design 2E_Ch10_2nd Pass.indd 192 4/25/2019 12:55:41 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 193

You may use another Skybox if you wish.

Step 9: Click on the Skybox, click on Import, and then Import again in the popup
Import Unity Package window. You may see “Download” displayed instead of the first
Import.

This skybox pack contains four skyboxes. You’ll only use one of them, Nostalgia 1.
When you’re done installing this skybox pack it appears in the Asset panel as a folder
with the name TGU Skybox Pack.

Step 10: Select the 2 by 3 layout, and use the Front Perspective View in the Scene
panel.

Step 11: Window – Rendering – Lighting Settings

This opens a Lighting popup window which will allow you to change the skybox.

Step 12: Select the Nostalgia 1 skybox as the Skybox Material.

Your Scene panel now looks similar to Figure 10.20.

 FIGURE 10.20 The skybox.

As an optional experiment, it’s instructive to see how the skybox works by spin-
ning the camera around. Just select the Main Camera and change the x and y rota-
tion coordinates. Return them to (0, −180, 0) when you’re done looking around.

Classic Game Design 2E_Ch10_2nd Pass.indd 193 4/25/2019 12:55:41 PM

194 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 195

Now that your scene is looking presentable, it’s time to make the scrolling ship
move.

Step 13: Assign the following code to ScrollingShipTextured, with the name
scrollingship, and put the scrollingship script into the Scripts folder.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class scrollingship : MonoBehaviour

{

// Start is called before the first frame update

void Start()

{

}

// Update is called once per frame

void Update()

{

transform.Translate(−0.3f * Time.deltaTime, 0, 0);

}

}

If you run the game now, the ship scrolls off the screen, never to be seen again. It’s
time to have the camera follow the moving ship.

Step 14: Create the script camera in the Scripts folder and assign it to Main Cam-
era. Use the following code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class camera : MonoBehaviour

Classic Game Design 2E_Ch10_2nd Pass.indd 194 4/25/2019 12:55:41 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 195

{

// Start is called before the first frame update

void Start()

{

}

// Update is called once per frame

void Update()

{

GameObject player = GameObject.Find("ScrollingShipTextured");

transform.position = new Vector3(

player.transform.position.x,

transform.position.y,

transform.position.z

);

}

}

When you run the game now, the camera follows the moving ship. The code takes
the current x-coordinate from the ship and uses that as the x-coordinate of the camera.

Next, you’ll add some simple up and down controls to the ship.

Step 15: Insert the following code into the Update function of scrollingship.cs:

if (Input.GetKey("w"))

{

 transform.Translate(0, 0, 0.8f * Time.deltaTime);

}

if (Input.GetKey("s"))

{

 transform.Translate(0, 0, −0.8f * Time.deltaTime);

}

Classic Game Design 2E_Ch10_2nd Pass.indd 195 4/25/2019 12:55:42 PM

196 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 197

This code moves the ship up or down depending on key presses by the player.

Step 16: Test and Save

VERSION 0.05: LEVEL 1
The playfield is due for an expansion. You’re going to go back to Blender and make

several grid pieces similar to GridTest. Then, you’ll assemble copies of them into a
long strip, and join them all together into a single mesh consisting of several thousand
faces.

As a historical note, this method of making a playfield would have been very
foreign to game developers in the ‘80s. Instead, playfields were created using stamps.
Each stamp was typically an 8 x 8 or 16 x 16 square. The stamps were laboriously
drawn pixel by pixel, often with a limited color palette. The stamps would then be
assembled using a stamp map. In a way, we’re doing a similar thing here, just using
3D faces instead of pixels.

Step 1: In Blender, do File – Open Recent – BasicGrid.blend.

Step 2: Zoom out using the Mouse scroll wheel or the numpad minus key.

Step 3: Type the <Tab> key to enter Object mode.

Step 4: Type a to deselect everything.

Step 5: Right-click on the Grid object to select it.

Step 6: Type <Shift> d and then y, move the mouse up, and left-click to place the
new copy of the Grid object.

Step 7: Repeat Step 6 four more times until you have a total of five Grid objects,
stacked vertically, as shown in Figure 10.21. You will need to zoom out to see what
you’re doing. The pieces don’t need to be spaced evenly. To match the view in Figure 10.21
you’ll need to pan the camera by doing Numpad 7 followed by <Shift> Middle Mouse
Button and move the mouse to center the five pieces. You’ll probably want to zoom in
after that.

Classic Game Design 2E_Ch10_2nd Pass.indd 196 4/25/2019 12:55:42 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 197

In the next step, you’ll be using proportional editing as
described in the very beginning of this chapter. Don’t do the
extrusion step yet because we’ll be doing that later. You may
wish to try the different falloff types, such as Smooth, Random,
and Root. The falloff types are set in a menu immediately to
the right of the proportional editing mode icon.

Step 8: Use Proportional Editing to create a collection of Grid
pieces similar to Figure 10.22.

You’ll need to go into Object mode, select the piece that
you’re editing with a right-click, and then go back to Edit mode
for each of the pieces.

Step 9: Save the file with the name GridPieces.blend.

Now that you have a collection of playfield pieces, you’ll
assemble them.

 FIGURE 10.21 Setting up Grid pieces.

 FIGURE 10.22 Completed
Grid pieces.

Classic Game Design 2E_Ch10_2nd Pass.indd 197 4/25/2019 12:55:43 PM

198 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 199

Step 10: Use <Shift>-D to make copies of the pieces and assemble them like in Fig-
ure 10.23. Turn on Snap to help line up the pieces. There are 12 pieces at the bottom
and 7 at the top.

The Snap icon looks like a magnet and is near the right side of the icon strip at
the bottom. To the right of the Snap icon is a setting for the type of element to snap to.
Make sure that setting is set to “Increment.” To the right of that is something called
“Absolute Grid Alignment.” That needs to be turned on. When you grab and move a
grid piece with these settings the piece snaps to the grid and it becomes easier to align
the pieces with one another. For finer control you can zoom in and the grid becomes
more detailed.

 FIGURE 10.23 Playfield layout.

Step 11: Save As with name Level_1_layout.blend

This isn’t the completed level yet, but it’s a good idea to save at this point. If you
want to change the level later on this would be a good point to make changes.

Step 12: Delete the original pieces in the vertical stack.

Step 13b: In Object mode, select all pieces of the playfield, and do Object - Join.

Step 13: Select the playfield, go into Edit mode, and select all vertices using a.

Step 14: Type 1 to go into Front Ortho view.

Step 15: Type e 0.3 <Enter> to extrude by 0.3 units.

Step 16: Type 7 to go into Top Ortho view.

Classic Game Design 2E_Ch10_2nd Pass.indd 198 4/25/2019 12:55:43 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 199

Step 17: File – Save As… using the name level_1.blend.

You just completed making the mesh for the Level 1 playfield.

Step 18: In Unity, select Level_1.

Step 19: In the Inspector, set Normals to Calculate.

Step 20: In Animations, disable Import Animation and Apply.

Step 21: Drag Level_1 into the Hierarchy panel.

Step 22: Set Position to (−10.4, 4, 0) and Rotation to (0, 0, 0).

Step 23: Create a Purple Material with Smoothness of 0.9 and assign it to Level_1.

Step 24: In the Hierarchy, delete GridTest.

As always, you’ll do some testing of the new playfield.

Step 25: Select Level_1 in the Hierarchy panel, and focus on it in the Scene panel
using the f key. Use the mouse scroll wheel to zoom in on the playfield.

Step 26: Select ScrollingShipTextured in the Hierarchy panel.

Step 27: Save.

Your Scene and Game panels
should now look like Figure 10.24. If
the playfield is missing in the Game
view, adjust the position x and y coor-
dinates so that it does.

This playfield is relatively small,
but it’s large enough for development
purposes. If you play the game now,
you’ll see that you have a problem with
the camera not moving up and down
with the ship. This will be fixed in the
next section.

 FIGURE 10.24 Scrolling playfield in Unity.

Classic Game Design 2E_Ch10_2nd Pass.indd 199 4/25/2019 12:55:43 PM

200 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 201

VERSION 0.06: ROCKETS
You need something for our scrolling ship to shoot at, and later on, you’ll be mak-

ing shots to be launched by the ship. In this section, you’ll create the rockets that rise
up as defensive weapons for the playfield. First though, you’ll improve the camera so
you can have a better view of what’s happening.

Step 1: In camera.cs, replace the Update function with the following code:
void Update () {

GameObject player = GameObject.Find("ScrollingShipTextured");

float xpos = player.transform.position.x;

float ypos = player.transform.position.y;

float new_ypos = transform.position.y;

if (new_ypos < ypos - 0.5f) new_ypos = ypos - 0.5f;

if (new_ypos > ypos + 0.5f) new_ypos = ypos + 0.5f;

transform.position =

 new Vector3(

 xpos - 0.7f,

 new_ypos,

 transform.position.z

);

}

Step 2: Test and Save

This code puts the camera to the left of center and follows the ship up and down if
the ship y position is more than 0.5 units away from the camera y position. Give it a
try and move the ship up and down using the w and s keys.

Next, you’ll build a rocket mesh in Blender.

Step 3: In Blender, File – New, and delete the default cube, then save as rocket.blend.

Classic Game Design 2E_Ch10_2nd Pass.indd 200 4/25/2019 12:55:44 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 201

Step 4: Add – Mesh – Cylinder with 24 Vertices and Depth of 8.

The settings for the cylinder are in the Tool panel on the left. You may need to
scroll the Tool panel to find the cylinder settings.

Step 5: Move the mouse back into the 3D view panel, then type g z 4 <Enter>.

This moves the cylinder up so that the base is at an elevation of 0. The 4 was cho-
sen because it is half the depth of the cylinder.

Step 6: Press <Tab> to enter Edit mode and zoom out so you can see the entire
cylinder.

Step 7: Click on Loop Cut and Slide in the Mesh Tools panel in the Add section,
move the mouse over the cylinder, scroll the mouse wheel until you see four rings,
then left-click, slide the rings down a little, then left-click again to finish this
operation.

The cylinder should now look like Figure 10.25.

This was a relatively quick way to chop up the cylinder
into a mesh that you can now turn into a rocket.

Step 8: Type 1 and 5 on the numeric keyboard to get to
Front Ortho view.

Step 9: Use Wireframe Viewport Shading.

Step 10a: Deselect everything using the a key.

Step 10b: Use b to select the top vertices of the cylinder,
then type s 0.3 <Enter>.

Step 11: Repeat Steps 10a and 10b for the next two rings
with a scale factor of 0.5.

You just created the basic shape for the rocket. Next,
you’ll add the fins.

Step 12: Use Solid Viewport shading. FIGURE 10.25 Result of a
loop cut and slide.

Classic Game Design 2E_Ch10_2nd Pass.indd 201 4/25/2019 12:55:44 PM

202 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 203

Step 13: Use Face Select mode.

Step 14: Right-click on the face immediately to the left of center at the bottom.

Step 15: Type e 1 <Enter>.

Step 16: Type numpad 6 six times.

Step 17: Repeat Steps 14–16 three times.

Step 18: Type numpad 7.

You’re now looking at the rocket from the top with the four fins clearly visible as
shown in Figure 10.26.

You’ll do just one last tweak to the model in the following steps.

Step 19: Type numpad 1.

Step 20: Type numpad 6 repeatedly to spin the rocket. While doing so, select all four
outer faces of the fins using right-click for the first one and <Shift> – right-click
for the other three.

Step 21: Hold the middle mouse button and move the mouse to look at the rocket
as shown in Figure 10.27. Alternately, use the numpad 2-4-6-8 buttons to adjust your
view.

 FIGURE 10.26 Top view of rocket in Face Select mode. FIGURE 10.27 Highlights on four outer faces of rocket fins.

Classic Game Design 2E_Ch10_2nd Pass.indd 202 4/25/2019 12:55:44 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 203

Step 22: Type g z −1 <Enter>.

Step 23: Type numpad 1.

Step 24: File-Save.

The rocket mesh is now complete. This is what’s called a low-poly model. Modern
games use thousands of polygons to make very detailed meshes for game objects. In
these classic game projects, you’re going to be content with relatively simple meshes.

Step 25: In Unity, select the rocket model in the models folder.

Step 26: Turn off Animations

Step 27: Set Normals to Calculate.

Step 28: Drag the rocket model into the Hierarchy panel and select the rocket.

Step 29: Set Position to (0, 1, 0), Scale (0.02, 0.02, 0.02).

Step 30: In the Scene panel, select the Front Ortho view using the View Gizmo.

Step 31: Focus on the rocket using the f key.

Step 32: Zoom out using the mouse wheel, select the four-arrow Move icon at the top
left next to the hand icon, and drag the rocket up and down with the yellow arrow to
line it up with the playfield.

The Scene panel should now look similar to Figure 10.28.

 FIGURE 10.28 Rocket on the playfield.

Classic Game Design 2E_Ch10_2nd Pass.indd 203 4/25/2019 12:55:44 PM

204 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 205

The Rocket in the Game panel doesn’t look quite right because the playfield isn’t
centered correctly. You’ll fix that in the next step.

Step 33: Select Level_1 and set the Z Position to −0.15.

This was a subtle change, but it adds to the look of the scene. The rocket and
spaceship are now lined up with the center of the playfield geometry. The 0.15 was
calculated by taking the depth of the playfield (0.3) and dividing it by 2. The rocket
needs its own material, so you’ll use the usual method to create one.

Step 34: In the Materials folder, create a new Material with name RocketMat, set
the Shader to Standard, Albedo Color to a bright red, Smoothness 0.9, and drag
the material onto the rocket object in the Hierarchy.

The rocket is just sitting there, and there’s only one rocket. In the next section,
you’ll create many duplicates of the rocket and make them fly.

VERSION 0.07: FLYING ROCKETS
The plan for this section is to make a prefab out of the rocket, place many rockets

on the playfield, and add code that makes them fly. After all of that, you’ll start with
collision detection between rockets and the scrolling spaceship.

Step 1: Check that you have a Prefabs folder.

Step 2: Drag the rocket object from the Hierarchy to the Prefabs folder.

This is the quick and easy way of creating a prefab. You can now remove the
original rocket.

Step 3: Delete the rocket object in the Hierarchy panel. Then drag the rocket from
the Prefabs folder back into the Hierarchy panel.

This step doesn’t appear to change anything, but it does have an important side
effect. The rocket in the Hierarchy is now an instance of the rocket prefab in the Pre-
fabs folder. This allows you to make wholesale changes to all rockets by just changing
the prefab.

In the next few steps, you’ll make copies of the rocket and put them on the playfield.

Classic Game Design 2E_Ch10_2nd Pass.indd 204 4/25/2019 12:55:44 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 205

Step 4: Select the rocket in the Hierarchy panel.

Step 5: Edit – Duplicate.

Step 6: Select the Move icon (the one next to the hand icon) and grab the red arrow
handle on the rocket to move it to the right a little.

Step 7: Zoom out, using the mouse scroll wheel, if necessary, and move the duplicate
rocket to the next valley.

Step 8: Repeat Step 7 so that you have three rockets set up, similar to Figure 10.29.

 FIGURE 10.29 The first three rockets.

Step 9: Play the game and make sure you can see all three rockets along the way.

Step 10: Stop playing the game.

Those rockets need to start flying, so you’ll write a short script to make that hap-
pen. As an optional exercise, try to write a script that makes all the rockets fly straight
up. Then compare it to the version in this next step.

Step 11: Create the script rocket.cs with the following code:
using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class rocket : MonoBehaviour

Classic Game Design 2E_Ch10_2nd Pass.indd 205 4/25/2019 12:55:44 PM

206 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 207

{

public float rocketspeed;

// Start is called before the first frame update

void Start()

{

}

// Update is called once per frame

void Update()

{

transform.Translate(0, 0, rocketspeed * Time.deltaTime);

}

}

Step 12: Select the rocket prefab and use the Add Component box to add the rocket.
cs component to it.

Step 13: Set rocketspeed in the rocket prefab to 0.5.

If you play the game right now, you’ll see the rockets taking off. You have the
basic motion working, but it would be wrong to have the rockets launch all at once at
the beginning of the game. They need to wait until the ship is approaching before they
launch. The following new code for rocket.cs fixes that.

Step 14: Replace the Update function in rocket.cs with the following code:
void Update()

{

GameObject player = GameObject.Find("ScrollingShipTextured");

if (player.transform.position.x - transform.position.x < 0.5f)

{

 transform.Translate(0, 0, rocketspeed * Time.deltaTime);

}

}

The if-statement ensures that ScrollingShipTextured is within 0.5 units to the left
of the rocket for the rocket to move.

Classic Game Design 2E_Ch10_2nd Pass.indd 206 4/25/2019 12:55:44 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 207

Step 15: Pick the second rocket from the left and change its rocketspeed to 1.0. Test
this.

This shows the power of prefabs. You can override the rocketspeed property of an
individual rocket, which is still inheriting the other properties of the prefab rocket.

Next, you’ll add a particle system to simulate the exhaust of the rocket. Unity
makes this easy.

Step 16: Click on GameObject – Effects – Particle System.

Step 17: Change the Position to (0, 1, 0). Set the Size to (1, 1, 1) if necessary.

You now have a particle system with the default settings located at (0, 1, 0). You
now need to change the settings to simulate a rocket exhaust pointing down.

Step 18: Set Duration 1.0, Start Lifetime 0.7, Start Speed −0.1, Start Size 0.05,
uncheck Shape, set the Start Color to a bright orange.

Feel free to experiment with the Particle settings. Particle systems are cosmetic
special effects and usually don’t affect gameplay directly.

The next steps line up our particle system with the leftmost rocket.

Step 19: Select the leftmost rocket, and Control-select (on a Mac it’s Command-select)
the Particle System so that both the rocket and the Particle System are selected.
Focus on both using the f key in the Scene panel.

Step 20: Select the Particle System and move it to just below the bottom of the rocket
in the Scene panel.

Step 21: In the Hierarchy panel, drag the Particle System on top of the rocket.

Test the game to see that the first rocket now flies with an orange exhaust trailing
after it. You’ll see that there is something happening, but the particle system is much
too large. Something happened to the scale. This can be fixed in the following step.

Step 22: Change the Scaling Mode of the Particle System to Hierarchy.

When you test this again, you’ll see that it’s now working correctly.

Classic Game Design 2E_Ch10_2nd Pass.indd 207 4/25/2019 12:55:44 PM

208 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 209

Unfortunately, the Prefab for the rocket doesn’t have the Particle System. This is
easily remedied in the next step:

Step 23: Select rocket, click on Override – Apply All in the Inspector panel.

This has the effect of applying the change you made to the one rocket instance to
all the instances of the rocket Prefab. You should now see a Particle System attached
to the other rockets.

This would be a good time to look at short Unity video about prefabs. Go to https://
unity3d.com/learn/tutorials and click on Interface & Essentials followed by Prefabs –
Concept & Usage.

Next, you’ll move the starting position of the ship. Right now, the ship starts on
top of the first rocket, which is probably a poor design choice.

Step 24: Move the ScrollingShipTextured object to the left and up as shown in
Figure 10.30.

 FIGURE 10.30 Scrolling Ship starts at the left.

This is still not ideal, but it’s good enough for now. The new starting position of the
ship is about at (1,1,0). Your coordinates may be different depending on your design
of the playfield. The final version should have the ship start with a few seconds of
scrolling and no enemies to give the player a chance to get oriented before the shoot-
ing starts.

Classic Game Design 2E_Ch10_2nd Pass.indd 208 4/25/2019 12:55:45 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 209

Step 25: Test and Save.

Next, you’ll add collision detection between the ship and the rockets. What should
happen when a rocket collides with the ship? For now, you’ll simply destroy the ship
and the rocket. You’ll be using tags, just as in your previous projects.

Step 26: Insert the following code into the rocket class in rocket.cs:
private void OnTriggerEnter(Collider other)

{

if (other.tag == "scrollingship")

{

 Destroy(gameObject);

 Destroy(other.gameObject);

}

}

Don’t forget to save your editing in Visual Studio. To enable this code to work you
need to put in colliders and tags.

Step 27: Create a new tag with the name “scrollingship” and tag the ScrollingShip-
Textured object with scrollingship.

Step 28: Add a box collider component to ScrollingShipTextured, and check Is
Trigger.

Step 29: Add a rigidbody component to the rocket prefab, and uncheck Use Gravity.

Step 30: Add a box collider component to the rocket prefab, and check Is Trigger.

Step 31: If necessary, move the ship away from the first rocket so they don’t collide
right away.

Step 32: Test the game.

Step 33: Save.

You now have something resembling gameplay. The player needs to avoid the
rockets or else it’s game over. The rockets are flying and have a particle system that
displays their exhaust. Before you go on to add more features, it’s time to fix a bug

Classic Game Design 2E_Ch10_2nd Pass.indd 209 4/25/2019 12:55:45 PM

210 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 211

that you might have noticed when testing the rocket vs. ship collision. There is an
error message with the following text:

NullReferenceException: Object reference not set to an instance

of an object

This message appears immediately after the ship collides with a rocket. What’s
going on here and how would you fix it? The first step is to open the console window
with Window – General – Console. There you’ll see many instances of this error mes-
sage, plus other hints:

camera.Update() (at Assets/Scripts/camera.cs:18)

rocket.Update() (at Assets/Scripts/rocket.cs:18)

In these messages you see the error message is pointing at line number 18 in the
camera.cs file as well as line number 18 in rocket.cs. When you look at Visual
Studio’s display of these files, you’ll see line numbers at the left. Line numbers 17 and
18 in rocket.cs are this:

GameObject player = GameObject.Find("ScrollingShipTextured");

if (player.transform.position.x - transform.position.x < 0.5f)

When you think about what’s happening, the variable player is pointing at the
ship, but when the ship is destroyed the variable is set to null because the Find func-
tion won’t be able to find the ship. This wouldn’t be a problem if we had only one
rocket, but with multiple rockets out there, the rockets that are still out there need
this code to decide when to launch.

The real culprit here is a poor programming practice that has crept into your code.
The Find function may or may not find what it’s looking for. If it doesn’t, the code
needs to do something reasonable.

Step 34: Replace lines 17 and 18 in rocket.cs with this code:
GameObject player = GameObject.Find("ScrollingShipTextured");

if (player)

if (player.transform.position.x - transform.position.x < 0.5f)

Classic Game Design 2E_Ch10_2nd Pass.indd 210 4/25/2019 12:55:45 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 211

All you did was insert the if(player) line to check that player isn’t null before
using it. You also need to fix the camera file in a similar manner. You’ll need to group
the code after the null check using curly brackets.

Step 35: Replace the Update function in camera.cs with this code:
void Update()

{

GameObject player = GameObject.Find("ScrollingShipTextured");

if(player)

{

float xpos = player.transform.position.x;

float ypos = player.transform.position.y;

float new_ypos = transform.position.y;

if (new_ypos < ypos - 0.5f) new_ypos = ypos - 0.5f;

if (new_ypos > ypos + 0.5f) new_ypos = ypos + 0.5f;

transform.position = new Vector3(

xpos - 0.7f,

new_ypos,

transform.position.z

);

}

}

Step 36: Test and Save

To test this, simply run the game and crash the ship into a rocket. If there’s no
error message this time, you were successful in fixing this bug. You may wish to clear
all the old error messages in the Console Window first. To do this click the Clear but-
ton at the upper left of the Console Window.

In the next section, you’ll make the game more interesting by adding shots.

Classic Game Design 2E_Ch10_2nd Pass.indd 211 4/25/2019 12:55:45 PM

212 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 213

VERSION 0.08: SHOTS
In this section, you’re going to add horizontal shots that have the ability to destroy

rockets and flying saucers. The scrolling ship shoots under player control. When the
player hits the space bar a single shot is released.

You could use Blender to make the shot models, but it’s not really necessary. You
can use Unity to create shots as long and skinny capsules.

Before you go ahead with the shots, you’ll do a small change to the lighting. In game
development it’s very common to be working on one thing only to discover that there’s
a simple change on something entirely different that will yield an improvement.

Step 1: Change the Directional light Y Rotation to 100.

This brightens up the playfield a bit and improves the look of the ship and the
rockets. Now you’re going to create the ship shots directly in Unity.

Step 2: GameObject – 3D Object – Capsule.

Step 3: Rename to shipshot.

Step 4: Position (0, 1, 0), Rotation (0, 0, 90), Scale (0.015, 0.03, 0.03).

If you wish, take a look at the capsule by focusing on it in the Scene panel. If the
shot is hiding inside of the level geometry, move it up so you can see it. The next step
selects a better color for it to make the shot contrast with the background.

Step 5: In the Materials Folder, create a red Material, Smoothness 0.9, name
ShotMat.

Step 6: Assign ShotMat to shipshot.

So far all you have is a shot floating in space, not doing anything.

Step 7: Create a C# script with name shipshot.cs, and enter the following code for it:
using System.Collections;

using System.Collections.Generic;

using UnityEngine;

Classic Game Design 2E_Ch10_2nd Pass.indd 212 4/25/2019 12:55:45 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 213

public class shipshot : MonoBehaviour

{

public float shotspeed = 1.0f;

// Start is called before the first frame update

void Start()

{

}

// Update is called once per frame

void Update()

{

transform.Translate(0, shotspeed * Time.deltaTime, 0);

}

}

Step 8: Assign shipshot.cs to shipshot and test.

The shot is moving, but not colliding with anything, so you’ll add collision with
the terrain.

Step 9: Create the terrain tag and tag Level_1 with it.

Step 10: Add a Mesh Collider to Level_1.

Step 11: Add a RigidBody component to shipshot, and uncheck Use Gravity
for it.

Step 12: Check Is Trigger for the Capsule Collider of shipshot.

Step 13: Add the following code to the shipshot class in shipshot.cs:
private void OnTriggerEnter(Collider other)

{

if (other.tag == "terrain")

{

 Destroy(gameObject);

}

}

Classic Game Design 2E_Ch10_2nd Pass.indd 213 4/25/2019 12:55:45 PM

214 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 215

You did this so that when a shot hits terrain it gets destroyed, just as you would
expect.

Step 14: Test this as follows: turn off Maximize on Play, select shipshot in the Hier-
archy, and watch when the shot gets destroyed. If you zoom out in the Scene panel,
you’ll get a better view.

If your shot starts out very close to the terrain, it all might happen too quickly.
One way to help with testing this case is to use the step button. Here’s how that
works. Press play and quickly press pause after that. With the game paused, click on
the step icon. You can also use the keyboard shortcut for it. The shortcuts for Play,
Pause, and Step can be found in the Edit drop-down menu.

You’re ready to launch shots from the ship.

Step 15: Make shipshot into a Prefab by dragging it into the Prefabs folder. Then
delete shipshot in the Hierarchy panel.

Step 16: Replace the contents of scrollingship.cs with the following code:
using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class scrollingship : MonoBehaviour

{

public GameObject shotprefab;

// Start is called before the first frame update

void Start()

{

}

// Update is called once per frame

void Update()

{

transform.Translate(-0.3f * Time.deltaTime, 0, 0);

Classic Game Design 2E_Ch10_2nd Pass.indd 214 4/25/2019 12:55:45 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 215

if (Input.GetKey("w"))

{

 transform.Translate(0, 0, 0.8f * Time.deltaTime);

}

if (Input.GetKey("s"))

{

 transform.Translate(0, 0, -0.8f * Time.deltaTime);

}

if (Input.GetKeyDown("space"))

{

 Instantiate(shotprefab,

 new Vector3(transform.position.x,

 transform.position.y,

 0.0f),

 Quaternion.AngleAxis(90, Vector3.forward));

}

}

}

The contents of this code are discussed below, but first, go ahead and test it.

Step 17: Select ScrollingShipTextured, and assign the shipshot Prefab to Shot-
prefab in the ScrollingShipTextured section of the Inspector by dragging or by using
the bullseye icon.

Step 18: Play the game and press the space bar repeatedly to launch the shots.

The shots don’t do any damage yet, but you can test that the shots get destroyed
when they hit terrain. Now, take a look at the code in shipshot.cs. The Instantiate
statement creates a shot every time the player presses the space bar. The initial loca-
tion of the shot is the same as that of the ship, except that you’re hardwiring the z
coordinate to zero. That’s not exactly great code, but it works. The initial launch angle
is set in the Quaternion statement. You can change the angle by adjusting the first
parameter, currently set to 90. Experiment with different values for the angle to get a
sense of how that works. Quaternions are mathematical objects that encode rotations

Classic Game Design 2E_Ch10_2nd Pass.indd 215 4/25/2019 12:55:45 PM

216 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 217

using four numbers as an alternative to the more common Euler angles. You may
search the internet for additional information about quaternions if you wish. Unity
uses quaternions to store rotations of 3D objects.

You’re finally ready to shoot at the rockets.

Step 19: Create a shipshot tag and assign it to the shipshot prefab.

Step 20: Add the following code to the end of the OnTriggerEnter function in
rocket.cs:

if (other.tag == "shipshot")

{

Destroy(gameObject);

Destroy(other.gameObject);

}

This is basically the same code as for colliding rockets with the scrolling ship. You
can now test this and try shoot down the rockets.

Testing may reveal a common problem in scrolling shooters: the shots keep going
forever and destroy rockets at an unrealistic distance away from the ship. The next
step addresses this.

Step 21: In shipshot.cs, replace the Update function with the following:

void Update()

{

transform.Translate(0, shotspeed * Time.deltaTime, 0);

GameObject player = GameObject.Find("ScrollingShipTextured");

if (player)

{

if (player.transform.position.x -

 transform.position.x > 3.0f)

 Destroy(gameObject);

}

}

Classic Game Design 2E_Ch10_2nd Pass.indd 216 4/25/2019 12:55:45 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 217

This is fairly straightforward. The code checks to see if the shipshot is over 3 units
away from the ship, and destroys the shot if it is.

Step 22: Test and save.

As you did previously, turn off Maximize on Play to watch the shots destroy them-
selves when they get too far away from the ship.

This game is much too easy. In the next section, you’ll add some true enemies,
flying saucers.

VERSION 0.09: FLYING SAUCERS
In Blender, it’s easy to make flying saucers. After you do that, you’ll animate their

motion in Unity, have them shoot at the scrolling ship, and do the usual collision
detection setup and scripting.

Step 1: In Blender, select File – New and hit the Enter key.

Step 2: Delete the startup cube.

Step 3: Add – Mesh – UV Sphere.

Step 4: Type Numpad 1, Numpad 5, <Tab>, and View – View Selected.

Step 5: Use Wireframe Viewport Shading.

Step 6: Type a to deselect all, then b and select the bottom half of the sphere. Do not
include the vertices along the middle.

The next few steps shape the bottom half into a saucer.

Step 7: Type s <Shift> z 2 <Enter>.

This step restricted the scaling to the axes other than z, i.e., x and y.

Step 8: Type s z 0.3 <Enter>.

Step 9: Type g z 0.4 <Enter>.

Step 10: Use Solid Viewport Shading.

You should now be looking at a flying saucer mesh as shown in Figure 10.33.

Classic Game Design 2E_Ch10_2nd Pass.indd 217 4/25/2019 12:55:45 PM

218 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 219

Step 11: Save the blend file in Assets/Models as saucer.blend.

An advancing Blender user such as yourself could do these last 10 steps in about
a minute or two. The keyboard shortcuts in Blender are a great way to become
extremely fast at creating 3D models.

Step 12: In Unity, create a new Material in the Materials folder, call it SaucerMat.

Step 13: For SaucerMat, select light grey Albedo color, Smoothness of 0.9

Step 14: Select the saucer model in the Models directory, disable Import Anima-
tion, set Normals to Calculate, and Apply.

Step 15: Drag the saucer model into the Hierarchy.

Step 16: Select Position (0, 1, 0), Scale (0.04, 0.04, 0.04).

Step 17: Assign SaucerMat to the saucer object.

Step 18: Drag saucer into the Prefabs folder.

Step 19: Delete the original saucer object in the Hierarchy panel.

You now have a flying saucer prefab, though it still needs some work. The follow-
ing steps implement collisions of saucers vs. ship shots and saucers vs. ship.

Step 20: Add a Rigidbody component to the saucer prefab. Uncheck Use
Gravity.

 FIGURE 10.31 Simple flying saucer model in Blender.

Classic Game Design 2E_Ch10_2nd Pass.indd 218 4/25/2019 12:55:45 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 219

Step 21: Add a Box Collider component to the saucer prefab. Check Is Trigger.

You now see the box collider outline in the Scene panel. By default, newly created
box colliders surround the mesh with a snug fit.

Step 22: Change the Size of the box collider to (2, 2, 1.2).

You reduced the size of the box collider to surround just the main hemisphere
of the saucer. When in doubt, it’s good to have colliders be smaller than the actual
meshes. It is common to adjust collider settings later on when all the gameplay ele-
ments are available for testing.

It would be tempting to just use a mesh collider for the saucer, but that would
be less efficient, and it would feel wrong. A mesh collider would precisely calculate
when the geometry of the shot and the geometry of the colliding object intersect.
This involved much more computation, depending on the complexity of the models
involved. More importantly, experience has shown that simple colliders feel better
during gameplay, provided they are adjusted properly to contain only the solid inte-
rior parts of models.

In this next step, you’re going to write maybe just a little bit too much code all at
once. Much of the code will be familiar to you, so it’s not overly risky. You’re going to
put in the motion of the sauces and the collision code as well. If you wish, you may
leave out the collision code at first, test, and then add it later.

Step 23: Create saucer.cs and assign it to the saucer prefab. Use the following
code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class saucer: MonoBehaviour

{

public float radius = 0.2f;

private float centerx;

private float centery;

Classic Game Design 2E_Ch10_2nd Pass.indd 219 4/25/2019 12:55:45 PM

220 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 221

private float saucertime;

// Use this for initialization

void Start()

{

saucertime = 0;

centerx = transform.position.x;

centery = transform.position.y;

}

// Update is called once per frame

void Update()

{

saucertime += Time.deltaTime;

transform.position = new Vector3(

centerx + radius * Mathf.Sin(saucertime * 4),

centery + radius * Mathf.Cos(saucertime * 4),

transform.position.z);

}

private void OnTriggerEnter(Collider other)

{

if (other.tag == "scrollingship")

{

Destroy(gameObject);

Destroy(other.gameObject);

}

if (other.tag == "shipshot")

{

Destroy(other.gameObject);

Destroy(gameObject);

}

}

}

Classic Game Design 2E_Ch10_2nd Pass.indd 220 4/25/2019 12:55:45 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 221

This code makes the saucers move in a circular path using built-in trig functions.
You’re also doing collisions with shipshots and the scrollingship in the usual manner.

Step 24: Test this by placing some saucers into the Hierarchy panel. Then adjust
their positions, run the game, shoot them and crash the ship into one.

It’s tempting to just drag the saucer prefabs into the Scene panel directly. Don’t
do that! Unity has to guess which z-coordinate to use, and it often guesses something
other than the 0 that you specified in the prefab transform. A z-coordinate other than
0 will break your collision detect code. You can try that out if you like.

You’re continuing to follow the philosophy of testing your changes right away.
Next, you’ll create shots for the flying saucers, and then you’ll have the saucers shoot
them. The saucer shots will be the same as the ship shots, only they’ll fly to the left
and they’ll have slightly different collision detect code.

Step 25: Drag a shipshot from the Prefabs into the Hierarchy panel.

Step 26: Rename the shipshot object in the Hierarchy panel to saucershot.

Step 27: Remove the Shipshot (Script) component from saucershot.

Step 28: Open shipshot.cs by double-clicking on it in the Scripts folder. Then, in
Visual Studio do a Save As with the new name saucershot.

Step 29a: In saucershot.cs on line number 5, change the class name from shipshot
to saucershot.

Step 29b: On line 7, change the initial value of shotspeed from 1.0f to -1.0f.

The Update needs to be changed as well, because the code that destroys the shot
if it’s too far away on the right from ScrollingShipTextured no longer makes sense
for alien shots. Instead you need to test if the shot is too far to the left. This is accom-
plished in the next step.

Step 29c: In the Update function, change > 3.0f to < -3.0f near line 22.

Step 30: Assign saucershot.cs to the saucershot object in the Hierarchy.

Step 31: Test this by watching the saucershot fly to the left when you play the game.

Classic Game Design 2E_Ch10_2nd Pass.indd 221 4/25/2019 12:55:45 PM

222 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 223

Step 32: Drag saucershot into the Prefabs folder.

Step 33: Delete the saucershot object in the Hierarchy panel.

Step 34: In saucer.cs, add the following line of code near the beginning of the saucer
class:

public GameObject saucershot;

Step 35: In saucer.cs, add the following code section at the end of the Update
function:

GameObject player = GameObject.Find("ScrollingShipTextured");

if (player)

if (player.transform.position.x - transform.position.x < 3.0f)

if (saucertime > 3.14159f / 2.0f)

{

 Instantiate(saucershot,

 new Vector3(transform.position.x,

 transform.position.y, 0),

 Quaternion.AngleAxis(90, Vector3.forward));

 saucertime = 0.0f;

}

Step 36: In the saucer prefab, click on the bullseye icon for Saucershot and assign
the saucershot prefab. You may need to select the Assets tab when making that
selection.

You need to give the saucershot its own tag.

Step 37: Select the saucershot prefab, create a saucershot tag, and use it to tag the
saucershot prefab.

In theory, those saucers should now be shooting at you.

Step 38: Test by observing that the saucers are periodically shooting to the left.

The saucershots don’t harm the ScrollingShip at all. Both the saucershot prefab
and the scrollingship are set up for collision detection, so all that’s missing is a few
lines of code.

Classic Game Design 2E_Ch10_2nd Pass.indd 222 4/25/2019 12:55:45 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 223

Step 39: In saucershot.cs, add the following code to the OnTriggerEnter function:

if (other.tag == "scrollingship")

{

Destroy(gameObject);

Destroy(other.gameObject);

}

Step 40: Test this by seeing if the saucershots destroy the scrollingship.

Step 41: Save.

It’s time to take inventory of where you are. You have all the graphical elements,
except for the bombs. There’s some basic gameplay and control. The main things that
are missing are scoring, audio, and populating the level with rockets and saucers.
There are also bound to be additional changes to the code as you get more experience
with playing the game.

In the next section, you’ll do some level design.

VERSION 0.10: LEVEL DESIGN
For a change of pace, you’ll do something that’s technically easy, but artistically

it isn’t easy at all. Where are you going to put the rockets and saucers? It’s really up
to you, the designer.

Unity does double duty as both a development environment and a level editor. For
large, complex games, developers often build stand-alone level editor applications, but
this won’t be necessary for you in this game. You simply use your rocket and saucer
prefabs and place instances into the scene wherever you want. It’s up to you where to
locate the saucers and rockets. However, as you do this, you’re going to discover some
things that will motivate you to make some changes to the code.

Step 1: Duplicate and drag five more rockets into the scene and test.

This is just a warm-up exercise to get you started. Remember to duplicate rockets in
the scene already, rather than dragging from the Prefab folder.

Classic Game Design 2E_Ch10_2nd Pass.indd 223 4/25/2019 12:55:45 PM

224 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 225

Step 2: Select one of the rockets and rotate it using the rotate icon. Test it to see if it
works.

You may wish to compare your Unity screen with Figure 10.32.

 FIGURE 10.32 Rotated rocket.

To do the rotation, select the rocket and use the Rotate Tool from the icon strip at
the top left of the Unity window, as shown in Figure 10.32.

Step 3: Test to see if the rocket collides with the terrain.

This is easy enough. Just rotate the rocket so it points at some terrain. Appar-
ently, you didn’t put in collisions between rockets and terrain, so the rocket just flies
through it. The following step fixes this.

Step 4: In rocket.cs, add the following code to the OnTriggerEnter function:
if (other.tag == "terrain")

{

Destroy(gameObject);

}

Classic Game Design 2E_Ch10_2nd Pass.indd 224 4/25/2019 12:55:46 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 225

Step 5: Test.

Well, maybe you’re going to see a problem now. Any rocket that gets initialized too
close to the terrain gets immediately destroyed. How are you going to fix this? There’s
an old joke. A man goes into the doctor’s office and says that it hurts when he raises
his arm. The doctor’s advice: Don’t raise your arm. So, you could just avoid the prob-
lem by never placing the rockets too close to the terrain. This is a bit of a pain, so the
following code avoids this issue. You’ll put in a timer and only do the rocket vs. terrain
collision detect after about a second after launch.

Step 6: Update rocket.cs to match the following code:
using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class rocket : MonoBehaviour

{

public float rocketspeed;

private float flighttimer = 0.0f;

// Start is called before the first frame update

void Start()

{

}

// Update is called once per frame

void Update()

{

GameObject player = GameObject.Find("ScrollingShipTextured");

if (player)

if (player.transform.position.x - transform.position.x < 0.5f)

{

transform.Translate(0, 0, rocketspeed * Time.deltaTime);

flighttimer += Time.deltaTime;

}

}

Classic Game Design 2E_Ch10_2nd Pass.indd 225 4/25/2019 12:55:46 PM

226 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 227

private void OnTriggerEnter(Collider other)

{

if (other.tag == "scrollingship")

{

Destroy(gameObject);

Destroy(other.gameObject);

}

if (other.tag == "shipshot")

{

Destroy(gameObject);

Destroy(other.gameObject);

}

if (flighttimer > 1.0f)

if (other.tag == "terrain")

{

Destroy(gameObject);

}

}

}

You’ve added a private timer variable, initialized it to zero, and you only update it
when the rocket is moving. In the OnTriggerEnter function you check to see if the
rocket has been flying for a while, and only then do you do the terrain collision.

You might have noticed that the rockets fly forever if there’s nothing in the way.
This can’t be good, so let’s add some code to limit the life of rockets.

Step 7: Insert the following code in the Update function in rocket.cs:
if (flighttimer > 5.0f) Destroy(gameObject);

Step 8: Test this by watching what happens to a rocket after five seconds of flight.

The easiest way to watch is to turn off Maximize on Play and zoom out far enough
in the Scene panel so you can see the tiny rockets as they fly for five seconds and then
disappear.

Classic Game Design 2E_Ch10_2nd Pass.indd 226 4/25/2019 12:55:46 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 227

There’s another rather obvious problem. You don’t have collision detect between
ScrollingShip and the terrain. There are several options for this. Should the ship crash
and burn when it hits the playfield? Maybe it should just bounce, or take some minor
damage. You’re going to follow the traditional route and destroy the ship whenever it
touches terrain. While you’re at it, you shouldn’t let the ship fly over the tunnel that
you created at the halfway point of the level.

Step 9: Add the following code to scrollingship.cs:
private void OnTriggerEnter (Collider other)

{

if (other.tag == "terrain")

{

Destroy(gameObject);

}

}

Step 10: Test crashing the ship into terrain.

Nothing happens when you try to crash into the terrain. The first thing to check
is to see if ScrollingShipTextured has a trigger. It was supposed to be checked back
in the Flying Rockets section. Well, the Box Collider does have the “Is Trigger” box
checked, but there’s no Rigidbody component. The next step fixes that.

Step 11: Add a Rigidbody component to ScrollingShipTextured and as usual, uncheck
the Use Gravity checkbox.

Step 12: Test crashing the ship into terrain again.

It should work this time.

Step 13: Duplicate rockets until you have at least 20 rockets throughout the level and
then test the game.

It’s starting to be fun to play this game. You do have another gameplay problem.
The player has the ability to just fly up and avoid all the obstacles. You noticed that
earlier, but didn’t actually do anything about it.

Classic Game Design 2E_Ch10_2nd Pass.indd 227 4/25/2019 12:55:46 PM

228 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 229

Step 14: Insert the following line of code in scrollingship.cs at the beginning of the
Update function, immediately before the Translate call:

if (transform.position.y < 5.0f)

The official technical term for code such as this is a “horrible hack.” The word
goes back to the early days of coding when hacking was considered a good thing, and
being called a hacker was the ultimate compliment. A horrible hack is bad code that
works, typed in at the last possible moment when you’re working on a deadline. Why
is this code bad? Well, it’s that 5.0 in there. The 5.0 is a “magic number.” This code
will always keep the ScrollingShip below an elevation of 5.0, regardless of the level
design. Sometimes, at the end of a project, you do what you have to do to get the thing
done quickly. You just hope that you don’t have to deal with this bad code when you
add another level later on.

Step 15: Put at least 10 saucers toward the end of the level.

Step 16: Test and Save

Is it fun? In a word, yes! Compare your layout with the one in Figure 10.33.

 FIGURE 10.33 Level layout.

You’re done with basic gameplay. There’s no ending, and only one level, and many
other missing features. Time to add some audio.

Classic Game Design 2E_Ch10_2nd Pass.indd 228 4/25/2019 12:55:46 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 229

VERSION 0.11: AUDIO
Most of today’s games have background music, or at least some kind of a back-

ground soundtrack. The very early classic games relied entirely on game-triggered
sound effects to provide audio. In this section, you’ll take it one step further and create
a simple background soundtrack using Audacity and the looping feature in Unity.

Step 1: Open Audacity.

Step 2: Generate – Risset Drum…. – OK

Use the default settings, which are 100.0, 2.0, 500.0, 400.0, 25, and 0.8. If there
are two Risset Drums in the Generate Menu, use the first one.

Step 3: Effect – PaulStretch…

Again, use the default settings of 10 and 0.25.

Step 4: View – Zoom – Zoom Out.

Step 5: Drag the mouse in the track to make a selection from time 0 to about 2.5
seconds.

Step 6: Effect – Fade In, Effect – Fade Out.

Step 7: Effect – Normalize…

Step 8: Transport – Playing – Loop Play.

This is the effect you want, a rumbling, pulsating sound effect.

Step 9: Press the Stop icon.

Step 10: File – Save Project with the name rumble.aup in the Sounds folder of your
game.

Step 11: File – Export – Export Selected Audio … and use the name rumble.wav.

Step 12: Back in Unity, Preview the rumble sound in the Sounds Asset folder.

There are three items in the Sounds folder, the rumble.aup Audacity file, the
rumble_data folder and rumble.wav file. You’ll be using the .wav file.

Classic Game Design 2E_Ch10_2nd Pass.indd 229 4/25/2019 12:55:46 PM

230 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 231

Step 13: Drag the rumble sound to the Main Camera, and check the Loop box in
the Inspector in the Audio Source section.

Step 14: Test it by playing the game.

If you play the game now, you should hear the rumble effect looping in the back-
ground.

Step 15: Select the Sounds folder in the Assets panel.

Step 16: Assets – Import New Asset…, and then navigate to cexplo.wav from the
ClassicVerticalShooter project. Repeat for cshot.wav.

These two sound effects may not be perfect, but they’ll be good placeholders for
now. You’ll start with the shot sound.

Step 17: Select ScrollingShipTextured, and add an Audio Source component.
Uncheck Play on Awake.

Step 18: In scrollingship.cs, make the following changes.

In the GetKeyDown section of the Update function, insert the line

gameObject.GetComponent<AudioSource>().Play();

Step 19: In the Inspector for ScrollingShipTextured, set the AudioClip property
to cshot.

Step 20: Test.

You now hear the familiar shot sound when you shoot missiles with the space bar.

Step 21: In shipshot.cs, make the following changes.

After the class declaration near the top of the file, insert the line

public AudioClip clip;

In the OnTriggerEnter function, insert the line
AudioSource.PlayClipAtPoint(clip, gameObject.transform.position,

� 1.0f);

immediately before the Destroy statement.

Classic Game Design 2E_Ch10_2nd Pass.indd 230 4/25/2019 12:55:46 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 231

Step 22: Assign cexplo to the clip variable in the inspector.

This is similar to the technique you used in the last project. It’s necessary to
use the PlayClipAtPoint function because the PlayOneShot function needs the
object to be alive while playing the sound, and as you can see, the shot is about to be
destroyed. You can test this by shooting missiles into terrain.

Step 23: Repeat Steps 21 and 22 to add the cexplo sound effect for all the colli-
sion events in saucershot.cs, rocket.cs and saucer.cs.

Step 24: Test and Save.

In the next section, you’ll wrap things up by adding scoring.

VERSION 0.12: SCORING
You’re going to keep the scoring as simple as possible. The player gets one life,

there’s just one level. There’s an ending and a game over message. Finally, you’ll put
in scoring for destroying rockets and saucers.

Step 1: Select GameObject – Create Empty and rename it to scoring.

Step 2: Create a script with name scoring, assign it to the scoring object, and use
the following code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class scoring : MonoBehaviour

{

public static int score;

// Use this for initialization

void Start()

{

score = 0;

}

Classic Game Design 2E_Ch10_2nd Pass.indd 231 4/25/2019 12:55:46 PM

232 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 233

// Update is called once per frame

void Update()

{

}

private void OnGUI()

{

GUI.Box(new Rect(10, 10, 120, 30), "Score: " + score);

GameObject player = GameObject.Find("ScrollingShipTextured");

if (!player)

{

GUI.Button

(

new Rect(Screen.width / 2 - 200,

Screen.height / 2 - 50,

400, 100), "Game Over"

);

}

if (player)

if (player.transform.position.x < -24.0f)

{

GUI.Button(

new Rect(Screen.width / 2 - 200,

Screen.height / 2 - 50,

400, 100), "The End"

);

}

}

}

We put in two buttons to make a minimal attempt at game structure. The “Game
Over” message tells the player to stop playing. The only way to play another game is

Classic Game Design 2E_Ch10_2nd Pass.indd 232 4/25/2019 12:55:46 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 233

to exit the program and try again. The “The End” button is the reward for surviving
the entire level. The magic number −24.0f was determined by placing an object a little
past the end of the level and looking at the x position of it.

The coordinate system for this game turned out to be the reverse of what you
might expect. As the ship makes progress along the level the x-coordinate decreases.
The test for reaching the end is thus a check to see if the x-coordinate is less than
−24.0f.

Step 3: Add the following line to saucer.cs in the OnTriggerEnter function in the
shipshot section:

scoring.score += 900;

Step 4: Repeat Step 3 for rocket.cs and a score of 400.

Step 5: Test and save.

The scores of 900 and 400 are reflections of the difficulty of hitting saucers vs.
rockets. It seems that saucers are more difficult to hit. To test the Game Over mes-
sage is easy enough, but to get to the end could be a challenge. You can always just
set the x-coordinate of the ship to −23 and bypass everything! After testing like this,
don’t forget to put the ship back at its initial position. While you’re at it, try placing
the initial ship position a bit farther to the left.

VERSION 1.00: RELEASE AND POSTMORTEM
Our fourth classic project turned into quite a game. It’s not ready for commercial

release, but it’s a start. There’s a lot of fun to be had playing the game the way it is,
but of course the best part is this: Because you built it from scratch, you have a good
understanding of how it all works. You can make changes and improve it (or make it
worse) with just a few clicks of the mouse, or a couple of changes to the code.

This project shows how to make a 2D game using 3D tools. The development of
the game went very smoothly. There were a few bugs along the way, but that’s always
going to happen in game development.

Classic Game Design 2E_Ch10_2nd Pass.indd 233 4/25/2019 12:55:46 PM

234 — Clas s i c Game Des ign , Second Edi t ion Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 235

The worst problem is obvious: The game isn’t finished yet. It would really help to
build several levels with graphic and gameplay variety. To only give the player one
life also seems very harsh. The bomb weapon from the original design was dropped
from production, no pun intended.

In short, the game is playable, looking good, and you likely learned a few things.
In the exercises, you are going to explore some new directions.

EXERCISES
  1.	� Use Blender to build a new scrolling ship with the wings near the top of the

fuselage. Use texture painting to give it a polkadot texture. Put the new ship
into the game.

  2.	� Take the ship from Exercise 1 or the original from the game, load it into
Blender, and modify the mesh by extruding a few faces on the back of the ship
to create an exhaust. Scale the exhaust faces to make them slightly larger.

  3.	� Build a new and different level using the techniques from this chapter. Save
it as Level_2.blend. Create a new Scene in Unity and use Level_2 as your
playfield in that scene.

  4.	� Create a bomb in Blender using the same techniques that were used to make
the rocket. Integrate the bomb into the game and launch the bomb from the
scrolling ship using the “b” key. Use Gravity to have the bomb fall to the
ground, and have the bomb collide with terrain, rockets and saucers.

  5.	� Create two new sound effects by experimenting in Audacity. Export the
sound effects into the Sounds folder and use them in the game.

  6.	� Create level and lives displays in scoring.cs. Initialize the level to 1 and lives
to 3. Then do the next exercise.

  7.	� Use a state machine similar to the one in the Classic Vertical Shooter to
implement Game Over and Press Start. When the scrolling ship collides
with something, instead of going to Game Over, decrease the lives counter
and restart the current level.

Classic Game Design 2E_Ch10_2nd Pass.indd 234 4/25/2019 12:55:46 PM

Chapt er 10  — Clas s i c Game Pro jec t Four : Scro l l ing Shoot er — 235

  8.	� At the end of level 1, go on to level 2 from Exercise 3 and have the ending of
the game at the end of level 2 instead.

  9.	� Instead of having an ending, go back to level 1 after level 2. Increase the
difficulty of the game by making the rockets tougher to avoid and by having
the saucers shoot more frequently.

10.	 Make the saucer shots home in on the scrolling ship on higher levels.
11.	 Create a Particle System for an exhaust of the Scrolling Ship.

Classic Game Design 2E_Ch10_2nd Pass.indd 235 4/25/2019 12:55:46 PM

Chapt er 11  — Pac -Man — 237236 — Clas s i c Game Des ign , Second Edi t ion

CHAPTER

11 Pac-Man

Pac-Man (Namco, 1980) changed
everything. It introduced a completely
new game mechanic, was almost
entirely nonviolent, and really brought
video games to a worldwide mass
audience, including women, adults,
seniors, and children. Pac-Man was
created by Namco in Japan and first
released in 1980. Official credits
weren’t given in those early days of
game development, but Toru Iwatami
is now recognized as the person most
responsible for creating this iconic and
hugely influential game. Figure 11.1
shows a level diagram of the first maze.

THE FIRST MAZE GAME
Was Pac-Man really the first maze game? The answer depends on how you define

“maze game.” Sega’s Head On from 1979 has some similarities to Pac-Man but it’s a
bit of a stretch to put the two games into the same category. Pac-Man is definitely the
first well-known arcade maze game. The gameplay is deceptively simple, requiring no
buttons and just a single joystick to control the main character.

 FIGURE 11.1 Pac-Man maze.

Classic Game Design 2E_Ch11_2nd Pass.indd 236 4/26/2019 2:31:03 PM

Chapt er 11  — Pac -Man — 237

It’s instructive to look at gameplay footage of the original arcade Pac-Man. Count-
less videos of this can be found on the internet and it’s worth looking at one or two
before reading the rest of this chapter.

In Pac-Man, the player moves the character around the maze to avoid the four
enemies. Three brilliant and novel design elements in the game are the tunnels,
the power pellets, and the bonus fruits. The tunnels make it easier for the player to
escape when he’s cornered. The power pellets let the player fight back instead of get-
ting chased all the time.

The bonus items, mostly fruits such as cherries and apples, are optional rewards
that appear at a fixed spot for a limited time, tempting the players to risk their lives
to get a few extra points. The bonus fruits aren’t really essential to the game, but they
add color, and having an extra reward out there to lure greedy players is a fun way to
add depth to most any arcade game.

CUTSCENES
Pac-Man isn’t just a maze game. It also introduced cutscenes as a way to advance

the story in video games. They are noninteractive and, in arcade games, they are
necessarily brief. Today’s much longer cutscenes need to be skippable, but in these
early arcade cutscenes the players had no choice but to watch them in their entirety.

The real hidden purpose of cutscenes to an arcade gamer is to provide a short
period of rest between intense periods of gameplay action. You might get bored when
watching the same cutscene too many times, but getting a few seconds of respite is
always appreciated.

It only took a few years for the game industry to respond by going hog-wild with
cutscenes, eventually culminating in million-dollar budgets that sometimes eclipsed
the budgets for the rest of the game, or so it seemed.

Cutscenes have even been used as an anti-piracy measure. The short but plenti-
ful cutscenes in 1996’s Gubble™ were used as uncompressed filler on the CD-ROM
to make the game artificially large, thus harder to pirate and download using a slow
Internet connection.

Classic Game Design 2E_Ch11_2nd Pass.indd 237 4/26/2019 2:31:03 PM

238 — Clas s i c Game Des ign , Second Edi t ion Chapt er 11  — Pac -Man — 239

PAC-MAN FEVER
Pac-Man had a huge cultural impact, especially in the United States. Soon after

the release of the game itself, there appeared an animated television series, t-shirts,
and the hit pop-song “Pac-Man Fever.” Amazingly, Ken Uston’s strategy guide, Mas-
tering Pac-Man, sold over a million copies in the ‘80s. Video games had reached main-
stream popular culture, virtually overnight.

ENDING RULE
Our next classic game design rule is somewhat of an oddity, because most classic

games, and all games featured in this book, including Pac-Man, break it!

Just about all classic coin-op games in the classic era don’t have a designed end-
ing. The strange thing is that, due to programming limitations, a few of the games
had what’s now called a “kill screen,” including Pac-Man. Kill screens kill the player
off due to a programming or design bug, effectively ending the game. If you haven’t
seen the Pac-Man kill screen, go and search for it online to take a look.

The main point is that the designers of that era simply didn’t bother to design
an ending for their games, which was a mistake. This was a great example of
industry-wide group-think, where everybody thought it was OK to have the games
go on “forever.” Even stranger was the general feeling that games without an ending
were the “standard” way of designing arcade games. It was something that arcade
players had come to expect, mainly due to the publicity surrounding marathon gam-
ing sessions on Asteroids and Missile Command. There was a certain mystique
surrounding people who had “mastered” a particular game, and thus could play it as
long as they wanted, effectively “owning” the machine.

The downside of not having an ending is clear. The top scores become more a mea-
sure of endurance than skill, violating the Score Rule. Experts lose interest when the

Rule 7: Ending Rule: Make an ending.

Classic Game Design 2E_Ch11_2nd Pass.indd 238 4/26/2019 2:31:03 PM

Chapt er 11  — Pac -Man — 239

game just goes on and on the same way, breaking the Experts Rule and the Difficulty
Ramping Rule as well.

PAC-MAN AI
Here is where it gets really interesting for game designers. Just how do those

ghosts decide where to go? In the context of game design, the logic behind character
behavior is called artificial intelligence, or AI. First, consider the basics of Pac-Man AI.
The ghosts go at constant speed and usually don’t turn around. They switch between
two modes, chase and scatter. When they chase, they use their own individual rules
to decide which way to turn at an intersection. When they scatter, they simply aim to
go to their individual target location. Each ghost has a target in its own corner.

There remains the question of which way the ghosts should turn when they get
to an intersection. If they all turn towards the player, they would all behave the same
way and as a result, they could be bunched together like a flock of sheep. If the ghost
behavior were truly intelligent, the player would have no chance because the ghosts
could simply coordinate their efforts to trap the player. The approach taken by Toru
Iwatani is to make all four ghosts aim at different yet sensible target locations.

The exact details of chase mode for the four ghosts can be found online. To sum-
marize, the red ghost always aims at the player, the blue and pink ghosts aim at spots
near the player, and the orange ghost only aims for the player when he’s far away from
the player; otherwise, he goes into scatter mode, where he aims at his starting position.

Of course, when the player has the power pellet, the ghosts immediately switch
to “run away” mode.

AI programming in Pac-Man was done in assembly language, the preferred pro-
gramming technology of arcade games at the time. Because of this, the artificial intel-
ligence of the ghosts is nothing more than a few carefully crafted assembly language
instructions.

Modern path-finding algorithms have largely supplanted these early AI efforts.
The days of writing AI code in assembly are history, but it’s still interesting to study

Classic Game Design 2E_Ch11_2nd Pass.indd 239 4/26/2019 2:31:03 PM

240 — Clas s i c Game Des ign , Second Edi t ion Chapt er 11  — Pac -Man — 241

the old techniques. They continue to be useful and should be in every game designer’s
AI arsenal.

PAC-MAN SEQUELS AND MAZE GAMES
In contrast to the earlier arcade mega-hits, for Pac-Man the sequels were plenti-

ful and hugely successful, especially in the ‘80s. Namco’s official sequels included Ms.
Pac-Man, Super Pac-Man, Jr. Pac-Man, and Pac-Mania. The arcade game industry
adopted the new maze game category with gusto and released games such as Mr. Do
(Universal, 1982), Dig Dug (Namco, 1982), Lady Bug (Universal, 1981), and Pepper II
(Exidy, 1982), just to mention a few.

The move to 3D maze games started in 1983 with Atari’s Crystal Castles. A screen-
shot from Crystal Castles is shown in Figure 11.2.

 FIGURE 11.2 Crystal Castles: Berthilda’s Castle.

Crystal Castles was designed and programmed in 1982 and 1983 by the author
of this book, Franz Lanzinger. In this game, the player controls Bentley Bear with a
trackball to collect gems from isometric castles. The game achieved some notoriety for
being the first coin-op nonracing game with a designed ending.

Classic Game Design 2E_Ch11_2nd Pass.indd 240 4/26/2019 2:31:03 PM

Chapt er 11  — Pac -Man — 241

 FIGURE 11.3 Crystal Castles: end maze.

The ending in Crystal Castles illustrates many of the eight rules of classic game
design, especially Rules 5 through 8. The unique and strange end maze is shown in
Figure 11.3.

After the player completes the end maze, which is easier said than done, there are
some surprise bonus scores, as shown in Figure 11.4.

A hidden timer is used to calculate the time that it took to get to the end. Then a
bonus score is awarded. The faster the player finished the game, the higher the bonus
score, using a simple linear equation. There’s also a bonus for any unused lives at the
end. The game selects one of several built-in congratulatory messages based on the
lives bonus.

Multiple endings are always problematic, especially in large console games,
because they imply that players should replay the game over and over if they wish
to see all the endings. This can be boring to the players unless the game has good
replayability.

Classic Game Design 2E_Ch11_2nd Pass.indd 241 4/26/2019 2:31:03 PM

242 — Clas s i c Game Des ign , Second Edi t ion Chapt er 11  — Pac -Man — 243

 FIGURE 11.4 Crystal Castles: scoring at the end.

 FIGURE 11.5 Crystal Castles: boxes gone wild at the very end.

Following the score display, there’s a short final animation that simply draws
random boxes on the screen, as shown in Figure 11.5. This ending had to fit into just
a few lines of code, so it reused the existing functions for drawing the mazes.

Classic Game Design 2E_Ch11_2nd Pass.indd 242 4/26/2019 2:31:03 PM

Chapt er 11  — Pac -Man — 243

It is very difficult to get to the ending in Crystal Castles. Only a few of the top play-
ers were good enough to get to the end maze, much less finish it. It’s even more difficult
if not impossible to get to the end when the trackball control is replaced with a joystick.

In 1996, a new independent game development company, Actual Entertainment,
was formed by Franz Lanzinger, Mark Robichek, and Eric Ginner to make an unoffi-
cial sequel to Crystal Castles. The resulting game series, Gubble, continues to explore
and expand the maze game category. The last maze of the original Gubble, right
before the ending, is shown in Figure 11.6.

 FIGURE 11.6 Gubble.

If you look closely, you’ll find the letters “JoeC” as part of the playfield. Many maze
games, starting with Mr. Do, used this technique to display text, anything from the name
of the game itself to initials or even subliminal messages. JoeC stands for Joe Cain, one
of the developers of Gubble. Crystal Castles used this technique in several places, and it
even displayed the initials of the current high score holder in this way on the first maze.

Pac-Man is the quintessential classic game. It’s simple yet deep. It and its official
and unofficial sequels live on decades later. It’s fun. Next time you see an original Pac-
Man arcade machine, insert a coin, and be amazed at how great it feels to grab a real
arcade joystick and be Pac-Man.

Classic Game Design 2E_Ch11_2nd Pass.indd 243 4/26/2019 2:31:04 PM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 245244 — Clas s i c Game Des ign , Second Edi t ion

CHAPTER

12 Classic Game Project
Five: Maze Game

It took quite a bit of effort to make the first four classic game projects, so now we’re
going to make something a little different and smaller, a maze game. Don’t forget
Rule 1: Keep it simple. It’s surprising how much fun the deceptively simple games
can be.

DESIGNING A MAZE GAME
You’ll start, as always, with the playfield, in this case a maze. You’ll be using

Blender to make the maze, so there’s no need to sketch the maze right now. The main
character is going to be a sphere. In order to keep things simple, you don’t want to
spend a lot of time creating animated characters. Instead, you’ll use some of Unity’s
built-in shapes and get on with making the game fun. There’s a long history of suc-
cessful classic and modern games that use abstract shapes as characters, so that’s
reasonable justification for “going abstract” here as well.

Following the classic maze game design pattern, the main character is going to col-
lect things in the maze while trying to avoid enemies. The enemies move around and
are trying to attack the player. In addition to the main character, you’ll need to decide
on designs for enemies and things to collect. In keeping with an abstract theme, the
enemies are going to be tumbling cubes and the things to collect are smaller spheres.
It doesn’t get much simpler than that. If there’s a need for differentiating enemies
there’s always color, size, and basic animation available.

Classic Game Design 2E_Ch12_2nd Pass.indd 244 4/25/2019 11:13:02 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 245

This isn’t going to be a direct clone of Pac-man. Your goal is to make an original
game in the same general category as the arcade maze games of the ‘80s. Cloning
famous games can be educational, but it’s even more instructive to make an original
game where you don’t know ahead of time how it’s going to turn out.

VERSION 0.01: THE MAZE
Step 1: Start up Unity and create a new 3D project with the name ClassicMaze-
Game.

Step 2: Create the following folders in the Assets panel: Materials, Models, Pre-
fabs, Scripts, and Sounds.

Step 3: Save and exit.

This is the basic setup for starting a new project that was used in some of your
previous projects. It’s not really necessary to exit Unity, but it’s a good habit to exit
frequently to test that your saves are working correctly. Next, you’ll use Blender to
make the maze.

Step 4: Start Blender.

Step 5: Type s Shift-z 8 <enter>.

This step scales the starting cube by a factor of 8 in the x and y, but not in the z
direction.

Step 6: Select View – View Selected in the 3D View Menu.

Step 7: Press <Tab> to go into edit mode.

Step 8: Type numpad-1 and numpad-5 to get to Front Ortho view.

Step 9: Type z to select wireframe viewport shading.

Step 10: Get into Face Select Mode.

Face Select mode is chosen by clicking on the third cube-shaped icon at the bottom
of the 3D view. The Face Select icon looks like a cube with the front face highlighted
in orange.

Classic Game Design 2E_Ch12_2nd Pass.indd 245 4/25/2019 11:13:02 AM

246 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 247

Step 11: Move the mouse into the 3D panel, then Type a to deselect everything.

Step 12: Type b to get to border select mode. Select the top line of the rectangle.

Step 13: Select Mesh – Edges – Subdivide and set Number of Cuts to 29.

This step created a 30 x 30 grid on the top of the block.

Step 14: Type numpad-7 to go into Top Ortho view.

Step 15: Type z a to exit wireframe mode and deselect everything again.

Your 3D viewport should now look like Figure 12.1.

 FIGURE 12.1 Grid for classic maze game.

Step 16: Select File – Save with name mazegrid.blend in Assets/Models.

You’ve just created a block with a 30 x 30 grid on top. This prepared you for mak-
ing the maze. You’ll select faces from the grid in order to extrude them later on.

Step 17: Press <Shift>right-click to select a few faces for your pathway. Then
repeatedly use border select mode with the b key to add groups of faces to your
selection.

Classic Game Design 2E_Ch12_2nd Pass.indd 246 4/25/2019 11:13:03 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 247

The next two steps do the extrusion where you take the path and push it into
mesh. Think of it as carving a path out of a large block of granite.

Step 18: Type number pad 1 to go back to the Front Ortho view.

In the following step, be sure to type the minus sign in front of the “1.”

Step 19: Type e -1 <enter> to extrude the path down into the mesh by 1 unit.

Step 20: Type numpad-8 (three times) numpad-4 (two times) numpad-5.

Step 21: Use the numpad-minus and numpad-plus keys to zoom in and out. Alter-
natively, you can use the mouse scroll wheel.

Your screen should now look like Figure 12.3.

Compare your creation to Figure 12.2. Your selection doesn’t need to exactly
match that figure, but you should have something similar. You can use Undo while
doing this if something doesn’t go quite right. You can <Shift>right-click on a selected
face to unselect it.

 FIGURE 12.2 Selecting the path.

Classic Game Design 2E_Ch12_2nd Pass.indd 247 4/25/2019 11:13:03 AM

248 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 249

This maze is somewhat experimental. You can’t expect to make a great maze
before having a game to test with. Once you have some basic gameplay, you’ll take
another shot at making the real maze.

Before you bring this maze into Unity, there’s a little bit of housekeeping to do.
In order to have a different color or texture for the maze path as opposed to the maze
walls, it’s best to separate the two into different meshes. This may not be the most
efficient way of doing things, but it’s easy and simple.

Step 22: Type x – faces.

Because you still had the path selected, it was easy to delete it. The floor will later
be replaced by a single large plane in Unity.

Step 23: Select File – Save As… using the name maze_proto.blend. Exit Blender.

It’s time to go back to Unity and see what this maze looks like there.

Step 24: In Unity, select maze_proto in the Models folder.

Step 25: In the Inspector, click on Animations, and uncheck Import Animation.

Step 26: Click on Apply.

 FIGURE 12.3 Extruded maze path.

Classic Game Design 2E_Ch12_2nd Pass.indd 248 4/25/2019 11:13:03 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 249

Step 27: Click on Model, and use Calculate for Normals and Apply.

Step 28: Drag maze_proto from the Assets panel to the Hierarchy panel.

Step 29: Set the Position to (0, 0, 0), if necessary.

Step 30: Use Top perspective view in the Scene panel.

Step 31: Press f to focus the Scene panel onto maze_proto.

Step 32: Move the Main Camera to Position (0, 20, 0), Rotation (90, 0, 0).

The x rotation of 90 points the camera down, and the y position of 20 moves it up
and away from the maze. That’s where you want to have the initial position for the
camera. Later on, you’ll move the camera closer and scroll it to follow the main char-
acter around.

Step 33: Use Front perspective view in the Scene panel.

Your Unity Scene and Game panels should look like Figure 12.4.

 FIGURE 12.4 Setting up the maze prototype in Unity.

Classic Game Design 2E_Ch12_2nd Pass.indd 249 4/25/2019 11:13:04 AM

250 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 251

If you look carefully, you’ll notice that the maze is rotated 180 degrees compared
to the view in Blender. You are going to ignore this issue for now. When the time
comes to design the real maze, it’ll be easy to correct this by rotating the maze or the
camera in the inspector.

It’s time to add better lighting and a material for the maze.

Step 34: Create a Point Light at Position (0, 5, 0). Delete the default Direc-
tional Light.

Step 35: In the Assets – Materials folder, create a light blue material, rename it
to mazemat, and assign it to maze_proto.

Step 36: Add a skybox like you did for the scrolling shooter project. Use the
Newdawn1 Skybox or another skybox of your choosing.

This Skybox is there just for decoration and doesn’t affect gameplay. Compare
your screen with Figure 12.5.

 FIGURE 12.5 The sun rises on the maze.

Classic Game Design 2E_Ch12_2nd Pass.indd 250 4/25/2019 11:13:04 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 251

Almost any skybox would work here, so feel free to substitute another one from
the Asset Store. And yes, it is possible to make your own skyboxes. If you search the
internet for “making your own skybox Unity” you’ll find instructions on how to do that.

The maze needs a floor.

Step 37: In the Hierarchy Panel, select Create – 3D Object – Plane, and rename it
to floor in the Inspector panel.

Step 38: Change the Scale of the floor to (2, 1, 2).

Step 39: Create a material for the floor, make it dark blue, name floormat, assign
to floor.

The maze is looking kind of dark now, so turn up the range of the light.

Step 40: Set the Range of the Point light to 20.

There’s a lot more to creating good lighting than adjusting the range of the one
light. It’s fun to put several lights into the scene and to experiment with colors, ranges,
and intensities. Feel free to do this, if you like.

Step 41: Test and Save.

There’s not much to test here, but it’s still worthwhile to make sure you can run
the game, even though it’s just a static look at the maze. The prototype maze is com-
plete and set up in Unity. You are now ready to create the maze characters.

VERSION 0.02: THE PLAYER
The player will be a sphere. While you might get more control over the mesh by

making it in Blender, the built-in sphere in Unity is fine, so go ahead and use that.

Step 1: In the Hierarchy panel, create a Sphere and rename it to player.

Step 2: Create a green player material, name playermat and assign it to the
player.

Step 3: Change the player Position to (0, 2, 0), Scale (0.4, 0.4, 0.4).

You just placed the player hovering above the maze for now.

Classic Game Design 2E_Ch12_2nd Pass.indd 251 4/25/2019 11:13:04 AM

252 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 253

Step 4: Add Component – Physics – Rigidbody.

Yes, you’re going to leave Gravity for the player.

Step 5: Create a player.cs script and assign it to player. Use the following code:
using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class player : MonoBehaviour

{

// Start is called before the first frame update

void Start()

{

}

float factor = 10.0f;

// Update is called once per frame

void Update()

{

if (Input.GetKey("right"))

{

GetComponent<Rigidbody>().AddForce(Vector3.right * factor);

}

if (Input.GetKey("left"))

{

GetComponent<Rigidbody>().AddForce(Vector3.left * factor);

}

if (Input.GetKey("down"))

{

GetComponent<Rigidbody>().AddForce(Vector3.back * factor);

}

if (Input.GetKey("up"))

{

Classic Game Design 2E_Ch12_2nd Pass.indd 252 4/25/2019 11:13:04 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 253

 FIGURE 12.6 Testing the player control.

GetComponent<Rigidbody>().AddForce(Vector3.forward * factor);

}

}

}

This code lets you control the player with the four arrow keys on your keyboard.
To test this out, do the following steps:

Step 6: Disable the Mesh Renderer for maze_proto by unchecking the box next
to “Mesh Renderer” in the Inspector panel.

Step 7: Run the game.

Your game panel should look like Figure 12.6. Press the four arrow keys and test
that you can control the player.

Step 8: Stop running the game.

Step 9: Enable the Mesh Renderer for maze_proto.

Step 10: Add Component – Physics – Mesh Collider.

Classic Game Design 2E_Ch12_2nd Pass.indd 253 4/25/2019 11:13:05 AM

254 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 255

Step 11: Run the game.

This time you turned on the renderer for maze_proto and added a mesh collider
component. This allows you to move the ball around in the maze. If the player starts
out on top of a blue wall, slowly move it into a maze path and it will drop down.

Step 12: Stop running the game.

In the next step, you’ll initialize the player in the maze rather than floating above it.

Step 13: Change the Position of the player so that the player is initialized in the
maze. Use a y position of 0.5.

Depending on your maze, you may need to adjust the x and z position. A good y
position is 0.5. To find where to initialize the player you can use the Scene panel with
at Top Iso view, select the player, and then move the player around with the Move
Tool until the player is at a good location. For the maze from the book, the new initial
position is (0, 0.5, 0.8).

When you’re done making this adjustment, don’t forget to test.

Step 14: Test the player control again.

Step 15: Save.

In the next section, you’ll create the enemies.

VERSION 0.03: NASTY ENEMIES
The enemies are going to be cubes, but you’re going to use a sphere collider for

them. This makes the cubes appear to be tumbling around.

Step 1: In the Hierarchy panel, create a cube, rename it nasty enemy.

Step 2: Make a red material for the nasty enemy and name it nastymat.

As usual, put the material into the Materials folder and don’t forget to assign the
material to the nasty enemy.

Step 3: Change the Scale for the nasty enemy to (0.4, 0.4, 0.4) and place it onto
the maze.

Classic Game Design 2E_Ch12_2nd Pass.indd 254 4/25/2019 11:13:05 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 255

You use the same technique you used for the player. The y position should be 0.3,
whereas x and z are adjusted so that the nasty enemy is on a path rather than hidden
inside the maze mesh.

Step 4: Add Component – Physics – Rigidbody.

Step 5: Test.

Here is where the real fun begins. The nasty enemy isn’t at all nasty yet, but
just sits there, but if you crash the player into the nasty enemy it reacts and bounces
away. In the next step you’ll use a neat trick to make it tumble.

Step 6: Remove the Box Collider, and add a Sphere Collider in nasty enemy.

To remove the Box Collider, click on the gear icon at the right and select Remove
Component. Feel free to test this, if you wish. The enemy is now tumbling. The next
step makes the enemy move towards the player.

Step 7: Create a nastyenemy.cs C# Script for the nasty enemy and use the following
code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class nastyenemy : MonoBehaviour

{

public float factor = 5.0f;

// Start is called before the first frame update

void Start()

{

}

// Update is called once per frame

void Update()

{

Classic Game Design 2E_Ch12_2nd Pass.indd 255 4/25/2019 11:13:05 AM

256 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 257

Vector3 dir = new Vector3(0, 0, 0);

GameObject player = GameObject.Find("player");

if (player)

dir = player.transform.position - transform.position;

GetComponent<Rigidbody>().AddForce(dir * factor);

}

}

This code is short and effective. At the bottom of the Update function, you can see
an AddForce function call. The variable dir is a vector that stores the 3D direction of
the force that’s going to be applied. The direction is computed to be a vector from the
enemy position to the player position. In other words, this function tells the enemy
object to move directly towards the player, and to do so with a force proportional to
the distance between them.

Step 8: Test.

When you run the game now, the nasty enemy follows the player around like a
dog on an elastic leash. Although you’re using a modern physics engine to implement
it, the resulting movement of the nasty enemy is actually the same as the bowling
balls from Crystal Castles, written over 35 years ago.

Step 9: Drag nasty enemy into the Prefabs folder.

Step 10: Use the Top Iso view in the Scene panel and duplicate the nasty enemy a
few times.

Step 11: Experiment with different starting positions for the enemies.

Step 12: Create a light blue easy enemy material, and assign it to one of the
nasty enemy instances in the Hierarchy. Set the factor to 2 for the easy enemy, and
test it.

It’s now time to add collision detection for the enemy vs. player. This has to be
done a little differently than in the past because you’re using the physics engine.

Step 13: Replace the nastyenemy.cs file with the following code:

Classic Game Design 2E_Ch12_2nd Pass.indd 256 4/25/2019 11:13:05 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 257

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class nastyenemy : MonoBehaviour

{

public float factor = 5.0f;

private Vector3 initPosition;

// Use this for initialization

void Start()

{

initPosition = transform.position;

}

void RestorePosition()

{

transform.position = initPosition;

}

// Update is called once per frame

void Update()

{

Vector3 dir = new Vector3(0, 0, 0);

GameObject player = GameObject.Find("player");

if (player)

dir = player.transform.position - transform.position;

GetComponent<Rigidbody>().AddForce(dir * factor);

}

private void OnCollisionEnter(Collision collision)

{

if (collision.gameObject.name == "player")

Classic Game Design 2E_Ch12_2nd Pass.indd 257 4/25/2019 11:13:05 AM

258 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 259

{

collision.gameObject.transform.position =

new Vector3(0, 0.5f, 0.8);

RestorePosition();

}

}

}

This code is fairly straightforward. When the player collides with an enemy, both
the player and the enemy are sent back to their starting positions. You may need to
change the numbers in the code at the end that repositions the player. This is a bit
abrupt, but it’s good enough for now. We do have a problem with the enemies and the
player getting launched away from the maze as a result of movement that is too fast.
This is a bug you’ll live with for now.

Step 14: Test and save.

You have a pretty good framework for creating a bunch of levels. The enemies
aren’t exactly smart, but that’s OK. It can be fun to try to outwit a bunch of dumb
enemies. In the classic era, it wasn’t possible to have very sophisticated character
movement code and yet it didn’t matter because it was still possible to tune and bal-
ance these games and end up with something incredibly fun and exciting.

In the next section, you’ll be adding dots.

VERSION 0.04: DOTS
You still don’t have a game. All that’s missing is a goal for the player.

Step 1: In Unity, create a Sphere, rename it to dot, Position (0, 0.3, 0), Scale (0.2,
0.2, 0.2) and put it on the maze.

Step 2: Create a white material for it.

Step 3: Create dot.cs and assign it to the dot object. Insert this:
private void OnTriggerEnter(Collider other)

{

Classic Game Design 2E_Ch12_2nd Pass.indd 258 4/25/2019 11:13:05 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 259

if (other.name == "player")

{

Destroy(gameObject);

}

}

Step 4: Select the dot object in the Hierarchy and look at the Sphere Collider in the
Inspector panel. Check Is Trigger.

Step 5: Test that the dot disappears when colliding with the player.

Step 6: Make a dot prefab in the usual manner.

Step 7: Put three dots onto the maze path near the initial player position by dragging
two more instances from the Prefabs directory into the Hierarchy. Check that the Y
coordinate is still 0.3 for all the instances.

Step 8: Test and save.

The three dots should disappear when the player runs into them. Later, during
development, you’ll put many dots out there, but for initial testing and development it’s
better to just have a few dots. The next section shows how to put in some basic sounds.

VERSION 0.05: AUDIO
The sound design for this game is fairly simple, with one new twist. In the previ-

ous projects, the sound effects were typically triggered by collisions. This game doesn’t
have very many collisions, so how about you put in sound effects for each of the four
arrow key controls?

The plan is to go into Audacity and make four similar sound effects for the four
arrow keys, a nice happy sound for when the player picks up a dot, and a sad sound
when the player dies.

Step 1: Start Audacity.

In the next step, to get the NTSC frames time scale, you’ll click on a small arrow
next to the Duration display.

Classic Game Design 2E_Ch12_2nd Pass.indd 259 4/25/2019 11:13:05 AM

260 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 261

Step 2: Select Generate – Chirp…, set Duration to 5 NTSC frames, Sine Wave-
form, Frequency 440, 1320, OK. Press Play to test it (the green arrow).

Your waveform should be about 0.17 seconds long, just right for a short sound
effect. The NTSC frame time scale allows for quick entry of short time durations.

Step 3: File – Save Project As … arrowkeys.aup in the Sounds folder in Assets of
the ClassicMazeGame project.

Step 4: File – Export – Export as WAV with name arrowup.wav in the same
folder.

Step 5: Effect – Change Pitch … -3 semitones. Press Play to test it.

Step 6: File – Export – Export as WAV with name arrowdown.wav in the same
folder.

Step 7: Undo Step 5 by Edit – Undo Change Pitch, then Effect – Change Pitch…
-1 semitones. Press Play to test it.

Step 8: File – Export – Export as WAV with name … arrowright.wav.

Step 9: Effect – Change Pitch … -7 semitones. Press Play to test it.

Step 10: export to arrowleft.wav.

The chirp sound effect is a quick way to make the iconic beeps that were so com-
mon in classic video games. There are just two more effects for collisions.

Step 11a: Select – All, Edit – Delete.

Step 11b: Generate – Chirp, Sine Waveform, Frequency 440 – 5000, Duration
15 NTSC frames. Test.

Step 11c: Select File – Export – Export as WAV with name dot.wav.

Step 12a: Select – All, Edit – Delete.

Step 12b: Generate – Chirp, Sawtooth Waveform, Frequency 1000 – 50, Dura-
tion 15 NTSC frames. Test.

Step 12c: Select File – Export – Export as WAV with name enemy.wav.

Classic Game Design 2E_Ch12_2nd Pass.indd 260 4/25/2019 11:13:05 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 261

There might be a method to this madness. The rising frequency in the chirp makes
a happier sound than a falling frequency shift. To get an authentic retro sound, it
helps to use Sawtooth and Sine wave forms. Those simple wave forms were easily
generated and commonly available in the early sound chips.

Step 13: In Unity and test the sound effects in the Sounds folder.

Step 14: In dot.cs, insert the following two lines code:
public AudioClip dotsound;

AudioSource.PlayClipAtPoint(dotsound, transform.position, 1.0f);

The first line goes before the Start function, the second line goes before the
Destroy function call in the OnTriggerEnter function.

Step 15: For the dot prefab, assign the dot sound for the Dotsound property in the
Inspector using the bullseye icon at the far right and then test the sound in the game.

Step 16: Add the enemy sound in a similar manner to Steps 14 and 15. Test.

Step 17: Insert the following line of code to player.cs immediately before the
Start function:

public AudioClip aleft, aright, aup, adown;

This line declares four variables all at once. It’s usually a good idea to give each
variable its own line, but here the four variables are very similar, so it’s OK to group
them together like this. Your goal is to make your code maintainable and clear. That
is more important than saving space.

Step 18: Insert the following code to player.cs at the beginning of the Update function:
if (Input.GetKeyDown("right"))

{

AudioSource.PlayClipAtPoint(aright, transform.position);

}

if (Input.GetKeyDown("left"))

{

AudioSource.PlayClipAtPoint(aleft, transform.position);

}

Classic Game Design 2E_Ch12_2nd Pass.indd 261 4/25/2019 11:13:05 AM

262 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 263

if (Input.GetKeyDown("up"))

{

AudioSource.PlayClipAtPoint(aup, transform.position);

}

if (Input.GetKeyDown("down"))

{

AudioSource.PlayClipAtPoint(adown, transform.position);

}

Step 19: Assign the four arrow sounds to the associated properties for the player.

This code looks similar to the other half of the Update function, but there’s an
important difference. The GetKeyDown function tests for a transition of the key
from not-pressed to pressed down. The GetKey function just tests to see if the key
is pressed, so it keeps doing the AddForce function calls every frame whenever the
particular key is pressed.

Step 20: Test and save.

Much more can be done with sound in this game, of course. The reader is encour-
aged to experiment with additional sound effects and background sounds.

The next section adds scoring, levels, and difficulty ramping.

VERSION 0.06: SCORING AND LEVELS
Scoring is easy, but adding levels takes effort. The tricky part is to restore the dots

for the next level. You’re going to dive in and do this all at once in the following steps.

Step 1: Select GameObject – Create Empty, rename it to scoring.

Step 2: Create the scoring.cs script for scoring and use the following code:
using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class scoring : MonoBehaviour

{

Classic Game Design 2E_Ch12_2nd Pass.indd 262 4/25/2019 11:13:05 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 263

public static int score;

public static int lives;

public static int dots;

public static int totaldots;

public static int level;

public static bool initlevel;

// Start is called before the first frame update

void Start()

{

score = 0;

lives = 3;

totaldots = 3; // update when changing number of dots in level

dots = totaldots;

level = 1;

initlevel = false;

}

// Update is called once per frame

void Update()

{

if (dots == 0)

{

initlevel = true;

level++;

}

if (dots == totaldots) initlevel = false;

}

private void OnGUI()

{

GUI.Box(new Rect(60, 30, 90, 30), "Score: " + score);

GUI.Box(new Rect(Screen.width - 130, 30, 90, 30),

 "Lives: " + lives);

Classic Game Design 2E_Ch12_2nd Pass.indd 263 4/25/2019 11:13:05 AM

264 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 265

GUI.Box(new Rect(Screen.width / 2 - 100, 30, 200, 30),

 "Dots: " + dots);

GUI.Box(new Rect(60, Screen.height - 50, 90, 30),

 "Level: " + level);

}

}

Step 3: Replace the code for dot.cs with the following:
using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class dot : MonoBehaviour

{

public AudioClip dotsound;

// Use this for initialization

void Start()

{

}

// Update is called once per frame

void Update()

{

if (scoring.initlevel == true) Revive();

}

void Suspend()

{

gameObject.transform.position = new Vector3(transform.

� position.x, 20.0f, transform.position.z);

}

Classic Game Design 2E_Ch12_2nd Pass.indd 264 4/25/2019 11:13:05 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 265

void Revive()

{

gameObject.transform.position = new Vector3(transform.

� position.x, 0.3f, transform.position.z);

scoring.dots++;

}

private void OnTriggerEnter(Collider other)

{

if (other.name == "player")

{

AudioSource.PlayClipAtPoint(dotsound,

transform.position, 1.0f);

Suspend();

scoring.dots--;

scoring.score += 10;

}

}

}

Step 4: In player.cs replace the Start function with this code:
void InitPosition()

{

transform.position = new Vector3(0.0f, 0.3f, 0.5f);

GetComponent<Rigidbody>().velocity = new Vector3(0, 0, 0);

}

// Use this for initialization

void Start()

{

InitPosition();

}

Classic Game Design 2E_Ch12_2nd Pass.indd 265 4/25/2019 11:13:05 AM

266 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 267

Step 5: Insert the following line at the end of the Update function in player.cs:
if (scoring.initlevel) InitPosition();

Step 6: Read the new code, try to understand it and test it.

The essential idea behind this code is to suspend the dots instead of destroying
them. They are suspended by placing them behind the camera by setting the Y coor-
dinate to 20, which makes them invisible. This makes revival really easy. You simply
change the Y coordinate back to 0.3. This code also adds level advance when all the
dots are collected, and it adds 10 points to the score whenever a dot is collected. The
lives counter doesn’t work just yet, but you can see the display for it.

Next is a game over screen. You’ll do this just like in the last chapter.

Step 7: Insert the following code into the OnGUI function in scoring.cs:
GameObject player = GameObject.Find("player");

if (!player)

{

GUI.Button (new Rect (Screen.width/2 - 200,

Screen.height/2 - 50,

400, 50),"Game Over");

}

if (scoring.level == 3)

{

GUI.Button (new Rect (Screen.width/2 - 200,

Screen.height/2 - 50,

400, 50),"The End");

}

Step 8: Insert the following code at the end of the Update function in player.cs:
if (scoring.lives == 0) Destroy(gameObject);

if (scoring.level == 3) Destroy(gameObject);

Classic Game Design 2E_Ch12_2nd Pass.indd 266 4/25/2019 11:13:05 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 267

This code destroys the player when he’s out of lives or when the player reaches the
ending. Yes, the ending is hardwired at level 3! That’s too soon for the real game, but
it’s OK for now when you’re testing.

Step 9: Insert the following line of code into nastyenemy.cs into the collision section
where the player gets repositioned to the start:

scoring.lives--;

Step 10: Test the ending and the game over screens.

Now a one-liner for adding difficulty ramping.

Step 11: Replace the AddForce line at the end of the Update function in nastyen-
emy.cs with the following:

GetComponent<Rigidbody>().AddForce(dir * factor

* (0.6f + 0.2f * scoring.level));

This code ramps the force applied to the enemies, making them more aggressive
on higher levels.

Figure 12.7 shows a screen capture when testing the game at level 1.

 FIGURE 12.7 Testing the classic maze game.

Classic Game Design 2E_Ch12_2nd Pass.indd 267 4/25/2019 11:13:06 AM

268 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 269

Step 12: Test and save.

You now have a framework for making the game into something special, your
very own creation. The next and final development section gives you some pointers on
where to take things from here.

VERSION 0.07: TUNING
It may not seem like it, but you’re almost ready to release this game. The first

step will implement a scrolling camera, very much like you did in the scrolling shooter
project. It also reveals the 3D nature of this game.

Step 1: Create a camera.cs script for the Main Camera with the following Update
function:

void Update()

{

GameObject player = GameObject.Find("player");

if (player)

{

transform.position = new Vector3(

player.transform.position.x,

transform.position.y,

player.transform.position.z

);

}

}

Step 2: For Main Camera, set the Field of View to 40, and the Position to (0, 10,
0.8).

Your x and z coordinates should match the starting coordinates of the player.

Step 3: Test.

You can now see that the game looks pretty good this way, but there is a prob-
lem with the enemies. They are cutting into the maze walls because of the strange

Classic Game Design 2E_Ch12_2nd Pass.indd 268 4/25/2019 11:13:06 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 269

combination of using a sphere collider for a cube. The problem is easily remedied by
adjusting the Scale of the object and the radius of the sphere collider.

Step 4: For the nasty enemy prefab, make it a bit smaller by changing the Scale to
(0.3, 0.3, 0.3). Also set the Radius of the Sphere Collider to 0.7. Test the effect of this
change.

Step 5: Increase the number of dots to at least 20 and spread them throughout the
maze. Modify the code to handle this.

Step 6: Make the four enemies different colors.

Your Unity screen should look similar to Figure 12.8.

 FIGURE 12.8 Classic maze game in Unity.

Step 7: Test it now. Can you get to the end?

The game is quite challenging now. If the game feels too hard to you, make the
enemies slower, or change the ramping equation. The game is ready for release, or
is it? There’s always more to be done. The most obvious next step would be to make
new mazes in Blender. Maybe there’s a bug or two lurking in the game, ready to be

Classic Game Design 2E_Ch12_2nd Pass.indd 269 4/25/2019 11:13:07 AM

270 — Clas s i c Game Des ign , Second Edi t ion Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 271

discovered. There’s definitely room for exploration with the enemy AI. Check out the
exercises at the end of this chapter for more ideas on how to expand the game.

VERSION 1.00: RELEASE AND POSTMORTEM
Finishing a game is just the first step in the release process. For commercial proj-

ects, the choice of target platforms, distribution, and marketing are just as critical
to a game’s success as the game itself. This classic maze game can be viewed as an
experimental side project. As such, it can be released to friends and family. It’s great
to see their reactions. If you’re lucky, they’ll inundate you with new ideas, some of
them good, some not so good, and some won’t be new at all because you thought of
them yourself earlier. Take notes of all the ideas, and try out the ones that are easy
to try out.

This classic maze game was surprisingly easy to make. The original choice of
using abstract characters really paid off in terms of speed of development. The tech-
nique of using placeholder graphics and sound to develop gameplay first is extremely
useful. It’s easy to replace graphics or sound after the gameplay is developed. Making
your final art and sound first, and then trying to make a fun game out of it is much
riskier and potentially very expensive.

The project turned into an original maze game without even trying all that hard.
There’s very little code, just a maze, a few characters, and some simple sound effects.
The game is fun just the same, just as many of the classic arcade games of the seven-
ties and eighties.

You took some serious shortcuts in development, and it shows in a few spots.
People expect to see a bunch of different mazes, not just a single maze. The abrupt
warping of the player when he dies is jarring, and the game really could use more
characters. For a prototype, experimental game, these shortcuts are acceptable. It’s
up to you to take the development to the next level. After working through all of the
projects, you know enough to do just that.

Classic Game Design 2E_Ch12_2nd Pass.indd 270 4/25/2019 11:13:07 AM

Chapt er 12  — Clas s i c Game Pro jec t F ive : Maze Game — 271

EXERCISES
1.	Use Blender to build a 30 x 30 maze. Use the same technique as your first maze,

but experiment with different paths. Put in an open area, or a long spiral with a
dead end. Then integrate the new maze into the game with the name Maze_2.

2.	Use Blender to build a 20 x 20 maze and a 50 x 25 maze. Stretch the maze
in Blender so that the width of the maze path matches the prototype maze.
Integrate both mazes into the game. Do this by putting both mazes into the scene
and moving the player from the first maze to the second when the player removes
all the dots from the first scene.

3.	Replace the main character graphics with a monkey head. Use Blender to make
the monkey head. Optional: Rotate the monkey head to face the current direction
of movement.

4.	Put in a state machine for the game. When the player dies, have all enemies and
the player go back to their starting positions, and put in a three-second delay
before gameplay starts again. Optional: During the delay, smoothly move the
camera to the initial position.

5.	Put in a new character, similar to a bonus fruit in Pac-Man. Use Blender to make
graphics for it, have it appear at a fixed spot for a limited time, and make it worth
1000 points.

6.	Create four different character shapes for your four characters. Do this by
adjusting the x, y, and z scales of the renderers, or by replacing the shape with a
capsule or a cylinder.

7.	Modify nastyenemy.cs to have the enemy aim at a 2D fixed offset from the player.
Make the offset variables public vars and assign different offsets to the different
enemies.

8.	Record yourself saying “waka waka” and take the resulting audio file into
Audacity. Modify the recording in Audacity using one or two effects. Then
save the sound with the name waka.wav and put it into the game as a looping
background track.

Classic Game Design 2E_Ch12_2nd Pass.indd 271 4/25/2019 11:13:07 AM

 Ep i logue — 273272 — Clas s i c Game Des ign , Second Edi t ion

Epilogue

It’s time to review your achievements. You took a closer look at some of the most
influential games from the classic arcade era and used them as inspiration for
your own creations. You built five classic games from scratch. You got a taste of
what it’s like to be a game developer. Last, and certainly not least, you got a step-
by-step practical introduction to Unity, Blender, GIMP, and Audacity.

SO MANY GAMES, SO FEW PAGES
Tough choices had to be made when deciding which classic video games to feature

in this book. What about Asteroids, Missile Command, Defender, Q*bert, and Crys-
tal Castles? And then, of course, we shouldn’t forget the racing games, video pinball,
Tempest, and Venture.

Some major aspects of game design had to be mostly ignored due to time and
space constraints. The worst of these omissions are multiplayer, theming, and story
development. Entire books can be and have been written about these subjects.

Multiplayer was typically ignored or handled poorly in the early years of video
game development, with the exception of Pong. Oddly, the first and most famous
arcade game from that time period was a two-player simultaneous game, only to
have single-player games dominate the video game scene for dozens of years until the
emergence of arcade fighting games.

Story-telling was present in the classic era, but for the most part the hardcore
players didn’t care about the stories. If there was a story at all, it was often tacked

Classic Game Design 2E_Ch13_Epilogue_2nd Pass.indd 272 4/25/2019 11:21:31 AM

 Ep i logue — 273

on by the marketing department and not really an integral part of the game. Good
stories make it easier to sell games, but in games such as Pac-Man or Space Invad-
ers, the game doesn’t depend on the player knowing anything about the story. While
there are plenty of story-driven games nowadays, back in the day, the stories tended
to be ignored by the true gamers. The players cared mainly about how far into the
game they could play and their high scores. Most games didn’t have an ending, which
makes for a poor story.

NOVELTY
Here’s the last and possibly most important rule of all:

In the ‘70s and ‘80s, novelty was king. It was taken to an extreme by the coin-op
industry, especially Atari coin-op. Atari had an internal edict that forced all new coin-
op products to be as different as possible from everything that came before. Sequels
did happen, but because they usually performed below expectation—a prime example
being Asteroids Deluxe—Atari management concluded that novelty was an essential
ingredient when trying to develop a hit game.

Of course, there were a few really big exceptions, such as Ms. Pacman and Star-
gate, but in general, the public clamored for novelty, and the industry responded.

Decades later, novelty is much more difficult to achieve, and sequels are often more
successful than the originals. But let’s not forget that novelty can really add to the fun,
especially when you combine it with good design and high-quality engineering.

HOW MODERN GAMES ARE
INFLUENCED BY THE CLASSICS

It may be amusing to look at these quaint old games, but do they still matter? Isn’t
it all just ancient history? Modern games may seem much more advanced, larger, or

Rule 8: Novelty Rule: Make it new!

Classic Game Design 2E_Ch13_Epilogue_2nd Pass.indd 273 4/25/2019 11:21:32 AM

274 — Clas s i c Game Des ign , Second Edi t ion Epi logue — 275

even better (whatever that means) than the old classics, but if you take a closer look,
you’ll see the influence of the classics in almost every mainstream modern game.

The single most successful game category during the past decade is without a
doubt the First-Person Shooter or FPS. When you play one or two of these games,
you’ll immediately see the connection with the classic 2D shooters. When you sum-
marize it in one sentence, it’s essentially the same game mechanic: Shoot them before
they shoot you. Modern FPS games implement this with cutting-edge 3D and an epic
and complex story thrown in to keep you entertained and motivated in the process.

The basic lessons of classic game development still apply today and for the fore-
seeable future: Fix your bugs early, make the game fun first before spending too much
time polishing the art, and most importantly, test and play your game.

The variety of the classic game spectrum is striking. The game designers from
that era were continually innovating and weren’t afraid to put crazy new features
into their games. This happened, in part, because the designers worked in isolation
on different continents and hidden away in secret labs without an internet connec-
tion. Nowadays, huge economic pressures at major game studios make it riskier for
them to do something radically different. Fortunately, there’s a healthy community of
independent game developers who aren’t quite as afraid of change.

It’s a useful exercise to try to design a game that has little or nothing in common
with any classic video game. Consider the “null game.” It’s a game where every player
ends up with a score of zero regardless of what happens during the gameplay. It’s
mostly a theoretical construct, kind of like the old joke game “52 pickup.” Two similar
games are the “you win” game and the “you lose” game. In these games, there’s also
no gameplay and the winner, i.e., the score, is predetermined.

You’re probably thinking that it’s completely crazy to even talk about the “null
game,” or the “you win” game. But, if you think about it, when a casual player buys
some AAA FPS console title because a friend told him it’s great, plays it for a few
hours and then gives up, isn’t that a null game? Didn’t that player just treat the game
as an interactive experience rather than the game it was designed to be?

Classic Game Design 2E_Ch13_Epilogue_2nd Pass.indd 274 4/25/2019 11:21:32 AM

 Ep i logue — 275

From a strictly monetary perspective, the single-player classic arcade games were
“you lose” games in the sense that you always lost a quarter. But of course that’s ignor-
ing the fairly high importance placed on the numerical score by the classic designers.
The classic designers suffered somewhat from the delusion that their players cared
about the score. In reality, most players played for fun and didn’t really care about
the score. Eventually, many of the home console games caved and dropped numerical
scoring. Then, to cater to the more fanatic players, they brought scoring back dis-
guised as achievements.

Pretty soon, another 30 years will have flown by and game design will likely have
evolved in unpredictable directions. But, games are games. It’s my humble opinion
that the lessons learned in this book will continue to be useful to future generations
of game designers.

Classic Game Design 2E_Ch13_Epilogue_2nd Pass.indd 275 4/25/2019 11:21:32 AM

 Appendix I — Introduct ion t o C# for Beg inners — 277276 — Clas s i c Game Des ign , Second Edi t ion

Appendix I: Introduction
to C# for Beginners
This appendix is a short and quick introduction to C# to help prepare you for
the programming parts of this book. Feel free to skip this appendix if you’re an
experienced C# programmer.

PROGRAMMING IS EASY
Programming is the way humans talk to computers and make them do what they

want. Computers can seem to be very stupid, but they’re fast, and they have a very
good memory. Programming has evolved over the years from hitting toggle switches
to creating punch cards to writing text files using increasingly sophisticated computer
programming languages.

Programming is easy because computers do exactly what we tell them to do, no
more and no less. In that sense, programming is very much like playing the piano. It’s
easy to hit the keys on the piano and to make the individual notes sound good, but to
string the notes together and play piano at a professional level takes years of practice
and dedication.

To get started with programming, you need to first learn some of the basic vocabulary.
Programming involves the writing of code. Code is just another word for the programs,
which in turn are text written using the rules of a particular programming language.

Code is broken up into statements. Each statement tells the computer to do some-
thing or to set up something for use in other statements. Optionally, there can be

Classic Game Design 2E_Ch14_App-I_2nd Pass.indd 276 4/25/2019 11:21:13 AM

 Appendix I — Introduct ion t o C# for Beg inners — 277

comments that don’t affect anything but are there to annotate and document. The
program is the collection of all the statements, usually spread out over several text
files. In C#, the text files have the .cs extension rather than .txt but they are still text
files. Once you’re done writing the program you can run it. You hope that the program
does what you intended. Very large programming projects can have millions of lines
of code written by hundreds of programmers. Fortunately, the classic game program-
ming projects from this book are much smaller than that, encompassing at most a few
hundred lines written by you.

INTERPRETED OR COMPILED?
C# (pronounced C sharp) is the programming language used in this book. It is a

dialect of the C programming language, so if you’re familiar with C or other dialects
like Java, PHP, Perl, or C++, you’ll notice the similarities.

C# is usually an interpreted language, as opposed to C and C++, which are com-
piled. The difference between interpreted and compiled is that an interpreted program
can be run immediately after a change is made to the program, whereas a compiled
program needs the time-consuming additional step of building an executable version
of the program before running it.

The main advantage of an interpreted program is that you don’t have to wait
for a compilation step before running the program. Also, interpreted programs allow
for the possibility of changing the program “on the fly,” i.e., right in the middle of
program execution. Compiled programs tend to run faster, but in recent years this
has become less of an issue due to vast improvements in processor speed and the fact
that the processors tend to be so busy doing other things that the performance of the
scripts is usually unimportant. This is one reason why the developers of Unity chose
interpreted languages rather than compiled languages.

After this general introduction, it’s time to look at the basic elements of program-
ming.

Classic Game Design 2E_Ch14_App-I_2nd Pass.indd 277 4/25/2019 11:21:13 AM

278 — Clas s i c Game Des ign , Second Edi t ion Appendix I — Introduct ion t o C# for Beg inners — 279

NUMBERS AND STRINGS
Numbers are the real foundation of programming games. That’s because num-

bers are used to count things, to measure the locations of objects, to describe the
graphics, audio, and even the gameplay logic in your games. Strings are sequences of
characters like “Hello World!” for example. In game programming, strings are typi-
cally used for messages, names of characters, or anything else that needs to be dis-
played for the player.

There are two main categories of numbers in games: integers and floating-point
numbers.

Integers are whole numbers without fractions, for example 3, 1892, or -17. Inte-
gers can be negative, positive, or zero. You can write +3 or just 3 to represent the
positive integer three.

In programming, integers are used to count things. In game programming, inte-
gers typically keep track of the score in a game, or statistics such as lives or levels.

Floating point numbers are numbers with fractional parts, such as 3.452 or
-12000.031. Fractions such as ¼ are not directly used in most game code. Instead,
you would use 0.25. Floating point numbers are used to represent the approximate
position, speed, or length of objects, for example. Floating point numbers can also be
entered into code with an exponent using the letter “e.” For example, we can write
1.425e20, which is an abbreviation of 1.425 times 10 to the 20th power.

Yes, there are limitations to both integers and floating point numbers because
computers are finite machines. It would be inefficient to allow for really huge num-
bers because they are rarely used in practical applications. In C#, it is possible to go
up to 64 bits worth of precision for integers and floating point numbers. In this book,
you’ll only use 32-bit integers and 32-bit floating point numbers. 32-bit signed inte-
gers have a range of about minus two billion to plus two billion. You need to be aware
of this if you plan to count things that might get larger than that. If your integers are
going to be less than 9 digits long, you’re fine with 32 bits. For 32-bit floating point
numbers, the limit is 10e38 with seven digits of precision.

Classic Game Design 2E_Ch14_App-I_2nd Pass.indd 278 4/25/2019 11:21:13 AM

 Appendix I — Introduct ion t o C# for Beg inners — 279

It’s important to realize that in code there is a difference between 3 and 3.0. The
“3” by itself is the integer 3. “3.0” is a floating point number. In math and science, those
two numbers are considered to be exactly the same, but not in computer code. The dif-
ference shows up when considering expressions such as 9/4. Because both 9 and 4 are
integers, the result after the division is also an integer, rounded down to the closest
integer, which happens to be 2. However, 9.0/4.0 results in the floating point number
2.25, just what you would expect.

There’s one more issue when it comes to floating point numbers in C#. You’ll
notice that C# game code often has the letter “f” at the end of floating point numbers,
for example 3.14159f rather than 3.14159. The f is an indicator that the number uses
up 32 bits rather than the C# default 64 bits. The built-in Unity functions tend to use
32-bit floating point numbers, so in order to be compatible with them all code in this
book uses 32-bit floats.

Strings are sequences of characters. In Unity the characters are Unicode, the
current standard for encoding international characters. Back in the very old days,
when memory was at a premium, characters used 6 bits, which was just enough for
26 letters, 10 digits, and a few special characters. Unicode characters use a variable
number of bits, ranging from 8 to 32.

Strings are typed into code by surrounding the characters by double quotes, “Hello
World!” for example. This string has 12 characters. That’s right, the space counts as
a character. You will sometimes see escape sequences in strings such as “This is line
1\nfollowed by line 2.” The backslash allows for the entry of special characters such
as the new-line character. The string “a\nb” has three characters: a, the new-line
character, and b.

VARIABLES AND VARIABLE NAMES
Numbers are stored in variables. Variables have names such as “position” or

“color.” Unlike mathematicians and scientists who tend to use single letters for vari-
ables, programmers often use longer variable names. This helps in remembering
what all those variables are supposed to represent.

Classic Game Design 2E_Ch14_App-I_2nd Pass.indd 279 4/25/2019 11:21:13 AM

280 — Clas s i c Game Des ign , Second Edi t ion Appendix I — Introduct ion t o C# for Beg inners — 281

In C#, variable names must start with a letter and capitalization matters, i.e.,
“Length” and “length” aren’t the same variable. Variable names may not contain
spaces, so this is why you’ll see variable names such as BallSpeed or MyLongVari-
ableName. Other ways of writing variable names you might encounter are ball_speed
or ballSpeed. It’s important for you to develop a good eye for spelling and capital-
ization. Countless hours of programmer productivity have been lost because of mis-
spelled variable names.

In many programming languages, including C#, variables must be declared
before they can be used. A variable declaration is a statement that tells the program
some initial information about the variable. Think of variables as cardboard boxes
with giant labels on them. The labels are the variable names, and the contents are
the variable values. The declaration is a statement that puts the label onto the box.
The declaration also specifies the type of items that are allowed into the box. Here are
some samples of variable declarations in C# followed by some code that uses them:

int Score;

float Speed;

string PlayerName;

bool isAlive;

Score = 0;

Score = Score + 100;

Speed = 54.9f;

PlayerName = "Joe";

isAlive = true;

Boolean variables are used in programming logic and can take on two values:
“true” and “false.”

Sometimes it’s convenient to initialize variables at the same time as declaring
them. In C#, this is done, for example, as follows:

int Score = 100;

float Speed = 70.0f;

Classic Game Design 2E_Ch14_App-I_2nd Pass.indd 280 4/25/2019 11:21:13 AM

 Appendix I — Introduct ion t o C# for Beg inners — 281

string PlayerName = "Joe";

bool isAlive = true;

WHITESPACE
Whitespace is a programmer’s term for spaces, tabs, and linebreaks. In most, but

not all programming languages, including C#, all whitespace is equivalent. So, for
example:

x = 2 + 2; y=2+x;

and
x=2+2;

y=2+x;

have exactly the same meaning. It takes a little practice to learn where it’s OK to
insert whitespace. For example, the following statements are not the same:

MyVariable = true;

My Variable = true;

This is because variable names are not allowed to contain whitespace. The second
line is invalid and would cause a compiler error. It is OK to insert whitespace between
parts of arithmetic expressions, for example: X + 2

Whitespace is useful for making your code look nice. It’s a good idea to avoid tabs
because tab settings can change, thus making pretty code look ugly simply by chang-
ing the tab settings. It’s best to avoid this problem by using spaces instead of tabs in
your code.

STATEMENTS AND SEMICOLONS
Statements are usually groups of expressions ending with a semicolon. For

example,
X = 2;

Classic Game Design 2E_Ch14_App-I_2nd Pass.indd 281 4/25/2019 11:21:13 AM

282 — Clas s i c Game Des ign , Second Edi t ion Appendix I — Introduct ion t o C# for Beg inners — 283

is an example of a simple statement. Why do we have that semicolon at the end? Well,
periods are used in numbers and complex variable expressions, so the next best thing
is a semicolon. We need the semicolon to separate statements from one another. For
example,

x = 2; y = 3; z = 4;

is a single line of code with three statements in it.

COMPUTATIONS
Computers are really just fancy programmable calculators. Let’s learn how to add,

subtract, multiply, and divide.
x = 2+3;

x = 12-3;

x = 2*12;

x = 7/2;

x = 7.0f/2.0f;

Those are the four common computations. The only strange one is multiplication,
which is usually done with the star special character on your computer keyboard, or
Shift-8. The results of the above computations are 5, 9, 24, 3, and 3.5. The 7 divided
by 2 results in a 3 because the inputs are integers.

FUNCTIONS AND FUNCTION CALLS
Functions are a very powerful way to group computations together. Here is an

example:
void DoubleAndIncrementScore()

{

score = score * 2;

score++;

}

score = 1;

Classic Game Design 2E_Ch14_App-I_2nd Pass.indd 282 4/25/2019 11:21:13 AM

 Appendix I — Introduct ion t o C# for Beg inners — 283

DoubleAndIncrementScore();

DoubleAndIncrementScore();

DoubleAndIncrementScore();

This code fragment doubles and increments the score three times. The function
definition resides between two curly brackets; the three function calls can occur any-
where else in our code. The function calls change the score from an initial value of 1
to 3, then 7, and finally 15.

You are now ready to watch the following video:

https://unity3d.com/learn/tutorials/topics/scripting/variables-and-functions

This video will give you additional basic examples of functions and variables. Feel
free to explore some of the many other video tutorials available at the Unity website,
for example https://unity3d.com/learn/tutorials/s/scripting

LOOPING
Loops are a great way to do repetitive task. Here is a quick example:
int score = 1;

for (int i=0; i<4; i++)

{

score = score * 2;

}

This sequence of code sets the variable score to 1, then doubles it four times. The
final value of score is 16. The variable i is set to 0 at the beginning of the loop and
is incremented as long as it stays less than 4. You can use the index variable in the
loop, for example like this:

int score = 1;

for (int i=0; i<4; i++)

{

score = score + i;

}

The final result of this computation is 1+0+1+2+3 = 7.

Classic Game Design 2E_Ch14_App-I_2nd Pass.indd 283 4/25/2019 11:21:13 AM

284 — Clas s i c Game Des ign , Second Edi t ion Appendix I — Introduct ion t o C# for Beg inners — 285

LEARNING TO CODE
You’re now almost ready to start coding. The only way to really learn how to code

is to code. A great way for beginners to learn is to follow along with the step-by-step
instructions throughout the book. Don’t yield to the temptation of just cutting and
pasting the code from someplace rather than typing it in. Only by typing each and
every line yourself will you experience the joys, thrills, and spills of programming.

If you’re a poor typist, stop reading right now and spend a few hours learning the
basics on how to touch-type. If you’re hunting and pecking with two fingers, you’re
needlessly handicapping yourself. Most good professional programmers can type at
least 50 words per minute. Some are ridiculously fast and can type code faster than
you can read it. A famous game developer with over 30 years of coding experience was
asked recently which programming course he had found most useful. He immediately
answered that it wasn’t a programming course at all, but rather the typing course
he took as a kid at a local vocational school. These days it’s easy to find free typing
tutorials and lessons online. Even if you’re not aiming to become a professional pro-
grammer, touch-typing is a valuable skill if you plan on using a computer keyboard
with any frequency.

You might consider yourself an accurate typist, but nobody’s perfect. Typos are a
fact of life for all programmers. Even if you’re a top-notch typist, you’re not going to
be 100% perfect. All it takes is one single unlucky typo, and your amazing program
turns into something completely broken. This isn’t like writing an email, where a typo
here or there doesn’t really matter. Fortunately most typos result in an error that
is automatically detected by the programming environment. Sometimes though, a
simple typo can result in a bug that can only be found and fixed via extensive testing.

THE CODE IN THIS BOOK
The code in this book is designed to be accessible to beginners. There are no

advanced coding concepts here, just some assignment statements, loops, a little bit
of easy math, and a few functions here and there. There are places that might be

Classic Game Design 2E_Ch14_App-I_2nd Pass.indd 284 4/25/2019 11:21:13 AM

 Appendix I — Introduct ion t o C# for Beg inners — 285

puzzling to a beginner. That’s quite alright. Your goal isn’t to understand every line
of code immediately, but rather to follow along as best you can and to improve your
understanding gradually. After reading this appendix, you are ready to dive in and
do the programming steps in this book. If you’re new to it, it’ll take some patience and
perseverance, but there’s no feeling quite like writing code, fixing the inevitable bugs,
and then having it do exactly what you want.

Classic Game Design 2E_Ch14_App-I_2nd Pass.indd 285 4/25/2019 11:21:13 AM

286 — Clas s i c Game Des ign , Second Edi t ion

Appendix II: Eight Rules
of Classic Game Design
Rule 1: Simple Rule: Keep it simple.

Rule 2: Immediate Gameplay Rule: Start gameplay immediately.

Rule 3: Difficulty Ramping Rule: Ramp difficulty from easy to hard.

Rule 4: Test Rule: Test the game to make sure it’s fun.

Rule 5: Score Rule: Score equals skill.

Rule 6: Experts Rule: Keep experts interested.

Rule 7: Ending Rule: Make an ending.

Rule 8: Novelty Rule: Make it novel.

Classic Game Design 2E_Ch15_App-II_2nd Pass.indd 286 4/25/2019 11:21:44 AM

Appendix I I I — About the DVD — 287

Appendix III:
About the DVD
The DVD contains project files used for creating the games in this book. Please
refer to the README file on the DVD for a detailed listing of the contents and
further instructions on how to navigate the project files.

The DVD contains image files that correspond to the figures in the book. These
image files are provided as an additional resource to the reader.

Last but not least, check out the reference gameplay videos of the projects in this
book, and the PC and Mac executables. You might find it helpful (though it’s a bit
of a spoiler) to look at the videos and play the games before, during, or after you go
through the step-by-step creation process.

The files on the DVD are compatible with most Windows and Mac computers.

Classic Game Design 2E_Ch16_App-III_2nd Pass.indd 287 4/26/2019 2:41:48 PM

288 — Clas s i c Game Des ign , Second Edi t ion Inde x — 289

A
Absolute Grid Alignment, 198
“Add Component” box, 17
AddForce function, 58, 262
AI. See artificial intelligence
aliencounter variable, 157
alien death sequence, 149–153
aliens, 126–133
alienscript, 136, 140, 152
alien shots, 133–138
alpha, 113, 116, 118
arcade shooter genre, 167–168
arcade video games, 2–4, 41
Arkanoid, 74
arrowprefab, 123–125
artificial intelligence (AI), 239–240
assets, 33
Assets panel, 19, 33
Asteroids, 3, 40, 106, 238
Audacity, 61–62, 259

background soundtrack using, 229
making sound effects, 28–31
open-source tool, 4–6

audio, 61–64, 229–231, 259–262
B
background soundtrack, using

Audacity, 229
ball, 57–59
ball movement, 83–86
BallRelaunch, 60, 98, 101
BallScript, 63–65, 83–84
BallScript.collflag variable, 96
BallScript.launchtimer

variable, 89
Bitmasters, Day One, 44–45
black box testing, 135
Blender, 186

flying saucer model in, 217–218
initial screen, 26
making 3D objects, 25–28
open-source tool, 4–6

bonus score, 241
Boo languages, 17
boolean variables, 280
bool variable, 96
Bounce material, 38
box collider, 59, 60, 66, 87, 132,

137, 219, 227, 255
box modeling, 179
Breakout, 106

classic arcade video games, 3, 71
coin-op version, 72
sequels, 74–75

Breakout, Atari, 71–74
BrickMaker object, 91–93
bricks, 91–95
“bricks balls game” videos, 75
Bucket Fill tool, 24
built-in trig functions, 221
Bushnell, Nolan, 41

C
C# (C sharp), 17–21, 277

keywords, 21
camera, 50, 194, 230
capping the score, 105–106
CGD. See Classic Game Design
checkpoints, 166
chirp sound effect, 260
classic arcade video games, 2–4, 67
Classic Brick Game

ball movement, 83–86
bricks, 91–95
collisions, 86–91
playable, 95–96
player, 80–82
playfield, 77–80
postmortem, 102–103
release, 102–103
scoring, 96–98
title screen, 99–102

Classic Game Design (CGD) rule, 11
difficulty ramping rule, 73, 106

INDEX

Classic Game Design 2E_Ch17_Index_1st Pass.indd 288 5/3/2019 2:59:43 PM

Inde x — 289

ending rule, 238–239
experts rule, 166–167
immediate gameplay rule, 43–44
score rule, 105–106
simple rule, 43
test rule, 73–74

Classic Paddle Game
audio, 61–64
ball, 57–59
first release, 67–68
gameplay screenshot of, 66
paddles, 52–57
playfield, 46–52, 59–61
postmortem, 68–69
scoring, 64–66

Classic Vertical Shooter. See
vertical shooter

code, 276–277, 284–285
coin-op games, 2, 44
coin-op, Real Atari, 44
coin-specific features, 3
collisions, 86–91
color coding, 18
commercial game projects, 52
compiled programs, 277
computations, 282
Computer Space, 40–41
“configuring Blender for laptop”, 9
console games, 3
Console panel, 14
const declarations, 141
consumer group, 44
CreatePrimitive statement, 93
Crystal Castles, 240–243, 256
Custom Icon Size, 23
cutscenes, 237

D
Dabney, Ted, 41
Debug.Log statement, 100
DEC, 41
Default theme, 23
Defender, 3
demo application, in Unity, 31–39
design elements, Pong, 42

difficulty ramping rule, 73, 106, 239
Directional Light, 49, 78, 94, 191, 212
DirectX, 12
Dockable Dialogs, 22
dogfooding, 2
dots, 258–259
dots per inch (DPI) monitor, 9
DPI monitor. See dots per inch monitor
“Dried mud”, 24, 25
Dying, 142
Dynamic Friction, 38

E
80s arcade video games, 3
Els, Ernie, 43
ending rule, 238–239
experts rule, 166–167, 239

F
featuritis, 43
field of view, 50
finite state machines (FSM), 138, 140
First-Person Shooter (FPS), 274
flip tool, 115
floating point numbers, 278
flying rockets, 204–211
flying saucers, 217–223
for statements, 93
FPS. See First-Person Shooter
fractions, 278
Frogger®, 3
FSM. See finite state machines
fudge factors, 152–153
function(s), 282–283

AddForce, 58, 262
GetKey, 262
GetKeyDown, 262
Instantiate, 124–125
MakeAliens, 130, 135, 152
Mathf.Abs, 91
OnGUI, 20, 21, 65, 142, 145
OnTriggerEnter, 65, 87–88,

90, 98, 131, 137, 140,
144, 146–148, 216

PlayClipAtPoint, 231

Classic Game Design 2E_Ch17_Index_1st Pass.indd 289 5/3/2019 2:59:43 PM

290 — Clas s i c Game Des ign , Second Edi t ion Inde x — 291

PlayOneShot, 231
Random.Range, 58
Start, 20, 54, 58, 82, 102,

143, 146, 261
Update, 20, 54–55, 60, 81, 82,

121, 130, 136, 143–146, 148,
158–160, 195, 200, 211, 216,
222, 226, 228, 266–268

function calls, 282–283
G
Galaxian, 3
game design, 3, 105
game development tools

Audacity, 4–6
Blender, 4–6
GIMP, 4–6
Unity, 4–6

GameOver, 142, 232
Game panel, 14–16
GamePlay, 141, 236
GetKeyDown function, 262
GetKey function, 262
Ginner, Eric, 243
GNU Image Manipulation

Program (GIMP)
animation in, 126
channels dialog in, 113
for 2D graphics, 5
making image, 22–25
open-source tool, 4–6
spaceship in, 112

graphic asset, 5
GridTest, 178, 190, 196
Gubble, 243
GUI Text Object, 13
H
hacker, 228
“Hello World” application

program, 9–16, 30, 278
Hierarchy panel, 13, 14, 38
horrible hack, 228

I
Icon Theme, 23
immediate gameplay rule, 43–44
Inspector panel, 14–15, 17–18, 34
Instantiate function, 124–125
Instantiate statement, 215
integers, 278
interpreted program, 277
Iwatami, Toru, 236, 239
J
JavaScript

versus C#, 17
programming for Unity, 17

Jobs, Steve, 71, 75
Joe Cain (JoeC), 243
Joust, 3
L
Lanzinger, Franz, 45, 240, 243
level design, 223–228
levels, 156–161, 262–268
level-select, 166–167
LoadScene statement, 100
looping, 283
loop property, 39
low-poly model, 203
M
Macs, 9, 26
“magic number” code, 228
MakeAliens function, 130,

135, 152, 157
MakeBrickScript, 95–96
marathoning, 106
Mastering Pac-Man, 238
Mat Ball, 83
Mathf.Abs function, 91
Mat Playfield, 77–78
maze, 236, 245–251
maze game, 240–243

audio, 259–262
designing, 244–245

Classic Game Design 2E_Ch17_Index_1st Pass.indd 290 5/3/2019 2:59:43 PM

Inde x — 291

dots, 258–259
maze, 245–251
nasty enemies, 254–258
Pac-Man™, 236–237
player, 251–254
release and postmortem, 270
scoring and levels, 262–268
tuning, 268–270

Microsoft Visual Studio, 54
Missile Command, 3, 106, 238
modeling, 179–186
modern games, 273–275
monkey, 27–28, 31, 34–38
MonkeyMaterial icon, 35–36
“MonoBehaviour”, 19
Monodevelop, 19
MudBackground, 33–34
N
nasty enemies, 254–258
NextLevel, 142
novelty rule, 273
NTSC frame, 260
“null game”, 274
numbers, 278–279
O
OnGUI function, 20, 21, 65, 142,

145, 266
OnTriggerEnter function, 65, 87–88,

90, 98, 131, 140, 144, 146–148,
216, 223, 224, 226, 230, 233, 261

P
Pac-Man™

classic arcade video games, 3
cutscenes, 237
ending rule, 238–239
first maze game, 236–237
kill screen, 238
maze, 236
sequels and maze game, 240–243

Pac-Man AI, 239–240
Pac-Man Fever, 238

paddles, 52–57
PCs, 2, 9
PDP-1, 41
Physic material, 38, 58
Ping Pong, 40, 43
PlayClipAtPoint function, 231
players, 2, 4, 14, 80–82, 251–254
PlayerScript, 90
playfield, 31–35, 37–39, 46–52,

59–61, 77–80, 108–112,
171–179, 196, 199

PlayOneShot function, 231
Pluck, 29, 61–63
PNG. See Portable Network Graphics
Pole Position, 3
Pong

before, 40–41
classic arcade video games, 3–4
clones, 44
design elements, 42
forty years later, 45
sequels, 44

Pong, Atari, 42–44
Portable Network Graphics (PNG), 24
postmortem, 68–69, 102–103,

162–163, 233–234, 270
prefabs, 119–120, 122, 214–215
preferences window, 22
PressStart, 141
programming, 276

with C#, 17–22
Project panel, 14, 33, 38
proportional editing, 174–175, 197
prototype maze, 251
public class statement, 20
Q
Quaternion statement, 215
R
rail shooter, 168
Random.Range function, 58
release, 102–103, 233–234, 270
"Result is " string, 21

Classic Game Design 2E_Ch17_Index_1st Pass.indd 291 5/3/2019 2:59:43 PM

292 — Clas s i c Game Des ign , Second Edi t ion Inde x — 293

result variable, 21
Rigidbody, 37, 58, 87, 132, 137,

209, 213, 218, 227, 252
Robichek, Mark, 243
rocket mesh, 203
rockets, 200–204, 223–224
Russell, Steve, 41
S
SampleScene, 14
scene gizmo, 35, 47, 48, 77, 79, 178, 192
Scene panel, 13–16
score milking, 106
score rule, 105–106
scoring, 64–66, 72, 96–98,

231–233, 262–268
Scramble™

classic arcade video games, 3–4
experts rule, 166–167
screen layout, 165
scrolling shooter, 165–166
sequels, 167–168

screenBoundary variable, 121
ScrollingShip, 186, 191, 194, 227
scrolling shooter, 165–166

audio, 229–231
designing, 169–171
flying rockets, 204–211
flying saucers, 217–223
game sketch of, 169
level 1, 196–199
level design, 223–228
playfield, 171–179
postmortem, 233–234
release, 233–234
rockets, 200–204
scoring, 231–233
Scramble™, 165–166
shots, 211–217
spaceship control, 191–196
spaceship modeling, 179–186
spaceship texturing, 186–191

scroll wheel, 9, 26, 27, 33, 36, 79, 172
semicolons, 281–282
sequels, 240–243

shipscript, 137
shipSpeed variable, 121
shots, 211–217
simple rule, 43
skybox, 192–193, 250–251
SNES home video game systems, 44–45
sound, 153–156
Space Invaders®, 104–107

classic arcade video games, 3–4
spaceship, 112–117

control, 191–196
modeling, 179–186
texturing, 186–191

Spacewar!, 41
sphere collider, 37, 38, 58, 259, 269
sprites, 109, 112, 117–125
stamps, 112, 196
starfield, 109–111
starfield_scroller script, 110–111
Start functions, 20, 54, 58, 82,

102, 143, 146, 261
StartingPlay, 141–142
statements, 281–282

for, 93
CreatePrimitive, 93
LoadScene, 100
public class, 20
using, 20

story-telling, 272
strings, 278–279
Subdivision Surface Modifier, 28
Super Breakout, 74
T
Taito, 107
terrain, 224–225, 227
Testing123 class, 20
test rule, 73–74
Text object, 13
texture file, 33
texturing, 186–191
3D objects for Blender, 4, 6, 24–28
3D modeling methods, 179
3D tech versus. 2D tech, 170
Time.deltaTime variable, 84

Classic Game Design 2E_Ch17_Index_1st Pass.indd 292 5/3/2019 2:59:43 PM

Inde x — 293

title screen, 99–102
tuning, 268–270
2D graphics, GIMP tools for, 5
U
Unicode characters, 279
Unity, 2

built-in functions of, 162
demo application in, 31–39
game development tools, 4–6
GridTest in, 178
“Hello World” application

program, 9–16, 30
installation, 8–9
maze prototype in, 249
prints error messages, 14
programming with C#, 17–22
scrolling playfield in, 199
website, 8

Unity Blank Project, 11
Update functions, 20, 54–55, 60, 81,

82, 121, 130, 136, 143–146,
148, 158–160, 195, 200, 211,
216, 222, 226, 228, 266–268

using statements, 20
UV Image editor, 186–189
V
variable names, 279–281
variables, 279–281

aliencounter, 157
BallScript.launchtimer, 89
bool, 96
dir, 256

result, 21
screenBoundary, 121
shipSpeed, 121
Time.deltaTime, 84

version control, 50
vertical shooter

alien death sequence, 149–153
aliens, 126–133
alien shots, 133–138
designing, 108
initial scoring in, 139
levels, 156–161
lives, 138–149
playfield, 108–112
postmortem, 162–163
release, 162–163
scoring, 138–149
screenshot of, 162
sketching, 108
sound effect, 153–156
spaceship, 112–117
sprites, 117–125

video games
arcade. See arcade video games

viewport shading, 180, 182, 201, 217
Visual Studio Community Edition, 19
W
Wahwah, 30, 153
WallTopScript, 87–88, 90, 96
WeirdValue, 21
white box testing, 135
whitespace, 281
Wozniak, Steve, 71, 75

Classic Game Design 2E_Ch17_Index_1st Pass.indd 293 5/3/2019 2:59:43 PM

Classic Game Design 2E_Ch17_Index_1st Pass.indd 294 5/3/2019 2:59:43 PM

	Classic Game Design 2E_Ch00_FM_2nd Pass
	Classic Game Design 2E_Ch01_2nd Pass
	Classic Game Design 2E_Ch02_3rd Pass
	Classic Game Design 2E_Ch03_2nd Pass
	Classic Game Design 2E_Ch04_2nd Pass
	Classic Game Design 2E_Ch05_2nd Pass
	Classic Game Design 2E_Ch06_3rd Pass
	Classic Game Design 2E_Ch07_2nd Pass
	Classic Game Design 2E_Ch08_2nd Pass
	Classic Game Design 2E_Ch09_2nd Pass
	Classic Game Design 2E_Ch10_2nd Pass
	Classic Game Design 2E_Ch11_2nd Pass
	Classic Game Design 2E_Ch12_2nd Pass
	Classic Game Design 2E_Ch13_Epilogue_2nd Pass
	Classic Game Design 2E_Ch14_App-I_2nd Pass
	Classic Game Design 2E_Ch15_App-II_2nd Pass
	Classic Game Design 2E_Ch16_App-III_2nd Pass
	Classic Game Design 2E_Ch17_Index_1st Pass

